WorldWideScience

Sample records for complete mitochondrial dna

  1. Complete DNA sequence of the linear mitochondrial genome of the pathogenic yeast Candida parapsilosis

    DEFF Research Database (Denmark)

    Nosek, J.; Novotna, M.; Hlavatovicova, Z.

    2004-01-01

    The complete sequence of the mitochondrial DNA of the opportunistic yeast pathogen Candida parapsilosis was determined. The mitochondrial genome is represented by linear DNA molecules terminating with tandem repeats of a 738-bp unit. The number of repeats varies, thus generating a population...

  2. Complete mitochondrial DNA sequence of the Eastern keelback mullet Liza affinis.

    Science.gov (United States)

    Gong, Xiaoling; Zhu, Wenjia; Bao, Baolong

    2016-05-01

    Eastern keelback mullet (Liza affinis) inhabits inlet waters and estuaries of rivers. In this paper, we initially determined the complete mitochondrial genome of Liza affinis. The entire mtDNA sequence is 16,831 bp in length, including 2 rRNA genes, 22 tRNA genes, 13 protein-coding genes and 1 putative control region. Its order and numbers of genes are similar to most bony fishes.

  3. What Is Mitochondrial DNA?

    Science.gov (United States)

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  4. Complete DNA sequence of the mitochondrial genome of the treehopper Leptobelus gazella (Membracoidea: Hemiptera).

    Science.gov (United States)

    Zhao, Xing; Liang, Ai-Ping

    2016-09-01

    The first complete DNA sequence of the mitochondrial genome (mitogenome) of Leptobelus gazelle (Membracoidea: Hemiptera) is determined in this study. The circular molecule is 16,007 bp in its full length, which encodes a set of 37 genes, including 13 proteins, 2 ribosomal RNAs, 22 transfer RNAs, and contains an A + T-rich region (CR). The gene numbers, content, and organization of L. gazelle are similar to other typical metazoan mitogenomes. Twelve of the 13 PCGs are initiated with ATR methionine or ATT isoleucine codons, except the atp8 gene that uses the ATC isoleucine as start signal. Ten of the 13 PCGs have complete termination codons, either TAA (nine genes) or TAG (cytb). The remaining 3 PCGs (cox1, cox2 and nad5) have incomplete termination codons T (AA). All of the 22 tRNAs can be folded in the form of a typical clover-leaf structure. The complete mitogenome sequence data of L. gazelle is useful for the phylogenetic and biogeographic studies of the Membracoidea and Hemiptera.

  5. Comparison of complete mitochondrial DNA sequences between old and new world strains of the cowpea aphid, Aphis craccivora (Hemiptera: Aphididae)

    Science.gov (United States)

    Mitochondrial DNA provides useful tools for inferring population genetic structure within a species and phylogenetic relationships between species. The complete mitogenome sequences were assembled from strains of the cowpea aphids, Aphis craccivora, from the old (15,308 bp) and new world (15,305 bp...

  6. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments.

    Science.gov (United States)

    Dabney, Jesse; Knapp, Michael; Glocke, Isabelle; Gansauge, Marie-Theres; Weihmann, Antje; Nickel, Birgit; Valdiosera, Cristina; García, Nuria; Pääbo, Svante; Arsuaga, Juan-Luis; Meyer, Matthias

    2013-09-24

    Although an inverse relationship is expected in ancient DNA samples between the number of surviving DNA fragments and their length, ancient DNA sequencing libraries are strikingly deficient in molecules shorter than 40 bp. We find that a loss of short molecules can occur during DNA extraction and present an improved silica-based extraction protocol that enables their efficient retrieval. In combination with single-stranded DNA library preparation, this method enabled us to reconstruct the mitochondrial genome sequence from a Middle Pleistocene cave bear (Ursus deningeri) bone excavated at Sima de los Huesos in the Sierra de Atapuerca, Spain. Phylogenetic reconstructions indicate that the U. deningeri sequence forms an early diverging sister lineage to all Western European Late Pleistocene cave bears. Our results prove that authentic ancient DNA can be preserved for hundreds of thousand years outside of permafrost. Moreover, the techniques presented enable the retrieval of phylogenetically informative sequences from samples in which virtually all DNA is diminished to fragments shorter than 50 bp.

  7. The complete mitochondrial DNA genome of a greater horseshoe bat subspecies, Rhinolophus ferrumequinum quelpartis (Chiroptera: Rhinolophidae).

    Science.gov (United States)

    Yoon, Kwang Bae; Kim, Ji Young; Kim, Hye Ri; Cho, Jae Youl; Park, Yung Chul

    2013-02-01

    There are two subspecies of Rhinolophus ferrumequinum currently recognized in South Korea. The Korean greater horseshoe bat subspecies, Rhinolophus ferrumequinum quelpartis, is distributed only in Jeju Island. The complete mitochondrial genome of the island subspecies was determined and revealed 99.7% similarity to the mainland subspecies Rhinolophus ferrumequinum korai. If d-loop region is excluded, similarity of the two genomes was 99.9%.

  8. Complete DNA sequence of the linear mitochondrial genome of the pathogenic yeast Candida parapsilosis

    Czech Academy of Sciences Publication Activity Database

    Nosek, J.; Novotná, Marcela; Hlavaticová, Z.; Ussery, D. W.; Fajkus, Jiří; Tomáška, L.

    2004-01-01

    Roč. 272, č. 2 (2004), s. 173-180 ISSN 1617-4615 Grant - others:Howard Hughes Medical Institute(US) 55000327; VEGA MŠ SR(SK) 1/9153/02; VEGA MŠ SR(SK) 1/0006/03; APVT(SK) 20-003902; Fogarty International NIH(US) 1-R03-TW05654-01 Institutional research plan: CEZ:AV0Z5004920 Keywords : Candida parapsilosis * linear mitochondrial DNA * telomeric circles (t-circles) Subject RIV: BO - Biophysics Impact factor: 2.371, year: 2004

  9. Complete sequences of the mitochondrial DNA of the wild Gracilariopsis lemaneiformis and two mutagenic cultivated breeds (Gracilariaceae, Rhodophyta.

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    Full Text Available The complete mitochondrial DNA (mtDNA of Gracilariopsis lemaneiformis was sequenced (25883 bp and mapped to a circular model. The A+T composition was 72.5%. Forty six genes and two potentially functional open reading frames were identified. They include 24 protein-coding genes, 2 rRNA genes, 20 tRNA genes and 2 ORFs (orf60, orf142. There is considerable sequence synteny across the five red algal mtDNAs falling into Florideophyceae including Gr. lemaneiformis in this study and previously sequenced species. A long stem-loop and a hairpin structure were identified in intergenic regions of mt genome of Gr. lemaneiformis, which are believed to be involved with transcription and replication. In addition, the mtDNAs of two mutagenic cultivated breeds ("981" and "07-2" were also sequenced. Compared with the mtDNA of wild Gr. lemaneiformis, the genome size and gene length and order of three strains were completely identical except nine base mutations including eight in the protein-coding genes and one in the tRNA gene. None of the base mutations caused frameshift or a premature stop codon in the mtDNA genes. Phylogenetic analyses based on mitochondrial protein-coding genes and rRNA genes demonstrated Gracilariopsis andersonii had closer phylogenetic relationship with its parasite Gracilariophila oryzoides than Gracilariopsis lemaneiformis which was from the same genus of Gracilariopsis.

  10. Complete sequences of the mitochondrial DNA of the wild Gracilariopsis lemaneiformis and two mutagenic cultivated breeds (Gracilariaceae, Rhodophyta).

    Science.gov (United States)

    Zhang, Lei; Wang, Xumin; Qian, Hao; Chi, Shan; Liu, Cui; Liu, Tao

    2012-01-01

    The complete mitochondrial DNA (mtDNA) of Gracilariopsis lemaneiformis was sequenced (25883 bp) and mapped to a circular model. The A+T composition was 72.5%. Forty six genes and two potentially functional open reading frames were identified. They include 24 protein-coding genes, 2 rRNA genes, 20 tRNA genes and 2 ORFs (orf60, orf142). There is considerable sequence synteny across the five red algal mtDNAs falling into Florideophyceae including Gr. lemaneiformis in this study and previously sequenced species. A long stem-loop and a hairpin structure were identified in intergenic regions of mt genome of Gr. lemaneiformis, which are believed to be involved with transcription and replication. In addition, the mtDNAs of two mutagenic cultivated breeds ("981" and "07-2") were also sequenced. Compared with the mtDNA of wild Gr. lemaneiformis, the genome size and gene length and order of three strains were completely identical except nine base mutations including eight in the protein-coding genes and one in the tRNA gene. None of the base mutations caused frameshift or a premature stop codon in the mtDNA genes. Phylogenetic analyses based on mitochondrial protein-coding genes and rRNA genes demonstrated Gracilariopsis andersonii had closer phylogenetic relationship with its parasite Gracilariophila oryzoides than Gracilariopsis lemaneiformis which was from the same genus of Gracilariopsis.

  11. Molecular phylogeography of the brown bear (Ursus arctos) in Northeastern Asia based on analyses of complete mitochondrial DNA sequences.

    Science.gov (United States)

    Hirata, Daisuke; Mano, Tsutomu; Abramov, Alexei V; Baryshnikov, Gennady F; Kosintsev, Pavel A; Vorobiev, Alexandr A; Raichev, Evgeny G; Tsunoda, Hiroshi; Kaneko, Yayoi; Murata, Koichi; Fukui, Daisuke; Masuda, Ryuichi

    2013-07-01

    To further elucidate the migration history of the brown bears (Ursus arctos) on Hokkaido Island, Japan, we analyzed the complete mitochondrial DNA (mtDNA) sequences of 35 brown bears from Hokkaido, the southern Kuril Islands (Etorofu and Kunashiri), Sakhalin Island, and the Eurasian Continent (continental Russia, Bulgaria, and Tibet), and those of four polar bears. Based on these sequences, we reconstructed the maternal phylogeny of the brown bear and estimated divergence times to investigate the timing of brown bear migrations, especially in northeastern Eurasia. Our gene tree showed the mtDNA haplotypes of all 73 brown and polar bears to be divided into eight divergent lineages. The brown bear on Hokkaido was divided into three lineages (central, eastern, and southern). The Sakhalin brown bear grouped with eastern European and western Alaskan brown bears. Etorofu and Kunashiri brown bears were closely related to eastern Hokkaido brown bears and could have diverged from the eastern Hokkaido lineage after formation of the channel between Hokkaido and the southern Kuril Islands. Tibetan brown bears diverged early in the eastern lineage. Southern Hokkaido brown bears were closely related to North American brown bears.

  12. The complete mitochondrial genome of the enigmatic bigheadedturtle (Platysternon): description of unusual genomic features and thereconciliation of phylogenetic hypotheses based on mitochondrial andnuclear DNA

    Energy Technology Data Exchange (ETDEWEB)

    Parham, James F.; Feldman, Chris R.; Boore, Jeffrey L.

    2005-12-28

    The big-headed turtle (Platysternon megacephalum) from east Asia is the sole living representative of a poorly-studied turtle lineage (Platysternidae). It has no close living relatives, and its phylogenetic position within turtles is one of the outstanding controversies in turtle systematics. Platysternon was traditionally considered to be close to snapping turtles (Chelydridae) based on some studies of its morphology and mitochondrial (mt) DNA, however, other studies of morphology and nuclear (nu) DNA do not support that hypothesis. We sequenced the complete mt genome of Platysternon and the nearly complete mt genomes of two other relevant turtles and compared them to turtle mt genomes from the literature to form the largest molecular dataset used to date to address this issue. The resulting phylogeny robustly rejects the placement of Platysternon with Chelydridae, but instead shows that it is a member of the Testudinoidea, a diverse, nearly globally-distributed group that includes pond turtles and tortoises. We also discovered that Platysternon mtDNA has large-scale gene rearrangements and possesses two, nearly identical, control regions, features that distinguish it from all other studied turtles. Our study robustly determines the phylogenetic placement of Platysternon and provides a well-resolved outline of major turtle lineages, while demonstrating the significantly greater resolving power of comparing large amounts of mt sequence over that of short fragments. Earlier phylogenies placing Platysternon with chelydrids required a temporal gap in the fossil record that is now unnecessary. The duplicated control regions and gene rearrangements of the Platysternon mt DNA probably resulted from the duplication of part of the genome and then the subsequent loss of redundant genes. Although it is possible that having two control regions may provide some advantage, explaining why the control regions would be maintained while some of the duplicated genes were eroded

  13. Replicating animal mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Emily A. McKinney

    2013-01-01

    Full Text Available The field of mitochondrial DNA (mtDNA replication has been experiencing incredible progress in recent years, and yet little is certain about the mechanism(s used by animal cells to replicate this plasmid-like genome. The long-standing strand-displacement model of mammalian mtDNA replication (for which single-stranded DNA intermediates are a hallmark has been intensively challenged by a new set of data, which suggests that replication proceeds via coupled leading-and lagging-strand synthesis (resembling bacterial genome replication and/or via long stretches of RNA intermediates laid on the mtDNA lagging-strand (the so called RITOLS. The set of proteins required for mtDNA replication is small and includes the catalytic and accessory subunits of DNA polymerase y, the mtDNA helicase Twinkle, the mitochondrial single-stranded DNA-binding protein, and the mitochondrial RNA polymerase (which most likely functions as the mtDNA primase. Mutations in the genes coding for the first three proteins are associated with human diseases and premature aging, justifying the research interest in the genetic, biochemical and structural properties of the mtDNA replication machinery. Here we summarize these properties and discuss the current models of mtDNA replication in animal cells.

  14. The Complete Mitochondrial DNA Sequence of Scenedesmus obliquus Reflects an Intermediate Stage in the Evolution of the Green Algal Mitochondrial Genome

    Science.gov (United States)

    Nedelcu, Aurora M.; Lee, Robert W.; Lemieux, Claude; Gray, Michael W.; Burger, Gertraud

    2000-01-01

    Two distinct mitochondrial genome types have been described among the green algal lineages investigated to date: a reduced–derived, Chlamydomonas-like type and an ancestral, Prototheca-like type. To determine if this unexpected dichotomy is real or is due to insufficient or biased sampling and to define trends in the evolution of the green algal mitochondrial genome, we sequenced and analyzed the mitochondrial DNA (mtDNA) of Scenedesmus obliquus. This genome is 42,919 bp in size and encodes 42 conserved genes (i.e., large and small subunit rRNA genes, 27 tRNA and 13 respiratory protein-coding genes), four additional free-standing open reading frames with no known homologs, and an intronic reading frame with endonuclease/maturase similarity. No 5S rRNA or ribosomal protein-coding genes have been identified in Scenedesmus mtDNA. The standard protein-coding genes feature a deviant genetic code characterized by the use of UAG (normally a stop codon) to specify leucine, and the unprecedented use of UCA (normally a serine codon) as a signal for termination of translation. The mitochondrial genome of Scenedesmus combines features of both green algal mitochondrial genome types: the presence of a more complex set of protein-coding and tRNA genes is shared with the ancestral type, whereas the lack of 5S rRNA and ribosomal protein-coding genes as well as the presence of fragmented and scrambled rRNA genes are shared with the reduced–derived type of mitochondrial genome organization. Furthermore, the gene content and the fragmentation pattern of the rRNA genes suggest that this genome represents an intermediate stage in the evolutionary process of mitochondrial genome streamlining in green algae. [The sequence data described in this paper have been submitted to the GenBank data library under accession no. AF204057.] PMID:10854413

  15. Complete mitochondrial genome of Concholepas concholepas inferred by 454 pyrosequencing and mtDNA expression in two mollusc populations.

    Science.gov (United States)

    Núñez-Acuña, Gustavo; Aguilar-Espinoza, Andrea; Gallardo-Escárate, Cristian

    2013-03-01

    Despite the great relevance of mitochondrial genome analysis in evolutionary studies, there is scarce information on how the transcripts associated with the mitogenome are expressed and their role in the genetic structuring of populations. This work reports the complete mitochondrial genome of the marine gastropod Concholepas concholepas, obtained by 454 pryosequencing, and an analysis of mitochondrial transcripts of two populations 1000 km apart along the Chilean coast. The mitochondrion of C. concholepas is 15,495 base pairs (bp) in size and contains the 37 subunits characteristic of metazoans, as well as a non-coding region of 330 bp. In silico analysis of mitochondrial gene variability showed significant differences among populations. In terms of levels of relative abundance of transcripts associated with mitochondrion in the two populations (assessed by qPCR), the genes associated with complexes III and IV of the mitochondrial genome had the highest levels of expression in the northern population while transcripts associated with the ATP synthase complex had the highest levels of expression in the southern population. Moreover, fifteen polymorphic SNPs were identified in silico between the mitogenomes of the two populations. Four of these markers implied different amino acid substitutions (non-synonymous SNPs). This work contributes novel information regarding the mitochondrial genome structure and mRNA expression levels of C. concholepas. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Complete mitochondrial DNA sequences of the Victoria tilapia (Oreochromis variabilis) and Redbelly Tilapia (Tilapia zilli): genome characterization and phylogeny analysis.

    Science.gov (United States)

    Kinaro, Zachary Omambia; Xue, Liangyi; Volatiana, Josies Ancella

    2016-07-01

    The Cichlid fishes have played an important role in evolutionary biology, population studies and aquaculture industry with East African species representing a model suited for studying adaptive radiation and speciation for cichlid genome projects in which closely related genomes are fast emerging presenting questions on phenotype-genotype relations. The complete mitochondrial genomes presented here are for two closely related but eco-morphologically distinct Lake Victoria basin cichlids, Oreochromis variabilis, an endangered native species and Tilapia zilli, an invasive species, both of which are important economic fishes in local areas. The complete mitochondrial genomes determined for O. variabilis and T. zilli are 16 626 and 16,619 bp, respectively. Both the mitogenomes contain 13 protein-coding genes, 22 tRNAs, 2 rRNAs and a non-coding control region, which are typical of vertebrate mitogenomes. Phylogenetic analyses of the two species revealed that though both lie within family Cichlidae, they are remotely related.

  17. Mitochondrial DNA repair and aging

    International Nuclear Information System (INIS)

    Mandavilli, Bhaskar S.; Santos, Janine H.; Van Houten, Bennett

    2002-01-01

    The mitochondrial electron transport chain plays an important role in energy production in aerobic organisms and is also a significant source of reactive oxygen species that damage DNA, RNA and proteins in the cell. Oxidative damage to the mitochondrial DNA is implicated in various degenerative diseases, cancer and aging. The importance of mitochondrial ROS in age-related degenerative diseases is further strengthened by studies using animal models, Caenorhabditis elegans, Drosophila and yeast. Research in the last several years shows that mitochondrial DNA is more susceptible to various carcinogens and ROS when compared to nuclear DNA. DNA damage in mammalian mitochondria is repaired by base excision repair (BER). Studies have shown that mitochondria contain all the enzymes required for BER. Mitochondrial DNA damage, if not repaired, leads to disruption of electron transport chain and production of more ROS. This vicious cycle of ROS production and mtDNA damage ultimately leads to energy depletion in the cell and apoptosis

  18. Mitochondrial DNA repair and aging

    Energy Technology Data Exchange (ETDEWEB)

    Mandavilli, Bhaskar S.; Santos, Janine H.; Van Houten, Bennett

    2002-11-30

    The mitochondrial electron transport chain plays an important role in energy production in aerobic organisms and is also a significant source of reactive oxygen species that damage DNA, RNA and proteins in the cell. Oxidative damage to the mitochondrial DNA is implicated in various degenerative diseases, cancer and aging. The importance of mitochondrial ROS in age-related degenerative diseases is further strengthened by studies using animal models, Caenorhabditis elegans, Drosophila and yeast. Research in the last several years shows that mitochondrial DNA is more susceptible to various carcinogens and ROS when compared to nuclear DNA. DNA damage in mammalian mitochondria is repaired by base excision repair (BER). Studies have shown that mitochondria contain all the enzymes required for BER. Mitochondrial DNA damage, if not repaired, leads to disruption of electron transport chain and production of more ROS. This vicious cycle of ROS production and mtDNA damage ultimately leads to energy depletion in the cell and apoptosis.

  19. Minisequencing mitochondrial DNA pathogenic mutations

    Directory of Open Access Journals (Sweden)

    Carracedo Ángel

    2008-04-01

    Full Text Available Abstract Background There are a number of well-known mutations responsible of common mitochondrial DNA (mtDNA diseases. In order to overcome technical problems related to the analysis of complete mtDNA genomes, a variety of different techniques have been proposed that allow the screening of coding region pathogenic mutations. Methods We here propose a minisequencing assay for the analysis of mtDNA mutations. In a single reaction, we interrogate a total of 25 pathogenic mutations distributed all around the whole mtDNA genome in a sample of patients suspected for mtDNA disease. Results We have detected 11 causal homoplasmic mutations in patients suspected for Leber disease, which were further confirmed by standard automatic sequencing. Mutations m.11778G>A and m.14484T>C occur at higher frequency than expected by change in the Galician (northwest Spain patients carrying haplogroup J lineages (Fisher's Exact test, P-value Conclusion We here developed a minisequencing genotyping method for the screening of the most common pathogenic mtDNA mutations which is simple, fast, and low-cost. The technique is robust and reproducible and can easily be implemented in standard clinical laboratories.

  20. Complete sequence of the mitochondrial genome of ...

    Indian Academy of Sciences (India)

    products were purified using the DNA Gel Extraction Kit. (Tiangen, Shanghai, China). The purified products obtained ..... Base composition of O. rubicundus mitochondrial genome. .... the help of fish sampled and identified by morphology.

  1. The efficiency of mitochondrial DNA markers in constructing genetic ...

    African Journals Online (AJOL)

    The efficiency of mitochondrial DNA markers in constructing genetic relationship among Oryx species. ... These data were used to provide the genetic kinship among different Oryx species. The complete cytochrome b gene ... Key words: Conservation, endangered species, Oryx, mitochondrial DNA (mtDNA) markers.

  2. Complete mitochondrial DNA sequences of the threadfin cichlid (Petrochromis trewavasae and the blunthead cichlid (Tropheus moorii and patterns of mitochondrial genome evolution in cichlid fishes.

    Directory of Open Access Journals (Sweden)

    Christoph Fischer

    Full Text Available The cichlid fishes of the East African Great Lakes represent a model especially suited to study adaptive radiation and speciation. With several African cichlid genome projects being in progress, a promising set of closely related genomes is emerging, which is expected to serve as a valuable data base to solve questions on genotype-phenotype relations. The mitochondrial (mt genomes presented here are the first results of the assembly and annotation process for two closely related but eco-morphologically highly distinct Lake Tanganyika cichlids, Petrochromis trewavasae and Tropheus moorii. The genomic sequences comprise 16,588 bp (P. trewavasae and 16,590 bp (T. moorii, and exhibit the typical mitochondrial structure, with 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes, and a non-coding control region. Analyses confirmed that the two species are very closely related with an overall sequence similarity of 96%. We analyzed the newly generated sequences in the phylogenetic context of 21 published labroid fish mitochondrial genomes. Consistent with other vertebrates, the D-loop region was found to evolve faster than protein-coding genes, which in turn are followed by the rRNAs; the tRNAs vary greatly in the rate of sequence evolution, but on average evolve the slowest. Within the group of coding genes, ND6 evolves most rapidly. Codon usage is similar among examined cichlid tribes and labroid families; although a slight shift in usage patterns down the gene tree could be observed. Despite having a clearly different nucleotide composition, ND6 showed a similar codon usage. C-terminal ends of Cox1 exhibit variations, where the varying number of amino acids is related to the structure of the obtained phylogenetic tree. This variation may be of functional relevance for Cox1 synthesis.

  3. Mitochondrial DNA and Cancer Epidemiology Workshop

    Science.gov (United States)

    A workshop to review the state-of-the science in the mitochondrial DNA field and its use in cancer epidemiology, and to develop a concept for a research initiative on mitochondrial DNA and cancer epidemiology.

  4. Complete Mitochondrial Genome of the Medicinal Mushroom Ganoderma lucidum

    Science.gov (United States)

    Chen, Haimei; Chen, Xiangdong; Lan, Jin; Liu, Chang

    2013-01-01

    Ganoderma lucidum is one of the well-known medicinal basidiomycetes worldwide. The mitochondrion, referred to as the second genome, is an organelle found in most eukaryotic cells and participates in critical cellular functions. Elucidating the structure and function of this genome is important to understand completely the genetic contents of G. lucidum. In this study, we assembled the mitochondrial genome of G. lucidum and analyzed the differential expressions of its encoded genes across three developmental stages. The mitochondrial genome is a typical circular DNA molecule of 60,630 bp with a GC content of 26.67%. Genome annotation identified genes that encode 15 conserved proteins, 27 tRNAs, small and large rRNAs, four homing endonucleases, and two hypothetical proteins. Except for genes encoding trnW and two hypothetical proteins, all genes were located on the positive strand. For the repeat structure analysis, eight forward, two inverted, and three tandem repeats were detected. A pair of fragments with a total length around 5.5 kb was found in both the nuclear and mitochondrial genomes, which suggests the possible transfer of DNA sequences between two genomes. RNA-Seq data for samples derived from three stages, namely, mycelia, primordia, and fruiting bodies, were mapped to the mitochondrial genome and qualified. The protein-coding genes were expressed higher in mycelia or primordial stages compared with those in the fruiting bodies. The rRNA abundances were significantly higher in all three stages. Two regions were transcribed but did not contain any identified protein or tRNA genes. Furthermore, three RNA-editing sites were detected. Genome synteny analysis showed that significant genome rearrangements occurred in the mitochondrial genomes. This study provides valuable information on the gene contents of the mitochondrial genome and their differential expressions at various developmental stages of G. lucidum. The results contribute to the understanding of the

  5. Mitochondrial DNA: A Blind Spot in Neuroepigenetics.

    Science.gov (United States)

    Manev, Hari; Dzitoyeva, Svetlana; Chen, Hu

    2012-04-01

    Neuroepigenetics, which includes nuclear DNA modifications such as 5-methylcytosine and 5-hydoxymethylcytosine and modifications of nuclear proteins such as histones, is emerging as the leading field in molecular neuroscience. Historically, a functional role for epigenetic mechanisms, including in neuroepigenetics, has been sought in the area of the regulation of nuclear transcription. However, one important compartment of mammalian cell DNA, different from nuclear but equally important for physiological and pathological processes (including in the brain), mitochondrial DNA has for the most part not had a systematic epigenetic characterization. The importance of mitochondria and mitochondrial DNA (particularly its mutations) in central nervous system physiology and pathology has long been recognized. Only recently have mechanisms of mitochondrial DNA methylation and hydroxymethylation, including the discovery of mitochondrial DNA-methyltransferases and the presence and the functionality of 5-methylcytosine and 5-hydroxymethylcytosine in mitochondrial DNA (e.g., in modifying the transcription of mitochondrial genome), been unequivocally recognized as a part of mammalian mitochondrial physiology. Here we summarize for the first time evidence supporting the existence of these mechanisms and we propose the term "mitochondrial epigenetics" to be used when referring to them. Currently, neuroepigenetics does not include mitochondrial epigenetics - a gap that we expect to close in the near future.

  6. Mitochondrial DNA mutations in human tumor cells

    OpenAIRE

    LI, HUI; HONG, ZE-HUI

    2012-01-01

    Mitochondria play significant roles in cellular energy metabolism, free radical generation and apoptosis. The dysfunction of mitochondria is correlated with the origin and progression of tumors; thus, mutations in the mitochondrial genome that affect mitochondrial function may be one of the causal factors of tumorigenesis. Although the role of mitochondrial DNA (mtDNA) mutations in carcinogenesis has been investigated extensively by various approaches, the conclusions remain controversial to ...

  7. Nucleotide sequence preservation of human mitochondrial DNA

    International Nuclear Information System (INIS)

    Monnat, R.J. Jr.; Loeb, L.A.

    1985-01-01

    Recombinant DNA techniques have been used to quantitate the amount of nucleotide sequence divergence in the mitochondrial DNA population of individual normal humans. Mitochondrial DNA was isolated from the peripheral blood lymphocytes of five normal humans and cloned in M13 mp11; 49 kilobases of nucleotide sequence information was obtained from 248 independently isolated clones from the five normal donors. Both between- and within-individual differences were identified. Between-individual differences were identified in approximately = to 1/200 nucleotides. In contrast, only one within-individual difference was identified in 49 kilobases of nucleotide sequence information. This high degree of mitochondrial nucleotide sequence homogeneity in human somatic cells is in marked contrast to the rapid evolutionary divergence of human mitochondrial DNA and suggests the existence of mechanisms for the concerted preservation of mammalian mitochondrial DNA sequences in single organisms

  8. The complete mitochondrial genome of the three-spot seahorse, Hippocampus trimaculatus (Teleostei, Syngnathidae).

    Science.gov (United States)

    Chang, Chia-Hao; Shao, Kwang-Tsao; Lin, Yeong-Shin; Liao, Yun-Chih

    2013-12-01

    The complete mitochondrial genome of the three-spot seahorse was sequenced using a polymerase chain reaction-based method. The total length of mitochondrial DNA is 16,535 bp and includes 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes, and a control region. The mitochondrial gene order of the three-spot seahorse also conforms to the distinctive vertebrate mitochondrial gene order. The base composition of the genome is A (32.7%), T (29.3%), C (23.4%), and G (14.6%) with an A + T-rich hallmark as that of other vertebrate mitochondrial genomes.

  9. Complete mitochondrial genome of the Loligo opalescence.

    Science.gov (United States)

    Jiang, Lihua; Liu, Wei; Zhu, Aiyi; Zhang, Jianshe; Wu, Changwen

    2016-09-01

    In this study, we determined the complete mitochondrial genome of the Loligo opalescence. The genome was 17,370 bp in length and contained 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and 3 main non-coding regions. The composition and order of genes, were similar to most other invertebrates. The overall base composition of L. opalescence is A 38.62%, C 19.40%, T 32.37% and G 9.61%, with a highly A + T bias of 70.99%. All of the three control regions (CR) contain termination-associated sequences and conserved sequence blocks. This mitogenome sequence data would play an important role in the investigation of phylogenetic relationship, taxonomic resolution and phylogeography of the Loliginidae.

  10. Intraspecific phylogenetic analysis of Siberian woolly mammoths using complete mitochondrial genomes

    DEFF Research Database (Denmark)

    Gilbert, M Thomas P; Drautz, Daniela I; Lesk, Arthur M

    2008-01-01

    We report five new complete mitochondrial DNA (mtDNA) genomes of Siberian woolly mammoth (Mammuthus primigenius), sequenced with up to 73-fold coverage from DNA extracted from hair shaft material. Three of the sequences present the first complete mtDNA genomes of mammoth clade II. Analysis...... to indicate any important functional difference between genomes belonging to the two clades, suggesting that the loss of clade II more likely is due to genetic drift than a selective sweep....

  11. Oxidative DNA damage causes mitochondrial genomic instability in Saccharomyces cerevisiae.

    Science.gov (United States)

    Doudican, Nicole A; Song, Binwei; Shadel, Gerald S; Doetsch, Paul W

    2005-06-01

    Mitochondria contain their own genome, the integrity of which is required for normal cellular energy metabolism. Reactive oxygen species (ROS) produced by normal mitochondrial respiration can damage cellular macromolecules, including mitochondrial DNA (mtDNA), and have been implicated in degenerative diseases, cancer, and aging. We developed strategies to elevate mitochondrial oxidative stress by exposure to antimycin and H(2)O(2) or utilizing mutants lacking mitochondrial superoxide dismutase (sod2Delta). Experiments were conducted with strains compromised in mitochondrial base excision repair (ntg1Delta) and oxidative damage resistance (pif1Delta) in order to delineate the relationship between these pathways. We observed enhanced ROS production, resulting in a direct increase in oxidative mtDNA damage and mutagenesis. Repair-deficient mutants exposed to oxidative stress conditions exhibited profound genomic instability. Elimination of Ntg1p and Pif1p resulted in a synergistic corruption of respiratory competency upon exposure to antimycin and H(2)O(2). Mitochondrial genomic integrity was substantially compromised in ntg1Delta pif1Delta sod2Delta strains, since these cells exhibit a total loss of mtDNA. A stable respiration-defective strain, possessing a normal complement of mtDNA damage resistance pathways, exhibited a complete loss of mtDNA upon exposure to antimycin and H(2)O(2). This loss was preventable by Sod2p overexpression. These results provide direct evidence that oxidative mtDNA damage can be a major contributor to mitochondrial genomic instability and demonstrate cooperation of Ntg1p and Pif1p to resist the introduction of lesions into the mitochondrial genome.

  12. Mitochondrial DNA sequence evolution in shorebird populations

    NARCIS (Netherlands)

    Wenink, P.W.

    1994-01-01

    This thesis describes the global molecular population structure of two shorebird species, in particular of the dunlin, Calidris alpina, by means of comparative sequence analysis of the most variable part of the mitochondrial DNA (mtDNA) genome. There are several reasons

  13. Deoxyribonucleoside kinases in mitochondrial DNA depletion.

    Science.gov (United States)

    Saada-Reisch, Ann

    2004-10-01

    Mitochondrial DNA (mtDNA) depletion syndromes (MDS) are a heterogeneous group of mitochondrial disorders, manifested by a decreased mtDNA copy number and respiratory chain dysfunction. Primary MDS are inherited autosomally and may affect a single organ or multiple tissues. Mutated mitochondrial deoxyribonucleoside kinases; deoxyguanosine kinase (dGK) and thymidine kinase 2 (TK2), were associated with the hepatocerebral and myopathic forms of MDS respectively. dGK and TK2 are key enzymes in the mitochondrial nucleotide salvage pathway, providing the mitochondria with deoxyribonucleotides (dNP) essential for mtDNA synthesis. Although the mitochondrial dNP pool is physically separated from the cytosolic one, dNP's may still be imported through specific transport. Non-replicating tissues, where cytosolic dNP supply is down regulated, are thus particularly vulnerable to dGK and TK2 deficiency. The overlapping substrate specificity of deoxycytidine kinase (dCK) may explain the relative sparing of muscle in dGK deficiency, while low basal TK2 activity render this tissue susceptible to TK2 deficiency. The precise pathophysiological mechanisms of mtDNA depletion due to dGK and TK2 deficiencies remain to be determined, though recent findings confirm that it is attributed to imbalanced dNTP pools.

  14. The complete mitochondrial genome of the tiger tail seahorse, Hippocampus comes (Teleostei, Syngnathidae).

    Science.gov (United States)

    Chang, Chia-Hao; Lin, Han-Yang; Jang-Liaw, Nian-Hong; Shao, Kwang-Tsao; Lin, Yeong-Shin; Ho, Hsuan-Ching

    2013-06-01

    The complete mitochondrial genome of the tiger tail seahorse was sequenced using a polymerase chain reaction-based method. The total length of mitochondrial DNA is 16,525 bp and includes 13 protein-coding genes, 2 ribosomal RNA, 22 transfer RNA genes, and a control region. The mitochondrial gene arrangement of the tiger tail seahorse is also matching the one observed in the most vertebrate creatures. Base composition of the genome is A (32.8%), T (29.8%), C (23.0%), and G (14.4%) with an A+T-rich hallmark as that of other vertebrate mitochondrial genomes.

  15. Complete mitochondrial genome of Eruca sativa Mill. (Garden rocket.

    Directory of Open Access Journals (Sweden)

    Yankun Wang

    Full Text Available Eruca sativa (Cruciferae family is an ancient crop of great economic and agronomic importance. Here, the complete mitochondrial genome of Eruca sativa was sequenced and annotated. The circular molecule is 247,696 bp long, with a G+C content of 45.07%, containing 33 protein-coding genes, three rRNA genes, and 18 tRNA genes. The Eruca sativa mitochondrial genome may be divided into six master circles and four subgenomic molecules via three pairwise large repeats, resulting in a more dynamic structure of the Eruca sativa mtDNA compared with other cruciferous mitotypes. Comparison with the Brassica napus MtDNA revealed that most of the genes with known function are conserved between these two mitotypes except for the ccmFN2 and rrn18 genes, and 27 point mutations were scattered in the 14 protein-coding genes. Evolutionary relationships analysis suggested that Eruca sativa is more closely related to the Brassica species and to Raphanus sativus than to Arabidopsis thaliana.

  16. DNA polymerase beta participates in mitochondrial DNA repair

    DEFF Research Database (Denmark)

    Sykora, P; Kanno, S; Akbari, M

    2017-01-01

    We have detected DNA polymerase beta (Polβ), known as a key nuclear base excision repair (BER) protein, in mitochondrial protein extracts derived from mammalian tissue and cells. Manipulation of the N-terminal sequence affected the amount of Polβ in the mitochondria. Using Polβ fragments, mitocho......We have detected DNA polymerase beta (Polβ), known as a key nuclear base excision repair (BER) protein, in mitochondrial protein extracts derived from mammalian tissue and cells. Manipulation of the N-terminal sequence affected the amount of Polβ in the mitochondria. Using Polβ fragments......, mitochondrial-specific protein partners were identified, with the interactors mainly functioning in DNA maintenance and mitochondrial import. Of particular interest was the identification of the proteins TWINKLE, SSBP1 and TFAM, all of which are mitochondria specific DNA effectors and are known to function...... in the nucleoid. Polβ directly interacted with, and influenced the activity of, the mitochondrial helicase TWINKLE. Human kidney cells with Polβ knock-out (KO) had higher endogenous mtDNA damage. Mitochondrial extracts derived from heterozygous Polβ mouse tissue and KO cells had lower nucleotide incorporation...

  17. The complete mitochondrial genome sequence of Eimeria magna (Apicomplexa: Coccidia).

    Science.gov (United States)

    Tian, Si-Qin; Cui, Ping; Fang, Su-Fang; Liu, Guo-Hua; Wang, Chun-Ren; Zhu, Xing-Quan

    2015-01-01

    In the present study, we determined the complete mitochondrial DNA (mtDNA) sequence of Eimeria magna from rabbits for the first time, and compared its gene contents and genome organizations with that of seven Eimeria spp. from domestic chickens. The size of the complete mt genome sequence of E. magna is 6249 bp, which consists of 3 protein-coding genes (cytb, cox1 and cox3), 12 gene fragments for the large subunit (LSU) rRNA, and 7 gene fragments for the small subunit (SSU) rRNA, without transfer RNA genes, in accordance with that of Eimeria spp. from chickens. The putative direction of translation for three genes (cytb, cox1 and cox3) was the same as those of Eimeria species from domestic chickens. The content of A + T is 65.16% for E. magna mt genome (29.73% A, 35.43% T, 17.09 G and 17.75% C). The E. magna mt genome sequence provides novel mtDNA markers for studying the molecular epidemiology and population genetics of Eimeria spp. and has implications for the molecular diagnosis and control of rabbit coccidiosis.

  18. Mitochondrial DNA inheritance in the human fungal pathogen Cryptococcus gattii.

    Science.gov (United States)

    Wang, Zixuan; Wilson, Amanda; Xu, Jianping

    2015-02-01

    The inheritance of mitochondrial DNA (mtDNA) is predominantly uniparental in most sexual eukaryotes. In this study, we examined the mitochondrial inheritance pattern of Cryptococcus gattii, a basidiomycetous yeast responsible for the recent and ongoing outbreak of cryptococcal infections in the US Pacific Northwest and British Columbia (especially Vancouver Island) in Canada. Using molecular markers, we analyzed the inheritance of mtDNA in 14 crosses between strains within and between divergent lineages in C. gattii. Consistent with results from recent studies, our analyses identified significant variations in mtDNA inheritance patterns among strains and crosses, ranging from strictly uniparental to biparental. For two of the crosses that showed uniparental mitochondrial inheritance in standard laboratory conditions, we further investigated the effects of the following environmental variables on mtDNA inheritance: UV exposure, temperature, and treatments with the methylation inhibitor 5-aza-2'-deoxycytidine and with the ubiquitination inhibitor ammonium chloride. Interestingly, one of these crosses showed no response to these environmental variables while the other exhibited diverse patterns ranging from complete uniparental inheritance of the MATa parent mtDNA, to biparental inheritance, and to a significant bias toward inheritance of the MATα parental mtDNA. Our results indicate that mtDNA inheritance in C. gattii differs from that in its closely related species Cryptococcus neoformans. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Targeted Transgenic Overexpression of Mitochondrial Thymidine Kinase (TK2) Alters Mitochondrial DNA (mtDNA) and Mitochondrial Polypeptide Abundance : Transgenic TK2, mtDNA, and Antiretrovirals

    OpenAIRE

    Hosseini, Seyed H.; Kohler, James J.; Haase, Chad P.; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-01-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-γ. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK...

  20. Targeted Transgenic Overexpression of Mitochondrial Thymidine Kinase (TK2) Alters Mitochondrial DNA (mtDNA) and Mitochondrial Polypeptide Abundance

    Science.gov (United States)

    Hosseini, Seyed H.; Kohler, James J.; Haase, Chad P.; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-01-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-γ. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity. PMID:17322372

  1. Molecular systematics and DNA barcoding of Altai osmans, oreoleuciscus (pisces, cyprinidae, and leuciscinae), and their nearest relatives, inferred from sequences of cytochrome b (Cyt-b), cytochrome oxidase c (Co-1), and complete mitochondrial genome.

    Science.gov (United States)

    Kartavtsev, Yuri Phedorovich; Batischeva, Natalia M; Bogutskaya, Nina G; Katugina, Anna O; Hanzawa, Naoto

    2017-07-01

    Mitochondrial DNA (mtDNA) at the protein-coding Cyt-b gene along with data retrieved from GenBank for Co-1 gene fragments and complete mitochondrial genome (mitogenome) of Altai osmans and the nearest relatives of Leuciscinae fish species were compared for the estimation of variability and phylogenetic tree building. Phylogenetic trees were built by four techniques: Bayesian (BA), maximum likelihood (ML), maximum parsimony (MP), and neighbor-joining (NJ). Resolution of Cyt-b trees for species of two genera (Oreoleuciscus and Phoxinus) was quite distinct at all the approaches. For Tribolodon, the single gene trees were not well resolved; however, the mitogenome tree was resolved. Species identification on per individual basis (DNA barcoding) was high for both Cyt-b and Co-1 genes. The trees built using the data for 13 protein mitochondrial genes revealed a complicated phylogenetic pattern within the subfamily Leuciscinae. Scores of the average p-distances at three taxonomic levels were considerably different: (1) 1.16 ± 0.96, (2) 8.21 ± 1.01, and (3) 16.41 ± 0.85 for Cyt-b and (1) 1.04 ± 0.78, (2) 8.30 ± 0.92, and (3) 10.74 ± 0.79 for 13 protein genes of mitogenome, where (1) is intraspecies, (2) is intragenus, and (3) is intrasubfamily levels. Data on mitogenome distances were summarized for the taxonomic hierarchy for the first time. A concordant increase in distance score with growth of the rank of taxa (having the minimum score at the intraspecies level), both for a single gene and the whole mitogenome, substantiates the concept that speciation in the subfamily Leuciscinae in most cases follows the geographic mode. The distinct clustering of Altai osmans, Oreoleuciscus potanini and O. humilis, in the Cyt-b and Co-1 gene trees with small overall genetic distances, obtained for both genes, allows us to consider these taxa as separate but genetically sister species.

  2. Mitochondrial DNA diagnosis for taeniasis and cysticercosis.

    Science.gov (United States)

    Yamasaki, Hiroshi; Nakao, Minoru; Sako, Yasuhito; Nakaya, Kazuhiro; Sato, Marcello Otake; Ito, Akira

    2006-01-01

    Molecular diagnosis for taeniasis and cysticercosis in humans on the basis of mitochondrial DNA analysis was reviewed. Development and application of three different methods, including restriction fragment length polymorphism analysis, base excision sequence scanning thymine-base analysis and multiplex PCR, were described. Moreover, molecular diagnosis of cysticerci found in specimens submitted for histopathology and the molecular detection of taeniasis using copro-DNA were discussed.

  3. The complete mitochondrial genome of Gossypium hirsutum and evolutionary analysis of higher plant mitochondrial genomes.

    Science.gov (United States)

    Liu, Guozheng; Cao, Dandan; Li, Shuangshuang; Su, Aiguo; Geng, Jianing; Grover, Corrinne E; Hu, Songnian; Hua, Jinping

    2013-01-01

    Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L.) is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt) genome could be helpful for the evolution research of plant mt genomes. We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes. The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species.

  4. Clinical case of Mitochondrial DNA Depletion

    Directory of Open Access Journals (Sweden)

    A. V. Degtyareva

    2017-01-01

    Full Text Available The article reports clinical case of early neonatal manifestation of a rare genetic disease – mitochondrial DNA depletion syndrome, confirmed in laboratory in Russia. Mutations of FBXL4, which encodes an orphan mitochondrial F-box protein, involved in the maintenance of mitochondrial DNA (mtDNA, ultimately leading to disruption of mtDNA replication and decreased activity of mitochondrial respiratory chain complexes. It’s a reason of abnormalities in clinically affected tissues, most of all the muscular system and the brain. In our case hydronephrosis on the right, subependimal cysts of the brain, partial intestinal obstruction accompanied by polyhydramnios were diagnosed antenatal. Baby’s condition at birth was satisfactory and worsened dramatically towards the end of the first day of life. Clinical presentation includes sepsis-like symptom complex, neonatal depression, muscular hypotonia, persistent decompensated lactic acidosis, increase in the concentration of mitochondrial markers in blood plasma and urine, and changes in the basal ganglia of the brain. Imaging of the brain by magnetic resonance imaging (MRI demonstrated global volume loss particularly the subcortical and periventricular white matter with significant abnormal signal in bilateral basal ganglia and brainstem with associated delayed myelination. Differential diagnosis was carried out with hereditary diseases that occur as a «sepsis-like» symptom complex, accompanied by lactic acidosis: a group of metabolic disorders of amino acids, organic acids, β-oxidation defects of fatty acids, respiratory mitochondrial chain disorders and glycogen storage disease. The diagnosis was confirmed after sequencing analysis of 62 mytochondrial genes by NGS (Next Generation Sequencing. Reported disease has an unfavorable prognosis, however, accurate diagnosis is very important for genetic counseling and helps prevent the re-birth of a sick child in the family.

  5. Mitochondrial DNA structure in the Arabian Peninsula

    Directory of Open Access Journals (Sweden)

    Cabrera Vicente M

    2008-02-01

    Full Text Available Abstract Background Two potential migratory routes followed by modern humans to colonize Eurasia from Africa have been proposed. These are the two natural passageways that connect both continents: the northern route through the Sinai Peninsula and the southern route across the Bab al Mandab strait. Recent archaeological and genetic evidence have favored a unique southern coastal route. Under this scenario, the study of the population genetic structure of the Arabian Peninsula, the first step out of Africa, to search for primary genetic links between Africa and Eurasia, is crucial. The haploid and maternally inherited mitochondrial DNA (mtDNA molecule has been the most used genetic marker to identify and to relate lineages with clear geographic origins, as the African Ls and the Eurasian M and N that have a common root with the Africans L3. Results To assess the role of the Arabian Peninsula in the southern route, we genetically analyzed 553 Saudi Arabs using partial (546 and complete mtDNA (7 sequencing, and compared the lineages obtained with those present in Africa, the Near East, central, east and southeast Asia and Australasia. The results showed that the Arabian Peninsula has received substantial gene flow from Africa (20%, detected by the presence of L, M1 and U6 lineages; that an 18% of the Arabian Peninsula lineages have a clear eastern provenance, mainly represented by U lineages; but also by Indian M lineages and rare M links with Central Asia, Indonesia and even Australia. However, the bulk (62% of the Arabian lineages has a Northern source. Conclusion Although there is evidence of Neolithic and more recent expansions in the Arabian Peninsula, mainly detected by (preHV1 and J1b lineages, the lack of primitive autochthonous M and N sequences, suggests that this area has been more a receptor of human migrations, including historic ones, from Africa, India, Indonesia and even Australia, than a demographic expansion center along the

  6. Supplementary data: A complete mitochondrial genome of wheat ...

    Indian Academy of Sciences (India)

    Supplementary data: A complete mitochondrial genome of wheat (Triticum aestivum cv. Chinese Yumai), and fast evolving mitochondrial genes in higher plants. Peng Cui, Huitao Liu, Qiang Lin, Feng Ding, Guoyin Zhuo, Songnian Hu, Dongcheng Liu, Wenlong Yang, Kehui Zhan,. Aimin Zhang and Jun Yu. J. Genet.

  7. Distinguishing between incomplete lineage sorting and genomic introgressions: complete fixation of allospecific mitochondrial DNA in a sexually reproducing fish (Cobitis; Teleostei, despite clonal reproduction of hybrids.

    Directory of Open Access Journals (Sweden)

    Lukas Choleva

    Full Text Available Distinguishing between hybrid introgression and incomplete lineage sorting causing incongruence among gene trees in that they exhibit topological differences requires application of statistical approaches that are based on biologically relevant models. Such study is especially challenging in hybrid systems, where usual vectors mediating interspecific gene transfers--hybrids with Mendelian heredity--are absent or unknown. Here we study a complex of hybridizing species, which are known to produce clonal hybrids, to discover how one of the species, Cobitis tanaitica, has achieved a pattern of mito-nuclear mosaic genome over the whole geographic range. We appplied three distinct methods, including the method using solely the information on gene tree topologies, and found that the contrasting mito-nuclear signal might not have resulted from the retention of ancestral polymorphism. Instead, we found two signs of hybridization events related to C. tanaitica; one concerning nuclear gene flow and the other suggested mitochondrial capture. Interestingly, clonal inheritance (gynogenesis of contemporary hybrids prevents genomic introgressions and non-clonal hybrids are either absent or too rare to be detected among European Cobitis. Our analyses therefore suggest that introgressive hybridizations are rather old episodes, mediated by previously existing hybrids whose inheritance was not entirely clonal. Cobitis complex thus supports the view that the type of resulting hybrids depends on a level of genomic divergence between sexual species.

  8. Complete mitochondrial genome of threatened mahseer Tor tor ...

    Indian Academy of Sciences (India)

    A.

    In the present study, complete mitochondrial genome of Tor tor has been sequenced .... Most of the genes were encoded on the heavy strand (H- strand), whereas only .... 4 bp in the DHU stem (figure 5 in electronic supplementary material).

  9. Complete mitochondrial genome of the Indian peafowl (Pavo cristatus), with phylogenetic analysis in phasianidae.

    Science.gov (United States)

    Zhou, Tai-Cheng; Sha, Tao; Irwin, David M; Zhang, Ya-Ping

    2015-01-01

    Pavo cristatus, known as the Indian peafowl, is endemic to India and Sri Lanka and has been domesticated for its ornamental and food value. However, its phylogenetic status is still debated. Here, to clarify the phylogenetic status of P. cristatus within Phasianidae, we analyzed its mitochondrial genome (mtDNA). The complete mitochondrial DNA (mtDNA) genome was determined using 34 pairs of primers. Our data show that the mtDNA genome of P. cristatus is 16,686 bp in length. Molecular phylogenetic analyses of P. cristatus was performed along with 22 complete mtDNA genomes belonging to other species in Phasianidae using Bayesian and maximum likelihood methods, where Aythya americana and Anas platyrhynchos were used as outgroups. Our results show that P. critatus has its closest genetic affinity with Pavo muticus and belongs to clade that contains Gallus, Bambusicola and Francolinus.

  10. Complete mitochondrial genome of the aluminum-tolerant fungus Rhodotorula taiwanensis RS1 and comparative analysis of Basidiomycota mitochondrial genomes.

    Science.gov (United States)

    Zhao, Xue Qiang; Aizawa, Tomoko; Schneider, Jessica; Wang, Chao; Shen, Ren Fang; Sunairi, Michio

    2013-04-01

    The complete mitochondrial genome of Rhodotorula taiwanensis RS1, an aluminum-tolerant Basidiomycota fungus, was determined and compared with the known mitochondrial genomes of 12 Basidiomycota species. The mitochondrial genome of R. taiwanensis RS1 is a circular DNA molecule of 40,392 bp and encodes the typical 15 mitochondrial proteins, 23 tRNAs, and small and large rRNAs as well as 10 intronic open reading frames. These genes are apparently transcribed in two directions and do not show syntenies in gene order with other investigated Basidiomycota species. The average G+C content (41%) of the mitochondrial genome of R. taiwanensis RS1 is the highest among the Basidiomycota species. Two introns were detected in the sequence of the atp9 gene of R. taiwanensis RS1, but not in that of other Basidiomycota species. Rhodotorula taiwanensis is the first species of the genus Rhodotorula whose full mitochondrial genome has been sequenced; and the data presented here supply valuable information for understanding the evolution of fungal mitochondrial genomes and researching the mechanism of aluminum tolerance in microorganisms. © 2013 The Authors. Published by Blackwell Publishing Ltd.

  11. Developing a biological dosimeter based on mitochondrial DNA

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S; Carlisle, S M; Unrau, P; Deugau, K V [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1996-12-31

    Direct measurement of deoxyribonucleic acid (DNA) damage from ionizing radiation may be advantageous in determining radiation radiation exposures and assessing their effects on atomic radiation workers. The mitochondrial DNA molecule is one potential cellular DNA target which is: fully defined and sequenced; present in many copies per cell; not vital to cellular survival; and less subject to DNA repair than nuclear DNA. A method is described to isolate and analyse normal mitochondrial DNA. We describe the developments needed to determine DNA damage in mitochondrial DNA. The target is to make a biological dosimeter. (author). 6 refs., 3 figs.

  12. Developing a biological dosimeter based on mitochondrial DNA

    International Nuclear Information System (INIS)

    Adams, S.; Carlisle, S.M.; Unrau, P.; Deugau, K.V.

    1995-01-01

    Direct measurement of deoxyribonucleic acid (DNA) damage from ionizing radiation may be advantageous in determining radiation radiation exposures and assessing their effects on atomic radiation workers. The mitochondrial DNA molecule is one potential cellular DNA target which is: fully defined and sequenced; present in many copies per cell; not vital to cellular survival; and less subject to DNA repair than nuclear DNA. A method is described to isolate and analyse normal mitochondrial DNA. We describe the developments needed to determine DNA damage in mitochondrial DNA. The target is to make a biological dosimeter. (author). 6 refs., 3 figs

  13. Atomistic Molecular Dynamics Simulations of Mitochondrial DNA Polymerase γ

    DEFF Research Database (Denmark)

    Euro, Liliya; Haapanen, Outi; Róg, Tomasz

    2017-01-01

    of replisomal interactions, and functional effects of patient mutations that do not affect direct catalysis have remained elusive. Here we report the first atomistic classical molecular dynamics simulations of the human Pol γ replicative complex. Our simulation data show that DNA binding triggers remarkable......DNA polymerase γ (Pol γ) is a key component of the mitochondrial DNA replisome and an important cause of neurological diseases. Despite the availability of its crystal structures, the molecular mechanism of DNA replication, the switch between polymerase and exonuclease activities, the site...... changes in the enzyme structure, including (1) completion of the DNA-binding channel via a dynamic subdomain, which in the apo form blocks the catalytic site, (2) stabilization of the structure through the distal accessory β-subunit, and (3) formation of a putative transient replisome-binding platform...

  14. Complete mitochondrial genome of a wild Siberian tiger.

    Science.gov (United States)

    Sun, Yujiao; Lu, Taofeng; Sun, Zhaohui; Guan, Weijun; Liu, Zhensheng; Teng, Liwei; Wang, Shuo; Ma, Yuehui

    2015-01-01

    In this study, the complete mitochondrial genome of Siberian tiger (Panthera tigris altaica) was sequenced, using muscle tissue obtained from a male wild tiger. The total length of the mitochondrial genome is 16,996 bp. The genome structure of this tiger is in accordance with other Siberian tigers and it contains 12S rRNA gene, 16S rRNA gene, 22 tRNA genes, 13 protein-coding genes, and 1 control region.

  15. A complete mitochondrial genome sequence from a mesolithic wild aurochs (Bos primigenius).

    LENUS (Irish Health Repository)

    Edwards, Ceiridwen J

    2010-01-01

    BACKGROUND: The derivation of domestic cattle from the extinct wild aurochs (Bos primigenius) has been well-documented by archaeological and genetic studies. Genetic studies point towards the Neolithic Near East as the centre of origin for Bos taurus, with some lines of evidence suggesting possible, albeit rare, genetic contributions from locally domesticated wild aurochsen across Eurasia. Inferences from these investigations have been based largely on the analysis of partial mitochondrial DNA sequences generated from modern animals, with limited sequence data from ancient aurochsen samples. Recent developments in DNA sequencing technologies, however, are affording new opportunities for the examination of genetic material retrieved from extinct species, providing new insight into their evolutionary history. Here we present DNA sequence analysis of the first complete mitochondrial genome (16,338 base pairs) from an archaeologically-verified and exceptionally-well preserved aurochs bone sample. METHODOLOGY: DNA extracts were generated from an aurochs humerus bone sample recovered from a cave site located in Derbyshire, England and radiocarbon-dated to 6,738+\\/-68 calibrated years before present. These extracts were prepared for both Sanger and next generation DNA sequencing technologies (Illumina Genome Analyzer). In total, 289.9 megabases (22.48%) of the post-filtered DNA sequences generated using the Illumina Genome Analyzer from this sample mapped with confidence to the bovine genome. A consensus B. primigenius mitochondrial genome sequence was constructed and was analysed alongside all available complete bovine mitochondrial genome sequences. CONCLUSIONS: For all nucleotide positions where both Sanger and Illumina Genome Analyzer sequencing methods gave high-confidence calls, no discrepancies were observed. Sequence analysis reveals evidence of heteroplasmy in this sample and places this mitochondrial genome sequence securely within a previously identified

  16. Solar radiation and mitochondrial DNA damage

    International Nuclear Information System (INIS)

    Hill, H.Z.; Locitzer, J.; Nassrin, E.; Ogbonnaya, A.; Hubbard, K.

    2003-01-01

    The 16.6 kB human mitochondrial DNA contains two homologous 13 base pair direct repeats separated by about 5 kB. During asynchronous mitochondrial DNA replication, the distant repeat sequences are thought to anneal, resulting in the looping out of a portion of the non-template strand which is subsequently deleted as a result of interaction with reactive oxygen species (ROS). A normal daughter and a deleted daughter mitochondrion result from such insults. This deletion has been termed the common deletion as it is the most frequent of the known mitochondrial DNA deletions. The common deletion is present in high frequency in several mitochondrial disorders, accumulates with age in slow turnover tissues and is increased in sun-exposed skin. Berneburg, et al. (Photochem. Photobiol. 66: 271, 1997) induced the common deletion in normal human fibroblasts after repeated exposures to UVA. In this study, the common deletion has been shown to be induced by repeated non-lethal exposures to FS20 sunlamp irradiation. Increases in the common deletion were demonstrated using nested PCR which produced a 303 bp product that was compared to a 324 bp product that required the presence of the undeleted 5 kB region. The cells were exposed to 10 repeated doses ranging from 0.5 (UVB) - 0.24 (UVA) J/sq m to 14.4 (UVB) - 5.8 J/sq m (UVA) measured using a UVX digital radiometer and UVB and UVA detectors respectively. Comparison with the earlier study by Berneberg, et al. suggests that this type of simulated solar damage is considerably more effective in fewer exposures than UVA radiation alone. The common deletion provides a cytoplasmic end-point for ROS damage produced by low dose chronic irradiations and other low level toxic exposures and should prove useful in evaluating cytoplasmic damage produced by ionizing radiation as well

  17. Return of the mitochondrial DNA : Case study of mitochondrial genome evolution in the genus Fusarium

    NARCIS (Netherlands)

    Brankovics, Balázs

    2018-01-01

    Mitochondrial DNA played a prominent role in the fields of population genetics, systematics and evolutionary biology, due to its favorable characteristics, such as, uniparental inheritance, fast evolution and easy accessibility. However, the mitochondrial sequences have been mostly neglected in

  18. Roles of Mitochondrial DNA Mutations in Stem Cell Ageing

    Directory of Open Access Journals (Sweden)

    Tianhong Su

    2018-03-01

    Full Text Available Mitochondrial DNA (mtDNA mutations accumulate in somatic stem cells during ageing and cause mitochondrial dysfunction. In this review, we summarize the studies that link mtDNA mutations to stem cell ageing. We discuss the age-related behaviours of the somatic mtDNA mutations in stem cell populations and how they potentially contribute to stem cell ageing by altering mitochondrial properties in humans and in mtDNA-mutator mice. We also draw attention to the diverse fates of the mtDNA mutations with different origins during ageing, with potential selective pressures on the germline inherited but not the somatic mtDNA mutations.

  19. Sequence analysis of mitochondrial DNA hypervariable region III of ...

    African Journals Online (AJOL)

    The aims of this research were to study mitochondrial DNA hypervariable region III and establish the degree of variation characteristic of a fragment. The mitochondrial DNA (mtDNA) is a small circular genome located within the mitochondria in the cytoplasm of the cell and a smaller 1.2 kb pair fragment, called the control ...

  20. The complete sequence of the mitochondrial genome of the African Penguin (Spheniscus demersus).

    Science.gov (United States)

    Labuschagne, Christiaan; Kotzé, Antoinette; Grobler, J Paul; Dalton, Desiré L

    2014-01-15

    The complete mitochondrial genome of the African Penguin (Spheniscus demersus) was sequenced. The molecule was sequenced via next generation sequencing and primer walking. The size of the genome is 17,346 bp in length. Comparison with the mitochondrial DNA of two other penguin genomes that have so far been reported was conducted namely; Little blue penguin (Eudyptula minor) and the Rockhopper penguin (Eudyptes chrysocome). This analysis made it possible to identify common penguin mitochondrial DNA characteristics. The S. demersus mtDNA genome is very similar, both in composition and length to both the E. chrysocome and E. minor genomes. The gene content of the African penguin mitochondrial genome is typical of vertebrates and all three penguin species have the standard gene order originally identified in the chicken. The control region for S. demersus is located between tRNA-Glu and tRNA-Phe and all three species of penguins contain two sets of similar repeats with varying copy numbers towards the 3' end of the control region, accounting for the size variance. This is the first report of the complete nucleotide sequence for the mitochondrial genome of the African penguin, S. demersus. These results can be subsequently used to provide information for penguin phylogenetic studies and insights into the evolution of genomes. © 2013 Elsevier B.V. All rights reserved.

  1. Complete mitochondrial genome of Cynopterus sphinx (Pteropodidae: Cynopterus).

    Science.gov (United States)

    Li, Linmiao; Li, Min; Wu, Zhengjun; Chen, Jinping

    2015-01-01

    We have characterized the complete mitochondrial genome of Cynopterus sphinx (Pteropodidae: Cynopterus) and described its organization in this study. The total length of C. sphinx complete mitochondrial genome was 16,895 bp with the base composition of 32.54% A, 14.05% G, 25.82% T and 27.59% C. The complete mitochondrial genome included 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes (12S rRNA and 16S rRNA) and 1 control region (D-loop). The control region was 1435 bp long with the sequence CATACG repeat 64 times. Three protein-coding genes (ND1, COI and ND4) were ended with incomplete stop codon TA or T.

  2. Complete mitochondrial genome and phylogeny of Pleistocene mammoth Mammuthus primigenius.

    Directory of Open Access Journals (Sweden)

    Evgeny I Rogaev

    2006-03-01

    Full Text Available Phylogenetic relationships between the extinct woolly mammoth (Mammuthus primigenius, and the Asian (Elephas maximus and African savanna (Loxodonta africana elephants remain unresolved. Here, we report the sequence of the complete mitochondrial genome (16,842 base pairs of a woolly mammoth extracted from permafrost-preserved remains from the Pleistocene epoch--the oldest mitochondrial genome sequence determined to date. We demonstrate that well-preserved mitochondrial genome fragments, as long as approximately 1,600-1700 base pairs, can be retrieved from pre-Holocene remains of an extinct species. Phylogenetic reconstruction of the Elephantinae clade suggests that M. primigenius and E. maximus are sister species that diverged soon after their common ancestor split from the L. africana lineage. Low nucleotide diversity found between independently determined mitochondrial genomic sequences of woolly mammoths separated geographically and in time suggests that north-eastern Siberia was occupied by a relatively homogeneous population of M. primigenius throughout the late Pleistocene.

  3. The complete mitochondrial genome of Pseudocellus pearsei (Chelicerata: Ricinulei and a comparison of mitochondrial gene rearrangements in Arachnida

    Directory of Open Access Journals (Sweden)

    Braband Anke

    2007-10-01

    Full Text Available Abstract Background Mitochondrial genomes are widely utilized for phylogenetic and population genetic analyses among animals. In addition to sequence data the mitochondrial gene order and RNA secondary structure data are used in phylogenetic analyses. Arachnid phylogeny is still highly debated and there is a lack of sufficient sequence data for many taxa. Ricinulei (hooded tickspiders are a morphologically distinct clade of arachnids with uncertain phylogenetic affinities. Results The first complete mitochondrial DNA genome of a member of the Ricinulei, Pseudocellus pearsei (Arachnida: Ricinulei was sequenced using a PCR-based approach. The mitochondrial genome is a typical circular duplex DNA molecule with a size of 15,099 bp, showing the complete set of genes usually present in bilaterian mitochondrial genomes. Five tRNA genes (trnW, trnY, trnN, trnL(CUN, trnV show different relative positions compared to other Chelicerata (e.g. Limulus polyphemus, Ixodes spp.. We propose that two events led to this derived gene order: (1 a tandem duplication followed by random deletion and (2 an independent translocation of trnN. Most of the inferred tRNA secondary structures show the common cloverleaf pattern except tRNA-Glu where the TψC-arm is missing. In phylogenetic analyses (maximum likelihood, maximum parsimony, Bayesian inference using concatenated amino acid and nucleotide sequences of protein-coding genes the basal relationships of arachnid orders remain unresolved. Conclusion Phylogenetic analyses (ML, MP, BI of arachnid mitochondrial genomes fail to resolve interordinal relationships of Arachnida and remain in a preliminary stage because there is still a lack of mitogenomic data from important taxa such as Opiliones and Pseudoscorpiones. Gene order varies considerably within Arachnida – only eight out of 23 species have retained the putative arthropod ground pattern. Some gene order changes are valuable characters in phylogenetic analysis of

  4. The complete mitochondrial genome sequence of Oceanic whitetip shark, Carcharhinus longimanus (Carcharhiniformes: Carcharhinidae).

    Science.gov (United States)

    Li, Weiwen; Dai, Xiaojie; Xu, Qianghua; Wu, Feng; Gao, Chunxia; Zhang, Yanbo

    2016-05-01

    The complete mitochondrial DNA sequence of Carcharhinus longimanus was determined and analyzed. The complete mtDNA genome sequence of C. longimanus was 16,706 bp in length. It contained 22 tRNA genes, 2 rRNA genes, 13 protein-coding genes and 2 non-conding regions: control region (D-loop) and origin of light-strand replication (OL). The complete mitogenome sequence information of C. longimanus can provide a useful data for further studies on molecular systematics, stock evaluation, taxonomic status and conservation genetics.

  5. Sequencing and analysis of the complete mitochondrial genome in Anopheles sinensis (Diptera: Culicidae).

    Science.gov (United States)

    Chen, Kai; Wang, Yan; Li, Xiang-Yu; Peng, Heng; Ma, Ya-Jun

    2017-10-02

    Anopheles sinensis (Diptera: Culicidae) is a primary vector of Plasmodium vivax and Brugia malayi in most regions of China. In addition, its phylogenetic relationship with the cryptic species of the Hyrcanus Group is complex and remains unresolved. Mitochondrial genome sequences are widely used as molecular markers for phylogenetic studies of mosquito species complexes, of which mitochondrial genome data of An. sinensis is not available. An. sinensis samples was collected from Shandong, China, and identified by molecular marker. Genomic DNA was extracted, followed by the Illumina sequencing. Two complete mitochondrial genomes were assembled and annotated using the mitochondrial genome of An. gambiae as reference. The mitochondrial genomes sequences of the 28 known Anopheles species were aligned and reconstructed phylogenetic tree by Maximum Likelihood (ML) method. The length of complete mitochondrial genomes of An. sinensis was 15,076 bp and 15,138 bp, consisting of 13 protein-coding genes, 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes, and an AT-rich control region. As in other insects, most mitochondrial genes are encoded on the J strand, except for ND5, ND4, ND4L, ND1, two rRNA and eight tRNA genes, which are encoded on the N strand. The bootstrap value was set as 1000 in ML analyses. The topologies restored phylogenetic affinity within subfamily Anophelinae. The ML tree showed four major clades, corresponding to the subgenera Cellia, Anopheles, Nyssorhynchus and Kerteszia of the genus Anopheles. The complete mitochondrial genomes of An. sinensis were obtained. The number, order and transcription direction of An. sinensis mitochondrial genes were the same as in other species of family Culicidae.

  6. Transcriptional and phylogenetic analysis of five complete ambystomatid salamander mitochondrial genomes.

    Science.gov (United States)

    Samuels, Amy K; Weisrock, David W; Smith, Jeramiah J; France, Katherine J; Walker, John A; Putta, Srikrishna; Voss, S Randal

    2005-04-11

    We report on a study that extended mitochondrial transcript information from a recent EST project to obtain complete mitochondrial genome sequence for 5 tiger salamander complex species (Ambystoma mexicanum, A. t. tigrinum, A. andersoni, A. californiense, and A. dumerilii). We describe, for the first time, aspects of mitochondrial transcription in a representative amphibian, and then use complete mitochondrial sequence data to examine salamander phylogeny at both deep and shallow levels of evolutionary divergence. The available mitochondrial ESTs for A. mexicanum (N=2481) and A. t. tigrinum (N=1205) provided 92% and 87% coverage of the mitochondrial genome, respectively. Complete mitochondrial sequences for all species were rapidly obtained by using long distance PCR and DNA sequencing. A number of genome structural characteristics (base pair length, base composition, gene number, gene boundaries, codon usage) were highly similar among all species and to other distantly related salamanders. Overall, mitochondrial transcription in Ambystoma approximated the pattern observed in other vertebrates. We inferred from the mapping of ESTs onto mtDNA that transcription occurs from both heavy and light strand promoters and continues around the entire length of the mtDNA, followed by post-transcriptional processing. However, the observation of many short transcripts corresponding to rRNA genes indicates that transcription may often terminate prematurely to bias transcription of rRNA genes; indeed an rRNA transcription termination signal sequence was observed immediately following the 16S rRNA gene. Phylogenetic analyses of salamander family relationships consistently grouped Ambystomatidae in a clade containing Cryptobranchidae and Hynobiidae, to the exclusion of Salamandridae. This robust result suggests a novel alternative hypothesis because previous studies have consistently identified Ambystomatidae and Salamandridae as closely related taxa. Phylogenetic analyses of tiger

  7. Targeted transgenic overexpression of mitochondrial thymidine kinase (TK2) alters mitochondrial DNA (mtDNA) and mitochondrial polypeptide abundance: transgenic TK2, mtDNA, and antiretrovirals.

    Science.gov (United States)

    Hosseini, Seyed H; Kohler, James J; Haase, Chad P; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-03-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-gamma. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity.

  8. Disruption of mitochondrial DNA replication in Drosophila increases mitochondrial fast axonal transport in vivo.

    Directory of Open Access Journals (Sweden)

    Rehan M Baqri

    Full Text Available Mutations in mitochondrial DNA polymerase (pol gamma cause several progressive human diseases including Parkinson's disease, Alper's syndrome, and progressive external ophthalmoplegia. At the cellular level, disruption of pol gamma leads to depletion of mtDNA, disrupts the mitochondrial respiratory chain, and increases susceptibility to oxidative stress. Although recent studies have intensified focus on the role of mtDNA in neuronal diseases, the changes that take place in mitochondrial biogenesis and mitochondrial axonal transport when mtDNA replication is disrupted are unknown. Using high-speed confocal microscopy, electron microscopy and biochemical approaches, we report that mutations in pol gamma deplete mtDNA levels and lead to an increase in mitochondrial density in Drosophila proximal nerves and muscles, without a noticeable increase in mitochondrial fragmentation. Furthermore, there is a rise in flux of bidirectional mitochondrial axonal transport, albeit with slower kinesin-based anterograde transport. In contrast, flux of synaptic vesicle precursors was modestly decreased in pol gamma-alpha mutants. Our data indicate that disruption of mtDNA replication does not hinder mitochondrial biogenesis, increases mitochondrial axonal transport, and raises the question of whether high levels of circulating mtDNA-deficient mitochondria are beneficial or deleterious in mtDNA diseases.

  9. Complete mitochondrial genome of the fennec fox (Vulpes zerda).

    Science.gov (United States)

    Yang, Xiufeng; Zhao, Chao; Zhang, Honghai; Zhang, Jin; Chen, Lei; Sha, Weilai; Liu, Guangshuai

    2016-01-01

    In this study, the complete mitochondrial genome of the fennec fox (Vulpes zerda) was sequenced using blood samples obtained from a female individual in Shanghai wildlife Park. Sequence analysis showed that the content of T (26.7%) in total composition was no more than C (27.2%), which is different from most of Canide individuals sequenced previously.

  10. Complete mitochondrial genome of threatened mahseer Tor tor ...

    Indian Academy of Sciences (India)

    In the present study, complete mitochondrial genome of Tor tor has been ... ative mitogenome analysis shows higher divergence value at ND1 gene than COI gene. Further .... of these genes was 11,408 bp, accounting for 68.8% of the.

  11. The complete mitochondrial genome sequence of Diaphorina citri (Hemiptera: Psyllidae)

    Science.gov (United States)

    The first complete mitochondrial genome (mitogenome) sequence of Asian citrus psyllid, Diaphorina citri (Hemiptera: Psyllidae), from Guangzhou, China is presented. The circular mitogenome is 14,996 bp in length with an A+T content of 74.5%, and contains 13 protein-coding genes (PCGs), 22 tRNA genes ...

  12. Complete mitochondrial genomes reveal phylogeny relationship and evolutionary history of the family Felidae.

    Science.gov (United States)

    Zhang, W Q; Zhang, M H

    2013-09-03

    Many mitochondrial DNA sequences are used to estimate phylogenetic relationships among animal taxa and perform molecular phylogenetic evolution analysis. With the continuous development of sequencing technology, numerous mitochondrial sequences have been released in public databases, especially complete mitochondrial DNA sequences. Using multiple sequences is better than using single sequences for phylogenetic analysis of animals because multiple sequences have sufficient information for evolutionary process reconstruction. Therefore, we performed phylogenetic analyses of 14 species of Felidae based on complete mitochondrial genome sequences, with Canis familiaris as an outgroup, using neighbor joining, maximum likelihood, maximum parsimony, and Bayesian inference methods. The consensus phylogenetic trees supported the monophyly of Felidae, and the family could be divided into 2 subfamilies, Felinae and Pantherinae. The genus Panthera and species tigris were also studied in detail. Meanwhile, the divergence of this family was estimated by phylogenetic analysis using the Bayesian method with a relaxed molecular clock, and the results shown were consistent with previous studies. In summary, the evolution of Felidae was reconstructed by phylogenetic analysis based on mitochondrial genome sequences. The described method may be broadly applicable for phylogenetic analyses of anima taxa.

  13. Sequencing and characterization of the complete mitochondrial genome of Japanese Swellshark (Cephalloscyllium umbratile)

    OpenAIRE

    Zhu, Ke-Cheng; Liang, Yin-Yin; Wu, Na; Guo, Hua-Yang; Zhang, Nan; Jiang, Shi-Gui; Zhang, Dian-Chang

    2017-01-01

    To further comprehend the genome features of Cephalloscyllium umbratile (Carcharhiniformes), an endangered species, the complete mitochondrial DNA (mtDNA) was firstly sequenced and annotated. The full-length mtDNA of C. umbratile was 16,697 bp and contained ribosomal RNA (rRNA) genes, 13 protein-coding genes (PCGs), 23 transfer RNA (tRNA) genes, and a major non-coding control region. Each PCG was initiated by an authoritative ATN codon, except for COX1 initiated by a GTG codon. Seven of 13 PC...

  14. Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice

    Science.gov (United States)

    Safdar, Adeel; Bourgeois, Jacqueline M.; Ogborn, Daniel I.; Little, Jonathan P.; Hettinga, Bart P.; Akhtar, Mahmood; Thompson, James E.; Melov, Simon; Mocellin, Nicholas J.; Kujoth, Gregory C.; Prolla, Tomas A.; Tarnopolsky, Mark A.

    2011-01-01

    A causal role for mitochondrial DNA (mtDNA) mutagenesis in mammalian aging is supported by recent studies demonstrating that the mtDNA mutator mouse, harboring a defect in the proofreading-exonuclease activity of mitochondrial polymerase gamma, exhibits accelerated aging phenotypes characteristic of human aging, systemic mitochondrial dysfunction, multisystem pathology, and reduced lifespan. Epidemiologic studies in humans have demonstrated that endurance training reduces the risk of chronic diseases and extends life expectancy. Whether endurance exercise can attenuate the cumulative systemic decline observed in aging remains elusive. Here we show that 5 mo of endurance exercise induced systemic mitochondrial biogenesis, prevented mtDNA depletion and mutations, increased mitochondrial oxidative capacity and respiratory chain assembly, restored mitochondrial morphology, and blunted pathological levels of apoptosis in multiple tissues of mtDNA mutator mice. These adaptations conferred complete phenotypic protection, reduced multisystem pathology, and prevented premature mortality in these mice. The systemic mitochondrial rejuvenation through endurance exercise promises to be an effective therapeutic approach to mitigating mitochondrial dysfunction in aging and related comorbidities. PMID:21368114

  15. Sequence analysis of mitochondrial DNA hypervariable region III of ...

    African Journals Online (AJOL)

    Aghomotsegin

    2015-07-01

    Jul 1, 2015 ... population genetics research, studies based on mitochondrial DNA (mtDNA) and Y-chromosome DNA are an excellent way of illustrating population structure .... avoid landing investigators into serious situations of medical genetic privacy and ethnics, especially for. mtDNA coding area whose mutation often ...

  16. Mitochondrial DNA evolution in the genus Equus.

    Science.gov (United States)

    George, M; Ryder, O A

    1986-11-01

    Employing mitochondrial DNA (mtDNA) restriction-endonuclease maps as the basis of comparison, we have investigated the evolutionary affinities of the seven species generally recognized as the genus Equus. Individual species' cleavage maps contained an average of 60 cleavage sites for 16 enzymes, of which 29 were invariant for all species. Based on an average divergence rate of 2%/Myr, the variation between species supports a divergence of extant lineages from a common ancestor approximately 3.9 Myr before the present. Comparisons of cleavage maps between Equus przewalskii (Mongolian wild horse) and E. caballus (domestic horse) yielded estimates of nucleotide sequence divergence ranging from 0.27% to 0.41%. This range was due to intraspecific variation, which was noted only for E. caballus. For pairwise comparisons within this family, estimates of sequence divergence ranged from 0% (E. hemionus onager vs. E. h. kulan) to 7.8% (E. przewalskii vs. E. h. onager). Trees constructed according to the parsimony principle, on the basis of 31 phylogenetically informative restriction sites, indicate that the three extant zebra species represent a monophyletic group with E. grevyi and E. burchelli antiquorum diverging most recently. The phylogenetic relationships of E. africanus and E. hemionus remain enigmatic on the basis of the mtDNA analysis, although a recent divergence is unsupported.

  17. Complete mitochondrial genome of a Pleistocene jawbone unveils the origin of polar bear

    OpenAIRE

    Lindqvist, Charlotte; Schuster, Stephan C.; Sun, Yazhou; Talbot, Sandra L.; Qi, Ji; Ratan, Aakrosh; Tomsho, Lynn P.; Kasson, Lindsay; Zeyl, Eve; Aars, Jon; Miller, Webb; Ingólfsson, Ólafur; Bachmann, Lutz; Wiig, Øystein

    2010-01-01

    The polar bear has become the flagship species in the climate-change discussion. However, little is known about how past climate impacted its evolution and persistence, given an extremely poor fossil record. Although it is undisputed from analyses of mitochondrial (mt) DNA that polar bears constitute a lineage within the genetic diversity of brown bears, timing estimates of their divergence have differed considerably. Using next-generation sequencing technology, we have generated a complete, ...

  18. Mitochondrial DNA (mtDNA haplogroups in 1526 unrelated individuals from 11 Departments of Colombia

    Directory of Open Access Journals (Sweden)

    Juan J. Yunis

    2013-01-01

    Full Text Available The frequencies of four mitochondrial Native American DNA haplogroups were determined in 1526 unrelated individuals from 11 Departments of Colombia and compared to the frequencies previously obtained for Amerindian and Afro-Colombian populations. Amerindian mtDNA haplogroups ranged from 74% to 97%. The lowest frequencies were found in Departments on the Caribbean coast and in the Pacific region, where the frequency of Afro-Colombians is higher, while the highest mtDNA Amerindian haplogroup frequencies were found in Departments that historically have a strong Amerindian heritage. Interestingly, all four mtDNA haplogroups were found in all Departments, in contrast to the complete absence of haplogroup D and high frequencies of haplogroup A in Amerindian populations in the Caribbean region of Colombia. Our results indicate that all four Native American mtDNA haplogroups were widely distributed in Colombia at the time of the Spanish conquest.

  19. Complete mitochondrial genome sequence of the polychaete annelidPlatynereis dumerilii

    Energy Technology Data Exchange (ETDEWEB)

    Boore, Jeffrey L.

    2004-08-15

    Complete mitochondrial genome sequences are now available for 126 metazoans (see Boore 1999; Mitochondrial Genomics link at http://www.jgi.doe.gov), but the taxonomic representation is highly biased. For example, 80 are from a single phylum, Chordata, and show little variation for many molecular features. Arthropoda is represented by 16 taxa, Mollusca by eight, and Echinodermata by five, with only 17 others from the remaining {approx}30 metazoan phyla. With few exceptions (see Wolstenholme 1992 and Boore 1999) these are circular DNA molecules, about 16 kb in size, and encode the same set of 37 genes. A variety of non-standard names are sometimes used for animal mitochondrial genes; see Boore (1999) for gene nomenclature and a table of synonyms. Mitochondrial genome comparisons serve as a model of genome evolution. In this system, much smaller and simpler than that of the nucleus, are all of the same factors of genome evolution, where one may find tractable the changes in tRNA structure, base composition, genetic code, gene arrangement, etc. Further, patterns of mitochondrial gene rearrangements are an exceptionally reliable indicator of phylogenetic relationships (Smith et al.1993; Boore et al. 1995; Boore, Lavrov, and Brown 1998; Boore and Brown 1998, 2000; Dowton 1999; Stechmann and Schlegel 1999; Kurabayashi and Ueshima 2000). To these ends, we are sampling further the variation among major animal groups in features of their mitochondrial genomes.

  20. A Spatio-Temporal Analysis of Mitochondrial DNA Haplogroup I

    Directory of Open Access Journals (Sweden)

    Revesz Peter Z.

    2016-01-01

    Full Text Available The recent recovery of ancient DNA from a growing number of human samples shows that mitochondrial DNA haplogroup I was introduced to Europe after the end of the Last Glacial Maximum. This paper provides a spatio-temporal analysis of the various subhaplogroups of mitochondrial DNA I. The study suggests that haplogroup I diversified into haplogroups I1, I2’3, I4 and I5 at specific regions in Eurasia and then spread southward to Crete and Egypt.

  1. Human mitochondrial DNA (mtDNA) types in Malaysia

    International Nuclear Information System (INIS)

    Lian, L.H.; Koh, C.L.; Lim, M.E.

    2000-01-01

    Each human cell contains hundreds of mitochondria and thousands of double-stranded circular mtDNA. The delineation of human mtDNA variation and genetics over the past decade has provided unique and often startling insights into human evolution, degenerative diseases, and aging. Each mtDNA of 16,569 base pairs, encodes 13 polypeptides essential to the enzymes of the mitochondrial energy generating pathway, plus the necessary tRNAs and rRNAs. The highly polymorphic noncoding D-(displacement) loop region, also called the control region, is approximately 1.2 kb long. It contains two well-characterized hypervariable (HV-) regions, HV1 and HV2. MtDNA identification is usually based on these sequence differences. According to the TWTGDAM (Technical Working Group for DNA Analysis Methods), the minimum requirement for a mtDNA database for HV1 is from positions 16024 to 16365 and for HV2, from positions 00073 to 00340. The targeted Malaysian population subgroups for this study were mainly the Malays, Chinese, Indians, and indigenous Ibans, Bidayuhs, Kadazan-Dusuns, and Bajaus. Research methodologies undertaken included DNA extraction of samples from unrelated individuals, amplification of the specific regions via the polymerase chain reaction (PCR), and preparation of template DNA for sequencing by using an automated DNA sequencer. Sufficient nucleotide sequence data were generated from the mtDNA analysis. When the sequences were analyzed, sequence variations were found to be caused by nucleotide substitutions, insertions, and deletions. Of the three causes of the sequence variations, nucleotide substitutions (86.1%) accounted for the vast majority of polymorphism. It is noted that transitions (83.5%) were predominant when compared to the significantly lower frequencies of transversions (2.6%). Insertions (0.9%) and deletions (13.0%) were rather rare and found only in HV2. The data generated will also form the basis of a Malaysian DNA sequence database of mtDNA D

  2. Complete mitochondrial genome sequences from five Eimeria species (Apicomplexa; Coccidia; Eimeriidae) infecting domestic turkeys.

    Science.gov (United States)

    Ogedengbe, Mosun E; El-Sherry, Shiem; Whale, Julia; Barta, John R

    2014-07-17

    Clinical and subclinical coccidiosis is cosmopolitan and inflicts significant losses to the poultry industry globally. Seven named Eimeria species are responsible for coccidiosis in turkeys: Eimeria dispersa; Eimeria meleagrimitis; Eimeria gallopavonis; Eimeria meleagridis; Eimeria adenoeides; Eimeria innocua; and, Eimeria subrotunda. Although attempts have been made to characterize these parasites molecularly at the nuclear 18S rDNA and ITS loci, the maternally-derived and mitotically replicating mitochondrial genome may be more suited for species level molecular work; however, only limited sequence data are available for Eimeria spp. infecting turkeys. The purpose of this study was to sequence and annotate the complete mitochondrial genomes from 5 Eimeria species that commonly infect the domestic turkey (Meleagris gallopavo). Six single-oocyst derived cultures of five Eimeria species infecting turkeys were PCR-amplified and sequenced completely prior to detailed annotation. Resulting sequences were aligned and used in phylogenetic analyses (BI, ML, and MP) that included complete mitochondrial genomes from 16 Eimeria species or concatenated CDS sequences from each genome. Complete mitochondrial genome sequences were obtained for Eimeria adenoeides Guelph, 6211 bp; Eimeria dispersa Briston, 6238 bp; Eimeria meleagridis USAR97-01, 6212 bp; Eimeria meleagrimitis USMN08-01, 6165 bp; Eimeria gallopavonis Weybridge, 6215 bp; and Eimeria gallopavonis USKS06-01, 6215 bp). The order, orientation and CDS lengths of the three protein coding genes (COI, COIII and CytB) as well as rDNA fragments encoding ribosomal large and small subunit rRNA were conserved among all sequences. Pairwise sequence identities between species ranged from 88.1% to 98.2%; sequence variability was concentrated within CDS or between rDNA fragments (where indels were common). No phylogenetic reconstruction supported monophyly of Eimeria species infecting turkeys; Eimeria dispersa may have arisen

  3. Actin and myosin contribute to mammalian mitochondrial DNA maintenance

    Science.gov (United States)

    Reyes, A.; He, J.; Mao, C. C.; Bailey, L. J.; Di Re, M.; Sembongi, H.; Kazak, L.; Dzionek, K.; Holmes, J. B.; Cluett, T. J.; Harbour, M. E.; Fearnley, I. M.; Crouch, R. J.; Conti, M. A.; Adelstein, R. S.; Walker, J. E.; Holt, I. J.

    2011-01-01

    Mitochondrial DNA maintenance and segregation are dependent on the actin cytoskeleton in budding yeast. We found two cytoskeletal proteins among six proteins tightly associated with rat liver mitochondrial DNA: non-muscle myosin heavy chain IIA and β-actin. In human cells, transient gene silencing of MYH9 (encoding non-muscle myosin heavy chain IIA), or the closely related MYH10 gene (encoding non-muscle myosin heavy chain IIB), altered the topology and increased the copy number of mitochondrial DNA; and the latter effect was enhanced when both genes were targeted simultaneously. In contrast, genetic ablation of non-muscle myosin IIB was associated with a 60% decrease in mitochondrial DNA copy number in mouse embryonic fibroblasts, compared to control cells. Gene silencing of β-actin also affected mitochondrial DNA copy number and organization. Protease-protection experiments and iodixanol gradient analysis suggest some β-actin and non-muscle myosin heavy chain IIA reside within human mitochondria and confirm that they are associated with mitochondrial DNA. Collectively, these results strongly implicate the actomyosin cytoskeleton in mammalian mitochondrial DNA maintenance. PMID:21398640

  4. Proteomic Dissection of the Mitochondrial DNA Metabolism Apparatus in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    SAlly A. Mackenzie

    2004-01-06

    This study involves the investigation of nuclear genetic components that regulate mitochondrial genome behavior in higher plants. The approach utilizes the advanced plant model system of Arabidopsis thaliana to identify and functionally characterize multiple components of the mitochondrial DNA replication, recombination and mismatch repair system and their interaction partners. The rationale for the research stems from the central importance of mitochondria to overall cellular metabolism and the essential nature of the mitochondrial genome to mitochondrial function. Relatively little is understood about mitochondrial DNA maintenance and transmission in higher eukaryotes, and the higher plant mitochondrial genome displays unique properties and behavior. This investigation has revealed at least three important properties of plant mitochondrial DNA metabolism components. (1) Many are dual targeted to mitochondrial and chloroplasts by novel mechanisms, suggesting that the mitochondria a nd chloroplast share their genome maintenance apparatus. (2)The MSH1 gene, originating as a component of mismatch repair, has evolved uniquely in plants to participate in differential replication of the mitochondrial genome. (3) This mitochondrial differential replication process, termed substoichiometric shifting and also involving a RecA-related gene, appears to represent an adaptive mechanism to expand plant reproductive capacity and is likely present throughout the plant kingdom.

  5. A complete mitochondrial genome sequence from a mesolithic wild aurochs (Bos primigenius.

    Directory of Open Access Journals (Sweden)

    Ceiridwen J Edwards

    Full Text Available BACKGROUND: The derivation of domestic cattle from the extinct wild aurochs (Bos primigenius has been well-documented by archaeological and genetic studies. Genetic studies point towards the Neolithic Near East as the centre of origin for Bos taurus, with some lines of evidence suggesting possible, albeit rare, genetic contributions from locally domesticated wild aurochsen across Eurasia. Inferences from these investigations have been based largely on the analysis of partial mitochondrial DNA sequences generated from modern animals, with limited sequence data from ancient aurochsen samples. Recent developments in DNA sequencing technologies, however, are affording new opportunities for the examination of genetic material retrieved from extinct species, providing new insight into their evolutionary history. Here we present DNA sequence analysis of the first complete mitochondrial genome (16,338 base pairs from an archaeologically-verified and exceptionally-well preserved aurochs bone sample. METHODOLOGY: DNA extracts were generated from an aurochs humerus bone sample recovered from a cave site located in Derbyshire, England and radiocarbon-dated to 6,738+/-68 calibrated years before present. These extracts were prepared for both Sanger and next generation DNA sequencing technologies (Illumina Genome Analyzer. In total, 289.9 megabases (22.48% of the post-filtered DNA sequences generated using the Illumina Genome Analyzer from this sample mapped with confidence to the bovine genome. A consensus B. primigenius mitochondrial genome sequence was constructed and was analysed alongside all available complete bovine mitochondrial genome sequences. CONCLUSIONS: For all nucleotide positions where both Sanger and Illumina Genome Analyzer sequencing methods gave high-confidence calls, no discrepancies were observed. Sequence analysis reveals evidence of heteroplasmy in this sample and places this mitochondrial genome sequence securely within a previously

  6. Complete mitochondrial genome sequence of the common bean anthracnose pathogen Colletotrichum lindemuthianum.

    Science.gov (United States)

    Gutiérrez, Pablo; Alzate, Juan; Yepes, Mauricio Salazar; Marín, Mauricio

    2016-01-01

    Colletotrichum lindemuthianum is the causal agent of anthracnose in common bean (Phaseolus vulgaris), one of the most limiting factors for this crop in South and Central America. In this work, the mitochondrial sequence of a Colombian isolate of C. lindemuthianum obtained from a common bean plant (var. Cargamanto) with anthracnose symptoms is presented. The mtDNA codes for 13 proteins of the respiratory chain, 1 ribosomal protein, 2 homing endonucleases, 2 ribosomal RNAs and 28 tRNAs. This is the first report of a complete mtDNA genome sequence from C. lindemuthianum.

  7. RECQL4 localizes to mitochondria and preserves mitochondrial DNA integrity

    DEFF Research Database (Denmark)

    Croteau, Deborah L; Rossi, Marie L; Canugovi, Chandrika

    2012-01-01

    in premature aging. There is no information about whether any of the RecQ helicases play roles in mitochondrial biogenesis, which is strongly implicated in the aging process. Here, we used microscopy to visualize RECQL4 in mitochondria. Fractionation of human and mouse cells also showed that RECQL4 was present...... in mitochondria. Q-PCR amplification of mitochondrial DNA demonstrated that mtDNA damage accumulated in RECQL4-deficient cells. Microarray analysis suggested that mitochondrial bioenergetic pathways might be affected in RTS. Measurements of mitochondrial bioenergetics showed a reduction in the mitochondrial......Q helicase to be found in both human and mouse mitochondria, and the loss of RECQL4 alters mitochondrial integrity....

  8. The complete mitochondrial genome of Ambastaia sidthimunki (Cypriniformes: Cobitidae).

    Science.gov (United States)

    Yu, Peng; Wei, Min; Yang, Qichao; Yang, Yingming; Wan, Quan

    2016-09-01

    Ambastaia sidthimunki is a beautiful small-sized fish and it was categorized as Endangered B2ab (iii,v) in the IUCN Red List. In this study, we reported the complete mitochondrial genome of the A. sidthimunki. The mitochondrial genome sequence was a circular molecule with 16,574 bp in length, and it contained 2 ribosomal RNA genes, 22 transfer RNA genes, 13 protein-coding genes, an L-strand replication origin (OL) and a control region (D-loop). The nucleotide acid composition of the entire mitogenome was 26.94% for C, 15.55% for G, 31.84% for A and 25.67% for T, with an AT content of 57.51%. This research contributes new molecular data for the conservation of this Endangered species.

  9. The complete mitochondrial genome of the Border Collie dog.

    Science.gov (United States)

    Wu, An-Quan; Zhang, Yong-Liang; Li, Li-Li; Chen, Long; Yang, Tong-Wen

    2016-01-01

    Border Collie dog is one of the famous breed of dog. In the present work we report the complete mitochondrial genome sequence of Border Collie dog for the first time. The total length of the mitogenome was 16,730 bp with the base composition of 31.6% for A, 28.7% for T, 25.5% for C, and 14.2% for G and an A-T (60.3%)-rich feature was detected. It harbored 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes and one non-coding control region (D-loop region). The arrangement of all genes was identical to the typical mitochondrial genomes of dogs.

  10. Mitochondrial DNA depletion by ethidium bromide decreases neuronal mitochondrial creatine kinase: Implications for striatal energy metabolism.

    Science.gov (United States)

    Warren, Emily Booth; Aicher, Aidan Edward; Fessel, Joshua Patrick; Konradi, Christine

    2017-01-01

    Mitochondrial DNA (mtDNA), the discrete genome which encodes subunits of the mitochondrial respiratory chain, is present at highly variable copy numbers across cell types. Though severe mtDNA depletion dramatically reduces mitochondrial function, the impact of tissue-specific mtDNA reduction remains debated. Previously, our lab identified reduced mtDNA quantity in the putamen of Parkinson's Disease (PD) patients who had developed L-DOPA Induced Dyskinesia (LID), compared to PD patients who had not developed LID and healthy subjects. Here, we present the consequences of mtDNA depletion by ethidium bromide (EtBr) treatment on the bioenergetic function of primary cultured neurons, astrocytes and neuron-enriched cocultures from rat striatum. We report that EtBr inhibition of mtDNA replication and transcription consistently reduces mitochondrial oxygen consumption, and that neurons are significantly more sensitive to EtBr than astrocytes. EtBr also increases glycolytic activity in astrocytes, whereas in neurons it reduces the expression of mitochondrial creatine kinase mRNA and levels of phosphocreatine. Further, we show that mitochondrial creatine kinase mRNA is similarly downregulated in dyskinetic PD patients, compared to both non-dyskinetic PD patients and healthy subjects. Our data support a hypothesis that reduced striatal mtDNA contributes to energetic dysregulation in the dyskinetic striatum by destabilizing the energy buffering system of the phosphocreatine/creatine shuttle.

  11. Mitochondrial DNA depletion by ethidium bromide decreases neuronal mitochondrial creatine kinase: Implications for striatal energy metabolism.

    Directory of Open Access Journals (Sweden)

    Emily Booth Warren

    Full Text Available Mitochondrial DNA (mtDNA, the discrete genome which encodes subunits of the mitochondrial respiratory chain, is present at highly variable copy numbers across cell types. Though severe mtDNA depletion dramatically reduces mitochondrial function, the impact of tissue-specific mtDNA reduction remains debated. Previously, our lab identified reduced mtDNA quantity in the putamen of Parkinson's Disease (PD patients who had developed L-DOPA Induced Dyskinesia (LID, compared to PD patients who had not developed LID and healthy subjects. Here, we present the consequences of mtDNA depletion by ethidium bromide (EtBr treatment on the bioenergetic function of primary cultured neurons, astrocytes and neuron-enriched cocultures from rat striatum. We report that EtBr inhibition of mtDNA replication and transcription consistently reduces mitochondrial oxygen consumption, and that neurons are significantly more sensitive to EtBr than astrocytes. EtBr also increases glycolytic activity in astrocytes, whereas in neurons it reduces the expression of mitochondrial creatine kinase mRNA and levels of phosphocreatine. Further, we show that mitochondrial creatine kinase mRNA is similarly downregulated in dyskinetic PD patients, compared to both non-dyskinetic PD patients and healthy subjects. Our data support a hypothesis that reduced striatal mtDNA contributes to energetic dysregulation in the dyskinetic striatum by destabilizing the energy buffering system of the phosphocreatine/creatine shuttle.

  12. Minimally destructive sampling of type specimens of Pyropia (Bangiales, Rhodophyta) recovers complete plastid and mitochondrial genomes.

    Science.gov (United States)

    Hughey, Jeffery R; Gabrielson, Paul W; Rohmer, Laurence; Tortolani, Jacquie; Silva, Mayra; Miller, Kathy Ann; Young, Joel D; Martell, Craig; Ruediger, Erik

    2014-06-04

    Plant species, including algae and fungi, are based on type specimens to which the name of a taxon is permanently attached. Applying a scientific name to any specimen therefore requires demonstrating correspondence between the type and that specimen. Traditionally, identifications are based on morpho-anatomical characters, but recently systematists are using DNA sequence data. These studies are flawed if the DNA is isolated from misidentified modern specimens. We propose a genome-based solution. Using 4 × 4 mm(2) of material from type specimens, we assembled 14 plastid and 15 mitochondrial genomes attributed to the red algae Pyropia perforata, Py. fucicola, and Py. kanakaensis. The chloroplast genomes were fairly conserved, but the mitochondrial genomes differed significantly among populations in content and length. Complete genomes are attainable from 19(th) and early 20(th) century type specimens; this validates the effort and cost of their curation as well as supports the practice of the type method.

  13. Minimally destructive sampling of type specimens of Pyropia (Bangiales, Rhodophyta) recovers complete plastid and mitochondrial genomes

    Science.gov (United States)

    Hughey, Jeffery R.; Gabrielson, Paul W.; Rohmer, Laurence; Tortolani, Jacquie; Silva, Mayra; Miller, Kathy Ann; Young, Joel D.; Martell, Craig; Ruediger, Erik

    2014-01-01

    Plant species, including algae and fungi, are based on type specimens to which the name of a taxon is permanently attached. Applying a scientific name to any specimen therefore requires demonstrating correspondence between the type and that specimen. Traditionally, identifications are based on morpho-anatomical characters, but recently systematists are using DNA sequence data. These studies are flawed if the DNA is isolated from misidentified modern specimens. We propose a genome-based solution. Using 4 × 4 mm2 of material from type specimens, we assembled 14 plastid and 15 mitochondrial genomes attributed to the red algae Pyropia perforata, Py. fucicola, and Py. kanakaensis. The chloroplast genomes were fairly conserved, but the mitochondrial genomes differed significantly among populations in content and length. Complete genomes are attainable from 19th and early 20th century type specimens; this validates the effort and cost of their curation as well as supports the practice of the type method. PMID:24894641

  14. Mitochondrial DNA levels in Huntington disease leukocytes and dermal fibroblasts.

    Science.gov (United States)

    Jędrak, Paulina; Krygier, Magdalena; Tońska, Katarzyna; Drozd, Małgorzata; Kaliszewska, Magdalena; Bartnik, Ewa; Sołtan, Witold; Sitek, Emilia J; Stanisławska-Sachadyn, Anna; Limon, Janusz; Sławek, Jarosław; Węgrzyn, Grzegorz; Barańska, Sylwia

    2017-08-01

    Huntington disease (HD) is an inherited neurodegenerative disorder caused by mutations in the huntingtin gene. Involvement of mitochondrial dysfunctions in, and especially influence of the level of mitochondrial DNA (mtDNA) on, development of this disease is unclear. Here, samples of blood from 84 HD patients and 79 controls, and dermal fibroblasts from 10 HD patients and 9 controls were analysed for mtDNA levels. Although the type of mitochondrial haplogroup had no influence on the mtDNA level, and there was no correlation between mtDNA level in leukocytes in HD patients and various parameters of HD severity, some considerable differences between HD patients and controls were identified. The average mtDNA/nDNA relative copy number was significantly higher in leukocytes, but lower in fibroblasts, of symptomatic HD patients relative to the control group. Moreover, HD women displayed higher mtDNA levels in leukocytes than HD men. Because this is the largest population analysed to date, these results might contribute to explanation of discrepancies between previously published studies concerning levels of mtDNA in cells of HD patients. We suggest that the size of the investigated population and type of cells from which DNA is isolated could significantly affect results of mtDNA copy number estimation in HD. Hence, these parameters should be taken into consideration in studies on mtDNA in HD, and perhaps also in other diseases where mitochondrial dysfunction occurs.

  15. Analysis of complete mitochondrial genomes from extinct and extant rhinoceroses reveals lack of phylogenetic resolution

    Science.gov (United States)

    Willerslev, Eske; Gilbert, M Thomas P; Binladen, Jonas; Ho, Simon YW; Campos, Paula F; Ratan, Aakrosh; Tomsho, Lynn P; da Fonseca, Rute R; Sher, Andrei; Kuznetsova, Tatanya V; Nowak-Kemp, Malgosia; Roth, Terri L; Miller, Webb; Schuster, Stephan C

    2009-01-01

    Background The scientific literature contains many examples where DNA sequence analyses have been used to provide definitive answers to phylogenetic problems that traditional (non-DNA based) approaches alone have failed to resolve. One notable example concerns the rhinoceroses, a group for which several contradictory phylogenies were proposed on the basis of morphology, then apparently resolved using mitochondrial DNA fragments. Results In this study we report the first complete mitochondrial genome sequences of the extinct ice-age woolly rhinoceros (Coelodonta antiquitatis), and the threatened Javan (Rhinoceros sondaicus), Sumatran (Dicerorhinus sumatrensis), and black (Diceros bicornis) rhinoceroses. In combination with the previously published mitochondrial genomes of the white (Ceratotherium simum) and Indian (Rhinoceros unicornis) rhinoceroses, this data set putatively enables reconstruction of the rhinoceros phylogeny. While the six species cluster into three strongly supported sister-pairings: (i) The black/white, (ii) the woolly/Sumatran, and (iii) the Javan/Indian, resolution of the higher-level relationships has no statistical support. The phylogenetic signal from individual genes is highly diffuse, with mixed topological support from different genes. Furthermore, the choice of outgroup (horse vs tapir) has considerable effect on reconstruction of the phylogeny. The lack of resolution is suggestive of a hard polytomy at the base of crown-group Rhinocerotidae, and this is supported by an investigation of the relative branch lengths. Conclusion Satisfactory resolution of the rhinoceros phylogeny may not be achievable without additional analyses of substantial amounts of nuclear DNA. This study provides a compelling demonstration that, in spite of substantial sequence length, there are significant limitations with single-locus phylogenetics. We expect further examples of this to appear as next-generation, large-scale sequencing of complete mitochondrial

  16. Analysis of complete mitochondrial genomes from extinct and extant rhinoceroses reveals lack of phylogenetic resolution

    Directory of Open Access Journals (Sweden)

    Nowak-Kemp Malgosia

    2009-05-01

    Full Text Available Abstract Background The scientific literature contains many examples where DNA sequence analyses have been used to provide definitive answers to phylogenetic problems that traditional (non-DNA based approaches alone have failed to resolve. One notable example concerns the rhinoceroses, a group for which several contradictory phylogenies were proposed on the basis of morphology, then apparently resolved using mitochondrial DNA fragments. Results In this study we report the first complete mitochondrial genome sequences of the extinct ice-age woolly rhinoceros (Coelodonta antiquitatis, and the threatened Javan (Rhinoceros sondaicus, Sumatran (Dicerorhinus sumatrensis, and black (Diceros bicornis rhinoceroses. In combination with the previously published mitochondrial genomes of the white (Ceratotherium simum and Indian (Rhinoceros unicornis rhinoceroses, this data set putatively enables reconstruction of the rhinoceros phylogeny. While the six species cluster into three strongly supported sister-pairings: (i The black/white, (ii the woolly/Sumatran, and (iii the Javan/Indian, resolution of the higher-level relationships has no statistical support. The phylogenetic signal from individual genes is highly diffuse, with mixed topological support from different genes. Furthermore, the choice of outgroup (horse vs tapir has considerable effect on reconstruction of the phylogeny. The lack of resolution is suggestive of a hard polytomy at the base of crown-group Rhinocerotidae, and this is supported by an investigation of the relative branch lengths. Conclusion Satisfactory resolution of the rhinoceros phylogeny may not be achievable without additional analyses of substantial amounts of nuclear DNA. This study provides a compelling demonstration that, in spite of substantial sequence length, there are significant limitations with single-locus phylogenetics. We expect further examples of this to appear as next-generation, large-scale sequencing of complete

  17. Characterization of the complete mitochondrial genomes of Nematodirus oiratianus and Nematodirus spathiger of small ruminants.

    Science.gov (United States)

    Zhao, Guang-Hui; Jia, Yan-Qing; Cheng, Wen-Yu; Zhao, Wen; Bian, Qing-Qing; Liu, Guo-Hua

    2014-07-11

    Nematodirus spp. are among the most common nematodes of ruminants worldwide. N. oiratianus and N. spathiger are distributed worldwide as highly prevalent gastrointestinal nematodes, which cause emerging health problems and economic losses. Accurate identification of Nematodirus species is essential to develop effective control strategies for Nematodirus infection in ruminants. Mitochondrial DNA (mtDNA) could provide powerful genetic markers for identifying these closely related species and resolving phylogenetic relationships at different taxonomic levels. In the present study, the complete mitochondrial (mt) genomes of N. oiratianus and N. spathiger from small ruminants in China were obtained using Long-range PCR and sequencing. The complete mt genomes of N. oiratianus and N. spathiger were 13,765 bp and 13,519 bp in length, respectively. Both mt genomes were circular and consisted of 36 genes, including 12 genes encoding proteins, 2 genes encoding rRNA, and 22 genes encoding tRNA. Phylogenetic analyses based on the concatenated amino acid sequence data of all 12 protein-coding genes by Bayesian inference (BI), Maximum likelihood (ML) and Maximum parsimony (MP) showed that the two Nematodirus species (Molineidae) were closely related to Dictyocaulidae. The availability of the complete mtDNA sequences of N. oiratianus and N. spathiger not only provides new mtDNA sources for a better understanding of nematode mt genomics and phylogeny, but also provides novel and useful genetic markers for studying diagnosis, population genetics and molecular epidemiology of Nematodirus spp. in small ruminants.

  18. Mitochondrial DNA Mutations in Epithelial Ovarian Tumor Progression

    Science.gov (United States)

    2007-12-01

    Panici PL, Fazio VM: Mutations of D310 mitochondrial mononu- cleotide repeat in primary tumors and cytological speci- mens . Cancer Lett 2003, 190:73...BR: Detection of LOH and mitochondrial DNA alter- ations in ductal lavage and nipple aspirate fluids from high- risk patients. Breast Cancer Res

  19. Interspecific Comparison and annotation of two complete mitochondrial genome sequences from the plant pathogenic fungus Mycosphaerella graminicola

    Energy Technology Data Exchange (ETDEWEB)

    Millenbaugh, Bonnie A; Pangilinan, Jasmyn L.; Torriani, Stefano F.F.; Goodwin, Stephen B.; Kema, Gert H.J.; McDonald, Bruce A.

    2007-12-07

    The mitochondrial genomes of two isolates of the wheat pathogen Mycosphaerella graminicola were sequenced completely and compared to identify polymorphic regions. This organism is of interest because it is phylogenetically distant from other fungi with sequenced mitochondrial genomes and it has shown discordant patterns of nuclear and mitochondrial diversity. The mitochondrial genome of M. graminicola is a circular molecule of approximately 43,960 bp containing the typical genes coding for 14 proteins related to oxidative phosphorylation, one RNA polymerase, two rRNA genes and a set of 27 tRNAs. The mitochondrial DNA of M. graminicola lacks the gene encoding the putative ribosomal protein (rps5-like), commonly found in fungal mitochondrial genomes. Most of the tRNA genes were clustered with a gene order conserved with many other ascomycetes. A sample of thirty-five additional strains representing the known global mt diversity was partially sequenced to measure overall mitochondrial variability within the species. Little variation was found, confirming previous RFLP-based findings of low mitochondrial diversity. The mitochondrial sequence of M. graminicola is the first reported from the family Mycosphaerellaceae or the order Capnodiales. The sequence also provides a tool to better understand the development of fungicide resistance and the conflicting pattern of high nuclear and low mitochondrial diversity in global populations of this fungus.

  20. Complete mitochondrial genome of the monogonont rotifer, Brachionus koreanus (Rotifera, Brachionidae).

    Science.gov (United States)

    Hwang, Dae-Sik; Suga, Koushirou; Sakakura, Yoshitaka; Park, Heum Gi; Hagiwara, Atsushi; Rhee, Jae-Sung; Lee, Jae-Seong

    2014-02-01

    The complete mitochondrial genome was obtained from the assembled genome data sequenced by next generation sequencing (NGS) technology from the monogonont rotifer Brachionus koreanus. The mitochondrial genome of B. koreanus was composed of two circular chromosomes designated as mtDNA-I (10,421 bp) and mtDNA-II (11,923 bp). The gene contents of B. koreanus were identical with previously reported B. plicatilis mitochondrial genomes. However, gene orders of B. koreanus showed one rearrangement between the two species. Of 12 protein-coding genes (PCGs), 3 genes (ATP6, ND1, and ND3) had an incomplete stop codon. The A + T base composition of B. koreanus mitochondrial genome was high (68.81%). They also showed anti-G bias (12.03% and 10.97%) on the second and third position of PCGs as well as slight anti-C bias (15.96% and 14.31%) on the first and third position of PCGs.

  1. Fluorescent in situ hybridization of mitochondrial DNA and RNA

    Czech Academy of Sciences Publication Activity Database

    Alán, Lukáš; Zelenka, Jaroslav; Ježek, Jan; Dlasková, Andrea; Ježek, Petr

    2010-01-01

    Roč. 57, č. 4 (2010), s. 403-408 ISSN 0001-527X R&D Projects: GA ČR GAP302/10/0346; GA ČR GPP304/10/P204; GA AV ČR KJB500110902 Institutional research plan: CEZ:AV0Z50110509 Keywords : mitochondrial DNA and RNA * nucleoids of mitochondrial DNA * molecular beacon fluorescent hybridization probes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.234, year: 2010

  2. Mitochondrial Targeted Endonuclease III DNA Repair Enzyme Protects against Ventilator Induced Lung Injury in Mice

    Directory of Open Access Journals (Sweden)

    Masahiro Hashizume

    2014-08-01

    Full Text Available The mitochondrial targeted DNA repair enzyme, 8-oxoguanine DNA glycosylase 1, was previously reported to protect against mitochondrial DNA (mtDNA damage and ventilator induced lung injury (VILI. In the present study we determined whether mitochondrial targeted endonuclease III (EndoIII which cleaves oxidized pyrimidines rather than purines from damaged DNA would also protect the lung. Minimal injury from 1 h ventilation at 40 cmH2O peak inflation pressure (PIP was reversed by EndoIII pretreatment. Moderate lung injury due to ventilation for 2 h at 40 cmH2O PIP produced a 25-fold increase in total extravascular albumin space, a 60% increase in W/D weight ratio, and marked increases in MIP-2 and IL-6. Oxidative mtDNA damage and decreases in the total tissue glutathione (GSH and the GSH/GSSH ratio also occurred. All of these indices of injury were attenuated by mitochondrial targeted EndoIII. Massive lung injury caused by 2 h ventilation at 50 cmH2O PIP was not attenuated by EndoIII pretreatment, but all untreated mice died prior to completing the two hour ventilation protocol, whereas all EndoIII-treated mice lived for the duration of ventilation. Thus, mitochondrial targeted DNA repair enzymes were protective against mild and moderate lung damage and they enhanced survival in the most severely injured group.

  3. The complete mitochondrial genome of Chrysopa pallens (Insecta, Neuroptera, Chrysopidae).

    Science.gov (United States)

    He, Kun; Chen, Zhe; Yu, Dan-Na; Zhang, Jia-Yong

    2012-10-01

    The complete mitochondrial genome of Chrysopa pallens (Neuroptera, Chrysopidae) was sequenced. It consists of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA (rRNA) genes, and a control region (AT-rich region). The total length of C. pallens mitogenome is 16,723 bp with 79.5% AT content, and the length of control region is 1905 bp with 89.1% AT content. The non-coding regions of C. pallens include control region between 12S rRNA and trnI genes, and a 75-bp space region between trnI and trnQ genes.

  4. Complete Sequence and Analysis of the Mitochondrial Genome of Hemiselmis andersenii CCMP644 (Cryptophyceae

    Directory of Open Access Journals (Sweden)

    Bowman Sharen

    2008-05-01

    Full Text Available Abstract Background Cryptophytes are an enigmatic group of unicellular eukaryotes with plastids derived by secondary (i.e., eukaryote-eukaryote endosymbiosis. Cryptophytes are unusual in that they possess four genomes–a host cell-derived nuclear and mitochondrial genome and an endosymbiont-derived plastid and 'nucleomorph' genome. The evolutionary origins of the host and endosymbiont components of cryptophyte algae are at present poorly understood. Thus far, a single complete mitochondrial genome sequence has been determined for the cryptophyte Rhodomonas salina. Here, the second complete mitochondrial genome of the cryptophyte alga Hemiselmis andersenii CCMP644 is presented. Results The H. andersenii mtDNA is 60,553 bp in size and encodes 30 structural RNAs and 36 protein-coding genes, all located on the same strand. A prominent feature of the genome is the presence of a ~20 Kbp long intergenic region comprised of numerous tandem and dispersed repeat units of between 22–336 bp. Adjacent to these repeats are 27 copies of palindromic sequences predicted to form stable DNA stem-loop structures. One such stem-loop is located near a GC-rich and GC-poor region and may have a regulatory function in replication or transcription. The H. andersenii mtDNA shares a number of features in common with the genome of the cryptophyte Rhodomonas salina, including general architecture, gene content, and the presence of a large repeat region. However, the H. andersenii mtDNA is devoid of inverted repeats and introns, which are present in R. salina. Comparative analyses of the suite of tRNAs encoded in the two genomes reveal that the H. andersenii mtDNA has lost or converted its original trnK(uuu gene and possesses a trnS-derived 'trnK(uuu', which appears unable to produce a functional tRNA. Mitochondrial protein coding gene phylogenies strongly support a variety of previously established eukaryotic groups, but fail to resolve the relationships among higher

  5. Complete mitochondrial genome of Porzana fusca and Porzana pusilla and phylogenetic relationship of 16 Rallidae species.

    Science.gov (United States)

    Chen, Peng; Han, Yuqing; Zhu, Chaoying; Gao, Bin; Ruan, Luzhang

    2017-12-01

    The complete mitochondrial genome sequences of Porzana fusca and Porzana pusilla were determined. The two avian species share a high degree of homology in terms of mitochondrial genome organization and gene arrangement. Their corresponding mitochondrial genomes are 16,935 and 16,978 bp and consist of 37 genes and a control region. Their PCGs were both 11,365 bp long and have similar structure. Their tRNA gene sequences could be folded into canonical cloverleaf secondary structure, except for tRNA Ser (AGY) , which lost its "DHU" arm. Based on the concatenated nucleotide sequences of the complete mitochondrial DNA genes of 16 Rallidae species, reconstruction of phylogenetic trees and analysis of the molecular clock of P. fusca and P. pusilla indicated that these species from a sister group, which in turn are sister group to Rallina eurizonoides. The genus Gallirallus is a sister group to genus Lewinia, and these groups in turn are sister groups to genus Porphyrio. Moreover, molecular clock analyses suggested that the basal divergence of Rallidae could be traced back to 40.47 (41.46‒39.45) million years ago (Mya), and the divergence of Porzana occurred approximately 5.80 (15.16‒0.79) Mya.

  6. Genetics Home Reference: MPV17-related hepatocerebral mitochondrial DNA depletion syndrome

    Science.gov (United States)

    ... DNA depletion syndrome MPV17-related hepatocerebral mitochondrial DNA depletion syndrome Printable PDF Open All Close All Enable ... collapse boxes. Description MPV17 -related hepatocerebral mitochondrial DNA depletion syndrome is an inherited disorder that can cause ...

  7. Compound mitochondrial DNA mutations in a neurological patient ...

    Indian Academy of Sciences (India)

    Compound mitochondrial DNA mutations in a neurological patient with ataxia, myoclonus and deafness. Ji Hoon Park, Bo Ram Yoon, Hye Jin Kim, Phil Hyu Lee, Byung-Ok Choi and Ki Wha Chung. J. Genet. 93, 173–177. Table 1. Variations from the whole mtDNA sequence in the AMDF patient. Mutation. Report. Locus/ ...

  8. Differential Nuclear and Mitochondrial DNA Preservation in Post-Mortem Teeth with Implications for Forensic and Ancient DNA Studies

    Science.gov (United States)

    Higgins, Denice; Rohrlach, Adam B.; Kaidonis, John; Townsend, Grant; Austin, Jeremy J.

    2015-01-01

    Major advances in genetic analysis of skeletal remains have been made over the last decade, primarily due to improvements in post-DNA-extraction techniques. Despite this, a key challenge for DNA analysis of skeletal remains is the limited yield of DNA recovered from these poorly preserved samples. Enhanced DNA recovery by improved sampling and extraction techniques would allow further advancements. However, little is known about the post-mortem kinetics of DNA degradation and whether the rate of degradation varies between nuclear and mitochondrial DNA or across different skeletal tissues. This knowledge, along with information regarding ante-mortem DNA distribution within skeletal elements, would inform sampling protocols facilitating development of improved extraction processes. Here we present a combined genetic and histological examination of DNA content and rates of DNA degradation in the different tooth tissues of 150 human molars over short-medium post-mortem intervals. DNA was extracted from coronal dentine, root dentine, cementum and pulp of 114 teeth via a silica column method and the remaining 36 teeth were examined histologically. Real time quantification assays based on two nuclear DNA fragments (67 bp and 156 bp) and one mitochondrial DNA fragment (77 bp) showed nuclear and mitochondrial DNA degraded exponentially, but at different rates, depending on post-mortem interval and soil temperature. In contrast to previous studies, we identified differential survival of nuclear and mtDNA in different tooth tissues. Futhermore histological examination showed pulp and dentine were rapidly affected by loss of structural integrity, and pulp was completely destroyed in a relatively short time period. Conversely, cementum showed little structural change over the same time period. Finally, we confirm that targeted sampling of cementum from teeth buried for up to 16 months can provide a reliable source of nuclear DNA for STR-based genotyping using standard

  9. Mitochondrial DNA triplication and punctual mutations in patients with mitochondrial neuromuscular disorders

    Energy Technology Data Exchange (ETDEWEB)

    Mkaouar-Rebai, Emna, E-mail: emna.mkaouar@gmail.com [Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax (Tunisia); Felhi, Rahma; Tabebi, Mouna [Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax (Tunisia); Alila-Fersi, Olfa; Chamkha, Imen [Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax (Tunisia); Maalej, Marwa; Ammar, Marwa [Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax (Tunisia); Kammoun, Fatma [Service de pédiatrie, C.H.U. Hedi Chaker de Sfax (Tunisia); Keskes, Leila [Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax (Tunisia); Hachicha, Mongia [Service de pédiatrie, C.H.U. Hedi Chaker de Sfax (Tunisia); Fakhfakh, Faiza, E-mail: faiza.fakhfakh02@gmail.com [Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax (Tunisia)

    2016-04-29

    Mitochondrial diseases are a heterogeneous group of disorders caused by the impairment of the mitochondrial oxidative phosphorylation system which have been associated with various mutations of the mitochondrial DNA (mtDNA) and nuclear gene mutations. The clinical phenotypes are very diverse and the spectrum is still expanding. As brain and muscle are highly dependent on OXPHOS, consequently, neurological disorders and myopathy are common features of mtDNA mutations. Mutations in mtDNA can be classified into three categories: large-scale rearrangements, point mutations in tRNA or rRNA genes and point mutations in protein coding genes. In the present report, we screened mitochondrial genes of complex I, III, IV and V in 2 patients with mitochondrial neuromuscular disorders. The results showed the presence the pathogenic heteroplasmic m.9157G>A variation (A211T) in the MT-ATP6 gene in the first patient. We also reported the first case of triplication of 9 bp in the mitochondrial NC7 region in Africa and Tunisia, in association with the novel m.14924T>C in the MT-CYB gene in the second patient with mitochondrial neuromuscular disorder. - Highlights: • We reported 2 patients with mitochondrial neuromuscular disorders. • The heteroplasmic MT-ATP6 9157G>A variation was reported. • A triplication of 9 bp in the mitochondrial NC7 region was detected. • The m.14924T>C transition (S60P) in the MT-CYB gene was found.

  10. DNA Precursor Metabolism and Mitochondrial Genome Stability

    National Research Council Canada - National Science Library

    Mathews, Christopher K

    2003-01-01

    ...) metabolism and mutagenesis in the mitochondrial genome. Specific contributions include: (1) We found that conditions altering the normal balance among the four dNTP pools within the mitochondrion stimulate both point and deletion mutagenesis...

  11. Deoxynucleoside salvage enzymes and tissue specific mitochondrial DNA depletion.

    Science.gov (United States)

    Wang, L

    2010-06-01

    Adequate mitochondrial DNA (mtDNA) copies are required for normal mitochondria function and reductions in mtDNA copy number due to genetic alterations cause tissue-specific mtDNA depletion syndrome (MDS). There are eight nuclear genes, directly or indirectly involved in mtDNA replication and mtDNA precursor synthesis, which have been identified as the cause of MDS. However, the tissue specific pathology of these nuclear gene mutations is not well understood. Here, mtDNA synthesis, mtDNA copy number control, and mtDNA turnover, as well as the synthesis of mtDNA precursors in relation to the levels of salvage enzymes are discussed. The question why MDS caused by TK2 and p53R2 mutations are predominantly muscle specific while dGK deficiency affected mainly liver will be addressed.

  12. Mitochondrial DNA Copy Number in Sleep Duration Discordant Monozygotic Twins

    DEFF Research Database (Denmark)

    Wrede, Joanna E; Mengel-From, Jonas; Buchwald, Dedra

    2015-01-01

    STUDY OBJECTIVES: Mitochondrial DNA (mtDNA) copy number is an important component of mitochondrial function and varies with age, disease, and environmental factors. We aimed to determine whether mtDNA copy number varies with habitual differences in sleep duration within pairs of monozygotic twins...... structure to assess within-pair effects of sleep duration on mtDNA copy number. MEASUREMENTS AND RESULTS: Mean within-pair sleep duration difference per 24 hours was 94.3 minutes (SD 62.6 min). We found reduced sleep duration (β = 0.06; 95% CI 0.004, 0.12; P sleep efficiency (β = 0.51; 95% CI 0.......06, 0.95; P DNA copy number within twin pairs. Thus every 1-minute decrease in actigraphy-defined sleep duration was associated with a decrease in mtDNA copy number of 0.06. Likewise, a 1% decrease in actigraphy-defined sleep efficiency was associated...

  13. Complete mitochondrial genome of sublittoral macroalga Rhodymenia pseudopalmata (Rhodymeniales, Rhodophyta).

    Science.gov (United States)

    Kim, Kyeong Mi; Yang, Eun Chan; Yi, Gangman; Yoon, Hwan Su

    2014-08-01

    We sequenced and characterized the first complete mitochondrial genome of the sublittoral red alga Rhodymenia pseudopalmata (Rhodymeniales, Rhodophyta). The mitogenome is 26,166 bp in length with 29.5% GC content. The circular mitogenome contains 47 genes, including 24 protein-coding, 2 rRNA and 21 tRNA genes including two copies of trnG, trnL, trnM and trnS. There are two cases of gene-overlapping, found between sdhD and nad4, and between secY and rps12. The R. pseudopalmata mitochondria genome differs from that of Gracilariopsis lemaneiformis by three missing genes (orf60, rpl20 and trnH).

  14. Mitochondrial DNA as an inflammatory mediator in cardiovascular diseases.

    Science.gov (United States)

    Nakayama, Hiroyuki; Otsu, Kinya

    2018-03-06

    Mitochondria play a central role in multiple cellular functions, including energy production, calcium homeostasis, and cell death. Currently, growing evidence indicates the vital roles of mitochondria in triggering and maintaining inflammation. Chronic inflammation without microbial infection - termed sterile inflammation - is strongly involved in the development of heart failure. Sterile inflammation is triggered by the activation of pattern recognition receptors (PRRs) that sense endogenous ligands called damage-associated molecular patterns (DAMPs). Mitochondria release multiple DAMPs including mitochondrial DNA, peptides, and lipids, which induce inflammation via the stimulation of multiple PRRs. Among the mitochondrial DAMPs, mitochondrial DNA (mtDNA) is currently highlighted as the DAMP that mediates the activation of multiple PRRs, including Toll-like receptor 9, Nod-like receptors, and cyclic GMP-AMP synthetase/stimulator of interferon gene pathways. These PRR signalling pathways, in turn, lead to the activation of nuclear factor-κB and interferon regulatory factor, which enhances the transcriptional activity of inflammatory cytokines and interferons, and induces the recruitment of inflammatory cells. As the heart is an organ comprising abundant mitochondria for its ATP consumption (needed to maintain constant cyclic contraction and relaxation), the generation of massive amounts of mitochondrial radical oxygen species and mitochondrial DAMPs are predicted to occur and promote cardiac inflammation. Here, we will focus on the role of mtDNA in cardiac inflammation and review the mechanism and pathological significance of mtDNA-induced inflammatory responses in cardiac diseases. © 2018 The Author(s).

  15. Mitochondrial DNA Copy Number in Sleep Duration Discordant Monozygotic Twins.

    Science.gov (United States)

    Wrede, Joanna E; Mengel-From, Jonas; Buchwald, Dedra; Vitiello, Michael V; Bamshad, Michael; Noonan, Carolyn; Christiansen, Lene; Christensen, Kaare; Watson, Nathaniel F

    2015-10-01

    Mitochondrial DNA (mtDNA) copy number is an important component of mitochondrial function and varies with age, disease, and environmental factors. We aimed to determine whether mtDNA copy number varies with habitual differences in sleep duration within pairs of monozygotic twins. Academic clinical research center. 15 sleep duration discordant monozygotic twin pairs (30 twins, 80% female; mean age 42.1 years [SD 15.0]). Sleep duration was phenotyped with wrist actigraphy. Each twin pair included a "normal" (7-9 h/24) and "short" (sleeping twin. Fasting peripheral blood leukocyte DNA was assessed for mtDNA copy number via the n-fold difference between qPCR measured mtDNA and nuclear DNA creating an mtDNA measure without absolute units. We used generalized estimating equation linear regression models accounting for the correlated data structure to assess within-pair effects of sleep duration on mtDNA copy number. Mean within-pair sleep duration difference per 24 hours was 94.3 minutes (SD 62.6 min). We found reduced sleep duration (β = 0.06; 95% CI 0.004, 0.12; P sleep efficiency (β = 0.51; 95% CI 0.06, 0.95; P sleep duration was associated with a decrease in mtDNA copy number of 0.06. Likewise, a 1% decrease in actigraphy-defined sleep efficiency was associated with a decrease in mtDNA copy number of 0.51. Reduced sleep duration and sleep efficiency were associated with reduced mitochondrial DNA copy number in sleep duration discordant monozygotic twins offering a potential mechanism whereby short sleep impairs health and longevity through mitochondrial stress. © 2015 Associated Professional Sleep Societies, LLC.

  16. Mitochondrial DNA analysis suggests a Chibchan migration into Colombia

    OpenAIRE

    Noguera-Santamaría, Maria Claudia; Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana. Grupo de Genética Humana, Facultad de Medicina, Universidad de La Sabana. Facultad de Ciencias de la Salud. Grupo Gisafaco. Corporación Universitaria Remington; Anderson, Carl Edlund; Department of Foreign Languages & Cultures, Universidad de La Sabana; Uricoechea, Daniel; Grupo de Genética Humana, Facultad de Medicina, Universidad de La Sabana; Durán, Clemencia; Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana.; Briceño-Balcázar, Ignacio; Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana Grupo de Genética Humana, Facultad de Medicina, Universidad de La Sabana; Bernal-Villegas, Jaime; Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana Universidad Tecnológica de Bolívar

    2015-01-01

    The characterization of mitochondrial DNA (mtDNA) allows the establishment of genetic structures and phylogenetic relationships in human populations, tracing lineages far back in time. We analysed samples of mtDNA from twenty (20) Native American populations (700 individuals) dispersed throughout Colombian territory. Samples were collected during 1989-1993 in the context of the program Expedición Humana (“Human Expedition”) and stored in the Biological Repository of the Institute of Human Gen...

  17. Mitochondrial DNA variation in the Viking age population of Norway

    OpenAIRE

    Krzewińska, Maja; Bjørnstad, Gro; Skoglund, Pontus; Olason, Pall Isolfur; Bill, Jan; Götherström, Anders; Hagelberg, Erika

    2015-01-01

    The medieval Norsemen or Vikings had an important biological and cultural impact on many parts of Europe through raids, colonization and trade, from about AD 793 to 1066. To help understand the genetic affinities of the ancient Norsemen, and their genetic contribution to the gene pool of other Europeans, we analysed DNA markers in Late Iron Age skeletal remains from Norway. DNA was extracted from 80 individuals, and mitochondrial DNA polymorphisms were detected by next-generation sequencing. ...

  18. Lack of mitochondrial MutS homolog 1 in Toxoplasma gondii disrupts maintenance and fidelity of mitochondrial DNA and reveals metabolic plasticity.

    Directory of Open Access Journals (Sweden)

    Tamila Garbuz

    Full Text Available The importance of maintaining the fidelity of the mitochondrial genome is underscored by the presence of various repair pathways within this organelle. Presumably, the repair of mitochondrial DNA would be of particular importance in organisms that possess only a single mitochondrion, like the human pathogens Plasmodium falciparum and Toxoplasma gondii. Understanding the machinery that maintains mitochondrial DNA in these parasites is of particular relevance, as mitochondrial function is a validated and effective target for anti-parasitic drugs. We previously determined that the Toxoplasma MutS homolog TgMSH1 localizes to the mitochondrion. MutS homologs are key components of the nuclear mismatch repair system in mammalian cells, and both yeast and plants possess MutS homologs that localize to the mitochondria where they regulate DNA stability. Here we show that the lack of TgMSH1 results in accumulation of single nucleotide variations in mitochondrial DNA and a reduction in mitochondrial DNA content. Additionally, parasites lacking TgMSH1 function can survive treatment with the cytochrome b inhibitor atovaquone. While the Tgmsh1 knockout strain has several missense mutations in cytochrome b, none affect amino acids known to be determinants of atovaquone sensitivity and atovaquone is still able to inhibit electron transport in the Tgmsh1 mutants. Furthermore, culture of Tgmsh1 mutant in the presence atovaquone leads to parasites with enhanced atovaquone resistance and complete shutdown of respiration. Thus, parasites lacking TgMSH1 overcome the disruption of mitochondrial DNA by adapting their physiology allowing them to forgo the need for oxidative phosphorylation. Consistent with this idea, the Tgmsh1 mutant is resistant to mitochondrial inhibitors with diverse targets and exhibits reduced ability to grow in the absence of glucose. This work shows TgMSH1 as critical for the maintenance and fidelity of the mitochondrial DNA in Toxoplasma

  19. Induced pluripotent stem cells with a pathological mitochondrial DNA deletion

    Science.gov (United States)

    Cherry, Anne B. C.; Gagne, Katelyn E.; McLoughlin, Erin M.; Baccei, Anna; Gorman, Bryan; Hartung, Odelya; Miller, Justine D.; Zhang, Jin; Zon, Rebecca L.; Ince, Tan A.; Neufeld, Ellis J.; Lerou, Paul H.; Fleming, Mark D.; Daley, George Q.; Agarwal, Suneet

    2013-01-01

    In congenital mitochondrial DNA (mtDNA) disorders, a mixture of normal and mutated mtDNA (termed heteroplasmy) exists at varying levels in different tissues, which determines the severity and phenotypic expression of disease. Pearson marrow pancreas syndrome (PS) is a congenital bone marrow failure disorder caused by heteroplasmic deletions in mtDNA. The cause of the hematopoietic failure in PS is unknown, and adequate cellular and animal models are lacking. Induced pluripotent stem (iPS) cells are particularly amenable for studying mtDNA disorders, as cytoplasmic genetic material is retained during direct reprogramming. Here we derive and characterize iPS cells from a patient with PS. Taking advantage of the tendency for heteroplasmy to change with cell passage, we isolated isogenic PS-iPS cells without detectable levels of deleted mtDNA. We found that PS-iPS cells carrying a high burden of deleted mtDNA displayed differences in growth, mitochondrial function, and hematopoietic phenotype when differentiated in vitro, compared to isogenic iPS cells without deleted mtDNA. Our results demonstrate that reprogramming somatic cells from patients with mtDNA disorders can yield pluripotent stem cells with varying burdens of heteroplasmy that might be useful in the study and treatment of mitochondrial diseases. PMID:23400930

  20. Accurate quantification of mouse mitochondrial DNA without co-amplification of nuclear mitochondrial insertion sequences.

    Science.gov (United States)

    Malik, Afshan N; Czajka, Anna; Cunningham, Phil

    2016-07-01

    Mitochondria contain an extra-nuclear genome in the form of mitochondrial DNA (MtDNA), damage to which can lead to inflammation and bioenergetic deficit. Changes in MtDNA levels are increasingly used as a biomarker of mitochondrial dysfunction. We previously reported that in humans, fragments in the nuclear genome known as nuclear mitochondrial insertion sequences (NumtS) affect accurate quantification of MtDNA. In the current paper our aim was to determine whether mouse NumtS affect the quantification of MtDNA and to establish a method designed to avoid this. The existence of NumtS in the mouse genome was confirmed using blast N, unique MtDNA regions were identified using FASTA, and MtDNA primers which do not co-amplify NumtS were designed and tested. MtDNA copy numbers were determined in a range of mouse tissues as the ratio of the mitochondrial and nuclear genome using real time qPCR and absolute quantification. Approximately 95% of mouse MtDNA was duplicated in the nuclear genome as NumtS which were located in 15 out of 21 chromosomes. A unique region was identified and primers flanking this region were used. MtDNA levels differed significantly in mouse tissues being the highest in the heart, with levels in descending order (highest to lowest) in kidney, liver, blood, brain, islets and lung. The presence of NumtS in the nuclear genome of mouse could lead to erroneous data when studying MtDNA content or mutation. The unique primers described here will allow accurate quantification of MtDNA content in mouse models without co-amplification of NumtS. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  1. Genetics Home Reference: RRM2B-related mitochondrial DNA depletion syndrome, encephalomyopathic form with renal ...

    Science.gov (United States)

    ... Additional NIH Resources (1 link) National Institute of Neurological Disorders and Stroke: Mitochondrial Myopathy Information Page Educational Resources (7 links) Cincinnati Children's Hospital: Mitochondrial Diseases Disease InfoSearch: Mitochondrial DNA depletion ...

  2. "Stiff neonate" with mitochondrial DNA depletion and secondary neurotransmitter defects.

    LENUS (Irish Health Repository)

    Moran, Margaret M

    2011-12-01

    Mitochondrial disorders comprise a heterogenous group. A neonate who presented with episodes of severe truncal hypertonia and apnea progressed to a hypokinetic rigid syndrome characterized by hypokinesia, tremulousness, profound head lag, absent suck and gag reflexes, brisk deep tendon reflexes, ankle and jaw clonus, and evidence of autonomic dysfunction. Analysis of cerebrospinal fluid neurotransmitters from age 7 weeks demonstrated low levels of amine metabolites (homovanillic acid and 5-hydroxyindoleacetic acid), tetrahydrobiopterin, and pyridoxal phosphate. Mitochondrial DNA quantitative studies on muscle homogenate demonstrated a mitochondrial DNA depletion disorder. Respiratory chain enzymology demonstrated decreased complex IV activity. Screening for mitochondrial DNA rearrangement disorders and sequencing relevant mitochondrial genes produced negative results. No clinical or biochemical response to treatment with pyridoxal phosphate, tetrahydrobiopterin, or l-dopa occurred. The clinical course was progressive, and the patient died at age 19 months. Mitochondrial disorders causing secondary neurotransmitter diseases are usually severe, but are rarely reported. This diagnosis should be considered in neonates or infants who present with hypertonia, hypokinesia rigidity, and progressive neurodegeneration.

  3. Maternal inheritance and mitochondrial DNA variants in familial Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Pfeiffer Ronald F

    2010-04-01

    Full Text Available Abstract Background Mitochondrial function is impaired in Parkinson's disease (PD and may contribute to the pathogenesis of PD, but the causes of mitochondrial impairment in PD are unknown. Mitochondrial dysfunction is recapitulated in cell lines expressing mitochondrial DNA (mtDNA from PD patients, implicating mtDNA variants or mutations, though the role of mtDNA variants or mutations in PD risk remains unclear. We investigated the potential contribution of mtDNA variants or mutations to the risk of PD. Methods We examined the possibility of a maternal inheritance bias as well as the association between mitochondrial haplogroups and maternal inheritance and disease risk in a case-control study of 168 multiplex PD families in which the proband and one parent were diagnosed with PD. 2-tailed Fisher Exact Tests and McNemar's tests were used to compare allele frequencies, and a t-test to compare ages of onset. Results The frequency of affected mothers of the proband with PD (83/167, 49.4% was not significantly different from the frequency of affected females of the proband generation (115/259, 44.4% (Odds Ratio 1.22; 95%CI 0.83 - 1.81. After correcting for multiple tests, there were no significant differences in the frequencies of mitochondrial haplogroups or of the 10398G complex I gene polymorphism in PD patients compared to controls, and no significant associations with age of onset of PD. Mitochondrial haplogroup and 10398G polymorphism frequencies were similar in probands having an affected father as compared to probands having an affected mother. Conclusions These data fail to demonstrate a bias towards maternal inheritance in familial PD. Consistent with this, we find no association of common haplogroup-defining mtDNA variants or for the 10398G variant with the risk of PD. However, these data do not exclude a role for mtDNA variants in other populations, and it remains possible that other inherited mitochondrial DNA variants, or somatic mDNA

  4. [Sequencing and analysis of the complete mitochondrial genome of the King Cobra, Ophiophagus hannah (Serpents: Elapidae)].

    Science.gov (United States)

    Chen, Nian; Lai, Xiao-Ping

    2010-07-01

    We obtained the complete mitochondrial genome of King Cobra(GenBank accession number: EU_921899) by Ex Taq-PCR, TA-cloning and primer-walking methods. This genome is very similar to other vertebrate, which is 17 267 bp in length and encodes 38 genes (including 13 protein-coding, 2 ribosomal RNA and 23 transfer RNA genes) and two long non-coding regions. The duplication of tRNA-Ile gene forms a new mitochondrial gene rearrangement model. Eight tRNA genes and one protein genes were transcribed from L strand, and the other genes were transcribed genes from H strand. Genes on the H strand show a fairly similar content of Adenosine and Thymine respectively, whereas those on the L strand have higher proportion of A than T. Combined rDNA sequence data (12S+16S rRNA) were used to reconstruct the phylogeny of 21 snake species for which complete mitochondrial genome sequences were available in the public databases. This large data set and an appropriate range of outgroup taxa demonstrated that Elapidae is more closely related to colubridae than viperidae, which supports the traditional viewpoints.

  5. Blood cell mitochondrial DNA content and premature ovarian aging.

    Directory of Open Access Journals (Sweden)

    Marco Bonomi

    Full Text Available Primary ovarian insufficiency (POI is a critical fertility defect characterized by an anticipated and silent impairment of the follicular reserve, but its pathogenesis is largely unexplained. The frequent maternal inheritance of POI together with a remarkable dependence of ovarian folliculogenesis upon mitochondrial biogenesis and bioenergetics suggested the possible involvement of a generalized mitochondrial defect. Here, we verified the existence of a significant correlation between blood and ovarian mitochondrial DNA (mtDNA content in a group of women undergoing ovarian hyperstimulation (OH, and then aimed to verify whether mtDNA content was significantly altered in the blood cells of POI women. We recruited 101 women with an impaired ovarian reserve: 59 women with premature ovarian failure (POF and 42 poor responders (PR to OH. A Taqman copy number assay revealed a significant mtDNA depletion (P<0.001 in both POF and PR women in comparison with 43 women of similar age and intact ovarian reserve, or 53 very old women with a previous physiological menopause. No pathogenic variations in the mitochondrial DNA polymerase γ (POLG gene were detected in 57 POF or PR women with low blood mtDNA content. In conclusion, blood cell mtDNA depletion is a frequent finding among women with premature ovarian aging, suggesting that a still undetermined but generalized mitochondrial defect may frequently predispose to POI which could then be considered a form of anticipated aging in which the ovarian defect may represent the first manifestation. The determination of mtDNA content in blood may become an useful tool for the POI risk prediction.

  6. A comprehensive characterization of rare mitochondrial DNA variants in neuroblastoma.

    Science.gov (United States)

    Calabrese, Francesco Maria; Clima, Rosanna; Pignataro, Piero; Lasorsa, Vito Alessandro; Hogarty, Michael D; Castellano, Aurora; Conte, Massimo; Tonini, Gian Paolo; Iolascon, Achille; Gasparre, Giuseppe; Capasso, Mario

    2016-08-02

    Neuroblastoma, a tumor of the developing sympathetic nervous system, is a common childhood neoplasm that is often lethal. Mitochondrial DNA (mtDNA) mutations have been found in most tumors including neuroblastoma. We extracted mtDNA data from a cohort of neuroblastoma samples that had undergone Whole Exome Sequencing (WES) and also used snap-frozen samples in which mtDNA was entirely sequenced by Sanger technology. We next undertook the challenge of determining those mutations that are relevant to, or arisen during tumor development. The bioinformatics pipeline used to extract mitochondrial variants from matched tumor/blood samples was enriched by a set of filters inclusive of heteroplasmic fraction, nucleotide variability, and in silico prediction of pathogenicity. Our in silico multistep workflow applied both on WES and Sanger-sequenced neuroblastoma samples, allowed us to identify a limited burden of somatic and germline mitochondrial mutations with a potential pathogenic impact. The few singleton germline and somatic mitochondrial mutations emerged, according to our in silico analysis, do not appear to impact on the development of neuroblastoma. Our findings are consistent with the hypothesis that most mitochondrial somatic mutations can be considered as 'passengers' and consequently have no discernible effect in this type of cancer.

  7. Mitochondrial DNA Mutation Associated with Leber's Hereditary Optic Neuropathy

    Science.gov (United States)

    Wallace, Douglas C.; Singh, Gurparkash; Lott, Marie T.; Hodge, Judy A.; Schurr, Theodore G.; Lezza, Angela M. S.; Elsas, Louis J.; Nikoskelainen, Eeva K.

    1988-12-01

    Leber's hereditary optic neuropathy is a maternally inherited disease resulting in optic nerve degeneration and cardiac dysrhythmia. A mitochondrial DNA replacement mutation was identified that correlated with this disease in multiple families. This mutation converted a highly conserved arginine to a histidine at codon 340 in the NADH dehydrogenase subunit 4 gene and eliminated an Sfa NI site, thus providing a simple diagnostic test. This finding demonstrated that a nucleotide change in a mitochondrial DNA energy production gene can result in a neurological disease.

  8. DNA methyltransferase 1 mutations and mitochondrial pathology: is mtDNA methylated?

    Directory of Open Access Journals (Sweden)

    Alessandra eMaresca

    2015-03-01

    Full Text Available Autosomal dominant cerebellar ataxia, deafness and narcolepsy (ADCA-DN and Hereditary sensory neuropathy with dementia and hearing loss (HSN1E are two rare, overlapping neurodegenerative syndromes that have been recently linked to allelic dominant pathogenic mutations in the DNMT1 gene, coding for DNA (cytosine-5-methyltransferase 1. DNMT1 is the enzyme responsible for maintaining the nuclear genome methylation patterns during the DNA replication and repair, thus regulating gene expression. The mutations responsible for ADCA-DN and HSN1E affect the replication foci targeting sequence domain, which regulates DNMT1 binding to chromatin. DNMT1 dysfunction is anticipated to lead to a global alteration of the DNA methylation pattern with predictable downstream consequences on gene expression. Interestingly, ADCA-DN and HSN1E phenotypes share some clinical features typical of mitochondrial diseases, such as optic atrophy, peripheral neuropathy and deafness, and some biochemical evidence of mitochondrial dysfunction. The recent discovery of a mitochondrial isoform of DNMT1 and its proposed role in methylating mitochondrial DNA (mtDNA suggests that DNMT1 mutations may directly affect mtDNA and mitochondrial physiology. On the basis of this latter finding the link between DNMT1 abnormal activity and mitochondrial dysfunction in ADCA-DN and HSN1E appears intuitive, however mtDNA methylation remains highly debated. In the last years several groups demonstrated the presence of 5-methylcytosine in mtDNA by different approaches, but, on the other end, the opposite evidence that mtDNA is not methylated has also been published. Since over 1500 mitochondrial proteins are encoded by the nuclear genome, the altered methylation of these genes may well have a critical role in leading to the mitochondrial impairment observed in ADCA-DN and HSN1E. Thus, many open questions still remain unanswered, such as why mtDNA should be methylated, and how this process is

  9. Evidence Suggesting Absence of Mitochondrial DNA Methylation

    DEFF Research Database (Denmark)

    Mechta, Mie; Ingerslev, Lars R; Fabre, Odile

    2017-01-01

    , 16S, ND5 and CYTB, suggesting that mtDNA supercoiled structure blocks the access to bisulfite conversion. Here, we identified an artifact of mtDNA bisulfite sequencing that can lead to an overestimation of mtDNA methylation levels. Our study supports that cytosine methylation is virtually absent...

  10. Hybrid male sterility is caused by mitochondrial DNA deletion.

    Science.gov (United States)

    Hayashida, Kenji; Kohno, Shigeru

    2009-07-01

    Although it is known that the hybrid male mouse is sterile just like any other animal's heterogametic sex, the reason why only the male germ cells are impaired has yet to be discovered. TdT-mediated dUTP nick end labeling assay using a confocal fluorescence microscope and DNA fragmentation assay of hybrid testis indicated destruction of the mitochondrial DNA (mtDNA) rather than the nuclear DNA. Previously we reported that maternal mtDNA inheritance is through selective sperm mtDNA elimination based on the sperm factor and two egg factors, and expression of these three factors was recognized in the hybrid testis. It was thereby assumed that mtDNA destruction caused by the expression of maternal mtDNA inheritance system in male germ cells is implicated in the hybrid male sterility of mice.

  11. DNA sequence evolution in fast evolving mitochondrial DNA nad1 exons in Geraniaceae and Plantaginaceae

    NARCIS (Netherlands)

    Bakker, F.T.; Breman, F.; Merckx, V.

    2006-01-01

    Previously, nucleotide substitution rates in mitochondrial DNA of Geraniaceae and Plantaginaceae have been shown to be exceptionally high compared with other angiosperm mtDNA lineages. It has also been shown that mtDNA introns were lost in Geraniaceae and Plantaginaceae. In this study we compile 127

  12. Role of Mitochondrial DNA Mutations in Cellular Vulnerability to Mitochondria-Specific Environmental Toxins

    National Research Council Canada - National Science Library

    Hirsch, Etienne C

    2005-01-01

    In recent years, growing evidence has shown that mutations of mitochondrial DNA (mtDNA) are an important cause of mitochondrial disorders in humans, and have been associated with common neurodegenerative disorders, aging and cancers...

  13. Nuclear and mitochondrial DNA quantification of various forensic materials.

    Science.gov (United States)

    Andréasson, H; Nilsson, M; Budowle, B; Lundberg, H; Allen, M

    2006-12-01

    Due to the different types and quality of forensic evidence materials, their DNA content can vary substantially, and particularly low quantities can impact the results in an identification analysis. In this study, the quantity of mitochondrial and nuclear DNA was determined in a variety of materials using a previously described real-time PCR method. DNA quantification in the roots and distal sections of plucked and shed head hairs revealed large variations in DNA content particularly between the root and the shaft of plucked hairs. Also large intra- and inter-individual variations were found among hairs. In addition, DNA content was estimated in samples collected from fingerprints and accessories. The quantification of DNA on various items also displayed large variations, with some materials containing large amounts of nuclear DNA while no detectable nuclear DNA and only limited amounts of mitochondrial DNA were seen in others. Using this sensitive real-time PCR quantification assay, a better understanding was obtained regarding DNA content and variation in commonly analysed forensic evidence materials and this may guide the forensic scientist as to the best molecular biology approach for analysing various forensic evidence materials.

  14. Mitochondrial DNA repair and association with aging- an update

    DEFF Research Database (Denmark)

    Diaz, Ricardo Gredilla; Bohr, Vilhelm; Stevnsner, Tinna V.

    2010-01-01

    in the aging process and to be particularly deleterious in post-mitotic cells. Thus, DNA repair is an important mechanism for maintenance of genomic integrity. Despite the importance of mitochondria in the aging process, it was thought for many years that mitochondria lacked an enzymatic DNA repair system...... proteins and novel DNA repair pathways, thought to be exclusively present in the nucleus, have recently been described also to be present in mitochondria. Here we review the main mitochondrial DNA repair pathways and their association with the aging process....

  15. Complete mitochondrial genome of a Asian lion (Panthera leo goojratensis).

    Science.gov (United States)

    Li, Yu-Fei; Wang, Qiang; Zhao, Jian-ning

    2016-01-01

    The entire mitochondrial genome of this Asian lion (Panthera leo goojratensis) was 17,183 bp in length, gene composition and arrangement conformed to other lions, which contained the typical structure of 22 tRNAs, 2 rRNAs, 13 protein-coding genes and a non-coding region. The characteristic of the mitochondrial genome was analyzed in detail.

  16. Mitochondrial DNA alteration in obstructive sleep apnea.

    Science.gov (United States)

    Lacedonia, Donato; Carpagnano, Giovanna E; Crisetti, Elisabetta; Cotugno, Grazia; Palladino, Grazia P; Patricelli, Giulia; Sabato, Roberto; Foschino Barbaro, Maria P

    2015-04-07

    Obstructive Sleep Apnea (OSAS) is a disease associated with the increase of cardiovascular risk and it is characterized by repeated episodes of Intermittent Hypoxia (IH) which inducing oxidative stress and systemic inflammation. Mitochondria are cell organelles involved in the respiratory that have their own DNA (MtDNA). The aim of this study was to investigate if the increase of oxidative stress in OSAS patients can induce also MtDNA alterations. 46 OSAS patients (age 59.27 ± 11.38; BMI 30.84 ± 3.64; AHI 36.63 ± 24.18) were compared with 36 control subjects (age 54.42 ± 6.63; BMI 29.06 ± 4.7; AHI 3.8 ± 1.10). In blood cells Content of MtDNA and nuclear DNA (nDNA) was measured in OSAS patients by Real Time PCR. The ratio between MtDNA/nDNA was then calculated. Presence of oxidative stress was evaluated by levels of Reactive Oxygen Metabolites (ROMs), measured by diacron reactive oxygen metabolite test (d-ROM test). MtDNA/nDNA was higher in patients with OSAS than in the control group (150.94 ± 49.14 vs 128.96 ± 45.8; p = 0.04), the levels of ROMs were also higher in OSAS subjects (329.71 ± 70.17 vs 226 ± 36.76; p = 0.04) and they were positively correlated with MtDNA/nDNA (R = 0.5, p DNA damage induced by the increase of oxidative stress. Intermittent hypoxia seems to be the main mechanism which leads to this process.

  17. Complete mitochondrial genome of yellow meal worm (Tenebrio molitor).

    Science.gov (United States)

    Liu, Li-Na; Wang, Cheng-Ye

    2014-11-18

    The yellow meal worm (Tenebrio molitor L.) is an important resource insect typically used as animal feed additive. It is also widely used for biological research. The first complete mitochondrial genome of T. molitor was determined for the first time by long PCR and conserved primer walking approaches. The results showed that the entire mitogenome of T. molitor was 15 785 bp long, with 72.35% A+T content [deposited in GenBank with accession number KF418153]. The gene order and orientation were the same as the most common type suggested as ancestral for insects. Two protein-coding genes used atypical start codons (CTA in ND2 and AAT in COX1), and the remaining 11 protein-coding genes started with a typical insect initiation codon ATN. All tRNAs showed standard clover-leaf structure, except for tRNA(Ser) (AGN), which lacked a dihydrouridine (DHU) arm. The newly added T. molitor mitogenome could provide information for future studies on yellow meal worm.

  18. The complete mitochondrial genome of the rice moth, Corcyra cephalonica.

    Science.gov (United States)

    Wu, Yu-Peng; Li, Jie; Zhao, Jin-Liang; Su, Tian-Juan; Luo, A-Rong; Fan, Ren-Jun; Chen, Ming-Chang; Wu, Chun-Sheng; Zhu, Chao-Dong

    2012-01-01

    The complete mitochondrial genome (mitogenome) of the rice moth, Corcyra cephalonica Stainton (Lepidoptera: Pyralidae) was determined as a circular molecular of 15,273 bp in size. The mitogenome composition (37 genes) and gene order are the same as the other lepidopterans. Nucleotide composition of the C. cephalonica mitogenome is highly A+T biased (80.43%) like other insects. Twelve protein-coding genes start with a typical ATN codon, with the exception of coxl gene, which uses CGA as the initial codon. Nine protein-coding genes have the common stop codon TAA, and the nad2, cox1, cox2, and nad4 have single T as the incomplete stop codon. 22 tRNA genes demonstrated cloverleaf secondary structure. The mitogenome has several large intergenic spacer regions, the spacer1 between trnQ gene and nad2 gene, which is common in Lepidoptera. The spacer 3 between trnE and trnF includes microsatellite-like repeat regions (AT)18 and (TTAT)(3). The spacer 4 (16 bp) between trnS2 gene and nad1 gene has a motif ATACTAT; another species, Sesamia inferens encodes ATCATAT at the same position, while other lepidopteran insects encode a similar ATACTAA motif. The spacer 6 is A+T rich region, include motif ATAGA and a 20-bp poly(T) stretch and two microsatellite (AT)(9), (AT)(8) elements.

  19. Extensive structural variations between mitochondrial genomes of CMS and normal peppers (Capsicum annuum L.) revealed by complete nucleotide sequencing.

    Science.gov (United States)

    Jo, Yeong Deuk; Choi, Yoomi; Kim, Dong-Hwan; Kim, Byung-Dong; Kang, Byoung-Cheorl

    2014-07-04

    Cytoplasmic male sterility (CMS) is an inability to produce functional pollen that is caused by mutation of the mitochondrial genome. Comparative analyses of mitochondrial genomes of lines with and without CMS in several species have revealed structural differences between genomes, including extensive rearrangements caused by recombination. However, the mitochondrial genome structure and the DNA rearrangements that may be related to CMS have not been characterized in Capsicum spp. We obtained the complete mitochondrial genome sequences of the pepper CMS line FS4401 (507,452 bp) and the fertile line Jeju (511,530 bp). Comparative analysis between mitochondrial genomes of peppers and tobacco that are included in Solanaceae revealed extensive DNA rearrangements and poor conservation in non-coding DNA. In comparison between pepper lines, FS4401 and Jeju mitochondrial DNAs contained the same complement of protein coding genes except for one additional copy of an atp6 gene (ψatp6-2) in FS4401. In terms of genome structure, we found eighteen syntenic blocks in the two mitochondrial genomes, which have been rearranged in each genome. By contrast, sequences between syntenic blocks, which were specific to each line, accounted for 30,380 and 17,847 bp in FS4401 and Jeju, respectively. The previously-reported CMS candidate genes, orf507 and ψatp6-2, were located on the edges of the largest sequence segments that were specific to FS4401. In this region, large number of small sequence segments which were absent or found on different locations in Jeju mitochondrial genome were combined together. The incorporation of repeats and overlapping of connected sequence segments by a few nucleotides implied that extensive rearrangements by homologous recombination might be involved in evolution of this region. Further analysis using mtDNA pairs from other plant species revealed common features of DNA regions around CMS-associated genes. Although large portion of sequence context was

  20. Mitochondrial DNA: An Endogenous Trigger for Immune Paralysis.

    Science.gov (United States)

    Schäfer, Simon T; Franken, Lars; Adamzik, Michael; Schumak, Beatrix; Scherag, André; Engler, Andrea; Schönborn, Niels; Walden, Jennifer; Koch, Susanne; Baba, Hideo A; Steinmann, Jörg; Westendorf, Astrid M; Fandrey, Joachim; Bieber, Thomas; Kurts, Christian; Frede, Stilla; Peters, Jürgen; Limmer, Andreas

    2016-04-01

    Critically ill patients are at high risk to suffer from sepsis, even in the absence of an initial infectious source, but the molecular mechanisms for their increased sepsis susceptibility, including a suppressed immune system, remain unclear. Although microbes and pathogen-associated molecular pattern are accepted inducers of sepsis and septic immunosuppression, the role of endogenous Toll-like receptor (TLR) ligands, such as mitochondrial DNA (mtDNA), in altering the immune response is unknown. Mitochondrial DNA serum concentrations of the mitochondrial genes D-Loop and adenosine triphosphatase 6 were determined (quantitative polymerase chain reaction) in 165 septic patients and 50 healthy volunteers. Furthermore, cytotoxic T-cell activity was analyzed in wild-type and TLR9 knockout mice, with/without previous mtDNA administration, followed by injection of an ovalbumin-expressing adenoviral vector. Mitochondrial DNA serum concentrations were increased in septic patients (adenosine triphosphatase 6, 123-fold; D-Loop, 76-fold, P < 0.0001) compared with volunteers. Furthermore, a single mtDNA injection caused profound, TLR9-dependent immunosuppression of adaptive T-cell cytotoxicity in wild-type but not in TLR9 knockout mice and evoked various immunosuppressive mechanisms including the destruction of the splenic microstructure, deletion of cross-presenting dendritic cells, and up-regulation of programmed cell death ligand 1 and indoleamine 2,3-dioxygenase. Several of these findings in mice were mirrored in septic patients, and mtDNA concentrations were associated with an increased 30-day mortality. The findings of this study imply that mtDNA, an endogenous danger associated molecular pattern, is a hitherto unknown inducer of septic immunoparalysis and one possible link between initial inflammation and subsequent immunosuppression in critically ill patients.

  1. Mitochondrial DNA sequence-based phylogenetic relationship ...

    Indian Academy of Sciences (India)

    cophaga ranges from 0.037–0.106 and 0.049–0.207 for COI and ND5 genes, respectively (tables 2 and 3). Analysis of genetic distance on the basis of sequence difference for both the mitochondrial genes shows very little genetic difference. The discrepancy in the phylogenetic trees based on individ- ual genes may be due ...

  2. Fly Diversity Revealed by PCR-RFLP of Mitochondrial DNA

    Science.gov (United States)

    Asraoui, Jimmy F.; Sayar, Nancy P.; Knio, Khouzama M.; Smith, Colin A.

    2008-01-01

    In this article, we describe an inexpensive, two-session undergraduate laboratory activity that introduces important molecular biology methods in the context of biodiversity. In the first session, students bring tentatively identified flies (order Diptera, true flies) to the laboratory, extract DNA, and amplify a region of the mitochondrial gene…

  3. The efficiency of mitochondrial DNA markers in constructing genetic ...

    African Journals Online (AJOL)

    Administrator

    2011-05-30

    May 30, 2011 ... To date, only parts of mitochondrial DNA from cytochrome b, 12S rRNA, 16S rRNA and non-coding D- loop had been sequenced for different species of Oryx. Discrepancy in the genetic relationship among. Oryx species was previously revealed when combinations of these sequences were analyzed. In the.

  4. Global DNA methylation synergistically regulates the nuclear and mitochondrial genomes in glioblastoma cells.

    Science.gov (United States)

    Sun, Xin; Johnson, Jacqueline; St John, Justin C

    2018-05-02

    Replication of mitochondrial DNA is strictly regulated during differentiation and development allowing each cell type to acquire its required mtDNA copy number to meet its specific needs for energy. Undifferentiated cells establish the mtDNA set point, which provides low numbers of mtDNA copy but sufficient template for replication once cells commit to specific lineages. However, cancer cells, such as those from the human glioblastoma multiforme cell line, HSR-GBM1, cannot complete differentiation as they fail to enforce the mtDNA set point and are trapped in a 'pseudo-differentiated' state. Global DNA methylation is likely to be a major contributing factor, as DNA demethylation treatments promote differentiation of HSR-GBM1 cells. To determine the relationship between DNA methylation and mtDNA copy number in cancer cells, we applied whole genome MeDIP-Seq and RNA-Seq to HSR-GBM1 cells and following their treatment with the DNA demethylation agents 5-azacytidine and vitamin C. We identified key methylated regions modulated by the DNA demethylation agents that also induced synchronous changes to mtDNA copy number and nuclear gene expression. Our findings highlight the control exerted by DNA methylation on the expression of key genes, the regulation of mtDNA copy number and establishment of the mtDNA set point, which collectively contribute to tumorigenesis.

  5. Characterization of the complete mitochondrial genomes of two whipworms Trichuris ovis and Trichuris discolor (Nematoda: Trichuridae).

    Science.gov (United States)

    Liu, Guo-Hua; Wang, Yan; Xu, Min-Jun; Zhou, Dong-Hui; Ye, Yong-Gang; Li, Jia-Yuan; Song, Hui-Qun; Lin, Rui-Qing; Zhu, Xing-Quan

    2012-12-01

    For many years, whipworms (Trichuris spp.) have been described with a relatively narrow range of both morphological and biometrical features. Moreover, there has been insufficient discrimination between congeners (or closely related species). In the present study, we determined the complete mitochondrial (mt) genomes of two whipworms Trichuris ovis and Trichuris discolor, compared them and then tested the hypothesis that T. ovis and T. discolor are distinct species by phylogenetic analyses using Bayesian inference, maximum likelihood and maximum parsimony) based on the deduced amino acid sequences of the mt protein-coding genes. The complete mt genomes of T. ovis and T. discolor were 13,946 bp and 13,904 bp in size, respectively. Both mt genomes are circular, and consist of 37 genes, including 13 genes coding for proteins, 2 genes for rRNA, and 22 genes for tRNA. The gene content and arrangement are identical to that of human and pig whipworms Trichuris trichiura and Trichuris suis. Taken together, these analyses showed genetic distinctiveness and strongly supported the recent proposal that T. ovis and T. discolor are distinct species using nuclear ribosomal DNA and a portion of the mtDNA sequence dataset. The availability of the complete mtDNA sequences of T. ovis and T. discolor provides novel genetic markers for studying the population genetics, diagnostics and molecular epidemiology of T. ovis and T. discolor. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Replication stalling by catalytically impaired Twinkle induces mitochondrial DNA rearrangements in cultured cells

    NARCIS (Netherlands)

    Pohjoismaki, J.L.; Goffart, S.; Spelbrink, J.N.

    2011-01-01

    Pathological mitochondrial DNA (mtDNA) rearrangements have been proposed to result from repair of double-strand breaks caused by blockage of mitochondrial DNA (mtDNA) replication. As mtDNA deletions are seen only in post-mitotic tissues, it has been suggested that they are selected out in actively

  7. Next generation sequencing yields the complete mitochondrial genome of the largescale mullet, Liza macrolepis (Teleostei: Mugilidae).

    Science.gov (United States)

    Shen, Kang-Ning; Tsai, Shiou-Yi; Chen, Ching-Hung; Hsiao, Chung-Der; Durand, Jean-Dominique

    2016-11-01

    In this study, the complete mitogenome sequence of largescale mullet (Teleostei: Mugilidae) has been sequenced by the next-generation sequencing method. The assembled mitogenome, consisting of 16,832 bp, had the typical vertebrate mitochondrial gene arrangement, including 13 protein-coding genes, 22 transfer RNAs, two ribosomal RNAs genes, and a non-coding control region of D-loop. D-loop which has a length of 1094 bp is located between tRNA-Pro and tRNA-Phe. The overall base composition of largescale mullet is 27.8% for A, 30.1% for C, 16.2% for G, and 25.9% for T. The complete mitogenome may provide essential and important DNA molecular data for further phylogenetic and evolutionary analysis for Mugilidae.

  8. Next generation sequencing yields the complete mitochondrial genome of the Hornlip mullet Plicomugil labiosus (Teleostei: Mugilidae).

    Science.gov (United States)

    Shen, Kang-Ning; Chen, Ching-Hung; Hsiao, Chung-Der

    2016-05-01

    In this study, the complete mitogenome sequence of hornlip mullet Plicomugil labiosus (Teleostei: Mugilidae) has been sequenced by next-generation sequencing method. The assembled mitogenome, consisting of 16,829 bp, had the typical vertebrate mitochondrial gene arrangement, including 13 protein coding genes, 22 transfer RNAs, 2 ribosomal RNAs genes and a non-coding control region of D-loop. D-loop contains 1057 bp length is located between tRNA-Pro and tRNA-Phe. The overall base composition of P. labiosus is 28.0% for A, 29.3% for C, 15.5% for G and 27.2% for T. The complete mitogenome may provide essential and important DNA molecular data for further population, phylogenetic and evolutionary analysis for Mugilidae.

  9. Pathological mechanisms underlying single large‐scale mitochondrial DNA deletions

    Science.gov (United States)

    Rocha, Mariana C.; Rosa, Hannah S.; Grady, John P.; Blakely, Emma L.; He, Langping; Romain, Nadine; Haller, Ronald G.; Newman, Jane; McFarland, Robert; Ng, Yi Shiau; Gorman, Grainne S.; Schaefer, Andrew M.; Tuppen, Helen A.; Taylor, Robert W.

    2018-01-01

    Objective Single, large‐scale deletions in mitochondrial DNA (mtDNA) are a common cause of mitochondrial disease. This study aimed to investigate the relationship between the genetic defect and molecular phenotype to improve understanding of pathogenic mechanisms associated with single, large‐scale mtDNA deletions in skeletal muscle. Methods We investigated 23 muscle biopsies taken from adult patients (6 males/17 females with a mean age of 43 years) with characterized single, large‐scale mtDNA deletions. Mitochondrial respiratory chain deficiency in skeletal muscle biopsies was quantified by immunoreactivity levels for complex I and complex IV proteins. Single muscle fibers with varying degrees of deficiency were selected from 6 patient biopsies for determination of mtDNA deletion level and copy number by quantitative polymerase chain reaction. Results We have defined 3 “classes” of single, large‐scale deletion with distinct patterns of mitochondrial deficiency, determined by the size and location of the deletion. Single fiber analyses showed that fibers with greater respiratory chain deficiency harbored higher levels of mtDNA deletion with an increase in total mtDNA copy number. For the first time, we have demonstrated that threshold levels for complex I and complex IV deficiency differ based on deletion class. Interpretation Combining genetic and immunofluorescent assays, we conclude that thresholds for complex I and complex IV deficiency are modulated by the deletion of complex‐specific protein‐encoding genes. Furthermore, removal of mt‐tRNA genes impacts specific complexes only at high deletion levels, when complex‐specific protein‐encoding genes remain. These novel findings provide valuable insight into the pathogenic mechanisms associated with these mutations. Ann Neurol 2018;83:115–130 PMID:29283441

  10. Complete mitochondrial genomes of living and extinct pigeons revise the timing of the columbiform radiation.

    Science.gov (United States)

    Soares, André E R; Novak, Ben J; Haile, James; Heupink, Tim H; Fjeldså, Jon; Gilbert, M Thomas P; Poinar, Hendrik; Church, George M; Shapiro, Beth

    2016-10-26

    Pigeons and doves (Columbiformes) are one of the oldest and most diverse extant lineages of birds. However, the nature and timing of the group's evolutionary radiation remains poorly resolved, despite recent advances in DNA sequencing and assembly and the growing database of pigeon mitochondrial genomes. One challenge has been to generate comparative data from the large number of extinct pigeon lineages, some of which are morphologically unique and therefore difficult to place in a phylogenetic context. We used ancient DNA and next generation sequencing approaches to assemble complete mitochondrial genomes for eleven pigeons, including the extinct Ryukyu wood pigeon (Columba jouyi), the thick-billed ground dove (Alopecoenas salamonis), the spotted green pigeon (Caloenas maculata), the Rodrigues solitaire (Pezophaps solitaria), and the dodo (Raphus cucullatus). We used a Bayesian approach to infer the evolutionary relationships among 24 species of living and extinct pigeons and doves. Our analyses indicate that the earliest radiation of the Columbidae crown group most likely occurred during the Oligocene, with continued divergence of major clades into the Miocene, suggesting that diversification within the Columbidae occurred more recently than has been reported previously.

  11. A complete mitochondrial genome sequence of Asian black bear Sichuan subspecies (Ursus thibetanus mupinensis)

    Science.gov (United States)

    Hou, Wan-ru; Chen, Yu; Wu, Xia; Hu, Jin-chu; Peng, Zheng-song; Yang, Jung; Tang, Zong-xiang; Zhou, Cai-Quan; Li, Yu-ming; Yang, Shi-kui; Du, Yu-jie; Kong, Ling-lu; Ren, Zheng-long; Zhang, Huai-yu; Shuai, Su-rong

    2007-01-01

    We obtained the complete mitochondrial genome of U.thibetanus mupinensis by DNA sequencing based on the PCR fragments of 18 primers we designed. The results indicate that the mtDNA is 16 868 bp in size, encodes 13 protein genes, 22 tRNA genes, and 2 rRNA genes, with an overall H-strand base composition of 31.2% A, 25.4% C, 15.5% G and 27.9% T. The sequence of the control region (CR) located between tRNA-Pro and tRNA-Phe is 1422 bp in size, consists of 8.43% of the whole genome, GC content is 51.9% and has a 6bp tandem repeat and two 10bp tandem repeats identified by using the Tandem Repeats Finder. U. thibetanus mupinensis mitochondrial genome shares high similarity with those of three other Ursidae: U. americanus (91.46%), U. arctos (89.25%) and U. maritimus (87.66%). PMID:17205108

  12. The use of mitochondrial DNA (mtDNA-investigations in Forensic Sciences

    Directory of Open Access Journals (Sweden)

    S. Dawson

    1996-07-01

    Full Text Available A variety of methods was developed to characterize mtDNA. The initial aim of these techniques was to try and link diseases with specific mitochondrial defects. As a result of the maternal inheritance trait of mtDNA these techniques facilitate studies of the phylogenetic history and population structure of the human population. It has been shown that mitochondrial DNA typing can be of great value for human identification in forensic cases. The identification of victims of mass-disasters or mass-murders, where human remains can be recovered only after many years have passed, is one of the most challenging fields of forensic identification. By using automated DNA sequencing with fluorescent labels, mitochondrial DNA sequences can be generated rapidly and accurately. Computer software facilitates the rapid comparison of individual and reference sequences.

  13. Mitochondrial DNA: A Blind Spot in Neuroepigenetics

    OpenAIRE

    Manev, Hari; Dzitoyeva, Svetlana; Chen, Hu

    2012-01-01

    Neuroepigenetics, which includes nuclear DNA modifications such as 5-methylcytosine and 5-hydoxymethylcytosine and modifications of nuclear proteins such as histones, is emerging as the leading field in molecular neuroscience. Historically, a functional role for epigenetic mechanisms, including in neuroepigenetics, has been sought in the area of the regulation of nuclear transcription. However, one important compartment of mammalian cell DNA, different from nuclear but equally important for p...

  14. The complete mitochondrial genome of Zebrias quagga (Pleuronectiformes: Soleidae).

    Science.gov (United States)

    Li, Dong-He; Shi, Wei; Miao, Xian-Guang; Kong, Xiao-Yu

    2016-01-01

    Zebrias quagga (Soleoidei, Soleidae) is a sort of small and medium-sized commercial flatfish, characterized by both eyes on the right side of the body and with a dark brown short tentacle on each eye. In this paper, the complete mitogenome sequence of Z. quagga was first determined, which is 17,045 bp in length and contains 13 protein-coding genes, two rRNA genes, 22 tRNA genes, as well as a control region (CR) and a L-strand replication origin (OL). Gene contents, locations, and orders are identical to those of typical teleostean mtDNA. The nucleotide composition of the whole mitogenome is 28.8%, 29.3%, 15.8%, and 26.1% for A, C, G, and T, respectively, with a slight bias of A+T content (54.9%). This result is expected to contribute to a better understanding the phylogenetic study of Soleidae and Pleuronectiformes.

  15. A comprehensive characterization of mitochondrial DNA mutations in glioblastoma multiforme.

    Science.gov (United States)

    Vidone, Michele; Clima, Rosanna; Santorsola, Mariangela; Calabrese, Claudia; Girolimetti, Giulia; Kurelac, Ivana; Amato, Laura Benedetta; Iommarini, Luisa; Trevisan, Elisa; Leone, Marco; Soffietti, Riccardo; Morra, Isabella; Faccani, Giuliano; Attimonelli, Marcella; Porcelli, Anna Maria; Gasparre, Giuseppe

    2015-06-01

    Glioblastoma multiforme (GBM) is the most malignant brain cancer in adults, with a poor prognosis, whose molecular stratification still represents a challenge in pathology and clinics. On the other hand, mitochondrial DNA (mtDNA) mutations have been found in most tumors as modifiers of the bioenergetics state, albeit in GBM a characterization of the mtDNA status is lacking to date. Here, a characterization of the burden of mtDNA mutations in GBM samples was performed. First, investigation of tumor-specific vs. non tumor-specific mutations was carried out with the MToolBox bioinformatics pipeline by analyzing 45 matched tumor/blood samples, from whole genome or whole exome sequencing datasets obtained from The Cancer Genome Atlas (TCGA) consortium. Additionally, the entire mtDNA sequence was obtained in a dataset of 104 fresh-frozen GBM samples. Mitochondrial mutations with potential pathogenic interest were prioritized based on heteroplasmic fraction, nucleotide variability, and in silico prediction of pathogenicity. A preliminary biochemical analysis of the activity of mitochondrial respiratory complexes was also performed on fresh-frozen GBM samples. Although a high number of mutations was detected, we report that the large majority of them does not pass the prioritization filters. Therefore, a relatively limited burden of pathogenic mutations is indeed carried by GBM, which did not appear to determine a general impairment of the respiratory chain. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Private mitochondrial DNA variants in danish patients with hypertrophic cardiomyopathy

    DEFF Research Database (Denmark)

    Hagen, Christian M; Aidt, Frederik H; Havndrup, Ole

    2015-01-01

    Hypertrophic cardiomyopathy (HCM) is a genetic cardiac disease primarily caused by mutations in genes coding for sarcomeric proteins. A molecular-genetic etiology can be established in ~60% of cases. Evolutionarily conserved mitochondrial DNA (mtDNA) haplogroups are susceptibility factors for HCM......>G, and MT-CYB: m.15024G>A, p.C93Y remained. A detailed analysis of these variants indicated that none of them are likely to cause HCM. In conclusion, private mtDNA mutations are frequent, but they are rarely, if ever, associated with HCM....

  17. Characterization of Bombyx mori mitochondrial transcription factor A, a conserved regulator of mitochondrial DNA.

    Science.gov (United States)

    Sumitani, Megumi; Kondo, Mari; Kasashima, Katsumi; Endo, Hitoshi; Nakamura, Kaoru; Misawa, Toshihiko; Tanaka, Hiromitsu; Sezutsu, Hideki

    2017-04-15

    In the present study, we initially cloned and characterized a mitochondrial transcription factor A (Tfam) homologue in the silkworm, Bombyx mori. Bombyx mori TFAM (BmTFAM) localized to mitochondria in cultured silkworm and human cells, and co-localized with mtDNA nucleoids in human HeLa cells. In an immunoprecipitation analysis, BmTFAM was found to associate with human mtDNA in mitochondria, indicating its feature as a non-specific DNA-binding protein. In spite of the low identity between BmTFAM and human TFAM (26.5%), the expression of BmTFAM rescued mtDNA copy number reductions and enlarged mtDNA nucleoids in HeLa cells, which were induced by human Tfam knockdown. Thus, BmTFAM compensates for the function of human TFAM in HeLa cells, demonstrating that the mitochondrial function of TFAM is highly conserved between silkworms and humans. BmTfam mRNA was strongly expressed in early embryos. Through double-stranded RNA (dsRNA)-based RNA interference (RNAi) in silkworm embryos, we found that the knockdown of BmTFAM reduced the amount of mtDNA and induced growth retardation at the larval stage. Collectively, these results demonstrate that BmTFAM is a highly conserved mtDNA regulator and may be a good candidate for investigating and modulating mtDNA metabolism in this model organism. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The Complete Sequence of the Mitochondrial Genome of the Chamberednautilus (Mollusca: Cephalopoda)

    Energy Technology Data Exchange (ETDEWEB)

    Boore, Jeffrey L.

    2005-12-01

    Background: Mitochondria contain small genomes that arephysically separate from those of nuclei. Their comparison serves as amodel system for understanding the processes of genome evolution.Although complete mitochondrial genome sequences have been reported formore than 600 animals, the taxonomic sampling is highly biased towardvertebrates and arthropods, leaving much of the diversity yetuncharacterized. Results: The mitochondrial genome of a cephalopodmollusk, the Chambered Nautilus, is 16,258 nts in length and 59.5 percentA+T, both values that are typical of animal mitochondrial genomes. Itcontains the 37 genes that are typical for animal mtDNAs, with 15 on oneDNA strand and 22 on the other. The arrangement of these genes can bederived from that of the distantly related Katharina tunicata (Mollusca:Polyplacophora) by a switch in position of two large blocks of genes andtranspositions of four tRNA genes. There is strong skew in thedistribution of nucleotides between the two strands. There are an unusualnumber of non-coding regions and their function, if any, is not known;however, several of these demark abrupt shifts in nucleotide skew,suggesting that they may play roles in transcription and/or replication.One of the non-coding regions contains multiple repeats of a tRNA-likesequence. Some of the tRNA genes appear to overlap on the same strand,but this could be resolved if the polycistron were cleaved at thebeginning of the downstream gene, followed by polyadenylation of theproduct of the upstream gene to form a fully paired structure.Conclusions: Nautilus sp. mtDNA contains an expected gene content thathas experienced few rearrangements since the evolutionary split betweencephalopods and polyplacophorans. It contains an unusual number ofnon-coding regions, especially considering that these otherwise often aregenerated by the same processes that produce gene rearrangements. Thisappears to be yet another case where polyadenylation of mitochondrialtRNAs restores

  19. Mitochondrial DNA depletion, mitochondrial mutations and high TFAM expression in hepatocellular carcinoma

    OpenAIRE

    Qiao, Lihua; Ru, Guoqing; Mao, Zhuochao; Wang, Chenghui; Nie, Zhipeng; Li, Qiang; Huang-yang, Yiyi; Zhu, Ling; Liang, Xiaoyang; Yu, Jialing; Jiang, Pingping

    2017-01-01

    We investigated the role of mitochondrial genetic alterations in hepatocellular carcinoma by directly comparing the mitochondrial genomes of 86 matched pairs of HCC and non-tumor liver samples. Substitutions in 637 mtDNA sites were detected, comprising 89.80% transitions and 6.60% transversions. Forty-six somatic variants, including 15 novel mutations, were identified in 40.70% of tumor tissues. Of those, 21 were located in the non-coding region and 25 in the protein-coding region. Twenty-two...

  20. A comprehensive analysis of three Asiatic black bear mitochondrial genomes (subspecies ussuricus, formosanus and mupinensis), with emphasis on the complete mtDNA sequence of Ursus thibetanus ussuricus (Ursidae).

    Science.gov (United States)

    Hwang, Dae-Sik; Ki, Jang-Seu; Jeong, Dong-Hyuk; Kim, Bo-Hyun; Lee, Bae-Keun; Han, Sang-Hoon; Lee, Jae-Seong

    2008-08-01

    In the present paper, we describe the mitochondrial genome sequence of the Asiatic black bear (Ursus thibetanus ussuricus) with particular emphasis on the control region (CR), and compared with mitochondrial genomes on molecular relationships among the bears. The mitochondrial genome sequence of U. thibetanus ussuricus was 16,700 bp in size with mostly conserved structures (e.g. 13 protein-coding, two rRNA genes, 22 tRNA genes). The CR consisted of several typical conserved domains such as F, E, D, and C boxes, and a conserved sequence block. Nucleotide sequences and the repeated motifs in the CR were different among the bear species, and their copy numbers were also variable according to populations, even within F1 generations of U. thibetanus ussuricus. Comparative analyses showed that the CR D1 region was highly informative for the discrimination of the bear family. These findings suggest that nucleotide sequences of both repeated motifs and CR D1 in the bear family are good markers for species discriminations.

  1. Phylogeny of the Serrasalmidae (Characiformes based on mitochondrial DNA sequences

    Directory of Open Access Journals (Sweden)

    Guillermo Ortí

    2008-01-01

    Full Text Available Previous studies based on DNA sequences of mitochondrial (mt rRNA genes showed three main groups within the subfamily Serrasalminae: (1 a "pacu" clade of herbivores (Colossoma, Mylossoma, Piaractus; (2 the "Myleus" clade (Myleus, Mylesinus, Tometes, Ossubtus; and (3 the "piranha" clade (Serrasalmus, Pygocentrus, Pygopristis, Pristobrycon, Catoprion, Metynnis. The genus Acnodon was placed as the sister taxon of clade (2+3. However, poor resolution within each clade was obtained due to low levels of variation among rRNA gene sequences. Complete sequences of the hypervariable mtDNA control region for a total of 45 taxa, and additional sequences of 12S and 16S rRNA from a total of 74 taxa representing all genera in the family are now presented to address intragroup relationships. Control region sequences of several serrasalmid species exhibit tandem repeats of short motifs (12 to 33 bp in the 3' end of this region, accounting for substantial length variation. Bayesian inference and maximum parsimony analyses of these sequences identify the same groupings as before and provide further evidence to support the following observations: (a Serrasalmus gouldingi and species of Pristobrycon (non-striolatus form a monophyletic group that is the sister group to other species of Serrasalmus and Pygocentrus; (b Catoprion, Pygopristis, and Pristobrycon striolatus form a well supported clade, sister to the group described above; (c some taxa assigned to the genus Myloplus (M. asterias, M tiete, M ternetzi, and M rubripinnis form a well supported group whereas other Myloplus species remain with uncertain affinities (d Mylesinus, Tometes and Myleus setiger form a monophyletic group.

  2. Evolution and inheritance of animal mitochondrial DNA: rules and exceptions.

    Science.gov (United States)

    Ladoukakis, Emmanuel D; Zouros, Eleftherios

    2017-12-01

    Mitochondrial DNA (mtDNA) has been studied intensely for "its own" merit. Its role for the function of the cell and the organism remains a fertile field, its origin and evolution is an indispensable part of the evolution of life and its interaction with the nuclear DNA is among the most important cases of genome synergism and co-evolution. Also, mtDNA was proven one of the most useful tools in population genetics and molecular phylogenetics. In this article we focus on animal mtDNA and discuss briefly how our views about its structure, function and transmission have changed, how these changes affect the information we have accumulated through its use in the fields of phylogeny and population structure and what are the most important questions that remain open for future research.

  3. Complete mitochondrial genome of freshwater shark Wallago attu (Bloch & Schneider) from Indus River Sindh, Pakistan.

    Science.gov (United States)

    Laghari, Muhammad Younis; Lashari, Punhal; Xu, Peng; Zhao, Zixia; Jiang, Li; Narejo, Naeem Tariq; Xin, Baoping; Sun, Xiaowen; Zhang, Yan

    2016-01-01

    Complete mitochondrial genome of fresh water giant catfish, Wallago attu, was isolated by LA PCR (TakaRa LAtaq, Dalian, China); and sequenced by Sanger's method to obtain the complete mitochondrial genome. The complete mitogenome was 15,639 bp in length and contains 13 typical vertebrate protein-coding genes, 2 rRNA and 22 tRNA genes. The whole genome base composition was estimated to be 31.17% A, 28.15% C, 15.55% G and 25.12% T. The complete mitochondrial genome of catfish, W. attu, provides the fundamental tools for genetic breeding.

  4. Complete mitochondrial genome of the Freshwater Catfish Rita rita (Siluriformes, Bagridae).

    Science.gov (United States)

    Lashari, Punhal; Laghari, Muhammad Younis; Xu, Peng; Zhao, Zixia; Jiang, Li; Narejo, Naeem Tariq; Deng, Yulin; Sun, Xiaowen; Zhang, Yan

    2015-01-01

    The complete mitochondrial genome of Catfish, Rita rita, was isolated by LA PCR (TakaRa LAtaq, Dalian, China); and sequenced by Sanger's method to obtain the complete mitochondrial genome, which is listed Critically Endangered and Red Listed species. The complete mitogenome was 16,449 bp in length and contains 13 typical vertebrate protein-coding genes, 2 rRNA and 22 tRNA genes. The whole genome base composition was estimated to be 33.40% A, 27.43% C, 14.26% G and 24.89% T. The complete mitochondrial genome of catfish, Rita rita provides the basis for genetic breeding and conservation studies.

  5. Mitochondrial DNA replication: a PrimPol perspective

    Science.gov (United States)

    Bailey, Laura J.

    2017-01-01

    PrimPol, (primase–polymerase), the most recently identified eukaryotic polymerase, has roles in both nuclear and mitochondrial DNA maintenance. PrimPol is capable of acting as a DNA polymerase, with the ability to extend primers and also bypass a variety of oxidative and photolesions. In addition, PrimPol also functions as a primase, catalysing the preferential formation of DNA primers in a zinc finger-dependent manner. Although PrimPol's catalytic activities have been uncovered in vitro, we still know little about how and why it is targeted to the mitochondrion and what its key roles are in the maintenance of this multicopy DNA molecule. Unlike nuclear DNA, the mammalian mitochondrial genome is circular and the organelle has many unique proteins essential for its maintenance, presenting a differing environment within which PrimPol must function. Here, we discuss what is currently known about the mechanisms of DNA replication in the mitochondrion, the proteins that carry out these processes and how PrimPol is likely to be involved in assisting this vital cellular process. PMID:28408491

  6. qPCR-based mitochondrial DNA quantification: Influence of template DNA fragmentation on accuracy

    International Nuclear Information System (INIS)

    Jackson, Christopher B.; Gallati, Sabina; Schaller, André

    2012-01-01

    Highlights: ► Serial qPCR accurately determines fragmentation state of any given DNA sample. ► Serial qPCR demonstrates different preservation of the nuclear and mitochondrial genome. ► Serial qPCR provides a diagnostic tool to validate the integrity of bioptic material. ► Serial qPCR excludes degradation-induced erroneous quantification. -- Abstract: Real-time PCR (qPCR) is the method of choice for quantification of mitochondrial DNA (mtDNA) by relative comparison of a nuclear to a mitochondrial locus. Quantitative abnormal mtDNA content is indicative of mitochondrial disorders and mostly confines in a tissue-specific manner. Thus handling of degradation-prone bioptic material is inevitable. We established a serial qPCR assay based on increasing amplicon size to measure degradation status of any DNA sample. Using this approach we can exclude erroneous mtDNA quantification due to degraded samples (e.g. long post-exicision time, autolytic processus, freeze–thaw cycles) and ensure abnormal DNA content measurements (e.g. depletion) in non-degraded patient material. By preparation of degraded DNA under controlled conditions using sonification and DNaseI digestion we show that erroneous quantification is due to the different preservation qualities of the nuclear and the mitochondrial genome. This disparate degradation of the two genomes results in over- or underestimation of mtDNA copy number in degraded samples. Moreover, as analysis of defined archival tissue would allow to precise the molecular pathomechanism of mitochondrial disorders presenting with abnormal mtDNA content, we compared fresh frozen (FF) with formalin-fixed paraffin-embedded (FFPE) skeletal muscle tissue of the same sample. By extrapolation of measured decay constants for nuclear DNA (λ nDNA ) and mtDNA (λ mtDNA ) we present an approach to possibly correct measurements in degraded samples in the future. To our knowledge this is the first time different degradation impact of the two

  7. qPCR-based mitochondrial DNA quantification: Influence of template DNA fragmentation on accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Christopher B., E-mail: Christopher.jackson@insel.ch [Division of Human Genetics, Departements of Pediatrics and Clinical Research, Inselspital, University of Berne, Freiburgstrasse, CH-3010 Berne (Switzerland); Gallati, Sabina, E-mail: sabina.gallati@insel.ch [Division of Human Genetics, Departements of Pediatrics and Clinical Research, Inselspital, University of Berne, Freiburgstrasse, CH-3010 Berne (Switzerland); Schaller, Andre, E-mail: andre.schaller@insel.ch [Division of Human Genetics, Departements of Pediatrics and Clinical Research, Inselspital, University of Berne, Freiburgstrasse, CH-3010 Berne (Switzerland)

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer Serial qPCR accurately determines fragmentation state of any given DNA sample. Black-Right-Pointing-Pointer Serial qPCR demonstrates different preservation of the nuclear and mitochondrial genome. Black-Right-Pointing-Pointer Serial qPCR provides a diagnostic tool to validate the integrity of bioptic material. Black-Right-Pointing-Pointer Serial qPCR excludes degradation-induced erroneous quantification. -- Abstract: Real-time PCR (qPCR) is the method of choice for quantification of mitochondrial DNA (mtDNA) by relative comparison of a nuclear to a mitochondrial locus. Quantitative abnormal mtDNA content is indicative of mitochondrial disorders and mostly confines in a tissue-specific manner. Thus handling of degradation-prone bioptic material is inevitable. We established a serial qPCR assay based on increasing amplicon size to measure degradation status of any DNA sample. Using this approach we can exclude erroneous mtDNA quantification due to degraded samples (e.g. long post-exicision time, autolytic processus, freeze-thaw cycles) and ensure abnormal DNA content measurements (e.g. depletion) in non-degraded patient material. By preparation of degraded DNA under controlled conditions using sonification and DNaseI digestion we show that erroneous quantification is due to the different preservation qualities of the nuclear and the mitochondrial genome. This disparate degradation of the two genomes results in over- or underestimation of mtDNA copy number in degraded samples. Moreover, as analysis of defined archival tissue would allow to precise the molecular pathomechanism of mitochondrial disorders presenting with abnormal mtDNA content, we compared fresh frozen (FF) with formalin-fixed paraffin-embedded (FFPE) skeletal muscle tissue of the same sample. By extrapolation of measured decay constants for nuclear DNA ({lambda}{sub nDNA}) and mtDNA ({lambda}{sub mtDNA}) we present an approach to possibly correct measurements in

  8. Mitochondrial DNA sequence variation in Finnish patients with matrilineal diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Soini Heidi K

    2012-07-01

    Full Text Available Abstract Background The genetic background of type 2 diabetes is complex involving contribution by both nuclear and mitochondrial genes. There is an excess of maternal inheritance in patients with type 2 diabetes and, furthermore, diabetes is a common symptom in patients with mutations in mitochondrial DNA (mtDNA. Polymorphisms in mtDNA have been reported to act as risk factors in several complex diseases. Findings We examined the nucleotide variation in complete mtDNA sequences of 64 Finnish patients with matrilineal diabetes. We used conformation sensitive gel electrophoresis and sequencing to detect sequence variation. We analysed the pathogenic potential of nonsynonymous variants detected in the sequences and examined the role of the m.16189 T>C variant. Controls consisted of non-diabetic subjects ascertained in the same population. The frequency of mtDNA haplogroup V was 3-fold higher in patients with diabetes. Patients harboured many nonsynonymous mtDNA substitutions that were predicted to be possibly or probably damaging. Furthermore, a novel m.13762 T>G in MTND5 leading to p.Ser476Ala and several rare mtDNA variants were found. Haplogroup H1b harbouring m.16189 T > C and m.3010 G > A was found to be more frequent in patients with diabetes than in controls. Conclusions Mildly deleterious nonsynonymous mtDNA variants and rare population-specific haplotypes constitute genetic risk factors for maternally inherited diabetes.

  9. Complete mitochondrial genome of a rhodolith, Sporolithon durum (Sporolithales, Rhodophyta).

    Science.gov (United States)

    Kim, Kyeong Mi; Yang, Eun Chan; Kim, Jeong Ha; Nelson, Wendy A; Yoon, Hwan Su

    2015-02-01

    We present the first mitochondrial genome of the nongeniculate coralline red alga, Sporolithon durum (Sporolithales). The genome consists of 45 genes, including 24 protein-coding, 2 rRNA and 19 tRNA genes in a circular molecule of 26,202 bp with overall 28.4% GC content.

  10. A complete mitochondrial genome of wheat (Triticum aestivum cv ...

    Indian Academy of Sciences (India)

    role in the development and reproduction of the plant. They occupy a specific ... for biosynthetic pathways relative to their free-living cousins. (Gray et al. 1999; Itoh ... A mitochondrial genome BAC library was constructed fol- lowing a previously ...

  11. Complete mitochondrial genome of the South Polar Skua Stercorarius maccormicki (Charadriiformes, Stercorariidae) in Antarctica.

    Science.gov (United States)

    Han, Yeong-Deok; Baek, Ye-Seul; Kim, Jeong-Hoon; Choi, Han-Gu; Kim, Sanghee

    2016-05-01

    The South Polar Skua, gull-like seabirds is the most fascinating Antarctic seabirds that lay two eggs at sites free of snow and ice and predominantly hunt pelagic fish and penguins. Blood samples of the South Polar Skua Stercorarius maccormicki was collected during the summer activity near King Sejong station in Antarctica. The complete mitochondrial DNA sequence of S. maccormicki was 16,669 bp, showing conserved genome structure and orientation found in other avian species. The control region of S. maccormicki was 93- and 80 bp shorter compared to those of Chroicocephalus saundersi and Synthliboramphus antiquus respectively. Interestingly, there is a (CAACAAACAA)6 repeat sequence in the control region. Our results of S. maccormicki mt genome including the repeat sequence, may provide useful genetic information for phylogenetic and phylogeographic histories of the southern skua complex.

  12. Performance of mitochondrial DNA mutations detecting early stage cancer

    International Nuclear Information System (INIS)

    Jakupciak, John P; Srivastava, Sudhir; Sidransky, David; O'Connell, Catherine D; Maragh, Samantha; Markowitz, Maura E; Greenberg, Alissa K; Hoque, Mohammad O; Maitra, Anirban; Barker, Peter E; Wagner, Paul D; Rom, William N

    2008-01-01

    Mutations in the mitochondrial genome (mtgenome) have been associated with cancer and many other disorders. These mutations can be point mutations or deletions, or admixtures (heteroplasmy). The detection of mtDNA mutations in body fluids using resequencing microarrays, which are more sensitive than other sequencing methods, could provide a strategy to measure mutation loads in remote anatomical sites. We determined the mtDNA mutation load in the entire mitochondrial genome of 26 individuals with different early stage cancers (lung, bladder, kidney) and 12 heavy smokers without cancer. MtDNA was sequenced from three matched specimens (blood, tumor and body fluid) from each cancer patient and two matched specimens (blood and sputum) from smokers without cancer. The inherited wildtype sequence in the blood was compared to the sequences present in the tumor and body fluid, detected using the Affymetrix Genechip ® Human Mitochondrial Resequencing Array 1.0 and supplemented by capillary sequencing for noncoding region. Using this high-throughput method, 75% of the tumors were found to contain mtDNA mutations, higher than in our previous studies, and 36% of the body fluids from these cancer patients contained mtDNA mutations. Most of the mutations detected were heteroplasmic. A statistically significantly higher heteroplasmy rate occurred in tumor specimens when compared to both body fluid of cancer patients and sputum of controls, and in patient blood compared to blood of controls. Only 2 of the 12 sputum specimens from heavy smokers without cancer (17%) contained mtDNA mutations. Although patient mutations were spread throughout the mtDNA genome in the lung, bladder and kidney series, a statistically significant elevation of tRNA and ND complex mutations was detected in tumors. Our findings indicate comprehensive mtDNA resequencing can be a high-throughput tool for detecting mutations in clinical samples with potential applications for cancer detection, but it is

  13. Characterization of a Dairy Gyr herd with respect to its mitochondrial DNA (mt DNA origin

    Directory of Open Access Journals (Sweden)

    Anibal Eugênio Vercesi Filho

    2010-01-01

    Full Text Available The Zebu breeds were introduced in Brazil mainly in the last century by imports from the Indian subcontinent. When the Zebu cattle arrived, the national herd suffered a significative change by backcrossing the national cows of taurine origin with Zebu sires. These processes created a polymorphism in the mitochondrial DNA (mtDNA in the Zebu animals with are in a major part derived from backcrossing and sharing mtDNA of taurine origin. To verify the maternal origin of cows belonging to the Dairy Gyr herd of APTA, Mococa 60 females were analyzed and 33 presented mtDNA from Bos taurus origin and 27 presented mtDNA from Bos indicus origin. None of these animals presented patterns of both mtDNA origins, indicating absence of heteroplasmy for these mitochondrial genotypes.

  14. Transcription profiles of mitochondrial genes correlate with mitochondrial DNA haplotypes in a natural population of Silene vulgaris

    Directory of Open Access Journals (Sweden)

    Olson Matthew S

    2010-01-01

    Full Text Available Abstract Background Although rapid changes in copy number and gene order are common within plant mitochondrial genomes, associated patterns of gene transcription are underinvestigated. Previous studies have shown that the gynodioecious plant species Silene vulgaris exhibits high mitochondrial diversity and occasional paternal inheritance of mitochondrial markers. Here we address whether variation in DNA molecular markers is correlated with variation in transcription of mitochondrial genes in S. vulgaris collected from natural populations. Results We analyzed RFLP variation in two mitochondrial genes, cox1 and atp1, in offspring of ten plants from a natural population of S. vulgaris in Central Europe. We also investigated transcription profiles of the atp1 and cox1 genes. Most DNA haplotypes and transcription profiles were maternally inherited; for these, transcription profiles were associated with specific mitochondrial DNA haplotypes. One individual exhibited a pattern consistent with paternal inheritance of mitochondrial DNA; this individual exhibited a transcription profile suggestive of paternal but inconsistent with maternal inheritance. We found no associations between gender and transcript profiles. Conclusions Specific transcription profiles of mitochondrial genes were associated with specific mitochondrial DNA haplotypes in a natural population of a gynodioecious species S. vulgaris. Our findings suggest the potential for a causal association between rearrangements in the plant mt genome and transcription product variation.

  15. Transcription profiling suggests that mitochondrial topoisomerase IB acts as a topological barrier and regulator of mitochondrial DNA transcription.

    Science.gov (United States)

    Dalla Rosa, Ilaria; Zhang, Hongliang; Khiati, Salim; Wu, Xiaolin; Pommier, Yves

    2017-12-08

    Mitochondrial DNA (mtDNA) is essential for cell viability because it encodes subunits of the respiratory chain complexes. Mitochondrial topoisomerase IB (TOP1MT) facilitates mtDNA replication by removing DNA topological tensions produced during mtDNA transcription, but it appears to be dispensable. To test whether cells lacking TOP1MT have aberrant mtDNA transcription, we performed mitochondrial transcriptome profiling. To that end, we designed and implemented a customized tiling array, which enabled genome-wide, strand-specific, and simultaneous detection of all mitochondrial transcripts. Our technique revealed that Top1mt KO mouse cells process the mitochondrial transcripts normally but that protein-coding mitochondrial transcripts are elevated. Moreover, we found discrete long noncoding RNAs produced by H-strand transcription and encompassing the noncoding regulatory region of mtDNA in human and murine cells and tissues. Of note, these noncoding RNAs were strongly up-regulated in the absence of TOP1MT. In contrast, 7S DNA, produced by mtDNA replication, was reduced in the Top1mt KO cells. We propose that the long noncoding RNA species in the D-loop region are generated by the extension of H-strand transcripts beyond their canonical stop site and that TOP1MT acts as a topological barrier and regulator for mtDNA transcription and D-loop formation.

  16. The complete mitochondrial genome of a gecko and the phylogeneticposition of the Middle Eastern teratoscincus keyserlingii

    Energy Technology Data Exchange (ETDEWEB)

    Macey, J. Robert; Fong, Jonathan J.; Kuehl, Jennifer V.; Shafiei,Soheila; Ananjeva, Natalia B.; Papenfuss, Theodore J.; Boore, Jeffrey L.

    2005-04-22

    Sqamate reptiles are traditionally divided into six groups: Iguania, Anguimorpha, Scincomorpha, Gekkota (these four are lizards), Serpentes (snakes), and Amphisbaenia (the so-called worm lizards). Currently there are complete mitochondrial genomes from two representatives of the Iguania (Janke et al., 2001; Kumazawa, 2004), three from the Anguimorpha (Kumazawa, 2004; Kumazawa and Endo, 2004), two from the Scincomorpha (Kumazawa and Nishida, 1999; Kumazawa, 2004), two from Serpentes (Kumazawa et al., 1998; Kumazawa, 2004) and 12 from Amphisbaenia (Macey et al., 2004). The only traditional group of Squamata from which a complete mitochondrial genome has not been sequenced is the Gekkota. Here we report the complete mitochondrial genome of Teratoscincus keyserlingii, a Middle Eastern representative of the Gekkota. The gekkonid lizard genus Teratoscincus is distributed throughout the deserts of central and southwest Asia as shown in figure 1, with five species currently recognized (Macey et al. 1997a, 1999b). Included in this figure are the positions of mountain ranges discussed in the text; see also figure 1 in Macey et al. (1999b). Two species, T. bedriagai and T. microlepis, are restricted to Southwest Asia south of the Kopet Dagh and Hindu Kush in Iran, Afghanistan, and Pakistan (Anderson, 1999). Two species are found in the deserts of western China and Mongolia, with T. przewalskii occurring in the Taklimakan and lowland Gobi deserts, and T. roborowskii restricted to the Turpan Depression. The fifth species, T. scincus, is sometimes considered to be restricted to the Caspian Basin in Kazakhstan, Kyrgyzistan, Tadjikistan, Turkmenistan and Uzbekistan. Alternatively, Teratoscincus populations in Southwest Asia, primarily on the Iranian Plateau, situated directly north of the Arabian Plate, are sometimes considered to be a subspecies of T. scincus or, otherwise, to constitute a sixth species, T. keyserlingii. Macey et al. (1999b) assessed the phylogenetic

  17. DNA repair of UV photoproducts and mutagenesis in human mitochondrial DNA

    International Nuclear Information System (INIS)

    Pascucci, B.; Dogliotti, E.; Versteegh, A.; Hoffen, A. van; Zeeland, A.A. van; Mullenders, L.H.F.

    1997-01-01

    The induction and repair of DNA photolesions and mutations in the mitochondrial (mt) DNA of human cells in culture were analysed after cell exposure to UV-C light. The level of induction of cyclobutane pyrimidine dimers (CPD) in mitochondrial and nuclear DNA was comparable, while a higher frequency of pyrimidine (6-4) pyrimidone photoproducts (6-4 PP) was detected in mitochondrial than in nuclear DNA. Besides the known defect in CPD removal, mitochondria were shown to be deficient also in the excision of 6-4 PP. The effects of repair-defective conditions for the two major UV photolesions on mutagensis was assessed by analysing the frequency and spectrum of spontaneous and UV-induced mutations by restriction site mutation (RSM) method in a restriction endonuclease site, NciI (5'CCCGG3') located within the coding sequence of the mitochondrial gene for tRNA Leu . The spontaneous mutation frequency and spectrum at the NciI site of mitochondrial DNA was very similar to the RSM background mutation frequency (approximately 10 -5 ) and type (predominantly GC > AT transitions at GL 1 ) of the NciI site). Conversely, an approximately tenfold increase over background mutation frequency was recorded after cell exposure to 20 J/m 2 . In this case, the majority of mutations were C > T transitions preferentially located on the non-transcribed DNA strand at C 1 and C 2 of the NciI site. This mutation spectrum is expected by UV mutagenesis. This is the first evidence of induction of mutations in mitochondrial DNA by treatment of human cells with a carcinogen. (author)

  18. Mitochondrial mass is inversely correlated to complete lipid oxidation in human myotubes

    DEFF Research Database (Denmark)

    Gaster, Michael

    2011-01-01

    Exercise increases while physical inactivity decrease mitochondrial content and oxidative capacity of skeletal muscles in vivo. It is unknown whether mitochondrial mass and substrate oxidation are related in non-contracting skeletal muscle. Mitochondrial mass, ATP, ADP, AMP, glucose and lipid......, basal glucose oxidation and incomplete lipid oxidation were significantly increased while complete lipid oxidation was lower. Mitochondrial mass was not correlated to glucose oxidation or incomplete lipid oxidation in human myotubes but inversely correlated to complete lipid oxidation. Thus within...... a stable energetic background, an increased mitochondrial mass in human myotubes was not positive correlated to an increased substrate oxidation as expected from skeletal muscles in vivo but surprisingly with a reduced complete lipid oxidation....

  19. Nuclear mitochondrial DNA activates replication in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Laurent Chatre

    Full Text Available The nuclear genome of eukaryotes is colonized by DNA fragments of mitochondrial origin, called NUMTs. These insertions have been associated with a variety of germ-line diseases in humans. The significance of this uptake of potentially dangerous sequences into the nuclear genome is unclear. Here we provide functional evidence that sequences of mitochondrial origin promote nuclear DNA replication in Saccharomyces cerevisiae. We show that NUMTs are rich in key autonomously replicating sequence (ARS consensus motifs, whose mutation results in the reduction or loss of DNA replication activity. Furthermore, 2D-gel analysis of the mrc1 mutant exposed to hydroxyurea shows that several NUMTs function as late chromosomal origins. We also show that NUMTs located close to or within ARS provide key sequence elements for replication. Thus NUMTs can act as independent origins, when inserted in an appropriate genomic context or affect the efficiency of pre-existing origins. These findings show that migratory mitochondrial DNAs can impact on the replication of the nuclear region they are inserted in.

  20. Adult mitochondrial DNA depletion syndrome with mild manifestations

    Directory of Open Access Journals (Sweden)

    Josef Finsterer

    2013-06-01

    Full Text Available Mitochondrial DNA depletion syndrome (MDS is usually a severe disorder of infancy or childhood, due to a reduced copy number of mtDNA molecules. MDS with only mild, non-specific clinical manifestations and onset in adulthood has not been reported. A 47-year-old Caucasian female with short stature and a history of migraine, endometriosis, Crohn’s disease, C-cell carcinoma of the thyroid gland, and a family history positive for mitochondrial disorder (2 sisters, aunt, niece, developed day-time sleepiness, exercise intolerance, and myalgias in the lower-limb muscles since age 46y. She slept 9-10 hours during the night and 2 hours after lunch daily. Clinical exam revealed sore neck muscles, bilateral ptosis, and reduced Achilles tendon reflexes exclusively. Blood tests revealed hyperlipidemia exclusively. Nerve conduction studies, needle electromyography, and cerebral and spinal magnetic resonance imaging were non-informative. Muscle biopsy revealed detached lobulated fibers with subsarcolemmal accentuation of the NADH and SDH staining. Real-time polymerase chain reaction revealed depletion of the mtDNA down to 9% of normal. MDS may be associated with a mild phenotype in adults and may not significantly progress during the first year after onset. In an adult with hypersomnia, severe tiredness, exercise intolerance, and a family history positive for mitochondrial disorder, a MDS should be considered.

  1. Mitochondrial DNA variation in brood stocks of the lake trout

    International Nuclear Information System (INIS)

    Grewe, P.M.; Hebert, P.D.N.

    1986-01-01

    Efforts are in progress to restore lake trout populations in the Great Lakes from hatchery stocks. In most cases, plantings include a variety of brood stocks that originated from different portions of the Great Lakes. Members of the various stocks can be differentially fin clipped to permit comparison of their survival success, but this does not allow assessment of their reproductive capability in the wild. Assessment of reproductive success requires the existence of genetic markers between brook stocks which will ideally persist over many generations. Efforts to identify allozyme differences between brood stocks have met with little success. The present investigation has employed an alternative technique to identify genetic markers--the restriction analysis of mitochondrial DNA. Mitochondiral DNA analysis of 7 lake trout brood stocks has revealed the existence of 10 mitochondrial clones falling into 3 major groups. The results indicate that mt-DNA markers have great potential for brood stock management. Genetic variability in the nuclear genome of each stock can be maintained by utilizing a large number of male parents, while restricting female parents to members of a single mitochondrial clone. Genetically marked fry could then be produced with only minor shifts in hatchery management

  2. Complete mitochondrial genome sequence of Urechis caupo, a representative of the phylum Echiura

    Directory of Open Access Journals (Sweden)

    Boore Jeffrey L

    2004-09-01

    Full Text Available Abstract Background Mitochondria contain small genomes that are physically separate from those of nuclei. Their comparison serves as a model system for understanding the processes of genome evolution. Although hundreds of these genome sequences have been reported, the taxonomic sampling is highly biased toward vertebrates and arthropods, with many whole phyla remaining unstudied. This is the first description of a complete mitochondrial genome sequence of a representative of the phylum Echiura, that of the fat innkeeper worm, Urechis caupo. Results This mtDNA is 15,113 nts in length and 62% A+T. It contains the 37 genes that are typical for animal mtDNAs in an arrangement somewhat similar to that of annelid worms. All genes are encoded by the same DNA strand which is rich in A and C relative to the opposite strand. Codons ending with the dinucleotide GG are more frequent than would be expected from apparent mutational biases. The largest non-coding region is only 282 nts long, is 71% A+T, and has potential for secondary structures. Conclusions Urechis caupo mtDNA shares many features with those of the few studied annelids, including the common usage of ATG start codons, unusual among animal mtDNAs, as well as gene arrangements, tRNA structures, and codon usage biases.

  3. Complete mitochondrial genome sequence of Urechis caupo, a representative of the phylum Echiura.

    Science.gov (United States)

    Boore, Jeffrey L

    2004-09-15

    Mitochondria contain small genomes that are physically separate from those of nuclei. Their comparison serves as a model system for understanding the processes of genome evolution. Although hundreds of these genome sequences have been reported, the taxonomic sampling is highly biased toward vertebrates and arthropods, with many whole phyla remaining unstudied. This is the first description of a complete mitochondrial genome sequence of a representative of the phylum Echiura, that of the fat innkeeper worm, Urechis caupo. This mtDNA is 15,113 nts in length and 62% A+T. It contains the 37 genes that are typical for animal mtDNAs in an arrangement somewhat similar to that of annelid worms. All genes are encoded by the same DNA strand which is rich in A and C relative to the opposite strand. Codons ending with the dinucleotide GG are more frequent than would be expected from apparent mutational biases. The largest non-coding region is only 282 nts long, is 71% A+T, and has potential for secondary structures. Urechis caupo mtDNA shares many features with those of the few studied annelids, including the common usage of ATG start codons, unusual among animal mtDNAs, as well as gene arrangements, tRNA structures, and codon usage biases.

  4. The Complete Maternally and Paternally Inherited Mitochondrial Genomes of a Freshwater Mussel Potamilus alatus (Bivalvia: Unionidae.

    Directory of Open Access Journals (Sweden)

    Hai B Wen

    Full Text Available Doubly uniparental inheritance (DUI of mitochondrial DNA, found only in some bivalve families and characterized by the existence of gender-associated mtDNA lineages that are inherited through males (M-type or females (F-type, is one of the very few exceptions to the general rule of strict maternal mtDNA inheritance in animals. M-type sequences are often undetected and hence still underrepresented in the GenBank, which hinders the progress of the understanding of the DUI phenomenon. We have sequenced and analyzed the complete M and F mitogenomes of a freshwater mussel, Potamilus alatus. The M-type was 493 bp longer (M = 16 560, F = 16 067 bp. Gene contents, order and the distribution of genes between L and H strands were typical for unionid mussels. Candidates for the two ORFan genes (forf and morf were found in respective mitogenomes. Both mitogenomes had a very similar A+T bias: F = 61% and M = 62.2%. The M mitogenome-specific cox2 extension (144 bp is much shorter than in other sequenced unionid mitogenomes (531-576 bp, which might be characteristic for the Potamilus genus. The overall topology of the phylogenetic tree is in very good agreement with the currently accepted phylogenetic relationships within the Unionidae: both studied sequences were placed within the Ambleminae subfamily clusters in the corresponding M and F clades.

  5. Sequencing and characterization of the complete mitochondrial genome of Japanese Swellshark (Cephalloscyllium umbratile).

    Science.gov (United States)

    Zhu, Ke-Cheng; Liang, Yin-Yin; Wu, Na; Guo, Hua-Yang; Zhang, Nan; Jiang, Shi-Gui; Zhang, Dian-Chang

    2017-11-10

    To further comprehend the genome features of Cephalloscyllium umbratile (Carcharhiniformes), an endangered species, the complete mitochondrial DNA (mtDNA) was firstly sequenced and annotated. The full-length mtDNA of C. umbratile was 16,697 bp and contained ribosomal RNA (rRNA) genes, 13 protein-coding genes (PCGs), 23 transfer RNA (tRNA) genes, and a major non-coding control region. Each PCG was initiated by an authoritative ATN codon, except for COX1 initiated by a GTG codon. Seven of 13 PCGs had a typical TAA termination codon, while others terminated with a single T or TA. Moreover, the relative synonymous codon usage of the 13 PCGs was consistent with that of other published Carcharhiniformes. All tRNA genes had typical clover-leaf secondary structures, except for tRNA-Ser (GCT), which lacked the dihydrouridine 'DHU' arm. Furthermore, the analysis of the average Ka/Ks in the 13 PCGs of three Carcharhiniformes species indicated a strong purifying selection within this group. In addition, phylogenetic analysis revealed that C. umbratile was closely related to Glyphis glyphis and Glyphis garricki. Our data supply a useful resource for further studies on genetic diversity and population structure of C. umbratile.

  6. Mitochondrial DNA copy number threshold in mtDNA depletion myopathy.

    Science.gov (United States)

    Durham, S E; Bonilla, E; Samuels, D C; DiMauro, S; Chinnery, P F

    2005-08-09

    The authors measured the absolute amount of mitochondrial DNA (mtDNA) within single muscle fibers from two patients with thymidine kinase 2 (TK2) deficiency and two healthy controls. TK2 deficient fibers containing more than 0.01 mtDNA/microm3 had residual cytochrome c oxidase (COX) activity. This defines the minimum amount of wild-type mtDNA molecules required to maintain COX activity in skeletal muscle and provides an explanation for the mosaic histochemical pattern seen in patients with mtDNA depletion syndrome.

  7. Characterization of the complete mitochondrial genome of the Rhinolophus sinicus sinicus (Chiroptera: Rhinolophidae) from Central China.

    Science.gov (United States)

    Xie, Lifen; Sun, Keping; Feng, Jiang

    2016-07-01

    We present a complete mitochondrial genome sequence of Rhinolophus sinicus sinicus from Central China and provide its annotation, as well as showed the phylogenetic relationship and mitogenomic variation with other published mitochondrial genomes of congeneric bat species. Our results revealed a relatively high mitogenomic variation between two R. s. sinucus from Central and East China, which is similar to interspecific divergence level.

  8. Complete mitochondrial genome of the mottled skate: Raja pulchra (Rajiformes, Rajidae).

    Science.gov (United States)

    Jeong, Dageum; Kim, Sung; Kim, Choong-Gon; Myoung, Jung-Goo; Lee, Youn-Ho

    2016-05-01

    The complete sequence of mitochondrial DNA of a mottled skate, Raja pulchra was sequenced as being circular molecules of 16,907 bp including 2 rRNA, 22 tRNA, 13 protein-coding genes (PCGs), and an AT-rich control region. The organization of the PCGs is the same as those found in other Rajidae species. The nucleotide of L-strand is composed of 29.8% A, 28.0% C, 27.9% T, and 14.3% G with a bias toward A + T slightly. Twelve of 13 PCGs are initiated by the ATG codon while COX1 starts with GTG. Only ND4 harbors the incomplete termination codon, TA. All tRNA genes have a typical clover-leaf structure of mitochondrial tRNA with the exception of [Formula: see text] which has a reduced DHU arm. This mitogenome will provide essential information for better phylogenetic resolution and precision of the family Rajidae and the genus Raja as well as for establishment of a fish stock recovery plan of the species.

  9. Complete mitochondrial genome of the Kwangtung skate: Dipturus kwangtungensis (Rajiformes, Rajidae).

    Science.gov (United States)

    Jeong, Dageum; Kim, Sung; Kim, Choong-Gon; Lee, Youn-Ho

    2015-01-01

    The complete sequence of mitochondrial DNA of a Kwangtung skate, Dipturus kwangtungensis, was determined as being circular molecules of 16,912 bp including 2 rRNA, 22 tRNA, 13 protein coding genes (PCGs) and a control region. The arrangement of the PCGs is the same as that found in other Rajidae species. The nucleotide of L-strand which encodes most of the proteins is composed of 30.2% A, 27.4% C, 28.2% T and 14.2% G with a bias toward A+T slightly. Twelve of 13 PCGs are initiated by the ATG codon while COX1 starts with GTG. Only ND4 harbors the incomplete termination codon, TA. All tRNA genes have a typical clover-leaf structure of mitochondrial tRNA with the exception of tRNA(Ser)AGY, which has a reduced DHU arm. This mitogenome is the first report for a species of the genus Dipturus, which will become an important source of information on the phylogenetic relationship and the evolution of the genus Dipturus within the family Rajidae.

  10. Complete sequences of the highly rearranged molluscan mitochondrial genomes of the scaphopod graptacme eborea and the bivalve mytilus edulis

    Energy Technology Data Exchange (ETDEWEB)

    Boore, Jeffrey L.; Medina, Monica; Rosenberg, Lewis A.

    2004-01-31

    We have determined the complete sequence of the mitochondrial genome of the scaphopod mollusk Graptacme eborea (Conrad, 1846) (14,492 nts) and completed the sequence of the mitochondrial genome of the bivalve mollusk Mytilus edulis Linnaeus, 1758 (16,740 nts). (The name Graptacme eborea is a revision of the species formerly known as Dentalium eboreum.) G. eborea mtDNA contains the 37 genes that are typically found and has the genes divided about evenly between the two strands, but M. edulis contains an extra trnM and is missing atp8, and has all genes on the same strand. Each has a highly rearranged gene order relative to each other and to all other studied mtDNAs. G. eborea mtDNA has almost no strand skew, but the coding strand of M. edulis mtDNA is very rich in G and T. This is reflected in differential codon usage patterns and even in amino acid compositions. G. eborea mtDNA has fewer non-coding nucleotides than any other mtDNA studied to date, with the largest non-coding region being only 24 nt long. Phylogenetic analysis using 2,420 aligned amino acid positions of concatenated proteins weakly supports an association of the scaphopod with gastropods to the exclusion of Bivalvia, Cephalopoda, and Polyplacophora, but is generally unable to convincingly resolve the relationships among major groups of the Lophotrochozoa, in contrast to the good resolution seen for several other major metazoan groups.

  11. Primer retention owing to the absence of RNase H1 is catastrophic for mitochondrial DNA replication.

    Science.gov (United States)

    Holmes, J Bradley; Akman, Gokhan; Wood, Stuart R; Sakhuja, Kiran; Cerritelli, Susana M; Moss, Chloe; Bowmaker, Mark R; Jacobs, Howard T; Crouch, Robert J; Holt, Ian J

    2015-07-28

    Encoding ribonuclease H1 (RNase H1) degrades RNA hybridized to DNA, and its function is essential for mitochondrial DNA maintenance in the developing mouse. Here we define the role of RNase H1 in mitochondrial DNA replication. Analysis of replicating mitochondrial DNA in embryonic fibroblasts lacking RNase H1 reveals retention of three primers in the major noncoding region (NCR) and one at the prominent lagging-strand initiation site termed Ori-L. Primer retention does not lead immediately to depletion, as the persistent RNA is fully incorporated in mitochondrial DNA. However, the retained primers present an obstacle to the mitochondrial DNA polymerase γ in subsequent rounds of replication and lead to the catastrophic generation of a double-strand break at the origin when the resulting gapped molecules are copied. Hence, the essential role of RNase H1 in mitochondrial DNA replication is the removal of primers at the origin of replication.

  12. Mitochondrial DNA polymorphisms associated with longevity in a Finnish population.

    Science.gov (United States)

    Niemi, Anna-Kaisa; Hervonen, Antti; Hurme, Mikko; Karhunen, Pekka J; Jylhä, Marja; Majamaa, Kari

    2003-01-01

    Sequence variation in mitochondrial DNA (mtDNA) may cause slight differences both in the functioning of the respiratory chain and in free radical production, and an association between certain mtDNA haplogroups and longevity has been suggested. In order to determine further the role of mtDNA in longevity, we studied the frequencies of mtDNA haplogroups and haplogroup clusters among elderly subjects and controls in a Finnish population. Samples were obtained from 225 persons aged 90-91 years (Vitality 90+) and from 400 middle-aged controls and 257 infants. MtDNA haplogroups were determined by restriction fragment length polymorphism. The haplogroup frequencies of the Vitality 90+ group differed from both those of the middle-aged controls ( P=0.01) and the infants ( P=0.00005), haplogroup H being less frequent than among the middle-aged subjects ( P=0.001) and infants ( P=0.00001), whereas haplogroups U and J were more frequent. Haplogroup clusters also differed between Vitality 90+ and both the middle-aged subjects ( P=0.002) and infants ( P=0.00001), the frequency of haplogroup cluster HV being lower in the former and that of UK and WIX being higher. These data suggest an association between certain mtDNA haplogroups or haplogroup clusters and longevity. Furthermore, our data appear to favour the presence of advantageous polymorphisms and support a role for mitochondria and mtDNA in the degenerative processes involved in ageing.

  13. Introgression of mitochondrial DNA among Myodes voles: consequences for energetics?

    Directory of Open Access Journals (Sweden)

    Boratyński Zbyszek

    2011-12-01

    Full Text Available Abstract Background Introgression of mitochondrial DNA (mtDNA is among the most frequently described cases of reticulate evolution. The tendency of mtDNA to cross interspecific barriers is somewhat counter-intuitive considering the key function of enzymes that it encodes in the oxidative-phosphorylation process, which could give rise to hybrid dysfunction. How mtDNA reticulation affects the evolution of metabolic functions is, however, uncertain. Here we investigated how morpho-physiological traits vary in natural populations of a common rodent (the bank vole, Myodes glareolus and whether this variation could be associated with mtDNA introgression. First, we confirmed that M. glareolus harbour mtDNA introgressed from M. rutilus by analyzing mtDNA (cytochrome b, 954 bp and nuclear DNA (four markers; 2333 bp in total sequence variation and reconstructing loci phylogenies among six natural populations in Finland. We then studied geographic variation in body size and basal metabolic rate (BMR among the populations of M. glareolus and tested its relationship with mtDNA type. Results Myodes glareolus and its arctic neighbour, M. rutilus, are reciprocally monophyletic at the analyzed nuclear DNA loci. In contrast, the two northernmost populations of M. glareolus have a fixed mitotype that is shared with M. rutilus, likely due to introgressive hybridization. The analyses of phenotypic traits revealed that the body mass and whole-body, but not mass corrected, BMR are significantly reduced in M. glareolus females from northern Finland that also have the introgressed mitotype. Restricting the analysis to the single population where the mitotypes coexist, the association of mtDNA type with whole-body BMR remained but those with mass corrected BMR and body mass did not. Mitochondrial sequence variation in the introgressed haplotypes is compatible with demographic growth of the populations, but may also be a result of positive selection. Conclusion Our

  14. Plastome Sequencing of Ten Nonmodel Crop Species Uncovers a Large Insertion of Mitochondrial DNA in Cashew.

    Science.gov (United States)

    Rabah, Samar O; Lee, Chaehee; Hajrah, Nahid H; Makki, Rania M; Alharby, Hesham F; Alhebshi, Alawiah M; Sabir, Jamal S M; Jansen, Robert K; Ruhlman, Tracey A

    2017-11-01

    In plant evolution, intracellular gene transfer (IGT) is a prevalent, ongoing process. While nuclear and mitochondrial genomes are known to integrate foreign DNA via IGT and horizontal gene transfer (HGT), plastid genomes (plastomes) have resisted foreign DNA incorporation and only recently has IGT been uncovered in the plastomes of a few land plants. In this study, we completed plastome sequences for l0 crop species and describe a number of structural features including variation in gene and intron content, inversions, and expansion and contraction of the inverted repeat (IR). We identified a putative in cinnamon ( J. Presl) and other sequenced Lauraceae and an apparent functional transfer of to the nucleus of quinoa ( Willd.). In the orchard tree cashew ( L.), we report the insertion of an ∼6.7-kb fragment of mitochondrial DNA into the plastome IR. BLASTn analyses returned high identity hits to mitogenome sequences including an intact open reading frame. Using three plastome markers for five species of , we generated a phylogeny to investigate the distribution and timing of the insertion. Four species share the insertion, suggesting that this event occurred <20 million yr ago in a single clade in the genus. Our study extends the observation of mitochondrial to plastome IGT to include long-lived tree species. While previous studies have suggested possible mechanisms facilitating IGT to the plastome, more examples of this phenomenon, along with more complete mitogenome sequences, will be required before a common, or variable, mechanism can be elucidated. Copyright © 2017 Crop Science Society of America.

  15. Two potential Petunia hybrida mitochondrial DNA replication origins show structural and in vitro functional homology with the animal mitochondrial DNA heavy and light strand replication origins

    NARCIS (Netherlands)

    Haas, Jan M. de; Hille, Jacques; Kors, Frank; Meer, Bert van der; Kool, Ad J.; Folkerts, Otto; Nijkamp, H. John J.

    1991-01-01

    Four Petunia hybrida mitochondrial (mt) DNA fragments have been isolated, sequenced, localized on the physical map and analyzed for their ability to initiate specific DNA synthesis. When all four mtDNA fragments were tested as templates in an in vitro DNA synthesizing lysate system, developed from

  16. Mitochondrial nucleoid clusters protect newly synthesized mtDNA during Doxorubicin- and Ethidium Bromide-induced mitochondrial stress

    Energy Technology Data Exchange (ETDEWEB)

    Alán, Lukáš, E-mail: lukas.alan@fgu.cas.cz; Špaček, Tomáš; Pajuelo Reguera, David; Jabůrek, Martin; Ježek, Petr

    2016-07-01

    Mitochondrial DNA (mtDNA) is compacted in ribonucleoprotein complexes called nucleoids, which can divide or move within the mitochondrial network. Mitochondrial nucleoids are able to aggregate into clusters upon reaction with intercalators such as the mtDNA depletion agent Ethidium Bromide (EB) or anticancer drug Doxorobicin (DXR). However, the exact mechanism of nucleoid clusters formation remains unknown. Resolving these processes may help to elucidate the mechanisms of DXR-induced cardiotoxicity. Therefore, we addressed the role of two key nucleoid proteins; mitochondrial transcription factor A (TFAM) and mitochondrial single-stranded binding protein (mtSSB); in the formation of mitochondrial nucleoid clusters during the action of intercalators. We found that both intercalators cause numerous aberrations due to perturbing their native status. By blocking mtDNA replication, both agents also prevented mtDNA association with TFAM, consequently causing nucleoid aggregation into large nucleoid clusters enriched with TFAM, co-existing with the normal nucleoid population. In the later stages of intercalation (> 48 h), TFAM levels were reduced to 25%. In contrast, mtSSB was released from mtDNA and freely distributed within the mitochondrial network. Nucleoid clusters mostly contained nucleoids with newly replicated mtDNA, however the nucleoid population which was not in replication mode remained outside the clusters. Moreover, the nucleoid clusters were enriched with p53, an anti-oncogenic gatekeeper. We suggest that mitochondrial nucleoid clustering is a mechanism for protecting nucleoids with newly replicated DNA against intercalators mediating genotoxic stress. These results provide new insight into the common mitochondrial response to mtDNA stress and can be implied also on DXR-induced mitochondrial cytotoxicity. - Highlights: • The mechanism for mitochondrial nucleoid clustering is proposed. • DNA intercalators (Doxorubicin or Ethidium Bromide) prevent TFAM

  17. Cellular aging of mitochondrial DNA-depleted cells

    International Nuclear Information System (INIS)

    Park, Sun Young; Choi, Bongkun; Cheon, Hwanju; Pak, Youngmi Kim; Kulawiec, Mariola; Singh, Keshav K.; Lee, Myung-Shik

    2004-01-01

    We have reported that mitochondrial DNA-depleted ρ 0 cells are resistant to cell death. Because aged cells have frequent mitochondrial DNA mutations, the resistance of ρ 0 cells against cell death might be related to the apoptosis resistance of aged cells and frequent development of cancers in aged individuals. We studied if ρ 0 cells have features simulating aged cells. SK-Hep1 hepatoma ρ 0 cells showed typical morphology associated with aging such as increased size and elongated appearance. They had increased senescence-associated β-Gal activity, lipofuscin pigment, and plasminogen activator inhibitor-1 expression. Consistent with their decreased proliferation, the expression of mitotic cyclins was decreased and that of cdk inhibitors was increased. Rb hypophosphorylation and decreased telomerase activity were also noted. Features simulating aged cells were also observed in MDA-MB-435 ρ 0 cells. These results support the mitochondrial theory of aging, and suggest that ρ 0 cells could serve as an in vitro model for aged cells

  18. Mitochondrial DNA phylogeography of least cisco Coregonus sardinella in Alaska.

    Science.gov (United States)

    Padula, V M; Causey, D; López, J A

    2017-03-01

    This study presents the first detailed analysis of the mitochondrial DNA diversity of least cisco Coregonus sardinella in Alaska using a 678 bp segment of the control region (D-loop) of the mitochondrial genome. Findings suggest that the history of C. sardinella in Alaska differs from that of other species of Coregonus present in the state and surrounding regions. The examined populations of C. sardinella are genetically diverse across Alaska. Sixty-eight distinct mitochondrial haplotypes were identified among 305 individuals sampled from nine locations. The haplotype minimum spanning network and phylogeny showed a modest level of geographic segregation among haplotypes, suggesting high levels of on-going or recent connectivity among distant populations. Observed Φ ST values and the results of homogeneity and AMOVAs indicate incipient genetic differentiation between aggregations in three broad regional groups. Sites north of the Brooks Range formed one group, sites in the Yukon and Selawik Rivers formed a second group and sites south of the Yukon drainage formed the third group. Overall, the sequence data showed that a large proportion of mtDNA genetic variation in C. sardinella is shared across Alaska, but this variation is not homogeneously distributed across all regions and for all haplotype groups. © 2017 The Fisheries Society of the British Isles.

  19. Discovery of cyanophage genomes which contain mitochondrial DNA polymerase.

    Science.gov (United States)

    Chan, Yi-Wah; Mohr, Remus; Millard, Andrew D; Holmes, Antony B; Larkum, Anthony W; Whitworth, Anna L; Mann, Nicholas H; Scanlan, David J; Hess, Wolfgang R; Clokie, Martha R J

    2011-08-01

    DNA polymerase γ is a family A DNA polymerase responsible for the replication of mitochondrial DNA in eukaryotes. The origins of DNA polymerase γ have remained elusive because it is not present in any known bacterium, though it has been hypothesized that mitochondria may have inherited the enzyme by phage-mediated nonorthologous displacement. Here, we present an analysis of two full-length homologues of this gene, which were found in the genomes of two bacteriophages, which infect the chlorophyll-d containing cyanobacterium Acaryochloris marina. Phylogenetic analyses of these phage DNA polymerase γ proteins show that they branch deeply within the DNA polymerase γ clade and therefore share a common origin with their eukaryotic homologues. We also found homologues of these phage polymerases in the environmental Community Cyberinfrastructure for Advanced Microbial Ecology Research and Analysis (CAMERA) database, which fell in the same clade. An analysis of the CAMERA assemblies containing the environmental homologues together with the filter fraction metadata indicated some of these assemblies may be of bacterial origin. We also show that the phage-encoded DNA polymerase γ is highly transcribed as the phage genomes are replicated. These findings provide data that may assist in reconstructing the evolution of mitochondria.

  20. Forensics and mitochondrial DNA: applications, debates, and foundations.

    Science.gov (United States)

    Budowle, Bruce; Allard, Marc W; Wilson, Mark R; Chakraborty, Ranajit

    2003-01-01

    Debate on the validity and reliability of scientific methods often arises in the courtroom. When the government (i.e., the prosecution) is the proponent of evidence, the defense is obliged to challenge its admissibility. Regardless, those who seek to use DNA typing methodologies to analyze forensic biological evidence have a responsibility to understand the technology and its applications so a proper foundation(s) for its use can be laid. Mitochondrial DNA (mtDNA), an extranuclear genome, has certain features that make it desirable for forensics, namely, high copy number, lack of recombination, and matrilineal inheritance. mtDNA typing has become routine in forensic biology and is used to analyze old bones, teeth, hair shafts, and other biological samples where nuclear DNA content is low. To evaluate results obtained by sequencing the two hypervariable regions of the control region of the human mtDNA genome, one must consider the genetically related issues of nomenclature, reference population databases, heteroplasmy, paternal leakage, recombination, and, of course, interpretation of results. We describe the approaches, the impact some issues may have on interpretation of mtDNA analyses, and some issues raised in the courtroom.

  1. Exploring the mitochondrial DNA variability of the Amazonian Yanomami.

    Science.gov (United States)

    Varano, Sara; Scorrano, Gabriele; Martínez-Labarga, Cristina; Finocchio, Andrea; Rapone, Cesare; Berti, Andrea; Rickards, Olga

    2016-11-01

    The aim of this study was to explore the mitochondrial variability in the Yanomami population to reconstruct its demographic history and explore its genetic composition in relation to its cultural and linguistic features. A total of 174 human head hair shafts -collected in 1958- belonging to individuals from a Yanomami group living in Santa Isabel, Brazil, were analyzed. Automated extraction of the hairs was performed, and several methods were applied to optimize the analysis of the degraded DNA. The mtDNA hypervariable segments I-II, along with the 9-bp COII-tRNA Lys deletion, were investigated. Using published data from the Yanomami and other Amazonian populations, several statistical analyses were carried out to explore the genetic variability within the study population. Ninety eight percent of the mitochondrial DNA (mtDNA) sequences analyzed belonged to Native American haplogroups, while 2% belonged to African haplogroups. Compared with the Yanomami groups previously studied, the Santa Isabel sample seemed more genetically similar to other Amazonian populations. Among the Yanomami samples studied to date, the Santa Isabel Yanomami show a higher genetic heterogeneity. This could be due to gene flow with non-Yanomami populations, as well as to the introduction of new mitochondrial haplotypes by gold miners. In both cases, the geographic location of Santa Isabel might have made this Yanomami village less isolated than the others, suggesting that the Rio Negro played a central role in increasing its genetic variability. On the whole, the Yanomami were quite genetically diversified, probably mirroring their great linguistic heterogeneity. Am. J. Hum. Biol. 28:846-856, 2016. © 2016Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Continued colonization of the human genome by mitochondrial DNA.

    Directory of Open Access Journals (Sweden)

    Miria Ricchetti

    2004-09-01

    Full Text Available Integration of mitochondrial DNA fragments into nuclear chromosomes (giving rise to nuclear DNA sequences of mitochondrial origin, or NUMTs is an ongoing process that shapes nuclear genomes. In yeast this process depends on double-strand-break repair. Since NUMTs lack amplification and specific integration mechanisms, they represent the prototype of exogenous insertions in the nucleus. From sequence analysis of the genome of Homo sapiens, followed by sampling humans from different ethnic backgrounds, and chimpanzees, we have identified 27 NUMTs that are specific to humans and must have colonized human chromosomes in the last 4-6 million years. Thus, we measured the fixation rate of NUMTs in the human genome. Six such NUMTs show insertion polymorphism and provide a useful set of DNA markers for human population genetics. We also found that during recent human evolution, Chromosomes 18 and Y have been more susceptible to colonization by NUMTs. Surprisingly, 23 out of 27 human-specific NUMTs are inserted in known or predicted genes, mainly in introns. Some individuals carry a NUMT insertion in a tumor-suppressor gene and in a putative angiogenesis inhibitor. Therefore in humans, but not in yeast, NUMT integrations preferentially target coding or regulatory sequences. This is indeed the case for novel insertions associated with human diseases and those driven by environmental insults. We thus propose a mutagenic phenomenon that may be responsible for a variety of genetic diseases in humans and suggest that genetic or environmental factors that increase the frequency of chromosome breaks provide the impetus for the continued colonization of the human genome by mitochondrial DNA.

  3. Mitochondrial and Nuclear DNA in Patients with Severe Polytrauma

    Directory of Open Access Journals (Sweden)

    M. Sh Khubutia

    2013-01-01

    Full Text Available The components of mitochondria from the cells damaged by injury are a key component for the development of systemic inflammatory response syndrome (SIRS under aseptic conditions. At the same time, there is a significant increase in the plasma level of mitochondrial DNA (mtDNA, which may be a prognostic marker for infectious complications in patients with severe polytrauma. Objective: to study the time course of changes in the serum levels of mtDNA and nuclear DNA (nDNA in healthy individuals and patients with polytrauma and to reveal its possible association with the development of infectious pulmonary complications and with mortality. Subjects and methods. Seven healthy volunteers and 25 polytrauma with polytrauma of a mean injury severity score (ISS of 40.2±9.2. Sixteen (64% patients developed purulent tracheobronchitis and pneumonia; 5 (20% patients died. The amount of mtDNA and nDNA was determined within the first at 12 and 24 hours, then on days 3 and 5—7 after injury by the authors’ modified procedure using as the exogenous control of a circular DNA molecule. The content of mtDNA and nDNA was expressed as absolute values, by taking the arithmetic mean values as 100% for the volunteers. Results. There was a more than 2.5-fold increase in mtDNA levels in dead patients as compared to survivors (p<0.05; the differences in nDMA levels were insignificant (p=0.1. Within the first 12 hours, the mean mtDNA level in patients with pneumonia was 34 times greater than the reference values and continued to rise in the following 12 hours whereas in those without pneumonia, it was only 17 times higher with its further decrease in the comparable time periods. In the first 12 hours, nDNA was increased in both groups, but 24 hours after injury it was 2555 times more than the reference value only in patients with pneumonia whereas it was decreased 3-fold in those without this condition. Conclusion. This paper is the first to describe the time course of

  4. Complete Sequence of the mitochondrial genome of the tapeworm Hymenolepis diminuta: Gene arrangements indicate that platyhelminths are eutrochozoans

    Energy Technology Data Exchange (ETDEWEB)

    von Nickisch-Rosenegk, Markus; Brown, Wesley M.; Boore, Jeffrey L.

    2001-01-01

    Using ''long-PCR'' we have amplified in overlapping fragments the complete mitochondrial genome of the tapeworm Hymenolepis diminuta (Platyhelminthes: Cestoda) and determined its 13,900 nucleotide sequence. The gene content is the same as that typically found for animal mitochondrial DNA (mtDNA) except that atp8 appears to be lacking, a condition found previously for several other animals. Despite the small size of this mtDNA, there are two large non-coding regions, one of which contains 13 repeats of a 31 nucleotide sequence and a potential stem-loop structure of 25 base pairs with an 11-member loop. Large potential secondary structures are identified also for the non-coding regions of two other cestode mtDNAs. Comparison of the mitochondrial gene arrangement of H. diminuta with those previously published supports a phylogenetic position of flatworms as members of the Eutrochozoa, rather than being basal to either a clade of protostomes or a clade of coelomates.

  5. Mitochondrial DNA Depletion Syndrome is Expressed in Amniotic Fluid Cell Cultures

    OpenAIRE

    Blake, Julian C.; Taanman, Jan-Willem; Morris, Andrew M. M.; Gray, R. George F.; Cooper, J. Mark; McKiernan, Patrick J.; Leonard, James V.; Schapira, Anthony H. V.

    1999-01-01

    Mitochondrial DNA depletion syndrome is an autosomal inherited disease associated with grossly reduced cellular levels of mitochondrial DNA in infancy. Most patients are born after a full and uncomplicated pregnancy, are normal at birth, but develop symptoms in the early neonatal period. These observations have led to the suggestion that the patients have a defect affecting the control of mitochondrial DNA copy number after birth. Using immunocytochemical techniques, we demonstrated that the ...

  6. Historically low mitochondrial DNA diversity in koalas (Phascolarctos cinereus

    Directory of Open Access Journals (Sweden)

    Tsangaras Kyriakos

    2012-10-01

    Full Text Available Abstract Background The koala (Phascolarctos cinereus is an arboreal marsupial that was historically widespread across eastern Australia until the end of the 19th century when it suffered a steep population decline. Hunting for the fur trade, habitat conversion, and disease contributed to a precipitous reduction in koala population size during the late 1800s and early 1900s. To examine the effects of these reductions in population size on koala genetic diversity, we sequenced part of the hypervariable region of mitochondrial DNA (mtDNA in koala museum specimens collected in the 19th and 20th centuries, hypothesizing that the historical samples would exhibit greater genetic diversity. Results The mtDNA haplotypes present in historical museum samples were identical to haplotypes found in modern koala populations, and no novel haplotypes were detected. Rarefaction analyses suggested that the mtDNA genetic diversity present in the museum samples was similar to that of modern koalas. Conclusions Low mtDNA diversity may have been present in koala populations prior to recent population declines. When considering management strategies, low genetic diversity of the mtDNA hypervariable region may not indicate recent inbreeding or founder events but may reflect an older historical pattern for koalas.

  7. Historically low mitochondrial DNA diversity in koalas (Phascolarctos cinereus).

    Science.gov (United States)

    Tsangaras, Kyriakos; Ávila-Arcos, María C; Ishida, Yasuko; Helgen, Kristofer M; Roca, Alfred L; Greenwood, Alex D

    2012-10-24

    The koala (Phascolarctos cinereus) is an arboreal marsupial that was historically widespread across eastern Australia until the end of the 19th century when it suffered a steep population decline. Hunting for the fur trade, habitat conversion, and disease contributed to a precipitous reduction in koala population size during the late 1800s and early 1900s. To examine the effects of these reductions in population size on koala genetic diversity, we sequenced part of the hypervariable region of mitochondrial DNA (mtDNA) in koala museum specimens collected in the 19th and 20th centuries, hypothesizing that the historical samples would exhibit greater genetic diversity. The mtDNA haplotypes present in historical museum samples were identical to haplotypes found in modern koala populations, and no novel haplotypes were detected. Rarefaction analyses suggested that the mtDNA genetic diversity present in the museum samples was similar to that of modern koalas. Low mtDNA diversity may have been present in koala populations prior to recent population declines. When considering management strategies, low genetic diversity of the mtDNA hypervariable region may not indicate recent inbreeding or founder events but may reflect an older historical pattern for koalas.

  8. Development of a Model for the Teaching of Mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    A.P.S. Souza

    2010-05-01

    Full Text Available The Cellular Biology and Molecular Biology are fields of Science that use very abstract concepts, because they look into microscopic and molecular aspects of the nature. The process of teaching/learning of those disciplines requires didactic material, as an alternative approach for the students, to increase the chances of understanding these issues and to become an important tool in the synthesis of this knowledge. One of the methods that can be employed is the didactic models based on multimedia, because they allow an easy and fun interaction with these subjects. On this work was created a new educational model that represents the human mitochondrial DNA molecule, mtDNA, in its circular form, using the softwares Excel 2007 and PowerPoint 2007. The model was constructed in hypertext format, which allowed a quick and interactive access to the information contained in the genes found in the L and the H strands of mtDNA, and its function in the mitochondrial processes, like themechanism of energy production that occurs inside of the mitochondria by the coupling of electron transfer and ATP synthesis or still others uses like forensic identification.

  9. The Complete Mitochondrial Genome of the Foodborne Parasitic Pathogen Cyclospora cayetanensis.

    Directory of Open Access Journals (Sweden)

    Hediye Nese Cinar

    Full Text Available Cyclospora cayetanensis is a human-specific coccidian parasite responsible for several food and water-related outbreaks around the world, including the most recent ones involving over 900 persons in 2013 and 2014 outbreaks in the USA. Multicopy organellar DNA such as mitochondrion genomes have been particularly informative for detection and genetic traceback analysis in other parasites. We sequenced the C. cayetanensis genomic DNA obtained from stool samples from patients infected with Cyclospora in Nepal using the Illumina MiSeq platform. By bioinformatically filtering out the metagenomic reads of non-coccidian origin sequences and concentrating the reads by targeted alignment, we were able to obtain contigs containing Eimeria-like mitochondrial, apicoplastic and some chromosomal genomic fragments. A mitochondrial genomic sequence was assembled and confirmed by cloning and sequencing targeted PCR products amplified from Cyclospora DNA using primers based on our draft assembly sequence. The results show that the C. cayetanensis mitochondrion genome is 6274 bp in length, with 33% GC content, and likely exists in concatemeric arrays as in Eimeria mitochondrial genomes. Phylogenetic analysis of the C. cayetanensis mitochondrial genome places this organism in a tight cluster with Eimeria species. The mitochondrial genome of C. cayetanensis contains three protein coding genes, cytochrome (cytb, cytochrome C oxidase subunit 1 (cox1, and cytochrome C oxidase subunit 3 (cox3, in addition to 14 large subunit (LSU and nine small subunit (SSU fragmented rRNA genes.

  10. Characterization of the complete mitochondrial genomes of Nematodirus oiratianus and Nematodirus spathiger of small ruminants

    OpenAIRE

    Zhao, Guang-Hui; Jia, Yan-Qing; Cheng, Wen-Yu; Zhao, Wen; Bian, Qing-Qing; Liu, Guo-Hua

    2014-01-01

    Background Nematodirus spp. are among the most common nematodes of ruminants worldwide. N. oiratianus and N. spathiger are distributed worldwide as highly prevalent gastrointestinal nematodes, which cause emerging health problems and economic losses. Accurate identification of Nematodirus species is essential to develop effective control strategies for Nematodirus infection in ruminants. Mitochondrial DNA (mtDNA) could provide powerful genetic markers for identifying these closely related spe...

  11. Additional mitochondrial DNA influences the interactions between the nuclear and mitochondrial genomes in a bovine embryo model of nuclear transfer.

    Science.gov (United States)

    Srirattana, Kanokwan; St John, Justin C

    2018-05-08

    We generated cattle embryos using mitochondrial supplementation and somatic cell nuclear transfer (SCNT), named miNT, to determine how additional mitochondrial DNA (mtDNA) modulates the nuclear genome. To eliminate any confounding effects from somatic cell mtDNA in intraspecies SCNT, donor cell mtDNA was depleted prior to embryo production. Additional oocyte mtDNA did not affect embryo development rates but increased mtDNA copy number in blastocyst stage embryos. Moreover, miNT-derived blastocysts had different gene expression profiles when compared with SCNT-derived blastocysts. Additional mtDNA increased expression levels of genes involved in oxidative phosphorylation, cell cycle and DNA repair. Supplementing the embryo culture media with a histone deacetylase inhibitor, Trichostatin A (TSA), had no beneficial effects on the development of miNT-derived embryos, unlike SCNT-derived embryos. When compared with SCNT-derived blastocysts cultured in the presence of TSA, additional mtDNA alone had beneficial effects as the activity of glycolysis may increase and embryonic cell death may decrease. However, these beneficial effects were not found with additional mtDNA and TSA together, suggesting that additional mtDNA alone enhances reprogramming. In conclusion, additional mtDNA increased mtDNA copy number and expression levels of genes involved in energy production and embryo development in blastocyst stage embryos emphasising the importance of nuclear-mitochondrial interactions.

  12. The complete mitochondrial genome of the spinner shark Carcharhinus brevipinna.

    Science.gov (United States)

    Chen, Xiao; Xiang, Dan; Peng, Xin; Ai, Weiming; Chen, Hao

    2016-05-01

    The mitochondrial genome of the spinner shark (Carcharhinus brevipinna) was determined in this study. It was 16,706 bp in length with the typical genomic organization and gene order as most vertebrates. Whole nucleotide base composition was 31.3% A, 25.3% C, 13.2% G and 30.1% T. Among the protein-coding genes, there are three overlapping reading-frames on the same strand, while one of it on the opposite strand. Two start codons (ATG and GTG) and three stop codons (AGG, TAG and TAA/T) were used in 13 protein-coding genes. The 22 tRNA ranged from 67 (tRNA-Cys and tRNA-Ser2) to 75 bp (tRNA-Leu1) in length. Only the tRNA-Ser2 could not fold into the typical clover-leaf structure, which lost the dihydrouridine (DHU) arm and replaced by a simple loop. The control region was 1064 bp in length and showed a higher AT content (66.8%) than the average value of whole mitogenome (61.4%).

  13. Mitochondrial DNA in wildlife forensic science: Species identification of tissues

    Science.gov (United States)

    Cronin, Matthew A.; Palmisciano, Daniel A.; Vyse, Ernest R.; Cameron, David G.

    1991-01-01

    A common problem in wildlife law enforcement is identifying the species of origin of carcasses, meat, or blood when morphological characters such as hair or bones are not available. Immunological and protein electrophoretic (allozyme or general protein) procedures have been used in species identification with considerable success (Bunch et al. 1976, McClymont et al. 1982, Wolfe 1983, Mardini 1984, Pex and Wolfe 1985, Dratch 1986), However, immunological tests often are not sensitive enough to distinguish closely related species. Furthermore, electrophoretically detectable protein polymorphisms may be lacking in certain populations or species and may not be species-specific.Analysis of DNA in human and wildlife forensics has been shown to be a potentially powerful tool for identification of individuals (Jeffreys et al. 1985, Vassartet al. 1987, Thommasen et al. 1989). Differences in copy number and nucleotide sequence of repetitive sequences in the nuclear (chromosomal) DNA result in hypervariability and individual-specific patterns which have been termed DNA "fingerprints." However, these patterns may be too variable for species identification necessitating analyses of more conservative parts of the genome.Mitochondrial DNA (mtDNA) is haploid, maternally inherited, similar in nucleotide sequence among conspecifics from the same geographic region, and more suitable for species identification, in contrast to hypervariable DNA fingerprints. MtDNA has several characteristics which make it useful as a species-specific marker. In mammals, individuals have a single mtDNA genotype shared by all tissues. Because mtDNA is haploid and reflects only maternal ancestry, the mtDNA gene number in a population is 4 times less than the nuclear gene number (Birky et al. 1983). This can result in relatively rapid loss or fixation of mtDNA genotypes so that all individuals in a population may be descended from a single ancestral female in as few as 4N (N = population size) generations

  14. The complete mitochondrial genomes of five Eimeria species infecting domestic rabbits.

    Science.gov (United States)

    Liu, Guo-Hua; Tian, Si-Qin; Cui, Ping; Fang, Su-Fang; Wang, Chun-Ren; Zhu, Xing-Quan

    2015-12-01

    Rabbit coccidiosis caused by members of the genus Eimeria can cause enormous economic impact worldwide, but the genetics, epidemiology and biology of these parasites remain poorly understood. In the present study, we sequenced and annotated the complete mitochondrial (mt) genomes of five Eimeria species that commonly infect the domestic rabbits. The complete mt genomes of Eimeria intestinalis, Eimeria flavescens, Eimeria media, Eimeria vejdovskyi and Eimeria irresidua were 6261bp, 6258bp, 6168bp, 6254bp, 6259bp in length, respectively. All of the mt genomes consist of 3 genes for proteins (cytb, cox1, and cox3), 14 gene fragments for the large subunit (LSU) rRNA and 11 gene fragments for the small subunit (SSU) rRNA, but no transfer RNA (tRNA) genes. The gene order of the mt genomes is similar to that of Plasmodium, but distinct from Haemosporida and Theileria. Phylogenetic analyses based on full nucleotide sequences using Bayesian analysis revealed that the monophyly of the Eimeria of rabbits was strongly statistically supported with a Bayesian posterior probabilities. These data provide novel mtDNA markers for studying the population genetics and molecular epidemiology of the Eimeria species, and should have implications for the molecular diagnosis, prevention and control of coccidiosis in rabbits. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Complete genomes of Hairstreak butterflies, their speciation, and nucleo-mitochondrial incongruence.

    Science.gov (United States)

    Cong, Qian; Shen, Jinhui; Borek, Dominika; Robbins, Robert K; Otwinowski, Zbyszek; Grishin, Nick V

    2016-04-28

    Comparison of complete genomes of closely related species enables research on speciation and how phenotype is determined by genotype. Lepidoptera, an insect order of 150,000 species with diverse phenotypes, is well-suited for such comparative genomics studies if new genomes, which cover additional Lepidoptera families are acquired. We report a 729 Mbp genome assembly of the Calycopis cecrops, the first genome from the family Lycaenidae and the largest available Lepidoptera genome. As detritivore, Calycopis shows expansion in detoxification and digestion enzymes. We further obtained complete genomes of 8 Calycopis specimens: 3 C. cecrops and 5 C. isobeon, including a dry specimen stored in the museum for 30 years. The two species differ subtly in phenotype and cannot be differentiated by mitochondrial DNA. However, nuclear genomes revealed a deep split between them. Genes that can clearly separate the two species (speciation hotspots) mostly pertain to circadian clock, mating behavior, transcription regulation, development and cytoskeleton. The speciation hotspots and their function significantly overlap with those we previously found in Pterourus, suggesting common speciation mechanisms in these butterflies.

  16. Prolonged decay of molecular rate estimates for metazoan mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Martyna Molak

    2015-03-01

    Full Text Available Evolutionary timescales can be estimated from genetic data using the molecular clock, often calibrated by fossil or geological evidence. However, estimates of molecular rates in mitochondrial DNA appear to scale negatively with the age of the clock calibration. Although such a pattern has been observed in a limited range of data sets, it has not been studied on a large scale in metazoans. In addition, there is uncertainty over the temporal extent of the time-dependent pattern in rate estimates. Here we present a meta-analysis of 239 rate estimates from metazoans, representing a range of timescales and taxonomic groups. We found evidence of time-dependent rates in both coding and non-coding mitochondrial markers, in every group of animals that we studied. The negative relationship between the estimated rate and time persisted across a much wider range of calibration times than previously suggested. This indicates that, over long time frames, purifying selection gives way to mutational saturation as the main driver of time-dependent biases in rate estimates. The results of our study stress the importance of accounting for time-dependent biases in estimating mitochondrial rates regardless of the timescale over which they are inferred.

  17. Signatures of Climatic Change In Human Mitochondrial Dna From Europe

    Science.gov (United States)

    Richards, M. B.; Macaulay, V. A.; Torroni, A.; Bandelt, H.-J.

    Founder analysis is an approach to analysing non-recombining DNA sequence data, such as variation in the mitochondrial DNA (mtDNA), which aims at identifying and dating migrations into new territory. We applied the approach to about 4,000 human mtDNA sequences from Europe and the Near East, in order to estimate the proportion of modern lineages whose ancestors arrived at various times during the continent's past. We found that the major signal dates to about 15,000 years ago, at the time of rewarming following the Last Glacial Maximum (LGM). There is little or no archaeological evidence for immigration into Europe at this time, and the record indicates that at least parts of southern Europe remained populated during the LGM. Therefore, we interpret this signal as the trace of a bottleneck at the time of the LGM, as a result of the retreat from northern Europe during the peak of the glaciation, followed by a re-expansion from one or more refugial zones. Immigration episodes then figure at the beginning of the Early Upper Palaeolithic, during the Middle Upper Palaeolithic, and with the Neolithic. The impact of the latter on the composition of the European mtDNA pool was evidently rather minor. This result implies that climate is likely to have been a major force shaping human demographic history in Europe.

  18. The complete mitochondrial genome of the pirarucu (Arapaima gigas, Arapaimidae, Osteoglossiformes)

    OpenAIRE

    Hrbek,Tomas; Farias,Izeni Pires

    2008-01-01

    We sequenced the complete mitochondrial genome of the pirarucu, Arapaima gigas, the largest fish of the Amazon basin, and economically one of the most important species of the region. The total length of the Arapaima gigas mitochondrial genome is 16,433 bp. The mitochondrial genome contains 13 protein-coding genes, two rRNA genes and 22 tRNA genes. Twelve of the thirteen protein-coding genes are coded on the heavy strand, while nad6 is coded on the light strand. The Arapaima gene order and co...

  19. What cost mitochondria? The maintenance of functional mitochondrial DNA within and across generations

    NARCIS (Netherlands)

    Aanen, D.K.; Spelbrink, J.N.; Beekman, M.

    2014-01-01

    The peculiar biology of mitochondrial DNA (mtDNA) potentially has detrimental consequences for organismal health and lifespan. Typically, eukaryotic cells contain multiple mitochondria, each with multiple mtDNA genomes. The high copy number of mtDNA implies that selection on mtDNA functionality is

  20. Mitochondrial DNA analysis of two southern African elephant populations

    Directory of Open Access Journals (Sweden)

    M.F. Essop

    1996-08-01

    Full Text Available The modern view is that there are at most only two valid forms of the African elephant namely Loxodonta qfricana africana, the bush elephant, and L.a. cyclotis, the forest elephant (Ansell 1974; Meester et al. 1986. The Knysna elephant which was also described as a separate sub-species is now almost extinct. Plans to augment the remnant population by introducing other animals must take into account the taxonomic questions and issue of conserving elephant gene pools (Greig 1982a. Mitochondrial DNA (mtDNA restriction fragment-size comparisons were performed on specimens from the Kruger National Park and the Addo Elephant National Park. If the Addo population's results are extrapolated to the Knysna population, it may be concluded that there is no genetic evidence for the Kruger and Knysna elephant populations to be considered as different sub-species.

  1. The complete mitochondrial genome of a Chinese rufous horseshoe bat subspecies, Rhinolophus sinicus sinicus (Chiroptera: Rhinolophidae).

    Science.gov (United States)

    Sun, Haijian; Dong, Ji; Shi, Huizhen; Ren, Min; Hua, Panyu

    2016-09-01

    There are two subspecies of Rhinolophus sinicus currently recognized in China. In this study, using next generation sequencing approaches, the complete mitochondrial genome of one subspecies R. s. sinicus was obtained. The total length of the genome sequence is 16,898 bp. The arrangement and contents of R. s. sinicus mitochondrial genes exhibit high similarity with other bats of family Rhinolophida. Phylogenetic reconstructions support the sister relationship of the two subspecies and confirm the subspecies status of our specimen.

  2. The complete mitochondrial genome of the great white shark, Carcharodon carcharias (Chondrichthyes, Lamnidae).

    Science.gov (United States)

    Chang, Chia-Hao; Shao, Kwang-Tsao; Lin, Yeong-Shin; Fang, Yi-Chiao; Ho, Hsuan-Ching

    2014-10-01

    The complete mitochondrial genome of the great white shark having 16,744 bp and including 13 protein-coding genes, 2 ribosomal RNA, 22 transfer RNA genes, 1 replication origin region and 1 control region. The mitochondrial gene arrangement of the great white shark is the same as the one observed in the most vertebrates. Base composition of the genome is A (30.6%), T (28.7%), C (26.9%) and G (13.9%).

  3. Complete mitochondrial genome of the agarophyte red alga Gelidium vagum (Gelidiales).

    Science.gov (United States)

    Yang, Eun Chan; Kim, Kyeong Mi; Boo, Ga Hun; Lee, Jung-Hyun; Boo, Sung Min; Yoon, Hwan Su

    2014-08-01

    We describe the first complete mitochondrial genome of Gelidium vagum (Gelidiales) (24,901 bp, 30.4% GC content), an agar-producing red alga. The circular mitochondrial genome contains 43 genes, including 23 protein-coding, 18 tRNA and 2 rRNA genes. All the protein-coding genes have a typical ATG start codon. No introns were found. Two genes, secY and rps12, were overlapped by 41 bp.

  4. Complete mitochondrial genome of the blacknose shark Carcharhinus acronotus (Elasmobranchii: Carcharhinidae).

    Science.gov (United States)

    Yang, Lei; Matthes-Rosana, Kerri A; Naylor, Gavin J P

    2016-01-01

    The complete mitochondrial genome of the blacknose shark Carcharhinus acronotus has been determined in this work. It has a length of 16,719 bp and consisted of 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 1 control region. The gene composition and genome organization was similar to other vertebrates. This study represents part of an ongoing effort to obtain mitochondrial genome sequences for chondrichthyan species in order to better estimate their phylogenetic relationships.

  5. Oxidants and not alkylating agents induce rapid mtDNA loss and mitochondrial dysfunction

    Science.gov (United States)

    Furda, Amy M.; Marrangoni, Adele M.; Lokshin, Anna; Van Houten, Bennett

    2013-01-01

    Mitochondrial DNA (mtDNA) is essential for proper mitochondrial function and encodes 22 tRNAs, 2 rRNAs and 13 polypeptides that make up subunits of complex I, III, IV, in the electron transport chain and complex V, the ATP synthase. Although mitochondrial dysfunction has been implicated in processes such as premature aging, neurodegeneration, and cancer, it has not been shown whether persistent mtDNA damage causes a loss of oxidative phosphorylation. We addressed this question by treating mouse embryonic fibroblasts with either hydrogen peroxide (H2O2) or the alkylating agent methyl methanesulfonate (MMS) and measuring several endpoints, including mtDNA damage and repair rates using QPCR, levels of mitochondrial- and nuclear-encoded proteins using antibody analysis, and a pharmacologic profile of mitochondria using the Seahorse Extracellular Flux Analyzer. We show that a 60 min treatment with H2O2 causes persistent mtDNA lesions, mtDNA loss, decreased levels of a nuclear-encoded mitochondrial subunit, a loss of ATP-linked oxidative phosphorylation and a loss of total reserve capacity. Conversely, a 60 min treatment with 2 mM MMS causes persistent mtDNA lesions but no mtDNA loss, no decrease in levels of a nuclear-encoded mitochondrial subunit, and no mitochondrial dysfunction. These results suggest that persistent mtDNA damage is not sufficient to cause mitochondrial dysfunction. PMID:22766155

  6. High coverage of the complete mitochondrial genome of the rare Gray's beaked whale (Mesoplodon grayi) using Illumina next generation sequencing.

    Science.gov (United States)

    Thompson, Kirsten F; Patel, Selina; Williams, Liam; Tsai, Peter; Constantine, Rochelle; Baker, C Scott; Millar, Craig D

    2016-01-01

    Using an Illumina platform, we shot-gun sequenced the complete mitochondrial genome of Gray's beaked whale (Mesoplodon grayi) to an average coverage of 152X. We performed a de novo assembly using SOAPdenovo2 and determined the total mitogenome length to be 16,347 bp. The nucleotide composition was asymmetric (33.3% A, 24.6% C, 12.6% G, 29.5% T) with an overall GC content of 37.2%. The gene organization was similar to that of other cetaceans with 13 protein-coding genes, 2 rRNAs (12S and 16S), 22 predicted tRNAs and 1 control region or D-loop. We found no evidence of heteroplasmy or nuclear copies of mitochondrial DNA in this individual. Beaked whales within the genus Mesoplodon are rarely seen at sea and their basic biology is poorly understood. These data will contribute to resolving the phylogeography and population ecology of this speciose group.

  7. Detection of novel polymorphisms in the mitochondrial DNA D-Loop ...

    African Journals Online (AJOL)

    aghomotsegin

    2015-04-08

    Apr 8, 2015 ... 1Department of Molecular Biology, Babylon University, Hilla City, Iraq. 2Babylon ... Mitochondrial DNA (mtDNA) is a useful genetic marker for answering .... to you for choosing the project, your enthusiasm for helping us ...

  8. The complete mitochondrial genome of eastern lowland gorilla, Gorilla beringei graueri, and comparative mitochondrial genomics of Gorilla species.

    Science.gov (United States)

    Hu, Xiao-di; Gao, Li-zhi

    2016-01-01

    In this study, we determined the complete mitochondrial (mt) genome of eastern lowland gorilla, Gorilla beringei graueri for the first time. The total genome was 16,416 bp in length. It contained a total of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and 1 control region (D-loop region). The base composition was A (30.88%), G (13.10%), C (30.89%) and T (25.13%), indicating that the percentage of A+T (56.01%) was higher than G+C (43.99%). Comparisons with the other publicly available Gorilla mitogenome showed the conservation of gene order and base compositions but a bunch of nucleotide diversity. This complete mitochondrial genome sequence will provide valuable genetic information for further studies on conservation genetics of eastern lowland gorilla.

  9. Full mitochondrial genome sequences of two endemic Philippine hornbill species (Aves: Bucerotidae) provide evidence for pervasive mitochondrial DNA recombination.

    Science.gov (United States)

    Sammler, Svenja; Bleidorn, Christoph; Tiedemann, Ralph

    2011-01-14

    Although nowaday it is broadly accepted that mitochondrial DNA (mtDNA) may undergo recombination, the frequency of such recombination remains controversial. Its estimation is not straightforward, as recombination under homoplasmy (i.e., among identical mt genomes) is likely to be overlooked. In species with tandem duplications of large mtDNA fragments the detection of recombination can be facilitated, as it can lead to gene conversion among duplicates. Although the mechanisms for concerted evolution in mtDNA are not fully understood yet, recombination rates have been estimated from "one per speciation event" down to 850 years or even "during every replication cycle". Here we present the first complete mt genome of the avian family Bucerotidae, i.e., that of two Philippine hornbills, Aceros waldeni and Penelopides panini. The mt genomes are characterized by a tandemly duplicated region encompassing part of cytochrome b, 3 tRNAs, NADH6, and the control region. The duplicated fragments are identical to each other except for a short section in domain I and for the length of repeat motifs in domain III of the control region. Due to the heteroplasmy with regard to the number of these repeat motifs, there is some size variation in both genomes; with around 21,657 bp (A. waldeni) and 22,737 bp (P. panini), they significantly exceed the hitherto longest known avian mt genomes, that of the albatrosses. We discovered concerted evolution between the duplicated fragments within individuals. The existence of differences between individuals in coding genes as well as in the control region, which are maintained between duplicates, indicates that recombination apparently occurs frequently, i.e., in every generation. The homogenised duplicates are interspersed by a short fragment which shows no sign of recombination. We hypothesize that this region corresponds to the so-called Replication Fork Barrier (RFB), which has been described from the chicken mitochondrial genome. As this RFB

  10. Full mitochondrial genome sequences of two endemic Philippine hornbill species (Aves: Bucerotidae provide evidence for pervasive mitochondrial DNA recombination

    Directory of Open Access Journals (Sweden)

    Bleidorn Christoph

    2011-01-01

    Full Text Available Abstract Background Although nowaday it is broadly accepted that mitochondrial DNA (mtDNA may undergo recombination, the frequency of such recombination remains controversial. Its estimation is not straightforward, as recombination under homoplasmy (i.e., among identical mt genomes is likely to be overlooked. In species with tandem duplications of large mtDNA fragments the detection of recombination can be facilitated, as it can lead to gene conversion among duplicates. Although the mechanisms for concerted evolution in mtDNA are not fully understood yet, recombination rates have been estimated from "one per speciation event" down to 850 years or even "during every replication cycle". Results Here we present the first complete mt genome of the avian family Bucerotidae, i.e., that of two Philippine hornbills, Aceros waldeni and Penelopides panini. The mt genomes are characterized by a tandemly duplicated region encompassing part of cytochrome b, 3 tRNAs, NADH6, and the control region. The duplicated fragments are identical to each other except for a short section in domain I and for the length of repeat motifs in domain III of the control region. Due to the heteroplasmy with regard to the number of these repeat motifs, there is some size variation in both genomes; with around 21,657 bp (A. waldeni and 22,737 bp (P. panini, they significantly exceed the hitherto longest known avian mt genomes, that of the albatrosses. We discovered concerted evolution between the duplicated fragments within individuals. The existence of differences between individuals in coding genes as well as in the control region, which are maintained between duplicates, indicates that recombination apparently occurs frequently, i.e., in every generation. Conclusions The homogenised duplicates are interspersed by a short fragment which shows no sign of recombination. We hypothesize that this region corresponds to the so-called Replication Fork Barrier (RFB, which has been

  11. Mgm101p is a novel component of the mitochondrial nucleoid that binds DNA and is required for the repair of oxidatively damaged mitochondrial DNA

    International Nuclear Information System (INIS)

    Meeusen, S.; Tieu, Q.; Wong, E.; Weiss, E.; Schieltz, D.; Yates, J.R.; Nunnari, J.

    1999-01-01

    Maintenance of mitochondrial DNA (mtDNA) during cell division is required for progeny to be respiratory competent. Maintenance involves the replication, repair, assembly, segregation, and partitioning of the mitochondrial nucleoid. MGM101 has been identified as a gene essential for mtDNA maintenance in S. cerevisiae, but its role is unknown. Using liquid chromatography coupled with tandem mass spectrometry, we identified Mgm101p as a component of highly enriched nucleoids, suggesting that it plays a nucleoid-specific role in maintenance. Subcellular fractionation, indirect immunofluorescence and GFP tagging show that Mgm101p is exclusively associated with the mitochondrial nucleoid structure in cells. Furthermore, DNA affinity chromatography of nucleoid extracts indicates that Mgm101p binds to DNA, suggesting that its nucleoid localization is in part due to this activity. Phenotypic analysis of cells containing a temperature sensitive mgm101 allele suggests that Mgm101p is not involved in mtDNA packaging, segregation, partitioning or required for ongoing mtDNA replication. We examined Mgm101p's role in mtDNA repair. As compared with wild-type cells, mgm101 cells were more sensitive to mtDNA damage induced by UV irradiation and were hypersensitive to mtDNA damage induced by gamma rays and H2O2 treatment. Thus, we propose that Mgm101p performs an essential function in the repair of oxidatively damaged mtDNA that is required for the maintenance of the mitochondrial genome. (author)

  12. Phylogenetic relationships of rollers (Coraciidae) based on complete mitochondrial genomes and fifteen nuclear genes.

    Science.gov (United States)

    Johansson, Ulf S; Irestedt, Martin; Qu, Yanhua; Ericson, Per G P

    2018-04-06

    The rollers (Coraciidae) constitute a relative small avian family with ca. 12 species distributed in Africa, western and southern Eurasia, and eastern Australia. In this study we examine the phylogenetic relationships of all species currently recognized in the family, including two taxa whose taxonomic status is currently contested. By using shotgun sequencing on degraded DNA from museum study skins we have been able to recover complete mitochondrial genomes as well as 15 nuclear genes for in total 16 taxa. The gene sequences were analyzed both concatenated in a maximum likelihood framework as well in a species tree approach using MP-EST. The different analytical approaches yield similar, highly supported trees and support the current division of the rollers into two genera, Coracias and Eurystomus. The only conflict relates to the placement of the Blue-bellied Roller (C. cyanogaster), where the mitochondrial, and the concatenated nuclear and mitochondrial data set, place this taxon as sister to the other Coracias species, whereas nuclear data and the species tree analysis place it as the sister taxon of C. naevia and C. spatulatus. All analyses place the Eurasian roller (C. garrulus) with the two African species, Abyssinian Roller (C. abyssinica) and Liliac-breasted Roller (C. caudatus), and place this clade as the sister group to the Asian Coracias rollers. In addition, our results support a sister group relationship between the morphologically rather dissimilar Purple Roller (C. naevia) and Racquet-tailed Roller (C. spatulatus) and also support the division of Eurystomus in an African and an Asian clade. However, within the Asian clade the Azure Roller (E. azureus) from Halmahera appears to be nested within the Dollarbird (E. orientalis), indicating that that this taxon is a morphological divergent, but a rather recent offshoot, of the widespread Dollarbird. Similarly, the Purple-winged Roller (C. temminickii) from Sulawesi group together with C. benghalensis

  13. Mitochondrial DNA variation in the Viking age population of Norway.

    Science.gov (United States)

    Krzewińska, Maja; Bjørnstad, Gro; Skoglund, Pontus; Olason, Pall Isolfur; Bill, Jan; Götherström, Anders; Hagelberg, Erika

    2015-01-19

    The medieval Norsemen or Vikings had an important biological and cultural impact on many parts of Europe through raids, colonization and trade, from about AD 793 to 1066. To help understand the genetic affinities of the ancient Norsemen, and their genetic contribution to the gene pool of other Europeans, we analysed DNA markers in Late Iron Age skeletal remains from Norway. DNA was extracted from 80 individuals, and mitochondrial DNA polymorphisms were detected by next-generation sequencing. The sequences of 45 ancient Norwegians were verified as genuine through the identification of damage patterns characteristic of ancient DNA. The ancient Norwegians were genetically similar to previously analysed ancient Icelanders, and to present-day Shetland and Orkney Islanders, Norwegians, Swedes, Scots, English, German and French. The Viking Age population had higher frequencies of K*, U*, V* and I* haplogroups than their modern counterparts, but a lower proportion of T* and H* haplogroups. Three individuals carried haplotypes that are rare in Norway today (U5b1b1, Hg A* and an uncommon variant of H*). Our combined analyses indicate that Norse women were important agents in the overseas expansion and settlement of the Vikings, and that women from the Orkneys and Western Isles contributed to the colonization of Iceland. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  14. MitBASE : a comprehensive and integrated mitochondrial DNA database. The present status

    NARCIS (Netherlands)

    Attimonelli, M.; Altamura, N.; Benne, R.; Brennicke, A.; Cooper, J. M.; D'Elia, D.; Montalvo, A.; Pinto, B.; de Robertis, M.; Golik, P.; Knoop, V.; Lanave, C.; Lazowska, J.; Licciulli, F.; Malladi, B. S.; Memeo, F.; Monnerot, M.; Pasimeni, R.; Pilbout, S.; Schapira, A. H.; Sloof, P.; Saccone, C.

    2000-01-01

    MitBASE is an integrated and comprehensive database of mitochondrial DNA data which collects, under a single interface, databases for Plant, Vertebrate, Invertebrate, Human, Protist and Fungal mtDNA and a Pilot database on nuclear genes involved in mitochondrial biogenesis in Saccharomyces

  15. Alterations of mitochondrial DNA in CEM cells selected for resistance toward ddC toxicity.

    Science.gov (United States)

    Bjerke, M; Franco, M; Johansson, M; Balzarini, J; Karlsson, A

    2006-01-01

    2 ',3 '-dideoxycytidine (ddC) is a nucleoside analog that has been shown to produce a delayed toxicity which may be due to the depletion of mitochondrial DNA (mtDNA). In order to gain further understanding of the events involved in mitochondrial toxicity, two different CEM cell lines were selected for resistance to the delayed ddC toxicity.

  16. Plasma cell-free mitochondrial DNA declines in response to prolonged moderate aerobic exercise.

    Science.gov (United States)

    Shockett, Penny E; Khanal, Januka; Sitaula, Alina; Oglesby, Christopher; Meachum, William A; Castracane, V Daniel; Kraemer, Robert R

    2016-01-01

    Increased plasma cell-free mitochondrial DNA (cf-mDNA), a damage-associated molecular pattern (DAMP) produced by cellular injury, contributes to neutrophil activation/inflammation in trauma patients and arises in cancer and autoimmunity. To further understand relationships between cf-mDNA released by tissue injury, inflammation, and health benefits of exercise, we examined cf-mDNA response to prolonged moderate aerobic exercise. Seven healthy moderately trained young men (age = 22.4 ± 1.2) completed a treadmill exercise trial for 90 min at 60% VO2 max and a resting control trial. Blood was sampled immediately prior to exercise (0 min = baseline), during (+18, +54 min), immediately after (+90 min), and after recovery (R40). Plasma was analyzed for cf-mDNA, IL-6, and lactate. A significant difference in cf-mDNA response was observed between exercise and control trials, with cf-mDNA levels reduced during exercise at +54 and +90 (with or without plasma volume shift correction). Declines in cf-mDNA were accompanied by increased lactate and followed by an increase in IL-6, suggesting a temporal association with muscle stress and inflammatory processes. Our novel finding of cf-mDNA decline with prolonged moderate treadmill exercise provides evidence for increased clearance from or reduced release of cf-mDNA into the blood with prolonged exercise. These studies contrast with previous investigations involving exhaustive short-term treadmill exercise, in which no change in cf-mDNA levels were reported, and contribute to our understanding of differences between exercise- and trauma-induced inflammation. We propose that transient declines in cf-mDNA may induce health benefits, by reducing systemic inflammation. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  17. Nuclear Expression of a Mitochondrial DNA Gene: Mitochondrial Targeting of Allotopically Expressed Mutant ATP6 in Transgenic Mice

    Directory of Open Access Journals (Sweden)

    David A. Dunn

    2012-01-01

    Full Text Available Nuclear encoding of mitochondrial DNA transgenes followed by mitochondrial targeting of the expressed proteins (allotopic expression; AE represents a potentially powerful strategy for creating animal models of mtDNA disease. Mice were created that allotopically express either a mutant (A6M or wildtype (A6W mt-Atp6 transgene. Compared to non-transgenic controls, A6M mice displayed neuromuscular and motor deficiencies (wire hang, pole, and balance beam analyses; P0.05. This study illustrates a mouse model capable of circumventing in vivo mitochondrial mutations. Moreover, it provides evidence supporting AE as a tool for mtDNA disease research with implications in development of DNA-based therapeutics.

  18. The Mitochondrial DNA (mtDNA)-Associated Protein SWIB5 Influences mtDNA Architecture and Homologous Recombination

    KAUST Repository

    Blomme, Jonas

    2017-04-19

    In addition to the nucleus, mitochondria and chloroplasts in plant cells also contain genomes. Efficient DNA repair pathways are crucial in these organelles to fix damage resulting from endogenous and exogenous factors. Plant organellar genomes are complex compared with their animal counterparts, and although several plant-specific mediators of organelle DNA repair have been reported, many regulators remain to be identified. Here, we show that a mitochondrial SWI/SNF (nucleosome remodeling) complex B protein, SWIB5, is capable of associating with mitochondrial DNA (mtDNA) in Arabidopsis thaliana. Gainand loss-of-function mutants provided evidence for a role of SWIB5 in influencing mtDNA architecture and homologous recombination at specific intermediate-sized repeats both under normal and genotoxic conditions. SWIB5 interacts with other mitochondrial SWIB proteins. Gene expression and mutant phenotypic analysis of SWIB5 and SWIB family members suggests a link between organellar genome maintenance and cell proliferation. Taken together, our work presents a protein family that influences mtDNA architecture and homologous recombination in plants and suggests a link between organelle functioning and plant development.

  19. Mitochondrial DNA haplogroup phylogeny of the dog: Proposal for a cladistic nomenclature.

    Science.gov (United States)

    Fregel, Rosa; Suárez, Nicolás M; Betancor, Eva; González, Ana M; Cabrera, Vicente M; Pestano, José

    2015-05-01

    Canis lupus familiaris mitochondrial DNA analysis has increased in recent years, not only for the purpose of deciphering dog domestication but also for forensic genetic studies or breed characterization. The resultant accumulation of data has increased the need for a normalized and phylogenetic-based nomenclature like those provided for human maternal lineages. Although a standardized classification has been proposed, haplotype names within clades have been assigned gradually without considering the evolutionary history of dog mtDNA. Moreover, this classification is based only on the D-loop region, proven to be insufficient for phylogenetic purposes due to its high number of recurrent mutations and the lack of relevant information present in the coding region. In this study, we design 1) a refined mtDNA cladistic nomenclature from a phylogenetic tree based on complete sequences, classifying dog maternal lineages into haplogroups defined by specific diagnostic mutations, and 2) a coding region SNP analysis that allows a more accurate classification into haplogroups when combined with D-loop sequencing, thus improving the phylogenetic information obtained in dog mitochondrial DNA studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Complete mitochondrial genome of a Pleistocene jawbone unveils the origin of polar bear.

    Science.gov (United States)

    Lindqvist, Charlotte; Schuster, Stephan C; Sun, Yazhou; Talbot, Sandra L; Qi, Ji; Ratan, Aakrosh; Tomsho, Lynn P; Kasson, Lindsay; Zeyl, Eve; Aars, Jon; Miller, Webb; Ingólfsson, Olafur; Bachmann, Lutz; Wiig, Oystein

    2010-03-16

    The polar bear has become the flagship species in the climate-change discussion. However, little is known about how past climate impacted its evolution and persistence, given an extremely poor fossil record. Although it is undisputed from analyses of mitochondrial (mt) DNA that polar bears constitute a lineage within the genetic diversity of brown bears, timing estimates of their divergence have differed considerably. Using next-generation sequencing technology, we have generated a complete, high-quality mt genome from a stratigraphically validated 130,000- to 110,000-year-old polar bear jawbone. In addition, six mt genomes were generated of extant polar bears from Alaska and brown bears from the Admiralty and Baranof islands of the Alexander Archipelago of southeastern Alaska and Kodiak Island. We show that the phylogenetic position of the ancient polar bear lies almost directly at the branching point between polar bears and brown bears, elucidating a unique morphologically and molecularly documented fossil link between living mammal species. Molecular dating and stable isotope analyses also show that by very early in their evolutionary history, polar bears were already inhabitants of the Artic sea ice and had adapted very rapidly to their current and unique ecology at the top of the Arctic marine food chain. As such, polar bears provide an excellent example of evolutionary opportunism within a widespread mammalian lineage.

  1. Complete mitochondrial genome of a Pleistocene jawbone unveils the origin of polar bear

    Science.gov (United States)

    Lindqvist, Charlotte; Schuster, Stephan C.; Sun, Yazhou; Talbot, Sandra L.; Qi, Ji; Ratan, Aakrosh; Tomsho, Lynn P.; Kasson, Lindsay; Zeyl, Eve; Aars, Jon; Miller, Webb; Ingólfsson, Ólafur; Bachmann, Lutz; Wiig, Øystein

    2010-01-01

    The polar bear has become the flagship species in the climate-change discussion. However, little is known about how past climate impacted its evolution and persistence, given an extremely poor fossil record. Although it is undisputed from analyses of mitochondrial (mt) DNA that polar bears constitute a lineage within the genetic diversity of brown bears, timing estimates of their divergence have differed considerably. Using next-generation sequencing technology, we have generated a complete, high-quality mt genome from a stratigraphically validated 130,000- to 110,000-year-old polar bear jawbone. In addition, six mt genomes were generated of extant polar bears from Alaska and brown bears from the Admiralty and Baranof islands of the Alexander Archipelago of southeastern Alaska and Kodiak Island. We show that the phylogenetic position of the ancient polar bear lies almost directly at the branching point between polar bears and brown bears, elucidating a unique morphologically and molecularly documented fossil link between living mammal species. Molecular dating and stable isotope analyses also show that by very early in their evolutionary history, polar bears were already inhabitants of the Artic sea ice and had adapted very rapidly to their current and unique ecology at the top of the Arctic marine food chain. As such, polar bears provide an excellent example of evolutionary opportunism within a widespread mammalian lineage. PMID:20194737

  2. The complete mitochondrial genome of the Longnose skate: Raja rhina (Rajiformes, Rajidae).

    Science.gov (United States)

    Jeong, Dageum; Lee, Youn-Ho

    2015-02-01

    The complete sequence of mitochondrial DNA of a longnose skate, Raja rhina was determined for the first time. It is 16,910 bp in length containing 2 rRNA, 22 tRNA and 13 protein coding genes with the same gene order and structure as those of other Rajidae species. The nucleotide of L-strand is composed of 30.1% A, 27.2% C, 28.5% T and 14.2% G, showing a slight A + T bias. The G is the least used base and markedly lower at the third codon position (5.4%). Twelve of the 13 protein coding genes use ATG as their start codon while the COX1 starts with GTG. As for stop codon, only ND4 shows incomplete stop codon TA. This mitogenome is the first report for a species of the genus Raja, and providing a valuable resource of genetic information for understanding the phylogenetic relationship and the evolution of the genus Raja as well as the family, Rajidae.

  3. Complete mitochondrial genome of the Yellownose skate: Zearaja chilensis (Rajiformes, Rajidae).

    Science.gov (United States)

    Jeong, Dageum; Lee, Youn-Ho

    2016-01-01

    The complete sequence of mitochondrial DNA of a Yellownose skate, Zearaja chilensis was determined for the first time. It is 16,909 bp in length covering 2 rRNA, 22 tRNA and 13 protein coding genes with the identical gene order and structure as those of other Rajidae species. The nucleotide of L-strand is composed of low G (14.3%), and slightly high A + T (58.9%) nucleotides. The strong codon usage bias against the use of G (6.0%) is found at the third codon positions. Twelve of the 13 protein coding genes use ATG as the start codon while COX1 starts with GTG. As for the stop codon, only ND4 shows an incomplete stop codon TA. This is the first report of the mitogenome for a species in the genus Zearaja, providing a valuable source of genetic information on the evolution of the family Rajidae and the genus Zearaja as well as for establishment of a sustainble fishery management plan of the species.

  4. Complete mitochondrial genome of a Pleistocene jawbone unveils the origin of polar bear

    Science.gov (United States)

    Lindqvist, Charlotte; Schuster, Stephan C.; Sun, Yazhou; Talbot, Sandra L.; Qi, Ji; Ratan, Aakrosh; Tomsho, Lynn P.; Kasson, Lindsay; Zeyl, Eve; Aars, Jon; Miller, Webb; Ingólfsson, Ólafur; Bachmann, Lutz; Wiig, Øystein

    2010-01-01

    The polar bear has become the flagship species in the climate-change discussion. However, little is known about how past climate impacted its evolution and persistence, given an extremely poor fossil record. Although it is undisputed from analyses of mitochondrial (mt) DNA that polar bears constitute a lineage within the genetic diversity of brown bears, timing estimates of their divergence have differed considerably. Using next-generation sequencing technology, we have generated a complete, high-quality mt genome from a stratigraphically validated 130,000- to 110,000-year-old polar bear jawbone. In addition, six mt genomes were generated of extant polar bears from Alaska and brown bears from the Admiralty and Baranof islands of the Alexander Archipelago of southeastern Alaska and Kodiak Island. We show that the phylogenetic position of the ancient polar bear lies almost directly at the branching point between polar bears and brown bears, elucidating a unique morphologically and molecularly documented fossil link between living mammal species. Molecular dating and stable isotope analyses also show that by very early in their evolutionary history, polar bears were already inhabitants of the Artic sea ice and had adapted very rapidly to their current and unique ecology at the top of the Arctic marine food chain. As such, polar bears provide an excellent example of evolutionary opportunism within a widespread mammalian lineage.

  5. Validation of the use of an artificial mitochondrial reporter DNA vector containing a Cytomegalovirus promoter for mitochondrial transgene expression.

    Science.gov (United States)

    Yamada, Yuma; Ishikawa, Takuya; Harashima, Hideyoshi

    2017-08-01

    Mitochondria have their own gene expression system that is independent of the nuclear system, and control cellular functions in cooperation with the nucleus. While a number of useful technologies for achieving nuclear transgene expression have been reported, only a few have focused on mitochondria. In this study, we validated the utility of an artificial mitochondrial DNA vector with a virus promoter on mitochondrial transgene expression. We designed and constructed pCMV-mtLuc (CGG) that contains a CMV promotor derived from Cytomegalovirus and an artificial mitochondrial genome with a NanoLuc (Nluc) luciferase gene that records adjustments to the mitochondrial codon system. Nluc luciferase activity measurements showed that the pCMV-mtLuc (CGG) efficiently produced the Nluc luciferase protein in human HeLa cells. Moreover, we optimized the mitochondrial transfection of pCMV-mtLuc (CGG) using a MITO-Porter system, a liposome-based carrier for mitochondrial delivery via membrane fusion. As a result, we found that transfection of pCMV-mtLuc (CGG) by MITO-Porter modified with the KALA peptide (cationic amphipathic cell-penetrating peptide) showed a high mitochondrial transgene expression. The developed mitochondrial transgene expression system represents a potentially useful tool for the fields of nanoscience and nanotechnology for controlling the intracellular microenvironment via the regulation of mitochondrial function and promises to open additional innovative research fields of study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Complete mitochondrial genome of the spadenose shark (Scoliodon macrorhynchos).

    Science.gov (United States)

    Chen, Xiao; Peng, Xin; Zhang, Peng; Yang, Shenyun; Liu, Min

    2014-04-01

    We firstly presented the complete mitogenome of the spadenose shark Scoliodon macrorhynchos (Carcharhinidae, Carcharhiniformes). The mitogenome is 16,693 bp long and contains 13 protein-coding genes, two rRNAs, 22 tRNAs and one control region, a typical vertebrate arrangement. The codon usage bias was different between the H-strand and L-strand encoded protein genes. All tRNA genes have the typical cloverleaf secondary structure excepting tRNA-Ser2, in which the dihydrouridine (DHU) arm is replaced by a simple loop with 12 unpaired nucleotides. A termination associated sequence and three conserved sequence blocks (CSB I-III) were identified in the control region, which were considered associating with the replication and transcription of mitogenome.

  7. Mitochondrial and nuclear DNA reveals a complete lineage sorti ng ...

    African Journals Online (AJOL)

    Glossogobius callidus exhibits broad salinity tolerance and is distributed in both estuarine and freshwater environments in southern Africa. Previous studies revealed substantial morphological and molecular variation among populations, suggesting they constitute a species complex. The present study utilised phylogenetic ...

  8. The complete mitochondrial genome of Meloidogyne graminicola (Tylenchina: a unique gene arrangement and its phylogenetic implications.

    Directory of Open Access Journals (Sweden)

    Longhua Sun

    Full Text Available Meloidogyne graminicola is one of the most economically important plant parasitic-nematodes (PPNs. In the present study, we determined the complete mitochondrial (mt DNA genome sequence of this plant pathogen. Compared with other PPNs genera, this genome (19,589 bp is only slightly smaller than that of Pratylenchus vulnus (21,656 bp. The nucleotide composition of the whole mtDNA sequence of M. graminicola is significantly biased toward A and T, with T being the most favored nucleotide and C being the least favored. The A+T content of the entire genome is 83.51%. The mt genome of M. graminicola contains 36 genes (lacking atp8 that are transcribed in the same direction. The gene arrangement of the mt genome of M. graminicola is unique. A total of 21 out of 22 tRNAs possess a DHU loop only, while tRNASer(AGN lacks a DHU loop. The two large noncoding regions (2,031 bp and 5,063 bp are disrupted by tRNASer(UCN. Phylogenetic analysis based on concatenated amino acid sequences of 12 protein-coding genes support the monophylies of the three orders Rhabditida, Mermithida and Trichinellida, the suborder Rhabditina and the three infraorders Spiruromorpha, Oxyuridomorpha and Ascaridomorpha, but do not support the monophylies of the two suborders Spirurina and Tylenchina, and the three infraorders Rhabditomorpha, Panagrolaimomorpha and Tylenchomorpha. The four Tylenchomorpha species including M. graminicola, P. vulnus, H. glycines and R. similis from the superfamily Tylenchoidea are placed within a well-supported monophyletic clade, but far from the other two Tylenchomorpha species B. xylophilus and B. mucronatus of Aphelenchoidea. In the clade of Tylenchoidea, M. graminicola is sister to P. vulnus, and H. glycines is sister to R. similis, which suggests root-knot nematodes has a closer relationship to Pratylenchidae nematodes than to cyst nematodes.

  9. Mitochondrial catalase overexpressed transgenic mice are protected against lung fibrosis in part via preventing alveolar epithelial cell mitochondrial DNA damage.

    Science.gov (United States)

    Kim, Seok-Jo; Cheresh, Paul; Jablonski, Renea P; Morales-Nebreda, Luisa; Cheng, Yuan; Hogan, Erin; Yeldandi, Anjana; Chi, Monica; Piseaux, Raul; Ridge, Karen; Michael Hart, C; Chandel, Navdeep; Scott Budinger, G R; Kamp, David W

    2016-12-01

    Alveolar epithelial cell (AEC) injury and mitochondrial dysfunction are important in the development of lung fibrosis. Our group has shown that in the asbestos exposed lung, the generation of mitochondrial reactive oxygen species (ROS) in AEC mediate mitochondrial DNA (mtDNA) damage and apoptosis which are necessary for lung fibrosis. These data suggest that mitochondrial-targeted antioxidants should ameliorate asbestos-induced lung. To determine whether transgenic mice that express mitochondrial-targeted catalase (MCAT) have reduced lung fibrosis following exposure to asbestos or bleomycin and, if so, whether this occurs in association with reduced AEC mtDNA damage and apoptosis. Crocidolite asbestos (100µg/50µL), TiO 2 (negative control), bleomycin (0.025 units/50µL), or PBS was instilled intratracheally in 8-10 week-old wild-type (WT - C57Bl/6J) or MCAT mice. The lungs were harvested at 21d. Lung fibrosis was quantified by collagen levels (Sircol) and lung fibrosis scores. AEC apoptosis was assessed by cleaved caspase-3 (CC-3)/Surfactant protein C (SFTPC) immunohistochemistry (IHC) and semi-quantitative analysis. AEC (primary AT2 cells from WT and MCAT mice and MLE-12 cells) mtDNA damage was assessed by a quantitative PCR-based assay, apoptosis was assessed by DNA fragmentation, and ROS production was assessed by a Mito-Sox assay. Compared to WT, crocidolite-exposed MCAT mice exhibit reduced pulmonary fibrosis as measured by lung collagen levels and lung fibrosis score. The protective effects in MCAT mice were accompanied by reduced AEC mtDNA damage and apoptosis. Similar findings were noted following bleomycin exposure. Euk-134, a mitochondrial SOD/catalase mimetic, attenuated MLE-12 cell DNA damage and apoptosis. Finally, compared to WT, asbestos-induced MCAT AT2 cell ROS production was reduced. Our finding that MCAT mice have reduced pulmonary fibrosis, AEC mtDNA damage and apoptosis following exposure to asbestos or bleomycin suggests an important role

  10. Mitochondrial nucleoid clusters protect newly synthesized mtDNA during Doxorubicin- and Ethidium Bromide-induced mitochondrial stress

    Czech Academy of Sciences Publication Activity Database

    Alán, Lukáš; Špaček, Tomáš; Pajuelo-Reguera, David; Jabůrek, Martin; Ježek, Petr

    2016-01-01

    Roč. 302, Jul 1 (2016), s. 31-40 ISSN 0041-008X R&D Projects: GA ČR(CZ) GAP305/12/1247; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 Keywords : Doxorubicin * Ethidium Bromide * nucleoid clusters * mitochondrial DNA stress * mitochondrial transcription factor A Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.791, year: 2016

  11. Mitochondrial DNA phylogeny of camel spiders (Arachnida: Solifugae) from Iran.

    Science.gov (United States)

    Maddahi, Hassan; Khazanehdari, Mahsa; Aliabadian, Mansour; Kami, Haji Gholi; Mirshamsi, Amin; Mirshamsi, Omid

    2017-11-01

    In the present study, the mitochondrial DNA phylogeny of five solifuge families of Iran is presented using phylogenetic analysis of mitochondrial cytochrome c oxidase, subunit 1 (COI) sequence data. Moreover, we included available representatives from seven families from GenBank to examine the genetic distance between Old and New World taxa and test the phylogenetic relationships among more solifuge families. Phylogenetic relationships were reconstructed based on the two most probabilistic methods, Maximum Likelihood (ML) and Bayesian inference (BI) approaches. Resulting topologies demonstrated the monophyly of the families Daesiidae, Eremobatidae, Galeodidae, Karschiidae and Rhagodidae, whereas the monophyly of the families Ammotrechidae and Gylippidae was not supported. Also, within the family Eremobatidae, the subfamilies Eremobatinae and Therobatinae and the genus Hemerotrecha were paraphyletic or polyphyletic. According to the resulted topologies, the taxonomic placements of Trichotoma michaelseni (Gylippidae) and Nothopuga sp. 1 (Ammotrechidae) are still remain under question and their revision might be appropriate. According to the results of this study, within the family Galeodidae, the validity of the genus Galeodopsis is supported, while the validity of the genus Paragaleodes still remains uncertain. Moreover, our results revealed that the species Galeodes bacillatus, and Rhagodes melanochaetus are junior synonyms of G. caspius, and R. eylandti, respectively.

  12. First description of a novel mitochondrial mutation in the MT-TI gene associated with multiple mitochondrial DNA deletion and depletion in family with severe dilated mitochondrial cardiomyopathy.

    Science.gov (United States)

    Alila-Fersi, Olfa; Tabebi, Mouna; Maalej, Marwa; Belguith, Neila; Keskes, Leila; Mkaouar-Rebai, Emna; Fakhfakh, Faiza

    2018-03-18

    Mitochondria are essential for early cardiac development and impaired mitochondrial function was described associated with heart diseases such as hypertrophic or dilated mitochondrial cardiomyopathy. In this study, we report a family including two individuals with severe dilated mitochondrial cardiomyopathy. The whole mitochondrial genome screening showed the presence of several variations and a novel homoplasmic mutation m.4318-4322delC in the MT-TI gene shared by the two patients and their mother and leading to a disruption of the tRNA Ile secondary structure. In addition, a mitochondrial depletion was present in blood leucocyte of the two affected brother whereas a de novo heteroplasmic multiple deletion in the major arc of mtDNA was present in blood leucocyte and mucosa of only one of them. These deletions in the major arc of the mtDNA resulted to the loss of several protein-encoding genes and also some tRNA genes. The mtDNA deletion and depletion could result to an impairment of the oxidative phosphorylation and energy metabolism in the respiratory chain in the studied patients. Our report is the first description of a family with severe lethal dilated mitochondrial cardiomyopathy and presenting several mtDNA abnormalities including punctual mutation, deletion and depletion. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. DNA Sequences Proximal to Human Mitochondrial DNA Deletion Breakpoints Prevalent in Human Disease Form G-quadruplexes, a Class of DNA Structures Inefficiently Unwound by the Mitochondrial Replicative Twinkle Helicase*

    Science.gov (United States)

    Bharti, Sanjay Kumar; Sommers, Joshua A.; Zhou, Jun; Kaplan, Daniel L.; Spelbrink, Johannes N.; Mergny, Jean-Louis; Brosh, Robert M.

    2014-01-01

    Mitochondrial DNA deletions are prominent in human genetic disorders, cancer, and aging. It is thought that stalling of the mitochondrial replication machinery during DNA synthesis is a prominent source of mitochondrial genome instability; however, the precise molecular determinants of defective mitochondrial replication are not well understood. In this work, we performed a computational analysis of the human mitochondrial genome using the “Pattern Finder” G-quadruplex (G4) predictor algorithm to assess whether G4-forming sequences reside in close proximity (within 20 base pairs) to known mitochondrial DNA deletion breakpoints. We then used this information to map G4P sequences with deletions characteristic of representative mitochondrial genetic disorders and also those identified in various cancers and aging. Circular dichroism and UV spectral analysis demonstrated that mitochondrial G-rich sequences near deletion breakpoints prevalent in human disease form G-quadruplex DNA structures. A biochemical analysis of purified recombinant human Twinkle protein (gene product of c10orf2) showed that the mitochondrial replicative helicase inefficiently unwinds well characterized intermolecular and intramolecular G-quadruplex DNA substrates, as well as a unimolecular G4 substrate derived from a mitochondrial sequence that nests a deletion breakpoint described in human renal cell carcinoma. Although G4 has been implicated in the initiation of mitochondrial DNA replication, our current findings suggest that mitochondrial G-quadruplexes are also likely to be a source of instability for the mitochondrial genome by perturbing the normal progression of the mitochondrial replication machinery, including DNA unwinding by Twinkle helicase. PMID:25193669

  14. The mitochondrial outer membrane protein MDI promotes local protein synthesis and mtDNA replication.

    Science.gov (United States)

    Zhang, Yi; Chen, Yong; Gucek, Marjan; Xu, Hong

    2016-05-17

    Early embryonic development features rapid nuclear DNA replication cycles, but lacks mtDNA replication. To meet the high-energy demands of embryogenesis, mature oocytes are furnished with vast amounts of mitochondria and mtDNA However, the cellular machinery driving massive mtDNA replication in ovaries remains unknown. Here, we describe a Drosophila AKAP protein, MDI that recruits a translation stimulator, La-related protein (Larp), to the mitochondrial outer membrane in ovaries. The MDI-Larp complex promotes the synthesis of a subset of nuclear-encoded mitochondrial proteins by cytosolic ribosomes on the mitochondrial surface. MDI-Larp's targets include mtDNA replication factors, mitochondrial ribosomal proteins, and electron-transport chain subunits. Lack of MDI abolishes mtDNA replication in ovaries, which leads to mtDNA deficiency in mature eggs. Targeting Larp to the mitochondrial outer membrane independently of MDI restores local protein synthesis and rescues the phenotypes of mdi mutant flies. Our work suggests that a selective translational boost by the MDI-Larp complex on the outer mitochondrial membrane might be essential for mtDNA replication and mitochondrial biogenesis during oogenesis. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  15. Mitochondrial depolarization in yeast zygotes inhibits clonal expansion of selfish mtDNA.

    Science.gov (United States)

    Karavaeva, Iuliia E; Golyshev, Sergey A; Smirnova, Ekaterina A; Sokolov, Svyatoslav S; Severin, Fedor F; Knorre, Dmitry A

    2017-04-01

    Non-identical copies of mitochondrial DNA (mtDNA) compete with each other within a cell and the ultimate variant of mtDNA present depends on their relative replication rates. Using yeast Saccharomyces cerevisiae cells as a model, we studied the effects of mitochondrial inhibitors on the competition between wild-type mtDNA and mutant selfish mtDNA in heteroplasmic zygotes. We found that decreasing mitochondrial transmembrane potential by adding uncouplers or valinomycin changes the competition outcomes in favor of the wild-type mtDNA. This effect was significantly lower in cells with disrupted mitochondria fission or repression of the autophagy-related genes ATG8 , ATG32 or ATG33 , implying that heteroplasmic zygotes activate mitochondrial degradation in response to the depolarization. Moreover, the rate of mitochondrially targeted GFP turnover was higher in zygotes treated with uncoupler than in haploid cells or untreated zygotes. Finally, we showed that vacuoles of zygotes with uncoupler-activated autophagy contained DNA. Taken together, our data demonstrate that mitochondrial depolarization inhibits clonal expansion of selfish mtDNA and this effect depends on mitochondrial fission and autophagy. These observations suggest an activation of mitochondria quality control mechanisms in heteroplasmic yeast zygotes. © 2017. Published by The Company of Biologists Ltd.

  16. The complete mitochondrial genome of the deep-sea sponge Poecillastra laminaris (Astrophorida, Vulcanellidae).

    Science.gov (United States)

    Zeng, Cong; Thomas, Leighton J; Kelly, Michelle; Gardner, Jonathan P A

    2016-05-01

    The complete mitochondrial genome of a New Zealand specimen of the deep-sea sponge Poecillastra laminaris (Sollas, 1886) (Astrophorida, Vulcanellidae), from the Colville Ridge, New Zealand, was sequenced using the 454 Life Science pyrosequencing system. To identify homologous mitochondrial sequences, the 454 reads were mapped to the complete mitochondrial genome sequence of Geodia neptuni (GeneBank No. NC_006990). The P. laminaris genome is 18,413 bp in length and includes 14 protein-coding genes, 24 transfer RNA genes and 2 ribosomal RNA genes. Gene order resembled that of other demosponges. The base composition of the genome is A (29.1%), T (35.2%), C (14.0%) and G (21.7%). This is the second published mitogenome for a sponge of the order Astrophorida and will be useful in future phylogenetic analysis of deep-sea sponges.

  17. The complete mitochondrial genome of the Feral Rock Pigeon (Columba livia breed feral).

    Science.gov (United States)

    Li, Chun-Hong; Liu, Fang; Wang, Li

    2014-10-01

    Abstract In the present work, we report the complete mitochondrial genome sequence of feral rock pigeon for the first time. The total length of the mitogenome was 17,239 bp with the base composition of 30.3% for A, 24.0% for T, 31.9% for C, and 13.8% for G and an A-T (54.3 %)-rich feature was detected. It harbored 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and 1 non-coding control region (D-loop region). The arrangement of all genes was identical to the typical mitochondrial genomes of pigeon. The complete mitochondrial genome sequence of feral rock pigeon would serve as an important data set of the germplasm resources for further study.

  18. The complete mitochondrial genome of the Fancy Pigeon, Columba livia (Columbiformes: Columbidae).

    Science.gov (United States)

    Zhang, Rui-Hua; Xu, Ming-Ju; Wang, Cun-Lian; Xu, Tong; Wei, Dong; Liu, Bao-Jian; Wang, Guo-Hua

    2015-02-01

    The fancy pigeons are domesticated varieties of the rock pigeon developed over many years of selective breeding. In the present work, we report the complete mitochondrial genome sequence of fancy pigeon for the first time. The total length of the mitogenome was 17,233 bp with the base composition of 30.1% for A, 24.0% for T, 31.9% for C, and 14.0% for G and an A-T (54.2 %)-rich feature was detected. It harbored 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and 1 non-coding control region (D-loop region). The arrangement of all genes was identical to the typical mitochondrial genomes of pigeon. The complete mitochondrial genome sequence of fancy pigeon would serve as an important data set of the germplasm resources for further study.

  19. The complete mitochondrial genome of the ice pigeon (Columba livia breed ice).

    Science.gov (United States)

    Zhang, Rui-Hua; He, Wen-Xiao

    2015-02-01

    The ice pigeon is a breed of fancy pigeon developed over many years of selective breeding. In the present work, we report the complete mitochondrial genome sequence of ice pigeon for the first time. The total length of the mitogenome was 17,236 bp with the base composition of 30.2% for A, 24.0% for T, 31.9% for C, and 13.9% for G and an A-T (54.2 %)-rich feature was detected. It harbored 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and 1 non-coding control region (D-loop region). The arrangement of all genes was identical to the typical mitochondrial genomes of pigeon. The complete mitochondrial genome sequence of ice pigeon would serve as an important data set of the germplasm resources for further study.

  20. Characterization of the complete mitochondrial genome of the king pigeon (Columba livia breed king).

    Science.gov (United States)

    Zhang, Rui-Hua; He, Wen-Xiao; Xu, Tong

    2015-06-01

    The king pigeon is a breed of pigeon developed over many years of selective breeding primarily as a utility breed. In the present work, we report the complete mitochondrial genome sequence of king pigeon for the first time. The total length of the mitogenome was 17,221 bp with the base composition of 30.14% for A, 24.05% for T, 31.82% for C, and 13.99% for G and an A-T (54.22 %)-rich feature was detected. It harbored 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and one non-coding control region (D-loop region). The arrangement of all genes was identical to the typical mitochondrial genomes of pigeon. The complete mitochondrial genome sequence of king pigeon would serve as an important data set of the germplasm resources for further study.

  1. The complete mitochondrial genome of the Jacobin pigeon (Columba livia breed Jacobin).

    Science.gov (United States)

    He, Wen-Xiao; Jia, Jin-Feng

    2015-06-01

    The Jacobin is a breed of fancy pigeon developed over many years of selective breeding that originated in Asia. In the present work, we report the complete mitochondrial genome sequence of Jacobin pigeon for the first time. The total length of the mitogenome was 17,245 bp with the base composition of 30.18% for A, 23.98% for T, 31.88% for C, and 13.96% for G and an A-T (54.17 %)-rich feature was detected. It harbored 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and 1 non-coding control region. The arrangement of all genes was identical to the typical mitochondrial genomes of pigeon. The complete mitochondrial genome sequence of Jacobin pigeon would serve as an important data set of the germplasm resources for further study.

  2. Mitochondrial DNA variation and genetic relationships of Populus species.

    Science.gov (United States)

    Barrett, J W; Rajora, O P; Yeh, F C; Dancik, B P; Strobeck, C

    1993-02-01

    We examined variation in and around the region coding for the cytochrome c oxidase I (coxI) and ATPase 6 (atp6) genes in the mitochondrial genomes of four Populus species (P. nigra, P. deltoides, P. maximowiczii, and P. tremuloides) and the natural hybrid P. x canadensis (P. deltoides x P. nigra). Total cellular DNAs of these poplars were digested with 16 restriction endonucleases and probed with maize mtDNA-specific probes (CoxI and Atp6). The only variant observed for Atp6 was interspecific, with P. maximowiczii separated from the other species as revealed by EcoRI digestions. No intraspecific mtDNA variation was observed among individuals of P. nigra, P. maximowiczii, P. x canadensis, or P. tremuloides for the CoxI probe. However, two varieties of P. deltoides were distinct because of a single site change in the KpnI digestions, demonstrating that P. deltoides var. deltoides (eastern cottonwood) and var. occidentalis (plains cottonwood) have distinct mitochondrial genomes in the region of the coxI gene. Populus x canadensis shared the same restriction fragment patterns as its suspected maternal parent P. deltoides. Nucleotide substitutions per base in and around the coxI and atp6 genes among the Populus species and the hybrid ranged from 0.0017 to 0.0077. The interspecific estimates of nucleotide substitution per base suggested that P. tremuloides was furthest removed from P. deltoides and P. x canadensis and least diverged from P. nigra. Populus maximowiczii was placed between these two clusters.

  3. Selective Gene Delivery for Integrating Exogenous DNA into Plastid and Mitochondrial Genomes Using Peptide-DNA Complexes.

    Science.gov (United States)

    Yoshizumi, Takeshi; Oikawa, Kazusato; Chuah, Jo-Ann; Kodama, Yutaka; Numata, Keiji

    2018-05-14

    Selective gene delivery into organellar genomes (mitochondrial and plastid genomes) has been limited because of a lack of appropriate platform technology, even though these organelles are essential for metabolite and energy production. Techniques for selective organellar modification are needed to functionally improve organelles and produce transplastomic/transmitochondrial plants. However, no method for mitochondrial genome modification has yet been established for multicellular organisms including plants. Likewise, modification of plastid genomes has been limited to a few plant species and algae. In the present study, we developed ionic complexes of fusion peptides containing organellar targeting signal and plasmid DNA for selective delivery of exogenous DNA into the plastid and mitochondrial genomes of intact plants. This is the first report of exogenous DNA being integrated into the mitochondrial genomes of not only plants, but also multicellular organisms in general. This fusion peptide-mediated gene delivery system is a breakthrough platform for both plant organellar biotechnology and gene therapy for mitochondrial diseases in animals.

  4. A mitochondrial DNA SNP multiplex assigning Caucasians into 36 haplo- and subhaplogroups

    DEFF Research Database (Denmark)

    Mikkelsen, Martin; Rockenbauer, Eszter; Sørensen, Erik

    2008-01-01

    Mitochondrial DNA (mtDNA) is maternally inherited without recombination events and has a high copy number, which makes mtDNA analysis feasible even when genomic DNA is sparse or degraded. Here, we present a SNP typing assay with 33 previously described mtDNA coding region SNPs for haplogroup...... previously typed by sequencing of the mitochondrial HV1 and HV2 regions. Haplogroup assignments based on mtDNA coding region SNPs and sequencing of HV1 and HV2 regions gave identical results for 27% of the samples, and except for one sample, differences in haplogroup assignments were at the subhaplogroup...

  5. Complete mitochondrial genome sequence of Melipona scutellaris, a Brazilian stingless bee.

    Science.gov (United States)

    Pereira, Ulisses de Padua; Bonetti, Ana Maria; Goulart, Luiz Ricardo; Santos, Anderson Rodrigues Dos; Oliveira, Guilherme Correa de; Cuadros-Orellana, Sara; Ueira-Vieira, Carlos

    2016-09-01

    Melipona scutellaris is a Brazilian stingless bee species and a highly important native pollinator besides its use in rational rearing for honey production. In this study, we present the whole mitochondrial DNA sequence of M. scutellaris from a haploid male. The mitogenome has a size of 14,862 bp and harbors 13 protein-coding genes (PCGs), 2 rRNA genes and 21 tRNA genes.

  6. Mitochondrial DNA Damage and Diseases [version 1; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Gyanesh Singh

    2015-07-01

    Full Text Available Various endogenous and environmental factors can cause mitochondrial DNA (mtDNA damage.  One of the reasons for enhanced mtDNA damage could be its proximity to the source of oxidants, and lack of histone-like protective proteins. Moreover, mitochondria contain inadequate DNA repair pathways, and, diminished DNA repair capacity may be one of the factors responsible for high mutation frequency of the mtDNA. mtDNA damage might cause impaired mitochondrial function, and, unrepaired mtDNA damage has been frequently linked with several diseases. Exploration of mitochondrial perspective of diseases might lead to a better understanding of several diseases, and will certainly open new avenues for detection, cure, and prevention of ailments.

  7. The complete mitochondrial genome of the gray garden slug Deroceras reticulatum (Gastropoda: Pulmonata: Stylommatophora)

    Science.gov (United States)

    The complete circular mitochondrial genome of D. reticulatum is 14,048 bp in length, consisting of 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, and 2 ribosomal RNA (rRNA) genes (GenBank accession number: KY765589). The overall base composition was 31.0 % A, 12.2 % C, 17.7 % G and 39...

  8. The complete mitochondrial genome of a stonefly species, Togoperla sp. (Plecoptera: Perlidae).

    Science.gov (United States)

    Wang, Kai; Wang, Yuyu; Yang, Ding

    2016-05-01

    The complete mitochondrial (mt) genome of a stonefly species, Togoperla sp. (Plecoptera: Perlidae), was sequenced. The 15,723 bp long genome has the standard metazoan complement of 37 genes and an A+T-rich region, which is the same as the insect ancestral genome arrangement.

  9. The complete mitochondrial genome and phylogenetic position of the Philippines spurdog, Squalus montalbani.

    Science.gov (United States)

    Kemper, Jenny M; Naylor, Gavin J P

    2016-11-01

    We present the complete mitochondrial genome sequence (16 555 bp) of the Philippines spurdog, Squalus montalbani, currently listed as Vulnerable due to population declines and fishing pressures. A phylogenetic analysis was carried out on S. montalbani and representative shark mitogenomes. Squalus montalbani was placed within the Squaliformes as a sister taxon to Squalus acanthias and Cirrhigaleus australis.

  10. Associations of mitochondrial haplogroups and mitochondrial DNA copy numbers with end-stage renal disease in a Han population.

    Science.gov (United States)

    Zhang, Yuheng; Zhao, Ying; Wen, Shuzhen; Yan, Rengna; Yang, Qinglan; Chen, Huimei

    2017-09-01

    Mitochondrial DNA (mtDNA) is closely related to mitochondrion function, and variations have been suggested to be involved in pathogenesis of complex diseases. The present study sought to elucidate mitochondrial haplogroups and mtDNA copy number in end-stage renal disease (ESRD) in a Han population. First, the mitochondrial haplogroups of 37 ESRD patients were clustered into several haplogroups, and haplogroup A & D were taken as the candidate risk haplogroups for ESRD. Second, the frequencies of A and D were assessed in 344 ESRD patients and 438 healthy controls, respectively. Haplogroup D was found to be risk maker for ESRD in young subjects (numbers were evaluated with quantitative-PCR. The ESRD patients exhibited greater cell-free mtDNA contents than the healthy controls but less intracellular mtDNA. Haplogroup D exhibited a further increase in cell-free mtDNA content and a decrease in intracellular mtDNA content among the ESRDs patients. Our findings suggest that mtNDA haplogroup D may contributes to pathogenesis of early-onset ESRD through alterations of mtDNA copy numbers.

  11. Overexpression of DNA ligase III in mitochondria protects cells against oxidative stress and improves mitochondrial DNA base excision repair

    DEFF Research Database (Denmark)

    Akbari, Mansour; Keijzers, Guido; Maynard, Scott

    2014-01-01

    slower than the preceding mitochondrial BER steps. Overexpression of DNA ligase III in mitochondria improved the rate of overall BER, increased cell survival after menadione induced oxidative stress and reduced autophagy following the inhibition of the mitochondrial electron transport chain complex I...

  12. Mitochondrial DNA damage and vascular function in patients with diabetes mellitus and atherosclerotic cardiovascular disease.

    Science.gov (United States)

    Fetterman, Jessica L; Holbrook, Monica; Westbrook, David G; Brown, Jamelle A; Feeley, Kyle P; Bretón-Romero, Rosa; Linder, Erika A; Berk, Brittany D; Weisbrod, Robert M; Widlansky, Michael E; Gokce, Noyan; Ballinger, Scott W; Hamburg, Naomi M

    2016-03-31

    Prior studies demonstrate mitochondrial dysfunction with increased reactive oxygen species generation in peripheral blood mononuclear cells in diabetes mellitus. Oxidative stress-mediated damage to mitochondrial DNA promotes atherosclerosis in animal models. Thus, we evaluated the relation of mitochondrial DNA damage in peripheral blood mononuclear cells s with vascular function in patients with diabetes mellitus and with atherosclerotic cardiovascular disease. We assessed non-invasive vascular function and mitochondrial DNA damage in 275 patients (age 57 ± 9 years, 60 % women) with atherosclerotic cardiovascular disease alone (N = 55), diabetes mellitus alone (N = 74), combined atherosclerotic cardiovascular disease and diabetes mellitus (N = 48), and controls age >45 without diabetes mellitus or atherosclerotic cardiovascular disease (N = 98). Mitochondrial DNA damage measured by quantitative PCR in peripheral blood mononuclear cells was higher with clinical atherosclerosis alone (0.55 ± 0.65), diabetes mellitus alone (0.65 ± 1.0), and combined clinical atherosclerosis and diabetes mellitus (0.89 ± 1.32) as compared to control subjects (0.23 ± 0.64, P < 0.0001). In multivariable models adjusting for age, sex, and relevant cardiovascular risk factors, clinical atherosclerosis and diabetes mellitus remained associated with higher mitochondrial DNA damage levels (β = 0.14 ± 0.13, P = 0.04 and β = 0.21 ± 0.13, P = 0.002, respectively). Higher mitochondrial DNA damage was associated with higher baseline pulse amplitude, a measure of arterial pulsatility, but not with flow-mediated dilation or hyperemic response, measures of vasodilator function. We found greater mitochondrial DNA damage in patients with diabetes mellitus and clinical atherosclerosis. The association of mitochondrial DNA damage and baseline pulse amplitude may suggest a link between mitochondrial dysfunction and excessive small artery pulsatility with potentially adverse microvascular impact.

  13. An Analysis of Enzyme Kinetics Data for Mitochondrial DNA Strand Termination by Nucleoside Reverse Transcription Inhibitors

    Science.gov (United States)

    Wendelsdorf, Katherine V.; Song, Zhuo; Cao, Yang; Samuels, David C.

    2009-01-01

    Nucleoside analogs used in antiretroviral treatment have been associated with mitochondrial toxicity. The polymerase-γ hypothesis states that this toxicity stems from the analogs' inhibition of the mitochondrial DNA polymerase (polymerase-γ) leading to mitochondrial DNA (mtDNA) depletion. We have constructed a computational model of the interaction of polymerase-γ with activated nucleoside and nucleotide analog drugs, based on experimentally measured reaction rates and base excision rates, together with the mtDNA genome size, the human mtDNA sequence, and mitochondrial dNTP concentrations. The model predicts an approximately 1000-fold difference in the activated drug concentration required for a 50% probability of mtDNA strand termination between the activated di-deoxy analogs d4T, ddC, and ddI (activated to ddA) and the activated forms of the analogs 3TC, TDF, AZT, FTC, and ABC. These predictions are supported by experimental and clinical data showing significantly greater mtDNA depletion in cell culture and patient samples caused by the di-deoxy analog drugs. For zidovudine (AZT) we calculated a very low mtDNA replication termination probability, in contrast to its reported mitochondrial toxicity in vitro and clinically. Therefore AZT mitochondrial toxicity is likely due to a mechanism that does not involve strand termination of mtDNA replication. PMID:19132079

  14. Mitochondrial DNA analysis of eneolithic trypillians from Ukraine reveals neolithic farming genetic roots.

    Directory of Open Access Journals (Sweden)

    Alexey G Nikitin

    Full Text Available The agricultural revolution in Eastern Europe began in the Eneolithic with the Cucuteni-Trypillia culture complex. In Ukraine, the Trypillian culture (TC existed for over two millennia (ca. 5,400-2,700 BCE and left a wealth of artifacts. Yet, their burial rituals remain a mystery and to date almost nothing is known about the genetic composition of the TC population. One of the very few TC sites where human remains can be found is a cave called Verteba in western Ukraine. This report presents four partial and four complete mitochondrial genomes from nine TC individuals uncovered in the cave. The results of this analysis, combined with the data from previous reports, indicate that the Trypillian population at Verteba carried, for the most part, a typical Neolithic farmer package of mitochondrial DNA (mtDNA lineages traced to Anatolian farmers and Neolithic farming groups of central Europe. At the same time, the find of two specimens belonging to haplogroup U8b1 at Verteba can be viewed as a connection of TC with the Upper Paleolithic European populations. At the level of mtDNA haplogroup frequencies, the TC population from Verteba demonstrates a close genetic relationship with population groups of the Funnel Beaker/ Trichterbecker cultural complex from central and northern Europe (ca. 3,950-2,500 BCE.

  15. The complete mitochondrial genome of the Tibetan fox (Vulpes ferrilata) and implications for the phylogeny of Canidae.

    Science.gov (United States)

    Zhao, Chao; Zhang, Honghai; Liu, Guangshuai; Yang, Xiufeng; Zhang, Jin

    2016-02-01

    Canidae is a family of carnivores comprises about 36 extant species that have been defined as three distinct monophyletic groups based on multi-gene data sets. The Tibetan fox (Vulpes ferrilata) is a member of the family Canidae that is endemic to the Tibetan Plateau and has seldom been in the focus of phylogenetic analyses. To clarify the phylogenic relationship of V. ferrilata between other canids, we sequenced the mitochondrial genome and firstly attempted to clarify the relative phylogenetic position of V. ferrilata in canids using the complete mitochondrial genome data. The mitochondrial genome of the Tibetan fox was 16,667 bp, including 37 genes (13 protein-coding genes, 2 rRNA, and 22 tRNA) and a control region. A comparison analysis among the sequenced data of canids indicated that they shared a similar arrangement, codon usage, and other aspects. A phylogenetic analysis on the basis of the nearly complete mtDNA genomes of canids agreed with three monophyletic clades, and the Tibetan fox was highly supported as a sister group of the corsac fox within Vulpes. The estimation of the divergence time suggested a recent split between the Tibetan fox and the corsac fox and rapid evolution in canids. There was no genetic evidence for positive selection related to high-altitude adaption for the Tibetan fox in mtDNA and following studies should pay more attention to the detection of positive signals in nuclear genes involved in energy and oxygen metabolisms. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  16. The complete mitochondrial genome sequence of the Tibetan red fox (Vulpes vulpes montana).

    Science.gov (United States)

    Zhang, Jin; Zhang, Honghai; Zhao, Chao; Chen, Lei; Sha, Weilai; Liu, Guangshuai

    2015-01-01

    In this study, the complete mitochondrial genome of the Tibetan red fox (Vulpes Vulpes montana) was sequenced for the first time using blood samples obtained from a wild female red fox captured from Lhasa in Tibet, China. Qinghai--Tibet Plateau is the highest plateau in the world with an average elevation above 3500 m. Sequence analysis showed it contains 12S rRNA gene, 16S rRNA gene, 22 tRNA genes, 13 protein-coding genes and 1 control region (CR). The variable tandem repeats in CR is the main reason of the length variability of mitochondrial genome among canide animals.

  17. Complete mitochondrial genome sequence of the Barbour's seahorse Hippocampus barbouri Jordan & Richardson, 1908 (Gasterosteiformes: Syngnathidae).

    Science.gov (United States)

    Wang, Bo; Zhang, Yanhong; Zhang, Huixian; Lin, Qiang

    2015-01-01

    The complete mitochondrial genome sequence of the Barbour's seahorse Hippocampus barbouri was first determined in this paper. The total length of H. barbouri mitogenome is 16,526 bp, which consists of 13 protein-coding genes, 22 tRNA and 2 rRNA genes and 1 control region. The features of the H. barbouri mitochondrial genome were similar to the typical vertebrates. The overall base composition of H. barbouri is 32.68% A, 29.75% T, 22.91% C and 14.66% G, with an AT content of 62.43%.

  18. Complete mitochondrial genome sequence of the lined seahorse Hippocampus erectus Perry, 1810 (Gasterosteiformes: Syngnathidae).

    Science.gov (United States)

    Zhang, Yanhong; Zhang, Huixian; Lin, Qiang; Huang, Liangmin

    2015-01-01

    The complete mitochondrial genome sequence of the lined seahorse Hippocampus erectus was first determined in this article. The total length of H. erectus mitogenome is 16,529 bp, which consists of 13 protein-coding genes, 22 tRNA and 2 rRNA genes and 1 control region. The features of the H. erectus mitochondrial genome were similar to the typical vertebrates. The overall base composition of H. erectus is 31.8% A, 28.6% T, 24.3% C and 15.3% G, with a slight A + T rich feature (60.4%).

  19. The First Complete Mitochondrial Genome Sequences for Stomatopod Crustaceans: Implications for Phylogeny

    Energy Technology Data Exchange (ETDEWEB)

    Swinstrom, Kirsten; Caldwell, Roy; Fourcade, H. Matthew; Boore, Jeffrey L.

    2005-09-07

    We report the first complete mitochondrial genome sequences of stomatopods and compare their features to each other and to those of other crustaceans. Phylogenetic analyses of the concatenated mitochondrial protein-coding sequences were used to explore relationships within the Stomatopoda, within the malacostracan crustaceans, and among crustaceans and insects. Although these analyses support the monophyly of both Malacostraca and, within it, Stomatopoda, it also confirms the view of a paraphyletic Crustacea, with Malacostraca being more closely related to insects than to the branchiopod crustaceans.

  20. TbPIF5 is a Trypanosoma brucei mitochondrial DNA helicase involved in processing of minicircle Okazaki fragments.

    Directory of Open Access Journals (Sweden)

    Beiyu Liu

    2009-09-01

    Full Text Available Trypanosoma brucei's mitochondrial genome, kinetoplast DNA (kDNA, is a giant network of catenated DNA rings. The network consists of a few thousand 1 kb minicircles and several dozen 23 kb maxicircles. Here we report that TbPIF5, one of T. brucei's six mitochondrial proteins related to Saccharomyces cerevisiae mitochondrial DNA helicase ScPIF1, is involved in minicircle lagging strand synthesis. Like its yeast homolog, TbPIF5 is a 5' to 3' DNA helicase. Together with other enzymes thought to be involved in Okazaki fragment processing, TbPIF5 localizes in vivo to the antipodal sites flanking the kDNA. Minicircles in wild type cells replicate unidirectionally as theta-structures and are unusual in that Okazaki fragments are not joined until after the progeny minicircles have segregated. We now report that overexpression of TbPIF5 causes premature removal of RNA primers and joining of Okazaki fragments on theta structures. Further elongation of the lagging strand is blocked, but the leading strand is completed and the minicircle progeny, one with a truncated H strand (ranging from 0.1 to 1 kb, are segregated. The minicircles with a truncated H strand electrophorese on an agarose gel as a smear. This replication defect is associated with kinetoplast shrinkage and eventual slowing of cell growth. We propose that TbPIF5 unwinds RNA primers after lagging strand synthesis, thus facilitating processing of Okazaki fragments.

  1. The phylogeny of Mediterranean tortoises and their close relativesbased on complete mitochondrial genome sequences from museumspecimens

    Energy Technology Data Exchange (ETDEWEB)

    Parham, James F.; Macey, J. Robert; Papenfuss, Theodore J.; Feldman, Chris R.; Turkozan, Oguz; Polymeni, Rosa; Boore, Jeffrey

    2005-04-29

    As part of an ongoing project to generate a mitochondrial database for terrestrial tortoises based on museum specimens, the complete mitochondrial genome sequences of 10 species and a {approx}14 kb sequence from an eleventh species are reported. The sampling of the present study emphasizes Mediterranean tortoises (genus Testudo and their close relatives). Our new sequences are aligned, along with those of two testudinoid turtles from GenBank, Chrysemys picta and Mauremys reevesii, yielding an alignment of 14,858 positions, of which 3,238 are parsimony informative. We develop a phylogenetic taxonomy for Testudo and related species based on well-supported, diagnosable clades. Several well-supported nodes are recovered, including the monophyly of a restricted Testudo, T. kleinmanni + T. marginata (the Chersus clade), and the placement of the enigmatic African pancake tortoise (Malacochersustornieri) within the predominantly Palearctic greater Testudo group (Testudona tax. nov.). Despite the large amount of sequence reported, there is low statistical support for some nodes within Testudona and Sowe do not propose names for those groups. A preliminary and conservative estimation of divergence times implies a late Miocene diversification for the testudonan clade (6-12 million years ago), matching their first appearance in the fossil record. The multi-continental distribution of testudonan turtles can be explained by the establishment of permanent connections between Europe, Africa, and Asia at this time. The arrival of testudonan turtles to Africa occurred after one or more initial tortoise invasions gave rise to the diverse (>25 species) 'Geochelone complex.'Two unusual genomic features are reported for the mtDNA of one tortoise, M. tornieri: (1) nad4 has a shift of reading frame that we suggest is resolved by translational frameshifting of the mRNA on the ribosome during protein synthesis and (2) there are two copies of the control region and trnF, with the

  2. Ribosome. The complete structure of the 55S mammalian mitochondrial ribosome.

    Science.gov (United States)

    Greber, Basil J; Bieri, Philipp; Leibundgut, Marc; Leitner, Alexander; Aebersold, Ruedi; Boehringer, Daniel; Ban, Nenad

    2015-04-17

    Mammalian mitochondrial ribosomes (mitoribosomes) synthesize mitochondrially encoded membrane proteins that are critical for mitochondrial function. Here we present the complete atomic structure of the porcine 55S mitoribosome at 3.8 angstrom resolution by cryo-electron microscopy and chemical cross-linking/mass spectrometry. The structure of the 28S subunit in the complex was resolved at 3.6 angstrom resolution by focused alignment, which allowed building of a detailed atomic structure including all of its 15 mitoribosomal-specific proteins. The structure reveals the intersubunit contacts in the 55S mitoribosome, the molecular architecture of the mitoribosomal messenger RNA (mRNA) binding channel and its interaction with transfer RNAs, and provides insight into the highly specialized mechanism of mRNA recruitment to the 28S subunit. Furthermore, the structure contributes to a mechanistic understanding of aminoglycoside ototoxicity. Copyright © 2015, American Association for the Advancement of Science.

  3. Complete mitochondrial genome phylogeographic analysis of killer whales (Orcinus orca) indicates multiple species

    DEFF Research Database (Denmark)

    Morin, Phillip A; Archer, Frederick I.; Foote, Andrew David

    2010-01-01

    Killer whales (Orcinus orca) currently comprise a single, cosmopolitan species with a diverse diet. However, studies over the last 30 yr have revealed populations of sympatric "ecotypes" with discrete prey preferences, morphology, and behaviors. Although these ecotypes avoid social interactions...... and are not known to interbreed, genetic studies to date have found extremely low levels of diversity in the mitochondrial control region, and few clear phylogeographic patterns worldwide. This low level of diversity is likely due to low mitochondrial mutation rates that are common to cetaceans. Using killer whales...... as a case study, we have developed a method to readily sequence, assemble, and analyze complete mitochondrial genomes from large numbers of samples to more accurately assess phylogeography and estimate divergence times. This represents an important tool for wildlife management, not only for killer whales...

  4. Association between mitochondrial DNA variations and Alzheimer's Disease in the ADNI cohort

    Science.gov (United States)

    Lakatos, Anita; Derbeneva, Olga; Younes, Danny; Keator, David; Bakken, Trygve; Lvova, Maria; Brandon, Marty; Guffanti, Guia; Reglodi, Dora; Saykin, Andrew; Weiner, Michael; Macciardi, Fabio; Schork, Nicholas; Wallace, Douglas C.; Potkin, Steven G.

    2010-01-01

    Despite the central role of amyloid deposition in the development of Alzheimer's disease (AD), the pathogenesis of AD still remains elusive at the molecular level. Increasing evidence suggests that compromised mitochondrial function contributes to the aging process and thus may increase the risk of AD. Dysfunctional mitochondria contribute to reactive oxygen species (ROS) which can lead to extensive macromolecule oxidative damage and the progression of amyloid pathology. Oxidative stress and amyloid toxicity leave neurons chemically vulnerable. Because the brain relies on aerobic metabolism, it is apparent that mitochondria are critical for the cerebral function. Mitochondrial DNA sequence-changes could shift cell dynamics and facilitate neuronal vulnerability. Therefore we postulated that mitochondrial DNA sequence polymorphisms may increase the risk of AD. We evaluated the role of mitochondrial haplogroups derived from 138 mitochondrial polymorphisms in 358 Caucasian ADNI subjects. Our results indicate that the mitochondrial haplogroup UK may confer genetic susceptibility to AD independently of the APOE4 allele. PMID:20538375

  5. Next generation sequencing yields the complete mitochondrial genome of the flathead mullet, Mugil cephalus cryptic species NWP2 (Teleostei: Mugilidae).

    Science.gov (United States)

    Shen, Kang-Ning; Yen, Ta-Chi; Chen, Ching-Hung; Li, Huei-Ying; Chen, Pei-Lung; Hsiao, Chung-Der

    2016-05-01

    In this study, the complete mitogenome sequence of Northwestern Pacific 2 (NWP2) cryptic species of flathead mullet, Mugil cephalus (Teleostei: Mugilidae) has been amplified by long-range PCR and sequenced by next-generation sequencing method. The assembled mitogenome, consisting of 16,686 bp, had the typical vertebrate mitochondrial gene arrangement, including 13 protein-coding genes, 22 transfer RNAs, 2 ribosomal RNAs genes and a non-coding control region of D-loop. D-loop was 909 bp length and was located between tRNA-Pro and tRNA-Phe. The overall base composition of NWP2 M. cephalus was 28.4% for A, 29.8% for C, 26.5% for T and 15.3% for G. The complete mitogenome may provide essential and important DNA molecular data for further phylogenetic and evolutionary analysis for flathead mullet species complex.

  6. Quantification of the mitochondrial DNA common deletion in presbycusis.

    Science.gov (United States)

    Markaryan, Adam; Nelson, Erik G; Hinojosa, Raul

    2009-06-01

    This study was conducted to evaluate the association between the mitochondrial DNA (mtDNA) common deletion (CD) level in cochlear tissue and the severity of hearing loss in individuals with presbycusis. Nineteen individuals with presbycusis, ranging from 60 to 87 years of age, who met strict audiometric criteria were compared with four age frequency-matched normal hearing controls ranging from 51 to 76 years of age. Five additional normal hearing individuals, ranging from 9 to 50 years of age, were also studied. A duplex real time polymerase chain reaction assay was used to quantify the mtDNA in archival cochlear tissue samples. Linear regression models were used for comparison of the CD level between groups. The presbycusis group had a mean CD level of 32% with a standard deviation of 14%, and the normal hearing age matched control group had a mean CD level of 12% with a standard deviation of 2%. This difference in CD levels reached statistical significance (P = .011) and remained significant after adjusting for any differences in age between the two groups (age-adjusted P = .007). Furthermore, there was evidence for a significant association between the CD level and the severity of hearing loss based on audiometric thresholds at 8 kHz (r = 0.44, P = .034; age-adjusted partial correlation = 0.55, P = .007). For the first time, to our knowledge, these results demonstrate a relationship between quantitatively measured levels of the CD in human cochlear tissue and the severity of hearing loss in individuals with presbycusis. Laryngoscope, 2009.

  7. Endangered species: mitochondrial DNA loss as a mechanism of human disease.

    Science.gov (United States)

    Herrera, Alan; Garcia, Iraselia; Gaytan, Norma; Jones, Edith; Maldonado, Alicia; Gilkerson, Robert

    2015-06-01

    Human mitochondrial DNA (mtDNA) is a small maternally inherited DNA, typically present in hundreds of copies in a single human cell. Thus, despite its small size, the mitochondrial genome plays a crucial role in the metabolic homeostasis of the cell. Our understanding of mtDNA genotype-phenotype relationships is derived largely from studies of the classical mitochondrial neuromuscular diseases, in which mutations of mtDNA lead to compromised mitochondrial bioenergetic function, with devastating pathological consequences. Emerging research suggests that loss, rather than mutation, of mtDNA plays a major role across a range of prevalent human diseases, including diabetes mellitus, cardiovascular disease, and aging. Here, we examine the 'rules' of mitochondrial genetics and function, the clinical settings in which loss of mtDNA is an emerging pathogenic mechanism, and explore mtDNA damage and its consequences for the organellar network and cell at large. As extranuclear genetic material arrayed throughout the cell to support metabolism, mtDNA is increasingly implicated in a host of disease conditions, opening a range of exciting questions regarding mtDNA and its role in cellular homeostasis.

  8. The current status of studies on mitochondrial DNA with tumor, radiation biological effects and aging

    International Nuclear Information System (INIS)

    Liu Qingjie; Sang Lu

    2004-01-01

    The mitochondrial plays a very important role in sustaining the normal physiological function, because it is the center of energy making and mitochondrial DNA (mtDNA) is the only genetic material outside the nuclear. The result of studies showed that many diseases have a close relationship with mtDNA mutation and deletion. This article reviewed the current status of research on mtDNA with tumor, radiation biological effects and aging, in order to initiate the application study of mtDNA in the circle of radiation medicine

  9. The potential role for use of mitochondrial DNA copy number as predictive biomarker in presbycusis.

    Science.gov (United States)

    Falah, Masoumeh; Houshmand, Massoud; Najafi, Mohammad; Balali, Maryam; Mahmoudian, Saeid; Asghari, Alimohamad; Emamdjomeh, Hessamaldin; Farhadi, Mohammad

    2016-01-01

    Age-related hearing impairment, or presbycusis, is the most common communication disorder and neurodegenerative disease in the elderly. Its prevalence is expected to increase, due to the trend of growth of the elderly population. The current diagnostic test for detection of presbycusis is implemented after there has been a change in hearing sensitivity. Identification of a pre-diagnostic biomarker would raise the possibility of preserving hearing sensitivity before damage occurs. Mitochondrial dysfunction, including the production of reactive oxygen species and induction of expression of apoptotic genes, participates in the progression of presbycusis. Mitochondrial DNA sequence variation has a critical role in presbycusis. However, the nature of the relationship between mitochondrial DNA copy number, an important biomarker in many other diseases, and presbycusis is undetermined. Fifty-four subjects with presbycusis and 29 healthy controls were selected after ear, nose, throat examination and pure-tone audiometry. DNA was extracted from peripheral blood samples. The copy number of mitochondrial DNA relative to the nuclear genome was measured by quantitative real-time polymerase chain reaction. Subjects with presbycusis had a lower median mitochondrial DNA copy number than healthy subjects and the difference was statistically significant ( P =0.007). Mitochondrial DNA copy number was also significantly associated with degree of hearing impairment ( P =0.025) and audiogram configuration ( P =0.022). The findings of this study suggest that lower mitochondrial DNA copy number is responsible for presbycusis through alteration of mitochondrial function. Moreover, the significant association of mitochondrial DNA copy number in peripheral blood samples with the degree of hearing impairment and audiogram configuration has potential for use as a standard test for presbycusis, providing the possibility of the development of an easy-to-use biomarker for the early detection of

  10. The importance of mitochondrial DNA in aging and cancer

    DEFF Research Database (Denmark)

    Madsen, Claus Desler; Espersen, Maiken Lise Marcker; Singh, Keshav K

    2011-01-01

    Mitochondrial dysfunction has been implicated in premature aging, age-related diseases, and tumor initiation and progression. Alterations of the mitochondrial genome accumulate both in aging tissue and tumors. This paper describes our contemporary view of mechanisms by which alterations...... of the mitochondrial genome contributes to the development of age- and tumor-related pathological conditions. The mechanisms described encompass altered production of mitochondrial ROS, altered regulation of the nuclear epigenome, affected initiation of apoptosis, and a limiting effect on the production...

  11. Fidelity and mutational spectrum of Pfu DNA polymerase on a human mitochondrial DNA sequence.

    Science.gov (United States)

    André, P; Kim, A; Khrapko, K; Thilly, W G

    1997-08-01

    The study of rare genetic changes in human tissues requires specialized techniques. Point mutations at fractions at or below 10(-6) must be observed to discover even the most prominent features of the point mutational spectrum. PCR permits the increase in number of mutant copies but does so at the expense of creating many additional mutations or "PCR noise". Thus, each DNA sequence studied must be characterized with regard to the DNA polymerase and conditions used to avoid interpreting a PCR-generated mutation as one arising in human tissue. The thermostable DNA polymerase derived from Pyrococcus furiosus designated Pfu has the highest fidelity of any DNA thermostable polymerase studied to date, and this property recommends it for analyses of tissue mutational spectra. Here, we apply constant denaturant capillary electrophoresis (CDCE) to separate and isolate the products of DNA amplification. This new strategy permitted direct enumeration and identification of point mutations created by Pfu DNA polymerase in a 96-bp low melting domain of a human mitochondrial sequence despite the very low mutant fractions generated in the PCR process. This sequence, containing part of the tRNA glycine and NADH dehydrogenase subunit 3 genes, is the target of our studies of mitochondrial mutagenesis in human cells and tissues. Incorrectly synthesized sequences were separated from the wild type as mutant/wild-type heteroduplexes by sequential enrichment on CDCE. An artificially constructed mutant was used as an internal standard to permit calculation of the mutant fraction. Our study found that the average error rate (mutations per base pair duplication) of Pfu was 6.5 x 10(-7), and five of its more frequent mutations (hot spots) consisted of three transversions (GC-->TA, AT-->TA, and AT-->CG), one transition (AT-->GC), and one 1-bp deletion (in an AAAAAA sequence). To achieve an even higher sensitivity, the amount of Pfu-induced mutants must be reduced.

  12. Psychiatric symptoms of patients with primary mitochondrial DNA disorders

    Directory of Open Access Journals (Sweden)

    Inczedy-Farkas Gabriella

    2012-02-01

    Full Text Available Abstract Background The aim of our study was to assess psychiatric symptoms in patients with genetically proven primary mutation of the mitochondrial DNA. Methods 19 adults with known mitochondrial mutation (MT have been assessed with the Stanford Health Assessment Questionnaire 20-item Disability Index (HAQ-DI, the Symptom Check List-90-Revised (SCL-90-R, the Beck Depression Inventory-Short Form (BDI-SF, the Hamilton Depression Rating Scale (HDRS and the clinical version of the Structured Clinical Interview for the the DSM-IV (SCID-I and SCID-II As control, 10 patients with hereditary sensorimotor neuropathy (HN, harboring the peripheral myelin protein-22 (PMP22 mutation were examined with the same tools. Results The two groups did not differ significantly in gender, age or education. Mean HAQ-DI score was 0.82 in the MT (range: 0-1.625 and 0.71 in the HN group (range: 0-1.625. Level of disability between the two groups did not differ significantly (p = 0.6076. MT patients scored significantly higher on the BDI-SF and HDRS than HN patients (12.85 versus 4.40, p = 0.031, and 15.62 vs 7.30, p = 0.043, respectively. The Global Severity Index (GSI of SCL-90-R also showed significant difference (1.44 vs 0.46, p = 0.013 as well as the subscales except for somatization. SCID-I interview yielded a variety of mood disorders in both groups. Eight MT patient (42% had past, 6 (31% had current, 5 (26% had both past and current psychiatric diagnosis, yielding a lifetime prevalence of 9/19 (47% in the MT group. In the HN group, 3 patients had both past and current diagnosis showing a lifetime prevalence of 3/10 (30% in this group. SCID-II detected personality disorder in 8 MT cases (42%, yielding 3 avoidant, 2 obsessive-compulsive and 3 personality disorder not otherwise specified (NOS diagnosis. No personality disorder was identified in the HN group. Conclusions Clinicians should be aware of the high prevalence of psychiatric symptoms in patients with

  13. Nuclear transfer to prevent mitochondrial DNA disorders : revisiting the debate on reproductive cloning

    NARCIS (Netherlands)

    Bredenoord, A. L.; Dondorp, W.; Pennings, G.; De Wert, G.

    Preclinical experiments are currently performed to examine the feasibility of several types of nuclear transfer to prevent mitochondrial DNA (mtDNA) disorders. Whereas the two most promising types of nuclear transfer to prevent mtDNA disorders, spindle transfer and pronuclear transfer, do not amount

  14. Heterology of mitochondrial DNA from mammals detected by electron microscopic heteroduplex analyses

    DEFF Research Database (Denmark)

    Christiansen, Gunna; Christiansen, C

    1983-01-01

    Heteroduplex analysis of mitochondrial DNA (mtDNA) from evolutionary closely related mammals (rat vs. mouse, man vs. monkey) are analyzed and compared to heteroduplex analysis of mt-DNA from more distantly related mammals (rat vs. man, rat vs. monkey, mouse vs. man, mouse vs. monkey and man vs. c...

  15. The interplay between SUCLA2, SUCLG2, and mitochondrial DNA depletion

    DEFF Research Database (Denmark)

    Miller, Chaya; Wang, Liya; Ostergaard, Elsebet

    2011-01-01

    SUCLA2-related mitochondrial DNA (mtDNA) depletion syndrome is a result of mutations in the β subunit of the ADP-dependent isoform of the Krebs cycle succinyl-CoA synthase (SCS). The mechanism of tissue specificity and mtDNA depletion is elusive but complementation by the GDP-dependent isoform en...

  16. Distinct structural features of TFAM drive mitochondrial DNA packaging versus transcriptional activation.

    Science.gov (United States)

    Ngo, Huu B; Lovely, Geoffrey A; Phillips, Rob; Chan, David C

    2014-01-01

    TFAM (transcription factor A, mitochondrial) is a DNA-binding protein that activates transcription at the two major promoters of mitochondrial DNA (mtDNA)--the light strand promoter (LSP) and the heavy strand promoter 1 (HSP1). Equally important, it coats and packages the mitochondrial genome. TFAM has been shown to impose a U-turn on LSP DNA; however, whether this distortion is relevant at other sites is unknown. Here we present crystal structures of TFAM bound to HSP1 and to nonspecific DNA. In both, TFAM similarly distorts the DNA into a U-turn. Yet, TFAM binds to HSP1 in the opposite orientation from LSP explaining why transcription from LSP requires DNA bending, whereas transcription at HSP1 does not. Moreover, the crystal structures reveal dimerization of DNA-bound TFAM. This dimerization is dispensable for DNA bending and transcriptional activation but is important in DNA compaction. We propose that TFAM dimerization enhances mitochondrial DNA compaction by promoting looping of the DNA.

  17. A complete mitochondrial genome sequence of the wild two-humped camel (Camelus bactrianus ferus: an evolutionary history of camelidae

    Directory of Open Access Journals (Sweden)

    Meng He

    2007-07-01

    Full Text Available Abstract Background The family Camelidae that evolved in North America during the Eocene survived with two distinct tribes, Camelini and Lamini. To investigate the evolutionary relationship between them and to further understand the evolutionary history of this family, we determined the complete mitochondrial genome sequence of the wild two-humped camel (Camelus bactrianus ferus, the only wild survivor of the Old World camel. Results The mitochondrial genome sequence (16,680 bp from C. bactrianus ferus contains 13 protein-coding, two rRNA, and 22 tRNA genes as well as a typical control region; this basic structure is shared by all metazoan mitochondrial genomes. Its protein-coding region exhibits codon usage common to all mammals and possesses the three cryptic stop codons shared by all vertebrates. C. bactrianus ferus together with the rest of mammalian species do not share a triplet nucleotide insertion (GCC that encodes a proline residue found only in the nd1 gene of the New World camelid Lama pacos. This lineage-specific insertion in the L. pacos mtDNA occurred after the split between the Old and New World camelids suggests that it may have functional implication since a proline insertion in a protein backbone usually alters protein conformation significantly, and nd1 gene has not been seen as polymorphic as the rest of ND family genes among camelids. Our phylogenetic study based on complete mitochondrial genomes excluding the control region suggested that the divergence of the two tribes may occur in the early Miocene; it is much earlier than what was deduced from the fossil record (11 million years. An evolutionary history reconstructed for the family Camelidae based on cytb sequences suggested that the split of bactrian camel and dromedary may have occurred in North America before the tribe Camelini migrated from North America to Asia. Conclusion Molecular clock analysis of complete mitochondrial genomes from C. bactrianus ferus and L

  18. Anaphase onset before complete DNA replication with intact checkpoint responses

    DEFF Research Database (Denmark)

    Torres-Rosell, Jordi; De Piccoli, Giacomo; Cordon-Preciado, Violeta

    2007-01-01

    Cellular checkpoints prevent mitosis in the presence of stalled replication forks. Whether checkpoints also ensure the completion of DNA replication before mitosis is unknown. Here, we show that in yeast smc5-smc6 mutants, which are related to cohesin and condensin, replication is delayed, most...

  19. The complete mitochondrial genome of the bagarius yarrelli from honghe river

    Science.gov (United States)

    Du, M.; Zhou, C. J.; Niu, B. Z.; Liu, Y. H.; Li, N.; Ai, J. L.; Xu, G. L.

    2016-08-01

    The total length of mitochondrial DNA sequence of the Bagarius yarrelli from the Honghe river of China is determined in this paper. The total length of the circular molecule is 16524 base pair which denoted a similar gene order to that of the other bony fishes, which include a non-coding control region, a replicated origin, two ribosome RNA (rRNA) genes, 22 transfer RNA (tRNA) genes as well as 13 protein-coding genes. Its whole base constitution is 31.4% for A, 26.9% for C, 15.7% for G and 26.0% for T, with an A+T bias of 57.4%. Those mitochondrial data would contribute to further study molecular evolution and population genetics of this species.

  20. Cockayne syndrome group B protein promotes mitochondrial DNA stability by supporting the DNA repair association with the mitochondrial membrane

    DEFF Research Database (Denmark)

    Aamann, Maria Diget; Sorensen, Martin M; Hvitby, Christina Poulsen

    2010-01-01

    in genomic maintenance and transcriptome regulation. By immunocytochemistry, mitochondrial fractionation, and Western blotting, we demonstrate that CSB localizes to mitochondria in different types of cells, with increased mitochondrial distribution following menadione-induced oxidative stress. Moreover, our...

  1. A role for recombination junctions in the segregation of mitochondrial DNA in yeast.

    Science.gov (United States)

    Lockshon, D; Zweifel, S G; Freeman-Cook, L L; Lorimer, H E; Brewer, B J; Fangman, W L

    1995-06-16

    In S. cerevisiae, mitochondrial DNA (mtDNA) molecules, in spite of their high copy number, segregate as if there were a small number of heritable units. The rapid segregation of mitochondrial genomes can be analyzed using mtDNA deletion variants. These small, amplified genomes segregate preferentially from mixed zygotes relative to wild-type mtDNA. This segregation advantage is abolished by mutations in a gene, MGT1, that encodes a recombination junction-resolving enzyme. We show here that resolvase deficiency causes a larger proportion of molecules to be linked together by recombination junctions, resulting in the aggregation of mtDNA into a small number of cytological structures. This change in mtDNA structure can account for the increased mitotic loss of mtDNA and the altered pattern of mtDNA segregation from zygotes. We propose that the level of unresolved recombination junctions influences the number of heritable units of mtDNA.

  2. The complete mitochondrial genome of Setaria digitata (Nematoda: Filarioidea): Mitochondrial gene content, arrangement and composition compared with other nematodes.

    Science.gov (United States)

    Yatawara, Lalani; Wickramasinghe, Susiji; Rajapakse, R P V J; Agatsuma, Takeshi

    2010-09-01

    In the present study, we determined the complete mitochondrial (mt) genome sequence (13,839bp) of parasitic nematode Setaria digitata and its structure and organization compared with Onchocerca volvulus, Dirofilaria immitis and Brugia malayi. The mt genome of S. digitata is slightly larger than the mt genomes of other filarial nematodes. S. digitata mt genome contains 36 genes (12 protein-coding genes, 22 transfer RNAs and 2 ribosomal RNAs) that are typically found in metazoans. This genome contains a high A+T (75.1%) content and low G+C content (24.9%). The mt gene order for S. digitata is the same as those for O. volvulus, D. immitis and B. malayi but it is distinctly different from other nematodes compared. The start codons inferred in the mt genome of S. digitata are TTT, ATT, TTG, ATG, GTT and ATA. Interestingly, the initiation codon TTT is unique to S. digitata mt genome and four protein-coding genes use this codon as a translation initiation codon. Five protein-coding genes use TAG as a stop codon whereas three genes use TAA and four genes use T as a termination codon. Out of 64 possible codons, only 57 are used for mitochondrial protein-coding genes of S. digitata. T-rich codons such as TTT (18.9%), GTT (7.9%), TTG (7.8%), TAT (7%), ATT (5.7%), TCT (4.8%) and TTA (4.1%) are used more frequently. This pattern of codon usage reflects the strong bias for T in the mt genome of S. digitata. In conclusion, the present investigation provides new molecular data for future studies of the comparative mitochondrial genomics and systematic of parasitic nematodes of socio-economic importance. 2010 Elsevier B.V. All rights reserved.

  3. Analysis of complete mitochondrial genome sequences increases phylogenetic resolution of bears (Ursidae, a mammalian family that experienced rapid speciation

    Directory of Open Access Journals (Sweden)

    Ryder Oliver A

    2007-10-01

    Full Text Available Abstract Background Despite the small number of ursid species, bear phylogeny has long been a focus of study due to their conservation value, as all bear genera have been classified as endangered at either the species or subspecies level. The Ursidae family represents a typical example of rapid evolutionary radiation. Previous analyses with a single mitochondrial (mt gene or a small number of mt genes either provide weak support or a large unresolved polytomy for ursids. We revisit the contentious relationships within Ursidae by analyzing complete mt genome sequences and evaluating the performance of both entire mt genomes and constituent mtDNA genes in recovering a phylogeny of extremely recent speciation events. Results This mitochondrial genome-based phylogeny provides strong evidence that the spectacled bear diverged first, while within the genus Ursus, the sloth bear is the sister taxon of all the other five ursines. The latter group is divided into the brown bear/polar bear and the two black bears/sun bear assemblages. These findings resolve the previous conflicts between trees using partial mt genes. The ability of different categories of mt protein coding genes to recover the correct phylogeny is concordant with previous analyses for taxa with deep divergence times. This study provides a robust Ursidae phylogenetic framework for future validation by additional independent evidence, and also has significant implications for assisting in the resolution of other similarly difficult phylogenetic investigations. Conclusion Identification of base composition bias and utilization of the combined data of whole mitochondrial genome sequences has allowed recovery of a strongly supported phylogeny that is upheld when using multiple alternative outgroups for the Ursidae, a mammalian family that underwent a rapid radiation since the mid- to late Pliocene. It remains to be seen if the reliability of mt genome analysis will hold up in studies of other

  4. Implementation of DNA mitochondrial analysis in rhinoclemmys nasuta (Testudines: Geoemydidae)

    International Nuclear Information System (INIS)

    Molina Henao, Yherson Franchesco; Barreto, Guillermo; Giraldo, Alan

    2014-01-01

    Rhinoclemmys nasuta (Testudines: geoemydidae) is considered an almost endemic specie to Colombia and the most primitive species of rhynoclemmys. However, it is classified data deficient by iucn because the available information is not enough to make a direct or indirect assessment of its extinction risk. Here, we describe the implementation of the method to analyze the mitochondrial DNA control sequence (mtdna) of R. nasuta in order to generate tools for future studies in systematics and population conservation. Genomic MTDNA was extracted by salting-out from blood samples from Isla Palma and Playa Chucheros (Bahia Malaga Colombian Pacific Coast) and we used a pair of degenerate primers (reported for chrysemys picta, testudines: emydidae) to perform amplification. Fragments of 800pb were obtained and the sequencing reaction was effective. A homology percentage above of 92 % was established between the obtained sequences and MTDNA sequences from Sacalia quadriocellata (Testudines: geoemydidae), and Cuora aurocapitata (Testudines: geoemydidae) reported in the genbank. This result shows that the described method can be a useful tool for the study of R. nasuta populations in the Colombian pacific region, achieving an effective sequencing of the MTDNA control region of this species.

  5. Complete mitochondrial genome sequence of the hedgehog seahorse Hippocampus spinosissimus Weber, 1933 (Gasterosteiformes:Syngnathidae).

    Science.gov (United States)

    Liu, Shuaishuai; Zhang, Yanhong; Wang, Changming; Lin, Qiang

    2016-07-01

    The complete mitochondrial genome sequence of the hedgehog seahorse Hippocampus spinosissimus was first determined in this article. The total length of H. spinosissimus mitogenome is 16 527 bp and consists of 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and 1 control region. The gene order and composition of H. spinosissimus were similar to those of most other vertebrates. The overall base composition of H. spinosissimus is 32.1% A, 30.3% T, 14.9% G and 22.7% C, with a slight A + T-rich feature (62.4%). Phylogenetic analyses based on complete mitochondrial genome sequence showed that H. spinosissimus has a close genetic relationship to H. ingens and H. kuda.

  6. The Role of Mitochondrial DNA in Mediating Alveolar Epithelial Cell Apoptosis and Pulmonary Fibrosis

    Science.gov (United States)

    Kim, Seok-Jo; Cheresh, Paul; Jablonski, Renea P.; Williams, David B.; Kamp, David W.

    2015-01-01

    Convincing evidence has emerged demonstrating that impairment of mitochondrial function is critically important in regulating alveolar epithelial cell (AEC) programmed cell death (apoptosis) that may contribute to aging-related lung diseases, such as idiopathic pulmonary fibrosis (IPF) and asbestosis (pulmonary fibrosis following asbestos exposure). The mammalian mitochondrial DNA (mtDNA) encodes for 13 proteins, including several essential for oxidative phosphorylation. We review the evidence implicating that oxidative stress-induced mtDNA damage promotes AEC apoptosis and pulmonary fibrosis. We focus on the emerging role for AEC mtDNA damage repair by 8-oxoguanine DNA glycosylase (OGG1) and mitochondrial aconitase (ACO-2) in maintaining mtDNA integrity which is important in preventing AEC apoptosis and asbestos-induced pulmonary fibrosis in a murine model. We then review recent studies linking the sirtuin (SIRT) family members, especially SIRT3, to mitochondrial integrity and mtDNA damage repair and aging. We present a conceptual model of how SIRTs modulate reactive oxygen species (ROS)-driven mitochondrial metabolism that may be important for their tumor suppressor function. The emerging insights into the pathobiology underlying AEC mtDNA damage and apoptosis is suggesting novel therapeutic targets that may prove useful for the management of age-related diseases, including pulmonary fibrosis and lung cancer. PMID:26370974

  7. Fructose-Rich Diet Affects Mitochondrial DNA Damage and Repair in Rats.

    Science.gov (United States)

    Cioffi, Federica; Senese, Rosalba; Lasala, Pasquale; Ziello, Angela; Mazzoli, Arianna; Crescenzo, Raffaella; Liverini, Giovanna; Lanni, Antonia; Goglia, Fernando; Iossa, Susanna

    2017-03-24

    Evidence indicates that many forms of fructose-induced metabolic disturbance are associated with oxidative stress and mitochondrial dysfunction. Mitochondria are prominent targets of oxidative damage; however, it is not clear whether mitochondrial DNA (mtDNA) damage and/or its lack of repair are events involved in metabolic disease resulting from a fructose-rich diet. In the present study, we evaluated the degree of oxidative damage to liver mtDNA and its repair, in addition to the state of oxidative stress and antioxidant defense in the liver of rats fed a high-fructose diet. We used male rats feeding on a high-fructose or control diet for eight weeks. Our results showed an increase in mtDNA damage in the liver of rats fed a high-fructose diet and this damage, as evaluated by the expression of DNA polymerase γ, was not repaired; in addition, the mtDNA copy number was found to be significantly reduced. A reduction in the mtDNA copy number is indicative of impaired mitochondrial biogenesis, as is the finding of a reduction in the expression of genes involved in mitochondrial biogenesis. In conclusion, a fructose-rich diet leads to mitochondrial and mtDNA damage, which consequently may have a role in liver dysfunction and metabolic diseases.

  8. Complex forms of mitochondrial DNA in human B cells transformed by Epstein-Barr virus (EBV)

    DEFF Research Database (Denmark)

    Christiansen, Gunna; Christiansen, C; Zeuthen, J

    1983-01-01

    Human lymphocytes and lymphoid cell lines were analyzed for the presence of complex forms of mitochondrial DNA (mtDNA) by electron microscopy. A high frequency (9%-14.5%) of catenated dimers, circular dimers, or oligomers were found in samples from Epstein-Barr-virus-(EBV) transformed lymphoblast......Human lymphocytes and lymphoid cell lines were analyzed for the presence of complex forms of mitochondrial DNA (mtDNA) by electron microscopy. A high frequency (9%-14.5%) of catenated dimers, circular dimers, or oligomers were found in samples from Epstein-Barr-virus-(EBV) transformed...

  9. The complete mitochondrial genome sequence of the maned wolf (Chrysocyon brachyurus).

    Science.gov (United States)

    Zhao, Chao; Yang, Xiufeng; Zhang, Honghai; Zhang, Jin; Chen, Lei; Sha, Weilai; Liu, Guangshuai

    2016-01-01

    In this study, the complete mitochondrial genome of the maned wolf (Chrysocyon brachyurus), the unique species in Chrysocyon, was sequenced and reported for the first time using blood samples obtained from a female individual in Shanghai Zoo, China. Sequence analysis showed that the genome structure was in accordance with other Canidae species and it contained 12 S rRNA gene, 16 S rRNA gene, 22 tRNA genes, 13 protein-coding genes and 1 control region.

  10. The complete mitochondrial genome of the Giant Manta ray, Manta birostris.

    Science.gov (United States)

    Hinojosa-Alvarez, Silvia; Díaz-Jaimes, Pindaro; Marcet-Houben, Marina; Gabaldón, Toni

    2015-01-01

    The complete mitochondrial genome of the giant manta ray (Manta birostris), consists of 18,075 bp with rich A + T and low G content. Gene organization and length is similar to other species of ray. It comprises of 13 protein-coding genes, 2 rRNAs genes, 23 tRNAs genes and 1 non-coding sequence, and the control region. We identified an AT tandem repeat region, similar to that reported in Mobula japanica.

  11. The complete mitochondrial genome of a stonefly species, Kamimuria chungnanshana Wu, 1948 (Plecoptera: Perlidae).

    Science.gov (United States)

    Wang, Kai; Ding, Shuangmei; Yang, Ding

    2016-09-01

    This study determined the complete mitochondrial (mt) genome of the stonefly, Kamimuria chungnanshana Wu, 1948. The mt genome is 15, 943 bp in size and contains 37 canonical genes which include 22 transfer RNA genes, 13 protein-coding genes, and two ribosomal RNA genes, the control region is 1062 bp in length. The phylogenetic tree shows that Kamimuria chungnanshana is sister group of Kamimuria wangi.

  12. The complete mitochondrial genome of the endangered spotback skate, Atlantoraja castelnaui.

    Science.gov (United States)

    Duckett, Drew J L; Naylor, Gavin J P

    2016-05-01

    Chondrichthyes are a highly threatened class of organisms, largely due to overfishing and other human activities. The present study describes the complete mitochondrial genome (16,750 bp) of the endangered spotback skate, Atlantoraja castelnaui. The mitogenome is arranged in a typical vertebrate fashion, containing 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and 1 control region.

  13. Complete mitochondrial genome from South American catfish Pseudoplatystoma reticulatum (Eigenmann & Eigenmann) and its impact in Siluriformes phylogenetic tree.

    Science.gov (United States)

    Villela, Luciana Cristine Vasques; Alves, Anderson Luis; Varela, Eduardo Sousa; Yamagishi, Michel Eduardo Beleza; Giachetto, Poliana Fernanda; da Silva, Naiara Milagres Augusto; Ponzetto, Josi Margarete; Paiva, Samuel Rezende; Caetano, Alexandre Rodrigues

    2017-02-01

    The cachara (Pseudoplatystoma reticulatum) is a Neotropical freshwater catfish from family Pimelodidae (Siluriformes) native to Brazil. The species is of relative economic importance for local aquaculture production and basic biological information is under development to help boost efforts to domesticate and raise the species in commercial systems. The complete cachara mitochondrial genome was obtained by assembling Illumina RNA-seq data from pooled samples. The full mitogenome was found to be 16,576 bp in length, showing the same basic structure, order, and genetic organization observed in other Pimelodidae, with 13 protein-coding genes, 2 rNA genes, 22 trNAs, and a control region. Observed base composition was 24.63% T, 28.47% C, 31.45% A, and 15.44% G. With the exception of NAD6 and eight tRNAs, all of the observed mitochondrial genes were found to be coded on the H strand. A total of 107 SNPs were identified in P. reticulatum mtDNA, 67 of which were located in coding regions. Of these SNPs, 10 result in amino acid changes. Analysis of the obtained sequence with 94 publicly available full Siluriformes mitogenomes resulted in a phylogenetic tree that generally agreed with available phylogenetic proposals for the order. The first report of the complete Pseudoplatystoma reticulatum mitochondrial genome sequence revealed general gene organization, structure, content, and order similar to most vertebrates. Specific sequence and content features were observed and may have functional attributes which are now available for further investigation.

  14. The complete mitochondrial genomes for three Toxocara species of human and animal health significance

    Directory of Open Access Journals (Sweden)

    Wu Xiang-Yun

    2008-05-01

    Full Text Available Abstract Background Studying mitochondrial (mt genomics has important implications for various fundamental areas, including mt biochemistry, physiology and molecular biology. In addition, mt genome sequences have provided useful markers for investigating population genetic structures, systematics and phylogenetics of organisms. Toxocara canis, Toxocara cati and Toxocara malaysiensis cause significant health problems in animals and humans. Although they are of importance in human and animal health, no information on the mt genomes for any of Toxocara species is available. Results The sizes of the entire mt genome are 14,322 bp for T. canis, 14029 bp for T. cati and 14266 bp for T. malaysiensis, respectively. These circular genomes are amongst the largest reported to date for all secernentean nematodes. Their relatively large sizes relate mainly to an increased length in the AT-rich region. The mt genomes of the three Toxocara species all encode 12 proteins, two ribosomal RNAs and 22 transfer RNA genes, but lack the ATP synthetase subunit 8 gene, which is consistent with all other species of Nematode studied to date, with the exception of Trichinella spiralis. All genes are transcribed in the same direction and have a nucleotide composition high in A and T, but low in G and C. The contents of A+T of the complete genomes are 68.57% for T. canis, 69.95% for T. cati and 68.86% for T. malaysiensis, among which the A+T for T. canis is the lowest among all nematodes studied to date. The AT bias had a significant effect on both the codon usage pattern and amino acid composition of proteins. The mt genome structures for three Toxocara species, including genes and non-coding regions, are in the same order as for Ascaris suum and Anisakis simplex, but differ from Ancylostoma duodenale, Necator americanus and Caenorhabditis elegans only in the location of the AT-rich region, whereas there are substantial differences when compared with Onchocerca volvulus

  15. Oxidative damage of mitochondrial and nuclear DNA induced by ionizing radiation in human hepatoblastoma cells

    International Nuclear Information System (INIS)

    Morales, Albert; Miranda, Merce; Sanchez-Reyes, Alberto; Biete, Alberto; Fernandez-Checa, Jose C.

    1998-01-01

    Purpose: Since reactive oxygen species (ROS) act as mediators of radiation-induced cellular damage, the aim of our studies was to determine the effects of ionizing radiation on the regulation of hepatocellular reduced glutathione (GSH), survival and integrity of nuclear and mitochondrial DNA (mtDNA) in human hepatoblastoma cells (Hep G2) depleted of GSH prior to radiation. Methods and Materials: GSH, oxidized glutathione (GSSG), and generation of ROS were determined in irradiated (50-500 cGy) Hep G2 cells. Clonogenic survival, nuclear DNA fragmentation, and integrity of mtDNA were assessed in cells depleted of GSH prior to radiation. Results: Radiation of Hep G2 cells (50-400 cGy) resulted in a dose-dependent generation of ROS, an effect accompanied by a decrease of reduced GSH, ranging from a 15% decrease for 50 cGy to a 25% decrease for 400 cGy and decreased GSH/GSSG from a ratio of 17 to a ratio of 7 for controls and from 16 to 6 for diethyl maleate (DEM)-treated cells. Depletion of GSH prior to radiation accentuated the increase of ROS by 40-50%. The depletion of GSH by radiation was apparent in different subcellular sites, being particularly significant in mitochondria. Furthermore, depletion of nuclear GSH to 50-60% of initial values prior to irradiation (400 cGy) resulted in DNA fragmentation and apoptosis. Consequently, the survival of Hep G2 to radiation was reduced from 25% of cells not depleted of GSH to 10% of GSH-depleted cells. Fitting the survival rate of cells as a function of GSH using a theoretical model confirmed cellular GSH as a key factor in determining intrinsic sensitivity of Hep G2 cells to radiation. mtDNA displayed an increased susceptibility to the radiation-induced loss of integrity compared to nuclear DNA, an effect that was potentiated by GSH depletion in mitochondria (10-15% intact mtDNA in GSH-depleted cells vs. 25-30% of repleted cells). Conclusion: GSH plays a critical protective role in maintaining nuclear and mtDNA functional

  16. Thymidine kinase 2 enzyme kinetics elucidate the mechanism of thymidine-induced mitochondrial DNA depletion.

    Science.gov (United States)

    Sun, Ren; Wang, Liya

    2014-10-07

    Mitochondrial thymidine kinase 2 (TK2) is a nuclear gene-encoded protein, synthesized in the cytosol and subsequently translocated into the mitochondrial matrix, where it catalyzes the phosphorylation of thymidine (dT) and deoxycytidine (dC). The kinetics of dT phosphorylation exhibits negative cooperativity, but dC phosphorylation follows hyperbolic Michaelis-Menten kinetics. The two substrates compete with each other in that dT is a competitive inhibitor of dC phosphorylation, while dC acts as a noncompetitive inhibitor of dT phosphorylation. In addition, TK2 is feedback inhibited by dTTP and dCTP. TK2 also phosphorylates a number of pyrimidine nucleoside analogues used in antiviral and anticancer therapy and thus plays an important role in mitochondrial toxicities caused by nucleoside analogues. Deficiency in TK2 activity due to genetic alterations causes devastating mitochondrial diseases, which are characterized by mitochondrial DNA (mtDNA) depletion or multiple deletions in the affected tissues. Severe TK2 deficiency is associated with early-onset fatal mitochondrial DNA depletion syndrome, while less severe deficiencies result in late-onset phenotypes. In this review, studies of the enzyme kinetic behavior of TK2 enzyme variants are used to explain the mechanism of mtDNA depletion caused by TK2 mutations, thymidine overload due to thymidine phosphorylase deficiency, and mitochondrial toxicity caused by antiviral thymidine analogues.

  17. Differential chromosomal and mitochondrial DNA synthesis in temperature-sensitive mutants of Ustilago maydis

    Energy Technology Data Exchange (ETDEWEB)

    Unrau, P.

    1977-01-01

    The amount and type of residual DNA synthesis was determined in eight temperature-sensitive mutants of the smut fungus Ustilago maydis after incubation at the restrictive temperature (32/sup 0/C) for eight hours. Mutants ts-220, ts-207, ts-432 and ts-346 were found to have an overall reduction in the synthesis of both nuclear and mitochondrial DNA in comparison to the wild-type. In mutants ts-20, tsd 1-1, ts-84 and pol 1-1 nuclear DNA synthesis was depressed relative to mitochondrial synthesis. The DNA-polymerase mutant pol 1-1 had persistent nuclear synthesis at about 50% of the rate of synthesis of mitochondrial DNA and similar behavior was observed in a diploid homozygous strain. Mutant ts-84 had an initial burst of DNA synthesis which was reduced for nuclear but not mitochondrial synthesis after three hours preincubation at 32/sup 0/C. tsd 1-1 and ts-20 had nuclear residual synthesis amounting to about 25% of the relative rate of mitochondrial synthesis which correlates to increasing UV sensitivity of these strains on incubation at 32/sup 0/C. A pol 1-1 ts-84 double mutant had an additive loss of nuclear DNA synthesis which indicates that the steps of replication involved may be sequential.

  18. Adult cases of mitochondrial DNA depletion due to TK2 defect: an expanding spectrum.

    Science.gov (United States)

    Béhin, A; Jardel, C; Claeys, K G; Fagart, J; Louha, M; Romero, N B; Laforêt, P; Eymard, B; Lombès, A

    2012-02-28

    In this study we aim to demonstrate the occurrence of adult forms of TK2 mutations causing progressive mitochondrial myopathy with significant muscle mitochondrial DNA (mtDNA) depletion. Patients' investigations included serum creatine kinase, blood lactate, electromyographic, echocardiographic, and functional respiratory analyses as well as TK2 gene sequencing and TK2 activity measurement. Mitochondrial activities and mtDNA were analyzed in the patients' muscle biopsy. The 3 adult patients with TK2 mutations presented with slowly progressive myopathy compatible with a fairly normal life during decades. Apart from its much slower progression, these patients' phenotype closely resembled that of pediatric cases including early onset, absence of CNS symptoms, generalized muscle weakness predominating on axial and proximal muscles but affecting facial, ocular, and respiratory muscles, typical mitochondrial myopathy with a mosaic pattern of COX-negative and ragged-red fibers, combined mtDNA-dependent respiratory complexes deficiency and mtDNA depletion. In accordance with the disease's relatively slow progression, the residual mtDNA content was higher than that observed in pediatric cases. That difference was not explained by the type of the TK2 mutations or by the residual TK2 activity. TK2 mutations can cause mitochondrial myopathy with a slow progression. Comparison of patients with similar mutations but different disease progression might address potential mechanisms of mtDNA maintenance modulation.

  19. Complete mitochondrial genome sequences of three bats species and whole genome mitochondrial analyses reveal patterns of codon bias and lend support to a basal split in Chiroptera.

    Science.gov (United States)

    Meganathan, P R; Pagan, Heidi J T; McCulloch, Eve S; Stevens, Richard D; Ray, David A

    2012-01-15

    Order Chiroptera is a unique group of mammals whose members have attained self-powered flight as their main mode of locomotion. Much speculation persists regarding bat evolution; however, lack of sufficient molecular data hampers evolutionary and conservation studies. Of ~1200 species, complete mitochondrial genome sequences are available for only eleven. Additional sequences should be generated if we are to resolve many questions concerning these fascinating mammals. Herein, we describe the complete mitochondrial genomes of three bats: Corynorhinus rafinesquii, Lasiurus borealis and Artibeus lituratus. We also compare the currently available mitochondrial genomes and analyze codon usage in Chiroptera. C. rafinesquii, L. borealis and A. lituratus mitochondrial genomes are 16438 bp, 17048 bp and 16709 bp, respectively. Genome organization and gene arrangements are similar to other bats. Phylogenetic analyses using complete mitochondrial genome sequences support previously established phylogenetic relationships and suggest utility in future studies focusing on the evolutionary aspects of these species. Comprehensive analyses of available bat mitochondrial genomes reveal distinct nucleotide patterns and synonymous codon preferences corresponding to different chiropteran families. These patterns suggest that mutational and selection forces are acting to different extents within Chiroptera and shape their mitochondrial genomes. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Potential efficacy of mitochondrial genes for animal DNA barcoding: a case study using eutherian mammals.

    Science.gov (United States)

    Luo, Arong; Zhang, Aibing; Ho, Simon Yw; Xu, Weijun; Zhang, Yanzhou; Shi, Weifeng; Cameron, Stephen L; Zhu, Chaodong

    2011-01-28

    A well-informed choice of genetic locus is central to the efficacy of DNA barcoding. Current DNA barcoding in animals involves the use of the 5' half of the mitochondrial cytochrome oxidase 1 gene (CO1) to diagnose and delimit species. However, there is no compelling a priori reason for the exclusive focus on this region, and it has been shown that it performs poorly for certain animal groups. To explore alternative mitochondrial barcoding regions, we compared the efficacy of the universal CO1 barcoding region with the other mitochondrial protein-coding genes in eutherian mammals. Four criteria were used for this comparison: the number of recovered species, sequence variability within and between species, resolution to taxonomic levels above that of species, and the degree of mutational saturation. Based on 1,179 mitochondrial genomes of eutherians, we found that the universal CO1 barcoding region is a good representative of mitochondrial genes as a whole because the high species-recovery rate (> 90%) was similar to that of other mitochondrial genes, and there were no significant differences in intra- or interspecific variability among genes. However, an overlap between intra- and interspecific variability was still problematic for all mitochondrial genes. Our results also demonstrated that any choice of mitochondrial gene for DNA barcoding failed to offer significant resolution at higher taxonomic levels. We suggest that the CO1 barcoding region, the universal DNA barcode, is preferred among the mitochondrial protein-coding genes as a molecular diagnostic at least for eutherian species identification. Nevertheless, DNA barcoding with this marker may still be problematic for certain eutherian taxa and our approach can be used to test potential barcoding loci for such groups.

  1. Silencing of PINK1 expression affects mitochondrial DNA and oxidative phosphorylation in dopaminergic cells.

    Directory of Open Access Journals (Sweden)

    Matthew E Gegg

    Full Text Available Mitochondrial dysfunction has been implicated in the pathogenesis of Parkinson's disease (PD. Impairment of the mitochondrial electron transport chain (ETC and an increased frequency in deletions of mitochondrial DNA (mtDNA, which encodes some of the subunits of the ETC, have been reported in the substantia nigra of PD brains. The identification of mutations in the PINK1 gene, which cause an autosomal recessive form of PD, has supported mitochondrial involvement in PD. The PINK1 protein is a serine/threonine kinase localized in mitochondria and the cytosol. Its precise function is unknown, but it is involved in neuroprotection against a variety of stress signalling pathways.In this report we have investigated the effect of silencing PINK1 expression in human dopaminergic SH-SY5Y cells by siRNA on mtDNA synthesis and ETC function. Loss of PINK1 expression resulted in a decrease in mtDNA levels and mtDNA synthesis. We also report a concomitant loss of mitochondrial membrane potential and decreased mitochondrial ATP synthesis, with the activity of complex IV of the ETC most affected. This mitochondrial dysfunction resulted in increased markers of oxidative stress under basal conditions and increased cell death following treatment with the free radical generator paraquat.This report highlights a novel function of PINK1 in mitochondrial biogenesis and a role in maintaining mitochondrial ETC activity. Dysfunction of both has been implicated in sporadic forms of PD suggesting that these may be key pathways in the development of the disease.

  2. Mitochondrial and Nuclear DNA Damage and Repair in Age-Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Janusz Blasiak

    2013-01-01

    Full Text Available Aging and oxidative stress seem to be the most important factors in the pathogenesis of age-related macular degeneration (AMD, a condition affecting many elderly people in the developed world. However, aging is associated with the accumulation of oxidative damage in many biomolecules, including DNA. Furthermore, mitochondria may be especially important in this process because the reactive oxygen species produced in their electron transport chain can damage cellular components. Therefore, the cellular response to DNA damage, expressed mainly through DNA repair, may play an important role in AMD etiology. In several studies the increase in mitochondrial DNA (mtDNA damage and mutations, and the decrease in the efficacy of DNA repair have been correlated with the occurrence and the stage of AMD. It has also been shown that mitochondrial DNA accumulates more DNA lesions than nuclear DNA in AMD. However, the DNA damage response in mitochondria is executed by nucleus-encoded proteins, and thus mutagenesis in nuclear DNA (nDNA may affect the ability to respond to mutagenesis in its mitochondrial counterpart. We reported that lymphocytes from AMD patients displayed a higher amount of total endogenous basal and oxidative DNA damage, exhibited a higher sensitivity to hydrogen peroxide and UV radiation, and repaired the lesions induced by these factors less effectively than did cells from control individuals. We postulate that poor efficacy of DNA repair (i.e., is impaired above average for a particular age when combined with the enhanced sensitivity of retinal pigment epithelium cells to environmental stress factors, contributes to the pathogenesis of AMD. Collectively, these data suggest that the cellular response to both mitochondrial and nuclear DNA damage may play an important role in AMD pathogenesis.

  3. Age-related mitochondrial DNA depletion and the impact on pancreatic Beta cell function.

    Science.gov (United States)

    Nile, Donna L; Brown, Audrey E; Kumaheri, Meutia A; Blair, Helen R; Heggie, Alison; Miwa, Satomi; Cree, Lynsey M; Payne, Brendan; Chinnery, Patrick F; Brown, Louise; Gunn, David A; Walker, Mark

    2014-01-01

    Type 2 diabetes is characterised by an age-related decline in insulin secretion. We previously identified a 50% age-related decline in mitochondrial DNA (mtDNA) copy number in isolated human islets. The purpose of this study was to mimic this degree of mtDNA depletion in MIN6 cells to determine whether there is a direct impact on insulin secretion. Transcriptional silencing of mitochondrial transcription factor A, TFAM, decreased mtDNA levels by 40% in MIN6 cells. This level of mtDNA depletion significantly decreased mtDNA gene transcription and translation, resulting in reduced mitochondrial respiratory capacity and ATP production. Glucose-stimulated insulin secretion was impaired following partial mtDNA depletion, but was normalised following treatment with glibenclamide. This confirms that the deficit in the insulin secretory pathway precedes K+ channel closure, indicating that the impact of mtDNA depletion is at the level of mitochondrial respiration. In conclusion, partial mtDNA depletion to a degree comparable to that seen in aged human islets impaired mitochondrial function and directly decreased insulin secretion. Using our model of partial mtDNA depletion following targeted gene silencing of TFAM, we have managed to mimic the degree of mtDNA depletion observed in aged human islets, and have shown how this correlates with impaired insulin secretion. We therefore predict that the age-related mtDNA depletion in human islets is not simply a biomarker of the aging process, but will contribute to the age-related risk of type 2 diabetes.

  4. The complete mitochondrial genomes of the Galápagos iguanas, Amblyrhynchus cristatus and Conolophus subcristatus.

    Science.gov (United States)

    MacLeod, Amy; Irisarri, Iker; Vences, Miguel; Steinfartz, Sebastian

    2016-09-01

    The Galápagos iguanas are among the oldest vertebrate lineages on the Galápagos archipelago, and the evolutionary history of this clade is of great interest to biologists. We describe here the complete mitochondrial genomes of the marine iguana, Amblyrhynchus cristatus (Genbank accession number: KT277937) and the land iguana Conolophus subcristatus (Genbank accession number: KT277936). The genomes contain 13 protein-coding genes, 22 transfer RNAs, and two ribosomal RNAs genes, as well as a control region (CR). Both species have an identical gene order, which matches that of Iguana iguana. The CR of both Galápagos iguanas features similar tandem repeats units, which are absent in I. iguana. We present a phylogeny of the Iguanidae based on complete mitochondrial genomes, which confirms the sister-group relationship of Galápagos iguanas. These new mitochondrial genomes constitute an important data source for future exploration of the phylogenetic relationships and evolutionary history of the Galápagos iguanas.

  5. Family-specific vs. universal PCR primers for the study of mitochondrial DNA in plants

    Directory of Open Access Journals (Sweden)

    Aleksić Jelena M.

    2016-01-01

    Full Text Available Mitochondrial genomes (mtDNAs or mitogenomes of seed plants are characterized by a notoriously unstable organization on account of which available so-called universal or consensus primers may fail to fulfil their foreseen function - amplification of various mtDNA regions in a broad range of plant taxa. Thus, the primers developed for groups assumed to have similar organization of their mitogenomes, such as families, may facilitate a broader usage of more variable non-coding portions of these genomes in group members. Using in silico PCR method and six available complete mitogenomes of Fabaceae, it has been demonstrated that only three out of 36 published universal primer and three Medicago sativa-specific primer pairs that amplify various mtDNA regions are suitable for six representatives of the Fabaceae family upon minor modifications, and develop 21 Fabaceae-specific primer pairs for amplification of all 14 cis-splicing introns in genes of NADH subunits (nad genes which represent the most commonly used non-coding mtDNA regions in various studies in plants. Using the same method and six available complete mitogenomes of representatives of related families Cucurbitaceae, Euphorbiaceae and Rosaceae and a model plant, Arabidopsis thaliana, it has further been demonstrated that applicability of newly developed primer pairs for amplification of nad introns in more or less related taxa was dependent not only on species evolutionary distances but also on their genome sizes. A reported set of 24 primer pairs is a valuable resource which may facilitate a broader usage of mtDNA variability in future studies at both intra- and inter-specific levels in Fabaceae, which is the third largest family of flowering plants rarely studied at the mtDNA level, and in other more or less related taxa. [Projekat Ministarstva nauke Republike Srbije, br. 173005

  6. Complete sequences of organelle genomes from the medicinal plant Rhazya stricta (Apocynaceae) and contrasting patterns of mitochondrial genome evolution across asterids.

    Science.gov (United States)

    Park, Seongjun; Ruhlman, Tracey A; Sabir, Jamal S M; Mutwakil, Mohammed H Z; Baeshen, Mohammed N; Sabir, Meshaal J; Baeshen, Nabih A; Jansen, Robert K

    2014-05-28

    Rhazya stricta is native to arid regions in South Asia and the Middle East and is used extensively in folk medicine to treat a wide range of diseases. In addition to generating genomic resources for this medicinally important plant, analyses of the complete plastid and mitochondrial genomes and a nuclear transcriptome from Rhazya provide insights into inter-compartmental transfers between genomes and the patterns of evolution among eight asterid mitochondrial genomes. The 154,841 bp plastid genome is highly conserved with gene content and order identical to the ancestral organization of angiosperms. The 548,608 bp mitochondrial genome exhibits a number of phenomena including the presence of recombinogenic repeats that generate a multipartite organization, transferred DNA from the plastid and nuclear genomes, and bidirectional DNA transfers between the mitochondrion and the nucleus. The mitochondrial genes sdh3 and rps14 have been transferred to the nucleus and have acquired targeting presequences. In the case of rps14, two copies are present in the nucleus; only one has a mitochondrial targeting presequence and may be functional. Phylogenetic analyses of both nuclear and mitochondrial copies of rps14 across angiosperms suggests Rhazya has experienced a single transfer of this gene to the nucleus, followed by a duplication event. Furthermore, the phylogenetic distribution of gene losses and the high level of sequence divergence in targeting presequences suggest multiple, independent transfers of both sdh3 and rps14 across asterids. Comparative analyses of mitochondrial genomes of eight sequenced asterids indicates a complicated evolutionary history in this large angiosperm clade with considerable diversity in genome organization and size, repeat, gene and intron content, and amount of foreign DNA from the plastid and nuclear genomes. Organelle genomes of Rhazya stricta provide valuable information for improving the understanding of mitochondrial genome evolution

  7. Complete Mitochondrial Genome Sequencing of a Burial from a Romano–Christian Cemetery in the Dakhleh Oasis, Egypt: Preliminary Indications

    Directory of Open Access Journals (Sweden)

    J. Eldon Molto

    2017-10-01

    Full Text Available The curse of ancient Egyptian DNA was lifted by a recent study which sequenced the mitochondrial genomes (mtGenome of 90 ancient Egyptians from the archaeological site of Abusir el-Meleq. Surprisingly, these ancient inhabitants were more closely related to those from the Near East than to contemporary Egyptians. It has been accepted that the timeless highway of the Nile River seeded Egypt with African genetic influence, well before pre-Dynastic times. Here we report on the successful recovery and analysis of the complete mtGenome from a burial recovered from a remote Romano–Christian cemetery, Kellis 2 (K2. K2 serviced the ancient municipality of Kellis, a village located in the Dakhleh Oasis in the southwest desert in Egypt. The data were obtained by high throughput sequencing (HTS performed independently at two ancient DNA facilities (Armed Forces DNA Identification Laboratory, Dover, DE, USA and Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA. These efforts produced concordant haplotypes representing a U1a1a haplogroup lineage. This result indicates that Near Eastern maternal influence previously identified at Abusir el-Meleq was also present further south, in ancient Kellis during the Romano–Christian period.

  8. Detection of irradiated fresh, chilled, and frozen foods by the mitochondrial DNA method

    International Nuclear Information System (INIS)

    Machioni, E.; Bergaentzle, M.; Todoriki, S.; Hasselmann, C.; Kuntz, F.

    1996-01-01

    DNA molecules are very sensitive to ionising radiation, even at low doses. Strand breaks are easy to detect despite the generally low DNA content of foods, but such ruptures are not specific to radiation processing. Preliminary experiments showed that cellular DNA in beef underwent strong enzymatic degradation during storage at +4 o C and thus radiation effects could not be isolated. In order to make DNA strand rupture more specific to radiation (other than by deep freezing) it appears necessary to isolate the irradiated DNA from cell enzymes. This is the case for mitochondrial DNA which is protected from enzymatic degradation by the mitochondrial walls but not from radiation. It can, therefore, be assumed that DNA strand breaks in mitochondria will be specific to ionising radiation. The aim of this work is to develop and validate the proposed test on different food samples (meat and fish products) which are already or may be industrially irradiated in the near future. (author)

  9. Complete mitochondrial genome of the big-eared horseshoe bat Rhinolophus macrotis (Chiroptera, Rhinolophidae).

    Science.gov (United States)

    Zhang, Lin; Sun, Keping; Feng, Jiang

    2016-11-01

    We sequenced and characterized the complete mitochondrial genome of the big-eared horseshoe bat, Rhinolophus macrotis. Total length of the mitogenome is 16,848 bp, with a base composition of 31.2% A, 25.3% T, 28.8% C and 14.7% G. The mitogenome consists of 13 protein-coding genes, 2 rRNA (12S and 16S rRNA) genes, 22 tRNA genes and 1 control region. It has the same gene arrangement pattern as those of typical vertebrate mitochondrial genome. The results will contribute to our understanding of the taxonomic status and evolution in the genus Rhinolophus bats.

  10. The complete mitochondrial genome sequence of Eimeria innocua (Eimeriidae, Coccidia, Apicomplexa).

    Science.gov (United States)

    Hafeez, Mian Abdul; Vrba, Vladimir; Barta, John Robert

    2016-07-01

    The complete mitochondrial genome of Eimeria innocua KR strain (Eimeriidae, Coccidia, Apicomplexa) was sequenced. This coccidium infects turkeys (Meleagris gallopavo), Bobwhite quails (Colinus virginianus), and Grey partridges (Perdix perdix). Genome organization and gene contents were comparable with other Eimeria spp. infecting galliform birds. The circular-mapping mt genome of E. innocua is 6247 bp in length with three protein-coding genes (cox1, cox3, and cytb), 19 gene fragments encoding large subunit (LSU) rRNA and 14 gene fragments encoding small subunit (SSU) rRNA. Like other Apicomplexa, no tRNA was encoded. The mitochondrial genome of E. innocua confirms its close phylogenetic affinities to Eimeria dispersa.

  11. The complete mitochondrial genome of the redeye mullet Liza haematocheila (Teleostei, Mugilidae).

    Science.gov (United States)

    Chen, Jianhua; Li, Yinglei; Chen, Haigang; Yan, Binlun; Meng, Xueping

    2015-01-01

    The complete mitochondrial sequence of the redeye mullet Liza haematocheila has been determined. The circle genome is 16,822 bp in size, and consists of 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and a control region. The gene order and composition of L. haematocheila was similar to that of most other teleosts. The base composition of H-strand is 26.42% (A), 26.38% (T), 16.72% (G) and 30.47% (C), with an AT content of 52.8%. All genes are encoded on the heavy strand with the exception of ND6 and eight tRNA genes. The mitochondrial genome of L. haematocheila presented will be in favor of resolving phylogenetic relationships within the family Scatophagidae and the Mugiliformes.

  12. Using ezRAD to reconstruct the complete mitochondrial genome of Porites fontanesii (Cnidaria: Scleractinia)

    KAUST Repository

    Terraneo, Tullia Isotta

    2018-02-09

    Corals in the genus Porites are among the major framework builders of reef structures worldwide, yet the genus has been challenging to study due to a lack of informative molecular markers. Here, we used ezRAD sequencing to reconstruct the complete mitochondrial genome of Porites fontanesii (GenBank accession number MG754069), a widespread coral species endemic to the Red Sea and Gulf of Aden. The gene arrangement of P. fontanesii did not differ from other Scleractinia and consisted of 18,658 bp, organized in 13 protein-coding genes, 2 rRNA genes, and 2 tRNA genes. This mitochondrial genome contributes essential data to work towards a better understanding of evolutionary relationships within Porites.

  13. Using ezRAD to reconstruct the complete mitochondrial genome of Porites fontanesii (Cnidaria: Scleractinia)

    KAUST Repository

    Terraneo, Tullia Isotta; Arrigoni, Roberto; Benzoni, Francesca; Forsman, Zac H.; Berumen, Michael L.

    2018-01-01

    Corals in the genus Porites are among the major framework builders of reef structures worldwide, yet the genus has been challenging to study due to a lack of informative molecular markers. Here, we used ezRAD sequencing to reconstruct the complete mitochondrial genome of Porites fontanesii (GenBank accession number MG754069), a widespread coral species endemic to the Red Sea and Gulf of Aden. The gene arrangement of P. fontanesii did not differ from other Scleractinia and consisted of 18,658 bp, organized in 13 protein-coding genes, 2 rRNA genes, and 2 tRNA genes. This mitochondrial genome contributes essential data to work towards a better understanding of evolutionary relationships within Porites.

  14. The complete mitochondrial genome of the medicinal fungus Ganoderma applanatum (Polyporales, Basidiomycota).

    Science.gov (United States)

    Wang, Xin-Cun; Shao, Junjie; Liu, Chang

    2016-07-01

    We have determined the complete nucleotide sequence of the mitochondrial genome of the medicinal fungus Ganoderma applanatum (Pers.) Pat. using the next-generation sequencing technology. The circular molecule is 119,803 bp long with a GC content of 26.66%. Gene prediction revealed genes encoding 15 conserved proteins, 25 tRNAs, the large and small ribosomal RNAs, all genes are located on the same strand except trnW-CCA. Compared with previously sequenced genomes of G. lucidum, G. meredithiae and G. sinense, the order of the protein and rRNA genes is highly conserved; however, the types of tRNA genes are slightly different. The mitochondrial genome of G. applanatum will contribute to the understanding of the phylogeny and evolution of Ganoderma and Ganodermataceae, the group containing many species with high medicinal values.

  15. Complete mitochondrial genome of the scalloped hammerhead Sphyrna lewini (Carcharhiniformes: Sphyrnidae).

    Science.gov (United States)

    Chen, Xiao; Xiang, Dan; Xu, Yuziwei; Shi, Xiaofang

    2015-08-01

    The complete mitochondrial genome of the endangered scalloped hammerhead Sphyrna lewini was firstly determined in this study. It is 16,726 bp in length with the typical gene composition and orders in vertebrates. The overall base composition is 31.4% A, 26.3% C, 13.2% G and 29.1% T. Two start codon (ATG and GTG) and three stop codon (TAG, AGA and TAA/TA/T) patterns were found in protein-coding genes. Except for the tRNA-Ser2, the remaining 21 tRNAs can be folded into the typical cloverleaf structure. The control region possess the highest A + T content (66.1%) and lowest G content (12.6%) among all mitochondrial partitions.

  16. The complete mitochondrial genome of Anoplocnemis curvipes F. (Coreinea, Coreidae, Heteroptera), a pest of fresh cowpea pods

    Science.gov (United States)

    The complete 16,345-bp mitochondrial genome of the agriculturally-destructive pod sucking pest, the giant coreid bug, Anoplocnemis curvipes (Hemiptera: Coreidae), was assembled from paired end next generation sequencing reads. The A. curvipes mitochondrial genome consists of 13 protein coding genes...

  17. Mitochondrial DNA copy number in peripheral blood cells declines with age and is associated with general health among elderly

    DEFF Research Database (Denmark)

    Mengel-From, Jonas; Thinggaard, Mikael; Dalgård, Christine

    2014-01-01

    compared to nuclear DNA, i.e. the mitochondrial DNA copy number, was measured by PCR technology and used as a proxy for the content of mitochondria copies. In 1,067 Danish twins and singletons (18-93 years of age), with the majority being elderly individuals, the estimated mean mitochondrial DNA copy...

  18. Mitochondrial DNA haplogroup D4a is a marker for extreme longevity in Japan.

    Directory of Open Access Journals (Sweden)

    Erhan Bilal

    Full Text Available We report results from the analysis of complete mitochondrial DNA (mtDNA sequences from 112 Japanese semi-supercentenarians (aged above 105 years combined with previously published data from 96 patients in each of three non-disease phenotypes: centenarians (99-105 years of age, healthy non-obese males, obese young males and four disease phenotypes, diabetics with and without angiopathy, and Alzheimer's and Parkinson's disease patients. We analyze the correlation between mitochondrial polymorphisms and the longevity phenotype using two different methods. We first use an exhaustive algorithm to identify all maximal patterns of polymorphisms shared by at least five individuals and define a significance score for enrichment of the patterns in each phenotype relative to healthy normals. Our study confirms the correlations observed in a previous study showing enrichment of a hierarchy of haplogroups in the D clade for longevity. For the extreme longevity phenotype we see a single statistically significant signal: a progressive enrichment of certain "beneficial" patterns in centenarians and semi-supercentenarians in the D4a haplogroup. We then use Principal Component Spectral Analysis of the SNP-SNP Covariance Matrix to compare the measured eigenvalues to a Null distribution of eigenvalues on Gaussian datasets to determine whether the correlations in the data (due to longevity arises from some property of the mutations themselves or whether they are due to population structure. The conclusion is that the correlations are entirely due to population structure (phylogenetic tree. We find no signal for a functional mtDNA SNP correlated with longevity. The fact that the correlations are from the population structure suggests that hitch-hiking on autosomal events is a possible explanation for the observed correlations.

  19. The effect of chronic alcohol consumption on mitochondrial DNA mutagenesis in human blood

    Energy Technology Data Exchange (ETDEWEB)

    Wurmb-Schwark, N. von [Institute of Legal Medicine, Christian Albrecht University of Kiel, Arnold-Heller-Str. 12, 24105 Kiel (Germany)], E-mail: nvonwurmb@rechtsmedizin.uni-kiel.de; Ringleb, A.; Schwark, T. [Institute of Legal Medicine, Christian Albrecht University of Kiel, Arnold-Heller-Str. 12, 24105 Kiel (Germany); Broese, T.; Weirich, S.; Schlaefke, D. [Clinic of Psychiatry and Psychotherapy, University of Rostock, Gehlsheimer Str. 20, Rostock (Germany); Wegener, R. [Institute of Legal Medicine, St-Georg-Str. 108, University of Rostock, 18055 Rostock (Germany); Oehmichen, M. [Institute of Legal Medicine, Christian Albrecht University of Kiel, Arnold-Heller-Str. 12, 24105 Kiel (Germany)

    2008-01-01

    The 4977 bp deletion of mitochondrial DNA (mtDNA) is known to accumulate with increasing age in post mitotic tissues. Recently, studies came out detecting this specific alteration also in fast replicating cells, e.g. in blood or skin tissue, often in correlation to specific diseases or - specifically in skin - external stressors such as UV radiation. In this study, we investigated mitochondrial mutagenesis in 69 patients with a chronic alcoholic disease and 46 age matched controls with a moderate drinking behavior. Two different fragments, specific for total and for deleted mtDNA (dmtDNA) were amplified in a duplex-PCR. A subsequent fragment analysis was performed and for relative quantification, the quotient of the peak areas of amplification products specific for deleted and total mtDNA was determined. Additionally, a real time PCR was performed to quantify mtDNA copy number. The relative amount of 4977 bp deleted mtDNA in alcoholics was significantly increased compared to controls. On the other hand, no difference regarding the mtDNA/nuclear DNA ratio in both investigated groups was detected. Additionally, no age dependence could be found nor in alcoholics, neither in the control group. These findings indicate that mtDNA mutagenesis in blood can be influenced by stressors such as alcohol. Ethanol seems to be a significant factor to alter mitochondrial DNA in blood and might be an additional contributor for the cellular aging process.

  20. The effect of chronic alcohol consumption on mitochondrial DNA mutagenesis in human blood

    International Nuclear Information System (INIS)

    Wurmb-Schwark, N. von; Ringleb, A.; Schwark, T.; Broese, T.; Weirich, S.; Schlaefke, D.; Wegener, R.; Oehmichen, M.

    2008-01-01

    The 4977 bp deletion of mitochondrial DNA (mtDNA) is known to accumulate with increasing age in post mitotic tissues. Recently, studies came out detecting this specific alteration also in fast replicating cells, e.g. in blood or skin tissue, often in correlation to specific diseases or - specifically in skin - external stressors such as UV radiation. In this study, we investigated mitochondrial mutagenesis in 69 patients with a chronic alcoholic disease and 46 age matched controls with a moderate drinking behavior. Two different fragments, specific for total and for deleted mtDNA (dmtDNA) were amplified in a duplex-PCR. A subsequent fragment analysis was performed and for relative quantification, the quotient of the peak areas of amplification products specific for deleted and total mtDNA was determined. Additionally, a real time PCR was performed to quantify mtDNA copy number. The relative amount of 4977 bp deleted mtDNA in alcoholics was significantly increased compared to controls. On the other hand, no difference regarding the mtDNA/nuclear DNA ratio in both investigated groups was detected. Additionally, no age dependence could be found nor in alcoholics, neither in the control group. These findings indicate that mtDNA mutagenesis in blood can be influenced by stressors such as alcohol. Ethanol seems to be a significant factor to alter mitochondrial DNA in blood and might be an additional contributor for the cellular aging process

  1. Assessment of precision and concordance of quantitative mitochondrial DNA assays: a collaborative international quality assurance study

    NARCIS (Netherlands)

    Hammond, Emma L.; Sayer, David; Nolan, David; Walker, Ulrich A.; Ronde, Anthony de; Montaner, Julio S. G.; Cote, Helene C. F.; Gahan, Michelle E.; Cherry, Catherine L.; Wesselingh, Steven L.; Reiss, Peter; Mallal, Simon

    2003-01-01

    Background: A number of international research groups have developed DNA quantitation assays in order to investigate the role of mitochondrial DNA depletion in anti-retroviral therapy-induced toxicities. Objectives: A collaborative study was undertaken to evaluate intra-assay precision and between

  2. In vitro-reconstituted nucleoids can block mitochondrial DNA replication and transcription

    NARCIS (Netherlands)

    Farge, Géraldine; Mehmedovic, Majda; Baclayon, Marian; van den Wildenberg, Siet M J L; Roos, Wouter H; Gustafsson, Claes M; Wuite, Gijs J L; Falkenberg, Maria

    2014-01-01

    The mechanisms regulating the number of active copies of mtDNA are still unclear. A mammalian cell typically contains 1,000-10,000 copies of mtDNA, which are packaged into nucleoprotein complexes termed nucleoids. The main protein component of these structures is mitochondrial transcription factor A

  3. Introducing Human Population Biology through an Easy Laboratory Exercise on Mitochondrial DNA

    Science.gov (United States)

    Pardinas, Antonio F.; Dopico, Eduardo; Roca, Agustin; Garcia-Vazquez, Eva; Lopez, Belen

    2010-01-01

    This article describes an easy and cheap laboratory exercise for students to discover their own mitochondrial haplogroup. Students use buccal swabs to obtain mucosa cells as noninvasive tissue samples, extract DNA, and with a simple polymerase chain reaction-restriction fragment length polymorphism analysis they can obtain DNA fragments of…

  4. Replication of vertebrate mitochondrial DNA entails transient ribonucleotide incorporation throughout the lagging strand.

    Science.gov (United States)

    Yasukawa, Takehiro; Reyes, Aurelio; Cluett, Tricia J; Yang, Ming-Yao; Bowmaker, Mark; Jacobs, Howard T; Holt, Ian J

    2006-11-15

    Using two-dimensional agarose gel electrophoresis, we show that mitochondrial DNA (mtDNA) replication of birds and mammals frequently entails ribonucleotide incorporation throughout the lagging strand (RITOLS). Based on a combination of two-dimensional agarose gel electrophoretic analysis and mapping of 5' ends of DNA, initiation of RITOLS replication occurs in the major non-coding region of vertebrate mtDNA and is effectively unidirectional. In some cases, conversion of nascent RNA strands to DNA starts at defined loci, the most prominent of which maps, in mammalian mtDNA, in the vicinity of the site known as the light-strand origin.

  5. The mitochondrial and plastid genomes of Volvox carteri: bloated molecules rich in repetitive DNA

    Directory of Open Access Journals (Sweden)

    Lee Robert W

    2009-03-01

    Full Text Available Abstract Background The magnitude of noncoding DNA in organelle genomes can vary significantly; it is argued that much of this variation is attributable to the dissemination of selfish DNA. The results of a previous study indicate that the mitochondrial DNA (mtDNA of the green alga Volvox carteri abounds with palindromic repeats, which appear to be selfish elements. We became interested in the evolution and distribution of these repeats when, during a cursory exploration of the V. carteri nuclear DNA (nucDNA and plastid DNA (ptDNA sequences, we found palindromic repeats with similar structural features to those of the mtDNA. Upon this discovery, we decided to investigate the diversity and evolutionary implications of these palindromic elements by sequencing and characterizing large portions of mtDNA and ptDNA and then comparing these data to the V. carteri draft nuclear genome sequence. Results We sequenced 30 and 420 kilobases (kb of the mitochondrial and plastid genomes of V. carteri, respectively – resulting in partial assemblies of these genomes. The mitochondrial genome is the most bloated green-algal mtDNA observed to date: ~61% of the sequence is noncoding, most of which is comprised of short palindromic repeats spread throughout the intergenic and intronic regions. The plastid genome is the largest (>420 kb and most expanded (>80% noncoding ptDNA sequence yet discovered, with a myriad of palindromic repeats in the noncoding regions, which have a similar size and secondary structure to those of the mtDNA. We found that 15 kb (~0.01% of the nuclear genome are homologous to the palindromic elements of the mtDNA, and 50 kb (~0.05% are homologous to those of the ptDNA. Conclusion Selfish elements in the form of short palindromic repeats have propagated in the V. carteri mtDNA and ptDNA, resulting in the distension of these genomes. Copies of these same repeats are also found in a small fraction of the nucDNA, but appear to be inert in this

  6. HmtDB 2016: data update, a better performing query system and human mitochondrial DNA haplogroup predictor.

    Science.gov (United States)

    Clima, Rosanna; Preste, Roberto; Calabrese, Claudia; Diroma, Maria Angela; Santorsola, Mariangela; Scioscia, Gaetano; Simone, Domenico; Shen, Lishuang; Gasparre, Giuseppe; Attimonelli, Marcella

    2017-01-04

    The HmtDB resource hosts a database of human mitochondrial genome sequences from individuals with healthy and disease phenotypes. The database is intended to support both population geneticists as well as clinicians undertaking the task to assess the pathogenicity of specific mtDNA mutations. The wide application of next-generation sequencing (NGS) has provided an enormous volume of high-resolution data at a low price, increasing the availability of human mitochondrial sequencing data, which called for a cogent and significant expansion of HmtDB data content that has more than tripled in the current release. We here describe additional novel features, including: (i) a complete, user-friendly restyling of the web interface, (ii) links to the command-line stand-alone and web versions of the MToolBox package, an up-to-date tool to reconstruct and analyze human mitochondrial DNA from NGS data and (iii) the implementation of the Reconstructed Sapiens Reference Sequence (RSRS) as mitochondrial reference sequence. The overall update renders HmtDB an even more handy and useful resource as it enables a more rapid data access, processing and analysis. HmtDB is accessible at http://www.hmtdb.uniba.it/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Mitochondrial DNA transit between West Asia and North Africa inferred from U6 phylogeography

    Directory of Open Access Journals (Sweden)

    Larruga José M

    2003-10-01

    Full Text Available Abstract Background World-wide phylogeographic distribution of human complete mitochondrial DNA sequences suggested a West Asian origin for the autochthonous North African lineage U6. We report here a more detailed analysis of this lineage, unraveling successive expansions that affected not only Africa but neighboring regions such as the Near East, the Iberian Peninsula and the Canary Islands. Results Divergence times, geographic origin and expansions of the U6 mitochondrial DNA clade, have been deduced from the analysis of 14 complete U6 sequences, and 56 different haplotypes, characterized by hypervariable segment sequences and RFLPs. Conclusions The most probable origin of the proto-U6 lineage was the Near East. Around 30,000 years ago it spread to North Africa where it represents a signature of regional continuity. Subgroup U6a reflects the first African expansion from the Maghrib returning to the east in Paleolithic times. Derivative clade U6a1 signals a posterior movement from East Africa back to the Maghrib and the Near East. This migration coincides with the probable Afroasiatic linguistic expansion. U6b and U6c clades, restricted to West Africa, had more localized expansions. U6b probably reached the Iberian Peninsula during the Capsian diffusion in North Africa. Two autochthonous derivatives of these clades (U6b1 and U6c1 indicate the arrival of North African settlers to the Canarian Archipelago in prehistoric times, most probably due to the Saharan desiccation. The absence of these Canarian lineages nowadays in Africa suggests important demographic movements in the western area of this Continent.

  8. Genetic characteristics of mitochondrial DNA was associated with colorectal carcinogenesis and its prognosis.

    Directory of Open Access Journals (Sweden)

    Jae-Ho Lee

    Full Text Available Clinical value of mitochondrial DNA has been described in colorectal cancer (CRC. To clarify its role in colorectal carcinogenesis, mitochondrial microsatellite instability (mtMSI and other markers were investigated in CRCs and their precancerous lesions, as a multitier genetic study. DNA was isolated from paired normal and tumoral tissues in 78 tubular adenomas (TAs, 34 serrated polyps (SPs, and 100 CRCs. mtMSI, nucleus microsatellite instability (nMSI, KRAS mutation, and BRAF mutation were investigated in these tumors and their statistical analysis was performed. mtMSI was found in 30% of CRCs and 21.4% of precancerous lesions. Mitochondrial copy number was higher in SPs than TAs and it was associated with mtMSI in low grade TAs. KRAS and BRAF mutations were mutually exclusive in TAs and SPs. CRCs with mtMSI showed shorter overall survival times than the patients without mtMSI. In CRCs without nMSI or BRAF mutation, mtMSI was a more accurate marker for predicting prognosis. The genetic change of mitochondrial DNA is an early and independent event in colorectal precancerous lesions and mtMSI and mitochondrial contents are associated with the tubular adenoma-carcinoma sequence, resulting in poor prognosis. This result suggested that the genetic change in mitochondrial DNA appears to be a possible prognosis marker in CRC.

  9. Mitochondrial DNA is a direct target of anti-cancer anthracycline drugs

    International Nuclear Information System (INIS)

    Ashley, Neil; Poulton, Joanna

    2009-01-01

    The anthracyclines, such as doxorubicin (DXR), are potent anti-cancer drugs but they are limited by their clinical toxicity. The mechanisms involved remain poorly understood partly because of the difficulty in determining sub-cellular drug localisation. Using a novel method utilising the fluorescent DNA dye PicoGreen, we found that anthracyclines intercalated not only into nuclear DNA but also mitochondrial DNA (mtDNA). Intercalation of mtDNA by anthracyclines may thus contribute to the marked mitochondrial toxicity associated with these drugs. By contrast, ethidium bromide intercalated exclusively into mtDNA, without interacting with nuclear DNA, thereby explaining why mtDNA is the main target for ethidium. By exploiting PicoGreen quenching we also developed a novel assay for quantification of mtDNA levels by flow-cytometry, an approach which should be useful for studies of mitochondrial dysfunction. In summary our PicoGreen assay should be useful to study drug/DNA interactions within live cells, and facilitate therapeutic drug monitoring and kinetic studies in cancer patients.

  10. Nucleotide pools dictate the identity and frequency of ribonucleotide incorporation in mitochondrial DNA.

    Directory of Open Access Journals (Sweden)

    Anna-Karin Berglund

    2017-02-01

    Full Text Available Previous work has demonstrated the presence of ribonucleotides in human mitochondrial DNA (mtDNA and in the present study we use a genome-wide approach to precisely map the location of these. We find that ribonucleotides are distributed evenly between the heavy- and light-strand of mtDNA. The relative levels of incorporated ribonucleotides reflect that DNA polymerase γ discriminates the four ribonucleotides differentially during DNA synthesis. The observed pattern is also dependent on the mitochondrial deoxyribonucleotide (dNTP pools and disease-causing mutations that change these pools alter both the absolute and relative levels of incorporated ribonucleotides. Our analyses strongly suggest that DNA polymerase γ-dependent incorporation is the main source of ribonucleotides in mtDNA and argues against the existence of a mitochondrial ribonucleotide excision repair pathway in human cells. Furthermore, we clearly demonstrate that when dNTP pools are limiting, ribonucleotides serve as a source of building blocks to maintain DNA replication. Increased levels of embedded ribonucleotides in patient cells with disturbed nucleotide pools may contribute to a pathogenic mechanism that affects mtDNA stability and impair new rounds of mtDNA replication.

  11. Nucleotide pools dictate the identity and frequency of ribonucleotide incorporation in mitochondrial DNA.

    Science.gov (United States)

    Berglund, Anna-Karin; Navarrete, Clara; Engqvist, Martin K M; Hoberg, Emily; Szilagyi, Zsolt; Taylor, Robert W; Gustafsson, Claes M; Falkenberg, Maria; Clausen, Anders R

    2017-02-01

    Previous work has demonstrated the presence of ribonucleotides in human mitochondrial DNA (mtDNA) and in the present study we use a genome-wide approach to precisely map the location of these. We find that ribonucleotides are distributed evenly between the heavy- and light-strand of mtDNA. The relative levels of incorporated ribonucleotides reflect that DNA polymerase γ discriminates the four ribonucleotides differentially during DNA synthesis. The observed pattern is also dependent on the mitochondrial deoxyribonucleotide (dNTP) pools and disease-causing mutations that change these pools alter both the absolute and relative levels of incorporated ribonucleotides. Our analyses strongly suggest that DNA polymerase γ-dependent incorporation is the main source of ribonucleotides in mtDNA and argues against the existence of a mitochondrial ribonucleotide excision repair pathway in human cells. Furthermore, we clearly demonstrate that when dNTP pools are limiting, ribonucleotides serve as a source of building blocks to maintain DNA replication. Increased levels of embedded ribonucleotides in patient cells with disturbed nucleotide pools may contribute to a pathogenic mechanism that affects mtDNA stability and impair new rounds of mtDNA replication.

  12. The complete structure of the large subunit of the mammalian mitochondrial ribosome.

    Science.gov (United States)

    Greber, Basil J; Boehringer, Daniel; Leibundgut, Marc; Bieri, Philipp; Leitner, Alexander; Schmitz, Nikolaus; Aebersold, Ruedi; Ban, Nenad

    2014-11-13

    Mitochondrial ribosomes (mitoribosomes) are extensively modified ribosomes of bacterial descent specialized for the synthesis and insertion of membrane proteins that are critical for energy conversion and ATP production inside mitochondria. Mammalian mitoribosomes, which comprise 39S and 28S subunits, have diverged markedly from the bacterial ribosomes from which they are derived, rendering them unique compared to bacterial, eukaryotic cytosolic and fungal mitochondrial ribosomes. We have previously determined at 4.9 Å resolution the architecture of the porcine (Sus scrofa) 39S subunit, which is highly homologous to the human mitoribosomal large subunit. Here we present the complete atomic structure of the porcine 39S large mitoribosomal subunit determined in the context of a stalled translating mitoribosome at 3.4 Å resolution by cryo-electron microscopy and chemical crosslinking/mass spectrometry. The structure reveals the locations and the detailed folds of 50 mitoribosomal proteins, shows the highly conserved mitoribosomal peptidyl transferase active site in complex with its substrate transfer RNAs, and defines the path of the nascent chain in mammalian mitoribosomes along their idiosyncratic exit tunnel. Furthermore, we present evidence that a mitochondrial tRNA has become an integral component of the central protuberance of the 39S subunit where it architecturally substitutes for the absence of the 5S ribosomal RNA, a ubiquitous component of all cytoplasmic ribosomes.

  13. The complete mitochondrial genome of Sesarmops sinensis reveals gene rearrangements and phylogenetic relationships in Brachyura.

    Science.gov (United States)

    Tang, Bo-Ping; Xin, Zhao-Zhe; Liu, Yu; Zhang, Dai-Zhen; Wang, Zheng-Fei; Zhang, Hua-Bin; Chai, Xin-Yue; Zhou, Chun-Lin; Liu, Qiu-Ning

    2017-01-01

    Mitochondrial genome (mitogenome) is very important to understand molecular evolution and phylogenetics. Herein, in this study, the complete mitogenome of Sesarmops sinensis was reported. The mitogenome was 15,905 bp in size, and contained 13 protein-coding genes (PCGs), two ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and a control region (CR). The AT skew and the GC skew are both negative in the mitogenomes of S. sinensis. The nucleotide composition of the S. sinensis mitogenome was also biased toward A + T nucleotides (75.7%). All tRNA genes displayed a typical mitochondrial tRNA cloverleaf structure, except for the trnS1 gene, which lacked a dihydroxyuridine arm. S. sinensis exhibits a novel rearrangement compared with the Pancrustacean ground pattern and other Brachyura species. Based on the 13 PCGs, the phylogenetic analysis showed that S. sinensis and Sesarma neglectum were clustered on one branch with high nodal support values, indicating that S. sinensis and S. neglectum have a sister group relationship. The group (S. sinensis + S. neglectum) was sister to (Parasesarmops tripectinis + Metopaulias depressus), suggesting that S. sinensis belongs to Grapsoidea, Sesarmidae. Phylogenetic trees based on amino acid sequences and nucleotide sequences of mitochondrial 13 PCGs using BI and ML respectively indicate that section Eubrachyura consists of four groups clearly. The resulting phylogeny supports the establishment of a separate subsection Potamoida. These four groups correspond to four subsections of Raninoida, Heterotremata, Potamoida, and Thoracotremata.

  14. The complete mitochondrial genome of the pirarucu (Arapaima gigas, Arapaimidae, Osteoglossiformes

    Directory of Open Access Journals (Sweden)

    Tomas Hrbek

    2008-01-01

    Full Text Available We sequenced the complete mitochondrial genome of the pirarucu, Arapaima gigas, the largest fish of the Amazon basin, and economically one of the most important species of the region. The total length of the Arapaima gigas mitochondrial genome is 16,433 bp. The mitochondrial genome contains 13 protein-coding genes, two rRNA genes and 22 tRNA genes. Twelve of the thirteen protein-coding genes are coded on the heavy strand, while nad6 is coded on the light strand. The Arapaima gene order and content is identical to the common vertebrate form, as is codon usage and base composition. Its control region is atypical in being short at 767 bp. The control region also contains a conserved ATGTA motif recently identified in the Asian arowana, three conserved sequence blocks (CSB-1, CBS-2 and CBS-3 and its 3' end contains long series of di- and mono-nucleotide microsatellite repeats. Other osteoglossiform species for which control region sequences have been published show similar control region characteristics.

  15. Mitochondrial DNA depletion syndrome presenting with ataxia and ...

    African Journals Online (AJOL)

    Laila Selim

    2012-07-24

    Jul 24, 2012 ... Sequencing analysis of the TK2 gene revealed no sequence variation. ... the pathogenesis of the myopathic form of mitochondrial depletion syndrome should be ..... [39,40]. However, the biochemical evidence of deficiency of.

  16. The potential role for use of mitochondrial DNA copy number as predictive biomarker in presbycusis

    Directory of Open Access Journals (Sweden)

    Falah M

    2016-10-01

    Full Text Available Masoumeh Falah,1,2 Massoud Houshmand,3 Mohammad Najafi,2 Maryam Balali,1 Saeid Mahmoudian,1 Alimohamad Asghari,4 Hessamaldin Emamdjomeh,1 Mohammad Farhadi1 1ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran; 2Cellular and Molecular Research Center, Biochemistry Department, Iran University of Medical Sciences, Tehran, Iran; 3Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran; 4Skull base research center, Iran University of Medical Sciences, Tehran, Iran Objectives: Age-related hearing impairment, or presbycusis, is the most common communication disorder and neurodegenerative disease in the elderly. Its prevalence is expected to increase, due to the trend of growth of the elderly population. The current diagnostic test for detection of presbycusis is implemented after there has been a change in hearing sensitivity. Identification of a pre-diagnostic biomarker would raise the possibility of preserving hearing sensitivity before damage occurs. Mitochondrial dysfunction, including the production of reactive oxygen species and induction of expression of apoptotic genes, participates in the progression of presbycusis. Mitochondrial DNA sequence variation has a critical role in presbycusis. However, the nature of the relationship between mitochondrial DNA copy number, an important biomarker in many other diseases, and presbycusis is undetermined.Methods: Fifty-four subjects with presbycusis and 29 healthy controls were selected after ear, nose, throat examination and pure-tone audiometry. DNA was extracted from peripheral blood samples. The copy number of mitochondrial DNA relative to the nuclear genome was measured by quantitative real-time polymerase chain reaction.Results: Subjects with presbycusis had a lower median mitochondrial DNA copy number than healthy subjects and the difference was statistically significant (P=0.007. Mitochondrial DNA

  17. mtDNA, Metastasis, and the Mitochondrial Unfolded Protein Response (UPRmt).

    Science.gov (United States)

    Kenny, Timothy C; Germain, Doris

    2017-01-01

    While several studies have confirmed a link between mitochondrial DNA (mtDNA) mutations and cancer cell metastasis, much debate remains regarding the nature of the alternations in mtDNA leading to this effect. Meanwhile, the mitochondrial unfolded protein response (UPR mt ) has gained much attention in recent years, with most studies of this pathway focusing on its role in aging. However, the UPR mt has also been studied in the context of cancer. More recent work suggests that rather than a single mutation or alternation, specific combinatorial mtDNA landscapes able to activate the UPR mt may be those that are selected by metastatic cells, while mtDNA landscapes unable to activate the UPR mt do not. This review aims at offering an overview of the confusing literature on mtDNA mutations and metastasis and the more recent work on the UPR mt in this setting.

  18. Periodic expression of nuclear and mitochondrial DNA replication genes during the trypanosomatid cell cycle.

    Science.gov (United States)

    Pasion, S G; Brown, G W; Brown, L M; Ray, D S

    1994-12-01

    In trypanosomatids, DNA replication in the nucleus and in the single mitochondrion (or kinetoplast) initiates nearly simultaneously, suggesting that the DNA synthesis (S) phases of the nucleus and the mitochondrion are coordinately regulated. To investigate the basis for the temporal link between nuclear and mitochondrial DNA synthesis phases the expression of the genes encoding DNA ligase I, the 51 and 28 kDa subunits of replication protein A, dihydrofolate reductase and the mitochondrial type II topoisomerase were analyzed during the cell cycle progression of synchronous cultures of Crithidia fasciculata. These DNA replication genes were all expressed periodically, with peak mRNA levels occurring just prior to or at the peak of DNA synthesis in the synchronized cultures. A plasmid clone (pdN-1) in which TOP2, the gene encoding the mitochondrial topoisomerase, was disrupted by the insertion of a NEO drug-resistance cassette was found to express both a truncated TOP2 mRNA and a truncated topoisomerase polypeptide. The truncated mRNA was also expressed periodically coordinate with the expression of the endogenous TOP2 mRNA indicating that cis elements necessary for periodic expression are contained within cloned sequences. The expression of both TOP2 and nuclear DNA replication genes at the G1/S boundary suggests that regulated expression of these genes may play a role in coordinating nuclear and mitochondrial S phases in trypanosomatids.

  19. Characterization of the complete mitochondrial genome of Acanthoscelides obtectus (Coleoptera: Chrysomelidae: Bruchinae) with phylogenetic analysis.

    Science.gov (United States)

    Yao, Jie; Yang, Hong; Dai, Renhuai

    2017-10-01

    Acanthoscelides obtectus is a common species of the subfamily Bruchinae and a worldwide-distributed seed-feeding beetle. The complete mitochondrial genome of A. obtectus is 16,130 bp in length with an A + T content of 76.4%. It contains a positive AT skew and a negative GC skew. The mitogenome of A. obtectus contains 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes and a non-coding region (D-loop). All PCGs start with an ATN codon, and seven (ND3, ATP6, COIII, ND3, ND4L, ND6, and Cytb) of them terminate with TAA, while the remaining five (COI, COII, ND1, ND4, and ND5) terminate with a single T, ATP8 terminates with TGA. Except tRNA Ser , the secondary structures of 21 tRNAs that can be folded into a typical clover-leaf structure were identified. The secondary structures of lrRNA and srRNA were also predicted in this study. There are six domains with 48 helices in lrRNA and three domains with 32 helices in srRNA. The control region of A. obtectus is 1354 bp in size with the highest A + T content (83.5%) in a mitochondrial gene. Thirteen PCGs in 19 species have been used to infer their phylogenetic relationships. Our results show that A. obtectus belongs to the family Chrysomelidae (subfamily-Bruchinae). This is the first study on phylogenetic analyses involving the mitochondrial genes of A. obtectus and could provide basic data for future studies of mitochondrial genome diversities and the evolution of related insect lineages.

  20. Slow mitochondrial repair of 5'-AMP renders mtDNA susceptible to damage in APTX deficient cells

    DEFF Research Database (Denmark)

    Akbari, Mansour; Sykora, Peter; Bohr, Vilhelm A

    2015-01-01

    deficient cells. Moreover, the removal of 5'-AMP from DNA was significantly slower in the mitochondrial extracts from human cell lines and mouse tissues compared with their corresponding nuclear extracts. These results suggest that, contrary to nuclear DNA repair, mitochondrial DNA repair is not able...... elucidated. Here, we monitored the repair of 5'-AMP DNA damage in nuclear and mitochondrial extracts from human APTX(+/+) and APTX(-/-) cells. The efficiency of repair of 5'-AMP DNA was much lower in mitochondrial than in nuclear protein extracts, and resulted in persistent DNA repair intermediates in APTX......Aborted DNA ligation events in eukaryotic cells can generate 5'-adenylated (5'-AMP) DNA termini that can be removed from DNA by aprataxin (APTX). Mutations in APTX cause an inherited human disease syndrome characterized by early-onset progressive ataxia with ocular motor apraxia (AOA1). APTX...

  1. Mitochondrial DNA Unwinding Enzyme Required for Liver Regeneration | Center for Cancer Research

    Science.gov (United States)

    The liver has an exceptional capacity to proliferate. This ability allows the liver to regenerate its mass after partial surgical removal or injury and is the key to successful partial liver transplants. Liver cells, called hepatocytes, are packed with mitochondria, and regulating mitochondrial DNA (mtDNA) copy number is crucial to mitochondrial function, including energy production, during proliferation. Yves Pommier, M.D., Ph.D., of CCR’s Developmental Therapeutics Branch, and his colleagues recently showed that the vertebrate mitochondrial topoisomerase, Top1mt, was critical in maintaining mitochondrial function in the heart after doxorubicin-induced damage. The group wondered whether Top1mt might play a similar role in liver regeneration.

  2. Molecular diversification of Trichuris spp. from Sigmodontinae (Cricetidae) rodents from Argentina based on mitochondrial DNA sequences.

    Science.gov (United States)

    Callejón, Rocío; Robles, María Del Rosario; Panei, Carlos Javier; Cutillas, Cristina

    2016-08-01

    A molecular phylogenetic hypothesis is presented for the genus Trichuris based on sequence data from mitochondrial cytochrome c oxidase 1 (cox1) and cytochrome b (cob). The taxa consisted of nine populations of whipworm from five species of Sigmodontinae rodents from Argentina. Bayesian Inference, Maximum Parsimony, and Maximum Likelihood methods were used to infer phylogenies for each gene separately but also for the combined mitochondrial data and the combined mitochondrial and nuclear dataset. Phylogenetic results based on cox1 and cob mitochondrial DNA (mtDNA) revealed three clades strongly resolved corresponding to three different species (Trichuris navonae, Trichuris bainae, and Trichuris pardinasi) showing phylogeographic variation, but relationships among Trichuris species were poorly resolved. Phylogenetic reconstruction based on concatenated sequences had greater phylogenetic resolution for delimiting species and populations intra-specific of Trichuris than those based on partitioned genes. Thus, populations of T. bainae and T. pardinasi could be affected by geographical factors and co-divergence parasite-host.

  3. The complete mitochondrial genome of a spiraling whitefly, Aleurodicus dispersus Russell (Hemiptera: Aleyrodidae).

    Science.gov (United States)

    Ming-Xing, Lu; Zhi-Teng, Chen; Wei-Wei, Yu; Yu-Zhou, Du

    2017-03-01

    We report the complete mitochondrial genome (mitogenome) of a spiraling whitefly, Aleurodicus dispersus (Hemiptera: Aleyrodidae). The 16 170 bp long genome consists of 13 protein-coding genes, 20 transfer RNAs, 2 ribosomal RNAs, and a control region. The A. dispersus mitogenome also includes a cytb-like non-coding region and shows several variations relative to the typical insect mitogenome. A phylogenetic tree has been constructed using the 13 protein-coding genes of 12 related species from Hemiptera. Our results would contribute to further study of phylogeny in Aleyrodidae and Hemiptera.

  4. The complete mitochondrial genome of Porites harrisoni (Cnidaria: Scleractinia) obtained using next-generation sequencing

    KAUST Repository

    Terraneo, Tullia Isotta

    2018-02-24

    In this study, we sequenced the complete mitochondrial genome of Porites harrisoni using ezRAD and Illumina technology. Genome length consisted of 18,630 bp, with a base composition of 25.92% A, 13.28% T, 23.06% G, and 37.73% C. Consistent with other hard corals, P. harrisoni mitogenome was arranged in 13 protein-coding genes, 2 rRNA, and 2 tRNA genes. nad5 and cox1 contained embedded Group I Introns of 11,133 bp and 965 bp, respectively.

  5. The nearly complete mitochondrial genome of a stonefly species, Styloperla sp. (Plecoptera: Styloperlidae).

    Science.gov (United States)

    Chen, Zhi-Teng; Wu, Hai-Yan; Du, Yu-Zhou

    2016-07-01

    We report the nearly complete mitochondrial genome of a stonefly species, Styloperla sp. (Plecoptera: Styloperlidae), which is a circular molecule of 15,416 bp in length and consists of 13 protein-coding genes, 2 ribosomal RNAs, 20 transfer RNAs and a partial control region (645 bp). Using the 13 protein-coding genes of 8 stoneflies and 3 other related species, we constructed a phylogenetic tree to verify the accuracy of the new determined mitogenome sequences. Our results provide basic data for further study of phylogeny in Plecoptera.

  6. The complete mitochondrial genome of Porites harrisoni (Cnidaria: Scleractinia) obtained using next-generation sequencing

    KAUST Repository

    Terraneo, Tullia Isotta; Arrigoni, Roberto; Benzoni, Francesca; Forsman, Zac H.; Berumen, Michael L.

    2018-01-01

    In this study, we sequenced the complete mitochondrial genome of Porites harrisoni using ezRAD and Illumina technology. Genome length consisted of 18,630 bp, with a base composition of 25.92% A, 13.28% T, 23.06% G, and 37.73% C. Consistent with other hard corals, P. harrisoni mitogenome was arranged in 13 protein-coding genes, 2 rRNA, and 2 tRNA genes. nad5 and cox1 contained embedded Group I Introns of 11,133 bp and 965 bp, respectively.

  7. Complete mitochondrial genome of the pacific seahorse Hippocampus ingens Girard, 1858 (Gasterosteiformes: Syngnathidae).

    Science.gov (United States)

    Zhang, Huixian; Zhang, Yanhong; Lin, Qiang

    2015-01-01

    The complete mitochondrial genome sequence of the pacific seahorse Hippocampus ingens was determined using long polymerase chain reactions. The total length of H. ingens mitogenome is 16,526 bp and consists of 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and a control region. The gene order and composition of H. ingens were similar to those of most other vertebrates. The overall base composition of H. ingens is 32.6% A, 29.3% T, 23.5% G and 14.6% C, with a slight A+T rich feature (61.9%).

  8. Complete mitochondrial genome sequence of the longsnout seahorse Hippocampus reidi (Ginsburg, 1933; Gasterosteiformes: Syngnathidae).

    Science.gov (United States)

    Wang, Xin; Zhang, Yanhong; Zhang, Huixian; Meng, Tan; Lin, Qiang

    2016-01-01

    The complete mitochondrial genome sequence of the longsnout seahorse Hippocampus reidi was fisrt determined in this article. The total length of H. reidi mitogenome is 16,529 bp and consists of 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and 1 control region. The gene order and composition of H. reidi were similar to those of most other vertebrates. The overall base composition of H. reidi is 32.47% A, 29.41% T, 14.75% G and 23.37% C, with a slight A + T rich feature (61.88%).

  9. The complete mitochondrial genome of Octopus bimaculatus Verrill, 1883 from the Gulf of California.

    Science.gov (United States)

    Domínguez-Contreras, José Francisco; Munguia-Vega, Adrian; Ceballos-Vázquez, Bertha Patricia; García-Rodriguez, Francisco Javier; Arellano-Martinez, Marcial

    2016-11-01

    The complete mitochondrial genome of Octopus bimaculatus is 16 085 bp in length and includes 13 protein-codes genes, 2 ribosomal RNA genes, 22 transfers RNA genes, and a control region. The composition of genome is A (40.9%), T (34.7%), C (16.9%), and G (7.5%). The control region of O. bimaculatus contains a VNTR locus not present in the genomes from other octopus species. A phylogenetic analysis shows a closer relationship between the mitogenomes from O. bimaculatus and O. vulgaris.

  10. The complete mitochondrial genome of Octopus conispadiceus (Sasaki, 1917) (Cephalopoda: Octopodidae).

    Science.gov (United States)

    Ma, Yuanyuan; Zheng, Xiaodong; Cheng, Rubin; Li, Qi

    2016-01-01

    In this paper, we determined the complete mitochondrial genome of Octopus conispadiceus (Cephalopoda: Octopodidae). The whole mitogenome of O. conispadiceus is 16,027 basepairs (bp) in length with a base composition of 41.4% A, 34.8% T, 16.1% C, 7.7% G and contains 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes, and a major non-coding region (MNR). The gene arrangements of O. conispadiceus showed remarkable similarity to that of O. vulgaris, Amphioctopus fangsiao, Cistopus chinensis and C. taiwanicus.

  11. Complete mitochondrial genome of the holotype specimen of Wildemania schizophylla (Bangiales: Rhodophyta).

    Science.gov (United States)

    Silva, Mayra Y; Hughey, Jeffery R

    2016-01-01

    Ion Proton data was used to assemble the complete mitochondrial genome from the holotype specimen of Wildemania schizophylla (29,156 bp). The mitogenome contains 50 genes, including 2 ribosomal RNA, 23 transfer RNA, 4 ribosomal proteins, 2 ymfs, 3 open reading frames (ORFs), and 19 genes involved in cellular respiration. Although gene synteny is conserved, the mitogenome of W. schizophylla is significantly smaller due to the lack of large intronic ORFs present in the cytochrome oxidase locus of other Bangiales. The results support the recognition of Wildemania as distinct from Porphyra, and demonstrate that small amounts of type material are suitable for genomic studies.

  12. Complete mitochondrial genome of the tiger shark Galeocerdo cuvier (Carcharhiniformes: Carcharhinidae).

    Science.gov (United States)

    Chen, Xiao; Yu, Junqi; Zhang, Saile; Ding, Wenyong; Xiang, Dan

    2014-12-01

    The tiger shark Galeocerdo cuvier is the only member of the genus Galeocerdo. The complete mitochondrial genome of G. cuvier is presented for the first time in this study. The gene composition and arrangement in the mitogenome of G. cuvier is identical to most animal mitogenome. There are 22 bp short noncoding sequences and 44 bp overlaps in the mitogenome. The overall base composition is 31.8% A, 23.9% C, 13.0% G and 31.3% T. The dihydrouridine arm of tRNA-Ser2 was replaced by a simple loop and the other tRNAs could be folded into the typical cloverleaf structure.

  13. Temporal pattern of africanization in a feral honeybee population from Texas inferred from mitochondrial DNA

    OpenAIRE

    Pinto, M. Alice; Rubink, William L.; Coulson, Robert N.; Patton, John C.; Johnston, J. Spencer

    2004-01-01

    The invasion of Africanized honeybees (Apis mellifera L.) in the Americas provides a window of opportunity to study the dynamics of secondary contact of subspecies of bees that evolved in allopatry in ecologically distinctive habitats of the Old World. We report here the results of an 11-year mitochondrial DNA survey of a feral honeybee population from southern United States (Texas). The mitochondrial haplotype (mitotype) frequencies changed radically during the 11-year study peri...

  14. Preventing the transmission of mitochondrial DNA disorders using prenatal or preimplantation genetic diagnosis.

    Science.gov (United States)

    Smeets, Hubert J M; Sallevelt, Suzanne C E H; Dreesen, Jos C F M; de Die-Smulders, Christine E M; de Coo, Irenaeus F M

    2015-09-01

    Mitochondrial disorders are among the most common inborn errors of metabolism; at least 15% are caused by mitochondrial DNA (mtDNA) mutations, which occur de novo or are maternally inherited. For familial heteroplasmic mtDNA mutations, the mitochondrial bottleneck defines the mtDNA mutation load in offspring, with an often high or unpredictable recurrence risk. Oocyte donation is a safe option to prevent the transmission of mtDNA disease, but the offspring resulting from oocyte donation are genetically related only to the father. Prenatal diagnosis (PND) is technically possible but usually not applicable because of limitations in predicting the phenotype. For de novo mtDNA point mutations, recurrence risks are low and PND can be offered to provide reassurance regarding fetal health. PND is also the best option for female carriers with low-level mutations demonstrating skewing to 0% or 100%. A fairly new option for preventing the transmission of mtDNA diseases is preimplantation genetic diagnosis (PGD), in which embryos with a mutant load below a mutation-specific or general expression threshold of 18% can be transferred. PGD is currently the best reproductive option for familial heteroplasmic mtDNA point mutations. Nuclear genome transfer and genome editing techniques are currently being investigated and might offer additional reproductive options for specific mtDNA disease cases. © 2015 New York Academy of Sciences.

  15. The complete mitochondrial genome of the common sea slater, Ligia oceanica (Crustacea, Isopoda bears a novel gene order and unusual control region features

    Directory of Open Access Journals (Sweden)

    Podsiadlowski Lars

    2006-09-01

    Full Text Available Abstract Background Sequence data and other characters from mitochondrial genomes (gene translocations, secondary structure of RNA molecules are useful in phylogenetic studies among metazoan animals from population to phylum level. Moreover, the comparison of complete mitochondrial sequences gives valuable information about the evolution of small genomes, e.g. about different mechanisms of gene translocation, gene duplication and gene loss, or concerning nucleotide frequency biases. The Peracarida (gammarids, isopods, etc. comprise about 21,000 species of crustaceans, living in many environments from deep sea floor to arid terrestrial habitats. Ligia oceanica is a terrestrial isopod living at rocky seashores of the european North Sea and Atlantic coastlines. Results The study reveals the first complete mitochondrial DNA sequence from a peracarid crustacean. The mitochondrial genome of Ligia oceanica is a circular double-stranded DNA molecule, with a size of 15,289 bp. It shows several changes in mitochondrial gene order compared to other crustacean species. An overview about mitochondrial gene order of all crustacean taxa yet sequenced is also presented. The largest non-coding part (the putative mitochondrial control region of the mitochondrial genome of Ligia oceanica is unexpectedly not AT-rich compared to the remainder of the genome. It bears two repeat regions (4× 10 bp and 3× 64 bp, and a GC-rich hairpin-like secondary structure. Some of the transfer RNAs show secondary structures which derive from the usual cloverleaf pattern. While some tRNA genes are putative targets for RNA editing, trnR could not be localized at all. Conclusion Gene order is not conserved among Peracarida, not even among isopods. The two isopod species Ligia oceanica and Idotea baltica show a similarly derived gene order, compared to the arthropod ground pattern and to the amphipod Parhyale hawaiiensis, suggesting that most of the translocation events were already

  16. Genotype-Phenotype Correlation of Maternally Inherited Disorders due to Mutations in Mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Peterus Thajeb

    2006-09-01

    Full Text Available Mitochondrial disorders are heterogeneous systemic ailments that are most often caused by maternal inheritance of a variety of mutations of the mitochondrial (mt DNA. Paternal inheritance and somatic mutation are rare. The disorders are well recognized not only for the genotypic heterogeneity, but also the phenotypic variation among the affected members of a single family. The genotype-phenotype correlation of the diversity of the syndromic and non-syndromic features of mitochondrial disorders are discussed. Some aspects of the molecular mechanisms of this heterogeneity, and the histopathologic findings are highlighted.

  17. A ketogenic diet accelerates neurodegeneration in mice with induced mitochondrial DNA toxicity in the forebrain.

    Science.gov (United States)

    Lauritzen, Knut H; Hasan-Olive, Md Mahdi; Regnell, Christine E; Kleppa, Liv; Scheibye-Knudsen, Morten; Gjedde, Albert; Klungland, Arne; Bohr, Vilhelm A; Storm-Mathisen, Jon; Bergersen, Linda H

    2016-12-01

    Mitochondrial genome maintenance plays a central role in preserving brain health. We previously demonstrated accumulation of mitochondrial DNA damage and severe neurodegeneration in transgenic mice inducibly expressing a mutated mitochondrial DNA repair enzyme (mutUNG1) selectively in forebrain neurons. Here, we examine whether severe neurodegeneration in mutUNG1-expressing mice could be rescued by feeding the mice a ketogenic diet, which is known to have beneficial effects in several neurological disorders. The diet increased the levels of superoxide dismutase 2, and mitochondrial mass, enzymes, and regulators such as SIRT1 and FIS1, and appeared to downregulate N-methyl-D-aspartic acid (NMDA) receptor subunits NR2A/B and upregulate γ-aminobutyric acid A (GABA A ) receptor subunits α 1 . However, unexpectedly, the ketogenic diet aggravated neurodegeneration and mitochondrial deterioration. Electron microscopy showed structurally impaired mitochondria accumulating in neuronal perikarya. We propose that aggravation is caused by increased mitochondrial biogenesis of generally dysfunctional mitochondria. This study thereby questions the dogma that a ketogenic diet is unambiguously beneficial in mitochondrial disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Characterization and phylogenetic analysis of complete mitochondrial genomes for two desert cyprinodontoid fishes, Empetrichthys latos and Crenichthys baileyi.

    Science.gov (United States)

    Jimenez, Miguel; Goodchild, Shawn C; Stockwell, Craig A; Lema, Sean C

    2017-08-30

    The Pahrump poolfish (Empetrichthys latos) and White River springfish (Crenichthys baileyi) are small-bodied teleost fishes (order Cyprinodontiformes) endemic to the arid Great Basin and Mojave Desert regions of western North America. These taxa survive as small, isolated populations in remote streams and springs and evolved to tolerate extreme conditions of high temperature and low dissolved oxygen. Both species have experienced severe population declines over the last 50-60years that led to some subspecies being categorized with protected status under the U.S. Endangered Species Act. Here we report the first sequencing of the complete mitochondrial DNA genomes for both E. l. latos and the moapae subspecies of C. baileyi. Complete mitogenomes of 16,546bp nucleotides were obtained from two E. l. latos individuals collected from introduced populations at Spring Mountain Ranch State Park and Shoshone Ponds Natural Area, Nevada, USA, while a single mitogenome of 16,537bp was sequenced for C. b. moapae. The mitogenomes of both species contain 13 protein-encoding genes, twenty-two tRNAs, and two rRNAs (12S and 18S) following the syntenic arrangement typical of Actinopterygiian fish mitogenomes, as well as D-loop control regions of 858bp for E. latos and 842bp for C. baileyi moapae. The two E. latos individuals exhibited only 0.0181% nucleotide sequence divergence across the entire mitogenome, implying little intraspecific mtDNA genetic variation. Comparative phylogenetic analysis of the poolfish and springfish mitochondrial genomes to available mitogenomes of other Cyprinodontoid fishes confirmed the close relationship of these oviparous Empetrichthys and Crenichthys genera to the viviparous goodeid fishes of central Mexico, and showed the combined clade of these fishes to be a sister group to the Profundulidae killifishes. Despite several significant life history and morphological differences between the Empetrichthyinae and Goodienae, estimates of evolutionary genetic

  19. Phylogenetic relationships among amphisbaenian reptiles based on complete mitochondrial genomic sequences.

    Science.gov (United States)

    Macey, J Robert; Papenfuss, Theodore J; Kuehl, Jennifer V; Fourcade, H Mathew; Boore, Jeffrey L

    2004-10-01

    Complete mitochondrial genomic sequences are reported from 12 members in the four families of the reptile group Amphisbaenia. Analysis of 11,946 aligned nucleotide positions (5797 informative) produces a robust phylogenetic hypothesis. The family Rhineuridae is basal and Bipedidae is the sister taxon to the Amphisbaenidae plus Trogonophidae. Amphisbaenian reptiles are surprisingly old, predating the breakup of Pangaea 200 million years before present, because successive basal taxa (Rhineuridae and Bipedidae) are situated in tectonic regions of Laurasia and nested taxa (Amphisbaenidae and Trogonophidae) are found in Gondwanan regions. Thorough sampling within the Bipedidae shows that it is not tectonic movement of Baja California away from the Mexican mainland that is primary in isolating Bipes species, but rather that primary vicariance occurred between northern and southern groups. Amphisbaenian families show parallel reduction in number of limbs and Bipes species exhibit parallel reduction in number of digits. A measure is developed for comparing the phylogenetic information content of various genes. A synapomorphic trait defining the Bipedidae is a shift from the typical vertebrate mitochondrial gene arrangement to the derived state of trnE and nad6. In addition, a tandem duplication of trnT and trnP is observed in Bipes biporus with a pattern of pseudogene formation that varies among populations. The first case of convergent rearrangement of the mitochondrial genome among animals demonstrated by complete genomic sequences is reported. Relative to most vertebrates, the Rhineuridae has the block nad6, trnE switched in order with the block cob, trnT, trnP, as they are in birds.

  20. Phylogenetic relationships among amphisbaenian reptiles based on complete mitochondrial genomic sequences

    Energy Technology Data Exchange (ETDEWEB)

    Macey, J. Robert; Papenfuss, Theodore J.; Kuehl, Jennifer V.; Fourcade, H. Matthew; Boore, Jeffrey L.

    2004-05-19

    Complete mitochondrial genomic sequences are reported from 12 members in the four families of the reptile group Amphisbaenia. Analysis of 11,946 aligned nucleotide positions (5,797 informative) produces a robust phylogenetic hypothesis. The family Rhineuridae is basal and Bipedidae is the sister taxon to the Amphisbaenidae plus Trogonophidae. Amphisbaenian reptiles are surprisingly old, predating the breakup of Pangaea 200 million years before present, because successive basal taxa (Rhineuridae and Bipedidae) are situated in tectonic regions of Laurasia and nested taxa (Amphisbaenidae and Trogonophidae) are found in Gondwanan regions. Thorough sampling within the Bipedidae shows that it is not tectonic movement of Baja California away from the Mexican mainland that is primary in isolating Bipes species, but rather that primary vicariance occurred between northern and southern groups. Amphisbaenian families show parallel reduction in number of limbs and Bipes species exhibit parallel reduction in number of digits. A measure is developed for comparing the phylogenetic information content of various genes. A synapomorphic trait defining the Bipedidae is a shift from the typical vertebrate mitochondrial gene arrangement to the derived state of trnE and nad6. In addition, a tandem duplication of trnT and trnP is observed in B. biporus with a pattern of pseudogene formation that varies among populations. The first case of convergent rearrangement of the mitochondrial genome among animals demonstrated by complete genomic sequences is reported. Relative to most vertebrates, the Rhineuridae has the block nad6, trnE switched in order with cob, trnT, trnP, as they are in birds.

  1. Mitochondrial DNA D-loop sequence variation among 5 maternal lines of the Zemaitukai horse breed

    Directory of Open Access Journals (Sweden)

    E. Gus Cothran

    2005-12-01

    Full Text Available Genetic variation in Zemaitukai horses was investigated using mitochondrial DNA (mtDNA sequencing. The study was performed on 421 bp of the mitochondrial DNA control region, which is known to be more variable than other sections of the mitochondrial genome. Samples from each of the remaining maternal family lines of Zemaitukai horses and three random samples for other Lithuanian (Lithuanian Heavy Draught, Zemaitukai large type and ten European horse breeds were sequenced. Five distinct haplotypes were obtained for the five Zemaitukai maternal families supporting the pedigree data. The minimal difference between two different sequence haplotypes was 6 and the maximal 11 nucleotides in Zemaitukai horse breed. A total of 20 nucleotide differences compared to the reference sequence were found in Lithuanian horse breeds. Genetic cluster analysis did not shown any clear pattern of relationship among breeds of different type.

  2. A complete mitochondrial genome sequence of Ogura-type male-sterile cytoplasm and its comparative analysis with that of normal cytoplasm in radish (Raphanus sativus L.

    Directory of Open Access Journals (Sweden)

    Tanaka Yoshiyuki

    2012-07-01

    Full Text Available Abstract Background Plant mitochondrial genome has unique features such as large size, frequent recombination and incorporation of foreign DNA. Cytoplasmic male sterility (CMS is caused by rearrangement of the mitochondrial genome, and a novel chimeric open reading frame (ORF created by shuffling of endogenous sequences is often responsible for CMS. The Ogura-type male-sterile cytoplasm is one of the most extensively studied cytoplasms in Brassicaceae. Although the gene orf138 has been isolated as a determinant of Ogura-type CMS, no homologous sequence to orf138 has been found in public databases. Therefore, how orf138 sequence was created is a mystery. In this study, we determined the complete nucleotide sequence of two radish mitochondrial genomes, namely, Ogura- and normal-type genomes, and analyzed them to reveal the origin of the gene orf138. Results Ogura- and normal-type mitochondrial genomes were assembled to 258,426-bp and 244,036-bp circular sequences, respectively. Normal-type mitochondrial genome contained 33 protein-coding and three rRNA genes, which are well conserved with the reported mitochondrial genome of rapeseed. Ogura-type genomes contained same genes and additional atp9. As for tRNA, normal-type contained 17 tRNAs, while Ogura-type contained 17 tRNAs and one additional trnfM. The gene orf138 was specific to Ogura-type mitochondrial genome, and no sequence homologous to it was found in normal-type genome. Comparative analysis of the two genomes revealed that radish mitochondrial genome consists of 11 syntenic regions (length >3 kb, similarity >99.9%. It was shown that short repeats and overlapped repeats present in the edge of syntenic regions were involved in recombination events during evolution to interconvert two types of mitochondrial genome. Ogura-type mitochondrial genome has four unique regions (2,803 bp, 1,601 bp, 451 bp and 15,255 bp in size that are non-syntenic to normal-type genome, and the gene orf138

  3. A study of the peopling of Greenland using next generation sequencing of complete mitochondrial genomes

    DEFF Research Database (Denmark)

    Lopopolo, Maria; Børsting, Claus; Pereira, Vania

    2016-01-01

    the migration patterns in the Greenlandic population from a female inheritance demographic perspective. Methods We investigated the maternal genetic variation in the Greenlandic population by sequencing the whole mtDNA genome in 127 Greenlandic individuals using the Illumina MiSeq® platform. Results All......Objectives The Greenlandic population history is characterized by a number of migrations of people of various ethnicities. In this work, the analysis of the complete mtDNA genome aimed to contribute to the ongoing debate on the origin of current Greenlanders and, at the same time, to address...... Greenlandic individuals belonged to the Inuit mtDNA lineages A2a, A2b1, and D4b1a2a1. No European haplogroup was found. Discussion The mtDNA lineages seem to support the hypothesis that the Inuit in Greenland are descendants from the Thule migration. The results also reinforce the importance of isolation...

  4. Retrospective assessment of the most common mitochondrial DNA mutations in a large Hungarian cohort of suspect mitochondrial cases.

    Science.gov (United States)

    Remenyi, Viktoria; Inczedy-Farkas, Gabriella; Komlosi, Katalin; Horvath, Rita; Maasz, Anita; Janicsek, Ingrid; Pentelenyi, Klara; Gal, Aniko; Karcagi, Veronika; Melegh, Bela; Molnar, Maria Judit

    2015-08-01

    Prevalence estimations for mitochondrial disorders still vary widely and only few epidemiologic studies have been carried out so far. With the present work we aim to give a comprehensive overview about frequencies of the most common mitochondrial mutations in Hungarian patients. A total of 1328 patients were tested between 1999 and 2012. Among them, 882 were screened for the m.3243A > G, m.8344A > G, m.8993T > C/G mutations and deletions, 446 for LHON primary mutations. The mutation frequency in our cohort was 2.61% for the m.3243A > G, 1.47% for the m.8344A > G, 17.94% for Leber's Hereditary Optic Neuropathy (m.3460G > A, m.11778G > A, m.14484T > C) and 0.45% for the m.8993T > C/G substitutions. Single mtDNA deletions were detected in 14.97%, while multiple deletions in 6.01% of the cases. The mutation frequency in Hungarian patients suggestive of mitochondrial disease was similar to other Caucasian populations. Further retrospective studies of different populations are needed in order to accurately assess the importance of mitochondrial diseases and manage these patients.

  5. Maternal age effect and severe germ-line bottleneck in the inheritance of human mitochondrial DNA

    DEFF Research Database (Denmark)

    Rebolledo-Jaramillo, Boris; Su, Marcia Shu-Wei; Stoler, Nicholas

    2014-01-01

    The manifestation of mitochondrial DNA (mtDNA) diseases depends on the frequency of heteroplasmy (the presence of several alleles in an individual), yet its transmission across generations cannot be readily predicted owing to a lack of data on the size of the mtDNA bottleneck during oogenesis......, an order of magnitude higher than for nuclear DNA. Notably, we found a positive association between the number of heteroplasmies in a child and maternal age at fertilization, likely attributable to oocyte aging. This study also took advantage of droplet digital PCR (ddPCR) to validate heteroplasmies...... and confirm a de novo mutation. Our results can be used to predict the transmission of disease-causing mtDNA variants and illuminate evolutionary dynamics of the mitochondrial genome....

  6. A comparative study of nemertean complete mitochondrial genomes, including two new ones for Nectonemertes cf. mirabilis and Zygeupolia rubens, may elucidate the fundamental pattern for the phylum Nemertea

    Directory of Open Access Journals (Sweden)

    Chen Hai-Xia

    2012-04-01

    Full Text Available Abstract Background The mitochondrial genome is important for studying genome evolution as well as reconstructing the phylogeny of organisms. Complete mitochondrial genome sequences have been reported for more than 2200 metazoans, mainly vertebrates and arthropods. To date, from a total of about 1275 described nemertean species, only three complete and two partial mitochondrial DNA sequences from nemerteans have been published. Here, we report the entire mitochondrial genomes for two more nemertean species: Nectonemertes cf. mirabilis and Zygeupolia rubens. Results The sizes of the entire mitochondrial genomes are 15365 bp for N. cf. mirabilis and 15513 bp for Z. rubens. Each circular genome contains 37 genes and an AT-rich non-coding region, and overall nucleotide composition is AT-rich. In both species, there is significant strand asymmetry in the distribution of nucleotides, with the coding strand being richer in T than A and in G than C. The AT-rich non-coding regions of the two genomes have some repeat sequences and stem-loop structures, both of which may be associated with the initiation of replication or transcription. The 22 tRNAs show variable substitution patterns in nemerteans, with higher sequence conservation in genes located on the H strand. Gene arrangement of N. cf. mirabilis is identical to that of Paranemertes cf. peregrina, both of which are Hoplonemertea, while that of Z. rubens is the same as in Lineus viridis, both of which are Heteronemertea. Comparison of the gene arrangements and phylogenomic analysis based on concatenated nucleotide sequences of the 12 mitochondrial protein-coding genes revealed that species with closer relationships share more identical gene blocks. Conclusion The two new mitochondrial genomes share many features, including gene contents, with other known nemertean mitochondrial genomes. The tRNA families display a composite substitution pathway. Gene order comparison to the proposed ground pattern of

  7. Quantitative PCR analysis of diepoxybutane and epihalohydrin damage to nuclear versus mitochondrial DNA

    Energy Technology Data Exchange (ETDEWEB)

    LaRiviere, Frederick J. [Department of Chemistry, Washington and Lee University, Lexington, VA 24450 (United States); Newman, Adam G.; Watts, Megan L.; Bradley, Sharonda Q.; Juskewitch, Justin E. [Department of Chemistry, Colby College, 5757 Mayflower Hill Drive, Waterville, ME 04901 (United States); Greenwood, Paul G. [Department of Biology, Colby College, Waterville, ME 04901 (United States); Millard, Julie T., E-mail: jtmillar@colby.edu [Department of Chemistry, Colby College, 5757 Mayflower Hill Drive, Waterville, ME 04901 (United States)

    2009-05-12

    The bifunctional alkylating agents diepoxybutane (DEB) and epichlorohydrin (ECH) are linked to the elevated incidence of certain cancers among workers in the synthetic polymer industry. Both compounds form interstrand cross-links within duplex DNA, an activity suggested to contribute to their cytotoxicity. To assess the DNA targeting of these compounds in vivo, we assayed for damage within chicken erythro-progenitor cells at three different sites: one within mitochondrial DNA, one within expressed nuclear DNA, and one within unexpressed nuclear DNA. We determined the degree of damage at each site via a quantitative polymerase chain reaction, which compares amplification of control, untreated DNA to that from cells exposed to the agent in question. We found that ECH and the related compound epibromohydrin preferentially target nuclear DNA relative to mitochondrial DNA, whereas DEB reacts similarly with the two genomes. Decreased reactivity of the mitochondrial genome could contribute to the reduced apoptotic potential of ECH relative to DEB. Additionally, formation of lesions by all agents occurred at comparable levels for unexpressed and expressed nuclear loci, suggesting that alkylation is unaffected by the degree of chromatin condensation.

  8. Quantitative PCR analysis of diepoxybutane and epihalohydrin damage to nuclear versus mitochondrial DNA

    International Nuclear Information System (INIS)

    LaRiviere, Frederick J.; Newman, Adam G.; Watts, Megan L.; Bradley, Sharonda Q.; Juskewitch, Justin E.; Greenwood, Paul G.; Millard, Julie T.

    2009-01-01

    The bifunctional alkylating agents diepoxybutane (DEB) and epichlorohydrin (ECH) are linked to the elevated incidence of certain cancers among workers in the synthetic polymer industry. Both compounds form interstrand cross-links within duplex DNA, an activity suggested to contribute to their cytotoxicity. To assess the DNA targeting of these compounds in vivo, we assayed for damage within chicken erythro-progenitor cells at three different sites: one within mitochondrial DNA, one within expressed nuclear DNA, and one within unexpressed nuclear DNA. We determined the degree of damage at each site via a quantitative polymerase chain reaction, which compares amplification of control, untreated DNA to that from cells exposed to the agent in question. We found that ECH and the related compound epibromohydrin preferentially target nuclear DNA relative to mitochondrial DNA, whereas DEB reacts similarly with the two genomes. Decreased reactivity of the mitochondrial genome could contribute to the reduced apoptotic potential of ECH relative to DEB. Additionally, formation of lesions by all agents occurred at comparable levels for unexpressed and expressed nuclear loci, suggesting that alkylation is unaffected by the degree of chromatin condensation.

  9. Thymidine kinase 2 (H126N) knockin mice show the essential role of balanced deoxynucleotide pools for mitochondrial DNA maintenance

    OpenAIRE

    Akman, Hasan O.; Dorado, Beatriz; López, Luis C.; García-Cazorla, Ángeles; Vilà, Maya R.; Tanabe, Lauren M.; Dauer, William T.; Bonilla, Eduardo; Tanji, Kurenai; Hirano, Michio

    2008-01-01

    Mitochondrial DNA (mtDNA) depletion syndrome (MDS), an autosomal recessive condition, is characterized by variable organ involvement with decreased mtDNA copy number and activities of respiratory chain enzymes in affected tissues. MtDNA depletion has been associated with mutations in nine autosomal genes, including thymidine kinase (TK2), which encodes a ubiquitous mitochondrial protein. To study the pathogenesis of TK2-deficiency, we generated mice harboring an H126N Tk2 mutation. Homozygous...

  10. mtDNA depletion myopathy: elucidation of the tissue specificity in the mitochondrial thymidine kinase (TK2) deficiency.

    Science.gov (United States)

    Saada, Ann; Shaag, Avraham; Elpeleg, Orly

    2003-05-01

    Decreased mitochondrial thymidine kinase (TK2) activity is associated with mitochondrial DNA (mtDNA) depletion and respiratory chain dysfunction and is manifested by isolated, fatal skeletal myopathy. Other tissues such as liver, brain, heart, and skin remain unaffected throughout the patients' life. In order to elucidate the mechanism of tissue specificity in the disease we have investigated the expression of the mitochondrial deoxynucleotide carrier, the mtDNA content and the activity of TK2 in mitochondria of various tissues. Our results suggest that low basal TK2 activity combined with a high requirement for mitochondrial encoded proteins in muscle predispose this tissue to the devastating effect of TK2 deficiency.

  11. The complete mitochondrial genome of the Asian tapirs (Tapirus indicus): the only extant Tapiridae species in the old world.

    Science.gov (United States)

    Muangkram, Yuttamol; Wajjwalku, Worawidh; Kaolim, Nongnid; Buddhakosai, Waradee; Kamolnorranath, Sumate; Siriaroonrat, Boripat; Tipkantha, Wanlaya; Dongsaard, Khwanruean; Maikaew, Umaporn; Sanannu, Saowaphang

    2016-01-01

    Asian tapir (Tapirus indicus) is categorized as Endangered on the 2008 IUCN red list. The first full-length mitochondrial DNA (mtDNA) sequence of Asian tapir is 16,717 bp in length. Base composition shows 34.6% A, 27.2% T, 25.8% C and 12.3% G. Highest polymorphic site is on the control region as typical for many species.

  12. Data from complete mtDNA sequencing of Tunisian centenarians: testing haplogroup association and the "golden mean" to longevity.

    Science.gov (United States)

    Costa, Marta D; Cherni, Lotfi; Fernandes, Verónica; Freitas, Fernando; Ammar El Gaaied, Amel Ben; Pereira, Luísa

    2009-04-01

    Since the mitochondrial theory of ageing was proposed, mitochondrial DNA (mtDNA) diversity has been largely studied in old people, however complete genomes are still rare, being limited to Japanese and UK/US samples. In this work, we evaluated possible longevity associated polymorphisms/haplogroups in an African population, from Tunisia, by performing complete mtDNA sequencing. This population has a mixed Eurasian/sub-Saharan mtDNA gene pool, which could potentially facilitate the evaluation of association for sub-Saharan lineages. Sub-Saharan haplogroups were shown to be significantly less represented in centenarians (9.5%) than in controls (54.5%), but it is not possible to rule out an influence of population structure, which is high in these populations. No recurrent polymorphism were more frequent in centenarians than in controls, and although the Tunisian centenarians presented less synonymous and replacement polymorphisms than controls, this difference was not statistically significant. So far, it does not seem that centenarians have significantly less mildly deleterious substitutions, not only in Tunisia but also in Japanese and UK/US samples, as tested here, not favouring a "golden mean" to longevity.

  13. Method for assessing damage to mitochondrial DNA caused by radiation and epichlorohydrin

    International Nuclear Information System (INIS)

    Singh, G.; Hauswirth, W.W.; Ross, W.E.; Neims, A.H.

    1985-01-01

    This paper describes a rapid and reliable method for quantification of damage to mitochondrial DNA (mtDNA), especially strand breaks. The degree of damage to mtDNA is assessed by the proportion of physical forms (i.e., supercoiled versus open-circular and linear forms) upon agarose gel electrophoresis, blotting, and visualization by hybridization with [ 32 P]mtDNA probes. The use of a radiolabeled probe is a crucial step in the procedure because it provides both a means to quantify by radioautography and to obtain the mtDNA specificity required to eliminate misinterpretation due to nuclear DNA contamination. To demonstrate the utility of this technique, X-irradiation and epichlorohydrin are shown to damage both isolated mtDNA and mtDNA in whole cells in a dose-dependent fashion

  14. Mitochondrial DNA depletion syndrome presenting with ataxia and ...

    African Journals Online (AJOL)

    The patient presented to Cairo University Pediatric Hospital with the clinical suspicion of mitochondrial encephalomyopathy. Histochemical and biochemical studies of the respiratory chain complexes were performed on the muscle biopsy specimen from the patient. Molecular diagnosis was done by quantitative radioactive ...

  15. Mitochondrial DNA deletion and impairment of mitochondrial biogenesis are mediated by reactive oxygen species in ionizing radiation-induced premature senescence

    International Nuclear Information System (INIS)

    Eom, Hyeon Soo; Jung, U Hee; Jo, Sung Kee; Kim, Young Sang

    2011-01-01

    Mitochondrial DNA (mtDNA) deletion is a well-known marker for oxidative stress and aging, and contributes to harmful effects in cultured cells and animal tissues. mtDNA biogenesis genes (NRF-1, TFAM) are essential for the maintenance of mtDNA, as well as the transcription and replication of mitochondrial genomes. Considering that oxidative stress is known to affect mitochondrial biogenesis, we hypothesized that ionizing radiation (IR)-induced reactive oxygen species (ROS) causes mtDNA deletion by modulating the mitochondrial biogenesis, thereby leading to cellular senescence. Therefore, we examined the effects of IR on ROS levels, cellular senescence, mitochondrial biogenesis, and mtDNA deletion in IMR-90 human lung fibroblast cells. Young IMR-90 cells at population doubling (PD) 39 were irradiated at 4 or 8 Gy. Old cells at PD55, and H2O2-treated young cells at PD 39, were compared as a positive control. The IR increased the intracellular ROS level, senescence-associated β-galactosidase (SA-β-gal) activity, and mtDNA common deletion (4977 bp), and it decreased the mRNA expression of NRF-1 and TFAM in IMR-90 cells. Similar results were also observed in old cells (PD 55) and H 2 O 2 -treated young cells. To confirm that a increase in ROS level is essential for mtDNA deletion and changes of mitochondrial biogenesis in irradiated cells, the effects of N-acetylcysteine (NAC) were examined. In irradiated and H 2 O 2 -treated cells, 5 mM NAC significantly attenuated the increases of ROS, mtDNA deletion, and SA-β-gal activity, and recovered from decreased expressions of NRF-1 and TFAM mRNA. These results suggest that ROS is a key cause of IR-induced mtDNA deletion, and the suppression of the mitochondrial biogenesis gene may mediate this process.

  16. Mitochondrial DNA deletion and impairment of mitochondrial biogenesis are mediated by reactive oxygen species in ionizing radiation-induced premature senescence

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Hyeon Soo; Jung, U Hee; Jo, Sung Kee [Radiation Biotechnology Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Young Sang [College of Natural Sciences, Chungnam National University, Daejeon (Korea, Republic of)

    2011-09-15

    Mitochondrial DNA (mtDNA) deletion is a well-known marker for oxidative stress and aging, and contributes to harmful effects in cultured cells and animal tissues. mtDNA biogenesis genes (NRF-1, TFAM) are essential for the maintenance of mtDNA, as well as the transcription and replication of mitochondrial genomes. Considering that oxidative stress is known to affect mitochondrial biogenesis, we hypothesized that ionizing radiation (IR)-induced reactive oxygen species (ROS) causes mtDNA deletion by modulating the mitochondrial biogenesis, thereby leading to cellular senescence. Therefore, we examined the effects of IR on ROS levels, cellular senescence, mitochondrial biogenesis, and mtDNA deletion in IMR-90 human lung fibroblast cells. Young IMR-90 cells at population doubling (PD) 39 were irradiated at 4 or 8 Gy. Old cells at PD55, and H2O2-treated young cells at PD 39, were compared as a positive control. The IR increased the intracellular ROS level, senescence-associated {beta}-galactosidase (SA-{beta}-gal) activity, and mtDNA common deletion (4977 bp), and it decreased the mRNA expression of NRF-1 and TFAM in IMR-90 cells. Similar results were also observed in old cells (PD 55) and H{sub 2}O{sub 2}-treated young cells. To confirm that a increase in ROS level is essential for mtDNA deletion and changes of mitochondrial biogenesis in irradiated cells, the effects of N-acetylcysteine (NAC) were examined. In irradiated and H{sub 2}O{sub 2}-treated cells, 5 mM NAC significantly attenuated the increases of ROS, mtDNA deletion, and SA-{beta}-gal activity, and recovered from decreased expressions of NRF-1 and TFAM mRNA. These results suggest that ROS is a key cause of IR-induced mtDNA deletion, and the suppression of the mitochondrial biogenesis gene may mediate this process.

  17. Mitochondrial DNA damage and oxidative damage in HL-60 cells exposed to 900 MHz radiofrequency fields

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yulong; Zong, Lin; Gao, Zhen [School of Public Health, Soochow University, Suzhou, Jiangsu Province (China); Zhu, Shunxing [Laboratory Animal Center, Nantong University, Nantong, Jiangsu Province (China); Tong, Jian [School of Public Health, Soochow University, Suzhou, Jiangsu Province (China); Cao, Yi, E-mail: yicao@suda.edu.cn [School of Public Health, Soochow University, Suzhou, Jiangsu Province (China)

    2017-03-15

    Highlights: • Increased reactive oxygen species. • Decreased mitochondrial transcription Factor A and polymerase gamma. • Decreased mitochondrial transcripts (ND1 and 16S) and mtDNA copy number. • Increased 8-hydroxy-2′deoxyguanosine. • Decreased adenosine triphosphate. - Abstract: HL-60 cells, derived from human promyelocytic leukemia, were exposed to continuous wave 900 MHz radiofrequency fields (RF) at 120 μW/cm{sup 2} power intensity for 4 h/day for 5 consecutive days to examine whether such exposure is capable damaging the mitochondrial DNA (mtDNA) mediated through the production of reactive oxygen species (ROS). In addition, the effect of RF exposure was examined on 8-hydroxy-2′-dexoyguanosine (8-OHdG) which is a biomarker for oxidative damage and on the mitochondrial synthesis of adenosine triphosphate (ATP) which is the energy required for cellular functions. The results indicated a significant increase in ROS and significant decreases in mitochondrial transcription factor A, mtDNA polymerase gamma, mtDNA transcripts and mtDNA copy number in RF-exposed cells compared with those in sham-exposed control cells. In addition, there was a significant increase in 8-OHdG and a significant decrease in ATP in RF-exposed cells. The response in positive control cells exposed to gamma radiation (GR, which is also known to induce ROS) was similar to those in RF-exposed cells. Thus, the overall data indicated that RF exposure was capable of inducing mtDNA damage mediated through ROS pathway which also induced oxidative damage. Prior-treatment of RF- and GR-exposed the cells with melatonin, a well-known free radical scavenger, reversed the effects observed in RF-exposed cells.

  18. Babylonian confusion of gudgeons in the west Aegean drainages inferred by the mitochondrial DNA analyses

    Directory of Open Access Journals (Sweden)

    Radek Sanda

    2015-11-01

    We have analysed control region (mitochondrial non coding DNA of gudgeon populations from all larger river drainages from the west Aegean region (Pinios to Marica basins. Included were also several populations from surrounding areas of the Danube River drainage and from the Black Sea rivers. The results are not at all congruent with the proposed taxonomy. MtDNA haplotypes of Romonagobio banarescui were found not only in the Vardar, but also in the lower Aliakmon River. Haplotypes of Romanogibo elimeus were found in the Pinios, upper Aliakmon and Loudias rivers. Situation of genus Gobio is completely confusing; there is no geographic structure in the distribution of haplotypes. Many different haplogroups are shared in some basins, especially in the drainages of the Struma, Mesta and Marica rivers. This indicates complicated evolutionary history of gudgeons in the region, probably having several historical refugia, and with multiple recent contacts of lineages. Our data indicate a contact between the Danubian, Black Sea and Aegean rivers. The taxonomic status of most of the populations of Gobio from the west Aegean area remains unclear.

  19. Sequence preservation of osteocalcin protein and mitochondrial DNA in bison bones older than 55 ka

    Science.gov (United States)

    Nielsen-Marsh, Christina M.; Ostrom, Peggy H.; Gandhi, Hasand; Shapiro, Beth; Cooper, Alan; Hauschka, Peter V.; Collins, Matthew J.

    2002-12-01

    We report the first complete sequences of the protein osteocalcin from small amounts (20 mg) of two bison bone (Bison priscus) dated to older than 55.6 ka and older than 58.9 ka. Osteocalcin was purified using new gravity columns (never exposed to protein) followed by microbore reversed-phase high-performance liquid chromatography. Sequencing of osteocalcin employed two methods of matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS): peptide mass mapping (PMM) and post-source decay (PSD). The PMM shows that ancient and modern bison osteocalcin have the same mass to charge (m/z) distribution, indicating an identical protein sequence and absence of diagenetic products. This was confirmed by PSD of the m/z 2066 tryptic peptide (residues 1 19); the mass spectra from ancient and modern peptides were identical. The 129 mass unit difference in the molecular ion between cow (Bos taurus) and bison is caused by a single amino-acid substitution between the taxa (Trp in cow is replaced by Gly in bison at residue 5). Bison mitochondrial control region DNA sequences were obtained from the older than 55.6 ka fossil. These results suggest that DNA and protein sequences can be used to directly investigate molecular phylogenies over a considerable time period, the absolute limit of which is yet to be determined.

  20. Analysis of the Complete Mitochondrial Genome Sequence of the Diploid Cotton Gossypium raimondii by Comparative Genomics Approaches

    Directory of Open Access Journals (Sweden)

    Changwei Bi

    2016-01-01

    Full Text Available Cotton is one of the most important economic crops and the primary source of natural fiber and is an important protein source for animal feed. The complete nuclear and chloroplast (cp genome sequences of G. raimondii are already available but not mitochondria. Here, we assembled the complete mitochondrial (mt DNA sequence of G. raimondii into a circular genome of length of 676,078 bp and performed comparative analyses with other higher plants. The genome contains 39 protein-coding genes, 6 rRNA genes, and 25 tRNA genes. We also identified four larger repeats (63.9 kb, 10.6 kb, 9.1 kb, and 2.5 kb in this mt genome, which may be active in intramolecular recombination in the evolution of cotton. Strikingly, nearly all of the G. raimondii mt genome has been transferred to nucleus on Chr1, and the transfer event must be very recent. Phylogenetic analysis reveals that G. raimondii, as a member of Malvaceae, is much closer to another cotton (G. barbadense than other rosids, and the clade formed by two Gossypium species is sister to Brassicales. The G. raimondii mt genome may provide a crucial foundation for evolutionary analysis, molecular biology, and cytoplasmic male sterility in cotton and other higher plants.

  1. Mitochondrial Disease

    OpenAIRE

    Bulent Kurt; Turgut Topal

    2013-01-01

    Mitochondria are the major energy source of cells. Mitochondrial disease occurs due to a defect in mitochondrial energy production. A valuable energy production in mitochondria depend a healthy interconnection between nuclear and mitochondrial DNA. A mutation in nuclear or mitochondrial DNA may cause abnormalities in ATP production and single or multiple organ dysfunctions, secondarily. In this review, we summarize mitochondrial physiology, mitochondrial genetics, and clinical expression and ...

  2. Mitochondrial-targeted DNA delivery using a DF-MITO-Porter, an innovative nano carrier with cytoplasmic and mitochondrial fusogenic envelopes

    International Nuclear Information System (INIS)

    Yamada, Yuma; Kawamura, Eriko; Harashima, Hideyoshi

    2012-01-01

    Mitochondrial gene therapy has the potential for curing a variety of diseases that are associated with mitochondrial DNA mutations and/or defects. To achieve this, it will be necessary to deliver therapeutic agents into the mitochondria in diseased cells. A number of mitochondrial drug delivery systems have been reported to date. However, reports of mitochondrial-targeted DNA delivery are limited. To achieve this, the therapeutic agent must be taken up by the cell (1), after which, the multi-processes associated with intracellular trafficking must be sophisticatedly regulated so as to release the agent from the endosome and deliver it to the cytosol (2) and to pass through the mitochondrial membrane (3). We report herein on the mitochondrial delivery of oligo DNA as a model therapeutic using a Dual Function (DF)-MITO-Porter, an innovative nano carrier designed for mitochondrial delivery. The critical structural elements of the DF-MITO-Porter include mitochondria-fusogenic inner envelopes and endosome-fusogenic outer envelopes, modified with octaarginine which greatly assists in cellular uptake. Inside the cell, the carrier passes through the endosomal and mitochondrial membranes via step-wise membrane fusion. When the oligo DNA was packaged in the DF-MITO-Porter, cellular uptake efficiency was strongly enhanced. Intracellular observation using confocal laser scanning microscopy showed that the DF-MITO-Porter was effectively released from endosomes. Moreover, the findings confirmed that the mitochondrial targeting activity of the DF-MITO-Porter was significantly higher than that of a carrier without outer endosome-fusogenic envelopes. These results support the conclusion that mitochondrial-targeted DNA delivery using a DF-MITO-Porter can be achieved when intracellular trafficking is optimally regulated.

  3. Mitochondrial-targeted DNA delivery using a DF-MITO-Porter, an innovative nano carrier with cytoplasmic and mitochondrial fusogenic envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yuma; Kawamura, Eriko; Harashima, Hideyoshi, E-mail: harasima@pharm.hokudai.ac.jp [Hokkaido University, Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences (Japan)

    2012-08-15

    Mitochondrial gene therapy has the potential for curing a variety of diseases that are associated with mitochondrial DNA mutations and/or defects. To achieve this, it will be necessary to deliver therapeutic agents into the mitochondria in diseased cells. A number of mitochondrial drug delivery systems have been reported to date. However, reports of mitochondrial-targeted DNA delivery are limited. To achieve this, the therapeutic agent must be taken up by the cell (1), after which, the multi-processes associated with intracellular trafficking must be sophisticatedly regulated so as to release the agent from the endosome and deliver it to the cytosol (2) and to pass through the mitochondrial membrane (3). We report herein on the mitochondrial delivery of oligo DNA as a model therapeutic using a Dual Function (DF)-MITO-Porter, an innovative nano carrier designed for mitochondrial delivery. The critical structural elements of the DF-MITO-Porter include mitochondria-fusogenic inner envelopes and endosome-fusogenic outer envelopes, modified with octaarginine which greatly assists in cellular uptake. Inside the cell, the carrier passes through the endosomal and mitochondrial membranes via step-wise membrane fusion. When the oligo DNA was packaged in the DF-MITO-Porter, cellular uptake efficiency was strongly enhanced. Intracellular observation using confocal laser scanning microscopy showed that the DF-MITO-Porter was effectively released from endosomes. Moreover, the findings confirmed that the mitochondrial targeting activity of the DF-MITO-Porter was significantly higher than that of a carrier without outer endosome-fusogenic envelopes. These results support the conclusion that mitochondrial-targeted DNA delivery using a DF-MITO-Porter can be achieved when intracellular trafficking is optimally regulated.

  4. Frequent occurrence of mitochondrial DNA mutations in Barrett's metaplasia without the presence of dysplasia.

    Directory of Open Access Journals (Sweden)

    Soong Lee

    Full Text Available BACKGROUND: Barrett's esophagus (BE is one of the most common premalignant lesions and can progress to esophageal adenocarcinoma (EA. The numerous molecular events may play a role in the neoplastic transformation of Barrett's mucosa such as the change of DNA ploidy, p53 mutation and alteration of adhesion molecules. However, the molecular mechanism of the progression of BE to EA remains unclear and most studies of mitochondrial DNA (mtDNA mutations in BE have performed on BE with the presence of dysplasia. METHODS/FINDINGS: Thus, the current study is to investigate new molecular events (Barrett's esophageal tissue-specific-mtDNA alterations/instabilities in mitochondrial genome and causative factors for their alterations using the corresponding adjacent normal mucosal tissue (NT and tissue (BT from 34 patients having Barrett's metaplasia without the presence of dysplasia. Eighteen patients (53% exhibited mtDNA mutations which were not found in adjacent NT. mtDNA copy number was about 3 times higher in BT than in adjacent NT. The activity of the mitochondrial respiratory chain enzyme complexes in tissues from Barrett's metaplasia without the presence of dysplasia was impaired. Reactive oxygen species (ROS level in BT was significantly higher than those in corresponding samples. CONCLUSION/SIGNIFICANCE: High ROS level in BT may contribute to the development of mtDNA mutations, which may play a crucial role in disease progression and tumorigenesis in BE.

  5. Mitochondrial DNA plays an equal role in influencing female and male longevity in centenarians.

    Science.gov (United States)

    He, Yong-Han; Lu, Xiang; Tian, Jiao-Yang; Yan, Dong-Jing; Li, Yu-Chun; Lin, Rong; Perry, Benjamin; Chen, Xiao-Qiong; Yu, Qin; Cai, Wang-Wei; Kong, Qing-Peng

    2016-10-01

    The mitochondrion is a double membrane-bound organelle which plays important functional roles in aging and many other complex phenotypes. Transmission of the mitochondrial genome in the matrilineal line causes the evolutionary selection sieve only in females. Theoretically, beneficial or neutral variations are more likely to accumulate and be retained in the female mitochondrial genome during evolution, which may be an initial trigger of gender dimorphism in aging. The asymmetry of evolutionary processes between gender could lead to males and females aging in different ways. If so, gender specific variation loads could be an evolutionary result of maternal heritage of mitochondrial genomes, especially in centenarians who live to an extreme age and are considered as good models for healthy aging. Here, we tested whether the mitochondrial variation loads were associated with altered aging patterns by investigating the mtDNA haplogroup distribution and genetic diversity between female and male centenarians. We found no evidence of differences in aging patterns between genders in centenarians. Our results indicate that the evolutionary consequence of gender dimorphism in mitochondrial genomes is not a factor in the altered aging patterns in human, and that mitochondrial DNA contributes equally to longevity in males and females. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Novel large-range mitochondrial DNA deletions and fatal multisystemic disorder with prominent hepatopathy

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Marzia; Rizza, Teresa; Verrigni, Daniela [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Diseases, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Martinelli, Diego [Division of Metabolism, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Tozzi, Giulia; Torraco, Alessandra; Piemonte, Fiorella [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Diseases, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Dionisi-Vici, Carlo [Division of Metabolism, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Nobili, Valerio [Gastroenterology and Liver Unit, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Francalanci, Paola; Boldrini, Renata; Callea, Francesco [Dept. Pathology, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Santorelli, Filippo Maria [UOC Neurogenetica e Malattie Neuromuscolari, Fondazione Stella Maris, Pisa (Italy); Bertini, Enrico [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Diseases, ' Bambino Gesu' Children' s Hospital, Rome (Italy); and others

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Expanded array of mtDNA deletions. Black-Right-Pointing-Pointer Pearson syndrome with prominent hepatopathy associated with single mtDNA deletions. Black-Right-Pointing-Pointer Detection of deletions in fibroblasts and blood avoids muscle and liver biopsy. Black-Right-Pointing-Pointer Look for mtDNA deletions before to study nuclear genes related to mtDNA depletion. -- Abstract: Hepatic involvement in mitochondrial cytopathies rarely manifests in adulthood, but is a common feature in children. Multiple OXPHOS enzyme defects in children with liver involvement are often associated with dramatically reduced amounts of mtDNA. We investigated two novel large scale deletions in two infants with a multisystem disorder and prominent hepatopathy. Amount of mtDNA deletions and protein content were measured in different post-mortem tissues. The highest levels of deleted mtDNA were in liver, kidney, pancreas of both patients. Moreover, mtDNA deletions were detected in cultured skin fibroblasts in both patients and in blood of one during life. Biochemical analysis showed impairment of mainly complex I enzyme activity. Patients manifesting multisystem disorders in childhood may harbour rare mtDNA deletions in multiple tissues. For these patients, less invasive blood specimens or cultured fibroblasts can be used for molecular diagnosis. Our data further expand the array of deletions in the mitochondrial genomes in association with liver failure. Thus analysis of mtDNA should be considered in the diagnosis of childhood-onset hepatopathies.

  7. Novel large-range mitochondrial DNA deletions and fatal multisystemic disorder with prominent hepatopathy

    International Nuclear Information System (INIS)

    Bianchi, Marzia; Rizza, Teresa; Verrigni, Daniela; Martinelli, Diego; Tozzi, Giulia; Torraco, Alessandra; Piemonte, Fiorella; Dionisi-Vici, Carlo; Nobili, Valerio; Francalanci, Paola; Boldrini, Renata; Callea, Francesco; Santorelli, Filippo Maria; Bertini, Enrico

    2011-01-01

    Highlights: ► Expanded array of mtDNA deletions. ► Pearson syndrome with prominent hepatopathy associated with single mtDNA deletions. ► Detection of deletions in fibroblasts and blood avoids muscle and liver biopsy. ► Look for mtDNA deletions before to study nuclear genes related to mtDNA depletion. -- Abstract: Hepatic involvement in mitochondrial cytopathies rarely manifests in adulthood, but is a common feature in children. Multiple OXPHOS enzyme defects in children with liver involvement are often associated with dramatically reduced amounts of mtDNA. We investigated two novel large scale deletions in two infants with a multisystem disorder and prominent hepatopathy. Amount of mtDNA deletions and protein content were measured in different post-mortem tissues. The highest levels of deleted mtDNA were in liver, kidney, pancreas of both patients. Moreover, mtDNA deletions were detected in cultured skin fibroblasts in both patients and in blood of one during life. Biochemical analysis showed impairment of mainly complex I enzyme activity. Patients manifesting multisystem disorders in childhood may harbour rare mtDNA deletions in multiple tissues. For these patients, less invasive blood specimens or cultured fibroblasts can be used for molecular diagnosis. Our data further expand the array of deletions in the mitochondrial genomes in association with liver failure. Thus analysis of mtDNA should be considered in the diagnosis of childhood-onset hepatopathies.

  8. Characterization of the complete mitochondrial genome of the giant silkworm moth, Eriogyna pyretorum (Lepidoptera: Saturniidae).

    Science.gov (United States)

    Jiang, Shao-Tong; Hong, Gui-Yun; Yu, Miao; Li, Na; Yang, Ying; Liu, Yan-Qun; Wei, Zhao-Jun

    2009-05-22

    The complete mitochondrial genome (mitogenome) of Eriogyna pyretorum (Lepidoptera: Saturniidae) was determined as being composed of 15,327 base pairs (bp), including 13 protein-coding genes (PCGs), 2 rRNA genes, 22 tRNA genes, and a control region. The arrangement of the PCGs is the same as that found in the other sequenced lepidopteran. The AT skewness for the E. pyretorum mitogenome is slightly negative (-0.031), indicating the occurrence of more Ts than As. The nucleotide composition of the E. pyretorum mitogenome is also biased toward A + T nucleotides (80.82%). All PCGs are initiated by ATN codons, except for cytochrome c oxidase subunit 1 and 2 (cox1 and cox2). Two of the 13 PCGs harbor the incomplete termination codon by T. All tRNA genes have a typical clover-leaf structure of mitochondrial tRNA, with the exception of trnS1(AGN) and trnS2(UCN). Phylogenetic analysis among the available lepidopteran species supports the current morphology-based hypothesis that Bombycoidea, Geometroidea, Notodontidea, Papilionoidea and Pyraloidea are monophyletic. As has been previously suggested, Bombycidae (Bombyx mori and Bombyx mandarina), Sphingoidae (Manduca sexta) and Saturniidae (Antheraea pernyi, Antheraea yamamai, E. pyretorum and Caligula boisduvalii) formed a group.

  9. The complete mitochondrial genome of the giant African snail Achatina fulica (Mollusca: Achatinidae).

    Science.gov (United States)

    Yang, Huirong; Zhang, Jia-En; Guo, Jing; Deng, Zhixin; Luo, Hao; Luo, Mingzhu; Zhao, Benliang

    2016-05-01

    We present the complete mitochondrial genome of the Achatina fulica in this study. The results show that the mitochondrial genome is 15,057 bp in length, which is comprised of 13 protein-coding genes, 2 rRNA genes, 21 tRNA genes. The nucleotide compositions of the light strand are 35.47% of A, 27.97% of T 19.46% of C, and 17.10% of G. Except the ND3, 7 tRNA, ATP6, ATP8, COX3 and 12S-rRNA on the light strand, the rest are encoded on the heavy strand. Five types of inferred initiation codons are ATA (ND1, ND5), GTG (ND6), ATG (COX3, COX2), ATT (ND4) and TTG (COX1, ND2, ND3, ND4L, ATP6, ATP8, Cytb), and 3 types of inferred termination codons are T (COX3, ND2), TAA (ND1, ND4L, ND5, ND6, ATP6), and TAG (ND3, ND4, COX1, COX2, Cytb, ATP8). There are 24 intergenic spacers and 6 gene overlaps. The tandem repeat sequence (total 52 bp) of (AATAATT)n is observed in 16S-rRNA. Gene arrangement and distribution are inconsistent with the typical vertebrates.

  10. Reanalysis and revision of the complete mitochondrial genome of Rachycentron canadum (Teleostei, Perciformes, Rachycentridae).

    Science.gov (United States)

    Musika, Jidapa; Khongchatee, Adison; Phinchongsakuldit, Jaros

    2014-08-01

    The complete mitochondrial genome of cobia, Rachycentron canadum, was reanalyzed and revised. The genome is 18,008 bp in length, containing 13 protein-coding genes, 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and a control region or displacement loop (D-loop). The gene arrangement is identical to that observed in most vertebrates. Base composition on the heavy strand is 30.14% A, 25.22% C, 15.80% G and 28.84% T. The D-loop region exhibits an A + T rich pattern, containing short tandem repeats of TATATACATGG, TATATGCACAA and TATATGCACGG. The mitochondrial genome studied differs from the previously published genome in two segments; the control region to 12S and ND5 to tRNA(Glu). The 12S sequence also differs from those published in the databases. Phylogeny analyses revealed that the differences could be due to errors in sequence assembly and/or sample misidentification of the previous studies.

  11. Complete mitochondrial genome of four pheretimoid earthworms (Clitellata: Oligochaeta) and their phylogenetic reconstruction.

    Science.gov (United States)

    Zhang, Liangliang; Jiang, Jibao; Dong, Yan; Qiu, Jiangping

    2015-12-15

    Among oligochaetes, the Pheretima complex within the Megascolecidae is a major earthworm group. Recently, however, the systematics of the Pheretima complex based on morphology are challenged by molecular studies. Since little comparative analysis of earthworm complete mitochondrial genomes has been reported yet, we sequenced mitogenomes of four pheretimoid earthworm species to explore their phylogenetic relationships. The general earthworm genomic features are also found in four earthworms: all genes transcribed from the same strand, the same initiation codon ATG for each PCGs, and conserved structures of RNA genes. Interestingly we find an extra potential tRNA-leucine (CUN) in Amynthas longisiphonus. The earthworm mitochondrial ATP8 exhibits the highest evolutionary rate, while the gene CO1 evolves slowest. Phylogenetic analysis based on protein-coding genes (PCGs) strongly supports the monophyly of the Clitellata, Hirudinea, Oligochaeta, Megascolecidae and Pheretima complex. Our analysis, however, reveals non-monophyly within the genara Amynthas and Metaphire. Thus the generic divisions based on morphology in the Pheretima complex should be reconsidered. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Complete Sequence and Analysis of Coconut Palm (Cocos nucifera) Mitochondrial Genome.

    Science.gov (United States)

    Aljohi, Hasan Awad; Liu, Wanfei; Lin, Qiang; Zhao, Yuhui; Zeng, Jingyao; Alamer, Ali; Alanazi, Ibrahim O; Alawad, Abdullah O; Al-Sadi, Abdullah M; Hu, Songnian; Yu, Jun

    2016-01-01

    Coconut (Cocos nucifera L.), a member of the palm family (Arecaceae), is one of the most economically important crops in tropics, serving as an important source of food, drink, fuel, medicine, and construction material. Here we report an assembly of the coconut (C. nucifera, Oman local Tall cultivar) mitochondrial (mt) genome based on next-generation sequencing data. This genome, 678,653bp in length and 45.5% in GC content, encodes 72 proteins, 9 pseudogenes, 23 tRNAs, and 3 ribosomal RNAs. Within the assembly, we find that the chloroplast (cp) derived regions account for 5.07% of the total assembly length, including 13 proteins, 2 pseudogenes, and 11 tRNAs. The mt genome has a relatively large fraction of repeat content (17.26%), including both forward (tandem) and inverted (palindromic) repeats. Sequence variation analysis shows that the Ti/Tv ratio of the mt genome is lower as compared to that of the nuclear genome and neutral expectation. By combining public RNA-Seq data for coconut, we identify 734 RNA editing sites supported by at least two datasets. In summary, our data provides the second complete mt genome sequence in the family Arecaceae, essential for further investigations on mitochondrial biology of seed plants.

  13. Gene characteristics of the complete mitochondrial genomes of Paratoxodera polyacantha and Toxodera hauseri (Mantodea: Toxoderidae).

    Science.gov (United States)

    Zhang, Le-Ping; Cai, Yin-Yin; Yu, Dan-Na; Storey, Kenneth B; Zhang, Jia-Yong

    2018-01-01

    The family Toxoderidae (Mantodea) contains an ecologically diverse group of praying mantis species that have in common greatly elongated bodies. In this study, we sequenced and compared the complete mitochondrial genomes of two Toxoderidae species, Paratoxodera polyacantha and Toxodera hauseri , and compared their mitochondrial genome characteristics with another member of the Toxoderidae, Stenotoxodera porioni (KY689118) . The lengths of the mitogenomes of T. hauseri and P. polyacantha were 15,616 bp and 15,999 bp, respectively, which is similar to that of S. porioni (15,846 bp). The size of each gene as well as the A+T-rich region and the A+T content of the whole genome were also very similar among the three species as were the protein-coding genes, the A+T content and the codon usages. The mitogenome of T. hauseri had the typical 22 tRNAs, whereas that of P. polyacantha had 26 tRNAs including an extra two copies of trnA - trnR . Intergenic regions of 67 bp and 76 bp were found in T. hauseri and P. polyacantha , respectively, between COX2 and trnK ; these can be explained as residues of a tandem duplication/random loss of trnK and trnD. This non-coding region may be synapomorphic for Toxoderidae. In BI and ML analyses, the monophyly of Toxoderidae was supported and P. polyacantha was the sister clade to T. hauseri and S. porioni .

  14. Comparative analyses of the complete mitochondrial genomes of Dosinia clams and their phylogenetic position within Veneridae.

    Science.gov (United States)

    Lv, Changda; Li, Qi; Kong, Lingfeng

    2018-01-01

    Mitochondrial genomes have proved to be a powerful tool in resolving phylogenetic relationship. In order to understand the mitogenome characteristics and phylogenetic position of the genus Dosinia, we sequenced the complete mitochondrial genomes of Dosinia altior and Dosinia troscheli (Bivalvia: Veneridae), compared them with that of Dosinia japonica and established a phylogenetic tree for Veneridae. The mitogenomes of D. altior (17,536 bp) and D. troscheli (17,229 bp) are the two smallest in Veneridae, which include 13 protein-coding genes, 2 ribosomal RNA genes, 22 tRNA genes, and non-coding regions. The mitogenomes of the Dosinia species are similar in size, gene content, AT content, AT- and GC- skews, and gene arrangement. The phylogenetic relationships of family Veneridae were established based on 12 concatenated protein-coding genes using maximum likelihood and Bayesian analyses, which supported that Dosininae and Meretricinae have a closer relationship, with Tapetinae being the sister taxon. The information obtained in this study will contribute to further understanding of the molecular features of bivalve mitogenomes and the evolutionary history of the genus Dosinia.

  15. Complete mitochondrial genome sequence from an endangered Indian snake, Python molurus molurus (Serpentes, Pythonidae).

    Science.gov (United States)

    Dubey, Bhawna; Meganathan, P R; Haque, Ikramul

    2012-07-01

    This paper reports the complete mitochondrial genome sequence of an endangered Indian snake, Python molurus molurus (Indian Rock Python). A typical snake mitochondrial (mt) genome of 17258 bp length comprising of 37 genes including the 13 protein coding genes, 22 tRNA genes, and 2 ribosomal RNA genes along with duplicate control regions is described herein. The P. molurus molurus mt. genome is relatively similar to other snake mt. genomes with respect to gene arrangement, composition, tRNA structures and skews of AT/GC bases. The nucleotide composition of the genome shows that there are more A-C % than T-G% on the positive strand as revealed by positive AT and CG skews. Comparison of individual protein coding genes, with other snake genomes suggests that ATP8 and NADH3 genes have high divergence rates. Codon usage analysis reveals a preference of NNC codons over NNG codons in the mt. genome of P. molurus. Also, the synonymous and non-synonymous substitution rates (ka/ks) suggest that most of the protein coding genes are under purifying selection pressure. The phylogenetic analyses involving the concatenated 13 protein coding genes of P. molurus molurus conformed to the previously established snake phylogeny.

  16. Targeted impairment of thymidine kinase 2 expression in cells induces mitochondrial DNA depletion and reveals molecular mechanisms of compensation of mitochondrial respiratory activity

    International Nuclear Information System (INIS)

    Villarroya, Joan; Lara, Mari-Carmen; Dorado, Beatriz; Garrido, Marta; Garcia-Arumi, Elena; Meseguer, Anna; Hirano, Michio; Vila, Maya R.

    2011-01-01

    Highlights: → We impaired TK2 expression in Ost TK1 - cells via siRNA-mediated interference (TK2 - ). → TK2 impairment caused severe mitochondrial DNA (mtDNA) depletion in quiescent cells. → Despite mtDNA depletion, TK2 - cells show high cytochrome oxidase activity. → Depletion of mtDNA occurs without imbalance in the mitochondrial dNTP pool. → Nuclear-encoded ENT1, DNA-pol γ, TFAM and TP gene expression is lowered in TK2 - cells. -- Abstract: The mitochondrial DNA (mtDNA) depletion syndrome comprises a clinically heterogeneous group of diseases characterized by reductions of the mtDNA abundance, without associated point mutations or rearrangements. We have developed the first in vitro model to study of mtDNA depletion due to reduced mitochondrial thymidine kinase 2 gene (TK2) expression in order to understand the molecular mechanisms involved in mtDNA depletion syndrome due to TK2 mutations. Small interfering RNA targeting TK2 mRNA was used to decrease TK2 expression in Ost TK1 - cells, a cell line devoid of endogenous thymidine kinase 1 (TK1). Stable TK2-deficient cell lines showed a reduction of TK2 levels close to 80%. In quiescent conditions, TK2-deficient cells showed severe mtDNA depletion, also close to 80% the control levels. However, TK2-deficient clones showed increased cytochrome c oxidase activity, higher cytochrome c oxidase subunit I transcript levels and higher subunit II protein expression respect to control cells. No alterations of the deoxynucleotide pools were found, whereas a reduction in the expression of genes involved in nucleoside/nucleotide homeostasis (human equilibrative nucleoside transporter 1, thymidine phosphorylase) and mtDNA maintenance (DNA-polymerase γ, mitochondrial transcription factor A) was observed. Our findings highlight the importance of cellular compensatory mechanisms that enhance the expression of respiratory components to ensure respiratory activity despite profound depletion in mtDNA levels.

  17. Liver ultrastructural morphology and mitochondrial DNA levels in HIV/hepatitis C virus coinfection: no evidence of mitochondrial damage with highly active antiretroviral therapy.

    Science.gov (United States)

    Matsukura, Motoi; Chu, Fanny F S; Au, May; Lu, Helen; Chen, Jennifer; Rietkerk, Sonja; Barrios, Rolando; Farley, John D; Montaner, Julio S; Montessori, Valentina C; Walker, David C; Côté, Hélène C F

    2008-06-19

    Liver mitochondrial toxicity is a concern, particularly in HIV/hepatitis C virus (HCV) coinfection. Liver biopsies from HIV/HCV co-infected patients, 14 ON-highly active antiretroviral therapy (HAART) and nine OFF-HAART, were assessed by electron microscopy quantitative morphometric analyses. Hepatocytes tended to be larger ON-HAART than OFF-HAART (P = 0.05), but mitochondrial volume, cristae density, lipid volume, mitochondrial DNA and RNA levels were similar. We found no evidence of increased mitochondrial toxicity in individuals currently on HAART, suggesting that concomitant HAART should not delay HCV therapy.

  18. Evolution and phylogeny of the mud shrimps (Crustacea: Decapoda) revealed from complete mitochondrial genomes.

    Science.gov (United States)

    Lin, Feng-Jiau; Liu, Yuan; Sha, Zhongli; Tsang, Ling Ming; Chu, Ka Hou; Chan, Tin-Yam; Liu, Ruiyu; Cui, Zhaoxia

    2012-11-16

    The evolutionary history and relationships of the mud shrimps (Crustacea: Decapoda: Gebiidea and Axiidea) are contentious, with previous attempts revealing mixed results. The mud shrimps were once classified in the infraorder Thalassinidea. Recent molecular phylogenetic analyses, however, suggest separation of the group into two individual infraorders, Gebiidea and Axiidea. Mitochondrial (mt) genome sequence and structure can be especially powerful in resolving higher systematic relationships that may offer new insights into the phylogeny of the mud shrimps and the other decapod infraorders, and test the hypothesis of dividing the mud shrimps into two infraorders. We present the complete mitochondrial genome sequences of five mud shrimps, Austinogebia edulis, Upogebia major, Thalassina kelanang (Gebiidea), Nihonotrypaea thermophilus and Neaxius glyptocercus (Axiidea). All five genomes encode a standard set of 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes and a putative control region. Except for T. kelanang, mud shrimp mitochondrial genomes exhibited rearrangements and novel patterns compared to the pancrustacean ground pattern. Each of the two Gebiidea species (A. edulis and U. major) and two Axiidea species (N. glyptocercus and N. thermophiles) share unique gene order specific to their infraorders and analyses further suggest these two derived gene orders have evolved independently. Phylogenetic analyses based on the concatenated nucleotide and amino acid sequences of 13 protein-coding genes indicate the possible polyphyly of mud shrimps, supporting the division of the group into two infraorders. However, the infraordinal relationships among the Gebiidea and Axiidea, and other reptants are poorly resolved. The inclusion of mt genome from more taxa, in particular the reptant infraorders Polychelida and Glypheidea is required in further analysis. Phylogenetic analyses on the mt genome sequences and the distinct gene orders provide further

  19. Differential mitochondrial DNA and gene expression in inherited retinal dysplasia in miniature Schnauzer dogs.

    Science.gov (United States)

    Appleyard, Greg D; Forsyth, George W; Kiehlbauch, Laura M; Sigfrid, Kristen N; Hanik, Heather L J; Quon, Anita; Loewen, Matthew E; Grahn, Bruce H

    2006-05-01

    To investigate the molecular basis of inherited retinal dysplasia in miniature Schnauzers. Retina and retinal pigment epithelial tissues were collected from canine subjects at the age of 3 weeks. Total RNA isolated from these tissues was reverse transcribed to make representative cDNA pools that were compared for differences in gene expression by using a subtractive hybridization technique referred to as representational difference analysis (RDA). Expression differences identified by RDA were confirmed and quantified by real-time reverse-transcription PCR. Mitochondrial morphology from leukocytes and skeletal muscle of normal and affected miniature Schnauzers was examined by transmission electron microscopy. RDA screening of retinal pigment epithelial cDNA identified differences in mRNA transcript coding for two mitochondrial (mt) proteins--cytochrome oxidase subunit 1 and NADH dehydrogenase subunit 6--in affected dogs. Contrary to expectations, these identified sequences did not contain mutations. Based on the implication of mt-DNA-encoded proteins by the RDA experiments we used real-time PCR to compare the relative amounts of mt-DNA template in white blood cells from normal and affected dogs. White blood cells of affected dogs contained less than 30% of the normal amount of two specific mtDNA sequences, compared with the content of the nuclear-encoded glyceraldehyde-3-phosphate dehydrogenase (GA-3-PDH) reference gene. Retina and RPE tissue from affected dogs had reduced mRNA transcript levels for the two mitochondrial genes detected in the RDA experiment. Transcript levels for another mtDNA-encoded gene as well as the nuclear-encoded mitochondrial Tfam transcription factor were reduced in these tissues in affected dogs. Mitochondria from affected dogs were reduced in number and size and were unusually electron dense. Reduced levels of nuclear and mitochondrial transcripts in the retina and RPE of miniature Schnauzers affected with retinal dysplasia suggest that

  20. Parental diabetes status reveals association of mitochondrial DNA haplogroup J1 with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Wainstein Julio

    2009-06-01

    Full Text Available Abstract Background Although mitochondrial dysfunction is consistently manifested in patients with Type 2 Diabetes mellitus (T2DM, the association of mitochondrial DNA (mtDNA sequence variants with T2DM varies among populations. These differences might stem from differing environmental influences among populations. However, other potentially important considerations emanate from the very nature of mitochondrial genetics, namely the notable high degree of partitioning in the distribution of human mtDNA variants among populations, as well as the interaction of mtDNA and nuclear DNA-encoded factors working in concert to govern mitochondrial function. We hypothesized that association of mtDNA genetic variants with T2DM could be revealed while controlling for the effect of additional inherited factors, reflected in family history information. Methods To test this hypothesis we set out to investigate whether mtDNA genetic variants will be differentially associated with T2DM depending on the diabetes status of the parents. To this end, association of mtDNA genetic backgrounds (haplogroups with T2DM was assessed in 1055 Jewish patients with and without T2DM parents ('DP' and 'HP', respectively. Results Haplogroup J1 was found to be 2.4 fold under-represented in the 'HP' patients (p = 0.0035. These results are consistent with a previous observation made in Finnish T2DM patients. Moreover, assessing the haplogroup distribution in 'DP' versus 'HP' patients having diabetic siblings revealed that haplogroup J1 was virtually absent in the 'HP' group. Conclusion These results imply the involvement of inherited factors, which modulate the susceptibility of haplogroup J1 to T2DM.

  1. Increased mitochondrial DNA deletions and copy number in transfusion-dependent thalassemia

    Science.gov (United States)

    Calloway, Cassandra

    2016-01-01

    BACKGROUND. Iron overload is the primary cause of morbidity in transfusion-dependent thalassemia. Increase in iron causes mitochondrial dysfunction under experimental conditions, but the occurrence and significance of mitochondrial damage is not understood in patients with thalassemia. METHODS. Mitochondrial DNA (mtDNA) to nuclear DNA copy number (Mt/N) and frequency of the common 4977-bp mitochondrial deletion (ΔmtDNA4977) were quantified using a quantitative PCR assay on whole blood samples from 38 subjects with thalassemia who were receiving regular transfusions. RESULTS. Compared with healthy controls, Mt/N and ΔmtDNA4977 frequency were elevated in thalassemia (P = 0.038 and P 15 mg/g dry-weight or splenectomy, with the highest levels observed in subjects who had both risk factors (P = 0.003). Myocardial iron (MRI T2* 40/1 × 107 mtDNA, respectively (P = 0.025). Subjects with Mt/N values below the group median had significantly lower Matsuda insulin sensitivity index (5.76 ± 0.53) compared with the high Mt/N group (9.11 ± 0.95, P = 0.008). CONCLUSION. Individuals with transfusion-dependent thalassemia demonstrate age-related increase in mtDNA damage in leukocytes. These changes are markedly amplified by splenectomy and are associated with extrahepatic iron deposition. Elevated mtDNA damage in blood cells may predict the risk of iron-associated organ damage in thalassemia. FUNDING. This project was supported by Children’s Hospital & Research Center Oakland Institutional Research Award and by the National Center for Advancing Translational Sciences, NIH, through UCSF-CTSI grant UL1 TR000004. PMID:27583305

  2. MELAS syndrome, cardiomyopathy, rhabdomyolysis, and autism associated with the A3260G mitochondrial DNA mutation.

    Science.gov (United States)

    Connolly, Barbara S; Feigenbaum, Annette S J; Robinson, Brian H; Dipchand, Anne I; Simon, David K; Tarnopolsky, Mark A

    2010-11-12

    The A to G transition mutation at position 3260 of the mitochondrial genome is usually associated with cardiomyopathy and myopathy. One Japanese kindred reported the phenotype of mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS syndrome) in association with the A3260G mtDNA mutation. We describe the first Caucasian cases of MELAS syndrome associated with the A3260G mutation. Furthermore, this mutation was associated with exercise-induced rhabdomyolysis, hearing loss, seizures, cardiomyopathy, and autism in the large kindred. We conclude that the A3260G mtDNA mutation is associated with wide phenotypic heterogeneity with MELAS and other "classical" mitochondrial phenotypes being manifestations. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. The complete mitochondrial genome of Gryllotalpa unispina Saussure, 1874 (Orthoptera: Gryllotalpoidea: Gryllotalpidae).

    Science.gov (United States)

    Zhang, Yulong; Shao, Dandan; Cai, Miao; Yin, Hong; Zhang, Daochuan

    2016-01-01

    The complete mitochondrial genome of Gryllotalpa unispina was 15,513 bp in length and contained 70.9% AT. All G. unispina protein-coding sequences except for the nad2 started with a typical ATN codon. The usual termination codons (TAA) and incomplete stop codons (T) were found from 13 protein-coding genes. All tRNA genes were folded into the typical cloverleaf secondary structure, except trnS(AGN) lacking the dihydrouridine arm. The sizes of the large and small ribosomal RNA genes were 1245 and 725 bp, respectively. The A + T-rich region was 917 bp in length with 76.8%. The orientation and gene order of the G. unispina mitogenome were identical to the G. orientalis and G. pluvialis, there was no phenomenon of "DK rearrangement" which has been widely reported in Caelifera.

  4. The complete mitochondrial genome of the stonefly Dinocras cephalotes (Plecoptera, Perlidae).

    Science.gov (United States)

    Elbrecht, Vasco; Poettker, Lisa; John, Uwe; Leese, Florian

    2015-06-01

    The complete mitochondrial genome of the perlid stonefly Dinocras cephalotes (Curtis, 1827) was sequenced using a combined 454 and Sanger sequencing approach using the known sequence of Pteronarcys princeps Banks, 1907 (Pteronarcyidae), to identify homologous 454 reads. The genome is 15,666 bp in length and includes 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and a control region. Gene order resembles that of basal arthropods. The base composition of the genome is A (33.5%), T (29.0%), C (24.4%) and G (13.1%). This is the second published mitogenome for the order Plecoptera and will be useful in future phylogenetic analysis.

  5. The complete mitochondrial genome of the invasive Africanized Honey Bee, Apis mellifera scutellata (Insecta: Hymenoptera: Apidae).

    Science.gov (United States)

    Gibson, Joshua D; Hunt, Greg J

    2016-01-01

    The complete mitochondrial genome from an Africanized honey bee population (AHB, derived from Apis mellifera scutellata) was assembled and analyzed. The mitogenome is 16,411 bp long and contains the same gene repertoire and gene order as the European honey bee (13 protein coding genes, 22 tRNA genes and 2 rRNA genes). ND4 appears to use an alternate start codon and the long rRNA gene is 48 bp shorter in AHB due to a deletion in a terminal AT dinucleotide repeat. The dihydrouracil arm is missing from tRNA-Ser (AGN) and tRNA-Glu is missing the TV loop. The A + T content is comparable to the European honey bee (84.7%), which increases to 95% for the 3rd position in the protein coding genes.

  6. The complete validated mitochondrial genome of the yellownose skate Zearaja chilensis (Guichenot 1848) (Rajiformes, Rajidae).

    Science.gov (United States)

    Vargas-Caro, Carolina; Bustamante, Carlos; Bennett, Michael B; Ovenden, Jennifer R

    2016-01-01

    The yellownose skate Zearaja chilensis is endemic to South America. The species is the target of a valuable commercial fishery in Chile, but is highly susceptible to over-exploitation. The complete mitochondrial genome was described from 694,593 sequences obtained using Ion Torrent Next Generation Sequencing. The total length of the mitogenome was 16,909 bp, comprising 2 rRNAs, 13 protein-coding genes, 22 tRNAs and 2 non-coding regions. Comparison between the proposed mitogenome and one previously described from "raw fish fillets from a skate speciality restaurant in Seoul, Korea" resulted in 97.4% similarity, rather than approaching 100% similarity as might be expected. The 2.6% dissimilarity may indicate the presence of two separate stocks or two different species of, ostensibly, Z. chilensis in South America and highlights the need for caution when using genetic resources without a taxonomic reference or a voucher specimen.

  7. The complete mitochondrial genome of the critically endangered Vietnamese three-striped box turtle (Testudines: Geoemydidae).

    Science.gov (United States)

    Li, Wei; Zhao, Jian; Shi, Yan; Xiao, Feng-Fang; Zhang, Xin-Cheng; Zhu, Xin-Ping

    2015-01-01

    The complete mitochondrial genome of the Vietnamese three-striped box turtle (Cuora cyclornata) was first determined in this study. It was a circular molecule of 16,594 bp in length, consisting of 37 genes typically found in other vertebrates. The AT content of the overall base composition of the whole mitogenome was 60.39%, while the control region was 70.23%. Two ETAS and 4 CSBs were identified, while a remarkable feature was found in the control region: a large number of (TTATTATA)10 direct tandem repeats followed by (TTATA)n (n=10, 8 and 1), which were spaced into three domains by (TA)n (n=1, 1 and 2). The sequence information could play an important role in the study of phylogenetic relationships in turtles and preservation of genetic resources for helping conservation of the endangered species.

  8. Complete mitochondrial genome of the giant ramshorn snail Marisa cornuarietis (Gastropoda: Ampullariidae).

    Science.gov (United States)

    Wang, Mingling; Qiu, Jian-Wen

    2016-05-01

    We report the complete mitochondrial genome (mitogenome) of the giant ramshorn snail Marisa cornuarietis, a biocontrol agent of freshwater weeds and snail vectors of schistosomes. The mitogenome is 15,923 bp in length, encoding 13 protein-coding genes, 22 transfer RNAs and 2 ribosomal RNAs. The mitogenome is A+T biased (70.0%), with 28.9% A, 41.1% T, 16.7% G, and 13.3% C. A comparison with Pomacea canaliculata, the other member in the same family (Ampullariidae) with a sequenced mitogenome, shows that the two species have an identical gene order, but their intergenic regions vary substantially in sequence length. The mitogenome data can be used to understand the population genetics of M. cornuarietis, and resolve the phylogenetic relationship of various genera in Ampullariidae.

  9. Complete mitochondrial genome and the phylogenetic position of the Blotchy swell shark Cephaloscyllium umbratile.

    Science.gov (United States)

    Chen, Hao; Lin, Lingling; Chen, Xiao; Ai, Weiming; Chen, Shaobo

    2016-07-01

    In this study, the complete mitochondrial genome of the Blotchy swell shark Cephaloscyllium umbratile was determined. It was a circle molecular (16 698 bp), contained 37 genes with typical order to that of most other vertebrates. The nucleotide composition was 31.0% A, 24.0% C, 14.0% G, and 31.3% T. There were 26 bp short intergenic spaces located in 11 gene junctions and 28 bp overlaps located in 7 gene junctions in the whole mitogenome. Two start codons (GTG and ATG) and two stop codons (TAG and TAA/T) were used in the protein-coding genes. The phylogenetic result showed that C. umbratile was clustered with Scyliorhinus canicula and formed the Scyliorhinidae clade, which was the most basal clade within Carcharhiniformes, and Carcharhinidae is not monophyletic.

  10. Complete mitochondrial genome of the blue shark Prionace glauca (Elasmobranchii: Carcharhiniformes).

    Science.gov (United States)

    Chen, Xiao; Xiang, Dan; Ai, Weiming; Shi, Xiaofang

    2015-04-01

    In this study, we first presented the complete mitochondrial genome of the blue shark Prionace Glauca, a pelagic and oceanic species. It is 16,705 bp in length and contains 2 rRNA genes, 22 tRNA genes, 13 protein-coding genes and 1 putative control region. The overall base composition is 31.6% A, 24.4% C, 13.1% G and 30.9% T. Overlaps and short inter-genic spaces are located in the genome. The tRNA-Ser2 loses the dihydrouridine arm and cannot be folded into the typical clover-leaf secondary structure. Two start codons (GTG and ATG) with two stop codons (TAG and TAA) or with one incomplete stop codon (T) are found in the 13 protein-coding genes. The control region contains high A + T (69.9%) and low G (12.0%).

  11. Complete mitochondrial genome of the whitetip reef shark Triaenodon obesus (Carcharhiniformes: Carcharhinidae).

    Science.gov (United States)

    Chen, Xiao; Sonchaeng, Pichai; Yuvanatemiya, Vasin; Nuangsaeng, Bunlung; Ai, Weiming

    2016-01-01

    The complete mitochondrial genome of the whitetip reef shark Triaenodon obesus is determined in this study. It is 16,700 bp in length, with the typical gene composition, arrangement and transcriptional orientation in vertebrates. The overall base composition is 31.4% A, 25.8% C, 13.2% G and 29.7% T. Two start codons and two stop codons are found in the protein-coding genes. The 22 tRNA genes ranged from 67 to 75 nucleotides. The tRNA-Ser2 lost the DHU arm and could not be folded to the typical cloverleaf secondary structure. The origin of L-strand replication (OL) sequence was identified between tRNA-Asn and tRNA-Cys genes. The high A+T content of control region is due to a lot of poly A and poly T.

  12. Complete mitochondrial genome and phylogenetic position of the Sicklefin weasel shark Hemigaleus microstoma.

    Science.gov (United States)

    Mai, Quanfa; Li, Weidong; Chen, Hao; Ai, Weiming; Chen, Xiao

    2016-09-01

    The complete mitochondrial genome of the Sicklefin weasel shark Hemigaleus microstoma was first presented in this study. It was 16 701 bp in length with the typical gene arrangement in vertebrates. A total of 25 bp short intergenic spaces and 33 bp overlaps located in 12 and 9 gene junctions, respectively. The overall nucleotide composition was 31.0% A, 26.4% C, 13.5% G and 29.1% T. Two start (ATG and GTG) and three stop (TAG, AGG and TAA/T) codons were found in the protein-coding genes. The size of 22 tRNA genes ranged from 67 to 75 bp. In the phylogenetic tree, H. microstoma (Hemigaleidae) was placed as sister to Galeocerdo cuvier (Carcharhinidae).

  13. Complete mitochondrial genome of the Spadenose shark Scoliodon laticaudus (Carcharhiniformes: Carcharhinidae).

    Science.gov (United States)

    Periasamy, Rengaiyan; Chen, Xiao; Ingole, Baban; Liu, Wenai

    2016-09-01

    The complete mitochondrial genome of the Spadenose shark Scoliodon laticaudus has been determined for the first time in this study. It was 16,695 bp in length and consisted of 37 genes with typical gene order in vertebrate mitogenome. The nucleotide base content of S. laticaudus mitogenome was 31.5% A, 23.7% C, 13.2% G and 31.6% T. Two start codons (GTG and ATG) and three stop codons (AGA, TAG and TAA/T) were used in the protein-coding genes. The 22 tRNAs ranged from 67 bp (tRNA-Cys and tRNA-Ser2) to 75 bp (tRNA-Leu1) in length. The tRNA-Ser2 could not be folded into typical cloverleaf secondary structure by lacking the dihydrouridine (DHC) arm stem.

  14. Complete mitochondrial genome of the blacktip reef shark Carcharhinus melanopterus (Carcharhiniformes: Carcharhinidae).

    Science.gov (United States)

    Chen, Xiao; Shen, Xue-Juan; Arunrugstichai, Sirachai; Ai, Weiming; Xiang, Dan

    2016-01-01

    The complete mitochondrial genome of the blacktip reef shark Carcharhinus melanopterus is determined for the first time in this study. The gene composition and order in the mitogenome of C. melanopterus is identical to most vertebrates. The overall base composition is 31.3% A, 25.3% C, 13.3% G and 30.1% T. There are 29 bp overlaps and 21 bp short intergenic spaces in the mitogenome. Two start codons and three stop codons were found in protein-coding genes. The dihydrouridine arm of tRNA-Ser2 was replaced by a simple loop and the other tRNAs could be folded into the typical cloverleaf structure. The termination associated sequence (TAS) and the conserved sequence blocks (CSB1-3) are found in the control region.

  15. Complete mitochondrial genome of the Pigeye Shark Carcharhinus amboinensis (Carcharhiniformes: Carcharhinidae).

    Science.gov (United States)

    Feutry, Pierre; Every, Sharon L; Kyne, Peter M; Sun, Renjie; Chen, Xiao

    2016-05-01

    In this manuscript we describe the first complete mitochondrial sequence for the Data Deficient Pigeye Shark Carcharhinus amboinensis. The mitogenome is 16,704 bp long and consists of 1 control region, 2 rRNA genes, 22 tRNA genes and 13 protein-coding genes with an overall base composition of 31.6% A, 24.9% C, 13.1% G and 30.4% T. The gene arrangement pattern and transcriptional direction were typical for a vertebrate species. The tRNA-Ser2 lacks the dihydrouridine arm and forms a simple loop, therefore it cannot be folded into the typical cloverleaf secondary structures like other tRNAs.

  16. Complete mitochondrial genome of Lutzomyia (Nyssomyia) umbratilis (Diptera: Psychodidae), the main vector of Leishmania guyanensis.

    Science.gov (United States)

    Kocher, Arthur; Gantier, Jean-Charles; Holota, Hélène; Jeziorski, Céline; Coissac, Eric; Bañuls, Anne-Laure; Girod, Romain; Gaborit, Pascal; Murienne, Jérôme

    2016-11-01

    The nearly complete mitochondrial genome of Lutzomyia umbratilis Ward & Fraiha, 1977 (Psychodidae: Phlebotominae), considered as the main vector of Leishmania guyanensis, is presented. The sequencing has been performed on an Illumina Hiseq 2500 platform, with a genome skimming strategy. The full nuclear ribosomal RNA segment was also assembled. The mitogenome of L. umbratilis was determined to be at least 15,717 bp-long and presents an architecture found in many mitogenomes of insect (13 protein-coding genes, 22 transfer RNAs, two ribosomal RNAs, and one non-coding region also referred as the control region). The control region contains a large repeated element of c. 370 bp and a poly-AT region of unknown length. This is the first mitogenome of Psychodidae to be described.

  17. Butachlor induced dissipation of mitochondrial membrane potential, oxidative DNA damage and necrosis in human peripheral blood mononuclear cells

    International Nuclear Information System (INIS)

    Dwivedi, Sourabh; Saquib, Quaiser; Al-Khedhairy, Abdulaziz A.; Musarrat, Javed

    2012-01-01

    cytometry analysis of annexin V − /7-AAD + stained cells demonstrated substantial reduction in live population due to complete loss of cell membrane integrity. Overall the data suggested the formation of butachlor–DNA complex, as an initiating event in butachlor-induced DNA damage. The results elucidated the oxidative role of butachlor in intracellular ROS production, and consequent mitochondrial dysfunction, oxidative DNA damage, and chromosomal breakage, which eventually triggers necrosis in human PBMN cells.

  18. A unique DNA found in post-mitochondrial fraction from Ehrlich ascites tumor cells

    International Nuclear Information System (INIS)

    Guimaraes, R.C.; Bloch, D.P.

    1982-01-01

    A DNA found in post-mitochondrial fractions from Ehrlich ascites cells, comprising 0.2% of the total cellular DNA, is partially characterized. It appears in cytoplasmic homogenates as a 14.6 S molecule, and is eluted from hydroxyapatite with 0.24 M sodium phosphate buffer. Its Cs 2 SO 4 buoyant density is lower than Erlich ascites tumor nuclear DNA and it has low dG+dC content, as determined by chromatography of hydrolysates of 32 P-labelled DNA. It is enriched in sequences which reassociate rapidly in the presence of excess nuclear DNA. It can be used as promoter for DNA synthesis by an endogenous DNA-dependent DNA polymerase found in association with the post-mitochondrial preparations. It is found to be associated with newly incorporated radioactivity following incubation in vitro with labelled UTP. Its localization in situ has not yet been attempled. It is thought to represent viral A-type particle associated, or plasma membrane associated DNA. (author) [pt

  19. In vitro-reconstituted nucleoids can block mitochondrial DNA replication and transcription.

    Science.gov (United States)

    Farge, Géraldine; Mehmedovic, Majda; Baclayon, Marian; van den Wildenberg, Siet M J L; Roos, Wouter H; Gustafsson, Claes M; Wuite, Gijs J L; Falkenberg, Maria

    2014-07-10

    The mechanisms regulating the number of active copies of mtDNA are still unclear. A mammalian cell typically contains 1,000-10,000 copies of mtDNA, which are packaged into nucleoprotein complexes termed nucleoids. The main protein component of these structures is mitochondrial transcription factor A (TFAM). Here, we reconstitute nucleoid-like particles in vitro and demonstrate that small changes in TFAM levels dramatically impact the fraction of DNA molecules available for transcription and DNA replication. Compaction by TFAM is highly cooperative, and at physiological ratios of TFAM to DNA, there are large variations in compaction, from fully compacted nucleoids to naked DNA. In compacted nucleoids, TFAM forms stable protein filaments on DNA that block melting and prevent progression of the replication and transcription machineries. Based on our observations, we suggest that small variations in the TFAM-to-mtDNA ratio may be used to regulate mitochondrial gene transcription and DNA replication. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  20. The Complete Mitochondrial Genome of Corizus tetraspilus (Hemiptera: Rhopalidae) and Phylogenetic Analysis of Pentatomomorpha

    Science.gov (United States)

    Guo, Zhong-Long; Wang, Juan; Shen, Yu-Ying

    2015-01-01

    Insect mitochondrial genome (mitogenome) are the most extensively used genetic information for molecular evolution, phylogenetics and population genetics. Pentatomomorpha (>14,000 species) is the second largest infraorder of Heteroptera and of great economic importance. To better understand the diversity and phylogeny within Pentatomomorpha, we sequenced and annotated the complete mitogenome of Corizus tetraspilus (Hemiptera: Rhopalidae), an important pest of alfalfa in China. We analyzed the main features of the C. tetraspilus mitogenome, and provided a comparative analysis with four other Coreoidea species. Our results reveal that gene content, gene arrangement, nucleotide composition, codon usage, rRNA structures and sequences of mitochondrial transcription termination factor are conserved in Coreoidea. Comparative analysis shows that different protein-coding genes have been subject to different evolutionary rates correlated with the G+C content. All the transfer RNA genes found in Coreoidea have the typical clover leaf secondary structure, except for trnS1 (AGN) which lacks the dihydrouridine (DHU) arm and possesses a unusual anticodon stem (9 bp vs. the normal 5 bp). The control regions (CRs) among Coreoidea are highly variable in size, of which the CR of C. tetraspilus is the smallest (440 bp), making the C. tetraspilus mitogenome the smallest (14,989 bp) within all completely sequenced Coreoidea mitogenomes. No conserved motifs are found in the CRs of Coreoidea. In addition, the A+T content (60.68%) of the CR of C. tetraspilus is much lower than that of the entire mitogenome (74.88%), and is lowest among Coreoidea. Phylogenetic analyses based on mitogenomic data support the monophyly of each superfamily within Pentatomomorpha, and recognize a phylogenetic relationship of (Aradoidea + (Pentatomoidea + (Lygaeoidea + (Pyrrhocoroidea + Coreoidea)))). PMID:26042898

  1. Genetic structure of European populations of Salmo salar L (Atlantic salmon) inferred from mitochondrial DNA

    DEFF Research Database (Denmark)

    Eg Nielsen, Einar; Hansen, Michael Møller; Loeschcke, V.

    1996-01-01

    The genetic relationships between the only natural population of Atlantic salmon (Salmo salar L.) in Denmark and seven other European salmon populations were studied using RFLP analysis of PCR amplified mitochondrial DNA segments. Six different haplotypes were detected by restriction enzyme...

  2. Archeogenetika. Mitochondriální DNA a migrace Homo sapiens

    Czech Academy of Sciences Publication Activity Database

    Černý, Viktor

    2010-01-01

    Roč. 11, - (2010), s. 13-17 ISSN 1213-1628 R&D Projects: GA ČR GA206/08/1587; GA MŠk ME 917 Institutional research plan: CEZ:AV0Z80020508 Keywords : archaeogenetics * migrations * mitochondrial DNA Subject RIV: AC - Archeology, Anthropology, Ethnology

  3. Is There Still Any Role for Oxidative Stress in Mitochondrial DNA-Dependent Aging?

    Directory of Open Access Journals (Sweden)

    Gábor Zsurka

    2018-03-01

    Full Text Available Recent deep sequencing data has provided compelling evidence that the spectrum of somatic point mutations in mitochondrial DNA (mtDNA in aging tissues lacks G > T transversion mutations. This fact cannot, however, be used as an argument for the missing contribution of reactive oxygen species (ROS to mitochondria-related aging because it is probably caused by the nucleotide selectivity of mitochondrial DNA polymerase γ (POLG. In contrast to point mutations, the age-dependent accumulation of mitochondrial DNA deletions is, in light of recent experimental data, still explainable by the segregation of mutant molecules generated by the direct mutagenic effects of ROS (in particular, of HO· radicals formed from H2O2 by a Fenton reaction. The source of ROS remains controversial, because the mitochondrial contribution to tissue ROS production is probably lower than previously thought. Importantly, in the discussion about the potential role of oxidative stress in mitochondria-dependent aging, ROS generated by inflammation-linked processes and the distribution of free iron also require careful consideration.

  4. Systematics of the Dioryctria abietella Species Group (Lepidoptera: Pyralidae) Based on Mitochondrial DNA Ann

    Science.gov (United States)

    G. Roux-Morabito; N.E. Gillette; A. Roques; L. Dormont; J. Stein; F.A.H. Sperling

    2008-01-01

    Coneworms of the genus Dioryctria Zeller include several serious pests of conifer seeds that are notoriously difficult to distinguish as species. We surveyed mitochondrial DNA variation within the abietella species group by sequencing 451 bp of cytochrome oxidase subunit 1 (COI) and 572 bp of cytochrome oxidase subunit 2 (COII...

  5. Packaging of single DNA molecules by the yeast mitochondrial protein Abf2p.

    Science.gov (United States)

    Brewer, Laurence R; Friddle, Raymond; Noy, Aleksandr; Baldwin, Enoch; Martin, Shelley S; Corzett, Michele; Balhorn, Rod; Baskin, Ronald J

    2003-10-01

    Mitochondrial and nuclear DNA are packaged by proteins in a very different manner. Although protein-DNA complexes called "nucleoids" have been identified as the genetic units of mitochondrial inheritance in yeast and man, little is known about their physical structure. The yeast mitochondrial protein Abf2p was shown to be sufficient to compact linear dsDNA, without the benefit of supercoiling, using optical and atomic force microscopy single molecule techniques. The packaging of DNA by Abf2p was observed to be very weak as evidenced by a fast Abf2p off-rate (k(off) = 0.014 +/- 0.001 s(-1)) and the extremely small forces (<0.6 pN) stabilizing the condensed protein-DNA complex. Atomic force microscopy images of individual complexes showed the 190-nm structures are loosely packaged relative to nuclear chromatin. This organization may leave mtDNA accessible for transcription and replication, while making it more vulnerable to damage.

  6. A rolling circle replication mechanism produces multimeric lariats of mitochondrial DNA in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Samantha C Lewis

    2015-02-01

    Full Text Available Mitochondrial DNA (mtDNA encodes respiratory complex subunits essential to almost all eukaryotes; hence respiratory competence requires faithful duplication of this molecule. However, the mechanism(s of its synthesis remain hotly debated. Here we have developed Caenorhabditis elegans as a convenient animal model for the study of metazoan mtDNA synthesis. We demonstrate that C. elegans mtDNA replicates exclusively by a phage-like mechanism, in which multimeric molecules are synthesized from a circular template. In contrast to previous mammalian studies, we found that mtDNA synthesis in the C. elegans gonad produces branched-circular lariat structures with multimeric DNA tails; we were able to detect multimers up to four mtDNA genome unit lengths. Further, we did not detect elongation from a displacement-loop or analogue of 7S DNA, suggesting a clear difference from human mtDNA in regard to the site(s of replication initiation. We also identified cruciform mtDNA species that are sensitive to cleavage by the resolvase RusA; we suggest these four-way junctions may have a role in concatemer-to-monomer resolution. Overall these results indicate that mtDNA synthesis in C. elegans does not conform to any previously documented metazoan mtDNA replication mechanism, but instead are strongly suggestive of rolling circle replication, as employed by bacteriophages. As several components of the metazoan mitochondrial DNA replisome are likely phage-derived, these findings raise the possibility that the rolling circle mtDNA replication mechanism may be ancestral among metazoans.

  7. Import of desired nucleic acid sequences using addressing motif of mitochondrial ribosomal 5S-rRNA for fluorescent in vivo hybridization of mitochondrial DNA and RNA.

    Science.gov (United States)

    Zelenka, Jaroslav; Alán, Lukáš; Jabůrek, Martin; Ježek, Petr

    2014-04-01

    Based on the matrix-addressing sequence of mitochondrial ribosomal 5S-rRNA (termed MAM), which is naturally imported into mitochondria, we have constructed an import system for in vivo targeting of mitochondrial DNA (mtDNA) or mt-mRNA, in order to provide fluorescence hybridization of the desired sequences. Thus DNA oligonucleotides were constructed, containing the 5'-flanked T7 RNA polymerase promoter. After in vitro transcription and fluorescent labeling with Alexa Fluor(®) 488 or 647 dye, we obtained the fluorescent "L-ND5 probe" containing MAM and exemplar cargo, i.e., annealing sequence to a short portion of ND5 mRNA and to the light-strand mtDNA complementary to the heavy strand nd5 mt gene (5'-end 21 base pair sequence). For mitochondrial in vivo fluorescent hybridization, HepG2 cells were treated with dequalinium micelles, containing the fluorescent probes, bringing the probes proximally to the mitochondrial outer membrane and to the natural import system. A verification of import into the mitochondrial matrix of cultured HepG2 cells was provided by confocal microscopy colocalizations. Transfections using lipofectamine or probes without 5S-rRNA addressing MAM sequence or with MAM only were ineffective. Alternatively, the same DNA oligonucleotides with 5'-CACC overhang (substituting T7 promoter) were transcribed from the tetracycline-inducible pENTRH1/TO vector in human embryonic kidney T-REx®-293 cells, while mitochondrial matrix localization after import of the resulting unlabeled RNA was detected by PCR. The MAM-containing probe was then enriched by three-order of magnitude over the natural ND5 mRNA in the mitochondrial matrix. In conclusion, we present a proof-of-principle for mitochondrial in vivo hybridization and mitochondrial nucleic acid import.

  8. Postglacial species displacement in Triturus newts deduced from asymmetrically introgressed mitochondrial DNA and ecological niche models

    Directory of Open Access Journals (Sweden)

    Wielstra Ben

    2012-08-01

    Full Text Available Abstract Background If the geographical displacement of one species by another is accompanied by hybridization, mitochondrial DNA can introgress asymmetrically, from the outcompeted species into the invading species, over a large area. We explore this phenomenon using the two parapatric crested newt species, Triturus macedonicus and T. karelinii, distributed on the Balkan Peninsula in south-eastern Europe, as a model. Results We first delimit a ca. 54,000 km2 area in which T. macedonicus contains T. karelinii mitochondrial DNA. This introgression zone bisects the range of T. karelinii, cutting off a T. karelinii enclave. The high similarity of introgressed mitochondrial DNA haplotypes with those found in T. karelinii suggests a recent transfer across the species boundary. We then use ecological niche modeling to explore habitat suitability of the location of the present day introgression zone under current, mid-Holocene and Last Glacial Maximum conditions. This area was inhospitable during the Last Glacial Maximum for both species, but would have been habitable at the mid-Holocene. Since the mid-Holocene, habitat suitability generally increased for T. macedonicus, whereas it decreased for T. karelinii. Conclusion The presence of a T. karelinii enclave suggests that T. karelinii was the first to colonize the area where the present day introgression zone is positioned after the Last Glacial Maximum. Subsequently, we propose T. karelinii was outcompeted by T. macedonicus, which captured T. karelinii mitochondrial DNA via introgressive hybridization in the process. Ecological niche modeling suggests that this replacement was likely facilitated by a shift in climate since the mid-Holocene. We suggest that the northwestern part of the current introgression zone was probably never inhabited by T. karelinii itself, and that T. karelinii mitochondrial DNA spread there through T. macedonicus exclusively. Considering the spatial distribution of the

  9. Characterization of the complete mitochondrial genome of Marshallagia marshalli and phylogenetic implications for the superfamily Trichostrongyloidea.

    Science.gov (United States)

    Sun, Miao-Miao; Han, Liang; Zhang, Fu-Kai; Zhou, Dong-Hui; Wang, Shu-Qing; Ma, Jun; Zhu, Xing-Quan; Liu, Guo-Hua

    2018-01-01

    Marshallagia marshalli (Nematoda: Trichostrongylidae) infection can lead to serious parasitic gastroenteritis in sheep, goat, and wild ruminant, causing significant socioeconomic losses worldwide. Up to now, the study concerning the molecular biology of M. marshalli is limited. Herein, we sequenced the complete mitochondrial (mt) genome of M. marshalli and examined its phylogenetic relationship with selected members of the superfamily Trichostrongyloidea using Bayesian inference (BI) based on concatenated mt amino acid sequence datasets. The complete mt genome sequence of M. marshalli is 13,891 bp, including 12 protein-coding genes, 22 transfer RNA genes, and 2 ribosomal RNA genes. All protein-coding genes are transcribed in the same direction. Phylogenetic analyses based on concatenated amino acid sequences of the 12 protein-coding genes supported the monophylies of the families Haemonchidae, Molineidae, and Dictyocaulidae with strong statistical support, but rejected the monophyly of the family Trichostrongylidae. The determination of the complete mt genome sequence of M. marshalli provides novel genetic markers for studying the systematics, population genetics, and molecular epidemiology of M. marshalli and its congeners.

  10. Overexpression of mtDNA-associated AtWhy2 compromises mitochondrial function

    Directory of Open Access Journals (Sweden)

    Abou-Rached Charbel

    2008-04-01

    Full Text Available Abstract Background StWhy1, a member of the plant-specific Whirly single-stranded DNA-binding protein family, was first characterized as a transcription factor involved in the activation of the nuclear PR-10a gene following defense-related stress in potato. In Arabidopsis thaliana, Whirlies have recently been shown to be primarily localized in organelles. Two representatives of the family, AtWhy1 and AtWhy3 are imported into plastids while AtWhy2 localizes to mitochondria. Their function in organelles is currently unknown. Results To understand the role of mitochondrial Whirlies in higher plants, we produced A. thaliana lines with altered expression of the atwhy2 gene. Organellar DNA immunoprecipitation experiments demonstrated that AtWhy2 binds to mitochondrial DNA. Overexpression of atwhy2 in plants perturbs mitochondrial function by causing a diminution in transcript levels and mtDNA content which translates into a low activity level of respiratory chain complexes containing mtDNA-encoded subunits. This lowered activity of mitochondria yielded plants that were reduced in size and had distorted leaves that exhibited accelerated senescence. Overexpression of atwhy2 also led to early accumulation of senescence marker transcripts in mature leaves. Inactivation of the atwhy2 gene did not affect plant development and had no detectable effect on mitochondrial morphology, activity of respiratory chain complexes, transcription or the amount of mtDNA present. This lack of phenotype upon abrogation of atwhy2 expression suggests the presence of functional homologues of the Whirlies or the activation of compensating mechanisms in mitochondria. Conclusion AtWhy2 is associated with mtDNA and its overexpression results in the production of dysfunctional mitochondria. This report constitutes the first evidence of a function for the Whirlies in organelles. We propose that they could play a role in the regulation of the gene expression machinery of organelles.

  11. Complete mitochondrial genome of the free-living earwig, Challia fletcheri (Dermaptera: Pygidicranidae and phylogeny of Polyneoptera.

    Directory of Open Access Journals (Sweden)

    Xinlong Wan

    Full Text Available The insect order Dermaptera, belonging to Polyneoptera, includes ∼2,000 extant species, but no dermapteran mitochondrial genome has been sequenced. We sequenced the complete mitochondrial genome of the free-living earwig, Challia fletcheri, compared its genomic features to other available mitochondrial sequences from polyneopterous insects. In addition, the Dermaptera, together with the other known polyneopteran mitochondrial genome sequences (protein coding, ribosomal RNA, and transfer RNA genes, were employed to understand the phylogeny of Polyneoptera, one of the least resolved insect phylogenies, with emphasis on the placement of Dermaptera. The complete mitochondrial genome of C. fletcheri presents the following several unusual features: the longest size in insects is 20,456 bp; it harbors the largest tandem repeat units (TRU among insects; it displays T- and G-skewness on the major strand and A- and C-skewness on the minor strand, which is a reversal of the general pattern found in most insect mitochondrial genomes, and it possesses a unique gene arrangement characterized by a series of gene translocations and/or inversions. The reversal pattern of skewness is explained in terms of inversion of replication origin. All phylogenetic analyses consistently placed Dermaptera as the sister to Plecoptera, leaving them as the most basal lineage of Polyneoptera or sister to Ephemeroptera, and placed Odonata consistently as the most basal lineage of the Pterygota.

  12. Reticulate evolution: frequent introgressive hybridization among chinese hares (genus lepus revealed by analyses of multiple mitochondrial and nuclear DNA loci

    Directory of Open Access Journals (Sweden)

    Wu Shi-Fang

    2011-07-01

    Full Text Available Abstract Background Interspecific hybridization may lead to the introgression of genes and genomes across species barriers and contribute to a reticulate evolutionary pattern and thus taxonomic uncertainties. Since several previous studies have demonstrated that introgressive hybridization has occurred among some species within Lepus, therefore it is possible that introgressive hybridization events also occur among Chinese Lepus species and contribute to the current taxonomic confusion. Results Data from four mtDNA genes, from 116 individuals, and one nuclear gene, from 119 individuals, provides the first evidence of frequent introgression events via historical and recent interspecific hybridizations among six Chinese Lepus species. Remarkably, the mtDNA of L. mandshuricus was completely replaced by mtDNA from L. timidus and L. sinensis. Analysis of the nuclear DNA sequence revealed a high proportion of heterozygous genotypes containing alleles from two divergent clades and that several haplotypes were shared among species, suggesting repeated and recent introgression. Furthermore, results from the present analyses suggest that Chinese hares belong to eight species. Conclusion This study provides a framework for understanding the patterns of speciation and the taxonomy of this clade. The existence of morphological intermediates and atypical mitochondrial gene genealogies resulting from frequent hybridization events likely contribute to the current taxonomic confusion of Chinese hares. The present study also demonstrated that nuclear gene sequence could offer a powerful complementary data set with mtDNA in tracing a complete evolutionary history of recently diverged species.

  13. Complete mitochondrial genome of Xingguo red carp (Cyprinus carpio var. singuonensis) and purse red carp (Cyprinus carpio var. wuyuanensis).

    Science.gov (United States)

    Hu, Guang-Fu; Liu, Xiang-Jiang; Li, Zhong; Liang, Hong-Wei; Hu, Shao-Na; Zou, Gui-Wei

    2016-01-01

    The complete mitochondrial genomes of Xingguo red carp (Cyprinus carpio var. singuonensis) and purse red carp (Cyprinus carpio var. wuyuanensis) were sequenced. Comparison of these two mitochondrial genomes revealed that the mtDNAs of these two common carp varieties were remarkably similar in genome length, gene order and content, and AT content. However, size variation between these two mitochondrial genomes presented here showed 39 site differences in overall length. About 2 site differences were located in rRNAs, 3 in tRNAs, 3 in the control region, 31 in protein-coding genes. Thirty-one variable bases in the protein-coding regions between the two varieties mitochondrial sequences led to three variable amino acids, which were mainly located in the protein ND5 and ND4.

  14. Mitochondrial DNA T4216C and A4917G variations in multiple sclerosis

    DEFF Research Database (Denmark)

    Andalib, Sasan; Talebi, Mahnaz; Sakhinia, Ebrahim

    2015-01-01

    DNA gene and A4917G variation in the mtDNA NADH Dehydrogenase 2 (ND2) gene are associated with MS in an Iranian population. MATERIAL AND METHODS: Blood samples were collected from 100 patients with MS and 100 unrelated healthy controls, and DNA extraction was performed by salting-out. By means.......637). Logistic regression analysis revealed an odds ratio (OR) of 1.2 with 95% CI of 0.4-3.5. CONCLUSION: The present study revealed no association between MS and T4216C variation in the ND1 mtDNA gene and A4917G variation in the mtDNA ND2 gene in the Iranian population....... focuses on the neurogenetics of the complex pathogenesis of MS in relation to factors such as mitochondrial DNA (mtDNA) variations. T4216C and A4917G are common mitochondrial gene variations associated with MS. The present study tested whether mtDNA T4216C variation in the NADH Dehydrogenase 1 (ND1) mt...

  15. The complete mitochondrial genome of Strongylus equinus (Chromadorea: Strongylidae): Comparison with other closely related species and phylogenetic analyses.

    Science.gov (United States)

    Xu, Wen-Wen; Qiu, Jian-Hua; Liu, Guo-Hua; Zhang, Yan; Liu, Ze-Xuan; Duan, Hong; Yue, Dong-Mei; Chang, Qiao-Cheng; Wang, Chun-Ren; Zhao, Xing-Cun

    2015-12-01

    The roundworms of genus Strongylus are the common parasitic nematodes in the large intestine of equine, causing significant economic losses to the livestock industries. In spite of its importance, the genetic data and epidemiology of this parasite are not entirely understood. In the present study, the complete S. equinus mitochondrial (mt) genome was determined. The length of S. equinus mt genome DNA sequence is 14,545 bp, containing 36 genes, of which 12 code for protein, 22 for transfer RNA, and two for ribosomal RNA, but lacks atp8 gene. All 36 genes are encoded in the same direction which is consistent with all other Chromadorea nematode mtDNAs published to date. Phylogenetic analysis based on concatenated amino acid sequence data of all 12 protein-coding genes showed that there were two large branches in the Strongyloidea nematodes, and S. equinus is genetically closer to S. vulgaris than to Cylicocyclus insignis in Strongylidae. This new mt genome provides a source of genetic markers for the molecular phylogeny and population genetics of equine strongyles. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Comparison of the complete mitochondrial genome of the stonefly Sweltsa longistyla (Plecoptera: Chloroperlidae) with mitogenomes of three other stoneflies.

    Science.gov (United States)

    Chen, Zhi-Teng; Du, Yu-Zhou

    2015-03-01

    The complete mitochondrial genome of the stonefly, Sweltsa longistyla Wu (Plecoptera: Chloroperlidae), was sequenced in this study. The mitogenome of S. longistyla is 16,151bp and contains 37 genes including 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and a large non-coding region. S. longistyla, Pteronarcys princeps Banks, Kamimuria wangi Du and Cryptoperla stilifera Sivec belong to the Plecoptera, and the gene order and orientation of their mitogenomes were similar. The overall AT content for the four stoneflies was below 72%, and the AT content of tRNA genes was above 69%. The four genomes were compact and contained only 65-127bp of non-coding intergenic DNAs. Overlapping nucleotides existed in all four genomes and ranged from 24 (P. princeps) to 178bp (K. wangi). There was a 7-bp motif ('ATGATAA') of overlapping DNA and an 8-bp motif (AAGCCTTA) conserved in three stonefly species (P. princeps, K. wangi and C. stilifera). The control regions of four stoneflies contained a stem-loop structure. Four conserved sequence blocks (CSBs) were present in the A+T-rich regions of all four stoneflies. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Mitochondrial DNA Depletion in Respiratory Chain–Deficient Parkinson Disease Neurons

    Science.gov (United States)

    Rygiel, Karolina A.; Hepplewhite, Philippa D.; Morris, Christopher M.; Picard, Martin; Turnbull, Doug M.

    2016-01-01

    Objective To determine the extent of respiratory chain abnormalities and investigate the contribution of mtDNA to the loss of respiratory chain complexes (CI–IV) in the substantia nigra (SN) of idiopathic Parkinson disease (IPD) patients at the single‐neuron level. Methods Multiple‐label immunofluorescence was applied to postmortem sections of 10 IPD patients and 10 controls to quantify the abundance of CI–IV subunits (NDUFB8 or NDUFA13, SDHA, UQCRC2, and COXI) and mitochondrial transcription factors (TFAM and TFB2M) relative to mitochondrial mass (porin and GRP75) in dopaminergic neurons. To assess the involvement of mtDNA in respiratory chain deficiency in IPD, SN neurons, isolated with laser‐capture microdissection, were assayed for mtDNA deletions, copy number, and presence of transcription/replication‐associated 7S DNA employing a triplex real‐time polymerase chain reaction (PCR) assay. Results Whereas mitochondrial mass was unchanged in single SN neurons from IPD patients, we observed a significant reduction in the abundances of CI and II subunits. At the single‐cell level, CI and II deficiencies were correlated in patients. The CI deficiency concomitantly occurred with low abundances of the mtDNA transcription factors TFAM and TFB2M, which also initiate transcription‐primed mtDNA replication. Consistent with this, real‐time PCR analysis revealed fewer transcription/replication‐associated mtDNA molecules and an overall reduction in mtDNA copy number in patients. This effect was more pronounced in single IPD neurons with severe CI deficiency. Interpretation Respiratory chain dysfunction in IPD neurons not only involves CI, but also extends to CII. These deficiencies are possibly a consequence of the interplay between nDNA and mtDNA‐encoded factors mechanistically connected via TFAM. ANN NEUROL 2016;79:366–378 PMID:26605748

  18. Therapeutic Targeting of the Mitochondria Initiates Excessive Superoxide Production and Mitochondrial Depolarization Causing Decreased mtDNA Integrity.

    Science.gov (United States)

    Pokrzywinski, Kaytee L; Biel, Thomas G; Kryndushkin, Dmitry; Rao, V Ashutosh

    2016-01-01

    Mitochondrial dysregulation is closely associated with excessive reactive oxygen species (ROS) production. Altered redox homeostasis has been implicated in the onset of several diseases including cancer. Mitochondrial DNA (mtDNA) and proteins are particularly sensitive to ROS as they are in close proximity to the respiratory chain (RC). Mitoquinone (MitoQ), a mitochondria-targeted redox agent, selectively damages breast cancer cells possibly through damage induced via enhanced ROS production. However, the effects of MitoQ and other triphenylphosphonium (TPP+) conjugated agents on cancer mitochondrial homeostasis remain unknown. The primary objective of this study was to determine the impact of mitochondria-targeted agent [(MTAs) conjugated to TPP+: mitoTEMPOL, mitoquinone and mitochromanol-acetate] on mitochondrial physiology and mtDNA integrity in breast (MDA-MB-231) and lung (H23) cancer cells. The integrity of the mtDNA was assessed by quantifying the degree of mtDNA fragmentation and copy number, as well as by measuring mitochondrial proteins essential to mtDNA stability and maintenance (TFAM, SSBP1, TWINKLE, POLG and POLRMT). Mitochondrial status was evaluated by measuring superoxide production, mitochondrial membrane depolarization, oxygen consumption, extracellular acidification and mRNA or protein levels of the RC complexes along with TCA cycle activity. In this study, we demonstrated that all investigated MTAs impair mitochondrial health and decrease mtDNA integrity in MDA-MB-231 and H23 cells. However, differences in the degree of mitochondrial damage and mtDNA degradation suggest unique properties among each MTA that may be cell line, dose and time dependent. Collectively, our study indicates the potential for TPP+ conjugated molecules to impair breast and lung cancer cells by targeting mitochondrial homeostasis.

  19. The phylogenetic relationships of insectivores with special reference to the lesser hedgehog tenrec as inferred from the complete sequence of their mitochondrial genome.

    Science.gov (United States)

    Nikaido, Masato; Cao, Ying; Okada, Norihiro; Hasegawa, Masami

    2003-02-01

    The complete mitochondrial genome of a lesser hedgehog tenrec Echinops telfairi was determined in this study. It is an endemic African insectivore that is found specifically in Madagascar. The tenrec's back is covered with hedgehog-like spines. Unlike other spiny mammals, such as spiny mice, spiny rats, spiny dormice and porcupines, lesser hedgehog tenrecs look amazingly like true hedgehogs (Erinaceidae). However, they are distinguished morphologically from hedgehogs by the absence of a jugal bone. We determined the complete sequence of the mitochondrial genome of a lesser hedgehog tenrec and analyzed the results phylogenetically to determine the relationships between the tenrec and other insectivores (moles, shrews and hedgehogs), as well as the relationships between the tenrec and endemic African mammals, classified as Afrotheria, that have recently been shown by molecular analysis to be close relatives of the tenrec. Our data confirmed the afrotherian status of the tenrec, and no direct relation was recovered between the tenrec and the hedgehog. Comparing our data with those of others, we found that within-species variations in the mitochondrial DNA of lesser hedgehog tenrecs appear to be the largest recognized to date among mammals, apart from orangutans, which might be interesting from the view point of evolutionary history of tenrecs on Madagascar.

  20. Mechanism of Homologous Recombination and Implications for Aging-Related Deletions in Mitochondrial DNA

    Science.gov (United States)

    2013-01-01

    SUMMARY Homologous recombination is a universal process, conserved from bacteriophage to human, which is important for the repair of double-strand DNA breaks. Recombination in mitochondrial DNA (mtDNA) was documented more than 4 decades ago, but the underlying molecular mechanism has remained elusive. Recent studies have revealed the presence of a Rad52-type recombination system of bacteriophage origin in mitochondria, which operates by a single-strand annealing mechanism independent of the canonical RecA/Rad51-type recombinases. Increasing evidence supports the notion that, like in bacteriophages, mtDNA inheritance is a coordinated interplay between recombination, repair, and replication. These findings could have profound implications for understanding the mechanism of mtDNA inheritance and the generation of mtDNA deletions in aging cells. PMID:24006472

  1. High-Resolution Melting (HRM) of Hypervariable Mitochondrial DNA Regions for Forensic Science.

    Science.gov (United States)

    Dos Santos Rocha, Alípio; de Amorim, Isis Salviano Soares; Simão, Tatiana de Almeida; da Fonseca, Adenilson de Souza; Garrido, Rodrigo Grazinoli; Mencalha, Andre Luiz

    2018-03-01

    Forensic strategies commonly are proceeding by analysis of short tandem repeats (STRs); however, new additional strategies have been proposed for forensic science. Thus, this article standardized the high-resolution melting (HRM) of DNA for forensic analyzes. For HRM, mitochondrial DNA (mtDNA) from eight individuals were extracted from mucosa swabs by DNAzol reagent, samples were amplified by PCR and submitted to HRM analysis to identify differences in hypervariable (HV) regions I and II. To confirm HRM, all PCR products were DNA sequencing. The data suggest that is possible discriminate DNA from different samples by HRM curves. Also, uncommon dual-dissociation was identified in a single PCR product, increasing HRM analyzes by evaluation of melting peaks. Thus, HRM is accurate and useful to screening small differences in HVI and HVII regions from mtDNA and increase the efficiency of laboratory routines based on forensic genetics. © 2017 American Academy of Forensic Sciences.

  2. 4977-bp mitochondrial DNA deletion in infertile patients with varicocele.

    Science.gov (United States)

    Gashti, N G; Salehi, Z; Madani, A H; Dalivandan, S T

    2014-04-01

    Varicocele is the abnormal inflexion and distension of veins of the pampiniform plexus within spermatic cord and is one of the amendable causes of male infertility. It can increase reactive oxygen species (ROS) production in semen and cause oxidative stress. The purpose of this study was to analyse spermatozoa mtDNA 4977-bp deletion in infertile men with varicocele. To detect 4977-bp deletion in spermatozoa mtDNA, semen samples of 60 infertile patients with clinical varicocele and 90 normal men from northern Iran were prepared. After extraction of spermatozoa total DNA, Gap polymerase chain reaction (Gap PCR) was performed. 4977-bp deletion was observed in 81.66% of patients with varicocele, while approximately 15.55% of controls had this deletion. As spermatozoa from patients with varicocele had a high frequency of occurrence of 4977-bp deletion in mtDNA [OR = 24.18, 95% confidence interval (CI) = 10.15-57.57, P deletion in spermatozoa and cause infertility in north Iranian men. However, to determine the relation between sperm mtDNA 4977-bp deletion and varicocele-induced infertility, larger population-based studies are needed. It is concluded that there is an association between sperm mtDNA 4977-bp deletion and varicocele-induced infertility in the population studied. © 2013 Blackwell Verlag GmbH.

  3. Double-stranded DNA-dependent ATPase Irc3p is directly involved in mitochondrial genome maintenance.

    Science.gov (United States)

    Sedman, Tiina; Gaidutšik, Ilja; Villemson, Karin; Hou, YingJian; Sedman, Juhan

    2014-12-01

    Nucleic acid-dependent ATPases are involved in nearly all aspects of DNA and RNA metabolism. Previous studies have described a number of mitochondrial helicases. However, double-stranded DNA-dependent ATPases, including translocases or enzymes remodeling DNA-protein complexes, have not been identified in mitochondria of the yeast Saccharomyces cerevisae. Here, we demonstrate that Irc3p is a mitochondrial double-stranded DNA-dependent ATPase of the Superfamily II. In contrast to the other mitochondrial Superfamily II enzymes Mss116p, Suv3p and Mrh4p, which are RNA helicases, Irc3p has a direct role in mitochondrial DNA (mtDNA) maintenance. Specific Irc3p-dependent mtDNA metabolic intermediates can be detected, including high levels of double-stranded DNA breaks that accumulate in irc3Δ mutants. irc3Δ-related topology changes in rho- mtDNA can be reversed by the deletion of mitochondrial RNA polymerase RPO41, suggesting that Irc3p counterbalances adverse effects of transcription on mitochondrial genome stability. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Evaluating the role of mitochondrial DNA variation to the genetic predisposition to radiation-induced toxicity

    International Nuclear Information System (INIS)

    Fachal, Laura; Mosquera-Miguel, Ana; Gómez-Caamaño, Antonio; Sánchez-García, Manuel; Calvo, Patricia; Lobato-Busto, Ramón; Salas, Antonio; Vega, Ana

    2014-01-01

    Background and purpose: Mitochondrial DNA common variants have been reported to be associated with the development of radiation-induced toxicity. Using a large cohort of patients, we aimed to validate these findings by investigating the potential role of common European mitochondrial DNA SNPs (mtSNPs) to the development of radio-toxicity. Material and methods: Overall acute and late toxicity data were assessed in a cohort of 606 prostate cancer patients by means of Standardized Total Average Toxicity (STAT) score. We carried out association tests between radiation toxicity and a selection of 15 mtSNPs (and the haplogroups defined by them). Results: Statistically significant association between mtSNPs and haplogroups with toxicity could not be validated in our Spanish cohort. Conclusions: The present study suggests that the mtDNA common variants analyzed are not associated with clinically relevant increases in risk of overall radiation-induced toxicity in prostate cancer patients

  5. Prevalence of migraine in persons with the 3243A>G mutation in mitochondrial DNA

    DEFF Research Database (Denmark)

    Guo, S.; Esserlind, A-L; Andersson, Z

    2016-01-01

    % vs. 6%; P persons with the mDNA 3243A>G mutation was found. This finding suggests a clinical association between a monogenetically inherited disorder......BACKGROUND AND PURPOSE: Over the last three decades mitochondrial dysfunction has been postulated to be a potential mechanism in migraine pathogenesis. The lifetime prevalence of migraine in persons carrying the 3243A>G mutation in mitochondrial DNA was investigated. METHODS: In this cross......-sectional study, 57 mDNA 3243A>G mutation carriers between May 2012 and October 2014 were included. As a control group, a population-based cohort from our epidemiological studies on migraine in Danes was used. History of headache and migraine was obtained by telephone interview, based on a validated semi...

  6. Mitochondrial DNA deletion mutations in adult mouse cardiac side population cells

    International Nuclear Information System (INIS)

    Lushaj, Entela B.; Lozonschi, Lucian; Barnes, Maria; Anstadt, Emily; Kohmoto, Takushi

    2012-01-01

    We investigated the presence and potential role of mitochondrial DNA (mtDNA) deletion mutations in adult cardiac stem cells. Cardiac side population (SP) cells were isolated from 12-week-old mice. Standard polymerase chain reaction (PCR) was used to screen for the presence of mtDNA deletion mutations in (a) freshly isolated SP cells and (b) SP cells cultured to passage 10. When present, the abundance of mtDNA deletion mutation was analyzed in single cell colonies. The effect of different levels of deletion mutations on SP cell growth and differentiation was determined. MtDNA deletion mutations were found in both freshly isolated and cultured cells from 12-week-old mice. While there was no significant difference in the number of single cell colonies with mtDNA deletion mutations from any of the groups mentioned above, the abundance of mtDNA deletion mutations was significantly higher in the cultured cells, as determined by quantitative PCR. Within a single clonal cell population, the detectable mtDNA deletion mutations were the same in all cells and unique when compared to deletions of other colonies. We also found that cells harboring high levels of mtDNA deletion mutations (i.e. where deleted mtDNA comprised more than 60% of total mtDNA) had slower proliferation rates and decreased differentiation capacities. Screening cultured adult stem cells for mtDNA deletion mutations as a routine assessment will benefit the biomedical application of adult stem cells.

  7. Identification of Forensic Samples via Mitochondrial DNA in the Undergraduate Biochemistry Laboratory

    Science.gov (United States)

    Millard, Julie T.; Pilon, André M.

    2003-04-01

    A recent forensic approach for identification of unknown biological samples is mitochondrial DNA (mtDNA) sequencing. We describe a laboratory exercise suitable for an undergraduate biochemistry course in which the polymerase chain reaction is used to amplify a 440 base pair hypervariable region of human mtDNA from a variety of "crime scene" samples (e.g., teeth, hair, nails, cigarettes, envelope flaps, toothbrushes, and chewing gum). Amplification is verified via agarose gel electrophoresis and then samples are subjected to cycle sequencing. Sequence alignments are made via the program CLUSTAL W, allowing students to compare samples and solve the "crime."

  8. The complete mitochondrial genome of the Antarctic stalked jellyfish, Haliclystus antarcticus Pfeffer, 1889 (Staurozoa: Stauromedusae

    Directory of Open Access Journals (Sweden)

    Hsing-Hui Li

    2016-06-01

    Full Text Available In present study, the complete mitogenome sequence of the Antarctic stalked jellyfish, Haliclystus antarcticus Pfeffer (Staurozoa: Stauromedusae has been sequenced by next-generation sequencing method. The assembled mitogenome comprises of 15,766 bp including 13 protein coding genes, 7 transfer RNAs, and 2 ribosomal RNA genes. The overall base of Antarctic stalked jellyfish constitutes of 26.5% for A, 19.6% for C, 19.8% for G, 34.1% for T and show 90% identity to Sessile Jelly, Haliclystus sanjuanensis, in the northeastern Pacific Ocean. The complete mitogenome of the Antarctic stalked jellyfish, contributes fundamental and significant DNA molecular data for further phylogeography and evolutionary analysis for seahorse phylogeny. The complete sequence was deposited in DBBJ/EMBL/GenBank under accession number KU947038.

  9. Norgal: extraction and de novo assembly of mitochondrial DNA from whole-genome sequencing data.

    Science.gov (United States)

    Al-Nakeeb, Kosai; Petersen, Thomas Nordahl; Sicheritz-Pontén, Thomas

    2017-11-21

    Whole-genome sequencing (WGS) projects provide short read nucleotide sequences from nuclear and possibly organelle DNA depending on the source of origin. Mitochondrial DNA is present in animals and fungi, while plants contain DNA from both mitochondria and chloroplasts. Current techniques for separating organelle reads from nuclear reads in WGS data require full reference or partial seed sequences for assembling. Norgal (de Novo ORGAneLle extractor) avoids this requirement by identifying a high frequency subset of k-mers that are predominantly of mitochondrial origin and performing a de novo assembly on a subset of reads that contains these k-mers. The method was applied to WGS data from a panda, brown algae seaweed, butterfly and filamentous fungus. We were able to extract full circular mitochondrial genomes and obtained sequence identities to the reference sequences in the range from 98.5 to 99.5%. We also assembled the chloroplasts of grape vines and cucumbers using Norgal together with seed-based de novo assemblers. Norgal is a pipeline that can extract and assemble full or partial mitochondrial and chloroplast genomes from WGS short reads without prior knowledge. The program is available at: https://bitbucket.org/kosaidtu/norgal .

  10. Mitochondrial DNA deletion in a patient with combined features of Leigh and Pearson syndromes

    Energy Technology Data Exchange (ETDEWEB)

    Blok, R.B.; Thorburn, D.R.; Danks, D.M. [Royal Children`s Hospital, Melbourne (Australia)] [and others

    1994-09-01

    We describe a heteroplasmic 4237 bp mitochondrial DNA (mtDNA) deletion in an 11 year old girl who has suffered from progressive illness since birth. She has some features of Leigh syndrome (global developmental delay with regression, brainstem dysfunction and lactic acidosis), together with other features suggestive of Pearson syndrome (history of pancytopenia and failure to thrive). The deletion was present at a level greater than 50% in skeletal muscle, but barely detectable in skin fibroblasts following Southern blot analysis, and only observed in blood following PCR analysis. The deletion spanned nt 9498 to nt 13734, and was flanked by a 12 bp direct repeat. Genes for cytochrome c oxidase subunit III, NADH dehydrogenase subunits 3, 4L, 4 and 5, and tRNAs for glycine, arginine, histidine, serine({sup AGY}) and leucine({sup CUN}) were deleted. Southern blotting also revealed an altered Apa I restriction site which was shown by sequence analysis to be caused by G{r_arrow}A nucleotide substitution at nt 1462 in the 12S rRNA gene. This was presumed to be a polymorphism. No abnormalities of mitochondrial ultrastructure, distribution or of respiratory chain enzyme complexes I-IV in skeletal muscle were observed. Mitochondrial disorders with clinical features overlapping more than one syndrome have been reported previously. This case further demonstrates the difficulty in correlating observed clinical features with a specific mitochondrial DNA mutation.

  11. The complete mitochondrial genome of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae).

    Science.gov (United States)

    Dai, Li-Shang; Zhu, Bao-Jian; Qian, Cen; Zhang, Cong-Fen; Li, Jun; Wang, Lei; Wei, Guo-Qing; Liu, Chao-Liang

    2016-01-01

    The complete mitochondrial genome (mitogenome) of Plutella xylostella (Lepidoptera: Plutellidae) was determined (GenBank accession No. KM023645). The length of this mitogenome is 16,014 bp with 13 protein-coding genes (PCGs), 2 rRNA genes, 22 tRNA genes and an A + T-rich region. It presents the typical gene organization and order for completely sequenced lepidopteran mitogenomes. The nucleotide composition of the genome is highly A + T biased, accounting for 81.48%, with a slightly positive AT skewness (0.005). All PCGs are initiated by typical ATN codons, except for the gene cox1, which uses CGA as its start codon. Some PCGs harbor TA (nad5) or incomplete termination codon T (cox1, cox2, nad2 and nad4), while others use TAA as their termination codons. The A + T-rich region is located between rrnS and trnM with a length of 888 bp.

  12. Mitochondrial DNA variation, but not nuclear DNA, sharply divides morphologically identical chameleons along an ancient geographic barrier.

    Directory of Open Access Journals (Sweden)

    Dan Bar Yaacov

    Full Text Available The Levant is an important migration bridge, harboring border-zones between Afrotropical and palearctic species. Accordingly, Chameleo chameleon, a common species throughout the Mediterranean basin, is morphologically divided in the southern Levant (Israel into two subspecies, Chamaeleo chamaeleon recticrista (CCR and C. c. musae (CCM. CCR mostly inhabits the Mediterranean climate (northern Israel, while CCM inhabits the sands of the north-western Negev Desert (southern Israel. AFLP analysis of 94 geographically well dispersed specimens indicated moderate genetic differentiation (PhiPT = 0.097, consistent with the classical division into the two subspecies, CCR and CCM. In contrast, sequence analysis of a 637 bp coding mitochondrial DNA (mtDNA fragment revealed two distinct phylogenetic clusters which were not consistent with the morphological division: one mtDNA cluster consisted of CCR specimens collected in regions northern of the Jezreel Valley and another mtDNA cluster harboring specimens pertaining to both the CCR and CCM subspecies but collected southern of the Jezreel Valley. AMOVA indicated clear mtDNA differentiation between specimens collected northern and southern to the Jezreel Valley (PhiPT = 0.79, which was further supported by a very low coalescent-based estimate of effective migration rates. Whole chameleon mtDNA sequencing (∼17,400 bp generated from 11 well dispersed geographic locations revealed 325 mutations sharply differentiating the two mtDNA clusters, suggesting a long allopatric history further supported by BEAST. This separation correlated temporally with the existence of an at least 1 million year old marine barrier at the Jezreel Valley exactly where the mtDNA clusters meet. We discuss possible involvement of gender-dependent life history differences in maintaining such mtDNA genetic differentiation and suggest that it reflects (ancient local adaptation to mitochondrial-related traits.

  13. Sharp switches between regular and swinger mitochondrial replication: 16S rDNA systematically exchanging nucleotides AT+CG in the mitogenome of Kamimuria wangi.

    Science.gov (United States)

    Seligmann, Hervé

    2016-07-01

    Swinger DNAs are sequences whose homology with known sequences is detected only by assuming systematic exchanges between nucleotides. Nine symmetric (XY, i.e. AC) and fourteen asymmetric (X->Y->Z, i.e. A->C->G) exchanges exist. All swinger DNA previously detected in GenBank follow the AT+CG exchange, while mitochondrial swinger RNAs distribute among different swinger types. Here different alignment criteria detect 87 additional swinger mitochondrial DNAs (86 from insects), including the first swinger gene embedded within a complete genome, corresponding to the mitochondrial 16S rDNA of the stonefly Kamimuria wangi. Other Kamimuria mt genome regions are "regular", stressing unanswered questions on (a) swinger polymerization regulation; (b) swinger 16S rDNA functions; and (c) specificity to rDNA, in particular 16S rDNA. Sharp switches between regular and swinger replication, together with previous observations on swinger transcription, suggest that swinger replication might be due to a switch in polymerization mode of regular polymerases and the possibility of swinger-encoded information, predicted in primordial genes such as rDNA.

  14. Rapid isolation of microsatellite DNAs and identification of polymorphic mitochondrial DNA regions in the fish rotan (Perccottus glenii) invading European Russia

    Science.gov (United States)

    King, Timothy L.; Eackles, Michael S.; Reshetnikov, Andrey N.

    2015-01-01

    Human-mediated translocations and subsequent large-scale colonization by the invasive fish rotan (Perccottus glenii Dybowski, 1877; Perciformes, Odontobutidae), also known as Amur or Chinese sleeper, has resulted in dramatic transformations of small lentic ecosystems. However, no detailed genetic information exists on population structure, levels of effective movement, or relatedness among geographic populations of P. glenii within the European part of the range. We used massively parallel genomic DNA shotgun sequencing on the semiconductor-based Ion Torrent Personal Genome Machine (PGM) sequencing platform to identify nuclear microsatellite and mitochondrial DNA sequences in P. glenii from European Russia. Here we describe the characterization of nine nuclear microsatellite loci, ascertain levels of allelic diversity, heterozygosity, and demographic status of P. glenii collected from Ilev, Russia, one of several initial introduction points in European Russia. In addition, we mapped sequence reads to the complete P. glenii mitochondrial DNA sequence to identify polymorphic regions. Nuclear microsatellite markers developed for P. glenii yielded sufficient genetic diversity to: (1) produce unique multilocus genotypes; (2) elucidate structure among geographic populations; and (3) provide unique perspectives for analysis of population sizes and historical demographics. Among 4.9 million filtered P. glenii Ion Torrent PGM sequence reads, 11,304 mapped to the mitochondrial genome (NC_020350). This resulted in 100 % coverage of this genome to a mean coverage depth of 102X. A total of 130 variable sites were observed between the publicly available genome from China and the studied composite mitochondrial genome. Among these, 82 were diagnostic and monomorphic between the mitochondrial genomes and distributed among 15 genome regions. The polymorphic sites (N = 48) were distributed among 11 mitochondrial genome regions. Our results also indicate that sequence reads generated

  15. Distribution patterns of postmortem damage in human mitochondrial DNA

    DEFF Research Database (Denmark)

    Gilbert, M Thomas P; Willerslev, Eske; Hansen, Anders J

    2002-01-01

    1 (HVR1) and cytochrome oxidase subunit III genes. A comparison of damaged sites within and between the regions reveals that damage hotspots exist and that, in the HVR1, these correlate with sites known to have high in vivo mutation rates. Conversely, HVR1 subregions with known structural function......, such as MT5, have lower in vivo mutation rates and lower postmortem-damage rates. The postmortem data also identify a possible functional subregion of the HVR1, termed "low-diversity 1," through the lack of sequence damage. The amount of postmortem damage observed in mitochondrial coding regions...... was significantly lower than in the HVR1, and, although hotspots were noted, these did not correlate with codon position. Finally, a simple method for the identification of incorrect archaeological haplogroup designations is introduced, on the basis of the observed spectrum of postmortem damage....

  16. Meat species identification and Halal authentication analysis using mitochondrial DNA.

    Science.gov (United States)

    Murugaiah, Chandrika; Noor, Zainon Mohd; Mastakim, Maimunah; Bilung, Lesley Maurice; Selamat, Jinap; Radu, Son

    2009-09-01

    A method utilizing PCR-restriction fragment length polymorphism (RFLP) in the mitochondrial genes was developed for beef (Bos taurus), pork (Sus scrofa), buffalo (Bubalus bubali), quail (Coturnix coturnix), chicken (Gallus gallus), goat (Capra hircus), rabbit (Oryctolagus cuniculus) species identification and Halal authentication. PCR products of 359-bp were successfully obtained from the cyt b gene of these six meats. AluI, BsaJI, RsaI, MseI, and BstUI enzymes were identified as potential restriction endonucleases to differentiate the meats. The genetic differences within the cyt b gene among the meat were successfully confirmed by PCR-RFLP. A reliable typing scheme of species which revealed the genetic differences among the species was developed.

  17. Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae).

    Science.gov (United States)

    Alverson, Andrew J; Wei, XiaoXin; Rice, Danny W; Stern, David B; Barry, Kerrie; Palmer, Jeffrey D

    2010-06-01

    The mitochondrial genomes of seed plants are unusually large and vary in size by at least an order of magnitude. Much of this variation occurs within a single family, the Cucurbitaceae, whose genomes range from an estimated 390 to 2,900 kb in size. We sequenced the mitochondrial genomes of Citrullus lanatus (watermelon: 379,236 nt) and Cucurbita pepo (zucchini: 982,833 nt)--the two smallest characterized cucurbit mitochondrial genomes--and determined their RNA editing content. The relatively compact Citrullus mitochondrial genome actually contains more and longer genes and introns, longer segmental duplications, and more discernibly nuclear-derived DNA. The large size of the Cucurbita mitochondrial genome reflects the accumulation of unprecedented amounts of both chloroplast sequences (>113 kb) and short repeated sequences (>370 kb). A low mutation rate has been hypothesized to underlie increases in both genome size and RNA editing frequency in plant mitochondria. However, despite its much larger genome, Cucurbita has a significantly higher synonymous substitution rate (and presumably mutation rate) than Citrullus but comparable levels of RNA editing. The evolution of mutation rate, genome size, and RNA editing are apparently decoupled in Cucurbitaceae, reflecting either simple stochastic variation or governance by different factors.

  18. Inheritance of mitochondrial DNA in serially recloned pigs by somatic cell nuclear transfer (SCNT)

    Energy Technology Data Exchange (ETDEWEB)

    Do, Minhwa; Jang, Won-Gu; Hwang, Jeong Hee; Jang, Hoon; Kim, Eun-Jung; Jeong, Eun-Jeong [Regenerative Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305 806 (Korea, Republic of); Shim, Hosup [Department of Physiology, Dankook University School of Medicine, Cheonan 330 714 (Korea, Republic of); Hwang, Sung Soo; Oh, Keon Bong; Byun, Sung June [Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Suwon (Korea, Republic of); Kim, Jin-Hoi [Department of Animal Biotechnology, Konkuk University, Seoul 143 701 (Korea, Republic of); Lee, Jeong Woong, E-mail: jwlee@kribb.re.kr [Regenerative Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305 806 (Korea, Republic of)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer We success serial SCNT through the third generation using pig fibroblasts. Black-Right-Pointing-Pointer Donor-specific mtDNA in the recloned pigs was detected. Black-Right-Pointing-Pointer SCNT affect mtDNA mounts. -- Abstract: Somatic cell nuclear transfer (SCNT) has been established for the transmission of specific nuclear DNA. However, the fate of donor mitochondrial DNA (mtDNA) remains unclear. Here, we examined the fate of donor mtDNA in recloned pigs through third generations. Fibroblasts of recloned pigs were obtained from offspring of each generation produced by fusion of cultured fibroblasts from a Minnesota miniature pig (MMP) into enucleated oocytes of a Landrace pig. The D-loop regions from the mtDNA of donor and recipient differ at nucleotide sequence positions 16050 (A{yields}T), 16062 (T{yields}C), and 16135 (G{yields}A). In order to determine the fate of donor mtDNA in recloned pigs, we analyzed the D-loop region of the donor's mtDNA by allele-specific PCR (AS-PCR) and real-time PCR. Donor mtDNA was successfully detected in all recloned offspring (F1, F2, and F3). These results indicate that heteroplasmy that originate from donor and recipient mtDNA is maintained in recloned pigs, resulting from SCNT, unlike natural reproduction.

  19. Reduced mitochondrial DNA content associates with poor prognosis of prostate cancer in African American men.

    Directory of Open Access Journals (Sweden)

    Shahriar Koochekpour

    Full Text Available Reduction or depletion of mitochondrial DNA (mtDNA has been associated with cancer progression. Although imbalanced mtDNA content is known to occur in prostate cancer, differences in mtDNA content between African American (AA and Caucasian American (CA men are not defined. We provide the first evidence that tumors in AA men possess reduced level of mtDNA compared to CA men. The median tumor mtDNA content was reduced in AA men. mtDNA content was also reduced in normal prostate tissues of AA men compared to CA men, suggesting a possible predisposition to cancer in AA men. mtDNA content was also reduced in benign prostatic hyperplasia (BPH tissue from AA men. Tumor and BPH tissues from patients ≥ 60 years of age possess reduced mtDNA content compared to patients 7 compared to ≤ 7, whereas reduced mtDNA content was observed in tumors of Gleason grade >7 compared to ≤ 7. Together, our data suggest that AA men possess lower mtDNA levels in normal and tumor tissues compared to CA men, which could contribute to higher risk and more aggressive prostate cancer in AA men.

  20. Reduced mitochondrial DNA content associates with poor prognosis of prostate cancer in African American men.

    Science.gov (United States)

    Koochekpour, Shahriar; Marlowe, Timothy; Singh, Keshav K; Attwood, Kristopher; Chandra, Dhyan

    2013-01-01

    Reduction or depletion of mitochondrial DNA (mtDNA) has been associated with cancer progression. Although imbalanced mtDNA content is known to occur in prostate cancer, differences in mtDNA content between African American (AA) and Caucasian American (CA) men are not defined. We provide the first evidence that tumors in AA men possess reduced level of mtDNA compared to CA men. The median tumor mtDNA content was reduced in AA men. mtDNA content was also reduced in normal prostate tissues of AA men compared to CA men, suggesting a possible predisposition to cancer in AA men. mtDNA content was also reduced in benign prostatic hyperplasia (BPH) tissue from AA men. Tumor and BPH tissues from patients ≥ 60 years of age possess reduced mtDNA content compared to patients 7 compared to ≤ 7, whereas reduced mtDNA content was observed in tumors of Gleason grade >7 compared to ≤ 7. Together, our data suggest that AA men possess lower mtDNA levels in normal and tumor tissues compared to CA men, which could contribute to higher risk and more aggressive prostate cancer in AA men.

  1. Accurate measurement of mitochondrial DNA deletion level and copy number differences in human skeletal muscle.

    Directory of Open Access Journals (Sweden)

    John P Grady

    Full Text Available Accurate and reliable quantification of the abundance of mitochondrial DNA (mtDNA molecules, both wild-type and those harbouring pathogenic mutations, is important not only for understanding the progression of mtDNA disease but also for evaluating novel therapeutic approaches. A clear understanding of the sensitivity of mtDNA measurement assays under different experimental conditions is therefore critical, however it is routinely lacking for most published mtDNA quantification assays. Here, we comprehensively assess the variability of two quantitative Taqman real-time PCR assays, a widely-applied MT-ND1/MT-ND4 multiplex mtDNA deletion assay and a recently developed MT-ND1/B2M singleplex mtDNA copy number assay, across a range of DNA concentrations and mtDNA deletion/copy number levels. Uniquely, we provide a specific guide detailing necessary numbers of sample and real-time PCR plate replicates for accurately and consistently determining a given difference in mtDNA deletion levels and copy number in homogenate skeletal muscle DNA.

  2. Accumulation of linear mitochondrial DNA fragments in the nucleus shortens the chronological life span of yeast.

    Science.gov (United States)

    Cheng, Xin; Ivessa, Andreas S

    2012-10-01

    Translocation of mitochondrial DNA (mtDNA) fragments to the nucleus and insertion of those fragments into nuclear DNA has been observed in several organisms ranging from yeast to plants and mammals. Disruption of specific nuclear genes by de novo insertions of mtDNA fragments has even been linked to the initiation of several human diseases. Recently, we demonstrated that baker's yeast strains with high rates of mtDNA fragments migrating to the nucleus (yme1-1 mutant) exhibit short chronological life spans (CLS). The yeast CLS is determined by the survival of non-dividing cell populations. Here, we show that lack of the non-homologous-end-joining enzyme DNA ligase IV (DNL4) can rescue the short CLS of the yme1-1 mutant. In fission yeast, DNA ligase IV has been shown to be required for the capture of mtDNA fragments during the repair of double-stranded DNA breaks in nuclear DNA. In further analyses using pulse field gel and 2D gel electrophoresis we demonstrate that linear mtDNA fragments with likely nuclear localization accumulate in the yme1-1 mutant. The accumulation of the linear mtDNA fragments in the yme1-1 mutant is suppressed when Dnl4 is absent. We propose that the linear nuclear mtDNA fragments accelerate the aging process in the yme1-1 mutant cells by possibly affecting nuclear processes including DNA replication, recombination, and repair as well as transcription of nuclear genes. We speculate further that Dnl4 protein has besides its function as a ligase also a role in DNA protection. Dnl4 protein may stabilize the linear mtDNA fragments in the nucleus by binding to their physical ends. In the absence of Dnl4 protein the linear fragments are therefore unprotected and possibly degraded by nuclear nucleases. Copyright © 2012 Elsevier GmbH. All rights reserved.

  3. Decreased mitochondrial DNA content in blood samples of patients with stage I breast cancer

    International Nuclear Information System (INIS)

    Xia, Peng; An, Han-Xiang; Dang, Cheng-Xue; Radpour, Ramin; Kohler, Corina; Fokas, Emmanouil; Engenhart-Cabillic, Rita; Holzgreve, Wolfgang; Zhong, Xiao Yan

    2009-01-01

    Alterations of mitochondrial DNA (mtDNA) have been implicated in carcinogenesis. We developed an accurate multiplex quantitative real-time PCR for synchronized determination of mtDNA and nuclear DNA (nDNA). We sought to investigate whether mtDNA content in the peripheral blood of breast cancer patients is associated with clinical and pathological parameters. Peripheral blood samples were collected from 60 patients with breast cancer and 51 age-matched healthy individuals as control. DNA was extracted from peripheral blood for the quantification of mtDNA and nDNA, using a one-step multiplex real-time PCR. A FAM labeled MGB probe and primers were used to amplify the mtDNA sequence of the ATP 8 gene, and a VIC labeled MGB probe and primers were employed to amplify the glyceraldehyde-3-phosphate-dehydrogenase gene. mtDNA content was correlated with tumor stage, menstruation status, and age of patients as well as lymph node status and the expression of estrogen receptor (ER), progesterone receptor (PR) and Her-2/neu protein. The content of mtDNA in stage I breast cancer patients was significantly lower than in other stages (overall P = 0.023). Reduced mtDNA was found often in post menopausal cancer group (P = 0.024). No difference in mtDNA content, in regards to age (p = 0.564), lymph node involvement (p = 0.673), ER (p = 0.877), PR (p = 0.763), and Her-2/neu expression (p = 0.335), was observed. Early detection of breast cancer has proved difficult and current detection methods are inadequate. In the present study, decreased mtDNA content in the peripheral blood of patients with breast cancer was strongly associated with stage I. The use of mtDNA may have diagnostic value and further studies are required to validate it as a potential biomarker for early detection of breast cancer

  4. TDP1 repairs nuclear and mitochondrial DNA damage induced by chain-terminating anticancer and antiviral nucleoside analogs

    Science.gov (United States)

    Huang, Shar-yin N.; Murai, Junko; Dalla Rosa, Ilaria; Dexheimer, Thomas S.; Naumova, Alena; Gmeiner, William H.; Pommier, Yves

    2013-01-01

    Chain-terminating nucleoside analogs (CTNAs) that cause stalling or premature termination of DNA replication forks are widely used as anticancer and antiviral drugs. However, it is not well understood how cells repair the DNA damage induced by these drugs. Here, we reveal the importance of tyrosyl–DNA phosphodiesterase 1 (TDP1) in the repair of nuclear and mitochondrial DNA damage induced by CTNAs. On investigating the effects of four CTNAs—acyclovir (ACV), cytarabine (Ara-C), zidovudine (AZT) and zalcitabine (ddC)—we show that TDP1 is capable of removing the covalently linked corresponding CTNAs from DNA 3′-ends. We also show that Tdp1−/− cells are hypersensitive and accumulate more DNA damage when treated with ACV and Ara-C, implicating TDP1 in repairing CTNA-induced DNA damage. As AZT and ddC are known to cause mitochondrial dysfunction, we examined whether TDP1 repairs the mitochondrial DNA damage they induced. We find that AZT and ddC treatment leads to greater depletion of mitochondrial DNA in Tdp1−/− cells. Thus, TDP1 seems to be critical for repairing nuclear and mitochondrial DNA damage caused by CTNAs. PMID:23775789

  5. A novel mutation in the mitochondrial DNA cytochrome b gene (MTCYB) in a patient with mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes syndrome.

    Science.gov (United States)

    Emmanuele, Valentina; Sotiriou, Evangelia; Rios, Purificación Gutierrez; Ganesh, Jaya; Ichord, Rebecca; Foley, A Reghan; Akman, H Orhan; Dimauro, Salvatore

    2013-02-01

    Mutations in the mitochondrial DNA cytochrome b gene (MTCYB) have been commonly associated with isolated mitochondrial myopathy and exercise intolerance, rarely with multisystem disorders, and only once with a parkinsonism/mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes (MELAS) overlap syndrome. Here, we describe a novel mutation (m.14864 T>C) in MTCYB in a 15-year-old girl with a clinical history of migraines, epilepsy, sensorimotor neuropathy, and strokelike episodes, a clinical picture reminiscent of MELAS.  The mutation, which changes a highly conserved cysteine to arginine at amino acid position 40 of cytochrome b, was heteroplasmic in muscle, blood, fibroblasts, and urinary sediment from the patient but absent in accessible tissues from her asymptomatic mother. This case demonstrates that MTCYB must be included in the already long list of mitochondrial DNA genes that have been associated with the MELAS phenotype.

  6. Forensic analysis of mitochondrial DNA hypervariable region HVII ...

    African Journals Online (AJOL)

    aghomotsegin

    2015-02-04

    Feb 4, 2015 ... as even species thought to be closely related may in time accumulate ... have attracted the interest of population geneticists (Al-. Zahery et al. ... portion of DNA was amplified in two primers: the first one is HVIII-F. (438-459) ...

  7. Mitochondrial DNA genetic variations among four horse populations in Egypt

    Directory of Open Access Journals (Sweden)

    Othman E. Othman

    2017-12-01

    It is concluded that sequence analysis of mtDNA control region is still the most informative tool for the identification of genetic biodiversity and phylogeny of different horse breeds and populations. The horse populations reared in Egypt possess low genetic diversity and all of them are belonged to Equus caballus breed.

  8. Mitochondrial DNA sequencing of cat hair: an informative forensic tool.

    Science.gov (United States)

    Tarditi, Christy R; Grahn, Robert A; Evans, Jeffrey J; Kurushima, Jennifer D; Lyons, Leslie A

    2011-01-01

    Approximately 81.7 million cats are in 37.5 million U.S. households. Shed fur can be criminal evidence because of transfer to victims, suspects, and/or their belongings. To improve cat hairs as forensic evidence, the mtDNA control region from single hairs, with and without root tags, was sequenced. A dataset of a 402-bp control region segment from 174 random-bred cats representing four U.S. geographic areas was generated to determine the informativeness of the mtDNA region. Thirty-two mtDNA mitotypes were observed ranging in frequencies from 0.6-27%. Four common types occurred in all populations. Low heteroplasmy, 1.7%, was determined. Unique mitotypes were found in 18 individuals, 10.3% of the population studied. The calculated discrimination power implied that 8.3 of 10 randomly selected individuals can be excluded by this region. The genetic characteristics of the region and the generated dataset support the use of this cat mtDNA region in forensic applications. 2010 American Academy of Forensic Sciences. Published 2010. This article is a U.S. Government work and is in the public domain in the U.S.A.

  9. Complete mitochondrial genomes of the ‘intermediate form’ of Fasciola and Fasciola gigantica, and their comparison with F. hepatica

    Science.gov (United States)

    2014-01-01

    Background Fascioliasis is an important and neglected disease of humans and other mammals, caused by trematodes of the genus Fasciola. Fasciola hepatica and F. gigantica are valid species that infect humans and animals, but the specific status of Fasciola sp. (‘intermediate form’) is unclear. Methods Single specimens inferred to represent Fasciola sp. (‘intermediate form’; Heilongjiang) and F. gigantica (Guangxi) from China were genetically identified and characterized using PCR-based sequencing of the first and second internal transcribed spacer regions of nuclear ribosomal DNA. The complete mitochondrial (mt) genomes of these representative specimens were then sequenced. The relationships of these specimens with selected members of the Trematoda were assessed by phylogenetic analysis of concatenated amino acid sequence datasets by Bayesian inference (BI). Results The complete mt genomes of representatives of Fasciola sp. and F. gigantica were 14,453 bp and 14,478 bp in size, respectively. Both mt genomes contain 12 protein-coding genes, 22 transfer RNA genes and two ribosomal RNA genes, but lack an atp8 gene. All protein-coding genes are transcribed in the same direction, and the gene order in both mt genomes is the same as that published for F. hepatica. Phylogenetic analysis of the concatenated amino acid sequence data for all 12 protein-coding genes showed that the specimen of Fasciola sp. was more closely related to F. gigantica than to F. hepatica. Conclusions The mt genomes characterized here provide a rich source of markers, which can be used in combination with nuclear markers and imaging techniques, for future comparative studies of the biology of Fasciola sp. from China and other countries. PMID:24685294

  10. Complete mitochondrial genomes of the 'intermediate form' of Fasciola and Fasciola gigantica, and their comparison with F. hepatica.

    Science.gov (United States)

    Liu, Guo-Hua; Gasser, Robin B; Young, Neil D; Song, Hui-Qun; Ai, Lin; Zhu, Xing-Quan

    2014-03-31

    Fascioliasis is an important and neglected disease of humans and other mammals, caused by trematodes of the genus Fasciola. Fasciola hepatica and F. gigantica are valid species that infect humans and animals, but the specific status of Fasciola sp. ('intermediate form') is unclear. Single specimens inferred to represent Fasciola sp. ('intermediate form'; Heilongjiang) and F. gigantica (Guangxi) from China were genetically identified and characterized using PCR-based sequencing of the first and second internal transcribed spacer regions of nuclear ribosomal DNA. The complete mitochondrial (mt) genomes of these representative specimens were then sequenced. The relationships of these specimens with selected members of the Trematoda were assessed by phylogenetic analysis of concatenated amino acid sequence datasets by Bayesian inference (BI). The complete mt genomes of representatives of Fasciola sp. and F. gigantica were 14,453 bp and 14,478 bp in size, respectively. Both mt genomes contain 12 protein-coding genes, 22 transfer RNA genes and two ribosomal RNA genes, but lack an atp8 gene. All protein-coding genes are transcribed in the same direction, and the gene order in both mt genomes is the same as that published for F. hepatica. Phylogenetic analysis of the concatenated amino acid sequence data for all 12 protein-coding genes showed that the specimen of Fasciola sp. was more closely related to F. gigantica than to F. hepatica. The mt genomes characterized here provide a rich source of markers, which can be used in combination with nuclear markers and imaging techniques, for future comparative studies of the biology of Fasciola sp. from China and other countries.

  11. Complete mitochondrial genomes of Baylisascaris schroederi, Baylisascaris ailuri and Baylisascaris transfuga from giant panda, red panda and polar bear.

    Science.gov (United States)

    Xie, Yue; Zhang, Zhihe; Wang, Chengdong; Lan, Jingchao; Li, Yan; Chen, Zhigang; Fu, Yan; Nie, Huaming; Yan, Ning; Gu, Xiaobin; Wang, Shuxian; Peng, Xuerong; Yang, Guangyou

    2011-08-15

    Roundworms of the genus Baylisascaris are the most common parasitic nematodes of the intestinal tracts of wild mammals, and most of them have significant impacts in veterinary and public health. Mitochondrial (mt) genomes provide a foundation for studying epidemiology and ecology of these parasites and therefore may be used to assist in the control of Baylisascariasis. Here, we determined the complete sequences of mtDNAs for Baylisascaris schroederi, Baylisascaris ailuri and Baylisascaris transfuga, with 14,778 bp, 14,657 bp and 14,898 bp in size, respectively. Each mtDNA encodes 12 protein-coding genes, 22 transfer RNAs and 2 ribosomal RNAs, typical for other chromadorean nematodes. The gene arrangements for the three Baylisascaris species are the same as those of the Ascaridata species, but radically different from those of the Spirurida species. Phylogenetic analysis based on concatenated amino acid sequences of 12 protein-coding genes from nine nematode species indicated that the three Baylisascaris species are more closely related to Ascaris suum than to the three Toxocara species (Toxocara canis, Toxocara cati and Toxocara malaysiensis) and Anisakis simplex, and that B. ailuri is more closely related to B. transfuga than to B. schroeder. The determination of the complete mt genome sequences for these three Baylisascaris species (the first members of the genus Baylisascaris ever sequenced) is of importance in refining the phylogenetic relationships within the order Ascaridida, and provides new molecular data for population genetic, systematic, epidemiological and ecological studies of parasitic nematodes of socio-economic importance in wildlife. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Increased levels of mitochondrial DNA copy number in patients with vitiligo.

    Science.gov (United States)

    Vaseghi, H; Houshmand, M; Jadali, Z

    2017-10-01

    Oxidative stress is known to be involved in the pathogenesis of autoimmune diseases such as vitiligo. Evidence suggests that the human mitochondrial DNA copy number (mtDNAcn) is vulnerable to damage mediated by oxidative stress. The purpose of this study was to examine and compare peripheral blood mtDNAcn and oxidative DNA damage byproducts (8-hydroxy-2-deoxyguanosine; 8-OHdG) in patients with vitiligo and healthy controls (HCs). The relative mtDNAcn and the oxidative damage (formation of 8-OHdG in mtDNA) of each sample were determined by real-time quantitative PCR. Blood samples were obtained from 56 patients with vitiligo and 46 HCs. The mean mtDNAcn and the degree of mtDNA damage were higher in patients with vitiligo than in HCs. These data suggest that increase in mtDNAcn and oxidative DNA damage may be involved in the pathogenesis of vitiligo. © 2017 British Association of Dermatologists.

  13. Sequence homology at the breakpoint and clinical phenotype of mitochondrial DNA deletion syndromes.

    Science.gov (United States)

    Sadikovic, Bekim; Wang, Jing; El-Hattab, Ayman W; Landsverk, Megan; Douglas, Ganka; Brundage, Ellen K; Craigen, William J; Schmitt, Eric S; Wong, Lee-Jun C

    2010-12-20

    Mitochondrial DNA (mtDNA) deletions are a common cause of mitochondrial disorders. Large mtDNA deletions can lead to a broad spectrum of clinical features with different age of onset, ranging from mild mitochondrial myopathies (MM), progressive external ophthalmoplegia (PEO), and Kearns-Sayre syndrome (KSS), to severe Pearson syndrome. The aim of this study is to investigate the molecular signatures surrounding the deletion breakpoints and their association with the clinical phenotype and age at onset. MtDNA deletions in 67 patients were characterized using array comparative genomic hybridization (aCGH) followed by PCR-sequencing of the deletion junctions. Sequence homology including both perfect and imperfect short repeats flanking the deletion regions were analyzed and correlated with clinical features and patients' age group. In all age groups, there was a significant increase in sequence homology flanking the deletion compared to mtDNA background. The youngest patient group (deletion distribution in size and locations, with a significantly lower sequence homology flanking the deletion, and the highest percentage of deletion mutant heteroplasmy. The older age groups showed rather discrete pattern of deletions with 44% of all patients over 6 years old carrying the most common 5 kb mtDNA deletion, which was found mostly in muscle specimens (22/41). Only 15% (3/20) of the young patients (deletion, which is usually present in blood rather than muscle. This group of patients predominantly (16 out of 17) exhibit multisystem disorder and/or Pearson syndrome, while older patients had predominantly neuromuscular manifestations including KSS, PEO, and MM. In conclusion, sequence homology at the deletion flanking regions is a consistent feature of mtDNA deletions. Decreased levels of sequence homology and increased levels of deletion mutant heteroplasmy appear to correlate with earlier onset and more severe disease with multisystem involvement.

  14. Complete mitochondrial genomes of two subspecies (Rhinolophus ferrumequinum nippon and Rhinolophus ferrumequinum tragatus) of the greater horseshoe bat (Chiroptera: Rhinolophidae).

    Science.gov (United States)

    Xiao, Yanhong; Sun, Keping; Feng, Jiang

    2017-01-01

    Rhinolophus ferrumequinum nippon and Rhinolophus ferrumequinum tragatus are two subspecies of Rhinolophus ferrumequinum currently recognized in China. In this study, their mitochondrial genomes were completely sequenced and annotated. Phylogenetic analyses indicated that R. f. nippon has a close relationship with two subspecies of R. ferrumequinum from Korea with 0.1% divergence, which indicated they are synonyms.

  15. Deciphering the complete mitochondrial genome and phylogeny of the extinct cave bear in the Paleolithic painted cave of Chauvet

    NARCIS (Netherlands)

    Bon, Céline; Caudy, Nicolas; De Dieuleveult, Maud; Fosse, Philippe; Philippe, Michel; Maksud, Frédéric; Beraud-Colomb, Éliane; Bouzaid, Eric; Kefi, Rym; Laugier, Christelle; Rousseau, Bernard; Casane, Didier; Van Der Plicht, Johannes; Elalouf, Jean-Marc

    2008-01-01

    Retrieving a large amount of genetic information from extinct species was demonstrated feasible, but complete mitochondrial genome sequences have only been deciphered for the moa, a bird that became extinct a few hundred years ago, and for Pleistocene species, such as the woolly mammoth and the

  16. The complete mitochondrial genome of the big-belly seahorse, Hippocampus abdominalis (Lesson 1827).

    Science.gov (United States)

    Wang, Lei; Chen, Zaizhong; Leng, Xiangjun; Gao, Jianzhong; Chen, Xiaowu; Li, Zhongpu; Sun, Peiying; Zhao, Yuming

    2016-11-01

    In this study, the complete mitogenome sequence of the big-belly seahorse, Hippocampus abdominalis (Lesson, 1827) (Syngnathiformes: Syngnathidae), has been sequenced by the next-generation sequencing method. The assembled mitogenome is 16 521 bp in length which includes 13 protein-coding genes, 22 transfer RNAs, and 2 ribosomal RNAs genes. The overall base composition of the seahorse is