WorldWideScience

Sample records for complete kinematics approach

  1. Fission of highly excited nuclei investigated in complete kinematic measurements

    International Nuclear Information System (INIS)

    Rodriguez-Sanchez, J. L.; Benlliure, J.; Taieb, J.; Avarez-Pol, H.; Audouin, L.; Ayyad, Y.; Belier, G.; Boutoux, G.; Casarejos, E.; Chatillon, A.; Cortina-Gil, D.; Gorbinet, T.; Heinz, A.; Kelic-Heil, A.; Kurz, N.; Laurent, B.; Martin, J. F.; Paradela, C.; Pellereau, E.; Pietras, B.; Prochazka, A.; Ramos, D.; Rodriguez-Tajes, C.; Rossi, D.; Simon, H.; Tassan-Got, L.; Vargas, J.; Voss, B.

    2013-01-01

    Fission is an extremely complex mechanism that requires a dynamical approach to describe the evolution of the process in terms of intrinsic and collective excitations of the nuclear constituents. In order to determine these effects a complex experimental setup was mounted at GSI, which allowed us for the first time the full identification in charge and mass of all fission fragments thanks to a magnetic separation and the use of the inverse kinematic technique. Moreover, we also measured the neutron multiplicities and the light-charged particles emitted in coincidence with fission. These complete kinematic measurements will be used to define sensitive observables to dissipative and transient effects in fission. In this manuscript we present the first results for the total fission cross sections. (authors)

  2. Do the kinematics of a baulked take-off in springboard diving differ from those of a completed dive.

    Science.gov (United States)

    Barris, Sian; Farrow, Damian; Davids, Keith

    2013-01-01

    Consistency and invariance in movements are traditionally viewed as essential features of skill acquisition and elite sports performance. This emphasis on the stabilization of action has resulted in important processes of adaptation in movement coordination during performance being overlooked in investigations of elite sport performance. Here we investigate whether differences exist between the movement kinematics displayed by five, elite springboard divers (age 17 ± 2.4 years) in the preparation phases of baulked and completed take-offs. The two-dimensional kinematic characteristics of the reverse somersault take-off phases (approach and hurdle) were recorded during normal training sessions and used for intra-individual analysis. All participants displayed observable differences in movement patterns at key events during the approach phase; however, the presence of similar global topological characteristics suggested that, overall, participants did not perform distinctly different movement patterns during completed and baulked dives. These findings provide a powerful rationale for coaches to consider assessing functional variability or adaptability of motor behaviour as a key criterion of successful performance in sports such as diving.

  3. A statistical kinematic source inversion approach based on the QUESO library for uncertainty quantification and prediction

    Science.gov (United States)

    Zielke, Olaf; McDougall, Damon; Mai, Martin; Babuska, Ivo

    2014-05-01

    Seismic, often augmented with geodetic data, are frequently used to invert for the spatio-temporal evolution of slip along a rupture plane. The resulting images of the slip evolution for a single event, inferred by different research teams, often vary distinctly, depending on the adopted inversion approach and rupture model parameterization. This observation raises the question, which of the provided kinematic source inversion solutions is most reliable and most robust, and — more generally — how accurate are fault parameterization and solution predictions? These issues are not included in "standard" source inversion approaches. Here, we present a statistical inversion approach to constrain kinematic rupture parameters from teleseismic body waves. The approach is based a) on a forward-modeling scheme that computes synthetic (body-)waves for a given kinematic rupture model, and b) on the QUESO (Quantification of Uncertainty for Estimation, Simulation, and Optimization) library that uses MCMC algorithms and Bayes theorem for sample selection. We present Bayesian inversions for rupture parameters in synthetic earthquakes (i.e. for which the exact rupture history is known) in an attempt to identify the cross-over at which further model discretization (spatial and temporal resolution of the parameter space) is no longer attributed to a decreasing misfit. Identification of this cross-over is of importance as it reveals the resolution power of the studied data set (i.e. teleseismic body waves), enabling one to constrain kinematic earthquake rupture histories of real earthquakes at a resolution that is supported by data. In addition, the Bayesian approach allows for mapping complete posterior probability density functions of the desired kinematic source parameters, thus enabling us to rigorously assess the uncertainties in earthquake source inversions.

  4. Complete kinematics study of the 11B+p→3α reaction

    DEFF Research Database (Denmark)

    Fynbo, H.O.U.; Laursen, K.L.; Riisager, K.

    2012-01-01

    The 11B(p,3α) reaction measured in complete kinematics is used to search for broad resonances in 12C. Evidence for natural parity states around 10 MeV and 12 MeV is presented. The most likely assignment is 2+. Measurements of Dalitz distributions from the 2+ and 2- states at 16.11 MeV and 16.57 Me...

  5. A general approach for optimal kinematic design of 6-DOF parallel ...

    Indian Academy of Sciences (India)

    Optimal kinematic design of parallel manipulators is a challenging problem. In this work, an attempt has been made to present a generalized approach of kinematic design for a 6-legged parallel manipulator, by considering only the minimally required design parameters. The same approach has been used to design a ...

  6. Probabilistic approach to manipulator kinematics and dynamics

    International Nuclear Information System (INIS)

    Rao, S.S.; Bhatti, P.K.

    2001-01-01

    A high performance, high speed robotic arm must be able to manipulate objects with a high degree of accuracy and repeatability. As with any other physical system, there are a number of factors causing uncertainties in the behavior of a robotic manipulator. These factors include manufacturing and assembling tolerances, and errors in the joint actuators and controllers. In order to study the effect of these uncertainties on the robotic end-effector and to obtain a better insight into the manipulator behavior, the manipulator kinematics and dynamics are modeled using a probabilistic approach. Based on the probabilistic model, kinematic and dynamic performance criteria are defined to provide measures of the behavior of the robotic end-effector. Techniques are presented to compute the kinematic and dynamic reliabilities of the manipulator. The effects of tolerances associated with the various manipulator parameters on the reliabilities are studied. Numerical examples are presented to illustrate the procedures

  7. Restraining approach for the spurious kinematic modes in hybrid equilibrium element

    Science.gov (United States)

    Parrinello, F.

    2013-10-01

    The present paper proposes a rigorous approach for the elimination of spurious kinematic modes in hybrid equilibrium elements, for three well known mesh patches. The approach is based on the identification of the dependent equations in the set of inter-element and boundary equilibrium equations of the sides involved in the spurious kinematic mode. Then the kinematic variables related to the dependent equations are reciprocally constrained and, by application of master slave elimination method, the set of inter-element equilibrium equations is reduced to full rank. The elastic solutions produced by means of the proposed approach verify the homogeneous, the inter-element and the boundary equilibrium equations. Hybrid stress formulation is developed in a rigorous mathematical setting. The results of linear elastic analysis obtained by the proposed approach and by classical displacement based method are compared for some structural examples.

  8. Exclusive measurements of quasi-free proton scattering reactions in inverse and complete kinematics

    Directory of Open Access Journals (Sweden)

    V. Panin

    2016-02-01

    Full Text Available Quasi-free scattering reactions of the type (p,2p were measured for the first time exclusively in complete and inverse kinematics, using a 12C beam at an energy of ∼400 MeV/u as a benchmark. This new technique has been developed to study the single-particle structure of exotic nuclei in experiments with radioactive-ion beams. The outgoing pair of protons and the fragments were measured simultaneously, enabling an unambiguous identification of the reaction channels and a redundant measurement of the kinematic observables. Both valence and deeply-bound nucleon orbits are probed, including those leading to unbound states of the daughter nucleus. Exclusive (p,2p cross sections of 15.8(18 mb, 1.9(2 mb and 1.5(2 mb to the low-lying 0p-hole states overlapping with the ground state (3/2− and with the bound excited states of 11B at 2.125 MeV (1/2− and 5.02 MeV (3/2−, respectively, were determined via γ-ray spectroscopy. Particle-unstable deep-hole states, corresponding to proton removal from the 0s-orbital, were studied via the invariant-mass technique. Cross sections and momentum distributions were extracted and compared to theoretical calculations employing the eikonal formalism. The obtained results are in a good agreement with this theory and with direct-kinematics experiments. The dependence of the proton–proton scattering kinematics on the internal momentum of the struck proton and on its separation energy was investigated for the first time in inverse kinematics employing a large-acceptance measurement.

  9. Kinematically complete study on electron impact ionisation of aligned hydrogen molecules

    Energy Technology Data Exchange (ETDEWEB)

    Senftleben, Arne

    2009-10-28

    Within the work presented here, single ionisation of spatially aligned hydrogen molecules by 200 eV electrons was studied in a kinematically complete experiment. For the first time, a comprehensive set of fully differential cross sections (FDCS) was obtained for this process on a molecular target. The direction of the internuclear axis was derived from the fragment emission of post-collision dissociation of the residual H{sub 2}{sup +} ion. Therefore, a protonic fragment was detected in coincidence with the two final-state electrons using a dedicated reaction microscope and sophisticated data analysis. For direct ionisation into the ionic ground state, existing theoretical cross sections for aligned molecules were tested. Additionally, we observed molecular frame angular distributions of Auger electrons emitted through dissociative autoionisation of H{sub 2}. Earlier findings of kinematically incomplete experiments were reproduced, but the FDCS reveal structures so far unknown. Furthermore, for random alignment, differential cross sections at two distinct values of the mean internuclear distance were obtained, providing new arguments in the current discussion on the nature of discrepancies observed between atomic and molecular collisions. (orig.)

  10. An Inverse Kinematic Approach Using Groebner Basis Theory Applied to Gait Cycle Analysis

    Science.gov (United States)

    2013-03-01

    AN INVERSE KINEMATIC APPROACH USING GROEBNER BASIS THEORY APPLIED TO GAIT CYCLE ANALYSIS THESIS Anum Barki AFIT-ENP-13-M-02 DEPARTMENT OF THE AIR...copyright protection in the United States. AFIT-ENP-13-M-02 AN INVERSE KINEMATIC APPROACH USING GROEBNER BASIS THEORY APPLIED TO GAIT CYCLE ANALYSIS THESIS...APPROACH USING GROEBNER BASIS THEORY APPLIED TO GAIT CYCLE ANALYSIS Anum Barki, BS Approved: Dr. Ronald F. Tuttle (Chairman) Date Dr. Kimberly Kendricks

  11. Double-Pionic Fusion of Nuclear Systems and the ''ABC'' Effect: Approaching a Puzzle by Exclusive and Kinematically Complete Measurements

    International Nuclear Information System (INIS)

    Bashkanov, M.; Clement, H.; Doroshkevich, E.; Khakimova, O.; Kren, F.; Meier, R.; Pricking, A.; Skorodko, T.; Wagner, G. J.; Bargholtz, C.; Geren, L.; Lindberg, K.; Tegner, P.-E.; Zartova, I.; Berlowski, M.; Stepaniak, J.; Bogoslawsky, D.; Ivanov, G.; Jiganov, E.; Morosov, B.

    2009-01-01

    The ABC effect--a puzzling low-mass enhancement in the ππ invariant mass spectrum, first observed by Abashian, Booth, and Crowe--is well known from inclusive measurements of two-pion production in nuclear fusion reactions. Here we report on the first exclusive and kinematically complete measurements of the most basic double-pionic fusion reaction pn→dπ 0 π 0 at beam energies of 1.03 and 1.35 GeV. The measurements, which have been carried out at CELSIUS-WASA, reveal the ABC effect to be a (ππ) I=L=0 channel phenomenon associated with both a resonancelike energy dependence in the integral cross section and the formation of a ΔΔ system in the intermediate state. A corresponding simple s-channel resonance ansatz provides a surprisingly good description of the data

  12. Kinematic power corrections in off-forward hard reactions.

    Science.gov (United States)

    Braun, V M; Manashov, A N

    2011-11-11

    We develop a general approach to the calculation of kinematic corrections ∝t/Q(2), m(2)/Q(2) in hard processes which involve momentum transfer from the initial to the final hadron state. As the principal result, the complete expression is derived for the time-ordered product of two electromagnetic currents that includes all kinematic corrections to twist-four accuracy. The results are immediately applicable, e.g., to the studies of deeply virtual Compton scattering.

  13. Interactive inverse kinematics for human motion estimation

    DEFF Research Database (Denmark)

    Engell-Nørregård, Morten Pol; Hauberg, Søren; Lapuyade, Jerome

    2009-01-01

    We present an application of a fast interactive inverse kinematics method as a dimensionality reduction for monocular human motion estimation. The inverse kinematics solver deals efficiently and robustly with box constraints and does not suffer from shaking artifacts. The presented motion...... to significantly speed up the particle filtering. It should be stressed that the observation part of the system has not been our focus, and as such is described only from a sense of completeness. With our approach it is possible to construct a robust and computationally efficient system for human motion estimation....

  14. Parallel kinematics type, kinematics, and optimal design

    CERN Document Server

    Liu, Xin-Jun

    2014-01-01

    Parallel Kinematics- Type, Kinematics, and Optimal Design presents the results of 15 year's research on parallel mechanisms and parallel kinematics machines. This book covers the systematic classification of parallel mechanisms (PMs) as well as providing a large number of mechanical architectures of PMs available for use in practical applications. It focuses on the kinematic design of parallel robots. One successful application of parallel mechanisms in the field of machine tools, which is also called parallel kinematics machines, has been the emerging trend in advanced machine tools. The book describes not only the main aspects and important topics in parallel kinematics, but also references novel concepts and approaches, i.e. type synthesis based on evolution, performance evaluation and optimization based on screw theory, singularity model taking into account motion and force transmissibility, and others.   This book is intended for researchers, scientists, engineers and postgraduates or above with interes...

  15. Relativistic Kinematics

    OpenAIRE

    Sahoo, Raghunath

    2016-01-01

    This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.

  16. Overground-Propulsion Kinematics and Acceleration in Elite Wheelchair Rugby.

    Science.gov (United States)

    Haydon, David S; Pinder, Ross A; Grimshaw, Paul N; Robertson, William S P

    2018-02-01

    Maximal acceleration from standstill has been identified as a key performance indicator in wheelchair rugby; however, the impact of classification and kinematic variables on performance has received limited attention. This study aimed to investigate kinematic variables during maximal acceleration, with level of activity limitation accounted for using sport-classification scores. Based on their sporting classification scores, which reflect combined trunk, arm, and hand function, 25 elite wheelchair rugby players were analyzed in high-, mid-, and low-point groups before completing five 5-m sprints from a stationary position. Inertial measurement units and video analysis were used to monitor key kinematic variables. Significant differences in kinematic variables were evident across the classification groups, particularly for the first stroke-contact angle (1-way ANOVA F 2,122  = 51.5, P propulsion approaches exist across classification groups, with this information potentially informing individual wheelchair setups and training programs.

  17. Surgical gesture classification from video and kinematic data.

    Science.gov (United States)

    Zappella, Luca; Béjar, Benjamín; Hager, Gregory; Vidal, René

    2013-10-01

    Much of the existing work on automatic classification of gestures and skill in robotic surgery is based on dynamic cues (e.g., time to completion, speed, forces, torque) or kinematic data (e.g., robot trajectories and velocities). While videos could be equally or more discriminative (e.g., videos contain semantic information not present in kinematic data), they are typically not used because of the difficulties associated with automatic video interpretation. In this paper, we propose several methods for automatic surgical gesture classification from video data. We assume that the video of a surgical task (e.g., suturing) has been segmented into video clips corresponding to a single gesture (e.g., grabbing the needle, passing the needle) and propose three methods to classify the gesture of each video clip. In the first one, we model each video clip as the output of a linear dynamical system (LDS) and use metrics in the space of LDSs to classify new video clips. In the second one, we use spatio-temporal features extracted from each video clip to learn a dictionary of spatio-temporal words, and use a bag-of-features (BoF) approach to classify new video clips. In the third one, we use multiple kernel learning (MKL) to combine the LDS and BoF approaches. Since the LDS approach is also applicable to kinematic data, we also use MKL to combine both types of data in order to exploit their complementarity. Our experiments on a typical surgical training setup show that methods based on video data perform equally well, if not better, than state-of-the-art approaches based on kinematic data. In turn, the combination of both kinematic and video data outperforms any other algorithm based on one type of data alone. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. A Smooth Tour Construction Approach for a Mobile Robot with Kinematic Constraints

    Directory of Open Access Journals (Sweden)

    Ahmet Yazici

    2013-10-01

    Full Text Available Mobile robots are increasingly used for service-like applications in which the service points are known and the mobile robot starts from a starting location, visits all the service points requested and returns to the starting location. The tour construction problem in these applications can be treated as a Travelling Salesman Problem (TSP. Classical tour construction algorithms that are proposed for the TSP find tours do not consider robot kinematic constraints. These tours may have sharp turns at some service points. When a mobile robot follows such a tour, it stops, turns and speeds up again. Therefore, the robots waste a considerable amount of power and time. In these cases, tour smoothing can be used to overcome this problem. However, smoothing an existing tour may result in unnecessarily long tours. In this study, a Smooth Tour Construction (STC approach is proposed for mobile robots with kinematic constraints. The STC approach considers tour construction and tour smoothing concurrently. The logic behind the tour construction part of the approach is based on the Savings Algorithm (SA. The tour smoothing is based on Dubins' arc-line approach. Experiments are conducted for P3-DX robots in a laboratory environment. Comparisons are also drawn with various tour smoothing algorithms in simulation environments to demonstrate the effectiveness of the proposed STC approach.

  19. Lagrangian approach to understanding the origin of the gill-kinematics switch in mayfly nymphs.

    Science.gov (United States)

    Chabreyrie, R; Balaras, E; Abdelaziz, K; Kiger, K

    2014-12-01

    The mayfly nymph breathes under water through an oscillating array of plate-shaped tracheal gills. As the nymph grows, the kinematics of these gills change abruptly from rowing to flapping. The classical fluid dynamics approach to consider the mayfly nymph as a pumping device fails in giving clear reasons for this switch. In order to shed some light on this switch between the two distinct kinematics, we analyze the problem under a Lagrangian viewpoint. We consider that a good Lagrangian transport that effectively distributes and stirs water and dissolved oxygen between and around the gills is the main goal of the gill motion. Using this Lagrangian approach, we are able to provide possible reasons behind the observed switch from rowing to flapping. More precisely, we conduct a series of in silico mayfly nymph experiments, where body shape, as well as gill shapes, structures, and kinematics are matched to those from in vivo. In this paper, we show both qualitatively and quantitatively how the change of kinematics enables better attraction, confinement, and stirring of water charged of dissolved oxygen inside the gills area. We reveal the attracting barriers to transport, i.e., attracting Lagrangian coherent structures, that form the transport skeleton between and around the gills. In addition, we quantify how well the fluid particles are stirred inside the gills area, which by extension leads us to conclude that it will increase the proneness of molecules of dissolved oxygen to be close enough to the gills for extraction.

  20. Extraction of the 1S0 neutron-neutron scattering length from a kinematically-complete n-d breakup experiment at TUNL

    International Nuclear Information System (INIS)

    Gonzalez Trotter, D. E.; Tornow, W.; Howell, C. R.; Salinas, F.; Walter, R. L.; Witalea, H.

    1999-01-01

    The 1 S 0 neutron-neutron (nn) scattering length's currently accepted value (a nn =-18.6±0.3 fm) is derived exclusively from two π - -d capture-reaction experiments, in disagreement with the average -16.7±0.5 fm extracted from kinematically-complete nd breakup experiments. This discrepancy may be due to deficiencies in the analyses of n-d breakup data and/or three-nucleon force (3NF) effects. A kinematically-complete n+d→n 1 +n 2 +p breakup experiment at an incident neutron energy of 13.0 MeV was performed recently at TUNL. The value of a nn was extracted from the direct comparison of experimental and rigorously-calculated theoretical nd breakup differential cross sections at four production angles of the nn pair. Using modern nucleon-nucleon potential models in the three-nucleon cross-section calculations we obtained a nn =-18.7±0.6 fm, in agreement with the π - -d result. We found no significant effect due to 3NFs on our a nn value

  1. STRUCTURAL APPROACH TO THE MATHEMATICAL DESCRIPTION AND COMPUTER VISUALIZATION OF PLANE KINEMATIC CURVES FOR THE DISPLAY OF GEARS

    Directory of Open Access Journals (Sweden)

    Tatyana TRETYAK

    2018-05-01

    Full Text Available The structural approach stated in this paper allows to simulate the different plane kinematic curves without their concrete analytic equations. The summarized unified mapping system for rack gearing is used. The examples of plane kinematic curves received by the structural method on computer are adduced.

  2. Extraction of the neutron-neutron scattering length ann from kinematically complete neutron-deuteron breakup experiments

    International Nuclear Information System (INIS)

    Witala, H.; Hueber, D.; Gloeckle, W.; Tornow, W.; Gonzalez Trotter, D.E.

    1996-01-01

    Data for the neutron-neutron final-state-interaction cross section obtained recently in a kinematically complete neutron-deuteron breakup experiment have been reanalyzed using rigorous solutions of the three-nucleon Faddeev equations with realistic nucleon-nucleon interactions. A discrepancy was found with respect to a recent analysis based on the W-matrix approximation to the Paris potential. We also estimate theoretical uncertainties in extracting the neutron-neutron scattering length resulting from the use of different nucleon-nucleon interactions and the possible action of the two pion-exchange three-nucleon force. We find that there exists a certain production angle for the interacting neutron-neutron pair where the uncertainties become minimal. (author)

  3. Resolving kinematic redundancy with constraints using the FSP (Full Space Parameterization) approach

    International Nuclear Information System (INIS)

    Pin, F.G.; Tulloch, F.A.

    1996-01-01

    A solution method is presented for the motion planning and control of kinematically redundant serial-link manipulators in the presence of motion constraints such as joint limits or obstacles. Given a trajectory for the end-effector, the approach utilizes the recently proposed Full Space Parameterization (FSP) method to generate a parameterized expression for the entire space of solutions of the unconstrained system. At each time step, a constrained optimization technique is then used to analytically find the specific joint motion solution that satisfies the desired task objective and all the constraints active during the time step. The method is applicable to systems operating in a priori known environments or in unknown environments with sensor-based obstacle detection. The derivation of the analytical solution is first presented for a general type of kinematic constraint and is then applied to the problem of motion planning for redundant manipulators with joint limits and obstacle avoidance. Sample results using planar and 3-D manipulators with various degrees of redundancy are presented to illustrate the efficiency and wide applicability of constrained motion planning using the FSP approach

  4. Solving Inverse Kinematics – A New Approach to the Extended Jacobian Technique

    Directory of Open Access Journals (Sweden)

    M. Šoch

    2005-01-01

    Full Text Available This paper presents a brief summary of current numerical algorithms for solving the Inverse Kinematics problem. Then a new approach based on the Extended Jacobian technique is compared with the current Jacobian Inversion method. The presented method is intended for use in the field of computer graphics for animation of articulated structures. 

  5. A Review of Parallel Processing Approaches to Robot Kinematics and Jacobian

    OpenAIRE

    Henrich, Dominik; Karl, Joachim; Wörn, Heinz

    1997-01-01

    Due to continuously increasing demands in the area of advanced robot control, it became necessary to speed up the computation. One way to reduce the computation time is to distribute the computation onto several processing units. In this survey we present different approaches to parallel computation of robot kinematics and Jacobian. Thereby, we discuss both the forward and the reverse problem. We introduce a classification scheme and class...

  6. Inverse Kinematics With Closed Form Solution For Denso Robot Manipulator

    Directory of Open Access Journals (Sweden)

    Ikhsan Eka Prasetia

    2015-03-01

    Full Text Available In this paper, the forward kinematics and inverse kinematics used on the Denso robot manipulator which has a 6-DOF. The forward kinematics will result in the desired position by end-effector, while inverse kinematics produce angel on each joint. Inverse kinematics problem are very difficult, therefor to obtain the solution of inverse kinematics using closed form solution with geometry approach. The simulation result obtained from forward kinematics and inverse kinematics is determining desired position by Denso robot manipulator. Forward kinematics produce the desired position by the end-effector. Inverse kinematics produce joint angle, where the inverse kinematics produce eight conditions obtained from closed form solution with geometry approach to reach the desired position by the end-effector.

  7. The kinematic determinants of anuran swimming performance: an inverse and forward dynamics approach.

    Science.gov (United States)

    Richards, Christopher T

    2008-10-01

    The aims of this study were to explore the hydrodynamic mechanism of Xenopus laevis swimming and to describe how hind limb kinematics shift to control swimming performance. Kinematics of the joints, feet and body were obtained from high speed video of X. laevis frogs (N=4) during swimming over a range of speeds. A blade element approach was used to estimate thrust produced by both translational and rotational components of foot velocity. Peak thrust from the feet ranged from 0.09 to 0.69 N across speeds ranging from 0.28 to 1.2 m s(-1). Among 23 swimming strokes, net thrust impulse from rotational foot motion was significantly higher than net translational thrust impulse, ranging from 6.1 to 29.3 N ms, compared with a range of -7.0 to 4.1 N ms from foot translation. Additionally, X. laevis kinematics were used as a basis for a forward dynamic anuran swimming model. Input joint kinematics were modulated to independently vary the magnitudes of foot translational and rotational velocity. Simulations predicted that maximum swimming velocity (among all of the kinematics patterns tested) requires that maximal translational and maximal rotational foot velocity act in phase. However, consistent with experimental kinematics, translational and rotational motion contributed unequally to total thrust. The simulation powered purely by foot translation reached a lower peak stroke velocity than the pure rotational case (0.38 vs 0.54 m s(-1)). In all simulations, thrust from the foot was positive for the first half of the power stroke, but negative for the second half. Pure translational foot motion caused greater negative thrust (70% of peak positive thrust) compared with pure rotational simulation (35% peak positive thrust) suggesting that translational motion is propulsive only in the early stages of joint extension. Later in the power stroke, thrust produced by foot rotation overcomes negative thrust (due to translation). Hydrodynamic analysis from X. laevis as well as forward

  8. Simple Kinematic Pathway Approach (KPA) to Catchment-scale Travel Time and Water Age Distributions

    Science.gov (United States)

    Soltani, S. S.; Cvetkovic, V.; Destouni, G.

    2017-12-01

    The distribution of catchment-scale water travel times is strongly influenced by morphological dispersion and is partitioned between hillslope and larger, regional scales. We explore whether hillslope travel times are predictable using a simple semi-analytical "kinematic pathway approach" (KPA) that accounts for dispersion on two levels of morphological and macro-dispersion. The study gives new insights to shallow (hillslope) and deep (regional) groundwater travel times by comparing numerical simulations of travel time distributions, referred to as "dynamic model", with corresponding KPA computations for three different real catchment case studies in Sweden. KPA uses basic structural and hydrological data to compute transient water travel time (forward mode) and age (backward mode) distributions at the catchment outlet. Longitudinal and morphological dispersion components are reflected in KPA computations by assuming an effective Peclet number and topographically driven pathway length distributions, respectively. Numerical simulations of advective travel times are obtained by means of particle tracking using the fully-integrated flow model MIKE SHE. The comparison of computed cumulative distribution functions of travel times shows significant influence of morphological dispersion and groundwater recharge rate on the compatibility of the "kinematic pathway" and "dynamic" models. Zones of high recharge rate in "dynamic" models are associated with topographically driven groundwater flow paths to adjacent discharge zones, e.g. rivers and lakes, through relatively shallow pathway compartments. These zones exhibit more compatible behavior between "dynamic" and "kinematic pathway" models than the zones of low recharge rate. Interestingly, the travel time distributions of hillslope compartments remain almost unchanged with increasing recharge rates in the "dynamic" models. This robust "dynamic" model behavior suggests that flow path lengths and travel times in shallow

  9. A New Artificial Neural Network Approach in Solving Inverse Kinematics of Robotic Arm (Denso VP6242

    Directory of Open Access Journals (Sweden)

    Ahmed R. J. Almusawi

    2016-01-01

    Full Text Available This paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the applicability and the efficiency of the proposed approach in robotic motion control. The inclusion of current configuration of joint angles in ANN significantly increased the accuracy of ANN estimation of the joint angles output. The new controller design has advantages over the existing techniques for minimizing the position error in unconventional tasks and increasing the accuracy of ANN in estimation of robot’s joint angles.

  10. A New Artificial Neural Network Approach in Solving Inverse Kinematics of Robotic Arm (Denso VP6242)

    Science.gov (United States)

    Dülger, L. Canan; Kapucu, Sadettin

    2016-01-01

    This paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN) architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the applicability and the efficiency of the proposed approach in robotic motion control. The inclusion of current configuration of joint angles in ANN significantly increased the accuracy of ANN estimation of the joint angles output. The new controller design has advantages over the existing techniques for minimizing the position error in unconventional tasks and increasing the accuracy of ANN in estimation of robot's joint angles. PMID:27610129

  11. A New Artificial Neural Network Approach in Solving Inverse Kinematics of Robotic Arm (Denso VP6242).

    Science.gov (United States)

    Almusawi, Ahmed R J; Dülger, L Canan; Kapucu, Sadettin

    2016-01-01

    This paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN) architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the applicability and the efficiency of the proposed approach in robotic motion control. The inclusion of current configuration of joint angles in ANN significantly increased the accuracy of ANN estimation of the joint angles output. The new controller design has advantages over the existing techniques for minimizing the position error in unconventional tasks and increasing the accuracy of ANN in estimation of robot's joint angles.

  12. Properties of kinematic singularities

    Energy Technology Data Exchange (ETDEWEB)

    Coley, A A [Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada); Hervik, S [Department of Mathematics and Natural Sciences, University of Stavanger, N-4036 Stavanger (Norway); Lim, W C [Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Potsdam (Germany); MacCallum, M A H, E-mail: aac@mathstat.dal.c, E-mail: sigbjorn.hervik@uis.n, E-mail: wclim@aei.mpg.d, E-mail: m.a.h.maccallum@qmul.ac.u [School of Mathematical Sciences, Queen Mary University of London, E1 4NS (United Kingdom)

    2009-11-07

    The locally rotationally symmetric tilted perfect fluid Bianchi type V cosmological model provides examples of future geodesically complete spacetimes that admit a 'kinematic singularity' at which the fluid congruence is inextendible but all frame components of the Weyl and Ricci tensors remain bounded. We show that for any positive integer n there are examples of Bianchi type V spacetimes admitting a kinematic singularity such that the covariant derivatives of the Weyl and Ricci tensors up to the nth order also stay bounded. We briefly discuss singularities in classical spacetimes.

  13. A comparison of Lagrangian/Eulerian approaches for tracking the kinematics of high deformation solid motion.

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Thomas L.; Farnsworth, Grant V.; Ketcheson, David Isaac; Robinson, Allen Conrad

    2009-09-01

    The modeling of solids is most naturally placed within a Lagrangian framework because it requires constitutive models which depend on knowledge of the original material orientations and subsequent deformations. Detailed kinematic information is needed to ensure material frame indifference which is captured through the deformation gradient F. Such information can be tracked easily in a Lagrangian code. Unfortunately, not all problems can be easily modeled using Lagrangian concepts due to severe distortions in the underlying motion. Either a Lagrangian/Eulerian or a pure Eulerian modeling framework must be introduced. We discuss and contrast several Lagrangian/Eulerian approaches for keeping track of the details of material kinematics.

  14. Inverse Kinematics With Closed Form Solution For Denso Robot Manipulator

    OpenAIRE

    Ikhsan Eka Prasetia; Trihastuti Agustinah

    2015-01-01

    In this paper, the forward kinematics and inverse kinematics used on the Denso robot manipulator which has a 6-DOF. The forward kinematics will result in the desired position by end-effector, while inverse kinematics produce angel on each joint. Inverse kinematics problem are very difficult, therefor to obtain the solution of inverse kinematics using closed form solution with geometry approach. The simulation result obtained from forward kinematics and inverse kinematics is determining desire...

  15. Relativistic kinematics and dynamics: a new group theoretical approach

    International Nuclear Information System (INIS)

    Giovannini, N.

    1983-01-01

    The author reanalyzes the relationships between physical states and space-time symmetries with a view to describing relativistic extended and interacting systems. For this description he proposes to introduce, in space-time, an additional observable, related to a natural notion of simultaneity. The introduction of this new observable is justified on the basis of the operational meaning of the relations between state descriptions and symmetries in this case. The Poincare transformations are correspondingly split into two parts: the first one, kinematical, related to the symmetries of the description of the states, the other one, dynamical, related to the possible forms for the evolution. It is shown that the kinematical symmetries lead in a straightforward way to the expected classical and quantal state spaces for single particles of arbitrary spin and the author shows how the remaining symmetries can be related to the derivation of the possible forms for the dynamics. He finds as a particular case the usual dynamics of single particles in external fields (with some satisfactory improvements due to the corresponding new interpretation) and extends the method to the dynamics of N interacting particles. He also shows why this new approach and interpretation of relativistic states is necessary and how it allows a covariant description in the problems raised by the (recently measured) quantum correlations at-a-distance concerning the Einstein-Podolsky-Rosen paradox, something which seems quite impossible in the usual frameworks. (Auth.)

  16. Study of the kinematically complete breakup reaction 2H(p vector, pp)n at Ep=13.0 MeV with polarized protons

    International Nuclear Information System (INIS)

    Rauprich, G.; Lemaitre, S.; Niessen, P.; Nyga, K.R.; Reckenfelderbaeumer, R.; Sydow, L.; Paetz genannt Schieck, H.; Witala, H.; Gloeckle, W.

    1991-01-01

    The breakup reaction 2 H(p vector,pp)n at E p =13.0 MeV has been measured in a kinematically complete experiment with polarized protons in four special kinematical situations: np final-state interaction, pp quasi-free scattering, collinearity and symmetric space star. These configurations are identical to those of a corresponding 2 H(n,nn) 1 H experiment. The cross sections d 3 σ/dΩ 3 dΩ 4 dS and the vector analyzing powers A y are presented as a function of the arclength of the relevant kinematical loci. They are compared to the rigorous Faddeev calculations using realistic meson-exchange NN potentials, i.e. the Paris and Bonn potential. Comparison with the cross section data of the analog neutron experiment is made. In the quasi-free scattering and the space-star cross sections marked discrepancies with the theoretical predictions, in the latter case also with the neutron results are found. In the collinear and final-state interaction situations the agreement is rather good as well as for all analyzing powers and is even improved by taking the finite angular spread into account. (orig.)

  17. THE EFFECTS OF APPROACH ANGLE ON PENALTY KICKING ACCURACY AND KICK KINEMATICS WITH RECREATIONAL SOCCER PLAYERS

    Directory of Open Access Journals (Sweden)

    Joanna Scurr

    2009-06-01

    Full Text Available Kicking accuracy is an important component of successful penalty kicks, which may be influenced by the approach angle. The purpose of this study was to examine the effects of approach angle on kicking accuracy and three-dimensional kinematics of penalty kicks. Seven male amateur recreational soccer players aged (mean ± s 26 ± 3 years, body mass 74.0 ± 6.8 kg, stature 1.74 ± 0.06 m, who were right foot dominant, kicked penalties at a 0.6 x 0.6 m target in a full size goal from their self-selected approach angle, 30º, 45º and 60º (direction of the kick was 0º. Kicking accuracy and three-dimensional kinematics were recorded. Results revealed that there was no significant difference in kicking accuracy (p = 0.27 or ball velocity (p = 0.59 between the approach angles. Pelvic rotation was significantly greater under the 45º and the 60º approach angles than during the self-selected approach angle (p < 0.05. Thigh abduction of the kicking leg at impact using the 60º approach angle was significantly greater than during the self- selected approach (p = 0.01 and the 30º approach (p = 0.04. It was concluded that altering an individual's self-selected approach angle at recreational level did not improve kicking accuracy or ball velocity, despite altering aspects of underlying technique.

  18. Kinematics and Dynamics of Roller Chain Drives

    DEFF Research Database (Denmark)

    Fuglede, Niels

    There are two main subjects of this work: Kinematic and dynamic modeling and analysis of roller chain drives. In the kinematic analysis we contribute first with a complete treatment of the roller chain drive modeled as a four-bar mechanism. This includes a general, exact and approximate analysis...... which is useful for predicting the characteristic loading of the roller chain drive. As a completely novel contribution, a kinematic model and analysis is presented which includes both spans and sprockets in a simple chain drive system. A general procedure for determination of the total wrapping length...... is presented, which also allows for exact sprocket center positions for a chain with a given number of links. Results show that the total chain wrapping length varies periodically with the tooth frequency. These results are of practical importance to both the design, installation and operation of roller chain...

  19. Acute and chronic effects of aquatic treadmill training on land treadmill running kinematics: A cross-over and single-subject design approach.

    Science.gov (United States)

    Bressel, Eadric; Louder, Talin J; Hoover, James P; Roberts, Luke C; Dolny, Dennis G

    2017-11-01

    The aim of this study was to determine if selected kinematic measures (foot strike index [SI], knee contact angle and overstride angle) were different between aquatic treadmill (ATM) and land treadmill (LTM) running, and to determine if these measures were altered during LTM running as a result of 6 weeks of ATM training. Acute effects were tested using 15 competitive distance runners who completed 1 session of running on each treadmill type at 5 different running speeds. Subsequently, three recreational runners completed 6 weeks of ATM training following a single-subject baseline, intervention and withdrawal experiment. Kinematic measures were quantified from digitisation of video. Regardless of speed, SI values during ATM running (61.3 ± 17%) were significantly greater (P = 0.002) than LTM running (42.7 ± 23%). Training on the ATM did not change (pre/post) the SI (26 ± 3.2/27 ± 3.1), knee contact angle (165 ± 0.3/164 ± 0.8) or overstride angle (89 ± 0.4/89 ± 0.1) during LTM running. Although SI values were different between acute ATM and LTM running, 6 weeks of ATM training did not appear to alter LTM running kinematics as evidenced by no change in kinematic values from baseline to post intervention assessments.

  20. A Closed Loop Inverse Kinematics Solver Intended for Offline Calculation Optimized with GA

    Directory of Open Access Journals (Sweden)

    Emil Dale Bjoerlykhaug

    2018-01-01

    Full Text Available This paper presents a simple approach to building a robotic control system. Instead of a conventional control system which solves the inverse kinematics in real-time as the robot moves, an alternative approach where the inverse kinematics is calculated ahead of time is presented. This approach reduces the complexity and code necessary for the control system. Robot control systems are usually implemented in low level programming language. This new approach enables the use of high level programming for the complex inverse kinematics problem. For our approach, we implement a program to solve the inverse kinematics, called the Inverse Kinematics Solver (IKS, in Java, with a simple graphical user interface (GUI to load a file with desired end effector poses and edit the configuration of the robot using the Denavit-Hartenberg (DH convention. The program uses the closed-loop inverse kinematics (CLIK algorithm to solve the inverse kinematics problem. As an example, the IKS was set up to solve the kinematics for a custom built serial link robot. The kinematics for the custom robot is presented, and an example of input and output files is also presented. Additionally, the gain of the loop in the IKS is optimized using a GA, resulting in almost a 50% decrease in computational time.

  1. Estimation of kinematic parameters in CALIFA galaxies: no-assumption on internal dynamics

    Science.gov (United States)

    García-Lorenzo, B.; Barrera-Ballesteros, J.; CALIFA Team

    2016-06-01

    We propose a simple approach to homogeneously estimate kinematic parameters of a broad variety of galaxies (elliptical, spirals, irregulars or interacting systems). This methodology avoids the use of any kinematical model or any assumption on internal dynamics. This simple but novel approach allows us to determine: the frequency of kinematic distortions, systemic velocity, kinematic center, and kinematic position angles which are directly measured from the two dimensional-distributions of radial velocities. We test our analysis tools using the CALIFA Survey

  2. Kinematic approach to off-diagonal geometric phases of nondegenerate and degenerate mixed states

    International Nuclear Information System (INIS)

    Tong, D.M.; Oh, C.H.; Sjoeqvist, Erik; Filipp, Stefan; Kwek, L.C.

    2005-01-01

    Off-diagonal geometric phases have been developed in order to provide information of the geometry of paths that connect noninterfering quantal states. We propose a kinematic approach to off-diagonal geometric phases for pure and mixed states. We further extend the mixed-state concept proposed in [Phys. Rev. Lett. 90, 050403 (2003)] to degenerate density operators. The first- and second-order off-diagonal geometric phases are analyzed for unitarily evolving pairs of pseudopure states

  3. Uncertainty estimation and multi sensor fusion for kinematic laser tracker measurements

    Science.gov (United States)

    Ulrich, Thomas

    2013-08-01

    Laser trackers are widely used to measure kinematic tasks such as tracking robot movements. Common methods to evaluate the uncertainty in the kinematic measurement include approximations specified by the manufacturers, various analytical adjustment methods and the Kalman filter. In this paper a new, real-time technique is proposed, which estimates the 4D-path (3D-position + time) uncertainty of an arbitrary path in space. Here a hybrid system estimator is applied in conjunction with the kinematic measurement model. This method can be applied to processes, which include various types of kinematic behaviour, constant velocity, variable acceleration or variable turn rates. The new approach is compared with the Kalman filter and a manufacturer's approximations. The comparison was made using data obtained by tracking an industrial robot's tool centre point with a Leica laser tracker AT901 and a Leica laser tracker LTD500. It shows that the new approach is more appropriate to analysing kinematic processes than the Kalman filter, as it reduces overshoots and decreases the estimated variance. In comparison with the manufacturer's approximations, the new approach takes account of kinematic behaviour with an improved description of the real measurement process and a reduction in estimated variance. This approach is therefore well suited to the analysis of kinematic processes with unknown changes in kinematic behaviour as well as the fusion among laser trackers.

  4. Expressions of manipulator kinematic equations via symbolic computation

    International Nuclear Information System (INIS)

    Sasaki, Shinobu

    1993-09-01

    While it is simple in principle to determine the position and orientation of the manipulator hand, its computational process has been regarded as extremely laborious since trigonometric functions must be calculated many times in operations of revolute or rotation. Due to development of a general class of kinematic algorithm based on iterative methods, however, we have come to a satisfactory settlement of this problem. In the present article, we consider to construct symbolic kinematic equations in an automatic fashion making use of the algorithm. To this end, recursive expressions are applied to a symbolic computation system REDUCE. As a concrete result, a complete kinematic model for a six-jointed arm having all kinematic attributes is provided. Together with work space analysis, the computer-aided generation of kinematic equations in symbolic form will serve to liberate us from their cumbersome derivations. (author)

  5. A Neural Network Approach for Inverse Kinematic of a SCARA Manipulator

    Directory of Open Access Journals (Sweden)

    Panchanand Jha

    2014-07-01

    Full Text Available Inverse kinematic is one of the most interesting problems of industrial robot. The inverse kinematics problem in robotics is about the determination of joint angles for a desired Cartesian position of the end effector. It comprises of the computation need to find the joint angles for a given Cartesian position and orientation of the end effectors to control a robot arm. There is no unique solution for the inverse kinematics thus necessitating application of appropriate predictive models from the soft computing domain. Artificial neural network is one such technique which can be gainfully used to yield the acceptable results. This paper proposes a structured artificial neural network (ANN model to find the inverse kinematics solution of a 4-dof SCARA manipulator. The ANN model used is a multi-layered perceptron neural network (MLPNN, wherein gradient descent type of learning rules is applied. An attempt has been made to find the best ANN configuration for the problem. It is found that multi-layered perceptron neural network gives minimum mean square error.

  6. Kinematics and dynamics of a six-degree-of-freedom robot manipulator with closed kinematic chain mechanism

    Science.gov (United States)

    Nguyen, Charles C.; Pooran, Farhad J.

    1989-01-01

    This paper deals with a class of robot manipulators built based on the kinematic chain mechanism (CKCM). This class of CKCM manipulators consists of a fixed and a moving platform coupled together via a number of in-parallel actuators. A closed-form solution is derived for the inverse kinematic problem of a six-degre-of-freedom CKCM manipulator designed to study robotic applications in space. Iterative Newton-Raphson method is employed to solve the forward kinematic problem. Dynamics of the above manipulator is derived using the Lagrangian approach. Computer simulation of the dynamical equations shows that the actuating forces are strongly dependent on the mass and centroid of the robot links.

  7. GNSS Precise Kinematic Positioning for Multiple Kinematic Stations Based on A Priori Distance Constraints

    Science.gov (United States)

    He, Kaifei; Xu, Tianhe; Förste, Christoph; Petrovic, Svetozar; Barthelmes, Franz; Jiang, Nan; Flechtner, Frank

    2016-01-01

    When applying the Global Navigation Satellite System (GNSS) for precise kinematic positioning in airborne and shipborne gravimetry, multiple GNSS receiving equipment is often fixed mounted on the kinematic platform carrying the gravimetry instrumentation. Thus, the distances among these GNSS antennas are known and invariant. This information can be used to improve the accuracy and reliability of the state estimates. For this purpose, the known distances between the antennas are applied as a priori constraints within the state parameters adjustment. These constraints are introduced in such a way that their accuracy is taken into account. To test this approach, GNSS data of a Baltic Sea shipborne gravimetric campaign have been used. The results of our study show that an application of distance constraints improves the accuracy of the GNSS kinematic positioning, for example, by about 4 mm for the radial component. PMID:27043580

  8. Real-time solution of the forward kinematics for a parallel haptic device using a numerical approach based on neural networks

    International Nuclear Information System (INIS)

    Liu, Guan Yang; Zhang, Yuru; Wang, Yan; Xie, Zheng

    2015-01-01

    This paper proposes a neural network (NN)-based approach to solve the forward kinematics of a 3-RRR spherical parallel mechanism designed for a haptic device. The proposed algorithm aims to remarkably speed up computation to meet the requirement of high frequency rendering for haptic display. To achieve high accuracy, the workspace of the haptic device is divided into smaller subspaces. The proposed algorithm contains NNs of two different precision levels: a rough estimation NN to identify the index of the subspace and several precise estimation networks with expected accuracy to calculate the forward kinematics. For continuous motion, the algorithm structure is further simplified to save internal memory and increase computing speed, which are critical for a haptic device control system running on an embedded platform. Compared with the mostly used Newton-Raphson method, the proposed algorithm and its simplified version greatly increase the calculation speed by about four times and 10 times, respectively, while achieving the same accuracy level. The proposed approach is of great significance for solving the forward kinematics of parallel mechanism used as haptic devices when high update frequency is needed but hardware resources are limited.

  9. Multibody Kinematics Optimization for the Estimation of Upper and Lower Limb Human Joint Kinematics: A Systematized Methodological Review.

    Science.gov (United States)

    Begon, Mickaël; Andersen, Michael Skipper; Dumas, Raphaël

    2018-03-01

    Multibody kinematics optimization (MKO) aims to reduce soft tissue artefact (STA) and is a key step in musculoskeletal modeling. The objective of this review was to identify the numerical methods, their validation and performance for the estimation of the human joint kinematics using MKO. Seventy-four papers were extracted from a systematized search in five databases and cross-referencing. Model-derived kinematics were obtained using either constrained optimization or Kalman filtering to minimize the difference between measured (i.e., by skin markers, electromagnetic or inertial sensors) and model-derived positions and/or orientations. While hinge, universal, and spherical joints prevail, advanced models (e.g., parallel and four-bar mechanisms, elastic joint) have been introduced, mainly for the knee and shoulder joints. Models and methods were evaluated using: (i) simulated data based, however, on oversimplified STA and joint models; (ii) reconstruction residual errors, ranging from 4 mm to 40 mm; (iii) sensitivity analyses which highlighted the effect (up to 36 deg and 12 mm) of model geometrical parameters, joint models, and computational methods; (iv) comparison with other approaches (i.e., single body kinematics optimization and nonoptimized kinematics); (v) repeatability studies that showed low intra- and inter-observer variability; and (vi) validation against ground-truth bone kinematics (with errors between 1 deg and 22 deg for tibiofemoral rotations and between 3 deg and 10 deg for glenohumeral rotations). Moreover, MKO was applied to various movements (e.g., walking, running, arm elevation). Additional validations, especially for the upper limb, should be undertaken and we recommend a more systematic approach for the evaluation of MKO. In addition, further model development, scaling, and personalization methods are required to better estimate the secondary degrees-of-freedom (DoF).

  10. Kinematic aspects of pion-nucleus elastic scattering

    International Nuclear Information System (INIS)

    Weiss, D.L.; Ernst, D.J.

    1982-01-01

    The inclusion of relativistic kinematics in the theory of elastic scattering of pions from nuclei is examined. The investigation is performed in the context of the first order impulse approximation which incorporates the following features: (1) Relative momentum are defined according to relativistic theories consistent with time reversal invariance. (2) The two-nucleon interaction is a new, multichannel, separable potential model consistent with the most recent data derived from a recent nonpotential model of Ernst and Johnson. (3) The recoil of the pion-nucleon interacting pair and its resultant nonlocality are included. (4) The Fermi integral is treated by an optimal factorization approximation. It is shown how a careful definition of an intrinsic target density leads to an unambiguous method for including the recoil of the target. The target recoil corrections are found to be large for elastic scattering from 4 He and not negligible for scattering from 12 C. Relativistic potential theory kinematics, kinematics which result from covariant reduction approaches, and kinematics which result from replacing masses by energies in nonrelativistic formulas are compared. The relativistic potential theory kinematics and covariant reduction kinematics are shown to produce different elastic scattering at all pion energies examined (T/sub π/<300 MeV). Simple extensions of nonrelativistic kinematics are found to be reasonable approximations to relativistic potential theory

  11. Inverse Kinematics of a Serial Robot

    Directory of Open Access Journals (Sweden)

    Amici Cinzia

    2016-01-01

    Full Text Available This work describes a technique to treat the inverse kinematics of a serial manipulator. The inverse kinematics is obtained through the numerical inversion of the Jacobian matrix, that represents the equation of motion of the manipulator. The inversion is affected by numerical errors and, in different conditions, due to the numerical nature of the solver, it does not converge to a reasonable solution. Thus a soft computing approach is adopted to mix different traditional methods to obtain an increment of algorithmic convergence.

  12. Inverse kinematic control of LDUA and TWRMS

    International Nuclear Information System (INIS)

    Yih, T.C.; Burks, B.L.; Kwon, Dong-Soo

    1995-01-01

    A general inverse kinematic analysis is formulated particularly for the redundant Light Duty Utility Arm (LDUA) and Tank Waste Retrieval Manipulator System (TWRMS). The developed approach is applicable to the inverse kinematic simulation and control of LDUA, TWRMS, and other general robot manipulators. The 4 x 4 homogeneous Cylindrical coordinates-Bryant angles (C-B) notation is adopted to model LDUA, TWRMS, and any robot composed of R (revolute), P (prismatic), and/or S (spherical) joints

  13. Diphoton production at Tevatron in the quasi-multiple-Regge-kinematics approach

    Energy Technology Data Exchange (ETDEWEB)

    Saleev, V.A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Samarskij Gosudarstvennyj Univ., Samara (Russian Federation)

    2009-12-15

    We study the production of prompt diphotons in the central region of rapidity within the frame- work of the quasi-multi-Regge-kinematics approach applying the hypothesis of quark and gluon Reggeization. We describe accurately and without free parameters the experimental data which were obtained by the CDF Collaboration at the Tevatron Collider. It is shown that the main contribution to studied process is given by the direct fusion of two Reggeized gluons into a photon pair, which is described by the effective Reggeon-Reggeon to particle-particle vertex. The contribution from the annihilation of Reggeized quark-antiquark pair into a diphoton is also considered. At the stage of numerical calculations we use the Kimber-Martin-Ryskin prescription for unintegrated quark and gluon distribution functions, with the Martin-Roberts-Stirling-Thorne collinear parton densities for a proton as input. (orig.)

  14. Kinematic variables of table vault on artistic gymnastics

    Directory of Open Access Journals (Sweden)

    Sarah Maria Boldrini FERNANDES

    2016-03-01

    Full Text Available Abstract The table vault is an event of male and female Artistics Gymnastics. Although it can be performed in a variety of rotations and body positions in different phases, it can be separated in three groups: handspring, Yurchenko and Tsukahara. It is believed that kinematic variables of vault may vary according to group of vault or gymnast body position, but few studies compares the real differences among the three groups of vaults, comparing and describing the variables in different phases. Vault kinematic variables could be diversifying according to the approach or position of the vaulting, but little has been studied about the biomechanical differences, comparing and describing behaviours at different stages. The aim of this study was to organize critical, objective and to systematize the most relevant kinematic variables to performance on vaulting. A Meta analysis over the basis Pubmed, Sport Discus and Web of Science were performed about this issue. From the selected references, we described and analyzed the kinematics of the table vault. Vault can be characterized in seven phases of analysis. Most of the studies are descriptive, and some do not descript all phases. Differences among vault variables according to group vaults, technical level and gender were analysed only in recent studies. There still gaps of knowledge about kinematic variables of table vault, in order to provide comprehensive information about all possibilities of vaults in this gymnastic event. It is concluded that kinematic variables of table vault depends upon vault group and may be considered to the improvement of technical performance. More researches are needed to approach the coaching interface with biomechanics applicable knowledge.

  15. A Generic Approach to Self-localization and Mapping of Mobile Robots Without Using a Kinematic Model

    DEFF Research Database (Denmark)

    Kesper, Patrick; Berscheid, Lars; Wörgötter, Florentin

    2015-01-01

    and environment of a robot. Scan-matching is applied to compensate for noisy IMU measurements. This approach does not require any robot-specific characteristics, e.g. wheel encoders or kinematic models. In principle, this minimal sensory setup can be mounted on different robot systems without major modifications...... to the underlying algorithms. The sensory setup with the probabilistic algorithm is tested in real-world experiments on two different kinds of robots: a simple two-wheeled robot and the six-legged hexapod AMOSII. The obtained results indicate a successful implementation of the approach and confirm its generic...... nature. On both robots, the SLAM problem can be solved with reasonable accuracy....

  16. Agent Control for Reconfigurable Open Kinematic Chain Manipulators

    Directory of Open Access Journals (Sweden)

    Janez Sluga

    2013-10-01

    Full Text Available This paper presents a method for the autonomous control of differently structured open kinematic chains based on multi-agent system technology. The appropriate level of distributing local autonomy (agents to a manipulative structure is defined, which makes it possible to dynamically change the number, type and structure of manipulative components without modifying their behavioural logic. To achieve fast reconfigurable and scalable manipulative systems, a new multi-agent method is developed for controlling the manipulator kinematics. The new method enables independent manipulator structure from the control system because of its structural and system modularity. The proposed method consists of kinematic equations for use in an agent environment, agent motion-planning algorithms, evaluation functions, agent control logic and kinematic algorithms. The results of simulations and real-world experiments demonstrate the usefulness of the approach for different non-redundant and redundant manipulation structures.

  17. Plastic frames: Reduction of the kinematical inequality and optimization

    International Nuclear Information System (INIS)

    Brousse, P.

    1979-01-01

    It is well-known that the following inequality plays an essential part in the theory of perfectly plastic frames: for all kinematically admissible mechanisms and for bending moments associated with the hinge rotations by the flow rule, the plastic dissipation power is greater than or equal to the load power. This inequality will be termed as the kinematic inequality. It contains parameters generating the mechanisms. In simple cases, several ingenious authors obtained appreciable results excluding parameters. But, in more complicated cases, for instance when the given quantities are not numerical, the parameters remain in the kinematic inequality, thereby precluding exploitation of the kinematic approach. In the present work we overcome this dificulty: we reduce the kinematic inequality, i.e., we replace it by inequalities containing no variable parameter; we then state a process giving automatically such inequalities; finally, we treat a practical application. (orig.)

  18. A serial-kinematic nanopositioner for high-speed atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wadikhaye, Sachin P., E-mail: sachin.wadikhaye@uon.edu.au; Yong, Yuen Kuan; Reza Moheimani, S. O. [School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, NSW (Australia)

    2014-10-15

    A flexure-guided serial-kinematic XYZ nanopositioner for high-speed Atomic Force Microscopy is presented in this paper. Two aspects influencing the performance of serial-kinematic nanopositioners are studied in this work. First, mass reduction by using tapered flexures is proposed to increased the natural frequency of the nanopositioner. 25% increase in the natural frequency is achieved due to reduced mass with tapered flexures. Second, a study of possible sensor positioning in a serial-kinematic nanopositioner is presented. An arrangement of sensors for exact estimation of cross-coupling is incorporated in the proposed design. A feedforward control strategy based on phaser approach is presented to mitigate the dynamics and nonlinearity in the system. Limitations in design approach and control strategy are discussed in the Conclusion.

  19. A serial-kinematic nanopositioner for high-speed atomic force microscopy

    International Nuclear Information System (INIS)

    Wadikhaye, Sachin P.; Yong, Yuen Kuan; Reza Moheimani, S. O.

    2014-01-01

    A flexure-guided serial-kinematic XYZ nanopositioner for high-speed Atomic Force Microscopy is presented in this paper. Two aspects influencing the performance of serial-kinematic nanopositioners are studied in this work. First, mass reduction by using tapered flexures is proposed to increased the natural frequency of the nanopositioner. 25% increase in the natural frequency is achieved due to reduced mass with tapered flexures. Second, a study of possible sensor positioning in a serial-kinematic nanopositioner is presented. An arrangement of sensors for exact estimation of cross-coupling is incorporated in the proposed design. A feedforward control strategy based on phaser approach is presented to mitigate the dynamics and nonlinearity in the system. Limitations in design approach and control strategy are discussed in the Conclusion

  20. A kinematic approach for efficient and robust simulation of the cardiac beating motion.

    Directory of Open Access Journals (Sweden)

    Takashi Ijiri

    Full Text Available Computer simulation techniques for cardiac beating motions potentially have many applications and a broad audience. However, most existing methods require enormous computational costs and often show unstable behavior for extreme parameter sets, which interrupts smooth simulation study and make it difficult to apply them to interactive applications. To address this issue, we present an efficient and robust framework for simulating the cardiac beating motion. The global cardiac motion is generated by the accumulation of local myocardial fiber contractions. We compute such local-to-global deformations using a kinematic approach; we divide a heart mesh model into overlapping local regions, contract them independently according to fiber orientation, and compute a global shape that satisfies contracted shapes of all local regions as much as possible. A comparison between our method and a physics-based method showed that our method can generate motion very close to that of a physics-based simulation. Our kinematic method has high controllability; the simulated ventricle-wall-contraction speed can be easily adjusted to that of a real heart by controlling local contraction timing. We demonstrate that our method achieves a highly realistic beating motion of a whole heart in real time on a consumer-level computer. Our method provides an important step to bridge a gap between cardiac simulations and interactive applications.

  1. Tibial rotation kinematics subsequent to knee arthroplasty

    Science.gov (United States)

    Collins, Duane J.; Khatib, Yasser H.; Parker, David A.; Jenkin, Deanne E.; Molnar, Robert B.

    2015-01-01

    Background The use of computer assisted joint replacement has facilitated precise intraoperative measurement of knee kinematics. The changes in “screw home mechanism” (SHM) resulting from Total Knee Arthroplasty (TKA) with different prostheses and constraints has not yet been accurately described. Methods A pilot study was first completed. Intraoperative kinematic data was collected two groups of 15 patients receiving different prostheses. Results On average, patients lost 5.3° of ER (SD = 6.1°). There was no significant difference between the prostheses or different prosthetic constraints. Conclusions There significant loss of SHM after TKA. Further research is required to understand its impact on patient function. PMID:25829754

  2. An introduction to the mathematics of ocular kinematics

    Directory of Open Access Journals (Sweden)

    Graeme E MacKenzie

    2006-12-01

    Full Text Available The research surrounding ocular kinematics has widespread applications including the study of binocular vision, virtual reality and the detec-tion of ocular and neurologic pathologies. This field promises to have a significant impact on optometric diagnostic techniques. This paper in-troduces the terminology used in the description of eye rotations and explores a number of the mathematical approaches pertinent to the topic of ocular kinematics.

  3. THE DiskMass SURVEY. III. STELLAR KINEMATICS VIA CROSS-CORRELATION

    International Nuclear Information System (INIS)

    Westfall, Kyle B.; Bershady, Matthew A.; Verheijen, Marc A. W.

    2011-01-01

    We describe a new cross-correlation (CC) approach used by our survey to derive stellar kinematics from galaxy-continuum spectroscopy. This approach adopts the formal error analysis derived by Statler, but properly handles spectral masks. Thus, we address the primary concerns regarding application of the CC method to censored data, while maintaining its primary advantage by consolidating kinematic and template-mismatch information toward different regions of the CC function. We identify a systematic error in the nominal CC method of approximately 10% in velocity dispersion incurred by a mistreatment of detector-censored data, which is eliminated by our new method. We derive our approach from first principles, and we use Monte Carlo simulations to demonstrate its efficacy. An identical set of Monte Carlo simulations performed using the well-established penalized-pixel-fitting code of Cappellari and Emsellem compares favorably with the results from our newly implemented software. Finally, we provide a practical demonstration of this software by extracting stellar kinematics from SparsePak spectra of UGC 6918.

  4. 3D in vivo femoro-tibial kinematics of tri-condylar total knee arthroplasty during kneeling activities.

    Science.gov (United States)

    Nakamura, Shinichiro; Sharma, Adrija; Kobayashi, Masahiko; Ito, Hiromu; Nakamura, Kenji; Zingde, Sumesh M; Nakamura, Takashi; Komistek, Richard D

    2014-01-01

    Kneeling position can serve as an important posture, providing stability and balance from a standing position to sitting on the floor or vice-versa. The purpose of the current study was to determine the kinematics during kneeling activities after subjects were implanted with a tri-condylar total knee arthroplasty. Kinematics was evaluated in 54 knees using fluoroscopy and a three-dimensional model fitting approach. The average knee flexion at before contact status, at complete contact and at maximum flexion was 98.1±9.0°, 107.2±6.7°, and 139.6±12.3°, respectively. On average, there was no gross anterior displacement from before contact status to complete contact. Only slight posterior rollback motion of both condyles from complete contact to maximum flexion was observed. Three of 39 (7.7%) knees experienced anterior movement of both condyles more than 2mm from before contact status to complete contact. Reverse rotation pattern from before contact status to complete contact and then normal rotation pattern from complete contact to maximum flexion were observed. Condylar lift-off greater than 1.0 mm was observed in 45 knees (83.3%). The presence of the ball-and-socket joint articulation provides sufficient antero-posterior stability in these designs to enable the patients to kneel safely without the incidence of any dislocation. This study suggests a safe implant design for kneeling. © 2013.

  5. Collision-free inverse kinematics of a 7 link cucumber picking robot

    NARCIS (Netherlands)

    Henten, van E.J.; Schenk, E.J.J.; Willigenburg, van L.G.; Meuleman, J.; Barreiro, P.

    2008-01-01

    The paper presents results of research on inverse kinematics algorithms to be used in a functional model of a cucumber harvesting robot consisting of a redundant manipulator with one prismatic and six rotational joints (P6R). Within a first generic approach, the inverse kinematics problem was

  6. Plastic limit analysis with non linear kinematic strain hardening for metalworking processes applications

    International Nuclear Information System (INIS)

    Chaaba, Ali; Aboussaleh, Mohamed; Bousshine, Lahbib; Boudaia, El Hassan

    2011-01-01

    Limit analysis approaches are widely used to deal with metalworking processes analysis; however, they are applied only for perfectly plastic materials and recently for isotropic hardening ones excluding any kind of kinematic hardening. In the present work, using Implicit Standard Materials concept, sequential limit analysis approach and the finite element method, our objective consists in extending the limit analysis application for including linear and non linear kinematic strain hardenings. Because this plastic flow rule is non associative, the Implicit Standard Materials concept is adopted as a framework of non standard plasticity modeling. The sequential limit analysis procedure which considers the plastic behavior with non linear kinematic strain hardening as a succession of perfectly plastic behavior with yielding surfaces updated after each sequence of limit analysis and geometry updating is applied. Standard kinematic finite element method together with a regularization approach is used for performing two large compression cases (cold forging) in plane strain and axisymmetric conditions

  7. A new approach to the inverse kinematics of a multi-joint robot manipulator using a minimization method

    International Nuclear Information System (INIS)

    Sasaki, Shinobu

    1987-01-01

    This paper proposes a new approach to solve the inverse kinematics of a type of sixlink manipulator. Directing our attention to features of joint structures of the manipulator, the original problem is first formulated by a system of equations with four variables and solved by means of a minimization technique. The remaining two variables are determined from constrained conditions involved. This is the basic idea in the present approach. The results of computer simulation of the present algorithm showed that the accuracies of solutions and convergence speed are much higher and quite satisfactory for practical purposes, as compared with the linearization-iteration method based on the conventional inverse Jacobian matrix. (author)

  8. Improved Inverse Kinematics Algorithm Using Screw Theory for a Six-DOF Robot Manipulator

    OpenAIRE

    Chen, Qingcheng; Zhu, Shiqiang; Zhang, Xuequn

    2015-01-01

    Based on screw theory, a novel improved inverse-kinematics approach for a type of six-DOF serial robot, “Qianjiang I”, is proposed in this paper. The common kinematics model of the robot is based on the Denavit-Hartenberg (D-H) notation method while its inverse kinematics has inefficient calculation and complicated solution, which cannot meet the demands of online real-time application. To solve this problem, this paper presents a new method to improve the efficiency of the inverse kinematics...

  9. Kinematic space and wormholes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian-dong [TianQin Research Center for Gravitational Physics, Sun Yat-sen University, Zhuhai 519082, Guangdong (China); Chen, Bin [Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, 5 Yiheyuan Rd, Beijing 100871 (China); Center for High Energy Physics, Peking University, 5 Yiheyuan Rd, Beijing 100871 (China)

    2017-01-23

    The kinematic space could play a key role in constructing the bulk geometry from dual CFT. In this paper, we study the kinematic space from geometric points of view, without resorting to differential entropy. We find that the kinematic space could be intrinsically defined in the embedding space. For each oriented geodesic in the Poincaré disk, there is a corresponding point in the kinematic space. This point is the tip of the causal diamond of the disk whose intersection with the Poincaré disk determines the geodesic. In this geometric construction, the causal structure in the kinematic space can be seen clearly. Moreover, we find that every transformation in the SL(2,ℝ) leads to a geodesic in the kinematic space. In particular, for a hyperbolic transformation defining a BTZ black hole, it is a timelike geodesic in the kinematic space. We show that the horizon length of the static BTZ black hole could be computed by the geodesic length of corresponding points in the kinematic space. Furthermore, we discuss the fundamental regions in the kinematic space for the BTZ blackhole and multi-boundary wormholes.

  10. Integral equation approach to time-dependent kinematic dynamos in finite domains

    International Nuclear Information System (INIS)

    Xu Mingtian; Stefani, Frank; Gerbeth, Gunter

    2004-01-01

    The homogeneous dynamo effect is at the root of cosmic magnetic field generation. With only a very few exceptions, the numerical treatment of homogeneous dynamos is carried out in the framework of the differential equation approach. The present paper tries to facilitate the use of integral equations in dynamo research. Apart from the pedagogical value to illustrate dynamo action within the well-known picture of the Biot-Savart law, the integral equation approach has a number of practical advantages. The first advantage is its proven numerical robustness and stability. The second and perhaps most important advantage is its applicability to dynamos in arbitrary geometries. The third advantage is its intimate connection to inverse problems relevant not only for dynamos but also for technical applications of magnetohydrodynamics. The paper provides the first general formulation and application of the integral equation approach to time-dependent kinematic dynamos, with stationary dynamo sources, in finite domains. The time dependence is restricted to the magnetic field, whereas the velocity or corresponding mean-field sources of dynamo action are supposed to be stationary. For the spherically symmetric α 2 dynamo model it is shown how the general formulation is reduced to a coupled system of two radial integral equations for the defining scalars of the poloidal and toroidal field components. The integral equation formulation for spherical dynamos with general stationary velocity fields is also derived. Two numerical examples - the α 2 dynamo model with radially varying α and the Bullard-Gellman model - illustrate the equivalence of the approach with the usual differential equation method. The main advantage of the method is exemplified by the treatment of an α 2 dynamo in rectangular domains

  11. Reproducibility of kinematic measures of the thoracic spine, lumbar spine and pelvis during fast running.

    Science.gov (United States)

    Mason, D L; Preece, S J; Bramah, C A; Herrington, L C

    2016-01-01

    This study evaluated the reproducibility of the angular rotations of the thoracic spine, lumbar spine, pelvis and lower extremity during running. In addition, the study compared kinematic reproducibility between two methods for calculating kinematic trajectories: a six degrees of freedom (6DOF) approach and a global optimisation (GO) approach. With the first approach segments were treated independently, however with GO approach joint constraints were imposed to stop translation of adjacent segments. A total of 12 athletes were tested on two separate days whilst running over ground at a speed of 5.6ms(-1). The results demonstrated good between-day reproducibility for most kinematic parameters in the frontal and transverse planes with typical angular errors of 1.4-3°. Acceptable repeatability was also found in the sagittal plane. However, in this plane, although kinematic waveform shape was preserved between testing session, there were sometimes shifts in curve offset which lead to slightly higher angular errors, typically ranging from 1.9° to 3.5°. In general, the results demonstrated similar levels of reproducibility for both computational approaches (6DOF and, GO) and therefore suggest that GO may not lead to improved kinematic reproducibility during running. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Augmented kinematic feedback from haptic virtual reality for dental skill acquisition.

    Science.gov (United States)

    Suebnukarn, Siriwan; Haddawy, Peter; Rhienmora, Phattanapon; Jittimanee, Pannapa; Viratket, Piyanuch

    2010-12-01

    We have developed a haptic virtual reality system for dental skill training. In this study we examined several kinds of kinematic information about the movement provided by the system supplement knowledge of results (KR) in dental skill acquisition. The kinematic variables examined involved force utilization (F) and mirror view (M). This created three experimental conditions that received augmented kinematic feedback (F, M, FM) and one control condition that did not (KR-only). Thirty-two dental students were randomly assigned to four groups. Their task was to perform access opening on the upper first molar with the haptic virtual reality system. An acquisition session consisted of two days of ten trials of practice in which augmented kinematic feedback was provided for the appropriate experimental conditions after each trial. One week after, a retention test consisting of two trials without augmented feedback was completed. The results showed that the augmented kinematic feedback groups had larger mean performance scores than the KR-only group in Day 1 of the acquisition and retention sessions (ANOVA, p0.05). The trends in acquisition and retention sessions suggest that the augmented kinematic feedback can enhance the performance earlier in the skill acquisition and retention sessions.

  13. Kinematics analysis of a novel planar parallel manipulator with kinematic redundancy

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Haibo; Guo, Sheng [Beijing Jiaotong University, Beijing (China)

    2017-04-15

    In this paper, a novel planar parallel manipulator with kinematic redundancy is proposed. First, the Degrees of freedom (DOF) of the whole parallel manipulator and the Relative DOF (RDOF) between the moving platform and fixed base are studied. The results indicate that the proposed mechanism is kinematically redundant. Then, the kinematics, Jacobian matrices and workspace of this proposed parallel manipulator with kinematic redundancy are analyzed. Finally, the statics simulation of the proposed parallel manipulator is performed. The obtained stress and displacement distribution can be used to determine the easily destroyed place in the mechanism configurations.

  14. Kinematics analysis of a novel planar parallel manipulator with kinematic redundancy

    International Nuclear Information System (INIS)

    Qu, Haibo; Guo, Sheng

    2017-01-01

    In this paper, a novel planar parallel manipulator with kinematic redundancy is proposed. First, the Degrees of freedom (DOF) of the whole parallel manipulator and the Relative DOF (RDOF) between the moving platform and fixed base are studied. The results indicate that the proposed mechanism is kinematically redundant. Then, the kinematics, Jacobian matrices and workspace of this proposed parallel manipulator with kinematic redundancy are analyzed. Finally, the statics simulation of the proposed parallel manipulator is performed. The obtained stress and displacement distribution can be used to determine the easily destroyed place in the mechanism configurations

  15. Coordinate transformations, orthographic projections, and robot kinematics

    International Nuclear Information System (INIS)

    Crochetiere, W.J.

    1984-01-01

    Humans do not consciously think of moving each of their joints while they move their hands from one place to another. Likewise, robot arms can be commanded to move about in cartesian space without the need to address the individual joints. To do this, the direct and inverse kinematic equations of any robot arm must be derived. The direct kinematic equations uniquely transform the joint positions into the position (and orientation) of the hand, whereas the inverse kinematic equations transform the position (and orientation) of the hand into joint positions. The derivation of the inverse kinematic equations for any particular robot is a difficult problem which may have more than one solution. In this paper, these equations are derived for a six degree of freedom robot arm. A combination of matrix operations to perform coordinate rotations, and trigonometry within the appropriate orthographic projects to perform coordinate translations is employed. This complementary approach yields a solution which is more easily obtained, and also more easily visualized. The resulting solution was programmed into a real-time computer as a part of a higher level software system to control the motion of the arm

  16. Rational kinematics

    CERN Document Server

    Angeles, Jorge

    1988-01-01

    A rational study of kinematics is a treatment of the subject based on invariants, i.e., quantities that remain essentially unchanged under a change of observer. An observer is understood to be a reference frame supplied with a clock (Truesdell 1966). This study will therefore include an introduction to invariants. The language of these is tensor analysis and multilinear algebra, both of which share many isomorphic relations, These subjects are treated in full detail in Ericksen (1960) and Bowen and Wang (1976), and hence will not be included here. Only a short account of notation and definitions will be presented. Moreover, definitions and basic concepts pertaining to the kinematics of rigid bodies will be also included. Although the kinematics of rigid bodies can be regarded as a particular case of the kinematics of continua, the former deserves attention on its own merits for several reasons. One of these is that it describes locally the motions undergone by continua. Another reason is that a whole area of ...

  17. Kinematics of Laying an Automated Weapon System

    Science.gov (United States)

    2017-07-19

    UNCLASSIFIED UNCLASSIFIED AD-E403 899 Technical Report ARWSE-TR-16024 KINEMATICS OF LAYING AN AUTOMATED WEAPON SYSTEM...information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and...maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of

  18. Real-time estimation of helicopter rotor blade kinematics through measurement of rotation induced acceleration

    Science.gov (United States)

    Allred, C. Jeff; Churchill, David; Buckner, Gregory D.

    2017-07-01

    This paper presents a novel approach to monitoring rotor blade flap, lead-lag and pitch using an embedded gyroscope and symmetrically mounted MEMS accelerometers. The central hypothesis is that differential accelerometer measurements are proportional only to blade motion; fuselage acceleration and blade bending are inherently compensated for. The inverse kinematic relationships (from blade position to acceleration and angular rate) are derived and simulated to validate this hypothesis. An algorithm to solve the forward kinematic relationships (from sensor measurement to blade position) is developed using these simulation results. This algorithm is experimentally validated using a prototype device. The experimental results justify continued development of this kinematic estimation approach.

  19. Kinematics of Rotation in Joints of the Lower Limbs and Pelvis during Gait: Early Results—SB ACLR Approach versus DB ACLR Approach

    Directory of Open Access Journals (Sweden)

    Andrzej Czamara

    2015-01-01

    Full Text Available It is difficult to find publications comparing rotation kinematics in large joints of the lower limbs and pelvis during gait in patients after single-bundle (SB reconstruction of the anterior cruciate ligament (ACLR with double-bundle (DB ACLR of the knee. The aim of this study was to compare rotation kinematics in ankle, knee, and hip joints and the pelvis during gait in the 14th week after SB and DB ACLR. The subjects were males after SB (n=10 and DB (n=13 ACLR and a control group (n=15. The values of kinematic parameters were recorded during internal (IR and external (ER rotation in the joints during gait using the BTS SMART. The SB ACLR group obtained significantly higher values of ER in the involved knee comparing to DB ACLR and controls and excessive IR in the hip comparing to controls. In the DB ACLR group, excessive ER was noted in the involved leg's foot. Comparing with the DB ACLR and control groups, SB ACLR subjects had more substantial disorders of rotation kinematics in the lower limb joints. However, in both ACLR groups, 14 weeks of postoperative physiotherapy were not enough to fully restore rotation kinematics in joints of the lower limbs during gait.

  20. Adaptive control of an exoskeleton robot with uncertainties on kinematics and dynamics.

    Science.gov (United States)

    Brahmi, Brahim; Saad, Maarouf; Ochoa-Luna, Cristobal; Rahman, Mohammad H

    2017-07-01

    In this paper, we propose a new adaptive control technique based on nonlinear sliding mode control (JSTDE) taking into account kinematics and dynamics uncertainties. This approach is applied to an exoskeleton robot with uncertain kinematics and dynamics. The adaptation design is based on Time Delay Estimation (TDE). The proposed strategy does not necessitate the well-defined dynamic and kinematic models of the system robot. The updated laws are designed using Lyapunov-function to solve the adaptation problem systematically, proving the close loop stability and ensuring the convergence asymptotically of the outputs tracking errors. Experiments results show the effectiveness and feasibility of JSTDE technique to deal with the variation of the unknown nonlinear dynamics and kinematics of the exoskeleton model.

  1. Suspension kinematic analysis of UTeM’s FV Malaysia electric vehicle racing car

    NARCIS (Netherlands)

    Abdul Manaf, M.Z.; Latif, M.F.A.; Razak, M.S.A.; Hassan, M.Z.B.; Rosley, M.I.F.

    2016-01-01

    The purpose of this paper is to investigate the kinematic performance of students’ racing car, namely UTeM’s FV Malaysia Electric Vehicle. An elasto-kinematic analysis approach is used to predict the car’s performance during straight line drive and curvature drive. Two suspension design factors

  2. Kinematic geometry of gearing

    CERN Document Server

    Dooner, David B

    2012-01-01

    Building on the first edition published in 1995 this new edition of Kinematic Geometry of Gearing has been extensively revised and updated with new and original material. This includes the methodology for general tooth forms, radius of torsure', cylinder of osculation, and cylindroid of torsure; the author has also completely reworked the '3 laws of gearing', the first law re-written to better parallel the existing 'Law of Gearing" as pioneered by Leonard Euler, expanded from Euler's original law to encompass non-circular gears and hypoid gears, the 2nd law of gearing describing a unique relat

  3. Inverse kinematics algorithm for a six-link manipulator using a polynomial expression

    International Nuclear Information System (INIS)

    Sasaki, Shinobu

    1987-01-01

    This report is concerned with the forward and inverse kinematics problem relevant to a six-link robot manipulator. In order to derive the kinematic relationships between links, the vector rotation operator was applied instead of the conventional homogeneous transformation. The exact algorithm for solving the inverse problem was obtained by transforming kinematics equations into a polynomial. As shown in test calculations, the accuracies of numerical solutions obtained by means of the present approach are found to be quite high. The algorithm proposed permits to find out all feasible solutions for the given inverse problem. (author)

  4. Task oriented design of robot kinematics using grid method and its application to nuclear power plant

    International Nuclear Information System (INIS)

    Chang, Pyung-Hun; Park, Joon-Young

    2002-01-01

    This paper presents a Task Oriented Design method for robot kinematics based on grid method, widely used in finite difference method and heat transfer/fluid flow analyses. This approach drastically reduces complexities and computational burden due to previous approaches. More specifically, the grid method with a new formulation simplifies the design to a problem of three-design-variable unit grid, which does not require to solve inverse/forward kinematics. The effectiveness of the grid method has been confirmed through a kinematics design of a robot for nuclear power plants. (author)

  5. 6th International Workshop on Computational Kinematics

    CERN Document Server

    Gracia, Alba

    2014-01-01

    Computational kinematics is an enthralling area of science with a rich spectrum of problems at the junction of mechanics, robotics, computer science, mathematics, and computer graphics. The covered topics include design and optimization of cable-driven robots, analysis of parallel manipulators, motion planning, numerical methods for mechanism calibration and optimization, geometric approaches to mechanism analysis and design, synthesis of mechanisms, kinematical issues in biomechanics, construction of novel mechanical devices, as well as detection and treatment of singularities. The results should be of interest for practicing and research engineers as well as Ph.D. students from the fields of mechanical and electrical engineering, computer science, and computer graphics. Indexed in Conference Proceedings Citation Index- Science (CPCI-S).

  6. Kinematics modeling and simulation of an autonomous omni-directional mobile robot

    Directory of Open Access Journals (Sweden)

    Daniel Garcia Sillas

    2015-05-01

    Full Text Available Although robotics has progressed to the extent that it has become relatively accessible with low-cost projects, there is still a need to create models that accurately represent the physical behavior of a robot. Creating a completely virtual platform allows us to test behavior algorithms such as those implemented using artificial intelligence, and additionally, it enables us to find potential problems in the physical design of the robot. The present work describes a methodology for the construction of a kinematic model and a simulation of the autonomous robot, specifically of an omni-directional wheeled robot. This paper presents the kinematic model development and its implementation using several tools. The result is a model that follows the kinematics of a triangular omni-directional mobile wheeled robot, which is then tested by using a 3D model imported from 3D Studio® and Matlab® for the simulation. The environment used for the experiment is very close to the real environment and reflects the kinematic characteristics of the robot.

  7. Analisys and Choice of the Exoskeleton’s Actuator Kinematic Structure

    Directory of Open Access Journals (Sweden)

    A. A. Vereikin

    2014-01-01

    Full Text Available The urgency of designing of robotic exoskeletons as one of the most prospective means of modern robotics is proved. A literature review concerning the design issues of anthropomorphic walking robots and exoskeletons is performed. Some problems, accompanying the designing process of exoskeleton actuator, are highlighted. Among them synthesis of its tree-like kinematic structure takes leading place. Its complication is explained by the specific human-machine interaction.The problem of exoskeleton actuator kinematic scheme synthesis is formulated and possible approaches to its solution are shown. The paper presents the synthesis results obtained using the software complex CATIA-based means of ergonomic design. It investigates the degrees of freedom of human-operator’s foot, shin, and thigh. And it identifies a number of shortcomings of this software complex associated with the ambiguity to solve the inverse kinematics problem, leading to a significant complication of kinematics synthesis.A model of human lower limb on which further studies of the exoskeleton actuator kinematic scheme, ensuring fulfillment of the human-operator standard movements (squats, kick their feet, bending body, walking, running stairs, etc., are based, is developed in SolidWorks software complex. The reasonability of the exoskeleton kinematic scheme synthesis in software package SolidWorks using anthropometric data from the software complex CATIA, is justified.The proposed method allows to analyze different kinematic schemes of actuator for the stage of conceptual design and to choose the best of them in accordance with established criterions. Thus, the developer receives the final version of the kinematic scheme before the detailed design of the actuator starts, thus significantly reducing its labor costs.

  8. Design of a Two-Step Calibration Method of Kinematic Parameters for Serial Robots

    Science.gov (United States)

    WANG, Wei; WANG, Lei; YUN, Chao

    2017-03-01

    Serial robots are used to handle workpieces with large dimensions, and calibrating kinematic parameters is one of the most efficient ways to upgrade their accuracy. Many models are set up to investigate how many kinematic parameters can be identified to meet the minimal principle, but the base frame and the kinematic parameter are indistinctly calibrated in a one-step way. A two-step method of calibrating kinematic parameters is proposed to improve the accuracy of the robot's base frame and kinematic parameters. The forward kinematics described with respect to the measuring coordinate frame are established based on the product-of-exponential (POE) formula. In the first step the robot's base coordinate frame is calibrated by the unit quaternion form. The errors of both the robot's reference configuration and the base coordinate frame's pose are equivalently transformed to the zero-position errors of the robot's joints. The simplified model of the robot's positioning error is established in second-power explicit expressions. Then the identification model is finished by the least square method, requiring measuring position coordinates only. The complete subtasks of calibrating the robot's 39 kinematic parameters are finished in the second step. It's proved by a group of calibration experiments that by the proposed two-step calibration method the average absolute accuracy of industrial robots is updated to 0.23 mm. This paper presents that the robot's base frame should be calibrated before its kinematic parameters in order to upgrade its absolute positioning accuracy.

  9. A Hybrid Neural Network Approach for Kinematic Modeling of a Novel 6-UPS Parallel Human-Like Mastication Robot

    Directory of Open Access Journals (Sweden)

    Hadi Kalani

    2016-04-01

    Full Text Available Introduction we aimed to introduce a 6-universal-prismatic-spherical (UPS parallel mechanism for the human jaw motion and theoretically evaluate its kinematic problem. We proposed a strategy to provide a fast and accurate solution to the kinematic problem. The proposed strategy could accelerate the process of solution-finding for the direct kinematic problem by reducing the number of required iterations in order to reach the desired accuracy level. Materials and Methods To overcome the direct kinematic problem, an artificial neural network and third-order Newton-Raphson algorithm were combined to provide an improved hybrid method. In this method, approximate solution was presented for the direct kinematic problem by the neural network. This solution could be considered as the initial guess for the third-order Newton-Raphson algorithm to provide an answer with the desired level of accuracy. Results The results showed that the proposed combination could help find a approximate solution and reduce the execution time for the direct kinematic problem, The results showed that muscular actuations showed periodic behaviors, and the maximum length variation of temporalis muscle was larger than that of masseter and pterygoid muscles. By reducing the processing time for solving the direct kinematic problem, more time could be devoted to control calculations.. In this method, for relatively high levels of accuracy, the number of iterations and computational time decreased by 90% and 34%, respectively, compared to the conventional Newton method. Conclusion The present analysis could allow researchers to characterize and study the mastication process by specifying different chewing patterns (e.g., muscle displacements.

  10. The role of reversed kinematics and double kinematic solutions in nuclear reactions studies

    International Nuclear Information System (INIS)

    Kaplan, M.; Parker, W.E.; Moses, D.J.; Lacey, R.; Alexander, J.M.

    1993-01-01

    The advantages of reversed kinematics in nuclear reactions studies are discussed, with particular emphasis on the origin of double solutions in the reaction kinematics. This possibility for double solutions does not exist in normal kinematics, and provides the basis for a new method of imposing important experimental constraints on the uniqueness of fitting complex observations. By gating on one or the other of the two solutions, light particle kinematics can be greatly influenced in coincidence measurements. The power of the method is illustrated with data for the reaction 1030 MeV 121 Sb+ 27 Al, where charged particle emissions arise from several different sources. (orig.)

  11. Inverse Kinematics of a Humanoid Robot with Non-Spherical Hip: A Hybrid Algorithm Approach

    Directory of Open Access Journals (Sweden)

    Rafael Cisneros Limón

    2013-04-01

    Full Text Available This paper describes an approach to solve the inverse kinematics problem of humanoid robots whose construction shows a small but non negligible offset at the hip which prevents any purely analytical solution to be developed. Knowing that a purely numerical solution is not feasible due to variable efficiency problems, the proposed one first neglects the offset presence in order to obtain an approximate “solution” by means of an analytical algorithm based on screw theory, and then uses it as the initial condition of a numerical refining procedure based on the Levenberg-Marquardt algorithm. In this way, few iterations are needed for any specified attitude, making it possible to implement the algorithm for real-time applications. As a way to show the algorithm's implementation, one case of study is considered throughout the paper, represented by the SILO2 humanoid robot.

  12. Incremental inverse kinematics based vision servo for autonomous robotic capture of non-cooperative space debris

    Science.gov (United States)

    Dong, Gangqi; Zhu, Z. H.

    2016-04-01

    This paper proposed a new incremental inverse kinematics based vision servo approach for robotic manipulators to capture a non-cooperative target autonomously. The target's pose and motion are estimated by a vision system using integrated photogrammetry and EKF algorithm. Based on the estimated pose and motion of the target, the instantaneous desired position of the end-effector is predicted by inverse kinematics and the robotic manipulator is moved incrementally from its current configuration subject to the joint speed limits. This approach effectively eliminates the multiple solutions in the inverse kinematics and increases the robustness of the control algorithm. The proposed approach is validated by a hardware-in-the-loop simulation, where the pose and motion of the non-cooperative target is estimated by a real vision system. The simulation results demonstrate the effectiveness and robustness of the proposed estimation approach for the target and the incremental control strategy for the robotic manipulator.

  13. Comparison of kinematic and dynamic leg trajectory optimization techniques for biped robot locomotion

    Science.gov (United States)

    Khusainov, R.; Klimchik, A.; Magid, E.

    2017-01-01

    The paper presents comparison analysis of two approaches in defining leg trajectories for biped locomotion. The first one operates only with kinematic limitations of leg joints and finds the maximum possible locomotion speed for given limits. The second approach defines leg trajectories from the dynamic stability point of view and utilizes ZMP criteria. We show that two methods give different trajectories and demonstrate that trajectories based on pure dynamic optimization cannot be realized due to joint limits. Kinematic optimization provides unstable solution which can be balanced by upper body movement.

  14. Of gluons and gravitons. Exploring color-kinematics duality

    International Nuclear Information System (INIS)

    Isermann, Reinke Sven

    2013-06-01

    In this thesis color-kinematics duality will be investigated. This duality is a statement about the kinematical dependence of a scattering amplitude in Yang-Mills gauge theories obeying group theoretical relations similar to that of the color gauge group. The major consequence of this duality is that gravity amplitudes can be related to a certain double copy of gauge theory amplitudes. The main focus of this thesis is on exploring the foundations of color-kinematics duality and its consequences. It is shown how color-kinematics duality can be made manifest at the one-loop level for rational amplitudes. A Lagrangian-based argument will be given for the validity of the double copy construction for these amplitudes including explicit examples at four points. Secondly, it is studied how color-kinematics duality can be used to improve powercounting in gravity theories. To this end the duality is reformulated in terms of linear maps. It is shown as an example how this can be used to derive the large BCFW shift behavior of a gravity integrand constructed through the duality to any loop order up to subtleties inherent to the duality that is addressed. As it becomes clear the duality implies massive cancellations with respect to the usual powercounting of Feynman graphs indicating that gravity theories are much better behaved than naively expected. As another example the linear map approach will be used to investigate the question of UV-finiteness of N=8 supergravity, and it is seen that the amount of cancellations depends on the exact implementation of the duality at loop level. Lastly, color-kinematics duality is considered from a Feynman-graph perspective reproducing some of the results of the earlier chapters thus giving non-trivial evidence for the duality at the loop level from a different perspective.

  15. Of gluons and gravitons. Exploring color-kinematics duality

    Energy Technology Data Exchange (ETDEWEB)

    Isermann, Reinke Sven

    2013-06-15

    In this thesis color-kinematics duality will be investigated. This duality is a statement about the kinematical dependence of a scattering amplitude in Yang-Mills gauge theories obeying group theoretical relations similar to that of the color gauge group. The major consequence of this duality is that gravity amplitudes can be related to a certain double copy of gauge theory amplitudes. The main focus of this thesis is on exploring the foundations of color-kinematics duality and its consequences. It is shown how color-kinematics duality can be made manifest at the one-loop level for rational amplitudes. A Lagrangian-based argument will be given for the validity of the double copy construction for these amplitudes including explicit examples at four points. Secondly, it is studied how color-kinematics duality can be used to improve powercounting in gravity theories. To this end the duality is reformulated in terms of linear maps. It is shown as an example how this can be used to derive the large BCFW shift behavior of a gravity integrand constructed through the duality to any loop order up to subtleties inherent to the duality that is addressed. As it becomes clear the duality implies massive cancellations with respect to the usual powercounting of Feynman graphs indicating that gravity theories are much better behaved than naively expected. As another example the linear map approach will be used to investigate the question of UV-finiteness of N=8 supergravity, and it is seen that the amount of cancellations depends on the exact implementation of the duality at loop level. Lastly, color-kinematics duality is considered from a Feynman-graph perspective reproducing some of the results of the earlier chapters thus giving non-trivial evidence for the duality at the loop level from a different perspective.

  16. Scaling approach in predicting the seatbelt loading and kinematics of vulnerable occupants: How far can we go?

    Science.gov (United States)

    Nie, Bingbing; Forman, Jason L; Joodaki, Hamed; Wu, Taotao; Kent, Richard W

    2016-09-01

    Occupants with extreme body size and shape, such as the small female or the obese, were reported to sustain high risk of injury in motor vehicle crashes (MVCs). Dimensional scaling approaches are widely used in injury biomechanics research based on the assumption of geometrical similarity. However, its application scope has not been quantified ever since. The objective of this study is to demonstrate the valid range of scaling approaches in predicting the impact response of the occupants with focus on the vulnerable populations. The present analysis was based on a data set consisting of 60 previously reported frontal crash tests in the same sled buck representing a typical mid-size passenger car. The tests included two categories of human surrogates: 9 postmortem human surrogates (PMHS) of different anthropometries (stature range: 147-189 cm; weight range: 27-151 kg) and 5 anthropomorphic test devices (ATDs). The impact response was considered including the restraint loads and the kinematics of multiple body segments. For each category of the human surrogates, a mid-size occupant was selected as a baseline and the impact response was scaled specifically to another subject based on either the body mass (body shape) or stature (the overall body size). To identify the valid range of the scaling approach, the scaled response was compared to the experimental results using assessment scores on the peak value, peak timing (the time when the peak value occurred), and the overall curve shape ranging from 0 (extremely poor) to 1 (perfect match). Scores of 0.7 to 0.8 and 0.8 to 1.0 indicate fair and acceptable prediction. For both ATDs and PMHS, the scaling factor derived from body mass proved an overall good predictor of the peak timing for the shoulder belt (0.868, 0.829) and the lap belt (0.858, 0.774) and for the peak value of the lap belt force (0.796, 0.869). Scaled kinematics based on body stature provided fair or acceptable prediction on the overall head

  17. Kinematics and Application of a Hybrid Industrial Robot – Delta-RST

    Directory of Open Access Journals (Sweden)

    Ning Liu

    2014-04-01

    Full Text Available Serial robots and parallel robots have their own pros and cons. While hybrid robots consisting of both of them are possible and expected to retain their merits and minimize the disadvantages. The Delta-RST presented here is such a hybrid robot built up by integrating a 3-DoFs traditional Delta parallel structure and a 3-DoFs RST robotic wrist. In this paper, we focus on its kinematics analysis and its applications in industry. Firstly, the robotic system of the Delta-RST will be described briefly. Then the complete and systemic kinematics of this kind of robot will be presented in detail, followed by simulations and applications to demonstrate the correctness of the analysis, as well as the effectiveness of the developed robotic system. The closed-form kinematic analysis results are universal for similar hybrid robots constructing with the Delta parallel mechanism and serial chains.

  18. Adding Image Constraints to Inverse Kinematics for Human Motion Capture

    Science.gov (United States)

    Jaume-i-Capó, Antoni; Varona, Javier; González-Hidalgo, Manuel; Perales, Francisco J.

    2009-12-01

    In order to study human motion in biomechanical applications, a critical component is to accurately obtain the 3D joint positions of the user's body. Computer vision and inverse kinematics are used to achieve this objective without markers or special devices attached to the body. The problem of these systems is that the inverse kinematics is "blinded" with respect to the projection of body segments into the images used by the computer vision algorithms. In this paper, we present how to add image constraints to inverse kinematics in order to estimate human motion. Specifically, we explain how to define a criterion to use images in order to guide the posture reconstruction of the articulated chain. Tests with synthetic images show how the scheme performs well in an ideal situation. In order to test its potential in real situations, more experiments with task specific image sequences are also presented. By means of a quantitative study of different sequences, the results obtained show how this approach improves the performance of inverse kinematics in this application.

  19. Application of inverse kinematics to 1H+23Na→12C+12C

    International Nuclear Information System (INIS)

    Bennett, S.J.; Clarke, N.M.; Freer, M.; Fulton, B.R.; Hall, S.J.; Karban, O.; Murgatroyd, J.T.; Tungate, G.; Gyapong, G.J.; Jarvis, N.S.; Watson, D.L.; Rae, W.D.M.; Smith, A.E.; Lilley, J.S.; Woods, P.J.; Page, R.D.

    1993-01-01

    Some experimental techniques used in the measurement and analysis of inverse kinematic reactions are described and applied to a kinematically complete study of the 1 H( 23 Na, 12 C) 12 C reaction at an incident energy of 180 MeV. An excitation function is obtained for the energy range of 18.5 to 19.2 MeV in 24 Mg*; equivalent to proton energies from 7.1 MeV to 7.8 MeV for the 23 Na(p, 12 C) 12 C reaction. (orig.)

  20. Digital Hardware Realization of Forward and Inverse Kinematics for a Five-Axis Articulated Robot Arm

    Directory of Open Access Journals (Sweden)

    Bui Thi Hai Linh

    2015-01-01

    Full Text Available When robot arm performs a motion control, it needs to calculate a complicated algorithm of forward and inverse kinematics which consumes much CPU time and certainty slows down the motion speed of robot arm. Therefore, to solve this issue, the development of a hardware realization of forward and inverse kinematics for an articulated robot arm is investigated. In this paper, the formulation of the forward and inverse kinematics for a five-axis articulated robot arm is derived firstly. Then, the computations algorithm and its hardware implementation are described. Further, very high speed integrated circuits hardware description language (VHDL is applied to describe the overall hardware behavior of forward and inverse kinematics. Additionally, finite state machine (FSM is applied for reducing the hardware resource usage. Finally, for verifying the correctness of forward and inverse kinematics for the five-axis articulated robot arm, a cosimulation work is constructed by ModelSim and Simulink. The hardware of the forward and inverse kinematics is run by ModelSim and a test bench which generates stimulus to ModelSim and displays the output response is taken in Simulink. Under this design, the forward and inverse kinematics algorithms can be completed within one microsecond.

  1. Nuclear reaction studies using inverse kinematics

    International Nuclear Information System (INIS)

    Shapira, D.

    1985-01-01

    Reaction studies with reversed kinematics refer to studies of nuclear reactions induced by a heavy projectile colliding with lighter target nuclei. The technique of using reversed kinematics is costly in terms of the available center-of-mass energy. Most of the projectile's energy goes into forward motion of the reaction products in the laboratory system. Examples are presented where the use of reversed kinematics techniques has provided new information on certain reaction processes. A list of kinematic properties and advantages they may afford is shown. Clearly the possible studies listed can be done without using reversed kinematics but because of the difficulty associated with some of these studies they were never performed until more energetic heavier beams have become available and the reversed kinematics technique was utilized

  2. Efficient dynamic modeling of manipulators containing closed kinematic loops

    Science.gov (United States)

    Ferretti, Gianni; Rocco, Paolo

    An approach to efficiently solve the forward dynamics problem for manipulators containing closed chains is proposed. The two main distinctive features of this approach are: the dynamics of the equivalent open loop tree structures (any closed loop can be in general modeled by imposing some additional kinematic constraints to a suitable tree structure) is computed through an efficient Newton Euler formulation; the constraint equations relative to the most commonly adopted closed chains in industrial manipulators are explicitly solved, thus, overcoming the redundancy of Lagrange's multipliers method while avoiding the inefficiency due to a numerical solution of the implicit constraint equations. The constraint equations considered for an explicit solution are those imposed by articulated gear mechanisms and planar closed chains (pantograph type structures). Articulated gear mechanisms are actually used in all industrial robots to transmit motion from actuators to links, while planar closed chains are usefully employed to increase the stiffness of the manipulators and their load capacity, as well to reduce the kinematic coupling of joint axes. The accuracy and the efficiency of the proposed approach are shown through a simulation test.

  3. The development of computational algorithms for manipulator inverse kinematics

    International Nuclear Information System (INIS)

    Sasaki, Shinobu

    1989-10-01

    A solution technique of the inverse kinematics for multi-joint robot manipulators has been considered to be one of the most cumbersome treatment due to non-linearity properties inclusive of trigonometric functions. The most traditional approach is to use the Jacobian matrix on linearization assumptions. This iterative technique, however, is attended with numerical problems having significant influences on the solution characteristics such as initial guess dependence and singularities. Taking these facts into consideration, new approaches have been proposed from different standpoints, which are based on polynomial transformation of kinematic model, the minimization technique in mathematical programming, vector-geometrical concept, and the separation of joint variables associated with the optimization problem. In terms of computer simulations, each approach was identified to be a useful algorithm which leads to theoretically accurate solutions to complicated inverse problems. In this way, the short-term goal of our studies on manipulator inverse problem in the R and D project of remote handling technology was accomplished with success, and consequently the present report sums up the results of basic studies on this matter. (author)

  4. Kinematics modeling and experimentation of the multi-manipulator tooth-arrangement robot for full denture manufacturing.

    Science.gov (United States)

    Zhang, Yong-de; Jiang, Jin-gang; Liang, Ting; Hu, Wei-ping

    2011-12-01

    Artificial teeth are very complicated in shape, and not easy to be grasped and manipulated accurately by a single robot. The method of tooth-arrangement by multi-manipulator for complete denture manufacturing proposed in this paper. A novel complete denture manufacturing mechanism is designed based on multi-manipulator and dental arch generator. Kinematics model of the multi-manipulator tooth-arrangement robot is built by analytical method based on tooth-arrangement principle for full denture. Preliminary experiments on tooth-arrangement are performed using the multi-manipulator tooth-arrangement robot prototype system. The multi-manipulator tooth-arrangement robot prototype system can automatically design and manufacture a set of complete denture that is suitable for a patient according to the jaw arch parameters. The experimental results verified the validity of kinematics model of the multi-manipulator tooth-arrangement robot and the feasibility of the manufacture strategy of complete denture fulfilled by multi-manipulator tooth-arrangement robot.

  5. Kinematic Model of NAO Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Miloš D. Jovanović

    2014-06-01

    Full Text Available This paper presents synthesis of kinematic model of NAO humanoid robot of Aldebaran Robotics. NAO humanoid robot has complex kinematic structure with 25 active degrees of freedom (DOF. Humanoid system is formed through 5 mutually depended kinematic chains. After that we applied standard aspects of kinematic chains synthesis and Denavit-Hartenberg parameters of each of 5 chains of robotic structure were introduced. Also, mutual relationships between chains were described, as well as their physical and structural dependence. Generated kinematic model will be the starting point for further dynamical modeling of NAO humanoid robot and motion synthesis on actual platform.

  6. Finite Element Method-Based Kinematics and Closed-Loop Control of Soft, Continuum Manipulators.

    Science.gov (United States)

    Bieze, Thor Morales; Largilliere, Frederick; Kruszewski, Alexandre; Zhang, Zhongkai; Merzouki, Rochdi; Duriez, Christian

    2018-06-01

    This article presents a modeling methodology and experimental validation for soft manipulators to obtain forward kinematic model (FKM) and inverse kinematic model (IKM) under quasi-static conditions (in the literature, these manipulators are usually classified as continuum robots. However, their main characteristic of interest in this article is that they create motion by deformation, as opposed to the classical use of articulations). It offers a way to obtain the kinematic characteristics of this type of soft robots that is suitable for offline path planning and position control. The modeling methodology presented relies on continuum mechanics, which does not provide analytic solutions in the general case. Our approach proposes a real-time numerical integration strategy based on finite element method with a numerical optimization based on Lagrange multipliers to obtain FKM and IKM. To reduce the dimension of the problem, at each step, a projection of the model to the constraint space (gathering actuators, sensors, and end-effector) is performed to obtain the smallest number possible of mathematical equations to be solved. This methodology is applied to obtain the kinematics of two different manipulators with complex structural geometry. An experimental comparison is also performed in one of the robots, between two other geometric approaches and the approach that is showcased in this article. A closed-loop controller based on a state estimator is proposed. The controller is experimentally validated and its robustness is evaluated using Lypunov stability method.

  7. Kinematics/statics analysis of a novel serial-parallel robotic arm with hand

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yi; Dai, Zhuohong; Ye, Nijia; Wang, Peng [Yanshan University, Hebei (China)

    2015-10-15

    A robotic arm with fingered hand generally has multi-functions to complete various complicated operations. A novel serial-parallel robotic arm with a hand is proposed and its kinematics and statics are studied systematically. A 3D prototype of the serial-parallel robotic arm with a hand is constructed and analyzed by simulation. The serial-parallel robotic arm with a hand is composed of an upper 3RPS parallel manipulator, a lower 3SPR parallel manipulator and a hand with three finger mechanisms. Its kinematics formulae for solving the displacement, velocity, acceleration of are derived. Its statics formula for solving the active/constrained forces is derived. Its reachable workspace and orientation workspace are constructed and analyzed. Finally, an analytic example is given for solving the kinematics and statics of the serial-parallel robotic arm with a hand and the analytic solutions are verified by a simulation mechanism.

  8. Kinematics/statics analysis of a novel serial-parallel robotic arm with hand

    International Nuclear Information System (INIS)

    Lu, Yi; Dai, Zhuohong; Ye, Nijia; Wang, Peng

    2015-01-01

    A robotic arm with fingered hand generally has multi-functions to complete various complicated operations. A novel serial-parallel robotic arm with a hand is proposed and its kinematics and statics are studied systematically. A 3D prototype of the serial-parallel robotic arm with a hand is constructed and analyzed by simulation. The serial-parallel robotic arm with a hand is composed of an upper 3RPS parallel manipulator, a lower 3SPR parallel manipulator and a hand with three finger mechanisms. Its kinematics formulae for solving the displacement, velocity, acceleration of are derived. Its statics formula for solving the active/constrained forces is derived. Its reachable workspace and orientation workspace are constructed and analyzed. Finally, an analytic example is given for solving the kinematics and statics of the serial-parallel robotic arm with a hand and the analytic solutions are verified by a simulation mechanism.

  9. Locomotion mode identification for lower limbs using neuromuscular and joint kinematic signals.

    Science.gov (United States)

    Afzal, Taimoor; White, Gannon; Wright, Andrew B; Iqbal, Kamran

    2014-01-01

    Recent development in lower limb prosthetics has seen an emergence of powered prosthesis that have the capability to operate in different locomotion modes. However, these devices cannot transition seamlessly between modes such as level walking, stair ascent and descent and up slope and down slope walking. They require some form of user input that defines the human intent. The purpose of this study was to develop a locomotion mode detection system and evaluate its performance for different sensor configurations and to study the effect of locomotion mode detection with and without electromyography (EMG) signals while using kinematic data from hip joint of non-dominant/impaired limb and an accelerometer. Data was collected from four able bodied subjects that completed two circuits that contained standing, level-walking, ramp ascent and descent and stair ascent and descent. By using only the kinematic data from the hip joint and accelerometer data the system was able to identify the transitions, stance and swing phases with similar performance as compared to using only EMG and accelerometer data. However, significant improvement in classification error was observed when EMG, kinematic and accelerometer data were used together to identify the locomotion modes. The higher recognition rates when using the kinematic data along with EMG shows that the joint kinematics could be beneficial in intent recognition systems of locomotion modes.

  10. Collision-free inverse kinematics of the redundant seven link manipulator used in a cucumber harvesting robot

    NARCIS (Netherlands)

    Henten, van E.J.; Schenk, E.J.J.; Willigenburg, van L.G.; Meuleman, J.; Barreiro, P.

    2010-01-01

    The paper presents results of research on an inverse kinematics algorithm that has been used in a functional model of a cucumber-harvesting robot consisting of a redundant P6R manipulator. Within a first generic approach, the inverse kinematics problem was reformulated as a non-linear programming

  11. Imaging spectrophotometry of ionized gas in NGC 1068. I - Kinematics of the narrow-line region

    Science.gov (United States)

    Cecil, Gerald; Bland, Jonathan; Tully, R. Brent

    1990-01-01

    The kinematics of collisionally excited forbidden N II 6548, 6583 across the inner 1 arcmin diameter of the nearby Seyfert galaxy NGC 1068 is mapped using an imaging Fabry-Perot interferometer and low-noise CCD. The stack of monochromatic images, which spatially resolved the high-velocity gas, was analyzed for kinematic and photometric content. Profiles agree well with previous long-slit work, and their complete spatial coverage makes it possible to constrain the gas volume distribution. It is found that the narrow-line region is distributed in a thick center-darkened, line-emitting cylinder that envelopes the collimated radio jet. Three distinct kinematic subsystems, of which the cylinder is composed, are discussed in detail. Detailed behavior of the emission-line profiles, at the few points in the NE quadrant with simple kinematics, argues that the ionized gas develops a significant component of motion perpendicular to the jet axis.

  12. Input relegation control for gross motion of a kinematically redundant manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Unseren, M.A.

    1992-10-01

    This report proposes a method for resolving the kinematic redundancy of a serial link manipulator moving in a three-dimensional workspace. The underspecified problem of solving for the joint velocities based on the classical kinematic velocity model is transformed into a well-specified problem. This is accomplished by augmenting the original model with additional equations which relate a new vector variable quantifying the redundant degrees of freedom (DOF) to the joint velocities. The resulting augmented system yields a well specified solution for the joint velocities. Methods for selecting the redundant DOF quantifying variable and the transformation matrix relating it to the joint velocities are presented so as to obtain a minimum Euclidean norm solution for the joint velocities. The approach is also applied to the problem of resolving the kinematic redundancy at the acceleration level. Upon resolving the kinematic redundancy, a rigid body dynamical model governing the gross motion of the manipulator is derived. A control architecture is suggested which according to the model, decouples the Cartesian space DOF and the redundant DOF.

  13. The coupling between gaze behavior and opponent kinematics during anticipation of badminton shots.

    Science.gov (United States)

    Alder, David; Ford, Paul R; Causer, Joe; Williams, A Mark

    2014-10-01

    We examined links between the kinematics of an opponent's actions and the visual search behaviors of badminton players responding to those actions. A kinematic analysis of international standard badminton players (n = 4) was undertaken as they completed a range of serves. Video of these players serving was used to create a life-size temporal occlusion test to measure anticipation responses. Expert (n = 8) and novice (n = 8) badminton players anticipated serve location while wearing an eye movement registration system. During the execution phase of the opponent's movement, the kinematic analysis showed between-shot differences in distance traveled and peak acceleration at the shoulder, elbow, wrist and racket. Experts were more accurate at responding to the serves compared to novice players. Expert players fixated on the kinematic locations that were most discriminating between serve types more frequently and for a longer duration compared to novice players. Moreover, players were generally more accurate at responding to serves when they fixated vision upon the discriminating arm and racket kinematics. Findings extend previous literature by providing empirical evidence that expert athletes' visual search behaviors and anticipatory responses are inextricably linked to the opponent action being observed. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Climbing fibers predict movement kinematics and performance errors.

    Science.gov (United States)

    Streng, Martha L; Popa, Laurentiu S; Ebner, Timothy J

    2017-09-01

    Requisite for understanding cerebellar function is a complete characterization of the signals provided by complex spike (CS) discharge of Purkinje cells, the output neurons of the cerebellar cortex. Numerous studies have provided insights into CS function, with the most predominant view being that they are evoked by error events. However, several reports suggest that CSs encode other aspects of movements and do not always respond to errors or unexpected perturbations. Here, we evaluated CS firing during a pseudo-random manual tracking task in the monkey ( Macaca mulatta ). This task provides extensive coverage of the work space and relative independence of movement parameters, delivering a robust data set to assess the signals that activate climbing fibers. Using reverse correlation, we determined feedforward and feedback CSs firing probability maps with position, velocity, and acceleration, as well as position error, a measure of tracking performance. The direction and magnitude of the CS modulation were quantified using linear regression analysis. The major findings are that CSs significantly encode all three kinematic parameters and position error, with acceleration modulation particularly common. The modulation is not related to "events," either for position error or kinematics. Instead, CSs are spatially tuned and provide a linear representation of each parameter evaluated. The CS modulation is largely predictive. Similar analyses show that the simple spike firing is modulated by the same parameters as the CSs. Therefore, CSs carry a broader array of signals than previously described and argue for climbing fiber input having a prominent role in online motor control. NEW & NOTEWORTHY This article demonstrates that complex spike (CS) discharge of cerebellar Purkinje cells encodes multiple parameters of movement, including motor errors and kinematics. The CS firing is not driven by error or kinematic events; instead it provides a linear representation of each

  15. Inverse Kinematics using Quaternions

    DEFF Research Database (Denmark)

    Henriksen, Knud; Erleben, Kenny; Engell-Nørregård, Morten

    In this project I describe the status of inverse kinematics research, with the focus firmly on the methods that solve the core problem. An overview of the different methods are presented Three common methods used in inverse kinematics computation have been chosen as subject for closer inspection....

  16. SHORT LITERATURE REVIEW ON THE KINEMATICS AND DYNAMICS OF THE INDUSTRIAL ROBOTS

    OpenAIRE

    RATIU Mariana

    2016-01-01

    This paper is the result of a short literature review on the kinematics and dynamics of the industrial robots, a first study conducted in a wider research that will be further developed in the field of the trajectory generating mechanisms of the industrial robots. After an introduction about the importance of the robots in the industrial processes and about the necessity to streamline and optimize the robot`s motion, are presented some recent approaches related to the kinematic and dynamic an...

  17. Null-strut calculus. I. Kinematics

    International Nuclear Information System (INIS)

    Kheyfets, A.; LaFave, N.J.; Miller, W.A.

    1990-01-01

    This paper describes the kinematics of null-strut calculus---a 3+1 Regge calculus approach to general relativity. We show how to model the geometry of spacetime with simplicial spacelike three-geometries (TET's) linked to ''earlier'' and ''later'' momentumlike lattice surfaces (TET * ) entirely by light rays or ''null struts.'' These three-layered lattice spacetime geometries are defined and analyzed using combinatorial formulas for the structure of polytopes. The following paper in this series describes how these three-layered spacetime lattices are used to model spacetimes in full conformity with Einstein's theory of gravity

  18. Advances in robot kinematics

    CERN Document Server

    Khatib, Oussama

    2014-01-01

    The topics addressed in this book cover the whole range of kinematic analysis, synthesis and design and consider robotic systems possessing serial, parallel and cable driven mechanisms. The robotic systems range from being less than fully mobile to kinematically redundant to overconstrained.  The fifty-six contributions report the latest results in robot kinematics with emphasis on emerging areas such as design and control of humanoids or humanoid subsystems. The book is of interest to researchers wanting to bring their knowledge up to date regarding modern topics in one of the basic disciplines in robotics, which relates to the essential property of robots, the motion of mechanisms.

  19. STUDY OF THE flat die pellet mills kinematic diagram with active cylindrical press rolLS

    Directory of Open Access Journals (Sweden)

    Osokin Anton Vladislavovich

    2017-03-01

    Full Text Available Though being widely spread, the designs of such machines as flat die pellet mills have hardly been comprehensively theoretically studied. At the same time, the kinematic motion of the ring die pellet mill executive parts have been studied quite thoroughly. The machine executive parts kinematics determines the nature of their motion and velocity parameters, as well as the energy costs for the unit operation of the assembly. In addition, a detailed analysis of the facility kinematic diagram enables a rational approach to the design process for a new equipment. In view of this, this paper proposes a classification of flat matrix granulators over the kinematic diagrams of the executive parts interactions. We performed an analytical study of the kinematic diagram flat matrix granulator with active cylindrical press rolls. We considered the forces acting on the press roll during its operation. We determined the kinematic parameters and their interrelation with the design parameters of the press roll. We obtained the analytical equations for the of the neutral cross-section determination - the most characteristic section of the press-roll granulator

  20. Kinematic parameters of signed verbs.

    Science.gov (United States)

    Malaia, Evie; Wilbur, Ronnie B; Milkovic, Marina

    2013-10-01

    Sign language users recruit physical properties of visual motion to convey linguistic information. Research on American Sign Language (ASL) indicates that signers systematically use kinematic features (e.g., velocity, deceleration) of dominant hand motion for distinguishing specific semantic properties of verb classes in production ( Malaia & Wilbur, 2012a) and process these distinctions as part of the phonological structure of these verb classes in comprehension ( Malaia, Ranaweera, Wilbur, & Talavage, 2012). These studies are driven by the event visibility hypothesis by Wilbur (2003), who proposed that such use of kinematic features should be universal to sign language (SL) by the grammaticalization of physics and geometry for linguistic purposes. In a prior motion capture study, Malaia and Wilbur (2012a) lent support for the event visibility hypothesis in ASL, but there has not been quantitative data from other SLs to test the generalization to other languages. The authors investigated the kinematic parameters of predicates in Croatian Sign Language ( Hrvatskom Znakovnom Jeziku [HZJ]). Kinematic features of verb signs were affected both by event structure of the predicate (semantics) and phrase position within the sentence (prosody). The data demonstrate that kinematic features of motion in HZJ verb signs are recruited to convey morphological and prosodic information. This is the first crosslinguistic motion capture confirmation that specific kinematic properties of articulator motion are grammaticalized in other SLs to express linguistic features.

  1. Kinematics Control and Analysis of Industrial Robot

    Science.gov (United States)

    Zhu, Tongbo; Cai, Fan; Li, Yongmei; Liu, Wei

    2018-03-01

    The robot’s development present situation, basic principle and control system are introduced briefly. Research is mainly focused on the study of the robot’s kinematics and motion control. The structural analysis of a planar articulated robot (SCARA) robot is presented,the coordinate system is established to obtain the position and orientation matrix of the end effector,a method of robot kinematics analysis based on homogeneous transformation method is proposed, and the kinematics solution of the robot is obtained.Establishment of industrial robot’s kinematics equation and formula for positive kinematics by example. Finally,the kinematic analysis of this robot was verified by examples.It provides a basis for structural design and motion control.It has active significance to promote the motion control of industrial robot.

  2. Fatigue effects on bar kinematics during the bench press.

    Science.gov (United States)

    Duffey, Michael J; Challis, John H

    2007-05-01

    The bench press is one of the most popular weight training exercises. Although most training regimens incorporate multiple repetition sets, there are few data describing how the kinematics of a lift change during a set to failure. To examine these changes, recreational lifters (10 men and 8 women) were recruited. The maximum weight each subject could bench press (1RM) was determined. Subjects then performed as many repetitions as possible at 75% of the 1RM load. Three-dimensional kinematic data were recorded and analyzed for all lifts. Statistical analysis revealed that differences between maximal and submaximal lifts and the kinematics of a submaximal lift change as a subject approaches failure in a set. The time to lift the bar more than doubled from the first to the last repetition, causing a decrease in both mean and peak upward velocity. Furthermore, the peak upward velocity occurred much earlier in the lift phase in these later repetitions. The path the bar followed also changed, with subjects keeping the bar more directly over the shoulder during the lift. In general, most of the kinematic variables analyzed became more similar to those of the maximal lift as the subjects progressed through the set, but there was considerable variation between subjects as to which repetition was most like the maximal lift. This study shows that there are definite changes in the lifting kinematics in recreational lifters during a set to failure and suggests it may be particularly important for coaches and less-skilled lifters to focus on developing the proper bar path, rather than reaching momentary muscular failure, in the early part of a training program.

  3. Percutaneous Femoropopliteal Recanalization Using a Completely Transpedal/Transtibial Approach

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Timothy W.I., E-mail: timothy.clark@uphs.upenn.edu; Watts, Micah M. [University of Pennsylvania Medical Center, Section of Interventional Radiology, Department of Radiology, Penn Presbyterian Medical Center (United States); Kwan, Tak W. [Beth Israel Medical Center, Division of Cardiovascular Medicine, Department of Medicine (United States)

    2016-12-15

    PurposeTo report preliminary experience with femoropopliteal revascularization using a completely transpedal/transtibial approach.Materials and MethodsThree patients with Rutherford 3–4 disease underwent revascularization of TASC C/D lesions using a pedal/tibial artery as the only site of arterial access.ResultsOne patient with a chronic superficial femoral artery occlusion had continuity achieved to the common femoral artery using a dedicated reentry device and stenting; in a second patient, an occluded popliteal artery stent was successfully revised with an endograft; and in a third patient with morbid obesity, a chronic SFA occlusion was successfully stented. All patients experienced complete resolution of presenting symptoms; no puncture site complications were seen.ConclusionsUse of a pedal/tibial approach as the sole site of arterial access may become an important access technique for femoropopliteal revascularization when patients have limited femoral access options.

  4. Inverse kinematics for the variable geometry truss manipulator via a Lagrangian dual method

    Directory of Open Access Journals (Sweden)

    Yanchun Zhao

    2016-11-01

    Full Text Available This article studies the inverse kinematics problem of the variable geometry truss manipulator. The problem is cast as an optimization process which can be divided into two steps. Firstly, according to the information about the location of the end effector and fixed base, an optimal center curve and the corresponding distribution of the intermediate platforms along this center line are generated. This procedure is implemented by solving a non-convex optimization problem that has a quadratic objective function subject to quadratic constraints. Then, in accordance with the distribution of the intermediate platforms along the optimal center curve, all lengths of the actuators are calculated via the inverse kinematics of each variable geometry truss module. Hence, the approach that we present is an optimization procedure that attempts to generate the optimal intermediate platform distribution along the optimal central curve, while the performance index and kinematic constraints are satisfied. By using the Lagrangian duality theory, a closed-form optimal solution of the original optimization is given. The numerical simulation substantiates the effectiveness of the introduced approach.

  5. Cortex Inspired Model for Inverse Kinematics Computation for a Humanoid Robotic Finger

    Science.gov (United States)

    Gentili, Rodolphe J.; Oh, Hyuk; Molina, Javier; Reggia, James A.; Contreras-Vidal, José L.

    2013-01-01

    In order to approach human hand performance levels, artificial anthropomorphic hands/fingers have increasingly incorporated human biomechanical features. However, the performance of finger reaching movements to visual targets involving the complex kinematics of multi-jointed, anthropomorphic actuators is a difficult problem. This is because the relationship between sensory and motor coordinates is highly nonlinear, and also often includes mechanical coupling of the two last joints. Recently, we developed a cortical model that learns the inverse kinematics of a simulated anthropomorphic finger. Here, we expand this previous work by assessing if this cortical model is able to learn the inverse kinematics for an actual anthropomorphic humanoid finger having its two last joints coupled and controlled by pneumatic muscles. The findings revealed that single 3D reaching movements, as well as more complex patterns of motion of the humanoid finger, were accurately and robustly performed by this cortical model while producing kinematics comparable to those of humans. This work contributes to the development of a bioinspired controller providing adaptive, robust and flexible control of dexterous robotic and prosthetic hands. PMID:23366569

  6. Inverse kinematics research using obstacle avoidance geometry method for EAST Articulated Maintenance Arm (EAMA)

    International Nuclear Information System (INIS)

    Wang, Kun; Song, Yuntao; Wu, Huapeng; Wei, Xiaoyang; Khan, Shahab Ud-Din; Cheng, Yong

    2017-01-01

    Highlights: • An Obstacle Topology Partition Projection (OTPP) method of tokamak-like vessel for collision detection. • Median values preferentially of depth-first search algorithm for solving redundant inverse kinematics based on OTPP. • Application of RIK in grasping target objects. - Abstract: This paper proposed a new method for solving inverse kinematics (IK) of a redundant manipulator called EAST Articulated Maintenance Arm (EAMA), which is applied in the fusion reactor EAST (Experimental Advanced Superconducting Tokamak) and used to complete some maintenance tasks in the complex areas. However, it is difficult to realize remote control due to its redundancy, coupling structure and the complex operational environment. The IK research of the robot played a vital role to the manipulator’s motion control algorithm of remote handling (RH) technology. An Obstacle Topology Partition Projection (OTPP) approach integrated with Modified Inverse Depth First Search (MIDFS) method was presented. This is a kind of new geometric algorithm in order to solve the problem of IK for a high-redundancy manipulator. It can also be used to find a solution satisfying collision avoidance with optimal safety distance between the manipulator and obstacles. Simulations and experiments were conducted to demonstrate the efficiency and accuracy of the proposed method.

  7. Inverse kinematics research using obstacle avoidance geometry method for EAST Articulated Maintenance Arm (EAMA)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kun, E-mail: wangkun@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Lappeenranta University of Technology, Lappeenranta (Finland); University of Science and Technology of China, Hefei (China); Song, Yuntao [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); University of Science and Technology of China, Hefei (China); Wu, Huapeng [Lappeenranta University of Technology, Lappeenranta (Finland); Wei, Xiaoyang; Khan, Shahab Ud-Din; Cheng, Yong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China)

    2017-06-15

    Highlights: • An Obstacle Topology Partition Projection (OTPP) method of tokamak-like vessel for collision detection. • Median values preferentially of depth-first search algorithm for solving redundant inverse kinematics based on OTPP. • Application of RIK in grasping target objects. - Abstract: This paper proposed a new method for solving inverse kinematics (IK) of a redundant manipulator called EAST Articulated Maintenance Arm (EAMA), which is applied in the fusion reactor EAST (Experimental Advanced Superconducting Tokamak) and used to complete some maintenance tasks in the complex areas. However, it is difficult to realize remote control due to its redundancy, coupling structure and the complex operational environment. The IK research of the robot played a vital role to the manipulator’s motion control algorithm of remote handling (RH) technology. An Obstacle Topology Partition Projection (OTPP) approach integrated with Modified Inverse Depth First Search (MIDFS) method was presented. This is a kind of new geometric algorithm in order to solve the problem of IK for a high-redundancy manipulator. It can also be used to find a solution satisfying collision avoidance with optimal safety distance between the manipulator and obstacles. Simulations and experiments were conducted to demonstrate the efficiency and accuracy of the proposed method.

  8. Detailed solution to a complex kinematics chain manipulator

    International Nuclear Information System (INIS)

    March-Leuba, S.; Jansen, J.F.; Kress, R.L.; Babcock, S.M.

    1992-01-01

    This paper presents a relatively simple method based on planar geometry to analyze the inverse kinematics for closed kinematics chain (CKC) mechanisms. Although the general problem and method of approach are well defined, the study of the inverse kinematics of a closed-chain mechanism is a very complicated one. The current methodology allows closed-form solutions to be found, if a solution exists, for the displacements and velocities of all manipulator joints. Critical design parameters can be identified and optimized by using symbolic models. This paper will focus on planar closed-chain structures extended with a rotational base. However, with open and CKC mechanisms combined in different planes, the extension to the case is straightforward. Further, real-time algorithms are developed that can be handled by existing microprocessor technology. To clarify the methodology, the Soldier Robot Interface Project (SRIP) manipulator is analyzed, and a graphic simulation is presented as a verification of the results. This manipulator has 17 links, 24 one-degree-of-freedom (DOF) joints, and 7 CKC loops working in a plane and a rotational base, which determine its 3 DOFs. The SRIP manipulator allows a decoupled linear motion along the vertical or horizontal directions using only one of its linear actuators. The symbolic solution for the inverse kinematics allows optimization to be performed to further decouple the Cartesian motions by changing link lengths of the manipulator. The conclusion achieved by the optimization is that only two link lengths need to be changed to tune the manipulator for a perfect decoupling at each area of the workspace

  9. A Structure-dependent matrix representation of manipulator kinematics and its inverse solution

    International Nuclear Information System (INIS)

    Sasaki, Shinobu

    1987-03-01

    In this paper, derivation of kinematic equations for a six-link manipulator is presented using the homogeneous transformation (A i -matrix) based on Denavit-Hartenberg method, and additionally a solution procedure of its inverse problem is outlined. In order to examine the validity of a system of equations, solutions were compared with the exact ones of the inverse kinematics (for the same type of a manipulator) expressed in arbitrarily given co-ordinate systems. Through complete agreement of joint solutions between the two, the present purpose was accomplished. As shown in this paper, an explicit description between adjacent links will give a possible clue to a systematic treatment of the inverse problem for a class of manipulators. (author)

  10. Understanding the spiral structure of the Milky Way using the local kinematic groups

    NARCIS (Netherlands)

    Antoja Castelltort, Teresa; Figueras, F.; Romero-Gomez, M.; Pichardo, B.; Valenzuela, O.; Moreno, E.

    2011-01-01

    We study the spiral arm influence on the solar neighbourhood stellar kinematics. As the nature of the Milky Way (MW) spiral arms is not completely determined, we study two models: the Tight-Winding Approximation (TWA) model, which represents a local approximation, and a model with self-consistent

  11. The SLUGGS survey: wide-field stellar kinematics of early-type galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Jacob A. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Romanowsky, Aaron J.; Brodie, Jean P.; Woodley, Kristin A. [University of California Observatories, 1156 High Street, Santa Cruz, CA 95064 (United States); Forbes, Duncan A.; Blom, Christina; Kartha, Sreeja S.; Pastorello, Nicola; Pota, Vincenzo; Usher, Christopher [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122 (Australia); Strader, Jay [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Spitler, Lee R. [Department of Physics and Astronomy, Faculty of Sciences, Macquarie University, Sydney, NSW 2109 (Australia); Foster, Caroline, E-mail: romanow@ucolick.org [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW (Australia)

    2014-08-20

    We present stellar kinematics of 22 nearby early-type galaxies (ETGs), based on two-dimensional (2D) absorption line stellar spectroscopy out to ∼2-4 R {sub e} (effective radii), as part of the ongoing SLUGGS Survey. The galaxies span a factor of 20 in intrinsic luminosity, as well as a full range of environment and ETG morphology. Our data consist of good velocity resolution (σ{sub inst} ∼ 25 km s{sup –1}) integrated stellar-light spectra extracted from the individual slitlets of custom made Keck/DEIMOS slitmasks. We extract stellar kinematics measurements (V, σ, h {sub 3}, and h {sub 4}) for each galaxy. Combining with literature values from smaller radii, we present 2D spatially resolved maps of the large-scale kinematic structure in each galaxy. We find that the kinematic homogeneity found inside 1 R {sub e} often breaks down at larger radii, where a variety of kinematic behaviors are observed. While central slow rotators remain slowly rotating in their halos, central fast rotators show more diversity, ranging from rapidly increasing to rapidly declining specific angular momentum profiles in the outer regions. There are indications that the outer trends depend on morphological type, raising questions about the proposed unification of the elliptical and lenticular (S0) galaxy families in the ATLAS{sup 3D} survey. Several galaxies in our sample show multiple lines of evidence for distinct disk components embedded in more slowly rotating spheroids, and we suggest a joint photometric-kinematic approach for robust bulge-disk decomposition. Our observational results appear generally consistent with a picture of two-phase (in-situ plus accretion) galaxy formation.

  12. Are undesirable contact kinematics minimized after kinematically aligned total knee arthroplasty? An intersurgeon analysis of consecutive patients.

    Science.gov (United States)

    Howell, Stephen M; Hodapp, Esther E; Vernace, Joseph V; Hull, Maury L; Meade, Thomas D

    2013-10-01

    Tibiofemoral contact kinematics or knee implant motions have a direct influence on patient function and implant longevity and should be evaluated for any new alignment technique such as kinematically aligned total knee arthroplasty (TKA). Edge loading of the tibial liner and external rotation (reverse of normal) and adduction of the tibial component on the femoral component are undesirable contact kinematics that should be minimized. Accordingly, this study determined whether the overall prevalence of undesirable contact kinematics during standing, mid kneeling near 90 degrees and full kneeling with kinematically aligned TKA are minimal and not different between groups of consecutive patients treated by different surgeons. Three surgeons were asked to perform cemented, kinematically aligned TKA with patient-specific guides in a consecutive series of patients with their preferred cruciate-retaining (CR) implant. In vivo tibiofemoral contact positions were obtained using a 3- to 2-dimensional image registration technique in 69 subjects (Vanguard CR-TKA N = 22, and Triathlon CR-TKA N = 47). Anterior or posterior edge loading of the tibial liner was not observed. The overall prevalence of external rotation of the tibial component on the femoral component of 6 % was low and not different between surgeons (n.s.). The overall prevalence of adduction of the tibial component on the femoral component of 4 % was low and not different between surgeons (n.s.). Kinematically aligned TKA minimized the undesirable contact kinematics of edge loading of the tibial liner, and external rotation and adduction of the tibial component on the femoral component during standing and kneeling, which suggests an optimistic prognosis for durable long-term function. III.

  13. Inverse Kinematic Analysis Of A Quadruped Robot

    Directory of Open Access Journals (Sweden)

    Muhammed Arif Sen

    2017-09-01

    Full Text Available This paper presents an inverse kinematics program of a quadruped robot. The kinematics analysis is main problem in the manipulators and robots. Dynamic and kinematic structures of quadruped robots are very complex compared to industrial and wheeled robots. In this study inverse kinematics solutions for a quadruped robot with 3 degrees of freedom on each leg are presented. Denavit-Hartenberg D-H method are used for the forward kinematic. The inverse kinematic equations obtained by the geometrical and mathematical methods are coded in MATLAB. And thus a program is obtained that calculate the legs joint angles corresponding to desired various orientations of robot and endpoints of legs. Also the program provides the body orientations of robot in graphical form. The angular positions of joints obtained corresponding to desired different orientations of robot and endpoints of legs are given in this study.

  14. Investigating The Kinematics of Canids and Felids

    Science.gov (United States)

    Sur, D.

    2016-12-01

    For all organisms, metabolic energy is critical for survival. While moving efficiently is a necessity for large carnivores, the influence of kinematics on energy demand remains poorly understood. We measured the kinematics of dogs, wolves, and pumas to detect any differences in their respective energy expenditures. Using 22 kinematic parameters measured on 78 videos, we used one-way ANOVAs and paired T-tests to compare 5 experimental treatments among gaits in dogs (n=11 in 3 breed groups), wolves (n=2), and pumas (n=2). Across the measured parameters, we found greater kinematic similarity than expected among dog breeds and no trend in any of the 22 parameters regarding the effect of steepness on locomotion mechanics. Similarly, treadmill kinematics were nearly identical to those measured during outdoor movement. However, in 3 inches of snow, we observed significant differences (pwolf. When comparing canids (wolves and dogs) to a felid (pumas), we found that pumas and dogs are the most kinematically distinct (differing in 13 of 22 parameters, compared with 5 of 22 for wolves and pumas). Lastly, compared with wolves, walking pumas had larger head angles (p=0.0025), forelimb excursion angles (p=0.0045), and hindlimb excursion angles (p=0.0327). After comparing the energetics of pumas and dogs with their respective kinematics, we noted that less dynamic kinematics result in energy savings. Through tracking the locations and gait behavior of large carnivores, novel sensor technology can reveal how indoor kinematics applies to wild animals and improve the conservation of these species.

  15. A feasibility study of hand kinematics for EVA analysis using magnetic resonance imaging

    Science.gov (United States)

    Dickenson, Rueben D.; Lorenz, Christine H.; Peterson, Steven W.; Strauss, Alvin M.; Main, John A.

    1992-01-01

    A new method of analyzing the kinematics of joint motion is developed. Magnetic Resonance Imaging (MRI) offers several distinct advantages. Past methods of studying anatomic joint motion have usually centered on four approaches. These methods are x-ray projection, goniometric linkage analysis, sonic digitization, and landmark measurement of photogrammetry. Of these four, only x-ray is applicable for in vivo studies. The remaining three methods utilize other types of projections of inter-joint measurements, which can cause various types of error. MRI offers accuracy in measurement due to its tomographic nature (as opposed to projection) without the problems associated with x-ray dosage. Once the data acquisition of MR images was complete, the images were processed using a 3D volume rendering workstation. The metacarpalphalangeal (MCP) joint of the left index finger was selected and reconstructed into a three-dimensional graphic display. From the reconstructed volumetric images, measurements of the angles of movement of the applicable bones were obtained and processed by analyzing the screw motion of the MCP joint. Landmark positions were chosen at distinctive locations of the joint at fixed image threshold intensity levels to ensure repeatability. The primarily two dimensional planar motion of this joint was then studied using a method of constructing coordinate systems using three (or more) points. A transformation matrix based on a world coordinate system described the location and orientation of a local target coordinate system. Future research involving volume rendering of MRI data focusing on the internal kinematics of the hand's individual ligaments, cartilage, tendons, etc. will follow. Its findings will show the applicability of MRI to joint kinematics for gaining further knowledge of the hand-glove (power assisted) design for extravehicular activity (EVA).

  16. Solution of Inverse Kinematics for 6R Robot Manipulators With Offset Wrist Based on Geometric Algebra.

    Science.gov (United States)

    Fu, Zhongtao; Yang, Wenyu; Yang, Zhen

    2013-08-01

    In this paper, we present an efficient method based on geometric algebra for computing the solutions to the inverse kinematics problem (IKP) of the 6R robot manipulators with offset wrist. Due to the fact that there exist some difficulties to solve the inverse kinematics problem when the kinematics equations are complex, highly nonlinear, coupled and multiple solutions in terms of these robot manipulators stated mathematically, we apply the theory of Geometric Algebra to the kinematic modeling of 6R robot manipulators simply and generate closed-form kinematics equations, reformulate the problem as a generalized eigenvalue problem with symbolic elimination technique, and then yield 16 solutions. Finally, a spray painting robot, which conforms to the type of robot manipulators, is used as an example of implementation for the effectiveness and real-time of this method. The experimental results show that this method has a large advantage over the classical methods on geometric intuition, computation and real-time, and can be directly extended to all serial robot manipulators and completely automatized, which provides a new tool on the analysis and application of general robot manipulators.

  17. Inverse Kinematics

    Directory of Open Access Journals (Sweden)

    Joel Sereno

    2010-01-01

    Full Text Available Inverse kinematics is the process of converting a Cartesian point in space into a set of joint angles to more efficiently move the end effector of a robot to a desired orientation. This project investigates the inverse kinematics of a robotic hand with fingers under various scenarios. Assuming the parameters of a provided robot, a general equation for the end effector point was calculated and used to plot the region of space that it can reach. Further, the benefits obtained from the addition of a prismatic joint versus an extra variable angle joint were considered. The results confirmed that having more movable parts, such as prismatic points and changing angles, increases the effective reach of a robotic hand.

  18. Online adaptive approach for a game-theoretic strategy for complete vehicle energy management

    NARCIS (Netherlands)

    Chen, H.; Kessels, J.T.B.A.; Weiland, S.

    2015-01-01

    This paper introduces an adaptive approach for a game-theoretic strategy on Complete Vehicle Energy Management. The proposed method enhances the game-theoretic approach such that the strategy is able to adapt to real driving behavior. The classical game-theoretic approach relies on one probability

  19. Improved Inverse Kinematics Algorithm Using Screw Theory for a Six-DOF Robot Manipulator

    Directory of Open Access Journals (Sweden)

    Qingcheng Chen

    2015-10-01

    Full Text Available Based on screw theory, a novel improved inverse-kinematics approach for a type of six-DOF serial robot, “Qianjiang I”, is proposed in this paper. The common kinematics model of the robot is based on the Denavit-Hartenberg (D-H notation method while its inverse kinematics has inefficient calculation and complicated solution, which cannot meet the demands of online real-time application. To solve this problem, this paper presents a new method to improve the efficiency of the inverse kinematics solution by introducing the screw theory. Unlike other methods, the proposed method only establishes two coordinates, namely the inertial coordinate and the tool coordinate; the screw motion of each link is carried out based on the inertial coordinate, ensuring definite geometric meaning. Furthermore, we adopt a new inverse kinematics algorithm, developing an improved sub-problem method along with Paden-Kahan sub-problems. This method has high efficiency and can be applied in real-time industrial operation. It is convenient to select the desired solutions directly from among multiple solutions by examining clear geometric meaning. Finally, the effectiveness and reliability performance of the new algorithm are analysed and verified in comparative experiments carried out on the six-DOF serial robot “Qianjiang I”.

  20. SHORT LITERATURE REVIEW ON THE KINEMATICS AND DYNAMICS OF THE INDUSTRIAL ROBOTS

    Directory of Open Access Journals (Sweden)

    RATIU Mariana

    2016-09-01

    Full Text Available This paper is the result of a short literature review on the kinematics and dynamics of the industrial robots, a first study conducted in a wider research that will be further developed in the field of the trajectory generating mechanisms of the industrial robots. After an introduction about the importance of the robots in the industrial processes and about the necessity to streamline and optimize the robot`s motion, are presented some recent approaches related to the kinematic and dynamic analysis, the optimization of the robot`s motion, and modeling of the trajectory generating mechanism of the industrial robots.

  1. ELEMENTS OF KINEMATICS SPECIFIC TO THE JUMP OF THE MALE TRIPLE JUMP EVENT

    Directory of Open Access Journals (Sweden)

    MIHAI ILIE

    2010-12-01

    Full Text Available The quality of results obtained in competitions is based on the use of the most efficient technologies and conducting systems in the sportive training process, all embedded in operational strategies to enable the efficient filtering of the information exchange between coaches and athletes in order to ensure all the resources needed for an optimal monitoring and conveyance training process. The purpose of this study was to examine the kinematic point of view the main technical aspects of specific proof of triple last step - the long jump. Research was conducted on athletes who specialize in thissample, and components of the National Olympic Lot Romanian Athletics Federation. Using kinematic analysis software movement - Dartfish © I obtained a series of kinematic parameters (time, position, angles discussed specific issues in research, processing and interpretation leading to the general conclusion according to which: kinematic analysis of the key features approach specific technical triple last step of the sample by use of IT leads to useful information specific to this test in monitoring technique

  2. Human movement analysis using stereophotogrammetry. Part 4: assessment of anatomical landmark misplacement and its effects on joint kinematics.

    Science.gov (United States)

    Della Croce, Ugo; Leardini, Alberto; Chiari, Lorenzo; Cappozzo, Aurelio

    2005-02-01

    Estimating the effects of different sources of error on joint kinematics is crucial for assessing the reliability of human movement analysis. The goal of the present paper is to review the different approaches dealing with joint kinematics sensitivity to rotation axes and the precision of anatomical landmark determination. Consistent with the previous papers in this series, the review is limited to studies performed with video-based stereophotogrammetric systems. Initially, studies dealing with estimates of precision in determining the location of both palpable and internal anatomical landmarks are reviewed. Next, the effects of anatomical landmark position uncertainty on anatomical frames are shown. Then, methods reported in the literature for estimating error propagation from anatomical axes location to joint kinematics are described. Interestingly, studies carried out using different approaches reported a common conclusion: when joint rotations occur mainly in a single plane, minor rotations out of this plane are strongly affected by errors introduced at the anatomical landmark identification level and are prone to misinterpretation. Finally, attempts at reducing joint kinematics errors due to anatomical landmark position uncertainty are reported. Given the relevance of this source of errors in the determination of joint kinematics, it is the authors' opinion that further efforts should be made in improving the reliability of the joint axes determination.

  3. Inverse kinematic-based robot control

    Science.gov (United States)

    Wolovich, W. A.; Flueckiger, K. F.

    1987-01-01

    A fundamental problem which must be resolved in virtually all non-trivial robotic operations is the well-known inverse kinematic question. More specifically, most of the tasks which robots are called upon to perform are specified in Cartesian (x,y,z) space, such as simple tracking along one or more straight line paths or following a specified surfacer with compliant force sensors and/or visual feedback. In all cases, control is actually implemented through coordinated motion of the various links which comprise the manipulator; i.e., in link space. As a consequence, the control computer of every sophisticated anthropomorphic robot must contain provisions for solving the inverse kinematic problem which, in the case of simple, non-redundant position control, involves the determination of the first three link angles, theta sub 1, theta sub 2, and theta sub 3, which produce a desired wrist origin position P sub xw, P sub yw, and P sub zw at the end of link 3 relative to some fixed base frame. Researchers outline a new inverse kinematic solution and demonstrate its potential via some recent computer simulations. They also compare it to current inverse kinematic methods and outline some of the remaining problems which will be addressed in order to render it fully operational. Also discussed are a number of practical consequences of this technique beyond its obvious use in solving the inverse kinematic question.

  4. Effects of marathon fatigue on running kinematics and economy

    OpenAIRE

    Nicol , Caroline; Komi , P V; Marconnet , P

    1991-01-01

    International audience; The influence of marathon fatigue on both running kinematics and economy was investigated with 8 subjects. The measurements included a treadmill test at 3 steady submaximal speeds performed before and after the marathon. One complete left leg cycle was videotaped at 100 Hz from the left side at each speed. The analysis included contact time (braking and push-off') and flight time as well as displacements and angular velocities of the left hip and knee. This analysis wa...

  5. Integrating concepts and skills: Slope and kinematics graphs

    Science.gov (United States)

    Tonelli, Edward P., Jr.

    The concept of force is a foundational idea in physics. To predict the results of applying forces to objects, a student must be able to interpret data representing changes in distance, time, speed, and acceleration. Comprehension of kinematics concepts requires students to interpret motion graphs, where rates of change are represented as slopes of line segments. Studies have shown that majorities of students who show proficiency with mathematical concepts fail accurately to interpret motion graphs. The primary aim of this study was to examine how students apply their knowledge of slope when interpreting kinematics graphs. To answer the research questions a mixed methods research design, which included a survey and interviews, was adopted. Ninety eight (N=98) high school students completed surveys which were quantitatively analyzed along with qualitative information collected from interviews of students (N=15) and teachers ( N=2). The study showed that students who recalled methods for calculating slopes and speeds calculated slopes accurately, but calculated speeds inaccurately. When comparing the slopes and speeds, most students resorted to calculating instead of visual inspection. Most students recalled and applied memorized rules. Students who calculated slopes and speeds inaccurately failed to recall methods of calculating slopes and speeds, but when comparing speeds, these students connected the concepts of distance and time to the line segments and the rates of change they represented. This study's findings will likely help mathematics and science educators to better assist their students to apply their knowledge of the definition of slope and skills in kinematics concepts.

  6. A moving fluoroscope to capture tibiofemoral kinematics during complete cycles of free level and downhill walking as well as stair descent.

    Directory of Open Access Journals (Sweden)

    Renate List

    Full Text Available Videofluoroscopy has been shown to provide essential information in the evaluation of the functionality of total knee arthroplasties. However, due to the limitation in the field of view, most systems can only assess knee kinematics during highly restricted movements. To avoid the limitations of a static image intensifier, a moving fluoroscope has been presented as a standalone system that allows tracking of the knee during multiple complete cycles of level- and downhill-walking, as well as stair descent, in combination with the synchronous assessment of ground reaction forces and whole body skin marker measurements. Here, we assess the ability of the system to keep the knee in the field of view of the image intensifier. By measuring ten total knee arthroplasty subjects, we demonstrate that it is possible to maintain the knee to within 1.8 ± 1.4 cm vertically and 4.0 ± 2.6 cm horizontally of the centre of the intensifier throughout full cycles of activities of daily living. Since control of the system is based on real-time feedback of a wire sensor, the system is not dependent on repeatable gait patterns, but is rather able to capture pathological motion patterns with low inter-trial repeatability.

  7. A moving fluoroscope to capture tibiofemoral kinematics during complete cycles of free level and downhill walking as well as stair descent.

    Science.gov (United States)

    List, Renate; Postolka, Barbara; Schütz, Pascal; Hitz, Marco; Schwilch, Peter; Gerber, Hans; Ferguson, Stephen J; Taylor, William R

    2017-01-01

    Videofluoroscopy has been shown to provide essential information in the evaluation of the functionality of total knee arthroplasties. However, due to the limitation in the field of view, most systems can only assess knee kinematics during highly restricted movements. To avoid the limitations of a static image intensifier, a moving fluoroscope has been presented as a standalone system that allows tracking of the knee during multiple complete cycles of level- and downhill-walking, as well as stair descent, in combination with the synchronous assessment of ground reaction forces and whole body skin marker measurements. Here, we assess the ability of the system to keep the knee in the field of view of the image intensifier. By measuring ten total knee arthroplasty subjects, we demonstrate that it is possible to maintain the knee to within 1.8 ± 1.4 cm vertically and 4.0 ± 2.6 cm horizontally of the centre of the intensifier throughout full cycles of activities of daily living. Since control of the system is based on real-time feedback of a wire sensor, the system is not dependent on repeatable gait patterns, but is rather able to capture pathological motion patterns with low inter-trial repeatability.

  8. A moving fluoroscope to capture tibiofemoral kinematics during complete cycles of free level and downhill walking as well as stair descent

    Science.gov (United States)

    Postolka, Barbara; Schütz, Pascal; Hitz, Marco; Schwilch, Peter; Gerber, Hans

    2017-01-01

    Videofluoroscopy has been shown to provide essential information in the evaluation of the functionality of total knee arthroplasties. However, due to the limitation in the field of view, most systems can only assess knee kinematics during highly restricted movements. To avoid the limitations of a static image intensifier, a moving fluoroscope has been presented as a standalone system that allows tracking of the knee during multiple complete cycles of level- and downhill-walking, as well as stair descent, in combination with the synchronous assessment of ground reaction forces and whole body skin marker measurements. Here, we assess the ability of the system to keep the knee in the field of view of the image intensifier. By measuring ten total knee arthroplasty subjects, we demonstrate that it is possible to maintain the knee to within 1.8 ± 1.4 cm vertically and 4.0 ± 2.6 cm horizontally of the centre of the intensifier throughout full cycles of activities of daily living. Since control of the system is based on real-time feedback of a wire sensor, the system is not dependent on repeatable gait patterns, but is rather able to capture pathological motion patterns with low inter-trial repeatability. PMID:29016647

  9. Characterizing multisegment foot kinematics during gait in diabetic foot patients

    Directory of Open Access Journals (Sweden)

    Denti Paolo

    2009-10-01

    Full Text Available Abstract Background The prevalence of diabetes mellitus has reached epidemic proportions, this condition may result in multiple and chronic invalidating long term complications. Among these, the diabetic foot, is determined by the simultaneous presence of both peripheral neuropathy and vasculopathy that alter the biomechanics of the foot with the formation of callosity and ulcerations. To diagnose and treat the diabetic foot is crucial to understand the foot complex kinematics. Most of gait analysis protocols represent the entire foot as a rigid body connected to the shank. Nevertheless the existing multisegment models cannot completely decipher the impairments associated with the diabetic foot. Methods A four segment foot and ankle model for assessing the kinematics of the diabetic foot was developed. Ten normal subjects and 10 diabetics gait patterns were collected and major sources of variability were tested. Repeatability analysis was performed both on a normal and on a diabetic subject. Direct skin marker placement was chosen in correspondence of 13 anatomical landmarks and an optoelectronic system was used to collect the data. Results Joint rotation normative bands (mean plus/minus one standard deviation were generated using the data of the control group. Three representative strides per subject were selected. The repeatability analysis on normal and pathological subjects results have been compared with literature and found comparable. Normal and pathological gait have been compared and showed major statistically significant differences in the forefoot and midfoot dorsi-plantarflexion. Conclusion Even though various biomechanical models have been developed so far to study the properties and behaviour of the foot, the present study focuses on developing a methodology for the functional assessment of the foot-ankle complex and for the definition of a functional model of the diabetic neuropathic foot. It is, of course, important to evaluate

  10. The Impact of the Support System’s Kinematic Structure on Selected Kinematic and Dynamic Quantities of an Experimental Crane

    Directory of Open Access Journals (Sweden)

    Trąbka Arkadiusz

    2014-12-01

    Full Text Available This paper presents a comparative analysis of two kinematic structures of the support system (with supports with bilateral and unilateral constraints, which were used in an experimental model of a crane. The computational model was developed by using the ADAMS software. The impact of the kinematic structure of the support system on selected kinematic and dynamic values that were recorded during the slewing motion was analysed. It was found, among other things, that an increased number of degrees of freedom of the support system leads to multiple distortions of time characteristics of kinematic and dynamic quantities.

  11. Advanced parallel strategy for strongly coupled fast transient fluid-structure dynamics with dual management of kinematic constraints

    International Nuclear Information System (INIS)

    Faucher, Vincent

    2014-01-01

    Simulating fast transient phenomena involving fluids and structures in interaction for safety purposes requires both accurate and robust algorithms, and parallel computing to reduce the calculation time for industrial models. Managing kinematic constraints linking fluid and structural entities is thus a key issue and this contribution promotes a dual approach over the classical penalty approach, introducing arbitrary coefficients in the solution. This choice however severely increases the complexity of the problem, mainly due to non-permanent kinematic constraints. An innovative parallel strategy is therefore described, whose performances are demonstrated on significant examples exhibiting the full complexity of the target industrial simulations. (authors)

  12. Kinematic relations in heavy-ion reactions

    International Nuclear Information System (INIS)

    Gippner, P.; Kalpakchieva, R.

    1988-01-01

    The present work gives a short overview of the non-relativistic kinematics of nuclear reactions derived on the basis of the conservation laws of energy and linear momentum. Section 2 contains kinematic relations valid for two-body reactions, sections 3 makes use of these relations to describe sequential fission as a special case of reactions with three particles in the exit channel. It is the aim of this work to comprise the kinematic formulae essential for planning of experiments, data analysis and critical examination of the obtained results. (author)

  13. Kinematic characteristics of tenodesis grasp in C6 quadriplegia.

    Science.gov (United States)

    Mateo, S; Revol, P; Fourtassi, M; Rossetti, Y; Collet, C; Rode, G

    2013-02-01

    Descriptive control case study. To analyze the kinematics of tenodesis grasp in participants with C6 quadriplegia and healthy control participants in a pointing task and two daily life tasks involving a whole hand grip (apple) or a lateral grip (floppy disk). France. Four complete participants with C6 quadriplegia were age matched with four healthy control participants. All participants were right-handed. The measured kinematic parameters were the movement time (MT), the peak velocity (PV), the time of PV (TPV) and the wrist angle in the sagittal plane at movement onset, at the TPV and at the movement end point. The participants with C6 quadriplegia had significantly longer MTs in both prehension tasks. No significant differences in TPV were found between the two groups. Unlike control participants, for both prehension tasks the wrist of participants with C6 quadriplegia was in a neutral position at movement onset, in flexion at the TPV, and in extension at the movement end point. Two main kinematic parameters characterize tenodesis grasp movements in C6 quadriplegics: wrist flexion during reaching and wrist extension during the grasping phase, and increased MT reflecting the time required to adjust the wrist's position to achieve the tenodesis grasp. These characteristics were observed for two different grips (whole hand and lateral grip). These results suggest sequential planning of reaching and tenodesis grasp, and should be taken into account for prehension rehabilitation in patients with quadriplegia.

  14. Linear Dynamics and Control of a Kinematic Wobble–Yoke Stirling Engine

    NARCIS (Netherlands)

    Alvarez–Aguirre, Alejandro; García–Canseco, Eloísa; Scherpen, Jacquelien M.A.

    2010-01-01

    This paper presents a control systems approach for the modeling and control of a kinematic wobble–yoke Stirling engine. The linear dynamics of the Stirling engine are analyzed based on the dynamical model of the system, developed by these authors. We show that the Stirling engine can be viewed as a

  15. Rapid kinematic finite source inversion for Tsunamic Early Warning using high rate GNSS data

    Science.gov (United States)

    Chen, K.; Liu, Z.; Song, Y. T.

    2017-12-01

    Recently, Global Navigation Satellite System (GNSS) has been used for rapid earthquake source inversion towards tsunami early warning. In practice, two approaches, i.e., static finite source inversion based on permanent co-seismic offsets and kinematic finite source inversion using high-rate (>= 1 Hz) co-seismic displacement waveforms, are often employed to fulfill the task. The static inversion is relatively easy to be implemented and does not require additional constraints on rupture velocity, duration, and temporal variation. However, since most GNSS receivers are deployed onshore locating on one side of the subduction fault, there is very limited resolution on near-trench fault slip using GNSS in static finite source inversion. On the other hand, the high-rate GNSS displacement waveforms, which contain the timing information of earthquake rupture explicitly and static offsets implicitly, have the potential to improve near-trench resolution by reconciling with the depth-dependent megathrust rupture behaviors. In this contribution, we assess the performance of rapid kinematic finite source inversion using high-rate GNSS by three selected historical tsunamigenic cases: the 2010 Mentawai, 2011 Tohoku and 2015 Illapel events. With respect to the 2010 Mentawai case, it is a typical tsunami earthquake with most slip concentrating near the trench. The static inversion has little resolution there and incorrectly puts slip at greater depth (>10km). In contrast, the recorded GNSS displacement waveforms are deficit in high-frequency energy, the kinematic source inversion recovers a shallow slip patch (depth less than 6 km) and tsunami runups are predicted quite reasonably. For the other two events, slip from kinematic and static inversion show similar characteristics and comparable tsunami scenarios, which may be related to dense GNSS network and behavior of the rupture. Acknowledging the complexity of kinematic source inversion in real-time, we adopt the back

  16. Hand-Eye Calibration and Inverse Kinematics of Robot Arm using Neural Network

    DEFF Research Database (Denmark)

    Wu, Haiyan; Tizzano, Walter; Andersen, Thomas Timm

    2013-01-01

    Traditional technologies for solving hand-eye calibration and inverse kinematics are cumbersome and time consuming due to the high nonlinearity in the models. An alternative to the traditional approaches is the articial neural network inspired by the remarkable abilities of the animals in dierent...

  17. Kinematic adjustments to seismic recordings

    Energy Technology Data Exchange (ETDEWEB)

    Telegin, A.N.; Levii, N.V.; Volovik, U.M.

    1981-01-01

    The introduction of kinematic adjustments by adding the displaced blocks is studied theoretically and in test seismograms. The advantage to this method resulting from the weight variation in the trace is demonstrated together with its kinematic drawback. A variation on the displaced block addition method that does not involve realignment of the travel time curves and that has improved amplitude characteristics is proposed.

  18. A Soft Parallel Kinematic Mechanism.

    Science.gov (United States)

    White, Edward L; Case, Jennifer C; Kramer-Bottiglio, Rebecca

    2018-02-01

    In this article, we describe a novel holonomic soft robotic structure based on a parallel kinematic mechanism. The design is based on the Stewart platform, which uses six sensors and actuators to achieve full six-degree-of-freedom motion. Our design is much less complex than a traditional platform, since it replaces the 12 spherical and universal joints found in a traditional Stewart platform with a single highly deformable elastomer body and flexible actuators. This reduces the total number of parts in the system and simplifies the assembly process. Actuation is achieved through coiled-shape memory alloy actuators. State observation and feedback is accomplished through the use of capacitive elastomer strain gauges. The main structural element is an elastomer joint that provides antagonistic force. We report the response of the actuators and sensors individually, then report the response of the complete assembly. We show that the completed robotic system is able to achieve full position control, and we discuss the limitations associated with using responsive material actuators. We believe that control demonstrated on a single body in this work could be extended to chains of such bodies to create complex soft robots.

  19. Biquaternions and relativistic kinematics

    International Nuclear Information System (INIS)

    Bogush, A.A.; Kurochkin, Yu.A.; Fedorov, F.I.

    1979-01-01

    The problems concerning the use of quaternion interpretation of the Lorentz group vector parametrization are considered for solving relativistic kinematics problems. A vector theory convenient for describing the characteristic features of the Lobachevsky space is suggested. The kinematics of elementary particle scattering is investigated on the basis of this theory. A synthesis of vector parametrization and of quaternion calculation has been shown to lead to natural formulation of the theory of vectors in the three-dimensional Lobachevsky space, realized on mass hyperboloids of relativistic particles

  20. A projected back-tracking line-search for constrained interactive inverse kinematics

    DEFF Research Database (Denmark)

    Engell-Nørregård, Morten Pol; Erleben, Kenny

    2011-01-01

    Inverse kinematics is the problem of manipulating the pose of an articulated figure in order to achieve a desired goal disregarding inertia and forces. One can approach the problem as a non-linear optimization problem or as non-linear equation solving. The former approach is superior in its...... of joint limits in an interactive solver. This makes it possible to compute the pose in each frame without the discontinuities exhibited by existing key frame animation techniques....

  1. Supra-complete surgery via dual intraoperative visualization approach (DiVA) prolongs patient survival in glioblastoma.

    Science.gov (United States)

    Eyüpoglu, Ilker Y; Hore, Nirjhar; Merkel, Andreas; Buslei, Rolf; Buchfelder, Michael; Savaskan, Nicolai

    2016-05-03

    Safe and complete resection represents the first step in the treatment of glioblastomas and is mandatory in increasing the effectiveness of adjuvant therapy to prolong overall survival. With gross total resection currently limited in extent to MRI contrast enhancing areas, the extent to which supra-complete resection beyond obvious contrast enhancement could have impact on overall survival remains unclear. DiVA (dual intraoperative visualization approach) redefines gross total resection as currently accepted by enabling for the first time supra-complete surgery without compromising patient safety. This approach exploits the advantages of two already accepted surgical techniques combining intraoperative MRI with integrated functional neuronavigation and 5-ALA by integrating them into a single surgical approach. We investigated whether this technique has impact on overall outcome in GBM patients. 105 patients with GBM were included. We achieved complete resection with intraoperative MRI alone according to current best-practice in glioma surgery in 75 patients. 30 patients received surgery with supra-complete resection. The control arm showed a median life expectancy of 14 months, reflecting current standards-of-care and outcome. In contrast, patients receiving supra-complete surgery displayed significant increase in median survival time to 18.5 months with overall survival time correlating directly with extent of supra-complete resection. This extension of overall survival did not come at the cost of neurological deterioration. We show for the first time that supra-complete glioma surgery leads to significant prolongation of overall survival time in GBM patients.

  2. Kinematic source inversions of teleseismic data based on the QUESO library for uncertainty quantification and prediction

    Science.gov (United States)

    Zielke, O.; McDougall, D.; Mai, P. M.; Babuska, I.

    2014-12-01

    One fundamental aspect of seismic hazard mitigation is gaining a better understanding of the rupture process. Because direct observation of the relevant parameters and properties is not possible, other means such as kinematic source inversions are used instead. By constraining the spatial and temporal evolution of fault slip during an earthquake, those inversion approaches may enable valuable insights in the physics of the rupture process. However, due to the underdetermined nature of this inversion problem (i.e., inverting a kinematic source model for an extended fault based on seismic data), the provided solutions are generally non-unique. Here we present a statistical (Bayesian) inversion approach based on an open-source library for uncertainty quantification (UQ) called QUESO that was developed at ICES (UT Austin). The approach has advantages with respect to deterministic inversion approaches as it provides not only a single (non-unique) solution but also provides uncertainty bounds with it. Those uncertainty bounds help to qualitatively and quantitatively judge how well constrained an inversion solution is and how much rupture complexity the data reliably resolve. The presented inversion scheme uses only tele-seismically recorded body waves but future developments may lead us towards joint inversion schemes. After giving an insight in the inversion scheme ifself (based on delayed rejection adaptive metropolis, DRAM) we explore the method's resolution potential. For that, we synthetically generate tele-seismic data, add for example different levels of noise and/or change fault plane parameterization and then apply our inversion scheme in the attempt to extract the (known) kinematic rupture model. We conclude with exemplary inverting real tele-seismic data of a recent large earthquake and compare those results with deterministically derived kinematic source models provided by other research groups.

  3. Obstacle avoidance for kinematically redundant robots using an adaptive fuzzy logic algorithm

    International Nuclear Information System (INIS)

    Beheshti, M.T.H.; Tehrani, A.K.

    1999-05-01

    In this paper the Adaptive Fuzzy Logic approach for solving the inverse kinematics of redundant robots in an environment with obstacles is presented. The obstacles are modeled as convex bodies. A fuzzy rule base that is updated via an adaptive law is used to solve the inverse kinematic problem. Additional rules have been introduced to take care of the obstacles avoidance problem. The proposed method has advantages such as high accuracy, simplicity of computations and generality for all redundant robots. Simulation results illustrate much better tracking performance than the dynamic base solution for a given trajectory in cartesian space, while guaranteeing a collision-free trajectory and observation of a mechanical joint limit

  4. Kinematic approximation in the theory of stimulated nuclear polarization in radical recombination

    International Nuclear Information System (INIS)

    Mikhailov, S.A.; Purtov, P.A.

    1989-01-01

    Within the kinematic approximation, we have developed the theory of stimulated nuclear polarization (SNP) in reactions of geminal recombination of radicals in a strong d.c. magnetic field. We have obtained analytical formulas which are applicable for analysis of SNP effects occurring when the reactions are carried out in nonviscous solutions. The result is represented in the form of integrals with respect to the Green's function determining the kinematics of reagent approach. As an illustration of the proposed theory, we have calculated the polarization of nuclei formed in the reaction products of p-benzoquinone in CD 3 OD and in C 6 D 6 with addition of phenol, and we compare with experiment

  5. Estimating feedforward vs. feedback control of speech production through kinematic analyses of unperturbed articulatory movements.

    Science.gov (United States)

    Kim, Kwang S; Max, Ludo

    2014-01-01

    To estimate the contributions of feedforward vs. feedback control systems in speech articulation, we analyzed the correspondence between initial and final kinematics in unperturbed tongue and jaw movements for consonant-vowel (CV) and vowel-consonant (VC) syllables. If movement extents and endpoints are highly predictable from early kinematic information, then the movements were most likely completed without substantial online corrections (feedforward control); if the correspondence between early kinematics and final amplitude or position is low, online adjustments may have altered the planned trajectory (feedback control) (Messier and Kalaska, 1999). Five adult speakers produced CV and VC syllables with high, mid, or low vowels while movements of the tongue and jaw were tracked electromagnetically. The correspondence between the kinematic parameters peak acceleration or peak velocity and movement extent as well as between the articulators' spatial coordinates at those kinematic landmarks and movement endpoint was examined both for movements across different target distances (i.e., across vowel height) and within target distances (i.e., within vowel height). Taken together, results suggest that jaw and tongue movements for these CV and VC syllables are mostly under feedforward control but with feedback-based contributions. One type of feedback-driven compensatory adjustment appears to regulate movement duration based on variation in peak acceleration. Results from a statistical model based on multiple regression are presented to illustrate how the relative strength of these feedback contributions can be estimated.

  6. The Glasgow-Maastricht foot model, evaluation of a 26 segment kinematic model of the foot.

    Science.gov (United States)

    Oosterwaal, Michiel; Carbes, Sylvain; Telfer, Scott; Woodburn, James; Tørholm, Søren; Al-Munajjed, Amir A; van Rhijn, Lodewijk; Meijer, Kenneth

    2016-01-01

    Accurately measuring of intrinsic foot kinematics using skin mounted markers is difficult, limited in part by the physical dimensions of the foot. Existing kinematic foot models solve this problem by combining multiple bones into idealized rigid segments. This study presents a novel foot model that allows the motion of the 26 bones to be individually estimated via a combination of partial joint constraints and coupling the motion of separate joints using kinematic rhythms. Segmented CT data from one healthy subject was used to create a template Glasgow-Maastricht foot model (GM-model). Following this, the template was scaled to produce subject-specific models for five additional healthy participants using a surface scan of the foot and ankle. Forty-three skin mounted markers, mainly positioned around the foot and ankle, were used to capture the stance phase of the right foot of the six healthy participants during walking. The GM-model was then applied to calculate the intrinsic foot kinematics. Distinct motion patterns where found for all joints. The variability in outcome depended on the location of the joint, with reasonable results for sagittal plane motions and poor results for transverse plane motions. The results of the GM-model were comparable with existing literature, including bone pin studies, with respect to the range of motion, motion pattern and timing of the motion in the studied joints. This novel model is the most complete kinematic model to date. Further evaluation of the model is warranted.

  7. Speed-constrained three-axes attitude control using kinematic steering

    Science.gov (United States)

    Schaub, Hanspeter; Piggott, Scott

    2018-06-01

    Spacecraft attitude control solutions typically are torque-level algorithms that simultaneously control both the attitude and angular velocity tracking errors. In contrast, robotic control solutions are kinematic steering commands where rates are treated as the control variable, and a servo-tracking control subsystem is present to achieve the desired control rates. In this paper kinematic attitude steering controls are developed where an outer control loop establishes a desired angular response history to a tracking error, and an inner control loop tracks the commanded body angular rates. The overall stability relies on the separation principle of the inner and outer control loops which must have sufficiently different response time scales. The benefit is that the outer steering law response can be readily shaped to a desired behavior, such as limiting the approach angular velocity when a large tracking error is corrected. A Modified Rodrigues Parameters implementation is presented that smoothly saturates the speed response. A robust nonlinear body rate servo loop is developed which includes integral feedback. This approach provides a convenient modular framework that makes it simple to interchange outer and inner control loops to readily setup new control implementations. Numerical simulations illustrate the expected performance for an aggressive reorientation maneuver subject to an unknown external torque.

  8. Application of inverse kinematics to [sup 1]H+[sup 23]Na[yields][sup 12]C+[sup 12]C

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, S.J. (School of Physics and Space Research, Birmingham Univ. (United Kingdom)); Clarke, N.M. (School of Physics and Space Research, Birmingham Univ. (United Kingdom)); Freer, M. (School of Physics and Space Research, Birmingham Univ. (United Kingdom)); Fulton, B.R. (School of Physics and Space Research, Birmingham Univ. (United Kingdom)); Hall, S.J. (School of Physics and Space Research, Birmingham Univ. (United Kingdom)); Karban, O. (School of Physics and Space Research, Birmingham Univ. (United Kingdom)); Murgatroyd, J.T. (School of Physics and Space Research, Birmingham Univ. (United Kingdom)); Tungate, G. (School of Physics and Space Research, Birmingham Univ. (United Kingdom)); Gyapong, G.J. (Dept. of Physics, York Univ. (United Kingdom)); Jarvis, N.S. (Dept. of Physics, York Univ. (United Kingdom)); Watson, D.L. (Dept. of Physics, York Univ. (United Kingdom)); Rae, W.D.M. (Dept. of Nuclear Physics, Oxford Univ. (United Kingdom)); Smith, A.E. (Dept. of Nuclear; Charissa Collaboration

    1993-08-15

    Some experimental techniques used in the measurement and analysis of inverse kinematic reactions are described and applied to a kinematically complete study of the [sup 1]H([sup 23]Na, [sup 12]C)[sup 12]C reaction at an incident energy of 180 MeV. An excitation function is obtained for the energy range of 18.5 to 19.2 MeV in [sup 24]Mg*; equivalent to proton energies from 7.1 MeV to 7.8 MeV for the [sup 23]Na(p, [sup 12]C)[sup 12]C reaction. (orig.)

  9. Kinematic Chains in Ski Jumping In-run Posture.

    Science.gov (United States)

    Janurová, Eva; Janura, Miroslav; Cabell, Lee; Svoboda, Zdeněk; Vařeka, Ivan; Elfmark, Milan

    2013-12-18

    The concept of kinematic chains has been systematically applied to biological systems since the 1950s. The course of a ski jump can be characterized as a change between closed and open kinematic chains. The purpose of this study was to determine a relationship between adjacent segments within the ski jumper's body's kinematic chain during the in-run phase of the ski jump. The in-run positions of 267 elite male ski jumpers who participated in the FIS World Cup events in Innsbruck, Austria, between 1992 and 2001 were analyzed (656 jumps). Two-dimensional (2-D) kinematic data were collected from the bodies of the subjects. Relationships between adjacent segments of the kinematic chain in the ski jumper's body at the in-run position are greater nearer the chain's ground contact. The coefficient of determination between the ankle and knee joint angles is 0.67. Changes in the segments' positions in the kinematic chain of the ski jumper's body are stable during longitudinal assessment. Changes in shank and thigh positions, in the sense of increase or decrease, are the same.

  10. The test-retest reliability of anatomical co-ordinate axes definition for the quantification of lower extremity kinematics during running.

    Science.gov (United States)

    Sinclair, Jonathan; Taylor, Paul John; Greenhalgh, Andrew; Edmundson, Christopher James; Brooks, Darrell; Hobbs, Sarah Jane

    2012-12-01

    Three-dimensional (3-D) kinematic analyses are used widely in both sport and clinical examinations. However, this procedure depends on reliable palpation of anatomical landmarks and mal-positioning of markers between sessions may result in improperly defined segment co-ordinate system axes which will produce in-consistent joint rotations. This had led some to question the efficacy of this technique. The aim of the current investigation was to assess the reliability of the anatomical frame definition when quantifying 3-D kinematics of the lower extremities during running. Ten participants completed five successful running trials at 4.0 m·s(-1) ± 5%. 3-D angular joint kinematics parameters from the hip, knee and ankle were collected using an eight camera motion analysis system. Two static calibration trials were captured. The first (test) was conducted prior to the running trials following which anatomical landmarks were removed. The second was obtained following completion of the running trials where anatomical landmarks were re-positioned (retest). Paired samples t-tests were used to compare 3-D kinematic parameters quantified using the two static trials, and intraclass correlations were employed to examine the similarities between the sagittal, coronal and transverse plane waveforms. The results indicate that no significant (p>0.05) differences were found between test and retest 3-D kinematic parameters and strong (R(2)≥0.87) correlations were observed between test and retest waveforms. Based on the results obtained from this investigation, it appears that the anatomical co-ordinate axes of the lower extremities can be defined reliably thus confirming the efficacy of studies using this technique.

  11. Kinematic and kinetic synergies of the lower extremities during the pull in olympic weightlifting.

    Science.gov (United States)

    Kipp, Kristof; Redden, Josh; Sabick, Michelle; Harris, Chad

    2012-07-01

    The purpose of this study was to identify multijoint lower extremity kinematic and kinetic synergies in weightlifting and compare these synergies between joints and across different external loads. Subjects completed sets of the clean exercise at loads equal to 65, 75, and 85% of their estimated 1-RM. Functional data analysis was used to extract principal component functions (PCF's) for hip, knee, and ankle joint angles and moments of force during the pull phase of the clean at all loads. The PCF scores were then compared between joints and across loads to determine how much of each PCF was present at each joint and how it differed across loads. The analyses extracted two kinematic and four kinetic PCF's. The statistical comparisons indicated that all kinematic and two of the four kinetic PCF's did not differ across load, but scaled according to joint function. The PCF's captured a set of joint- and load-specific synergies that quantified biomechanical function of the lower extremity during Olympic weightlifting and revealed important technical characteristics that should be considered in sports training and future research.

  12. Kinematically Optimal Robust Control of Redundant Manipulators

    Science.gov (United States)

    Galicki, M.

    2017-12-01

    This work deals with the problem of the robust optimal task space trajectory tracking subject to finite-time convergence. Kinematic and dynamic equations of a redundant manipulator are assumed to be uncertain. Moreover, globally unbounded disturbances are allowed to act on the manipulator when tracking the trajectory by the endeffector. Furthermore, the movement is to be accomplished in such a way as to minimize both the manipulator torques and their oscillations thus eliminating the potential robot vibrations. Based on suitably defined task space non-singular terminal sliding vector variable and the Lyapunov stability theory, we derive a class of chattering-free robust kinematically optimal controllers, based on the estimation of transpose Jacobian, which seem to be effective in counteracting both uncertain kinematics and dynamics, unbounded disturbances and (possible) kinematic and/or algorithmic singularities met on the robot trajectory. The numerical simulations carried out for a redundant manipulator of a SCARA type consisting of the three revolute kinematic pairs and operating in a two-dimensional task space, illustrate performance of the proposed controllers as well as comparisons with other well known control schemes.

  13. Wave kinematics and response of slender offshore structures. Vol 4: Wave kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Riber, H.J.

    1999-08-01

    The kinematics of large surface waves has been measured by means of sonar's placed on the sea floor at the Tyra field. Measurements from the most severe storm are analysed and extreme wave velocity profiles are compared to Stoke wave velocity profiles. Statistical distributions of crest velocity and wave celerity are presented. The analysis shows how the deviation from the Stokes prediction varies with wave heights and steepness. Analyses of the directional wave field leads to the conclusion that the extreme waves are three-dimensional. It is shown that the peculiar kinematics of extreme waves is of great relevance to the design of jacket type structures. (au)

  14. Kinematic Analysis of Volleyball Attack in the Net Center with Various Types of Take-Off.

    Science.gov (United States)

    Zahálka, František; Malý, Tomáš; Malá, Lucia; Ejem, Miloslav; Zawartka, Marek

    2017-09-01

    The aim of the study was to describe and compare kinematics in two types of execution of attack hit, the goofy approach and regular approach. The research group consisted of players from the Czech Republic's top league (n = 12, age 28.0 ± 4.3 years, body height 196.6 ± 5.6 cm, body mass 89.7 ± 6.7 kg) divided into two groups according to the individual type of approach in the attack. Analysis of movement was performed by 3D kinematics video analysis, space coordinates were calculated by the DLT (Direct Linear Transformation) method together with interpretation software TEMA Bio 2.3 (Image Systems AB, Sweden). The players started their run-up from a distance of about 4 - 4.5 m from the net with similar maximal vertical velocity (2.91 - 2.96 m⋅s -1 ). The trajectory of players with goofy approach seemed to be convenient for the rotation of shoulders and hips in the moment of ball contact. Differences between both groups were observed. Players with a goofy approach had a longer flight phase compared to regularly approaching players.

  15. Inverse kinematics of OWI-535 robotic arm

    OpenAIRE

    DEBENEC, PRIMOŽ

    2015-01-01

    The thesis aims to calculate the inverse kinematics for the OWI-535 robotic arm. The calculation of the inverse kinematics determines the joint parameters that provide the right pose of the end effector. The pose consists of the position and orientation, however, we will focus only on the second one. Due to arm limitations, we have created our own type of the calculation of the inverse kinematics. At first we have derived it only theoretically, and then we have transferred the derivation into...

  16. Rate effects on timing, key velocity, and finger kinematics in piano performance.

    Science.gov (United States)

    Bella, Simone Dalla; Palmer, Caroline

    2011-01-01

    We examined the effect of rate on finger kinematics in goal-directed actions of pianists. In addition, we evaluated whether movement kinematics can be treated as an indicator of personal identity. Pianists' finger movements were recorded with a motion capture system while they performed melodies from memory at different rates. Pianists' peak finger heights above the keys preceding keystrokes increased as tempo increased, and were attained about one tone before keypress. These rate effects were not simply due to a strategy to increase key velocity (associated with tone intensity) of the corresponding keystroke. Greater finger heights may compensate via greater tactile feedback for a speed-accuracy tradeoff that underlies the tendency toward larger temporal variability at faster tempi. This would allow pianists to maintain high temporal accuracy when playing at fast rates. In addition, finger velocity and accelerations as pianists' fingers approached keys were sufficiently unique to allow pianists' identification with a neural-network classifier. Classification success was higher in pianists with more extensive musical training. Pianists' movement "signatures" may reflect unique goal-directed movement kinematic patterns, leading to individualistic sound.

  17. Decoupled Closed-Form Solution for Humanoid Lower Limb Kinematics

    Directory of Open Access Journals (Sweden)

    Alejandro Said

    2015-01-01

    Full Text Available This paper presents an explicit, omnidirectional, analytical, and decoupled closed-form solution for the lower limb kinematics of the humanoid robot NAO. The paper starts by decoupling the position and orientation analysis from the overall Denavit-Hartenberg (DH transformation matrices. Here, the joint activation sequence for the DH matrices is based on the geometry of a triangle. Furthermore, the implementation of a forward and a reversed kinematic analysis for the support and swing phase equations is developed to avoid matrix inversion. The allocation of constant transformations allows the position and orientation end-coordinate systems to be aligned with each other. Also, the redefinition of the DH transformations and the use of constraints allow decoupling the shared DOF between the legs and the torso. Finally, a geometric approach to avoid the singularities during the walking process is indicated. Numerical data is presented along with an experimental implementation to prove the validity of the analytical results.

  18. In vivo six-degree-of-freedom knee-joint kinematics in overground and treadmill walking following total knee arthroplasty.

    Science.gov (United States)

    Guan, Shanyuanye; Gray, Hans A; Schache, Anthony G; Feller, Julian; de Steiger, Richard; Pandy, Marcus G

    2017-08-01

    No data are available to describe six-degree-of-freedom (6-DOF) knee-joint kinematics for one complete cycle of overground walking following total knee arthroplasty (TKA). The aims of this study were firstly, to measure 6-DOF knee-joint kinematics and condylar motion for overground walking following TKA; and secondly, to determine whether such data differed between overground and treadmill gait when participants walked at the same speed during both tasks. A unique mobile biplane X-ray imaging system enabled accurate measurement of 6-DOF TKA knee kinematics during overground walking by simultaneously tracking and imaging the joint. The largest rotations occurred for flexion-extension and internal-external rotation whereas the largest translations were associated with joint distraction and anterior-posterior drawer. Strong associations were found between flexion-extension and adduction-abduction (R 2  = 0.92), joint distraction (R 2  = 1.00), and anterior-posterior translation (R 2  = 0.77), providing evidence of kinematic coupling in the TKA knee. Although the measured kinematic profiles for overground walking were grossly similar to those for treadmill walking, several statistically significant differences were observed between the two conditions with respect to temporo-spatial parameters, 6-DOF knee-joint kinematics, and condylar contact locations and sliding. Thus, caution is advised when making recommendations regarding knee implant performance based on treadmill-measured knee-joint kinematic data. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1634-1643, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  19. 2nd Conference on Interdisciplinary Applications in Kinematics

    CERN Document Server

    Flores, Francisco

    2015-01-01

    This book collects a number of important contributions presented during the Second Conference on Interdisciplinary Applications of Kinematics (IAK 2013) held in Lima, Peru. The conference brought together scientists from several research fields, such as computational kinematics, multibody systems, industrial machines, robotics, biomechanics, mechatronics, computational chemistry, and vibration analysis, and embraced all key aspects of kinematics, namely, theoretical methods, modeling, optimization, experimental validation, industrial applications, and design. Kinematics is an exciting area of computational mechanics and plays  a central role in a great variety of fields and industrial applications nowadays. Apart from research in pure kinematics, the field deals with problems of practical relevance that need to be solved in an interdisciplinary manner in order for new technologies to develop. The results presented in this book should be of interest for practicing and research engineers as well as Ph.D. stud...

  20. Landslide Kinematical Analysis through Inverse Numerical Modelling and Differential SAR Interferometry

    Science.gov (United States)

    Castaldo, R.; Tizzani, P.; Lollino, P.; Calò, F.; Ardizzone, F.; Lanari, R.; Guzzetti, F.; Manunta, M.

    2015-11-01

    The aim of this paper is to propose a methodology to perform inverse numerical modelling of slow landslides that combines the potentialities of both numerical approaches and well-known remote-sensing satellite techniques. In particular, through an optimization procedure based on a genetic algorithm, we minimize, with respect to a proper penalty function, the difference between the modelled displacement field and differential synthetic aperture radar interferometry (DInSAR) deformation time series. The proposed methodology allows us to automatically search for the physical parameters that characterize the landslide behaviour. To validate the presented approach, we focus our analysis on the slow Ivancich landslide (Assisi, central Italy). The kinematical evolution of the unstable slope is investigated via long-term DInSAR analysis, by exploiting about 20 years of ERS-1/2 and ENVISAT satellite acquisitions. The landslide is driven by the presence of a shear band, whose behaviour is simulated through a two-dimensional time-dependent finite element model, in two different physical scenarios, i.e. Newtonian viscous flow and a deviatoric creep model. Comparison between the model results and DInSAR measurements reveals that the deviatoric creep model is more suitable to describe the kinematical evolution of the landslide. This finding is also confirmed by comparing the model results with the available independent inclinometer measurements. Our analysis emphasizes that integration of different data, within inverse numerical models, allows deep investigation of the kinematical behaviour of slow active landslides and discrimination of the driving forces that govern their deformation processes.

  1. Constraint Study for a Hand Exoskeleton: Human Hand Kinematics and Dynamics

    Directory of Open Access Journals (Sweden)

    Fai Chen Chen

    2013-01-01

    Full Text Available In the last few years, the number of projects studying the human hand from the robotic point of view has increased rapidly, due to the growing interest in academic and industrial applications. Nevertheless, the complexity of the human hand given its large number of degrees of freedom (DoF within a significantly reduced space requires an exhaustive analysis, before proposing any applications. The aim of this paper is to provide a complete summary of the kinematic and dynamic characteristics of the human hand as a preliminary step towards the development of hand devices such as prosthetic/robotic hands and exoskeletons imitating the human hand shape and functionality. A collection of data and constraints relevant to hand movements is presented, and the direct and inverse kinematics are solved for all the fingers as well as the dynamics; anthropometric data and dynamics equations allow performing simulations to understand the behavior of the finger.

  2. Kinematic Identification of Parallel Mechanisms by a Divide and Conquer Strategy

    DEFF Research Database (Denmark)

    Durango, Sebastian; Restrepo, David; Ruiz, Oscar

    2010-01-01

    using the inverse calibration method. The identification poses are selected optimizing the observability of the kinematic parameters from a Jacobian identification matrix. With respect to traditional identification methods the main advantages of the proposed Divide and Conquer kinematic identification...... strategy are: (i) reduction of the kinematic identification computational costs, (ii) improvement of the numerical efficiency of the kinematic identification algorithm and, (iii) improvement of the kinematic identification results. The contributions of the paper are: (i) The formalization of the inverse...... calibration method as the Divide and Conquer strategy for the kinematic identification of parallel symmetrical mechanisms and, (ii) a new kinematic identification protocol based on the Divide and Conquer strategy. As an application of the proposed kinematic identification protocol the identification...

  3. Reliable sagittal plane kinematic gait assessments are feasible using low-cost webcam technology.

    Science.gov (United States)

    Saner, Robert J; Washabaugh, Edward P; Krishnan, Chandramouli

    2017-07-01

    Three-dimensional (3-D) motion capture systems are commonly used for gait analysis because they provide reliable and accurate measurements. However, the downside of this approach is that it is expensive and requires technical expertise; thus making it less feasible in the clinic. To address this limitation, we recently developed and validated (using a high-precision walking robot) a low-cost, two-dimensional (2-D) real-time motion tracking approach using a simple webcam and LabVIEW Vision Assistant. The purpose of this study was to establish the repeatability and minimal detectable change values of hip and knee sagittal plane gait kinematics recorded using this system. Twenty-one healthy subjects underwent two kinematic assessments while walking on a treadmill at a range of gait velocities. Intraclass correlation coefficients (ICC) and minimal detectable change (MDC) values were calculated for commonly used hip and knee kinematic parameters to demonstrate the reliability of the system. Additionally, Bland-Altman plots were generated to examine the agreement between the measurements recorded on two different days. The system demonstrated good to excellent reliability (ICC>0.75) for all the gait parameters tested on this study. The MDC values were typically low (gait assessments using webcam technology can be reliably used for clinical and research purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Sex differences in lower extremity kinematics and patellofemoral kinetics during running.

    Science.gov (United States)

    Almonroeder, Thomas G; Benson, Lauren C

    2017-08-01

    The incidence of patellofemoral pain (PFP) is 2 times greater in females compared with males of similar activity levels; however, the exact reason for this discrepancy remains unclear. Abnormal mechanics of the hip and knee in the sagittal, frontal, and transverse planes have been associated with an increased risk of PFP. The purpose of this study was to compare the mechanics of the lower extremity in males and females during running in order to better understand the reason(s) behind the sex discrepancy in PFP. Three-dimensional kinematic and kinetic data were collected as male and female participants completed overground running trials at a speed of 4.0 m · s -1 (±5%). Patellofemoral joint stress (PFJS) was estimated using a sagittal plane knee model. The kinematics of the hip and knee in the frontal and transverse planes were also analysed. Male participants demonstrated significantly greater sagittal plane peak PFJS in comparison with the female participants (P < .001, ES = 1.9). However, the female participants demonstrated 3.5° greater peak hip adduction and 3.4° greater peak hip internal rotation (IR). As a result, it appears that the sex discrepancy in PFP is more likely to be related to differences in the kinematics of the hip in the frontal and transverse planes than differences in sagittal plane PFJS.

  5. Development of Calculation Algorithm for ECCS Kinematic Shock

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Chan; Yoon, Duk-Joo; Ha, Sang-Jun [KHNP-CRI, Daejeon (Korea, Republic of)

    2014-10-15

    The void fraction of inverted U-pipes in front of SI(Safety Injection) pumps impact on the pipe system of ECCS(Emergency Core Cooling Systems). This phenomena is called as 'Kinematic Shock'. The purpose of this paper is to achieve the more exactly calculation when the kinematic shock is calculated by simplified equation. The behavior of the void packet of the ECCS pipes is illustrated by the simplified (other name is kinematic shock equation).. The kinematic shock is defined as the depth of total length of void clusters in the pipes of ECCS when the void cluster is continually reached along the part of pipes in vertical direction. In this paper, the simplified equation is evaluated by comparing calculation error each other.]. The more exact methods of calculating the depth of the kinematic shock in ECCS is achieved. The error of kinematic shock calculation is strongly depended on the calculation search gap and the order of Taylor's expansion. From this study, to select the suitable search gap and the suitable calculation order, differential root method, secant method, and Taylor's expansion form are compared one another.

  6. 21st Century Kinematics : The 2012 NSF Workshop

    CERN Document Server

    2013-01-01

    21st Century Kinematics focuses on algebraic problems in the analysis and synthesis of mechanisms and robots, compliant mechanisms, cable-driven systems and protein kinematics. The specialist contributors provide the background for a series of presentations at the 2012 NSF Workshop. The text shows how the analysis and design of innovative mechanical systems yield increasingly complex systems of polynomials, characteristic of those systems. In doing so, takes advantage of increasingly sophisticated computational tools developed for numerical algebraic geometry and demonstrates the now routine derivation of polynomial systems dwarfing the landmark problems of even the recent past. The 21st Century Kinematics workshop echoes the NSF-supported 1963 Yale Mechanisms Teachers Conference that taught a generation of university educators the fundamental principles of kinematic theory. As such these proceedings will be provide admirable supporting theory for a graduate course in modern kinematics and should be of consid...

  7. Laparoscopic complete mesocolic excision via combined medial and cranial approaches for transverse colon cancer.

    Science.gov (United States)

    Mori, Shinichiro; Kita, Yoshiaki; Baba, Kenji; Yanagi, Masayuki; Tanabe, Kan; Uchikado, Yasuto; Kurahara, Hiroshi; Arigami, Takaaki; Uenosono, Yoshikazu; Mataki, Yuko; Okumura, Hiroshi; Nakajo, Akihiro; Maemura, Kosei; Natsugoe, Shoji

    2017-05-01

    To evaluate the safety and feasibility of laparoscopic complete mesocolic excision via combined medial and cranial approaches with three-dimensional visualization around the gastrocolic trunk and middle colic vessels for transverse colon cancer. We evaluated prospectively collected data of 30 consecutive patients who underwent laparoscopic complete mesocolic excision between January 2010 and December 2015, 6 of whom we excluded, leaving 24 for the analysis. We assessed the completeness of excision, operative data, pathological findings, length of large bowel resected, complications, length of hospital stay, and oncological outcomes. Complete mesocolic excision completeness was graded as the mesocolic and intramesocolic planes in 21 and 3 patients, respectively. Eleven, two, eight, and three patients had T1, T2, T3, and T4a tumors, respectively; none had lymph node metastases. A mean of 18.3 lymph nodes was retrieved, and a mean of 5.4 lymph nodes was retrieved around the origin of the MCV. The mean large bowel length was 21.9 cm, operative time 274 min, intraoperative blood loss 41 mL, and length of hospital stay 15 days. There were no intraoperative and two postoperative complications. Our procedure for laparoscopic complete mesocolic excision via combined medial and cranial approaches is safe and feasible for transverse colon cancer.

  8. Kinematic evolution of the Mbakop Pan-African granitoids (western Cameroon domain): An integrated AMS and EBSD approach

    Science.gov (United States)

    Bella Nké, B. E.; Njanko, T.; Mamtani, M. A.; Njonfang, E.; Rochette, P.

    2018-06-01

    This study integrates anisotropy of magnetic susceptibility, microstructural and crystallographic preferred orientation (CPO) data from the Mbakop granitic pluton (MGP; Pan-African age) in order to decipher its kinematic evolution. The MGP lies close to NE-SW branch of Central Cameroon Shear Zone (CCSZ) and is emplaced in gneissic basement. High mean magnetic susceptibility and presence of multi-domain magnetite are recorded. Quartz CPO measured using Electron Backscatter diffraction reveals dominance of rhomb , prism and prism slip in different samples, which is consistent with microstructures developed under upper greenschist/amphibolite facies conditions. Quartz CPO along with other kinematic indicators (feldspar porphyroclasts/mineral fish) indicate non-coaxial deformation was important during tectonic evolution of the MGP. Contrasting sense of shear is recorded implying multi-stage mylonitization in the Western Cameroon Domain. Top-towards-south sense of shear is related to regional D2 deformation (613-585 Ma), while top-towards-north is related to D3 (585-540 Ma). The magnetic fabric in MGP records D3. The obliquity between mean orientation of magnetic foliation (N12°E) and the NE-SW CCSZ branch (N48°E) gives kinematic vorticity number of 0.95. This indicates dominantly simple shear with a minor pure shear component. It is concluded that regional transpression was important during MGP emplacement.

  9. Static and kinematic formulation of planar reciprocal assemblies

    DEFF Research Database (Denmark)

    Parigi, Dario; Sassone, Mario; Kirkegaard, Poul Henning

    2014-01-01

    Planar reciprocal frames are two dimensional structures formed by elements joined together according to the principle of structural reciprocity. In this paper a rigorous formulation of the static and kinematic problem is proposed and developed extending the theory of pin-jointed assemblies....... This formulation is used to evaluate the static and kinematic determinacy of reciprocal assemblies from the properties of their equilibrium and kinematic matrices...

  10. Kinematics of self-initiated and reactive karate punches.

    Science.gov (United States)

    Martinez de Quel, Oscar; Bennett, Simon J

    2014-03-01

    This study investigated whether within-task expertise affects the reported asymmetry in execution time exhibited in reactive and self-initiated movements. Karate practitioners and no-karate practitioners were compared performing a reverse punch in reaction to an external stimulus or following the intention to produce a response (self-initiated). The task was completed following the presentation of a specific (i.e., life-size image of opponent) or general stimulus and in the presence of click trains or white noise. Kinematic analyses indicated reactive movement had shorter time to peak velocity and movement time, as well as greater accuracy than self-initiated movement. These differences were independent of participant skill level although peak velocity was higher in the karate practice group than in the no-karate practice group. Reaction time (RT) of skilled participants was facilitated by a specific stimulus. There was no effect on RT or kinematic variables of the different type of auditory cues. The results of this study indicate that asymmetry in execution time of reactive and self-initiated movement holds irrespective of within-task expertise and stimulus specificity. This could have implications for training of sports and/or relearning of tasks that require rapid and accurate movements to intercept/contact a target.

  11. Comparison of step-by-step kinematics in repeated 30m sprints in female soccer players.

    Science.gov (United States)

    van den Tillaar, Roland

    2018-01-04

    The aim of this study was to compare kinematics in repeated 30m sprints in female soccer players. Seventeen subjects performed seven 30m sprints every 30s in one session. Kinematics were measured with an infrared contact mat and laser gun, and running times with an electronic timing device. The main findings were that sprint times increased in the repeated sprint ability test. The main changes in kinematics during the repeated sprint ability test were increased contact time and decreased step frequency, while no change in step length was observed. The step velocity increased in almost each step until the 14, which occurred around 22m. After this, the velocity was stable until the last step, when it decreased. This increase in step velocity was mainly caused by the increased step length and decreased contact times. It was concluded that the fatigue induced in repeated 30m sprints in female soccer players resulted in decreased step frequency and increased contact time. Employing this approach in combination with a laser gun and infrared mat for 30m makes it very easy to analyse running kinematics in repeated sprints in training. This extra information gives the athlete, coach and sports scientist the opportunity to give more detailed feedback and help to target these changes in kinematics better to enhance repeated sprint performance.

  12. Vibration-Based Adaptive Novelty Detection Method for Monitoring Faults in a Kinematic Chain

    Directory of Open Access Journals (Sweden)

    Jesus Adolfo Cariño-Corrales

    2016-01-01

    Full Text Available This paper presents an adaptive novelty detection methodology applied to a kinematic chain for the monitoring of faults. The proposed approach has the premise that only information of the healthy operation of the machine is initially available and fault scenarios will eventually develop. This approach aims to cover some of the challenges presented when condition monitoring is applied under a continuous learning framework. The structure of the method is divided into two recursive stages: first, an offline stage for initialization and retraining of the feature reduction and novelty detection modules and, second, an online monitoring stage to continuously assess the condition of the machine. Contrary to classical static feature reduction approaches, the proposed method reformulates the features by employing first a Laplacian Score ranking and then the Fisher Score ranking for retraining. The proposed methodology is validated experimentally by monitoring the vibration measurements of a kinematic chain driven by an induction motor. Two faults are induced in the motor to validate the method performance to detect anomalies and adapt the feature reduction and novelty detection modules to the new information. The obtained results show the advantages of employing an adaptive approach for novelty detection and feature reduction making the proposed method suitable for industrial machinery diagnosis applications.

  13. Reproducibility of 3D kinematics and surface electromyography measurements of mastication.

    Science.gov (United States)

    Remijn, Lianne; Groen, Brenda E; Speyer, Renée; van Limbeek, Jacques; Nijhuis-van der Sanden, Maria W G

    2016-03-01

    The aim of this study was to determine the measurement reproducibility for a procedure evaluating the mastication process and to estimate the smallest detectable differences of 3D kinematic and surface electromyography (sEMG) variables. Kinematics of mandible movements and sEMG activity of the masticatory muscles were obtained over two sessions with four conditions: two food textures (biscuit and bread) of two sizes (small and large). Twelve healthy adults (mean age 29.1 years) completed the study. The second to the fifth chewing cycle of 5 bites were used for analyses. The reproducibility per outcome variable was calculated with an intraclass correlation coefficient (ICC) and a Bland-Altman analysis was applied to determine the standard error of measurement relative error of measurement and smallest detectable differences of all variables. ICCs ranged from 0.71 to 0.98 for all outcome variables. The outcome variables consisted of four bite and fourteen chewing cycle variables. The relative standard error of measurement of the bite variables was up to 17.3% for 'time-to-swallow', 'time-to-transport' and 'number of chewing cycles', but ranged from 31.5% to 57.0% for 'change of chewing side'. The relative standard error of measurement ranged from 4.1% to 24.7% for chewing cycle variables and was smaller for kinematic variables than sEMG variables. In general, measurements obtained with 3D kinematics and sEMG are reproducible techniques to assess the mastication process. The duration of the chewing cycle and frequency of chewing were the best reproducible measurements. Change of chewing side could not be reproduced. The published measurement error and smallest detectable differences will aid the interpretation of the results of future clinical studies using the same study variables. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Comparison of Two- and Three-Dimensional Methods for Analysis of Trunk Kinematic Variables in the Golf Swing.

    Science.gov (United States)

    Smith, Aimée C; Roberts, Jonathan R; Wallace, Eric S; Kong, Pui; Forrester, Stephanie E

    2016-02-01

    Two-dimensional methods have been used to compute trunk kinematic variables (flexion/extension, lateral bend, axial rotation) and X-factor (difference in axial rotation between trunk and pelvis) during the golf swing. Recent X-factor studies advocated three-dimensional (3D) analysis due to the errors associated with two-dimensional (2D) methods, but this has not been investigated for all trunk kinematic variables. The purpose of this study was to compare trunk kinematic variables and X-factor calculated by 2D and 3D methods to examine how different approaches influenced their profiles during the swing. Trunk kinematic variables and X-factor were calculated for golfers from vectors projected onto the global laboratory planes and from 3D segment angles. Trunk kinematic variable profiles were similar in shape; however, there were statistically significant differences in trunk flexion (-6.5 ± 3.6°) at top of backswing and trunk right-side lateral bend (8.7 ± 2.9°) at impact. Differences between 2D and 3D X-factor (approximately 16°) could largely be explained by projection errors introduced to the 2D analysis through flexion and lateral bend of the trunk and pelvis segments. The results support the need to use a 3D method for kinematic data calculation to accurately analyze the golf swing.

  15. Kinematics gait disorder in men with fibromyalgia.

    Science.gov (United States)

    Heredia-Jimenez, Jose M; Soto-Hermoso, Victor M

    2014-01-01

    The aim of this study was to assess the kinematics disorder of gait in men with fibromyalgia. We studied 12 male with fibromyalgia and 14 healthy men. Each participant of the study walked five trials along a 18.6-m walkway. Fibromyalgia patients completed a Spanish version of Fibromyalgia Impact Questionnaire. Significant differences between fibromyalgia and control groups were found in velocity, stride length, and cadence. Gait parameters of men affected by fibromyalgia were impaired when compared to those of healthy group due to bradykinesia. According to previous studies to assess gait variables in female patients, the male with fibromyalgia also showed lower values of velocity, cadence, and stride length than healthy group but not reported significant differences in swing, stance, single, or double support phase.

  16. Kinematically Decoupled Cores in Dwarf (Elliptical) Galaxies

    NARCIS (Netherlands)

    Toloba, E.; Peletier, R. F.; Guhathakurta, P.; van de Ven, G.; Boissier, S.; Boselli, A.; Brok, M. d.; Falcón-Barroso, J.; Hensler, G.; Janz, J.; Laurikainen, E.; Lisker, T.; Paudel, S.; Ryś, A.; Salo, H.

    An overview is given of what we know about the frequency of kinematically decoupled cores in dwarf elliptical galaxies. New observations show that kinematically decoupled cores happen just as often in dwarf elliptical as in ordinary early-type galaxies. This has important consequences for the

  17. Validation and structural analysis of the kinematics concept test

    Directory of Open Access Journals (Sweden)

    A. Lichtenberger

    2017-04-01

    Full Text Available The kinematics concept test (KCT is a multiple-choice test designed to evaluate students’ conceptual understanding of kinematics at the high school level. The test comprises 49 multiple-choice items about velocity and acceleration, which are based on seven kinematic concepts and which make use of three different representations. In the first part of this article we describe the development and the validation process of the KCT. We applied the KCT to 338 Swiss high school students who attended traditional teaching in kinematics. We analyzed the response data to provide the psychometric properties of the test. In the second part we present the results of a structural analysis of the test. An exploratory factor analysis of 664 student answers finally uncovered the seven kinematics concepts as factors. However, the analysis revealed a hierarchical structure of concepts. At the higher level, mathematical concepts group together, and then split up into physics concepts at the lower level. Furthermore, students who seem to understand a concept in one representation have difficulties transferring the concept to similar problems in another representation. Both results have implications for teaching kinematics. First, teaching mathematical concepts beforehand might be beneficial for learning kinematics. Second, instructions have to be designed to teach students the change between different representations.

  18. Validation and structural analysis of the kinematics concept test

    Science.gov (United States)

    Lichtenberger, A.; Wagner, C.; Hofer, S. I.; Stern, E.; Vaterlaus, A.

    2017-06-01

    The kinematics concept test (KCT) is a multiple-choice test designed to evaluate students' conceptual understanding of kinematics at the high school level. The test comprises 49 multiple-choice items about velocity and acceleration, which are based on seven kinematic concepts and which make use of three different representations. In the first part of this article we describe the development and the validation process of the KCT. We applied the KCT to 338 Swiss high school students who attended traditional teaching in kinematics. We analyzed the response data to provide the psychometric properties of the test. In the second part we present the results of a structural analysis of the test. An exploratory factor analysis of 664 student answers finally uncovered the seven kinematics concepts as factors. However, the analysis revealed a hierarchical structure of concepts. At the higher level, mathematical concepts group together, and then split up into physics concepts at the lower level. Furthermore, students who seem to understand a concept in one representation have difficulties transferring the concept to similar problems in another representation. Both results have implications for teaching kinematics. First, teaching mathematical concepts beforehand might be beneficial for learning kinematics. Second, instructions have to be designed to teach students the change between different representations.

  19. Validation and Structural Analysis of the Kinematics Concept Test

    Science.gov (United States)

    Lichtenberger, A.; Wagner, C.; Hofer, S. I.; Stem, E.; Vaterlaus, A.

    2017-01-01

    The kinematics concept test (KCT) is a multiple-choice test designed to evaluate students' conceptual understanding of kinematics at the high school level. The test comprises 49 multiple-choice items about velocity and acceleration, which are based on seven kinematic concepts and which make use of three different representations. In the first part…

  20. Increased Seat Dump Angle in a Manual Wheelchair Is Associated With Changes in Thoracolumbar Lordosis and Scapular Kinematics During Propulsion.

    Science.gov (United States)

    Cloud, Beth A; Zhao, Kristin D; Ellingson, Arin M; Nassr, Ahmad; Windebank, Anthony J; An, Kai-Nan

    2017-10-01

    To quantify and compare spinal curvature and shoulder kinematics throughout the manual wheelchair (MWC) propulsion cycle for individuals with spinal cord injury (SCI) who were seated at 2 different seat dump angles. Single-group, repeated-measures study. Academic medical center. Individuals (N=28) with SCI or spinal cord disease who used MWCs completed a telephone screening, and 21 of them were eligible and completed the study. Participants' personal MWCs were modified to have seat dump angles of 0° or 14°, with a vertical backrest. Participants completed at least 3 propulsion cycles in each condition, during which spine and shoulder motion data were collected with fiberoptic and electromagnetic sensors, respectively. Thoracolumbar spinal curvature, glenohumeral kinematics, and scapulothoracic kinematics at the start of push (SP), mid-push (MP), end of push (EP), and mid-recovery. Participants had significantly less lordosis in the 14° condition for all propulsion events. Median differences ranged from 2.0° to 4.6°. Lordosis differences were more pronounced in those with low SCI. Scapulothoracic internal rotation was increased in the 14° condition at SP and MP (mean differences, 2.5° and 2.7°, respectively). Relative downward rotation increased in the 14° condition at SP and MP (mean differences, 2.4° and 2.1°, respectively). Scapulothoracic differences were more pronounced in those with high SCI. No glenohumeral rotations were significantly different between the conditions. Scapulothoracic kinematics and spinal curvature differences during propulsion may be associated with the position of other body segments or postural stability. Because no differences were observed at the glenohumeral joint, the risk of subacromial impingement may not be affected by this seat angle change. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  1. Differences between kinematic synergies and muscle synergies during two-digit grasping

    Directory of Open Access Journals (Sweden)

    Michele eTagliabue

    2015-03-01

    Full Text Available The large number of mechanical degrees of freedom of the hand is not fully exploited during actual movements such as grasping. Usually, angular movements in various joints tend to be coupled, and EMG activities in different hand muscles tend to be correlated. The occurrence of covariation in the former was termed kinematic synergies, in the latter muscle synergies. This study addresses two questions: (i Whether kinematic and muscle synergies can simultaneously accommodate for kinematic and kinetic constraints. (ii If so, whether there is an interrelation between kinematic and muscle synergies. We used a reach-grasp-and-pull paradigm and recorded the hand kinematics as well as 8 surface EMGs. Subjects had to either perform a precision grip or side grip and had to modify their grip force in order to displace an object against a low or high load. The analysis was subdivided into three epochs: reach, grasp-and-pull, and static hold. Principal component analysis (PCA, temporal or static was performed separately for all three epochs, in the kinematic and in the EMG domain. PCA revealed that (i Kinematic- and muscle-synergies can simultaneously accommodate kinematic (grip type and kinetic task constraints (load condition. (ii Upcoming grip and load conditions of the grasp are represented in kinematic- and muscle-synergies already during reach. Phase plane plots of the principal muscle-synergy against the principal kinematic synergy revealed (iii that the muscle-synergy is linked (correlated, and in phase advance to the kinematic synergy during reach and during grasp-and-pull. Furthermore (iv, pair-wise correlations of EMGs during hold suggest that muscle-synergies are (in part implemented by coactivation of muscles through common input. Together, these results suggest that kinematic synergies have (at least in part their origin not just in muscular activation, but in synergiestic muscle activation. In short: kinematic synergies may result from muscle

  2. Rate effects on timing, key velocity, and finger kinematics in piano performance.

    Directory of Open Access Journals (Sweden)

    Simone Dalla Bella

    Full Text Available We examined the effect of rate on finger kinematics in goal-directed actions of pianists. In addition, we evaluated whether movement kinematics can be treated as an indicator of personal identity. Pianists' finger movements were recorded with a motion capture system while they performed melodies from memory at different rates. Pianists' peak finger heights above the keys preceding keystrokes increased as tempo increased, and were attained about one tone before keypress. These rate effects were not simply due to a strategy to increase key velocity (associated with tone intensity of the corresponding keystroke. Greater finger heights may compensate via greater tactile feedback for a speed-accuracy tradeoff that underlies the tendency toward larger temporal variability at faster tempi. This would allow pianists to maintain high temporal accuracy when playing at fast rates. In addition, finger velocity and accelerations as pianists' fingers approached keys were sufficiently unique to allow pianists' identification with a neural-network classifier. Classification success was higher in pianists with more extensive musical training. Pianists' movement "signatures" may reflect unique goal-directed movement kinematic patterns, leading to individualistic sound.

  3. Objective classification of scapular kinematics in participants with movement faults of the scapula on clinical assessment.

    Science.gov (United States)

    Warner, Martin B; Whatling, Gemma; Worsley, Peter R; Mottram, Sarah; Chappell, Paul H; Holt, Catherine A; Stokes, Maria J

    2015-01-01

    The aim of this study was to assess the potential of employing a classification tool to objectively classify participants with clinically assessed movement faults (MFs) of the scapula. Six participants with a history of shoulder pain with MFs of the scapula and 12 healthy participants with no movement faults (NMFs) performed a flexion movement control test of the scapula, while scapular kinematic data were collected. Principal component scores and discrete kinematic variables were used as input into a classifier. Five out of the six participants with a history of pain were successfully classified as having scapular MFs with an accuracy of 72%. Variables related to the upward rotation of the scapula had the most influence on the classification. The results of the study demonstrate the potential of adopting a multivariate approach in objective classification of participants with altered scapular kinematics in pathological groups.

  4. Force generation of bio-inspired hover kinematics

    NARCIS (Netherlands)

    Vandenheede, R.B.R.; Bernal, L.P.; Morrison, C.L.; Humbert, S.

    2012-01-01

    This paper presents the results of an experimental study of the aerodynamics of an elliptical flap plate wing in pitch-plunge motion. Several wing motion kinematics are derived from the kinematics of the Agrius Convolvuli (hawk moth) in hover. The experiments are conducted at a Reynolds number of 4,

  5. A Novel Algorithm for the Generation of Distinct Kinematic Chain

    Science.gov (United States)

    Medapati, Sreenivasa Reddy; Kuchibhotla, Mallikarjuna Rao; Annambhotla, Balaji Srinivasa Rao

    2016-07-01

    Generation of distinct kinematic chains is an important topic in the design of mechanisms for various industrial applications i.e., robotic manipulator, tractor, crane etc. Many researchers have intently focused on this area and explained various processes of generating distinct kinematic chains which are laborious and complex. It is desirable to enumerate the kinematic chains systematically to know the inherent characteristics of a chain related to its structure so that all the distinct chains can be analyzed in depth, prior to the selection of a chain for a purpose. This paper proposes a novel and simple method with set of rules defined to eliminate isomorphic kinematic chains generating distinct kinematic chains. Also, this method simplifies the process of generating distinct kinematic chains even at higher levels i.e., 10-link, 11-link with single and multiple degree of freedom.

  6. Exploring the Origin of Kinematically Irregular Galaxies with MaNGA

    Science.gov (United States)

    Stark, David Vincent; Bundy, Kevin; Westfall, Kyle; Bershady, Matthew; Cheung, Edmond; Soler, Juan; Brinchmann, Jarle; Abraham, Roberto; Bizyaev, Dmitry; Masters, Karen; Weijmans, Anne-Marie; Chen, Yanmei; Jin, Yifei; Drory, Niv; Lopes, Alexandre Roman; Law, David

    2018-01-01

    Deviations from normal rotation in galaxies may have a number of potential drivers, including tidal interactions, gas inflows/outflows, spiral structure, bar/oval distortions, or other internally generated instabilities. Thanks to new massive IFU surveys like MaNGA, we can now characterize the gas and stellar kinematics of thousands of galaxies in the local universe, enabling statistical analyses on the frequency of disturbed kinematics, their origin, and their impact on their host galaxies. We present a census of kinematics in MaNGA using a modified version of the Radon transform to map radial variations in kinematic position angles (PA). We discuss the frequency of kinematically irregular disks, and describe commonly observed patterns in radial PA profiles. In order to constrain the drivers of these kinematic signatures, we analyze how they correlate with galaxy mass, environment, star formation history, and gas-phase metallicity.

  7. Multiobjective Optimum Design of a 3-RRR Spherical Parallel Manipulator with Kinematic and Dynamic Dexterities

    DEFF Research Database (Denmark)

    Wu, Guanglei

    2012-01-01

    parameters of the spherical parallel manipulator. The proposed approach is illustrated with the optimum design of a special spherical parallel manipulator with unlimited rolling motion. The corresponding optimization problem aims to maximize the kinematic and dynamic dexterities over its regular shaped...

  8. Relationship Between Kinematic and Physiological Indices During Braking Events of Different Intensities.

    Science.gov (United States)

    Musicant, Oren; Botzer, Assaf; Laufer, Ilan; Collet, Christian

    2018-05-01

    Objective To study the relationship between physiological indices and kinematic indices during braking events of different intensities. Background Based on mental workload theory, driving and other task demands may generate changes in physiological indices, such as the driver's heart rate and skin conductance. However, no attempts were made to associate changes in physiological indices with changes in vehicle kinematics that result from the driver attempts to meet task demands. Method Twenty-five drivers participated in a field experiment. We manipulated braking demands using roadside signs to communicate the speed (km/h) before braking (50 or 60) and the target speed for braking (30 or to a complete stop). In an additional session, we asked drivers to brake as if they were responding to an impending collision. We analyzed the relationship between the intensities of braking events as measured by deceleration values (g) and changes in heart rate, heart rate variability, and skin conductance. Results All physiological indices were associated with deceleration intensity. Especially salient were the differences in physiological indices between the intensive (|g| > 0.5) and nonintensive braking events. The strongest relationship was between braking intensity and skin conductance. Conclusions Skin conductance, heart rate, and heart rate variability can mirror the mental workload elicited by varying braking intensities. Application Associating vehicle kinematics with physiological indices related to short-term driving events may help improve the performance of driver assistance systems.

  9. Chiral quark model with relativistic kinematics

    International Nuclear Information System (INIS)

    Garcilazo, H.; Valcarce, A.

    2003-01-01

    The nonstrange baryon spectrum is studied within a three-body model that incorporates relativistic kinematics. We found that the combined effect of relativistic kinematics together with the pion exchange between quarks is able to reverse the order of the first positive- and negative-parity nucleon excited states as observed experimentally. Including the chiral partner of the pion (the σ meson) leads to an overall good description of the spectrum

  10. Chiral quark model with relativistic kinematics

    OpenAIRE

    Garcilazo, H.; Valcarce, A.

    2003-01-01

    The non-strange baryon spectrum is studied within a three-body model that incorporates relativistic kinematics. We found that the combined effect of relativistic kinematics together with the pion exchange between quarks is able to reverse the order of the first positive- and negative-parity nucleon excited states as observed experimentally. Including the chiral partner of the pion (the $\\sigma$ meson) leads to an overall good description of the spectrum.

  11. Spectral gaps, inertial manifolds and kinematic dynamos

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Manuel [Departamento de Analisis Matematico, Universidad de Valladolid, 47005 Valladolid (Spain)]. E-mail: mnjmhd@am.uva.es

    2005-10-17

    Inertial manifolds are desirable objects when ones wishes a dynamical process to behave asymptotically as a finite-dimensional ones. Recently [Physica D 194 (2004) 297] these manifolds are constructed for the kinematic dynamo problem with time-periodic velocity. It turns out, however, that the conditions imposed on the fluid velocity to guarantee the existence of inertial manifolds are too demanding, in the sense that they imply that all the solutions tend exponentially to zero. The inertial manifolds are meaningful because they represent different decay rates, but the classical dynamos where the magnetic field is maintained or grows are not covered by this approach, at least until more refined estimates are found.

  12. Algorithm for Solution of Direct Kinematic Problem of Multi-sectional Manipulator with Parallel Structure

    Directory of Open Access Journals (Sweden)

    A. L. Lapikov

    2014-01-01

    Full Text Available The article is aimed at creating techniques to study multi-sectional manipulators with parallel structure. To solve this task the analysis in the field concerned was carried out to reveal both advantages and drawbacks of such executive mechanisms and main problems to be encountered in the course of research. The work shows that it is inefficient to create complete mathematical models of multisectional manipulators, which in the context of solving a direct kinematic problem are to derive a functional dependence of location and orientation of the end effector on all the generalized coordinates of the mechanism. The structure of multisectional manipulators was considered, where the sections are platform manipulators of parallel kinematics with six degrees of freedom. The paper offers an algorithm to define location and orientation of the end effector of the manipulator by means of iterative solution of analytical equation of the moving platform plane for each section. The equation for the unknown plane is derived using three points, which are attachment points of the moving platform joints. To define the values of joint coordinates a system of nine non-linear equations is completed. It is necessary to mention that for completion of the equation system are used the equations with the same type of non-linearity. The physical sense of all nine equations of the system is Euclidean distance between the points of the manipulator. The result of algorithm execution is a matrix of homogenous transformation for each section. The correlations describing transformations between adjoining sections of the manipulator are given. An example of the mechanism consisting of three sections is examined. The comparison of theoretical calculations with results obtained on a 3D-prototype is made. The next step of the work is to conduct research activities both in the field of dynamics of platform parallel kinematics manipulators with six degrees of freedom and in the

  13. The Kinematic Learning Model using Video and Interfaces Analysis

    Science.gov (United States)

    Firdaus, T.; Setiawan, W.; Hamidah, I.

    2017-09-01

    An educator currently in demand to apply the learning to not be separated from the development of technology. Educators often experience difficulties when explaining kinematics material, this is because kinematics is one of the lessons that often relate the concept to real life. Kinematics is one of the courses of physics that explains the cause of motion of an object, Therefore it takes the thinking skills and analytical skills in understanding these symptoms. Technology is one that can bridge between conceptual relationship with real life. A framework of technology-based learning models has been developed using video and interfaces analysis on kinematics concept. By using this learning model, learners will be better able to understand the concept that is taught by the teacher. This learning model is able to improve the ability of creative thinking, analytical skills, and problem-solving skills on the concept of kinematics.

  14. Kinematic design considerations for minimally invasive surgical robots: an overview.

    Science.gov (United States)

    Kuo, Chin-Hsing; Dai, Jian S; Dasgupta, Prokar

    2012-06-01

    Kinematic design is a predominant phase in the design of robotic manipulators for minimally invasive surgery (MIS). However, an extensive overview of the kinematic design issues for MIS robots is not yet available to both mechanisms and robotics communities. Hundreds of archival reports and articles on robotic systems for MIS are reviewed and studied. In particular, the kinematic design considerations and mechanism development described in the literature for existing robots are focused on. The general kinematic design goals, design requirements, and design preferences for MIS robots are defined. An MIS-specialized mechanism, namely the remote center-of-motion (RCM) mechanism, is revisited and studied. Accordingly, based on the RCM mechanism types, a classification for MIS robots is provided. A comparison between eight different RCM types is given. Finally, several open challenges for the kinematic design of MIS robotic manipulators are discussed. This work provides a detailed survey of the kinematic design of MIS robots, addresses the research opportunity in MIS robots for kinematicians, and clarifies the kinematic point of view to MIS robots as a reference for the medical community. Copyright © 2012 John Wiley & Sons, Ltd.

  15. A dynamical systems analysis of the kinematics of time-periodic vortex shedding past a circular cylinder

    Science.gov (United States)

    Ottino, Julio M.

    1991-01-01

    Computer flow simulation aided by dynamical systems analysis is used to investigate the kinematics of time-periodic vortex shedding past a two-dimensional circular cylinder in the context of the following general questions: (1) Is a dynamical systems viewpoint useful in the understanding of this and similar problems involving time-periodic shedding behind bluff bodies; and (2) Is it indeed possible, by adopting such a point of view, to complement previous analyses or to understand kinematical aspects of the vortex shedding process that somehow remained hidden in previous approaches. We argue that the answers to these questions are positive. Results are described.

  16. Kinematic analysis of a posterior-stabilized knee prosthesis.

    Science.gov (United States)

    Zhao, Zhi-Xin; Wen, Liang; Qu, Tie-Bing; Hou, Li-Li; Xiang, Dong; Bin, Jia

    2015-01-20

    The goal of total knee arthroplasty (TKA) is to restore knee kinematics. Knee prosthesis design plays a very important role in successful restoration. Here, kinematics models of normal and prosthetic knees were created and validated using previously published data. Computed tomography and magnetic resonance imaging scans of a healthy, anticorrosive female cadaver were used to establish a model of the entire lower limbs, including the femur, tibia, patella, fibula, distal femur cartilage, and medial and lateral menisci, as well as the anterior cruciate, posterior cruciate, medial collateral, and lateral collateral ligaments. The data from the three-dimensional models of the normal knee joint and a posterior-stabilized (PS) knee prosthesis were imported into finite element analysis software to create the final kinematic model of the TKA prosthesis, which was then validated by comparison with a previous study. The displacement of the medial/lateral femur and the internal rotation angle of the tibia were analyzed during 0-135° flexion. Both the output data trends and the measured values derived from the normal knee's kinematics model were very close to the results reported in a previous in vivo study, suggesting that this model can be used for further analyses. The PS knee prosthesis underwent an abnormal forward displacement compared with the normal knee and has insufficient, or insufficiently aggressive, "rollback" compared with the lateral femur of the normal knee. In addition, a certain degree of reverse rotation occurs during flexion of the PS knee prosthesis. There were still several differences between the kinematics of the PS knee prosthesis and a normal knee, suggesting room for improving the design of the PS knee prosthesis. The abnormal kinematics during early flexion shows that the design of the articular surface played a vital role in improving the kinematics of the PS knee prosthesis.

  17. Kinematic Analysis of a Posterior-stabilized Knee Prosthesis

    Directory of Open Access Journals (Sweden)

    Zhi-Xin Zhao

    2015-01-01

    Full Text Available Background: The goal of total knee arthroplasty (TKA is to restore knee kinematics. Knee prosthesis design plays a very important role in successful restoration. Here, kinematics models of normal and prosthetic knees were created and validated using previously published data. Methods: Computed tomography and magnetic resonance imaging scans of a healthy, anticorrosive female cadaver were used to establish a model of the entire lower limbs, including the femur, tibia, patella, fibula, distal femur cartilage, and medial and lateral menisci, as well as the anterior cruciate, posterior cruciate, medial collateral, and lateral collateral ligaments. The data from the three-dimensional models of the normal knee joint and a posterior-stabilized (PS knee prosthesis were imported into finite element analysis software to create the final kinematic model of the TKA prosthesis, which was then validated by comparison with a previous study. The displacement of the medial/lateral femur and the internal rotation angle of the tibia were analyzed during 0-135° flexion. Results: Both the output data trends and the measured values derived from the normal knee′s kinematics model were very close to the results reported in a previous in vivo study, suggesting that this model can be used for further analyses. The PS knee prosthesis underwent an abnormal forward displacement compared with the normal knee and has insufficient, or insufficiently aggressive, "rollback" compared with the lateral femur of the normal knee. In addition, a certain degree of reverse rotation occurs during flexion of the PS knee prosthesis. Conclusions: There were still several differences between the kinematics of the PS knee prosthesis and a normal knee, suggesting room for improving the design of the PS knee prosthesis. The abnormal kinematics during early flexion shows that the design of the articular surface played a vital role in improving the kinematics of the PS knee prosthesis.

  18. Kinematic Analysis of a Posterior-stabilized Knee Prosthesis

    Science.gov (United States)

    Zhao, Zhi-Xin; Wen, Liang; Qu, Tie-Bing; Hou, Li-Li; Xiang, Dong; Bin, Jia

    2015-01-01

    Background: The goal of total knee arthroplasty (TKA) is to restore knee kinematics. Knee prosthesis design plays a very important role in successful restoration. Here, kinematics models of normal and prosthetic knees were created and validated using previously published data. Methods: Computed tomography and magnetic resonance imaging scans of a healthy, anticorrosive female cadaver were used to establish a model of the entire lower limbs, including the femur, tibia, patella, fibula, distal femur cartilage, and medial and lateral menisci, as well as the anterior cruciate, posterior cruciate, medial collateral, and lateral collateral ligaments. The data from the three-dimensional models of the normal knee joint and a posterior-stabilized (PS) knee prosthesis were imported into finite element analysis software to create the final kinematic model of the TKA prosthesis, which was then validated by comparison with a previous study. The displacement of the medial/lateral femur and the internal rotation angle of the tibia were analyzed during 0–135° flexion. Results: Both the output data trends and the measured values derived from the normal knee's kinematics model were very close to the results reported in a previous in vivo study, suggesting that this model can be used for further analyses. The PS knee prosthesis underwent an abnormal forward displacement compared with the normal knee and has insufficient, or insufficiently aggressive, “rollback” compared with the lateral femur of the normal knee. In addition, a certain degree of reverse rotation occurs during flexion of the PS knee prosthesis. Conclusions: There were still several differences between the kinematics of the PS knee prosthesis and a normal knee, suggesting room for improving the design of the PS knee prosthesis. The abnormal kinematics during early flexion shows that the design of the articular surface played a vital role in improving the kinematics of the PS knee prosthesis. PMID:25591565

  19. Kinematic mounting systems for NSLS beamlines and experiments

    International Nuclear Information System (INIS)

    Oversluizen, T.; Stoeber, W.; Johnson, E.D.

    1991-01-01

    Methods for kinematically mounting equipment are well established, but applications at synchrotron radiation facilities are subject to constraints not always encountered in more traditional laboratory settings. Independent position adjustment of beamline components can have significant benefits in terms of minimizing time spent aligning, and maximizing time spent acquiring data. In this paper, we use examples taken from beamlines at the NSLS to demonstrate approaches for optimization of the reproducibility, stability, excursion, and set-up time for various situations. From our experience, we extract general principles which we hope will be useful for workers at other synchrotron radiation facilities. 7 refs., 4 figs

  20. SPACEBAR: Kinematic design by computer graphics

    Science.gov (United States)

    Ricci, R. J.

    1975-01-01

    The interactive graphics computer program SPACEBAR, conceived to reduce the time and complexity associated with the development of kinematic mechanisms on the design board, was described. This program allows the direct design and analysis of mechanisms right at the terminal screen. All input variables, including linkage geometry, stiffness, and applied loading conditions, can be fed into or changed at the terminal and may be displayed in three dimensions. All mechanism configurations can be cycled through their range of travel and viewed in their various geometric positions. Output data includes geometric positioning in orthogonal coordinates of each node point in the mechanism, velocity and acceleration of the node points, and internal loads and displacements of the node points and linkages. All analysis calculations take at most a few seconds to complete. Output data can be viewed at the scope and also printed at the discretion of the user.

  1. Kinematic Analysis of Continuum Robot Consisted of Driven Flexible Rods

    Directory of Open Access Journals (Sweden)

    Yingzhong Tian

    2016-01-01

    Full Text Available This paper presents the kinematic analysis of a continuum bionic robot with three flexible actuation rods. Since the motion of the end-effector is actuated by the deformation of the rods, the robot structure is with high elasticity and good compliance and the kinematic analysis of the robot requires special treatment. We propose a kinematic model based on the geometry with constant curvature. The analysis consists of two independent mappings: a general mapping for the kinematics of all robots and a specific mapping for this kind of robots. Both of those mappings are developed for the single section and for the multisections. We aim at providing a guide for kinematic analysis of the similar manipulators through this paper.

  2. Shoulder and Scapular Kinematics during the Windmill Softball Pitch

    OpenAIRE

    Backus, Sherry I.; Kraszewski, Andrew; Kontaxis, Andreas; Gibbons, Mandi; Bido, Jennifer; Graziano, Jessica; Hafer, Jocelyn; Jones, Kristofer J.; Hillstrom, Howard; Fealy, Stephen

    2013-01-01

    Objectives: Pitch count has been studied extensively in the overhand throwing athlete. However, pitch count and fatigue have not been systematically evaluated in the female windmill (underhand) throwing athlete. Direct kinematic measurements of the glenohumeral and scapulo-thoracic joint have not to be correlated and determined. The purpose is to measure scapular kinematics for the high school female windmill softball pitcher and identify kinematic adaptions and changes in pitching performanc...

  3. Heavy baryon spectroscopy with relativistic kinematics

    International Nuclear Information System (INIS)

    Valcarce, A.; Garcilazo, H.; Vijande, J.

    2014-01-01

    We present a comparative Faddeev study of heavy baryon spectroscopy with nonrelativistic and relativistic kinematics. We show results for different standard hyperfine interactions with both kinematics in an attempt to learn about the light quark dynamics. We highlight the properties of particular states accessible in nowadays laboratories that would help in discriminating between different dynamical models. The advance in the knowledge of light quark dynamics is a key tool for the understanding of the existence of exotic hadrons.

  4. Kinematic and neuromuscular relationships between lower extremity clinical movement assessments.

    Science.gov (United States)

    Mauntel, Timothy C; Cram, Tyler R; Frank, Barnett S; Begalle, Rebecca L; Norcross, Marc F; Blackburn, J Troy; Padua, Darin A

    2018-06-01

    Lower extremity injuries have immediate and long-term consequences. Lower extremity movement assessments can assist with identifying individuals at greater injury risk and guide injury prevention interventions. Movement assessments identify similar movement characteristics and evidence suggests large magnitude kinematic relationships exist between movement patterns observed across assessments; however, the magnitude of the relationships for electromyographic (EMG) measures across movement assessments remains largely unknown. This study examined relationships between lower extremity kinematic and EMG measures during jump landings and single leg squats. Lower extremity three-dimensional kinematic and EMG data were sampled from healthy adults (males = 20, females = 20) during the movement assessments. Pearson correlations examined the relationships of the kinematic and EMG measures and paired samples t-tests compared mean kinematic and EMG measures between the assessments. Overall, significant moderate correlations were observed for lower extremity kinematic (r avg  = 0.41, r range  = 0.10-0.61) and EMG (r avg  = 0.47, r range  = 0.32-0.80) measures across assessments. Kinematic and EMG measures were greater during the jump landings. Jump landings and single leg squats place different demands on the body and necessitate different kinematic and EMG patterns, such that these measures are not highly correlated between assessments. Clinicians should, therefore, use multiple assessments to identify aberrant movement and neuromuscular control patterns so that comprehensive interventions can be implemented.

  5. Swimming and cycling overloaded training in triathlon has no effect on running kinematics and economy.

    Science.gov (United States)

    Palazzetti, S; Margaritis, I; Guezennec, C Y

    2005-04-01

    The aim of the study was to verify whether an overloaded training (OT) in triathlon deteriorates running kinematics (RK) and running economy (RE). Thirteen well-trained male long-distance triathletes (age: 28.1 +/- 4.3 yrs; V.O (2max): 65.0 +/- 3.1 ml O (2) . min (-1) . kg (-1)) were divided into two groups: completed an individualized OT program (OG; n = 7) or maintained a normal level of training (NT) (CG; n = 6) for a duration of 3 weeks. Every week, each triathlete completed a standardized questionnaire to quantify the influence of training loads on mood state. To reach OT, total training load (h . 3 wk (-1)) was increased by 24 %; swimming and cycling total volumes were increased by 46 and 57 %, respectively, but the distance run was not modified in order to limit the risk of injuries. RK and RE were determined on treadmill test at 12 km . h (-1) before and after the 3 weeks. The 3-week swimming and cycling OT in triathlon was sufficiently stressful to alter mood state but not to deteriorate the running kinematics and economy parameters in our previously well-trained male long-distance triathletes.

  6. Inverse kinematics of a dual linear actuator pitch/roll heliostat

    Science.gov (United States)

    Freeman, Joshua; Shankar, Balakrishnan; Sundaram, Ganesh

    2017-06-01

    This work presents a simple, computationally efficient inverse kinematics solution for a pitch/roll heliostat using two linear actuators. The heliostat design and kinematics have been developed, modeled and tested using computer simulation software. A physical heliostat prototype was fabricated to validate the theoretical computations and data. Pitch/roll heliostats have numerous advantages including reduced cost potential and reduced space requirements, with a primary disadvantage being the significantly more complicated kinematics, which are solved here. Novel methods are applied to simplify the inverse kinematics problem which could be applied to other similar problems.

  7. Modeling neutrino-induced charged pion production on water at T2K kinematics

    Science.gov (United States)

    Nikolakopoulos, A.; González-Jiménez, R.; Niewczas, K.; Sobczyk, J.; Jachowicz, N.

    2018-05-01

    Pion production is a significant component of the signal in accelerator-based neutrino experiments. Over the last years, the MiniBooNE, T2K, and MINERvA collaborations have reported a substantial amount of data on (anti)neutrino-induced pion production on the nucleus. However, a comprehensive and consistent description of the whole data set is still missing. We aim at improving the current understanding of neutrino-induced pion production on the nucleus. To this end, the comparison of experimental data with theoretical predictions, preferably based on microscopic models, is essential to disentangle the different reaction mechanisms involved in the process. To describe single-pion production, we use a hybrid model that combines low- and a high-energy approaches. The low-energy model contains resonances and background terms. At high invariant masses, a high-energy model based on a Regge approach is employed. The model is implemented in the nucleus using the relativistic plane wave impulse approximation (RPWIA). We present a comparison of the hybrid-RPWIA and low-energy model with the recent neutrino-induced charged-current 1 π+ -production cross section on water reported by T2K. In order to judge the impact of final-state interactions (FSI), we confront our results with those of the nuwro Monte Carlo generator. The hybrid-RPWIA model and nuwro results compare favorably to the data, albeit that FSI are not included in the former. The need of a high-energy model at T2K kinematics is made clear. These results complement our previous work [Phys. Rev. D 97, 013004 (2018), 10.1103/PhysRevD.97.013004], in which we compared the models to the MINERvA and MiniBooNE 1 π+ data. The hybrid-RPWIA model tends to overpredict both the T2K and MINERvA data in kinematic regions where the largest suppression due to FSI is expected and agrees remarkably well with the data in other kinematic regions. On the contrary, the MiniBooNE data are underpredicted over the whole kinematic range.

  8. Interactive cervical motion kinematics: sensitivity, specificity and clinically significant values for identifying kinematic impairments in patients with chronic neck pain.

    Science.gov (United States)

    Sarig Bahat, Hilla; Chen, Xiaoqi; Reznik, David; Kodesh, Einat; Treleaven, Julia

    2015-04-01

    Chronic neck pain has been consistently shown to be associated with impaired kinematic control including reduced range, velocity and smoothness of cervical motion, that seem relevant to daily function as in quick neck motion in response to surrounding stimuli. The objectives of this study were: to compare interactive cervical kinematics in patients with neck pain and controls; to explore the new measures of cervical motion accuracy; and to find the sensitivity, specificity, and optimal cutoff values for defining impaired kinematics in those with neck pain. In this cross-section study, 33 patients with chronic neck pain and 22 asymptomatic controls were assessed for their cervical kinematic control using interactive virtual reality hardware and customized software utilizing a head mounted display with built-in head tracking. Outcome measures included peak and mean velocity, smoothness (represented by number of velocity peaks (NVP)), symmetry (represented by time to peak velocity percentage (TTPP)), and accuracy of cervical motion. Results demonstrated significant and strong effect-size differences in peak and mean velocities, NVP and TTPP in all directions excluding TTPP in left rotation, and good effect-size group differences in 5/8 accuracy measures. Regression results emphasized the high clinical value of neck motion velocity, with very high sensitivity and specificity (85%-100%), followed by motion smoothness, symmetry and accuracy. These finding suggest cervical kinematics should be evaluated clinically, and screened by the provided cut off values for identification of relevant impairments in those with neck pain. Such identification of presence or absence of kinematic impairments may direct treatment strategies and additional evaluation when needed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Kinematic Hardening: Characterization, Modeling and Impact on Springback Prediction

    International Nuclear Information System (INIS)

    Alves, J. L.; Bouvier, S.; Jomaa, M.; Billardon, R.; Oliveira, M. C.; Menezes, L. F.

    2007-01-01

    The constitutive modeling of the materials' mechanical behavior, usually carried out using a phenomenological constitutive model, i.e., a yield criterion associated to the isotropic and kinematic hardening laws, is of paramount importance in the FEM simulation of the sheet metal forming processes, as well as in the springback prediction. Among others, the kinematic behavior of the yield surface plays an essential role, since it is indispensable to describe the Bauschinger effect, i.e., the materials' answer to the multiple tension-compression cycles to which material points are submitted during the forming process. Several laws are usually used to model and describe the kinematic hardening, namely: a) the Prager's law, which describes a linear evolution of the kinematic hardening with the plastic strain rate tensor b) the Frederick-Armstrong non-linear kinematic hardening, basically a non-linear law with saturation; and c) a more advanced physically-based law, similar to the previous one but sensitive to the strain path changes. In the present paper a mixed kinematic hardening law (linear + non-linear behavior) is proposed and its implementation into a static fully-implicit FE code is described. The material parameters identification for sheet metals using different strategies, and the classical Bauschinger loading tests (i.e. in-plane forward and reverse monotonic loading), are addressed, and their impact on springback prediction evaluated. Some numerical results concerning the springback prediction of the Numisheet'05 Benchmark no. 3 are briefly presented to emphasize the importance of a correct modeling and identification of the kinematic hardening behavior

  10. IDENTIFYING THE YOUNG LOW-MASS STARS WITHIN 25 pc. II. DISTANCES, KINEMATICS, AND GROUP MEMBERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Shkolnik, Evgenya L. [Lowell Observatory, 1400 W. Mars Hill Road, Flagstaff, AZ 86001 (United States); Anglada-Escude, Guillem [Institut fuer Astrophysik, Universitaet Goettingen, Friedrich-Hund-Platz 1, D-37077 Goettingen (Germany); Liu, Michael C.; Bowler, Brendan P. [Institute for Astronomy, University of Hawaii at Manoa 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Weinberger, Alycia J.; Boss, Alan P. [Department of Terrestrial Magnetism, Carnegie Institution for Science, 5241 Broad Branch Road, NW, Washington, DC 20015 (United States); Reid, I. Neill [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Tamura, Motohide, E-mail: shkolnik@lowell.edu [National Astronomical Observatory of Japan, Tokyo (Japan)

    2012-10-10

    We have conducted a kinematic study of 165 young M dwarfs with ages of {approx}<300 Myr. Our sample is composed of stars and brown dwarfs with spectral types ranging from K7 to L0, detected by ROSAT and with photometric distances of {approx}<25 pc assuming that the stars are single and on the main sequence. In order to find stars kinematically linked to known young moving groups (YMGs), we measured radial velocities for the complete sample with Keck and CFHT optical spectroscopy and trigonometric parallaxes for 75 of the M dwarfs with the CAPSCam instrument on the du Pont 2.5 m Telescope. Due to their youthful overluminosity and unresolved binarity, the original photometric distances for our sample underestimated the distances by 70% on average, excluding two extremely young ({approx}<3 Myr) objects found to have distances beyond a few hundred parsecs. We searched for kinematic matches to 14 reported YMGs and identified 10 new members of the AB Dor YMG and 2 of the Ursa Majoris group. Additional possible candidates include six Castor, four Ursa Majoris, two AB Dor members, and one member each of the Her-Lyr and {beta} Pic groups. Our sample also contains 27 young low-mass stars and 4 brown dwarfs with ages {approx}<150 Myr that are not associated with any known YMG. We identified an additional 15 stars that are kinematic matches to one of the YMGs, but the ages from spectroscopic diagnostics and/or the positions on the sky do not match. These warn against grouping stars together based only on kinematics and that a confluence of evidence is required to claim that a group of stars originated from the same star-forming event.

  11. DIDACTIC AUTOMATED STATION OF COMPLEX KINEMATICS

    Directory of Open Access Journals (Sweden)

    Mariusz Sosnowski

    2014-03-01

    Full Text Available The paper presents the design, control system and software that controls the automated station of complex kinematics. Control interface and software has been developed and manufactured in the West Pomeranian University of Technology in Szczecin in the Department of Automated Manufacturing Systems Engineering and Quality. Conducting classes designed to teach programming and design of structures and systems for monitoring the robot kinematic components with non-standard structures was the reason for installation of the control system and software.

  12. Kinematical coincidence method in transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Acosta, L.; Amorini, F. [INFN—Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Auditore, L. [INFN Gruppo Collegato di Messina and Dipartimento di Fisica, Università di Messina (Italy); Berceanu, I. [Institute for Physics and Nuclear Engineering, Bucharest (Romania); Cardella, G., E-mail: cardella@ct.infn.it [INFN—Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Chatterjiee, M.B. [Saha Institute for Nuclear Physics, Kolkata (India); De Filippo, E. [INFN—Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Francalanza, L.; Gianì, R. [INFN—Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia, Catania (Italy); Grassi, L. [INFN—Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Rudjer Boskovic Institute, Zagreb (Croatia); Grzeszczuk, A. [Institut of Physics, University of Silesia, Katowice (Poland); La Guidara, E. [INFN—Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Centro Siciliano di Fisica Nucleare e Struttura della Materia, Catania (Italy); Lanzalone, G. [INFN—Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Facoltà di Ingegneria e Architettura, Università Kore, Enna (Italy); Lombardo, I. [INFN—Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Dipartimento di Scienze Fisiche, Università Federico II and INFN Sezione di Napoli (Italy); Loria, D.; Minniti, T. [INFN Gruppo Collegato di Messina and Dipartimento di Fisica, Università di Messina (Italy); Pagano, E.V. [INFN—Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia, Catania (Italy); and others

    2013-07-01

    A new method to extract high resolution angular distributions from kinematical coincidence measurements in binary reactions is presented. Kinematics is used to extract the center of mass angular distribution from the measured energy spectrum of light particles. Results obtained in the case of {sup 10}Be+p→{sup 9}Be+d reaction measured with the CHIMERA detector are shown. An angular resolution of few degrees in the center of mass is obtained. The range of applicability of the method is discussed.

  13. An adaptive inverse kinematics algorithm for robot manipulators

    Science.gov (United States)

    Colbaugh, R.; Glass, K.; Seraji, H.

    1990-01-01

    An adaptive algorithm for solving the inverse kinematics problem for robot manipulators is presented. The algorithm is derived using model reference adaptive control (MRAC) theory and is computationally efficient for online applications. The scheme requires no a priori knowledge of the kinematics of the robot if Cartesian end-effector sensing is available, and it requires knowledge of only the forward kinematics if joint position sensing is used. Computer simulation results are given for the redundant seven-DOF robotics research arm, demonstrating that the proposed algorithm yields accurate joint angle trajectories for a given end-effector position/orientation trajectory.

  14. Kinematic top analyses at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Grassmann, H.; CDF Collaboration

    1995-03-01

    We present an update of the top quark analysis using kinematic techniques in p{bar p} collisions at {radical}s = 1.8 TeV with the Collider Detector at Fermilab (CDF). We reported before on a study which used 19.3 pb{sup {minus}1} of data from the 1992--1993 collider run, but now we use a larger data sample of 67 pb{sup {minus}1}. First, we analyze the total transverse energy of the hard collision in W+{ge}3 jet events, showing the likely presence of a t{bar t} component in the event sample. Next, we compare in more detail the kinematic structure of W+ {ge}3 jet events with expectations for top pair production and with background processes, predominantly direct W+ jet production. We again find W+ {ge} 3 jet events which cannot be explained in terms of background, but show kinematic features as expected from top. These events also show evidence for beauty quarks, in agreement with expectations from top, but not compatible with expectations from backgrounds. The findings confirm the observation of top events made earlier in the data of the 1992--1993 collider run.

  15. Kinematics and duty cycles of the SM-229 force-reflecting servomanipulator

    International Nuclear Information System (INIS)

    Stoughton, R.S.

    1986-02-01

    This report describes the first known experimental study of servomanipulator duty cycles to appear in the literature. The servomanipulator used was TeleOperator Systems Model SM-229. The experimental approach used was to record the joint positions and motor currents of the right slave arm at a rate of 10 Hz over about 50 h of typical remote manipulation operations. The results are presented as position usage patterns in joint and real-world coordinates, time-use histograms of joint velocities and motor currents, and three-dimensional mechanical power histograms for each joint. All results are presented in dimensionless form, scaled to the design ranges of the manipulator and the total operation time recorded. Applications of this study include improvements in kinematic ranges, gear reductions, motor sizings, drive configurations, and stress relief. Included in appendices are an uncertainty analysis, calibration procedures, and analysis of the kinematics of the manipulator. 12 refs., 42 figs., 15 tabs

  16. Analysis of the Kinematics and Compliance of a Passive Suspension System using Adams Car

    Directory of Open Access Journals (Sweden)

    N. Ikhsan

    2015-06-01

    Full Text Available The experimental approach is usually used as the way to develop or modify a suspension system to obtain maximum ride comfort and handling characteristics. This approach is a time-consuming process, costly, and may not guarantee the optimum solution. Thus, to avoid this, a virtual vehicle suspension system is necessary. In this paper, a half-car body of an actual suspension system based on the PROTON WRM 44 P0-34 was modeled and simulated. In total, 10 components comprised each front McPherson strut and rear multilink suspension consisting of different joint types and a number of degrees of freedom. The model was developed by defining the location of the hard point or coordinate before specifying the component characteristics and joint type. The completed suspension model was simulated using the vertical parallel and vertical oppose movement test, the same tests conducted with the actual experimental parameter setup. The kinematics and compliance (K&C of the simulation is compared with the experimental data to verify the suspension model. The outcome from the simulation showed a verified virtual suspension system model with a very minimum percentage of error and different characteristics of the static performance of the suspension system when subjected to the test as explained further in the paper.

  17. Latest Advances in Robot Kinematics

    CERN Document Server

    Husty, Manfred

    2012-01-01

    This book is  of interest to researchers inquiring about modern topics and methods in the kinematics, control and design of robotic manipulators. It considers the full range of robotic systems, including serial, parallel and cable driven manipulators, both planar and spatial. The systems range from being less than fully mobile to kinematically redundant to overconstrained. In addition to recognized areas, this book also presents recent advances in emerging areas such as the design and control of humanoids and humanoid subsystems, and the analysis, modeling and simulation of human body motions, as well as the mobility analysis of protein molecules and the development of machines which incorporate man.

  18. Kinematic sensitivity of robot manipulators

    Science.gov (United States)

    Vuskovic, Marko I.

    1989-01-01

    Kinematic sensitivity vectors and matrices for open-loop, n degrees-of-freedom manipulators are derived. First-order sensitivity vectors are defined as partial derivatives of the manipulator's position and orientation with respect to its geometrical parameters. The four-parameter kinematic model is considered, as well as the five-parameter model in case of nominally parallel joint axes. Sensitivity vectors are expressed in terms of coordinate axes of manipulator frames. Second-order sensitivity vectors, the partial derivatives of first-order sensitivity vectors, are also considered. It is shown that second-order sensitivity vectors can be expressed as vector products of the first-order sensitivity vectors.

  19. Color-Kinematics Duality for QCD Amplitudes

    CERN Document Server

    Johansson, Henrik

    2016-01-01

    We show that color-kinematics duality is present in tree-level amplitudes of quantum chromodynamics with massive flavored quarks. Starting with the color structure of QCD, we work out a new color decomposition for n-point tree amplitudes in a reduced basis of primitive amplitudes. These primitives, with k quark-antiquark pairs and (n-2k) gluons, are taken in the (n-2)!/k! Melia basis, and are independent under the color-algebra Kleiss-Kuijf relations. This generalizes the color decomposition of Del Duca, Dixon, and Maltoni to an arbitrary number of quarks. The color coefficients in the new decomposition are given by compact expressions valid for arbitrary gauge group and representation. Considering the kinematic structure, we show through explicit calculations that color-kinematics duality holds for amplitudes with general configurations of gluons and massive quarks. The new (massive) amplitude relations that follow from the duality can be mapped to a well-defined subset of the familiar BCJ relations for gluo...

  20. The kinematic algebras from the scattering equations

    International Nuclear Information System (INIS)

    Monteiro, Ricardo; O’Connell, Donal

    2014-01-01

    We study kinematic algebras associated to the recently proposed scattering equations, which arise in the description of the scattering of massless particles. In particular, we describe the role that these algebras play in the BCJ duality between colour and kinematics in gauge theory, and its relation to gravity. We find that the scattering equations are a consistency condition for a self-dual-type vertex which is associated to each solution of those equations. We also identify an extension of the anti-self-dual vertex, such that the two vertices are not conjugate in general. Both vertices correspond to the structure constants of Lie algebras. We give a prescription for the use of the generators of these Lie algebras in trivalent graphs that leads to a natural set of BCJ numerators. In particular, we write BCJ numerators for each contribution to the amplitude associated to a solution of the scattering equations. This leads to a decomposition of the determinant of a certain kinematic matrix, which appears naturally in the amplitudes, in terms of trivalent graphs. We also present the kinematic analogues of colour traces, according to these algebras, and the associated decomposition of that determinant

  1. Monitoring diver kinematics with dielectric elastomer sensors

    Science.gov (United States)

    Walker, Christopher R.; Anderson, Iain A.

    2017-04-01

    Diving, initially motivated for food purposes, is crucial to the oil and gas industry, search and rescue, and is even done recreationally by millions of people. There is a growing need however, to monitor the health and activity of divers. The Divers Alert Network has reported on average 90 fatalities per year since 1980. Furthermore an estimated 1000 divers require recompression treatment for dive-related injuries every year. One means of monitoring diver activity is to integrate strain sensors into a wetsuit. This would provide kinematic information on the diver potentially improving buoyancy control assessment, providing a platform for gesture communication, detecting panic attacks and monitoring diver fatigue. To explore diver kinematic monitoring we have coupled dielectric elastomer sensors to a wetsuit worn by the pilot of a human-powered wet submarine. This provided a unique platform to test the performance and accuracy of dielectric elastomer strain sensors in an underwater application. The aim of this study was to assess the ability of strain sensors to monitor the kinematics of a diver. This study was in collaboration with the University of Auckland's human-powered submarine team, Team Taniwha. The pilot, completely encapsulated in a hull, pedals to propel the submarine forward. Therefore this study focused on leg motion as that is the primary motion of the submarine pilot. Four carbon-filled silicone dielectric elastomer sensors were fabricated and coupled to the pilot's wetsuit. The first two sensors were attached over the knee joints, with the remaining two attached between the pelvis and thigh. The goal was to accurately measure leg joint angles thereby determining the position of each leg relative to the hip. A floating data acquisition unit monitored the sensors and transmitted data packets to a nearby computer for real-time processing. A GoPro Hero 4 silver edition was used to capture the experiments and provide a means of post-validation. The

  2. Kinematic seismic response of piles in layered soil profile

    International Nuclear Information System (INIS)

    Ahmad, I.; Khan, A.N.

    2006-01-01

    This paper is aimed at highlighting the importance of Kinematic Seismic Response of Piles, a phenomenon often ignored in dynamic analysis. A case study is presented where the end bearing pile is embedded in two layer soil system of highly contrasting stiffnesses; a typical case where kinematic loading plays important role. The pile soil system is modeled as continuous system and as discrete parameter system; both are based on BDWF (Beam on Dynamic Winkler Foundation) formulation. For discrete parameter system, a finite element software SAP2000 is used and the modeling technique of kinematic interaction in finite element software is discussed. For pile soil system modeled as continuous system, a general MATLAB code is developed capable of performing elastic site response analysis in two layer soil system, solving differential equation governing kinematic interaction, and giving as output the maximum ground displacement, maximum pile displacement, rotation, moment and shear distribution along pile length. The paper concludes that kinematic seismic actions must be evaluated particularly at the interface of soil layers of significantly differing soil stiffnesses. (author)

  3. LCDD: A complete detector description package

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Norman, E-mail: Norman.Graf@slac.stanford.edu; McCormick, Jeremy, E-mail: Jeremy.McCormick@slac.stanford.edu

    2015-07-21

    LCDD has been developed to provide a complete detector description package for physics detector simulations using Geant4. All aspects of the experimental setup, such as the physical geometry, magnetic fields, and sensitive detector readouts, as well as control of the physics simulations, such as physics processes, interaction models and kinematic limits, are defined at runtime. Users are therefore able to concentrate on the design of the detector system without having to master the intricacies of C++ programming or being proficient in setting up their own Geant4 application. We describe both the XML-based file format and the processors which communicate this information to the underlying Geant4 simulation toolkit.

  4. Mathematical Modeling and Kinematics Analysis of Double Spherical Shell Rotary Docking Skirt

    Directory of Open Access Journals (Sweden)

    Gong Haixia

    2017-01-01

    Full Text Available In order to solve the problem of large trim and heel angles of the wrecked submarine, the double spherical shell rotating docking skirt is studied. According to the working principle of the rotating docking skirt, and the fixed skirt, the directional skirt, the angle skirt are simplified as the connecting rod. Therefore, the posture equation and kinematics model of the docking skirt are deduced, and according to the kinematics model, the angle of rotation of the directional skirt and the angle skirt is obtained when the wrecked submarine is in different trim and heel angles. Through the directional skirt and angle skirt with the matching rotation can make docking skirt interface in the 0°~2γ range within the rotation, to complete the docking skirt and the wrecked submarine docking. The MATLAB software is used to visualize the rotation angle of fixed skirt and directional skirt, which lays a good foundation for the development of the control of the double spherical shell rotating docking skirt in future.

  5. Three-dimensional kinematics of the lower limbs during forward ice hockey skating.

    Science.gov (United States)

    Upjohn, Tegan; Turcotte, René; Pearsall, David J; Loh, Jonathan

    2008-05-01

    The objectives of the study were to describe lower limb kinematics in three dimensions during the forward skating stride in hockey players and to contrast skating techniques between low- and high-calibre skaters. Participant motions were recorded with four synchronized digital video cameras while wearing reflective marker triads on the thighs, shanks, and skates. Participants skated on a specialized treadmill with a polyethylene slat bed at a self-selected speed for 1 min. Each participant completed three 1-min skating trials separated by 5 min of rest. Joint and limb segment angles were calculated within the local (anatomical) and global reference planes. Similar gross movement patterns and stride rates were observed; however, high-calibre participants showed a greater range and rate of joint motion in both the sagittal and frontal planes, contributing to greater stride length for high-calibre players. Furthermore, consequent postural differences led to greater lateral excursion during the power stroke in high-calibre skaters. In conclusion, specific kinematic differences in both joint and limb segment angle movement patterns were observed between low- and high-calibre skaters.

  6. Teaching about Kinematics

    Science.gov (United States)

    Nelson, Jane Bray; Nelson, Jim

    2009-01-01

    Written by Jim and Jane Nelson, Teaching About Kinematics is the latest AAPT/PTRA resource book. Based on physics education research, the book provides teachers with the resources needed to introduce students to some of the fundamental building blocks of physics. It is a carefully thought-out, step-by-step laboratory-based introduction to the…

  7. Kinematic cross-correlation induces sensory integration across separate objects.

    Science.gov (United States)

    Debats, Nienke B; Ernst, Marc O; Heuer, Herbert

    2017-12-01

    In a basic cursor-control task, the perceived positions of the hand and the cursor are biased towards each other. We recently found that this phenomenon conforms to the reliability-based weighting mechanism of optimal multisensory integration. This indicates that optimal integration is not restricted to sensory signals originating from a single source, as is the prevailing view, but that it also applies to separate objects that are connected by a kinematic relation (i.e. hand and cursor). In the current study, we examined which aspects of the kinematic relation are crucial for eliciting the sensory integration: (i) the cross-correlation between kinematic variables of the hand and cursor trajectories, and/or (ii) an internal model of the hand-cursor kinematic transformation. Participants made out-and-back movements from the centre of a semicircular workspace to its boundary, after which they judged the position where either their hand or the cursor hit the boundary. We analysed the position biases and found that the integration was strong in a condition with high kinematic correlations (a straight hand trajectory was mapped to a straight cursor trajectory), that it was significantly reduced for reduced kinematic correlations (a straight hand trajectory was transformed into a curved cursor trajectory) and that it was not affected by the inability to acquire an internal model of the kinematic transformation (i.e. by the trial-to-trial variability of the cursor curvature). These findings support the idea that correlations play a crucial role in multisensory integration irrespective of the number of sensory sources involved. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  8. Damped least square based genetic algorithm with Gaussian distribution of damping factor for singularity-robust inverse kinematics

    International Nuclear Information System (INIS)

    Phuoc, Le Minh; Lee, Suk Han; Kim, Hun Mo; Martinet, Philippe

    2008-01-01

    Robot inverse kinematics based on Jacobian inversion encounters critical issues of kinematic singularities. In this paper, several techniques based on damped least squares are proposed to lead robot pass through kinematic singularities without excessive joint velocities. Unlike other work in which the same damping factor is used for all singular vectors, this paper proposes a different damping coefficient for each singular vector based on corresponding singular value of the Jacobian. Moreover, a continuous distribution of damping factor following Gaussian function guarantees the continuous in joint velocities. A genetic algorithm is utilized to search for the best maximum damping factor and singular region, which used to require ad hoc searching in other works. As a result, end effector tracking error, which is inherited from damped least squares by introducing damping factors, is minimized. The effectiveness of our approach is compared with other methods in both non-redundant robot and redundant robot

  9. Damped least square based genetic algorithm with Gaussian distribution of damping factor for singularity-robust inverse kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Phuoc, Le Minh; Lee, Suk Han; Kim, Hun Mo [Sungkyunkwan University, Suwon (Korea, Republic of); Martinet, Philippe [Blaise Pascal University, Clermont-Ferrand Cedex (France)

    2008-07-15

    Robot inverse kinematics based on Jacobian inversion encounters critical issues of kinematic singularities. In this paper, several techniques based on damped least squares are proposed to lead robot pass through kinematic singularities without excessive joint velocities. Unlike other work in which the same damping factor is used for all singular vectors, this paper proposes a different damping coefficient for each singular vector based on corresponding singular value of the Jacobian. Moreover, a continuous distribution of damping factor following Gaussian function guarantees the continuous in joint velocities. A genetic algorithm is utilized to search for the best maximum damping factor and singular region, which used to require ad hoc searching in other works. As a result, end effector tracking error, which is inherited from damped least squares by introducing damping factors, is minimized. The effectiveness of our approach is compared with other methods in both non-redundant robot and redundant robot

  10. Dose exposure work planning using DMU kinematics tools

    International Nuclear Information System (INIS)

    Rosli Darmawan

    2010-01-01

    The study on the possibility of using DMU Kinematics module in CAE tools for dose exposure work planning was carried out. A case scenario was created using 3D CAD software and transferred to DMU Kinematics module in CAE software. A work plan was created using DMU Kinematics tools and animated to simulate a real time scenario. Data on the phantom position against the radioactive source was collected by activating positioning sensors in the module. The data was used to estimate dose rate exposure for the phantom. The results can be used to plan the safest and optimum procedures in carrying out the radiation related task. (author)

  11. Data-driven methods towards learning the highly nonlinear inverse kinematics of tendon-driven surgical manipulators.

    Science.gov (United States)

    Xu, Wenjun; Chen, Jie; Lau, Henry Y K; Ren, Hongliang

    2017-09-01

    Accurate motion control of flexible surgical manipulators is crucial in tissue manipulation tasks. The tendon-driven serpentine manipulator (TSM) is one of the most widely adopted flexible mechanisms in minimally invasive surgery because of its enhanced maneuverability in torturous environments. TSM, however, exhibits high nonlinearities and conventional analytical kinematics model is insufficient to achieve high accuracy. To account for the system nonlinearities, we applied a data driven approach to encode the system inverse kinematics. Three regression methods: extreme learning machine (ELM), Gaussian mixture regression (GMR) and K-nearest neighbors regression (KNNR) were implemented to learn a nonlinear mapping from the robot 3D position states to the control inputs. The performance of the three algorithms was evaluated both in simulation and physical trajectory tracking experiments. KNNR performed the best in the tracking experiments, with the lowest RMSE of 2.1275 mm. The proposed inverse kinematics learning methods provide an alternative and efficient way to accurately model the tendon driven flexible manipulator. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Evaluation of Handwriting Movement Kinematics: From an Ecological to a Magnetic Resonance Environment

    Science.gov (United States)

    Bisio, Ambra; Pedullà, Ludovico; Bonzano, Laura; Ruggeri, Piero; Brichetto, Giampaolo; Bove, Marco

    2016-01-01

    Writing is a means of communication which requires complex motor, perceptual, and cognitive skills. If one of these abilities gets lost following traumatic events or due to neurological diseases, handwriting could deteriorate. Occupational therapy practitioners provide rehabilitation services for people with impaired handwriting. However, to determine the effectiveness of handwriting interventions no studies assessed whether the proposed treatments improved the kinematics of writing movement or had an effect at the level of the central nervous system. There is need to find new quantitative methodologies able to describe the behavioral and the neural outcomes of the rehabilitative interventions for handwriting. In the present study we proposed a combined approach that allowed evaluating the kinematic parameters of handwriting movements, acquired by means of a magnetic resonance-compatible tablet, and their neural correlates obtained simultaneously from a functional magnetic resonance imaging examination. Results showed that the system was reliable in term of reproducibility of the kinematic data during a test/re-test procedure. Further, despite the modifications with respect to an ecological writing movement condition, the kinematic parameters acquired inside the MR-environment were descriptive of individuals’ movement features. At last, the imaging protocol succeeded to show the activation of the cerebral regions associated with the production of writing movement in healthy people. From these findings, this methodology seems to be promising to evaluate the handwriting movement deficits and the potential alterations in the neural activity in those individuals who have handwriting difficulties. Finally, it would provide a mean to quantitatively assess the effect of a rehabilitative treatment. PMID:27746727

  13. Evaluation of handwriting movement kinematics: from an ecological to a magnetic resonance environment

    Directory of Open Access Journals (Sweden)

    Ambra Bisio

    2016-09-01

    Full Text Available Writing is a means of communication which requires complex motor, perceptual and cognitive skills. If one of these abilities gets lost following traumatic events or due to neurological diseases, handwriting could deteriorate. Occupational therapy practitioners provide rehabilitation services for people with impaired handwriting. However, to determine the effectiveness of handwriting interventions no studies assessed whether the proposed treatments improved the kinematics of writing movement or had an effect at the level of the central nervous system. There is need to find new quantitative methodologies able to describe the behavioral and the neural outcomes of the rehabilitative interventions for handwriting. In the present study we proposed a combined approach that allowed evaluating the kinematic parameters of handwriting movements, acquired by means of a magnetic resonance-compatible tablet, and their neural correlates obtained simultaneously from a functional magnetic resonance imaging (fMRI examination. Results showed that the system was reliable in term of reproducibility of the kinematic data during a test/re-test procedure. Further, despite the modifications with respect to an ecological writing movement condition, the kinematic parameters acquired inside the MR-environment were descriptive of individuals’ movement features. At last, the imaging protocol succeeded to show the activation of the cerebral regions associated with the production of writing movement in healthy people. From these findings, this methodology seems to be promising to evaluate the handwriting movement deficits and the potential alterations in the neural activity in those individuals who have handwriting difficulties. Finally, it would provide a mean to quantitatively assess the effect of a rehabilitative treatment.

  14. Kinematics, structural mechanics, and design of origami structures with smooth folds

    Science.gov (United States)

    Peraza Hernandez, Edwin Alexander

    Origami provides novel approaches to the fabrication, assembly, and functionality of engineering structures in various fields such as aerospace, robotics, etc. With the increase in complexity of the geometry and materials for origami structures that provide engineering utility, computational models and design methods for such structures have become essential. Currently available models and design methods for origami structures are generally limited to the idealization of the folds as creases of zeroth-order geometric continuity. Such an idealization is not proper for origami structures having non-negligible thickness or maximum curvature at the folds restricted by material limitations. Thus, for general structures, creased folds of merely zeroth-order geometric continuity are not appropriate representations of structural response and a new approach is needed. The first contribution of this dissertation is a model for the kinematics of origami structures having realistic folds of non-zero surface area and exhibiting higher-order geometric continuity, here termed smooth folds. The geometry of the smooth folds and the constraints on their associated kinematic variables are presented. A numerical implementation of the model allowing for kinematic simulation of structures having arbitrary fold patterns is also described. Examples illustrating the capability of the model to capture realistic structural folding response are provided. Subsequently, a method for solving the origami design problem of determining the geometry of a single planar sheet and its pattern of smooth folds that morphs into a given three-dimensional goal shape, discretized as a polygonal mesh, is presented. The design parameterization of the planar sheet and the constraints that allow for a valid pattern of smooth folds and approximation of the goal shape in a known folded configuration are presented. Various testing examples considering goal shapes of diverse geometries are provided. Afterwards, a

  15. Contact kinematics of biomimetic scales

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Ranajay; Ebrahimi, Hamid; Vaziri, Ashkan, E-mail: vaziri@coe.neu.edu [Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115 (United States)

    2014-12-08

    Dermal scales, prevalent across biological groups, considerably boost survival by providing multifunctional advantages. Here, we investigate the nonlinear mechanical effects of biomimetic scale like attachments on the behavior of an elastic substrate brought about by the contact interaction of scales in pure bending using qualitative experiments, analytical models, and detailed finite element (FE) analysis. Our results reveal the existence of three distinct kinematic phases of operation spanning linear, nonlinear, and rigid behavior driven by kinematic interactions of scales. The response of the modified elastic beam strongly depends on the size and spatial overlap of rigid scales. The nonlinearity is perceptible even in relatively small strain regime and without invoking material level complexities of either the scales or the substrate.

  16. Hydrodynamic interactions in metachronal paddling: effects of varying stroke kinematics

    Science.gov (United States)

    Samaee, Milad; Kasoju, Vishwa; Lai, Hong Kuan; Santhanakrishnan, Arvind

    2017-11-01

    Crustaceans such as shrimp and krill use a drag-based technique for propulsion, in which multiple pairs of limbs are paddled rhythmically from the tail to the head. Each limb is phase-shifted in time relative to its neighbor. Most studies of this type of metachronal swimming have focused on the jet formed in the animal's wake. However, synergistic hydrodynamic interactions between adjacent limbs in metachrony have received minimal attention. We used a dynamically scaled robotic model to experimentally investigate how variations in stroke kinematics impact inter-paddle hydrodynamic interactions and thrust generation. Physical models of limbs were fitted to the robot and paddled with two different motion profiles (MPs)-1) MP1: metachronal power stroke (PS) and metachronal recovery stroke (RS); and 2) MP2: metachronal PS and synchronous RS. Stroke frequency and amplitude were maintained constant across both MPs. Our results show that MP2 produced faster jets in the thrust-generating direction as compared to MP1. The necessity for a pause in MP2 after completion of PS by the paddles leading the motion, prior to executing the synchronous RS, aided in further downstream flow propagation. The effect of using asymmetric stroke kinematics on thrust generated will be discussed.

  17. The Maiden Voyage of a Kinematics Robot

    Science.gov (United States)

    Greenwolfe, Matthew L.

    2015-04-01

    In a Montessori preschool classroom, students work independently on tasks that absorb their attention in part because the apparatus are carefully designed to make mistakes directly observable and limit exploration to one aspect or dimension. Control of error inheres in the apparatus itself, so that teacher intervention can be minimal.1 Inspired by this example, I created a robotic kinematics apparatus that also shapes the inquiry experience. Students program the robot by drawing kinematic graphs on a computer and then observe its motion. Exploration is at once limited to constant velocity and constant acceleration motion, yet open to complex multi-segment examples difficult to achieve in the lab in other ways. The robot precisely and reliably produces the motion described by the students' graphs, so that the apparatus itself provides immediate visual feedback about whether their understanding is correct as they are free to explore within the hard-coded limits. In particular, the kinematic robot enables hands-on study of multi-segment constant velocity situations, which lays a far stronger foundation for the study of accelerated motion. When correction is anonymous—just between one group of lab partners and their robot—students using the kinematic robot tend to flow right back to work because they view the correction as an integral part of the inquiry learning process. By contrast, when correction occurs by the teacher and/or in public (e.g., returning a graded assignment or pointing out student misconceptions during class), students all too often treat the event as the endpoint to inquiry. Furthermore, quantitative evidence shows a large gain from pre-test to post-test scores using the Test of Understanding Graphs in Kinematics (TUG-K).

  18. Sperm kinematic, head morphometric and kinetic-morphometric subpopulations in the blue fox (Alopex lagopus

    Directory of Open Access Journals (Sweden)

    Carles Soler

    2017-01-01

    Full Text Available This work provides information on the blue fox ejaculated sperm quality needed for seminal dose calculations. Twenty semen samples, obtained by masturbation, were analyzed for kinematic and morphometric parameters by using CASA-Mot and CASA-Morph system and principal component (PC analysis. For motility, eight kinematic parameters were evaluated, which were reduced to PC1, related to linear variables, and PC2, related to oscillatory movement. The whole population was divided into three independent subpopulations: SP1, fast cells with linear movement; SP2, slow cells and nonoscillatory motility; and SP3, medium speed cells and oscillatory movement. In almost all cases, the subpopulation distribution by animal was significantly different. Head morphology analysis generated four size and four shape parameters, which were reduced to PC1, related to size, and PC2, related to shape of the cells. Three morphometric subpopulations existed: SP1: large oval cells; SP2: medium size elongated cells; and SP3: small and short cells. The subpopulation distribution differed between animals. Combining the kinematic and morphometric datasets produced PC1, related to morphometric parameters, and PC2, related to kinematics, which generated four sperm subpopulations - SP1: high oscillatory motility, large and short heads; SP2: medium velocity with small and short heads; SP3: slow motion small and elongated cells; and SP4: high linear speed and large elongated cells. Subpopulation distribution was different in all animals. The establishment of sperm subpopulations from kinematic, morphometric, and combined variables not only improves the well-defined fox semen characteristics and offers a good conceptual basis for fertility and sperm preservation techniques in this species, but also opens the door to use this approach in other species, included humans.

  19. Action experience changes attention to kinematic cues

    Directory of Open Access Journals (Sweden)

    Courtney eFilippi

    2016-02-01

    Full Text Available The current study used remote corneal reflection eye-tracking to examine the relationship between motor experience and action anticipation in 13-month-old infants. To measure online anticipation of actions infants watched videos where the actor’s hand provided kinematic information (in its orientation about the type of object that the actor was going to reach for. The actor’s hand orientation either matched the orientation of a rod (congruent cue or did not match the orientation of the rod (incongruent cue. To examine relations between motor experience and action anticipation, we used a 2 (reach first vs. observe first x 2 (congruent kinematic cue vs. incongruent kinematic cue between-subjects design. We show that 13-month-old infants in the observe first condition spontaneously generate rapid online visual predictions to congruent hand orientation cues and do not visually anticipate when presented incongruent cues. We further demonstrate that the speed that these infants generate predictions to congruent motor cues is correlated with their own ability to pre-shape their hands. Finally, we demonstrate that following reaching experience, infants generate rapid predictions to both congruent and incongruent hand shape cues—suggesting that short-term experience changes attention to kinematics.

  20. Effect of suspension kinematic on 14 DOF vehicle model

    Science.gov (United States)

    Wongpattananukul, T.; Chantharasenawong, C.

    2017-12-01

    Computer simulations play a major role in shaping modern science and engineering. They reduce time and resource consumption in new studies and designs. Vehicle simulations have been studied extensively to achieve a vehicle model used in minimum lap time solution. Simulation result accuracy depends on the abilities of these models to represent real phenomenon. Vehicles models with 7 degrees of freedom (DOF), 10 DOF and 14 DOF are normally used in optimal control to solve for minimum lap time. However, suspension kinematics are always neglected on these models. Suspension kinematics are defined as wheel movements with respect to the vehicle body. Tire forces are expressed as a function of wheel slip and wheel position. Therefore, the suspension kinematic relation is appended to the 14 DOF vehicle model to investigate its effects on the accuracy of simulate trajectory. Classical 14 DOF vehicle model is chosen as baseline model. Experiment data is collected from formula student style car test runs as baseline data for simulation and comparison between baseline model and model with suspension kinematic. Results show that in a single long turn there is an accumulated trajectory error in baseline model compared to model with suspension kinematic. While in short alternate turns, the trajectory error is much smaller. These results show that suspension kinematic had an effect on the trajectory simulation of vehicle. Which optimal control that use baseline model will result in inaccuracy control scheme.

  1. Nonlinear kinematics for piezoelectricity in ALEGRA-EMMA.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, John Anthony; Fuller, Timothy Jesse

    2013-09-01

    This report develops and documents nonlinear kinematic relations needed to implement piezoelectric constitutive models in ALEGRA-EMMA [5], where calculations involving large displacements and rotations are routine. Kinematic relationships are established using Gausss law and Faradays law; this presentation on kinematics goes beyond piezoelectric materials and is applicable to all dielectric materials. The report then turns to practical details of implementing piezoelectric models in an application code where material principal axes are rarely aligned with user defined problem coordinate axes. This portion of the report is somewhat pedagogical but is necessary in order to establish documentation for the piezoelectric implementation in ALEGRA-EMMA. This involves transforming elastic, piezoelectric, and permittivity moduli from material principal axes to problem coordinate axes. The report concludes with an overview of the piezoelectric implementation in ALEGRA-EMMA and small verification examples.

  2. Nonlinear kinematic hardening under non-proportional loading

    International Nuclear Information System (INIS)

    Ottosen, N.S.

    1979-07-01

    Within the framework of conventional plasticity theory, it is first determined under which conditions Melan-Prager's and Ziegler's kinematic hardening rules result in identical material behaviour. Next, assuming initial isotropy and adopting the von Mises yield criterion, a nonlinear kinematic hardening function is proposed for prediction of metal behaviour. The model assumes that hardening at a specific stress point depends on the direction of the new incremental loading. Hereby a realistic response is obtained for general reversed loading, and a smooth behaviour is assured, even when loading deviates more and more from proportional loading and ultimately results in reversed loading. The predictions of the proposed model for non-proportional loading under plane stress conditions are compared with those of the classical linear kinematic model, the isotropic model and with published experimental data. Finally, the limitations of the proposaed model are discussed. (author)

  3. Forward and inverse kinematics of double universal joint robot wrists

    Science.gov (United States)

    Williams, Robert L., II

    1991-01-01

    A robot wrist consisting of two universal joints can eliminate the wrist singularity problem found on many individual robots. Forward and inverse position and velocity kinematics are presented for such a wrist having three degrees of freedom. Denavit-Hartenberg parameters are derived to find the transforms required for the kinematic equations. The Omni-Wrist, a commercial double universal joint robot wrist, is studied in detail. There are four levels of kinematic parameters identified for this wrist; three forward and three inverse maps are presented for both position and velocity. These equations relate the hand coordinate frame to the wrist base frame. They are sufficient for control of the wrist standing alone. When the wrist is attached to a manipulator arm; the offset between the two universal joints complicates the solution of the overall kinematics problem. All wrist coordinate frame origins are not coincident, which prevents decoupling of position and orientation for manipulator inverse kinematics.

  4. Kinematic analysis of competitive sprinting | Ansari | African Journal ...

    African Journals Online (AJOL)

    The results of the study showed that the kinematic variables i.e. knee angle, hip angle, ankle angle, shoulder rotation and extension had a significant influence on sprinting style. The results indicated that the kinematic variables of running style, knee angle at landing, hip flexion, ankle angle at landing, ankle angle at take-off, ...

  5. Bearing Capacity of the Working Platform with Kinematic Method

    Directory of Open Access Journals (Sweden)

    Białek Katarzyna

    2015-03-01

    Full Text Available Bearing capacity of the working platform for heavy tracks was analysed using Distinct Layout Optimization (DLO method. The platform layer constructed from cohesionless soils is resting on weak cohesive subgrade. Different thickness of the platform, its effective angle of internal friction and undrained shear strength of the soft soil were taken into consideration. Kinematic method permits different failure mechanisms to be analyzed. Margin of safety for a given load and subsoil conditions was determined using two approaches: increasing the load or decreasing the shear strength up to failure. The results were compared with solution proposed in BRE recommendations.

  6. Dynamic Control of Kinematically Redundant Robotic Manipulators

    Directory of Open Access Journals (Sweden)

    Erling Lunde

    1987-07-01

    Full Text Available Several methods for task space control of kinematically redundant manipulators have been proposed in the literature. Most of these methods are based on a kinematic analysis of the manipulator. In this paper we propose a control algorithm in which we are especially concerned with the manipulator dynamics. The algorithm is particularly well suited for the class of redundant manipulators consisting of a relatively small manipulator mounted on a larger positioning part.

  7. Kinematics in special and general relativity

    International Nuclear Information System (INIS)

    Woodside, R.W.M.

    1979-05-01

    This thesis investigates the problem of motion for extended bodies from the viewpoint of classical field theory, where the classical field is the body's energy-momentum or matter tensor. In special relativity a symmetric and divergence-free matter tensor combined with inertial frames is used to generate a kinematics for extended bodies. In general relativity the author suggests an analogous kinematics and applies it to the simplest non-trivial example of static, spherical stars, looking for special sets of vector fields whose matter currents are conserved. Such a set of ten vector fields defines a special frame, and integrals of the conserved matter currents define ten momenta whcih give the kinematics. Application of de Rham cohomology theory shows that the conserved matter currents for isolated bodies will have mechanical potentials which enable the momenta to be found from flux integrals evaluated in the vacuum region surrounding the body. These potentials contain the full Riemann curvature, allowing a body's general relativistic momenta to be determined by its vacuum graviational field

  8. Scapula Kinematics of Youth Baseball Players

    Directory of Open Access Journals (Sweden)

    Oliver Gretchen

    2015-12-01

    Full Text Available Literature has revealed the importance of quantifying resting scapular posture in overhead athletes as well as quantifying scapular kinematics during dynamic movement. Prior to this project much of the attention in throwing research had been focused on the position of the humerus without description of the positioning of the scapula. Therefore, it was the purpose of this study to present scapular kinematics during pitching in youth baseball players. Twenty-five youth baseball players (age 11.3 + 1.0 years; body height 152.4 + 9.0 cm; body mass 47.5 + 11.3 kg, with no history of injury, participated in the study. Scapular kinematics at the events of maximum humeral external rotation (MER and maximum humeral internal rotation (MIR during the pitching motion were assessed three-dimensionally while pitching fastballs for strikes. Results revealed that at the event of MER, the scapula was in a position of retraction, upward rotation and a posterior tilt. While at the event of MIR, the scapula was protracted, upward rotated and tilted anteriorly.

  9. Knee joint kinematics and kinetics during the hop and cut after soft tissue artifact suppression: Time to reconsider ACL injury mechanisms?

    Science.gov (United States)

    Smale, Kenneth B; Potvin, Brigitte M; Shourijeh, Mohammad S; Benoit, Daniel L

    2017-09-06

    The recent development of a soft tissue artifact (STA) suppression method allows us to re-evaluate the tibiofemoral kinematics currently linked to non-contact knee injuries. The purpose of this study was therefore to evaluate knee joint kinematics and kinetics in six degrees of freedom (DoF) during the loading phases of a jump lunge and side cut using this in silico method. Thirty-five healthy adults completed these movements and their surface marker trajectories were then scaled and processed with OpenSim's inverse kinematics (IK) and inverse dynamics tools. Knee flexion angle-dependent kinematic constraints defined based on previous bone pin (BP) marker trajectories were then applied to the OpenSim model during IK and these constrained results were then processed with the standard inverse dynamics tool. Significant differences for all hip, knee, and ankle DoF were observed after STA suppression for both the jump lunge and side cut. Using clinically relevant effect size estimates, we conclude that STA contamination had led to misclassifications in hip transverse plane angles, knee frontal and transverse plane angles, medial/lateral and distractive/compressive knee translations, and knee frontal plane moments between the NoBP and the BP IK solutions. Our results have substantial clinical implications since past research has used joint kinematics and kinetics contaminated by STA to identify risk factors for musculoskeletal injuries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Rigid-body kinematics versus flapping kinematics of a flapping wing micro air vehicle

    NARCIS (Netherlands)

    Caetano, J.V.; Weehuizen, M.B.; De Visser, C.C.; De Croon, G.C.H.E.; Mulder, M.

    2015-01-01

    Several formulations have been proposed to model the dynamics of ornithopters, with inconclusive results regarding the need for complex kinematic formulations. Furthermore, the impact of assumptions made in the collected results was never assessed by comparing simulations with real flight data. In

  11. Study of actinides fission induced by multi-nucleon transfer reactions in inverse kinematics

    International Nuclear Information System (INIS)

    Derkx, X.

    2010-10-01

    The study of actinide fission encounters two major issues. On one hand, measurements of the fission fragment distributions and the fission probabilities allow a better understanding of the fission process itself and the discrimination among the models of nuclear structure and dynamics. On the other hand, new measurements are required to improve nuclear data bases, which are a key component for the design of new generation reactors and radio-toxic waste incinerators. This thesis is in line with different French and American experimental projects using the surrogate method, i.e. transfer reactions leading to the same compound nuclei as in neutron irradiation, allowing the study of fission of actinides which are inaccessible by conventional techniques, whereas they are important for applications. The experiment is based on multi-nucleon transfer reactions between a 238 U beam and a 12 C target, using the inverse kinematics technique to measure, for each transfer channel, the complete isotopic distributions of the fission fragments with the VAMOS spectrometer. The work presented in this dissertation is focused on the identification of the transfer channels and their properties, as their angular distributions and the distributions of the associated excitation energy, using the SPIDER telescope to identify the target recoil nuclei. This work of an exploratory nature aims to generalize the surrogate method to heavy transfers and to measure, for the first time, the fission probabilities in inverse kinematics. The obtained results are compared with available direct kinematics and neutron irradiation measurements. (author)

  12. Special Relativity Kinematics with Anisotropic Propagation of Light and Correspondence Principle

    Science.gov (United States)

    Burde, Georgy I.

    2016-12-01

    The purpose of the present paper is to develop kinematics of the special relativity with an anisotropy of the one-way speed of light. As distinct from a common approach, when the issue of anisotropy of the light propagation is placed into the context of conventionality of distant simultaneity, it is supposed that an anisotropy of the one-way speed of light is due to a real space anisotropy. In that situation, some assumptions used in developing the standard special relativity kinematics are not valid so that the "anisotropic special relativity" kinematics should be developed based on the first principles, without refereeing to the relations of the standard relativity theory. In particular, using condition of invariance of the interval between two events becomes unfounded in the presence of anisotropy of space since the standard proofs drawing the interval invariance from the invariance of equation of light propagation are not valid in that situation. Instead, the invariance of the equation of light propagation (with an anisotropy of the one-way speed of light incorporated), which is a physical law, should be taken as a first principle. A number of other physical requirements, associativity, reciprocity and so on are satisfied by the requirement that the transformations between the frames form a group. Finally, the correspondence principle is to be satisfied which implies that the coordinate transformations should turn into the Galilean transformations in the limit of small velocities. The above formulation based on the invariance and group property suggests applying the Lie group theory apparatus which includes the following steps: constructing determining equations for the infinitesimal group generators using the invariance condition; solving the determining equations; specifying the solutions using the correspondence principle; defining the finite transformations by solving the Lie equations; relating the group parameter to physical parameters. The

  13. Global-local optimization of flapping kinematics in hovering flight

    KAUST Repository

    Ghommem, Mehdi; Hajj, M. R.; Mook, Dean T.; Stanford, Bret K.; Bé ran, Philip S.; Watson, Layne T.

    2013-01-01

    The kinematics of a hovering wing are optimized by combining the 2-d unsteady vortex lattice method with a hybrid of global and local optimization algorithms. The objective is to minimize the required aerodynamic power under a lift constraint. The hybrid optimization is used to efficiently navigate the complex design space due to wing-wake interference present in hovering aerodynamics. The flapping wing is chosen so that its chord length and flapping frequency match the morphological and flight properties of two insects with different masses. The results suggest that imposing a delay between the different oscillatory motions defining the flapping kinematics, and controlling the way through which the wing rotates at the end of each half stroke can improve aerodynamic power under a lift constraint. Furthermore, our optimization analysis identified optimal kinematics that agree fairly well with observed insect kinematics, as well as previously published numerical results.

  14. Global-local optimization of flapping kinematics in hovering flight

    KAUST Repository

    Ghommem, Mehdi

    2013-06-01

    The kinematics of a hovering wing are optimized by combining the 2-d unsteady vortex lattice method with a hybrid of global and local optimization algorithms. The objective is to minimize the required aerodynamic power under a lift constraint. The hybrid optimization is used to efficiently navigate the complex design space due to wing-wake interference present in hovering aerodynamics. The flapping wing is chosen so that its chord length and flapping frequency match the morphological and flight properties of two insects with different masses. The results suggest that imposing a delay between the different oscillatory motions defining the flapping kinematics, and controlling the way through which the wing rotates at the end of each half stroke can improve aerodynamic power under a lift constraint. Furthermore, our optimization analysis identified optimal kinematics that agree fairly well with observed insect kinematics, as well as previously published numerical results.

  15. Effects of jump and balance training on knee kinematics and electromyography of female basketball athletes during a single limb drop landing: pre-post intervention study

    Directory of Open Access Journals (Sweden)

    Nagano Yasuharu

    2011-07-01

    Full Text Available Abstract Background Some research studies have investigated the effects of anterior cruciate ligament (ACL injury prevention programs on knee kinematics during landing tasks; however the results were different among the studies. Even though tibial rotation is usually observed at the time of ACL injury, the effects of training programs for knee kinematics in the horizontal plane have not yet been analyzed. The purpose of this study was to determine the effects of a jump and balance training program on knee kinematics including tibial rotation as well as on electromyography of the quadriceps and hamstrings in female athletes. Methods Eight female basketball athletes participated in the experiment. All subjects performed a single limb landing at three different times: the initial test, five weeks later, and one week after completing training. The jump and balance training program lasted for five weeks. Knee kinematics and simultaneous electromyography of the rectus femoris and Hamstrings before training were compared with those measured after completing the training program. Results After training, regarding the position of the knee at foot contact, the knee flexion angle for the Post-training trial (mean (SE: 24.4 (2.1 deg was significantly larger than that for the Pre-training trial (19.3 (2.5 deg (p Conclusions The jump and balance training program successfully increased knee flexion and hamstring activity of female athletes during landing, and has the possibility of producing partial effects to avoid the characteristic knee position observed in ACL injury, thereby preventing injury. However, the expected changes in frontal and transverse kinematics of the knee were not observed.

  16. Metrological Evaluation of a Novel Medical Robot and Its Kinematic Calibration

    Directory of Open Access Journals (Sweden)

    Longfei Zhao

    2015-09-01

    Full Text Available The vessels are twisted in a longitudinal 3D space in the lower limbs of humans. Thus, it is difficult to perform an ultrasound scanning examination in this area. In this paper, a new medical parallel robot is introduced to effectively diagnose vessel disease in the lower limbs. The robot's position repeatability and accuracy are evaluated. Furthermore, the robot's accuracy is improved through a calibration process in which the kinematic parameters are identified through a simple identification approach.

  17. Kinematic gait analyses in healthy Golden Retrievers

    OpenAIRE

    Silva, Gabriela C.A.; Cardoso, Mariana Trés; Gaiad, Thais P.; Brolio, Marina P.; Oliveira, Vanessa C.; Assis Neto, Antonio; Martins, Daniele S.; Ambrósio, Carlos E.

    2014-01-01

    Kinematic analysis relates to the relative movement between rigid bodies and finds application in gait analysis and other body movements, interpretation of their data when there is change, determines the choice of treatment to be instituted. The objective of this study was to standardize the march of Dog Golden Retriever Healthy to assist in the diagnosis and treatment of musculoskeletal disorders. We used a kinematic analysis system to analyse the gait of seven dogs Golden Retriever, female,...

  18. Kinematic Optimization in Birds, Bats and Ornithopters

    Science.gov (United States)

    Reichert, Todd

    Birds and bats employ a variety of advanced wing motions in the efficient production of thrust. The purpose of this thesis is to quantify the benefit of these advanced wing motions, determine the optimal theoretical wing kinematics for a given flight condition, and to develop a methodology for applying the results in the optimal design of flapping-wing aircraft (ornithopters). To this end, a medium-fidelity, combined aero-structural model has been developed that is capable of simulating the advanced kinematics seen in bird flight, as well as the highly non-linear structural deformations typical of high-aspect ratio wings. Five unique methods of thrust production observed in natural species have been isolated, quantified and thoroughly investigated for their dependence on Reynolds number, airfoil selection, frequency, amplitude and relative phasing. A gradient-based optimization algorithm has been employed to determined the wing kinematics that result in the minimum required power for a generalized aircraft or species in any given flight condition. In addition to the theoretical work, with the help of an extended team, the methodology was applied to the design and construction of the world's first successful human-powered ornithopter. The Snowbird Human-Powered Ornithopter, is used as an example aircraft to show how additional design constraints can pose limits on the optimal kinematics. The results show significant trends that give insight into the kinematic operation of natural species. The general result is that additional complexity, whether it be larger twisting deformations or advanced wing-folding mechanisms, allows for the possibility of more efficient flight. At its theoretical optimum, the efficiency of flapping-wings exceeds that of current rotors and propellers, although these efficiencies are quite difficult to achieve in practice.

  19. Kinematics and design of a class of parallel manipulators

    Science.gov (United States)

    Hertz, Roger Barry

    1998-12-01

    This dissertation is concerned with the kinematic analysis and design of a class of three degree-of-freedom, spatial parallel manipulators. The class of manipulators is characterized by two platforms, between which are three legs, each possessing a succession of revolute, spherical, and revolute joints. The class is termed the "revolute-spherical-revolute" class of parallel manipulators. Two members of this class are examined. The first mechanism is a double-octahedral variable-geometry truss, and the second is termed a double tripod. The history the mechanisms is explored---the variable-geometry truss dates back to 1984, while predecessors of the double tripod mechanism date back to 1869. This work centers on the displacement analysis of these three-degree-of-freedom mechanisms. Two types of problem are solved: the forward displacement analysis (forward kinematics) and the inverse displacement analysis (inverse kinematics). The kinematic model of the class of mechanism is general in nature. A classification scheme for the revolute-spherical-revolute class of mechanism is introduced, which uses dominant geometric features to group designs into 8 different sub-classes. The forward kinematics problem is discussed: given a set of independently controllable input variables, solve for the relative position and orientation between the two platforms. For the variable-geometry truss, the controllable input variables are assumed to be the linear (prismatic) joints. For the double tripod, the controllable input variables are the three revolute joints adjacent to the base (proximal) platform. Multiple solutions are presented to the forward kinematics problem, indicating that there are many different positions (assemblies) that the manipulator can assume with equivalent inputs. For the double tripod these solutions can be expressed as a 16th degree polynomial in one unknown, while for the variable-geometry truss there exist two 16th degree polynomials, giving rise to 256

  20. The effects of military body armour on trunk and hip kinematics during performance of manual handling tasks (.).

    Science.gov (United States)

    Lenton, Gavin; Aisbett, Brad; Neesham-Smith, Daniel; Carvajal, Alvaro; Netto, Kevin

    2016-06-01

    Musculoskeletal injuries are reported as burdening the military. An identified risk factor for injury is carrying heavy loads; however, soldiers are also required to wear their load as body armour. To investigate the effects of body armour on trunk and hip kinematics during military-specific manual handling tasks, 16 males completed 3 tasks while wearing each of 4 body armour conditions plus a control. Three-dimensional motion analysis captured and quantified all kinematic data. Average trunk flexion for the weightiest armour type was higher compared with control during the carry component of the ammunition box lift (p armour types compared with control during the ammunition box place component (p armour occurred independent of armour design. In order to optimise armour design, manufacturers need to work with end-users to explore how armour configurations interact with range of personal and situational factors in operationally relevant environments. Practitioner Summary: Musculoskeletal injuries are reported as burdening the military and may relate to body armour wear. Body armour increased trunk flexion and reduced trunk rotation during military-specific lifting and carrying tasks. The altered kinematics may contribute to injury risk, but more research is required.

  1. Cluster algebras in scattering amplitudes with special 2D kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Marcus A.C. [Institut de Physique Theorique, CEA-Saclay, Gif-sur-Yvette Cedex (France)

    2014-02-15

    We study the cluster algebra of the kinematic configuration space Conf{sub n}(P{sup 3}P3) of an n-particle scattering amplitude restricted to the special 2D kinematics. We found that the n-point two-loop MHVremainder function in special 2D kinematics depends on a selection of the X-coordinates that are part of a special structure of the cluster algebra related to snake triangulations of polygons. This structure forms a necklace of hypercube beads in the corresponding Stasheff polytope. Furthermore at n = 12, the cluster algebra and the selection of theX-coordinates in special2Dkinematics replicates the cluster algebra and the selection of X-coordinates of the n = 6 two-loop MHV amplitude in 4D kinematics. (orig.)

  2. Sensitivity of polycrystal plasticity to slip system kinematic hardening laws for Al 7075-T6

    International Nuclear Information System (INIS)

    Hennessey, Conor; Castelluccio, Gustavo M.; McDowell, David L.

    2017-01-01

    The prediction of formation and early growth of microstructurally small fatigue cracks requires use of constitutive models that accurately estimate local states of stress, strain, and cyclic plastic strain. However, few research efforts have attempted to systematically consider the sensitivity of overall cyclic stress-strain hysteresis and higher order mean stress relaxation and plastic strain ratcheting responses introduced by the slip system back-stress formulation in crystal plasticity, even for face centered cubic (FCC) crystal systems. This paper explores the performance of two slip system level kinematic hardening models using a finite element crystal plasticity implementation as a User Material Subroutine (UMAT) within ABAQUS, with fully implicit numerical integration. The two kinematic hardening formulations aim to reproduce the cyclic deformation of polycrystalline Al 7075-T6 in terms of both macroscopic cyclic stress-strain hysteresis loop shape, as well as ratcheting and mean stress relaxation under strain- or stress-controlled loading with mean strain or stress, respectively. The first formulation is an Armstrong-Frederick type hardening-dynamic recovery law for evolution of the back stress. This approach is capable of reproducing observed deformation under completely reversed uniaxial loading conditions, but overpredicts the rate of cyclic ratcheting and associated mean stress relaxation. The second formulation corresponds to a multiple back stress Ohno-Wang type hardening law with nonlinear dynamic recovery. The adoption of this back stress evolution law greatly improves the capability to model experimental results for polycrystalline specimens subjected to cycling with mean stress or strain. As a result, the relation of such nonlinear dynamic recovery effects are related to slip system interactions with dislocation substructures.

  3. Kinematics and Workspace of a 4-DOF Hybrid Palletizing Robot

    Directory of Open Access Journals (Sweden)

    Yong Tao

    2014-06-01

    Full Text Available We presented the kinematical analysis of a 4-DOF hybrid palletizing robot. The palletizing robot structure was proposed and the arm model of the robot was presented. The kinematical analysis of the end robotic manipulator was given. As a result, the position, velocity, and acceleration curves as well as the maximum workspace were demonstrated by simulation in Matlab. This study would be useful for the kinematical characteristics of the 4-DOF palletizing robot in space.

  4. Kinematics and Kinetics of Squat and Deadlift Exercises with Varying Stance Widths

    Science.gov (United States)

    DeWitt, John K.; Fincke, Renita S.; Logan, Rachel L.

    2011-01-01

    The primary motion of squat and deadlift exercise involves flexion and extension of the hips, knees, and ankles, but each exercise can be performed with variations in stance width. These variations may result in differing kinematics and ground reaction forces (GRF), which may in turn affect joint loading. PURPOSE: The purpose of this investigation was to compare ankle, knee, and hip kinematics and kinetics of normal squat (NS), wide-stance squat (WS), normal deadlift (ND), and sumo deadlift (SD). We hypothesized that hip joint kinematics and work at each joint would differ between exercise variations. METHODS: Six subjects (3 m/3 f; 70.0 plus or minus 13.7 kg; 168 plus or minus 9.9 cm) performed each lift in normal gravity on the ground-based version of the Advanced Resistive Exercise Device (ARED) used on the International Space Station. The ARED provided resistance with a combination vacuum tube/flywheel mechanism designed to replicate the gravitational and inertial forces of free weights. Subjects completed each lift with their 10-repetition maximum load. Kinematic data were collected at 250 Hz by a 12-camera motion-capture system (Smart-D, BTS Bioengineering, Milan, Italy), and GRF data were collected at 1000 Hz with independent force platforms for each leg (Model 9261, Kistler Instruments AG, Winterhur, Switzerland). All data were captured simultaneously on a single workstation. The right leg of a single lift for each motion was analyzed. Modeling software (OpenSim 2.2.0, Simbios, Palo Alto, CA) determined joint kinematics and net positive and negative work at each lower extremity joint. Total work was found as the sum of work across all joints and was normalized by system mass. Effect sizes and their 95% confidence intervals were computed between conditions. RESULTS: Peak GRF were similar for each lift. There were no differences between conditions in hip flexion range of motion (ROM). For hip adduction ROM, there were no differences between the NS, WS, and SD

  5. The kinematics of machinery outlines of a theory of machines

    CERN Document Server

    Reuleaux, Franz

    2012-01-01

    A classic on the kinematics of machinery, this volume was written by the Father of Kinematics. Reuleaux writes with authority and precision, developing the subject from its fundamentals. 450 figures. 1876 edition.

  6. Lingual Kinematics during Rapid Syllable Repetition in Parkinson's Disease

    Science.gov (United States)

    Wong, Min Ney; Murdoch, Bruce E.; Whelan, Brooke-Mai

    2012-01-01

    Background: Rapid syllable repetition tasks are commonly used in the assessment of motor speech disorders. However, little is known about the articulatory kinematics during rapid syllable repetition in individuals with Parkinson's disease (PD). Aims: To investigate and compare lingual kinematics during rapid syllable repetition in dysarthric…

  7. Kinematics and resolution at future ep colliders

    International Nuclear Information System (INIS)

    Bluemlein, J.; Klein, M.

    1992-01-01

    Limitations due to resolution and kinematics are discussed of the (Q 2 , x) range accessible with electron-proton colliders after HERA. For the time after HERA one may think of two electron-proton colliders: an asymmetric energy machine and a rather symmetric one. Both colliders are compared here in order to study the influence of the different E l /E p ratios on the accessible kinematic range which is restricted due to angular coverage, finite detector resolution and calibration uncertainties

  8. Kinematics Analysis and Simulation on Transfer Robot with Six Degrees of Freedom

    Directory of Open Access Journals (Sweden)

    Yi Lu

    2014-08-01

    Full Text Available Study focuses on transfer robot with Six Degrees of Freedom, establishing kinematic equation by D-H method, analyzing forward kinematics and obtaining inverse kinematics by using method of inverse transform. Based on vector product, it develops velocity Jacobian matrix of robot. The geometric model of robot virtual prototype is established by SolidWorks software and generates parameters such as mass and moment. Kinematic simulation for robot is performed by Mathematica software and develops curve graph of displacement, velocity and accelerated speed in x, y and z direction in end executor center of robot with measurement, analysis and assessment, which provides foundation for further kinematics analysis and structure optimization as well as motion control of robot.

  9. Software Development for the Kinematic Analysis of a Lynx 6 Robot Arm

    OpenAIRE

    Baki Koyuncu; Mehmet Güzel

    2007-01-01

    The kinematics of manipulators is a central problem in the automatic control of robot manipulators. Theoretical background for the analysis of the 5 Dof Lynx-6 educational Robot Arm kinematics is presented in this paper. The kinematics problem is defined as the transformation from the Cartesian space to the joint space and vice versa. The Denavit-Harbenterg (D-H) model of representation is used to model robot links and joints in this study. Both forward and inverse kinematics solutions for th...

  10. Free-Weight Augmentation With Elastic Bands Improves Bench Press Kinematics in Professional Rugby Players.

    Science.gov (United States)

    García-López, David; Hernández-Sánchez, Sonsoles; Martín, Esperanza; Marín, Pedro J; Zarzosa, Fernando; Herrero, Azael J

    2016-09-01

    García-López, D, Hernández-Sánchez, S, Martín, E, Marín, PJ, Zarzosa, F, and Herrero, AJ. Free-weight augmentation with elastic bands improves bench press kinematics in professional rugby players. J Strength Cond Res 30(9): 2493-2499, 2016-This study aimed to investigate the effects of combining elastic bands to free weight resistance (EB + FWR) on the acceleration-deceleration and velocity profiles of the bench press in professional rugby players and recreationally trained subjects. Sixteen male subjects (8 rugby players and 8 recreationally trained subjects) were randomly assigned to complete 2 experimental conditions in a crossover fashion: EB + FWR and FWR. In both conditions, subjects performed 1 bench press set to volitional exhaustion with a load equivalent to the 85% of 1 repetition maximum (1RM). In the EB + FWR condition, the contribution of elastic resistance was approximately 20% of the selected load (85% 1RM). Results indicate that EB + FWR condition increased significantly the range of concentric movement in which the barbell is accelerated. This increase was significantly higher in rugby players (35%) in comparison with recreationally trained subjects (13%). Maximal velocity was also increased in EB + FWR (17%), when compared with FWR condition. These results suggest that when combined with variable resistance (i.e., EB), the external resistance seems to be more evenly distributed over the full range of motion, decreasing the need for dramatic deceleration at the end of the concentric phase. The present data also indicate that the kinematic benefits of an EB + FWR approach seems to be more prominent in athletes from modalities in which high level of strength and power are required (i.e., rugby players).

  11. Sex Differences in Tibiocalcaneal Kinematics

    Directory of Open Access Journals (Sweden)

    Sinclair Jonathan

    2014-08-01

    Full Text Available Purpose. Female runners typically suffer more from chronic running injuries than age-matched males, although the exact biome-chanical mechanisms behind the increased susceptibility of female runners are unknown. This study aimed to compare sex differences in tibiocalcaneal kinematics during the stance phase of running. Methods. Twenty male and twenty female participants ran at 4.0 m · s–1. Tibiocalcaneal kinematics were measured using an eight-camera motion analysis system and compared using independent samples t tests. Results. Peak eversion and tibial internal rotation angles were shown to be significantly greater in female runners. Conclusions. based on these observations, it was determined that female runners may be at increased risk from chronic injury development in relation to excessive tibiocalcaneal motions in the coronal and transverse planes.

  12. Complete Cranial Iliac Osteotomy to Approach the Lumbosacral Foramen

    Directory of Open Access Journals (Sweden)

    Barbara Dyall

    2017-05-01

    Full Text Available An approach using a complete cranial iliac osteotomy (CCIO to access the lumbosacral (LS foramen in dogs from lateral was developed using cadavers and applied in a clinical patient with degenerative lumbosacral stenosis (DLSS. The foraminal enlargement in the cadavers and the patient was documented on postoperative CT scans. The preoperative CT scan of the patient showed moderate cranial telescoping of the sacral roof and a moderate central disk protrusion, leading to moderate to severe compression of the cauda equina. In addition, there was lateral spondylosis with consequential stenosis of the right LS foramen. The right L7 nerve had lost its fat attenuation and appeared thickened. After a routine L7S1 dorsal laminectomy with a partial discectomy, a CCIO was performed, providing good access to the LS foramen and the adhesions around the proximal L7 nerve caudoventral to the foramen. The osteotomy was stabilized with a locking plate and a cerclage wire. The dog recovered well from the procedures and after 36 h, the dog walked normally and was discharged from the hospital. Eight and 16 weeks later, the signs of the DLSS had markedly improved. From these data, it can be concluded that the CCIO is a useful approach to the LS foramen and intervertebral disk in selected patients with DLSS, giving good access to the structures around the LS foramen.

  13. Examining Acoustic and Kinematic Measures of Articulatory Working Space: Effects of Speech Intensity.

    Science.gov (United States)

    Whitfield, Jason A; Dromey, Christopher; Palmer, Panika

    2018-04-18

    The purpose of this study was to examine the effect of speech intensity on acoustic and kinematic vowel space measures and conduct a preliminary examination of the relationship between kinematic and acoustic vowel space metrics calculated from continuously sampled lingual marker and formant traces. Young adult speakers produced 3 repetitions of 2 different sentences at 3 different loudness levels. Lingual kinematic and acoustic signals were collected and analyzed. Acoustic and kinematic variants of several vowel space metrics were calculated from the formant frequencies and the position of 2 lingual markers. Traditional metrics included triangular vowel space area and the vowel articulation index. Acoustic and kinematic variants of sentence-level metrics based on the articulatory-acoustic vowel space and the vowel space hull area were also calculated. Both acoustic and kinematic variants of the sentence-level metrics significantly increased with an increase in loudness, whereas no statistically significant differences in traditional vowel-point metrics were observed for either the kinematic or acoustic variants across the 3 loudness conditions. In addition, moderate-to-strong relationships between the acoustic and kinematic variants of the sentence-level vowel space metrics were observed for the majority of participants. These data suggest that both kinematic and acoustic vowel space metrics that reflect the dynamic contributions of both consonant and vowel segments are sensitive to within-speaker changes in articulation associated with manipulations of speech intensity.

  14. Introduction to Force-Dependent Kinematics: Theory and Application to Mandible Modeling.

    Science.gov (United States)

    Skipper Andersen, Michael; de Zee, Mark; Damsgaard, Michael; Nolte, Daniel; Rasmussen, John

    2017-09-01

    Knowledge of the muscle, ligament, and joint forces is important when planning orthopedic surgeries. Since these quantities cannot be measured in vivo under normal circumstances, the best alternative is to estimate them using musculoskeletal models. These models typically assume idealized joints, which are sufficient for general investigations but insufficient if the joint in focus is far from an idealized joint. The purpose of this study was to provide the mathematical details of a novel musculoskeletal modeling approach, called force-dependent kinematics (FDK), capable of simultaneously computing muscle, ligament, and joint forces as well as internal joint displacements governed by contact surfaces and ligament structures. The method was implemented into the anybody modeling system and used to develop a subject-specific mandible model, which was compared to a point-on-plane (POP) model and validated against joint kinematics measured with a custom-built brace during unloaded emulated chewing, open and close, and protrusion movements. Generally, both joint models estimated the joint kinematics well with the POP model performing slightly better (root-mean-square-deviation (RMSD) of less than 0.75 mm for the POP model and 1.7 mm for the FDK model). However, substantial differences were observed when comparing the estimated joint forces (RMSD up to 24.7 N), demonstrating the dependency on the joint model. Although the presented mandible model still contains room for improvements, this study shows the capabilities of the FDK methodology for creating joint models that take the geometry and joint elasticity into account.

  15. Human Gait Feature Extraction Including a Kinematic Analysis toward Robotic Power Assistance

    Directory of Open Access Journals (Sweden)

    Mario I. Chacon-Murguia

    2012-09-01

    Full Text Available The present work proposes a method for human gait and kinematic analysis. Gait analysis consists of the determination of hip, knee and ankle positions through video analysis. Gait kinematic for the thigh and knee is then generated from this data. Evaluations of the gait analysis method indicate an acceptable performance of 86.66% for hip and knee position estimation, and comparable findings with other reported works for gait kinematic. A coordinate systems assignment is performed according to the DH algorithm and a direct kinematic model of the legs is obtained. The legs' angles obtained from the video analysis are applied to the kinematic model in order to revise the application of this model to robotic legs in a power assisted system.

  16. The influence of different footwear on 3-D kinematics and muscle activation during the barbell back squat in males.

    Science.gov (United States)

    Sinclair, Jonathan; McCarthy, Derek; Bentley, Ian; Hurst, Howard Thomas; Atkins, Stephen

    2015-01-01

    The barbell back squat is commonly used by athletes participating in resistance training. The barbell squat is typically performed using standard athletic shoes, or specially designed weightlifting footwear, although there are now a large number of athletes who prefer to squat barefoot or in barefoot-inspired footwear. This study aimed to determine how these footwear influence 3-D kinematics and muscle activation potentials during the barbell back squat. Fourteen experienced male participants completed squats at 70% 1 rep max in each footwear condition. 3-D kinematics from the torso, hip, knee and ankle were measured using an eight-camera motion analysis system. In addition, electromyographical (EMG) measurements were obtained from the rectus femoris, tibialis anterior, gastrocnemius, erector spinae and biceps femoris muscles. EMG parameters and joint kinematics were compared between footwear using repeated-measures analyses of variance. Participants were also asked to subjectively rate which footwear they preferred when performing their squat lifts; this was examined a chi-squared test. The kinematic analysis indicated that, in comparison to barefoot the running shoe was associated with increased squat depth, knee flexion and rectus femoris activation. The chi-squared test was significant and showed that participants preferred to squat barefoot. This study supports anecdotal evidence of athletes who prefer to train barefoot or in barefoot-inspired footwear although no biomechanical evidence was found to support this notion.

  17. A kinematic and kinetic analysis of drop landings in military boots.

    Science.gov (United States)

    Oliver, G D; Stone, A J; Booker, J M; Plummer, H A

    2011-09-01

    The purpose of this study was to examine knee valgus in drop landings during three different footwear conditions and to examine the ground reaction forces exhibited during the drop landing in the three different footwear conditions. Sixteen male and female Reserve Officer Training Corps (ROTC) university undergraduate cadets (21 +/- 3 yrs, 79 +/- 12 kg, and 172 +/- 10 cm) volunteered to participate in the study. Kinematic data were collected while participants performed drop landings in three conditions: bare feet, tennis shoes, and issued military boots. Significant differences among footwear for ground reaction forces (bare feet: 1646 +/- 359%, tennis shoe: 1880 +/- 379%, boot: 1833 +/- 438%; p knee valgus among footwear. Though footwear conditions did not affect knee valgus, they did affect ground reaction forces. Participants in this study had yet to receive any military training on how to land properly from a specified height. Further research should be completed to analyze the kinematics and kinetics of the lower extremity during different landing strategies implemented by trained military personnel in order to better understand injury mechanisms of drop landings in this population. It is likely that injury prevention landing techniques would be beneficial if these were employed by the military and not just in the sporting community.

  18. Effects of jump and balance training on knee kinematics and electromyography of female basketball athletes during a single limb drop landing: pre-post intervention study.

    Science.gov (United States)

    Nagano, Yasuharu; Ida, Hirofumi; Akai, Masami; Fukubayashi, Toru

    2011-07-14

    Some research studies have investigated the effects of anterior cruciate ligament (ACL) injury prevention programs on knee kinematics during landing tasks; however the results were different among the studies. Even though tibial rotation is usually observed at the time of ACL injury, the effects of training programs for knee kinematics in the horizontal plane have not yet been analyzed. The purpose of this study was to determine the effects of a jump and balance training program on knee kinematics including tibial rotation as well as on electromyography of the quadriceps and hamstrings in female athletes. Eight female basketball athletes participated in the experiment. All subjects performed a single limb landing at three different times: the initial test, five weeks later, and one week after completing training. The jump and balance training program lasted for five weeks. Knee kinematics and simultaneous electromyography of the rectus femoris and Hamstrings before training were compared with those measured after completing the training program. After training, regarding the position of the knee at foot contact, the knee flexion angle for the Post-training trial (mean (SE): 24.4 (2.1) deg) was significantly larger than that for the Pre-training trial (19.3 (2.5) deg) (p training trial (40.2 (1.9) deg) was significantly larger than that for the Pre-training trial (34.3 (2.5) deg) (p training. A significant increase was also found in the activity of the hamstrings 50 ms before foot contact (p jump and balance training program successfully increased knee flexion and hamstring activity of female athletes during landing, and has the possibility of producing partial effects to avoid the characteristic knee position observed in ACL injury, thereby preventing injury. However, the expected changes in frontal and transverse kinematics of the knee were not observed.

  19. Six-point remainder function in multi-Regge-kinematics: an efficient approach in momentum space

    Energy Technology Data Exchange (ETDEWEB)

    Broedel, Johannes [Institut für Theoretische Physik, Eidgenössische Technische Hochschule Zürich,Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland); Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin,IRIS Adlershof, Zum Großen Windkanal 6, 12489 Berlin (Germany); Sprenger, Martin [Institut für Theoretische Physik, Eidgenössische Technische Hochschule Zürich,Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland)

    2016-05-10

    Starting from the known all-order expressions for the BFKL eigenvalue and impact factor, we establish a formalism allowing the direct calculation of the six-point remainder function in N=4 super-Yang-Mills theory in momentum space to — in principle — all orders in perturbation theory. Based upon identities which relate different integrals contributing to the inverse Fourier-Mellin transform recursively, the formalism allows to easily access the full remainder function in multi-Regge kinematics up to 7 loops and up to 10 loops in the fourth logarithmic order. Using the formalism, we prove the all-loop formula for the leading logarithmic approximation proposed by Pennington and investigate the behavior of several newly calculated functions.

  20. Kinematic-Kinetic-Rigidity Evaluation of a Six Axis Robot Performing a Task

    Directory of Open Access Journals (Sweden)

    H. Karagulle

    2012-11-01

    Full Text Available Six axis serial robots of different sizes are widely used for pick and place, welding and various other operations in industry. Developments in mechatronics, which is the synergistic integration of mechanism, electronics and computer control to achieve a functional system, offer effective solutions for the design of such robots. The integrated analysis of robots is usually used in the design stage. In this study, it is offered that the integrated analysis of robots can also be used at the application stage. SolidWorks, CosmosMotion and ABAQUS programs are used with an integrated approach. Integration software (IS is developed in Visual Basic by using the application programming interface (API capabilities of these programs. An ABB-IRB1400 industrial robot is considered for the study. Different trajectories are considered. Each task is first evaluated by a kinematic analysis. If the task is out of the workspace, then the task is cancelled. This evaluation can also be done by robot programs like Robot Studio. It is proposed that the task must be evaluated by considering the limits for velocities, motor actuation torques, reaction forces, natural frequencies, displacements and stresses due to the flexibility. The evaluation is done using kinematic, kinetic and rigidity evaluation charts. The approach given in this work can be used for the optimal usage of robots.

  1. Impact of uncertain reference-frame motions in plate kinematic reconstructions

    DEFF Research Database (Denmark)

    Iaffaldano, Giampiero; Stein, Seth

    2017-01-01

    Geoscientists infer past plate motions, which serve as fundamental constraints for a range of studies, from observations of magnetic isochrons as well as hotspots tracks on the ocean floor and, for stages older than the Cretaceous, from paleomagnetic data. These observations effectively represent...... time-integrals of past plate motions but, because they are made at present, yield plate kinematics naturally tied to a present-day reference-frame, which may be another plate or a hotspots system. These kinematics are therefore different than those occurred at the time when the rocks acquired...... – in a temporal sense – and prone to noise. This limitation is commonly perceived to hamper the correction of plate kinematic reconstructions for RFAMs, but the extent to which this may be the case has not been explored. Here we assess the impact of uncertain RFAMs on kinematic reconstructions using synthetic...

  2. The Three-Dimensional Morphology of VY Canis Majoris. I. The Kinematics of the Ejecta

    Science.gov (United States)

    Humphreys, Roberta M.; Helton, L. Andrew; Jones, Terry J.

    2007-06-01

    Images of the complex circumstellar nebula associated with the famous red supergiant VY CMa show evidence for multiple and asymmetric mass-loss events over the past 1000 yr. Doppler velocities of the arcs and knots in the ejecta show that they are not only spatially distinct but also kinematically separate from the surrounding diffuse material. In this paper we describe second-epoch HST WFPC2 images to measure the transverse motions, which when combined with the radial motions provide a complete picture of the kinematics of the ejecta, including the total space motions and directions of the outflows. Our results show that the arcs and clumps of knots are moving at different velocities, in different directions, and at different angles relative to the plane of the sky and to the star, confirming their origin from eruptions at different times and from physically separate regions on the star. We conclude that the morphology and kinematics of the arcs and knots are consistent with a history of mass ejections not aligned with any presumed axis of symmetry. The arcs and clumps represent relatively massive outflows and ejections of gas very likely associated with large-scale convective activity and magnetic fields. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  3. Scattering forms and the positive geometry of kinematics, color and the worldsheet

    Science.gov (United States)

    Arkani-Hamed, Nima; Bai, Yuntao; He, Song; Yan, Gongwang

    2018-05-01

    The search for a theory of the S-Matrix over the past five decades has revealed surprising geometric structures underlying scattering amplitudes ranging from the string worldsheet to the amplituhedron, but these are all geometries in auxiliary spaces as opposed to the kinematical space where amplitudes actually live. Motivated by recent advances providing a reformulation of the amplituhedron and planar N = 4 SYM amplitudes directly in kinematic space, we propose a novel geometric understanding of amplitudes in more general theories. The key idea is to think of amplitudes not as functions, but rather as differential forms on kinematic space. We explore the resulting picture for a wide range of massless theories in general spacetime dimensions. For the bi-adjoint ϕ 3 scalar theory, we establish a direct connection between its "scattering form" and a classic polytope — the associahedron — known to mathematicians since the 1960's. We find an associahedron living naturally in kinematic space, and the tree level amplitude is simply the "canonical form" associated with this "positive geometry". Fundamental physical properties such as locality and unitarity, as well as novel "soft" limits, are fully determined by the combinatorial geometry of this polytope. Furthermore, the moduli space for the open string worldsheet has also long been recognized as an associahedron. We show that the scattering equations act as a diffeomorphism between the interior of this old "worldsheet associahedron" and the new "kinematic associahedron", providing a geometric interpretation and simple conceptual derivation of the bi-adjoint CHY formula. We also find "scattering forms" on kinematic space for Yang-Mills theory and the Non-linear Sigma Model, which are dual to the fully color-dressed amplitudes despite having no explicit color factors. This is possible due to a remarkable fact—"Color is Kinematics"— whereby kinematic wedge products in the scattering forms satisfy the same Jacobi

  4. Impact of Simulated Knee Injuries on the Patellofemoral and Tibiofemoral Kinematics Investigated with an Electromagnetic Tracking Approach: A Cadaver Study

    Directory of Open Access Journals (Sweden)

    Björn Rath

    2018-01-01

    Full Text Available Purpose. The purpose of this study was to evaluate the approach of using an electromagnetic tracking (EMT system for measuring the effects of stepwise, simulated knee injuries on patellofemoral (PF and tibiofemoral (TF kinematics. Methods. Three cadaver knees were placed in a motion rig. EMT sensors were mounted on the patella, the medial/lateral femoral epicondyles, the tibial condyle, and the tibial tuberosity (TT. After determining the motion of an intact knee, three injuries were simulated and the resulting bony motion was tracked. Results. Starting with the intact knee fully extended (0° flexion and bending it to approximately 20°, the patella shifted slightly in the medial direction. Then, while bending the knee to the flexed position (90° flexion, the patella shifted progressively more laterally. After transecting the anterior cruciate ligament (ACL, the base of the medial menisci (MM at the pars intermedia, and the medial collateral ligament (MCL, individual changes were observed. For example, the medial femoral epicondyle displayed a medial lift-off in all knees. Conclusion. We demonstrated that our EMT approach is an acceptable method to accurately measure PF joint motion. This method could also enable visualization and in-depth analysis of in vivo patellar function in total knee arthroplasty, if it is established for routine clinical use.

  5. A Subject-Specific Kinematic Model to Predict Human Motion in Exoskeleton-Assisted Gait

    Science.gov (United States)

    Torricelli, Diego; Cortés, Camilo; Lete, Nerea; Bertelsen, Álvaro; Gonzalez-Vargas, Jose E.; del-Ama, Antonio J.; Dimbwadyo, Iris; Moreno, Juan C.; Florez, Julian; Pons, Jose L.

    2018-01-01

    The relative motion between human and exoskeleton is a crucial factor that has remarkable consequences on the efficiency, reliability and safety of human-robot interaction. Unfortunately, its quantitative assessment has been largely overlooked in the literature. Here, we present a methodology that allows predicting the motion of the human joints from the knowledge of the angular motion of the exoskeleton frame. Our method combines a subject-specific skeletal model with a kinematic model of a lower limb exoskeleton (H2, Technaid), imposing specific kinematic constraints between them. To calibrate the model and validate its ability to predict the relative motion in a subject-specific way, we performed experiments on seven healthy subjects during treadmill walking tasks. We demonstrate a prediction accuracy lower than 3.5° globally, and around 1.5° at the hip level, which represent an improvement up to 66% compared to the traditional approach assuming no relative motion between the user and the exoskeleton. PMID:29755336

  6. Kinematical and dynamical aspects of higher-spin bound-state equations in holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    de Téramond, Guy F.; Dosch, Hans Günter; Brodsky, Stanley J.

    2013-04-01

    In this paper we derive holographic wave equations for hadrons with arbitrary spin starting from an effective action in a higher-dimensional space asymptotic to anti–de Sitter (AdS) space. Our procedure takes advantage of the local tangent frame, and it applies to all spins, including half-integer spins. An essential element is the mapping of the higher-dimensional equations of motion to the light-front Hamiltonian, thus allowing a clear distinction between the kinematical and dynamical aspects of the holographic approach to hadron physics. Accordingly, the nontrivial geometry of pure AdS space encodes the kinematics, and the additional deformations of AdS space encode the dynamics, including confinement. It thus becomes possible to identify the features of holographic QCD, which are independent of the specific mechanisms of conformal symmetry breaking. In particular, we account for some aspects of the striking similarities and differences observed in the systematics of the meson and baryon spectra.

  7. A Subject-Specific Kinematic Model to Predict Human Motion in Exoskeleton-Assisted Gait.

    Science.gov (United States)

    Torricelli, Diego; Cortés, Camilo; Lete, Nerea; Bertelsen, Álvaro; Gonzalez-Vargas, Jose E; Del-Ama, Antonio J; Dimbwadyo, Iris; Moreno, Juan C; Florez, Julian; Pons, Jose L

    2018-01-01

    The relative motion between human and exoskeleton is a crucial factor that has remarkable consequences on the efficiency, reliability and safety of human-robot interaction. Unfortunately, its quantitative assessment has been largely overlooked in the literature. Here, we present a methodology that allows predicting the motion of the human joints from the knowledge of the angular motion of the exoskeleton frame. Our method combines a subject-specific skeletal model with a kinematic model of a lower limb exoskeleton (H2, Technaid), imposing specific kinematic constraints between them. To calibrate the model and validate its ability to predict the relative motion in a subject-specific way, we performed experiments on seven healthy subjects during treadmill walking tasks. We demonstrate a prediction accuracy lower than 3.5° globally, and around 1.5° at the hip level, which represent an improvement up to 66% compared to the traditional approach assuming no relative motion between the user and the exoskeleton.

  8. The phylogeny of swimming kinematics: The environment controls flagellar waveforms in sperm motility

    Science.gov (United States)

    Guasto, Jeffrey; Burton, Lisa; Zimmer, Richard; Hosoi, Anette; Stocker, Roman

    2013-11-01

    In recent years, phylogenetic and molecular analyses have dominated the study of ecology and evolution. However, physical interactions between organisms and their environment, a fundamental determinant of organism ecology and evolution, are mediated by organism form and function, highlighting the need to understand the mechanics of basic survival strategies, including locomotion. Focusing on spermatozoa, we combined high-speed video microscopy and singular value decomposition analysis to quantitatively compare the flagellar waveforms of eight species, ranging from marine invertebrates to humans. We found striking similarities in sperm swimming kinematics between genetically dissimilar organisms, which could not be uncovered by phylogenetic analysis. The emergence of dominant waveform patterns across species are suggestive of biological optimization for flagellar locomotion and point toward environmental cues as drivers of this convergence. These results reinforce the power of quantitative kinematic analysis to understand the physical drivers of evolution and as an approach to uncover new solutions for engineering applications, such as micro-robotics.

  9. Kinematic and Dynamic Analysis of a Lower Limb Exoskeleton

    OpenAIRE

    Tawakal Hasnain Baluch; Adnan Masood; Javaid Iqbal; Umer Izhar; Umar Shahbaz Khan

    2012-01-01

    This paper will provide the kinematic and dynamic analysis of a lower limb exoskeleton. The forward and inverse kinematics of proposed exoskeleton is performed using Denevit and Hartenberg method. The torques required for the actuators will be calculated using Lagrangian formulation technique. This research can be used to design the control of the proposed exoskeleton.

  10. Scapular kinematics during manual wheelchair propulsion in able-bodied participants

    NARCIS (Netherlands)

    Bekker, Michel J.; Vegter, Riemer J.K.; van der Scheer, Jan W.; Hartog, Johanneke; de Groot, Sonja; de Vries, Wiebe; Arnet, Ursina; van der Woude, Lucas H.V.; Veeger, Dirkjan (.H.E.J)

    Background: Altered scapular kinematics have been associated with shoulder pain and functional limitations. To understand kinematics in persons with spinal cord injury during manual handrim wheelchair propulsion, a description of normal scapular behaviour in able-bodied persons during this specific

  11. Scapular kinematics during manual wheelchair propulsion in able-bodied participants

    NARCIS (Netherlands)

    Bekker, Michel J; Vegter, Riemer J K; van der Scheer, Jan W; Hartog, Johanneke; de Groot, Sonja; de Vries, Wiebe; Arnet, Ursina; van der Woude, Lucas H V; Veeger, Dirkjan H E J

    BACKGROUND: Altered scapular kinematics have been associated with shoulder pain and functional limitations. To understand kinematics in persons with spinal cord injury during manual handrim wheelchair propulsion, a description of normal scapular behaviour in able-bodied persons during this specific

  12. Kinematic Fitting of Detached Vertices

    Energy Technology Data Exchange (ETDEWEB)

    Mattione, Paul [Rice Univ., Houston, TX (United States)

    2007-05-01

    The eg3 experiment at the Jefferson Lab CLAS detector aims to determine the existence of the $\\Xi_{5}$ pentaquarks and investigate the excited $\\Xi$ states. Specifically, the exotic $\\Xi_{5}^{--}$ pentaquark will be sought by first reconstructing the $\\Xi^{-}$ particle through its weak decays, $\\Xi^{-}\\to\\pi^{-}\\Lambda$ and $\\Lambda\\to\\pi^{-}$. A kinematic fitting routine was developed to reconstruct the detached vertices of these decays, where confidence level cuts on the fits are used to remove background events. Prior to fitting these decays, the exclusive reaction $\\gamma D\\rightarrow pp\\pi^{-}$ was studied in order to correct the track measurements and covariance matrices of the charged particles. The $\\Lambda\\rightarrow p\\pi^{-}$ and $\\Xi^{-}\\to\\pi^{-}\\Lambda$ decays were then investigated to demonstrate that the kinematic fitting routine reconstructs the decaying particles and their detached vertices correctly.

  13. A methodology to accurately quantify patellofemoral cartilage contact kinematics by combining 3D image shape registration and cine-PC MRI velocity data.

    Science.gov (United States)

    Borotikar, Bhushan S; Sipprell, William H; Wible, Emily E; Sheehan, Frances T

    2012-04-05

    Patellofemoral osteoarthritis and its potential precursor patellofemoral pain syndrome (PFPS) are common, costly, and debilitating diseases. PFPS has been shown to be associated with altered patellofemoral joint mechanics; however, an actual variation in joint contact stresses has not been established due to challenges in accurately quantifying in vivo contact kinematics (area and location). This study developed and validated a method for tracking dynamic, in vivo cartilage contact kinematics by combining three magnetic resonance imaging (MRI) techniques, cine-phase contrast (CPC), multi-plane cine (MPC), and 3D high-resolution static imaging. CPC and MPC data were acquired from 12 healthy volunteers while they actively extended/flexed their knee within the MRI scanner. Since no gold standard exists for the quantification of in vivo dynamic cartilage contact kinematics, the accuracy of tracking a single point (patellar origin relative to the femur) represented the accuracy of tracking the kinematics of an entire surface. The accuracy was determined by the average absolute error between the PF kinematics derived through registration of MPC images to a static model and those derived through integration of the CPC velocity data. The accuracy ranged from 0.47 mm to 0.77 mm for the patella and femur and from 0.68 mm to 0.86 mm for the patellofemoral joint. For purely quantifying joint kinematics, CPC remains an analytically simpler and more accurate (accuracy <0.33 mm) technique. However, for application requiring the tracking of an entire surface, such as quantifying cartilage contact kinematics, this combined imaging approach produces accurate results with minimal operator intervention. Published by Elsevier Ltd.

  14. Sex Differences in Anthropometrics and Heading Kinematics Among Division I Soccer Athletes.

    Science.gov (United States)

    Bretzin, Abigail C; Mansell, Jamie L; Tierney, Ryan T; McDevitt, Jane K

    Soccer players head the ball repetitively throughout their careers; this is also a potential mechanism for a concussion. Although not all soccer headers result in a concussion, these subconcussive impacts may impart acceleration, deceleration, and rotational forces on the brain, leaving structural and functional deficits. Stronger neck musculature may reduce head-neck segment kinematics. The relationship between anthropometrics and soccer heading kinematics will not differ between sexes. The relationship between anthropometrics and soccer heading kinematics will not differ between ball speeds. Pilot, cross-sectional design. Level 3. Division I soccer athletes (5 male, 8 female) were assessed for head-neck anthropometric and neck strength measurements in 6 directions (ie, flexion, extension, right and left lateral flexions and rotations). Participants headed the ball 10 times (25 or 40 mph) while wearing an accelerometer secured to their head. Kinematic measurements (ie, linear acceleration and rotational velocity) were recorded at 2 ball speeds. Sex differences were observed in neck girth ( t = 5.09, P soccer heading kinematics for sex and ball speeds. Neck girth and neck strength are factors that may limit head impact kinematics.

  15. Chemical composition of stars in kinematical substructures of the galactic disk

    Directory of Open Access Journals (Sweden)

    Gorbaneva T.I.

    2012-02-01

    Full Text Available The Y, Zr, La, Ce, Nd , Sm and Eu abundances were found in LTE approach, and the abundance of Ba was computed in NLTE approximation for 280 FGK dwarfs in the region of metallicity of − 1<[Fe]< + 0.3. The selection of stars belonging to thin and thick disks and the stream Hercules was made on kinematic criteria. The analysis of enrichment of the different substructures of the Galaxy with α-element (Mg, Si, the iron peak (Ni and neutron-capture elements was carried out.

  16. Kinematics of machinery through hyperworks

    CERN Document Server

    Rao, J S

    2011-01-01

    Using animations, this book explains the theory of machines concepts and the evolution of Kinematics. The book adopts HyperWorks MotionSolve to perform the analysis and visualizations, though the book is independent of the requirement of any software.

  17. Kinematic measurements using an infrared sensor

    International Nuclear Information System (INIS)

    Marinho, F; Paulucci, L

    2016-01-01

    The use of an infrared sensor as a new alternative to measure position as a function of time in kinematic experiments was investigated using a microcontroller as the data acquisition and control device. These are versatile sensors that offer advantages over typical ultrasound devices. The setup described in this paper enables students to develop their own experiments, promoting opportunities for learning physical concepts such as the different types of forces that can act on a body (gravitational, elastic, drag, etc) and the resulting types of movements with good sensitivity within the 4–30 cm range. As a proof of concept we also present the application of a prototype designed to record the kinematics of mass-spring systems. (paper)

  18. The kinematic advantage of electric cars

    Science.gov (United States)

    Meyn, Jan-Peter

    2015-11-01

    Acceleration of a common car with with a turbocharged diesel engine is compared to the same type with an electric motor in terms of kinematics. Starting from a state of rest, the electric car reaches a distant spot earlier than the diesel car, even though the latter has a better specification for engine power and average acceleration from 0 to 100 km h-1. A three phase model of acceleration as a function of time fits the data of the electric car accurately. The first phase is a quadratic growth of acceleration in time. It is shown that the tenfold higher coefficient for the first phase accounts for most of the kinematic advantage of the electric car.

  19. Joint kinematics estimation using a multi-body kinematics optimisation and an extended Kalman filter, and embedding a soft tissue artefact model.

    Science.gov (United States)

    Bonnet, Vincent; Richard, Vincent; Camomilla, Valentina; Venture, Gentiane; Cappozzo, Aurelio; Dumas, Raphaël

    2017-09-06

    To reduce the impact of the soft tissue artefact (STA) on the estimate of skeletal movement using stereophotogrammetric and skin-marker data, multi-body kinematics optimisation (MKO) and extended Kalman filters (EKF) have been proposed. This paper assessed the feasibility and efficiency of these methods when they embed a mathematical model of the STA and simultaneously estimate the ankle, knee and hip joint kinematics and the model parameters. A STA model was used that provides an estimate of the STA affecting the marker-cluster located on a body segment as a function of the kinematics of the adjacent joints. The MKO and the EKF were implemented with and without the STA model. To assess these methods, intra-cortical pin and skin markers located on the thigh, shank, and foot of three subjects and tracked during the stance phase of running were used. Embedding the STA model in MKO and EKF reduced the average RMS of marker tracking from 12.6 to 1.6mm and from 4.3 to 1.9mm, respectively, showing that a STA model trial-specific calibration is feasible. Nevertheless, with the STA model embedded in MKO, the RMS difference between the estimated and the reference joint kinematics determined from the pin markers slightly increased (from 2.0 to 2.1deg) On the contrary, when the STA model was embedded in the EKF, this RMS difference was slightly reduced (from 2.0 to 1.7deg) thus showing a better potentiality of this method to attenuate STA effects and improve the accuracy of joint kinematics estimate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Effects of robotically modulating kinematic variability on motor skill learning and motivation.

    Science.gov (United States)

    Duarte, Jaime E; Reinkensmeyer, David J

    2015-04-01

    It is unclear how the variability of kinematic errors experienced during motor training affects skill retention and motivation. We used force fields produced by a haptic robot to modulate the kinematic errors of 30 healthy adults during a period of practice in a virtual simulation of golf putting. On day 1, participants became relatively skilled at putting to a near and far target by first practicing without force fields. On day 2, they warmed up at the task without force fields, then practiced with force fields that either reduced or augmented their kinematic errors and were finally assessed without the force fields active. On day 3, they returned for a long-term assessment, again without force fields. A control group practiced without force fields. We quantified motor skill as the variability in impact velocity at which participants putted the ball. We quantified motivation using a self-reported, standardized scale. Only individuals who were initially less skilled benefited from training; for these people, practicing with reduced kinematic variability improved skill more than practicing in the control condition. This reduced kinematic variability also improved self-reports of competence and satisfaction. Practice with increased kinematic variability worsened these self-reports as well as enjoyment. These negative motivational effects persisted on day 3 in a way that was uncorrelated with actual skill. In summary, robotically reducing kinematic errors in a golf putting training session improved putting skill more for less skilled putters. Robotically increasing kinematic errors had no performance effect, but decreased motivation in a persistent way. Copyright © 2015 the American Physiological Society.

  1. Derivation of three closed loop kinematic velocity models using normalized quaternion feedback for an autonomous redundant manipulator with application to inverse kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Unseren, M.A.

    1993-04-01

    The report discusses the orientation tracking control problem for a kinematically redundant, autonomous manipulator moving in a three dimensional workspace. The orientation error is derived using the normalized quaternion error method of Ickes, the Luh, Walker, and Paul error method, and a method suggested here utilizing the Rodrigues parameters, all of which are expressed in terms of normalized quaternions. The analytical time derivatives of the orientation errors are determined. The latter, along with the translational velocity error, form a dosed loop kinematic velocity model of the manipulator using normalized quaternion and translational position feedback. An analysis of the singularities associated with expressing the models in a form suitable for solving the inverse kinematics problem is given. Two redundancy resolution algorithms originally developed using an open loop kinematic velocity model of the manipulator are extended to properly take into account the orientation tracking control problem. This report furnishes the necessary mathematical framework required prior to experimental implementation of the orientation tracking control schemes on the seven axis CESARm research manipulator or on the seven-axis Robotics Research K1207i dexterous manipulator, the latter of which is to be delivered to the Oak Ridge National Laboratory in 1993.

  2. Derivation of three closed loop kinematic velocity models using normalized quaternion feedback for an autonomous redundant manipulator with application to inverse kinematics

    International Nuclear Information System (INIS)

    Unseren, M.A.

    1993-04-01

    The report discusses the orientation tracking control problem for a kinematically redundant, autonomous manipulator moving in a three dimensional workspace. The orientation error is derived using the normalized quaternion error method of Ickes, the Luh, Walker, and Paul error method, and a method suggested here utilizing the Rodrigues parameters, all of which are expressed in terms of normalized quaternions. The analytical time derivatives of the orientation errors are determined. The latter, along with the translational velocity error, form a dosed loop kinematic velocity model of the manipulator using normalized quaternion and translational position feedback. An analysis of the singularities associated with expressing the models in a form suitable for solving the inverse kinematics problem is given. Two redundancy resolution algorithms originally developed using an open loop kinematic velocity model of the manipulator are extended to properly take into account the orientation tracking control problem. This report furnishes the necessary mathematical framework required prior to experimental implementation of the orientation tracking control schemes on the seven axis CESARm research manipulator or on the seven-axis Robotics Research K1207i dexterous manipulator, the latter of which is to be delivered to the Oak Ridge National Laboratory in 1993

  3. Elementary introduction to relativistic kinematics

    International Nuclear Information System (INIS)

    Gerber, H.J.

    1979-01-01

    This paper includes the most important results and applications of the theory of special relativity to high energy phenomena; it provides an analysis of the kinematics of particle decays and reactions as well as an introduction to the Lorentz group

  4. KIN SP: A boundary element method based code for single pile kinematic bending in layered soil

    Directory of Open Access Journals (Sweden)

    Stefano Stacul

    2018-02-01

    Full Text Available In high seismicity areas, it is important to consider kinematic effects to properly design pile foundations. Kinematic effects are due to the interaction between pile and soil deformations induced by seismic waves. One of the effect is the arise of significant strains in weak soils that induce bending moments on piles. These moments can be significant in presence of a high stiffness contrast in a soil deposit. The single pile kinematic interaction problem is generally solved with beam on dynamic Winkler foundation approaches (BDWF or using continuous models. In this work, a new boundary element method (BEM based computer code (KIN SP is presented where the kinematic analysis is preceded by a free-field response analysis. The analysis results of this method, in terms of bending moments at the pile-head and at the interface of a two-layered soil, are influenced by many factors including the soil–pile interface discretization. A parametric study is presented with the aim to suggest the minimum number of boundary elements to guarantee the accuracy of a BEM solution, for typical pile–soil relative stiffness values as a function of the pile diameter, the location of the interface of a two-layered soil and of the stiffness contrast. KIN SP results have been compared with simplified solutions in literature and with those obtained using a quasi-three-dimensional (3D finite element code.

  5. STRUCTURAL IDENTIFICATION OF DISTINCT INVERSIONS OF PLANAR KINEMATIC CHAINS

    Directory of Open Access Journals (Sweden)

    Dr. Shubhashis Sanyal

    2011-12-01

    Full Text Available 0 0 1 171 979 International Islamic University 8 2 1148 14.0 Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Times New Roman";} Inversions are various structural possibilities of a kinematic chain. The number of inversions depends on the number of links of a kinematic chain. At the stage of structural synthesis, identification of distinct structural inversions of a particular type of kinematic chain is necessary. Various researchers have proposed methods for identification of distinct inversions. Present method based on Link joint connectivity is proposed to identify the distinct inversions of a planar kinematic chain. Method is tested successfully on single degree and multiple degree of freedom planar kinematic chains. ABSTRAK: Penyonsangan merupakan kebarangkalian pelbagai struktur suatu rangkaian kinematik. Jumlah songsangan bergantung kepada jumlah hubungan suatu rangkaian kinematik. Pada peringkat sintesis struktur, pengenalan songsangan struktur yang berbeza untuk suatu jenis rangkaian kinematik adalah perlu. Ramai penyelidik telah mencadangkan pelbagai kaedah pengenalan songsangan yang berbeza. Kaedah terkini berdasarkan hubungan kesambungan bersama telah dicadangkan untuk mengenalpasti songsangan yang berbeza dalam suatu satah rangkaian kinematik.

  6. Testing the effects of topography, geometry, and kinematics on modeled thermochronometer cooling ages in the eastern Bhutan Himalaya

    Science.gov (United States)

    Gilmore, Michelle E.; McQuarrie, Nadine; Eizenhöfer, Paul R.; Ehlers, Todd A.

    2018-05-01

    In this study, reconstructions of a balanced geologic cross section in the Himalayan fold-thrust belt of eastern Bhutan are used in flexural-kinematic and thermokinematic models to understand the sensitivity of predicted cooling ages to changes in fault kinematics, geometry, topography, and radiogenic heat production. The kinematics for each scenario are created by sequentially deforming the cross section with ˜ 10 km deformation steps while applying flexural loading and erosional unloading at each step to develop a high-resolution evolution of deformation, erosion, and burial over time. By assigning ages to each increment of displacement, we create a suite of modeled scenarios that are input into a 2-D thermokinematic model to predict cooling ages. Comparison of model-predicted cooling ages to published thermochronometer data reveals that cooling ages are most sensitive to (1) the location and size of fault ramps, (2) the variable shortening rates between 68 and 6.4 mm yr-1, and (3) the timing and magnitude of out-of-sequence faulting. The predicted ages are less sensitive to (4) radiogenic heat production and (5) estimates of topographic evolution. We used the observed misfit of predicted to measured cooling ages to revise the cross section geometry and separate one large ramp previously proposed for the modern décollement into two smaller ramps. The revised geometry results in an improved fit to observed ages, particularly young AFT ages (2-6 Ma) located north of the Main Central Thrust. This study presents a successful approach for using thermochronometer data to test the viability of a proposed cross section geometry and kinematics and describes a viable approach to estimating the first-order topographic evolution of a compressional orogen.

  7. General analytical shakedown solution for structures with kinematic hardening materials

    Science.gov (United States)

    Guo, Baofeng; Zou, Zongyuan; Jin, Miao

    2016-09-01

    The effect of kinematic hardening behavior on the shakedown behaviors of structure has been investigated by performing shakedown analysis for some specific problems. The results obtained only show that the shakedown limit loads of structures with kinematic hardening model are larger than or equal to those with perfectly plastic model of the same initial yield stress. To further investigate the rules governing the different shakedown behaviors of kinematic hardening structures, the extended shakedown theorem for limited kinematic hardening is applied, the shakedown condition is then proposed, and a general analytical solution for the structural shakedown limit load is thus derived. The analytical shakedown limit loads for fully reversed cyclic loading and non-fully reversed cyclic loading are then given based on the general solution. The resulting analytical solution is applied to some specific problems: a hollow specimen subjected to tension and torsion, a flanged pipe subjected to pressure and axial force and a square plate with small central hole subjected to biaxial tension. The results obtained are compared with those in literatures, they are consistent with each other. Based on the resulting general analytical solution, rules governing the general effects of kinematic hardening behavior on the shakedown behavior of structure are clearly.

  8. Solution of direct kinematic problem for Stewart-Gough platform with the use of analytical equation of plane

    Directory of Open Access Journals (Sweden)

    A. L. Lapikov

    2014-01-01

    manipulator.In the process of work it is planned to make the optimal choice of numerical approach to the solution of the suggested equation system, considering the nonlinearity type etc., to develop the methodology for evaluation of received solutions, to adjust the suggested method for the solution of direct kinematic problem for the Stewart-Gough platform of the type 6-6.

  9. Proposal for the ion optics and for the kinematical fitting at the magnetic spectrograph BIG KARL

    International Nuclear Information System (INIS)

    Hinterberger, F.

    1986-01-01

    For the magnetic spectrograph BIG KARL the installation of an additional quadrupole lens is purposed. From this the possibility of a telescopic ion optic results. For future experiments a standard focusing with a spatial dispersion of 6.6 m and vanishing angular dispersion is proposed. The D/M ratio (dispersion/magnification) extends to 14.0 m, the maximal spatial angle lies at 3 msr. The energy range extends at a focal plane length of 0.66 m to 20%. For the kinematical fitting of the spectrograph the focal plane is shifted. This shift can be simply and rapidly realized for different K values by means of a software correction, if generally two spatial spectra in the focal plane are taken up. By this additionally for each event the actual scattering angle can be determined with relatively good resolution. The dispersion fit is completely decoupled from the kinematical fitting of the magnetic spectrograph. (orig.) [de

  10. Transition from failing dentition to complete-arch implant rehabilitation with a staged approach: a 3-year clinical report.

    Science.gov (United States)

    Papaspyridakos, Panos; Chronopoulos, Vasilios

    2014-09-01

    The transition of patients from failing dentition to complete-arch implant rehabilitation often means that the patient is rendered edentulous and has to wear a removable complete denture for a time. Many patients find this objectionable. A staged treatment approach provides a fixed interim prosthesis for use throughout the rehabilitation process, allowing patient comfort and prosthodontic control. This clinical report describes a staged approach protocol with a new type of interim prosthesis. The prosthesis is supported by hopeless teeth and the soft tissues of the maxillary tuberosities and mandibular retromolar pads for the complete-arch implant rehabilitation of a patient with failing dentition. This protocol allows for a fixed interim prosthesis with combined tooth and mucosa or implant support during the entire rehabilitation process, thus avoiding the use of complete dentures. The implants and prostheses were functioning successfully after 3 years of clinical service. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  11. Kinematic synthesis of a new 3D printing solution

    Directory of Open Access Journals (Sweden)

    Giberti Hermes

    2016-01-01

    The object of this article is the kinematic synthesis of a 5Dofs robot, based on two PKM machines, for additive manufacturing in order to compliant with the requirements of this new technology. Robot kinematics have been optimized by genetic algorithm in order to cover the required workspace and the design of the robot and outline of the control system are also given.

  12. Morphology, Kinematics, and Dynamics: The Mechanics of Suction Feeding in Fishes.

    Science.gov (United States)

    Day, Steven W; Higham, Timothy E; Holzman, Roi; Van Wassenbergh, Sam

    2015-07-01

    Suction feeding is pervasive among aquatic vertebrates, and our understanding of the functional morphology and biomechanics of suction feeding has recently been advanced by combining experimental and modeling approaches. Key advances include the visualization of the patterns of flow in front of the mouth of a feeding fish, the measurement of pressure inside their mouth cavity, and the employment of analytical and computational models. Here, we review the key components of the morphology and kinematics of the suction-feeding system of anatomically generalized, adult ray-finned fishes, followed by an overview of the hydrodynamics involved. In the suction-feeding apparatus, a strong mechanistic link among morphology, kinematics, and the capture of prey is manifested through the hydrodynamic interactions between the suction flows and solid surfaces (the mouth cavity and the prey). It is therefore a powerful experimental system in which the ecology and evolution of the capture of prey can be studied based on first principals. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  13. Factors associated with cervical kinematic impairments in patients with neck pain.

    Science.gov (United States)

    Treleaven, Julia; Chen, Xiaoqi; Sarig Bahat, Hilla

    2016-04-01

    Cervical kinematics have functional relevance and are important for assessment and management in patients with neck disorders. A better understanding of factors that might influence cervical kinematics is required. The aim of this study was to determine any relationships between altered kinematics to the symptoms and signs of sensorimotor impairments, neck pain and disability and fear of neck motion in people with neck pain. Kinematics were measured in 39 subjects with chronic neck pain using a customized virtual reality system. Range of cervical motion, mean and peak velocity, time to peak velocity percentage, number of velocity peaks and accuracy were derived. Correlations between these measures to self-reported (neck pain intensity, disability, fear of motion, dizziness, visual disturbances) and sensorimotor measures and regression analyses were conducted. Range and velocity of motion of cervical rotation appeared to be most related to visual disturbances and pain or dynamic balance. Nevertheless these relationships only explained about 30% of the variance of each measure. Signs and symptoms of sensorimotor dysfunction should be considered and monitored in the management of altered cervical rotation kinematics in patients with chronic neck disorders. Future research should consider the effects of addressing these factors on neck kinematics and vice versa to aid functional recovery in those with neck pain. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  14. EMG and Kinematic Responses to Unexpected Slips After Slip Training in Virtual Reality

    Science.gov (United States)

    Parijat, Prakriti; Lockhart, Thurmon E.

    2015-01-01

    The objective of the study was to design a virtual reality (VR) training to induce perturbation in older adults similar to a slip and examine the effect of the training on kinematic and muscular responses in older adults. Twenty-four older adults were involved in a laboratory study and randomly assigned to two groups (virtual reality training and control). Both groups went through three sessions including baseline slip, training, and transfer of training on slippery surface. The training group experienced twelve simulated slips using a visual perturbation induced by tilting a virtual reality scene while walking on the treadmill and the control group completed normal walking during the training session. Kinematic, kinetic, and EMG data were collected during all the sessions. Results demonstrated the proactive adjustments such as increased trunk flexion at heel contact after training. Reactive adjustments included reduced time to peak activations of knee flexors, reduced knee coactivation, reduced time to trunk flexion, and reduced trunk angular velocity after training. In conclusion, the study findings indicate that the VR training was able to generate a perturbation in older adults that evoked recovery reactions and such motor skill can be transferred to the actual slip trials. PMID:25296401

  15. Effect of walking on sand on gait kinematics in individuals with multiple sclerosis.

    Science.gov (United States)

    van den Berg, Maayken E L; Barr, Christopher J; McLoughlin, James V; Crotty, Maria

    2017-08-01

    Walking in the real-world involves negotiating challenging or uneven surfaces, including sand. This can be challenging for people with Multiple Sclerosis (PWMS) due to motor deficits affecting the lower extremities. The study objective was to characterise kinematic gait adaptations made by PWMS when walking on sand and describe any immediate post-adaptation effects. 17 PWMS (mean age 51.4 ± 5.5, Disease Steps 2.4 ± 1.0), and 14 age-and gender matched healthy adults (HA) took part in a case-control study. 3D gait analysis was conducted using an eight-camera Vicon motion capture system. Each participant completed walking trials over level ground (baseline), sand (gait adaptation response), and again level ground (post-adaptation). Spatiotemporal data and kinematic data for the hip knee and ankle were recorded. At baseline PWMS showed significantly less total lower limb flexion (pgait pattern to near baseline levels, in a manner similar to but with values not equalling HA. Further work is required to determine whether this mode of walking has potential to act as a gait retraining strategy to increase flexion of the lower limb. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Teaching physics with Angry Birds: exploring the kinematics and dynamics of the game

    Science.gov (United States)

    Rodrigues, M.; Simeão Carvalho, P.

    2013-07-01

    In this paper, we present classroom strategies for teaching kinematics at middle and high school levels, using Rovio’s famous game Angry Birds and the video analyser software Tracker. We show how to take advantage of this entertaining video game, by recording appropriate motions of birds that students can explore by manipulating data, characterizing the red bird’s motion and fitting results to physical models. A dynamic approach is also addressed to link gravitational force to projectile trajectories.

  17. A multi-subject evaluation of uncertainty in anatomical landmark location on shoulder kinematic description.

    Science.gov (United States)

    Langenderfer, Joseph E; Rullkoetter, Paul J; Mell, Amy G; Laz, Peter J

    2009-04-01

    An accurate assessment of shoulder kinematics is useful for understanding healthy normal and pathological mechanics. Small variability in identifying and locating anatomical landmarks (ALs) has potential to affect reported shoulder kinematics. The objectives of this study were to quantify the effect of landmark location variability on scapular and humeral kinematic descriptions for multiple subjects using probabilistic analysis methods, and to evaluate the consistency in results across multiple subjects. Data from 11 healthy subjects performing humeral elevation in the scapular plane were used to calculate Euler angles describing humeral and scapular kinematics. Probabilistic analyses were performed for each subject to simulate uncertainty in the locations of 13 upper-extremity ALs. For standard deviations of 4 mm in landmark location, the analysis predicted Euler angle envelopes between the 1 and 99 percentile bounds of up to 16.6 degrees . While absolute kinematics varied with the subject, the average 1-99% kinematic ranges for the motion were consistent across subjects and sensitivity factors showed no statistically significant differences between subjects. The description of humeral kinematics was most sensitive to the location of landmarks on the thorax, while landmarks on the scapula had the greatest effect on the description of scapular elevation. The findings of this study can provide a better understanding of kinematic variability, which can aid in making accurate clinical diagnoses and refining kinematic measurement techniques.

  18. Beyond reward prediction errors: the role of dopamine in movement kinematics

    Directory of Open Access Journals (Sweden)

    Joseph eBarter

    2015-05-01

    Full Text Available We recorded activity of dopamine (DA neurons in the substantia nigra pars compacta in unrestrained mice while monitoring their movements with video tracking. Our approach allows an unbiased examination of the continuous relationship between single unit activity and behavior. Although DA neurons show characteristic burst firing following cue or reward presentation, as previously reported, their activity can be explained by the representation of actual movement kinematics. Unlike neighboring pars reticulata GABAergic output neurons, which can represent vector components of position, DA neurons represent vector components of velocity or acceleration. We found neurons related to movements in four directions—up, down, left right. For horizontal movements, there is significant lateralization of neurons: the left nigra contains more rightward neurons, whereas the right nigra contains more leftward neurons. The relationship between DA activity and movement kinematics was found on both appetitive trials using sucrose and aversive trials using air puff, showing that these neurons belong to a velocity control circuit that can be used for any number of purposes, whether to seek reward or to avoid harm. In support of this conclusion, mimicry of the phasic activation of DA neurons with selective optogenetic stimulation could also generate movements. Contrary to the popular hypothesis that DA neurons encode reward prediction errors, our results suggest that nigrostriatal DA plays an essential role in controlling the kinematics of voluntary movements. We hypothesize that DA signaling implements gain adjustment for adaptive transition control, and describe a new model of BG in which DA functions to adjust the gain of a transition controller. This model has significant implications for our understanding of movement disorders implicating DA and the BG.

  19. Extraction of human gait signatures: an inverse kinematic approach using Groebner basis theory applied to gait cycle analysis

    Science.gov (United States)

    Barki, Anum; Kendricks, Kimberly; Tuttle, Ronald F.; Bunker, David J.; Borel, Christoph C.

    2013-05-01

    This research highlights the results obtained from applying the method of inverse kinematics, using Groebner basis theory, to the human gait cycle to extract and identify lower extremity gait signatures. The increased threat from suicide bombers and the force protection issues of today have motivated a team at Air Force Institute of Technology (AFIT) to research pattern recognition in the human gait cycle. The purpose of this research is to identify gait signatures of human subjects and distinguish between subjects carrying a load to those subjects without a load. These signatures were investigated via a model of the lower extremities based on motion capture observations, in particular, foot placement and the joint angles for subjects affected by carrying extra load on the body. The human gait cycle was captured and analyzed using a developed toolkit consisting of an inverse kinematic motion model of the lower extremity and a graphical user interface. Hip, knee, and ankle angles were analyzed to identify gait angle variance and range of motion. Female subjects exhibited the most knee angle variance and produced a proportional correlation between knee flexion and load carriage.

  20. Primate Anatomy, Kinematics, and Principles for Humanoid Design

    Science.gov (United States)

    Ambrose, Robert O.; Ambrose, Catherine G.

    2004-01-01

    The primate order of animals is investigated for clues in the design of Humanoid Robots. The pursuit is directed with a theory that kinematics, musculature, perception, and cognition can be optimized for specific tasks by varying the proportions of limbs, and in particular, the points of branching in kinematic trees such as the primate skeleton. Called the Bifurcated Chain Hypothesis, the theory is that the branching proportions found in humans may be superior to other animals and primates for the tasks of dexterous manipulation and other human specialties. The primate taxa are defined, contemporary primate evolution hypotheses are critiqued, and variations within the order are noted. The kinematic branching points of the torso, limbs and fingers are studied for differences in proportions across the order, and associated with family and genus capabilities and behaviors. The human configuration of a long waist, long neck, and short arms is graded using a kinematic workspace analysis and a set of design axioms for mobile manipulation robots. It scores well. The re emergence of the human waist, seen in early Prosimians and Monkeys for arboreal balance, but lost in the terrestrial Pongidae, is postulated as benefiting human dexterity. The human combination of an articulated waist and neck will be shown to enable the use of smaller arms, achieving greater regions of workspace dexterity than the larger limbs of Gorillas and other Hominoidea.

  1. Hallux valgus surgery affects kinematic parameters during gait.

    Science.gov (United States)

    Klugarova, Jitka; Janura, Miroslav; Svoboda, Zdenek; Sos, Zdenek; Stergiou, Nicholas; Klugar, Miloslav

    2016-12-01

    The aim of our study was to compare spatiotemporal parameters and lower limb and pelvis kinematics during the walking in patients with hallux valgus before and after surgery and in relation to a control group. Seventeen females with hallux valgus, who underwent first metatarsal osteotomy, constituted our experimental group. The control group consisted of thirteen females. Kinematic data during walking were obtained using the Vicon MX system. Our results showed that hallux valgus before surgery affects spatiotemporal parameters and lower limb and pelvis kinematics during walking. Hallux valgus surgery further increased the differences that were present before surgery. Specifically after hallux valgus surgery, the walking speed decreased even more (p=0.09, η 2 =0.19) while step time increased (p=0.002, η 2 =0.44) on both legs. The maximum ankle plantar flexion of the operated leg during toe-off decreased to a greater extend (p=0.03, η 2 =0.26). The asymmetry in the hip and the pelvis movements in the frontal plane (present preoperatively) persisted after surgery. Hallux valgus is not an isolated problem of the first ray, which could be just surgically addressed by correcting the foot's alignment. It is a long-term progressive malfunction of the foot affecting the entire kinematic chain of the lower extremity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The affect of the use of graphical materials on teaching kinematics

    International Nuclear Information System (INIS)

    Yener, D.

    2005-01-01

    In this study, a review of literature about graphical materials and kinematics was done. Preparing traditional questions supported by graphical materials on kinematics that applied to 119 first year students at secondary education mathematics department, and physics, chemistry and biology departments at Selcuk University Educational Faculty. The effect of the usage of graphical materials on teaching kinematics were searched. The data obtained from traditional questions and graphical questions were evaluated by using SPSS (Statistical Social Science for Package Program). At the end of this evaluation, it is obvious that if kinematics are taught with graphical materials, students can learn the subject better, thus, they solve the questions easierly and more rapidly. As a result, the students were more successful to solve the questions with graphical materials than traditional questions

  3. Program realization of mathematical model of kinematic calculation of flat lever mechanisms

    Directory of Open Access Journals (Sweden)

    M. A. Vasechkin

    2016-01-01

    Full Text Available Calculation of kinematic mechanisms is very time-consuming work. Due to the content of a large number of similar operations can be automated using computers. Forthis purpose, it is necessary to implement a software implementation ofthe mathematical model of calculation of kinematic mechanisms of the second class. In the article on Turbo Pascal presents the text module to library procedures all kinematic studies of planar lever mechanisms of the second class. The determination of the kinematic characteristics of the mechanism and the construction of its provisions, plans, plans, speeds and accelerations carried out on the example of the six-link mechanism. The beginning of the motionless coordinate system coincides with the axis of rotation of the crank AB. It is assumed that the known length of all links, the positions of all additional points of links and the coordinates of all kinematic pairs rack mechanism, i.e. this stage of work to determine the kinematics of the mechanism must be preceded by a stage of synthesis of mechanism (determining missing dimensions of links. Denote the coordinates of point C and considering that the analogues of velocities and accelerations of this point is 0 (stationary point, appeal to the procedure that computes the kinematics group the Assyrians (GA third. Specify kinematic parameters of point D, taking the beginning of the guide slide E at point C, the angle, the analogue of the angular velocity and the analogue of the angular acceleration of the guide is zero, knowing the length of the connecting rod DE and the length of link 5, refer to the procedure for the GA of the second kind. The use of library routines module of the kinematic calculation, makes it relatively simple to organize a simulation of the mechanism motion, to calculate the projection analogues of velocities and accelerations of all links of the mechanism, to build plans of the velocities and accelerations at each position of the mechanism.

  4. Inverse kinematics problem in robotics using neural networks

    Science.gov (United States)

    Choi, Benjamin B.; Lawrence, Charles

    1992-01-01

    In this paper, Multilayer Feedforward Networks are applied to the robot inverse kinematic problem. The networks are trained with endeffector position and joint angles. After training, performance is measured by having the network generate joint angles for arbitrary endeffector trajectories. A 3-degree-of-freedom (DOF) spatial manipulator is used for the study. It is found that neural networks provide a simple and effective way to both model the manipulator inverse kinematics and circumvent the problems associated with algorithmic solution methods.

  5. Identifying the Young Low-mass Stars within 25 pc. II. Distances, Kinematics, and Group Membership

    Science.gov (United States)

    Shkolnik, Evgenya L.; Anglada-Escudé, Guillem; Liu, Michael C.; Bowler, Brendan P.; Weinberger, Alycia J.; Boss, Alan P.; Reid, I. Neill; Tamura, Motohide

    2012-10-01

    We have conducted a kinematic study of 165 young M dwarfs with ages of lsim300 Myr. Our sample is composed of stars and brown dwarfs with spectral types ranging from K7 to L0, detected by ROSAT and with photometric distances of lsim25 pc assuming that the stars are single and on the main sequence. In order to find stars kinematically linked to known young moving groups (YMGs), we measured radial velocities for the complete sample with Keck and CFHT optical spectroscopy and trigonometric parallaxes for 75 of the M dwarfs with the CAPSCam instrument on the du Pont 2.5 m Telescope. Due to their youthful overluminosity and unresolved binarity, the original photometric distances for our sample underestimated the distances by 70% on average, excluding two extremely young (lsim3 Myr) objects found to have distances beyond a few hundred parsecs. We searched for kinematic matches to 14 reported YMGs and identified 10 new members of the AB Dor YMG and 2 of the Ursa Majoris group. Additional possible candidates include six Castor, four Ursa Majoris, two AB Dor members, and one member each of the Her-Lyr and β Pic groups. Our sample also contains 27 young low-mass stars and 4 brown dwarfs with ages lsim150 Myr that are not associated with any known YMG. We identified an additional 15 stars that are kinematic matches to one of the YMGs, but the ages from spectroscopic diagnostics and/or the positions on the sky do not match. These warn against grouping stars together based only on kinematics and that a confluence of evidence is required to claim that a group of stars originated from the same star-forming event. Based on observations collected at the W. M. Keck Observatory, the Canada-France-Hawaii Telescope, the du Pont Telescope at Las Campanas Observatory, and the Subaru Telescope. The Keck Observatory is operated as a scientific partnership between the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial

  6. A Projected Non-linear Conjugate Gradient Method for Interactive Inverse Kinematics

    DEFF Research Database (Denmark)

    Engell-Nørregård, Morten; Erleben, Kenny

    2009-01-01

    Inverse kinematics is the problem of posing an articulated figure to obtain a wanted goal, without regarding inertia and forces. Joint limits are modeled as bounds on individual degrees of freedom, leading to a box-constrained optimization problem. We present A projected Non-linear Conjugate...... Gradient optimization method suitable for box-constrained optimization problems for inverse kinematics. We show application on inverse kinematics positioning of a human figure. Performance is measured and compared to a traditional Jacobian Transpose method. Visual quality of the developed method...

  7. Analysis of a closed-kinematic chain robot manipulator

    Science.gov (United States)

    Nguyen, Charles C.; Pooran, Farhad J.

    1988-01-01

    Presented are the research results from the research grant entitled: Active Control of Robot Manipulators, sponsored by the Goddard Space Flight Center (NASA) under grant number NAG-780. This report considers a class of robot manipulators based on the closed-kinematic chain mechanism (CKCM). This type of robot manipulators mainly consists of two platforms, one is stationary and the other moving, and they are coupled together through a number of in-parallel actuators. Using spatial geometry and homogeneous transformation, a closed-form solution is derived for the inverse kinematic problem of the six-degree-of-freedom manipulator, built to study robotic assembly in space. Iterative Newton Raphson method is employed to solve the forward kinematic problem. Finally, the equations of motion of the above manipulators are obtained by employing the Lagrangian method. Study of the manipulator dynamics is performed using computer simulation whose results show that the robot actuating forces are strongly dependent on the mass and centroid locations of the robot links.

  8. Anodal transcranial direct current stimulation to the cerebellum improves handwriting and cyclic drawing kinematics in focal hand dystonia.

    Science.gov (United States)

    Bradnam, Lynley V; Graetz, Lynton J; McDonnell, Michelle N; Ridding, Michael C

    2015-01-01

    There is increasing evidence that the cerebellum has a role in the pathophysiology of primary focal hand dystonia and might provide an intervention target for non-invasive brain stimulation to improve function of the affected hand. The primary objective of this study was to determine if cerebellar transcranial direct current stimulation (tDCS) improves handwriting and cyclic drawing kinematics in people with hand dystonia, by reducing cerebellar-brain inhibition (CBI) evoked by transcranial magnetic stimulation (TMS). Eight people with dystonia (5 writer's dystonia, 3 musician's dystonia) and eight age-matched controls completed the study and underwent cerebellar anodal, cathodal and sham tDCS in separate sessions. Dystonia severity was assessed using the Writer's Cramp Rating Scale (WRCS) and the Arm Dystonia Disability Scale (ADDS). The kinematic measures that differentiated the groups were; mean stroke frequency during handwriting and fast cyclic drawing and average pen pressure during light cyclic drawing. TMS measures of cortical excitability were no different between people with FHD and controls. There was a moderate, negative relationship between TMS-evoked CBI at baseline and the WRCS in dystonia. Anodal cerebellar tDCS reduced handwriting mean stroke frequency and average pen pressure, and increased speed and reduced pen pressure during fast cyclic drawing. Kinematic measures were not associated with a decrease in CBI within an individual. In conclusion, cerebellar anodal tDCS appeared to improve kinematics of handwriting and circle drawing tasks; but the underlying neurophysiological mechanism remains uncertain. A study in a larger homogeneous population is needed to further investigate the possible therapeutic benefit of cerebellar tDCS in dystonia.

  9. Mass density slope of elliptical galaxies from strong lensing and resolved stellar kinematics

    Science.gov (United States)

    Lyskova, N.; Churazov, E.; Naab, T.

    2018-04-01

    We discuss constraints on the mass density distribution (parametrized as ρ ∝ r-γ) in early-type galaxies provided by strong lensing and stellar kinematics data. The constraints come from mass measurements at two `pinch' radii. One `pinch' radius r1 = 2.2REinst is defined such that the Einstein (i.e. aperture) mass can be converted into the spherical mass almost independently of the mass-model. Another `pinch' radius r2 = Ropt is chosen so that the dynamical mass, derived from the line-of-sight velocity dispersion, is least sensitive to the anisotropy of stellar orbits. We verified the performance of this approach on a sample of simulated elliptical galaxies and on a sample of 15 SLACS lens galaxies at 0.01 ≤ z ≤ 0.35, which have already been analysed in Barnabè et al. by the self-consistent joint lensing and kinematic code. For massive simulated galaxies, the density slope γ is recovered with an accuracy of ˜13 per cent, unless r1 and r2 happen to be close to each other. For SLACS galaxies, we found good overall agreement with the results of Barnabè et al. with a sample-averaged slope γ = 2.1 ± 0.05. Although the two-pinch-radii approach has larger statistical uncertainties, it is much simpler and uses only few arithmetic operations with directly observable quantities.

  10. Automated Kinematics Equations Generation and Constrained Motion Planning Resolution for Modular and Reconfigurable Robots

    Energy Technology Data Exchange (ETDEWEB)

    Pin, Francois G.; Love, Lonnie L.; Jung, David L.

    2004-03-29

    Contrary to the repetitive tasks performed by industrial robots, the tasks in most DOE missions such as environmental restoration or Decontamination and Decommissioning (D&D) can be characterized as ''batches-of-one'', in which robots must be capable of adapting to changes in constraints, tools, environment, criteria and configuration. No commercially available robot control code is suitable for use with such widely varying conditions. In this talk we present our development of a ''generic code'' to allow real time (at loop rate) robot behavior adaptation to changes in task objectives, tools, number and type of constraints, modes of controls or kinematics configuration. We present the analytical framework underlying our approach and detail the design of its two major modules for the automatic generation of the kinematics equations when the robot configuration or tools change and for the motion planning under time-varying constraints. Sample problems illustrating the capabilities of the developed system are presented.

  11. Kinematic Tests of Small Arms

    Science.gov (United States)

    2016-03-15

    muzzle devices, such as flash suppressors and muzzle compensators, if the items are designed to be operator removable. Use the ammunition that will...muzzle brake or adding a sound suppressor . A kinematics study is also a diagnostic tool to investigate weapon problems such as poor functioning with

  12. On the kinematics of visual binary and multiple stars of the FK4 cataloque

    International Nuclear Information System (INIS)

    Starikova, G.A.

    1981-01-01

    Kinematic features of single, binary and multiple stars are considered. To compare kinematics of such stars with the kinematics of single stars the data on positions and proper motions of those stars which are given in the basic catalogue FK4. Single as well as visual binary and multiple stars united because of their limited content in FK4 have been subdivided by spectra and classes of luminosity into groups with account for known kinematic peculiarities of various spectral groups. Kinematic features for the studied spectral groups are given. By the stars of the FK4 catalogue for various spectral classes the difference of kinematic features of single, visual binary and multiple stars is obtained. However the values of these differences need to be specified due to small number of stars included in five of six groups considered

  13. A real-time computational model for estimating kinematics of ankle ligaments.

    Science.gov (United States)

    Zhang, Mingming; Davies, T Claire; Zhang, Yanxin; Xie, Sheng Quan

    2016-01-01

    An accurate assessment of ankle ligament kinematics is crucial in understanding the injury mechanisms and can help to improve the treatment of an injured ankle, especially when used in conjunction with robot-assisted therapy. A number of computational models have been developed and validated for assessing the kinematics of ankle ligaments. However, few of them can do real-time assessment to allow for an input into robotic rehabilitation programs. An ankle computational model was proposed and validated to quantify the kinematics of ankle ligaments as the foot moves in real-time. This model consists of three bone segments with three rotational degrees of freedom (DOFs) and 12 ankle ligaments. This model uses inputs for three position variables that can be measured from sensors in many ankle robotic devices that detect postures within the foot-ankle environment and outputs the kinematics of ankle ligaments. Validation of this model in terms of ligament length and strain was conducted by comparing it with published data on cadaver anatomy and magnetic resonance imaging. The model based on ligament lengths and strains is in concurrence with those from the published studies but is sensitive to ligament attachment positions. This ankle computational model has the potential to be used in robot-assisted therapy for real-time assessment of ligament kinematics. The results provide information regarding the quantification of kinematics associated with ankle ligaments related to the disability level and can be used for optimizing the robotic training trajectory.

  14. Differences in foot kinematics between young and older adults during walking.

    Science.gov (United States)

    Arnold, John B; Mackintosh, Shylie; Jones, Sara; Thewlis, Dominic

    2014-02-01

    Our understanding of age-related changes to foot function during walking has mainly been based on plantar pressure measurements, with little information on differences in foot kinematics between young and older adults. The purpose of this study was to investigate the differences in foot kinematics between young and older adults during walking using a multi-segment foot model. Joint kinematics of the foot and ankle for 20 young (mean age 23.2 years, standard deviation (SD) 3.0) and 20 older adults (mean age 73.2 years, SD 5.1) were quantified during walking with a 12 camera Vicon motion analysis system using a five segment kinematic model. Differences in kinematics were compared between older adults and young adults (preferred and slow walking speeds) using Student's t-tests or if indicated, Mann-Whitney U tests. Effect sizes (Cohen's d) for the differences were also computed. The older adults had a less plantarflexed calcaneus at toe-off (-9.6° vs. -16.1°, d = 1.0, p = range of motion (ROM) of the midfoot (11.9° vs. 14.8°, d = 1.3, p = young adults. Walking speed did not influence these differences, as they remained present when groups walked at comparable speeds. The findings of this study indicate that independent of walking speed, older adults exhibit significant differences in foot kinematics compared to younger adults, characterised by less propulsion and reduced mobility of multiple foot segments. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Kinematic Modeling of Distant Galaxies

    Directory of Open Access Journals (Sweden)

    Kipper Rain

    2012-12-01

    Full Text Available Evolution of galaxies is one of the most actual topics in astrophysics. Among the most important factors determining the evolution are two galactic components which are difficult or even impossible to detect optically: the gaseous disks and the dark matter halo. We use deep Hubble Space Telescope images to construct a two-component (bulge + disk model for stellar matter distribution of galaxies. Properties of the galactic components are derived using a three-dimensional galaxy modeling software, which also estimates disk thickness and inclination angle. We add a gas disk and a dark matter halo and use hydrodynamical equations to calculate gas rotation and dispersion profiles in the resultant gravitational potential. We compare the kinematic profiles with the Team Keck Redshift Survey observations. In this pilot study, two galaxies are analyzed deriving parameters for their stellar components; both galaxies are found to be disk-dominated. Using the kinematical model, the gas mass and stellar mass ratio in the disk are estimated.

  16. A School Experiment in Kinematics: Shooting from a Ballistic Cart

    Science.gov (United States)

    Kranjc, T.; Razpet, N.

    2011-01-01

    Many physics textbooks start with kinematics. In the lab, students observe the motions, describe and make predictions, and get acquainted with basic kinematics quantities and their meaning. Then they can perform calculations and compare the results with experimental findings. In this paper we describe an experiment that is not often done, but is…

  17. Right-handed currents at B→ K l+l− kinematic endpoint

    Indian Academy of Sciences (India)

    2017-10-09

    Oct 9, 2017 ... The recent LHCb measured values of these observables are used to conclude an evidence of right-handed currents at the kinematic endpoint of this decay mode. As the conclusion is drawn at the maximum dilepton invariant mass square ( q 2 ) kinematic endpoint, it relies only on heavy quark symmetries ...

  18. Kinematic Analysis of 3-DOF Planer Robot Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Jolly Atit Shah

    2012-07-01

    Full Text Available Automatic control of the robotic manipulator involves study of kinematics and dynamics as a major issue. This paper involves the forward and inverse kinematics of 3-DOF robotic manipulator with revolute joints. In this study the Denavit- Hartenberg (D-H model is used to model robot links and joints. Also forward and inverse kinematics solution has been achieved using Artificial Neural Networks for 3-DOF robotic manipulator. It shows that by using artificial neural network the solution we get is faster, acceptable and has zero error.

  19. Kinematic Analysis of Speech Sound Sequencing Errors Induced by Delayed Auditory Feedback.

    Science.gov (United States)

    Cler, Gabriel J; Lee, Jackson C; Mittelman, Talia; Stepp, Cara E; Bohland, Jason W

    2017-06-22

    Delayed auditory feedback (DAF) causes speakers to become disfluent and make phonological errors. Methods for assessing the kinematics of speech errors are lacking, with most DAF studies relying on auditory perceptual analyses, which may be problematic, as errors judged to be categorical may actually represent blends of sounds or articulatory errors. Eight typical speakers produced nonsense syllable sequences under normal and DAF (200 ms). Lip and tongue kinematics were captured with electromagnetic articulography. Time-locked acoustic recordings were transcribed, and the kinematics of utterances with and without perceived errors were analyzed with existing and novel quantitative methods. New multivariate measures showed that for 5 participants, kinematic variability for productions perceived to be error free was significantly increased under delay; these results were validated by using the spatiotemporal index measure. Analysis of error trials revealed both typical productions of a nontarget syllable and productions with articulatory kinematics that incorporated aspects of both the target and the perceived utterance. This study is among the first to characterize articulatory changes under DAF and provides evidence for different classes of speech errors, which may not be perceptually salient. New methods were developed that may aid visualization and analysis of large kinematic data sets. https://doi.org/10.23641/asha.5103067.

  20. Distance-based kinematics of the five-oblique-axis thumb model with intersecting axes at the metacarpophalangeal joint.

    Science.gov (United States)

    Rojas, Nicolas; Dollar, Aaron M

    2017-07-01

    This paper proposes a novel and simple method to compute all possible solutions of the inverse kinematics problem of the five-oblique-axis thumb model with intersecting axes at the metacarpophalangeal joint. This thumb model is one of the suggested results by a magnetic-resonance-imaging-based study that, in contrast to those based on cadaver fingers or on the tracking of the surface of the fingers, takes into account muscle and ligament behaviors and avoids inaccuracies resulting from the movement of the skin with respect to the bones. The proposed distance-based inverse kinematics method eliminates the use of arbitrary reference frames as is usually required by standard approaches; this is relevant because the numerical conditioning of the resulting system of equations with such traditional approaches depends on the selected reference frames. Moreover, contrary to other parametrizations (e.g., Denavit-Hartenberg parameters), the suggested distance-based parameters for the thumb have a natural, human-understandable geometric meaning that makes them easier to be determined from any posture. These characteristics make the proposed approach of interest for those working in, for instance, measuring and modeling the movement of the human hand, developing rehabilitation devices such as orthoses and prostheses, or designing anthropomorphic robotic hands.

  1. Numerical kinematic transformation calculations for a parallel link manipulator

    International Nuclear Information System (INIS)

    Killough, S.M.

    1993-01-01

    Parallel link manipulators are often considered for particular robotic applications because of the unique advantages they provide. Unfortunately, they have significant disadvantages with respect to calculating the kinematic transformations because of the high-order equations that must be solved. Presented is a manipulator design that exploits the mechanical advantages of parallel links yet also has a corresponding numerical kinematic solution that can be solved in real time on common microcomputers

  2. A non-linear kinematic hardening function

    International Nuclear Information System (INIS)

    Ottosen, N.S.

    1977-05-01

    Based on the classical theory of plasticity, and accepting the von Mises criterion as the initial yield criterion, a non-linear kinematic hardening function applicable both to Melan-Prager's and to Ziegler's hardening rule is proposed. This non-linear hardening function is determined by means of the uniaxial stress-strain curve, and any such curve is applicable. The proposed hardening function considers the problem of general reversed loading, and a smooth change in the behaviour from one plastic state to another nearlying plastic state is obtained. A review of both the kinematic hardening theory and the corresponding non-linear hardening assumptions is given, and it is shown that material behaviour is identical whether Melan-Prager's or Ziegler's hardening rule is applied, provided that the von Mises yield criterion is adopted. (author)

  3. Is Active Tectonics on Madagascar Consistent with Somalian Plate Kinematics?

    Science.gov (United States)

    Stamps, D. S.; Kreemer, C.; Rajaonarison, T. A.

    2017-12-01

    The East African Rift System (EARS) actively breaks apart the Nubian and Somalian tectonic plates. Madagascar finds itself at the easternmost boundary of the EARS, between the Rovuma block, Lwandle plate, and the Somalian plate. Earthquake focal mechanisms and N-S oriented fault structures on the continental island suggest that Madagascar is experiencing east-west oriented extension. However, some previous plate kinematic studies indicate minor compressional strains across Madagascar. This inconsistency may be due to uncertainties in Somalian plate rotation. Past estimates of the rotation of the Somalian plate suffered from a poor coverage of GPS stations, but some important new stations are now available for a re-evaluation. In this work, we revise the kinematics of the Somalian plate. We first calculate a new GPS velocity solution and perform block kinematic modeling to evaluate the Somalian plate rotation. We then estimate new Somalia-Rovuma and Somalia-Lwandle relative motions across Madagascar and evaluate whether they are consistent with GPS measurements made on the island itself, as well as with other kinematic indicators.

  4. KINEMATICS AND DYNAMICS MODELS OF CYLINDRICAL ROLLER BEARING OF RAILWAY TRANSPORT

    Directory of Open Access Journals (Sweden)

    A. V. Gaydamaka

    2014-05-01

    Full Text Available Purpose. Lack of kinematics models and imperfection of the known dynamics models of the roller bearings of railway rolling stock axle-boxes do not allow designing the optimal structure of bearing cages, providing the required service life and reliability of bearing units of wheel sets for cars and locomotives. The studies of kinematics and dynamics of roller bearings of axle boxes for cars and locomotives and modeling of their parts interaction to create the analytical method of bearing cages calculation are necessary. Methodology. This purpose has been achieved due to the modeling of kinematics of the ideal (without gaps and real (taking account the gaps, manufacturing and installation errors bearings, substantiation of the transfer mechanism of motion from the rollers to bearing cage, modeling the dynamics of rolling, research of interaction forces of the rollers with bearing cage. Findings. It is established that the kinematics of ideal bearing is determined by the contact deformations of the rollers and rings, when the kinematics of real bearing depends mainly on the side gaps in the windows of the bearing cage. On the basis of studies of the real bearing kinematics the dynamics models of the rollers and bearing cage interaction were constructed. The conducted studies of kinematics and dynamics of rolling bearings have changed our view of them as of the planetary mechanism, explained the reason of bearing cage loading, and confirmed the possibility of destruction during operation. Originality. It was first proposed a mechanism for motion transfer from the rollers to the bearing cage of roller bearings, consisting in that the side gap in the bearing cage window is reduced gradually multiple of the number of rollers of radial loading area according to the bearing cage motion. The models of roller bearing dynamics, which allow calculating the interaction forces of parts for all modes of operation, were improved. Practical value. Use of the

  5. Applicability of Kinematic and Diffusive models for mud-flows: a steady state analysis

    Science.gov (United States)

    Di Cristo, Cristiana; Iervolino, Michele; Vacca, Andrea

    2018-04-01

    The paper investigates the applicability of Kinematic and Diffusive Wave models for mud-flows with a power-law shear-thinning rheology. In analogy with a well-known approach for turbulent clear-water flows, the study compares the steady flow depth profiles predicted by approximated models with those of the Full Dynamic Wave one. For all the models and assuming an infinitely wide channel, the analytical solution of the flow depth profiles, in terms of hypergeometric functions, is derived. The accuracy of the approximated models is assessed by computing the average, along the channel length, of the errors, for several values of the Froude and kinematic wave numbers. Assuming the threshold value of the error equal to 5%, the applicability conditions of the two approximations have been individuated for several values of the power-law exponent, showing a crucial role of the rheology. The comparison with the clear-water results indicates that applicability criteria for clear-water flows do not apply to shear-thinning fluids, potentially leading to an incorrect use of approximated models if the rheology is not properly accounted for.

  6. Isolated patellofemoral arthroplasty reproduces natural patellofemoral joint kinematics when the patella is resurfaced.

    Science.gov (United States)

    Vandenneucker, Hilde; Labey, Luc; Vander Sloten, Jos; Desloovere, Kaat; Bellemans, Johan

    2016-11-01

    The objectives of this in vitro project were to compare the dynamic three-dimensional patellofemoral kinematics, contact forces, contact areas and contact pressures of a contemporary patellofemoral prosthetic implant with those of the native knee and to measure the influence of patellar resurfacing and patellar thickness. The hypothesis was that these designs are capable to reproduce the natural kinematics but result in higher contact pressures. Six fresh-frozen specimens were tested on a custom-made mechanical knee rig before and after prosthetic trochlear resurfacing, without and with patellar resurfacing in three different patellar thicknesses. Full three-dimensional kinematics were analysed during three different motor tasks, using infrared motion capture cameras and retroflective markers. Patellar contact characteristics were registered using a pressure measuring device. The patellofemoral kinematic behaviour of the patellofemoral arthroplasty was similar to that of the normal knee when the patella was resurfaced, showing only significant (p patellofemoral kinematics acceptable well when the patella was resurfaced. From a kinematic point of view, patellar resurfacing may be advisable. However, the substantially elevated patellar contact pressures remain a point of concern in the decision whether or not to resurface the patella. This study therefore not only adds a new point in the discussion whether or not to resurface the patella, but also supports the claimed advantage that a patellofemoral arthroplasty is capable to reproduce the natural knee kinematics.

  7. Kinematics of roller chain drives - Exact and approximate analysis

    DEFF Research Database (Denmark)

    Fuglede, Niels; Thomsen, Jon Juel

    2016-01-01

    An exact and approximate kinematic analysis of a roller chain drive modeled as a four-bar mechanism is presented. The span connects the sprockets such that they rotate in the same direction, and the sprocket size, number of teeth, and shaft center distance can be arbitrary. The driven sprocket...... to be very good agreement. All together this gives new insights into the characteristics of chain drive kinematics and the influence of main design parameters....

  8. pynoddy 1.0: an experimental platform for automated 3-D kinematic and potential field modelling

    Science.gov (United States)

    Florian Wellmann, J.; Thiele, Sam T.; Lindsay, Mark D.; Jessell, Mark W.

    2016-03-01

    We present a novel methodology for performing experiments with subsurface structural models using a set of flexible and extensible Python modules. We utilize the ability of kinematic modelling techniques to describe major deformational, tectonic, and magmatic events at low computational cost to develop experiments testing the interactions between multiple kinematic events, effect of uncertainty regarding event timing, and kinematic properties. These tests are simple to implement and perform, as they are automated within the Python scripting language, allowing the encapsulation of entire kinematic experiments within high-level class definitions and fully reproducible results. In addition, we provide a link to geophysical potential-field simulations to evaluate the effect of parameter uncertainties on maps of gravity and magnetics. We provide relevant fundamental information on kinematic modelling and our implementation, and showcase the application of our novel methods to investigate the interaction of multiple tectonic events on a pre-defined stratigraphy, the effect of changing kinematic parameters on simulated geophysical potential fields, and the distribution of uncertain areas in a full 3-D kinematic model, based on estimated uncertainties in kinematic input parameters. Additional possibilities for linking kinematic modelling to subsequent process simulations are discussed, as well as additional aspects of future research. Our modules are freely available on github, including documentation and tutorial examples, and we encourage the contribution to this project.

  9. Multilateral Telecoordinated Control of Multiple Robots With Uncertain Kinematics.

    Science.gov (United States)

    Zhai, Di-Hua; Xia, Yuanqing

    2017-06-06

    This paper addresses the telecoordinated control of multiple robots in the simultaneous presence of asymmetric time-varying delays, nonpassive external forces, and uncertain kinematics/dynamics. To achieve the control objective, a neuroadaptive controller with utilizing prescribed performance control and switching control technique is developed, where the basic idea is to employ the concept of motion synchronization in each pair of master-slave robots and among all slave robots. By using the multiple Lyapunov-Krasovskii functionals method, the state-independent input-to-output practical stability of the closed-loop system is established. Compared with the previous approaches, the new design is straightforward and easier to implement and is applicable to a wider area. Simulation results on three pairs of three degrees-of-freedom robots confirm the theoretical findings.

  10. How wing kinematics affect power requirements and aerodynamic force production in a robotic bat wing

    International Nuclear Information System (INIS)

    Bahlman, Joseph W; Swartz, Sharon M; Breuer, Kenneth S

    2014-01-01

    Bats display a wide variety of behaviors that require different amounts of aerodynamic force. To control and modulate aerodynamic force, bats change wing kinematics, which, in turn, may change the power required for wing motion. There are many kinematic mechanisms that bats, and other flapping animals, can use to increase aerodynamic force, e.g. increasing wingbeat frequency or amplitude. However, we do not know if there is a difference in energetic cost between these different kinematic mechanisms. To assess the relationship between mechanical power input and aerodynamic force output across different isolated kinematic parameters, we programmed a robotic bat wing to flap over a range of kinematic parameters and measured aerodynamic force and mechanical power. We systematically varied five kinematic parameters: wingbeat frequency, wingbeat amplitude, stroke plane angle, downstroke ratio, and wing folding. Kinematic values were based on observed values from free flying Cynopterus brachyotis, the species on which the robot was based. We describe how lift, thrust, and power change with increases in each kinematic variable. We compare the power costs associated with generating additional force through the four kinematic mechanisms controlled at the shoulder, and show that all four mechanisms require approximately the same power to generate a given force. This result suggests that no single parameter offers an energetic advantage over the others. Finally, we show that retracting the wing during upstroke reduces power requirements for flapping and increases net lift production, but decreases net thrust production. These results compare well with studies performed on C. brachyotis, offering insight into natural flight kinematics. (paper)

  11. Classical kinematic model for direct reactions of oriented reagents

    International Nuclear Information System (INIS)

    Schechter, I.; Prisant, M.G.; Levine, R.D.

    1987-01-01

    A simple kinematic model based on the concept of an orientation-dependent critical configuration for reaction is introduced and applied. The model serves two complementary purposes. In the predictive mode the model provides an easily implemented procedure for computing the reactivity of oriented reagents (including those actually amenable to measure) from a given potential energy surface. The predictions of the model are compared against classical trajectory results for the H + D 2 reaction. By use of realistic potential energy surfaces the model is applied to the Li + HF and O + HCl reactions where the HX molecules are pumped by a polarized laser. A given classical trajectory is deemed reactive or not according to whether it can surmount the barrier at that particular orientation. The essential difference with the model of Levine and Bernstein is that the averaging over initial conditions is performed by using a Monte Carlo integration. One can therefore use the correct orientation-dependent shape (and not only height) of the barrier to reaction and, furthermore, use oriented or aligned reagents. Since the only numerical step is a Monte Carlo sampling of initial conditions, very many trajectories can be run. This suffices to determine the reaction cross section for different initial conditions. To probe the products, they have employed the kinematic approach of Elsum and Gordon. The result is a model where, under varying initial conditions, examining final-state distributions or screening different potential energy surfaces can be efficiently carried out

  12. The kinematic footprints of five stellar streams in Andromeda's halo

    Science.gov (United States)

    Chapman, S. C.; Ibata, R.; Irwin, M.; Koch, A.; Letarte, B.; Martin, N.; Collins, M.; Lewis, G. F.; McConnachie, A.; Peñarrubia, J.; Rich, R. M.; Trethewey, D.; Ferguson, A.; Huxor, A.; Tanvir, N.

    2008-11-01

    We present a spectroscopic analysis of five stellar streams (`A', `B', `Cr', `Cp' and `D') as well as the extended star cluster, EC4, which lies within Stream`C', all discovered in the halo of M31 from our Canada-France-Hawaii Telescope/MegaCam survey. These spectroscopic results were initially serendipitous, making use of our existing observations from the DEep Imaging Multi-Object Spectrograph mounted on the Keck II telescope, and thereby emphasizing the ubiquity of tidal streams that account for ~70 per cent of the M31 halo stars in the targeted fields. Subsequent spectroscopy was then procured in Stream`C' and Stream`D' to trace the velocity gradient along the streams. Nine metal-rich ([Fe/H] ~ -0.7) stars at vhel = -349.5kms-1,σv,corr ~ 5.1 +/- 2.5km s-1 are proposed as a serendipitous detection of Stream`Cr', with follow-up kinematic identification at a further point along the stream. Seven metal-poor ([Fe/H] ~-1.3) stars confined to a narrow, 15 km s-1 velocity bin centred at vhel = -285.6, σv,corr = 4.3+1.7-1.4 km s-1 represent a kinematic detection of Stream`Cp', again with follow-up kinematic identification further along the stream. For the cluster EC4, candidate member stars with average [Fe/H] ~-1.4, are found at vhel = -282 suggesting it could be related to Stream`Cp'. No similarly obvious cold kinematic candidate is found for Stream`D', although candidates are proposed in both of two spectroscopic pointings along the stream (both at ~ -400km s-1). Spectroscopy near the edge of Stream`B' suggests a likely kinematic detection at vhel ~ -330, σv,corr ~ 6.9km s-1, while a candidate kinematic detection of Stream`A' is found (plausibly associated to M33 rather than M31) with vhel ~ -170, σv,corr = 12.5km s-1. The low dispersion of the streams in kinematics, physical thickness and metallicity makes it hard to reconcile with a scenario whereby these stream structures as an ensemble are related to the giant southern stream. We conclude that the M31 stellar

  13. Distal hindlimb kinematics of galloping Thoroughbred racehorses on dirt and synthetic racetrack surfaces.

    Science.gov (United States)

    Symons, J E; Garcia, T C; Stover, S M

    2014-03-01

    The effect of racetrack surface (dirt or synthetic) on distal hindlimb kinematics of racehorses running at competition speeds is not known. To compare distal hindlimb and hoof kinematics during stance of breezing (unrestrained gallop) racehorses between dirt and synthetic surfaces. Two-dimensional kinematic video analysis of 5 Thoroughbred racehorses galloping at high speeds (12-17 m/s) on a dirt racetrack and a synthetic racetrack. The positions of kinematic markers applied to the left hindlimb were recorded at 500 Hz. Position, velocity and acceleration of joint angles and hoof translation during stance were calculated in the sagittal plane. Peak translational and angular kinematic values were compared between the dirt and synthetic race surfaces using mixed model analyses of covariance. Maximum and heel-strike metatarsophalangeal (fetlock) angles were greater (Pdirt surface than on the synthetic surface. Maximum fetlock angle occurred earlier during stance on the dirt surface (Pdirt surface (Pdirt surface than on a synthetic surface. Synthetic race surfaces may mitigate risk of injury to hindlimb fetlock structures by reducing fetlock hyperextension and associated strains in fetlock support structures. Differences in hoof slide may contribute to different distal hindlimb kinematics between surfaces. © 2013 EVJ Ltd.

  14. In vivo kinematics of a robot-assisted uni- and multi-compartmental knee arthroplasty.

    Science.gov (United States)

    Watanabe, Toshifumi; Abbasi, Ali Z; Conditt, Michael A; Christopher, Jennifer; Kreuzer, Stefan; Otto, Jason K; Banks, Scott A

    2014-07-01

    There is great interest in providing reliable and durable treatments for one- and two-compartment arthritic degeneration of the cruciate-ligament intact knee. One approach is to resurface only the diseased compartments with discrete unicompartmental components, retaining the undamaged compartment(s). However, placing multiple small implants into the knee presents a greater surgical challenge than total knee arthroplasty, so it is not certain that the natural knee mechanics can be maintained or restored. The goal of this study was to determine whether near-normal knee kinematics can be obtained with a robot-assisted multi-compartmental knee arthroplasty. Thirteen patients with 15 multi-compartmental knee arthroplasties using haptic robotic-assisted bone preparation were involved in this study. Nine subjects received a medial unicompartmental knee arthroplasty (UKA), three subjects received a medial UKA and patellofemoral (PF) arthroplasty, and three subjects received medial and lateral bi-unicondylar arthroplasty. Knee motions were recorded using video-fluoroscopy an average of 13 months (6-29 months) after surgery during stair and kneeling activities. The three-dimensional position and orientation of the implant components were determined using model-image registration techniques. Knee kinematics during maximum flexion kneeling showed femoral external rotation and posterior lateral condylar translation. All knees showed femoral external rotation and posterior condylar translation with flexion during the step activity. Knees with medial UKA and PF arthroplasty showed the most femoral external rotation and posterior translation, and knees with bicondylar UKA showed the least. Knees with accurately placed uni- or bi-compartmental arthroplasty exhibited stable knee kinematics consistent with intact and functioning cruciate ligaments. The patterns of tibiofemoral motion were more similar to natural knees than commonly has been observed in knees with total knee

  15. Kinematics of the symbiotic system R Aqr

    Science.gov (United States)

    Navarro, S.; Corral, L. J.; Steffen, W.

    2014-04-01

    We present the results of the kinematical analysis of the symbiotic system R Aqr. We obtained high dispersion spectra with the MES spectrograph at the 2.1 m telescope of San Pedro Mártir (MEZCAL). The used filter were Ha + [NII], (λc = 6575Å, Δλ = 90Å). We analyse the [NII] λλ6583 line. When the observations are compared with previous ones by Solf (1992) we detected an important change in the projected velocities of the observed knots, supporting the idea of a precessing jet. We are working also in a 3-D kinematic model for the object using the measured velocities and the state of the model is presented.

  16. Directed Neutron Beams From Inverse Kinematic Reactions

    Science.gov (United States)

    Vanhoy, J. R.; Guardala, N. A.; Glass, G. A.

    2011-06-01

    Kinematic focusing of an emitted fairly mono-energetic neutron beam by the use of inverse-kinematic reactions, i.e. where the projectile mass is greater than the target atom's mass, can provide for the utilization of a significant fraction of the fast neutron yield and also provide for a safer radiation environment. We examine the merit of various neutron production reactions and consider the practicalities of producing the primary beam using the suitable accelerator technologies. Preliminary progress at the NSWC-Carderock Positive Ion Accelerator Facility is described. Possible important applications for this type of neutron-based system can be both advanced medical imaging techniques and active "stand-off" interrogation of contraband items.

  17. Plasma electron hole kinematics. I. Momentum conservation

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, I. H.; Zhou, C. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2016-08-15

    We analyse the kinematic properties of a plasma electron hole: a non-linear self-sustained localized positive electric potential perturbation, trapping electrons, which behaves as a coherent entity. When a hole accelerates or grows in depth, ion and electron plasma momentum is changed both within the hole and outside, by an energization process we call jetting. We present a comprehensive analytic calculation of the momentum changes of an isolated general one-dimensional hole. The conservation of the total momentum gives the hole's kinematics, determining its velocity evolution. Our results explain many features of the behavior of hole speed observed in numerical simulations, including self-acceleration at formation, and hole pushing and trapping by ion streams.

  18. The Effect of Direction on Cursor Moving Kinematics

    Directory of Open Access Journals (Sweden)

    Chiu-Ping Lu

    2012-02-01

    Full Text Available There have been only few studies to substantiate the kinematic characteristics of cursor movement. In this study, a quantitative experimental research method was used to explore the effect of moving direction on the kinematics of cursor movement in 24 typical young persons using our previously developed computerized measuring program. The results of multiple one way repeated measures ANOVAs and post hoc LSD tests demonstrated that the moving direction had effects on average velocity, movement time, movement unit and peak velocity. Moving leftward showed better efficiency than moving rightward, upward and downward from the kinematic evidences such as velocity, movement unit and time. Moreover, the unique pattern of the power spectral density (PSD of velocity (strategy for power application explained why the smoothness was still maintained while moving leftward even under an unstable situation with larger momentum. Moreover, the information from this cursor moving study can guide us to relocate the toolbars and icons in the window interface, especially for individuals with physical disabilities whose performances are easily interrupted while controlling the cursor in specific directions.

  19. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection

    Science.gov (United States)

    Fattahi, Azadeh; Navarro, Julio F.; Sawala, Till; Frenk, Carlos S.; Oman, Kyle A.; Crain, Robert A.; Furlong, Michelle; Schaller, Matthieu; Schaye, Joop; Theuns, Tom; Jenkins, Adrian

    2016-03-01

    We use a large sample of isolated dark matter halo pairs drawn from cosmological N-body simulations to identify candidate systems whose kinematics match that of the Local Group (LG) of galaxies. We find, in agreement with the `timing argument' and earlier work, that the separation and approach velocity of the Milky Way (MW) and Andromeda (M31) galaxies favour a total mass for the pair of ˜5 × 1012 M⊙. A mass this large, however, is difficult to reconcile with the small relative tangential velocity of the pair, as well as with the small deceleration from the Hubble flow observed for the most distant LG members. Halo pairs that match these three criteria have average masses a factor of ˜2 times smaller than suggested by the timing argument, but with large dispersion. Guided by these results, we have selected 12 halo pairs with total mass in the range 1.6-3.6 × 1012 M⊙ for the APOSTLE project (A Project Of Simulating The Local Environment), a suite of hydrodynamical resimulations at various numerical resolution levels (reaching up to ˜104 M⊙ per gas particle) that use the subgrid physics developed for the EAGLE project. These simulations reproduce, by construction, the main kinematics of the MW-M31 pair, and produce satellite populations whose overall number, luminosities, and kinematics are in good agreement with observations of the MW and M31 companions. The APOSTLE candidate systems thus provide an excellent testbed to confront directly many of the predictions of the Λ cold dark matter cosmology with observations of our local Universe.

  20. Relationship between gluteal muscle activation and upper extremity kinematics and kinetics in softball position players.

    Science.gov (United States)

    Oliver, Gretchen D

    2014-03-01

    As the biomechanical literature concerning softball pitching is evolving, there are no data to support the mechanics of softball position players. Pitching literature supports the whole kinetic chain approach including the lower extremity in proper throwing mechanics. The purpose of this project was to examine the gluteal muscle group activation patterns and their relationship with shoulder and elbow kinematics and kinetics during the overhead throwing motion of softball position players. Eighteen Division I National Collegiate Athletic Association softball players (19.2 ± 1.0 years; 68.9 ± 8.7 kg; 168.6 ± 6.6 cm) who were listed on the active playing roster volunteered. Electromyographic, kinematic, and kinetic data were collected while players caught a simulated hit or pitched ball and perform their position throw. Pearson correlation revealed a significant negative correlation between non-throwing gluteus maximus during the phase of maximum external rotation to maximum internal rotation (MIR) and elbow moments at ball release (r = -0.52). While at ball release, trunk flexion and rotation both had a positive relationship with shoulder moments at MIR (r = 0.69, r = 0.82, respectively) suggesting that the kinematic actions of the pelvis and trunk are strongly related to the actions of the shoulder during throwing.

  1. Finite-correlation-time effects in the kinematic dynamo problem

    International Nuclear Information System (INIS)

    Schekochihin, Alexander A.; Kulsrud, Russell M.

    2001-01-01

    Most of the theoretical results on the kinematic amplification of small-scale magnetic fluctuations by turbulence have been confined to the model of white-noise-like (δ-correlated in time) advecting turbulent velocity field. In this work, the statistics of the passive magnetic field in the diffusion-free regime are considered for the case when the advecting flow is finite-time correlated. A new method is developed that allows one to systematically construct the correlation-time expansion for statistical characteristics of the field such as its probability density function or the complete set of its moments. The expansion is valid provided the velocity correlation time is smaller than the characteristic growth time of the magnetic fluctuations. This expansion is carried out up to first order in the general case of a d-dimensional arbitrarily compressible advecting flow. The growth rates for all moments of the magnetic-field strength are derived. The effect of the first-order corrections due to the finite correlation time is to reduce these growth rates. It is shown that introducing a finite correlation time leads to the loss of the small-scale statistical universality, which was present in the limit of the δ-correlated velocity field. Namely, the shape of the velocity time-correlation profile and the large-scale spatial structure of the flow become important. The latter is a new effect, that implies, in particular, that the approximation of a locally-linear shear flow does not fully capture the effect of nonvanishing correlation time. Physical applications of this theory include the small-scale kinematic dynamo in the interstellar medium and protogalactic plasmas

  2. Pure Gravities via Color-Kinematics Duality for Fundamental Matter

    CERN Document Server

    Johansson, Henrik

    2015-01-01

    We give a prescription for the computation of loop-level scattering amplitudes in pure Einstein gravity, and four-dimensional pure supergravities, using the color-kinematics duality. Amplitudes are constructed using double copies of pure (super-)Yang-Mills parts and additional contributions from double copies of fundamental matter, which are treated as ghosts. The opposite-statistics states cancel the unwanted dilaton and axion in the bosonic theory, as well as the extra matter supermultiplets in supergravities. As a spinoff, we obtain a prescription for obtaining amplitudes in supergravities with arbitrary non-self-interacting matter. As a prerequisite, we extend the color-kinematics duality from the adjoint to the fundamental representation of the gauge group. We explain the numerator relations that the fundamental kinematic Lie algebra should satisfy. We give nontrivial evidence supporting our construction using explicit tree and loop amplitudes, as well as more general arguments.

  3. Distribution and kinematics of atomic and molecular gas inside the solar circle

    Science.gov (United States)

    Marasco, A.; Fraternali, F.; van der Hulst, J. M.; Oosterloo, T.

    2017-11-01

    The detailed distribution and kinematics of the atomic and the CO-bright molecular hydrogen in the disc of the Milky Way inside the solar circle are derived under the assumptions of axisymmetry and pure circular motions. We divide the Galactic disc into a series of rings, and assume that the gas in each ring is described by four parameters: its rotation velocity, velocity dispersion, midplane density and its scale height. We fit these parameters to the Galactic H I and 12CO (J = 1-0) data by producing artificial H I and CO line-profiles and comparing them with the observations. Our approach allows us to fit all parameters to the data simultaneously without assuming a-priori a radial profile for one of the parameters. We present the distribution and kinematics of the H I and H2 in both the approaching (QIV) and the receding (QI) regions of the Galaxy. Our best-fit models reproduces remarkably well the observed H I and CO longitude-velocity diagrams up to a few degrees of distance from the midplane. With the exception of the innermost 2.5 kpc, QI and QIV show very similar kinematics. The rotation curves traced by the H I and H2 follow each other closely, flattening beyond R = 6.5 kpc. Both the H I and the H2 surface densities show a) a deep depression at 0.5 < R < 2.5 kpc, analogous to that shown by some nearby barred galaxies, b) local overdensities that can be interpreted in terms of spiral arms or ring-like features in the disc. The H I (H2) properties are fairly constant in the region outside the depression, with typical velocity dispersion of 8.9 ± 1.1 (4.4 ± 1.2) km s-1, density of 0.43 ± 0.11 (0.42 ± 0.22) cm-3 and HWHM scale height of 202 ± 28 (64 ± 12) pc. We also show that the H I opacity in the LAB data can be accounted for by using an "effective" spin temperature of 150 K: assuming an optically thin regime leads to an underestimate of the H I mass by about 30%.

  4. Ionised gas kinematics in bipolar H II regions

    Science.gov (United States)

    Dalgleish, Hannah S.; Longmore, Steven N.; Peters, Thomas; Henshaw, Jonathan D.; Veitch-Michaelis, Joshua L.; Urquhart, James S.

    2018-05-01

    Stellar feedback plays a fundamental role in shaping the evolution of galaxies. Here we explore the use of ionised gas kinematics in young, bipolar H II regions as a probe of early feedback in these star-forming environments. We have undertaken a multi-wavelength study of a young, bipolar H II region in the Galactic disc, G316.81-0.06, which lies at the centre of a massive (˜103 M⊙) infrared-dark cloud filament. It is still accreting molecular gas as well as driving a ˜0.2 pc ionised gas outflow perpendicular to the filament. Intriguingly, we observe a large velocity gradient (47.81 ± 3.21 km s-1 pc-1) across the ionised gas in a direction perpendicular to the outflow. This kinematic signature of the ionised gas shows a reasonable correspondence with the simulations of young H II regions. Based on a qualitative comparison between our observations and these simulations, we put forward a possible explanation for the velocity gradients observed in G316.81-0.06. If the velocity gradient perpendicular to the outflow is caused by rotation of the ionised gas, then we infer that this rotation is a direct result of the initial net angular momentum in the natal molecular cloud. If this explanation is correct, this kinematic signature should be common in other young (bipolar) H II regions. We suggest that further quantitative analysis of the ionised gas kinematics of young H II regions, combined with additional simulations, should improve our understanding of feedback at these early stages.

  5. Scapular kinematics and muscle activities during pushing tasks.

    Science.gov (United States)

    Huang, Chun-Kai; Siu, Ka-Chun; Lien, Hen-Yu; Lee, Yun-Ju; Lin, Yang-Hua

    2013-01-01

    Pushing tasks are functional activities of daily living. However, shoulder complaints exist among workers exposed to regular pushing conditions. It is crucial to investigate the control of shoulder girdles during pushing tasks. The objective of the study was to demonstrate scapular muscle activities and motions on the dominant side during pushing tasks and the relationship between scapular kinematics and muscle activities in different pushing conditions. Thirty healthy adults were recruited to push a four-wheel cart in six pushing conditions. The electromyographic signals of the upper trapezius (UT) and serratus anterior (SA) muscles were recorded. A video-based system was used for measuring the movement of the shoulder girdle and scapular kinematics. Differences in scapular kinematics and muscle activities due to the effects of handle heights and weights of the cart were analyzed using two-way ANOVA with repeated measures. The relationships between scapular kinematics and muscle activities were examined by Pearson's correlation coefficients. The changes in upper trapezius and serratus anterior muscle activities increased significantly with increased pushing weights in the one-step pushing phase. The UT/SA ratio on the dominant side decreases significantly with increased handle heights in the one-step pushing phase. The changes in upward rotation, lateral slide and elevation of the scapula decreased with increased pushing loads in the trunk-forward pushing phase. This study indicated that increased pushing loads result in decreased motions of upward rotation, lateral slide and elevation of the scapula; decreased handle heights result in relatively increased activities of the serratus anterior muscles during pushing tasks.

  6. Group theoretic approaches to nuclear and hadronic collective motion

    International Nuclear Information System (INIS)

    Biedenharn, L.C.

    1982-01-01

    Three approaches to nuclear and hadronic collective motion are reviewed, compared and contrasted: the standard symmetry approach as typified by the Interacting Boson Model, the kinematic symmetry group approach of Gell-Mann and Tomonaga, and the recent direct construction by Buck. 50 references

  7. Group theoretic approaches to nuclear and hadronic collective motion

    Energy Technology Data Exchange (ETDEWEB)

    Biedenharn, L.C.

    1982-01-01

    Three approaches to nuclear and hadronic collective motion are reviewed, compared and contrasted: the standard symmetry approach as typified by the Interacting Boson Model, the kinematic symmetry group approach of Gell-Mann and Tomonaga, and the recent direct construction by Buck. 50 references.

  8. The brown dwarf kinematics project

    Science.gov (United States)

    Faherty, Jackie K.

    2010-10-01

    Brown dwarfs are a recent addition to the plethora of objects studied in Astronomy. With theoretical masses between 13 and 75 MJupiter , they lack sustained stable Hydrogen burning so they never join the stellar main sequence. They have physical properties similar to both planets and low-mass stars so studies of their population inform on both. The distances and kinematics of brown dwarfs provide key statistical constraints on their ages, moving group membership, absolute brightnesses, evolutionary trends, and multiplicity. Yet, until my thesis, fundamental measurements of parallax and proper motion were made for only a relatively small fraction of the known population. To address this deficiency, I initiated the Brown Dwarf Kinematics (BDKP). Over the past four years I have re-imaged the majority of spectroscopically confirmed field brown dwarfs (or ultracool dwarfs---UCDs) and created the largest proper motion catalog for ultracool dwarfs to date. Using new astrometric information I examined population characteristics such as ages calculated from velocity dispersions and correlations between kinematics and colors. Using proper motions, I identified several new wide co-moving companions and investigated binding energy (and hence formation) limitations as well as the frequency of hierarchical companions. Concurrently over the past four years I have been conducting a parallax survey of 84 UCDs including those showing spectral signatures of youth, metal-poor brown dwarfs, and those within 20 pc of the Sun. Using absolute magnitude relations in J,H, and K, I identified overluminous binary candidates and investigated known flux-reversal binaries. Using current evolutionary models, I compared the MK vs J-K color magnitude diagram to model predictions and found that the low-surface gravity dwarfs are significantly red-ward and underluminous of predictions and a handful of late-type T dwarfs may require thicker clouds to account for their scatter.

  9. Quantifying meniscal kinematics in dogs.

    Science.gov (United States)

    Park, Brian H; Banks, Scott A; Pozzi, Antonio

    2017-11-06

    The dog has been used extensively as an experimental model to study meniscal treatments such as meniscectomy, meniscal repair, transplantation, and regeneration. However, there is very little information on meniscal kinematics in the dog. This study used MR imaging to quantify in vitro meniscal kinematics in loaded dog knees in four distinct poses: extension, flexion, internal, and external rotation. A new method was used to track the meniscal poses along the convex and posteriorly tilted tibial plateau. Meniscal displacements were large, displacing 13.5 and 13.7 mm posteriorly on average for the lateral and medial menisci during flexion (p = 0.90). The medial anterior horn and lateral posterior horns were the most mobile structures, showing average translations of 15.9 and 15.1 mm, respectively. Canine menisci are highly mobile and exhibit movements that correlate closely with the relative tibiofemoral positions. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  10. Geometrically constrained kinematic global navigation satellite systems positioning: Implementation and performance

    Science.gov (United States)

    Asgari, Jamal; Mohammadloo, Tannaz H.; Amiri-Simkooei, Ali Reza

    2015-09-01

    GNSS kinematic techniques are capable of providing precise coordinates in extremely short observation time-span. These methods usually determine the coordinates of an unknown station with respect to a reference one. To enhance the precision, accuracy, reliability and integrity of the estimated unknown parameters, GNSS kinematic equations are to be augmented by possible constraints. Such constraints could be derived from the geometric relation of the receiver positions in motion. This contribution presents the formulation of the constrained kinematic global navigation satellite systems positioning. Constraints effectively restrict the definition domain of the unknown parameters from the three-dimensional space to a subspace defined by the equation of motion. To test the concept of the constrained kinematic positioning method, the equation of a circle is employed as a constraint. A device capable of moving on a circle was made and the observations from 11 positions on the circle were analyzed. Relative positioning was conducted by considering the center of the circle as the reference station. The equation of the receiver's motion was rewritten in the ECEF coordinates system. A special attention is drawn onto how a constraint is applied to kinematic positioning. Implementing the constraint in the positioning process provides much more precise results compared to the unconstrained case. This has been verified based on the results obtained from the covariance matrix of the estimated parameters and the empirical results using kinematic positioning samples as well. The theoretical standard deviations of the horizontal components are reduced by a factor ranging from 1.24 to 2.64. The improvement on the empirical standard deviation of the horizontal components ranges from 1.08 to 2.2.

  11. A Model of Parallel Kinematics for Machine Calibration

    DEFF Research Database (Denmark)

    Pedersen, David Bue; Bæk Nielsen, Morten; Kløve Christensen, Simon

    2016-01-01

    Parallel kinematics have been adopted by more than 25 manufacturers of high-end desktop 3D printers [Wohlers Report (2015), p.118] as well as by research projects such as the WASP project [WASP (2015)], a 12 meter tall linear delta robot for Additive Manufacture of large-scale components for cons......Parallel kinematics have been adopted by more than 25 manufacturers of high-end desktop 3D printers [Wohlers Report (2015), p.118] as well as by research projects such as the WASP project [WASP (2015)], a 12 meter tall linear delta robot for Additive Manufacture of large-scale components...

  12. Kinematic signature of a rotating bar near a resonance

    Science.gov (United States)

    Weinberg, Martin D.

    1994-01-01

    Recent work based on H I, star count and emission data suggests that the Milky Way has rotating bar-like features. In this paper, I show that such features cause distinctive stellar kinematic signatures near Outer Lindblad Resonance (OLR) and Inner Lindblad Resonance (ILR). The effect of these resonances may be observable far from the peak density of the pattern and relatively nearby the solar position. The details of the kinematic signatures depend on the evolutionary history of the 'bar' and therefore velocity data, both systematic and velocity dispersion, may be used to probe the evolutionary history as well as the present state of Galaxy. Kinematic models for a variety of sample scenarios are presented. Models with evolving pattern speeds show significantly stronger dispersion signatures than those with static pattern speeds, suggesting that useful observational constraints are possible. The models are applied to the proposed rotating spheroid and bar models; we find (1) none of these models chosen to represent the proposed large-scale rotating spheroid are consistent with the stellar kinematics and (2) a Galactic bar with semimajor axis of 3 kpc will cause a large increase in velocity dispersion in the vicinity of OLR (approximately 5 kpc) with little change in the net radial motion and such a signature is suggested by K-giant velocity data. Potential future observations and analyses are discussed.

  13. Parallel Task Processing on a Multicore Platform in a PC-based Control System for Parallel Kinematics

    Directory of Open Access Journals (Sweden)

    Harald Michalik

    2009-02-01

    Full Text Available Multicore platforms are such that have one physical processor chip with multiple cores interconnected via a chip level bus. Because they deliver a greater computing power through concurrency, offer greater system density multicore platforms provide best qualifications to address the performance bottleneck encountered in PC-based control systems for parallel kinematic robots with heavy CPU-load. Heavy load control tasks are generated by new control approaches that include features like singularity prediction, structure control algorithms, vision data integration and similar tasks. In this paper we introduce the parallel task scheduling extension of a communication architecture specially tailored for the development of PC-based control of parallel kinematics. The Sche-duling is specially designed for the processing on a multicore platform. It breaks down the serial task processing of the robot control cycle and extends it with parallel task processing paths in order to enhance the overall control performance.

  14. Quantum deformed magnon kinematics

    OpenAIRE

    Gómez, César; Hernández Redondo, Rafael

    2007-01-01

    The dispersion relation for planar N=4 supersymmetric Yang-Mills is identified with the Casimir of a quantum deformed two-dimensional kinematical symmetry, E_q(1,1). The quantum deformed symmetry algebra is generated by the momentum, energy and boost, with deformation parameter q=e^{2\\pi i/\\lambda}. Representing the boost as the infinitesimal generator for translations on the rapidity space leads to an elliptic uniformization with crossing transformations implemented through translations by t...

  15. The gait standard deviation, a single measure of kinematic variability.

    Science.gov (United States)

    Sangeux, Morgan; Passmore, Elyse; Graham, H Kerr; Tirosh, Oren

    2016-05-01

    Measurement of gait kinematic variability provides relevant clinical information in certain conditions affecting the neuromotor control of movement. In this article, we present a measure of overall gait kinematic variability, GaitSD, based on combination of waveforms' standard deviation. The waveform standard deviation is the common numerator in established indices of variability such as Kadaba's coefficient of multiple correlation or Winter's waveform coefficient of variation. Gait data were collected on typically developing children aged 6-17 years. Large number of strides was captured for each child, average 45 (SD: 11) for kinematics and 19 (SD: 5) for kinetics. We used a bootstrap procedure to determine the precision of GaitSD as a function of the number of strides processed. We compared the within-subject, stride-to-stride, variability with the, between-subject, variability of the normative pattern. Finally, we investigated the correlation between age and gait kinematic, kinetic and spatio-temporal variability. In typically developing children, the relative precision of GaitSD was 10% as soon as 6 strides were captured. As a comparison, spatio-temporal parameters required 30 strides to reach the same relative precision. The ratio stride-to-stride divided by normative pattern variability was smaller in kinematic variables (the smallest for pelvic tilt, 28%) than in kinetic and spatio-temporal variables (the largest for normalised stride length, 95%). GaitSD had a strong, negative correlation with age. We show that gait consistency may stabilise only at, or after, skeletal maturity. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Kinematic trajectories while walking within the Lokomat robotic gait-orthosis.

    Science.gov (United States)

    Hidler, Joseph; Wisman, Wessel; Neckel, Nathan

    2008-12-01

    Background One of the most popular robot assisted rehabilitation devices used is the Lokomat. Unfortunately, not much is known about the behaviors exhibited by subjects in this device. The goal of this study was to evaluate the kinematic patterns of individuals walking inside the Lokomat compared to those demonstrated on a treadmill. Methods Six healthy subjects walked on a treadmill and inside the Lokomat while the motions of the subject and Lokomat were tracked. Joint angles and linear motion were determined for Lokomat and treadmill walking. We also evaluated the variability of the patterns, and the repeatability of measuring techniques. Findings The overall kinematics in the Lokomat are similar to those on a treadmill, however there was significantly more hip and ankle extension, and greater hip and ankle range of motion in the Lokomat (P<0.05). Additionally, the linear movement of joints was reduced in the Lokomat. Subjects tested on repeated sessions presented consistent kinematics, demonstrating the ability to consistently setup and test subjects. Interpretation The reduced degrees of freedom in the Lokomat are believed to be the reason for the specific kinematic differences. We found that despite being firmly attached to the device there was still subject movement relative to the Lokomat. This led to variability in the patterns, where subjects altered their gait pattern from step to step. These results are clinically important as a variable step pattern has been shown to be a more effective gait training strategy than one which forces the same kinematic pattern in successive steps.

  17. Budgetary Approach to Project Management by Percentage of Completion Method

    Directory of Open Access Journals (Sweden)

    Leszek Borowiec

    2011-07-01

    Full Text Available Efficient and effective project management process is made possible by the use of methods and techniques of project management. The aim of this paper is to present the problems of project management by using Percentage of Completion method. The research material was gathered based on the experience in implementing this method by the Johnson Controls International Company. The article attempts to demonstrate the validity of the thesis that the POC project management method, allows for effective implementation and monitoring of the project and thus is an effective tool in the managing of companies which exploit the budgetary approach. The study presents planning process of basic parameters affecting the effectiveness of the project (such as costs, revenue, margin and characterized how the primary measurements used to evaluate it. The present theme is illustrating by numerous examples for showing the essence of the raised problems and the results are presenting by using descriptive methods, graphical and tabular.

  18. Variability of dynamic source parameters inferred from kinematic models of past earthquakes

    KAUST Repository

    Causse, M.

    2013-12-24

    We analyse the scaling and distribution of average dynamic source properties (fracture energy, static, dynamic and apparent stress drops) using 31 kinematic inversion models from 21 crustal earthquakes. Shear-stress histories are computed by solving the elastodynamic equations while imposing the slip velocity of a kinematic source model as a boundary condition on the fault plane. This is achieved using a 3-D finite difference method in which the rupture kinematics are modelled with the staggered-grid-split-node fault representation method of Dalguer & Day. Dynamic parameters are then estimated from the calculated stress-slip curves and averaged over the fault plane. Our results indicate that fracture energy, static, dynamic and apparent stress drops tend to increase with magnitude. The epistemic uncertainty due to uncertainties in kinematic inversions remains small (ϕ ∼ 0.1 in log10 units), showing that kinematic source models provide robust information to analyse the distribution of average dynamic source parameters. The proposed scaling relations may be useful to constrain friction law parameters in spontaneous dynamic rupture calculations for earthquake source studies, and physics-based near-source ground-motion prediction for seismic hazard and risk mitigation.

  19. Dynamic characteristics of mirrors' kinematic mount

    International Nuclear Information System (INIS)

    Wu Wenkai; Du Qiang; Li Jingze; Chen Gang; Chen Xiaojuan; Xu Yuanli

    2002-01-01

    Applying exact constrain design principles, kinematic mount for precision positioning large aperture mirrors is designed; theoretical method is introduced to analyze its dynamic characteristics and the result of the experiment for mirrors, stability; accordingly, the methods to improve design are put forward

  20. Exploring the impact of constraints in quantum optimal control through a kinematic formulation

    International Nuclear Information System (INIS)

    Donovan, Ashley; Beltrani, Vincent; Rabitz, Herschel

    2013-01-01

    Highlights: • This work lays a foundation for studying constraints in quantum control simulations. • The underlying quantum control landscape in the presence of constraints is explored. • Constrained controls can encounter suboptimal traps in the landscape. • The controls are kinematic stand-ins for dynamic time-dependent controls. • A method is developed to transfer between constrained kinematic and dynamic controls. - Abstract: The control of quantum dynamics with tailored laser fields is finding growing experimental success. In practice, experiments will be subject to constraints on the controls that may prevent full optimization of the objective. A framework is presented for systematically investigating the impact of constraints in quantum optimal control simulations using a two-stage process starting with simple time-independent kinematic controls, which act as stand-ins for the traditional dynamic controls. The objective is a state-to-state transition probability, and constraints are introduced by restricting the kinematic control variables during optimization. As a second stage, the means to map from kinematic to dynamic controls is presented, thus enabling a simplified overall procedure for exploring how limited resources affect the ability to optimize the objective. A demonstration of the impact of imposing several types of kinematic constraints is investigated, thereby offering insight into constrained quantum controls

  1. Recurrence Quantification Analysis of Sentence-Level Speech Kinematics.

    Science.gov (United States)

    Jackson, Eric S; Tiede, Mark; Riley, Michael A; Whalen, D H

    2016-12-01

    Current approaches to assessing sentence-level speech variability rely on measures that quantify variability across utterances and use normalization procedures that alter raw trajectory data. The current work tests the feasibility of a less restrictive nonlinear approach-recurrence quantification analysis (RQA)-via a procedural example and subsequent analysis of kinematic data. To test the feasibility of RQA, lip aperture (i.e., the Euclidean distance between lip-tracking sensors) was recorded for 21 typically developing adult speakers during production of a simple utterance. The utterance was produced in isolation and in carrier structures differing just in length or in length and complexity. Four RQA indices were calculated: percent recurrence (%REC), percent determinism (%DET), stability (MAXLINE), and stationarity (TREND). Percent determinism (%DET) decreased only for the most linguistically complex sentence; MAXLINE decreased as a function of linguistic complexity but increased for the longer-only sentence; TREND decreased as a function of both length and linguistic complexity. This research note demonstrates the feasibility of using RQA as a tool to compare speech variability across speakers and groups. RQA offers promise as a technique to assess effects of potential stressors (e.g., linguistic or cognitive factors) on the speech production system.

  2. Knee Kinematic Improvement After Total Knee Replacement Using a Simplified Quantitative Gait Analysis Method

    Directory of Open Access Journals (Sweden)

    Hassan Sarailoo

    2013-10-01

    Full Text Available Objectives: The aim of this study was to extract suitable spatiotemporal and kinematic parameters to determine how Total Knee Replacement (TKR alters patients’ knee kinematics during gait, using a rapid and simplified quantitative two-dimensional gait analysis procedure. Methods: Two-dimensional kinematic gait pattern of 10 participants were collected before and after the TKR surgery, using a 60 Hz camcorder in sagittal plane. Then, the kinematic parameters were extracted using the gait data. A student t-test was used to compare the group-average of spatiotemporal and peak kinematic characteristics in the sagittal plane. The knee condition was also evaluated using the Oxford Knee Score (OKS Questionnaire to ensure thateach subject was placed in the right group. Results: The results showed a significant improvement in knee flexion during stance and swing phases after TKR surgery. The walking speed was increased as a result of stride length and cadence improvement, but this increment was not statistically significant. Both post-TKR and control groups showed an increment in spatiotemporal and peak kinematic characteristics between comfortable and fast walking speeds. Discussion: The objective kinematic parameters extracted from 2D gait data were able to show significant improvements of the knee joint after TKR surgery. The patients with TKR surgery were also able to improve their knee kinematics during fast walking speed equal to the control group. These results provide a good insight into the capabilities of the presented method to evaluate knee functionality before and after TKR surgery and to define a more effective rehabilitation program.

  3. Analysis and optimization of kinematic pair force in control rod drive mechanism

    International Nuclear Information System (INIS)

    Sun Zhenguo; Liu Sen; Ran Xiaobing; Dai Changnian; Li Yuezhong

    2015-01-01

    Function expressions of kinematic pair force with latch dimensions, friction coefficient, link angle and external load was obtained by theoretical analysis, and the expression was verified by the motion analysis software. Key parameters of kinematic pair were confirmed, and their effect trends with force of parts were obtained. They show that the available method of kinematic pair optimization is increasing the space of latch holes. Using the motion analysis software, the forces of parts before and after optimization was compared. The result shows that the forces of parts were improved after the optimization. (authors)

  4. Three-dimensional spin-3 theories based on general kinematical algebras

    Energy Technology Data Exchange (ETDEWEB)

    Bergshoeff, Eric [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Grumiller, Daniel; Prohazka, Stefan [Institute for Theoretical Physics, TU Wien,Wiedner Hauptstrasse 8-10/136, A-1040 Vienna (Austria); Rosseel, Jan [Albert Einstein Center for Fundamental Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland); Faculty of Physics, University of Vienna,Boltzmanngasse 5, A-1090 Vienna (Austria)

    2017-01-25

    We initiate the study of non- and ultra-relativistic higher spin theories. For sake of simplicity we focus on the spin-3 case in three dimensions. We classify all kinematical algebras that can be obtained by all possible Inönü-Wigner contraction procedures of the kinematical algebra of spin-3 theory in three dimensional (anti-) de Sitter space-time. We demonstrate how to construct associated actions of Chern-Simons type, directly in the ultra-relativistic case and by suitable algebraic extensions in the non-relativistic case. We show how to give these kinematical algebras an infinite-dimensional lift by imposing suitable boundary conditions in a theory we call “Carroll Gravity”, whose asymptotic symmetry algebra turns out to be an infinite-dimensional extension of the Carroll algebra.

  5. Amount of kinematic feedback affects learning of speech motor skills.

    Science.gov (United States)

    Ballard, Kirrie J; Smith, Heather D; Paramatmuni, Divija; McCabe, Patricia; Theodoros, Deborah G; Murdoch, Bruce E

    2012-01-01

    Knowledge of Performance (KP) feedback, such as biofeedback or kinematic feedback, is used to provide information on the nature and quality of movement responses for the purpose of guiding active learning or rehabilitation of motor skills. It has been proposed that KP feedback may interfere with long-term learning when provided throughout training. Here, twelve healthy English-speaking adults were trained to produce a trilled Russian [r] in words with KP kinematic feedback using electropalatography (EPG) and without KP (noKP). Five one-hour training sessions were provided over one week with testing pretraining and one day and one week posttraining. No group differences were found at pretraining or one day post training for production accuracy. A group by time interaction supported the hypothesis that providing kinematic feedback continually during skill acquisition interferes with retention.

  6. Inverse Kinematics for Industrial Robots using Conformal Geometric Algebra

    Directory of Open Access Journals (Sweden)

    Adam L. Kleppe

    2016-01-01

    Full Text Available This paper shows how the recently developed formulation of conformal geometric algebra can be used for analytic inverse kinematics of two six-link industrial manipulators with revolute joints. The paper demonstrates that the solution of the inverse kinematics in this framework relies on the intersection of geometric objects like lines, circles, planes and spheres, which provides the developer with valuable geometric intuition about the problem. It is believed that this will be very useful for new robot geometries and other mechanisms like cranes and topside drilling equipment. The paper extends previous results on inverse kinematics using conformal geometric algebra by providing consistent solutions for the joint angles for the different configurations depending on shoulder left or right, elbow up or down, and wrist flipped or not. Moreover, it is shown how to relate the solution to the Denavit-Hartenberg parameters of the robot. The solutions have been successfully implemented and tested extensively over the whole workspace of the manipulators.

  7. Kinematic analysis of parallel manipulators by algebraic screw theory

    CERN Document Server

    Gallardo-Alvarado, Jaime

    2016-01-01

    This book reviews the fundamentals of screw theory concerned with velocity analysis of rigid-bodies, confirmed with detailed and explicit proofs. The author additionally investigates acceleration, jerk, and hyper-jerk analyses of rigid-bodies following the trend of the velocity analysis. With the material provided in this book, readers can extend the theory of screws into the kinematics of optional order of rigid-bodies. Illustrative examples and exercises to reinforce learning are provided. Of particular note, the kinematics of emblematic parallel manipulators, such as the Delta robot as well as the original Gough and Stewart platforms are revisited applying, in addition to the theory of screws, new methods devoted to simplify the corresponding forward-displacement analysis, a challenging task for most parallel manipulators. Stands as the only book devoted to the acceleration, jerk and hyper-jerk (snap) analyses of rigid-body by means of screw theory; Provides new strategies to simplify the forward kinematic...

  8. Experimental determination of frequency response function estimates for flexible joint industrial manipulators with serial kinematics

    Science.gov (United States)

    Saupe, Florian; Knoblach, Andreas

    2015-02-01

    Two different approaches for the determination of frequency response functions (FRFs) are used for the non-parametric closed loop identification of a flexible joint industrial manipulator with serial kinematics. The two applied experiment designs are based on low power multisine and high power chirp excitations. The main challenge is to eliminate disturbances of the FRF estimates caused by the numerous nonlinearities of the robot. For the experiment design based on chirp excitations, a simple iterative procedure is proposed which allows exploiting the good crest factor of chirp signals in a closed loop setup. An interesting synergy of the two approaches, beyond validation purposes, is pointed out.

  9. Effect of Leg Dominance on The Center-of-Mass Kinematics During an Inside-of-the-Foot Kick in Amateur Soccer Players.

    Science.gov (United States)

    Zago, Matteo; Motta, Andrea Francesco; Mapelli, Andrea; Annoni, Isabella; Galvani, Christel; Sforza, Chiarella

    2014-09-29

    Soccer kicking kinematics has received wide interest in literature. However, while the instep-kick has been broadly studied, only few researchers investigated the inside-of-the-foot kick, which is one of the most frequently performed techniques during games. In particular, little knowledge is available about differences in kinematics when kicking with the preferred and non-preferred leg. A motion analysis system recorded the three-dimensional coordinates of reflective markers placed upon the body of nine amateur soccer players (23.0 ± 2.1 years, BMI 22.2 ± 2.6 kg/m2), who performed 30 pass-kicks each, 15 with the preferred and 15 with the non-preferred leg. We investigated skill kinematics while maintaining a perspective on the complete picture of movement, looking for laterality related differences. The main focus was laid on: anatomical angles, contribution of upper limbs in kick biomechanics, kinematics of the body Center of Mass (CoM), which describes the whole body movement and is related to balance and stability. When kicking with the preferred leg, CoM displacement during the ground-support phase was 13% higher (p<0.001), normalized CoM height was 1.3% lower (p<0.001) and CoM velocity 10% higher (p<0.01); foot and shank velocities were about 5% higher (p<0.01); arms were more abducted (p<0.01); shoulders were rotated more towards the target (p<0.01, 6° mean orientation difference). We concluded that differences in motor control between preferred and non-preferred leg kicks exist, particularly in the movement velocity and upper body kinematics. Coaches can use these results to provide effective instructions to players in the learning process, moving their focus on kicking speed and upper body behavior.

  10. Kinematic control of walking.

    Science.gov (United States)

    Lacquaniti, F; Ivanenko, Y P; Zago, M

    2002-10-01

    The planar law of inter-segmental co-ordination we described may emerge from the coupling of neural oscillators between each other and with limb mechanical oscillators. Muscle contraction intervenes at variable times to re-excite the intrinsic oscillations of the system when energy is lost. The hypothesis that a law of coordinative control results from a minimal active tuning of the passive inertial and viscoelastic coupling among limb segments is congruent with the idea that movement has evolved according to minimum energy criteria (1, 8). It is known that multi-segment motion of mammals locomotion is controlled by a network of coupled oscillators (CPGs, see 18, 33, 37). Flexible combination of unit oscillators gives rise to different forms of locomotion. Inter-oscillator coupling can be modified by changing the synaptic strength (or polarity) of the relative spinal connections. As a result, unit oscillators can be coupled in phase, out of phase, or with a variable phase, giving rise to different behaviors, such as speed increments or reversal of gait direction (from forward to backward). Supra-spinal centers may drive or modulate functional sets of coordinating interneurons to generate different walking modes (or gaits). Although it is often assumed that CPGs control patterns of muscle activity, an equally plausible hypothesis is that they control patterns of limb segment motion instead (22). According to this kinematic view, each unit oscillator would directly control a limb segment, alternately generating forward and backward oscillations of the segment. Inter-segmental coordination would be achieved by coupling unit oscillators with a variable phase. Inter-segmental kinematic phase plays the role of global control variable previously postulated for the network of central oscillators. In fact, inter-segmental phase shifts systematically with increasing speed both in man (4) and cat (38). Because this phase-shift is correlated with the net mechanical power

  11. SDSS-IV MaNGA: properties of galaxies with kinematically decoupled stellar and gaseous components

    Science.gov (United States)

    Jin, Yifei; Chen, Yanmei; Shi, Yong; Tremonti, C. A.; Bershady, M. A.; Merrifield, M.; Emsellem, E.; Fu, Hai; Wake, D.; Bundy, K.; Lin, Lihwai; Argudo-Fernandez, M.; Huang, Song; Stark, D. V.; Storchi-Bergmann, T.; Bizyaev, D.; Brownstein, J.; Chisholm, J.; Guo, Qi; Hao, Lei; Hu, Jian; Li, Cheng; Li, Ran; Masters, K. L.; Malanushenko, E.; Pan, Kaike; Riffel, R. A.; Roman-Lopes, A.; Simmons, A.; Thomas, D.; Wang, Lan; Westfall, K.; Yan, Renbin

    2016-11-01

    We study the properties of 66 galaxies with kinematically misaligned gas and stars from MaNGA survey. The fraction of kinematically misaligned galaxies varies with galaxy physical parameters, I.e. M*, SFR and sSFR. According to their sSFR, we further classify these 66 galaxies into three categories, 10 star-forming, 26 `Green Valley' and 30 quiescent ones. The properties of different types of kinematically misaligned galaxies are different in that the star-forming ones have positive gradient in Dn4000 and higher gas-phase metallicity, while the green valley/quiescent ones have negative Dn4000 gradients and lower gas-phase metallicity on average. There is evidence that all types of the kinematically misaligned galaxies tend to live in more isolated environment. Based on all these observational results, we propose a scenario for the formation of star-forming galaxies with kinematically misaligned gas and stars - the progenitor accretes misaligned gas from a gas-rich dwarf or cosmic web, the cancellation of angular momentum from gas-gas collisions between the pre-existing gas and the accreted gas largely accelerates gas inflow, leading to fast centrally concentrated star formation. The higher metallicity is due to enrichment from this star formation. For the kinematically misaligned green valley and quiescent galaxies, they might be formed through gas-poor progenitors accreting kinematically misaligned gas from satellites which are smaller in mass.

  12. An Augmented Discrete-Time Approach for Human-Robot Collaboration

    Directory of Open Access Journals (Sweden)

    Peidong Liang

    2016-01-01

    Full Text Available Human-robot collaboration (HRC is a key feature to distinguish the new generation of robots from conventional robots. Relevant HRC topics have been extensively investigated recently in academic institutes and companies to improve human and robot interactive performance. Generally, human motor control regulates human motion adaptively to the external environment with safety, compliance, stability, and efficiency. Inspired by this, we propose an augmented approach to make a robot understand human motion behaviors based on human kinematics and human postural impedance adaptation. Human kinematics is identified by geometry kinematics approach to map human arm configuration as well as stiffness index controlled by hand gesture to anthropomorphic arm. While human arm postural stiffness is estimated and calibrated within robot empirical stability region, human motion is captured by employing a geometry vector approach based on Kinect. A biomimetic controller in discrete-time is employed to make Baxter robot arm imitate human arm behaviors based on Baxter robot dynamics. An object moving task is implemented to validate the performance of proposed methods based on Baxter robot simulator. Results show that the proposed approach to HRC is intuitive, stable, efficient, and compliant, which may have various applications in human-robot collaboration scenarios.

  13. Measurement of the spallation reaction 56Fe+p in inverse kinematics

    International Nuclear Information System (INIS)

    Boehmer, M.

    2006-01-01

    In this work the spallation reaction 56 Fe+p was investigated in inverse kinematics with regard to complete identification of the heavy residues. A ring imaging Cerenkov counter was used for velocity measurements in the experimental setup located at GSI in Darmstadt. A new fast readout electronic was developed and has been operated successfully in the experiment. Momentum reconstruction was carried out with the ALADiN spectrometer and a new software package written for this purpose. Cross sections and velocity distributions for more than 100 mass separated isotopes could be extracted from the dataset and compared with empirical models and other spallation experiments. The experiences gained in this experiment will be used for systematic improvements in the setup of the new spectrometer R3B at FAIR. (orig.)

  14. Effect of trapezius muscle strength on three-dimensional scapular kinematics

    OpenAIRE

    Turgut, Elif; Duzgun, Irem; Baltaci, Gul

    2016-01-01

    [Purpose] This study aimed to investigate the effect of trapezius muscle isometric strength on three-dimensional scapular kinematics in asymptomatic shoulders. [Subjects and Methods] Thirty asymptomatic subjects were included to the study. Isometric strengths of the upper, middle, and lower trapezius muscle were measured using a handheld dynamometer. Three-dimensional scapular kinematics was recorded by an electromagnetic tracking device during frontal and sagittal plane elevation. For each m...

  15. Analytical Kinematics and Coupled Vibrations Analysis of Mechanical System Operated by Solar Array Drive Assembly

    Science.gov (United States)

    Sattar, M.; Wei, C.; Jalali, A.; Sattar, R.

    2017-07-01

    To address the impact of solar array (SA) anomalies and vibrations on performance of precision space-based operations, it is important to complete its accurate jitter analysis. This work provides mathematical modelling scheme to approximate kinematics and coupled micro disturbance dynamics of rigid load supported and operated by solar array drive assembly (SADA). SADA employed in analysis provides a step wave excitation torque to activate the system. Analytical investigations into kinematics is accomplished by using generalized linear and Euler angle coordinates, applying multi-body dynamics concepts and transformations principles. Theoretical model is extended, to develop equations of motion (EoM), through energy method (Lagrange equation). The main emphasis is to research coupled frequency response by determining energies dissipated and observing dynamic behaviour of internal vibratory systems of SADA. The disturbance model captures discrete active harmonics of SADA, natural modes and vibration amplifications caused by interactions between active harmonics and structural modes of mechanical assembly. The proposed methodology can help to predict true micro disturbance nature of SADA operating rigid load. Moreover, performance outputs may be compared against actual mission requirements to assess precise spacecraft controller design to meet next space generation stringent accuracy goals.

  16. Pa2 kinematic bond in translational parallel manipulators

    Directory of Open Access Journals (Sweden)

    A. Hernández

    2018-01-01

    Full Text Available The Pa2 pair is composed of two intertwined articulated parallelograms connecting in parallel two links of a kinematic chain. This pair has two translational degrees of freedom leading to a translational plane variable with the position. Currently, the Pa2 pair appears in conceptual designs presented in recent papers. However, its practical application is very limited. One of the reasons for this can be the high number of redundant constraints it has. But, it has to be considered that most of them can be eliminated by replacing wisely the revolute joints by spherical joints. On the other side, the structure of the Pa2 pair contributes to increase the global stiffness of the kinematic chain in which it is mounted. Also, its implementation is a promising alternative to the problematic passive prismatic joints. In this paper, the Pa2 pairs are used in the design of a 3 − P Pa2 parallel manipulator. The potentiality of this design is evaluated and proven after doing the following analyses: direct and inverse kinematics, singularity study, and workspace computation and assessment.

  17. Forward kinematics solutions of a special six-degree-of-freedom parallel manipulator with three limbs

    Directory of Open Access Journals (Sweden)

    Jianxun Fu

    2015-05-01

    Full Text Available This article presents a special 6-degree-of freedom parallel manipulator, and the mechanical structure of this robot has been introduced; with this structure, the kinematic constrain equations are decoupled. Based on this character, the polynomial solutions of the forward kinematics problem are also presented. In this method, the closed-loop kinematic chain of the manipulator is divided into two parts, the solution forward position kinematics is obtained by a first-degree polynomial equation first, and then an eighth-degree polynomial equation in a single variable for the forward orientation kinematics is obtained. Based on those solutions, the configurations of the robot, including position and orientation of the end-effector, are graphically displayed. A numerical simulation is given to verify the algorithm, and the result implies that for a given set of input values, the manipulator can be assembled in eight different configurations at most. And a set of experiments illustrate the motion ability for forward kinematics of the prototype of this manipulator.

  18. ISS Squat and Deadlift Kinematics on the Advanced Resistive Exercise Device

    Science.gov (United States)

    Newby, N.; Caldwell, E.; Sibonga, J.; Ploutz-Snyder, L.

    2014-01-01

    do not return to a normal upright stance during squat, but remain somewhat bent at the hips. COP excursions were quite large during these exercises covering the entire length of the base of support in most cases. Anterior-posterior shear was very pronounced at the bottom of the squat and deadlift correlating with a COP shift to the toes at this part of the exercise. The stick figure videos showing a feet fixed reference frame have made it visually much easier for exercise personnel and trainers to assess exercise kinematics. Not returning to fully upright, hips extended position during squat exercises could have implications for the amount of load that is transmitted axially along the skeleton. The estimated shear loads observed in these crewmembers, along with a concomitant reduction in normal force, may also affect bone loading. The increased shear is likely due to the surprisingly large deviations in COP. Since the footplate on ARED moves along an arced path, much of the squat and deadlift movement is occurring on a tilted foot surface. This leads to COP movements away from the heel. The combination of observed kinematics and estimated kinetics make squat and deadlift exercises on the ARED distinctly different from their ground-based counterparts. CONCLUSION This investigation showed that some useful exercise information can be obtained at low cost, using a single video camera that is readily available on ISS. Squat and deadlift kinematics on the ISS ARED differ from ground-based ARED exercise. The amount of COP shift during these exercises sometimes approaches the limit of stability leading to modifications in the kinematics. The COP movement and altered kinematics likely reduce the bone loading experienced during these exercises. Further, the stick figure videos may prove to be a useful tool in assisting trainers to identify exercise form and make suggestions for improvements

  19. Complete single ionization momentum spectra for strong perturbation collisions

    International Nuclear Information System (INIS)

    Olson, R.E.; Wood, C.J.

    1997-09-01

    The combination of recoil ion and ionized electron momentum spectroscopy provides an unparalleled method to investigate the details of ion-atom collision dynamics in kinematically complete experiments. To predict singleionization scattering behavior at the level now realized by experiment, the classical trajectory three-body Monte Carlo method has been used to obtain complete momenta information for the ionized electron, recoil ion, and projectile in the collision plane defined by the incident projectile and outgoing recoil ion. Strongly coupled systems were considered where the charge state of the projectile divided by the speed of the collision q/v is greater than unity. Illustrated are 3.6 MeV/u Se 28+ and 9.5 MeV/u Ni 26+ collisions on He where experimental data are available. The theoretical results are in good agreement with these data and calculations have been performed for 165 keV/u and 506 keV/u C 6+ +He to compare results for the same q/v perturbation strengths. (orig.)

  20. Wide-field kinematic structure of early-type galaxy halos

    Science.gov (United States)

    Arnold, Jacob Antony

    2013-12-01

    The stellar halos of nearby galaxies bare the signatures of the mass-assembly processes that have driven galaxy evolution over the last ˜10 Gyr. Finding and interpreting these relict clues in galaxies within and beyond the local group offers one of the most promising avenues for understanding how galaxies accumulate their stars over time. To tackle this problem we have performed a systematic study of the wide-field kinematic structure of nearby (Dspectroscopy out to several effective radii (˜3 R e). The 22 galaxies presented here span a range of environments (field, group, and cluster), intrinsic luminosities (-22.4 infrared Calcium II triplet. For each spectrum, we parameterize the line-of-sight velocity distribution (LOSVD) as a truncated Gauss-Hermite series convolved with an optimally weighted combination of stellar templates. These kinematic measurements (V, sigma, h3, and h4) are combined with literature values to construct spatially resolved maps of large-scale kinematic structure. A variety of kinematic behaviors are observed beyond ~1 Re, potentially reflecting the stochastic and chaotic assembly of stellar bulges and halos in early-type galaxies. Next, we describe a global analysis (out to 5 Re) of kinematics and metallicity in the nearest S0 galaxy, NGC 3115, along with implications for its assembly history. The data include high-quality wide-field imaging and multi-slit spectra of the field stars and globular clusters (GCs). Within two effective radii, the bulge (as traced by the stars and metal-rich GCs) is flattened and rotates rapidly. At larger radii, the rotation declines dramatically, while the characteristic GC metallicities also decrease with radius. We argue that this pattern is not naturally explained by a binary major merger, but instead by a two-phase assembly process where the inner regions have formed in an early violent, dissipative phase, followed by the protracted growth of the outer parts via minor mergers. To test this hypothesis

  1. Anterograde-retrograde rendezvous approach for radiation-induced complete upper oesophageal sphincter stenosis: case report and literature review

    NARCIS (Netherlands)

    Kos, M.P.; David, E.F.; Mahieu, H.F.

    2011-01-01

    Background: Strictures of the hypopharynx and oesophagus are frequently observed following (chemo)radiation. Anterograde dilatation of a complete stenosis carries a high risk of perforation. An alternative is described: a combined anterograde-retrograde approach.Case report: A 75-year-old man

  2. PERFORMANCE AND KINEMATICS OF VARIOUS THROWING TECHNIQUES IN TEAM-HANDBALL

    Directory of Open Access Journals (Sweden)

    Herbert Wagner

    2011-03-01

    Full Text Available In team-handball competition, the players utilize various throwing techniques that differ in the lower body movements (with and without run-up or jump. These different lower body movements influence changes in the upper body movements and thus also affect the performance. A comprehensive analysis of 3D-kinematics of team-handball throws that may explain these differences in performance is lacking. Consequently, the purpose of this study was (1 to compare performance (ball velocity and throwing accuracy between the jump throw, standing throw with and without run-up, and the pivot throw; (2 to calculate the influence of kinematic parameters to ball velocity; and (3 to determine if these four throwing techniques differ significantly in kinematics. Three-dimensional kinematic data (angles, angular velocities and their timing, ball velocity and velocity of the center of mass of 14 elite team-handball players were measured using an 8 camera Vicon MX13 motion capture system (Vicon, Oxford, UK, at 250 Hz. Significant difference was found between the four throwing techniques for ball velocity (p < 0. 001, maximal velocity of the center of mass in goal-directed movement (p < 0.001, and 15 additional kinematic variables (p < 0.003. Ball velocity was significant impacted by the run-up and the pelvis and trunk movements. Depending on floor contact (standing vs. jump throws, elite players in the study used two different strategies (lead leg braces the body vs. opposed leg movements during flight to accelerate the pelvis and trunk to yield differences in ball velocity. However, these players were able to utilize the throwing arm similarly in all four throwing techniques.

  3. Kinematic Mechanisms of How Power Training Improves Healthy Old Adults' Gait Velocity.

    Science.gov (United States)

    Beijersbergen, Chantal M I; Granacher, Urs; Gäbler, Martijn; Devita, Paul; Hortobágyi, Tibor

    2017-01-01

    Slow gait predicts many adverse clinical outcomes in old adults, but the mechanisms of how power training can minimize the age-related loss of gait velocity is unclear. We examined the effects of 10 wk of lower extremity power training and detraining on healthy old adults' lower extremity muscle power and gait kinematics. As part of the Potsdam Gait Study, participants started with 10 wk of power training followed by 10 wk of detraining (n = 16), and participants started with a 10-wk control period followed by 10 wk of power training (n = 16). We measured gait kinematics (stride characteristic and joint kinematics) and isokinetic power of the ankle plantarflexor (20°·s, 40°·s, and 60°·s) and knee extensor and flexor (60°·s, 120°·s, and 180°·s) muscles at weeks 0, 10, and 20. Power training improved isokinetic muscle power by ~30% (P ≤ 0.001) and fast (5.9%, P kinematics did not correlate with increases in fast gait velocity. The mechanisms that increased fast gait velocity involved higher cadence (r = 0.86, P ≤ 0.001) rather than longer strides (r = 0.49, P = 0.066). Detraining did not reverse the training-induced increases in muscle power and fast gait velocity. Because increases in muscle power and modifications in joint kinematics did not correlate with increases in fast gait velocity, kinematic mechanisms seem to play a minor role in improving healthy old adults' fast gait velocity after power training.

  4. Smart Device-Supported BDS/GNSS Real-Time Kinematic Positioning for Sub-Meter-Level Accuracy in Urban Location-Based Services.

    Science.gov (United States)

    Wang, Liang; Li, Zishen; Zhao, Jiaojiao; Zhou, Kai; Wang, Zhiyu; Yuan, Hong

    2016-12-21

    Using mobile smart devices to provide urban location-based services (LBS) with sub-meter-level accuracy (around 0.5 m) is a major application field for future global navigation satellite system (GNSS) development. Real-time kinematic (RTK) positioning, which is a widely used GNSS-based positioning approach, can improve the accuracy from about 10-20 m (achieved by the standard positioning services) to about 3-5 cm based on the geodetic receivers. In using the smart devices to achieve positioning with sub-meter-level accuracy, a feasible solution of combining the low-cost GNSS module and the smart device is proposed in this work and a user-side GNSS RTK positioning software was developed from scratch based on the Android platform. Its real-time positioning performance was validated by BeiDou Navigation Satellite System/Global Positioning System (BDS/GPS) combined RTK positioning under the conditions of a static and kinematic (the velocity of the rover was 50-80 km/h) mode in a real urban environment with a SAMSUNG Galaxy A7 smartphone. The results show that the fixed-rates of ambiguity resolution (the proportion of epochs of ambiguities fixed) for BDS/GPS combined RTK in the static and kinematic tests were about 97% and 90%, respectively, and the average positioning accuracies (RMS) were better than 0.15 m (horizontal) and 0.25 m (vertical) for the static test, and 0.30 m (horizontal) and 0.45 m (vertical) for the kinematic test.

  5. Kinematic Earthquake Ground‐Motion Simulations on Listric Normal Faults

    KAUST Repository

    Passone, Luca

    2017-11-28

    Complex finite-faulting source processes have important consequences for near-source ground motions, but empirical ground-motion prediction equations still lack near-source data and hence cannot fully capture near-fault shaking effects. Using a simulation-based approach, we study the effects of specific source parameterizations on near-field ground motions where empirical data are limited. Here, we investigate the effects of fault listricity through near-field kinematic ground-motion simulations. Listric faults are defined as curved faults in which dip decreases with depth, resulting in a concave upward profile. The listric profiles used in this article are built by applying a specific shape function and varying the initial dip and the degree of listricity. Furthermore, we consider variable rupture speed and slip distribution to generate ensembles of kinematic source models. These ensembles are then used in a generalized 3D finite-difference method to compute synthetic seismograms; the corresponding shaking levels are then compared in terms of peak ground velocities (PGVs) to quantify the effects of breaking fault planarity. Our results show two general features: (1) as listricity increases, the PGVs decrease on the footwall and increase on the hanging wall, and (2) constructive interference of seismic waves emanated from the listric fault causes PGVs over two times higher than those observed for the planar fault. Our results are relevant for seismic hazard assessment for near-fault areas for which observations are scarce, such as in the listric Campotosto fault (Italy) located in an active seismic area under a dam.

  6. Kinematic Earthquake Ground‐Motion Simulations on Listric Normal Faults

    KAUST Repository

    Passone, Luca; Mai, Paul Martin

    2017-01-01

    Complex finite-faulting source processes have important consequences for near-source ground motions, but empirical ground-motion prediction equations still lack near-source data and hence cannot fully capture near-fault shaking effects. Using a simulation-based approach, we study the effects of specific source parameterizations on near-field ground motions where empirical data are limited. Here, we investigate the effects of fault listricity through near-field kinematic ground-motion simulations. Listric faults are defined as curved faults in which dip decreases with depth, resulting in a concave upward profile. The listric profiles used in this article are built by applying a specific shape function and varying the initial dip and the degree of listricity. Furthermore, we consider variable rupture speed and slip distribution to generate ensembles of kinematic source models. These ensembles are then used in a generalized 3D finite-difference method to compute synthetic seismograms; the corresponding shaking levels are then compared in terms of peak ground velocities (PGVs) to quantify the effects of breaking fault planarity. Our results show two general features: (1) as listricity increases, the PGVs decrease on the footwall and increase on the hanging wall, and (2) constructive interference of seismic waves emanated from the listric fault causes PGVs over two times higher than those observed for the planar fault. Our results are relevant for seismic hazard assessment for near-fault areas for which observations are scarce, such as in the listric Campotosto fault (Italy) located in an active seismic area under a dam.

  7. A digital database of wrist bone anatomy and carpal kinematics.

    Science.gov (United States)

    Moore, Douglas C; Crisco, Joseph J; Trafton, Theodore G; Leventhal, Evan L

    2007-01-01

    The skeletal wrist consists of eight small, intricately shaped carpal bones. The motion of these bones is complex, occurs in three dimensions, and remains incompletely defined. Our previous efforts have been focused on determining the in vivo three-dimensional (3-D) kinematics of the normal and abnormal carpus. In so doing we have developed an extensive database of carpal bone anatomy and kinematics from a large number of healthy subjects. The purpose of this paper is to describe that database and to make it available to other researchers. CT volume images of both wrists from 30 healthy volunteers (15 males and 15 females) were acquired in multiple wrist positions throughout the normal range of wrist motion. The outer cortical surfaces of the carpal bones, radius and ulna, and proximal metacarpals were segmented and the 3-D motion of each bone was calculated for each wrist position. The database was constructed to include high-resolution surface models, measures of bone volume and shape, and the 3-D kinematics of each segmented bone. The database does not include soft tissues of the wrist. While there are numerous digital anatomical databases, this one is unique in that it includes a large number of subjects and it contains in vivo kinematic data as well as the bony anatomy.

  8. Kinematic study of O--ion formation from dissociative electron attachment to SO2

    Science.gov (United States)

    Jana, Irina; Nandi, Dhananjay

    2018-04-01

    We report a complete kinematic study of O--ion formation due to dissociative electron attachment to SO2 using the velocity slice imaging technique in the incident electron energy range over the resonances. Two resonances are observed at 5.2 and 7.5 eV, respectively. From the kinetic energy distribution, the two resonances are observed to have the same threshold energy, pointing to the fact that the two processes, giving rise to the two resonant peaks, have the same dissociation limit. From the angular distribution results we identified the involvement of an A1 and a combination of A1+B2 temporary negative-ion state(s) for the first and second resonances, respectively.

  9. Navier-Stokes-Voigt Equations with Memory in 3D Lacking Instantaneous Kinematic Viscosity

    Science.gov (United States)

    Di Plinio, Francesco; Giorgini, Andrea; Pata, Vittorino; Temam, Roger

    2018-04-01

    We consider a Navier-Stokes-Voigt fluid model where the instantaneous kinematic viscosity has been completely replaced by a memory term incorporating hereditary effects, in presence of Ekman damping. Unlike the classical Navier-Stokes-Voigt system, the energy balance involves the spatial gradient of the past history of the velocity rather than providing an instantaneous control on the high modes. In spite of this difficulty, we show that our system is dissipative in the dynamical systems sense and even possesses regular global and exponential attractors of finite fractal dimension. Such features of asymptotic well-posedness in absence of instantaneous high modes dissipation appear to be unique within the realm of dynamical systems arising from fluid models.

  10. Kinetic and kinematic differences between squats performed with and without elastic bands.

    Science.gov (United States)

    Israetel, Michael A; McBride, Jeffrey M; Nuzzo, James L; Skinner, Jared W; Dayne, Andrea M

    2010-01-01

    The purpose of this investigation was to compare kinetic and kinematic variables between squats performed with and without elastic bands equalized for total work. Ten recreationally weight trained males completed 1 set of 5 squats without (Wht) and with (Band) elastic bands as resistance. Squats were completed while standing on a force platform with bar displacement measured using 2 potentiometers. Electromyography (EMG) was obtained from the vastus lateralis. Average force-time, velocity-time, power-time, and EMG-time graphs were generated and statistically analyzed for mean differences in values between the 2 conditions during the eccentric and concentric phases. The Band condition resulted in significantly higher forces in comparison to the Wht condition during the first 25% of the eccentric phase and the last 10% of the concentric phase (p squats equalized for total work with and without elastic bands significantly alter the force-time, power-time, velocity-time, and EMG-time curves associated with the movements. Specifically, elastic bands seem to increase force, power, and muscle activity during the early portions of the eccentric phase and latter portions of the concentric phase.

  11. Kinematic control of redundant robots and the motion optimizability measure.

    Science.gov (United States)

    Li, L; Gruver, W A; Zhang, Q; Yang, Z

    2001-01-01

    This paper treats the kinematic control of manipulators with redundant degrees of freedom. We derive an analytical solution for the inverse kinematics that provides a means for accommodating joint velocity constraints in real time. We define the motion optimizability measure and use it to develop an efficient method for the optimization of joint trajectories subject to multiple criteria. An implementation of the method for a 7-dof experimental redundant robot is present.

  12. Reliability and Minimum Detectable Change of Temporal-Spatial, Kinematic, and Dynamic Stability Measures during Perturbed Gait.

    Directory of Open Access Journals (Sweden)

    Christopher A Rábago

    Full Text Available Temporal-spatial, kinematic variability, and dynamic stability measures collected during perturbation-based assessment paradigms are often used to identify dysfunction associated with gait instability. However, it remains unclear which measures are most reliable for detecting and tracking responses to perturbations. This study systematically determined the between-session reliability and minimum detectable change values of temporal-spatial, kinematic variability, and dynamic stability measures during three types of perturbed gait. Twenty young healthy adults completed two identical testing sessions two weeks apart, comprised of an unperturbed and three perturbed (cognitive, physical, and visual walking conditions in a virtual reality environment. Within each session, perturbation responses were compared to unperturbed walking using paired t-tests. Between-session reliability and minimum detectable change values were also calculated for each measure and condition. All temporal-spatial, kinematic variability and dynamic stability measures demonstrated fair to excellent between-session reliability. Minimal detectable change values, normalized to mean values ranged from 1-50%. Step width mean and variability measures demonstrated the greatest response to perturbations with excellent between-session reliability and low minimum detectable change values. Orbital stability measures demonstrated specificity to perturbation direction and sensitivity with excellent between-session reliability and low minimum detectable change values. We observed substantially greater between-session reliability and lower minimum detectable change values for local stability measures than previously described which may be the result of averaging across trials within a session and using velocity versus acceleration data for reconstruction of state spaces. Across all perturbation types, temporal-spatial, orbital and local measures were the most reliable measures with the

  13. Manual Skill Acquisition During Transesophageal Echocardiography Simulator Training of Cardiology Fellows: A Kinematic Assessment.

    Science.gov (United States)

    Matyal, Robina; Montealegre-Gallegos, Mario; Mitchell, John D; Kim, Han; Bergman, Remco; Hawthorne, Katie M; O'Halloran, David; Wong, Vanessa; Hess, Phillip E; Mahmood, Feroze

    2015-12-01

    To investigate whether a transesophageal echocardiography (TEE) simulator with motion analysis can be used to impart proficiency in TEE in an integrated curriculum-based model. A prospective cohort study. A tertiary-care university hospital. TEE-naïve cardiology fellows. Participants underwent an 8-session multimodal TEE training program. Manual skills were assessed at the end of sessions 2 and 8 using motion analysis of the TEE simulator's probe. At the end of the course, participants performed an intraoperative TEE; their examinations were video captured, and a blinded investigator evaluated the total time and image transitions needed for each view. Results are reported as mean±standard deviation, or median (interquartile range) where appropriate. Eleven fellows completed the knowledge and kinematic portions of the study. Five participants were excluded from the evaluation in the clinical setting because of interim exposure to TEE or having participated in a TEE rotation after the training course. An increase of 12.95% in post-test knowledge scores was observed. From the start to the end of the course, there was a significant reduction (pcardiology fellows can be complemented with kinematic analyses to objectify acquisition of manual skills during simulator-based training. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Kinematics of a Hybrid Manipulator by Means of Screw Theory

    International Nuclear Information System (INIS)

    Gallardo-Alvarado, J

    2005-01-01

    In this work the kinematics of a hybrid manipulator, namely a fully parallel-serial manipulator, with a particular topology is approached by means of the theory of screws. Given the length of the six independent limbs, the forward position analysis of the mechanism under study, indeed the computation of the resulting pose, position and orientation, of the end-platform with respect to the fixed platform, is carried out in closed-form solution. Therefore conveniently this initial analysis avoids the use of a numerical technique such as the Newton-Raphson method. Writing in screw form the reduced acceleration state of the translational platform, with respect to the fixed platform, a simple expression for the computation of the acceleration of the translational platform is derived by taking advantage of the properties of reciprocal screws, via the Klein form, a bilinear symmetric form of the Lie algebra e(3). Following a similar procedure, a simple expression for the computation of the angular acceleration of the end-platform, with respect to the translational platform, is easily derived. Naturally, as an intermediate step, this contribution also provides the forward and inverse velocity analyses of the chosen parallel-serial manipulator. Finally, in order to prove the versatility of the expressions obtained via screw theory for solving the kinematics, up to the acceleration analysis, of the proposed spatial mechanism, a numerical example is solved with the help of commercial computer codes

  15. Validation of a protocol for the estimation of three-dimensional body center of mass kinematics in sport.

    Science.gov (United States)

    Mapelli, Andrea; Zago, Matteo; Fusini, Laura; Galante, Domenico; Colombo, Andrea; Sforza, Chiarella

    2014-01-01

    Since strictly related to balance and stability control, body center of mass (CoM) kinematics is a relevant quantity in sport surveys. Many methods have been proposed to estimate CoM displacement. Among them, segmental method appears to be suitable to investigate CoM kinematics in sport: human body is assumed as a system of rigid bodies, hence the whole-body CoM is calculated as the weighted average of the CoM of each segment. The number of landmarks represents a crucial choice in the protocol design process: one have to find the proper compromise between accuracy and invasivity. In this study, using a motion analysis system, a protocol based upon the segmental method is validated, adopting an anatomical model comprising 14 landmarks. Two sets of experiments were conducted. Firstly, our protocol was compared to the ground reaction force method (GRF), accounted as a standard in CoM estimation. In the second experiment, we investigated the aerial phase typical of many disciplines, comparing our protocol with: (1) an absolute reference, the parabolic regression of the vertical CoM trajectory during the time of flight; (2) two common approaches to estimate CoM kinematics in gait, known as sacrum and reconstructed pelvis methods. Recognized accuracy indexes proved that the results obtained were comparable to the GRF; what is more, during the aerial phases our protocol showed to be significantly more accurate than the two other methods. The protocol assessed can therefore be adopted as a reliable tool for CoM kinematics estimation in further sport researches. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Ballistic representation for kinematic access

    Science.gov (United States)

    Alfano, Salvatore

    2011-01-01

    This work uses simple two-body orbital dynamics to initially determine the kinematic access for a ballistic vehicle. Primarily this analysis was developed to assess when a rocket body might conjunct with an orbiting satellite platform. A family of access opportunities can be represented as a volume for a specific rocket relative to its launch platform. Alternately, the opportunities can be represented as a geographical footprint relative to aircraft or satellite position that encompasses all possible launcher locations for a specific rocket. A thrusting rocket is treated as a ballistic vehicle that receives all its energy at launch and follows a coasting trajectory. To do so, the rocket's burnout energy is used to find its equivalent initial velocity for a given launcher's altitude. Three kinematic access solutions are then found that account for spherical Earth rotation. One solution finds the maximum range for an ascent-only trajectory while another solution accommodates a descending trajectory. In addition, the ascent engagement for the descending trajectory is used to depict a rapid access scenario. These preliminary solutions are formulated to address ground-, sea-, or air-launched vehicles.

  17. Kinematic segmentation of accretive wedges based on scaled sandbox experiments and their application to nature

    Science.gov (United States)

    Lohrmann, J.; Kukowski, N.; Oncken, O.

    2003-04-01

    Recording the incremental displacement field of scaled analogue simulations provides detailed data on wedge kinematics and timing of internal deformation. This is a very efficient tool to develop kinematic concepts and test mechanical theories, e.g. the critical-taper theory. Such models could not be validated until now by the available geological and geophysical data, since there was no information about the incremental displacement field. Recent GPS measurements and seismological investigations at convergent margins provide well-constrained strain-rates and kinematics of short-termed processes. These data allow the kinematic models that are based on analogue simulations to be tested against field observations. We investigate convergent accretive sand wedges in scaled analogue simulations. We define three kinematic segments based on distinctive wedge taper, displacement field and timing of deformation (recorded at a slow sampling rate, which represents the geological scale). Only one of these segments is in a critical state of stress, whereas the other segments are either in a sub-critical or stable state of stress. Such a kinematic segmentation is not predicted for ideally homogeneous wedge-shaped bodies by the critical-taper theory, but can be explained by the formation of localised weak shear zones, which preferentially accommodate deformation. These weak zones are formed in granular analogue materials, and also in natural rocks, since these materials show a strain-softening phase prior to the achievement of stable mechanical conditions. Therefore we suggest that the kinematic segmentation of convergent sand wedges should also be observed in natural settings, such as accretionary wedges, foreland fold-and-thrust belts and even entire orogens. To validate this hypothesis we compare strain rates from GPS measurements and kinematics deduced from focal mechanisms with the respective data from sandbox experiments. We present a strategy to compare strain rates and

  18. COMPARISON STUDY OF EXPERIMENTS AND PREDICTIONS OF WAVE KINEMATICS FOR ROGUE WAVE

    Directory of Open Access Journals (Sweden)

    Hae Jin Choi

    2018-01-01

    Full Text Available To investigate the wave kinematics under the rogue wave crest, a series of experiments were performed in 2-D wave tank with the application of PIV technique to measure the velocities under the free surface. Three different prediction methods of linear extrapolation, Wheeler stretching, and modified stretching were applied to estimate water wave kinematics and compared with PIV experimental results under the highest wave crest of irregular wave trains satisfying with rogue wave criteria. Also, the cut-off frequency dependence for three prediction methods was investigated with varying spectral peak frequencies to estimate wave kinematics including velocities and accelerations in horizontal and vertical directions. It was suggested that the cut-off frequency for the reasonable prediction of the wave kinematics under the rogue wave crest could be chosen three times of spectral peak wave frequency for the linear extrapolation and higher frequency than four times of spectral peak wave frequency for Wheeler stretching and modified stretching method.

  19. Kinematic structures in galactic disc simulations

    NARCIS (Netherlands)

    Roca-F� brega, S.; Romero-Gómez, M.; Figueras, F.; Antoja Castelltort, Teresa; Valenzuela, O.; Henney, W.J.; Torres-Peimbert, S.

    2011-01-01

    N-body and test particle simulations have been used to characterize the stellar streams in the galactic discs of Milky Way type galaxies. Tools such as the second and third order moments of the velocity ellipsoid and clustering methods -EM-WEKA and FoF- allow characterizing these kinematic

  20. Compound nucleus studies withy reverse kinematics

    International Nuclear Information System (INIS)

    Moretto, L.G.

    1985-06-01

    Reverse kinematics reactions are used to demonstrate the compound nucleus origin of intermediate mass particles at low energies and the extension of the same mechanism at higher energies. No evidence has appeared in our energy range for liquid-vapor equilibrium or cold fragmentation mechanisms. 11 refs., 12 figs

  1. Completion of the first approach to critical for the seven percent critical experiment

    International Nuclear Information System (INIS)

    Barber, A. D.; Harms, G. A.

    2009-01-01

    The first approach-to-critical experiment in the Seven Percent Critical Experiment series was recently completed at Sandia. This experiment is part of the Seven Percent Critical Experiment which will provide new critical and reactor physics benchmarks for fuel enrichments greater than five weight percent. The inverse multiplication method was used to determine the state of the system during the course of the experiment. Using the inverse multiplication method, it was determined that the critical experiment went slightly supercritical with 1148 fuel elements in the fuel array. The experiment is described and the results of the experiment are presented. (authors)

  2. Workspace optimization and kinematic performance evaluation of 2-DOF parallel mechanisms

    International Nuclear Information System (INIS)

    Nam, Yun Joo; Park, Myeong Kwan

    2006-01-01

    This paper presents the kinematics and workspace optimization of the two different 2-DOF (Degrees-of-Freedom) planar parallel mechanisms: one (called 2-RPR mechanism) with translational actuators and the other (called 2-RRR mechanism) with rotational ones. First of all, the inverse kinematics and Jacobian matrix for each mechanism are derived analytically. Then, the workspace including the output-space and the joint-space is systematically analyzed in order to determine the geometric parameters and the operating range of the actuators. Finally, the kinematic optimization of the mechanisms is performed in consideration of their dexterity and rigidity. It is expected that the optimization results can be effectively used as a basic material for the applications of the presented mechanisms to more industrial fields

  3. End-Effector Position Analysis Using Forward Kinematics For 5 Dof Pravak Robot Arm

    OpenAIRE

    Jolly Atit Shah; S.S. Rattan; B.C. Nakra

    2013-01-01

    Automatic control of the robotic manipulator involves study of kinematics and dynamics as a major issue. This paper involves the kinematic analysis of a Pravak Robot arm which is used for doing successful robotic manipulation task in its workspace. The Pravak Robot Arm is a 5-DOF robot having all the joints revolute. The kinematics problem is defined as the transformation from the Cartesian space to the joint space and vice versa. In this study the Denavit- Hartenberg (D-H) model is used to m...

  4. Wheel skid correction is a prerequisite to reliably measure wheelchair sports kinematics based on inertial sensors

    NARCIS (Netherlands)

    Van der Slikke, R.M.A.; Berger, M.A.M.; Bregman, D.J.J.; Veeger, H.E.J.

    2015-01-01

    Accurate knowledge of wheelchair kinematics during a match could be a significant factor in performance improvement in wheelchair basketball. To date, most systems for measuring wheelchair kinematics are not suitable for match applications or lack detail in key kinematic outcomes. This study

  5. Anatomical kinematic constraints: consequences on muscular forces and joint reactions

    OpenAIRE

    MOISSENET, F; CHEZE, L; DUMAS, R

    2011-01-01

    This paper presents a method to determine musculo-tendon forces and joint reactions during gait, using a 3D right leg model with 5 DoFs: spherical joint at the hip and parallel mechanisms at both knee and ankle. A typical set of natural coordinates is used to obtain the dynamic equations. First, using a global optimization method, "anatomical" kinematic constraints (i.e., parallel mechanisms) are applied on the kinematics obtained from motion capture data. Consistent derivatives are computed ...

  6. Morpho-kinematic properties of field S0 bulges in the CALIFA survey

    Science.gov (United States)

    Méndez-Abreu, J.; Aguerri, J. A. L.; Falcón-Barroso, J.; Ruiz-Lara, T.; Sánchez-Menguiano, L.; de Lorenzo-Cáceres, A.; Costantin, L.; Catalán-Torrecilla, C.; Zhu, L.; Sánchez-Blazquez, P.; Florido, E.; Corsini, E. M.; Wild, V.; Lyubenova, M.; van de Ven, G.; Sánchez, S. F.; Bland-Hawthorn, J.; Galbany, L.; García-Benito, R.; García-Lorenzo, B.; González Delgado, R. M.; López-Sánchez, A. R.; Marino, R. A.; Márquez, I.; Ziegler, B.; Califa Collaboration

    2018-02-01

    We study a sample of 28 S0 galaxies extracted from the integral field spectroscopic (IFS) survey Calar Alto Legacy Integral Field Area. We combine an accurate two-dimensional (2D) multicomponent photometric decomposition with the IFS kinematic properties of their bulges to understand their formation scenario. Our final sample is representative of S0s with high stellar masses (M⋆/M⊙ > 1010). They lay mainly on the red sequence and live in relatively isolated environments similar to that of the field and loose groups. We use our 2D photometric decomposition to define the size and photometric properties of the bulges, as well as their location within the galaxies. We perform mock spectroscopic simulations mimicking our observed galaxies to quantify the impact of the underlying disc on our bulge kinematic measurements (λ and v/σ). We compare our bulge corrected kinematic measurements with the results from Schwarzschild dynamical modelling. The good agreement confirms the robustness of our results and allows us to use bulge deprojected values of λ and v/σ. We find that the photometric (n and B/T) and kinematic (v/σ and λ) properties of our field S0 bulges are not correlated. We demonstrate that this morpho-kinematic decoupling is intrinsic to the bulges and it is not due to projection effects. We conclude that photometric diagnostics to separate different types of bulges (disc-like versus classical) might not be useful for S0 galaxies. The morpho-kinematics properties of S0 bulges derived in this paper suggest that they are mainly formed by dissipational processes happening at high redshift, but dedicated high-resolution simulations are necessary to better identify their origin.

  7. Gait kinematics of subjects with ankle instability using a multisegmented foot model.

    Science.gov (United States)

    De Ridder, Roel; Willems, Tine; Vanrenterghem, Jos; Robinson, Mark; Pataky, Todd; Roosen, Philip

    2013-11-01

    Many patients who sustain an acute lateral ankle sprain develop chronic ankle instability (CAI). Altered ankle kinematics have been reported to play a role in the underlying mechanisms of CAI. In previous studies, however, the foot was modeled as one rigid segment, ignoring the complexity of the ankle and foot anatomy and kinematics. The purpose of this study was to evaluate stance phase kinematics of subjects with CAI, copers, and controls during walking and running using both a rigid and a multisegmented foot model. Foot and ankle kinematics of 77 subjects (29 subjects with self-reported CAI, 24 copers, and 24 controls) were measured during barefoot walking and running using a rigid foot model and a six-segment Ghent Foot Model. Data were collected on a 20-m-long instrumented runway embedded with a force plate and a six-camera optoelectronic system. Groups were compared using statistical parametric mapping. Both the CAI and the coper group showed similar differences during midstance and late stance compared with the control group (P foot segment showed a more everted position during walking compared with the control group. Based on the Ghent Foot Model, the rear foot also showed a more everted position during running. The medial forefoot showed a more inverted position for both running and walking compared with the control group. Our study revealed significant midstance and late stance differences in rigid foot, rear foot, and medial forefoot kinematics The multisegmented foot model demonstrated intricate behavior of the foot that is not detectable with rigid foot modeling. Further research using these models is necessary to expand knowledge of foot kinematics in subjects with CAI.

  8. Kinematic anharmonicity of internal rotation of molecules

    International Nuclear Information System (INIS)

    Bataev, V.A.; Pupyshev, V.I.; Godunov, I.A.

    2017-01-01

    The methods of analysis the strongly coupled vibrations are proposed for a number of molecules of aromatic and heterocyclic carbonyl (and some others) compounds. The qualitative principles are formulated for molecular systems with a significant kinematic anharmonicity.

  9. Kinematic analysis of a televised medial ankle sprain

    Directory of Open Access Journals (Sweden)

    Francesca E. Wade

    2018-04-01

    Full Text Available Ankle sprains are one of the most prevalent athletic injuries. Prior work has investigated lateral ankle sprains, but research on generally more severe medial sprains is lacking. This case report performs a kinematic analysis using novel motion analysis methods on a non-contact medial ankle sprain. Peak eversion (50° occurred 0.2 seconds following ground contact, maximum velocity of 426°/s, while peak dorsiflexion (64° occurred with a greater maximum velocity (573°/s. The combination of dorsiflexion at ground contact and rapid eversion is associated with a non-contact eversion sprain. This study provides a quantitative analysis of the eversion ankle sprain injury mechanism. Keywords: Athletic injury, Biomechanics, Ankle injury, Kinematics

  10. Electromiographic and kinematic characteristics of Kung Fu Yau-Man palm strike.

    Science.gov (United States)

    Neto, O P; Magini, Marcio

    2008-12-01

    A kinematic and electromyographic analysis of Kung Fu (KF) Yau-Man palm strikes without impact is presented. An empirical model applied to data obtained by a high-speed camera describes the kinematic characteristics of the movement. The electromyographic patterns of the biceps brachii, brachioradialis and triceps brachii muscles were studied during the strike in the time (root mean square) and frequency (wavelet transform) domains. Eight KF practitioners participated in the investigation. A wooden board was placed in front of the subjects, and they were asked to perform the strike imagining a target above the board. The results show that the Yau-Man KF palm strike has very similar kinematic characteristics to a simple moderate speed elbow extension movement. All practitioners positioned themselves in relation to the wooden board in a way to achieve their highest hand speeds in the instant their hands crossed the board. The analyses of the electromyography data shows a well developed muscle coordination of the practitioners in agreement with kinematic results. The results of this paper are important not only for improving the performance of practitioners but also to demonstrate the applicability of KF in the process of motor control development.

  11. Circadian rhythms in handwriting kinematics and legibility.

    Science.gov (United States)

    Jasper, Isabelle; Gordijn, Marijke; Häussler, Andreas; Hermsdörfer, Joachim

    2011-08-01

    The aim of the present study was to analyze the circadian rhythmicity in handwriting kinematics and legibility and to compare the performance between Dutch and German writers. Two subject groups underwent a 40 h sleep deprivation protocol under Constant Routine conditions either in Groningen (10 Dutch subjects) or in Berlin (9 German subjects). Both groups wrote every 3h a test sentence of similar structure in their native language. Kinematic handwriting performance was assessed with a digitizing tablet and evaluated by writing speed, writing fluency, and script size. Writing speed (frequency of strokes and average velocity) revealed a clear circadian rhythm, with a parallel decline during night and a minimum around 3:00 h in the morning for both groups. Script size and movement fluency did not vary with time of day in neither group. Legibility of handwriting was evaluated by intra-individually ranking handwriting specimens of the 13 sessions by 10 German and 10 Dutch raters. Whereas legibility ratings of the German handwriting specimens deteriorated during night in parallel with slower writing speed, legibility of the Dutch handwriting deteriorated not until the next morning. In conclusion, the circadian rhythm of handwriting kinematics seems to be independent of script language at least among the two tested western countries. Moreover, handwriting legibility is also subject to a circadian rhythm which, however, seems to be influenced by variations in the assessment protocol. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Kinematic Analysis of Mobile Manipulator for Measurement and Maintenance in Dangerous Environment

    Institute of Scientific and Technical Information of China (English)

    CUI Genqun; LI Chunshu; ZHANG Minglu

    2006-01-01

    This paper studies the kinematic modeling of a mobile manipulator that consists of 5-DOF manipulator and an autonomous wheeled mobile platform. Then an artificial neural network to realize the coordination motion between manipulator and mobile platform is developed. On the basis of the task specifications, the algorithm determines the appropriate control variables to respond to the well tracking trajectory. The control strategy employed for either subsystem is achieved by using a robust supervised controller. A learning paradigm is used to produce the required reference variables for an overall cooperative behavior of the system. Simulation results are presented to show the effectiveness of this approach.

  13. Kinematic algebras, groups for elementary particles, and the geometry of momentum space

    International Nuclear Information System (INIS)

    Izmest'ev, A.A.

    1986-01-01

    It is shown that to each n-dimensional (n≥2) homogeneous isotropic Riemannian momentum (coordinate) space there corresponds a definite kinematic local algebra of operators N/sub a/, M/sub a//sub b/, P/sub a//sub ,/ ω(a,b = 1,2,...,n). In the three-dimensional case this gives the possibility of classifying particles in accordance with the algebras of the types of momentum space. The approach developed also makes it possible to obtain generalized equations describing particles of the different types. The operators under consideration satisfy not only the relevant algebra but also relations independent of the algebra that coincide in form with the Maxwell equations

  14. Kinematic classification of iliotibial band syndrome in runners.

    Science.gov (United States)

    Grau, S; Krauss, I; Maiwald, C; Axmann, D; Horstmann, T; Best, R

    2011-04-01

    Several inconsistent causative biomechanical factors are considered to be crucial in the occurrence of iliotibial band syndrome (ITBS). The focus of this study was on assessing differences in the kinematic characteristics between healthy runners [control group (CO)] and runners with ITBS in order to recommend treatment strategies to deal with this injury. Three-dimensional kinematics of barefoot running was used in the biomechanical setup. Both groups were matched with respect to gender, height and weight. After determining drop outs, the final population comprised 36 subjects (26 male and 10 female): 18 CO and 18 ITBS (13 male and five female, each). Kinematic evaluations indicate less hip adduction and frontal range of motion at the hip joint in runners with ITBS. Furthermore, maximum hip flexion velocity and maximum knee flexion velocity were lower in runners with ITBS. Lack of joint coordination, expressed as earlier hip flexion and a tendency toward earlier knee flexion, was found to be another discriminating variable in subjects with ITBS compared with CO subjects. We assume that an increase in range of motion at the hip joint, stretching of the hip abductors, as well as stretching the hamstrings, calf muscles and hip flexors will help treat ITBS. © 2009 John Wiley & Sons A/S.

  15. Kinematic decomposition and classification of octopus arm movements.

    Science.gov (United States)

    Zelman, Ido; Titon, Myriam; Yekutieli, Yoram; Hanassy, Shlomi; Hochner, Binyamin; Flash, Tamar

    2013-01-01

    The octopus arm is a muscular hydrostat and due to its deformable and highly flexible structure it is capable of a rich repertoire of motor behaviors. Its motor control system uses planning principles and control strategies unique to muscular hydrostats. We previously reconstructed a data set of octopus arm movements from records of natural movements using a sequence of 3D curves describing the virtual backbone of arm configurations. Here we describe a novel representation of octopus arm movements in which a movement is characterized by a pair of surfaces that represent the curvature and torsion values of points along the arm as a function of time. This representation allowed us to explore whether the movements are built up of elementary kinematic units by decomposing each surface into a weighted combination of 2D Gaussian functions. The resulting Gaussian functions can be considered as motion primitives at the kinematic level of octopus arm movements. These can be used to examine underlying principles of movement generation. Here we used combination of such kinematic primitives to decompose different octopus arm movements and characterize several movement prototypes according to their composition. The representation and methodology can be applied to the movement of any organ which can be modeled by means of a continuous 3D curve.

  16. Effects of load on good morning kinematics and EMG activity

    Directory of Open Access Journals (Sweden)

    Andrew David Vigotsky

    2015-01-01

    Full Text Available Many strength and conditioning coaches utilize the good morning (GM to strengthen the hamstrings and spinal erectors. However, little research exists on its electromyography (EMG activity and kinematics, and how these variables change as a function of load. The purpose of this investigation was to examine how estimated hamstring length, integrated EMG (IEMG activity of the hamstrings and spinal erectors, and kinematics of the lumbar spine, hip, knee, and ankle are affected by changes in load. Fifteen trained male participants (age = 24.6 ± 5.3 years; body mass = 84.7 ± 11.3 kg; height = 180.9 ± 6.8 cm were recruited for this study. Participants performed five sets of the GM, utilizing 50, 60, 70, 80, and 90% of one-repetition maximum (1RM in a randomized fashion. IEMG activity of hamstrings and spinal erectors tended to increase with load. Knee flexion increased with load on all trials. Estimated hamstring length decreased with load. However, lumbar flexion, hip flexion, and plantar flexion experienced no remarkable changes between trials. These data provide insight as to how changing the load of the GM affects EMG activity, kinematic variables, and estimated hamstring length. Implications for hamstring injury prevention are discussed. More research is needed for further insight as to how load affects EMG activity and kinematics of other exercises.

  17. Inverse kinematic solution for near-simple robots and its application to robot calibration

    Science.gov (United States)

    Hayati, Samad A.; Roston, Gerald P.

    1986-01-01

    This paper provides an inverse kinematic solution for a class of robot manipulators called near-simple manipulators. The kinematics of these manipulators differ from those of simple-robots by small parameter variations. Although most robots are by design simple, in practice, due to manufacturing tolerances, every robot is near-simple. The method in this paper gives an approximate inverse kinematics solution for real time applications based on the nominal solution for these robots. The validity of the results are tested both by a simulation study and by applying the algorithm to a PUMA robot.

  18. A self-calibrating robot based upon a virtual machine model of parallel kinematics

    DEFF Research Database (Denmark)

    Pedersen, David Bue; Eiríksson, Eyþór Rúnar; Hansen, Hans Nørgaard

    2016-01-01

    A delta-type parallel kinematics system for Additive Manufacturing has been created, which through a probing system can recognise its geometrical deviations from nominal and compensate for these in the driving inverse kinematic model of the machine. Novelty is that this model is derived from...... a virtual machine of the kinematics system, built on principles from geometrical metrology. Relevant mathematically non-trivial deviations to the ideal machine are identified and decomposed into elemental deviations. From these deviations, a routine is added to a physical machine tool, which allows...

  19. Evaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson's disease.

    Science.gov (United States)

    Drotár, Peter; Mekyska, Jiří; Rektorová, Irena; Masarová, Lucia; Smékal, Zdeněk; Faundez-Zanuy, Marcos

    2016-02-01

    We present the PaHaW Parkinson's disease handwriting database, consisting of handwriting samples from Parkinson's disease (PD) patients and healthy controls. Our goal is to show that kinematic features and pressure features in handwriting can be used for the differential diagnosis of PD. The database contains records from 37 PD patients and 38 healthy controls performing eight different handwriting tasks. The tasks include drawing an Archimedean spiral, repetitively writing orthographically simple syllables and words, and writing of a sentence. In addition to the conventional kinematic features related to the dynamics of handwriting, we investigated new pressure features based on the pressure exerted on the writing surface. To discriminate between PD patients and healthy subjects, three different classifiers were compared: K-nearest neighbors (K-NN), ensemble AdaBoost classifier, and support vector machines (SVM). For predicting PD based on kinematic and pressure features of handwriting, the best performing model was SVM with classification accuracy of Pacc=81.3% (sensitivity Psen=87.4% and specificity of Pspe=80.9%). When evaluated separately, pressure features proved to be relevant for PD diagnosis, yielding Pacc=82.5% compared to Pacc=75.4% using kinematic features. Experimental results showed that an analysis of kinematic and pressure features during handwriting can help assess subtle characteristics of handwriting and discriminate between PD patients and healthy controls. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Effects of a shoot training programme with a reduced hoop diameter rim on free-throw performance and kinematics in young basketball players.

    Science.gov (United States)

    Khlifa, Riadh; Aouadi, Ridha; Shephard, Roy; Chelly, Mohamed Souhaiel; Hermassi, Souhail; Gabbett, Tim J

    2013-01-01

    The present paper investigated the effects of a shoot training programme with a reduced hoop diameter (0.35 m) rim on kinematics and performance of basketball free-throws. Eighteen young male basketball players were divided into control (CG, n = 9) and experimental (EG, n = 9) groups. Both groups undertook a 10-week training programme comprising two training sessions per week. Under fatigued conditions, each participant shot 150 free-throws in each training session, with the CG using a standard rim, and the EG a smaller rim. All other training was identical between groups. Ball release parameters, player's kinematics and mean of successful free-throws (out of 150 attempts) were determined for each participant, before and after completion of the training programme. Following training, a significant increase (P training with a reduced rim significantly improves free-throw performance in young basketball players.

  1. A Multidisciplinary Investigation of the Effects of Competitive State Anxiety on Serve Kinematics in Table Tennis

    Directory of Open Access Journals (Sweden)

    Ngo Vuong

    2017-01-01

    Full Text Available Displays of anxiety in table tennis were assessed through subjective (a self-report questionnaire, physiological (heart-rate variability and kinematic variables. Using a within-group crossover design, 9 university-level table tennis players completed a series of serves under low- and high-anxiety conditions. Anxiety manipulation was achieved through the introduction of a national standard table tennis player, known to the participants, to receive serves in the high-anxiety condition, whilst serves were received by no opponent in the low-anxiety condition. Automated motion capture systems consisting of high-speed 3D motion cameras and analytical software (QUALISYS determined the subject’s movement kinematics: bat face angle (degrees and serve routine duration (s. Self-reported state anxiety (MRF-Likert and heart rate measurements were collected to examine changes between conditions. Contrary to the hypothesis, bat face angles did not change significantly between anxiety conditions (F (1.8 = 2.791, p = 0.133 and movement times were faster in the high-anxiety condition. In light of these findings, research into other facets of movement behaviour must be analysed to gain further understanding of the effects of anxiety on performance, which remain unclear.

  2. Surface growth kinematics via local curve evolution

    KAUST Repository

    Moulton, Derek E.; Goriely, Alain

    2012-01-01

    of increasing complexity are provided, and we demonstrate how biologically relevant structures such as logarithmic shells and horns emerge as analytical solutions of the kinematics equations with a small number of parameters that can be linked to the underlying

  3. Elderly complete denture wearers: a social approach to tooth loss.

    Science.gov (United States)

    Papadaki, Eftychia; Anastassiadou, Vassiliki

    2012-06-01

    To correlate emotional reactions to tooth loss with denture satisfaction attributes in elderly complete denture wearers. Total tooth loss is a serious life event, and poor oral health has an impact on daily life. Edentulism treated by rehabilitation with dentures can have a positive effect on patients' self-image and social behaviour. A group of 80 edentulous subjects undergoing routine prosthetic care in a Greek Department of Prosthetic Dentistry were interviewed using two structured questionnaires. The first questionnaire explored reactions to tooth loss, whereas the second measured their subjective experience of complete dentures. The responses to both questionnaires were compared using the statistical package SPSS v.17. The results showed significant correlation between aspects of tooth loss experience and complete denture satisfaction. Despite the fact that a substantial proportion of patients were satisfied with their complete dentures, some patients experienced increased social and psychological problems related to their edentulousness and the wearing of complete dentures. The aesthetic and functional aspects of complete dentures affected both patients' social behaviour and self-confidence. Total tooth loss was not only reflected in patient's social behaviour and self-image, but it had a complex and multifaceted impact on satisfaction from complete dentures. © 2011 The Gerodontology Society and John Wiley & Sons A/S.

  4. Longitudinal evaluation of jaw muscle activity and mandibular kinematics in young patients with Class II malocclusion treated with the Teuscher activator.

    Science.gov (United States)

    Cuevas, Maria-José; Cacho, Alberto; Alarcón, Jose-Antonio; Martín, Conchita

    2013-05-01

    A longitudinal study was performed to evaluate the jaw muscle activity and mandibular kinematics after Teuscher activator treatment and at 2 years after orthodontic treatment completion. Twenty-seven children with Class II division 1 malocclusion were evaluated before treatment (T0; mean: 11.6 years), after functional treatment (T1; mean: 12.8 years), and 2 years after orthodontic treatment (T2; mean: 18 years). Bilateral surface electromyographic activities of the anterior temporalis, posterior temporalis, masseter, and suprahyoid muscle areas were analyzed at rest and during clenching, swallowing, and mastication. Kinematic recordings of the mandibular maximum opening, lateral shift, right and left lateral excursions, and protrusion were evaluated. Compared to T0, the left masseter activity during clenching was decreased at T1 but increased at T2, similar to the other evaluated muscles. The suprahyoid activity during swallowing was increased at T1 but decreased at T2. The masseter activity during mastication was increased at T1 and further increased at T2. The left and right lateral excursions and protrusion did not show significant changes throughout the experiment. Teuscher activator and subsequent fixed orthodontic treatment improved jaw muscle function; however, a long period was needed to attain complete neuromuscular adaptation.

  5. Pythagoras Theorem and Relativistic Kinematics

    Science.gov (United States)

    Mulaj, Zenun; Dhoqina, Polikron

    2010-01-01

    In two inertial frames that move in a particular direction, may be registered a light signal that propagates in an angle with this direction. Applying Pythagoras theorem and principles of STR in both systems, we can derive all relativistic kinematics relations like the relativity of simultaneity of events, of the time interval, of the length of objects, of the velocity of the material point, Lorentz transformations, Doppler effect and stellar aberration.

  6. A nonlinear dynamics of trunk kinematics during manual lifting tasks.

    Science.gov (United States)

    Khalaf, Tamer; Karwowski, Waldemar; Sapkota, Nabin

    2015-01-01

    Human responses at work may exhibit nonlinear properties where small changes in the initial task conditions can lead to large changes in system behavior. Therefore, it is important to study such nonlinearity to gain a better understanding of human performance under a variety of physical, perceptual, and cognitive tasks conditions. The main objective of this study was to investigate whether the human trunk kinematics data during a manual lifting task exhibits nonlinear behavior in terms of determinist chaos. Data related to kinematics of the trunk with respect to the pelvis were collected using Industrial Lumbar Motion Monitor (ILMM), and analyzed applying the nonlinear dynamical systems methodology. Nonlinear dynamics quantifiers of Lyapunov exponents and Kaplan-Yorke dimensions were calculated and analyzed under different task conditions. The study showed that human trunk kinematics during manual lifting exhibits chaotic behavior in terms of trunk sagittal angular displacement, velocity and acceleration. The findings support the importance of accounting for nonlinear dynamical properties of biomechanical responses to lifting tasks.

  7. Smart Device-Supported BDS/GNSS Real-Time Kinematic Positioning for Sub-Meter-Level Accuracy in Urban Location-Based Services

    Directory of Open Access Journals (Sweden)

    Liang Wang

    2016-12-01

    Full Text Available Using mobile smart devices to provide urban location-based services (LBS with sub-meter-level accuracy (around 0.5 m is a major application field for future global navigation satellite system (GNSS development. Real-time kinematic (RTK positioning, which is a widely used GNSS-based positioning approach, can improve the accuracy from about 10–20 m (achieved by the standard positioning services to about 3–5 cm based on the geodetic receivers. In using the smart devices to achieve positioning with sub-meter-level accuracy, a feasible solution of combining the low-cost GNSS module and the smart device is proposed in this work and a user-side GNSS RTK positioning software was developed from scratch based on the Android platform. Its real-time positioning performance was validated by BeiDou Navigation Satellite System/Global Positioning System (BDS/GPS combined RTK positioning under the conditions of a static and kinematic (the velocity of the rover was 50–80 km/h mode in a real urban environment with a SAMSUNG Galaxy A7 smartphone. The results show that the fixed-rates of ambiguity resolution (the proportion of epochs of ambiguities fixed for BDS/GPS combined RTK in the static and kinematic tests were about 97% and 90%, respectively, and the average positioning accuracies (RMS were better than 0.15 m (horizontal and 0.25 m (vertical for the static test, and 0.30 m (horizontal and 0.45 m (vertical for the kinematic test.

  8. Do Running Kinematic Characteristics Change over a Typical HIIT for Endurance Runners?

    Science.gov (United States)

    García-Pinillos, Felipe; Soto-Hermoso, Víctor M; Latorre-Román, Pedro Á

    2016-10-01

    García-Pinillos, F, Soto-Hermoso, VM, and Latorre-Román, PÁ. Do running kinematic characteristics change over a typical HIIT for endurance runners?. J Strength Cond Res 30(10): 2907-2917, 2016-The purpose of this study was to describe kinematic changes that occur during a common high-intensity intermittent training (HIIT) session for endurance runners. Twenty-eight male endurance runners participated in this study. A high-speed camera was used to measure sagittal-plane kinematics at the first and the last run during a HIIT (4 × 3 × 400 m). The dependent variables were spatial-temporal variables, joint angles during support and swing, and foot strike pattern. Physiological variables, rate of perceived exertion, and athletic performance were also recorded. No significant changes (p ≥ 0.05) in kinematic variables were found during the HIIT session. Two cluster analyses were performed, according to the average running pace-faster vs. slower, and according to exhaustion level reached-exhausted group vs. nonexhausted group (NEG). At first run, no significant differences were found between groups. As for the changes induced by the running protocol, significant differences (p ≤ 0.05) were found between faster and slower athletes at toe-off in θhip and θknee, whereas some changes were found in NEG in θhip during toe-off (+4.3°) and θknee at toe-off (-5.2°) during swing. The results show that a common HIIT session for endurance runners did not consistently or substantially perturb the running kinematics of trained male runners. Additionally, although some differences between groups have been found, neither athletic performance nor exhaustion level reached seems to be determinant in the kinematic response during a HIIT, at least for this group of moderately trained endurance runners.

  9. 3-D subduction dynamics in the western Pacific: Mantle pressure, plate kinematics, and dynamic topography.

    Science.gov (United States)

    Holt, A. F.; Royden, L.; Becker, T. W.; Faccenna, C.

    2017-12-01

    While it is well established that the slab pull of negatively buoyant oceanic plates is the primary driving force of plate tectonics, the dynamic "details" of subduction have proved difficult to pin down. We use the Philippine Sea Plate region of the western Pacific as a site to explore links between kinematic observables (e.g. topography and plate motions) and the dynamics of the subduction system (e.g. mantle flow, mantle pressure). To first order, the Philippine Sea Plate can be considered to be the central plate of a double slab system containing two slabs that dip in the same direction, to the west. This subduction configuration presents the opportunity to explore subduction dynamics in a setting where two closely spaced slabs interact via subduction-induced mantle flow and stresses transmitted through the intervening plate. We use a 3-D numerical approach (e.g. Holt et al., 2017), augmented by semi-analytical models (e.g. Jagoutz et al., 2017), to develop relationships between dynamic processes and kinematic properties, including plate velocities, lithospheric stress state, slab dip angles, and topography. When combined with subduction zone observables, this allows us to isolate the first order dynamic processes that are in operation in the Philippine Sea Plate region. Our results suggest that positive pressure build-up occurs in the asthenosphere between the two slabs (Izu-Bonin-Mariana and Ryukyu-Nankai), and that this is responsible for producing much of the observed kinematic variability in the region, including the steep dip of the Pacific slab at the Izu-Bonin-Mariana trench, as compared to the flat dip of the Pacific slab north of Japan. We then extend our understanding of the role of asthenospheric pressure to examine the forces responsible for the plate kinematics and dynamic topography of the entire Western Pacific subduction margin(s). References:Holt, A. F., Royden, L. H., Becker, T. W., 2017. Geophys. J. Int., 209, 250-265Jagoutz, O., Royden, L

  10. Instantaneous Kinematics Analysis via Screw-Theory of a Novel 3-CRC Parallel Mechanism

    Directory of Open Access Journals (Sweden)

    Hussein de la Torre

    2016-06-01

    Full Text Available This paper presents the mobility and kinematics analysis of a novel parallel mechanism that is composed by one base, one platform and three identical limbs with CRC joints. The paper obtains closed-form solutions to the direct and inverse kinematics problems, and determines the mobility of the mechanism and instantaneous kinematics by applying screw theory. The obtained results show that this parallel robot is part of the family 2R1T, since the platform shows 3 DOF, i.e.: one translation perpendicular to the base and two rotations about skew axes. In order to calculate the direct instantaneous kinematics, this paper introduces the vector mh, which is part of the joint velocity vector that multiplies the overall inverse Jacobian matrix. This paper compares the results between simulations and numerical examples using Mathematica and SolidWorks in order to prove the accuracy of the analytical results.

  11. A Reactive Balance Rating Method that Correlates with Kinematics after Trip-Like Perturbations on a Treadmill and Fall Risk Among Residents of Older Adult Congregate Housing.

    Science.gov (United States)

    Madigan, Michael L; Aviles, Jessica; Allin, Leigh J; Nussbaum, Maury A; Alexander, Neil B

    2018-04-16

    A growing number of studies are using modified treadmills to train reactive balance after trip-like perturbations that require multiple steps to recover balance. The goal of this study was thus to develop and validate a low-tech reactive balance rating method in the context of trip-like treadmill perturbations to facilitate the implementation of this training outside the research setting. Thirty-five residents of five senior congregate housing facilities participated in the study. Subjects completed a series of reactive balance tests on a modified treadmill from which the reactive balance rating was determined, along with a battery of standard clinical balance and mobility tests that predict fall risk. We investigated the strength of correlation between the reactive balance rating and reactive balance kinematics. We compared the strength of correlation between the reactive balance rating and clinical tests predictive of fall risk, with the strength of correlation between reactive balance kinematics and the same clinical tests. We also compared the reactive balance rating between subjects predicted to be at a high or low risk of falling. The reactive balance rating was correlated with reactive balance kinematics (Spearman's rho squared = .04 - .30), exhibited stronger correlations with clinical tests than most kinematic measures (Spearman's rho squared = .00 - .23), and was 42-60% lower among subjects predicted to be at a high risk for falling. The reactive balance rating method may provide a low-tech, valid measure of reactive balance kinematics, and an indicator of fall risk, after trip-like postural perturbations.

  12. Lower Extremity Kinematics Differed Between a Controlled Drop-Jump and Volleyball-Takeoffs.

    Science.gov (United States)

    Beardt, Bradley S; McCollum, Myranda R; Hinshaw, Taylour J; Layer, Jacob S; Wilson, Margaret A; Zhu, Qin; Dai, Boyi

    2018-04-03

    Previous studies utilizing jump-landing biomechanics to predict anterior cruciate ligament injuries have shown inconsistent findings. The purpose of this study was to quantify the differences and correlations in jump-landing kinematics between a drop-jump, a controlled volleyball-takeoff, and a simulated-game volleyball-takeoff. Seventeen female volleyball players performed these three tasks on a volleyball court while three-dimensional kinematic data were collected by three calibrated camcorders. Participants demonstrated significantly increased jump height, shorter stance time, increased time differences in initial contact between two feet, increased knee and hip flexion at initial contact and decreased peak knee and hip flexion for both left and right legs, and decreased knee-ankle distance ratio at the lowest height of mid-hip for the two volleyball-takeoffs compared with the drop-jump (p jump and two volleyball-takeoffs. Controlled drop-jump kinematics may not represent jump-landing kinematics exhibited during volleyball competition. Jump-landing mechanics during sports-specific tasks may better represent those exhibited during sports competition and their associated risk of ACL injury compared with the drop-jump.

  13. Difference in kinematical behavior between two landing tasks in male volleyball athletes

    Directory of Open Access Journals (Sweden)

    Glauber Ribeiro Pereira

    2010-09-01

    Full Text Available Anterior cruciate ligament (ACL injuries are common in sports. Studies investigating injury mechanisms have demonstrated that most injuries arise from landing tasks. Despite the demonstration of differences between male and female kinematics, there are no studies showing how males behave during different landing tasks. The objective of this study was to compare the angular and temporal kinematics of the lower limbs between two different landing tasks. Double leg and single leg landings were recorded in the frontal and sagittal plane in 15 male volleyball athletes by videogrammetry. Reduced hip and knee flexion and increased knee valgus were observed in the single leg landing task compared to the double leg landing task. No significant difference in landing time was observed between the two tasks. In conclusion, the results support the premise that lower limb kinematics change according to the task performed. Further studies are necessary to explore the impact of these kinematic differences on knee loading and to relate them to ACL injury mechanisms in men.

  14. Kinematic and kinetic analysis of overhand, sidearm and underhand lacrosse shot techniques.

    Science.gov (United States)

    Macaulay, Charles A J; Katz, Larry; Stergiou, Pro; Stefanyshyn, Darren; Tomaghelli, Luciano

    2017-12-01

    Lacrosse requires the coordinated performance of many complex skills. One of these skills is shooting on the opponents' net using one of three techniques: overhand, sidearm or underhand. The purpose of this study was to (i) determine which technique generated the highest ball velocity and greatest shot accuracy and (ii) identify kinematic and kinetic variables that contribute to a high velocity and high accuracy shot. Twelve elite male lacrosse players participated in this study. Kinematic data were sampled at 250 Hz, while two-dimensional force plates collected ground reaction force data (1000 Hz). Statistical analysis showed significantly greater ball velocity for the sidearm technique than overhand (P  0.05). Kinematic and kinetic variables were not significantly correlated to shot accuracy or velocity across all shot types; however, when analysed independently, the lead foot horizontal impulse showed a negative correlation with underhand ball velocity (P = 0.042). This study identifies the technique with the highest ball velocity, defines kinematic and kinetic predictors related to ball velocity and provides information to coaches and athletes concerned with improving lacrosse shot performance.

  15. Hybrid Taguchi DNA Swarm Intelligence for Optimal Inverse Kinematics Redundancy Resolution of Six-DOF Humanoid Robot Arms

    Directory of Open Access Journals (Sweden)

    Hsu-Chih Huang

    2014-01-01

    Full Text Available This paper presents a hybrid Taguchi deoxyribonucleic acid (DNA swarm intelligence for solving the inverse kinematics redundancy problem of six degree-of-freedom (DOF humanoid robot arms. The inverse kinematics problem of the multi-DOF humanoid robot arm is redundant and has no general closed-form solutions or analytical solutions. The optimal joint configurations are obtained by minimizing the predefined performance index in DNA algorithm for real-world humanoid robotics application. The Taguchi method is employed to determine the DNA parameters to search for the joint solutions of the six-DOF robot arms more efficiently. This approach circumvents the disadvantage of time-consuming tuning procedure in conventional DNA computing. Simulation results are conducted to illustrate the effectiveness and merit of the proposed methods. This Taguchi-based DNA (TDNA solver outperforms the conventional solvers, such as geometric solver, Jacobian-based solver, genetic algorithm (GA solver and ant, colony optimization (ACO solver.

  16. Upper-limb kinematic reconstruction during stroke robot-aided therapy.

    Science.gov (United States)

    Papaleo, E; Zollo, L; Garcia-Aracil, N; Badesa, F J; Morales, R; Mazzoleni, S; Sterzi, S; Guglielmelli, E

    2015-09-01

    The paper proposes a novel method for an accurate and unobtrusive reconstruction of the upper-limb kinematics of stroke patients during robot-aided rehabilitation tasks with end-effector machines. The method is based on a robust analytic procedure for inverse kinematics that simply uses, in addition to hand pose data provided by the robot, upper arm acceleration measurements for computing a constraint on elbow position; it is exploited for task space augmentation. The proposed method can enable in-depth comprehension of planning strategy of stroke patients in the joint space and, consequently, allow developing therapies tailored for their residual motor capabilities. The experimental validation has a twofold purpose: (1) a comparative analysis with an optoelectronic motion capturing system is used to assess the method capability to reconstruct joint motion; (2) the application of the method to healthy and stroke subjects during circle-drawing tasks with InMotion2 robot is used to evaluate its efficacy in discriminating stroke from healthy behavior. The experimental results have shown that arm angles are reconstructed with a RMSE of 8.3 × 10(-3) rad. Moreover, the comparison between healthy and stroke subjects has revealed different features in the joint space in terms of mean values and standard deviations, which also allow assessing inter- and intra-subject variability. The findings of this study contribute to the investigation of motor performance in the joint space and Cartesian space of stroke patients undergoing robot-aided therapy, thus allowing: (1) evaluating the outcomes of the therapeutic approach, (2) re-planning the robotic treatment based on patient needs, and (3) understanding pathology-related motor strategies.

  17. Analysis and experimental kinematics of a skid-steering wheeled robot based on a laser scanner sensor.

    Science.gov (United States)

    Wang, Tianmiao; Wu, Yao; Liang, Jianhong; Han, Chenhao; Chen, Jiao; Zhao, Qiteng

    2015-04-24

    Skid-steering mobile robots are widely used because of their simple mechanism and robustness. However, due to the complex wheel-ground interactions and the kinematic constraints, it is a challenge to understand the kinematics and dynamics of such a robotic platform. In this paper, we develop an analysis and experimental kinematic scheme for a skid-steering wheeled vehicle based-on a laser scanner sensor. The kinematics model is established based on the boundedness of the instantaneous centers of rotation (ICR) of treads on the 2D motion plane. The kinematic parameters (the ICR coefficient , the path curvature variable and robot speed ), including the effect of vehicle dynamics, are introduced to describe the kinematics model. Then, an exact but costly dynamic model is used and the simulation of this model's stationary response for the vehicle shows a qualitative relationship for the specified parameters and . Moreover, the parameters of the kinematic model are determined based-on a laser scanner localization experimental analysis method with a skid-steering robotic platform, Pioneer P3-AT. The relationship between the ICR coefficient and two physical factors is studied, i.e., the radius of the path curvature and the robot speed . An empirical function-based relationship between the ICR coefficient of the robot and the path parameters is derived. To validate the obtained results, it is empirically demonstrated that the proposed kinematics model significantly improves the dead-reckoning performance of this skid-steering robot.

  18. Estimation of uncertainty of measurements of 3D mechanisms after kinematic calibration

    International Nuclear Information System (INIS)

    Takamasu, K; Sato, O; Shimojima, K; Takahashi, S; Furutani, R

    2005-01-01

    Calibration methods for 3D mechanisms are necessary to use the mechanisms as coordinate measuring machines. The calibration method of coordinate measuring machine using artifacts, the artifact calibration method, is proposed in taking account of traceability of the mechanism. There are kinematic parameters and form-deviation parameters in geometric parameters for describing the forward kinematic of the mechanism. In this article, the estimation methods of uncertainties using the calibrated coordinate measuring machine after the calibration are formulated. Firstly, the calculation method which takes out the values of kinematic parameters using least squares method is formulated. Secondly, the estimation value of uncertainty of the measuring machine is calculated using the error propagation method

  19. Kinematical Compatibility Conditions for Vorticity Across Shock Waves

    Science.gov (United States)

    Baty, Roy

    2015-11-01

    This work develops the general kinematical compatibility conditions for vorticity across arbitrary shock waves in compressible, inviscid fluids. The vorticity compatibility conditions are derived from the curl of the momentum equation using singular distributions defined on two-dimensional shock wave surfaces embedded in three-dimensional flow fields. The singular distributions are represented as generalized differential operators concentrated on moving shock wave surfaces. The derivation of the compatibility conditions for vorticity requires the application of second-order generalized derivatives and elementary tensor algebra. The well-known vorticity jump conditions across a shock wave are then shown to follow from the general kinematical compatibility conditions for vorticity by expressing the flow field velocity in vectorial components normal and tangential to a shock surface.

  20. Kinematical analysis of the data from three-particle reactions by statistical methods

    International Nuclear Information System (INIS)

    Krug, J.; Nocken, U.

    1976-01-01

    A statistical procedure to unfold the kinematics of coincidence spectra from three-particle reactions is presented which is used to protect the coincidence events on the kinematical curve. The width of the projection intervals automatically matches the experimental resolution.. The method is characterized by its consistency thus also permitting a reasonable projection of sum-coincidences. (Auth.)

  1. Effects of Kinesio taping on scapular kinematics of overhead athletes following muscle fatigue.

    Science.gov (United States)

    Zanca, Gisele Garcia; Grüninger, Bruno; Mattiello, Stela Márcia

    2016-08-01

    Scapular kinematics alterations have been found following muscle fatigue. Considering the importance of the lower trapezius in coordinated scapular movement, this study aimed to investigate the effects of elastic taping (Kinesio taping, KT) for muscle facilitation on scapular kinematics of healthy overhead athletes following muscle fatigue. Twenty-eight athletes were evaluated in a crossover, single-blind, randomized design, in three sessions: control (no taping), KT (KT with tension) and sham (KT without tension). Scapular tridimensional kinematics and EMG of clavicular and acromial portions of upper trapezius, lower trapezius and serratus anterior were evaluated during arm elevation and lowering, before and after a fatigue protocol involving repetitive throwing. Median power frequency decline of serratus anterior was significantly lower in KT session compared to sham, possibly indicating lower muscle fatigue. However, the effects of muscle fatigue on scapular kinematics were not altered by taping conditions. Although significant changes were found in scapular kinematics following muscle fatigue, they were small and not considered relevant. It was concluded that healthy overhead athletes seem to present an adaptive mechanism that avoids the disruption of scapular movement pattern following muscle fatigue. Therefore, these athletes do not benefit from the use of KT to assist scapular movement under the conditions tested. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Surface growth kinematics via local curve evolution

    KAUST Repository

    Moulton, Derek E.

    2012-11-18

    A mathematical framework is developed to model the kinematics of surface growth for objects that can be generated by evolving a curve in space, such as seashells and horns. Growth is dictated by a growth velocity vector field defined at every point on a generating curve. A local orthonormal basis is attached to each point of the generating curve and the velocity field is given in terms of the local coordinate directions, leading to a fully local and elegant mathematical structure. Several examples of increasing complexity are provided, and we demonstrate how biologically relevant structures such as logarithmic shells and horns emerge as analytical solutions of the kinematics equations with a small number of parameters that can be linked to the underlying growth process. Direct access to cell tracks and local orientation enables for connections to be made to the underlying growth process. © 2012 Springer-Verlag Berlin Heidelberg.

  3. Interactive scan control for kinematic study in open MRI

    International Nuclear Information System (INIS)

    Goto, Tomohiro; Hamada, Kiyomi; Ito, Taeko; Nagao, Hisako; Takahashi, Tetsuhiko; Hayashida, Yoshiko; Hiai, Yasuhiro; Yamashita, Yasuyuki

    2007-01-01

    A tool to support the subject is generally used for kinematic joint imaging with an open MRI apparatus because of difficulty setting the image plane correctly. However, use of a support tool requires a complicated procedure to position the subject, and setting the image plane when the joint angle changes is time consuming. Allowing the subject to move freely enables better diagnoses when kinematic joint imaging is performed. We therefore developed an interactive scan control (ISC) to facilitate the easy, quick, and accurate setting of the image plane even when a support tool is not used. We used a 0.4T magnetic resonance (MR) imaging system open in the horizontal direction. The ISC determines the image plane interactively on the basis of fluoroscopy images displayed on a user interface. The imaging pulse is a balanced steady-state acquisition with rewound gradient echo (SARGE) sequence with update time less than 2 s. Without using a tool to support the knee, we positioned the knee of a healthy volunteer at 4 different joint angles and set the image plane through the patella and femur at each of the angles. Lumbar imaging is also demonstrated with ISC. Setting the image plane was easy and quick at all knee angles, and images obtained clearly showed the patella and femur. Total imaging time was less than 10 min, a fourth of the time needed when a support tool is used. We also used our ISC in kinematic imaging of the lumbar. The ISC shortens total time for kinematic joint imaging, and because a support tool is not needed, imaging can be done more freely in an open MR imaging apparatus. (author)

  4. Foot kinematics in patients with two patterns of pathological plantar hyperkeratosis

    Directory of Open Access Journals (Sweden)

    Bowker Peter

    2011-02-01

    Full Text Available Abstract Background The Root paradigm of foot function continues to underpin the majority of clinical foot biomechanics practice and foot orthotic therapy. There are great number of assumptions in this popular paradigm, most of which have not been thoroughly tested. One component supposes that patterns of plantar pressure and associated hyperkeratosis lesions should be associated with distinct rearfoot, mid foot, first metatarsal and hallux kinematic patterns. Our aim was to investigate the extent to which this was true. Methods Twenty-seven subjects with planter pathological hyperkeratosis were recruited into one of two groups. Group 1 displayed pathological plantar hyperkeratosis only under metatarsal heads 2, 3 and 4 (n = 14. Group 2 displayed pathological plantar hyperkeratosis only under the 1st and 5th metatarsal heads (n = 13. Foot kinematics were measured using reflective markers on the leg, heel, midfoot, first metatarsal and hallux. Results The kinematic data failed to identify distinct differences between these two groups of subjects, however there were several subtle (generally Conclusions There was some evidence of small differences between planter pathological hyperkeratosis groups. Nevertheless, there was too much similarity between the kinematic data displayed in each group to classify them as distinct foot types as the current clinical paradigm proposes.

  5. The EDGE-CALIFA survey: validating stellar dynamical mass models with CO kinematics

    Science.gov (United States)

    Leung, Gigi Y. C.; Leaman, Ryan; van de Ven, Glenn; Lyubenova, Mariya; Zhu, Ling; Bolatto, Alberto D.; Falcón-Barroso, Jesus; Blitz, Leo; Dannerbauer, Helmut; Fisher, David B.; Levy, Rebecca C.; Sanchez, Sebastian F.; Utomo, Dyas; Vogel, Stuart; Wong, Tony; Ziegler, Bodo

    2018-06-01

    Deriving circular velocities of galaxies from stellar kinematics can provide an estimate of their total dynamical mass, provided a contribution from the velocity dispersion of the stars is taken into account. Molecular gas (e.g. CO), on the other hand, is a dynamically cold tracer and hence acts as an independent circular velocity estimate without needing such a correction. In this paper, we test the underlying assumptions of three commonly used dynamical models, deriving circular velocities from stellar kinematics of 54 galaxies (S0-Sd) that have observations of both stellar kinematics from the Calar Alto Legacy Integral Field Area (CALIFA) survey, and CO kinematics from the Extragalactic Database for Galaxy Evolution (EDGE) survey. We test the asymmetric drift correction (ADC) method, as well as Jeans, and Schwarzschild models. The three methods each reproduce the CO circular velocity at 1Re to within 10 per cent. All three methods show larger scatter (up to 20 per cent) in the inner regions (R < 0.4Re) that may be due to an increasingly spherical mass distribution (which is not captured by the thin disc assumption in ADC), or non-constant stellar M/L ratios (for both the JAM and Schwarzschild models). This homogeneous analysis of stellar and gaseous kinematics validates that all three models can recover Mdyn at 1Re to better than 20 per cent, but users should be mindful of scatter in the inner regions where some assumptions may break down.

  6. Evidence for halo kinematics among cool carbon-rich dwarfs

    Science.gov (United States)

    Farihi, J.; Arendt, A. R.; Machado, H. S.; Whitehouse, L. J.

    2018-04-01

    This paper reports preliminary yet compelling kinematical inferences for N ≳ 600 carbon-rich dwarf stars that demonstrate around 30% to 60% are members of the Galactic halo. The study uses a spectroscopically and non-kinematically selected sample of stars from the SDSS, and cross-correlates these data with three proper motion catalogs based on Gaia DR1 astrometry to generate estimates of their 3-D space velocities. The fraction of stars with halo-like kinematics is roughly 30% for distances based on a limited number of parallax measurements, with the remainder dominated by the thick disk, but close to 60% of the sample lie below an old, metal-poor disk isochrone in reduced proper motion. An ancient population is consistent with an extrinsic origin for C/O >1 in cool dwarfs, where a fixed mass of carbon pollution more readily surmounts lower oxygen abundances, and with a lack of detectable ultraviolet-blue flux from younger white dwarf companions. For an initial stellar mass function that favors low-mass stars as in the Galactic disk, the dC stars are likely to be the dominant source of carbon-enhanced, metal-poor stars in the Galaxy.

  7. Nozzle Mounting Method Optimization Based on Robot Kinematic Analysis

    Science.gov (United States)

    Chen, Chaoyue; Liao, Hanlin; Montavon, Ghislain; Deng, Sihao

    2016-08-01

    Nowadays, the application of industrial robots in thermal spray is gaining more and more importance. A desired coating quality depends on factors such as a balanced robot performance, a uniform scanning trajectory and stable parameters (e.g. nozzle speed, scanning step, spray angle, standoff distance). These factors also affect the mass and heat transfer as well as the coating formation. Thus, the kinematic optimization of all these aspects plays a key role in order to obtain an optimal coating quality. In this study, the robot performance was optimized from the aspect of nozzle mounting on the robot. An optimized nozzle mounting for a type F4 nozzle was designed, based on the conventional mounting method from the point of view of robot kinematics validated on a virtual robot. Robot kinematic parameters were obtained from the simulation by offline programming software and analyzed by statistical methods. The energy consumptions of different nozzle mounting methods were also compared. The results showed that it was possible to reasonably assign the amount of robot motion to each axis during the process, so achieving a constant nozzle speed. Thus, it is possible optimize robot performance and to economize robot energy.

  8. Spatially controlled immobilisation of biomolecules: A complete approach in green chemistry

    Science.gov (United States)

    Grinenval, Eva; Nonglaton, Guillaume; Vinet, Françoise

    2014-01-01

    The development of 'green' sensors is a challenging task in the field of biomolecule sensing, for example in the detection of cardiac troponin-I (cTnI). In the present work a complete approach in green chemistry was developed to create chemically active patterns for the immobilisation of biological probes. This key technology is discussed on the basis of the twelve green chemistry principles, and is a combination of surface patterning by spotting and surface chemistries modified by molecular vapour deposition. The (1H,1H,2H,2H)-perfluorodecyltrichlorosilane (FDTS) was used as a novel anti-adsorption layer while the 3,4-epoxybutyltrimethoxysilane (EBTMOS) was used to immobilise probes. Oligonucleotides and the anti-cTnI antibody were studied. The spatially controlled immobilisation of probes was characterised by fluorescence. The demonstrated surface modification has broad applications in areas such as diagnostics and bio-chemical sensing. Moreover, the environmental impacts of surface patterning and surface chemistry were discussed from a 'greenness' point of view.

  9. Calculating complete and exact Pareto front for multiobjective optimization: a new deterministic approach for discrete problems.

    Science.gov (United States)

    Hu, Xiao-Bing; Wang, Ming; Di Paolo, Ezequiel

    2013-06-01

    Searching the Pareto front for multiobjective optimization problems usually involves the use of a population-based search algorithm or of a deterministic method with a set of different single aggregate objective functions. The results are, in fact, only approximations of the real Pareto front. In this paper, we propose a new deterministic approach capable of fully determining the real Pareto front for those discrete problems for which it is possible to construct optimization algorithms to find the k best solutions to each of the single-objective problems. To this end, two theoretical conditions are given to guarantee the finding of the actual Pareto front rather than its approximation. Then, a general methodology for designing a deterministic search procedure is proposed. A case study is conducted, where by following the general methodology, a ripple-spreading algorithm is designed to calculate the complete exact Pareto front for multiobjective route optimization. When compared with traditional Pareto front search methods, the obvious advantage of the proposed approach is its unique capability of finding the complete Pareto front. This is illustrated by the simulation results in terms of both solution quality and computational efficiency.

  10. A Kinematic, Kevlar(registered) Suspension System for an ADR

    Science.gov (United States)

    Voellmer, George M.; Jackson, Michael L.; Shirron, Peter J.; Tuttle, James G.

    2003-01-01

    The High Resolution Airborne Wideband Camera (HAWC) and the Submillimeter And Far Infrared Experiment (SAFIRE) will use identical Adiabatic Demagnetization Refrigerators (ADR) to cool their bolometer detectors to 200mK and 100mK, respectively. In order to minimize thermal loads on the salt pill, a Kevlar@ suspension system is used to hold it in place. An innovative, kinematic suspension system is presented. The suspension system is unique in that it consists or two parts that can be assembled and tensioned offline, and later bolted onto the salt pill. The resulting assembly constrains each degree of freedom only once, yielding a kinematic, tensile structure.

  11. MALT90 Kinematic Distances to Dense Molecular Clumps

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, J. Scott [Physics Department, Boston University, 590 Commonwealth Avenue, Boston, MA 02215 (United States); Jackson, James M.; Sanhueza, Patricio; Stephens, Ian W. [Institute for Astrophysical Research, Boston University, Boston, MA 02215 (United States); Rathborne, J. M. [CSIRO Astronomy and Space Science, P.O. Box 76, Epping NSW 1710 (Australia); Foster, J. B. [Department of Astronomy, Yale University, P.O. Box 28101, New Haven, CT 06520-8101 (United States); Contreras, Y. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Longmore, S. N., E-mail: scott@bu.edu [Astrophysics Research Institute, Liverpool John Moores University, Egerton Wharf, Birkenhead CH41 1LD (United Kingdom)

    2017-10-01

    Using molecular-line data from the Millimetre Astronomy Legacy Team 90 GHz Survey (MALT90), we have estimated kinematic distances to 1905 molecular clumps identified in the ATLASGAL 870 μ m continuum survey over the longitude range 295° <  l  < 350°. The clump velocities were determined using a flux-weighted average of the velocities obtained from Gaussian fits to the HCO{sup +}, HNC, and N{sub 2}H{sup +} (1–0) transitions. The near/far kinematic distance ambiguity was addressed by searching for the presence or absence of absorption or self-absorption features in 21 cm atomic hydrogen spectra from the Southern Galactic Plane Survey. Our algorithm provides an estimation of the reliability of the ambiguity resolution. The Galactic distribution of the clumps indicates positions where the clumps are bunched together, and these locations probably trace the locations of spiral arms. Several clumps fall at the predicted location of the far side of the Scutum–Centaurus arm. Moreover, a number of clumps with positive radial velocities are unambiguously located on the far side of the Milky Way at galactocentric radii beyond the solar circle. The measurement of these kinematic distances, in combination with continuum or molecular-line data, now enables the determination of fundamental parameters such as mass, size, and luminosity for each clump.

  12. Kinematic decomposition and classification of octopus arm movements

    Directory of Open Access Journals (Sweden)

    Ido eZelman

    2013-05-01

    Full Text Available The octopus arm is a muscular hydrostat and due to its deformable and highly flexible structure it is capable of a rich repertoire of motor behaviors. Its motor control system uses planning principles and control strategies unique to muscular hydrostats. We previously reconstructed a data set of octopus arm movements from records of natural movements using a sequence of 3D curves describing the virtual backbone of arm configurations. Here we describe a novel representation of octopus arm movements in which a movement is characterized by a pair of surfaces that represent the curvature and torsion values of points along the arm as a function of time. This representation allowed us to explore whether the movements are built up of elementary kinematic units by decomposing each surface into a weighted combination of 2D Gaussian functions. The resulting Gaussian functions can be considered as motion primitives at the kinematic level of octopus arm movements. These can be used to examine underlying principles of movement generation. Here we used combination of such kinematic primitives to decompose different octopus arm movements and characterize several movement prototypes according to their composition. The representation and methodology can be applied to the movement of any organ which can be modeled by means of a continuous 3D curve.

  13. Circadian rhythms in handwriting kinematics and legibility

    NARCIS (Netherlands)

    Jasper, Isabelle; Gordijn, Marijke; Haeussler, Andreas; Hermsdoerfer, Joachim

    The aim of the present study was to analyze the circadian rhythmicity in handwriting kinematics and legibility and to compare the performance between Dutch and German writers. Two subject groups underwent a 40 h sleep deprivation protocol under Constant Routine conditions either in Groningen (10

  14. Assessment of multi class kinematic wave models

    NARCIS (Netherlands)

    Van Wageningen-Kessels, F.L.M.; Van Lint, J.W.C.; Vuik, C.; Hoogendoorn, S.P.

    2012-01-01

    In the last decade many multi class kinematic wave (MCKW) traffic ow models have been proposed. MCKW models introduce heterogeneity among vehicles and drivers. For example, they take into account differences in (maximum) velocities and driving style. Nevertheless, the models are macroscopic and the

  15. Kinematics of a relativistic particle with de Sitter momentum space

    International Nuclear Information System (INIS)

    Arzano, Michele; Kowalski-Glikman, Jerzy

    2011-01-01

    We discuss kinematical properties of a free relativistic particle with deformed phase space in which momentum space is given by (a submanifold of) de Sitter space. We provide a detailed derivation of the action, Hamiltonian structure and equations of motion for such a free particle. We study the action of deformed relativistic symmetries on the phase space and derive explicit formulae for the action of the deformed Poincare group. Finally we provide a discussion on parametrization of the particle worldlines stressing analogies and differences with ordinary relativistic kinematics.

  16. Barefoot vs common footwear: A systematic review of the kinematic, kinetic and muscle activity differences during walking.

    Science.gov (United States)

    Franklin, Simon; Grey, Michael J; Heneghan, Nicola; Bowen, Laura; Li, François-Xavier

    2015-09-01

    Habitual footwear use has been reported to influence foot structure with an acute exposure being shown to alter foot position and mechanics. The foot is highly specialised thus these changes in structure/position could influence functionality. This review aims to investigate the effect of footwear on gait, specifically focussing on studies that have assessed kinematics, kinetics and muscle activity between walking barefoot and in common footwear. In line with PRISMA and published guidelines, a literature search was completed across six databases comprising Medline, EMBASE, Scopus, AMED, Cochrane Library and Web of Science. Fifteen of 466 articles met the predetermined inclusion criteria and were included in the review. All articles were assessed for methodological quality using a modified assessment tool based on the STROBE statement for reporting observational studies and the CASP appraisal tool. Walking barefoot enables increased forefoot spreading under load and habitual barefoot walkers have anatomically wider feet. Spatial-temporal differences including, reduced step/stride length and increased cadence, are observed when barefoot. Flatter foot placement, increased knee flexion and a reduced peak vertical ground reaction force at initial contact are also reported. Habitual barefoot walkers exhibit lower peak plantar pressures and pressure impulses, whereas peak plantar pressures are increased in the habitually shod wearer walking barefoot. Footwear particularly affects the kinematics and kinetics of gait acutely and chronically. Little research has been completed in older age populations (50+ years) and thus further research is required to better understand the effect of footwear on walking across the lifespan. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  17. The kinematic differences between off-spin and leg-spin bowling in cricket.

    Science.gov (United States)

    Beach, Aaron J; Ferdinands, René E D; Sinclair, Peter J

    2016-09-01

    Spin bowling is generally coached using a standard technical framework, but this practice has not been based upon a comparative biomechanical analysis of leg-spin and off-spin bowling. This study analysed the three-dimensional (3D) kinematics of 23 off-spin and 20 leg-spin bowlers using a Cortex motion analysis system to identify how aspects of the respective techniques differed. A multivariate ANOVA found that certain data tended to validate some of the stated differences in the coaching literature. Off-spin bowlers had a significantly shorter stride length (p = 0.006) and spin rate (p = 0.001), but a greater release height than leg-spinners (p = 0.007). In addition, a number of other kinematic differences were identified that were not previously documented in coaching literature. These included a larger rear knee flexion (p = 0.007), faster approach speed (p < 0.001), and flexing elbow action during the arm acceleration compared with an extension action used by most of the off-spin bowlers. Off-spin and leg-spin bowlers also deviated from the standard coaching model for the shoulder alignment, front knee angle at release, and forearm mechanics. This study suggests that off-spin and leg-spin are distinct bowling techniques, supporting the development of two different coaching models in spin bowling.

  18. Kinematic and geometric characterization of the fracturation in the Berrocal (Toledo, Spain)

    International Nuclear Information System (INIS)

    Campos Egea, R.; Gumiel Martinez, P.; Pardillo Porras, J.

    1995-01-01

    The current research carried out it the El Berrocal Test Site belong to the ''Caracterizacion y validacion de los procesos de migracion de radionucleidos bajo condiciones reales en un medio granitico fracturado Project'', which is integrated in the ENRESA and EE R+D Programs aimed to establish the structural, lithological, geochemical, hydrochemical and hydrogeological aspects of the granite-Uranium mineralization system, to approach modelling of the U-Migration. The geometry and kinematics of fracturing which affect the El Berroal granite are shown in this paper. The kinematics of Late-Hercynian fractures is consistent with the development of an extension dilation zone off-set between the Meridional of Central System and Navamorcuente major faults, in a continued right-lateral shearing, accompanying E-W shortening in prolonged transpression. An statistical analysis of 1264 joints have been carried out. Joint spacing and aperture were also measured in profiles around the El Berrocal Test Site showing that joints may be grouped in three groups with orientations following Fisher distributions. Joint spacing shows fractal behaviour with a significant superimposed ramdon element (negative-exponential distribution) which is at present being evaluated. Finally, fracture trace mapping and detected fracture zones in boreholes from TLV data have been geometrically correlated and utilized to asses fracture connectivity. Connected networks of fractures have been obtained, which is a support fort further hydraulic tests carried out in the Porject. (Author) 53 refs

  19. Wearable Inertial Sensors Allow for Quantitative Assessment of Shoulder and Elbow Kinematics in a Cadaveric Knee Arthroscopy Model.

    Science.gov (United States)

    Rose, Michael; Curtze, Carolin; O'Sullivan, Joseph; El-Gohary, Mahmoud; Crawford, Dennis; Friess, Darin; Brady, Jacqueline M

    2017-12-01

    To develop a model using wearable inertial sensors to assess the performance of orthopaedic residents while performing a diagnostic knee arthroscopy. Fourteen subjects performed a diagnostic arthroscopy on a cadaveric right knee. Participants were divided into novices (5 postgraduate year 3 residents), intermediates (5 postgraduate year 4 residents), and experts (4 faculty) based on experience. Arm movement data were collected by inertial measurement units (Opal sensors) by securing 2 sensors to each upper extremity (dorsal forearm and lateral arm) and 2 sensors to the trunk (sternum and lumbar spine). Kinematics of the elbow and shoulder joints were calculated from the inertial data by biomechanical modeling based on a sequence of links connected by joints. Range of motion required to complete the procedure was calculated for each group. Histograms were used to compare the distribution of joint positions for an expert, intermediate, and novice. For both the right and left upper extremities, skill level corresponded well with shoulder abduction-adduction and elbow prono-supination. Novices required on average 17.2° more motion in the right shoulder abduction-adduction plane than experts to complete the diagnostic arthroscopy (P = .03). For right elbow prono-supination (probe hand), novices required on average 23.7° more motion than experts to complete the procedure (P = .03). Histogram data showed novices had markedly more variability in shoulder abduction-adduction and elbow prono-supination compared with the other groups. Our data show wearable inertial sensors can measure joint kinematics during diagnostic knee arthroscopy. Range-of-motion data in the shoulder and elbow correlated inversely with arthroscopic experience. Motion pattern-based analysis shows promise as a metric of resident skill acquisition and development in arthroscopy. Wearable inertial sensors show promise as metrics of arthroscopic skill acquisition among residents. Copyright © 2017

  20. Analog modeling and kinematic restoration of inverted hangingwall synclinal basins developed above syn-kinematic salt: Application to the Lusitanian and Parentis basins

    Science.gov (United States)

    Roma, Maria; Vidal-Royo, Oskar; McClay, Ken; Ferrer, Oriol; Muñoz, Josep Anton

    2017-04-01

    The formation of hagingwall syncline basins is basically constrained by the geometry of the basement-involved fault, but also by salt distribution . The formation of such basins is common around the Iberian Peninsula (e.g. Lusitanian, Parentis, Basque-Cantabian, Cameros and Organyà basins) where Upper Triassic (Keuper) salt governed their polyphasic Mesozoic extension and their subsequent Alpine inversion. In this scenario, a precise interpretation of the sub-salt faults geometry and a reconstruction of the initial salt thickness are key to understand the kinematic evolution of such basins. Using an experimental approach (sandbox models) and these Mesozoic basins as natural analogues, the aim of this work is to: 1) investigate the main parameters that controlled the formation and evolution of hagingwall syncline basins analyzing the role of syn-kinematic salt during extension and subsequent inversion; and 2) quantify the deformation and salt mobilization based on restoration of analog model cross sections. The experimental results demonstrate that premature welds are developed by salt deflation with consequent upward propagation of the basal fault in salt-bearing rift systems with a large amount of extension,. In contrast, thicker salt inhibits the upward fault propagation, which results into a further salt migration and development of a hagingwall syncline basins flanked by salt walls. The inherited extensional architecture as well as salt continuity dramatically controlled subsequent inversion. Shortening initially produced the folding and the uplift of the synclinal basins. Minor reverse faults form as a consequence of overtightening of welded diapir stems. However, no trace of reverse faulting is found around diapirs stems, as ductile unit is still available for extrusion, squeezing and accommodation of shortening. Restoration of the sandbox models has demonstrated that this is a powerful tool to unravel the complex structures in the models and this may