WorldWideScience

Sample records for complete covariance information

  1. Robust Covariance Estimators Based on Information Divergences and Riemannian Manifold

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Hua

    2018-03-01

    Full Text Available This paper proposes a class of covariance estimators based on information divergences in heterogeneous environments. In particular, the problem of covariance estimation is reformulated on the Riemannian manifold of Hermitian positive-definite (HPD matrices. The means associated with information divergences are derived and used as the estimators. Without resorting to the complete knowledge of the probability distribution of the sample data, the geometry of the Riemannian manifold of HPD matrices is considered in mean estimators. Moreover, the robustness of mean estimators is analyzed using the influence function. Simulation results indicate the robustness and superiority of an adaptive normalized matched filter with our proposed estimators compared with the existing alternatives.

  2. Complete super-sample lensing covariance in the response approach

    Science.gov (United States)

    Barreira, Alexandre; Krause, Elisabeth; Schmidt, Fabian

    2018-06-01

    We derive the complete super-sample covariance (SSC) of the matter and weak lensing convergence power spectra using the power spectrum response formalism to accurately describe the coupling of super- to sub-survey modes. The SSC term is completely characterized by the survey window function, the nonlinear matter power spectrum and the full first-order nonlinear power spectrum response function, which describes the response to super-survey density and tidal field perturbations. Generalized separate universe simulations can efficiently measure these responses in the nonlinear regime of structure formation, which is necessary for lensing applications. We derive the lensing SSC formulae for two cases: one under the Limber and flat-sky approximations, and a more general one that goes beyond the Limber approximation in the super-survey mode and is valid for curved sky applications. Quantitatively, we find that for sky fractions fsky ≈ 0.3 and a single source redshift at zS=1, the use of the flat-sky and Limber approximation underestimates the total SSC contribution by ≈ 10%. The contribution from super-survey tidal fields to the lensing SSC, which has not been included in cosmological analyses so far, is shown to represent about 5% of the total lensing covariance on multipoles l1,l2 gtrsim 300. The SSC is the dominant off-diagonal contribution to the total lensing covariance, making it appropriate to include these tidal terms and beyond flat-sky/Limber corrections in cosmic shear analyses.

  3. Construction of covariance matrix for experimental data

    International Nuclear Information System (INIS)

    Liu Tingjin; Zhang Jianhua

    1992-01-01

    For evaluators and experimenters, the information is complete only in the case when the covariance matrix is given. The covariance matrix of the indirectly measured data has been constructed and discussed. As an example, the covariance matrix of 23 Na(n, 2n) cross section is constructed. A reasonable result is obtained

  4. Covariance matrices of experimental data

    International Nuclear Information System (INIS)

    Perey, F.G.

    1978-01-01

    A complete statement of the uncertainties in data is given by its covariance matrix. It is shown how the covariance matrix of data can be generated using the information available to obtain their standard deviations. Determination of resonance energies by the time-of-flight method is used as an example. The procedure for combining data when the covariance matrix is non-diagonal is given. The method is illustrated by means of examples taken from the recent literature to obtain an estimate of the energy of the first resonance in carbon and for five resonances of 238 U

  5. Progress on Nuclear Data Covariances: AFCI-1.2 Covariance Library

    International Nuclear Information System (INIS)

    Oblozinsky, P.; Oblozinsky, P.; Mattoon, C.M.; Herman, M.; Mughabghab, S.F.; Pigni, M.T.; Talou, P.; Hale, G.M.; Kahler, A.C.; Kawano, T.; Little, R.C.; Young, P.G

    2009-01-01

    Improved neutron cross section covariances were produced for 110 materials including 12 light nuclei (coolants and moderators), 78 structural materials and fission products, and 20 actinides. Improved covariances were organized into AFCI-1.2 covariance library in 33-energy groups, from 10 -5 eV to 19.6 MeV. BNL contributed improved covariance data for the following materials: 23 Na and 55 Mn where more detailed evaluation was done; improvements in major structural materials 52 Cr, 56 Fe and 58 Ni; improved estimates for remaining structural materials and fission products; improved covariances for 14 minor actinides, and estimates of mubar covariances for 23 Na and 56 Fe. LANL contributed improved covariance data for 235 U and 239 Pu including prompt neutron fission spectra and completely new evaluation for 240 Pu. New R-matrix evaluation for 16 O including mubar covariances is under completion. BNL assembled the library and performed basic testing using improved procedures including inspection of uncertainty and correlation plots for each material. The AFCI-1.2 library was released to ANL and INL in August 2009.

  6. Measuring covariation in RNA alignments: Physical realism improves information measures

    DEFF Research Database (Denmark)

    Lindgreen, Stinus; Gardner, Paul Phillip; Krogh, Anders

    2006-01-01

    Motivation: The importance of non-coding RNAs is becoming increasingly evident, and often the function of these molecules depends on the structure. It is common to use alignments of related RNA sequences to deduce the consensus secondary structure by detecting patterns of co-evolution. A central...... part of such an analysis is to measure covariation between two positions in an alignment. Here, we rank various measures ranging from simple mutual information to more advanced covariation measures. Results: Mutual information is still used for secondary structure prediction, but the results...... of this study indicate which measures are useful. Incorporating more structural information by considering e.g. indels and stacking improves accuracy, suggesting that physically realistic measures yield improved predictions. This can be used to improve both current and future programs for secondary structure...

  7. Super-symmetric informationally complete measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Huangjun, E-mail: hzhu@pitp.ca

    2015-11-15

    Symmetric informationally complete measurements (SICs in short) are highly symmetric structures in the Hilbert space. They possess many nice properties which render them an ideal candidate for fiducial measurements. The symmetry of SICs is intimately connected with the geometry of the quantum state space and also has profound implications for foundational studies. Here we explore those SICs that are most symmetric according to a natural criterion and show that all of them are covariant with respect to the Heisenberg–Weyl groups, which are characterized by the discrete analog of the canonical commutation relation. Moreover, their symmetry groups are subgroups of the Clifford groups. In particular, we prove that the SIC in dimension 2, the Hesse SIC in dimension 3, and the set of Hoggar lines in dimension 8 are the only three SICs up to unitary equivalence whose symmetry groups act transitively on pairs of SIC projectors. Our work not only provides valuable insight about SICs, Heisenberg–Weyl groups, and Clifford groups, but also offers a new approach and perspective for studying many other discrete symmetric structures behind finite state quantum mechanics, such as mutually unbiased bases and discrete Wigner functions.

  8. A class of covariate-dependent spatiotemporal covariance functions

    Science.gov (United States)

    Reich, Brian J; Eidsvik, Jo; Guindani, Michele; Nail, Amy J; Schmidt, Alexandra M.

    2014-01-01

    In geostatistics, it is common to model spatially distributed phenomena through an underlying stationary and isotropic spatial process. However, these assumptions are often untenable in practice because of the influence of local effects in the correlation structure. Therefore, it has been of prolonged interest in the literature to provide flexible and effective ways to model non-stationarity in the spatial effects. Arguably, due to the local nature of the problem, we might envision that the correlation structure would be highly dependent on local characteristics of the domain of study, namely the latitude, longitude and altitude of the observation sites, as well as other locally defined covariate information. In this work, we provide a flexible and computationally feasible way for allowing the correlation structure of the underlying processes to depend on local covariate information. We discuss the properties of the induced covariance functions and discuss methods to assess its dependence on local covariate information by means of a simulation study and the analysis of data observed at ozone-monitoring stations in the Southeast United States. PMID:24772199

  9. Symmetric Informationally-Complete Quantum States as Analogues to Orthonormal Bases and Minimum-Uncertainty States

    Directory of Open Access Journals (Sweden)

    D. Marcus Appleby

    2014-03-01

    Full Text Available Recently there has been much effort in the quantum information community to prove (or disprove the existence of symmetric informationally complete (SIC sets of quantum states in arbitrary finite dimension. This paper strengthens the urgency of this question by showing that if SIC-sets exist: (1 by a natural measure of orthonormality, they are as close to being an orthonormal basis for the space of density operators as possible; and (2 in prime dimensions, the standard construction for complete sets of mutually unbiased bases and Weyl-Heisenberg covariant SIC-sets are intimately related: The latter represent minimum uncertainty states for the former in the sense of Wootters and Sussman. Finally, we contribute to the question of existence by conjecturing a quadratic redundancy in the equations for Weyl-Heisenberg SIC-sets.

  10. Treatment of Nuclear Data Covariance Information in Sample Generation

    Energy Technology Data Exchange (ETDEWEB)

    Swiler, Laura Painton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Adams, Brian M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wieselquist, William [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division

    2017-10-01

    This report summarizes a NEAMS (Nuclear Energy Advanced Modeling and Simulation) project focused on developing a sampling capability that can handle the challenges of generating samples from nuclear cross-section data. The covariance information between energy groups tends to be very ill-conditioned and thus poses a problem using traditional methods for generated correlated samples. This report outlines a method that addresses the sample generation from cross-section matrices.

  11. Treatment of Nuclear Data Covariance Information in Sample Generation

    International Nuclear Information System (INIS)

    Swiler, Laura Painton; Adams, Brian M.; Wieselquist, William

    2017-01-01

    This report summarizes a NEAMS (Nuclear Energy Advanced Modeling and Simulation) project focused on developing a sampling capability that can handle the challenges of generating samples from nuclear cross-section data. The covariance information between energy groups tends to be very ill-conditioned and thus poses a problem using traditional methods for generated correlated samples. This report outlines a method that addresses the sample generation from cross-section matrices.

  12. Status of multigroup sensitivity profiles and covariance matrices available from the radiation shielding information center

    International Nuclear Information System (INIS)

    Roussin, R.W.; Drischler, J.D.; Marable, J.H.

    1980-01-01

    In recent years multigroup sensitivity profiles and covariance matrices have been added to the Radiation Shielding Information Center's Data Library Collection (DLC). Sensitivity profiles are available in a single package. DLC-45/SENPRO, and covariance matrices are found in two packages, DLC-44/COVERX and DLC-77/COVERV. The contents of these packages are described and their availability is discussed

  13. Non-completion and informed consent.

    Science.gov (United States)

    Wertheimer, Alan

    2014-02-01

    There is a good deal of biomedical research that does not produce scientifically useful data because it fails to recruit a sufficient number of subjects. This fact is typically not disclosed to prospective subjects. In general, the guidance about consent concerns the information required to make intelligent self-interested decisions and ignores some of the information required for intelligent altruistic decisions. Bioethics has worried about the 'therapeutic misconception', but has ignored the 'completion misconception'. This article argues that, other things being equal, prospective subjects should be informed about the possibility of non-completion as part of the standard consent process if (1) it is or should be anticipatable that there is a non-trivial possibility of non-completion and (2) that information is likely to be relevant to a prospective subject's decision to consent. The article then considers several objections to the argument, including the objection that disclosing non-completion information would make recruitment even more difficult.

  14. Covariance Manipulation for Conjunction Assessment

    Science.gov (United States)

    Hejduk, M. D.

    2016-01-01

    The manipulation of space object covariances to try to provide additional or improved information to conjunction risk assessment is not an uncommon practice. Types of manipulation include fabricating a covariance when it is missing or unreliable to force the probability of collision (Pc) to a maximum value ('PcMax'), scaling a covariance to try to improve its realism or see the effect of covariance volatility on the calculated Pc, and constructing the equivalent of an epoch covariance at a convenient future point in the event ('covariance forecasting'). In bringing these methods to bear for Conjunction Assessment (CA) operations, however, some do not remain fully consistent with best practices for conducting risk management, some seem to be of relatively low utility, and some require additional information before they can contribute fully to risk analysis. This study describes some basic principles of modern risk management (following the Kaplan construct) and then examines the PcMax and covariance forecasting paradigms for alignment with these principles; it then further examines the expected utility of these methods in the modern CA framework. Both paradigms are found to be not without utility, but only in situations that are somewhat carefully circumscribed.

  15. Spatiotemporal noise covariance estimation from limited empirical magnetoencephalographic data

    International Nuclear Information System (INIS)

    Jun, Sung C; Plis, Sergey M; Ranken, Doug M; Schmidt, David M

    2006-01-01

    The performance of parametric magnetoencephalography (MEG) and electroencephalography (EEG) source localization approaches can be degraded by the use of poor background noise covariance estimates. In general, estimation of the noise covariance for spatiotemporal analysis is difficult mainly due to the limited noise information available. Furthermore, its estimation requires a large amount of storage and a one-time but very large (and sometimes intractable) calculation or its inverse. To overcome these difficulties, noise covariance models consisting of one pair or a sum of multi-pairs of Kronecker products of spatial covariance and temporal covariance have been proposed. However, these approaches cannot be applied when the noise information is very limited, i.e., the amount of noise information is less than the degrees of freedom of the noise covariance models. A common example of this is when only averaged noise data are available for a limited prestimulus region (typically at most a few hundred milliseconds duration). For such cases, a diagonal spatiotemporal noise covariance model consisting of sensor variances with no spatial or temporal correlation has been the common choice for spatiotemporal analysis. In this work, we propose a different noise covariance model which consists of diagonal spatial noise covariance and Toeplitz temporal noise covariance. It can easily be estimated from limited noise information, and no time-consuming optimization and data-processing are required. Thus, it can be used as an alternative choice when one-pair or multi-pair noise covariance models cannot be estimated due to lack of noise information. To verify its capability we used Bayesian inference dipole analysis and a number of simulated and empirical datasets. We compared this covariance model with other existing covariance models such as conventional diagonal covariance, one-pair and multi-pair noise covariance models, when noise information is sufficient to estimate them. We

  16. The influence of the number of relevant causes on the processing of covariation information in causal reasoning.

    Science.gov (United States)

    Kim, Kyungil; Markman, Arthur B; Kim, Tae Hoon

    2016-11-01

    Research on causal reasoning has focused on the influence of covariation between candidate causes and effects on causal judgments. We suggest that the type of covariation information to which people attend is affected by the task being performed. For this, we manipulated the test questions for the evaluation of contingency information and observed its influence on both contingency learning and subsequent causal selections. When people select one cause related to an effect, they focus on conditional contingencies assuming the absence of alternative causes. When people select two causes related to an effect, they focus on conditional contingencies assuming the presence of alternative causes. We demonstrated this use of contingency information in four experiments.

  17. Covariance Partition Priors: A Bayesian Approach to Simultaneous Covariance Estimation for Longitudinal Data.

    Science.gov (United States)

    Gaskins, J T; Daniels, M J

    2016-01-02

    The estimation of the covariance matrix is a key concern in the analysis of longitudinal data. When data consists of multiple groups, it is often assumed the covariance matrices are either equal across groups or are completely distinct. We seek methodology to allow borrowing of strength across potentially similar groups to improve estimation. To that end, we introduce a covariance partition prior which proposes a partition of the groups at each measurement time. Groups in the same set of the partition share dependence parameters for the distribution of the current measurement given the preceding ones, and the sequence of partitions is modeled as a Markov chain to encourage similar structure at nearby measurement times. This approach additionally encourages a lower-dimensional structure of the covariance matrices by shrinking the parameters of the Cholesky decomposition toward zero. We demonstrate the performance of our model through two simulation studies and the analysis of data from a depression study. This article includes Supplementary Material available online.

  18. Fission yield covariance generation and uncertainty propagation through fission pulse decay heat calculation

    International Nuclear Information System (INIS)

    Fiorito, L.; Diez, C.J.; Cabellos, O.; Stankovskiy, A.; Van den Eynde, G.; Labeau, P.E.

    2014-01-01

    Highlights: • Fission yield data and uncertainty comparison between major nuclear data libraries. • Fission yield covariance generation through Bayesian technique. • Study of the effect of fission yield correlations on decay heat calculations. • Covariance information contribute to reduce fission pulse decay heat uncertainty. - Abstract: Fission product yields are fundamental parameters in burnup/activation calculations and the impact of their uncertainties was widely studied in the past. Evaluations of these uncertainties were released, still without covariance data. Therefore, the nuclear community expressed the need of full fission yield covariance matrices to be able to produce inventory calculation results that take into account the complete uncertainty data. State-of-the-art fission yield data and methodologies for fission yield covariance generation were researched in this work. Covariance matrices were generated and compared to the original data stored in the library. Then, we focused on the effect of fission yield covariance information on fission pulse decay heat results for thermal fission of 235 U. Calculations were carried out using different libraries and codes (ACAB and ALEPH-2) after introducing the new covariance values. Results were compared with those obtained with the uncertainty data currently provided by the libraries. The uncertainty quantification was performed first with Monte Carlo sampling and then compared with linear perturbation. Indeed, correlations between fission yields strongly affect the uncertainty of decay heat. Eventually, a sensitivity analysis of fission product yields to fission pulse decay heat was performed in order to provide a full set of the most sensitive nuclides for such a calculation

  19. The Covariance Adjustment Approaches for Combining Incomparable Cox Regressions Caused by Unbalanced Covariates Adjustment: A Multivariate Meta-Analysis Study

    Directory of Open Access Journals (Sweden)

    Tania Dehesh

    2015-01-01

    Full Text Available Background. Univariate meta-analysis (UM procedure, as a technique that provides a single overall result, has become increasingly popular. Neglecting the existence of other concomitant covariates in the models leads to loss of treatment efficiency. Our aim was proposing four new approximation approaches for the covariance matrix of the coefficients, which is not readily available for the multivariate generalized least square (MGLS method as a multivariate meta-analysis approach. Methods. We evaluated the efficiency of four new approaches including zero correlation (ZC, common correlation (CC, estimated correlation (EC, and multivariate multilevel correlation (MMC on the estimation bias, mean square error (MSE, and 95% probability coverage of the confidence interval (CI in the synthesis of Cox proportional hazard models coefficients in a simulation study. Result. Comparing the results of the simulation study on the MSE, bias, and CI of the estimated coefficients indicated that MMC approach was the most accurate procedure compared to EC, CC, and ZC procedures. The precision ranking of the four approaches according to all above settings was MMC ≥ EC ≥ CC ≥ ZC. Conclusion. This study highlights advantages of MGLS meta-analysis on UM approach. The results suggested the use of MMC procedure to overcome the lack of information for having a complete covariance matrix of the coefficients.

  20. The Covariance Adjustment Approaches for Combining Incomparable Cox Regressions Caused by Unbalanced Covariates Adjustment: A Multivariate Meta-Analysis Study.

    Science.gov (United States)

    Dehesh, Tania; Zare, Najaf; Ayatollahi, Seyyed Mohammad Taghi

    2015-01-01

    Univariate meta-analysis (UM) procedure, as a technique that provides a single overall result, has become increasingly popular. Neglecting the existence of other concomitant covariates in the models leads to loss of treatment efficiency. Our aim was proposing four new approximation approaches for the covariance matrix of the coefficients, which is not readily available for the multivariate generalized least square (MGLS) method as a multivariate meta-analysis approach. We evaluated the efficiency of four new approaches including zero correlation (ZC), common correlation (CC), estimated correlation (EC), and multivariate multilevel correlation (MMC) on the estimation bias, mean square error (MSE), and 95% probability coverage of the confidence interval (CI) in the synthesis of Cox proportional hazard models coefficients in a simulation study. Comparing the results of the simulation study on the MSE, bias, and CI of the estimated coefficients indicated that MMC approach was the most accurate procedure compared to EC, CC, and ZC procedures. The precision ranking of the four approaches according to all above settings was MMC ≥ EC ≥ CC ≥ ZC. This study highlights advantages of MGLS meta-analysis on UM approach. The results suggested the use of MMC procedure to overcome the lack of information for having a complete covariance matrix of the coefficients.

  1. Multiple Imputation of a Randomly Censored Covariate Improves Logistic Regression Analysis.

    Science.gov (United States)

    Atem, Folefac D; Qian, Jing; Maye, Jacqueline E; Johnson, Keith A; Betensky, Rebecca A

    2016-01-01

    Randomly censored covariates arise frequently in epidemiologic studies. The most commonly used methods, including complete case and single imputation or substitution, suffer from inefficiency and bias. They make strong parametric assumptions or they consider limit of detection censoring only. We employ multiple imputation, in conjunction with semi-parametric modeling of the censored covariate, to overcome these shortcomings and to facilitate robust estimation. We develop a multiple imputation approach for randomly censored covariates within the framework of a logistic regression model. We use the non-parametric estimate of the covariate distribution or the semiparametric Cox model estimate in the presence of additional covariates in the model. We evaluate this procedure in simulations, and compare its operating characteristics to those from the complete case analysis and a survival regression approach. We apply the procedures to an Alzheimer's study of the association between amyloid positivity and maternal age of onset of dementia. Multiple imputation achieves lower standard errors and higher power than the complete case approach under heavy and moderate censoring and is comparable under light censoring. The survival regression approach achieves the highest power among all procedures, but does not produce interpretable estimates of association. Multiple imputation offers a favorable alternative to complete case analysis and ad hoc substitution methods in the presence of randomly censored covariates within the framework of logistic regression.

  2. A Covariance Generation Methodology for Fission Product Yields

    Directory of Open Access Journals (Sweden)

    Terranova N.

    2016-01-01

    Full Text Available Recent safety and economical concerns for modern nuclear reactor applications have fed an outstanding interest in basic nuclear data evaluation improvement and completion. It has been immediately clear that the accuracy of our predictive simulation models was strongly affected by our knowledge on input data. Therefore strong efforts have been made to improve nuclear data and to generate complete and reliable uncertainty information able to yield proper uncertainty propagation on integral reactor parameters. Since in modern nuclear data banks (such as JEFF-3.1.1 and ENDF/BVII.1 no correlations for fission yields are given, in the present work we propose a covariance generation methodology for fission product yields. The main goal is to reproduce the existing European library and to add covariance information to allow proper uncertainty propagation in depletion and decay heat calculations. To do so, we adopted the Generalized Least Square Method (GLSM implemented in CONRAD (COde for Nuclear Reaction Analysis and Data assimilation, developed at CEA-Cadarache. Theoretical values employed in the Bayesian parameter adjustment are delivered thanks to a convolution of different models, representing several quantities in fission yield calculations: the Brosa fission modes for pre-neutron mass distribution, a simplified Gaussian model for prompt neutron emission probability, theWahl systematics for charge distribution and the Madland-England model for the isomeric ratio. Some results will be presented for the thermal fission of U-235, Pu-239 and Pu-241.

  3. ACORNS, Covariance and Correlation Matrix Diagonalization

    International Nuclear Information System (INIS)

    Szondi, E.J.

    1990-01-01

    1 - Description of program or function: The program allows the user to verify the different types of covariance/correlation matrices used in the activation neutron spectrometry. 2 - Method of solution: The program performs the diagonalization of the input covariance/relative covariance/correlation matrices. The Eigen values are then analyzed to determine the rank of the matrices. If the Eigen vectors of the pertinent correlation matrix have also been calculated, the program can perform a complete factor analysis (generation of the factor matrix and its rotation in Kaiser's 'varimax' sense to select the origin of the correlations). 3 - Restrictions on the complexity of the problem: Matrix size is limited to 60 on PDP and to 100 on IBM PC/AT

  4. Fuel cycle covariance of plutonium and americium separations to repository capacity using information theoretic measures

    International Nuclear Information System (INIS)

    Scopatz, Anthony; Schneider, Erich; Li, Jun; Yim, Man-Sung

    2011-01-01

    A light water reactor, fast reactor symbiotic fuel cycle scenario was modeled and parameterized based on thirty independent inputs. Simultaneously and stochastically choosing different values for each of these inputs and performing the associated fuel cycle mass-balance calculation, the fuel cycle itself underwent Monte Carlo simulation. A novel information theoretic metric is postulated as a measure of system-wide covariance. This metric is the coefficient of variation of the set of uncertainty coefficients generated from 2D slices of a 3D contingency table. It is then applied to the fuel cycle, taking fast reactor used fuel plutonium and americium separations as independent variables and the capacity of a fully-loaded tuff repository as the response. This set of parameters is known from prior studies to have a strong covariance. When measured with all 435 other input parameters possible, the fast reactor plutonium and americium separations pair was found to be ranked the second most covariant. This verifies that the coefficient of variation metric captures the desired sensitivity of sensitivity effects in the nuclear fuel cycle. (author)

  5. Improvement of Modeling HTGR Neutron Physics by Uncertainty Analysis with the Use of Cross-Section Covariance Information

    Science.gov (United States)

    Boyarinov, V. F.; Grol, A. V.; Fomichenko, P. A.; Ternovykh, M. Yu

    2017-01-01

    This work is aimed at improvement of HTGR neutron physics design calculations by application of uncertainty analysis with the use of cross-section covariance information. Methodology and codes for preparation of multigroup libraries of covariance information for individual isotopes from the basic 44-group library of SCALE-6 code system were developed. A 69-group library of covariance information in a special format for main isotopes and elements typical for high temperature gas cooled reactors (HTGR) was generated. This library can be used for estimation of uncertainties, associated with nuclear data, in analysis of HTGR neutron physics with design codes. As an example, calculations of one-group cross-section uncertainties for fission and capture reactions for main isotopes of the MHTGR-350 benchmark, as well as uncertainties of the multiplication factor (k∞) for the MHTGR-350 fuel compact cell model and fuel block model were performed. These uncertainties were estimated by the developed technology with the use of WIMS-D code and modules of SCALE-6 code system, namely, by TSUNAMI, KENO-VI and SAMS. Eight most important reactions on isotopes for MHTGR-350 benchmark were identified, namely: 10B(capt), 238U(n,γ), ν5, 235U(n,γ), 238U(el), natC(el), 235U(fiss)-235U(n,γ), 235U(fiss).

  6. Empirical Likelihood in Nonignorable Covariate-Missing Data Problems.

    Science.gov (United States)

    Xie, Yanmei; Zhang, Biao

    2017-04-20

    Missing covariate data occurs often in regression analysis, which frequently arises in the health and social sciences as well as in survey sampling. We study methods for the analysis of a nonignorable covariate-missing data problem in an assumed conditional mean function when some covariates are completely observed but other covariates are missing for some subjects. We adopt the semiparametric perspective of Bartlett et al. (Improving upon the efficiency of complete case analysis when covariates are MNAR. Biostatistics 2014;15:719-30) on regression analyses with nonignorable missing covariates, in which they have introduced the use of two working models, the working probability model of missingness and the working conditional score model. In this paper, we study an empirical likelihood approach to nonignorable covariate-missing data problems with the objective of effectively utilizing the two working models in the analysis of covariate-missing data. We propose a unified approach to constructing a system of unbiased estimating equations, where there are more equations than unknown parameters of interest. One useful feature of these unbiased estimating equations is that they naturally incorporate the incomplete data into the data analysis, making it possible to seek efficient estimation of the parameter of interest even when the working regression function is not specified to be the optimal regression function. We apply the general methodology of empirical likelihood to optimally combine these unbiased estimating equations. We propose three maximum empirical likelihood estimators of the underlying regression parameters and compare their efficiencies with other existing competitors. We present a simulation study to compare the finite-sample performance of various methods with respect to bias, efficiency, and robustness to model misspecification. The proposed empirical likelihood method is also illustrated by an analysis of a data set from the US National Health and

  7. Semiparametric approach for non-monotone missing covariates in a parametric regression model

    KAUST Repository

    Sinha, Samiran

    2014-02-26

    Missing covariate data often arise in biomedical studies, and analysis of such data that ignores subjects with incomplete information may lead to inefficient and possibly biased estimates. A great deal of attention has been paid to handling a single missing covariate or a monotone pattern of missing data when the missingness mechanism is missing at random. In this article, we propose a semiparametric method for handling non-monotone patterns of missing data. The proposed method relies on the assumption that the missingness mechanism of a variable does not depend on the missing variable itself but may depend on the other missing variables. This mechanism is somewhat less general than the completely non-ignorable mechanism but is sometimes more flexible than the missing at random mechanism where the missingness mechansim is allowed to depend only on the completely observed variables. The proposed approach is robust to misspecification of the distribution of the missing covariates, and the proposed mechanism helps to nullify (or reduce) the problems due to non-identifiability that result from the non-ignorable missingness mechanism. The asymptotic properties of the proposed estimator are derived. Finite sample performance is assessed through simulation studies. Finally, for the purpose of illustration we analyze an endometrial cancer dataset and a hip fracture dataset.

  8. Covariance descriptor fusion for target detection

    Science.gov (United States)

    Cukur, Huseyin; Binol, Hamidullah; Bal, Abdullah; Yavuz, Fatih

    2016-05-01

    Target detection is one of the most important topics for military or civilian applications. In order to address such detection tasks, hyperspectral imaging sensors provide useful images data containing both spatial and spectral information. Target detection has various challenging scenarios for hyperspectral images. To overcome these challenges, covariance descriptor presents many advantages. Detection capability of the conventional covariance descriptor technique can be improved by fusion methods. In this paper, hyperspectral bands are clustered according to inter-bands correlation. Target detection is then realized by fusion of covariance descriptor results based on the band clusters. The proposed combination technique is denoted Covariance Descriptor Fusion (CDF). The efficiency of the CDF is evaluated by applying to hyperspectral imagery to detect man-made objects. The obtained results show that the CDF presents better performance than the conventional covariance descriptor.

  9. A Small Guide to Generating Covariances of Experimental Data

    International Nuclear Information System (INIS)

    Mannhart, Wolf

    2011-05-01

    A complete description of the uncertainties of an experiment can only be realized by a detailed list of all the uncertainty components, their value and a specification of existing correlations between the data. Based on such information the covariance matrix can be generated, which is necessary for any further proceeding with the experimental data. It is not necessary, and not recommended, that an experimenter evaluates this covariance matrix. The reason for this is that a incorrectly evaluated final covariance matrix can never be corrected if the details are not given. (Such obviously wrong covariance matrices have recently occasionally been found in the literature). Hence quotation of a covariance matrix is an additional step which should not occur without quoting a detailed list of the various uncertainty components and their correlations as well. It must be hoped that editors of journals will understand these necessary requirements. The generalized least squares procedure shown permits an easy way of interchanging data D 0 with parameter estimates P. This means new data can easily be combined with an earlier evaluation. However, it must be mentioned that this is only valid as long as the new data have no correlation with any of the older data of the prior evaluation. Otherwise the old data which show correlation with new data have to be extracted from the evaluation and then, together with the new data and taking account of the correlation, have again to be added to the reduced evaluation. In most cases this step cannot be performed and the evaluation has to be completely redone. A partial way out is given if the evaluation is performed step by step and the results of each step are stored. Then the evaluation need only be repeated from the step which contains correlated data for the first time while all earlier steps remain unchanged. Finally it should be noted that the addition of a small set of new data to a prior evaluation consisting of a large number of

  10. An Information-Theoretic Justification for Covariance Intersectionand Its Generalization

    National Research Council Canada - National Science Library

    Hurley, Michael

    2001-01-01

    .... that addresses the problems that arise from fusing correlated measurements. The researchers have named this technique 'covariance intersection' and have presented papers on it at several robotics and control theory conferences...

  11. Magic informationally complete POVMs with permutations

    Science.gov (United States)

    Planat, Michel; Gedik, Zafer

    2017-09-01

    Eigenstates of permutation gates are either stabilizer states (for gates in the Pauli group) or magic states, thus allowing universal quantum computation (Planat, Rukhsan-Ul-Haq 2017 Adv. Math. Phys. 2017, 5287862 (doi:10.1155/2017/5287862)). We show in this paper that a subset of such magic states, when acting on the generalized Pauli group, define (asymmetric) informationally complete POVMs. Such informationally complete POVMs, investigated in dimensions 2-12, exhibit simple finite geometries in their projector products and, for dimensions 4 and 8 and 9, relate to two-qubit, three-qubit and two-qutrit contextuality.

  12. Form of the manifestly covariant Lagrangian

    Science.gov (United States)

    Johns, Oliver Davis

    1985-10-01

    The preferred form for the manifestly covariant Lagrangian function of a single, charged particle in a given electromagnetic field is the subject of some disagreement in the textbooks. Some authors use a ``homogeneous'' Lagrangian and others use a ``modified'' form in which the covariant Hamiltonian function is made to be nonzero. We argue in favor of the ``homogeneous'' form. We show that the covariant Lagrangian theories can be understood only if one is careful to distinguish quantities evaluated on the varied (in the sense of the calculus of variations) world lines from quantities evaluated on the unvaried world lines. By making this distinction, we are able to derive the Hamilton-Jacobi and Klein-Gordon equations from the ``homogeneous'' Lagrangian, even though the covariant Hamiltonian function is identically zero on all world lines. The derivation of the Klein-Gordon equation in particular gives Lagrangian theoretical support to the derivations found in standard quantum texts, and is also shown to be consistent with the Feynman path-integral method. We conclude that the ``homogeneous'' Lagrangian is a completely adequate basis for covariant Lagrangian theory both in classical and quantum mechanics. The article also explores the analogy with the Fermat theorem of optics, and illustrates a simple invariant notation for the Lagrangian and other four-vector equations.

  13. Lorentz covariant tempered distributions in two-dimensional space-time

    International Nuclear Information System (INIS)

    Zinov'ev, Yu.M.

    1989-01-01

    The problem of describing Lorentz covariant distributions without any spectral condition has hitherto remained unsolved even for two-dimensional space-time. Attempts to solve this problem have already been made. Zharinov obtained an integral representation for the Laplace transform of Lorentz invariant distributions with support in the product of two-dimensional future light cones. However, this integral representation does not make it possible to obtain a complete description of the corresponding Lorentz invariant distributions. In this paper the author gives a complete description of Lorentz covariant distributions for two-dimensional space-time. No spectral conditions is assumed

  14. Processing covariance data for the resonance region - International Evaluation Co-operation, V. 20

    International Nuclear Information System (INIS)

    Dunn, M.; Leal, L.C.; Wiarda, D.; Jacqmin, R.; Kodeli, I.; ); Chiba, G.; Shibata, K.; Ishikawa, M.; Oh, S.; Nikolaev, M.; Kahler, A.C. Jr.; Kawano, T.; Arcilla, R.

    2014-01-01

    A Working Party on International Evaluation Co-operation (WPEC) was established under the sponsorship of the OECD/NEA Nuclear Science Committee (NSC) to promote the exchange of information on nuclear data evaluations, validation, and related topics. Its aim is also to provide a framework for co-operative activities between members of the major nuclear data evaluation projects. Requirements for experimental data resulting from this activity are compiled. The working party determines common criteria for evaluated nuclear data files with a view to assessing and improving the quality and completeness of evaluated data. The parties to the project are ENDF (United States), JEF/EFF (NEA Data Bank member countries), and JENDL (Japan). Cooperation with evaluation projects of non- OECD countries is organized through the Nuclear Data Section of the International Atomic Energy Agency (IAEA). This report summarizes the work performed by WPEC Subgroup 28 (SG28) on issues pertinent to the methodology used to process covariance data in the resonance region. Specifically, SG28 has developed the requisite processing methods needed to process resonance parameter covariance data, generate cross-section covariance data files and demonstrate the use of covariance data in radiation transport analyses. The work performed by SG28 and documented in this report addresses the following tasks: - Produce resonance parameter covariance evaluation for 235 U; - Develop resonance parameter covariance processing methods in widely used processing systems (e.g., NJOY, AMPX, etc.); - Use the updated cross-section processing systems to generate covariance data files for use in radiation transport analyses. In addition, use sensitivity/uncertainty (S/U) analyses to demonstrate the propagation of the covariance data in specific radiation transport applications

  15. Covariance and sensitivity data generation at ORNL

    International Nuclear Information System (INIS)

    Leal, L. C.; Derrien, H.; Larson, N. M.; Alpan, A.

    2005-01-01

    Covariance data are required to assess uncertainties in design parameters in several nuclear applications. The error estimation of calculated quantities relies on the nuclear data uncertainty information available in the basic nuclear data libraries, such as the US Evaluated Nuclear Data Library, ENDF/B. The uncertainty files in the ENDF/B library are obtained from the analysis of experimental data and are stored as variance and covariance data. In this paper we address the generation of covariance data in the resonance region done with the computer code SAMMY. SAMMY is used in the evaluation of the experimental data in the resolved and unresolved resonance energy regions. The data fitting of cross sections is based on the generalised least-squares formalism (Bayesian theory) together with the resonance formalism described by R-matrix theory. Two approaches are used in SAMMY for the generation of resonance parameter covariance data. In the evaluation process SAMMY generates a set of resonance parameters that fit the data, and, it provides the resonance parameter covariances. For resonance parameter evaluations where there are no resonance parameter covariance data available, the alternative is to use an approach called the 'retroactive' resonance parameter covariance generation. In this paper, we describe the application of the retroactive covariance generation approach for the gadolinium isotopes. (authors)

  16. On the bilinear covariants associated to mass dimension one spinors

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J.M.H. da; Villalobos, C.H.C.; Rogerio, R.J.B. [DFQ, UNESP, Guaratingueta, SP (Brazil); Scatena, E. [Universidade Federal de Santa Catarina-CEE, Blumenau, SC (Brazil)

    2016-10-15

    In this paper we approach the issue of Clifford algebra basis deformation, allowing for bilinear covariants associated to Elko spinors which satisfy the Fierz-Pauli-Kofink identities. We present a complete analysis of covariance, taking into account the involved dual structure associated to Elko spinors. Moreover, the possible generalizations to the recently presented new dual structure are performed. (orig.)

  17. Lorentz-covariant reduced-density-operator theory for relativistic-quantum-information processing

    International Nuclear Information System (INIS)

    Ahn, Doyeol; Lee, Hyuk-jae; Hwang, Sung Woo

    2003-01-01

    In this paper, we derived a Lorentz-covariant quantum Liouville equation for the density operator which describes the relativistic-quantum-information processing from Tomonaga-Schwinger equation and an exact formal solution for the reduced density operator is obtained using the projector operator technique and the functional calculus. When all the members of the family of the hypersurfaces become flat hyperplanes, it is shown that our results agree with those of the nonrelativistic case, which is valid only in some specified reference frame. To show that our formulation can be applied to practical problems, we derived the polarization of the vacuum in quantum electrodynamics up to the second order. The formulation presented in this work is general and could be applied to related fields such as quantum electrodynamics and relativistic statistical mechanics

  18. A cautionary note on generalized linear models for covariance of unbalanced longitudinal data

    KAUST Repository

    Huang, Jianhua Z.; Chen, Min; Maadooliat, Mehdi; Pourahmadi, Mohsen

    2012-01-01

    Missing data in longitudinal studies can create enormous challenges in data analysis when coupled with the positive-definiteness constraint on a covariance matrix. For complete balanced data, the Cholesky decomposition of a covariance matrix makes

  19. Optimal covariate designs theory and applications

    CERN Document Server

    Das, Premadhis; Mandal, Nripes Kumar; Sinha, Bikas Kumar

    2015-01-01

    This book primarily addresses the optimality aspects of covariate designs. A covariate model is a combination of ANOVA and regression models. Optimal estimation of the parameters of the model using a suitable choice of designs is of great importance; as such choices allow experimenters to extract maximum information for the unknown model parameters. The main emphasis of this monograph is to start with an assumed covariate model in combination with some standard ANOVA set-ups such as CRD, RBD, BIBD, GDD, BTIBD, BPEBD, cross-over, multi-factor, split-plot and strip-plot designs, treatment control designs, etc. and discuss the nature and availability of optimal covariate designs. In some situations, optimal estimations of both ANOVA and the regression parameters are provided. Global optimality and D-optimality criteria are mainly used in selecting the design. The standard optimality results of both discrete and continuous set-ups have been adapted, and several novel combinatorial techniques have been applied for...

  20. Quantum channels irreducibly covariant with respect to the finite group generated by the Weyl operators

    Science.gov (United States)

    Siudzińska, Katarzyna; Chruściński, Dariusz

    2018-03-01

    In matrix algebras, we introduce a class of linear maps that are irreducibly covariant with respect to the finite group generated by the Weyl operators. In particular, we analyze the irreducibly covariant quantum channels, that is, the completely positive and trace-preserving linear maps. Interestingly, imposing additional symmetries leads to the so-called generalized Pauli channels, which were recently considered in the context of the non-Markovian quantum evolution. Finally, we provide examples of irreducibly covariant positive but not necessarily completely positive maps.

  1. Major questions about derivation of variance-covariance information for nuclear data evaluations

    International Nuclear Information System (INIS)

    Peelle, R.W.

    1982-01-01

    The uncertainties in and correlations among some evaluated nuclear data are now evaluated to permit estimation of data-related uncertainties in the outputs of neutronic calculations and to focus data improvement efforts. Questions are discussed that arise in trying to obtain adequate numerical files of variance-covariance uncertainty information. These involve (1) discrepant data, (2) experimental data with incompletely reported uncertainties, (3) uncertainties in nuclear model results, (4) uncertainty data for the resonance regions and for angle and energy distributions, and (5) the role of integral data in nuclear data evaluation. The question also arises whether files of uncertainty data designed for technological applications can suffice to represent past knowledge in an evaluation that includes new data. Directions are indicated toward resolving these questions

  2. On superfield covariant quantization in general coordinates

    International Nuclear Information System (INIS)

    Gitman, D.M.; Moshin, P. Yu.; Tomazelli, J.L.

    2005-01-01

    We propose a natural extension of the BRST-antiBRST superfield covariant scheme in general coordinates. Thus, the coordinate dependence of the basic tensor fields and scalar density of the formalism is extended from the base supermanifold to the complete set of superfield variables. (orig.)

  3. On superfield covariant quantization in general coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, S.P (Brazil); Moshin, P. Yu. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, S.P (Brazil); Tomsk State Pedagogical University, Tomsk (Russian Federation); Tomazelli, J.L. [UNESP, Departamento de Fisica e Quimica, Campus de Guaratingueta (Brazil)

    2005-12-01

    We propose a natural extension of the BRST-antiBRST superfield covariant scheme in general coordinates. Thus, the coordinate dependence of the basic tensor fields and scalar density of the formalism is extended from the base supermanifold to the complete set of superfield variables. (orig.)

  4. Radon-Nikodym type theorem for α-completely positive maps

    International Nuclear Information System (INIS)

    Heo, Jaeseong; Ji, Un Cig

    2010-01-01

    We introduce a new notion of α-completely positive map on a C*-algebra as a generalization of the notion of completely positive map. Then we study a theorem of the Radon-Nikodym type that there is a one-to-one correspondence between α-completely positive maps and positive operators and, as an application of the Radon-Nikodym type theorem, we give a characterization of pure α-completely positive maps. Finally, we study a covariant version of the Stinespring's theorem for a covariant α-completely positive map (see Theorem 4.3).

  5. One-stage individual participant data meta-analysis models: estimation of treatment-covariate interactions must avoid ecological bias by separating out within-trial and across-trial information.

    Science.gov (United States)

    Hua, Hairui; Burke, Danielle L; Crowther, Michael J; Ensor, Joie; Tudur Smith, Catrin; Riley, Richard D

    2017-02-28

    Stratified medicine utilizes individual-level covariates that are associated with a differential treatment effect, also known as treatment-covariate interactions. When multiple trials are available, meta-analysis is used to help detect true treatment-covariate interactions by combining their data. Meta-regression of trial-level information is prone to low power and ecological bias, and therefore, individual participant data (IPD) meta-analyses are preferable to examine interactions utilizing individual-level information. However, one-stage IPD models are often wrongly specified, such that interactions are based on amalgamating within- and across-trial information. We compare, through simulations and an applied example, fixed-effect and random-effects models for a one-stage IPD meta-analysis of time-to-event data where the goal is to estimate a treatment-covariate interaction. We show that it is crucial to centre patient-level covariates by their mean value in each trial, in order to separate out within-trial and across-trial information. Otherwise, bias and coverage of interaction estimates may be adversely affected, leading to potentially erroneous conclusions driven by ecological bias. We revisit an IPD meta-analysis of five epilepsy trials and examine age as a treatment effect modifier. The interaction is -0.011 (95% CI: -0.019 to -0.003; p = 0.004), and thus highly significant, when amalgamating within-trial and across-trial information. However, when separating within-trial from across-trial information, the interaction is -0.007 (95% CI: -0.019 to 0.005; p = 0.22), and thus its magnitude and statistical significance are greatly reduced. We recommend that meta-analysts should only use within-trial information to examine individual predictors of treatment effect and that one-stage IPD models should separate within-trial from across-trial information to avoid ecological bias. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd

  6. Contributions to Large Covariance and Inverse Covariance Matrices Estimation

    OpenAIRE

    Kang, Xiaoning

    2016-01-01

    Estimation of covariance matrix and its inverse is of great importance in multivariate statistics with broad applications such as dimension reduction, portfolio optimization, linear discriminant analysis and gene expression analysis. However, accurate estimation of covariance or inverse covariance matrices is challenging due to the positive definiteness constraint and large number of parameters, especially in the high-dimensional cases. In this thesis, I develop several approaches for estimat...

  7. Covariant Transform

    OpenAIRE

    Kisil, Vladimir V.

    2010-01-01

    The paper develops theory of covariant transform, which is inspired by the wavelet construction. It was observed that many interesting types of wavelets (or coherent states) arise from group representations which are not square integrable or vacuum vectors which are not admissible. Covariant transform extends an applicability of the popular wavelets construction to classic examples like the Hardy space H_2, Banach spaces, covariant functional calculus and many others. Keywords: Wavelets, cohe...

  8. Are your covariates under control? How normalization can re-introduce covariate effects.

    Science.gov (United States)

    Pain, Oliver; Dudbridge, Frank; Ronald, Angelica

    2018-04-30

    Many statistical tests rely on the assumption that the residuals of a model are normally distributed. Rank-based inverse normal transformation (INT) of the dependent variable is one of the most popular approaches to satisfy the normality assumption. When covariates are included in the analysis, a common approach is to first adjust for the covariates and then normalize the residuals. This study investigated the effect of regressing covariates against the dependent variable and then applying rank-based INT to the residuals. The correlation between the dependent variable and covariates at each stage of processing was assessed. An alternative approach was tested in which rank-based INT was applied to the dependent variable before regressing covariates. Analyses based on both simulated and real data examples demonstrated that applying rank-based INT to the dependent variable residuals after regressing out covariates re-introduces a linear correlation between the dependent variable and covariates, increasing type-I errors and reducing power. On the other hand, when rank-based INT was applied prior to controlling for covariate effects, residuals were normally distributed and linearly uncorrelated with covariates. This latter approach is therefore recommended in situations were normality of the dependent variable is required.

  9. Development of covariance capabilities in EMPIRE code

    Energy Technology Data Exchange (ETDEWEB)

    Herman,M.; Pigni, M.T.; Oblozinsky, P.; Mughabghab, S.F.; Mattoon, C.M.; Capote, R.; Cho, Young-Sik; Trkov, A.

    2008-06-24

    The nuclear reaction code EMPIRE has been extended to provide evaluation capabilities for neutron cross section covariances in the thermal, resolved resonance, unresolved resonance and fast neutron regions. The Atlas of Neutron Resonances by Mughabghab is used as a primary source of information on uncertainties at low energies. Care is taken to ensure consistency among the resonance parameter uncertainties and those for thermal cross sections. The resulting resonance parameter covariances are formatted in the ENDF-6 File 32. In the fast neutron range our methodology is based on model calculations with the code EMPIRE combined with experimental data through several available approaches. The model-based covariances can be obtained using deterministic (Kalman) or stochastic (Monte Carlo) propagation of model parameter uncertainties. We show that these two procedures yield comparable results. The Kalman filter and/or the generalized least square fitting procedures are employed to incorporate experimental information. We compare the two approaches analyzing results for the major reaction channels on {sup 89}Y. We also discuss a long-standing issue of unreasonably low uncertainties and link it to the rigidity of the model.

  10. Managing distance and covariate information with point-based clustering

    Directory of Open Access Journals (Sweden)

    Peter A. Whigham

    2016-09-01

    Full Text Available Abstract Background Geographic perspectives of disease and the human condition often involve point-based observations and questions of clustering or dispersion within a spatial context. These problems involve a finite set of point observations and are constrained by a larger, but finite, set of locations where the observations could occur. Developing a rigorous method for pattern analysis in this context requires handling spatial covariates, a method for constrained finite spatial clustering, and addressing bias in geographic distance measures. An approach, based on Ripley’s K and applied to the problem of clustering with deliberate self-harm (DSH, is presented. Methods Point-based Monte-Carlo simulation of Ripley’s K, accounting for socio-economic deprivation and sources of distance measurement bias, was developed to estimate clustering of DSH at a range of spatial scales. A rotated Minkowski L1 distance metric allowed variation in physical distance and clustering to be assessed. Self-harm data was derived from an audit of 2 years’ emergency hospital presentations (n = 136 in a New Zealand town (population ~50,000. Study area was defined by residential (housing land parcels representing a finite set of possible point addresses. Results Area-based deprivation was spatially correlated. Accounting for deprivation and distance bias showed evidence for clustering of DSH for spatial scales up to 500 m with a one-sided 95 % CI, suggesting that social contagion may be present for this urban cohort. Conclusions Many problems involve finite locations in geographic space that require estimates of distance-based clustering at many scales. A Monte-Carlo approach to Ripley’s K, incorporating covariates and models for distance bias, are crucial when assessing health-related clustering. The case study showed that social network structure defined at the neighbourhood level may account for aspects of neighbourhood clustering of DSH. Accounting for

  11. Multilevel maximum likelihood estimation with application to covariance matrices

    Czech Academy of Sciences Publication Activity Database

    Turčičová, Marie; Mandel, J.; Eben, Kryštof

    Published online: 23 January ( 2018 ) ISSN 0361-0926 R&D Projects: GA ČR GA13-34856S Institutional support: RVO:67985807 Keywords : Fisher information * High dimension * Hierarchical maximum likelihood * Nested parameter spaces * Spectral diagonal covariance model * Sparse inverse covariance model Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.311, year: 2016

  12. Improving chemical species tomography of turbulent flows using covariance estimation.

    Science.gov (United States)

    Grauer, Samuel J; Hadwin, Paul J; Daun, Kyle J

    2017-05-01

    Chemical species tomography (CST) experiments can be divided into limited-data and full-rank cases. Both require solving ill-posed inverse problems, and thus the measurement data must be supplemented with prior information to carry out reconstructions. The Bayesian framework formalizes the role of additive information, expressed as the mean and covariance of a joint-normal prior probability density function. We present techniques for estimating the spatial covariance of a flow under limited-data and full-rank conditions. Our results show that incorporating a covariance estimate into CST reconstruction via a Bayesian prior increases the accuracy of instantaneous estimates. Improvements are especially dramatic in real-time limited-data CST, which is directly applicable to many industrially relevant experiments.

  13. Covariance evaluation system

    International Nuclear Information System (INIS)

    Kawano, Toshihiko; Shibata, Keiichi.

    1997-09-01

    A covariance evaluation system for the evaluated nuclear data library was established. The parameter estimation method and the least squares method with a spline function are used to generate the covariance data. Uncertainties of nuclear reaction model parameters are estimated from experimental data uncertainties, then the covariance of the evaluated cross sections is calculated by means of error propagation. Computer programs ELIESE-3, EGNASH4, ECIS, and CASTHY are used. Covariances of 238 U reaction cross sections were calculated with this system. (author)

  14. The informationally-complete quantum theory

    OpenAIRE

    Chen, Zeng-Bing

    2014-01-01

    Quantum mechanics is a cornerstone of our current understanding of nature and extremely successful in describing physics covering a huge range of scales. However, its interpretation remains controversial since the early days of quantum mechanics. What does a quantum state really mean? Is there any way out of the so-called quantum measurement problem? Here we present an informationally-complete quantum theory (ICQT) and the trinary property of nature to beat the above problems. We assume that ...

  15. Torsion and geometrostasis in covariant superstrings

    Energy Technology Data Exchange (ETDEWEB)

    Zachos, C.

    1985-01-01

    The covariant action for freely propagating heterotic superstrings consists of a metric and a torsion term with a special relative strength. It is shown that the strength for which torsion flattens the underlying 10-dimensional superspace geometry is precisely that which yields free oscillators on the light cone. This is in complete analogy with the geometrostasis of two-dimensional sigma-models with Wess-Zumino interactions. 13 refs.

  16. Torsion and geometrostasis in covariant superstrings

    International Nuclear Information System (INIS)

    Zachos, C.

    1985-01-01

    The covariant action for freely propagating heterotic superstrings consists of a metric and a torsion term with a special relative strength. It is shown that the strength for which torsion flattens the underlying 10-dimensional superspace geometry is precisely that which yields free oscillators on the light cone. This is in complete analogy with the geometrostasis of two-dimensional sigma-models with Wess-Zumino interactions. 13 refs

  17. On the algebraic structure of covariant anomalies and covariant Schwinger terms

    International Nuclear Information System (INIS)

    Kelnhofer, G.

    1992-01-01

    A cohomological characterization of covariant anomalies and covariant Schwinger terms in an anomalous Yang-Mills theory is formulated and w ill be geometrically interpreted. The BRS and anti-BRS transformations are defined as purely differential geometric objects. Finally the covariant descent equations are formulated within this context. (author)

  18. Examination of various roles for covariance matrices in the development, evaluation, and application of nuclear data

    International Nuclear Information System (INIS)

    Smith, D.L.

    1988-01-01

    The last decade has been a period of rapid development in the implementation of covariance-matrix methodology in nuclear data research. This paper offers some perspective on the progress which has been made, on some of the unresolved problems, and on the potential yet to be realized. These discussions address a variety of issues related to the development of nuclear data. Topics examined are: the importance of designing and conducting experiments so that error information is conveniently generated; the procedures for identifying error sources and quantifying their magnitudes and correlations; the combination of errors; the importance of consistent and well-characterized measurement standards; the role of covariances in data parameterization (fitting); the estimation of covariances for values calculated from mathematical models; the identification of abnormalities in covariance matrices and the analysis of their consequences; the problems encountered in representing covariance information in evaluated files; the role of covariances in the weighting of diverse data sets; the comparison of various evaluations; the influence of primary-data covariance in the analysis of covariances for derived quantities (sensitivity); and the role of covariances in the merging of the diverse nuclear data information. 226 refs., 2 tabs

  19. Covariant quantum mechanics on a null plane

    International Nuclear Information System (INIS)

    Leutwyler, H.; Stern, J.

    1977-03-01

    Lorentz invariance implies that the null plane wave functions factorize into a kinematical part describing the motion of the system as a whole and an inner wave function that involves the specific dynamical properties of the system - in complete correspondence with the non-relativistic situation. Covariance is equivalent to an angular condition which admits non-trivial solutions

  20. AFCI-2.0 Neutron Cross Section Covariance Library

    Energy Technology Data Exchange (ETDEWEB)

    Herman, M.; Herman, M; Oblozinsky, P.; Mattoon, C.M.; Pigni, M.; Hoblit, S.; Mughabghab, S.F.; Sonzogni, A.; Talou, P.; Chadwick, M.B.; Hale, G.M.; Kahler, A.C.; Kawano, T.; Little, R.C.; Yount, P.G.

    2011-03-01

    The cross section covariance library has been under development by BNL-LANL collaborative effort over the last three years. The project builds on two covariance libraries developed earlier, with considerable input from BNL and LANL. In 2006, international effort under WPEC Subgroup 26 produced BOLNA covariance library by putting together data, often preliminary, from various sources for most important materials for nuclear reactor technology. This was followed in 2007 by collaborative effort of four US national laboratories to produce covariances, often of modest quality - hence the name low-fidelity, for virtually complete set of materials included in ENDF/B-VII.0. The present project is focusing on covariances of 4-5 major reaction channels for 110 materials of importance for power reactors. The work started under Global Nuclear Energy Partnership (GNEP) in 2008, which changed to Advanced Fuel Cycle Initiative (AFCI) in 2009. With the 2011 release the name has changed to the Covariance Multigroup Matrix for Advanced Reactor Applications (COMMARA) version 2.0. The primary purpose of the library is to provide covariances for AFCI data adjustment project, which is focusing on the needs of fast advanced burner reactors. Responsibility of BNL was defined as developing covariances for structural materials and fission products, management of the library and coordination of the work; LANL responsibility was defined as covariances for light nuclei and actinides. The COMMARA-2.0 covariance library has been developed by BNL-LANL collaboration for Advanced Fuel Cycle Initiative applications over the period of three years, 2008-2010. It contains covariances for 110 materials relevant to fast reactor R&D. The library is to be used together with the ENDF/B-VII.0 central values of the latest official release of US files of evaluated neutron cross sections. COMMARA-2.0 library contains neutron cross section covariances for 12 light nuclei (coolants and moderators), 78 structural

  1. AFCI-2.0 Neutron Cross Section Covariance Library

    International Nuclear Information System (INIS)

    Herman, M.; Oblozinsky, P.; Mattoon, C.M.; Pigni, M.; Hoblit, S.; Mughabghab, S.F.; Sonzogni, A.; Talou, P.; Chadwick, M.B.; Hale, G.M.; Kahler, A.C.; Kawano, T.; Little, R.C.; Yount, P.G.

    2011-01-01

    The cross section covariance library has been under development by BNL-LANL collaborative effort over the last three years. The project builds on two covariance libraries developed earlier, with considerable input from BNL and LANL. In 2006, international effort under WPEC Subgroup 26 produced BOLNA covariance library by putting together data, often preliminary, from various sources for most important materials for nuclear reactor technology. This was followed in 2007 by collaborative effort of four US national laboratories to produce covariances, often of modest quality - hence the name low-fidelity, for virtually complete set of materials included in ENDF/B-VII.0. The present project is focusing on covariances of 4-5 major reaction channels for 110 materials of importance for power reactors. The work started under Global Nuclear Energy Partnership (GNEP) in 2008, which changed to Advanced Fuel Cycle Initiative (AFCI) in 2009. With the 2011 release the name has changed to the Covariance Multigroup Matrix for Advanced Reactor Applications (COMMARA) version 2.0. The primary purpose of the library is to provide covariances for AFCI data adjustment project, which is focusing on the needs of fast advanced burner reactors. Responsibility of BNL was defined as developing covariances for structural materials and fission products, management of the library and coordination of the work; LANL responsibility was defined as covariances for light nuclei and actinides. The COMMARA-2.0 covariance library has been developed by BNL-LANL collaboration for Advanced Fuel Cycle Initiative applications over the period of three years, 2008-2010. It contains covariances for 110 materials relevant to fast reactor R and D. The library is to be used together with the ENDF/B-VII.0 central values of the latest official release of US files of evaluated neutron cross sections. COMMARA-2.0 library contains neutron cross section covariances for 12 light nuclei (coolants and moderators), 78

  2. ENDF-6 File 30: Data covariances obtained from parameter covariances and sensitivities

    International Nuclear Information System (INIS)

    Muir, D.W.

    1989-01-01

    File 30 is provided as a means of describing the covariances of tabulated cross sections, multiplicities, and energy-angle distributions that result from propagating the covariances of a set of underlying parameters (for example, the input parameters of a nuclear-model code), using an evaluator-supplied set of parameter covariances and sensitivities. Whenever nuclear data are evaluated primarily through the application of nuclear models, the covariances of the resulting data can be described very adequately, and compactly, by specifying the covariance matrix for the underlying nuclear parameters, along with a set of sensitivity coefficients giving the rate of change of each nuclear datum of interest with respect to each of the model parameters. Although motivated primarily by these applications of nuclear theory, use of File 30 is not restricted to any one particular evaluation methodology. It can be used to describe data covariances of any origin, so long as they can be formally separated into a set of parameters with specified covariances and a set of data sensitivities

  3. On covariance structure in noisy, big data

    Science.gov (United States)

    Paffenroth, Randy C.; Nong, Ryan; Du Toit, Philip C.

    2013-09-01

    Herein we describe theory and algorithms for detecting covariance structures in large, noisy data sets. Our work uses ideas from matrix completion and robust principal component analysis to detect the presence of low-rank covariance matrices, even when the data is noisy, distorted by large corruptions, and only partially observed. In fact, the ability to handle partial observations combined with ideas from randomized algorithms for matrix decomposition enables us to produce asymptotically fast algorithms. Herein we will provide numerical demonstrations of the methods and their convergence properties. While such methods have applicability to many problems, including mathematical finance, crime analysis, and other large-scale sensor fusion problems, our inspiration arises from applying these methods in the context of cyber network intrusion detection.

  4. PUFF-IV, Code System to Generate Multigroup Covariance Matrices from ENDF/B-VI Uncertainty Files

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of program or function: The PUFF-IV code system processes ENDF/B-VI formatted nuclear cross section covariance data into multigroup covariance matrices. PUFF-IV is the newest release in this series of codes used to process ENDF uncertainty information and to generate the desired multi-group correlation matrix for the evaluation of interest. This version includes corrections and enhancements over previous versions. It is written in Fortran 90 and allows for a more modular design, thus facilitating future upgrades. PUFF-IV enhances support for resonance parameter covariance formats described in the ENDF standard and now handles almost all resonance parameter covariance information in the resolved region, with the exception of the long range covariance sub-subsections. PUFF-IV is normally used in conjunction with an AMPX master library containing group averaged cross section data. Two utility modules are included in this package to facilitate the data interface. The module SMILER allows one to use NJOY generated GENDF files containing group averaged cross section data in conjunction with PUFF-IV. The module COVCOMP allows one to compare two files written in COVERX format. 2 - Methods: Cross section and flux values on a 'super energy grid,' consisting of the union of the required energy group structure and the energy data points in the ENDF/B-V file, are interpolated from the input cross sections and fluxes. Covariance matrices are calculated for this grid and then collapsed to the required group structure. 3 - Restrictions on the complexity of the problem: PUFF-IV cannot process covariance information for energy and angular distributions of secondary particles. PUFF-IV does not process covariance information in Files 34 and 35; nor does it process covariance information in File 40. These new formats will be addressed in a future version of PUFF

  5. Covariation assessment for neutral and emotional verbal stimuli in paranoid delusions.

    Science.gov (United States)

    Díez-Alegría, Cristina; Vázquez, Carmelo; Hernández-Lloreda, María J

    2008-11-01

    Selective processing of emotion-relevant information is considered a central feature in various types of psychopathology, yet the mechanisms underlying these biases are not well understood. One of the first steps in processing information is to gather data to judge the covariation or association of events. The aim of this study was to explore whether patients with persecutory delusions would show a covariation bias when processing stimuli related to social threat. We assessed estimations of covariation in-patients with current persecutory (CP) beliefs (N=40), patients with past persecutory (PP) beliefs (N=25), and a non-clinical control (NC) group (N=36). Covariation estimations were assessed under three different experimental conditions. The first two conditions focused on neutral behaviours (Condition 1) and psychological traits (Condition 2) for two distant cultural groups, while the third condition included self-relevant material by exposing the participant to either protective social (positive) or threatening social (negative) statements about the participant or a third person. Our results showed that all participants were precise in their covariation estimations. However, when judging covariation for self-relevant sentences related to social statements (Condition 3), all groups showed a significant tendency to associate positive social interaction (protection themed) sentences to the self. Yet, when using sentences related to social-threat, the CP group showed a bias consisting of overestimating the number of self-referent sentences. Our results showed that there was no specific covariation assessment bias related to paranoid beliefs. Both NCs and participants with persecutory beliefs showed a similar pattern of results when processing neutral or social threat-related sentences. The implications for understanding of the role of self-referent information processing biases in delusion formation are discussed.

  6. Partial covariance based functional connectivity computation using Ledoit-Wolf covariance regularization.

    Science.gov (United States)

    Brier, Matthew R; Mitra, Anish; McCarthy, John E; Ances, Beau M; Snyder, Abraham Z

    2015-11-01

    Functional connectivity refers to shared signals among brain regions and is typically assessed in a task free state. Functional connectivity commonly is quantified between signal pairs using Pearson correlation. However, resting-state fMRI is a multivariate process exhibiting a complicated covariance structure. Partial covariance assesses the unique variance shared between two brain regions excluding any widely shared variance, hence is appropriate for the analysis of multivariate fMRI datasets. However, calculation of partial covariance requires inversion of the covariance matrix, which, in most functional connectivity studies, is not invertible owing to rank deficiency. Here we apply Ledoit-Wolf shrinkage (L2 regularization) to invert the high dimensional BOLD covariance matrix. We investigate the network organization and brain-state dependence of partial covariance-based functional connectivity. Although RSNs are conventionally defined in terms of shared variance, removal of widely shared variance, surprisingly, improved the separation of RSNs in a spring embedded graphical model. This result suggests that pair-wise unique shared variance plays a heretofore unrecognized role in RSN covariance organization. In addition, application of partial correlation to fMRI data acquired in the eyes open vs. eyes closed states revealed focal changes in uniquely shared variance between the thalamus and visual cortices. This result suggests that partial correlation of resting state BOLD time series reflect functional processes in addition to structural connectivity. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Brownian distance covariance

    OpenAIRE

    Székely, Gábor J.; Rizzo, Maria L.

    2010-01-01

    Distance correlation is a new class of multivariate dependence coefficients applicable to random vectors of arbitrary and not necessarily equal dimension. Distance covariance and distance correlation are analogous to product-moment covariance and correlation, but generalize and extend these classical bivariate measures of dependence. Distance correlation characterizes independence: it is zero if and only if the random vectors are independent. The notion of covariance with...

  8. A cautionary note on generalized linear models for covariance of unbalanced longitudinal data

    KAUST Repository

    Huang, Jianhua Z.

    2012-03-01

    Missing data in longitudinal studies can create enormous challenges in data analysis when coupled with the positive-definiteness constraint on a covariance matrix. For complete balanced data, the Cholesky decomposition of a covariance matrix makes it possible to remove the positive-definiteness constraint and use a generalized linear model setup to jointly model the mean and covariance using covariates (Pourahmadi, 2000). However, this approach may not be directly applicable when the longitudinal data are unbalanced, as coherent regression models for the dependence across all times and subjects may not exist. Within the existing generalized linear model framework, we show how to overcome this and other challenges by embedding the covariance matrix of the observed data for each subject in a larger covariance matrix and employing the familiar EM algorithm to compute the maximum likelihood estimates of the parameters and their standard errors. We illustrate and assess the methodology using real data sets and simulations. © 2011 Elsevier B.V.

  9. Impact of the 235U Covariance Data in Benchmark Calculations

    International Nuclear Information System (INIS)

    Leal, Luiz C.; Mueller, D.; Arbanas, G.; Wiarda, D.; Derrien, H.

    2008-01-01

    The error estimation for calculated quantities relies on nuclear data uncertainty information available in the basic nuclear data libraries such as the U.S. Evaluated Nuclear Data File (ENDF/B). The uncertainty files (covariance matrices) in the ENDF/B library are generally obtained from analysis of experimental data. In the resonance region, the computer code SAMMY is used for analyses of experimental data and generation of resonance parameters. In addition to resonance parameters evaluation, SAMMY also generates resonance parameter covariance matrices (RPCM). SAMMY uses the generalized least-squares formalism (Bayes method) together with the resonance formalism (R-matrix theory) for analysis of experimental data. Two approaches are available for creation of resonance-parameter covariance data. (1) During the data-evaluation process, SAMMY generates both a set of resonance parameters that fit the experimental data and the associated resonance-parameter covariance matrix. (2) For existing resonance-parameter evaluations for which no resonance-parameter covariance data are available, SAMMY can retroactively create a resonance-parameter covariance matrix. The retroactive method was used to generate covariance data for 235U. The resulting 235U covariance matrix was then used as input to the PUFF-IV code, which processed the covariance data into multigroup form, and to the TSUNAMI code, which calculated the uncertainty in the multiplication factor due to uncertainty in the experimental cross sections. The objective of this work is to demonstrate the use of the 235U covariance data in calculations of critical benchmark systems

  10. Impact of the 235U covariance data in benchmark calculations

    International Nuclear Information System (INIS)

    Leal, Luiz; Mueller, Don; Arbanas, Goran; Wiarda, Dorothea; Derrien, Herve

    2008-01-01

    The error estimation for calculated quantities relies on nuclear data uncertainty information available in the basic nuclear data libraries such as the U.S. Evaluated Nuclear Data File (ENDF/B). The uncertainty files (covariance matrices) in the ENDF/B library are generally obtained from analysis of experimental data. In the resonance region, the computer code SAMMY is used for analyses of experimental data and generation of resonance parameters. In addition to resonance parameters evaluation, SAMMY also generates resonance parameter covariance matrices (RPCM). SAMMY uses the generalized least-squares formalism (Bayes' method) together with the resonance formalism (R-matrix theory) for analysis of experimental data. Two approaches are available for creation of resonance-parameter covariance data. (1) During the data-evaluation process, SAMMY generates both a set of resonance parameters that fit the experimental data and the associated resonance-parameter covariance matrix. (2) For existing resonance-parameter evaluations for which no resonance-parameter covariance data are available, SAMMY can retroactively create a resonance-parameter covariance matrix. The retroactive method was used to generate covariance data for 235 U. The resulting 235 U covariance matrix was then used as input to the PUFF-IV code, which processed the covariance data into multigroup form, and to the TSUNAMI code, which calculated the uncertainty in the multiplication factor due to uncertainty in the experimental cross sections. The objective of this work is to demonstrate the use of the 235 U covariance data in calculations of critical benchmark systems. (authors)

  11. Covariant representations of nuclear *-algebras

    International Nuclear Information System (INIS)

    Moore, S.M.

    1978-01-01

    Extensions of the Csup(*)-algebra theory for covariant representations to nuclear *-algebra are considered. Irreducible covariant representations are essentially unique, an invariant state produces a covariant representation with stable vacuum, and the usual relation between ergodic states and covariant representations holds. There exist construction and decomposition theorems and a possible relation between derivations and covariant representations

  12. Earth Observing System Covariance Realism

    Science.gov (United States)

    Zaidi, Waqar H.; Hejduk, Matthew D.

    2016-01-01

    The purpose of covariance realism is to properly size a primary object's covariance in order to add validity to the calculation of the probability of collision. The covariance realism technique in this paper consists of three parts: collection/calculation of definitive state estimates through orbit determination, calculation of covariance realism test statistics at each covariance propagation point, and proper assessment of those test statistics. An empirical cumulative distribution function (ECDF) Goodness-of-Fit (GOF) method is employed to determine if a covariance is properly sized by comparing the empirical distribution of Mahalanobis distance calculations to the hypothesized parent 3-DoF chi-squared distribution. To realistically size a covariance for collision probability calculations, this study uses a state noise compensation algorithm that adds process noise to the definitive epoch covariance to account for uncertainty in the force model. Process noise is added until the GOF tests pass a group significance level threshold. The results of this study indicate that when outliers attributed to persistently high or extreme levels of solar activity are removed, the aforementioned covariance realism compensation method produces a tuned covariance with up to 80 to 90% of the covariance propagation timespan passing (against a 60% minimum passing threshold) the GOF tests-a quite satisfactory and useful result.

  13. Simultaneous Mean and Covariance Correction Filter for Orbit Estimation.

    Science.gov (United States)

    Wang, Xiaoxu; Pan, Quan; Ding, Zhengtao; Ma, Zhengya

    2018-05-05

    This paper proposes a novel filtering design, from a viewpoint of identification instead of the conventional nonlinear estimation schemes (NESs), to improve the performance of orbit state estimation for a space target. First, a nonlinear perturbation is viewed or modeled as an unknown input (UI) coupled with the orbit state, to avoid the intractable nonlinear perturbation integral (INPI) required by NESs. Then, a simultaneous mean and covariance correction filter (SMCCF), based on a two-stage expectation maximization (EM) framework, is proposed to simply and analytically fit or identify the first two moments (FTM) of the perturbation (viewed as UI), instead of directly computing such the INPI in NESs. Orbit estimation performance is greatly improved by utilizing the fit UI-FTM to simultaneously correct the state estimation and its covariance. Third, depending on whether enough information is mined, SMCCF should outperform existing NESs or the standard identification algorithms (which view the UI as a constant independent of the state and only utilize the identified UI-mean to correct the state estimation, regardless of its covariance), since it further incorporates the useful covariance information in addition to the mean of the UI. Finally, our simulations demonstrate the superior performance of SMCCF via an orbit estimation example.

  14. R-matrix and q-covariant oscillators for Uq(sl(n|m))

    International Nuclear Information System (INIS)

    Leblanc, Y.; Wallet, J.C.

    1993-02-01

    An R-matrix formalism is used to construct covariant quantum oscillator algebras for U q (sl(n|m)). It is shown that the complete structure of the twisted oscillator algebras can be obtained from the properties of the intertwining matrix obeying a Hecke type relation, combined with covariance of the oscillators at the deformed level and associativity. The resulting twisted algebras, involving q-bosons and q-fermions, are invariant under natural q-transformations of the oscillators induced by the coproduct. (author) 11 refs

  15. Covariance matrices for nuclear cross sections derived from nuclear model calculations

    International Nuclear Information System (INIS)

    Smith, D. L.

    2005-01-01

    The growing need for covariance information to accompany the evaluated cross section data libraries utilized in contemporary nuclear applications is spurring the development of new methods to provide this information. Many of the current general purpose libraries of evaluated nuclear data used in applications are derived either almost entirely from nuclear model calculations or from nuclear model calculations benchmarked by available experimental data. Consequently, a consistent method for generating covariance information under these circumstances is required. This report discusses a new approach to producing covariance matrices for cross sections calculated using nuclear models. The present method involves establishing uncertainty information for the underlying parameters of nuclear models used in the calculations and then propagating these uncertainties through to the derived cross sections and related nuclear quantities by means of a Monte Carlo technique rather than the more conventional matrix error propagation approach used in some alternative methods. The formalism to be used in such analyses is discussed in this report along with various issues and caveats that need to be considered in order to proceed with a practical implementation of the methodology

  16. Linear Regression with a Randomly Censored Covariate: Application to an Alzheimer's Study.

    Science.gov (United States)

    Atem, Folefac D; Qian, Jing; Maye, Jacqueline E; Johnson, Keith A; Betensky, Rebecca A

    2017-01-01

    The association between maternal age of onset of dementia and amyloid deposition (measured by in vivo positron emission tomography (PET) imaging) in cognitively normal older offspring is of interest. In a regression model for amyloid, special methods are required due to the random right censoring of the covariate of maternal age of onset of dementia. Prior literature has proposed methods to address the problem of censoring due to assay limit of detection, but not random censoring. We propose imputation methods and a survival regression method that do not require parametric assumptions about the distribution of the censored covariate. Existing imputation methods address missing covariates, but not right censored covariates. In simulation studies, we compare these methods to the simple, but inefficient complete case analysis, and to thresholding approaches. We apply the methods to the Alzheimer's study.

  17. A New Tool for Automated Data Collection and Complete On-site Flux Data Processing for Eddy Covariance Measurements

    Science.gov (United States)

    Begashaw, I. G.; Kathilankal, J. C.; Li, J.; Beaty, K.; Ediger, K.; Forgione, A.; Fratini, G.; Johnson, D.; Velgersdyk, M.; Hupp, J. R.; Xu, L.; Burba, G. G.

    2014-12-01

    The eddy covariance method is widely used for direct measurements of turbulent exchange of gases and energy between the surface and atmosphere. In the past, raw data were collected first in the field and then processed back in the laboratory to achieve fully corrected publication-ready flux results. This post-processing consumed significant amount of time and resources, and precluded researchers from accessing near real-time final flux results. A new automated measurement system with novel hardware and software designs was developed, tested, and deployed starting late 2013. The major advancements with this automated flux system include: 1) Enabling logging high-frequency, three-dimensional wind speeds and multiple gas densities (CO2, H2O and CH4), low-frequency meteorological data, and site metadata simultaneously through a specially designed file format 2) Conducting fully corrected, real-time on-site flux computations using conventional as well as user-specified methods, by implementing EddyPro Software on a small low-power microprocessor 3) Providing precision clock control and coordinate information for data synchronization and inter-site data comparison by incorporating a GPS and Precision Time Protocol. Along with these innovations, a data management server application was also developed to chart fully corrected real-time fluxes to assist remote system monitoring, to send e-mail alerts, and to automate data QA/QC, transfer and archiving at individual stations or on a network level. Combination of all of these functions was designed to help save substantial amount of time and costs associated with managing a research site by eliminating the post-field data processing, reducing user errors and facilitating real-time access to fully corrected flux results. The design, functionality, and test results from this new eddy covariance measurement tool will be presented.

  18. Comparison of bias-corrected covariance estimators for MMRM analysis in longitudinal data with dropouts.

    Science.gov (United States)

    Gosho, Masahiko; Hirakawa, Akihiro; Noma, Hisashi; Maruo, Kazushi; Sato, Yasunori

    2017-10-01

    In longitudinal clinical trials, some subjects will drop out before completing the trial, so their measurements towards the end of the trial are not obtained. Mixed-effects models for repeated measures (MMRM) analysis with "unstructured" (UN) covariance structure are increasingly common as a primary analysis for group comparisons in these trials. Furthermore, model-based covariance estimators have been routinely used for testing the group difference and estimating confidence intervals of the difference in the MMRM analysis using the UN covariance. However, using the MMRM analysis with the UN covariance could lead to convergence problems for numerical optimization, especially in trials with a small-sample size. Although the so-called sandwich covariance estimator is robust to misspecification of the covariance structure, its performance deteriorates in settings with small-sample size. We investigated the performance of the sandwich covariance estimator and covariance estimators adjusted for small-sample bias proposed by Kauermann and Carroll ( J Am Stat Assoc 2001; 96: 1387-1396) and Mancl and DeRouen ( Biometrics 2001; 57: 126-134) fitting simpler covariance structures through a simulation study. In terms of the type 1 error rate and coverage probability of confidence intervals, Mancl and DeRouen's covariance estimator with compound symmetry, first-order autoregressive (AR(1)), heterogeneous AR(1), and antedependence structures performed better than the original sandwich estimator and Kauermann and Carroll's estimator with these structures in the scenarios where the variance increased across visits. The performance based on Mancl and DeRouen's estimator with these structures was nearly equivalent to that based on the Kenward-Roger method for adjusting the standard errors and degrees of freedom with the UN structure. The model-based covariance estimator with the UN structure under unadjustment of the degrees of freedom, which is frequently used in applications

  19. Covariant field equations in supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Vanhecke, Bram [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium); Ghent University, Faculty of Physics, Gent (Belgium); Proeyen, Antoine van [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium)

    2017-12-15

    Covariance is a useful property for handling supergravity theories. In this paper, we prove a covariance property of supergravity field equations: under reasonable conditions, field equations of supergravity are covariant modulo other field equations. We prove that for any supergravity there exist such covariant equations of motion, other than the regular equations of motion, that are equivalent to the latter. The relations that we find between field equations and their covariant form can be used to obtain multiplets of field equations. In practice, the covariant field equations are easily found by simply covariantizing the ordinary field equations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Covariant field equations in supergravity

    International Nuclear Information System (INIS)

    Vanhecke, Bram; Proeyen, Antoine van

    2017-01-01

    Covariance is a useful property for handling supergravity theories. In this paper, we prove a covariance property of supergravity field equations: under reasonable conditions, field equations of supergravity are covariant modulo other field equations. We prove that for any supergravity there exist such covariant equations of motion, other than the regular equations of motion, that are equivalent to the latter. The relations that we find between field equations and their covariant form can be used to obtain multiplets of field equations. In practice, the covariant field equations are easily found by simply covariantizing the ordinary field equations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Information Security – Guidance for Manually Completing the Information Security Awareness Training

    Science.gov (United States)

    The purpose of this guidance is to provide an alternative manual process for disseminating EPA Information Security Awareness Training (ISAT) materials and collecting results from EPA users who elect to complete the ISAT manually.

  2. Missing continuous outcomes under covariate dependent missingness in cluster randomised trials.

    Science.gov (United States)

    Hossain, Anower; Diaz-Ordaz, Karla; Bartlett, Jonathan W

    2017-06-01

    Attrition is a common occurrence in cluster randomised trials which leads to missing outcome data. Two approaches for analysing such trials are cluster-level analysis and individual-level analysis. This paper compares the performance of unadjusted cluster-level analysis, baseline covariate adjusted cluster-level analysis and linear mixed model analysis, under baseline covariate dependent missingness in continuous outcomes, in terms of bias, average estimated standard error and coverage probability. The methods of complete records analysis and multiple imputation are used to handle the missing outcome data. We considered four scenarios, with the missingness mechanism and baseline covariate effect on outcome either the same or different between intervention groups. We show that both unadjusted cluster-level analysis and baseline covariate adjusted cluster-level analysis give unbiased estimates of the intervention effect only if both intervention groups have the same missingness mechanisms and there is no interaction between baseline covariate and intervention group. Linear mixed model and multiple imputation give unbiased estimates under all four considered scenarios, provided that an interaction of intervention and baseline covariate is included in the model when appropriate. Cluster mean imputation has been proposed as a valid approach for handling missing outcomes in cluster randomised trials. We show that cluster mean imputation only gives unbiased estimates when missingness mechanism is the same between the intervention groups and there is no interaction between baseline covariate and intervention group. Multiple imputation shows overcoverage for small number of clusters in each intervention group.

  3. Globally covering a-priori regional gravity covariance models

    Directory of Open Access Journals (Sweden)

    D. Arabelos

    2003-01-01

    Full Text Available Gravity anomaly data generated using Wenzel’s GPM98A model complete to degree 1800, from which OSU91A has been subtracted, have been used to estimate covariance functions for a set of globally covering equal-area blocks of size 22.5° × 22.5° at Equator, having a 2.5° overlap. For each block an analytic covariance function model was determined. The models are based on 4 parameters: the depth to the Bjerhammar sphere (determines correlation, the free-air gravity anomaly variance, a scale factor of the OSU91A error degree-variances and a maximal summation index, N, of the error degree-variances. The depth of Bjerhammar-sphere varies from -134km to nearly zero, N varies from 360 to 40, the scale factor from 0.03 to 38.0 and the gravity variance from 1081 to 24(10µms-22. The parameters are interpreted in terms of the quality of the data used to construct OSU91A and GPM98A and general conditions such as the occurrence of mountain chains. The variation of the parameters show that it is necessary to use regional covariance models in order to obtain a realistic signal to noise ratio in global applications.Key words. GOCE mission, Covariance function, Spacewise approach`

  4. A New Approach for Nuclear Data Covariance and Sensitivity Generation

    International Nuclear Information System (INIS)

    Leal, L.C.; Larson, N.M.; Derrien, H.; Kawano, T.; Chadwick, M.B.

    2005-01-01

    Covariance data are required to correctly assess uncertainties in design parameters in nuclear applications. The error estimation of calculated quantities relies on the nuclear data uncertainty information available in the basic nuclear data libraries, such as the U.S. Evaluated Nuclear Data File, ENDF/B. The uncertainty files in the ENDF/B library are obtained from the analysis of experimental data and are stored as variance and covariance data. The computer code SAMMY is used in the analysis of the experimental data in the resolved and unresolved resonance energy regions. The data fitting of cross sections is based on generalized least-squares formalism (Bayes' theory) together with the resonance formalism described by R-matrix theory. Two approaches are used in SAMMY for the generation of resonance-parameter covariance data. In the evaluation process SAMMY generates a set of resonance parameters that fit the data, and, in addition, it also provides the resonance-parameter covariances. For existing resonance-parameter evaluations where no resonance-parameter covariance data are available, the alternative is to use an approach called the 'retroactive' resonance-parameter covariance generation. In the high-energy region the methodology for generating covariance data consists of least-squares fitting and model parameter adjustment. The least-squares fitting method calculates covariances directly from experimental data. The parameter adjustment method employs a nuclear model calculation such as the optical model and the Hauser-Feshbach model, and estimates a covariance for the nuclear model parameters. In this paper we describe the application of the retroactive method and the parameter adjustment method to generate covariance data for the gadolinium isotopes

  5. A special covariance structure for random coefficient models with both between and within covariates

    International Nuclear Information System (INIS)

    Riedel, K.S.

    1990-07-01

    We review random coefficient (RC) models in linear regression and propose a bias correction to the maximum likelihood (ML) estimator. Asymmptotic expansion of the ML equations are given when the between individual variance is much larger or smaller than the variance from within individual fluctuations. The standard model assumes all but one covariate varies within each individual, (we denote the within covariates by vector χ 1 ). We consider random coefficient models where some of the covariates do not vary in any single individual (we denote the between covariates by vector χ 0 ). The regression coefficients, vector β k , can only be estimated in the subspace X k of X. Thus the number of individuals necessary to estimate vector β and the covariance matrix Δ of vector β increases significantly in the presence of more than one between covariate. When the number of individuals is sufficient to estimate vector β but not the entire matrix Δ , additional assumptions must be imposed on the structure of Δ. A simple reduced model is that the between component of vector β is fixed and only the within component varies randomly. This model fails because it is not invariant under linear coordinate transformations and it can significantly overestimate the variance of new observations. We propose a covariance structure for Δ without these difficulties by first projecting the within covariates onto the space perpendicular to be between covariates. (orig.)

  6. Covariant w∞ gravity

    NARCIS (Netherlands)

    Bergshoeff, E.; Pope, C.N.; Stelle, K.S.

    1990-01-01

    We discuss the notion of higher-spin covariance in w∞ gravity. We show how a recently proposed covariant w∞ gravity action can be obtained from non-chiral w∞ gravity by making field redefinitions that introduce new gauge-field components with corresponding new gauge transformations.

  7. Validation of new 240Pu cross section and covariance data via criticality calculation

    International Nuclear Information System (INIS)

    Kim, Do Heon; Gil, Choong-Sup; Kim, Hyeong Il; Lee, Young-Ouk; Leal, Luiz C.; Dunn, Michael E.

    2011-01-01

    Recent collaboration between KAERI and ORNL has completed an evaluation for 240 Pu neutron cross section with covariance data. The new 240 Pu cross section data has been validated through 28 criticality safety benchmark problems taken from the ICSBEP and/or CSEWG specifications with MCNP calculations. The calculation results based on the new evaluation have been compared with those based on recent evaluations such as ENDF/B-VII.0, JEFF-3.1.1, and JENDL-4.0. In addition, the new 240 Pu covariance data has been tested for some criticality benchmarks via the DANTSYS/SUSD3D-based nuclear data sensitivity and uncertainty analysis of k eff . The k eff uncertainty estimates by the new covariance data has been compared with those by JENDL-4.0, JENDL-3.3, and Low-Fidelity covariance data. (author)

  8. Semiparametric estimation of covariance matrices for longitudinal data.

    Science.gov (United States)

    Fan, Jianqing; Wu, Yichao

    2008-12-01

    Estimation of longitudinal data covariance structure poses significant challenges because the data are usually collected at irregular time points. A viable semiparametric model for covariance matrices was proposed in Fan, Huang and Li (2007) that allows one to estimate the variance function nonparametrically and to estimate the correlation function parametrically via aggregating information from irregular and sparse data points within each subject. However, the asymptotic properties of their quasi-maximum likelihood estimator (QMLE) of parameters in the covariance model are largely unknown. In the current work, we address this problem in the context of more general models for the conditional mean function including parametric, nonparametric, or semi-parametric. We also consider the possibility of rough mean regression function and introduce the difference-based method to reduce biases in the context of varying-coefficient partially linear mean regression models. This provides a more robust estimator of the covariance function under a wider range of situations. Under some technical conditions, consistency and asymptotic normality are obtained for the QMLE of the parameters in the correlation function. Simulation studies and a real data example are used to illustrate the proposed approach.

  9. Structural covariance networks across the life span, from 6 to 94 years of age.

    Science.gov (United States)

    DuPre, Elizabeth; Spreng, R Nathan

    2017-10-01

    Structural covariance examines covariation of gray matter morphology between brain regions and across individuals. Despite significant interest in the influence of age on structural covariance patterns, no study to date has provided a complete life span perspective-bridging childhood with early, middle, and late adulthood-on the development of structural covariance networks. Here, we investigate the life span trajectories of structural covariance in six canonical neurocognitive networks: default, dorsal attention, frontoparietal control, somatomotor, ventral attention, and visual. By combining data from five open-access data sources, we examine the structural covariance trajectories of these networks from 6 to 94 years of age in a sample of 1,580 participants. Using partial least squares, we show that structural covariance patterns across the life span exhibit two significant, age-dependent trends. The first trend is a stable pattern whose integrity declines over the life span. The second trend is an inverted-U that differentiates young adulthood from other age groups. Hub regions, including posterior cingulate cortex and anterior insula, appear particularly influential in the expression of this second age-dependent trend. Overall, our results suggest that structural covariance provides a reliable definition of neurocognitive networks across the life span and reveal both shared and network-specific trajectories.

  10. Evaluation and processing of covariance data

    International Nuclear Information System (INIS)

    Wagner, M.

    1993-01-01

    These proceedings of a specialists'meeting on evaluation and processing of covariance data is divided into 4 parts bearing on: part 1- Needs for evaluated covariance data (2 Papers), part 2- generation of covariance data (15 Papers), part 3- Processing of covariance files (2 Papers), part 4-Experience in the use of evaluated covariance data (2 Papers)

  11. A Comparison of Methods for Estimating the Determinant of High-Dimensional Covariance Matrix

    KAUST Repository

    Hu, Zongliang; Dong, Kai; Dai, Wenlin; Tong, Tiejun

    2017-01-01

    The determinant of the covariance matrix for high-dimensional data plays an important role in statistical inference and decision. It has many real applications including statistical tests and information theory. Due to the statistical and computational challenges with high dimensionality, little work has been proposed in the literature for estimating the determinant of high-dimensional covariance matrix. In this paper, we estimate the determinant of the covariance matrix using some recent proposals for estimating high-dimensional covariance matrix. Specifically, we consider a total of eight covariance matrix estimation methods for comparison. Through extensive simulation studies, we explore and summarize some interesting comparison results among all compared methods. We also provide practical guidelines based on the sample size, the dimension, and the correlation of the data set for estimating the determinant of high-dimensional covariance matrix. Finally, from a perspective of the loss function, the comparison study in this paper may also serve as a proxy to assess the performance of the covariance matrix estimation.

  12. A Comparison of Methods for Estimating the Determinant of High-Dimensional Covariance Matrix

    KAUST Repository

    Hu, Zongliang

    2017-09-27

    The determinant of the covariance matrix for high-dimensional data plays an important role in statistical inference and decision. It has many real applications including statistical tests and information theory. Due to the statistical and computational challenges with high dimensionality, little work has been proposed in the literature for estimating the determinant of high-dimensional covariance matrix. In this paper, we estimate the determinant of the covariance matrix using some recent proposals for estimating high-dimensional covariance matrix. Specifically, we consider a total of eight covariance matrix estimation methods for comparison. Through extensive simulation studies, we explore and summarize some interesting comparison results among all compared methods. We also provide practical guidelines based on the sample size, the dimension, and the correlation of the data set for estimating the determinant of high-dimensional covariance matrix. Finally, from a perspective of the loss function, the comparison study in this paper may also serve as a proxy to assess the performance of the covariance matrix estimation.

  13. A Comparison of Methods for Estimating the Determinant of High-Dimensional Covariance Matrix.

    Science.gov (United States)

    Hu, Zongliang; Dong, Kai; Dai, Wenlin; Tong, Tiejun

    2017-09-21

    The determinant of the covariance matrix for high-dimensional data plays an important role in statistical inference and decision. It has many real applications including statistical tests and information theory. Due to the statistical and computational challenges with high dimensionality, little work has been proposed in the literature for estimating the determinant of high-dimensional covariance matrix. In this paper, we estimate the determinant of the covariance matrix using some recent proposals for estimating high-dimensional covariance matrix. Specifically, we consider a total of eight covariance matrix estimation methods for comparison. Through extensive simulation studies, we explore and summarize some interesting comparison results among all compared methods. We also provide practical guidelines based on the sample size, the dimension, and the correlation of the data set for estimating the determinant of high-dimensional covariance matrix. Finally, from a perspective of the loss function, the comparison study in this paper may also serve as a proxy to assess the performance of the covariance matrix estimation.

  14. Covariance data processing code. ERRORJ

    International Nuclear Information System (INIS)

    Kosako, Kazuaki

    2001-01-01

    The covariance data processing code, ERRORJ, was developed to process the covariance data of JENDL-3.2. ERRORJ has the processing functions of covariance data for cross sections including resonance parameters, angular distribution and energy distribution. (author)

  15. Revealing hidden covariation detection: evidence for implicit abstraction at study.

    Science.gov (United States)

    Rossnagel, C S

    2001-09-01

    Four experiments in the brain scans paradigm (P. Lewicki, T. Hill, & I. Sasaki, 1989) investigated hidden covariation detection (HCD). In Experiment 1 HCD was found in an implicit- but not in an explicit-instruction group. In Experiment 2 HCD was impaired by nonholistic perception of stimuli but not by divided attention. In Experiment 3 HCD was eliminated by interspersing stimuli that deviated from the critical covariation. In Experiment 4 a transfer procedure was used. HCD was found with dissimilar test stimuli that preserved the covariation but was almost eliminated with similar stimuli that were neutral as to the covariation. Awareness was assessed both by objective and subjective tests in all experiments. Results suggest that HCD is an effect of implicit rule abstraction and that similarity processing plays only a minor role. HCD might be suppressed by intentional search strategies that induce inappropriate aggregation of stimulus information.

  16. Signs of depth-luminance covariance in 3-D cluttered scenes.

    Science.gov (United States)

    Scaccia, Milena; Langer, Michael S

    2018-03-01

    In three-dimensional (3-D) cluttered scenes such as foliage, deeper surfaces often are more shadowed and hence darker, and so depth and luminance often have negative covariance. We examined whether the sign of depth-luminance covariance plays a role in depth perception in 3-D clutter. We compared scenes rendered with negative and positive depth-luminance covariance where positive covariance means that deeper surfaces are brighter and negative covariance means deeper surfaces are darker. For each scene, the sign of the depth-luminance covariance was given by occlusion cues. We tested whether subjects could use this sign information to judge the depth order of two target surfaces embedded in 3-D clutter. The clutter consisted of distractor surfaces that were randomly distributed in a 3-D volume. We tested three independent variables: the sign of the depth-luminance covariance, the colors of the targets and distractors, and the background luminance. An analysis of variance showed two main effects: Subjects performed better when the deeper surfaces were darker and when the color of the target surfaces was the same as the color of the distractors. There was also a strong interaction: Subjects performed better under a negative depth-luminance covariance condition when targets and distractors had different colors than when they had the same color. Our results are consistent with a "dark means deep" rule, but the use of this rule depends on the similarity between the color of the targets and color of the 3-D clutter.

  17. Recent Advances with the AMPX Covariance Processing Capabilities in PUFF-IV

    International Nuclear Information System (INIS)

    Wiarda, Dorothea; Arbanas, Goran; Leal, Luiz C.; Dunn, Michael E.

    2008-01-01

    The program PUFF-IV is used to process resonance parameter covariance information given in ENDF/B File 32 and point-wise covariance matrices given in ENDF/B File 33 into group-averaged covariances matrices on a user-supplied group structure. For large resonance covariance matrices, found for example in 235U, the execution time of PUFF-IV can be quite long. Recently the code was modified to take advandage of Basic Linear Algebra Subprograms (BLAS) routines for the most time-consuming matrix multiplications. This led to a substantial decrease in execution time. This faster processing capability allowed us to investigate the conversion of File 32 data into File 33 data using a larger number of user-defined groups. While conversion substantially reduces the ENDF/B file size requirements for evaluations with a large number of resonances, a trade-off is made between the number of groups used to represent the resonance parameter covariance as a point-wise covariance matrix and the file size. We are also investigating a hybrid version of the conversion, in which the low-energy part of the File 32 resonance parameter covariances matrix is retained and the correlations with higher energies as well as the high energy part are given in File 33.

  18. A method to construct covariance files in ENDF/B format for criticality safety applications

    International Nuclear Information System (INIS)

    Naberejnev, D.G.; Smith, D.L.

    1999-01-01

    Argonne National Laboratory is providing support for a criticality safety analysis project that is being performed at Oak Ridge National Laboratory. The ANL role is to provide the covariance information needed by ORNL for this project. The ENDF/B-V evaluation is being used for this particular criticality analysis. In this evaluation, covariance information for several isotopes or elements of interest to this analysis is either not given or needs to be reconsidered. For some required materials, covariance information does not exist in ENDF/B-V: 233 U, 236 U, Zr, Mg, Gd, and Hf. For others, existing covariance information may need to be re-examined in light of the newer ENDF/B-V evaluation and recent experimental data. In this category are the following materials: 235 U, 238 U, 239 Pu, 240 Pu, 241 Pu, Fe, H, C, N, O, Al, Si, and B. A reasonable estimation of the fractional errors for various evaluated neutron cross sections from ENDF/B-V can be based on the comparisons between the major more recent evaluations including ENDF/B-VI, JENDL3.2, BROND2.2, and JEF2.2, as well as a careful examination of experimental data. A reasonable method to construct correlation matrices is proposed here. Coupling both of these considerations suggests a method to construct covariances files in ENDF/B format that can be used to express uncertainties for specific ENDF/B-V cross sections

  19. Covariance Bell inequalities

    Science.gov (United States)

    Pozsgay, Victor; Hirsch, Flavien; Branciard, Cyril; Brunner, Nicolas

    2017-12-01

    We introduce Bell inequalities based on covariance, one of the most common measures of correlation. Explicit examples are discussed, and violations in quantum theory are demonstrated. A crucial feature of these covariance Bell inequalities is their nonlinearity; this has nontrivial consequences for the derivation of their local bound, which is not reached by deterministic local correlations. For our simplest inequality, we derive analytically tight bounds for both local and quantum correlations. An interesting application of covariance Bell inequalities is that they can act as "shared randomness witnesses": specifically, the value of the Bell expression gives device-independent lower bounds on both the dimension and the entropy of the shared random variable in a local model.

  20. Distance covariance for stochastic processes

    DEFF Research Database (Denmark)

    Matsui, Muneya; Mikosch, Thomas Valentin; Samorodnitsky, Gennady

    2017-01-01

    The distance covariance of two random vectors is a measure of their dependence. The empirical distance covariance and correlation can be used as statistical tools for testing whether two random vectors are independent. We propose an analog of the distance covariance for two stochastic processes...

  1. Accuracy and completeness of drug information in Wikipedia medication monographs.

    Science.gov (United States)

    Reilly, Timothy; Jackson, William; Berger, Victoria; Candelario, Danielle

    The primary objective of this study was to determine the accuracy and completeness of drug information on Wikipedia and Micromedex compared with U.S. Food and Drug Administration-approved U.S. product inserts. The top 10 brand and top 10 generic medications from the 2012 Institute for Health Informatics' list of top 200 drugs were selected for evaluation. Wikipedia medication information was evaluated and compared with Micromedex in 7 sections of drug information; the U.S. product inserts were used as the standard comparator. Wikipedia demonstrated significantly lower completeness and accuracy scores compared with Micromedex (mean composite scores 18.55 vs. 38.4, respectively; P <0.01). No difference was found between the mean composite scores for brand versus generic drugs in either reference (17.8 vs. 19.3, respectively [P = 0.62], for Wikipedia; 39.2 vs. 37.6, [P = 0.06] for Micromedex). Limitations to these results include the speed with which information is edited on Wikipedia, that there was no evaluation of off-label information, and the limited number of drugs that were evaluated. Wikipedia lacks the accuracy and completeness of standard clinical references and should not be a routine part of clinical decision making. More research should be conducted to evaluate the rationale for health care providers' use of Wikipedia. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  2. Covariance Based Pre-Filters and Screening Criteria for Conjunction Analysis

    Science.gov (United States)

    George, E., Chan, K.

    2012-09-01

    pairs of large objects may be inadequate. These relationships may also form the basis of an important metric for catalog maintenance by defining the maximum allowable covariance size for effective conjunction analysis. The application of these techniques promises to greatly improve the efficiency and completeness of conjunction analysis.

  3. Approximate methods for derivation of covariance data

    International Nuclear Information System (INIS)

    Tagesen, S.

    1992-01-01

    Several approaches for the derivation of covariance information for evaluated nuclear data files (EFF2 and ENDF/B-VI) have been developed and used at IRK and ORNL respectively. Considerations, governing the choice of a distinct method depending on the quantity and quality of available data are presented, advantages/disadvantages are discussed and examples of results are given

  4. 34 CFR 668.45 - Information on completion or graduation rates.

    Science.gov (United States)

    2010-07-01

    ... POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION STUDENT ASSISTANCE GENERAL PROVISIONS Institutional and Financial Assistance Information for Students § 668.45 Information on completion or graduation rates. (a)(1... Management and Budget under control number 1845-0004) (Authority: 20 U.S.C. 1092) [74 FR 55944, Oct. 29, 2009] ...

  5. Poincare covariance and κ-Minkowski spacetime

    International Nuclear Information System (INIS)

    Dabrowski, Ludwik; Piacitelli, Gherardo

    2011-01-01

    A fully Poincare covariant model is constructed as an extension of the κ-Minkowski spacetime. Covariance is implemented by a unitary representation of the Poincare group, and thus complies with the original Wigner approach to quantum symmetries. This provides yet another example (besides the DFR model), where Poincare covariance is realised a la Wigner in the presence of two characteristic dimensionful parameters: the light speed and the Planck length. In other words, a Doubly Special Relativity (DSR) framework may well be realised without deforming the meaning of 'Poincare covariance'. -- Highlights: → We construct a 4d model of noncommuting coordinates (quantum spacetime). → The coordinates are fully covariant under the undeformed Poincare group. → Covariance a la Wigner holds in presence of two dimensionful parameters. → Hence we are not forced to deform covariance (e.g. as quantum groups). → The underlying κ-Minkowski model is unphysical; covariantisation does not cure this.

  6. Power counting of various Dirac covariants in hadronic Bethe–Salpeter wave functions for pseudoscalar meson decays

    International Nuclear Information System (INIS)

    Bhatnagar, S.; Li, Shiyuan; Mahecha, J.

    2011-01-01

    We have employed the framework of Bethe–Salpeter equation under covariant instantaneous ansatz to calculate leptonic decay constants of unequal mass pseudoscalar mesons like π ± , K, D, D S and B, and radiative decay constants of neutral pseudoscalar mesons like π 0 and η c into two photons. In the Dirac structure of hadronic Bethe–Salpeter wave function, the covariants are incorporated from their complete set in accordance with a recently proposed power counting rule. The contribution of both leading order and next-to-leading order Dirac covariants to decay constants are studied. The results are found to improve and hence validating the power counting rule which provides a practical means of incorporating Dirac covariants in the Bethe–Salpeter wave function for a hadron. (author)

  7. Modeling Covariance Breakdowns in Multivariate GARCH

    OpenAIRE

    Jin, Xin; Maheu, John M

    2014-01-01

    This paper proposes a flexible way of modeling dynamic heterogeneous covariance breakdowns in multivariate GARCH (MGARCH) models. During periods of normal market activity, volatility dynamics are governed by an MGARCH specification. A covariance breakdown is any significant temporary deviation of the conditional covariance matrix from its implied MGARCH dynamics. This is captured through a flexible stochastic component that allows for changes in the conditional variances, covariances and impl...

  8. Econometric analysis of realised covariation: high frequency covariance, regression and correlation in financial economics

    OpenAIRE

    Ole E. Barndorff-Nielsen; Neil Shephard

    2002-01-01

    This paper analyses multivariate high frequency financial data using realised covariation. We provide a new asymptotic distribution theory for standard methods such as regression, correlation analysis and covariance. It will be based on a fixed interval of time (e.g. a day or week), allowing the number of high frequency returns during this period to go to infinity. Our analysis allows us to study how high frequency correlations, regressions and covariances change through time. In particular w...

  9. The relation between operator and path integral covariant quantizations of the Green-Schwarz superstring

    International Nuclear Information System (INIS)

    Nissimov, E.; Pacheva, S.; Solomon, S.

    1989-02-01

    By further study of the geometry of the harmonic superspace constraints, we make explicit the relation between the operator and path integral approaches to the manifestly covariant harmonic superstring. In particular we find the correct complete set of functionally independent gauge symmetries for the auxiliary variables and identify the ones corresponding to the harmonic superfield postulate in the operator formalism. Then, we deduce in a systematic way the lagrangian path integral from the well defined covariant hamiltonian formulation of the GS superstring. (authors)

  10. ISSUES IN NEUTRON CROSS SECTION COVARIANCES

    Energy Technology Data Exchange (ETDEWEB)

    Mattoon, C.M.; Oblozinsky,P.

    2010-04-30

    We review neutron cross section covariances in both the resonance and fast neutron regions with the goal to identify existing issues in evaluation methods and their impact on covariances. We also outline ideas for suitable covariance quality assurance procedures.We show that the topic of covariance data remains controversial, the evaluation methodologies are not fully established and covariances produced by different approaches have unacceptable spread. The main controversy is in very low uncertainties generated by rigorous evaluation methods and much larger uncertainties based on simple estimates from experimental data. Since the evaluators tend to trust the former, while the users tend to trust the latter, this controversy has considerable practical implications. Dedicated effort is needed to arrive at covariance evaluation methods that would resolve this issue and produce results accepted internationally both by evaluators and users.

  11. Inductive Framework for Multi-Aspect Streaming Tensor Completion with Side Information

    OpenAIRE

    Nimishakavi, Madhav; Mishra, Bamdev; Gupta, Manish; Talukdar, Partha

    2018-01-01

    Low-rank tensor completion is a well-studied problem and has applications in various fields. However, in many real-world applications the data is dynamic, i.e., the tensor grows as new data arrives. Besides the tensor, in many real-world scenarios, side information is also available in the form of matrices which also grow. Existing work on dynamic tensor completion do not incorporate side information and most of the previous work is based on the assumption that the tensor grows only in one mo...

  12. Mapping structural covariance networks of facial emotion recognition in early psychosis: A pilot study.

    Science.gov (United States)

    Buchy, Lisa; Barbato, Mariapaola; Makowski, Carolina; Bray, Signe; MacMaster, Frank P; Deighton, Stephanie; Addington, Jean

    2017-11-01

    People with psychosis show deficits recognizing facial emotions and disrupted activation in the underlying neural circuitry. We evaluated associations between facial emotion recognition and cortical thickness using a correlation-based approach to map structural covariance networks across the brain. Fifteen people with an early psychosis provided magnetic resonance scans and completed the Penn Emotion Recognition and Differentiation tasks. Fifteen historical controls provided magnetic resonance scans. Cortical thickness was computed using CIVET and analyzed with linear models. Seed-based structural covariance analysis was done using the mapping anatomical correlations across the cerebral cortex methodology. To map structural covariance networks involved in facial emotion recognition, the right somatosensory cortex and bilateral fusiform face areas were selected as seeds. Statistics were run in SurfStat. Findings showed increased cortical covariance between the right fusiform face region seed and right orbitofrontal cortex in controls than early psychosis subjects. Facial emotion recognition scores were not significantly associated with thickness in any region. A negative effect of Penn Differentiation scores on cortical covariance was seen between the left fusiform face area seed and right superior parietal lobule in early psychosis subjects. Results suggest that facial emotion recognition ability is related to covariance in a temporal-parietal network in early psychosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Robust entry guidance using linear covariance-based model predictive control

    Directory of Open Access Journals (Sweden)

    Jianjun Luo

    2017-02-01

    Full Text Available For atmospheric entry vehicles, guidance design can be accomplished by solving an optimal issue using optimal control theories. However, traditional design methods generally focus on the nominal performance and do not include considerations of the robustness in the design process. This paper proposes a linear covariance-based model predictive control method for robust entry guidance design. Firstly, linear covariance analysis is employed to directly incorporate the robustness into the guidance design. The closed-loop covariance with the feedback updated control command is initially formulated to provide the expected errors of the nominal state variables in the presence of uncertainties. Then, the closed-loop covariance is innovatively used as a component of the cost function to guarantee the robustness to reduce its sensitivity to uncertainties. After that, the models predictive control is used to solve the optimal problem, and the control commands (bank angles are calculated. Finally, a series of simulations for different missions have been completed to demonstrate the high performance in precision and the robustness with respect to initial perturbations as well as uncertainties in the entry process. The 3σ confidence region results in the presence of uncertainties which show that the robustness of the guidance has been improved, and the errors of the state variables are decreased by approximately 35%.

  14. Structural covariance networks across the life span, from 6 to 94 years of age

    Directory of Open Access Journals (Sweden)

    Elizabeth DuPre

    2017-10-01

    Full Text Available Structural covariance examines covariation of gray matter morphology between brain regions and across individuals. Despite significant interest in the influence of age on structural covariance patterns, no study to date has provided a complete life span perspective—bridging childhood with early, middle, and late adulthood—on the development of structural covariance networks. Here, we investigate the life span trajectories of structural covariance in six canonical neurocognitive networks: default, dorsal attention, frontoparietal control, somatomotor, ventral attention, and visual. By combining data from five open-access data sources, we examine the structural covariance trajectories of these networks from 6 to 94 years of age in a sample of 1,580 participants. Using partial least squares, we show that structural covariance patterns across the life span exhibit two significant, age-dependent trends. The first trend is a stable pattern whose integrity declines over the life span. The second trend is an inverted-U that differentiates young adulthood from other age groups. Hub regions, including posterior cingulate cortex and anterior insula, appear particularly influential in the expression of this second age-dependent trend. Overall, our results suggest that structural covariance provides a reliable definition of neurocognitive networks across the life span and reveal both shared and network-specific trajectories. The importance of life span perspectives is increasingly apparent in understanding normative interactions of large-scale neurocognitive networks. Although recent work has made significant strides in understanding the functional and structural connectivity of these networks, there has been comparatively little attention to life span trajectories of structural covariance networks. In this study we examine patterns of structural covariance across the life span for six neurocognitive networks. Our results suggest that networks exhibit

  15. Covariant diagrams for one-loop matching

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhengkang [Michigan Center for Theoretical Physics (MCTP), University of Michigan,450 Church Street, Ann Arbor, MI 48109 (United States); Deutsches Elektronen-Synchrotron (DESY),Notkestraße 85, 22607 Hamburg (Germany)

    2017-05-30

    We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gauge-covariant quantities and are thus dubbed “covariant diagrams.” The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.

  16. Covariant diagrams for one-loop matching

    International Nuclear Information System (INIS)

    Zhang, Zhengkang

    2017-01-01

    We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gauge-covariant quantities and are thus dubbed “covariant diagrams.” The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.

  17. Fast Computing for Distance Covariance

    OpenAIRE

    Huo, Xiaoming; Szekely, Gabor J.

    2014-01-01

    Distance covariance and distance correlation have been widely adopted in measuring dependence of a pair of random variables or random vectors. If the computation of distance covariance and distance correlation is implemented directly accordingly to its definition then its computational complexity is O($n^2$) which is a disadvantage compared to other faster methods. In this paper we show that the computation of distance covariance and distance correlation of real valued random variables can be...

  18. On estimating cosmology-dependent covariance matrices

    International Nuclear Information System (INIS)

    Morrison, Christopher B.; Schneider, Michael D.

    2013-01-01

    We describe a statistical model to estimate the covariance matrix of matter tracer two-point correlation functions with cosmological simulations. Assuming a fixed number of cosmological simulation runs, we describe how to build a 'statistical emulator' of the two-point function covariance over a specified range of input cosmological parameters. Because the simulation runs with different cosmological models help to constrain the form of the covariance, we predict that the cosmology-dependent covariance may be estimated with a comparable number of simulations as would be needed to estimate the covariance for fixed cosmology. Our framework is a necessary first step in planning a simulations campaign for analyzing the next generation of cosmological surveys

  19. On covariant quantization of massive superparticle with first class constraints

    International Nuclear Information System (INIS)

    Huq, M.

    1990-02-01

    We use the technique of Batalin and Fradkin to convert the second class fermionic constraints of the massive superparticle into first class constraints. Then the Batalin-Vilkovisky formalism has been used to quantize covariantly the resulting theory. Appropriate gauge fixing conditions lead to a completely quadratic action. Some interesting properties of the physical space wave functions are discussed. (author). 16 refs

  20. ERRORJ. Covariance processing code. Version 2.2

    International Nuclear Information System (INIS)

    Chiba, Go

    2004-07-01

    ERRORJ is the covariance processing code that can produce covariance data of multi-group cross sections, which are essential for uncertainty analyses of nuclear parameters, such as neutron multiplication factor. The ERRORJ code can process the covariance data of cross sections including resonance parameters, angular and energy distributions of secondary neutrons. Those covariance data cannot be processed by the other covariance processing codes. ERRORJ has been modified and the version 2.2 has been developed. This document describes the modifications and how to use. The main topics of the modifications are as follows. Non-diagonal elements of covariance matrices are calculated in the resonance energy region. Option for high-speed calculation is implemented. Perturbation amount is optimized in a sensitivity calculation. Effect of the resonance self-shielding on covariance of multi-group cross section can be considered. It is possible to read a compact covariance format proposed by N.M. Larson. (author)

  1. Fish mercury levels in lakes - adjusting for Hg and fish-size covariation

    International Nuclear Information System (INIS)

    Sonesten, Lars

    2003-01-01

    Fish-size covariation can be circumvented by regression intercepts of Hg vs. fish length as lake-specific Hg levels. - Accurate estimates of lake-specific mercury levels are vital in assessing the environmental impact on the mercury content in fish. The intercepts of lake-specific regressions of Hg concentration in fish vs. fish length provide accurate estimates when there is a prominent Hg and fish-size covariation. Commonly used regression methods, such as analysis of covariance (ANCOVA) and various standardization techniques are less suitable, since they do not completely remove the fish-size covariation when regression slopes are not parallel. Partial least squares (PLS) regression analysis reveals that catchment area and water chemistry have the strongest influence on the Hg level in fish in circumneutral lakes. PLS is a multivariate projection method that allows biased linear regression analysis of multicollinear data. The method is applicable to statistical and visual exploration of large data sets, even if there are more variables than observations. Environmental descriptors have no significant impact on the slopes of linear regressions of the Hg concentration in perch (Perca fluviatilis L.) vs. fish length, suggesting that the slopes mainly reflect ontogenetic dietary shifts during the perch life span

  2. Covariance matrix estimation for stationary time series

    OpenAIRE

    Xiao, Han; Wu, Wei Biao

    2011-01-01

    We obtain a sharp convergence rate for banded covariance matrix estimates of stationary processes. A precise order of magnitude is derived for spectral radius of sample covariance matrices. We also consider a thresholded covariance matrix estimator that can better characterize sparsity if the true covariance matrix is sparse. As our main tool, we implement Toeplitz [Math. Ann. 70 (1911) 351–376] idea and relate eigenvalues of covariance matrices to the spectral densities or Fourier transforms...

  3. General Galilei Covariant Gaussian Maps

    Science.gov (United States)

    Gasbarri, Giulio; Toroš, Marko; Bassi, Angelo

    2017-09-01

    We characterize general non-Markovian Gaussian maps which are covariant under Galilean transformations. In particular, we consider translational and Galilean covariant maps and show that they reduce to the known Holevo result in the Markovian limit. We apply the results to discuss measures of macroscopicity based on classicalization maps, specifically addressing dissipation, Galilean covariance and non-Markovianity. We further suggest a possible generalization of the macroscopicity measure defined by Nimmrichter and Hornberger [Phys. Rev. Lett. 110, 16 (2013)].

  4. Fostering information problem solving skills through completion problems and prompts

    NARCIS (Netherlands)

    Frerejean, Jimmy; Brand-Gruwel, Saskia; Kirschner, Paul A.

    2012-01-01

    Frerejean, J., Brand-Gruwel, S., & Kirschner, P. A. (2012, November). Fostering information problem solving skills through completion problems and prompts. Poster presented at the ICO Fall School 2012, Girona, Spain.

  5. Competing risks and time-dependent covariates

    DEFF Research Database (Denmark)

    Cortese, Giuliana; Andersen, Per K

    2010-01-01

    Time-dependent covariates are frequently encountered in regression analysis for event history data and competing risks. They are often essential predictors, which cannot be substituted by time-fixed covariates. This study briefly recalls the different types of time-dependent covariates......, as classified by Kalbfleisch and Prentice [The Statistical Analysis of Failure Time Data, Wiley, New York, 2002] with the intent of clarifying their role and emphasizing the limitations in standard survival models and in the competing risks setting. If random (internal) time-dependent covariates...

  6. Activities of covariance utilization working group

    International Nuclear Information System (INIS)

    Tsujimoto, Kazufumi

    2013-01-01

    During the past decade, there has been a interest in the calculational uncertainties induced by nuclear data uncertainties in the neutronics design of advanced nuclear system. The covariance nuclear data is absolutely essential for the uncertainty analysis. In the latest version of JENDL, JENDL-4.0, the covariance data for many nuclides, especially actinide nuclides, was substantialy enhanced. The growing interest in the uncertainty analysis and the covariance data has led to the organisation of the working group for covariance utilization under the JENDL committee. (author)

  7. Do current cosmological observations rule out all covariant Galileons?

    Science.gov (United States)

    Peirone, Simone; Frusciante, Noemi; Hu, Bin; Raveri, Marco; Silvestri, Alessandra

    2018-03-01

    We revisit the cosmology of covariant Galileon gravity in view of the most recent cosmological data sets, including weak lensing. As a higher derivative theory, covariant Galileon models do not have a Λ CDM limit and predict a very different structure formation pattern compared with the standard Λ CDM scenario. Previous cosmological analyses suggest that this model is marginally disfavored, yet cannot be completely ruled out. In this work we use a more recent and extended combination of data, and we allow for more freedom in the cosmology, by including a massive neutrino sector with three different mass hierarchies. We use the Planck measurements of cosmic microwave background temperature and polarization; baryonic acoustic oscillations measurements by BOSS DR12; local measurements of H0; the joint light-curve analysis supernovae sample; and, for the first time, weak gravitational lensing from the KiDS Collaboration. We find, that in order to provide a reasonable fit, a nonzero neutrino mass is indeed necessary, but we do not report any sizable difference among the three neutrino hierarchies. Finally, the comparison of the Bayesian evidence to the Λ CDM one shows that in all the cases considered, covariant Galileon models are statistically ruled out by cosmological data.

  8. Quality Quantification of Evaluated Cross Section Covariances

    International Nuclear Information System (INIS)

    Varet, S.; Dossantos-Uzarralde, P.; Vayatis, N.

    2015-01-01

    Presently, several methods are used to estimate the covariance matrix of evaluated nuclear cross sections. Because the resulting covariance matrices can be different according to the method used and according to the assumptions of the method, we propose a general and objective approach to quantify the quality of the covariance estimation for evaluated cross sections. The first step consists in defining an objective criterion. The second step is computation of the criterion. In this paper the Kullback-Leibler distance is proposed for the quality quantification of a covariance matrix estimation and its inverse. It is based on the distance to the true covariance matrix. A method based on the bootstrap is presented for the estimation of this criterion, which can be applied with most methods for covariance matrix estimation and without the knowledge of the true covariance matrix. The full approach is illustrated on the 85 Rb nucleus evaluations and the results are then used for a discussion on scoring and Monte Carlo approaches for covariance matrix estimation of the cross section evaluations

  9. Improvement of covariance data for fast reactors

    International Nuclear Information System (INIS)

    Shibata, Keiichi; Hasegawa, Akira

    2000-02-01

    We estimated covariances of the JENDL-3.2 data on the nuclides and reactions needed to analyze fast-reactor cores for the past three years, and produced covariance files. The present work was undertaken to re-examine the covariance files and to make some improvements. The covariances improved are the ones for the inelastic scattering cross section of 16 O, the total cross section of 23 Na, the fission cross section of 235 U, the capture cross section of 238 U, and the resolved resonance parameters for 238 U. Moreover, the covariances of 233 U data were newly estimated by the present work. The covariances obtained were compiled in the ENDF-6 format. (author)

  10. Lorentz Covariance of Langevin Equation

    International Nuclear Information System (INIS)

    Koide, T.; Denicol, G.S.; Kodama, T.

    2008-01-01

    Relativistic covariance of a Langevin type equation is discussed. The requirement of Lorentz invariance generates an entanglement between the force and noise terms so that the noise itself should not be a covariant quantity. (author)

  11. Some thoughts on positive definiteness in the consideration of nuclear data covariance matrices

    Energy Technology Data Exchange (ETDEWEB)

    Geraldo, L.P.; Smith, D.L.

    1988-01-01

    Some basic mathematical features of covariance matrices are reviewed, particularly as they relate to the property of positive difiniteness. Physical implications of positive definiteness are also discussed. Consideration is given to an examination of the origins of non-positive definite matrices, to procedures which encourage the generation of positive definite matrices and to the testing of covariance matrices for positive definiteness. Attention is also given to certain problems associated with the construction of covariance matrices using information which is obtained from evaluated data files recorded in the ENDF format. Examples are provided to illustrate key points pertaining to each of the topic areas covered.

  12. Some thoughts on positive definiteness in the consideration of nuclear data covariance matrices

    International Nuclear Information System (INIS)

    Geraldo, L.P.; Smith, D.L.

    1988-01-01

    Some basic mathematical features of covariance matrices are reviewed, particularly as they relate to the property of positive difiniteness. Physical implications of positive definiteness are also discussed. Consideration is given to an examination of the origins of non-positive definite matrices, to procedures which encourage the generation of positive definite matrices and to the testing of covariance matrices for positive definiteness. Attention is also given to certain problems associated with the construction of covariance matrices using information which is obtained from evaluated data files recorded in the ENDF format. Examples are provided to illustrate key points pertaining to each of the topic areas covered

  13. Schur Complement Inequalities for Covariance Matrices and Monogamy of Quantum Correlations.

    Science.gov (United States)

    Lami, Ludovico; Hirche, Christoph; Adesso, Gerardo; Winter, Andreas

    2016-11-25

    We derive fundamental constraints for the Schur complement of positive matrices, which provide an operator strengthening to recently established information inequalities for quantum covariance matrices, including strong subadditivity. This allows us to prove general results on the monogamy of entanglement and steering quantifiers in continuous variable systems with an arbitrary number of modes per party. A powerful hierarchical relation for correlation measures based on the log-determinant of covariance matrices is further established for all Gaussian states, which has no counterpart among quantities based on the conventional von Neumann entropy.

  14. Treating Sample Covariances for Use in Strongly Coupled Atmosphere-Ocean Data Assimilation

    Science.gov (United States)

    Smith, Polly J.; Lawless, Amos S.; Nichols, Nancy K.

    2018-01-01

    Strongly coupled data assimilation requires cross-domain forecast error covariances; information from ensembles can be used, but limited sampling means that ensemble derived error covariances are routinely rank deficient and/or ill-conditioned and marred by noise. Thus, they require modification before they can be incorporated into a standard assimilation framework. Here we compare methods for improving the rank and conditioning of multivariate sample error covariance matrices for coupled atmosphere-ocean data assimilation. The first method, reconditioning, alters the matrix eigenvalues directly; this preserves the correlation structures but does not remove sampling noise. We show that it is better to recondition the correlation matrix rather than the covariance matrix as this prevents small but dynamically important modes from being lost. The second method, model state-space localization via the Schur product, effectively removes sample noise but can dampen small cross-correlation signals. A combination that exploits the merits of each is found to offer an effective alternative.

  15. Generalized Linear Covariance Analysis

    Science.gov (United States)

    Carpenter, James R.; Markley, F. Landis

    2014-01-01

    This talk presents a comprehensive approach to filter modeling for generalized covariance analysis of both batch least-squares and sequential estimators. We review and extend in two directions the results of prior work that allowed for partitioning of the state space into solve-for'' and consider'' parameters, accounted for differences between the formal values and the true values of the measurement noise, process noise, and textita priori solve-for and consider covariances, and explicitly partitioned the errors into subspaces containing only the influence of the measurement noise, process noise, and solve-for and consider covariances. In this work, we explicitly add sensitivity analysis to this prior work, and relax an implicit assumption that the batch estimator's epoch time occurs prior to the definitive span. We also apply the method to an integrated orbit and attitude problem, in which gyro and accelerometer errors, though not estimated, influence the orbit determination performance. We illustrate our results using two graphical presentations, which we call the variance sandpile'' and the sensitivity mosaic,'' and we compare the linear covariance results to confidence intervals associated with ensemble statistics from a Monte Carlo analysis.

  16. Econometric analysis of realized covariation: high frequency based covariance, regression, and correlation in financial economics

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Shephard, N.

    2004-01-01

    This paper analyses multivariate high frequency financial data using realized covariation. We provide a new asymptotic distribution theory for standard methods such as regression, correlation analysis, and covariance. It will be based on a fixed interval of time (e.g., a day or week), allowing...... the number of high frequency returns during this period to go to infinity. Our analysis allows us to study how high frequency correlations, regressions, and covariances change through time. In particular we provide confidence intervals for each of these quantities....

  17. Covariant canonical quantization of fields and Bohmian mechanics

    International Nuclear Information System (INIS)

    Nikolic, H.

    2005-01-01

    We propose a manifestly covariant canonical method of field quantization based on the classical De Donder-Weyl covariant canonical formulation of field theory. Owing to covariance, the space and time arguments of fields are treated on an equal footing. To achieve both covariance and consistency with standard non-covariant canonical quantization of fields in Minkowski spacetime, it is necessary to adopt a covariant Bohmian formulation of quantum field theory. A preferred foliation of spacetime emerges dynamically owing to a purely quantum effect. The application to a simple time-reparametrization invariant system and quantum gravity is discussed and compared with the conventional non-covariant Wheeler-DeWitt approach. (orig.)

  18. Proofs of Contracted Length Non-covariance

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1994-01-01

    Different proofs of contracted length non covariance are discussed. The way based on the establishment of interval inconstancy (dependence on velocity) seems to be the most convincing one. It is stressed that the known non covariance of the electromagnetic field energy and momentum of a moving charge ('the problem 4/3') is a direct consequence of contracted length non covariance. 8 refs

  19. Estimation of (co)variances for genomic regions of flexible sizes

    DEFF Research Database (Denmark)

    Sørensen, Lars P; Janss, Luc; Madsen, Per

    2012-01-01

    was used. There was a clear difference in the region-wise patterns of genomic correlation among combinations of traits, with distinctive peaks indicating the presence of pleiotropic QTL. CONCLUSIONS: The results show that it is possible to estimate, genome-wide and region-wise genomic (co)variances......BACKGROUND: Multi-trait genomic models in a Bayesian context can be used to estimate genomic (co)variances, either for a complete genome or for genomic regions (e.g. per chromosome) for the purpose of multi-trait genomic selection or to gain further insight into the genomic architecture of related...... with a common prior distribution for the marker allele substitution effects and estimation of the hyperparameters in this prior distribution from the progeny means data. From the Markov chain Monte Carlo samples of the allele substitution effects, genomic (co)variances were calculated on a whole-genome level...

  20. Effortless assignment with 4D covariance sequential correlation maps.

    Science.gov (United States)

    Harden, Bradley J; Mishra, Subrata H; Frueh, Dominique P

    2015-11-01

    Traditional Nuclear Magnetic Resonance (NMR) assignment procedures for proteins rely on preliminary peak-picking to identify and label NMR signals. However, such an approach has severe limitations when signals are erroneously labeled or completely neglected. The consequences are especially grave for proteins with substantial peak overlap, and mistakes can often thwart entire projects. To overcome these limitations, we previously introduced an assignment technique that bypasses traditional pick peaking altogether. Covariance Sequential Correlation Maps (COSCOMs) transform the indirect connectivity information provided by multiple 3D backbone spectra into direct (H, N) to (H, N) correlations. Here, we present an updated method that utilizes a single four-dimensional spectrum rather than a suite of three-dimensional spectra. We demonstrate the advantages of 4D-COSCOMs relative to their 3D counterparts. We introduce improvements accelerating their calculation. We discuss practical considerations affecting their quality. And finally we showcase their utility in the context of a 52 kDa cyclization domain from a non-ribosomal peptide synthetase. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Covariate analysis of bivariate survival data

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, L.E.

    1992-01-01

    The methods developed are used to analyze the effects of covariates on bivariate survival data when censoring and ties are present. The proposed method provides models for bivariate survival data that include differential covariate effects and censored observations. The proposed models are based on an extension of the univariate Buckley-James estimators which replace censored data points by their expected values, conditional on the censoring time and the covariates. For the bivariate situation, it is necessary to determine the expectation of the failure times for one component conditional on the failure or censoring time of the other component. Two different methods have been developed to estimate these expectations. In the semiparametric approach these expectations are determined from a modification of Burke's estimate of the bivariate empirical survival function. In the parametric approach censored data points are also replaced by their conditional expected values where the expected values are determined from a specified parametric distribution. The model estimation will be based on the revised data set, comprised of uncensored components and expected values for the censored components. The variance-covariance matrix for the estimated covariate parameters has also been derived for both the semiparametric and parametric methods. Data from the Demographic and Health Survey was analyzed by these methods. The two outcome variables are post-partum amenorrhea and breastfeeding; education and parity were used as the covariates. Both the covariate parameter estimates and the variance-covariance estimates for the semiparametric and parametric models will be compared. In addition, a multivariate test statistic was used in the semiparametric model to examine contrasts. The significance of the statistic was determined from a bootstrap distribution of the test statistic.

  2. Covariant diagrams for one-loop matching

    International Nuclear Information System (INIS)

    Zhang, Zhengkang

    2016-10-01

    We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gaugecovariant quantities and are thus dubbed ''covariant diagrams.'' The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.

  3. Covariant diagrams for one-loop matching

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhengkang [Michigan Univ., Ann Arbor, MI (United States). Michigan Center for Theoretical Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2016-10-15

    We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gaugecovariant quantities and are thus dubbed ''covariant diagrams.'' The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.

  4. Fostering Information Problem Solving Skills Through Completion Problems and Prompts

    NARCIS (Netherlands)

    Frerejean, Jimmy; Brand-Gruwel, Saskia; Kirschner, Paul A.

    2012-01-01

    Frerejean, J., Brand-Gruwel, S., & Kirschner, P. A. (2012, September). Fostering Information Problem Solving Skills Through Completion Problems and Prompts. Poster presented at the EARLI SIG 6 & 7 "Instructional Design" and "Learning and Instruction with Computers", Bari, Italy.

  5. Covariance Evaluation Methodology for Neutron Cross Sections

    Energy Technology Data Exchange (ETDEWEB)

    Herman,M.; Arcilla, R.; Mattoon, C.M.; Mughabghab, S.F.; Oblozinsky, P.; Pigni, M.; Pritychenko, b.; Songzoni, A.A.

    2008-09-01

    We present the NNDC-BNL methodology for estimating neutron cross section covariances in thermal, resolved resonance, unresolved resonance and fast neutron regions. The three key elements of the methodology are Atlas of Neutron Resonances, nuclear reaction code EMPIRE, and the Bayesian code implementing Kalman filter concept. The covariance data processing, visualization and distribution capabilities are integral components of the NNDC methodology. We illustrate its application on examples including relatively detailed evaluation of covariances for two individual nuclei and massive production of simple covariance estimates for 307 materials. Certain peculiarities regarding evaluation of covariances for resolved resonances and the consistency between resonance parameter uncertainties and thermal cross section uncertainties are also discussed.

  6. New perspective in covariance evaluation for nuclear data

    International Nuclear Information System (INIS)

    Kanda, Y.

    1992-01-01

    Methods of nuclear data evaluation have been highly developed during the past decade, especially after introducing the concept of covariance. This makes it utmost important how to evaluate covariance matrices for nuclear data. It can be said that covariance evaluation is just the nuclear data evaluation, because the covariance matrix has quantitatively decisive function in current evaluation methods. The covariance primarily represents experimental uncertainties. However, correlation of individual uncertainties between different data must be taken into account and it can not be conducted without detailed physical considerations on experimental conditions. This procedure depends on the evaluator and the estimated covariance does also. The mathematical properties of the covariance have been intensively discussed. Their physical properties should be studied to apply it to the nuclear data evaluation, and then, in this report, are reviewed to give the base for further development of the covariance application. (orig.)

  7. Generation of covariance data among values from a single set of experiments

    International Nuclear Information System (INIS)

    Smith, D.L.

    1992-01-01

    Modern nuclear data evaluation methods demand detailed uncertainty information for all input results to be considered. It can be shown from basic statistical principles that provision of a covariance matrix for a set of data provides the necessary information for its proper consideration in the context of other included experimental data and/or a priori representations of the physical parameters in question. This paper examines how an experimenter should go about preparing the covariance matrix for any single experimental data set he intends to report. The process involves detailed examination of the experimental procedures, identification of all error sources (both random and systematic); and consideration of any internal discrepancies. Some specific examples are given to illustrate the methods and principles involved

  8. Covariant perturbations of Schwarzschild black holes

    International Nuclear Information System (INIS)

    Clarkson, Chris A; Barrett, Richard K

    2003-01-01

    We present a new covariant and gauge-invariant perturbation formalism for dealing with spacetimes having spherical symmetry (or some preferred spatial direction) in the background, and apply it to the case of gravitational wave propagation in a Schwarzschild black-hole spacetime. The 1 + 3 covariant approach is extended to a '1 + 1 + 2 covariant sheet' formalism by introducing a radial unit vector in addition to the timelike congruence, and decomposing all covariant quantities with respect to this. The background Schwarzschild solution is discussed and a covariant characterization is given. We give the full first-order system of linearized 1 + 1 + 2 covariant equations, and we show how, by introducing (time and spherical) harmonic functions, these may be reduced to a system of first-order ordinary differential equations and algebraic constraints for the 1 + 1 + 2 variables which may be solved straightforwardly. We show how both odd- and even-parity perturbations may be unified by the discovery of a covariant, frame- and gauge-invariant, transverse-traceless tensor describing gravitational waves, which satisfies a covariant wave equation equivalent to the Regge-Wheeler equation for both even- and odd-parity perturbations. We show how the Zerilli equation may be derived from this tensor, and derive a similar transverse-traceless tensor equation equivalent to this equation. The so-called special quasinormal modes with purely imaginary frequency emerge naturally. The significance of the degrees of freedom in the choice of the two frame vectors is discussed, and we demonstrate that, for a certain frame choice, the underlying dynamics is governed purely by the Regge-Wheeler tensor. The two transverse-traceless Weyl tensors which carry the curvature of gravitational waves are discussed, and we give the closed system of four first-order ordinary differential equations describing their propagation. Finally, we consider the extension of this work to the study of

  9. Survival analysis with functional covariates for partial follow-up studies.

    Science.gov (United States)

    Fang, Hong-Bin; Wu, Tong Tong; Rapoport, Aaron P; Tan, Ming

    2016-12-01

    Predictive or prognostic analysis plays an increasingly important role in the era of personalized medicine to identify subsets of patients whom the treatment may benefit the most. Although various time-dependent covariate models are available, such models require that covariates be followed in the whole follow-up period. This article studies a new class of functional survival models where the covariates are only monitored in a time interval that is shorter than the whole follow-up period. This paper is motivated by the analysis of a longitudinal study on advanced myeloma patients who received stem cell transplants and T cell infusions after the transplants. The absolute lymphocyte cell counts were collected serially during hospitalization. Those patients are still followed up if they are alive after hospitalization, while their absolute lymphocyte cell counts cannot be measured after that. Another complication is that absolute lymphocyte cell counts are sparsely and irregularly measured. The conventional method using Cox model with time-varying covariates is not applicable because of the different lengths of observation periods. Analysis based on each single observation obviously underutilizes available information and, more seriously, may yield misleading results. This so-called partial follow-up study design represents increasingly common predictive modeling problem where we have serial multiple biomarkers up to a certain time point, which is shorter than the total length of follow-up. We therefore propose a solution to the partial follow-up design. The new method combines functional principal components analysis and survival analysis with selection of those functional covariates. It also has the advantage of handling sparse and irregularly measured longitudinal observations of covariates and measurement errors. Our analysis based on functional principal components reveals that it is the patterns of the trajectories of absolute lymphocyte cell counts, instead of

  10. Covariation in Natural Causal Induction.

    Science.gov (United States)

    Cheng, Patricia W.; Novick, Laura R.

    1991-01-01

    Biases and models usually offered by cognitive and social psychology and by philosophy to explain causal induction are evaluated with respect to focal sets (contextually determined sets of events over which covariation is computed). A probabilistic contrast model is proposed as underlying covariation computation in natural causal induction. (SLD)

  11. Evaluated Nuclear Data Covariances: The Journey From ENDF/B-VII.0 to ENDF/B-VII.1

    International Nuclear Information System (INIS)

    Smith, Donald L.

    2011-01-01

    Recent interest from data users on applications that utilize the uncertainties of evaluated nuclear reaction data has stimulated the data evaluation community to focus on producing covariance data to a far greater extent than ever before. Although some uncertainty information has been available in the ENDF/B libraries since the 1970's, this content has been fairly limited in scope, the quality quite variable, and the use of covariance data confined to only a few application areas. Today, covariance data are more widely and extensively utilized than ever before in neutron dosimetry, in advanced fission reactor design studies, in nuclear criticality safety assessments, in national security applications, and even in certain fusion energy applications. The main problem that now faces the ENDF/B evaluator community is that of providing covariances that are adequate both in quantity and quality to meet the requirements of contemporary nuclear data users in a timely manner. In broad terms, the approach pursued during the past several years has been to purge any legacy covariance information contained in ENDF/B-VI.8 that was judged to be subpar, to include in ENDF/B-VII.0 (released in 2006) only those covariance data deemed then to be of reasonable quality for contemporary applications, and to subsequently devote as much effort as the available time and resources allowed to producing additional covariance data of suitable scope and quality for inclusion in ENDF/B-VII.1. Considerable attention has also been devoted during the five years since the release of ENDF/B-VII.0 to examining and improving the methods used to produce covariance data from thermal energies up to the highest energies addressed in the ENDF/B library, to processing these data in a robust fashion so that they can be utilized readily in contemporary nuclear applications, and to developing convenient covariance data visualization capabilities. Other papers included in this issue discuss in considerable

  12. Structural Analysis of Covariance and Correlation Matrices.

    Science.gov (United States)

    Joreskog, Karl G.

    1978-01-01

    A general approach to analysis of covariance structures is considered, in which the variances and covariances or correlations of the observed variables are directly expressed in terms of the parameters of interest. The statistical problems of identification, estimation and testing of such covariance or correlation structures are discussed.…

  13. The analysis of covariance and alternatives statistical methods for experiments, quasi-experiments, and single-case studies

    CERN Document Server

    Huitema, Bradley

    2011-01-01

    A complete guide to cutting-edge techniques and best practices for applying covariance analysis methods The Second Edition of Analysis of Covariance and Alternatives sheds new light on its topic, offering in-depth discussions of underlying assumptions, comprehensive interpretations of results, and comparisons of distinct approaches. The book has been extensively revised and updated to feature an in-depth review of prerequisites and the latest developments in the field. The author begins with a discussion of essential topics relating to experimental design and analysis

  14. Experimental asymmetric phase-covariant quantum cloning of polarization qubits

    Czech Academy of Sciences Publication Activity Database

    Soubusta, Jan; Bartůšková, L.; Černoch, Antonín; Dušek, M.; Fiurášek, J.

    2008-01-01

    Roč. 78, č. 5 (2008), 052323/1-052323/7 ISSN 1050-2947 R&D Projects: GA MŠk(CZ) 1M06002 Grant - others:GAMŠk(CZ) LC06007 Program:LC Institutional research plan: CEZ:AV0Z10100522 Keywords : phase-covariant cloning * quantum information processing Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.908, year: 2008

  15. A pilot study of cognitive insight and structural covariance in first-episode psychosis.

    Science.gov (United States)

    Kuang, Corin; Buchy, Lisa; Barbato, Mariapaola; Makowski, Carolina; MacMaster, Frank P; Bray, Signe; Deighton, Stephanie; Addington, Jean

    2017-01-01

    Cognitive insight is described as a balance between one's self-reflectiveness (recognition and correction of dysfunctional reasoning), and self-certainty (overconfidence). Neuroimaging studies have linked the ventrolateral prefrontal cortex (VLPFC) to cognitive insight in people with psychosis. However, the relationship between cognitive insight and structural connectivity between the VLPFC and other brain areas is unknown. Here, we investigated the modulation of cognitive insight on structural covariance networks involving the VLPFC in a first-episode psychosis sample. Fifteen patients with a first-episode psychosis provided magnetic resonance (MR) scans and completed the Beck Cognitive Insight Scale (BCIS). MR scans were also available for 15 historical controls. Seed-based analysis of structural covariance was conducted using the Mapping Anatomical Correlations Across the Cerebral Cortex (MACACC) methodology, whereby Pearson correlation coefficients were extracted between seed regions in left and right VLPFC and cortical thickness across the brain. Structural covariance maps between groups were compared at each vertex. In first-episode subjects, we evaluated the modulation of BCIS scores on cortical covariance between VLPFC and every other vertex. Findings showed no significant group difference between first-episode psychosis subjects and controls in thickness covariance seeded from left or right VLPFC. However, in first-episode psychosis subjects, a positive association with self-certainty was found in networks seeded from both left and right VLPFC with thickness in medial frontal cortex and right pars triangularis. No significant associations were found for self-reflectiveness. These results suggest that self-certainty, but not self-reflectiveness, positively modulated cortical covariance in a frontal network in patients with a first-episode psychosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Modifications of Sp(2) covariant superfield quantization

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, D.M.; Moshin, P.Yu

    2003-12-04

    We propose a modification of the Sp(2) covariant superfield quantization to realize a superalgebra of generating operators isomorphic to the massless limit of the corresponding superalgebra of the osp(1,2) covariant formalism. The modified scheme ensures the compatibility of the superalgebra of generating operators with extended BRST symmetry without imposing restrictions eliminating superfield components from the quantum action. The formalism coincides with the Sp(2) covariant superfield scheme and with the massless limit of the osp(1,2) covariant quantization in particular cases of gauge-fixing and solutions of the quantum master equations.

  17. Covariant quantizations in plane and curved spaces

    International Nuclear Information System (INIS)

    Assirati, J.L.M.; Gitman, D.M.

    2017-01-01

    We present covariant quantization rules for nonsingular finite-dimensional classical theories with flat and curved configuration spaces. In the beginning, we construct a family of covariant quantizations in flat spaces and Cartesian coordinates. This family is parametrized by a function ω(θ), θ element of (1,0), which describes an ambiguity of the quantization. We generalize this construction presenting covariant quantizations of theories with flat configuration spaces but already with arbitrary curvilinear coordinates. Then we construct a so-called minimal family of covariant quantizations for theories with curved configuration spaces. This family of quantizations is parametrized by the same function ω(θ). Finally, we describe a more wide family of covariant quantizations in curved spaces. This family is already parametrized by two functions, the previous one ω(θ) and by an additional function Θ(x,ξ). The above mentioned minimal family is a part at Θ = 1 of the wide family of quantizations. We study constructed quantizations in detail, proving their consistency and covariance. As a physical application, we consider a quantization of a non-relativistic particle moving in a curved space, discussing the problem of a quantum potential. Applying the covariant quantizations in flat spaces to an old problem of constructing quantum Hamiltonian in polar coordinates, we directly obtain a correct result. (orig.)

  18. Covariant quantizations in plane and curved spaces

    Energy Technology Data Exchange (ETDEWEB)

    Assirati, J.L.M. [University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil); Gitman, D.M. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); P.N. Lebedev Physical Institute, Moscow (Russian Federation); University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil)

    2017-07-15

    We present covariant quantization rules for nonsingular finite-dimensional classical theories with flat and curved configuration spaces. In the beginning, we construct a family of covariant quantizations in flat spaces and Cartesian coordinates. This family is parametrized by a function ω(θ), θ element of (1,0), which describes an ambiguity of the quantization. We generalize this construction presenting covariant quantizations of theories with flat configuration spaces but already with arbitrary curvilinear coordinates. Then we construct a so-called minimal family of covariant quantizations for theories with curved configuration spaces. This family of quantizations is parametrized by the same function ω(θ). Finally, we describe a more wide family of covariant quantizations in curved spaces. This family is already parametrized by two functions, the previous one ω(θ) and by an additional function Θ(x,ξ). The above mentioned minimal family is a part at Θ = 1 of the wide family of quantizations. We study constructed quantizations in detail, proving their consistency and covariance. As a physical application, we consider a quantization of a non-relativistic particle moving in a curved space, discussing the problem of a quantum potential. Applying the covariant quantizations in flat spaces to an old problem of constructing quantum Hamiltonian in polar coordinates, we directly obtain a correct result. (orig.)

  19. Smooth individual level covariates adjustment in disease mapping.

    Science.gov (United States)

    Huque, Md Hamidul; Anderson, Craig; Walton, Richard; Woolford, Samuel; Ryan, Louise

    2018-05-01

    Spatial models for disease mapping should ideally account for covariates measured both at individual and area levels. The newly available "indiCAR" model fits the popular conditional autoregresssive (CAR) model by accommodating both individual and group level covariates while adjusting for spatial correlation in the disease rates. This algorithm has been shown to be effective but assumes log-linear associations between individual level covariates and outcome. In many studies, the relationship between individual level covariates and the outcome may be non-log-linear, and methods to track such nonlinearity between individual level covariate and outcome in spatial regression modeling are not well developed. In this paper, we propose a new algorithm, smooth-indiCAR, to fit an extension to the popular conditional autoregresssive model that can accommodate both linear and nonlinear individual level covariate effects while adjusting for group level covariates and spatial correlation in the disease rates. In this formulation, the effect of a continuous individual level covariate is accommodated via penalized splines. We describe a two-step estimation procedure to obtain reliable estimates of individual and group level covariate effects where both individual and group level covariate effects are estimated separately. This distributed computing framework enhances its application in the Big Data domain with a large number of individual/group level covariates. We evaluate the performance of smooth-indiCAR through simulation. Our results indicate that the smooth-indiCAR method provides reliable estimates of all regression and random effect parameters. We illustrate our proposed methodology with an analysis of data on neutropenia admissions in New South Wales (NSW), Australia. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Batalin-Vilkovisky formalism in locally covariant field theory

    International Nuclear Information System (INIS)

    Rejzner, Katarzyna Anna

    2011-12-01

    The present work contains a complete formulation of the Batalin-Vilkovisky (BV) formalism in the framework of locally covariant field theory. In the first part of the thesis the classical theory is investigated with a particular focus on the infinite dimensional character of the underlying structures. It is shown that the use of infinite dimensional differential geometry allows for a conceptually clear and elegant formulation. The construction of the BV complex is performed in a fully covariant way and we also generalize the BV framework to a more abstract level, using functors and natural transformations. In this setting we construct the BV complex for classical gravity. This allows us to give a homological interpretation to the notion of diffeomorphism invariant physical quantities in general relativity. The second part of the thesis concerns the quantum theory. We provide a framework for the BV quantization that doesn't rely on the path integral formalism, but is completely formulated within perturbative algebraic quantum field theory. To make such a formulation possible we first prove that the renormalized time-ordered product can be understood as a binary operation on a suitable domain. Using this result we prove the associativity of this product and provide a consistent framework for the renormalized BV structures. In particular the renormalized quantum master equation and the renormalized quantum BV operator are defined. To give a precise meaning to theses objects we make a use of the master Ward identity, which is an important structure in causal perturbation theory. (orig.)

  1. Batalin-Vilkovisky formalism in locally covariant field theory

    Energy Technology Data Exchange (ETDEWEB)

    Rejzner, Katarzyna Anna

    2011-12-15

    The present work contains a complete formulation of the Batalin-Vilkovisky (BV) formalism in the framework of locally covariant field theory. In the first part of the thesis the classical theory is investigated with a particular focus on the infinite dimensional character of the underlying structures. It is shown that the use of infinite dimensional differential geometry allows for a conceptually clear and elegant formulation. The construction of the BV complex is performed in a fully covariant way and we also generalize the BV framework to a more abstract level, using functors and natural transformations. In this setting we construct the BV complex for classical gravity. This allows us to give a homological interpretation to the notion of diffeomorphism invariant physical quantities in general relativity. The second part of the thesis concerns the quantum theory. We provide a framework for the BV quantization that doesn't rely on the path integral formalism, but is completely formulated within perturbative algebraic quantum field theory. To make such a formulation possible we first prove that the renormalized time-ordered product can be understood as a binary operation on a suitable domain. Using this result we prove the associativity of this product and provide a consistent framework for the renormalized BV structures. In particular the renormalized quantum master equation and the renormalized quantum BV operator are defined. To give a precise meaning to theses objects we make a use of the master Ward identity, which is an important structure in causal perturbation theory. (orig.)

  2. A Powerful Approach to Estimating Annotation-Stratified Genetic Covariance via GWAS Summary Statistics.

    Science.gov (United States)

    Lu, Qiongshi; Li, Boyang; Ou, Derek; Erlendsdottir, Margret; Powles, Ryan L; Jiang, Tony; Hu, Yiming; Chang, David; Jin, Chentian; Dai, Wei; He, Qidu; Liu, Zefeng; Mukherjee, Shubhabrata; Crane, Paul K; Zhao, Hongyu

    2017-12-07

    Despite the success of large-scale genome-wide association studies (GWASs) on complex traits, our understanding of their genetic architecture is far from complete. Jointly modeling multiple traits' genetic profiles has provided insights into the shared genetic basis of many complex traits. However, large-scale inference sets a high bar for both statistical power and biological interpretability. Here we introduce a principled framework to estimate annotation-stratified genetic covariance between traits using GWAS summary statistics. Through theoretical and numerical analyses, we demonstrate that our method provides accurate covariance estimates, thereby enabling researchers to dissect both the shared and distinct genetic architecture across traits to better understand their etiologies. Among 50 complex traits with publicly accessible GWAS summary statistics (N total ≈ 4.5 million), we identified more than 170 pairs with statistically significant genetic covariance. In particular, we found strong genetic covariance between late-onset Alzheimer disease (LOAD) and amyotrophic lateral sclerosis (ALS), two major neurodegenerative diseases, in single-nucleotide polymorphisms (SNPs) with high minor allele frequencies and in SNPs located in the predicted functional genome. Joint analysis of LOAD, ALS, and other traits highlights LOAD's correlation with cognitive traits and hints at an autoimmune component for ALS. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  3. Development of covariance date for fast reactor cores. 3

    International Nuclear Information System (INIS)

    Shibata, Keiichi; Hasegawa, Akira

    1999-03-01

    Covariances have been estimated for nuclear data contained in JENDL-3.2. As for Cr and Ni, the physical quantities for which covariances are deduced are cross sections and the first order Legendre-polynomial coefficient for the angular distribution of elastically scattered neutrons. The covariances were estimated by using the same methodology that had been used in the JENDL-3.2 evaluation in order to keep a consistency between mean values and their covariances. In a case where evaluated data were based on experimental data, the covariances were estimated from the same experimental data. For cross section that had been evaluated by nuclear model calculations, the same model was applied to generate the covariances. The covariances obtained were compiled into ENDF-6 format files. The covariances, which had been prepared by the previous fiscal year, were re-examined, and some improvements were performed. Parts of Fe and 235 U covariances were updated. Covariances of nu-p and nu-d for 241 Pu and of fission neutron spectra for 233,235,238 U and 239,240 Pu were newly added to data files. (author)

  4. HSQC-1,n-ADEQUATE: a new approach to long-range 13C-13C correlation by covariance processing.

    Science.gov (United States)

    Martin, Gary E; Hilton, Bruce D; Willcott, M Robert; Blinov, Kirill A

    2011-10-01

    Long-range, two-dimensional heteronuclear shift correlation NMR methods play a pivotal role in the assembly of novel molecular structures. The well-established GHMBC method is a high-sensitivity mainstay technique, affording connectivity information via (n)J(CH) coupling pathways. Unfortunately, there is no simple way of determining the value of n and hence no way of differentiating two-bond from three- and occasionally four-bond correlations. Three-bond correlations, however, generally predominate. Recent work has shown that the unsymmetrical indirect covariance or generalized indirect covariance processing of multiplicity edited GHSQC and 1,1-ADEQUATE spectra provides high-sensitivity access to a (13)C-(13) C connectivity map in the form of an HSQC-1,1-ADEQUATE spectrum. Covariance processing of these data allows the 1,1-ADEQUATE connectivity information to be exploited with the inherent sensitivity of the GHSQC spectrum rather than the intrinsically lower sensitivity of the 1,1-ADEQUATE spectrum itself. Data acquisition times and/or sample size can be substantially reduced when covariance processing is to be employed. In an extension of that work, 1,n-ADEQUATE spectra can likewise be subjected to covariance processing to afford high-sensitivity access to the equivalent of (4)J(CH) GHMBC connectivity information. The method is illustrated using strychnine as a model compound. Copyright © 2011 John Wiley & Sons, Ltd.

  5. Precomputing Process Noise Covariance for Onboard Sequential Filters

    Science.gov (United States)

    Olson, Corwin G.; Russell, Ryan P.; Carpenter, J. Russell

    2017-01-01

    Process noise is often used in estimation filters to account for unmodeled and mismodeled accelerations in the dynamics. The process noise covariance acts to inflate the state covariance over propagation intervals, increasing the uncertainty in the state. In scenarios where the acceleration errors change significantly over time, the standard process noise covariance approach can fail to provide effective representation of the state and its uncertainty. Consider covariance analysis techniques provide a method to precompute a process noise covariance profile along a reference trajectory using known model parameter uncertainties. The process noise covariance profile allows significantly improved state estimation and uncertainty representation over the traditional formulation. As a result, estimation performance on par with the consider filter is achieved for trajectories near the reference trajectory without the additional computational cost of the consider filter. The new formulation also has the potential to significantly reduce the trial-and-error tuning currently required of navigation analysts. A linear estimation problem as described in several previous consider covariance analysis studies is used to demonstrate the effectiveness of the precomputed process noise covariance, as well as a nonlinear descent scenario at the asteroid Bennu with optical navigation.

  6. PUFF-III: A Code for Processing ENDF Uncertainty Data Into Multigroup Covariance Matrices

    International Nuclear Information System (INIS)

    Dunn, M.E.

    2000-01-01

    PUFF-III is an extension of the previous PUFF-II code that was developed in the 1970s and early 1980s. The PUFF codes process the Evaluated Nuclear Data File (ENDF) covariance data and generate multigroup covariance matrices on a user-specified energy grid structure. Unlike its predecessor, PUFF-III can process the new ENDF/B-VI data formats. In particular, PUFF-III has the capability to process the spontaneous fission covariances for fission neutron multiplicity. With regard to the covariance data in File 33 of the ENDF system, PUFF-III has the capability to process short-range variance formats, as well as the lumped reaction covariance data formats that were introduced in ENDF/B-V. In addition to the new ENDF formats, a new directory feature is now available that allows the user to obtain a detailed directory of the uncertainty information in the data files without visually inspecting the ENDF data. Following the correlation matrix calculation, PUFF-III also evaluates the eigenvalues of each correlation matrix and tests each matrix for positive definiteness. Additional new features are discussed in the manual. PUFF-III has been developed for implementation in the AMPX code system, and several modifications were incorporated to improve memory allocation tasks and input/output operations. Consequently, the resulting code has a structure that is similar to other modules in the AMPX code system. With the release of PUFF-III, a new and improved covariance processing code is available to process ENDF covariance formats through Version VI

  7. Construction and use of gene expression covariation matrix

    Directory of Open Access Journals (Sweden)

    Bellis Michel

    2009-07-01

    strings of symbols. Conclusion This new method, applied to four different large data sets, has allowed us to construct distinct covariation matrices with similar properties. We have also developed a technique to translate these covariation networks into graphical 3D representations and found that the local assignation of the probe sets was conserved across the four chip set models used which encompass three different species (humans, mice, and rats. The application of adapted clustering methods succeeded in delineating six conserved functional regions that we characterized using Gene Ontology information.

  8. The covariant chiral ring

    Energy Technology Data Exchange (ETDEWEB)

    Bourget, Antoine; Troost, Jan [Laboratoire de Physique Théorique, École Normale Supérieure, 24 rue Lhomond, 75005 Paris (France)

    2016-03-23

    We construct a covariant generating function for the spectrum of chiral primaries of symmetric orbifold conformal field theories with N=(4,4) supersymmetry in two dimensions. For seed target spaces K3 and T{sup 4}, the generating functions capture the SO(21) and SO(5) representation theoretic content of the chiral ring respectively. Via string dualities, we relate the transformation properties of the chiral ring under these isometries of the moduli space to the Lorentz covariance of perturbative string partition functions in flat space.

  9. GLq(N)-covariant quantum algebras and covariant differential calculus

    International Nuclear Information System (INIS)

    Isaev, A.P.; Pyatov, P.N.

    1992-01-01

    GL q (N)-covariant quantum algebras with generators satisfying quadratic polynomial relations are considered. It is that, up to some innessential arbitrariness, there are only two kinds of such quantum algebras, namely, the algebras with q-deformed commutation and q-deformed anticommutation relations. 25 refs

  10. Introduction to covariant formulation of superstring (field) theory

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The author discusses covariant formulation of superstring theories based on BRS invariance. New formulation of superstring was constructed by Green and Schwarz in the light-cone gauge first and then a covariant action was discovered. The covariant action has some interesting geometrical interpretation, however, covariant quantizations are difficult to perform because of existence of local supersymmetries. Introducing extra variables into the action, a modified action has been proposed. However, it would be difficult to prescribe constraints to define a physical subspace, or to reproduce the correct physical spectrum. Hence the old formulation, i.e., the Neveu-Schwarz-Ramond (NSR) model for covariant quantization is used. The author begins by quantizing the NSR model in a covariant way using BRS charges. Then the author discusses the field theory of (free) superstring

  11. Graphical representation of covariant-contravariant modal formulae

    Directory of Open Access Journals (Sweden)

    Miguel Palomino

    2011-08-01

    Full Text Available Covariant-contravariant simulation is a combination of standard (covariant simulation, its contravariant counterpart and bisimulation. We have previously studied its logical characterization by means of the covariant-contravariant modal logic. Moreover, we have investigated the relationships between this model and that of modal transition systems, where two kinds of transitions (the so-called may and must transitions were combined in order to obtain a simple framework to express a notion of refinement over state-transition models. In a classic paper, Boudol and Larsen established a precise connection between the graphical approach, by means of modal transition systems, and the logical approach, based on Hennessy-Milner logic without negation, to system specification. They obtained a (graphical representation theorem proving that a formula can be represented by a term if, and only if, it is consistent and prime. We show in this paper that the formulae from the covariant-contravariant modal logic that admit a "graphical" representation by means of processes, modulo the covariant-contravariant simulation preorder, are also the consistent and prime ones. In order to obtain the desired graphical representation result, we first restrict ourselves to the case of covariant-contravariant systems without bivariant actions. Bivariant actions can be incorporated later by means of an encoding that splits each bivariant action into its covariant and its contravariant parts.

  12. Multivariate covariance generalized linear models

    DEFF Research Database (Denmark)

    Bonat, W. H.; Jørgensen, Bent

    2016-01-01

    are fitted by using an efficient Newton scoring algorithm based on quasi-likelihood and Pearson estimating functions, using only second-moment assumptions. This provides a unified approach to a wide variety of types of response variables and covariance structures, including multivariate extensions......We propose a general framework for non-normal multivariate data analysis called multivariate covariance generalized linear models, designed to handle multivariate response variables, along with a wide range of temporal and spatial correlation structures defined in terms of a covariance link...... function combined with a matrix linear predictor involving known matrices. The method is motivated by three data examples that are not easily handled by existing methods. The first example concerns multivariate count data, the second involves response variables of mixed types, combined with repeated...

  13. LOW-FIDELITY COVARIANCES FOR NEUTRON CROSS SECTIONS ON 57 STRUCTURAL AND 31 HEAVY NUCLEI IN THE FAST REGION

    International Nuclear Information System (INIS)

    PIGNI, M.T.; HERMAN, M.; OBLOZINSKY, P.

    2008-01-01

    We produced a large set of neutron cross section covariances in the energy range of 5 keV-20 MeV. The present set of data on 57 structural materials and 31 heavy nuclei follows our earlier work on 219 fission product materials and completes our extensive contribution to the low-fidelity covariance project (307 materials). This project aims to provide initial, low-fidelity yet consistent estimates of covariance data for nuclear criticality safety applications. The evaluation methodology combines the nuclear reaction model code EMPIRE which calculates sensitivity to nuclear reaction model parameters, and the Bayesian code KALMAN that propagates uncertainties of the model parameters to cross sections. Taking into account the large scale of the project, only marginal reference to experimental data was made. The covariances were derived from the perturbation of several key model parameters selected by the sensitivity analysis. These parameters refer to the optical model potential, the level densities and the strength of the pre-equilibrium emission. This work represents the first attempt ever to generate nuclear data covariances on such a large scale

  14. Covariant single-hole optical potential

    International Nuclear Information System (INIS)

    Kam, J. de

    1982-01-01

    In this investigation a covariant optical potential model is constructed for scattering processes of mesons from nuclei in which the meson interacts repeatedly with one of the target nucleons. The nuclear binding interactions in the intermediate scattering state are consistently taken into account. In particular for pions and K - projectiles this is important in view of the strong energy dependence of the elementary projectile-nucleon amplitude. Furthermore, this optical potential satisfies unitarity and relativistic covariance. The starting point in our discussion is the three-body model for the optical potential. To obtain a practical covariant theory I formulate the three-body model as a relativistic quasi two-body problem. Expressions for the transition interactions and propagators in the quasi two-body equations are found by imposing the correct s-channel unitarity relations and by using dispersion integrals. This is done in such a way that the correct non-relativistic limit is obtained, avoiding clustering problems. Corrections to the quasi two-body treatment from the Pauli principle and the required ground-state exclusion are taken into account. The covariant equations that we arrive at are amenable to practical calculations. (orig.)

  15. COVARIANCE ASSISTED SCREENING AND ESTIMATION.

    Science.gov (United States)

    Ke, By Tracy; Jin, Jiashun; Fan, Jianqing

    2014-11-01

    Consider a linear model Y = X β + z , where X = X n,p and z ~ N (0, I n ). The vector β is unknown and it is of interest to separate its nonzero coordinates from the zero ones (i.e., variable selection). Motivated by examples in long-memory time series (Fan and Yao, 2003) and the change-point problem (Bhattacharya, 1994), we are primarily interested in the case where the Gram matrix G = X ' X is non-sparse but sparsifiable by a finite order linear filter. We focus on the regime where signals are both rare and weak so that successful variable selection is very challenging but is still possible. We approach this problem by a new procedure called the Covariance Assisted Screening and Estimation (CASE). CASE first uses a linear filtering to reduce the original setting to a new regression model where the corresponding Gram (covariance) matrix is sparse. The new covariance matrix induces a sparse graph, which guides us to conduct multivariate screening without visiting all the submodels. By interacting with the signal sparsity, the graph enables us to decompose the original problem into many separated small-size subproblems (if only we know where they are!). Linear filtering also induces a so-called problem of information leakage , which can be overcome by the newly introduced patching technique. Together, these give rise to CASE, which is a two-stage Screen and Clean (Fan and Song, 2010; Wasserman and Roeder, 2009) procedure, where we first identify candidates of these submodels by patching and screening , and then re-examine each candidate to remove false positives. For any procedure β̂ for variable selection, we measure the performance by the minimax Hamming distance between the sign vectors of β̂ and β. We show that in a broad class of situations where the Gram matrix is non-sparse but sparsifiable, CASE achieves the optimal rate of convergence. The results are successfully applied to long-memory time series and the change-point model.

  16. Gravitational perturbations of the Schwarzschild spacetime: A practical covariant and gauge-invariant formalism

    International Nuclear Information System (INIS)

    Martel, Karl; Poisson, Eric

    2005-01-01

    We present a formalism to study the metric perturbations of the Schwarzschild spacetime. The formalism is gauge invariant, and it is also covariant under two-dimensional coordinate transformations that leave the angular coordinates unchanged. The formalism is applied to the typical problem of calculating the gravitational waves produced by material sources moving in the Schwarzschild spacetime. We examine the radiation escaping to future null infinity as well as the radiation crossing the event horizon. The waveforms, the energy radiated, and the angular-momentum radiated can all be expressed in terms of two gauge-invariant scalar functions that satisfy one-dimensional wave equations. The first is the Zerilli-Moncrief function, which satisfies the Zerilli equation, and which represents the even-parity sector of the perturbation. The second is the Cunningham-Price-Moncrief function, which satisfies the Regge-Wheeler equation, and which represents the odd-parity sector of the perturbation. The covariant forms of these wave equations are presented here, complete with covariant source terms that are derived from the stress-energy tensor of the matter responsible for the perturbation

  17. Role of various Dirac covariants in the BS wave functions in decay constant calculations of pseudoscalar mesons using a power counting scheme

    International Nuclear Information System (INIS)

    Bhatnagar, S.; Mahecha, J.

    2008-09-01

    We have employed the framework of Bethe-Salpeter equation under Covariant Instantaneous Ansatz to calculate the leptonic decay constants of unequal mass pseudoscalar mesons. In the Dirac structure of BS wave function, the covariants are incorporated from their complete set in accordance with a recently proposed power counting rule, order-by-order in powers of inverse of meson mass. The decay constants are calculated incorporating both Leading Order (LO) as well as Next-to-leading Order (NLO) Dirac covariants. The contribution of both LO as well as NLO covariants to decay constants are studied in detail in this paper. The results are found to improve dramatically, and hence validating the power counting rule which also provides a practical means of incorporating Dirac covariants in the BS wave function of a hadron. (author)

  18. Nuclear data covariances in the Indian context

    International Nuclear Information System (INIS)

    Ganesan, S.

    2014-01-01

    The topic of covariances is recognized as an important part of several ongoing nuclear data science activities, since 2007, in the Nuclear Data Physics Centre of India (NDPCI). A Phase-1 project in collaboration with the Statistics department in Manipal University, Karnataka (Prof. K.M. Prasad and Prof. S. Nair) on nuclear data covariances was executed successfully during 2007-2011 period. In Phase-I, the NDPCI has conducted three national Theme meetings sponsored by the DAE-BRNS in 2008, 2010 and 2013 on nuclear data covariances. In Phase-1, the emphasis was on a thorough basic understanding of the concept of covariances including assigning uncertainties to experimental data in terms of partial errors and micro correlations, through a study and a detailed discussion of open literature. Towards the end of Phase-1, measurements and a first time covariance analysis of cross-sections for 58 Ni (n, p) 58 Co reaction measured in Mumbai Pelletron accelerator using 7 Li (p,n) reactions as neutron source in the MeV energy region were performed under a PhD programme on nuclear data covariances in which enrolled are two students, Shri B.S. Shivashankar and Ms. Shanti Sheela. India is also successfully evolving a team of young researchers to code nuclear data of uncertainties, with the perspectives on covariances, in the IAEA-EXFOR format. A Phase-II DAE-BRNS-NDPCI proposal of project at Manipal has been submitted and the proposal is undergoing a peer-review at this time. In Phase-2, modern nuclear data evaluation techniques that including covariances will be further studied as a research and development effort, as a first time effort. These efforts include the use of techniques such as that of the Kalman filter. Presently, a 48 hours lecture series on treatment of errors and their propagation is being formulated under auspices of the Homi Bhabha National Institute. The talk describes the progress achieved thus far in the learning curve of the above-mentioned and exciting

  19. Early selection in open-pollinated Eucalyptus families based on competition covariates

    Directory of Open Access Journals (Sweden)

    Bruno Ettore Pavan

    2014-06-01

    Full Text Available The objetive of this work was to evaluate the influence of intergenotypic competition in open-pollinated families of Eucalyptus and its effects on early selection efficiency. Two experiments were carried out, in which the timber volume was evaluated at three ages, in a randomized complete block design. Data from the three years of evaluation (experiment 1, at 2, 4, and 7 years; and experiment 2, at 2, 5, and 7 years were analyzed using mixed models. The following were estimated: variance components, genetic parameters, selection gains, effective number, early selection efficiency, selection gain per unit time, and coincidence of selection with and without the use of competition covariates. Competition effect was nonsignificant for ages under three years, and adjustment using competition covariates was unnecessary. Early selection for families is effective; families that have a late growth spurt are more vulnerable to competition, which markedly impairs ranking at the end of the cycle. Early selection is efficient according to all adopted criteria, and the age of around three years is the most recommended, given the high efficiency and accuracy rate in the indication of trees and families. The addition of competition covariates at the end of the cycle improves early selection efficiency for almost all studied criteria.

  20. Fiber-optics implementation of an asymmetric phase-covariant quantum cloner

    Czech Academy of Sciences Publication Activity Database

    Bartůšková, L.; Dušek, M.; Černoch, Antonín; Soubusta, Jan; Fiurášek, J.

    2007-01-01

    Roč. 99, č. 12 (2007), 120505/1-120505/4 ISSN 0031-9007 R&D Projects: GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : asymmetric phase-covariant cloner * Mach-Zehnder interferometer * quantum information processing Subject RIV: BH - Optics , Masers, Lasers Impact factor: 6.944, year: 2007

  1. Experience in using the covariances of some ENDF/B-V dosimetry cross sections: proposed improvements and addition of cross-reaction covariances

    International Nuclear Information System (INIS)

    Fu, C.Y.; Hetrick, D.M.

    1982-01-01

    Recent ratio data, with carefully evaluated covariances, were combined with eleven of the ENDF/B-V dosimetry cross sections using the generalized least-squares method. The purpose was to improve these evaluated cross sections and covariances, as well as to generate values for the cross-reaction covariances. The results represent improved cross sections as well as realistic and usable covariances. The latter are necessary for meaningful intergral-differential comparisons and for spectrum unfolding

  2. High-dimensional covariance estimation with high-dimensional data

    CERN Document Server

    Pourahmadi, Mohsen

    2013-01-01

    Methods for estimating sparse and large covariance matrices Covariance and correlation matrices play fundamental roles in every aspect of the analysis of multivariate data collected from a variety of fields including business and economics, health care, engineering, and environmental and physical sciences. High-Dimensional Covariance Estimation provides accessible and comprehensive coverage of the classical and modern approaches for estimating covariance matrices as well as their applications to the rapidly developing areas lying at the intersection of statistics and mac

  3. Covariance problem in two-dimensional quantum chromodynamics

    International Nuclear Information System (INIS)

    Hagen, C.R.

    1979-01-01

    The problem of covariance in the field theory of a two-dimensional non-Abelian gauge field is considered. Since earlier work has shown that covariance fails (in charged sectors) for the Schwinger model, particular attention is given to an evaluation of the role played by the non-Abelian nature of the fields. In contrast to all earlier attempts at this problem, it is found that the potential covariance-breaking terms are identical to those found in the Abelian theory provided that one expresses them in terms of the total (i.e., conserved) current operator. The question of covariance is thus seen to reduce in all cases to a determination as to whether there exists a conserved global charge in the theory. Since the charge operator in the Schwinger model is conserved only in neutral sectors, one is thereby led to infer a probable failure of covariance in the non-Abelian theory, but one which is identical to that found for the U(1) case

  4. The Relationship between an Invasive Shrub and Soil Moisture: Seasonal Interactions and Spatially Covarying Relations

    Directory of Open Access Journals (Sweden)

    Yuhong He

    2014-09-01

    Full Text Available Recent studies indicate that positive relationships between invasive plants and soil can contribute to further plant invasions. However, it remains unclear whether these relations remain unchanged throughout the growing season. In this study, spatial sequences of field observations along a transect were used to reveal seasonal interactions and spatially covarying relations between one common invasive shrub (Tartarian Honeysuckle, Lonicera tatarica and soil moisture in a tall grassland habitat. Statistical analysis over the transect shows that the contrast between soil moisture in shrub and herbaceous patches vary with season and precipitation. Overall, a negatively covarying relationship between shrub and soil moisture (i.e., drier surface soils at shrub microsites exists during the very early growing period (e.g., May, while in summer a positively covarying phenomenon (i.e., wetter soils under shrubs is usually evident, but could be weakened or vanish during long precipitation-free periods. If there is sufficient rainfall, surface soil moisture and leaf area index (LAI often spatially covary with significant spatial oscillations at an invariant scale (which is governed by the shrub spatial pattern and is about 8 m, but their phase relation in space varies with season, consistent with the seasonal variability of the co-varying phenomena between shrub invasion and soil water content. The findings are important for establishing a more complete picture of how shrub invasion affects soil moisture.

  5. Schroedinger covariance states in anisotropic waveguides

    International Nuclear Information System (INIS)

    Angelow, A.; Trifonov, D.

    1995-03-01

    In this paper Squeezed and Covariance States based on Schroedinger inequality and their connection with other nonclassical states are considered for particular case of anisotropic waveguide in LiNiO 3 . Here, the problem of photon creation and generation of squeezed and Schroedinger covariance states in optical waveguides is solved in two steps: 1. Quantization of electromagnetic field is provided in the presence of dielectric waveguide using normal-mode expansion. The photon creation and annihilation operators are introduced, expanding the solution A-vector(r-vector,t) in a series in terms of the Sturm - Liouville mode-functions. 2. In terms of these operators the Hamiltonian of the field in a nonlinear waveguide is derived. For such Hamiltonian we construct the covariance states as stable (with nonzero covariance), which minimize the Schroedinger uncertainty relation. The evolutions of the three second momenta of q-circumflex j and p-circumflex j are calculated. For this Hamiltonian all three momenta are expressed in terms of one real parameters s only. It is found out how covariance, via this parameter s, depends on the waveguide profile n(x,y), on the mode-distributions u-vector j (x,y), and on the waveguide phase mismatching Δβ. (author). 37 refs

  6. Convex Banding of the Covariance Matrix.

    Science.gov (United States)

    Bien, Jacob; Bunea, Florentina; Xiao, Luo

    2016-01-01

    We introduce a new sparse estimator of the covariance matrix for high-dimensional models in which the variables have a known ordering. Our estimator, which is the solution to a convex optimization problem, is equivalently expressed as an estimator which tapers the sample covariance matrix by a Toeplitz, sparsely-banded, data-adaptive matrix. As a result of this adaptivity, the convex banding estimator enjoys theoretical optimality properties not attained by previous banding or tapered estimators. In particular, our convex banding estimator is minimax rate adaptive in Frobenius and operator norms, up to log factors, over commonly-studied classes of covariance matrices, and over more general classes. Furthermore, it correctly recovers the bandwidth when the true covariance is exactly banded. Our convex formulation admits a simple and efficient algorithm. Empirical studies demonstrate its practical effectiveness and illustrate that our exactly-banded estimator works well even when the true covariance matrix is only close to a banded matrix, confirming our theoretical results. Our method compares favorably with all existing methods, in terms of accuracy and speed. We illustrate the practical merits of the convex banding estimator by showing that it can be used to improve the performance of discriminant analysis for classifying sound recordings.

  7. Determination of covariant Schwinger terms in anomalous gauge theories

    International Nuclear Information System (INIS)

    Kelnhofer, G.

    1991-01-01

    A functional integral method is used to determine equal time commutators between the covariant currents and the covariant Gauss-law operators in theories which are affected by an anomaly. By using a differential geometrical setup we show how the derivation of consistent- and covariant Schwinger terms can be understood on an equal footing. We find a modified consistency condition for the covariant anomaly. As a by-product the Bardeen-Zumino functional, which relates consistent and covariant anomalies, can be interpreted as connection on a certain line bundle over all gauge potentials. Finally the covariant commutator anomalies are calculated for the two- and four dimensional case. (orig.)

  8. Cross-population myelination covariance of human cerebral cortex.

    Science.gov (United States)

    Ma, Zhiwei; Zhang, Nanyin

    2017-09-01

    Cross-population covariance of brain morphometric quantities provides a measure of interareal connectivity, as it is believed to be determined by the coordinated neurodevelopment of connected brain regions. Although useful, structural covariance analysis predominantly employed bulky morphological measures with mixed compartments, whereas studies of the structural covariance of any specific subdivisions such as myelin are rare. Characterizing myelination covariance is of interest, as it will reveal connectivity patterns determined by coordinated development of myeloarchitecture between brain regions. Using myelin content MRI maps from the Human Connectome Project, here we showed that the cortical myelination covariance was highly reproducible, and exhibited a brain organization similar to that previously revealed by other connectivity measures. Additionally, the myelination covariance network shared common topological features of human brain networks such as small-worldness. Furthermore, we found that the correlation between myelination covariance and resting-state functional connectivity (RSFC) was uniform within each resting-state network (RSN), but could considerably vary across RSNs. Interestingly, this myelination covariance-RSFC correlation was appreciably stronger in sensory and motor networks than cognitive and polymodal association networks, possibly due to their different circuitry structures. This study has established a new brain connectivity measure specifically related to axons, and this measure can be valuable to investigating coordinated myeloarchitecture development. Hum Brain Mapp 38:4730-4743, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Covariant extensions and the nonsymmetric unified field

    International Nuclear Information System (INIS)

    Borchsenius, K.

    1976-01-01

    The problem of generally covariant extension of Lorentz invariant field equations, by means of covariant derivatives extracted from the nonsymmetric unified field, is considered. It is shown that the contracted curvature tensor can be expressed in terms of a covariant gauge derivative which contains the gauge derivative corresponding to minimal coupling, if the universal constant p, characterizing the nonsymmetric theory, is fixed in terms of Planck's constant and the elementary quantum of charge. By this choice the spinor representation of the linear connection becomes closely related to the spinor affinity used by Infeld and Van Der Waerden (Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl.; 9:380 (1933)) in their generally covariant formulation of Dirac's equation. (author)

  10. Computing more proper covariances of energy dependent nuclear data

    International Nuclear Information System (INIS)

    Vanhanen, R.

    2016-01-01

    Highlights: • We present conditions for covariances of energy dependent nuclear data to be proper. • We provide methods to detect non-positive and inconsistent covariances in ENDF-6 format. • We propose methods to find nearby more proper covariances. • The methods can be used as a part of a quality assurance program. - Abstract: We present conditions for covariances of energy dependent nuclear data to be proper in the sense that the covariances are positive, i.e., its eigenvalues are non-negative, and consistent with respect to the sum rules of nuclear data. For the ENDF-6 format covariances we present methods to detect non-positive and inconsistent covariances. These methods would be useful as a part of a quality assurance program. We also propose methods that can be used to find nearby more proper energy dependent covariances. These methods can be used to remove unphysical components, while preserving most of the physical components. We consider several different senses in which the nearness can be measured. These methods could be useful if a re-evaluation of improper covariances is not feasible. Two practical examples are processed and analyzed. These demonstrate some of the properties of the methods. We also demonstrate that the ENDF-6 format covariances of linearly dependent nuclear data should usually be encoded with the derivation rules.

  11. Covariance Spectroscopy for Fissile Material Detection

    International Nuclear Information System (INIS)

    Trainham, Rusty; Tinsley, Jim; Hurley, Paul; Keegan, Ray

    2009-01-01

    Nuclear fission produces multiple prompt neutrons and gammas at each fission event. The resulting daughter nuclei continue to emit delayed radiation as neutrons boil off, beta decay occurs, etc. All of the radiations are causally connected, and therefore correlated. The correlations are generally positive, but when different decay channels compete, so that some radiations tend to exclude others, negative correlations could also be observed. A similar problem of reduced complexity is that of cascades radiation, whereby a simple radioactive decay produces two or more correlated gamma rays at each decay. Covariance is the usual means for measuring correlation, and techniques of covariance mapping may be useful to produce distinct signatures of special nuclear materials (SNM). A covariance measurement can also be used to filter data streams because uncorrelated signals are largely rejected. The technique is generally more effective than a coincidence measurement. In this poster, we concentrate on cascades and the covariance filtering problem

  12. Covariate Imbalance and Precision in Measuring Treatment Effects

    Science.gov (United States)

    Liu, Xiaofeng Steven

    2011-01-01

    Covariate adjustment can increase the precision of estimates by removing unexplained variance from the error in randomized experiments, although chance covariate imbalance tends to counteract the improvement in precision. The author develops an easy measure to examine chance covariate imbalance in randomization by standardizing the average…

  13. Approaches for the generation of a covariance matrix for the Cf-252 fission-neutron spectrum

    International Nuclear Information System (INIS)

    Mannhart, W.

    1983-01-01

    After a brief retrospective glance is cast at the situation, the evaluation of the Cf-252 neutron spectrum with a complete covariance matrix based on the results of integral experiments is proposed. The different steps already taken in such an evaluation and work in progress are reviewed. It is shown that special attention should be given to the normalization of the neutron spectrum which must be reflected in the covariance matrix. The result of the least-squares adjustment procedure applied can easily be combined with the results of direct spectrum measurements and should be regarded as the first step in a new evaluation of the Cf-252 fission-neutron spectrum. (author)

  14. Covariant description of Hamiltonian form for field dynamics

    International Nuclear Information System (INIS)

    Ozaki, Hiroshi

    2005-01-01

    Hamiltonian form of field dynamics is developed on a space-like hypersurface in space-time. A covariant Poisson bracket on the space-like hypersurface is defined and it plays a key role to describe every algebraic relation into a covariant form. It is shown that the Poisson bracket has the same symplectic structure that was brought in the covariant symplectic approach. An identity invariant under the canonical transformations is obtained. The identity follows a canonical equation in which the interaction Hamiltonian density generates a deformation of the space-like hypersurface. The equation just corresponds to the Yang-Feldman equation in the Heisenberg pictures in quantum field theory. By converting the covariant Poisson bracket on the space-like hypersurface to four-dimensional commutator, we can pass over to quantum field theory in the Heisenberg picture without spoiling the explicit relativistic covariance. As an example the canonical QCD is displayed in a covariant way on a space-like hypersurface

  15. Dimension from covariance matrices.

    Science.gov (United States)

    Carroll, T L; Byers, J M

    2017-02-01

    We describe a method to estimate embedding dimension from a time series. This method includes an estimate of the probability that the dimension estimate is valid. Such validity estimates are not common in algorithms for calculating the properties of dynamical systems. The algorithm described here compares the eigenvalues of covariance matrices created from an embedded signal to the eigenvalues for a covariance matrix of a Gaussian random process with the same dimension and number of points. A statistical test gives the probability that the eigenvalues for the embedded signal did not come from the Gaussian random process.

  16. ANL Critical Assembly Covariance Matrix Generation - Addendum

    Energy Technology Data Exchange (ETDEWEB)

    McKnight, Richard D. [Argonne National Lab. (ANL), Argonne, IL (United States); Grimm, Karl N. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-01-13

    In March 2012, a report was issued on covariance matrices for Argonne National Laboratory (ANL) critical experiments. That report detailed the theory behind the calculation of covariance matrices and the methodology used to determine the matrices for a set of 33 ANL experimental set-ups. Since that time, three new experiments have been evaluated and approved. This report essentially updates the previous report by adding in these new experiments to the preceding covariance matrix structure.

  17. Condition Number Regularized Covariance Estimation.

    Science.gov (United States)

    Won, Joong-Ho; Lim, Johan; Kim, Seung-Jean; Rajaratnam, Bala

    2013-06-01

    Estimation of high-dimensional covariance matrices is known to be a difficult problem, has many applications, and is of current interest to the larger statistics community. In many applications including so-called the "large p small n " setting, the estimate of the covariance matrix is required to be not only invertible, but also well-conditioned. Although many regularization schemes attempt to do this, none of them address the ill-conditioning problem directly. In this paper, we propose a maximum likelihood approach, with the direct goal of obtaining a well-conditioned estimator. No sparsity assumption on either the covariance matrix or its inverse are are imposed, thus making our procedure more widely applicable. We demonstrate that the proposed regularization scheme is computationally efficient, yields a type of Steinian shrinkage estimator, and has a natural Bayesian interpretation. We investigate the theoretical properties of the regularized covariance estimator comprehensively, including its regularization path, and proceed to develop an approach that adaptively determines the level of regularization that is required. Finally, we demonstrate the performance of the regularized estimator in decision-theoretic comparisons and in the financial portfolio optimization setting. The proposed approach has desirable properties, and can serve as a competitive procedure, especially when the sample size is small and when a well-conditioned estimator is required.

  18. Parametric Covariance Model for Horizon-Based Optical Navigation

    Science.gov (United States)

    Hikes, Jacob; Liounis, Andrew J.; Christian, John A.

    2016-01-01

    This Note presents an entirely parametric version of the covariance for horizon-based optical navigation measurements. The covariance can be written as a function of only the spacecraft position, two sensor design parameters, the illumination direction, the size of the observed planet, the size of the lit arc to be used, and the total number of observed horizon points. As a result, one may now more clearly understand the sensitivity of horizon-based optical navigation performance as a function of these key design parameters, which is insight that was obscured in previous (and nonparametric) versions of the covariance. Finally, the new parametric covariance is shown to agree with both the nonparametric analytic covariance and results from a Monte Carlo analysis.

  19. Activities on covariance estimation in Japanese Nuclear Data Committee

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Keiichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Described are activities on covariance estimation in the Japanese Nuclear Data Committee. Covariances are obtained from measurements by using the least-squares methods. A simultaneous evaluation was performed to deduce covariances of fission cross sections of U and Pu isotopes. A code system, KALMAN, is used to estimate covariances of nuclear model calculations from uncertainties in model parameters. (author)

  20. Neutron spectrum adjustment. The role of covariances

    International Nuclear Information System (INIS)

    Remec, I.

    1992-01-01

    Neutron spectrum adjustment method is shortly reviewed. Practical example dealing with power reactor pressure vessel exposure rates determination is analysed. Adjusted exposure rates are found only slightly affected by the covariances of measured reaction rates and activation cross sections, while the multigroup spectra covariances were found important. Approximate spectra covariance matrices, as suggested in Astm E944-89, were found useful but care is advised if they are applied in adjustments of spectra at locations without dosimetry. (author) [sl

  1. Cross-covariance functions for multivariate geostatistics

    KAUST Repository

    Genton, Marc G.

    2015-05-01

    Continuously indexed datasets with multiple variables have become ubiquitous in the geophysical, ecological, environmental and climate sciences, and pose substantial analysis challenges to scientists and statisticians. For many years, scientists developed models that aimed at capturing the spatial behavior for an individual process; only within the last few decades has it become commonplace to model multiple processes jointly. The key difficulty is in specifying the cross-covariance function, that is, the function responsible for the relationship between distinct variables. Indeed, these cross-covariance functions must be chosen to be consistent with marginal covariance functions in such a way that the second-order structure always yields a nonnegative definite covariance matrix. We review the main approaches to building cross-covariance models, including the linear model of coregionalization, convolution methods, the multivariate Matérn and nonstationary and space-time extensions of these among others. We additionally cover specialized constructions, including those designed for asymmetry, compact support and spherical domains, with a review of physics-constrained models. We illustrate select models on a bivariate regional climate model output example for temperature and pressure, along with a bivariate minimum and maximum temperature observational dataset; we compare models by likelihood value as well as via cross-validation co-kriging studies. The article closes with a discussion of unsolved problems. © Institute of Mathematical Statistics, 2015.

  2. Cross-covariance functions for multivariate geostatistics

    KAUST Repository

    Genton, Marc G.; Kleiber, William

    2015-01-01

    Continuously indexed datasets with multiple variables have become ubiquitous in the geophysical, ecological, environmental and climate sciences, and pose substantial analysis challenges to scientists and statisticians. For many years, scientists developed models that aimed at capturing the spatial behavior for an individual process; only within the last few decades has it become commonplace to model multiple processes jointly. The key difficulty is in specifying the cross-covariance function, that is, the function responsible for the relationship between distinct variables. Indeed, these cross-covariance functions must be chosen to be consistent with marginal covariance functions in such a way that the second-order structure always yields a nonnegative definite covariance matrix. We review the main approaches to building cross-covariance models, including the linear model of coregionalization, convolution methods, the multivariate Matérn and nonstationary and space-time extensions of these among others. We additionally cover specialized constructions, including those designed for asymmetry, compact support and spherical domains, with a review of physics-constrained models. We illustrate select models on a bivariate regional climate model output example for temperature and pressure, along with a bivariate minimum and maximum temperature observational dataset; we compare models by likelihood value as well as via cross-validation co-kriging studies. The article closes with a discussion of unsolved problems. © Institute of Mathematical Statistics, 2015.

  3. Structural Covariance of Sensory Networks, the Cerebellum, and Amygdala in Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Garrett J. Cardon

    2017-11-01

    Full Text Available Sensory dysfunction is a core symptom of autism spectrum disorder (ASD, and abnormalities with sensory responsivity and processing can be extremely debilitating to ASD patients and their families. However, relatively little is known about the underlying neuroanatomical and neurophysiological factors that lead to sensory abnormalities in ASD. Investigation into these aspects of ASD could lead to significant advancements in our general knowledge about ASD, as well as provide targets for treatment and inform diagnostic procedures. Thus, the current study aimed to measure the covariation of volumes of brain structures (i.e., structural magnetic resonance imaging that may be involved in abnormal sensory processing, in order to infer connectivity of these brain regions. Specifically, we quantified the structural covariation of sensory-related cerebral cortical structures, in addition to the cerebellum and amygdala by computing partial correlations between the structural volumes of these structures. These analyses were performed in participants with ASD (n = 36, as well as typically developing peers (n = 32. Results showed decreased structural covariation between sensory-related cortical structures, especially between the left and right cerebral hemispheres, in participants with ASD. In contrast, these same participants presented with increased structural covariation of structures in the right cerebral hemisphere. Additionally, sensory-related cerebral structures exhibited decreased structural covariation with functionally identified cerebellar networks. Also, the left amygdala showed significantly increased structural covariation with cerebral structures related to visual processing. Taken together, these results may suggest several patterns of altered connectivity both within and between cerebral cortices and other brain structures that may be related to sensory processing.

  4. Do Time-Varying Covariances, Volatility Comovement and Spillover Matter?

    OpenAIRE

    Lakshmi Balasubramanyan

    2005-01-01

    Financial markets and their respective assets are so intertwined; analyzing any single market in isolation ignores important information. We investigate whether time varying volatility comovement and spillover impact the true variance-covariance matrix under a time-varying correlation set up. Statistically significant volatility spillover and comovement between US, UK and Japan is found. To demonstrate the importance of modelling volatility comovement and spillover, we look at a simple portfo...

  5. The method of covariant symbols in curved space-time

    International Nuclear Information System (INIS)

    Salcedo, L.L.

    2007-01-01

    Diagonal matrix elements of pseudodifferential operators are needed in order to compute effective Lagrangians and currents. For this purpose the method of symbols is often used, which however lacks manifest covariance. In this work the method of covariant symbols, introduced by Pletnev and Banin, is extended to curved space-time with arbitrary gauge and coordinate connections. For the Riemannian connection we compute the covariant symbols corresponding to external fields, the covariant derivative and the Laplacian, to fourth order in a covariant derivative expansion. This allows one to obtain the covariant symbol of general operators to the same order. The procedure is illustrated by computing the diagonal matrix element of a nontrivial operator to second order. Applications of the method are discussed. (orig.)

  6. Selecting a separable parametric spatiotemporal covariance structure for longitudinal imaging data.

    Science.gov (United States)

    George, Brandon; Aban, Inmaculada

    2015-01-15

    Longitudinal imaging studies allow great insight into how the structure and function of a subject's internal anatomy changes over time. Unfortunately, the analysis of longitudinal imaging data is complicated by inherent spatial and temporal correlation: the temporal from the repeated measures and the spatial from the outcomes of interest being observed at multiple points in a patient's body. We propose the use of a linear model with a separable parametric spatiotemporal error structure for the analysis of repeated imaging data. The model makes use of spatial (exponential, spherical, and Matérn) and temporal (compound symmetric, autoregressive-1, Toeplitz, and unstructured) parametric correlation functions. A simulation study, inspired by a longitudinal cardiac imaging study on mitral regurgitation patients, compared different information criteria for selecting a particular separable parametric spatiotemporal correlation structure as well as the effects on types I and II error rates for inference on fixed effects when the specified model is incorrect. Information criteria were found to be highly accurate at choosing between separable parametric spatiotemporal correlation structures. Misspecification of the covariance structure was found to have the ability to inflate the type I error or have an overly conservative test size, which corresponded to decreased power. An example with clinical data is given illustrating how the covariance structure procedure can be performed in practice, as well as how covariance structure choice can change inferences about fixed effects. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Conformally covariant massless spin-two field equations

    International Nuclear Information System (INIS)

    Drew, M.S.; Gegenberg, J.D.

    1980-01-01

    An explicit proof is constructed to show that the field equations for a symmetric tensor field hsub(ab) describing massless spin-2 particles in Minkowski space-time are not covariant under the 15-parameter group SOsub(4,2); this group is usually associated with conformal transformations on flat space, and here it will be considered as a global gauge group which acts upon matter fields defined on space-time. Notwithstanding the above noncovariance, the equations governing the rank-4 tensor Ssub(abcd) constructed from hsub(ab) are shown to be covariant provided the contraction Ssub(ab) vanishes. Conformal covariance is proved by demonstrating the covariance of the equations for the equivalent 5-component complex field; in fact, covariance is proved for a general field equation applicable to massless particles of any spin >0. It is shown that the noncovariance of the hsub(ab) equations may be ascribed to the fact that the transformation behaviour of hsub(ab) is not the same as that of a field consisting of a gauge only. Since this is in contradistinction to the situation for the electromagnetic-field equations, the vector form of the electromagnetic equations is cast into a form which can be duplicated for the hsub(ab)-field. This procedure results in an alternative, covariant, field equation for hsub(ab). (author)

  8. Evaluation of covariance for 238U cross sections

    International Nuclear Information System (INIS)

    Kawano, Toshihiko; Nakamura, Masahiro; Matsuda, Nobuyuki; Kanda, Yukinori

    1995-01-01

    Covariances of 238 U are generated using analytic functions for representation of the cross sections. The covariances of the (n,2n) and (n,3n) reactions are derived with a spline function, while the covariances of the total and the inelastic scattering cross section are estimated with a linearized nuclear model calculation. (author)

  9. GLq(N)-covariant quantum algebras and covariant differential calculus

    International Nuclear Information System (INIS)

    Isaev, A.P.; Pyatov, P.N.

    1993-01-01

    We consider GL q (N)-covariant quantum algebras with generators satisfying quadratic polynomial relations. We show that, up to some inessential arbitrariness, there are only two kinds of such quantum algebras, namely, the algebras with q-deformed commutation and q-deformed anticommutation relations. The connection with the bicovariant differential calculus on the linear quantum groups is discussed. (orig.)

  10. Asset allocation with different covariance/correlation estimators

    OpenAIRE

    Μανταφούνη, Σοφία

    2007-01-01

    The subject of the study is to test whether the use of different covariance – correlation estimators than the historical covariance matrix that is widely used, would help in portfolio optimization through the mean-variance analysis. In other words, if an investor would like to use the mean-variance analysis in order to invest in assets like stocks or indices, would it be of some help to use more sophisticated estimators for the covariance matrix of the returns of his portfolio? The procedure ...

  11. Construction of covariance matrix for absolute fission yield data measurement

    International Nuclear Information System (INIS)

    Liu Tingjin; Sun Zhengjun

    1999-01-01

    The purpose is to provide a tool for experimenters and evaluators to conveniently construct the covariance based on the information of the experiment. The method used is so called as parameter analysis one. The basic method and formula are given in the first section, a practical program is introduced in the second section, and finally, some examples are given in the third section

  12. Students’ Covariational Reasoning in Solving Integrals’ Problems

    Science.gov (United States)

    Harini, N. V.; Fuad, Y.; Ekawati, R.

    2018-01-01

    Covariational reasoning plays an important role to indicate quantities vary in learning calculus. This study investigates students’ covariational reasoning during their studies concerning two covarying quantities in integral problem. Six undergraduate students were chosen to solve problems that involved interpreting and representing how quantities change in tandem. Interviews were conducted to reveal the students’ reasoning while solving covariational problems. The result emphasizes that undergraduate students were able to construct the relation of dependent variables that changes in tandem with the independent variable. However, students faced difficulty in forming images of continuously changing rates and could not accurately apply the concept of integrals. These findings suggest that learning calculus should be increased emphasis on coordinating images of two quantities changing in tandem about instantaneously rate of change and to promote conceptual knowledge in integral techniques.

  13. Forecasting Covariance Matrices: A Mixed Frequency Approach

    DEFF Research Database (Denmark)

    Halbleib, Roxana; Voev, Valeri

    This paper proposes a new method for forecasting covariance matrices of financial returns. The model mixes volatility forecasts from a dynamic model of daily realized volatilities estimated with high-frequency data with correlation forecasts based on daily data. This new approach allows for flexi......This paper proposes a new method for forecasting covariance matrices of financial returns. The model mixes volatility forecasts from a dynamic model of daily realized volatilities estimated with high-frequency data with correlation forecasts based on daily data. This new approach allows...... for flexible dependence patterns for volatilities and correlations, and can be applied to covariance matrices of large dimensions. The separate modeling of volatility and correlation forecasts considerably reduces the estimation and measurement error implied by the joint estimation and modeling of covariance...

  14. Covariance upperbound controllers for networked control systems

    International Nuclear Information System (INIS)

    Ko, Sang Ho

    2012-01-01

    This paper deals with designing covariance upperbound controllers for a linear system that can be used in a networked control environment in which control laws are calculated in a remote controller and transmitted through a shared communication link to the plant. In order to compensate for possible packet losses during the transmission, two different techniques are often employed: the zero-input and the hold-input strategy. These use zero input and the latest control input, respectively, when a packet is lost. For each strategy, we synthesize a class of output covariance upperbound controllers for a given covariance upperbound and a packet loss probability. Existence conditions of the covariance upperbound controller are also provided for each strategy. Through numerical examples, performance of the two strategies is compared in terms of feasibility of implementing the controllers

  15. Are Low-order Covariance Estimates Useful in Error Analyses?

    Science.gov (United States)

    Baker, D. F.; Schimel, D.

    2005-12-01

    Atmospheric trace gas inversions, using modeled atmospheric transport to infer surface sources and sinks from measured concentrations, are most commonly done using least-squares techniques that return not only an estimate of the state (the surface fluxes) but also the covariance matrix describing the uncertainty in that estimate. Besides allowing one to place error bars around the estimate, the covariance matrix may be used in simulation studies to learn what uncertainties would be expected from various hypothetical observing strategies. This error analysis capability is routinely used in designing instrumentation, measurement campaigns, and satellite observing strategies. For example, Rayner, et al (2002) examined the ability of satellite-based column-integrated CO2 measurements to constrain monthly-average CO2 fluxes for about 100 emission regions using this approach. Exact solutions for both state vector and covariance matrix become computationally infeasible, however, when the surface fluxes are solved at finer resolution (e.g., daily in time, under 500 km in space). It is precisely at these finer scales, however, that one would hope to be able to estimate fluxes using high-density satellite measurements. Non-exact estimation methods such as variational data assimilation or the ensemble Kalman filter could be used, but they achieve their computational savings by obtaining an only approximate state estimate and a low-order approximation of the true covariance. One would like to be able to use this covariance matrix to do the same sort of error analyses as are done with the full-rank covariance, but is it correct to do so? Here we compare uncertainties and `information content' derived from full-rank covariance matrices obtained from a direct, batch least squares inversion to those from the incomplete-rank covariance matrices given by a variational data assimilation approach solved with a variable metric minimization technique (the Broyden-Fletcher- Goldfarb

  16. ERRORJ. Covariance processing code system for JENDL. Version 2

    International Nuclear Information System (INIS)

    Chiba, Gou

    2003-09-01

    ERRORJ is the covariance processing code system for Japanese Evaluated Nuclear Data Library (JENDL) that can produce group-averaged covariance data to apply it to the uncertainty analysis of nuclear characteristics. ERRORJ can treat the covariance data for cross sections including resonance parameters as well as angular distributions and energy distributions of secondary neutrons which could not be dealt with by former covariance processing codes. In addition, ERRORJ can treat various forms of multi-group cross section and produce multi-group covariance file with various formats. This document describes an outline of ERRORJ and how to use it. (author)

  17. Causal evidence in risk and policy perceptions: Applying the covariation/mechanism framework.

    Science.gov (United States)

    Baucum, Matt; John, Richard

    2018-05-01

    Today's information-rich society demands constant evaluation of cause-effect relationships; behaviors and attitudes ranging from medical choices to voting decisions to policy preferences typically entail some form of causal inference ("Will this policy reduce crime?", "Will this activity improve my health?"). Cause-effect relationships such as these can be thought of as depending on two qualitatively distinct forms of evidence: covariation-based evidence (e.g., "states with this policy have fewer homicides") or mechanism-based (e.g., "this policy will reduce crime by discouraging repeat offenses"). Some psychological work has examined how people process these two forms of causal evidence in instances of "everyday" causality (e.g., assessing why a car will not start), but it is not known how these two forms of evidence contribute to causal judgments in matters of public risk or policy. Three studies (n = 715) investigated whether judgments of risk and policy scenarios would be affected by covariation and mechanism evidence and whether the evidence types interacted with one another (as suggested by past studies). Results showed that causal judgments varied linearly with mechanism strength and logarithmically with covariation strength, and that the evidence types produced only additive effects (but no interaction). We discuss the results' implications for risk communication and policy information dissemination. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Condition Number Regularized Covariance Estimation*

    Science.gov (United States)

    Won, Joong-Ho; Lim, Johan; Kim, Seung-Jean; Rajaratnam, Bala

    2012-01-01

    Estimation of high-dimensional covariance matrices is known to be a difficult problem, has many applications, and is of current interest to the larger statistics community. In many applications including so-called the “large p small n” setting, the estimate of the covariance matrix is required to be not only invertible, but also well-conditioned. Although many regularization schemes attempt to do this, none of them address the ill-conditioning problem directly. In this paper, we propose a maximum likelihood approach, with the direct goal of obtaining a well-conditioned estimator. No sparsity assumption on either the covariance matrix or its inverse are are imposed, thus making our procedure more widely applicable. We demonstrate that the proposed regularization scheme is computationally efficient, yields a type of Steinian shrinkage estimator, and has a natural Bayesian interpretation. We investigate the theoretical properties of the regularized covariance estimator comprehensively, including its regularization path, and proceed to develop an approach that adaptively determines the level of regularization that is required. Finally, we demonstrate the performance of the regularized estimator in decision-theoretic comparisons and in the financial portfolio optimization setting. The proposed approach has desirable properties, and can serve as a competitive procedure, especially when the sample size is small and when a well-conditioned estimator is required. PMID:23730197

  19. Covariate-adjusted measures of discrimination for survival data

    DEFF Research Database (Denmark)

    White, Ian R; Rapsomaniki, Eleni; Frikke-Schmidt, Ruth

    2015-01-01

    by the study design (e.g. age and sex) influence discrimination and can make it difficult to compare model discrimination between studies. Although covariate adjustment is a standard procedure for quantifying disease-risk factor associations, there are no covariate adjustment methods for discrimination...... statistics in censored survival data. OBJECTIVE: To develop extensions of the C-index and D-index that describe the prognostic ability of a model adjusted for one or more covariate(s). METHOD: We define a covariate-adjusted C-index and D-index for censored survival data, propose several estimators......, and investigate their performance in simulation studies and in data from a large individual participant data meta-analysis, the Emerging Risk Factors Collaboration. RESULTS: The proposed methods perform well in simulations. In the Emerging Risk Factors Collaboration data, the age-adjusted C-index and D-index were...

  20. Heteroscedasticity resistant robust covariance matrix estimator

    Czech Academy of Sciences Publication Activity Database

    Víšek, Jan Ámos

    2010-01-01

    Roč. 17, č. 27 (2010), s. 33-49 ISSN 1212-074X Grant - others:GA UK(CZ) GA402/09/0557 Institutional research plan: CEZ:AV0Z10750506 Keywords : Regression * Covariance matrix * Heteroscedasticity * Resistant Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2011/SI/visek-heteroscedasticity resistant robust covariance matrix estimator.pdf

  1. An alternative covariance estimator to investigate genetic heterogeneity in populations.

    Science.gov (United States)

    Heslot, Nicolas; Jannink, Jean-Luc

    2015-11-26

    For genomic prediction and genome-wide association studies (GWAS) using mixed models, covariance between individuals is estimated using molecular markers. Based on the properties of mixed models, using available molecular data for prediction is optimal if this covariance is known. Under this assumption, adding individuals to the analysis should never be detrimental. However, some empirical studies showed that increasing training population size decreased prediction accuracy. Recently, results from theoretical models indicated that even if marker density is high and the genetic architecture of traits is controlled by many loci with small additive effects, the covariance between individuals, which depends on relationships at causal loci, is not always well estimated by the whole-genome kinship. We propose an alternative covariance estimator named K-kernel, to account for potential genetic heterogeneity between populations that is characterized by a lack of genetic correlation, and to limit the information flow between a priori unknown populations in a trait-specific manner. This is similar to a multi-trait model and parameters are estimated by REML and, in extreme cases, it can allow for an independent genetic architecture between populations. As such, K-kernel is useful to study the problem of the design of training populations. K-kernel was compared to other covariance estimators or kernels to examine its fit to the data, cross-validated accuracy and suitability for GWAS on several datasets. It provides a significantly better fit to the data than the genomic best linear unbiased prediction model and, in some cases it performs better than other kernels such as the Gaussian kernel, as shown by an empirical null distribution. In GWAS simulations, alternative kernels control type I errors as well as or better than the classical whole-genome kinship and increase statistical power. No or small gains were observed in cross-validated prediction accuracy. This alternative

  2. How much do genetic covariances alter the rate of adaptation?

    Science.gov (United States)

    Agrawal, Aneil F; Stinchcombe, John R

    2009-03-22

    Genetically correlated traits do not evolve independently, and the covariances between traits affect the rate at which a population adapts to a specified selection regime. To measure the impact of genetic covariances on the rate of adaptation, we compare the rate fitness increases given the observed G matrix to the expected rate if all the covariances in the G matrix are set to zero. Using data from the literature, we estimate the effect of genetic covariances in real populations. We find no net tendency for covariances to constrain the rate of adaptation, though the quality and heterogeneity of the data limit the certainty of this result. There are some examples in which covariances strongly constrain the rate of adaptation but these are balanced by counter examples in which covariances facilitate the rate of adaptation; in many cases, covariances have little or no effect. We also discuss how our metric can be used to identify traits or suites of traits whose genetic covariances to other traits have a particularly large impact on the rate of adaptation.

  3. 40 CFR 26.1303 - Submission of information pertaining to ethical conduct of completed human research.

    Science.gov (United States)

    2010-07-01

    ... ethical conduct of completed human research. 26.1303 Section 26.1303 Protection of Environment... on the Ethical Conduct of Completed Human Research § 26.1303 Submission of information pertaining to ethical conduct of completed human research. Any person who submits to EPA data derived from human...

  4. Differential Age-Related Changes in Structural Covariance Networks of Human Anterior and Posterior Hippocampus

    Directory of Open Access Journals (Sweden)

    Xinwei Li

    2018-05-01

    Full Text Available The hippocampus plays an important role in memory function relying on information interaction between distributed brain areas. The hippocampus can be divided into the anterior and posterior sections with different structure and function along its long axis. The aim of this study is to investigate the effects of normal aging on the structural covariance of the anterior hippocampus (aHPC and the posterior hippocampus (pHPC. In this study, 240 healthy subjects aged 18–89 years were selected and subdivided into young (18–23 years, middle-aged (30–58 years, and older (61–89 years groups. The aHPC and pHPC was divided based on the location of uncal apex in the MNI space. Then, the structural covariance networks were constructed by examining their covariance in gray matter volumes with other brain regions. Finally, the influence of age on the structural covariance of these hippocampal sections was explored. We found that the aHPC and pHPC had different structural covariance patterns, but both of them were associated with the medial temporal lobe and insula. Moreover, both increased and decreased covariances were found with the aHPC but only increased covariance was found with the pHPC with age (p < 0.05, family-wise error corrected. These decreased connections occurred within the default mode network, while the increased connectivity mainly occurred in other memory systems that differ from the hippocampus. This study reveals different age-related influence on the structural networks of the aHPC and pHPC, providing an essential insight into the mechanisms of the hippocampus in normal aging.

  5. Spacetime completeness of non-singular black holes in conformal gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bambi, Cosimo; Rachwał, Lesław [Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 220 Handan Road, 200433 Shanghai (China); Modesto, Leonardo, E-mail: bambi@fudan.edu.cn, E-mail: lmodesto@sustc.edu.cn, E-mail: grzerach@gmail.com [Department of Physics, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055 (China)

    2017-05-01

    We explicitly prove that the Weyl conformal symmetry solves the black hole singularity problem, otherwise unavoidable in a generally covariant local or non-local gravitational theory. Moreover, we yield explicit examples of local and non-local theories enjoying Weyl and diffeomorphism symmetry (in short co-covariant theories). Following the seminal paper by Narlikar and Kembhavi, we provide an explicit construction of singularity-free spherically symmetric and axi-symmetric exact solutions for black hole spacetimes conformally equivalent to the Schwarzschild or the Kerr spacetime. We first check the absence of divergences in the Kretschmann invariant for the rescaled metrics. Afterwords, we show that the new types of black holes are geodesically complete and linked by a Newman-Janis transformation just as in standard general relativity (based on Einstein-Hilbert action). Furthermore, we argue that no massive or massless particles can reach the former Schwarzschild singularity or touch the former Kerr ring singularity in a finite amount of their proper time or of their affine parameter. Finally, we discuss the Raychaudhuri equation in a co-covariant theory and we show that the expansion parameter for congruences of both types of geodesics (for massless and massive particles) never reaches minus infinity. Actually, the null geodesics become parallel at the r =0 point in the Schwarzschild spacetime (the origin) and the focusing of geodesics is avoided. The arguments of regularity of curvature invariants, geodesic completeness, and finiteness of geodesics' expansion parameter ensure us that we are dealing with singularity-free and geodesically-complete black hole spacetimes.

  6. Comparative Analyses of Phenotypic Trait Covariation within and among Populations.

    Science.gov (United States)

    Peiman, Kathryn S; Robinson, Beren W

    2017-10-01

    Many morphological, behavioral, physiological, and life-history traits covary across the biological scales of individuals, populations, and species. However, the processes that cause traits to covary also change over these scales, challenging our ability to use patterns of trait covariance to infer process. Trait relationships are also widely assumed to have generic functional relationships with similar evolutionary potentials, and even though many different trait relationships are now identified, there is little appreciation that these may influence trait covariation and evolution in unique ways. We use a trait-performance-fitness framework to classify and organize trait relationships into three general classes, address which ones more likely generate trait covariation among individuals in a population, and review how selection shapes phenotypic covariation. We generate predictions about how trait covariance changes within and among populations as a result of trait relationships and in response to selection and consider how these can be tested with comparative data. Careful comparisons of covariation patterns can narrow the set of hypothesized processes that cause trait covariation when the form of the trait relationship and how it responds to selection yield clear predictions about patterns of trait covariation. We discuss the opportunities and limitations of comparative approaches to evaluate hypotheses about the evolutionary causes and consequences of trait covariation and highlight the importance of evaluating patterns within populations replicated in the same and in different selective environments. Explicit hypotheses about trait relationships are key to generating effective predictions about phenotype and its evolution using covariance data.

  7. Earth Observation System Flight Dynamics System Covariance Realism

    Science.gov (United States)

    Zaidi, Waqar H.; Tracewell, David

    2016-01-01

    This presentation applies a covariance realism technique to the National Aeronautics and Space Administration (NASA) Earth Observation System (EOS) Aqua and Aura spacecraft based on inferential statistics. The technique consists of three parts: collection calculation of definitive state estimates through orbit determination, calculation of covariance realism test statistics at each covariance propagation point, and proper assessment of those test statistics.

  8. Markov modulated Poisson process models incorporating covariates for rainfall intensity.

    Science.gov (United States)

    Thayakaran, R; Ramesh, N I

    2013-01-01

    Time series of rainfall bucket tip times at the Beaufort Park station, Bracknell, in the UK are modelled by a class of Markov modulated Poisson processes (MMPP) which may be thought of as a generalization of the Poisson process. Our main focus in this paper is to investigate the effects of including covariate information into the MMPP model framework on statistical properties. In particular, we look at three types of time-varying covariates namely temperature, sea level pressure, and relative humidity that are thought to be affecting the rainfall arrival process. Maximum likelihood estimation is used to obtain the parameter estimates, and likelihood ratio tests are employed in model comparison. Simulated data from the fitted model are used to make statistical inferences about the accumulated rainfall in the discrete time interval. Variability of the daily Poisson arrival rates is studied.

  9. Minimax Rate-optimal Estimation of High-dimensional Covariance Matrices with Incomplete Data.

    Science.gov (United States)

    Cai, T Tony; Zhang, Anru

    2016-09-01

    Missing data occur frequently in a wide range of applications. In this paper, we consider estimation of high-dimensional covariance matrices in the presence of missing observations under a general missing completely at random model in the sense that the missingness is not dependent on the values of the data. Based on incomplete data, estimators for bandable and sparse covariance matrices are proposed and their theoretical and numerical properties are investigated. Minimax rates of convergence are established under the spectral norm loss and the proposed estimators are shown to be rate-optimal under mild regularity conditions. Simulation studies demonstrate that the estimators perform well numerically. The methods are also illustrated through an application to data from four ovarian cancer studies. The key technical tools developed in this paper are of independent interest and potentially useful for a range of related problems in high-dimensional statistical inference with missing data.

  10. Minimax Rate-optimal Estimation of High-dimensional Covariance Matrices with Incomplete Data*

    Science.gov (United States)

    Cai, T. Tony; Zhang, Anru

    2016-01-01

    Missing data occur frequently in a wide range of applications. In this paper, we consider estimation of high-dimensional covariance matrices in the presence of missing observations under a general missing completely at random model in the sense that the missingness is not dependent on the values of the data. Based on incomplete data, estimators for bandable and sparse covariance matrices are proposed and their theoretical and numerical properties are investigated. Minimax rates of convergence are established under the spectral norm loss and the proposed estimators are shown to be rate-optimal under mild regularity conditions. Simulation studies demonstrate that the estimators perform well numerically. The methods are also illustrated through an application to data from four ovarian cancer studies. The key technical tools developed in this paper are of independent interest and potentially useful for a range of related problems in high-dimensional statistical inference with missing data. PMID:27777471

  11. Determination of covariant Schwinger terms in anomalous gauge theories

    International Nuclear Information System (INIS)

    Kelnhofer, G.

    1991-01-01

    A functional integral method is used to determine equal time commutators between the covariant currents and the covariant Gauss-law operators in theories which are affected by an anomaly. By using a differential geometrical setup we show how the derivation of consistent- and covariant Schwinger terms can be understood on an equal footing. We find a modified consistency condition for the covariant anomaly. As a by-product the Bardeen-Zumino functional, which relates consistent and covariant anomalies, can be interpreted as connection on a certain line bundle over all gauge potentials. Finally the commutator anomalies are calculated for the two- and four dimensional case. (Author) 13 refs

  12. Coherent states and covariant semi-spectral measures

    International Nuclear Information System (INIS)

    Scutaru, H.

    1976-01-01

    The close connection between Mackey's theory of imprimitivity systems and the so called generalized coherent states introduced by Perelomov is established. Coherent states give a covariant description of the ''localization'' of a quantum system in the phase space in a similar way as the imprimitivity systems give a covariant description of the localization of a quantum system in the configuration space. The observation that for any system of coherent states one can define a covariant semi-spectral measure made possible a rigurous formulation of this idea. A generalization of the notion of coherent states is given. Covariant semi-spectral measures associated with systems of coherent states are defined and characterized. Necessary and sufficient conditions for a unitary representation of a Lie group to be i) a subrepresentation of an induced one and ii) a representation with coherent states are given (author)

  13. Bayesian source term determination with unknown covariance of measurements

    Science.gov (United States)

    Belal, Alkomiet; Tichý, Ondřej; Šmídl, Václav

    2017-04-01

    Determination of a source term of release of a hazardous material into the atmosphere is a very important task for emergency response. We are concerned with the problem of estimation of the source term in the conventional linear inverse problem, y = Mx, where the relationship between the vector of observations y is described using the source-receptor-sensitivity (SRS) matrix M and the unknown source term x. Since the system is typically ill-conditioned, the problem is recast as an optimization problem minR,B(y - Mx)TR-1(y - Mx) + xTB-1x. The first term minimizes the error of the measurements with covariance matrix R, and the second term is a regularization of the source term. There are different types of regularization arising for different choices of matrices R and B, for example, Tikhonov regularization assumes covariance matrix B as the identity matrix multiplied by scalar parameter. In this contribution, we adopt a Bayesian approach to make inference on the unknown source term x as well as unknown R and B. We assume prior on x to be a Gaussian with zero mean and unknown diagonal covariance matrix B. The covariance matrix of the likelihood R is also unknown. We consider two potential choices of the structure of the matrix R. First is the diagonal matrix and the second is a locally correlated structure using information on topology of the measuring network. Since the inference of the model is intractable, iterative variational Bayes algorithm is used for simultaneous estimation of all model parameters. The practical usefulness of our contribution is demonstrated on an application of the resulting algorithm to real data from the European Tracer Experiment (ETEX). This research is supported by EEA/Norwegian Financial Mechanism under project MSMT-28477/2014 Source-Term Determination of Radionuclide Releases by Inverse Atmospheric Dispersion Modelling (STRADI).

  14. Covariance NMR Processing and Analysis for Protein Assignment.

    Science.gov (United States)

    Harden, Bradley J; Frueh, Dominique P

    2018-01-01

    During NMR resonance assignment it is often necessary to relate nuclei to one another indirectly, through their common correlations to other nuclei. Covariance NMR has emerged as a powerful technique to correlate such nuclei without relying on error-prone peak peaking. However, false-positive artifacts in covariance spectra have impeded a general application to proteins. We recently introduced pre- and postprocessing steps to reduce the prevalence of artifacts in covariance spectra, allowing for the calculation of a variety of 4D covariance maps obtained from diverse combinations of pairs of 3D spectra, and we have employed them to assign backbone and sidechain resonances in two large and challenging proteins. In this chapter, we present a detailed protocol describing how to (1) properly prepare existing 3D spectra for covariance, (2) understand and apply our processing script, and (3) navigate and interpret the resulting 4D spectra. We also provide solutions to a number of errors that may occur when using our script, and we offer practical advice when assigning difficult signals. We believe such 4D spectra, and covariance NMR in general, can play an integral role in the assignment of NMR signals.

  15. Large Covariance Estimation by Thresholding Principal Orthogonal Complements.

    Science.gov (United States)

    Fan, Jianqing; Liao, Yuan; Mincheva, Martina

    2013-09-01

    This paper deals with the estimation of a high-dimensional covariance with a conditional sparsity structure and fast-diverging eigenvalues. By assuming sparse error covariance matrix in an approximate factor model, we allow for the presence of some cross-sectional correlation even after taking out common but unobservable factors. We introduce the Principal Orthogonal complEment Thresholding (POET) method to explore such an approximate factor structure with sparsity. The POET estimator includes the sample covariance matrix, the factor-based covariance matrix (Fan, Fan, and Lv, 2008), the thresholding estimator (Bickel and Levina, 2008) and the adaptive thresholding estimator (Cai and Liu, 2011) as specific examples. We provide mathematical insights when the factor analysis is approximately the same as the principal component analysis for high-dimensional data. The rates of convergence of the sparse residual covariance matrix and the conditional sparse covariance matrix are studied under various norms. It is shown that the impact of estimating the unknown factors vanishes as the dimensionality increases. The uniform rates of convergence for the unobserved factors and their factor loadings are derived. The asymptotic results are also verified by extensive simulation studies. Finally, a real data application on portfolio allocation is presented.

  16. Some remarks on general covariance of quantum theory

    International Nuclear Information System (INIS)

    Schmutzer, E.

    1977-01-01

    If one accepts Einstein's general principle of relativity (covariance principle) also for the sphere of microphysics (quantum, mechanics, quantum field theory, theory of elemtary particles), one has to ask how far the fundamental laws of traditional quantum physics fulfil this principle. Attention is here drawn to a series of papers that have appeared during the last years, in which the author criticized the usual scheme of quantum theory (Heisenberg picture, Schroedinger picture etc.) and presented a new foundation of the basic laws of quantum physics, obeying the 'principle of fundamental covariance' (Einstein's covariance principle in space-time and covariance principle in Hilbert space of quantum operators and states). (author)

  17. Structural covariance of neostriatal and limbic regions in patients with obsessive-compulsive disorder.

    Science.gov (United States)

    Subirà, Marta; Cano, Marta; de Wit, Stella J; Alonso, Pino; Cardoner, Narcís; Hoexter, Marcelo Q; Kwon, Jun Soo; Nakamae, Takashi; Lochner, Christine; Sato, João R; Jung, Wi Hoon; Narumoto, Jin; Stein, Dan J; Pujol, Jesus; Mataix-Cols, David; Veltman, Dick J; Menchón, José M; van den Heuvel, Odile A; Soriano-Mas, Carles

    2016-03-01

    Frontostriatal and frontoamygdalar connectivity alterations in patients with obsessive-compulsive disorder (OCD) have been typically described in functional neuroimaging studies. However, structural covariance, or volumetric correlations across distant brain regions, also provides network-level information. Altered structural covariance has been described in patients with different psychiatric disorders, including OCD, but to our knowledge, alterations within frontostriatal and frontoamygdalar circuits have not been explored. We performed a mega-analysis pooling structural MRI scans from the Obsessive-compulsive Brain Imaging Consortium and assessed whole-brain voxel-wise structural covariance of 4 striatal regions (dorsal and ventral caudate nucleus, and dorsal-caudal and ventral-rostral putamen) and 2 amygdalar nuclei (basolateral and centromedial-superficial). Images were preprocessed with the standard pipeline of voxel-based morphometry studies using Statistical Parametric Mapping software. Our analyses involved 329 patients with OCD and 316 healthy controls. Patients showed increased structural covariance between the left ventral-rostral putamen and the left inferior frontal gyrus/frontal operculum region. This finding had a significant interaction with age; the association held only in the subgroup of older participants. Patients with OCD also showed increased structural covariance between the right centromedial-superficial amygdala and the ventromedial prefrontal cortex. This was a cross-sectional study. Because this is a multisite data set analysis, participant recruitment and image acquisition were performed in different centres. Most patients were taking medication, and treatment protocols differed across centres. Our results provide evidence for structural network-level alterations in patients with OCD involving 2 frontosubcortical circuits of relevance for the disorder and indicate that structural covariance contributes to fully characterizing brain

  18. The Bayesian Covariance Lasso.

    Science.gov (United States)

    Khondker, Zakaria S; Zhu, Hongtu; Chu, Haitao; Lin, Weili; Ibrahim, Joseph G

    2013-04-01

    Estimation of sparse covariance matrices and their inverse subject to positive definiteness constraints has drawn a lot of attention in recent years. The abundance of high-dimensional data, where the sample size ( n ) is less than the dimension ( d ), requires shrinkage estimation methods since the maximum likelihood estimator is not positive definite in this case. Furthermore, when n is larger than d but not sufficiently larger, shrinkage estimation is more stable than maximum likelihood as it reduces the condition number of the precision matrix. Frequentist methods have utilized penalized likelihood methods, whereas Bayesian approaches rely on matrix decompositions or Wishart priors for shrinkage. In this paper we propose a new method, called the Bayesian Covariance Lasso (BCLASSO), for the shrinkage estimation of a precision (covariance) matrix. We consider a class of priors for the precision matrix that leads to the popular frequentist penalties as special cases, develop a Bayes estimator for the precision matrix, and propose an efficient sampling scheme that does not precalculate boundaries for positive definiteness. The proposed method is permutation invariant and performs shrinkage and estimation simultaneously for non-full rank data. Simulations show that the proposed BCLASSO performs similarly as frequentist methods for non-full rank data.

  19. Galaxy-galaxy lensing estimators and their covariance properties

    Science.gov (United States)

    Singh, Sukhdeep; Mandelbaum, Rachel; Seljak, Uroš; Slosar, Anže; Vazquez Gonzalez, Jose

    2017-11-01

    We study the covariance properties of real space correlation function estimators - primarily galaxy-shear correlations, or galaxy-galaxy lensing - using SDSS data for both shear catalogues and lenses (specifically the BOSS LOWZ sample). Using mock catalogues of lenses and sources, we disentangle the various contributions to the covariance matrix and compare them with a simple analytical model. We show that not subtracting the lensing measurement around random points from the measurement around the lens sample is equivalent to performing the measurement using the lens density field instead of the lens overdensity field. While the measurement using the lens density field is unbiased (in the absence of systematics), its error is significantly larger due to an additional term in the covariance. Therefore, this subtraction should be performed regardless of its beneficial effects on systematics. Comparing the error estimates from data and mocks for estimators that involve the overdensity, we find that the errors are dominated by the shape noise and lens clustering, which empirically estimated covariances (jackknife and standard deviation across mocks) that are consistent with theoretical estimates, and that both the connected parts of the four-point function and the supersample covariance can be neglected for the current levels of noise. While the trade-off between different terms in the covariance depends on the survey configuration (area, source number density), the diagnostics that we use in this work should be useful for future works to test their empirically determined covariances.

  20. Galaxy–galaxy lensing estimators and their covariance properties

    International Nuclear Information System (INIS)

    Singh, Sukhdeep; Mandelbaum, Rachel; Seljak, Uros; Slosar, Anze; Gonzalez, Jose Vazquez

    2017-01-01

    Here, we study the covariance properties of real space correlation function estimators – primarily galaxy–shear correlations, or galaxy–galaxy lensing – using SDSS data for both shear catalogues and lenses (specifically the BOSS LOWZ sample). Using mock catalogues of lenses and sources, we disentangle the various contributions to the covariance matrix and compare them with a simple analytical model. We show that not subtracting the lensing measurement around random points from the measurement around the lens sample is equivalent to performing the measurement using the lens density field instead of the lens overdensity field. While the measurement using the lens density field is unbiased (in the absence of systematics), its error is significantly larger due to an additional term in the covariance. Therefore, this subtraction should be performed regardless of its beneficial effects on systematics. Comparing the error estimates from data and mocks for estimators that involve the overdensity, we find that the errors are dominated by the shape noise and lens clustering, which empirically estimated covariances (jackknife and standard deviation across mocks) that are consistent with theoretical estimates, and that both the connected parts of the four-point function and the supersample covariance can be neglected for the current levels of noise. While the trade-off between different terms in the covariance depends on the survey configuration (area, source number density), the diagnostics that we use in this work should be useful for future works to test their empirically determined covariances.

  1. Treatment Effects with Many Covariates and Heteroskedasticity

    DEFF Research Database (Denmark)

    Cattaneo, Matias D.; Jansson, Michael; Newey, Whitney K.

    The linear regression model is widely used in empirical work in Economics. Researchers often include many covariates in their linear model specification in an attempt to control for confounders. We give inference methods that allow for many covariates and heteroskedasticity. Our results...

  2. Cosmic censorship conjecture revisited: covariantly

    International Nuclear Information System (INIS)

    Hamid, Aymen I M; Goswami, Rituparno; Maharaj, Sunil D

    2014-01-01

    In this paper we study the dynamics of the trapped region using a frame independent semi-tetrad covariant formalism for general locally rotationally symmetric (LRS) class II spacetimes. We covariantly prove some important geometrical results for the apparent horizon, and state the necessary and sufficient conditions for a singularity to be locally naked. These conditions bring out, for the first time in a quantitative and transparent manner, the importance of the Weyl curvature in deforming and delaying the trapped region during continual gravitational collapse, making the central singularity locally visible. (paper)

  3. Evaluation of covariance in theoretical calculation of nuclear data

    International Nuclear Information System (INIS)

    Kikuchi, Yasuyuki

    1981-01-01

    Covariances of the cross sections are discussed on the statistical model calculations. Two categories of covariance are discussed: One is caused by the model approximation and the other by the errors in the model parameters. As an example, the covariances are calculated for 100 Ru. (author)

  4. Updated Covariance Processing Capabilities in the AMPX Code System

    International Nuclear Information System (INIS)

    Wiarda, Dorothea; Dunn, Michael E.

    2007-01-01

    A concerted effort is in progress within the nuclear data community to provide new cross-section covariance data evaluations to support sensitivity/uncertainty analyses of fissionable systems. The objective of this work is to update processing capabilities of the AMPX library to process the latest Evaluated Nuclear Data File (ENDF)/B formats to generate covariance data libraries for radiation transport software such as SCALE. The module PUFF-IV was updated to allow processing of new ENDF covariance formats in the resolved resonance region. In the resolved resonance region, covariance matrices are given in terms of resonance parameters, which need to be processed into covariance matrices with respect to the group-averaged cross-section data. The parameter covariance matrix can be quite large if the evaluation has many resonances. The PUFF-IV code has recently been used to process an evaluation of 235U, which was prepared in collaboration between Oak Ridge National Laboratory and Los Alamos National Laboratory.

  5. Generation of covariance files for iron-56 and natural iron - International Evaluation Co-operation Volume 2

    International Nuclear Information System (INIS)

    Vonach, Herbert; Gruppelaar, Harm; Santamarina, Alain; Froehner, Fritz; Hasegawa, Akira; Kanda, Yukinori; Sugimoto, Masayoshi; Kopecky, J.; Fu, C.Y.; Hetrick, David M.; Larson, Duane C.; Peelle, R.W.

    1994-01-01

    A Working Party on International Evaluation Co-operation was established under the sponsorship of the OECD/NEA Nuclear Science Committee (NSC) to promote the exchange of information on nuclear data evaluations, validation, and related topics. Its aim is also to provide a framework for co-operative activities between members of the major nuclear data evaluation projects. This includes the possible exchange of scientists in order to encourage co-operation. Requirements for experimental data resulting from this activity are compiled. The Working Party determines common criteria for evaluated nuclear data files with a view to assessing and improving the quality and completeness of evaluated data. The Parties to the project are: ENDF (United States), JEFF/EFF (NEA Data Bank Member countries), and JENDL (Japan). Co-operation with evaluation projects of non-OECD countries are organised through the Nuclear Data Section of the International Atomic Energy Agency (IAEA). The following report was issued by a Subgroup investigating different methodologies to produce covariance data. These data are required to assess uncertainties in design parameters and to refine the use of nuclear data both in fission and fusion reactor applications. It was agreed to limit the scope to covariance data for Iron-56 and natural iron in view of their importance as structural materials in reactors and particularly for fusion reactor shielding applications

  6. Large Covariance Estimation by Thresholding Principal Orthogonal Complements

    Science.gov (United States)

    Fan, Jianqing; Liao, Yuan; Mincheva, Martina

    2012-01-01

    This paper deals with the estimation of a high-dimensional covariance with a conditional sparsity structure and fast-diverging eigenvalues. By assuming sparse error covariance matrix in an approximate factor model, we allow for the presence of some cross-sectional correlation even after taking out common but unobservable factors. We introduce the Principal Orthogonal complEment Thresholding (POET) method to explore such an approximate factor structure with sparsity. The POET estimator includes the sample covariance matrix, the factor-based covariance matrix (Fan, Fan, and Lv, 2008), the thresholding estimator (Bickel and Levina, 2008) and the adaptive thresholding estimator (Cai and Liu, 2011) as specific examples. We provide mathematical insights when the factor analysis is approximately the same as the principal component analysis for high-dimensional data. The rates of convergence of the sparse residual covariance matrix and the conditional sparse covariance matrix are studied under various norms. It is shown that the impact of estimating the unknown factors vanishes as the dimensionality increases. The uniform rates of convergence for the unobserved factors and their factor loadings are derived. The asymptotic results are also verified by extensive simulation studies. Finally, a real data application on portfolio allocation is presented. PMID:24348088

  7. On the Likely Utility of Hybrid Weights Optimized for Variances in Hybrid Error Covariance Models

    Science.gov (United States)

    Satterfield, E.; Hodyss, D.; Kuhl, D.; Bishop, C. H.

    2017-12-01

    Because of imperfections in ensemble data assimilation schemes, one cannot assume that the ensemble covariance is equal to the true error covariance of a forecast. Previous work demonstrated how information about the distribution of true error variances given an ensemble sample variance can be revealed from an archive of (observation-minus-forecast, ensemble-variance) data pairs. Here, we derive a simple and intuitively compelling formula to obtain the mean of this distribution of true error variances given an ensemble sample variance from (observation-minus-forecast, ensemble-variance) data pairs produced by a single run of a data assimilation system. This formula takes the form of a Hybrid weighted average of the climatological forecast error variance and the ensemble sample variance. Here, we test the extent to which these readily obtainable weights can be used to rapidly optimize the covariance weights used in Hybrid data assimilation systems that employ weighted averages of static covariance models and flow-dependent ensemble based covariance models. Univariate data assimilation and multi-variate cycling ensemble data assimilation are considered. In both cases, it is found that our computationally efficient formula gives Hybrid weights that closely approximate the optimal weights found through the simple but computationally expensive process of testing every plausible combination of weights.

  8. Parameters of the covariance function of galaxies

    International Nuclear Information System (INIS)

    Fesenko, B.I.; Onuchina, E.V.

    1988-01-01

    The two-point angular covariance functions for two samples of galaxies are considered using quick methods of analysis. It is concluded that in the previous investigations the amplitude of the covariance function in the Lick counts was overestimated and the rate of decrease of the function underestimated

  9. Information matrix estimation procedures for cognitive diagnostic models.

    Science.gov (United States)

    Liu, Yanlou; Xin, Tao; Andersson, Björn; Tian, Wei

    2018-03-06

    Two new methods to estimate the asymptotic covariance matrix for marginal maximum likelihood estimation of cognitive diagnosis models (CDMs), the inverse of the observed information matrix and the sandwich-type estimator, are introduced. Unlike several previous covariance matrix estimators, the new methods take into account both the item and structural parameters. The relationships between the observed information matrix, the empirical cross-product information matrix, the sandwich-type covariance matrix and the two approaches proposed by de la Torre (2009, J. Educ. Behav. Stat., 34, 115) are discussed. Simulation results show that, for a correctly specified CDM and Q-matrix or with a slightly misspecified probability model, the observed information matrix and the sandwich-type covariance matrix exhibit good performance with respect to providing consistent standard errors of item parameter estimates. However, with substantial model misspecification only the sandwich-type covariance matrix exhibits robust performance. © 2018 The British Psychological Society.

  10. Generally covariant gauge theories

    International Nuclear Information System (INIS)

    Capovilla, R.

    1992-01-01

    A new class of generally covariant gauge theories in four space-time dimensions is investigated. The field variables are taken to be a Lie algebra valued connection 1-form and a scalar density. Modulo an important degeneracy, complex [euclidean] vacuum general relativity corresponds to a special case in this class. A canonical analysis of the generally covariant gauge theories with the same gauge group as general relativity shows that they describe two degrees of freedom per space point, qualifying therefore as a new set of neighbors of general relativity. The modification of the algebra of the constraints with respect to the general relativity case is computed; this is used in addressing the question of how general relativity stands out from its neighbors. (orig.)

  11. Decomposing variation in male reproductive success: age-specific variances and covariances through extra-pair and within-pair reproduction.

    Science.gov (United States)

    Lebigre, Christophe; Arcese, Peter; Reid, Jane M

    2013-07-01

    Age-specific variances and covariances in reproductive success shape the total variance in lifetime reproductive success (LRS), age-specific opportunities for selection, and population demographic variance and effective size. Age-specific (co)variances in reproductive success achieved through different reproductive routes must therefore be quantified to predict population, phenotypic and evolutionary dynamics in age-structured populations. While numerous studies have quantified age-specific variation in mean reproductive success, age-specific variances and covariances in reproductive success, and the contributions of different reproductive routes to these (co)variances, have not been comprehensively quantified in natural populations. We applied 'additive' and 'independent' methods of variance decomposition to complete data describing apparent (social) and realised (genetic) age-specific reproductive success across 11 cohorts of socially monogamous but genetically polygynandrous song sparrows (Melospiza melodia). We thereby quantified age-specific (co)variances in male within-pair and extra-pair reproductive success (WPRS and EPRS) and the contributions of these (co)variances to the total variances in age-specific reproductive success and LRS. 'Additive' decomposition showed that within-age and among-age (co)variances in WPRS across males aged 2-4 years contributed most to the total variance in LRS. Age-specific (co)variances in EPRS contributed relatively little. However, extra-pair reproduction altered age-specific variances in reproductive success relative to the social mating system, and hence altered the relative contributions of age-specific reproductive success to the total variance in LRS. 'Independent' decomposition showed that the (co)variances in age-specific WPRS, EPRS and total reproductive success, and the resulting opportunities for selection, varied substantially across males that survived to each age. Furthermore, extra-pair reproduction increased

  12. Facilitated assignment of large protein NMR signals with covariance sequential spectra using spectral derivatives.

    Science.gov (United States)

    Harden, Bradley J; Nichols, Scott R; Frueh, Dominique P

    2014-09-24

    Nuclear magnetic resonance (NMR) studies of larger proteins are hampered by difficulties in assigning NMR resonances. Human intervention is typically required to identify NMR signals in 3D spectra, and subsequent procedures depend on the accuracy of this so-called peak picking. We present a method that provides sequential connectivities through correlation maps constructed with covariance NMR, bypassing the need for preliminary peak picking. We introduce two novel techniques to minimize false correlations and merge the information from all original 3D spectra. First, we take spectral derivatives prior to performing covariance to emphasize coincident peak maxima. Second, we multiply covariance maps calculated with different 3D spectra to destroy erroneous sequential correlations. The maps are easy to use and can readily be generated from conventional triple-resonance experiments. Advantages of the method are demonstrated on a 37 kDa nonribosomal peptide synthetase domain subject to spectral overlap.

  13. Nonrelativistic fluids on scale covariant Newton-Cartan backgrounds

    Science.gov (United States)

    Mitra, Arpita

    2017-12-01

    The nonrelativistic covariant framework for fields is extended to investigate fields and fluids on scale covariant curved backgrounds. The scale covariant Newton-Cartan background is constructed using the localization of space-time symmetries of nonrelativistic fields in flat space. Following this, we provide a Weyl covariant formalism which can be used to study scale invariant fluids. By considering ideal fluids as an example, we describe its thermodynamic and hydrodynamic properties and explicitly demonstrate that it satisfies the local second law of thermodynamics. As a further application, we consider the low energy description of Hall fluids. Specifically, we find that the gauge fields for scale transformations lead to corrections of the Wen-Zee and Berry phase terms contained in the effective action.

  14. Covariant and background independent functional RG flow for the effective average action

    Energy Technology Data Exchange (ETDEWEB)

    Safari, Mahmoud; Vacca, Gian Paolo [Dipartimento di Fisica and INFN - Sezione di Bologna,via Irnerio 46, 40126 Bologna (Italy)

    2016-11-23

    We extend our prescription for the construction of a covariant and background-independent effective action for scalar quantum field theories to the case where momentum modes below a certain scale are suppressed by the presence of an infrared regulator. The key step is an appropriate choice of the infrared cutoff for which the Ward identity, capturing the information from single-field dependence of the ultraviolet action, continues to be exactly solvable, and therefore, in addition to covariance, manifest background independence of the effective action is guaranteed at any scale. A practical consequence is that in this framework one can adopt truncations dependent on the single total field. Furthermore we discuss the necessary and sufficient conditions for the preservation of symmetries along the renormalization group flow.

  15. Bayes Factor Covariance Testing in Item Response Models.

    Science.gov (United States)

    Fox, Jean-Paul; Mulder, Joris; Sinharay, Sandip

    2017-12-01

    Two marginal one-parameter item response theory models are introduced, by integrating out the latent variable or random item parameter. It is shown that both marginal response models are multivariate (probit) models with a compound symmetry covariance structure. Several common hypotheses concerning the underlying covariance structure are evaluated using (fractional) Bayes factor tests. The support for a unidimensional factor (i.e., assumption of local independence) and differential item functioning are evaluated by testing the covariance components. The posterior distribution of common covariance components is obtained in closed form by transforming latent responses with an orthogonal (Helmert) matrix. This posterior distribution is defined as a shifted-inverse-gamma, thereby introducing a default prior and a balanced prior distribution. Based on that, an MCMC algorithm is described to estimate all model parameters and to compute (fractional) Bayes factor tests. Simulation studies are used to show that the (fractional) Bayes factor tests have good properties for testing the underlying covariance structure of binary response data. The method is illustrated with two real data studies.

  16. The K-Step Spatial Sign Covariance Matrix

    NARCIS (Netherlands)

    Croux, C.; Dehon, C.; Yadine, A.

    2010-01-01

    The Sign Covariance Matrix is an orthogonal equivariant estimator of mul- tivariate scale. It is often used as an easy-to-compute and highly robust estimator. In this paper we propose a k-step version of the Sign Covariance Matrix, which improves its e±ciency while keeping the maximal breakdown

  17. On the covariance matrices in the evaluated nuclear data

    International Nuclear Information System (INIS)

    Corcuera, R.P.

    1983-05-01

    The implications of the uncertainties of nuclear data on reactor calculations are shown. The concept of variance, covariance and correlation are expressed first by intuitive definitions and then through statistical theory. The format of the covariance data for ENDF/B is explained and the formulas to obtain the multigroup covariances are given. (Author) [pt

  18. Exact sampling of the unobserved covariates in Bayesian spline models for measurement error problems.

    Science.gov (United States)

    Bhadra, Anindya; Carroll, Raymond J

    2016-07-01

    In truncated polynomial spline or B-spline models where the covariates are measured with error, a fully Bayesian approach to model fitting requires the covariates and model parameters to be sampled at every Markov chain Monte Carlo iteration. Sampling the unobserved covariates poses a major computational problem and usually Gibbs sampling is not possible. This forces the practitioner to use a Metropolis-Hastings step which might suffer from unacceptable performance due to poor mixing and might require careful tuning. In this article we show for the cases of truncated polynomial spline or B-spline models of degree equal to one, the complete conditional distribution of the covariates measured with error is available explicitly as a mixture of double-truncated normals, thereby enabling a Gibbs sampling scheme. We demonstrate via a simulation study that our technique performs favorably in terms of computational efficiency and statistical performance. Our results indicate up to 62 and 54 % increase in mean integrated squared error efficiency when compared to existing alternatives while using truncated polynomial splines and B-splines respectively. Furthermore, there is evidence that the gain in efficiency increases with the measurement error variance, indicating the proposed method is a particularly valuable tool for challenging applications that present high measurement error. We conclude with a demonstration on a nutritional epidemiology data set from the NIH-AARP study and by pointing out some possible extensions of the current work.

  19. Massive data compression for parameter-dependent covariance matrices

    Science.gov (United States)

    Heavens, Alan F.; Sellentin, Elena; de Mijolla, Damien; Vianello, Alvise

    2017-12-01

    We show how the massive data compression algorithm MOPED can be used to reduce, by orders of magnitude, the number of simulated data sets which are required to estimate the covariance matrix required for the analysis of Gaussian-distributed data. This is relevant when the covariance matrix cannot be calculated directly. The compression is especially valuable when the covariance matrix varies with the model parameters. In this case, it may be prohibitively expensive to run enough simulations to estimate the full covariance matrix throughout the parameter space. This compression may be particularly valuable for the next generation of weak lensing surveys, such as proposed for Euclid and Large Synoptic Survey Telescope, for which the number of summary data (such as band power or shear correlation estimates) is very large, ∼104, due to the large number of tomographic redshift bins which the data will be divided into. In the pessimistic case where the covariance matrix is estimated separately for all points in an Monte Carlo Markov Chain analysis, this may require an unfeasible 109 simulations. We show here that MOPED can reduce this number by a factor of 1000, or a factor of ∼106 if some regularity in the covariance matrix is assumed, reducing the number of simulations required to a manageable 103, making an otherwise intractable analysis feasible.

  20. Alterations in Anatomical Covariance in the Prematurely Born.

    Science.gov (United States)

    Scheinost, Dustin; Kwon, Soo Hyun; Lacadie, Cheryl; Vohr, Betty R; Schneider, Karen C; Papademetris, Xenophon; Constable, R Todd; Ment, Laura R

    2017-01-01

    Preterm (PT) birth results in long-term alterations in functional and structural connectivity, but the related changes in anatomical covariance are just beginning to be explored. To test the hypothesis that PT birth alters patterns of anatomical covariance, we investigated brain volumes of 25 PTs and 22 terms at young adulthood using magnetic resonance imaging. Using regional volumetrics, seed-based analyses, and whole brain graphs, we show that PT birth is associated with reduced volume in bilateral temporal and inferior frontal lobes, left caudate, left fusiform, and posterior cingulate for prematurely born subjects at young adulthood. Seed-based analyses demonstrate altered patterns of anatomical covariance for PTs compared with terms. PTs exhibit reduced covariance with R Brodmann area (BA) 47, Broca's area, and L BA 21, Wernicke's area, and white matter volume in the left prefrontal lobe, but increased covariance with R BA 47 and left cerebellum. Graph theory analyses demonstrate that measures of network complexity are significantly less robust in PTs compared with term controls. Volumes in regions showing group differences are significantly correlated with phonological awareness, the fundamental basis for reading acquisition, for the PTs. These data suggest both long-lasting and clinically significant alterations in the covariance in the PTs at young adulthood. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Phase-covariant quantum cloning of qudits

    International Nuclear Information System (INIS)

    Fan Heng; Imai, Hiroshi; Matsumoto, Keiji; Wang, Xiang-Bin

    2003-01-01

    We study the phase-covariant quantum cloning machine for qudits, i.e., the input states in a d-level quantum system have complex coefficients with arbitrary phase but constant module. A cloning unitary transformation is proposed. After optimizing the fidelity between input state and single qudit reduced density operator of output state, we obtain the optimal fidelity for 1 to 2 phase-covariant quantum cloning of qudits and the corresponding cloning transformation

  2. Covariant differential calculus on quantum spheres of odd dimension

    International Nuclear Information System (INIS)

    Welk, M.

    1998-01-01

    Covariant differential calculus on the quantum spheres S q 2N-1 is studied. Two classification results for covariant first order differential calculi are proved. As an important step towards a description of the noncommutative geometry of the quantum spheres, a framework of covariant differential calculus is established, including first and higher order calculi and a symmetry concept. (author)

  3. Explicit evaluation of covariant one-loop four-point amplitude for open fermionic string

    International Nuclear Information System (INIS)

    Yamamoto, Hisashi; Nakazawa, Naohito.

    1986-11-01

    We carry out the explicit evaluation of the covariant one-loop amplitude with four massless external bosons for open fermionic string by the operator formalism. The resulting expression of the amplitude completely coincides with that of the light-cone new formalism for type-I superstring theory, providing the explicit demonstration for the one-loop equivalence of the old and new formalisms for the open superstring theory at the four-point interacting level. (author)

  4. Covariant Spectator Theory of heavy–light and heavy mesons and the predictive power of covariant interaction kernels

    Energy Technology Data Exchange (ETDEWEB)

    Leitão, Sofia, E-mail: sofia.leitao@tecnico.ulisboa.pt [CFTP, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Stadler, Alfred, E-mail: stadler@uevora.pt [Departamento de Física, Universidade de Évora, 7000-671 Évora (Portugal); CFTP, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Peña, M.T., E-mail: teresa.pena@tecnico.ulisboa.pt [Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); CFTP, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Biernat, Elmar P., E-mail: elmar.biernat@tecnico.ulisboa.pt [CFTP, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2017-01-10

    The Covariant Spectator Theory (CST) is used to calculate the mass spectrum and vertex functions of heavy–light and heavy mesons in Minkowski space. The covariant kernel contains Lorentz scalar, pseudoscalar, and vector contributions. The numerical calculations are performed in momentum space, where special care is taken to treat the strong singularities present in the confining kernel. The observed meson spectrum is very well reproduced after fitting a small number of model parameters. Remarkably, a fit to a few pseudoscalar meson states only, which are insensitive to spin–orbit and tensor forces and do not allow to separate the spin–spin from the central interaction, leads to essentially the same model parameters as a more general fit. This demonstrates that the covariance of the chosen interaction kernel is responsible for the very accurate prediction of the spin-dependent quark–antiquark interactions.

  5. HIGH DIMENSIONAL COVARIANCE MATRIX ESTIMATION IN APPROXIMATE FACTOR MODELS.

    Science.gov (United States)

    Fan, Jianqing; Liao, Yuan; Mincheva, Martina

    2011-01-01

    The variance covariance matrix plays a central role in the inferential theories of high dimensional factor models in finance and economics. Popular regularization methods of directly exploiting sparsity are not directly applicable to many financial problems. Classical methods of estimating the covariance matrices are based on the strict factor models, assuming independent idiosyncratic components. This assumption, however, is restrictive in practical applications. By assuming sparse error covariance matrix, we allow the presence of the cross-sectional correlation even after taking out common factors, and it enables us to combine the merits of both methods. We estimate the sparse covariance using the adaptive thresholding technique as in Cai and Liu (2011), taking into account the fact that direct observations of the idiosyncratic components are unavailable. The impact of high dimensionality on the covariance matrix estimation based on the factor structure is then studied.

  6. Comparing the performance of geostatistical models with additional information from covariates for sewage plume characterization.

    Science.gov (United States)

    Del Monego, Maurici; Ribeiro, Paulo Justiniano; Ramos, Patrícia

    2015-04-01

    In this work, kriging with covariates is used to model and map the spatial distribution of salinity measurements gathered by an autonomous underwater vehicle in a sea outfall monitoring campaign aiming to distinguish the effluent plume from the receiving waters and characterize its spatial variability in the vicinity of the discharge. Four different geostatistical linear models for salinity were assumed, where the distance to diffuser, the west-east positioning, and the south-north positioning were used as covariates. Sample variograms were fitted by the Matèrn models using weighted least squares and maximum likelihood estimation methods as a way to detect eventual discrepancies. Typically, the maximum likelihood method estimated very low ranges which have limited the kriging process. So, at least for these data sets, weighted least squares showed to be the most appropriate estimation method for variogram fitting. The kriged maps show clearly the spatial variation of salinity, and it is possible to identify the effluent plume in the area studied. The results obtained show some guidelines for sewage monitoring if a geostatistical analysis of the data is in mind. It is important to treat properly the existence of anomalous values and to adopt a sampling strategy that includes transects parallel and perpendicular to the effluent dispersion.

  7. Continuous Covariate Imbalance and Conditional Power for Clinical Trial Interim Analyses

    Science.gov (United States)

    Ciolino, Jody D.; Martin, Renee' H.; Zhao, Wenle; Jauch, Edward C.; Hill, Michael D.; Palesch, Yuko Y.

    2014-01-01

    Oftentimes valid statistical analyses for clinical trials involve adjustment for known influential covariates, regardless of imbalance observed in these covariates at baseline across treatment groups. Thus, it must be the case that valid interim analyses also properly adjust for these covariates. There are situations, however, in which covariate adjustment is not possible, not planned, or simply carries less merit as it makes inferences less generalizable and less intuitive. In this case, covariate imbalance between treatment groups can have a substantial effect on both interim and final primary outcome analyses. This paper illustrates the effect of influential continuous baseline covariate imbalance on unadjusted conditional power (CP), and thus, on trial decisions based on futility stopping bounds. The robustness of the relationship is illustrated for normal, skewed, and bimodal continuous baseline covariates that are related to a normally distributed primary outcome. Results suggest that unadjusted CP calculations in the presence of influential covariate imbalance require careful interpretation and evaluation. PMID:24607294

  8. MACSIMS : multiple alignment of complete sequences information management system

    Directory of Open Access Journals (Sweden)

    Plewniak Frédéric

    2006-06-01

    Full Text Available Abstract Background In the post-genomic era, systems-level studies are being performed that seek to explain complex biological systems by integrating diverse resources from fields such as genomics, proteomics or transcriptomics. New information management systems are now needed for the collection, validation and analysis of the vast amount of heterogeneous data available. Multiple alignments of complete sequences provide an ideal environment for the integration of this information in the context of the protein family. Results MACSIMS is a multiple alignment-based information management program that combines the advantages of both knowledge-based and ab initio sequence analysis methods. Structural and functional information is retrieved automatically from the public databases. In the multiple alignment, homologous regions are identified and the retrieved data is evaluated and propagated from known to unknown sequences with these reliable regions. In a large-scale evaluation, the specificity of the propagated sequence features is estimated to be >99%, i.e. very few false positive predictions are made. MACSIMS is then used to characterise mutations in a test set of 100 proteins that are known to be involved in human genetic diseases. The number of sequence features associated with these proteins was increased by 60%, compared to the features available in the public databases. An XML format output file allows automatic parsing of the MACSIM results, while a graphical display using the JalView program allows manual analysis. Conclusion MACSIMS is a new information management system that incorporates detailed analyses of protein families at the structural, functional and evolutionary levels. MACSIMS thus provides a unique environment that facilitates knowledge extraction and the presentation of the most pertinent information to the biologist. A web server and the source code are available at http://bips.u-strasbg.fr/MACSIMS/.

  9. Structural covariance and cortical reorganisation in schizophrenia: a MRI-based morphometric study.

    Science.gov (United States)

    Palaniyappan, Lena; Hodgson, Olha; Balain, Vijender; Iwabuchi, Sarina; Gowland, Penny; Liddle, Peter

    2018-05-06

    In patients with schizophrenia, distributed abnormalities are observed in grey matter volume. A recent hypothesis posits that these distributed changes are indicative of a plastic reorganisation process occurring in response to a functional defect in neuronal information transmission. We investigated the structural covariance across various brain regions in early-stage schizophrenia to determine if indeed the observed patterns of volumetric loss conform to a coordinated pattern of structural reorganisation. Structural magnetic resonance imaging scans were obtained from 40 healthy adults and 41 age, gender and parental socioeconomic status matched patients with schizophrenia. Volumes of grey matter tissue were estimated at the regional level across 90 atlas-based parcellations. Group-level structural covariance was studied using a graph theoretical framework. Patients had distributed reduction in grey matter volume, with high degree of localised covariance (clustering) compared with controls. Patients with schizophrenia had reduced centrality of anterior cingulate and insula but increased centrality of the fusiform cortex, compared with controls. Simulating targeted removal of highly central nodes resulted in significant loss of the overall covariance patterns in patients compared with controls. Regional volumetric deficits in schizophrenia are not a result of random, mutually independent processes. Our observations support the occurrence of a spatially interconnected reorganisation with the systematic de-escalation of conventional 'hub' regions. This raises the question of whether the morphological architecture in schizophrenia is primed for compensatory functions, albeit with a high risk of inefficiency.

  10. The Poincaré Half-Plane for Informationally-Complete POVMs

    Science.gov (United States)

    Planat, Michel

    2017-12-01

    It has been shown that classes of (minimal asymmetric) informationally complete POVMs in dimension d can be built using the multiparticle Pauli group acting on appropriate fiducial states [M. Planat and Z. Gedik, R. Soc. open sci. 4, 170387 (2017)]. The latter states may also be derived starting from the Poincar\\'e upper half-plane model H. For doing this, one translates the congruence (or non-congruence) subgroups of index d of the modular group into groups of permutation gates whose some of the eigenstates are the seeked fiducials. The structure of some IC-POVMs is found to be intimately related to the Kochen-Specker theorem.

  11. Covariance Function for Nearshore Wave Assimilation Systems

    Science.gov (United States)

    2018-01-30

    which is applicable for any spectral wave model. The four dimensional variational (4DVar) assimilation methods are based on the mathematical ...covariance can be modeled by a parameterized Gaussian function, for nearshore wave assimilation applications , the covariance function depends primarily on...SPECTRAL ACTION DENSITY, RESPECTIVELY. ............................ 5 FIGURE 2. TOP ROW: STATISTICAL ANALYSIS OF THE WAVE-FIELD PROPERTIES AT THE

  12. Visualization and assessment of spatio-temporal covariance properties

    KAUST Repository

    Huang, Huang

    2017-11-23

    Spatio-temporal covariances are important for describing the spatio-temporal variability of underlying random fields in geostatistical data. For second-order stationary random fields, there exist subclasses of covariance functions that assume a simpler spatio-temporal dependence structure with separability and full symmetry. However, it is challenging to visualize and assess separability and full symmetry from spatio-temporal observations. In this work, we propose a functional data analysis approach that constructs test functions using the cross-covariances from time series observed at each pair of spatial locations. These test functions of temporal lags summarize the properties of separability or symmetry for the given spatial pairs. We use functional boxplots to visualize the functional median and the variability of the test functions, where the extent of departure from zero at all temporal lags indicates the degree of non-separability or asymmetry. We also develop a rank-based nonparametric testing procedure for assessing the significance of the non-separability or asymmetry. Essentially, the proposed methods only require the analysis of temporal covariance functions. Thus, a major advantage over existing approaches is that there is no need to estimate any covariance matrix for selected spatio-temporal lags. The performances of the proposed methods are examined by simulations with various commonly used spatio-temporal covariance models. To illustrate our methods in practical applications, we apply it to real datasets, including weather station data and climate model outputs.

  13. Summary of the Workshop on Neutron Cross Section Covariances

    International Nuclear Information System (INIS)

    Smith, Donald L.

    2008-01-01

    A Workshop on Neutron Cross Section Covariances was held from June 24-27, 2008, in Port Jefferson, New York. This Workshop was organized by the National Nuclear Data Center, Brookhaven National Laboratory, to provide a forum for reporting on the status of the growing field of neutron cross section covariances for applications and for discussing future directions of the work in this field. The Workshop focused on the following four major topical areas: covariance methodology, recent covariance evaluations, covariance applications, and user perspectives. Attention was given to the entire spectrum of neutron cross section covariance concerns ranging from light nuclei to the actinides, and from the thermal energy region to 20 MeV. The papers presented at this conference explored topics ranging from fundamental nuclear physics concerns to very specific applications in advanced reactor design and nuclear criticality safety. This paper provides a summary of this workshop. Brief comments on the highlights of each Workshop contribution are provided. In addition, a perspective on the achievements and shortcomings of the Workshop as well as on the future direction of research in this field is offered

  14. Real-time probabilistic covariance tracking with efficient model update.

    Science.gov (United States)

    Wu, Yi; Cheng, Jian; Wang, Jinqiao; Lu, Hanqing; Wang, Jun; Ling, Haibin; Blasch, Erik; Bai, Li

    2012-05-01

    The recently proposed covariance region descriptor has been proven robust and versatile for a modest computational cost. The covariance matrix enables efficient fusion of different types of features, where the spatial and statistical properties, as well as their correlation, are characterized. The similarity between two covariance descriptors is measured on Riemannian manifolds. Based on the same metric but with a probabilistic framework, we propose a novel tracking approach on Riemannian manifolds with a novel incremental covariance tensor learning (ICTL). To address the appearance variations, ICTL incrementally learns a low-dimensional covariance tensor representation and efficiently adapts online to appearance changes of the target with only O(1) computational complexity, resulting in a real-time performance. The covariance-based representation and the ICTL are then combined with the particle filter framework to allow better handling of background clutter, as well as the temporary occlusions. We test the proposed probabilistic ICTL tracker on numerous benchmark sequences involving different types of challenges including occlusions and variations in illumination, scale, and pose. The proposed approach demonstrates excellent real-time performance, both qualitatively and quantitatively, in comparison with several previously proposed trackers.

  15. A three domain covariance framework for EEG/MEG data.

    Science.gov (United States)

    Roś, Beata P; Bijma, Fetsje; de Gunst, Mathisca C M; de Munck, Jan C

    2015-10-01

    In this paper we introduce a covariance framework for the analysis of single subject EEG and MEG data that takes into account observed temporal stationarity on small time scales and trial-to-trial variations. We formulate a model for the covariance matrix, which is a Kronecker product of three components that correspond to space, time and epochs/trials, and consider maximum likelihood estimation of the unknown parameter values. An iterative algorithm that finds approximations of the maximum likelihood estimates is proposed. Our covariance model is applicable in a variety of cases where spontaneous EEG or MEG acts as source of noise and realistic noise covariance estimates are needed, such as in evoked activity studies, or where the properties of spontaneous EEG or MEG are themselves the topic of interest, like in combined EEG-fMRI experiments in which the correlation between EEG and fMRI signals is investigated. We use a simulation study to assess the performance of the estimator and investigate the influence of different assumptions about the covariance factors on the estimated covariance matrix and on its components. We apply our method to real EEG and MEG data sets. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Multiple feature fusion via covariance matrix for visual tracking

    Science.gov (United States)

    Jin, Zefenfen; Hou, Zhiqiang; Yu, Wangsheng; Wang, Xin; Sun, Hui

    2018-04-01

    Aiming at the problem of complicated dynamic scenes in visual target tracking, a multi-feature fusion tracking algorithm based on covariance matrix is proposed to improve the robustness of the tracking algorithm. In the frame-work of quantum genetic algorithm, this paper uses the region covariance descriptor to fuse the color, edge and texture features. It also uses a fast covariance intersection algorithm to update the model. The low dimension of region covariance descriptor, the fast convergence speed and strong global optimization ability of quantum genetic algorithm, and the fast computation of fast covariance intersection algorithm are used to improve the computational efficiency of fusion, matching, and updating process, so that the algorithm achieves a fast and effective multi-feature fusion tracking. The experiments prove that the proposed algorithm can not only achieve fast and robust tracking but also effectively handle interference of occlusion, rotation, deformation, motion blur and so on.

  17. Estimated 55Mn and 90Zr cross section covariances in the fast neutron energy region

    International Nuclear Information System (INIS)

    Pigni, M.T.; Herman, M.; Oblozinsky, P.

    2008-01-01

    We completed estimates of neutron cross section covariances for 55 Mn and 90 Zr, from keV range to 25 MeV, considering the most important reaction channels, total, elastic, inelastic, capture, and (n,2n). The nuclear reaction model code EMPIRE was used to calculate sensitivity to model parameters by perturbation of parameters that define the optical model potential, nuclear level densities and strength of the pre-equilibrium emission. The sensitivity analysis was performed with the set of parameters which reproduces the ENDF/B-VII.0 cross sections. The experimental data were analyzed and both statistical and systematic uncertainties were extracted from almost 30 selected experiments. Then, the Bayesian code KALMAN was used to combine the sensitivity analysis and the experiments to obtain the evaluated covariance matrices

  18. Estimated 55Mn and 90Zr cross section covariances in the fast neutron energy region

    Energy Technology Data Exchange (ETDEWEB)

    Pigni,M.T.; Herman, M.; Oblozinsky, P.

    2008-06-24

    We completed estimates of neutron cross section covariances for {sup 55}Mn and {sup 90}Zr, from keV range to 25 MeV, considering the most important reaction channels, total, elastic, inelastic, capture, and (n,2n). The nuclear reaction model code EMPIRE was used to calculate sensitivity to model parameters by perturbation of parameters that define the optical model potential, nuclear level densities and strength of the pre-equilibrium emission. The sensitivity analysis was performed with the set of parameters which reproduces the ENDF/B-VII.0 cross sections. The experimental data were analyzed and both statistical and systematic uncertainties were extracted from almost 30 selected experiments. Then, the Bayesian code KALMAN was used to combine the sensitivity analysis and the experiments to obtain the evaluated covariance matrices.

  19. Covariance Between Arctic Sea Ice and Clouds Within Atmospheric State Regimes at the Satellite Footprint Level

    Science.gov (United States)

    Taylor, Patrick C.; Kato, Seiji; Xu, Kuan-Man; Cai, Ming

    2015-01-01

    Understanding the cloud response to sea ice change is necessary for modeling Arctic climate. Previous work has primarily addressed this problem from the interannual variability perspective. This paper provides a refined perspective of sea ice-cloud relationship in the Arctic using a satellite footprint-level quantification of the covariance between sea ice and Arctic low cloud properties from NASA A-Train active remote sensing data. The covariances between Arctic low cloud properties and sea ice concentration are quantified by first partitioning each footprint into four atmospheric regimes defined using thresholds of lower tropospheric stability and mid-tropospheric vertical velocity. Significant regional variability in the cloud properties is found within the atmospheric regimes indicating that the regimes do not completely account for the influence of meteorology. Regional anomalies are used to account for the remaining meteorological influence on clouds. After accounting for meteorological regime and regional influences, a statistically significant but weak covariance between cloud properties and sea ice is found in each season for at least one atmospheric regime. Smaller average cloud fraction and liquid water are found within footprints with more sea ice. The largest-magnitude cloud-sea ice covariance occurs between 500m and 1.2 km when the lower tropospheric stability is between 16 and 24 K. The covariance between low cloud properties and sea ice is found to be largest in fall and is accompanied by significant changes in boundary layer temperature structure where larger average near-surface static stability is found at larger sea ice concentrations.

  20. Covariance between Arctic sea ice and clouds within atmospheric state regimes at the satellite footprint level.

    Science.gov (United States)

    Taylor, Patrick C; Kato, Seiji; Xu, Kuan-Man; Cai, Ming

    2015-12-27

    Understanding the cloud response to sea ice change is necessary for modeling Arctic climate. Previous work has primarily addressed this problem from the interannual variability perspective. This paper provides a refined perspective of sea ice-cloud relationship in the Arctic using a satellite footprint-level quantification of the covariance between sea ice and Arctic low cloud properties from NASA A-Train active remote sensing data. The covariances between Arctic low cloud properties and sea ice concentration are quantified by first partitioning each footprint into four atmospheric regimes defined using thresholds of lower tropospheric stability and midtropospheric vertical velocity. Significant regional variability in the cloud properties is found within the atmospheric regimes indicating that the regimes do not completely account for the influence of meteorology. Regional anomalies are used to account for the remaining meteorological influence on clouds. After accounting for meteorological regime and regional influences, a statistically significant but weak covariance between cloud properties and sea ice is found in each season for at least one atmospheric regime. Smaller average cloud fraction and liquid water are found within footprints with more sea ice. The largest-magnitude cloud-sea ice covariance occurs between 500 m and 1.2 km when the lower tropospheric stability is between 16 and 24 K. The covariance between low cloud properties and sea ice is found to be largest in fall and is accompanied by significant changes in boundary layer temperature structure where larger average near-surface static stability is found at larger sea ice concentrations.

  1. Bayesian hierarchical model for large-scale covariance matrix estimation.

    Science.gov (United States)

    Zhu, Dongxiao; Hero, Alfred O

    2007-12-01

    Many bioinformatics problems implicitly depend on estimating large-scale covariance matrix. The traditional approaches tend to give rise to high variance and low accuracy due to "overfitting." We cast the large-scale covariance matrix estimation problem into the Bayesian hierarchical model framework, and introduce dependency between covariance parameters. We demonstrate the advantages of our approaches over the traditional approaches using simulations and OMICS data analysis.

  2. Model selection for marginal regression analysis of longitudinal data with missing observations and covariate measurement error.

    Science.gov (United States)

    Shen, Chung-Wei; Chen, Yi-Hau

    2015-10-01

    Missing observations and covariate measurement error commonly arise in longitudinal data. However, existing methods for model selection in marginal regression analysis of longitudinal data fail to address the potential bias resulting from these issues. To tackle this problem, we propose a new model selection criterion, the Generalized Longitudinal Information Criterion, which is based on an approximately unbiased estimator for the expected quadratic error of a considered marginal model accounting for both data missingness and covariate measurement error. The simulation results reveal that the proposed method performs quite well in the presence of missing data and covariate measurement error. On the contrary, the naive procedures without taking care of such complexity in data may perform quite poorly. The proposed method is applied to data from the Taiwan Longitudinal Study on Aging to assess the relationship of depression with health and social status in the elderly, accommodating measurement error in the covariate as well as missing observations. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Methods and Issues for the Combined Use of Integral Experiments and Covariance Data

    International Nuclear Information System (INIS)

    Salvatores, M.; Palmiotti, G.; Aliberti, G.; McKnight, R.; Archier, P.; De Saint Jean, C.; Dupont, E.; Herman, M.; Ishikawa, M.; Sugino, K.; Ivanova, T.; Ivanov, E.; Kim, S.J.; Kodeli, I.; Trkov, A.; Manturov, G.; Pelloni, S.; Perfetti, C.; Rearden, B.T.; Plompen, A.; Rochman, D.; Wang, W.; Wu, H.; Yang, W.S.

    2013-01-01

    The Working Party on International Nuclear Data Evaluation Co-operation (WPEC) has been established under the aegis of the OECD/NEA Nuclear Science Committee (NSC) to promote the exchange of information on nuclear data evaluations, validation and related topics. Its aim is also to provide a framework for co-operative activities between the members of the major nuclear data evaluation projects. This includes the possible exchange of scientists in order to encourage co-operation. Requirements for experimental data resulting from this activity are compiled. The WPEC determines common criteria for evaluated nuclear data files with a view to assessing and improving the quality and completeness of evaluated data. The parties to the project are: BROND (Russian Federation), ENDF (United States), JENDL (Japan) and JEFF (other NEA Data Bank member countries). Co-operation with evaluation projects of non-NEA countries, specifically the Chinese CENDL project, is organised through the Nuclear Data Section of the International Atomic Energy Agency (IAEA). This report has been issued by the WPEC Subgroup 33, whose mission was to review methods and issues of the combined use of integral experiments and covariance data, with the objective of recommending a set of best and consistent practices in order to improve evaluated nuclear data files. In particular, it is shown that the statistical adjustment methodologies used worldwide are well understood and essentially equivalent. The results of the benchmark adjustment exercise indicate common trends for important data, even when they start from different basic nuclear data and different covariance matrices. In this respect, adjustment methodologies can provide a powerful tool to improve nuclear data (and associated uncertainties) if used in an appropriate manner

  4. Exploring treatment by covariate interactions using subgroup analysis and meta-regression in cochrane reviews: a review of recent practice.

    Directory of Open Access Journals (Sweden)

    Sarah Donegan

    Full Text Available Treatment by covariate interactions can be explored in reviews using interaction analyses (e.g., subgroup analysis. Such analyses can provide information on how the covariate modifies the treatment effect and is an important methodological approach for personalising medicine. Guidance exists regarding how to apply such analyses but little is known about whether authors follow the guidance.Using published recommendations, we developed criteria to assess how well interaction analyses were designed, applied, interpreted, and reported. The Cochrane Database of Systematic Reviews was searched (8th August 2013. We applied the criteria to the most recently published review, with an accessible protocol, for each Cochrane Review Group. We excluded review updates, diagnostic test accuracy reviews, withdrawn reviews, and overviews of reviews. Data were summarised regarding reviews, covariates, and analyses.Each of the 52 included reviews planned or did interaction analyses; 51 reviews (98% planned analyses and 33 reviews (63% applied analyses. The type of analysis planned and the type subsequently applied (e.g., sensitivity or subgroup analysis was discrepant in 24 reviews (46%. No review reported how or why each covariate had been chosen; 22 reviews (42% did state each covariate a priori in the protocol but no review identified each post-hoc covariate as such. Eleven reviews (21% mentioned five covariates or less. One review reported planning to use a method to detect interactions (i.e., interaction test for each covariate; another review reported applying the method for each covariate. Regarding interpretation, only one review reported whether an interaction was detected for each covariate and no review discussed the importance, or plausibility, of the results, or the possibility of confounding for each covariate.Interaction analyses in Cochrane Reviews can be substantially improved. The proposed criteria can be used to help guide the reporting and

  5. Parallel ICA identifies sub-components of resting state networks that covary with behavioral indices.

    Science.gov (United States)

    Meier, Timothy B; Wildenberg, Joseph C; Liu, Jingyu; Chen, Jiayu; Calhoun, Vince D; Biswal, Bharat B; Meyerand, Mary E; Birn, Rasmus M; Prabhakaran, Vivek

    2012-01-01

    Parallel Independent Component Analysis (para-ICA) is a multivariate method that can identify complex relationships between different data modalities by simultaneously performing Independent Component Analysis on each data set while finding mutual information between the two data sets. We use para-ICA to test the hypothesis that spatial sub-components of common resting state networks (RSNs) covary with specific behavioral measures. Resting state scans and a battery of behavioral indices were collected from 24 younger adults. Group ICA was performed and common RSNs were identified by spatial correlation to publically available templates. Nine RSNs were identified and para-ICA was run on each network with a matrix of behavioral measures serving as the second data type. Five networks had spatial sub-components that significantly correlated with behavioral components. These included a sub-component of the temporo-parietal attention network that differentially covaried with different trial-types of a sustained attention task, sub-components of default mode networks that covaried with attention and working memory tasks, and a sub-component of the bilateral frontal network that split the left inferior frontal gyrus into three clusters according to its cytoarchitecture that differentially covaried with working memory performance. Additionally, we demonstrate the validity of para-ICA in cases with unbalanced dimensions using simulated data.

  6. Covariance Analysis Tool (G-CAT) for Computing Ascent, Descent, and Landing Errors

    Science.gov (United States)

    Boussalis, Dhemetrios; Bayard, David S.

    2013-01-01

    G-CAT is a covariance analysis tool that enables fast and accurate computation of error ellipses for descent, landing, ascent, and rendezvous scenarios, and quantifies knowledge error contributions needed for error budgeting purposes. Because GCAT supports hardware/system trade studies in spacecraft and mission design, it is useful in both early and late mission/ proposal phases where Monte Carlo simulation capability is not mature, Monte Carlo simulation takes too long to run, and/or there is a need to perform multiple parametric system design trades that would require an unwieldy number of Monte Carlo runs. G-CAT is formulated as a variable-order square-root linearized Kalman filter (LKF), typically using over 120 filter states. An important property of G-CAT is that it is based on a 6-DOF (degrees of freedom) formulation that completely captures the combined effects of both attitude and translation errors on the propagated trajectories. This ensures its accuracy for guidance, navigation, and control (GN&C) analysis. G-CAT provides the desired fast turnaround analysis needed for error budgeting in support of mission concept formulations, design trade studies, and proposal development efforts. The main usefulness of a covariance analysis tool such as G-CAT is its ability to calculate the performance envelope directly from a single run. This is in sharp contrast to running thousands of simulations to obtain similar information using Monte Carlo methods. It does this by propagating the "statistics" of the overall design, rather than simulating individual trajectories. G-CAT supports applications to lunar, planetary, and small body missions. It characterizes onboard knowledge propagation errors associated with inertial measurement unit (IMU) errors (gyro and accelerometer), gravity errors/dispersions (spherical harmonics, masscons), and radar errors (multiple altimeter beams, multiple Doppler velocimeter beams). G-CAT is a standalone MATLAB- based tool intended to

  7. Cross-covariance functions for multivariate random fields based on latent dimensions

    KAUST Repository

    Apanasovich, T. V.

    2010-02-16

    The problem of constructing valid parametric cross-covariance functions is challenging. We propose a simple methodology, based on latent dimensions and existing covariance models for univariate random fields, to develop flexible, interpretable and computationally feasible classes of cross-covariance functions in closed form. We focus on spatio-temporal cross-covariance functions that can be nonseparable, asymmetric and can have different covariance structures, for instance different smoothness parameters, in each component. We discuss estimation of these models and perform a small simulation study to demonstrate our approach. We illustrate our methodology on a trivariate spatio-temporal pollution dataset from California and demonstrate that our cross-covariance performs better than other competing models. © 2010 Biometrika Trust.

  8. Hierarchical matrix approximation of large covariance matrices

    KAUST Repository

    Litvinenko, Alexander

    2015-01-05

    We approximate large non-structured covariance matrices in the H-matrix format with a log-linear computational cost and storage O(nlogn). We compute inverse, Cholesky decomposition and determinant in H-format. As an example we consider the class of Matern covariance functions, which are very popular in spatial statistics, geostatistics, machine learning and image analysis. Applications are: kriging and op- timal design.

  9. Hierarchical matrix approximation of large covariance matrices

    KAUST Repository

    Litvinenko, Alexander; Genton, Marc G.; Sun, Ying; Tempone, Raul

    2015-01-01

    We approximate large non-structured covariance matrices in the H-matrix format with a log-linear computational cost and storage O(nlogn). We compute inverse, Cholesky decomposition and determinant in H-format. As an example we consider the class of Matern covariance functions, which are very popular in spatial statistics, geostatistics, machine learning and image analysis. Applications are: kriging and op- timal design.

  10. Position Error Covariance Matrix Validation and Correction

    Science.gov (United States)

    Frisbee, Joe, Jr.

    2016-01-01

    In order to calculate operationally accurate collision probabilities, the position error covariance matrices predicted at times of closest approach must be sufficiently accurate representations of the position uncertainties. This presentation will discuss why the Gaussian distribution is a reasonable expectation for the position uncertainty and how this assumed distribution type is used in the validation and correction of position error covariance matrices.

  11. Covariant fields on anti-de Sitter spacetimes

    Science.gov (United States)

    Cotăescu, Ion I.

    2018-02-01

    The covariant free fields of any spin on anti-de Sitter (AdS) spacetimes are studied, pointing out that these transform under isometries according to covariant representations (CRs) of the AdS isometry group, induced by those of the Lorentz group. Applying the method of ladder operators, it is shown that the CRs with unique spin are equivalent with discrete unitary irreducible representations (UIRs) of positive energy of the universal covering group of the isometry one. The action of the Casimir operators is studied finding how the weights of these representations (reps.) may depend on the mass and spin of the covariant field. The conclusion is that on AdS spacetime, one cannot formulate a universal mass condition as in special relativity.

  12. Covariant Noncommutative Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Estrada-Jimenez, S [Licenciaturas en Fisica y en Matematicas, Facultad de Ingenieria, Universidad Autonoma de Chiapas Calle 4a Ote. Nte. 1428, Tuxtla Gutierrez, Chiapas (Mexico); Garcia-Compean, H [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN P.O. Box 14-740, 07000 Mexico D.F., Mexico and Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Monterrey Via del Conocimiento 201, Parque de Investigacion e Innovacion Tecnologica (PIIT) Autopista nueva al Aeropuerto km 9.5, Lote 1, Manzana 29, cp. 66600 Apodaca Nuevo Leon (Mexico); Obregon, O [Instituto de Fisica de la Universidad de Guanajuato P.O. Box E-143, 37150 Leon Gto. (Mexico); Ramirez, C [Facultad de Ciencias Fisico Matematicas, Universidad Autonoma de Puebla, P.O. Box 1364, 72000 Puebla (Mexico)

    2008-07-02

    The covariant approach to noncommutative field and gauge theories is revisited. In the process the formalism is applied to field theories invariant under diffeomorphisms. Local differentiable forms are defined in this context. The lagrangian and hamiltonian formalism is consistently introduced.

  13. Covariant Noncommutative Field Theory

    International Nuclear Information System (INIS)

    Estrada-Jimenez, S.; Garcia-Compean, H.; Obregon, O.; Ramirez, C.

    2008-01-01

    The covariant approach to noncommutative field and gauge theories is revisited. In the process the formalism is applied to field theories invariant under diffeomorphisms. Local differentiable forms are defined in this context. The lagrangian and hamiltonian formalism is consistently introduced

  14. Physical properties of the Schur complement of local covariance matrices

    International Nuclear Information System (INIS)

    Haruna, L F; Oliveira, M C de

    2007-01-01

    General properties of global covariance matrices representing bipartite Gaussian states can be decomposed into properties of local covariance matrices and their Schur complements. We demonstrate that given a bipartite Gaussian state ρ 12 described by a 4 x 4 covariance matrix V, the Schur complement of a local covariance submatrix V 1 of it can be interpreted as a new covariance matrix representing a Gaussian operator of party 1 conditioned to local parity measurements on party 2. The connection with a partial parity measurement over a bipartite quantum state and the determination of the reduced Wigner function is given and an operational process of parity measurement is developed. Generalization of this procedure to an n-partite Gaussian state is given, and it is demonstrated that the n - 1 system state conditioned to a partial parity projection is given by a covariance matrix such that its 2 x 2 block elements are Schur complements of special local matrices

  15. Covariant n2-plet mass formulas

    International Nuclear Information System (INIS)

    Davidson, A.

    1979-01-01

    Using a generalized internal symmetry group analogous to the Lorentz group, we have constructed a covariant n 2 -plet mass operator. This operator is built as a scalar matrix in the (n;n*) representation, and its SU(n) breaking parameters are identified as intrinsic boost ones. Its basic properties are: covariance, Hermiticity, positivity, charge conjugation, quark contents, and a self-consistent n 2 -1, 1 mixing. The GMO and the Okubo formulas are obtained by considering two different limits of the same generalized mass formula

  16. Summary report of technical meeting on neutron cross section covariances

    International Nuclear Information System (INIS)

    Trkov, A.; Smith, D.L.; Capote Noy, R.

    2011-01-01

    A summary is given of the Technical Meeting on Neutron Cross Section Covariances. The meeting goal was to assess covariance data needs and recommend appropriate methodologies to address those needs. Discussions on covariance data focused on three general topics: 1) Resonance and unresolved resonance regions; 2) Fast neutron region; and 3) Users' perspective: benchmarks' uncertainty and reactor dosimetry. A number of recommendations for further work were generated and the important work that remains to be done in the field of covariances was identified. (author)

  17. The impact of covariance misspecification in group-based trajectory models for longitudinal data with non-stationary covariance structure.

    Science.gov (United States)

    Davies, Christopher E; Glonek, Gary Fv; Giles, Lynne C

    2017-08-01

    One purpose of a longitudinal study is to gain a better understanding of how an outcome of interest changes among a given population over time. In what follows, a trajectory will be taken to mean the series of measurements of the outcome variable for an individual. Group-based trajectory modelling methods seek to identify subgroups of trajectories within a population, such that trajectories that are grouped together are more similar to each other than to trajectories in distinct groups. Group-based trajectory models generally assume a certain structure in the covariances between measurements, for example conditional independence, homogeneous variance between groups or stationary variance over time. Violations of these assumptions could be expected to result in poor model performance. We used simulation to investigate the effect of covariance misspecification on misclassification of trajectories in commonly used models under a range of scenarios. To do this we defined a measure of performance relative to the ideal Bayesian correct classification rate. We found that the more complex models generally performed better over a range of scenarios. In particular, incorrectly specified covariance matrices could significantly bias the results but using models with a correct but more complicated than necessary covariance matrix incurred little cost.

  18. Positive semidefinite integrated covariance estimation, factorizations and asynchronicity

    DEFF Research Database (Denmark)

    Boudt, Kris; Laurent, Sébastien; Lunde, Asger

    2017-01-01

    An estimator of the ex-post covariation of log-prices under asynchronicity and microstructure noise is proposed. It uses the Cholesky factorization of the covariance matrix in order to exploit the heterogeneity in trading intensities to estimate the different parameters sequentially with as many...

  19. Cross-covariance based global dynamic sensitivity analysis

    Science.gov (United States)

    Shi, Yan; Lu, Zhenzhou; Li, Zhao; Wu, Mengmeng

    2018-02-01

    For identifying the cross-covariance source of dynamic output at each time instant for structural system involving both input random variables and stochastic processes, a global dynamic sensitivity (GDS) technique is proposed. The GDS considers the effect of time history inputs on the dynamic output. In the GDS, the cross-covariance decomposition is firstly developed to measure the contribution of the inputs to the output at different time instant, and an integration of the cross-covariance change over the specific time interval is employed to measure the whole contribution of the input to the cross-covariance of output. Then, the GDS main effect indices and the GDS total effect indices can be easily defined after the integration, and they are effective in identifying the important inputs and the non-influential inputs on the cross-covariance of output at each time instant, respectively. The established GDS analysis model has the same form with the classical ANOVA when it degenerates to the static case. After degeneration, the first order partial effect can reflect the individual effects of inputs to the output variance, and the second order partial effect can reflect the interaction effects to the output variance, which illustrates the consistency of the proposed GDS indices and the classical variance-based sensitivity indices. The MCS procedure and the Kriging surrogate method are developed to solve the proposed GDS indices. Several examples are introduced to illustrate the significance of the proposed GDS analysis technique and the effectiveness of the proposed solution.

  20. Hierarchical matrix approximation of large covariance matrices

    KAUST Repository

    Litvinenko, Alexander

    2015-01-07

    We approximate large non-structured covariance matrices in the H-matrix format with a log-linear computational cost and storage O(n log n). We compute inverse, Cholesky decomposition and determinant in H-format. As an example we consider the class of Matern covariance functions, which are very popular in spatial statistics, geostatistics, machine learning and image analysis. Applications are: kriging and optimal design

  1. Hierarchical matrix approximation of large covariance matrices

    KAUST Repository

    Litvinenko, Alexander; Genton, Marc G.; Sun, Ying; Tempone, Raul

    2015-01-01

    We approximate large non-structured covariance matrices in the H-matrix format with a log-linear computational cost and storage O(n log n). We compute inverse, Cholesky decomposition and determinant in H-format. As an example we consider the class of Matern covariance functions, which are very popular in spatial statistics, geostatistics, machine learning and image analysis. Applications are: kriging and optimal design

  2. Pu239 Cross-Section Variations Based on Experimental Uncertainties and Covariances

    Energy Technology Data Exchange (ETDEWEB)

    Sigeti, David Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Williams, Brian J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parsons, D. Kent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-18

    Algorithms and software have been developed for producing variations in plutonium-239 neutron cross sections based on experimental uncertainties and covariances. The varied cross-section sets may be produced as random samples from the multi-variate normal distribution defined by an experimental mean vector and covariance matrix, or they may be produced as Latin-Hypercube/Orthogonal-Array samples (based on the same means and covariances) for use in parametrized studies. The variations obey two classes of constraints that are obligatory for cross-section sets and which put related constraints on the mean vector and covariance matrix that detemine the sampling. Because the experimental means and covariances do not obey some of these constraints to sufficient precision, imposing the constraints requires modifying the experimental mean vector and covariance matrix. Modification is done with an algorithm based on linear algebra that minimizes changes to the means and covariances while insuring that the operations that impose the different constraints do not conflict with each other.

  3. The 5D Fully-Covariant Theory of Gravitation and Its Astrophysical Applications

    Directory of Open Access Journals (Sweden)

    Tianxi Zhang

    2014-12-01

    Full Text Available In this paper, we comprehensively review the five-dimensional (5D fully-covariant theory of gravitation developed by Zhang two decades ago and its recent applications in astrophysics and cosmology. This 5D gravity describes not only the fields, but also the matter and its motion in a 5D spacetime. The greatest advantage of this theory is that there does not exist any unknown parameter, so that we can apply it to explain astrophysical and cosmological issues by quantitatively comparing the results obtained from it with observations and to predict new effects that could not be derived from any other gravitational theories. First, the 5D covariant description of matter and its motion enabled Zhang to analytically derive the fifteenth component of the 5D energy-momentum tensor of matter ( T - 44 , which significantly distinguishes this 5D gravity from other 5D gravitational theories that usually assumed a T - 44 with an unknown parameter, called the scalar charge s, and, thus, to split the 5D covariant field equation into (4 + 1 splitting form as the gravitational, electromagnetic, and scalar field equations. The gravitational field equation turns into the 4D Einstein’s field equation of general relativity if the scalar field is equal to unity. Then, Zhang solved the field equations and obtained an exact static spherically-symmetric external solution of the gravitational, electromagnetic and scalar fields, in which all integral constants were completely determined with a perfect set of simple numbers and parameters that only depend on the mass and electric charge of the matter, by comparing with the obtained weak internal solution of the fields at a large radial distance. In the Einstein frame, the exact field solution obtained from the 5D fully-covariant theory of gravitation reduces to the Schwarzschild solution when the matter is electrically neutral and the fields are weak in strength. This guarantees that the four fundamental tests (light

  4. A scale invariant covariance structure on jet space

    DEFF Research Database (Denmark)

    Pedersen, Kim Steenstrup; Loog, Marco; Markussen, Bo

    2005-01-01

    This paper considers scale invariance of statistical image models. We study statistical scale invariance of the covariance structure of jet space under scale space blurring and derive the necessary structure and conditions of the jet covariance matrix in order for it to be scale invariant. As par...

  5. The completed Management Information System for the Monterey Navy Flying Club.

    OpenAIRE

    Graham, James M.

    1987-01-01

    Approved for public release; distribution in unlimited. This thesis provides a completed Management Information System for the Monterey Navy Flying Club. The software package was designed to operate upon an IBM PC-XT or PC-AT or 100% compatible microcomputer wjiich has 384K of main memory. Specific hardware requirements are discussed in chapter one. This software package supplies the necessary tools for the club manager to maintain all club records and generate required a...

  6. Covarient quantization of heterotic strings in supersymmetric chiral boson formulation

    International Nuclear Information System (INIS)

    Yu, F.

    1992-01-01

    This dissertation presents the covariant supersymmetric chiral boson formulation of the heterotic strings. The main feature of this formulation is the covariant quantization of the so-called leftons and rightons -- the (1,0) supersymmetric generalizations of the world-sheet chiral bosons -- that constitute basic building blocks of general heterotic-type string models. Although the (Neveu-Schwarz-Ramond or Green-Schwarz) heterotic strings provide the most realistic string models, their covariant quantization, with the widely-used Siegel formalism, has never been rigorously carried out. It is clarified in this dissertation that the covariant Siegel formalism is pathological upon quantization. As a test, a general classical covariant (NSR) heterotic string action that has the Siegel symmetry is constructed in arbitrary curved space-time coupled to (1,0) world-sheet super-gravity. In the light-cone gauge quantization, the critical dimensions are derived for such an action with leftons and rightons compactified on group manifolds G L x G R . The covariant quantization of this action does not agree with the physical results in the light-cone gauge quantization. This dissertation establishes a new formalism for the covariant quantization of heterotic strings. The desired consistent covariant path integral quantization of supersymmetric chiral bosons, and thus the general (NSR) heterotic-type strings with leftons and rightons compactified on torus circle-times d L S 1 x circle-times d R S 1 are carried out. An infinite set of auxiliary (1,0) scalar superfields is introduced to convert the second-class chiral constraint into first-class ones. The covariant gauge-fixed action has an extended BRST symmetry described by the graded algebra GL(1/1). A regularization respecting this symmetry is proposed to deal with the contributions of the infinite towers of auxiliary fields and associated ghosts

  7. Covariance of time-ordered products implies local commutativity of fields

    International Nuclear Information System (INIS)

    Greenberg, O.W.

    2006-01-01

    We formulate Lorentz covariance of a quantum field theory in terms of covariance of time-ordered products (or other Green's functions). This formulation of Lorentz covariance implies spacelike local commutativity or anticommutativity of fields, sometimes called microscopic causality or microcausality. With this formulation microcausality does not have to be taken as a separate assumption

  8. Noncommutative Gauge Theory with Covariant Star Product

    International Nuclear Information System (INIS)

    Zet, G.

    2010-01-01

    We present a noncommutative gauge theory with covariant star product on a space-time with torsion. In order to obtain the covariant star product one imposes some restrictions on the connection of the space-time. Then, a noncommutative gauge theory is developed applying this product to the case of differential forms. Some comments on the advantages of using a space-time with torsion to describe the gravitational field are also given.

  9. Covariance fitting of highly-correlated data in lattice QCD

    Science.gov (United States)

    Yoon, Boram; Jang, Yong-Chull; Jung, Chulwoo; Lee, Weonjong

    2013-07-01

    We address a frequently-asked question on the covariance fitting of highly-correlated data such as our B K data based on the SU(2) staggered chiral perturbation theory. Basically, the essence of the problem is that we do not have a fitting function accurate enough to fit extremely precise data. When eigenvalues of the covariance matrix are small, even a tiny error in the fitting function yields a large chi-square value and spoils the fitting procedure. We have applied a number of prescriptions available in the market, such as the cut-off method, modified covariance matrix method, and Bayesian method. We also propose a brand new method, the eigenmode shift (ES) method, which allows a full covariance fitting without modifying the covariance matrix at all. We provide a pedagogical example of data analysis in which the cut-off method manifestly fails in fitting, but the rest work well. In our case of the B K fitting, the diagonal approximation, the cut-off method, the ES method, and the Bayesian method work reasonably well in an engineering sense. However, interpreting the meaning of χ 2 is easier in the case of the ES method and the Bayesian method in a theoretical sense aesthetically. Hence, the ES method can be a useful alternative optional tool to check the systematic error caused by the covariance fitting procedure.

  10. Flexible Bayesian Dynamic Modeling of Covariance and Correlation Matrices

    KAUST Repository

    Lan, Shiwei; Holbrook, Andrew; Fortin, Norbert J.; Ombao, Hernando; Shahbaba, Babak

    2017-01-01

    Modeling covariance (and correlation) matrices is a challenging problem due to the large dimensionality and positive-definiteness constraint. In this paper, we propose a novel Bayesian framework based on decomposing the covariance matrix

  11. Matérn-based nonstationary cross-covariance models for global processes

    KAUST Repository

    Jun, Mikyoung

    2014-01-01

    -covariance models, based on the Matérn covariance model class, that are suitable for describing prominent nonstationary characteristics of the global processes. In particular, we seek nonstationary versions of Matérn covariance models whose smoothness parameters

  12. Fermionic covariant prolongation structure theory for supernonlinear evolution equation

    International Nuclear Information System (INIS)

    Cheng Jipeng; Wang Shikun; Wu Ke; Zhao Weizhong

    2010-01-01

    We investigate the superprincipal bundle and its associated superbundle. The super(nonlinear)connection on the superfiber bundle is constructed. Then by means of the connection theory, we establish the fermionic covariant prolongation structure theory of the supernonlinear evolution equation. In this geometry theory, the fermionic covariant fundamental equations determining the prolongation structure are presented. As an example, the supernonlinear Schroedinger equation is analyzed in the framework of this fermionic covariant prolongation structure theory. We obtain its Lax pairs and Baecklund transformation.

  13. Mixed-Poisson Point Process with Partially-Observed Covariates: Ecological Momentary Assessment of Smoking.

    Science.gov (United States)

    Neustifter, Benjamin; Rathbun, Stephen L; Shiffman, Saul

    2012-01-01

    Ecological Momentary Assessment is an emerging method of data collection in behavioral research that may be used to capture the times of repeated behavioral events on electronic devices, and information on subjects' psychological states through the electronic administration of questionnaires at times selected from a probability-based design as well as the event times. A method for fitting a mixed Poisson point process model is proposed for the impact of partially-observed, time-varying covariates on the timing of repeated behavioral events. A random frailty is included in the point-process intensity to describe variation among subjects in baseline rates of event occurrence. Covariate coefficients are estimated using estimating equations constructed by replacing the integrated intensity in the Poisson score equations with a design-unbiased estimator. An estimator is also proposed for the variance of the random frailties. Our estimators are robust in the sense that no model assumptions are made regarding the distribution of the time-varying covariates or the distribution of the random effects. However, subject effects are estimated under gamma frailties using an approximate hierarchical likelihood. The proposed approach is illustrated using smoking data.

  14. On Galilean covariant quantum mechanics

    International Nuclear Information System (INIS)

    Horzela, A.; Kapuscik, E.; Kempczynski, J.; Joint Inst. for Nuclear Research, Dubna

    1991-08-01

    Formalism exhibiting the Galilean covariance of wave mechanics is proposed. A new notion of quantum mechanical forces is introduced. The formalism is illustrated on the example of the harmonic oscillator. (author)

  15. Astrophysical tests of scale-covariant gravity theories

    International Nuclear Information System (INIS)

    Mansfield, V.N.; Malin, S.

    1980-01-01

    Starting from the most general form of the conservation laws in scale-covariant gravitation theory, a conservation of energy equation appropriate for stars is derived. Applications to white dwarfs and neutron stars reveal serious difficulties for some choices of gauge that have been frequently employed in the literature on scale-covariant gravity. We also show how to restrict some of the possible gauges that result from theories which are independent of the Large Numbers Hypothesis

  16. Covariant phase difference observables in quantum mechanics

    International Nuclear Information System (INIS)

    Heinonen, Teiko; Lahti, Pekka; Pellonpaeae, Juha-Pekka

    2003-01-01

    Covariant phase difference observables are determined in two different ways, by a direct computation and by a group theoretical method. A characterization of phase difference observables which can be expressed as the difference of two phase observables is given. The classical limits of such phase difference observables are determined and the Pegg-Barnett phase difference distribution is obtained from the phase difference representation. The relation of Ban's theory to the covariant phase theories is exhibited

  17. Directional gamma sensing from covariance processing of inter-detector Compton crosstalk energy asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Trainham, R., E-mail: trainhcp@nv.doe.gov; Tinsley, J. [Special Technologies Laboratory of National Security Technologies, LLC, 5520 Ekwill Street, Santa Barbara, California 93111 (United States)

    2014-06-15

    Energy asymmetry of inter-detector crosstalk from Compton scattering can be exploited to infer the direction to a gamma source. A covariance approach extracts the correlated crosstalk from data streams to estimate matched signals from Compton gammas split over two detectors. On a covariance map the signal appears as an asymmetric cross diagonal band with axes intercepts at the full photo-peak energy of the original gamma. The asymmetry of the crosstalk band can be processed to determine the direction to the radiation source. The technique does not require detector shadowing, masking, or coded apertures, thus sensitivity is not sacrificed to obtain the directional information. An angular precision of better than 1° of arc is possible, and processing of data streams can be done in real time with very modest computing hardware.

  18. ZZ COVFILS, 30-Group Covariance Library from ENDF/B-5 for Sensitivity Studies

    International Nuclear Information System (INIS)

    Muir, D.W.

    1997-01-01

    1 - Description of program or function: Format: ENDB/F; Number of groups: 30-Group Covariance Library; Nuclides: H-1, B-10, C, O-16, Cr, Fe, Ni, Cu, Pb. Origin: ENDF/B-V. COVFILS is a 30-Group Covariance Library. It contains neutron cross sections, and their uncertainties and correlation in multigroup form. These data can be used, in conjunction with sensitivity information, to estimate the data-related uncertainty in calculated integral quantities such as radiation-damage or heating. 2 - Method of solution: COVFILS was obtained by processing evaluations from ENDF/B-V with ERRORR module of the NJOY nuclear data processing system (LA-9303-M, Vols. 1).The group structure is the Los Alamos 30-group structure which is listed in 'File 1' of each multigroup data set in the library

  19. Phenotypic covariance at species' borders.

    Science.gov (United States)

    Caley, M Julian; Cripps, Edward; Game, Edward T

    2013-05-28

    Understanding the evolution of species limits is important in ecology, evolution, and conservation biology. Despite its likely importance in the evolution of these limits, little is known about phenotypic covariance in geographically marginal populations, and the degree to which it constrains, or facilitates, responses to selection. We investigated phenotypic covariance in morphological traits at species' borders by comparing phenotypic covariance matrices (P), including the degree of shared structure, the distribution of strengths of pair-wise correlations between traits, the degree of morphological integration of traits, and the ranks of matricies, between central and marginal populations of three species-pairs of coral reef fishes. Greater structural differences in P were observed between populations close to range margins and conspecific populations toward range centres, than between pairs of conspecific populations that were both more centrally located within their ranges. Approximately 80% of all pair-wise trait correlations within populations were greater in the north, but these differences were unrelated to the position of the sampled population with respect to the geographic range of the species. Neither the degree of morphological integration, nor ranks of P, indicated greater evolutionary constraint at range edges. Characteristics of P observed here provide no support for constraint contributing to the formation of these species' borders, but may instead reflect structural change in P caused by selection or drift, and their potential to evolve in the future.

  20. Quasi-local mass in the covariant Newtonian spacetime

    International Nuclear Information System (INIS)

    Wu, Y-H; Wang, C-H

    2008-01-01

    In general relativity, quasi-local energy-momentum expressions have been constructed from various formulae. However, the Newtonian theory of gravity gives a well-known and a unique quasi-local mass expression (surface integration). Since geometrical formulation of Newtonian gravity has been established in the covariant Newtonian spacetime, it provides a covariant approximation from relativistic to Newtonian theories. By using this approximation, we calculate the Komar integral, the Brown-York quasi-local energy and the Dougan-Mason quasi-local mass in the covariant Newtonian spacetime. It turns out that the Komar integral naturally gives the Newtonian quasi-local mass expression; however, further conditions (spherical symmetry) need to be made for Brown-York and Dougan-Mason expressions

  1. The Performance Analysis Based on SAR Sample Covariance Matrix

    Directory of Open Access Journals (Sweden)

    Esra Erten

    2012-03-01

    Full Text Available Multi-channel systems appear in several fields of application in science. In the Synthetic Aperture Radar (SAR context, multi-channel systems may refer to different domains, as multi-polarization, multi-interferometric or multi-temporal data, or even a combination of them. Due to the inherent speckle phenomenon present in SAR images, the statistical description of the data is almost mandatory for its utilization. The complex images acquired over natural media present in general zero-mean circular Gaussian characteristics. In this case, second order statistics as the multi-channel covariance matrix fully describe the data. For practical situations however, the covariance matrix has to be estimated using a limited number of samples, and this sample covariance matrix follow the complex Wishart distribution. In this context, the eigendecomposition of the multi-channel covariance matrix has been shown in different areas of high relevance regarding the physical properties of the imaged scene. Specifically, the maximum eigenvalue of the covariance matrix has been frequently used in different applications as target or change detection, estimation of the dominant scattering mechanism in polarimetric data, moving target indication, etc. In this paper, the statistical behavior of the maximum eigenvalue derived from the eigendecomposition of the sample multi-channel covariance matrix in terms of multi-channel SAR images is simplified for SAR community. Validation is performed against simulated data and examples of estimation and detection problems using the analytical expressions are as well given.

  2. 76 FR 72372 - Request for Comments on Eliciting More Complete Patent Assignment Information

    Science.gov (United States)

    2011-11-23

    ... record play an essential role in the markets of innovation. Intangible assets now comprise over 50% of... intangibles to be transacted so that they can provide profits for innovators and move technologies to their... would have more complete information about the valuable assets being generated and held by companies...

  3. ANGELO-LAMBDA, Covariance matrix interpolation and mathematical verification

    International Nuclear Information System (INIS)

    Kodeli, Ivo

    2007-01-01

    1 - Description of program or function: The codes ANGELO-2.3 and LAMBDA-2.3 are used for the interpolation of the cross section covariance data from the original to a user defined energy group structure, and for the mathematical tests of the matrices, respectively. The LAMBDA-2.3 code calculates the eigenvalues of the matrices (both for the original or the converted) and lists them accordingly into positive and negative matrices. This verification is strongly recommended before using any covariance matrices. These versions of the two codes are the extended versions of the previous codes available in the Packages NEA-1264 - ZZ-VITAMIN-J/COVA. They were specifically developed for the purposes of the OECD LWR UAM benchmark, in particular for the processing of the ZZ-SCALE5.1/COVA-44G cross section covariance matrix library retrieved from the SCALE-5.1 package. Either the original SCALE-5.1 libraries or the libraries separated into several files by Nuclides can be (in principle) processed by ANGELO/LAMBDA codes, but the use of the one-nuclide data is strongly recommended. Due to large deviations of the correlation matrix terms from unity observed in some SCALE5.1 covariance matrices, the previous more severe acceptance condition in the ANGELO2.3 code was released. In case the correlation coefficients exceed 1.0, only a warning message is issued, and coefficients are replaced by 1.0. 2 - Methods: ANGELO-2.3 interpolates the covariance matrices to a union grid using flat weighting. LAMBDA-2.3 code includes the mathematical routines to calculate the eigenvalues of the covariance matrices. 3 - Restrictions on the complexity of the problem: The algorithm used in ANGELO is relatively simple, therefore the interpolations involving energy group structure which are very different from the original (e.g. large difference in the number of energy groups) may not be accurate. In particular in the case of the MT=1018 data (fission spectra covariances) the algorithm may not be

  4. Using machine learning to assess covariate balance in matching studies.

    Science.gov (United States)

    Linden, Ariel; Yarnold, Paul R

    2016-12-01

    In order to assess the effectiveness of matching approaches in observational studies, investigators typically present summary statistics for each observed pre-intervention covariate, with the objective of showing that matching reduces the difference in means (or proportions) between groups to as close to zero as possible. In this paper, we introduce a new approach to distinguish between study groups based on their distributions of the covariates using a machine-learning algorithm called optimal discriminant analysis (ODA). Assessing covariate balance using ODA as compared with the conventional method has several key advantages: the ability to ascertain how individuals self-select based on optimal (maximum-accuracy) cut-points on the covariates; the application to any variable metric and number of groups; its insensitivity to skewed data or outliers; and the use of accuracy measures that can be widely applied to all analyses. Moreover, ODA accepts analytic weights, thereby extending the assessment of covariate balance to any study design where weights are used for covariate adjustment. By comparing the two approaches using empirical data, we are able to demonstrate that using measures of classification accuracy as balance diagnostics produces highly consistent results to those obtained via the conventional approach (in our matched-pairs example, ODA revealed a weak statistically significant relationship not detected by the conventional approach). Thus, investigators should consider ODA as a robust complement, or perhaps alternative, to the conventional approach for assessing covariate balance in matching studies. © 2016 John Wiley & Sons, Ltd.

  5. Comparison of ecosystem water flux measured with the Eddy covariance- and the direct xylem sap flux method in a mountainous forest

    Energy Technology Data Exchange (ETDEWEB)

    Stefanicki, G; Geissbuehler, P; Siegwolf, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The Eddy covariance technique allows to measure different components of turbulent air fluxes, including the flow of water vapour. Sap flux measurements determine directly the water flow in tree stems. We compared the water flux just above the crowns of trees in a forest by the technique of Eddy covariance and the water flux by the xylem sap flux method. These two completely different approaches showed a good qualitative correspondence. The correlation coefficient is 0.8. With an estimation of the crown diameter of the measured tree we also find a very good quantitative agreement. (author) 3 figs., 5 refs.

  6. Covariance and correlation estimation in electron-density maps.

    Science.gov (United States)

    Altomare, Angela; Cuocci, Corrado; Giacovazzo, Carmelo; Moliterni, Anna; Rizzi, Rosanna

    2012-03-01

    Quite recently two papers have been published [Giacovazzo & Mazzone (2011). Acta Cryst. A67, 210-218; Giacovazzo et al. (2011). Acta Cryst. A67, 368-382] which calculate the variance in any point of an electron-density map at any stage of the phasing process. The main aim of the papers was to associate a standard deviation to each pixel of the map, in order to obtain a better estimate of the map reliability. This paper deals with the covariance estimate between points of an electron-density map in any space group, centrosymmetric or non-centrosymmetric, no matter the correlation between the model and target structures. The aim is as follows: to verify if the electron density in one point of the map is amplified or depressed as an effect of the electron density in one or more other points of the map. High values of the covariances are usually connected with undesired features of the map. The phases are the primitive random variables of our probabilistic model; the covariance changes with the quality of the model and therefore with the quality of the phases. The conclusive formulas show that the covariance is also influenced by the Patterson map. Uncertainty on measurements may influence the covariance, particularly in the final stages of the structure refinement; a general formula is obtained taking into account both phase and measurement uncertainty, valid at any stage of the crystal structure solution.

  7. Inverse modeling of the terrestrial carbon flux in China with flux covariance among inverted regions

    Science.gov (United States)

    Wang, H.; Jiang, F.; Chen, J. M.; Ju, W.; Wang, H.

    2011-12-01

    Quantitative understanding of the role of ocean and terrestrial biosphere in the global carbon cycle, their response and feedback to climate change is required for the future projection of the global climate. China has the largest amount of anthropogenic CO2 emission, diverse terrestrial ecosystems and an unprecedented rate of urbanization. Thus information on spatial and temporal distributions of the terrestrial carbon flux in China is of great importance in understanding the global carbon cycle. We developed a nested inversion with focus in China. Based on Transcom 22 regions for the globe, we divide China and its neighboring countries into 17 regions, making 39 regions in total for the globe. A Bayesian synthesis inversion is made to estimate the terrestrial carbon flux based on GlobalView CO2 data. In the inversion, GEOS-Chem is used as the transport model to develop the transport matrix. A terrestrial ecosystem model named BEPS is used to produce the prior surface flux to constrain the inversion. However, the sparseness of available observation stations in Asia poses a challenge to the inversion for the 17 small regions. To obtain additional constraint on the inversion, a prior flux covariance matrix is constructed using the BEPS model through analyzing the correlation in the net carbon flux among regions under variable climate conditions. The use of the covariance among different regions in the inversion effectively extends the information content of CO2 observations to more regions. The carbon flux over the 39 land and ocean regions are inverted for the period from 2004 to 2009. In order to investigate the impact of introducing the covariance matrix with non-zero off-diagonal values to the inversion, the inverted terrestrial carbon flux over China is evaluated against ChinaFlux eddy-covariance observations after applying an upscaling methodology.

  8. Covariances for neutron cross sections calculated using a regional model based on local-model fits to experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Guenther, P.T.

    1983-11-01

    We suggest a procedure for estimating uncertainties in neutron cross sections calculated with a nuclear model descriptive of a specific mass region. It applies standard error propagation techniques, using a model-parameter covariance matrix. Generally, available codes do not generate covariance information in conjunction with their fitting algorithms. Therefore, we resort to estimating a relative covariance matrix a posteriori from a statistical examination of the scatter of elemental parameter values about the regional representation. We numerically demonstrate our method by considering an optical-statistical model analysis of a body of total and elastic scattering data for the light fission-fragment mass region. In this example, strong uncertainty correlations emerge and they conspire to reduce estimated errors to some 50% of those obtained from a naive uncorrelated summation in quadrature. 37 references.

  9. Covariances for neutron cross sections calculated using a regional model based on local-model fits to experimental data

    International Nuclear Information System (INIS)

    Smith, D.L.; Guenther, P.T.

    1983-11-01

    We suggest a procedure for estimating uncertainties in neutron cross sections calculated with a nuclear model descriptive of a specific mass region. It applies standard error propagation techniques, using a model-parameter covariance matrix. Generally, available codes do not generate covariance information in conjunction with their fitting algorithms. Therefore, we resort to estimating a relative covariance matrix a posteriori from a statistical examination of the scatter of elemental parameter values about the regional representation. We numerically demonstrate our method by considering an optical-statistical model analysis of a body of total and elastic scattering data for the light fission-fragment mass region. In this example, strong uncertainty correlations emerge and they conspire to reduce estimated errors to some 50% of those obtained from a naive uncorrelated summation in quadrature. 37 references

  10. Portfolio management using realized covariances: Evidence from Brazil

    Directory of Open Access Journals (Sweden)

    João F. Caldeira

    2017-09-01

    Full Text Available It is often argued that intraday returns can be used to construct covariance estimates that are more accurate than those based on daily returns. However, it is still unclear whether high frequency data provide more precise covariance estimates in markets more contaminated from microstructure noise such as higher bid-ask spreads and lower liquidity. We address this question by investigating the benefits of using high frequency data in the Brazilian equities market to construct optimal minimum variance portfolios. We implement alternative realized covariance estimators based on intraday returns sampled at alternative frequencies and obtain their dynamic versions using a multivariate GARCH framework. Our evidence based on a high-dimensional data set suggests that realized covariance estimators performed significantly better from an economic point of view in comparison to standard estimators based on low-frequency (close-to-close data as they delivered less risky portfolios. Resumo: Argumenta-se frequentemente que retornos intradiários podem ser usados para construir estimativas de covariâncias mais precisas em relação àquelas obtidas com retornos diários. No entanto, ainda não está claro se os dados de alta freqüência fornecem estimativas de covariância mais precisas em mercados mais contaminados pelo ruído da microestrutura, como maiores spreads entre ofertas de compra e venda e baixa liquidez. Abordamos essa questão investigando os benefícios do uso de dados de alta freqüência no mercado de ações brasileiro através da construção de portfólios ótimos de variância mínima. Implementamos diversos estimadores de covariâncias realizadas com base em retornos intradiários amostrados em diferentes frequências e obtemos suas versões dinâmicas usando uma estrutura GARCH multivariada. Nossa evidência baseada em um conjunto de dados de alta dimensão sugere que os estimadores de covariâncias realizadas obtiveram um desempenho

  11. Effect of correlation on covariate selection in linear and nonlinear mixed effect models.

    Science.gov (United States)

    Bonate, Peter L

    2017-01-01

    The effect of correlation among covariates on covariate selection was examined with linear and nonlinear mixed effect models. Demographic covariates were extracted from the National Health and Nutrition Examination Survey III database. Concentration-time profiles were Monte Carlo simulated where only one covariate affected apparent oral clearance (CL/F). A series of univariate covariate population pharmacokinetic models was fit to the data and compared with the reduced model without covariate. The "best" covariate was identified using either the likelihood ratio test statistic or AIC. Weight and body surface area (calculated using Gehan and George equation, 1970) were highly correlated (r = 0.98). Body surface area was often selected as a better covariate than weight, sometimes as high as 1 in 5 times, when weight was the covariate used in the data generating mechanism. In a second simulation, parent drug concentration and three metabolites were simulated from a thorough QT study and used as covariates in a series of univariate linear mixed effects models of ddQTc interval prolongation. The covariate with the largest significant LRT statistic was deemed the "best" predictor. When the metabolite was formation-rate limited and only parent concentrations affected ddQTc intervals the metabolite was chosen as a better predictor as often as 1 in 5 times depending on the slope of the relationship between parent concentrations and ddQTc intervals. A correlated covariate can be chosen as being a better predictor than another covariate in a linear or nonlinear population analysis by sheer correlation These results explain why for the same drug different covariates may be identified in different analyses. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Accuracy and completeness of drug information in Wikipedia: a comparison with standard textbooks of pharmacology.

    Directory of Open Access Journals (Sweden)

    Jona Kräenbring

    Full Text Available The online resource Wikipedia is increasingly used by students for knowledge acquisition and learning. However, the lack of a formal editorial review and the heterogeneous expertise of contributors often results in skepticism by educators whether Wikipedia should be recommended to students as an information source. In this study we systematically analyzed the accuracy and completeness of drug information in the German and English language versions of Wikipedia in comparison to standard textbooks of pharmacology. In addition, references, revision history and readability were evaluated. Analysis of readability was performed using the Amstad readability index and the Erste Wiener Sachtextformel. The data on indication, mechanism of action, pharmacokinetics, adverse effects and contraindications for 100 curricular drugs were retrieved from standard German textbooks of general pharmacology and compared with the corresponding articles in the German language version of Wikipedia. Quantitative analysis revealed that accuracy of drug information in Wikipedia was 99.7% ± 0.2% when compared to the textbook data. The overall completeness of drug information in Wikipedia was 83.8 ± 1.5% (p < 0.001. Completeness varied in-between categories, and was lowest in the category "pharmacokinetics" (68.0% ± 4.2%; p < 0.001 and highest in the category "indication" (91.3% ± 2.0% when compared to the textbook data overlap. Similar results were obtained for the English language version of Wikipedia. Of the drug information missing in Wikipedia, 62.5% was rated as didactically non-relevant in a qualitative re-evaluation study. Drug articles in Wikipedia had an average of 14.6 ± 1.6 references and 262.8 ± 37.4 edits performed by 142.7 ± 17.6 editors. Both Wikipedia and textbooks samples had comparable, low readability. Our study suggests that Wikipedia is an accurate and comprehensive source of drug-related information for undergraduate medical education.

  13. Accuracy and completeness of drug information in Wikipedia: a comparison with standard textbooks of pharmacology.

    Science.gov (United States)

    Kräenbring, Jona; Monzon Penza, Tika; Gutmann, Joanna; Muehlich, Susanne; Zolk, Oliver; Wojnowski, Leszek; Maas, Renke; Engelhardt, Stefan; Sarikas, Antonio

    2014-01-01

    The online resource Wikipedia is increasingly used by students for knowledge acquisition and learning. However, the lack of a formal editorial review and the heterogeneous expertise of contributors often results in skepticism by educators whether Wikipedia should be recommended to students as an information source. In this study we systematically analyzed the accuracy and completeness of drug information in the German and English language versions of Wikipedia in comparison to standard textbooks of pharmacology. In addition, references, revision history and readability were evaluated. Analysis of readability was performed using the Amstad readability index and the Erste Wiener Sachtextformel. The data on indication, mechanism of action, pharmacokinetics, adverse effects and contraindications for 100 curricular drugs were retrieved from standard German textbooks of general pharmacology and compared with the corresponding articles in the German language version of Wikipedia. Quantitative analysis revealed that accuracy of drug information in Wikipedia was 99.7% ± 0.2% when compared to the textbook data. The overall completeness of drug information in Wikipedia was 83.8 ± 1.5% (p < 0.001). Completeness varied in-between categories, and was lowest in the category "pharmacokinetics" (68.0% ± 4.2%; p < 0.001) and highest in the category "indication" (91.3% ± 2.0%) when compared to the textbook data overlap. Similar results were obtained for the English language version of Wikipedia. Of the drug information missing in Wikipedia, 62.5% was rated as didactically non-relevant in a qualitative re-evaluation study. Drug articles in Wikipedia had an average of 14.6 ± 1.6 references and 262.8 ± 37.4 edits performed by 142.7 ± 17.6 editors. Both Wikipedia and textbooks samples had comparable, low readability. Our study suggests that Wikipedia is an accurate and comprehensive source of drug-related information for undergraduate medical education.

  14. Covariance analysis of n + 7Li data for ENDF/B-VI

    International Nuclear Information System (INIS)

    Young, P.G.

    1988-01-01

    A new covariance analysis of n/plus/ 7 Li experimental data has been completed for Version VI of ENDFB. The analysis basically updates our 1981 work for ENDFB-V.2 to include new data that has become available since that time and to incorporate cross correlations between different experiments. The bulk of the new measured data consists of some 10 new (or newly revised) tritium-production measurements involving about 70 new data points. The new analysis results in only small changes in the previous evaluation of the tritium-production cross section but significantly reduces the magnitudes of uncertainties due to the more extensive and accurate data base that was used

  15. Extended covariance data formats for the ENDF/B-VI differential data evaluation

    International Nuclear Information System (INIS)

    Peelle, R.W.; Muir, D.W.

    1988-01-01

    The ENDF/B-V included cross section covariance data, but covariances could not be encoded for all the important data types. New ENDF-6 covariance formats are outlined including those for cross-file (MF) covariances, resonance parameters over the whole range, and secondary energy and angle distributions. One ''late entry'' format encodes covariance data for cross sections that are output from model or fitting codes in terms of the model parameter covariance matrix and the tabulated derivatives of cross sections with respect to the model parameters. Another new format yields multigroup cross section variances that increase as the group width decreases. When evaluators use the new formats, the files can be processed and used for improved uncertainty propagation and data combination. 22 refs

  16. Covariance specification and estimation to improve top-down Green House Gas emission estimates

    Science.gov (United States)

    Ghosh, S.; Lopez-Coto, I.; Prasad, K.; Whetstone, J. R.

    2015-12-01

    The National Institute of Standards and Technology (NIST) operates the North-East Corridor (NEC) project and the Indianapolis Flux Experiment (INFLUX) in order to develop measurement methods to quantify sources of Greenhouse Gas (GHG) emissions as well as their uncertainties in urban domains using a top down inversion method. Top down inversion updates prior knowledge using observations in a Bayesian way. One primary consideration in a Bayesian inversion framework is the covariance structure of (1) the emission prior residuals and (2) the observation residuals (i.e. the difference between observations and model predicted observations). These covariance matrices are respectively referred to as the prior covariance matrix and the model-data mismatch covariance matrix. It is known that the choice of these covariances can have large effect on estimates. The main objective of this work is to determine the impact of different covariance models on inversion estimates and their associated uncertainties in urban domains. We use a pseudo-data Bayesian inversion framework using footprints (i.e. sensitivities of tower measurements of GHGs to surface emissions) and emission priors (based on Hestia project to quantify fossil-fuel emissions) to estimate posterior emissions using different covariance schemes. The posterior emission estimates and uncertainties are compared to the hypothetical truth. We find that, if we correctly specify spatial variability and spatio-temporal variability in prior and model-data mismatch covariances respectively, then we can compute more accurate posterior estimates. We discuss few covariance models to introduce space-time interacting mismatches along with estimation of the involved parameters. We then compare several candidate prior spatial covariance models from the Matern covariance class and estimate their parameters with specified mismatches. We find that best-fitted prior covariances are not always best in recovering the truth. To achieve

  17. Parametric number covariance in quantum chaotic spectra.

    Science.gov (United States)

    Vinayak; Kumar, Sandeep; Pandey, Akhilesh

    2016-03-01

    We study spectral parametric correlations in quantum chaotic systems and introduce the number covariance as a measure of such correlations. We derive analytic results for the classical random matrix ensembles using the binary correlation method and obtain compact expressions for the covariance. We illustrate the universality of this measure by presenting the spectral analysis of the quantum kicked rotors for the time-reversal invariant and time-reversal noninvariant cases. A local version of the parametric number variance introduced earlier is also investigated.

  18. Modular invariance and covariant loop calculus

    International Nuclear Information System (INIS)

    Petersen, J.L.; Roland, K.O.; Sidenius, J.R.

    1988-01-01

    The covariant loop calculus provides an efficient technique for computing explicit expressions for the density on moduli space corresponding to arbitrary (bosonic string) loop diagrams. Since modular invariance is not manifest, however, we carry out a detailed comparison with known explicit two- and three-loop results derived using analytic geometry (one loop is known to be okay). We establish identity to 'high' order in some moduli and exactly in others. Agreement is found as a result of various nontrivial cancellations, in part related to number theory. We feel our results provide very strong support for the correctness of the covariant loop calculus approach. (orig.)

  19. Modular invariance and covariant loop calculus

    International Nuclear Information System (INIS)

    Petersen, J.L.; Roland, K.O.; Sidenius, J.R.

    1988-01-01

    The covariant loop calculus provides and efficient technique for computing explicit expressions for the density on moduli space corresponding to arbitrary (bosonic string) loop diagrams. Since modular invariance is not manifest, however, we carry out a detailed comparison with known explicit 2- and 3- loop results derived using analytic geometry (1 loop is known to be ok). We establish identity to 'high' order in some moduli and exactly in others. Agreement is found as a result of various non-trivial cancellations, in part related to number theory. We feel our results provide very strong support for the correctness of the covariant loop calculus approach. (orig.)

  20. A covariant canonical description of Liouville field theory

    International Nuclear Information System (INIS)

    Papadopoulos, G.; Spence, B.

    1993-03-01

    This paper presents a new parametrisation of the space of solutions of Liouville field theory on a cylinder. In this parametrisation, the solutions are well-defined and manifestly real functions over all space-time and all of parameter space. It is shown that the resulting covariant phase space of the Liouville theory is diffeomorphic to the Hamiltonian one, and to the space of initial data of the theory. The Poisson brackets are derived and shown to be those of the co-tangent bundle of the loop group of the real line. Using Hamiltonian reduction, it is shown that this covariant phase space formulation of Liouville theory may also be obtained from the covariant phase space formulation of the Wess-Zumino-Witten model. 19 refs

  1. Covariance measurement in the presence of non-synchronous trading and market microstructure noise

    NARCIS (Netherlands)

    Griffin, J.E.; Oomen, R.C.A.

    2011-01-01

    This paper studies the problem of covariance estimation when prices are observed non-synchronously and contaminated by i.i.d. microstructure noise. We derive closed form expressions for the bias and variance of three popular covariance estimators, namely realised covariance, realised covariance plus

  2. Abnormalities in structural covariance of cortical gyrification in schizophrenia.

    Science.gov (United States)

    Palaniyappan, Lena; Park, Bert; Balain, Vijender; Dangi, Raj; Liddle, Peter

    2015-07-01

    The highly convoluted shape of the adult human brain results from several well-coordinated maturational events that start from embryonic development and extend through the adult life span. Disturbances in these maturational events can result in various neurological and psychiatric disorders, resulting in abnormal patterns of morphological relationship among cortical structures (structural covariance). Structural covariance can be studied using graph theory-based approaches that evaluate topological properties of brain networks. Covariance-based graph metrics allow cross-sectional study of coordinated maturational relationship among brain regions. Disrupted gyrification of focal brain regions is a consistent feature of schizophrenia. However, it is unclear if these localized disturbances result from a failure of coordinated development of brain regions in schizophrenia. We studied the structural covariance of gyrification in a sample of 41 patients with schizophrenia and 40 healthy controls by constructing gyrification-based networks using a 3-dimensional index. We found that several key regions including anterior insula and dorsolateral prefrontal cortex show increased segregation in schizophrenia, alongside reduced segregation in somato-sensory and occipital regions. Patients also showed a lack of prominence of the distributed covariance (hubness) of cingulate cortex. The abnormal segregated folding pattern in the right peri-sylvian regions (insula and fronto-temporal cortex) was associated with greater severity of illness. The study of structural covariance in cortical folding supports the presence of subtle deviation in the coordinated development of cortical convolutions in schizophrenia. The heterogeneity in the severity of schizophrenia could be explained in part by aberrant trajectories of neurodevelopment.

  3. An Empirical State Error Covariance Matrix Orbit Determination Example

    Science.gov (United States)

    Frisbee, Joseph H., Jr.

    2015-01-01

    State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. First, consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. Then it follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix of the estimate will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully include all of the errors in the state estimate. The empirical error covariance matrix is determined from a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm. It is a formally correct, empirical state error covariance matrix obtained through use of the average form of the weighted measurement residual variance performance index rather than the usual total weighted residual form. Based on its formulation, this matrix will contain the total uncertainty in the state estimate, regardless as to the source of the uncertainty and whether the source is anticipated or not. It is expected that the empirical error covariance matrix will give a better, statistical representation of the state error in poorly modeled systems or when sensor performance

  4. Ancestry informative markers and complete blood count parameters in Brazilian blood donors

    Directory of Open Access Journals (Sweden)

    Gabriela E. S. Felix

    Full Text Available A complete blood count is very useful in clinical diagnoses when reference ranges are well established for the population. Complete blood counts and allele frequencies of Ancestry Informative Markers (AIMs were analyzed in Brazilians with the aim of characterizing the hematological values of an admixed population. Positive associations were observed between gender and neutrophils, monocytes, eosinophils, erythrocytes, hemoglobin, hematocrit, MCV, MCHC and platelet counts. No significant differences were found for age, alcohol consumption, educational status, ethnicity, smoking in respect to the complete blood count values. In general, men had higher red blood cell values, while women had higher values for white blood cells and platelets. The study of the population was highly heterogeneous with mean proportions (± SE of African, European and Amerindian ancestry being 49.0 ± 3.0%, 44.0 ± 9.0% and 7.0 ± 9.0%, respectively. Amerindian ancestry showed limited contribution to the makeup of the population, but estimated ancestral proportions were statistically significant (r = 0.9838; P<0.001. These hematologic values are similar to Afro-Americans, another admixed population.

  5. Contributions to Estimation and Testing Block Covariance Structures in Multivariate Normal Models

    OpenAIRE

    Liang, Yuli

    2015-01-01

    This thesis concerns inference problems in balanced random effects models with a so-called block circular Toeplitz covariance structure. This class of covariance structures describes the dependency of some specific multivariate two-level data when both compound symmetry and circular symmetry appear simultaneously. We derive two covariance structures under two different invariance restrictions. The obtained covariance structures reflect both circularity and exchangeability present in the data....

  6. Covariance J-resolved spectroscopy: Theory and application in vivo.

    Science.gov (United States)

    Iqbal, Zohaib; Verma, Gaurav; Kumar, Anand; Thomas, M Albert

    2017-08-01

    Magnetic resonance spectroscopy (MRS) is a powerful tool capable of investigating the metabolic status of several tissues in vivo. In particular, single-voxel-based 1 H spectroscopy provides invaluable biochemical information from a volume of interest (VOI) and has therefore been used in a variety of studies. Unfortunately, typical one-dimensional MRS data suffer from severe signal overlap and thus important metabolites are difficult to distinguish. One method that is used to disentangle overlapping resonances is the two-dimensional J-resolved spectroscopy (JPRESS) experiment. Due to the long acquisition duration of the JPRESS experiment, a limited number of points are acquired in the indirect dimension, leading to poor spectral resolution along this dimension. Poor spectral resolution is problematic because proper peak assignment may be hindered, which is why the zero-filling method is often used to improve resolution as a post-processing step. However, zero-filling leads to spectral artifacts, which may affect visualization and quantitation of spectra. A novel method utilizing a covariance transformation, called covariance J-resolved spectroscopy (CovJ), was developed in order to improve spectral resolution along the indirect dimension (F 1 ). Comparison of simulated data demonstrates that peak structures remain qualitatively similar between JPRESS and the novel method along the diagonal region (F 1 = 0 Hz), whereas differences arise in the cross-peak (F 1 ≠0 Hz) regions. In addition, quantitative results of in vivo JPRESS data acquired on a 3T scanner show significant correlations (r 2 >0.86, pCOVariance Spectral Evaluation of 1 H Acquisitions using Representative prior knowledge' (Cov-SEHAR), was developed in order to quantify γ-aminobutyric acid and glutamate from the CovJ spectra. These preliminary findings indicate that the CovJ method may be used to improve spectral resolution without hindering metabolite quantitation for J-resolved spectra

  7. Sparse reduced-rank regression with covariance estimation

    KAUST Repository

    Chen, Lisha

    2014-12-08

    Improving the predicting performance of the multiple response regression compared with separate linear regressions is a challenging question. On the one hand, it is desirable to seek model parsimony when facing a large number of parameters. On the other hand, for certain applications it is necessary to take into account the general covariance structure for the errors of the regression model. We assume a reduced-rank regression model and work with the likelihood function with general error covariance to achieve both objectives. In addition we propose to select relevant variables for reduced-rank regression by using a sparsity-inducing penalty, and to estimate the error covariance matrix simultaneously by using a similar penalty on the precision matrix. We develop a numerical algorithm to solve the penalized regression problem. In a simulation study and real data analysis, the new method is compared with two recent methods for multivariate regression and exhibits competitive performance in prediction and variable selection.

  8. The covariant formulation of f ( T ) gravity

    International Nuclear Information System (INIS)

    Krššák, Martin; Saridakis, Emmanuel N

    2016-01-01

    We show that the well-known problem of frame dependence and violation of local Lorentz invariance in the usual formulation of f ( T ) gravity is a consequence of neglecting the role of spin connection. We re-formulate f ( T ) gravity starting from, instead of the ‘pure tetrad’ teleparallel gravity, the covariant teleparallel gravity, using both the tetrad and the spin connection as dynamical variables, resulting in a fully covariant, consistent, and frame-independent version of f ( T ) gravity, which does not suffer from the notorious problems of the usual, pure tetrad, f ( T ) theory. We present the method to extract solutions for the most physically important cases, such as the Minkowski, the Friedmann–Robertson–Walker (FRW) and the spherically symmetric ones. We show that in covariant f ( T ) gravity we are allowed to use an arbitrary tetrad in an arbitrary coordinate system along with the corresponding spin connection, resulting always in the same physically relevant field equations. (paper)

  9. Sparse reduced-rank regression with covariance estimation

    KAUST Repository

    Chen, Lisha; Huang, Jianhua Z.

    2014-01-01

    Improving the predicting performance of the multiple response regression compared with separate linear regressions is a challenging question. On the one hand, it is desirable to seek model parsimony when facing a large number of parameters. On the other hand, for certain applications it is necessary to take into account the general covariance structure for the errors of the regression model. We assume a reduced-rank regression model and work with the likelihood function with general error covariance to achieve both objectives. In addition we propose to select relevant variables for reduced-rank regression by using a sparsity-inducing penalty, and to estimate the error covariance matrix simultaneously by using a similar penalty on the precision matrix. We develop a numerical algorithm to solve the penalized regression problem. In a simulation study and real data analysis, the new method is compared with two recent methods for multivariate regression and exhibits competitive performance in prediction and variable selection.

  10. Conversed, gauge-covariant colour charge in Su(n)QCD

    International Nuclear Information System (INIS)

    Selikhov, A.V.

    1988-01-01

    The definition of the integral of the group tensor and the gauge-covariant differential with respect to a distant point are given in the work. A conserved covariant charge dependence on family of paths has been contracted with the help of these notions. It has been shown that the same family of paths fixes a gauge in which the covariant and noncovariant conserved currents coicide. The gauge is characterized by representation of the vector potential via field strength tensor. The possibility of connecting the choice of the family of paths with the measurement procedure is discussed. 13 refs.; 2 figs

  11. Elementary particles as representations of the covariance group in the presence of an external electromagnetic field

    International Nuclear Information System (INIS)

    Giovannini, N.

    1977-01-01

    A complete description of the projective unitary/antiunitary representations of the general covariance group for a charged (relativistic) particle moving in an external (classical), e.m. field is given. This group was derived in a previous paper, independently of any equation of motion, on the basis of some simple physical assumptions. The physical consequences of these results are then discussed and it is shown how they open some new perspectives. (Auth.)

  12. Completeness, supervenience and ontology

    International Nuclear Information System (INIS)

    Maudlin, Tim W E

    2007-01-01

    In 1935, Einstein, Podolsky and Rosen raised the issue of the completeness of the quantum description of a physical system. What they had in mind is whether or not the quantum description is informationally complete, in that all physical features of a system can be recovered from it. In a collapse theory such as the theory of Ghirardi, Rimini and Weber, the quantum wavefunction is informationally complete, and this has often been taken to suggest that according to that theory the wavefunction is all there is. If we distinguish the ontological completeness of a description from its informational completeness, we can see that the best interpretations of the GRW theory must postulate more physical ontology than just the wavefunction

  13. Completeness, supervenience and ontology

    Energy Technology Data Exchange (ETDEWEB)

    Maudlin, Tim W E [Department of Philosophy, Rutgers University, 26 Nichol Avenue, New Brunswick, NJ 08901-1411 (United States)

    2007-03-23

    In 1935, Einstein, Podolsky and Rosen raised the issue of the completeness of the quantum description of a physical system. What they had in mind is whether or not the quantum description is informationally complete, in that all physical features of a system can be recovered from it. In a collapse theory such as the theory of Ghirardi, Rimini and Weber, the quantum wavefunction is informationally complete, and this has often been taken to suggest that according to that theory the wavefunction is all there is. If we distinguish the ontological completeness of a description from its informational completeness, we can see that the best interpretations of the GRW theory must postulate more physical ontology than just the wavefunction.

  14. Altered Cerebral Blood Flow Covariance Network in Schizophrenia.

    Science.gov (United States)

    Liu, Feng; Zhuo, Chuanjun; Yu, Chunshui

    2016-01-01

    Many studies have shown abnormal cerebral blood flow (CBF) in schizophrenia; however, it remains unclear how topological properties of CBF network are altered in this disorder. Here, arterial spin labeling (ASL) MRI was employed to measure resting-state CBF in 96 schizophrenia patients and 91 healthy controls. CBF covariance network of each group was constructed by calculating across-subject CBF covariance between 90 brain regions. Graph theory was used to compare intergroup differences in global and nodal topological measures of the network. Both schizophrenia patients and healthy controls had small-world topology in CBF covariance networks, implying an optimal balance between functional segregation and integration. Compared with healthy controls, schizophrenia patients showed reduced small-worldness, normalized clustering coefficient and local efficiency of the network, suggesting a shift toward randomized network topology in schizophrenia. Furthermore, schizophrenia patients exhibited altered nodal centrality in the perceptual-, affective-, language-, and spatial-related regions, indicating functional disturbance of these systems in schizophrenia. This study demonstrated for the first time that schizophrenia patients have disrupted topological properties in CBF covariance network, which provides a new perspective (efficiency of blood flow distribution between brain regions) for understanding neural mechanisms of schizophrenia.

  15. Covariant Gauss law commutator anomaly

    International Nuclear Information System (INIS)

    Dunne, G.V.; Trugenberger, C.A.; Massachusetts Inst. of Tech., Cambridge

    1990-01-01

    Using a (fixed-time) hamiltonian formalism we derive a covariant form for the anomaly in the commutator algebra of Gauss law generators for chiral fermions interacting with a dynamical non-abelian gauge field in 3+1 dimensions. (orig.)

  16. Some remarks on estimating a covariance structure model from a sample correlation matrix

    OpenAIRE

    Maydeu Olivares, Alberto; Hernández Estrada, Adolfo

    2000-01-01

    A popular model in structural equation modeling involves a multivariate normal density with a structured covariance matrix that has been categorized according to a set of thresholds. In this setup one may estimate the covariance structure parameters from the sample tetrachoricl polychoric correlations but only if the covariance structure is scale invariant. Doing so when the covariance structure is not scale invariant results in estimating a more restricted covariance structure than the one i...

  17. Non-stationary covariance function modelling in 2D least-squares collocation

    Science.gov (United States)

    Darbeheshti, N.; Featherstone, W. E.

    2009-06-01

    Standard least-squares collocation (LSC) assumes 2D stationarity and 3D isotropy, and relies on a covariance function to account for spatial dependence in the observed data. However, the assumption that the spatial dependence is constant throughout the region of interest may sometimes be violated. Assuming a stationary covariance structure can result in over-smoothing of, e.g., the gravity field in mountains and under-smoothing in great plains. We introduce the kernel convolution method from spatial statistics for non-stationary covariance structures, and demonstrate its advantage for dealing with non-stationarity in geodetic data. We then compared stationary and non- stationary covariance functions in 2D LSC to the empirical example of gravity anomaly interpolation near the Darling Fault, Western Australia, where the field is anisotropic and non-stationary. The results with non-stationary covariance functions are better than standard LSC in terms of formal errors and cross-validation against data not used in the interpolation, demonstrating that the use of non-stationary covariance functions can improve upon standard (stationary) LSC.

  18. Matérn-based nonstationary cross-covariance models for global processes

    KAUST Repository

    Jun, Mikyoung

    2014-07-01

    Many spatial processes in environmental applications, such as climate variables and climate model errors on a global scale, exhibit complex nonstationary dependence structure, in not only their marginal covariance but also their cross-covariance. Flexible cross-covariance models for processes on a global scale are critical for an accurate description of each spatial process as well as the cross-dependences between them and also for improved predictions. We propose various ways to produce cross-covariance models, based on the Matérn covariance model class, that are suitable for describing prominent nonstationary characteristics of the global processes. In particular, we seek nonstationary versions of Matérn covariance models whose smoothness parameters vary over space, coupled with a differential operators approach for modeling large-scale nonstationarity. We compare their performance to the performance of some existing models in terms of the aic and spatial predictions in two applications: joint modeling of surface temperature and precipitation, and joint modeling of errors in climate model ensembles. © 2014 Elsevier Inc.

  19. High-dimensional covariance forecasting for short intra-day horizons

    NARCIS (Netherlands)

    Oomen, R.C.A.

    2010-01-01

    Asset return covariances at intra-day horizons are known to tend towards zero due to market microstructure effects. Thus, traders who simply scale their daily covariance forecast to match their trading horizon are likely to over-estimate the actual experienced asset dependence. In this paper, some

  20. Gaussian covariance graph models accounting for correlated marker effects in genome-wide prediction.

    Science.gov (United States)

    Martínez, C A; Khare, K; Rahman, S; Elzo, M A

    2017-10-01

    Several statistical models used in genome-wide prediction assume uncorrelated marker allele substitution effects, but it is known that these effects may be correlated. In statistics, graphical models have been identified as a useful tool for covariance estimation in high-dimensional problems and it is an area that has recently experienced a great expansion. In Gaussian covariance graph models (GCovGM), the joint distribution of a set of random variables is assumed to be Gaussian and the pattern of zeros of the covariance matrix is encoded in terms of an undirected graph G. In this study, methods adapting the theory of GCovGM to genome-wide prediction were developed (Bayes GCov, Bayes GCov-KR and Bayes GCov-H). In simulated data sets, improvements in correlation between phenotypes and predicted breeding values and accuracies of predicted breeding values were found. Our models account for correlation of marker effects and permit to accommodate general structures as opposed to models proposed in previous studies, which consider spatial correlation only. In addition, they allow incorporation of biological information in the prediction process through its use when constructing graph G, and their extension to the multi-allelic loci case is straightforward. © 2017 Blackwell Verlag GmbH.

  1. Cortisol covariation within parents of young children: Moderation by relationship aggression.

    Science.gov (United States)

    Saxbe, Darby E; Adam, Emma K; Schetter, Christine Dunkel; Guardino, Christine M; Simon, Clarissa; McKinney, Chelsea O; Shalowitz, Madeleine U

    2015-12-01

    Covariation in diurnal cortisol has been observed in several studies of cohabiting couples. In two such studies (Liu et al., 2013; Saxbe and Repetti, 2010), relationship distress was associated with stronger within-couple correlations, suggesting that couples' physiological linkage with each other may indicate problematic dyadic functioning. Although intimate partner aggression has been associated with dysregulation in women's diurnal cortisol, it has not yet been tested as a moderator of within-couple covariation. This study reports on a diverse sample of 122 parents who sampled salivary cortisol on matched days for two years following the birth of an infant. Partners showed strong positive cortisol covariation. In couples with higher levels of partner-perpetrated aggression reported by women at one year postpartum, both women and men had a flatter diurnal decrease in cortisol and stronger correlations with partners' cortisol sampled at the same timepoints. In other words, relationship aggression was linked both with indices of suboptimal cortisol rhythms in both members of the couples and with stronger within-couple covariation coefficients. These results persisted when relationship satisfaction and demographic covariates were included in the model. During some of the sampling days, some women were pregnant with a subsequent child, but pregnancy did not significantly moderate cortisol levels or within-couple covariation. The findings suggest that couples experiencing relationship aggression have both suboptimal neuroendocrine profiles and stronger covariation. Cortisol covariation is an understudied phenomenon with potential implications for couples' relationship functioning and physical health. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Reconstruction of sparse connectivity in neural networks from spike train covariances

    International Nuclear Information System (INIS)

    Pernice, Volker; Rotter, Stefan

    2013-01-01

    The inference of causation from correlation is in general highly problematic. Correspondingly, it is difficult to infer the existence of physical synaptic connections between neurons from correlations in their activity. Covariances in neural spike trains and their relation to network structure have been the subject of intense research, both experimentally and theoretically. The influence of recurrent connections on covariances can be characterized directly in linear models, where connectivity in the network is described by a matrix of linear coupling kernels. However, as indirect connections also give rise to covariances, the inverse problem of inferring network structure from covariances can generally not be solved unambiguously. Here we study to what degree this ambiguity can be resolved if the sparseness of neural networks is taken into account. To reconstruct a sparse network, we determine the minimal set of linear couplings consistent with the measured covariances by minimizing the L 1 norm of the coupling matrix under appropriate constraints. Contrary to intuition, after stochastic optimization of the coupling matrix, the resulting estimate of the underlying network is directed, despite the fact that a symmetric matrix of count covariances is used for inference. The performance of the new method is best if connections are neither exceedingly sparse, nor too dense, and it is easily applicable for networks of a few hundred nodes. Full coupling kernels can be obtained from the matrix of full covariance functions. We apply our method to networks of leaky integrate-and-fire neurons in an asynchronous–irregular state, where spike train covariances are well described by a linear model. (paper)

  3. How large are the consequences of covariate imbalance in cluster randomized trials: a simulation study with a continuous outcome and a binary covariate at the cluster level.

    Science.gov (United States)

    Moerbeek, Mirjam; van Schie, Sander

    2016-07-11

    The number of clusters in a cluster randomized trial is often low. It is therefore likely random assignment of clusters to treatment conditions results in covariate imbalance. There are no studies that quantify the consequences of covariate imbalance in cluster randomized trials on parameter and standard error bias and on power to detect treatment effects. The consequences of covariance imbalance in unadjusted and adjusted linear mixed models are investigated by means of a simulation study. The factors in this study are the degree of imbalance, the covariate effect size, the cluster size and the intraclass correlation coefficient. The covariate is binary and measured at the cluster level; the outcome is continuous and measured at the individual level. The results show covariate imbalance results in negligible parameter bias and small standard error bias in adjusted linear mixed models. Ignoring the possibility of covariate imbalance while calculating the sample size at the cluster level may result in a loss in power of at most 25 % in the adjusted linear mixed model. The results are more severe for the unadjusted linear mixed model: parameter biases up to 100 % and standard error biases up to 200 % may be observed. Power levels based on the unadjusted linear mixed model are often too low. The consequences are most severe for large clusters and/or small intraclass correlation coefficients since then the required number of clusters to achieve a desired power level is smallest. The possibility of covariate imbalance should be taken into account while calculating the sample size of a cluster randomized trial. Otherwise more sophisticated methods to randomize clusters to treatments should be used, such as stratification or balance algorithms. All relevant covariates should be carefully identified, be actually measured and included in the statistical model to avoid severe levels of parameter and standard error bias and insufficient power levels.

  4. Comparison between splines and fractional polynomials for multivariable model building with continuous covariates: a simulation study with continuous response.

    Science.gov (United States)

    Binder, Harald; Sauerbrei, Willi; Royston, Patrick

    2013-06-15

    In observational studies, many continuous or categorical covariates may be related to an outcome. Various spline-based procedures or the multivariable fractional polynomial (MFP) procedure can be used to identify important variables and functional forms for continuous covariates. This is the main aim of an explanatory model, as opposed to a model only for prediction. The type of analysis often guides the complexity of the final model. Spline-based procedures and MFP have tuning parameters for choosing the required complexity. To compare model selection approaches, we perform a simulation study in the linear regression context based on a data structure intended to reflect realistic biomedical data. We vary the sample size, variance explained and complexity parameters for model selection. We consider 15 variables. A sample size of 200 (1000) and R(2)  = 0.2 (0.8) is the scenario with the smallest (largest) amount of information. For assessing performance, we consider prediction error, correct and incorrect inclusion of covariates, qualitative measures for judging selected functional forms and further novel criteria. From limited information, a suitable explanatory model cannot be obtained. Prediction performance from all types of models is similar. With a medium amount of information, MFP performs better than splines on several criteria. MFP better recovers simpler functions, whereas splines better recover more complex functions. For a large amount of information and no local structure, MFP and the spline procedures often select similar explanatory models. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Resilience to decoherence of the macroscopic quantum superpositions generated by universally covariant optimal quantum cloning

    International Nuclear Information System (INIS)

    Spagnolo, Nicolo; Sciarrino, Fabio; De Martini, Francesco

    2010-01-01

    We show that the quantum states generated by universal optimal quantum cloning of a single photon represent a universal set of quantum superpositions resilient to decoherence. We adopt the Bures distance as a tool to investigate the persistence of quantum coherence of these quantum states. According to this analysis, the process of universal cloning realizes a class of quantum superpositions that exhibits a covariance property in lossy configuration over the complete set of polarization states in the Bloch sphere.

  6. Spatio-Temporal Audio Enhancement Based on IAA Noise Covariance Matrix Estimates

    DEFF Research Database (Denmark)

    Nørholm, Sidsel Marie; Jensen, Jesper Rindom; Christensen, Mads Græsbøll

    2014-01-01

    A method for estimating the noise covariance matrix in a mul- tichannel setup is proposed. The method is based on the iter- ative adaptive approach (IAA), which only needs short seg- ments of data to estimate the covariance matrix. Therefore, the method can be used for fast varying signals....... The method is based on an assumption of the desired signal being harmonic, which is used for estimating the noise covariance matrix from the covariance matrix of the observed signal. The noise co- variance estimate is used in the linearly constrained minimum variance (LCMV) filter and compared...

  7. application of covariance analysis to feed/ ration experimental data

    African Journals Online (AJOL)

    Prince Acheampong

    ABSTRACT. The use Analysis of Covariance (ANOCOVA) to feed/ration experimental data for birds was examined. Correlation and Regression analyses were used to adjust for the covariate – initial weight of the experimental birds. The Fisher's F statistic for the straight forward Analysis of Variance (ANOVA) showed ...

  8. A three domain covariance framework for EEG/MEG data

    NARCIS (Netherlands)

    Ros, B.P.; Bijma, F.; de Gunst, M.C.M.; de Munck, J.C.

    2015-01-01

    In this paper we introduce a covariance framework for the analysis of single subject EEG and MEG data that takes into account observed temporal stationarity on small time scales and trial-to-trial variations. We formulate a model for the covariance matrix, which is a Kronecker product of three

  9. An Empirical State Error Covariance Matrix for Batch State Estimation

    Science.gov (United States)

    Frisbee, Joseph H., Jr.

    2011-01-01

    State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. Consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. It then follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully account for the error in the state estimate. By way of a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm, it is possible to arrive at an appropriate, and formally correct, empirical state error covariance matrix. The first specific step of the method is to use the average form of the weighted measurement residual variance performance index rather than its usual total weighted residual form. Next it is helpful to interpret the solution to the normal equations as the average of a collection of sample vectors drawn from a hypothetical parent population. From here, using a standard statistical analysis approach, it directly follows as to how to determine the standard empirical state error covariance matrix. This matrix will contain the total uncertainty in the

  10. Genome-Wide Scan for Adaptive Divergence and Association with Population-Specific Covariates.

    Science.gov (United States)

    Gautier, Mathieu

    2015-12-01

    In population genomics studies, accounting for the neutral covariance structure across population allele frequencies is critical to improve the robustness of genome-wide scan approaches. Elaborating on the BayEnv model, this study investigates several modeling extensions (i) to improve the estimation accuracy of the population covariance matrix and all the related measures, (ii) to identify significantly overly differentiated SNPs based on a calibration procedure of the XtX statistics, and (iii) to consider alternative covariate models for analyses of association with population-specific covariables. In particular, the auxiliary variable model allows one to deal with multiple testing issues and, providing the relative marker positions are available, to capture some linkage disequilibrium information. A comprehensive simulation study was carried out to evaluate the performances of these different models. Also, when compared in terms of power, robustness, and computational efficiency to five other state-of-the-art genome-scan methods (BayEnv2, BayScEnv, BayScan, flk, and lfmm), the proposed approaches proved highly effective. For illustration purposes, genotyping data on 18 French cattle breeds were analyzed, leading to the identification of 13 strong signatures of selection. Among these, four (surrounding the KITLG, KIT, EDN3, and ALB genes) contained SNPs strongly associated with the piebald coloration pattern while a fifth (surrounding PLAG1) could be associated to morphological differences across the populations. Finally, analysis of Pool-Seq data from 12 populations of Littorina saxatilis living in two different ecotypes illustrates how the proposed framework might help in addressing relevant ecological issues in nonmodel species. Overall, the proposed methods define a robust Bayesian framework to characterize adaptive genetic differentiation across populations. The BayPass program implementing the different models is available at http://www1.montpellier

  11. Ultracentrifuge separative power modeling with multivariate regression using covariance matrix

    International Nuclear Information System (INIS)

    Migliavacca, Elder

    2004-01-01

    In this work, the least-squares methodology with covariance matrix is applied to determine a data curve fitting to obtain a performance function for the separative power δU of a ultracentrifuge as a function of variables that are experimentally controlled. The experimental data refer to 460 experiments on the ultracentrifugation process for uranium isotope separation. The experimental uncertainties related with these independent variables are considered in the calculation of the experimental separative power values, determining an experimental data input covariance matrix. The process variables, which significantly influence the δU values are chosen in order to give information on the ultracentrifuge behaviour when submitted to several levels of feed flow rate F, cut θ and product line pressure P p . After the model goodness-of-fit validation, a residual analysis is carried out to verify the assumed basis concerning its randomness and independence and mainly the existence of residual heteroscedasticity with any explained regression model variable. The surface curves are made relating the separative power with the control variables F, θ and P p to compare the fitted model with the experimental data and finally to calculate their optimized values. (author)

  12. Repairable system analysis in presence of covariates and random effects

    International Nuclear Information System (INIS)

    Giorgio, M.; Guida, M.; Pulcini, G.

    2014-01-01

    This paper aims to model the failure pattern of repairable systems in presence of explained and unexplained heterogeneity. The failure pattern of each system is described by a Power Law Process. Part of the heterogeneity among the patterns is explained through the use of a covariate, and the residual unexplained heterogeneity (random effects) is modeled via a joint probability distribution on the PLP parameters. The proposed approach is applied to a real set of failure time data of powertrain systems mounted on 33 buses employed in urban and suburban routes. Moreover, the joint probability distribution on the PLP parameters estimated from the data is used as an informative prior to make Bayesian inference on the future failure process of a generic system belonging to the same population and employed in an urban or suburban route under randomly chosen working conditions. - Highlights: • We describe the failure process of buses powertrain system subject to heterogeneity. • Heterogeneity due to different service types is explained by a covariate. • Random effect is modeled through a joint pdf on failure process parameters. • The powertrain reliability under new future operating conditions is estimated

  13. Paragrassmann analysis and covariant quantum algebras

    International Nuclear Information System (INIS)

    Filippov, A.T.; Isaev, A.P.; Kurdikov, A.B.; Pyatov, P.N.

    1993-01-01

    This report is devoted to the consideration from the algebraic point of view the paragrassmann algebras with one and many paragrassmann generators Θ i , Θ p+1 i = 0. We construct the paragrassmann versions of the Heisenberg algebra. For the special case, this algebra is nothing but the algebra for coordinates and derivatives considered in the context of covariant differential calculus on quantum hyperplane. The parameter of deformation q in our case is (p+1)-root of unity. Our construction is nondegenerate only for even p. Taking bilinear combinations of paragrassmann derivatives and coordinates we realize generators for the covariant quantum algebras as tensor products of (p+1) x (p+1) matrices. (orig./HSI)

  14. Remarks on Bousso's covariant entropy bound

    CERN Document Server

    Mayo, A E

    2002-01-01

    Bousso's covariant entropy bound is put to the test in the context of a non-singular cosmological solution of general relativity found by Bekenstein. Although the model complies with every assumption made in Bousso's original conjecture, the entropy bound is violated due to the occurrence of negative energy density associated with the interaction of some the matter components in the model. We demonstrate how this property allows for the test model to 'elude' a proof of Bousso's conjecture which was given recently by Flanagan, Marolf and Wald. This corroborates the view that the covariant entropy bound should be applied only to stable systems for which every matter component carries positive energy density.

  15. Group covariant protocols for quantum string commitment

    International Nuclear Information System (INIS)

    Tsurumaru, Toyohiro

    2006-01-01

    We study the security of quantum string commitment (QSC) protocols with group covariant encoding scheme. First we consider a class of QSC protocol, which is general enough to incorporate all the QSC protocols given in the preceding literatures. Then among those protocols, we consider group covariant protocols and show that the exact upperbound on the binding condition can be calculated. Next using this result, we prove that for every irreducible representation of a finite group, there always exists a corresponding nontrivial QSC protocol which reaches a level of security impossible to achieve classically

  16. More on Estimation of Banded and Banded Toeplitz Covariance Matrices

    OpenAIRE

    Berntsson, Fredrik; Ohlson, Martin

    2017-01-01

    In this paper we consider two different linear covariance structures, e.g., banded and bended Toeplitz, and how to estimate them using different methods, e.g., by minimizing different norms. One way to estimate the parameters in a linear covariance structure is to use tapering, which has been shown to be the solution to a universal least squares problem. We know that tapering not always guarantee the positive definite constraints on the estimated covariance matrix and may not be a suitable me...

  17. Covariance as input to and output from resonance analyses

    International Nuclear Information System (INIS)

    Larson, N.M.

    1992-01-01

    Accurate data analysis requires understanding of the roles played by both data and parameter covariance matrices. In this paper the entire data reduction/analysis process is examined, for neutron-induced reactions in the resonance region. Interrelationships between data and parameter covariance matrices are examined and alternative reduction/analysis methods discussed

  18. Spinors, tensors and the covariant form of Dirac's equation

    International Nuclear Information System (INIS)

    Chen, W.Q.; Cook, A.H.

    1986-01-01

    The relations between tensors and spinors are used to establish the form of the covariant derivative of a spinor, making use of the fact that certain bilinear combinations of spinors are vectors. The covariant forms of Dirac's equation are thus obtained and examples in specific coordinate systems are displayed. (author)

  19. Covariant effective action for loop quantum cosmology from order reduction

    International Nuclear Information System (INIS)

    Sotiriou, Thomas P.

    2009-01-01

    Loop quantum cosmology (LQC) seems to be predicting modified effective Friedmann equations without extra degrees of freedom. A puzzle arises if one decides to seek for a covariant effective action which would lead to the given Friedmann equation: The Einstein-Hilbert action is the only action that leads to second order field equations and, hence, there exists no covariant action which, under metric variation, leads to a modified Friedmann equation without extra degrees of freedom. It is shown that, at least for isotropic models in LQC, this issue is naturally resolved and a covariant effective action can be found if one considers higher order theories of gravity but faithfully follows effective field theory techniques. However, our analysis also raises doubts on whether a covariant description without background structures can be found for anisotropic models.

  20. Structural and Maturational Covariance in Early Childhood Brain Development.

    Science.gov (United States)

    Geng, Xiujuan; Li, Gang; Lu, Zhaohua; Gao, Wei; Wang, Li; Shen, Dinggang; Zhu, Hongtu; Gilmore, John H

    2017-03-01

    Brain structural covariance networks (SCNs) composed of regions with correlated variation are altered in neuropsychiatric disease and change with age. Little is known about the development of SCNs in early childhood, a period of rapid cortical growth. We investigated the development of structural and maturational covariance networks, including default, dorsal attention, primary visual and sensorimotor networks in a longitudinal population of 118 children after birth to 2 years old and compared them with intrinsic functional connectivity networks. We found that structural covariance of all networks exhibit strong correlations mostly limited to their seed regions. By Age 2, default and dorsal attention structural networks are much less distributed compared with their functional maps. The maturational covariance maps, however, revealed significant couplings in rates of change between distributed regions, which partially recapitulate their functional networks. The structural and maturational covariance of the primary visual and sensorimotor networks shows similar patterns to the corresponding functional networks. Results indicate that functional networks are in place prior to structural networks, that correlated structural patterns in adult may arise in part from coordinated cortical maturation, and that regional co-activation in functional networks may guide and refine the maturation of SCNs over childhood development. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Group covariance and metrical theory

    International Nuclear Information System (INIS)

    Halpern, L.

    1983-01-01

    The a priori introduction of a Lie group of transformations into a physical theory has often proved to be useful; it usually serves to describe special simplified conditions before a general theory can be worked out. Newton's assumptions of absolute space and time are examples where the Euclidian group and translation group have been introduced. These groups were extended to the Galilei group and modified in the special theory of relativity to the Poincare group to describe physics under the given conditions covariantly in the simplest way. The criticism of the a priori character leads to the formulation of the general theory of relativity. The general metric theory does not really give preference to a particular invariance group - even the principle of equivalence can be adapted to a whole family of groups. The physical laws covariantly inserted into the metric space are however adapted to the Poincare group. 8 references

  2. Transformation of covariant quark Wigner operator to noncovariant one

    International Nuclear Information System (INIS)

    Selikhov, A.V.

    1989-01-01

    The gauge in which covariant and noncovariant quark Wigner operators coincide has been found. In this gauge the representations of vector potential via field strength tensor is valid. The system of equations for the coefficients of covariant Wigner operator expansion in the basis γ-matrices algebra is obtained. 12 refs.; 3 figs

  3. Some observations on interpolating gauges and non-covariant gauges

    Indian Academy of Sciences (India)

    We discuss the viability of using interpolating gauges to define the non-covariant gauges starting from the covariant ones. We draw attention to the need for a very careful treatment of boundary condition defining term. We show that the boundary condition needed to maintain gauge-invariance as the interpolating parameter ...

  4. ARMA Cholesky Factor Models for the Covariance Matrix of Linear Models.

    Science.gov (United States)

    Lee, Keunbaik; Baek, Changryong; Daniels, Michael J

    2017-11-01

    In longitudinal studies, serial dependence of repeated outcomes must be taken into account to make correct inferences on covariate effects. As such, care must be taken in modeling the covariance matrix. However, estimation of the covariance matrix is challenging because there are many parameters in the matrix and the estimated covariance matrix should be positive definite. To overcomes these limitations, two Cholesky decomposition approaches have been proposed: modified Cholesky decomposition for autoregressive (AR) structure and moving average Cholesky decomposition for moving average (MA) structure, respectively. However, the correlations of repeated outcomes are often not captured parsimoniously using either approach separately. In this paper, we propose a class of flexible, nonstationary, heteroscedastic models that exploits the structure allowed by combining the AR and MA modeling of the covariance matrix that we denote as ARMACD. We analyze a recent lung cancer study to illustrate the power of our proposed methods.

  5. A complete graphical criterion for the adjustment formula in mediation analysis.

    Science.gov (United States)

    Shpitser, Ilya; VanderWeele, Tyler J

    2011-03-04

    Various assumptions have been used in the literature to identify natural direct and indirect effects in mediation analysis. These effects are of interest because they allow for effect decomposition of a total effect into a direct and indirect effect even in the presence of interactions or non-linear models. In this paper, we consider the relation and interpretation of various identification assumptions in terms of causal diagrams interpreted as a set of non-parametric structural equations. We show that for such causal diagrams, two sets of assumptions for identification that have been described in the literature are in fact equivalent in the sense that if either set of assumptions holds for all models inducing a particular causal diagram, then the other set of assumptions will also hold for all models inducing that diagram. We moreover build on prior work concerning a complete graphical identification criterion for covariate adjustment for total effects to provide a complete graphical criterion for using covariate adjustment to identify natural direct and indirect effects. Finally, we show that this criterion is equivalent to the two sets of independence assumptions used previously for mediation analysis.

  6. Covariant conserved currents for scalar-tensor Horndeski theory

    Science.gov (United States)

    Schmidt, J.; Bičák, J.

    2018-04-01

    The scalar-tensor theories have become popular recently in particular in connection with attempts to explain present accelerated expansion of the universe, but they have been considered as a natural extension of general relativity long time ago. The Horndeski scalar-tensor theory involving four invariantly defined Lagrangians is a natural choice since it implies field equations involving at most second derivatives. Following the formalisms of defining covariant global quantities and conservation laws for perturbations of spacetimes in standard general relativity, we extend these methods to the general Horndeski theory and find the covariant conserved currents for all four Lagrangians. The current is also constructed in the case of linear perturbations involving both metric and scalar fields. As a specific illustration, we derive a superpotential that leads to the covariantly conserved current in the Branse-Dicke theory.

  7. Covariant electrodynamics in linear media: Optical metric

    Science.gov (United States)

    Thompson, Robert T.

    2018-03-01

    While the postulate of covariance of Maxwell's equations for all inertial observers led Einstein to special relativity, it was the further demand of general covariance—form invariance under general coordinate transformations, including between accelerating frames—that led to general relativity. Several lines of inquiry over the past two decades, notably the development of metamaterial-based transformation optics, has spurred a greater interest in the role of geometry and space-time covariance for electrodynamics in ponderable media. I develop a generally covariant, coordinate-free framework for electrodynamics in general dielectric media residing in curved background space-times. In particular, I derive a relation for the spatial medium parameters measured by an arbitrary timelike observer. In terms of those medium parameters I derive an explicit expression for the pseudo-Finslerian optical metric of birefringent media and show how it reduces to a pseudo-Riemannian optical metric for nonbirefringent media. This formulation provides a basis for a unified approach to ray and congruence tracing through media in curved space-times that may smoothly vary among positively refracting, negatively refracting, and vacuum.

  8. Earth Observing System Covariance Realism Updates

    Science.gov (United States)

    Ojeda Romero, Juan A.; Miguel, Fred

    2017-01-01

    This presentation will be given at the International Earth Science Constellation Mission Operations Working Group meetings June 13-15, 2017 to discuss the Earth Observing System Covariance Realism updates.

  9. Optimal covariance selection for estimation using graphical models

    OpenAIRE

    Vichik, Sergey; Oshman, Yaakov

    2011-01-01

    We consider a problem encountered when trying to estimate a Gaussian random field using a distributed estimation approach based on Gaussian graphical models. Because of constraints imposed by estimation tools used in Gaussian graphical models, the a priori covariance of the random field is constrained to embed conditional independence constraints among a significant number of variables. The problem is, then: given the (unconstrained) a priori covariance of the random field, and the conditiona...

  10. Autism-specific covariation in perceptual performances: "g" or "p" factor?

    Science.gov (United States)

    Meilleur, Andrée-Anne S; Berthiaume, Claude; Bertone, Armando; Mottron, Laurent

    2014-01-01

    Autistic perception is characterized by atypical and sometimes exceptional performance in several low- (e.g., discrimination) and mid-level (e.g., pattern matching) tasks in both visual and auditory domains. A factor that specifically affects perceptive abilities in autistic individuals should manifest as an autism-specific association between perceptual tasks. The first purpose of this study was to explore how perceptual performances are associated within or across processing levels and/or modalities. The second purpose was to determine if general intelligence, the major factor that accounts for covariation in task performances in non-autistic individuals, equally controls perceptual abilities in autistic individuals. We asked 46 autistic individuals and 46 typically developing controls to perform four tasks measuring low- or mid-level visual or auditory processing. Intelligence was measured with the Wechsler's Intelligence Scale (FSIQ) and Raven Progressive Matrices (RPM). We conducted linear regression models to compare task performances between groups and patterns of covariation between tasks. The addition of either Wechsler's FSIQ or RPM in the regression models controlled for the effects of intelligence. In typically developing individuals, most perceptual tasks were associated with intelligence measured either by RPM or Wechsler FSIQ. The residual covariation between unimodal tasks, i.e. covariation not explained by intelligence, could be explained by a modality-specific factor. In the autistic group, residual covariation revealed the presence of a plurimodal factor specific to autism. Autistic individuals show exceptional performance in some perceptual tasks. Here, we demonstrate the existence of specific, plurimodal covariation that does not dependent on general intelligence (or "g" factor). Instead, this residual covariation is accounted for by a common perceptual process (or "p" factor), which may drive perceptual abilities differently in autistic and

  11. Autism-specific covariation in perceptual performances: "g" or "p" factor?

    Directory of Open Access Journals (Sweden)

    Andrée-Anne S Meilleur

    Full Text Available Autistic perception is characterized by atypical and sometimes exceptional performance in several low- (e.g., discrimination and mid-level (e.g., pattern matching tasks in both visual and auditory domains. A factor that specifically affects perceptive abilities in autistic individuals should manifest as an autism-specific association between perceptual tasks. The first purpose of this study was to explore how perceptual performances are associated within or across processing levels and/or modalities. The second purpose was to determine if general intelligence, the major factor that accounts for covariation in task performances in non-autistic individuals, equally controls perceptual abilities in autistic individuals.We asked 46 autistic individuals and 46 typically developing controls to perform four tasks measuring low- or mid-level visual or auditory processing. Intelligence was measured with the Wechsler's Intelligence Scale (FSIQ and Raven Progressive Matrices (RPM. We conducted linear regression models to compare task performances between groups and patterns of covariation between tasks. The addition of either Wechsler's FSIQ or RPM in the regression models controlled for the effects of intelligence.In typically developing individuals, most perceptual tasks were associated with intelligence measured either by RPM or Wechsler FSIQ. The residual covariation between unimodal tasks, i.e. covariation not explained by intelligence, could be explained by a modality-specific factor. In the autistic group, residual covariation revealed the presence of a plurimodal factor specific to autism.Autistic individuals show exceptional performance in some perceptual tasks. Here, we demonstrate the existence of specific, plurimodal covariation that does not dependent on general intelligence (or "g" factor. Instead, this residual covariation is accounted for by a common perceptual process (or "p" factor, which may drive perceptual abilities differently in

  12. Beamforming using subspace estimation from a diagonally averaged sample covariance.

    Science.gov (United States)

    Quijano, Jorge E; Zurk, Lisa M

    2017-08-01

    The potential benefit of a large-aperture sonar array for high resolution target localization is often challenged by the lack of sufficient data required for adaptive beamforming. This paper introduces a Toeplitz-constrained estimator of the clairvoyant signal covariance matrix corresponding to multiple far-field targets embedded in background isotropic noise. The estimator is obtained by averaging along subdiagonals of the sample covariance matrix, followed by covariance extrapolation using the method of maximum entropy. The sample covariance is computed from limited data snapshots, a situation commonly encountered with large-aperture arrays in environments characterized by short periods of local stationarity. Eigenvectors computed from the Toeplitz-constrained covariance are used to construct signal-subspace projector matrices, which are shown to reduce background noise and improve detection of closely spaced targets when applied to subspace beamforming. Monte Carlo simulations corresponding to increasing array aperture suggest convergence of the proposed projector to the clairvoyant signal projector, thereby outperforming the classic projector obtained from the sample eigenvectors. Beamforming performance of the proposed method is analyzed using simulated data, as well as experimental data from the Shallow Water Array Performance experiment.

  13. Flexible Bayesian Dynamic Modeling of Covariance and Correlation Matrices

    KAUST Repository

    Lan, Shiwei

    2017-11-08

    Modeling covariance (and correlation) matrices is a challenging problem due to the large dimensionality and positive-definiteness constraint. In this paper, we propose a novel Bayesian framework based on decomposing the covariance matrix into variance and correlation matrices. The highlight is that the correlations are represented as products of vectors on unit spheres. We propose a variety of distributions on spheres (e.g. the squared-Dirichlet distribution) to induce flexible prior distributions for covariance matrices that go beyond the commonly used inverse-Wishart prior. To handle the intractability of the resulting posterior, we introduce the adaptive $\\\\Delta$-Spherical Hamiltonian Monte Carlo. We also extend our structured framework to dynamic cases and introduce unit-vector Gaussian process priors for modeling the evolution of correlation among multiple time series. Using an example of Normal-Inverse-Wishart problem, a simulated periodic process, and an analysis of local field potential data (collected from the hippocampus of rats performing a complex sequence memory task), we demonstrated the validity and effectiveness of our proposed framework for (dynamic) modeling covariance and correlation matrices.

  14. Video based object representation and classification using multiple covariance matrices.

    Science.gov (United States)

    Zhang, Yurong; Liu, Quan

    2017-01-01

    Video based object recognition and classification has been widely studied in computer vision and image processing area. One main issue of this task is to develop an effective representation for video. This problem can generally be formulated as image set representation. In this paper, we present a new method called Multiple Covariance Discriminative Learning (MCDL) for image set representation and classification problem. The core idea of MCDL is to represent an image set using multiple covariance matrices with each covariance matrix representing one cluster of images. Firstly, we use the Nonnegative Matrix Factorization (NMF) method to do image clustering within each image set, and then adopt Covariance Discriminative Learning on each cluster (subset) of images. At last, we adopt KLDA and nearest neighborhood classification method for image set classification. Promising experimental results on several datasets show the effectiveness of our MCDL method.

  15. The utility of covariance of combining ability in plant breeding.

    Science.gov (United States)

    Arunachalam, V

    1976-11-01

    The definition of covariances of half- and full sibs, and hence that of variances of general and specific combining ability with regard to a quantitative character, is extended to take into account the respective covariances between a pair of characters. The interpretation of the dispersion and correlation matrices of general and specific combining ability is discussed by considering a set of single, three- and four-way crosses, made using diallel and line × tester mating systems in Pennisetum typhoides. The general implications of the concept of covariance of combining ability in plant breeding are discussed.

  16. The Lehmann--Symanzik--Zimmermann formalism for manifestly covariant quantum electrodynamics. [Gauge parameter

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, N [Kyoto Univ. (Japan). Research Inst. for Mathematical Sciences

    1974-12-01

    The Lehmann--Symanzik--Zimmermann formalism is presented for manifestly covariant quantum electrodynamics involving a gauge parameter ..cap alpha... Contrary to Kaellen's assertion, it is shown that one can consistently formulate the asymptotic condition for the electromagnetic field and construct the Fock space of asymptotic states. Except for the case of Feynman gauge (..cap alpha..=1), the formalism is somewhat complicated because of the presence of dipole ghosts, but emphasis is laid on the very existence of a consistent formalism. The completeness relation for the asymptotic states is presented so that the generalized unitarity relation can be written down. Indefinite-metric theory of a massive vector field is briefly discussed.

  17. Fast covariance estimation for innovations computed from a spatial Gibbs point process

    DEFF Research Database (Denmark)

    Coeurjolly, Jean-Francois; Rubak, Ege

    In this paper, we derive an exact formula for the covariance of two innovations computed from a spatial Gibbs point process and suggest a fast method for estimating this covariance. We show how this methodology can be used to estimate the asymptotic covariance matrix of the maximum pseudo...

  18. On the Methodology to Calculate the Covariance of Estimated Resonance Parameters

    International Nuclear Information System (INIS)

    Becker, B.; Kopecky, S.; Schillebeeckx, P.

    2015-01-01

    Principles to determine resonance parameters and their covariance from experimental data are discussed. Different methods to propagate the covariance of experimental parameters are compared. A full Bayesian statistical analysis reveals that the level to which the initial uncertainty of the experimental parameters propagates, strongly depends on the experimental conditions. For high precision data the initial uncertainties of experimental parameters, like a normalization factor, has almost no impact on the covariance of the parameters in case of thick sample measurements and conventional uncertainty propagation or full Bayesian analysis. The covariances derived from a full Bayesian analysis and least-squares fit are derived under the condition that the model describing the experimental observables is perfect. When the quality of the model can not be verified a more conservative method based on a renormalization of the covariance matrix is recommended to propagate fully the uncertainty of experimental systematic effects. Finally, neutron resonance transmission analysis is proposed as an accurate method to validate evaluated data libraries in the resolved resonance region

  19. On the Covariance of Moore-Penrose Inverses in Rings with Involution

    OpenAIRE

    Mahzoon, Hesam

    2014-01-01

    We consider the so-called covariance set of Moore-Penrose inverses in rings with an involution. We deduce some new results concerning covariance set. We will show that if $a$ is a regular element in a ${C}^{\\ast }$ -algebra, then the covariance set of $a$ is closed in the set of invertible elements (with relative topology) of ${C}^{\\ast }$ -algebra and is a cone in the ${C}^{\\ast }$ -algebra.

  20. The covariant entropy bound in gravitational collapse

    International Nuclear Information System (INIS)

    Gao, Sijie; Lemos, Jose P. S.

    2004-01-01

    We study the covariant entropy bound in the context of gravitational collapse. First, we discuss critically the heuristic arguments advanced by Bousso. Then we solve the problem through an exact model: a Tolman-Bondi dust shell collapsing into a Schwarzschild black hole. After the collapse, a new black hole with a larger mass is formed. The horizon, L, of the old black hole then terminates at the singularity. We show that the entropy crossing L does not exceed a quarter of the area of the old horizon. Therefore, the covariant entropy bound is satisfied in this process. (author)

  1. Predicting the risk of toxic blooms of golden alga from cell abundance and environmental covariates

    Science.gov (United States)

    Patino, Reynaldo; VanLandeghem, Matthew M.; Denny, Shawn

    2016-01-01

    Golden alga (Prymnesium parvum) is a toxic haptophyte that has caused considerable ecological damage to marine and inland aquatic ecosystems worldwide. Studies focused primarily on laboratory cultures have indicated that toxicity is poorly correlated with the abundance of golden alga cells. This relationship, however, has not been rigorously evaluated in the field where environmental conditions are much different. The ability to predict toxicity using readily measured environmental variables and golden alga abundance would allow managers rapid assessments of ichthyotoxicity potential without laboratory bioassay confirmation, which requires additional resources to accomplish. To assess the potential utility of these relationships, several a priori models relating lethal levels of golden alga ichthyotoxicity to golden alga abundance and environmental covariates were constructed. Model parameters were estimated using archived data from four river basins in Texas and New Mexico (Colorado, Brazos, Red, Pecos). Model predictive ability was quantified using cross-validation, sensitivity, and specificity, and the relative ranking of environmental covariate models was determined by Akaike Information Criterion values and Akaike weights. Overall, abundance was a generally good predictor of ichthyotoxicity as cross validation of golden alga abundance-only models ranged from ∼ 80% to ∼ 90% (leave-one-out cross-validation). Environmental covariates improved predictions, especially the ability to predict lethally toxic events (i.e., increased sensitivity), and top-ranked environmental covariate models differed among the four basins. These associations may be useful for monitoring as well as understanding the abiotic factors that influence toxicity during blooms.

  2. Fast Component Pursuit for Large-Scale Inverse Covariance Estimation.

    Science.gov (United States)

    Han, Lei; Zhang, Yu; Zhang, Tong

    2016-08-01

    The maximum likelihood estimation (MLE) for the Gaussian graphical model, which is also known as the inverse covariance estimation problem, has gained increasing interest recently. Most existing works assume that inverse covariance estimators contain sparse structure and then construct models with the ℓ 1 regularization. In this paper, different from existing works, we study the inverse covariance estimation problem from another perspective by efficiently modeling the low-rank structure in the inverse covariance, which is assumed to be a combination of a low-rank part and a diagonal matrix. One motivation for this assumption is that the low-rank structure is common in many applications including the climate and financial analysis, and another one is that such assumption can reduce the computational complexity when computing its inverse. Specifically, we propose an efficient COmponent Pursuit (COP) method to obtain the low-rank part, where each component can be sparse. For optimization, the COP method greedily learns a rank-one component in each iteration by maximizing the log-likelihood. Moreover, the COP algorithm enjoys several appealing properties including the existence of an efficient solution in each iteration and the theoretical guarantee on the convergence of this greedy approach. Experiments on large-scale synthetic and real-world datasets including thousands of millions variables show that the COP method is faster than the state-of-the-art techniques for the inverse covariance estimation problem when achieving comparable log-likelihood on test data.

  3. Are the invariance principles really truly Lorentz covariant?

    International Nuclear Information System (INIS)

    Arunasalam, V.

    1994-02-01

    It is shown that some sections of the invariance (or symmetry) principles such as the space reversal symmetry (or parity P) and time reversal symmetry T (of elementary particle and condensed matter physics, etc.) are not really truly Lorentz covariant. Indeed, I find that the Dirac-Wigner sense of Lorentz invariance is not in full compliance with the Einstein-Minkowski reguirements of the Lorentz covariance of all physical laws (i.e., the world space Mach principle)

  4. Under-ice eddy covariance flux measurements of heat, salt, momentum, and dissolved oxygen in an artificial sea ice pool

    DEFF Research Database (Denmark)

    Else, B. G T; Rysgaard, S.; Attard, K.

    2015-01-01

    as one possible cause of the high fluxes. Momentum fluxes showed interesting correlations with ice growth and melt but were generally higher than expected. We concluded that with the exception of the conductivity sensor, the eddy covariance system worked well, and that useful information about turbulent......Turbulent exchanges under sea ice play a controlling role in ice mass balance, ice drift, biogeochemistry, and mixed layer modification. In this study, we examined the potential to measure under-ice turbulent exchanges of heat, salt, momentum, and dissolved oxygen using eddy covariance...... in an experimental sea ice facility. Over a 15-day period in January 2013, an underwater eddy covariance system was deployed in a large (500 m3) inground concrete pool, which was filled with artificial seawater and exposed to the ambient (−5 to −30 °C) atmosphere. Turbulent exchanges were measured continuously...

  5. Covariate selection for the semiparametric additive risk model

    DEFF Research Database (Denmark)

    Martinussen, Torben; Scheike, Thomas

    2009-01-01

    This paper considers covariate selection for the additive hazards model. This model is particularly simple to study theoretically and its practical implementation has several major advantages to the similar methodology for the proportional hazards model. One complication compared...... and study their large sample properties for the situation where the number of covariates p is smaller than the number of observations. We also show that the adaptive Lasso has the oracle property. In many practical situations, it is more relevant to tackle the situation with large p compared with the number...... of observations. We do this by studying the properties of the so-called Dantzig selector in the setting of the additive risk model. Specifically, we establish a bound on how close the solution is to a true sparse signal in the case where the number of covariates is large. In a simulation study, we also compare...

  6. Nitrous oxide emissions from a beech forest floor measured by eddy covariance and soil enclosure techniques

    DEFF Research Database (Denmark)

    Pihlatie, M.; Rinne, J.; Ambus, P.

    2005-01-01

    Spring time nitrous oxide (N2O) emissions from an old beech (Fagus sylvatica L.) forest were measured with eddy covariance (EC) and chamber techniques. The aim was to obtain information on the spatial and temporal variability in N2O emissions and link the emissions to soil environmental parameters...

  7. Super-sample covariance approximations and partial sky coverage

    Science.gov (United States)

    Lacasa, Fabien; Lima, Marcos; Aguena, Michel

    2018-04-01

    Super-sample covariance (SSC) is the dominant source of statistical error on large scale structure (LSS) observables for both current and future galaxy surveys. In this work, we concentrate on the SSC of cluster counts, also known as sample variance, which is particularly useful for the self-calibration of the cluster observable-mass relation; our approach can similarly be applied to other observables, such as galaxy clustering and lensing shear. We first examined the accuracy of two analytical approximations proposed in the literature for the flat sky limit, finding that they are accurate at the 15% and 30-35% level, respectively, for covariances of counts in the same redshift bin. We then developed a harmonic expansion formalism that allows for the prediction of SSC in an arbitrary survey mask geometry, such as large sky areas of current and future surveys. We show analytically and numerically that this formalism recovers the full sky and flat sky limits present in the literature. We then present an efficient numerical implementation of the formalism, which allows fast and easy runs of covariance predictions when the survey mask is modified. We applied our method to a mask that is broadly similar to the Dark Energy Survey footprint, finding a non-negligible negative cross-z covariance, i.e. redshift bins are anti-correlated. We also examined the case of data removal from holes due to, for example bright stars, quality cuts, or systematic removals, and find that this does not have noticeable effects on the structure of the SSC matrix, only rescaling its amplitude by the effective survey area. These advances enable analytical covariances of LSS observables to be computed for current and future galaxy surveys, which cover large areas of the sky where the flat sky approximation fails.

  8. Predicting kidney graft failure using time-dependent renal function covariates

    NARCIS (Netherlands)

    de Bruijne, Mattheus H. J.; Sijpkens, Yvo W. J.; Paul, Leendert C.; Westendorp, Rudi G. J.; van Houwelingen, Hans C.; Zwinderman, Aeilko H.

    2003-01-01

    Chronic rejection and recurrent disease are the major causes of late graft failure in renal transplantation. To assess outcome, most researchers use Cox proportional hazard analysis with time-fixed covariates. We developed a model adding time-dependent renal function covariates to improve the

  9. Using Covariant Lyapunov Vectors to Understand Spatiotemporal Chaos in Fluids

    Science.gov (United States)

    Paul, Mark; Xu, Mu; Barbish, Johnathon; Mukherjee, Saikat

    2017-11-01

    The spatiotemporal chaos of fluids present many difficult and fascinating challenges. Recent progress in computing covariant Lyapunov vectors for a variety of model systems has made it possible to probe fundamental ideas from dynamical systems theory including the degree of hyperbolicity, the fractal dimension, the dimension of the inertial manifold, and the decomposition of the dynamics into a finite number of physical modes and spurious modes. We are interested in building upon insights such as these for fluid systems. We first demonstrate the power of covariant Lyapunov vectors using a system of maps on a lattice with a nonlinear coupling. We then compute the covariant Lyapunov vectors for chaotic Rayleigh-Bénard convection for experimentally accessible conditions. We show that chaotic convection is non-hyperbolic and we quantify the spatiotemporal features of the spectrum of covariant Lyapunov vectors. NSF DMS-1622299 and DARPA/DSO Models, Dynamics, and Learning (MoDyL).

  10. Lorentz covariant canonical symplectic algorithms for dynamics of charged particles

    Science.gov (United States)

    Wang, Yulei; Liu, Jian; Qin, Hong

    2016-12-01

    In this paper, the Lorentz covariance of algorithms is introduced. Under Lorentz transformation, both the form and performance of a Lorentz covariant algorithm are invariant. To acquire the advantages of symplectic algorithms and Lorentz covariance, a general procedure for constructing Lorentz covariant canonical symplectic algorithms (LCCSAs) is provided, based on which an explicit LCCSA for dynamics of relativistic charged particles is built. LCCSA possesses Lorentz invariance as well as long-term numerical accuracy and stability, due to the preservation of a discrete symplectic structure and the Lorentz symmetry of the system. For situations with time-dependent electromagnetic fields, which are difficult to handle in traditional construction procedures of symplectic algorithms, LCCSA provides a perfect explicit canonical symplectic solution by implementing the discretization in 4-spacetime. We also show that LCCSA has built-in energy-based adaptive time steps, which can optimize the computation performance when the Lorentz factor varies.

  11. Estimation of covariances of Cr and Ni neutron nuclear data in JENDL-3.2

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Keiichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Oh, Soo Youl [Korea Atomic Energy Research Institute, Taejon (Korea)

    2000-02-01

    Covariances of nuclear data have been estimated for 2 nuclides contained in JENDL-3.2. The nuclides considered are Cr and Ni, which are regarded as important for the nuclear design study of fast reactors. The physical quantities for which covariances are deduced are cross sections and the first order Legendre-polynomial coefficient for the angular distribution of elastically scattered neutrons. The covariances were estimated by using the same methodology that had been used in the JENDL-3.2 evaluation in order to keep a consistency between mean values and their covariances. The least-squares fitting code GMA was used in estimating covariances for reactions of which JENDL-3.2 cross sections had been evaluated by taking account of measurements. Covariances of nuclear model calculations were deduced by using the KALMAN system. The covariance data obtained were compiled in the ENDF-6 format, and will be put into the JENDL-3.2 Covariance File which is one of JENDL special purpose files. (author)

  12. The Prevalence and Covariates of Potential Doping Behavior in Kickboxing; Analysis Among High-Level Athletes

    Directory of Open Access Journals (Sweden)

    Sekulic Damir

    2017-10-01

    Full Text Available The official reports on doping behavior in kickboxing are alarming, but there have been no empirical studies that examined this problem directly. The aim of this study was to investigate the prevalence, gender differences and covariates of potential-doping-behavior, in kickboxing athletes. A total of 130 high-level kickboxing athletes (92 males, 21.37 ± 4.83 years of age, 8.39 ± 5.73 years of training experience; 38 women, 20.31 ± 2.94 years of age; 9.84 ± 4.74 years of training experience completed questionnaires to study covariates and potential-doping behavior. The covariates were: sport factors (i.e. experience, success, doping-related factors (i.e. opinion about penalties for doping users, number of doping testing, potential-doping-behavior, etc., sociodemographic variables, task- and ego-motivation, knowledge on sports nutrition, and knowledge on doping. Gender-based differences were established by independent t-tests, and the Mann-Whitney test. Multinomial logistic regression analyses were performed to define the relationships between covariates and a tendency toward potential-doping behavior (positive tendency – neutral – negative tendency. The potential-doping behavior was higher in those athletes who perceived kickboxing as doping contaminated sport. The more experienced kickboxers were associated with positive intention toward potential-doping behavior. Positive intention toward potential-doping behavior was lower in those who had better knowledge on sports nutrition. The task- and ego-motivation were not associated to potential-doping behavior. Because of the high potential-doping-behavior (less than 50% of athletes showed a negative tendency toward doping, and similar prevalence of potential-doping behavior between genders, this study highlights the necessity of a systematic anti-doping campaign in kickboxing. Future studies should investigate motivational variables as being potentially related to doping behavior in younger

  13. The Prevalence and Covariates of Potential Doping Behavior in Kickboxing; Analysis among High-Level Athletes

    Science.gov (United States)

    Sekulic, Damir; Zenic, Natasa; Versic, Sime; Maric, Dora; Gabrilo, Goran; Jelicic, Mario

    2017-01-01

    Abstract The official reports on doping behavior in kickboxing are alarming, but there have been no empirical studies that examined this problem directly. The aim of this study was to investigate the prevalence, gender differences and covariates of potential-doping-behavior, in kickboxing athletes. A total of 130 high-level kickboxing athletes (92 males, 21.37 ± 4.83 years of age, 8.39 ± 5.73 years of training experience; 38 women, 20.31 ± 2.94 years of age; 9.84 ± 4.74 years of training experience) completed questionnaires to study covariates and potential-doping behavior. The covariates were: sport factors (i.e. experience, success), doping-related factors (i.e. opinion about penalties for doping users, number of doping testing, potential-doping-behavior, etc.), sociodemographic variables, task- and ego-motivation, knowledge on sports nutrition, and knowledge on doping. Gender-based differences were established by independent t-tests, and the Mann-Whitney test. Multinomial logistic regression analyses were performed to define the relationships between covariates and a tendency toward potential-doping behavior (positive tendency – neutral – negative tendency). The potential-doping behavior was higher in those athletes who perceived kickboxing as doping contaminated sport. The more experienced kickboxers were associated with positive intention toward potential-doping behavior. Positive intention toward potential-doping behavior was lower in those who had better knowledge on sports nutrition. The task- and ego-motivation were not associated to potential-doping behavior. Because of the high potential-doping-behavior (less than 50% of athletes showed a negative tendency toward doping), and similar prevalence of potential-doping behavior between genders, this study highlights the necessity of a systematic anti-doping campaign in kickboxing. Future studies should investigate motivational variables as being potentially related to doping behavior in younger

  14. Uncertainty covariances in robotics applications

    International Nuclear Information System (INIS)

    Smith, D.L.

    1984-01-01

    The application of uncertainty covariance matrices in the analysis of robot trajectory errors is explored. First, relevant statistical concepts are reviewed briefly. Then, a simple, hypothetical robot model is considered to illustrate methods for error propagation and performance test data evaluation. The importance of including error correlations is emphasized

  15. Covariant Quantization with Extended BRST Symmetry

    OpenAIRE

    Geyer, B.; Gitman, D. M.; Lavrov, P. M.

    1999-01-01

    A short rewiev of covariant quantization methods based on BRST-antiBRST symmetry is given. In particular problems of correct definition of Sp(2) symmetric quantization scheme known as triplectic quantization are considered.

  16. Structure of Pioncare covariant tensor operators in quantum mechanical models

    International Nuclear Information System (INIS)

    Polyzou, W.N.; Klink, W.H.

    1988-01-01

    The structure of operators that transform covariantly in Poincare invariant quantum mechanical models is analyzed. These operators are shown to have an interaction dependence that comes from the geometry of the Poincare group. The operators can be expressed in terms of matrix elements in a complete set of eigenstates of the mass and spin operators associated with the dynamical representation of the Poincare group. The matrix elements are factored into geometrical coefficients (Clebsch--Gordan coefficients for the Poincare group) and invariant matrix elements. The geometrical coefficients are fixed by the transformation properties of the operator and the eigenvalue spectrum of the mass and spin. The invariant matrix elements, which distinguish between different operators with the same transformation properties, are given in terms of a set of invariant form factors. copyright 1988 Academic Press, Inc

  17. Quarkonia and heavy-light mesons in a covariant quark model

    Directory of Open Access Journals (Sweden)

    Leitão Sofia

    2016-01-01

    Full Text Available Preliminary calculations using the Covariant Spectator Theory (CST employed a scalar linear confining interaction and an additional constant vector potential to compute the mesonic mass spectra. In this work we generalize the confining interaction to include more general structures, in particular a vector and also a pseudoscalar part, as suggested by a recent study [1]. A one-gluon-exchange kernel is also implemented to describe the short-range part of the interaction. We solve the simplest CST approximation to the complete Bethe-Salpeter equation, the one-channel spectator equation, using a numerical technique that eliminates all singularities from the kernel. The parameters of the model are determined through a fit to the experimental pseudoscalar meson spectra, with a good agreement for both quarkonia and heavy-light states.

  18. Directional selection effects on patterns of phenotypic (co)variation in wild populations.

    Science.gov (United States)

    Assis, A P A; Patton, J L; Hubbe, A; Marroig, G

    2016-11-30

    Phenotypic (co)variation is a prerequisite for evolutionary change, and understanding how (co)variation evolves is of crucial importance to the biological sciences. Theoretical models predict that under directional selection, phenotypic (co)variation should evolve in step with the underlying adaptive landscape, increasing the degree of correlation among co-selected traits as well as the amount of genetic variance in the direction of selection. Whether either of these outcomes occurs in natural populations is an open question and thus an important gap in evolutionary theory. Here, we documented changes in the phenotypic (co)variation structure in two separate natural populations in each of two chipmunk species (Tamias alpinus and T. speciosus) undergoing directional selection. In populations where selection was strongest (those of T. alpinus), we observed changes, at least for one population, in phenotypic (co)variation that matched theoretical expectations, namely an increase of both phenotypic integration and (co)variance in the direction of selection and a re-alignment of the major axis of variation with the selection gradient. © 2016 The Author(s).

  19. Extensive set of low-fidelity cross sections covariances in fast neutron region

    International Nuclear Information System (INIS)

    Pigni, M.T.; Herman, M.; Oblozinsky, P.

    2008-01-01

    We produced a large set of neutron cross section covariances in the energy range of 5 keV - 20 MeV. The covariance matrices were calculated for 307 isotopes divided into three major regions: structural materials, fission products, and heavy nuclei. These results have been developed to provide initial, but consistent estimates of covariance data for nuclear criticality safety applications. The methodology for the determination of such covariance matrices is presented. It combines the nuclear reaction model code EMPIRE which calculates sensitivity of cross sections to nuclear reaction model parameters, and the Bayesian code KALMAN that propagates uncertainties of the model parameters to cross sections. Taking into account large number of materials, only marginal reference to experimental data was made. The covariances were derived from the perturbation of several key model parameters selected by the sensitivity analysis. These parameters refer to the optical model potential, the level densities and the strength of the pre-equilibrium emission. This work represents the first try ever to generate nuclear data covariances on such a large scale. (authors)

  20. A Robust Adaptive Unscented Kalman Filter for Nonlinear Estimation with Uncertain Noise Covariance.

    Science.gov (United States)

    Zheng, Binqi; Fu, Pengcheng; Li, Baoqing; Yuan, Xiaobing

    2018-03-07

    The Unscented Kalman filter (UKF) may suffer from performance degradation and even divergence while mismatch between the noise distribution assumed as a priori by users and the actual ones in a real nonlinear system. To resolve this problem, this paper proposes a robust adaptive UKF (RAUKF) to improve the accuracy and robustness of state estimation with uncertain noise covariance. More specifically, at each timestep, a standard UKF will be implemented first to obtain the state estimations using the new acquired measurement data. Then an online fault-detection mechanism is adopted to judge if it is necessary to update current noise covariance. If necessary, innovation-based method and residual-based method are used to calculate the estimations of current noise covariance of process and measurement, respectively. By utilizing a weighting factor, the filter will combine the last noise covariance matrices with the estimations as the new noise covariance matrices. Finally, the state estimations will be corrected according to the new noise covariance matrices and previous state estimations. Compared with the standard UKF and other adaptive UKF algorithms, RAUKF converges faster to the actual noise covariance and thus achieves a better performance in terms of robustness, accuracy, and computation for nonlinear estimation with uncertain noise covariance, which is demonstrated by the simulation results.

  1. Super-Poincare covariant canonical formulation of superparticles and Green-Schwarz superstrings

    International Nuclear Information System (INIS)

    Nissimov, E.R.; Pacheva, S.J.

    1987-11-01

    First, a new unified covariant formulation simultaneously describing both superparticles and spinning particles is proposed. In this formulation both models emerge as different gauge fixings from a more general point-particle model with larger and gauge invariance. The general model possesses covariant and functionally independent first-class constraints only. Next, the above construction is generalized to the case of Green-Schwarz (GS) superstrings. This allows straightforward application of the Batalin-Fradkin-Vilkovisky (BFV) Becchi-Rouet-Stora-Tyutin (BRST) formalism for a manifestly super-Poincare covariant canonical quantization. The corresponding BRST charge turns out to be remarkably simple and is of rank one. It is used to construct a covariant BFV Hamiltonian for the GS superstring exhibiting explicit Parisi-Sourlas OSp(1,1/2) symmetry. (author). 21 refs

  2. Phenotypic Covariation and Morphological Diversification in the Ruminant Skull.

    Science.gov (United States)

    Haber, Annat

    2016-05-01

    Differences among clades in their diversification patterns result from a combination of extrinsic and intrinsic factors. In this study, I examined the role of intrinsic factors in the morphological diversification of ruminants, in general, and in the differences between bovids and cervids, in particular. Using skull morphology, which embodies many of the adaptations that distinguish bovids and cervids, I examined 132 of the 200 extant ruminant species. As a proxy for intrinsic constraints, I quantified different aspects of the phenotypic covariation structure within species and compared them with the among-species divergence patterns, using phylogenetic comparative methods. My results show that for most species, divergence is well aligned with their phenotypic covariance matrix and that those that are better aligned have diverged further away from their ancestor. Bovids have dispersed into a wider range of directions in morphospace than cervids, and their overall disparity is higher. This difference is best explained by the lower eccentricity of bovids' within-species covariance matrices. These results are consistent with the role of intrinsic constraints in determining amount, range, and direction of dispersion and demonstrate that intrinsic constraints can influence macroevolutionary patterns even as the covariance structure evolves.

  3. Scale covariant physics: a 'quantum deformation' of classical electrodynamics

    International Nuclear Information System (INIS)

    Knoll, Yehonatan; Yavneh, Irad

    2010-01-01

    We present a deformation of classical electrodynamics, continuously depending on a 'quantum parameter', featuring manifest gauge, Poincare and scale covariance. The theory, dubbed extended charge dynamics (ECD), associates a certain length scale with each charge which, due to scale covariance, is an attribute of a solution, not a parameter of the theory. When the EM field experienced by an ECD charge is slowly varying over that length scale, the dynamics of the charge reduces to classical dynamics, its emitted radiation reduces to the familiar Lienard-Wiechert potential and the above length scale is identified as the charge's Compton length. It is conjectured that quantum mechanics describes statistical aspects of ensembles of ECD solutions, much like classical thermodynamics describes statistical aspects of ensembles of classical solutions. A unique 'remote sensing' feature of ECD, supporting that conjecture, is presented, along with an explanation for the illusion of a photon within a classical treatment of the EM field. Finally, a novel conservation law associated with the scale covariance of ECD is derived, indicating that the scale of a solution may 'drift' with time at a constant rate, much like translation covariance implies a uniform drift of the (average) position.

  4. Covariance data evaluation for experimental data

    International Nuclear Information System (INIS)

    Liu Tingjin

    1993-01-01

    Some methods and codes have been developed and utilized for covariance data evaluation of experimental data, including parameter analysis, physical analysis, Spline fitting etc.. These methods and codes can be used in many different cases

  5. Covariate Imbalance and Adjustment for Logistic Regression Analysis of Clinical Trial Data

    Science.gov (United States)

    Ciolino, Jody D.; Martin, Reneé H.; Zhao, Wenle; Jauch, Edward C.; Hill, Michael D.; Palesch, Yuko Y.

    2014-01-01

    In logistic regression analysis for binary clinical trial data, adjusted treatment effect estimates are often not equivalent to unadjusted estimates in the presence of influential covariates. This paper uses simulation to quantify the benefit of covariate adjustment in logistic regression. However, International Conference on Harmonization guidelines suggest that covariate adjustment be pre-specified. Unplanned adjusted analyses should be considered secondary. Results suggest that that if adjustment is not possible or unplanned in a logistic setting, balance in continuous covariates can alleviate some (but never all) of the shortcomings of unadjusted analyses. The case of log binomial regression is also explored. PMID:24138438

  6. Theory of Covariance Equivalent ARMAV Models of Civil Engineering Structures

    DEFF Research Database (Denmark)

    Andersen, P.; Brincker, Rune; Kirkegaard, Poul Henning

    1996-01-01

    In this paper the theoretical background for using covariance equivalent ARMAV models in modal analysis is discussed. It is shown how to obtain a covariance equivalent ARMA model for a univariate linear second order continous-time system excited by Gaussian white noise. This result is generalized...

  7. Theory of Covariance Equivalent ARMAV Models of Civil Engineering Structures

    DEFF Research Database (Denmark)

    Andersen, P.; Brincker, Rune; Kirkegaard, Poul Henning

    In this paper the theoretical background for using covariance equivalent ARMAV models in modal analysis is discussed. It is shown how to obtain a covariance equivalent ARMA model for a univariate linear second order continuous-time system excited by Gaussian white noise. This result is generalize...

  8. Validity of covariance models for the analysis of geographical variation

    DEFF Research Database (Denmark)

    Guillot, Gilles; Schilling, Rene L.; Porcu, Emilio

    2014-01-01

    1. Due to the availability of large molecular data-sets, covariance models are increasingly used to describe the structure of genetic variation as an alternative to more heavily parametrised biological models. 2. We focus here on a class of parametric covariance models that received sustained att...

  9. ADM pseudotensors, conserved quantities and covariant conservation laws in general relativity

    International Nuclear Information System (INIS)

    Fatibene, L.; Ferraris, M.; Francaviglia, M.; Lusanna, L.

    2012-01-01

    The ADM formalism is reviewed and techniques for decomposing generic components of metric, connection and curvature are obtained. These techniques will turn out to be enough to decompose not only Einstein equations but also covariant conservation laws. Then a number of independent sets of hypotheses that are sufficient (though not necessary) to obtain standard ADM quantities (and Hamiltonian) from covariant conservation laws are considered. This determines explicitly the range in which standard techniques are equivalent to covariant conserved quantities. The Schwarzschild metric in different coordinates is then considered, showing how the standard ADM quantities fail dramatically in non-Cartesian coordinates or even worse when asymptotically flatness is not manifest; while, in view of their covariance, covariant conservation laws give the correct result in all cases. - Highlights: ► In the paper ADM conserved quantities for GR are obtained from augmented conservation laws. ► Boundary conditions for this to be possible are considered and compared with the literature. ► Some different forms of Schwarzschild solutions are considered as simple examples of different boundary conditions.

  10. Robust estimation for partially linear models with large-dimensional covariates.

    Science.gov (United States)

    Zhu, LiPing; Li, RunZe; Cui, HengJian

    2013-10-01

    We are concerned with robust estimation procedures to estimate the parameters in partially linear models with large-dimensional covariates. To enhance the interpretability, we suggest implementing a noncon-cave regularization method in the robust estimation procedure to select important covariates from the linear component. We establish the consistency for both the linear and the nonlinear components when the covariate dimension diverges at the rate of [Formula: see text], where n is the sample size. We show that the robust estimate of linear component performs asymptotically as well as its oracle counterpart which assumes the baseline function and the unimportant covariates were known a priori. With a consistent estimator of the linear component, we estimate the nonparametric component by a robust local linear regression. It is proved that the robust estimate of nonlinear component performs asymptotically as well as if the linear component were known in advance. Comprehensive simulation studies are carried out and an application is presented to examine the finite-sample performance of the proposed procedures.

  11. Model-driven development of covariances for spatiotemporal environmental health assessment.

    Science.gov (United States)

    Kolovos, Alexander; Angulo, José Miguel; Modis, Konstantinos; Papantonopoulos, George; Wang, Jin-Feng; Christakos, George

    2013-01-01

    Known conceptual and technical limitations of mainstream environmental health data analysis have directed research to new avenues. The goal is to deal more efficiently with the inherent uncertainty and composite space-time heterogeneity of key attributes, account for multi-sourced knowledge bases (health models, survey data, empirical relationships etc.), and generate more accurate predictions across space-time. Based on a versatile, knowledge synthesis methodological framework, we introduce new space-time covariance functions built by integrating epidemic propagation models and we apply them in the analysis of existing flu datasets. Within the knowledge synthesis framework, the Bayesian maximum entropy theory is our method of choice for the spatiotemporal prediction of the ratio of new infectives (RNI) for a case study of flu in France. The space-time analysis is based on observations during a period of 15 weeks in 1998-1999. We present general features of the proposed covariance functions, and use these functions to explore the composite space-time RNI dependency. We then implement the findings to generate sufficiently detailed and informative maps of the RNI patterns across space and time. The predicted distributions of RNI suggest substantive relationships in accordance with the typical physiographic and climatologic features of the country.

  12. Abnormalities in Structural Covariance of Cortical Gyrification in Parkinson's Disease.

    Science.gov (United States)

    Xu, Jinping; Zhang, Jiuquan; Zhang, Jinlei; Wang, Yue; Zhang, Yanling; Wang, Jian; Li, Guanglin; Hu, Qingmao; Zhang, Yuanchao

    2017-01-01

    Although abnormal cortical morphology and connectivity between brain regions (structural covariance) have been reported in Parkinson's disease (PD), the topological organizations of large-scale structural brain networks are still poorly understood. In this study, we investigated large-scale structural brain networks in a sample of 37 PD patients and 34 healthy controls (HC) by assessing the structural covariance of cortical gyrification with local gyrification index (lGI). We demonstrated prominent small-world properties of the structural brain networks for both groups. Compared with the HC group, PD patients showed significantly increased integrated characteristic path length and integrated clustering coefficient, as well as decreased integrated global efficiency in structural brain networks. Distinct distributions of hub regions were identified between the two groups, showing more hub regions in the frontal cortex in PD patients. Moreover, the modular analyses revealed significantly decreased integrated regional efficiency in lateral Fronto-Insula-Temporal module, and increased integrated regional efficiency in Parieto-Temporal module in the PD group as compared to the HC group. In summary, our study demonstrated altered topological properties of structural networks at a global, regional and modular level in PD patients. These findings suggests that the structural networks of PD patients have a suboptimal topological organization, resulting in less effective integration of information between brain regions.

  13. Cross-covariance functions for multivariate random fields based on latent dimensions

    KAUST Repository

    Apanasovich, T. V.; Genton, M. G.

    2010-01-01

    The problem of constructing valid parametric cross-covariance functions is challenging. We propose a simple methodology, based on latent dimensions and existing covariance models for univariate random fields, to develop flexible, interpretable

  14. Analysis of covariance with pre-treatment measurements in randomized trials under the cases that covariances and post-treatment variances differ between groups.

    Science.gov (United States)

    Funatogawa, Takashi; Funatogawa, Ikuko; Shyr, Yu

    2011-05-01

    When primary endpoints of randomized trials are continuous variables, the analysis of covariance (ANCOVA) with pre-treatment measurements as a covariate is often used to compare two treatment groups. In the ANCOVA, equal slopes (coefficients of pre-treatment measurements) and equal residual variances are commonly assumed. However, random allocation guarantees only equal variances of pre-treatment measurements. Unequal covariances and variances of post-treatment measurements indicate unequal slopes and, usually, unequal residual variances. For non-normal data with unequal covariances and variances of post-treatment measurements, it is known that the ANCOVA with equal slopes and equal variances using an ordinary least-squares method provides an asymptotically normal estimator for the treatment effect. However, the asymptotic variance of the estimator differs from the variance estimated from a standard formula, and its property is unclear. Furthermore, the asymptotic properties of the ANCOVA with equal slopes and unequal variances using a generalized least-squares method are unclear. In this paper, we consider non-normal data with unequal covariances and variances of post-treatment measurements, and examine the asymptotic properties of the ANCOVA with equal slopes using the variance estimated from a standard formula. Analytically, we show that the actual type I error rate, thus the coverage, of the ANCOVA with equal variances is asymptotically at a nominal level under equal sample sizes. That of the ANCOVA with unequal variances using a generalized least-squares method is asymptotically at a nominal level, even under unequal sample sizes. In conclusion, the ANCOVA with equal slopes can be asymptotically justified under random allocation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Evaluated 182,183,184,186W Neutron Cross Sections and Covariances in the Resolved Resonance Region

    International Nuclear Information System (INIS)

    Pigni, Marco T; Leal, Luiz C

    2015-01-01

    Oak Ridge National Laboratory (ORNL) has recently completed the resonance parameter evaluation of four tungsten isotopes, i.e., 182,183,184,186 W, in the neutron energy range of thermal up to several keV. This nuclear data work was performed with support from the US Nuclear Criticality Safety Program (NCSP) in an effort to provide improved tungsten cross section and covariance data for criticality safety analyses. The evaluation methodology uses the Reich-Moore approximation of the R-matrix formalism of the code SAMMY to fit high-resolution measurements performed in 2010 and 2012 at the Geel linear accelerator facility (GELINA), as well as other experimental data sets on natural tungsten available in the EXFOR library. In the analyzed energy range, this work nearly doubles the resolved resonance region (RRR) present in the latest US nuclear data library ENDF/B-VII.1. In view of the interest in tungsten for distinct types of nuclear applications and the relatively homogeneous distribution of the isotopic tungsten - namely, 182 W(26.5%), 183 W(14.31%), 184 W(30.64%), and 186 W(28.43%) - the completion of these four evaluations represents a significant contribution to the improvement of the ENDF library. This paper presents an overview of the evaluated resonance parameters and related covariances for total and capture cross sections on the four tungsten isotopes.

  16. Multi-Group Covariance Data Generation from Continuous-Energy Monte Carlo Transport Calculations

    International Nuclear Information System (INIS)

    Lee, Dong Hyuk; Shim, Hyung Jin

    2015-01-01

    The sensitivity and uncertainty (S/U) methodology in deterministic tools has been utilized for quantifying uncertainties of nuclear design parameters induced by those of nuclear data. The S/U analyses which are based on multi-group cross sections can be conducted by an simple error propagation formula with the sensitivities of nuclear design parameters to multi-group cross sections and the covariance of multi-group cross section. The multi-group covariance data required for S/U analysis have been produced by nuclear data processing codes such as ERRORJ or PUFF from the covariance data in evaluated nuclear data files. However in the existing nuclear data processing codes, an asymptotic neutron flux energy spectrum, not the exact one, has been applied to the multi-group covariance generation since the flux spectrum is unknown before the neutron transport calculation. It can cause an inconsistency between the sensitivity profiles and the covariance data of multi-group cross section especially in resolved resonance energy region, because the sensitivities we usually use are resonance self-shielded while the multi-group cross sections produced from an asymptotic flux spectrum are infinitely-diluted. In order to calculate the multi-group covariance estimation in the ongoing MC simulation, mathematical derivations for converting the double integration equation into a single one by utilizing sampling method have been introduced along with the procedure of multi-group covariance tally

  17. Covariance-Based Measurement Selection Criterion for Gaussian-Based Algorithms

    Directory of Open Access Journals (Sweden)

    Fernando A. Auat Cheein

    2013-01-01

    Full Text Available Process modeling by means of Gaussian-based algorithms often suffers from redundant information which usually increases the estimation computational complexity without significantly improving the estimation performance. In this article, a non-arbitrary measurement selection criterion for Gaussian-based algorithms is proposed. The measurement selection criterion is based on the determination of the most significant measurement from both an estimation convergence perspective and the covariance matrix associated with the measurement. The selection criterion is independent from the nature of the measured variable. This criterion is used in conjunction with three Gaussian-based algorithms: the EIF (Extended Information Filter, the EKF (Extended Kalman Filter and the UKF (Unscented Kalman Filter. Nevertheless, the measurement selection criterion shown herein can also be applied to other Gaussian-based algorithms. Although this work is focused on environment modeling, the results shown herein can be applied to other Gaussian-based algorithm implementations. Mathematical descriptions and implementation results that validate the proposal are also included in this work.

  18. Abnormalities in structural covariance of cortical gyrification in schizophrenia

    OpenAIRE

    Palaniyappan, Lena; Park, Bert; Balain, Vijender; Dangi, Raj; Liddle, Peter

    2014-01-01

    The highly convoluted shape of the adult human brain results from several well-coordinated maturational events that start from embryonic development and extend through the adult life span. Disturbances in these maturational events can result in various neurological and psychiatric disorders, resulting in abnormal patterns of morphological relationship among cortical structures (structural covariance). Structural covariance can be studied using graph theory-based approaches that evaluate topol...

  19. A complete generalized adjustment criterion

    NARCIS (Netherlands)

    Perković, Emilija; Textor, Johannes; Kalisch, Markus; Maathuis, Marloes H.

    2015-01-01

    Covariate adjustment is a widely used approach to estimate total causal effects from observational data. Several graphical criteria have been developed in recent years to identify valid covariates for adjustment from graphical causal models. These criteria can handle multiple causes, latent

  20. The Requirement of a Positive Definite Covariance Matrix of Security Returns for Mean-Variance Portfolio Analysis: A Pedagogic Illustration

    Directory of Open Access Journals (Sweden)

    Clarence C. Y. Kwan

    2010-07-01

    Full Text Available This study considers, from a pedagogic perspective, a crucial requirement for the covariance matrix of security returns in mean-variance portfolio analysis. Although the requirement that the covariance matrix be positive definite is fundamental in modern finance, it has not received any attention in standard investment textbooks. Being unaware of the requirement could cause confusion for students over some strange portfolio results that are based on seemingly reasonable input parameters. This study considers the requirement both informally and analytically. Electronic spreadsheet tools for constrained optimization and basic matrix operations are utilized to illustrate the various concepts involved.

  1. Structural Covariance Networks in Children with Autism or ADHD.

    Science.gov (United States)

    Bethlehem, R A I; Romero-Garcia, R; Mak, E; Bullmore, E T; Baron-Cohen, S

    2017-08-01

    While autism and attention-deficit/hyperactivity disorder (ADHD) are considered distinct conditions from a diagnostic perspective, clinically they share some phenotypic features and have high comorbidity. Regardless, most studies have focused on only one condition, with considerable heterogeneity in their results. Taking a dual-condition approach might help elucidate shared and distinct neural characteristics. Graph theory was used to analyse topological properties of structural covariance networks across both conditions and relative to a neurotypical (NT; n = 87) group using data from the ABIDE (autism; n = 62) and ADHD-200 datasets (ADHD; n = 69). Regional cortical thickness was used to construct the structural covariance networks. This was analysed in a theoretical framework examining potential differences in long and short-range connectivity, with a specific focus on relation between central graph measures and cortical thickness. We found convergence between autism and ADHD, where both conditions show an overall decrease in CT covariance with increased Euclidean distance between centroids compared with a NT population. The 2 conditions also show divergence. Namely, there is less modular overlap between the 2 conditions than there is between each condition and the NT group. The ADHD group also showed reduced cortical thickness and lower degree in hub regions than the autism group. Lastly, the ADHD group also showed reduced wiring costs compared with the autism groups. Our results indicate a need for taking an integrated approach when considering highly comorbid conditions such as autism and ADHD. Furthermore, autism and ADHD both showed alterations in the relation between inter-regional covariance and centroid distance, where both groups show a steeper decline in covariance as a function of distance. The 2 groups also diverge on modular organization, cortical thickness of hub regions and wiring cost of the covariance network. Thus, on some network features the

  2. Rotational covariance and light-front current matrix elements

    International Nuclear Information System (INIS)

    Keister, B.D.

    1994-01-01

    Light-front current matrix elements for elastic scattering from hadrons with spin 1 or greater must satisfy a nontrivial constraint associated with the requirement of rotational covariance for the current operator. Using a model ρ meson as a prototype for hadronic quark models, this constraint and its implications are studied at both low and high momentum transfers. In the kinematic region appropriate for asymptotic QCD, helicity rules, together with the rotational covariance condition, yield an additional relation between the light-front current matrix elements

  3. Covariant amplitudes in Polyakov string theory

    International Nuclear Information System (INIS)

    Aoyama, H.; Dhar, A.; Namazie, M.A.

    1986-01-01

    A manifestly Lorentz-covariant and reparametrization-invariant procedure for computing string amplitudes using Polyakov's formulation is described. Both bosonic and superstring theories are dealt with. The computation of string amplitudes is greatly facilitated by this formalism. (orig.)

  4. Preparation of covariance data for the fast reactor. 2

    International Nuclear Information System (INIS)

    Shibata, Keiichi; Hasagawa, Akira

    1998-03-01

    For some isotopes important for core analysis of the fast reactor, covariance data of neutron nuclear data in the evaluated nuclear data library (JENDL-3.2) were presumed to file. Objected isotopes were 10-B, 11-B, 55-Mn, 240-Pu and 241-Pu. Physical amounts presumed on covariance were cross section, isolated and unisolated resonance parameters and first order Legendre coefficient of elastic scattering angle distribution. Presumption of the covariance was conducted in accordance with the data estimation method of JENDL-3.2 as possible. In other ward, when the estimated value was based on the experimental one, error of the experimental value was calculated, and when based on the calculated value, error of the calculated one was obtained. Their estimated results were prepared with ENDF-6 format. (G.K.)

  5. Maintainability analysis considering time-dependent and time-independent covariates

    International Nuclear Information System (INIS)

    Barabadi, Abbas; Barabady, Javad; Markeset, Tore

    2011-01-01

    Traditional parametric methods for assessing maintainability most often only consider time to repair (TTR) as a single explanatory variable. However, to predict availability more precisely for high availability systems, a better model is needed to quantify the effect of operational environment on maintainability. The proportional repair model (PRM), which is developed based on proportional hazard model (PHM), may be used to analyze maintainability in the present of covariates. In the PRM, the effect of covariates is considered to be time independent. However this assumption may not be valid for some situations. The aim of this paper is to develop the Cox regression model and its extension in the presence of time-dependent covariates for determining maintainability. A simple case study is used to demonstrate how the model can be applied in a real case.

  6. Spatial implications of covariate adjustment on patterns of risk

    DEFF Research Database (Denmark)

    Sabel, Clive Eric; Wilson, Jeff Gaines; Kingham, Simon

    2007-01-01

    Epidemiological studies that examine the relationship between environmental exposures and health often address other determinants of health that may influence the relationship being studied by adjusting for these factors as covariates. While disease surveillance methods routinely control...... for covariates such as deprivation, there has been limited investigative work on the spatial movement of risk at the intraurban scale due to the adjustment. It is important that the nature of any spatial relocation be well understood as a relocation to areas of increased risk may also introduce additional...... localised factors that influence the exposure-response relationship. This paper examines the spatial patterns of relative risk and clusters of hospitalisations based on an illustrative small-area example from Christchurch, New Zealand. A four-stage test of the spatial relocation effects of covariate...

  7. Fitting direct covariance structures by the MSTRUCT modeling language of the CALIS procedure.

    Science.gov (United States)

    Yung, Yiu-Fai; Browne, Michael W; Zhang, Wei

    2015-02-01

    This paper demonstrates the usefulness and flexibility of the general structural equation modelling (SEM) approach to fitting direct covariance patterns or structures (as opposed to fitting implied covariance structures from functional relationships among variables). In particular, the MSTRUCT modelling language (or syntax) of the CALIS procedure (SAS/STAT version 9.22 or later: SAS Institute, 2010) is used to illustrate the SEM approach. The MSTRUCT modelling language supports a direct covariance pattern specification of each covariance element. It also supports the input of additional independent and dependent parameters. Model tests, fit statistics, estimates, and their standard errors are then produced under the general SEM framework. By using numerical and computational examples, the following tests of basic covariance patterns are illustrated: sphericity, compound symmetry, and multiple-group covariance patterns. Specification and testing of two complex correlation structures, the circumplex pattern and the composite direct product models with or without composite errors and scales, are also illustrated by the MSTRUCT syntax. It is concluded that the SEM approach offers a general and flexible modelling of direct covariance and correlation patterns. In conjunction with the use of SAS macros, the MSTRUCT syntax provides an easy-to-use interface for specifying and fitting complex covariance and correlation structures, even when the number of variables or parameters becomes large. © 2014 The British Psychological Society.

  8. Covariance matrices and applications to the field of nuclear data

    International Nuclear Information System (INIS)

    Smith, D.L.

    1981-11-01

    A student's introduction to covariance error analysis and least-squares evaluation of data is provided. It is shown that the basic formulas used in error propagation can be derived from a consideration of the geometry of curvilinear coordinates. Procedures for deriving covariances for scaler and vector functions of several variables are presented. Proper methods for reporting experimental errors and for deriving covariance matrices from these errors are indicated. The generalized least-squares method for evaluating experimental data is described. Finally, the use of least-squares techniques in data fitting applications is discussed. Specific examples of the various procedures are presented to clarify the concepts

  9. Estimation of covariance matrix on the experimental data for nuclear data evaluation

    International Nuclear Information System (INIS)

    Murata, T.

    1985-01-01

    In order to evaluate fission and capture cross sections of some U and Pu isotopes for JENDL-3, we have a plan for evaluating them simultaneously with a least-squares method. For the simultaneous evaluation, the covariance matrix is required for each experimental data set. In the present work, we have studied the procedures for deriving the covariance matrix from the error data given in the experimental papers. The covariance matrices were obtained using the partial errors and estimated correlation coefficients between the same type partial errors for different neutron energy. Some examples of the covariance matrix estimation are explained and the preliminary results of the simultaneous evaluation are presented. (author)

  10. Latino College Completion: Hawaii

    Science.gov (United States)

    Excelencia in Education (NJ1), 2012

    2012-01-01

    In 2009, Excelencia in Education launched the Ensuring America's Future initiative to inform, organize, and engage leaders in a tactical plan to increase Latino college completion. An executive summary of Latino College Completion in 50 states synthesizes information on 50 state factsheets and builds on the national benchmarking guide. Each…

  11. Latino College Completion: Pennsylvania

    Science.gov (United States)

    Excelencia in Education (NJ1), 2012

    2012-01-01

    In 2009, Excelencia in Education launched the Ensuring America's Future initiative to inform, organize, and engage leaders in a tactical plan to increase Latino college completion. An executive summary of Latino College Completion in 50 states synthesizes information on 50 state factsheets and builds on the national benchmarking guide. Each…

  12. Covariance expressions for eigenvalue and eigenvector problems

    Science.gov (United States)

    Liounis, Andrew J.

    There are a number of important scientific and engineering problems whose solutions take the form of an eigenvalue--eigenvector problem. Some notable examples include solutions to linear systems of ordinary differential equations, controllability of linear systems, finite element analysis, chemical kinetics, fitting ellipses to noisy data, and optimal estimation of attitude from unit vectors. In many of these problems, having knowledge of the eigenvalue and eigenvector Jacobians is either necessary or is nearly as important as having the solution itself. For instance, Jacobians are necessary to find the uncertainty in a computed eigenvalue or eigenvector estimate. This uncertainty, which is usually represented as a covariance matrix, has been well studied for problems similar to the eigenvalue and eigenvector problem, such as singular value decomposition. There has been substantially less research on the covariance of an optimal estimate originating from an eigenvalue-eigenvector problem. In this thesis we develop two general expressions for the Jacobians of eigenvalues and eigenvectors with respect to the elements of their parent matrix. The expressions developed make use of only the parent matrix and the eigenvalue and eigenvector pair under consideration. In addition, they are applicable to any general matrix (including complex valued matrices, eigenvalues, and eigenvectors) as long as the eigenvalues are simple. Alongside this, we develop expressions that determine the uncertainty in a vector estimate obtained from an eigenvalue-eigenvector problem given the uncertainty of the terms of the matrix. The Jacobian expressions developed are numerically validated with forward finite, differencing and the covariance expressions are validated using Monte Carlo analysis. Finally, the results from this work are used to determine covariance expressions for a variety of estimation problem examples and are also applied to the design of a dynamical system.

  13. ICTP lectures on covariant quantization of the superstring

    International Nuclear Information System (INIS)

    Berkovits, N.

    2003-01-01

    These ICTP Trieste lecture notes review the pure spinor approach to quantizing the superstring with manifest D=10 super-Poincare invariance. The first section discusses covariant quantization of the superparticle and gives a new proof of equivalence with the Brink-Schwarz superparticle. The second section discusses the superstring in a flat background and shows how to construct vertex operators and compute tree amplitudes in a manifestly super-Poincare covariant manner. And the third section discusses quantization of the superstring in curved backgrounds which can include Ramond-Ramond flux. (author)

  14. Sp(2) covariant quantisation of general gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez-Bello, J L

    1994-11-01

    The Sp(2) covariant quantization of gauge theories is studied. The geometrical interpretation of gauge theories in terms of quasi principal fibre bundles Q(M{sub s}, G{sub s}) is reviewed. It is then described the Sp(2) algebra of ordinary Yang-Mills theory. A consistent formulation of covariant Lagrangian quantisation for general gauge theories based on Sp(2) BRST symmetry is established. The original N = 1, ten dimensional superparticle is considered as an example of infinitely reducible gauge algebras, and given explicitly its Sp(2) BRST invariant action. (author). 18 refs.

  15. Sp(2) covariant quantisation of general gauge theories

    International Nuclear Information System (INIS)

    Vazquez-Bello, J.L.

    1994-11-01

    The Sp(2) covariant quantization of gauge theories is studied. The geometrical interpretation of gauge theories in terms of quasi principal fibre bundles Q(M s , G s ) is reviewed. It is then described the Sp(2) algebra of ordinary Yang-Mills theory. A consistent formulation of covariant Lagrangian quantisation for general gauge theories based on Sp(2) BRST symmetry is established. The original N = 1, ten dimensional superparticle is considered as an example of infinitely reducible gauge algebras, and given explicitly its Sp(2) BRST invariant action. (author). 18 refs

  16. On spectral distribution of high dimensional covariation matrices

    DEFF Research Database (Denmark)

    Heinrich, Claudio; Podolskij, Mark

    In this paper we present the asymptotic theory for spectral distributions of high dimensional covariation matrices of Brownian diffusions. More specifically, we consider N-dimensional Itô integrals with time varying matrix-valued integrands. We observe n equidistant high frequency data points...... of the underlying Brownian diffusion and we assume that N/n -> c in (0,oo). We show that under a certain mixed spectral moment condition the spectral distribution of the empirical covariation matrix converges in distribution almost surely. Our proof relies on method of moments and applications of graph theory....

  17. ICTP lectures on covariant quantization of the superstring

    Energy Technology Data Exchange (ETDEWEB)

    Berkovits, N [Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, SP (Brazil)

    2003-08-15

    These ICTP Trieste lecture notes review the pure spinor approach to quantizing the superstring with manifest D=10 super-Poincare invariance. The first section discusses covariant quantization of the superparticle and gives a new proof of equivalence with the Brink-Schwarz superparticle. The second section discusses the superstring in a flat background and shows how to construct vertex operators and compute tree amplitudes in a manifestly super-Poincare covariant manner. And the third section discusses quantization of the superstring in curved backgrounds which can include Ramond-Ramond flux. (author)

  18. Accuracy and Completeness of Drug Information in Wikipedia: A Comparison with Standard Textbooks of Pharmacology

    Science.gov (United States)

    Gutmann, Joanna; Muehlich, Susanne; Zolk, Oliver; Wojnowski, Leszek; Maas, Renke; Engelhardt, Stefan; Sarikas, Antonio

    2014-01-01

    The online resource Wikipedia is increasingly used by students for knowledge acquisition and learning. However, the lack of a formal editorial review and the heterogeneous expertise of contributors often results in skepticism by educators whether Wikipedia should be recommended to students as an information source. In this study we systematically analyzed the accuracy and completeness of drug information in the German and English language versions of Wikipedia in comparison to standard textbooks of pharmacology. In addition, references, revision history and readability were evaluated. Analysis of readability was performed using the Amstad readability index and the Erste Wiener Sachtextformel. The data on indication, mechanism of action, pharmacokinetics, adverse effects and contraindications for 100 curricular drugs were retrieved from standard German textbooks of general pharmacology and compared with the corresponding articles in the German language version of Wikipedia. Quantitative analysis revealed that accuracy of drug information in Wikipedia was 99.7%±0.2% when compared to the textbook data. The overall completeness of drug information in Wikipedia was 83.8±1.5% (ptextbook data overlap. Similar results were obtained for the English language version of Wikipedia. Of the drug information missing in Wikipedia, 62.5% was rated as didactically non-relevant in a qualitative re-evaluation study. Drug articles in Wikipedia had an average of 14.6±1.6 references and 262.8±37.4 edits performed by 142.7±17.6 editors. Both Wikipedia and textbooks samples had comparable, low readability. Our study suggests that Wikipedia is an accurate and comprehensive source of drug-related information for undergraduate medical education. PMID:25250889

  19. SIMULATIONS OF WIDE-FIELD WEAK-LENSING SURVEYS. II. COVARIANCE MATRIX OF REAL-SPACE CORRELATION FUNCTIONS

    International Nuclear Information System (INIS)

    Sato, Masanori; Matsubara, Takahiko; Takada, Masahiro; Hamana, Takashi

    2011-01-01

    Using 1000 ray-tracing simulations for a Λ-dominated cold dark model in Sato et al., we study the covariance matrix of cosmic shear correlation functions, which is the standard statistics used in previous measurements. The shear correlation function of a particular separation angle is affected by Fourier modes over a wide range of multipoles, even beyond a survey area, which complicates the analysis of the covariance matrix. To overcome such obstacles we first construct Gaussian shear simulations from the 1000 realizations and then use the Gaussian simulations to disentangle the Gaussian covariance contribution to the covariance matrix we measured from the original simulations. We found that an analytical formula of Gaussian covariance overestimates the covariance amplitudes due to an effect of the finite survey area. Furthermore, the clean separation of the Gaussian covariance allows us to examine the non-Gaussian covariance contributions as a function of separation angles and source redshifts. For upcoming surveys with typical source redshifts of z s = 0.6 and 1.0, the non-Gaussian contribution to the diagonal covariance components at 1 arcmin scales is greater than the Gaussian contribution by a factor of 20 and 10, respectively. Predictions based on the halo model qualitatively well reproduce the simulation results, however show a sizable disagreement in the covariance amplitudes. By combining these simulation results we develop a fitting formula to the covariance matrix for a survey with arbitrary area coverage, taking into account effects of the finiteness of survey area on the Gaussian covariance.

  20. A heteroskedastic error covariance matrix estimator using a first-order conditional autoregressive Markov simulation for deriving asympotical efficient estimates from ecological sampled Anopheles arabiensis aquatic habitat covariates

    Directory of Open Access Journals (Sweden)

    Githure John I

    2009-09-01

    values from the spatial configuration matrices were then used to define expectations for prior distributions using a Markov chain Monte Carlo (MCMC algorithm. A set of posterior means were defined in WinBUGS 1.4.3®. After the model had converged, samples from the conditional distributions were used to summarize the posterior distribution of the parameters. Thereafter, a spatial residual trend analyses was used to evaluate variance uncertainty propagation in the model using an autocovariance error matrix. Results By specifying coefficient estimates in a Bayesian framework, the covariate number of tillers was found to be a significant predictor, positively associated with An. arabiensis aquatic habitats. The spatial filter models accounted for approximately 19% redundant locational information in the ecological sampled An. arabiensis aquatic habitat data. In the residual error estimation model there was significant positive autocorrelation (i.e., clustering of habitats in geographic space based on log-transformed larval/pupal data and the sampled covariate depth of habitat. Conclusion An autocorrelation error covariance matrix and a spatial filter analyses can prioritize mosquito control strategies by providing a computationally attractive and feasible description of variance uncertainty estimates for correctly identifying clusters of prolific An. arabiensis aquatic habitats based on larval/pupal productivity.

  1. The generally covariant locality principle - a new paradigm for local quantum field theory

    International Nuclear Information System (INIS)

    Brunetti, R.; Fredenhagen, K.; Verch, R.

    2002-05-01

    A new approach to the model-independent description of quantum field theories will be introduced in the present work. The main feature of this new approach is to incorporate in a local sense the principle of general covariance of general relativity, thus giving rise to the concept of a locally covariant quantum field theory. Such locally covariant quantum field theories will be described mathematically in terms of covariant functors between the categories, on one side, of globally hyperbolic spacetimes with isometric embeddings as morphisms and, on the other side, of *-algebras with unital injective *-endomorphisms as morphisms. Moreover, locally covariant quantum fields can be described in this framework as natural transformations between certain functors. The usual Haag-Kastler framework of nets of operator-algebras over a fixed spacetime background-manifold, together with covariant automorphic actions of the isometry-group of the background spacetime, can be re-gained from this new approach as a special case. Examples of this new approach are also outlined. In case that a locally covariant quantum field theory obeys the time-slice axiom, one can naturally associate to it certain automorphic actions, called ''relative Cauchy-evolutions'', which describe the dynamical reaction of the quantum field theory to a local change of spacetime background metrics. The functional derivative of a relative Cauchy-evolution with respect to the spacetime metric is found to be a divergence-free quantity which has, as will be demonstrated in an example, the significance of an energy-momentum tensor for the locally covariant quantum field theory. Furthermore, we discuss the functorial properties of state spaces of locally covariant quantum field theories that entail the validity of the principle of local definiteness. (orig.)

  2. Theses in Canada: A Guide to Sources of Information about Theses Completed or in Preparation.

    Science.gov (United States)

    Bruchet, Susan Jaques, Comp.; Evans, Gwynneth, Comp.

    This bibliography provides a list of sources for students, scholars, and librarians who want information about theses completed or in preparation at Canadian universities. The sources are presented under three headings: general bibliographies, theses lists by university, and specialized bibliographies. For monographic items, the author, title, and…

  3. Modelling the Covariance Structure in Marginal Multivariate Count Models

    DEFF Research Database (Denmark)

    Bonat, W. H.; Olivero, J.; Grande-Vega, M.

    2017-01-01

    The main goal of this article is to present a flexible statistical modelling framework to deal with multivariate count data along with longitudinal and repeated measures structures. The covariance structure for each response variable is defined in terms of a covariance link function combined...... be used to indicate whether there was statistical evidence of a decline in blue duikers and other species hunted during the study period. Determining whether observed drops in the number of animals hunted are indeed true is crucial to assess whether species depletion effects are taking place in exploited...... with a matrix linear predictor involving known matrices. In order to specify the joint covariance matrix for the multivariate response vector, the generalized Kronecker product is employed. We take into account the count nature of the data by means of the power dispersion function associated with the Poisson...

  4. A Novel Riemannian Metric Based on Riemannian Structure and Scaling Information for Fixed Low-Rank Matrix Completion.

    Science.gov (United States)

    Mao, Shasha; Xiong, Lin; Jiao, Licheng; Feng, Tian; Yeung, Sai-Kit

    2017-05-01

    Riemannian optimization has been widely used to deal with the fixed low-rank matrix completion problem, and Riemannian metric is a crucial factor of obtaining the search direction in Riemannian optimization. This paper proposes a new Riemannian metric via simultaneously considering the Riemannian geometry structure and the scaling information, which is smoothly varying and invariant along the equivalence class. The proposed metric can make a tradeoff between the Riemannian geometry structure and the scaling information effectively. Essentially, it can be viewed as a generalization of some existing metrics. Based on the proposed Riemanian metric, we also design a Riemannian nonlinear conjugate gradient algorithm, which can efficiently solve the fixed low-rank matrix completion problem. By experimenting on the fixed low-rank matrix completion, collaborative filtering, and image and video recovery, it illustrates that the proposed method is superior to the state-of-the-art methods on the convergence efficiency and the numerical performance.

  5. Natural Covariant Planck Scale Cutoffs and the Cosmic Microwave Background Spectrum.

    Science.gov (United States)

    Chatwin-Davies, Aidan; Kempf, Achim; Martin, Robert T W

    2017-07-21

    We calculate the impact of quantum gravity-motivated ultraviolet cutoffs on inflationary predictions for the cosmic microwave background spectrum. We model the ultraviolet cutoffs fully covariantly to avoid possible artifacts of covariance breaking. Imposing these covariant cutoffs results in the production of small, characteristically k-dependent oscillations in the spectrum. The size of the effect scales linearly with the ratio of the Planck to Hubble lengths during inflation. Consequently, the relative size of the effect could be as large as one part in 10^{5}; i.e., eventual observability may not be ruled out.

  6. Covariant Theory of Gravitation in the Spacetime with Finsler Structure

    OpenAIRE

    Huang, Xin-Bing

    2007-01-01

    The theory of gravitation in the spacetime with Finsler structure is constructed. It is shown that the theory keeps general covariance. Such theory reduces to Einstein's general relativity when the Finsler structure is Riemannian. Therefore, this covariant theory of gravitation is an elegant realization of Einstein's thoughts on gravitation in the spacetime with Finsler structure.

  7. SG39 Deliverables. Comments on Covariance Data

    International Nuclear Information System (INIS)

    Yokoyama, Kenji

    2015-01-01

    The covariance matrix of a scattered data set, x_i (i=1,n), must be symmetric and positive-definite. As one of WPEC/SG39 contributions to the SG40/CIELO project, several comments or recommendations on the covariance data are described here from the viewpoint of nuclear-data users. To make the comments concrete and useful for nuclear-data evaluators, the covariance data of the latest evaluated nuclear data library, JENDL-4.0 and ENDF/B-VII.1 are treated here as the representative materials. The surveyed nuclides are five isotopes that are most important for fast reactor application. The nuclides, reactions and energy regions dealt with are followings: Pu-239: fission (2.5∼10 keV) and capture (2.5∼10 keV), U-235: fission (500 eV∼10 keV) and capture (500 eV∼30 keV), U-238: fission (1∼10 MeV), capture (below 20 keV, 20∼150 keV), inelastic (above 100 keV) and elastic (above 20 keV), Fe-56: elastic (below 850 keV) and average scattering cosine (above 10 keV), and, Na-23: capture (600 eV∼600 keV), inelastic (above 1 MeV) and elastic (around 2 keV)

  8. An Adaptive Approach to Mitigate Background Covariance Limitations in the Ensemble Kalman Filter

    KAUST Repository

    Song, Hajoon

    2010-07-01

    A new approach is proposed to address the background covariance limitations arising from undersampled ensembles and unaccounted model errors in the ensemble Kalman filter (EnKF). The method enhances the representativeness of the EnKF ensemble by augmenting it with new members chosen adaptively to add missing information that prevents the EnKF from fully fitting the data to the ensemble. The vectors to be added are obtained by back projecting the residuals of the observation misfits from the EnKF analysis step onto the state space. The back projection is done using an optimal interpolation (OI) scheme based on an estimated covariance of the subspace missing from the ensemble. In the experiments reported here, the OI uses a preselected stationary background covariance matrix, as in the hybrid EnKF–three-dimensional variational data assimilation (3DVAR) approach, but the resulting correction is included as a new ensemble member instead of being added to all existing ensemble members. The adaptive approach is tested with the Lorenz-96 model. The hybrid EnKF–3DVAR is used as a benchmark to evaluate the performance of the adaptive approach. Assimilation experiments suggest that the new adaptive scheme significantly improves the EnKF behavior when it suffers from small size ensembles and neglected model errors. It was further found to be competitive with the hybrid EnKF–3DVAR approach, depending on ensemble size and data coverage.

  9. On-Line Identification of Simulation Examples for Forgetting Methods to Track Time Varying Parameters Using the Alternative Covariance Matrix in Matlab

    Science.gov (United States)

    Vachálek, Ján

    2011-12-01

    The paper compares the abilities of forgetting methods to track time varying parameters of two different simulated models with different types of excitation. The observed parameters in the simulations are the integral sum of the Euclidean norm, deviation of the parameter estimates from their true values and a selected band prediction error count. As supplementary information, we observe the eigenvalues of the covariance matrix. In the paper we used a modified method of Regularized Exponential Forgetting with Alternative Covariance Matrix (REFACM) along with Directional Forgetting (DF) and three standard regularized methods.

  10. Covariant constraints for generic massive gravity and analysis of its characteristics

    DEFF Research Database (Denmark)

    Deser, S.; Sandora, M.; Waldron, A.

    2014-01-01

    We perform a covariant constraint analysis of massive gravity valid for its entire parameter space, demonstrating that the model generically propagates 5 degrees of freedom; this is also verified by a new and streamlined Hamiltonian description. The constraint's covariant expression permits...

  11. Segmenting by Risk Perceptions: Predicting Young Adults’ Genetic-Belief Profiles with Health and Opinion-Leader Covariates

    Science.gov (United States)

    Smith, Rachel A.; Greenberg, Marisa; Parrott, Roxanne L.

    2014-01-01

    With a growing interest in using genetic information to motivate young adults’ health behaviors, audience segmentation is needed for effective campaign design. Using latent class analysis, this study identifies segments based on young adults’ (N = 327) beliefs about genetic threats to their health and personal efficacy over genetic influences on their health. A four-class model was identified. The model indicators fit the risk perception attitude framework (Rimal & Real, 2003), but the covariates (e.g., current health behaviors) did not. In addition, opinion leader qualities covaried with one profile: those in this profile engaged in fewer preventative behaviors and more dangerous treatment options, and also liked to persuade others, making them a particularly salient group for campaign efforts. The implications for adult-onset disorders, like alpha-1 antitrypsin deficiency are discussed. PMID:24111749

  12. An Upper Bound on High Speed Satellite Collision Probability When Only One Object has Position Uncertainty Information

    Science.gov (United States)

    Frisbee, Joseph H., Jr.

    2015-01-01

    Upper bounds on high speed satellite collision probability, PC †, have been investigated. Previous methods assume an individual position error covariance matrix is available for each object. The two matrices being combined into a single, relative position error covariance matrix. Components of the combined error covariance are then varied to obtain a maximum PC. If error covariance information for only one of the two objects was available, either some default shape has been used or nothing could be done. An alternative is presented that uses the known covariance information along with a critical value of the missing covariance to obtain an approximate but potentially useful Pc upper bound.

  13. Quantum information and relativity theory

    International Nuclear Information System (INIS)

    Peres, Asher; Terno, Daniel R.

    2004-01-01

    This article discusses the intimate relationship between quantum mechanics, information theory, and relativity theory. Taken together these are the foundations of present-day theoretical physics, and their interrelationship is an essential part of the theory. The acquisition of information from a quantum system by an observer occurs at the interface of classical and quantum physics. The authors review the essential tools needed to describe this interface, i.e., Kraus matrices and positive-operator-valued measures. They then discuss how special relativity imposes severe restrictions on the transfer of information between distant systems and the implications of the fact that quantum entropy is not a Lorentz-covariant concept. This leads to a discussion of how it comes about that Lorentz transformations of reduced density matrices for entangled systems may not be completely positive maps. Quantum field theory is, of course, necessary for a consistent description of interactions. Its structure implies a fundamental tradeoff between detector reliability and localizability. Moreover, general relativity produces new and counterintuitive effects, particularly when black holes (or, more generally, event horizons) are involved. In this more general context the authors discuss how most of the current concepts in quantum information theory may require a reassessment

  14. The evolution of phenotypic integration: How directional selection reshapes covariation in mice.

    Science.gov (United States)

    Penna, Anna; Melo, Diogo; Bernardi, Sandra; Oyarzabal, Maria Inés; Marroig, Gabriel

    2017-10-01

    Variation is the basis for evolution, and understanding how variation can evolve is a central question in biology. In complex phenotypes, covariation plays an even more important role, as genetic associations between traits can bias and alter evolutionary change. Covariation can be shaped by complex interactions between loci, and this genetic architecture can also change during evolution. In this article, we analyzed mouse lines experimentally selected for changes in size to address the question of how multivariate covariation changes under directional selection, as well as to identify the consequences of these changes to evolution. Selected lines showed a clear restructuring of covariation in their cranium and, instead of depleting their size variation, these lines increased their magnitude of integration and the proportion of variation associated with the direction of selection. This result is compatible with recent theoretical works on the evolution of covariation that take the complexities of genetic architecture into account. This result also contradicts the traditional view of the effects of selection on available covariation and suggests a much more complex view of how populations respond to selection. © 2017 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  15. Laser Covariance Vibrometry for Unsymmetrical Mode Detection

    National Research Council Canada - National Science Library

    Kobold, Michael C

    2006-01-01

    Simulated cross - spectral covariance (CSC) from optical return from simulated surface vibration indicates CW phase modulation may be an appropriate phenomenology for adequate classification of vehicles by structural mode...

  16. Training Classifiers under Covariate Shift by Constructing the Maximum Consistent Distribution Subset

    OpenAIRE

    Yu, Xu; Yu, Miao; Xu, Li-xun; Yang, Jing; Xie, Zhi-qiang

    2015-01-01

    The assumption that the training and testing samples are drawn from the same distribution is violated under covariate shift setting, and most algorithms for the covariate shift setting try to first estimate distributions and then reweight samples based on the distributions estimated. Due to the difficulty of estimating a correct distribution, previous methods can not get good classification performance. In this paper, we firstly present two types of covariate shift problems. Rather than estim...

  17. The covariance matrix of neutron spectra used in the REAL 84 exercise

    International Nuclear Information System (INIS)

    Matzke, M.

    1986-08-01

    Covariance matrices of continuous functions are discussed. It is pointed out that the number of non-vanishing eigenvalues corresponds to the number of random variables (parameters) involved in the construction of the continuous functions. The covariance matrices used in the REAL 84 international intercomparison of unfolding methods of neutron spectra are investigated. It is shown that a small rank of these covariance matrices leads to a restriction of the possible solution spectra. (orig.) [de

  18. Criteria of the validation of experimental and evaluated covariance data

    International Nuclear Information System (INIS)

    Badikov, S.

    2008-01-01

    The criteria of the validation of experimental and evaluated covariance data are reviewed. In particular: a) the criterion of the positive definiteness for covariance matrices, b) the relationship between the 'integral' experimental and estimated uncertainties, c) the validity of the statistical invariants, d) the restrictions imposed to correlations between experimental errors, are described. Applying these criteria in nuclear data evaluation was considered and 4 particular points have been examined. First preserving positive definiteness of covariance matrices in case of arbitrary transformation of a random vector was considered, properties of the covariance matrices in operations widely used in neutron and reactor physics (splitting and collapsing energy groups, averaging the physical values over energy groups, estimation parameters on the basis of measurements by means of generalized least squares method) were studied. Secondly, an algorithm for comparison of experimental and estimated 'integral' uncertainties was developed, square root of determinant of a covariance matrix is recommended for use in nuclear data evaluation as a measure of 'integral' uncertainty for vectors of experimental and estimated values. Thirdly, a set of statistical invariants-values which are preserved in statistical processing was presented. And fourthly, the inequality that signals a correlation between experimental errors that leads to unphysical values is given. An application is given concerning the cross-section of the (n,t) reaction on Li 6 with a neutron incident energy comprised between 1 and 100 keV

  19. Altered structural covariance of the striatum in functional dyspepsia patients.

    Science.gov (United States)

    Liu, P; Zeng, F; Yang, F; Wang, J; Liu, X; Wang, Q; Zhou, G; Zhang, D; Zhu, M; Zhao, R; Wang, A; Gong, Q; Liang, F

    2014-08-01

    Functional dyspepsia (FD) is thought to be involved in dysregulation within the brain-gut axis. Recently, altered striatum activation has been reported in patients with FD. However, the gray matter (GM) volumes in the striatum and structural covariance patterns of this area are rarely explored. The purpose of this study was to examine the GM volumes and structural covariance patterns of the striatum between FD patients and healthy controls (HCs). T1-weighted magnetic resonance images were obtained from 44 FD patients and 39 HCs. Voxel-based morphometry (VBM) analysis was adopted to examine the GM volumes in the two groups. The caudate- or putamen-related regions identified from VBM analysis were then used as seeds to map the whole brain voxel-wise structural covariance patterns. Finally, a correlation analysis was used to investigate the effects of FD symptoms on the striatum. The results showed increased GM volumes in the bilateral putamen and right caudate. Compared with the structural covariance patterns of the HCs, the FD-related differences were mainly located in the amygdala, hippocampus/parahippocampus (HIPP/paraHIPP), thalamus, lingual gyrus, and cerebellum. And significant positive correlations were found between the volumes in the striatum and the FD duration in the patients. These findings provided preliminary evidence for GM changes in the striatum and different structural covariance patterns in patients with FD. The current results might expand our understanding of the pathophysiology of FD. © 2014 John Wiley & Sons Ltd.

  20. Multilevel covariance regression with correlated random effects in the mean and variance structure.

    Science.gov (United States)

    Quintero, Adrian; Lesaffre, Emmanuel

    2017-09-01

    Multivariate regression methods generally assume a constant covariance matrix for the observations. In case a heteroscedastic model is needed, the parametric and nonparametric covariance regression approaches can be restrictive in the literature. We propose a multilevel regression model for the mean and covariance structure, including random intercepts in both components and allowing for correlation between them. The implied conditional covariance function can be different across clusters as a result of the random effect in the variance structure. In addition, allowing for correlation between the random intercepts in the mean and covariance makes the model convenient for skewedly distributed responses. Furthermore, it permits us to analyse directly the relation between the mean response level and the variability in each cluster. Parameter estimation is carried out via Gibbs sampling. We compare the performance of our model to other covariance modelling approaches in a simulation study. Finally, the proposed model is applied to the RN4CAST dataset to identify the variables that impact burnout of nurses in Belgium. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Covariance-Based Estimation from Multisensor Delayed Measurements with Random Parameter Matrices and Correlated Noises

    Directory of Open Access Journals (Sweden)

    R. Caballero-Águila

    2014-01-01

    Full Text Available The optimal least-squares linear estimation problem is addressed for a class of discrete-time multisensor linear stochastic systems subject to randomly delayed measurements with different delay rates. For each sensor, a different binary sequence is used to model the delay process. The measured outputs are perturbed by both random parameter matrices and one-step autocorrelated and cross correlated noises. Using an innovation approach, computationally simple recursive algorithms are obtained for the prediction, filtering, and smoothing problems, without requiring full knowledge of the state-space model generating the signal process, but only the information provided by the delay probabilities and the mean and covariance functions of the processes (signal, random parameter matrices, and noises involved in the observation model. The accuracy of the estimators is measured by their error covariance matrices, which allow us to analyze the estimator performance in a numerical simulation example that illustrates the feasibility of the proposed algorithms.

  2. Exact covariant results related to the redshift, aberration and luminosity distance for arbitrary spacetime and instantaneous observers

    Energy Technology Data Exchange (ETDEWEB)

    Calvao, Maurcio O.; Lago, Bruno L.; Reis, Ribamar R.R. [Universidade Federal do Rio de Janeiro (IF/UFRJ), RJ (Brazil). Inst. de Fisica

    2011-07-01

    Full text: We start by emphasizing the importance of formalizing the the concepts of a (classical) relativistic instantaneous observer, observer, frame of reference (as distinct from a coordinate system or tetrad) and a local Lorentz boost. Then, as a first result, we apply their concrete definitions to obtain exact covariant expressions for the redshift and aberration, as well as for the redshift transformation under local Lorentz boosts. Afterwards we revisit the notion of luminosity distance, providing some clarifications which render its definition manifestly valid in a completely general setting (not only for comoving observers in the Robertson-Walker spacetime); therefrom we see clearly that (not unexpectedly) the luminosity distance is dependent on the instantaneous observers and we derive its corresponding exact, covariant transformation law. By Etherington's reciprocity theorem, analogous transformation laws can be obtained for other relativistic distances, e.g. the angular size one. The exact covariant transformation law for the luminosity distance has a particularly relevant application for the determination of the impact of peculiar motions on type Ia supernovae observations and data analysis, which is supposed to be one of the main systematic effects plaguing that probe. The redshift and aberration results, on the other hand, might be of interest for precise redshift drift and astrometric (e.g. Gaia) measurements, respectively. We conclude by listing some open avenues for generalizations. (author)

  3. A Flexible Spatio-Temporal Model for Air Pollution with Spatial and Spatio-Temporal Covariates

    OpenAIRE

    Lindström, Johan; Szpiro, Adam A; Sampson, Paul D; Oron, Assaf P; Richards, Mark; Larson, Tim V; Sheppard, Lianne

    2013-01-01

    The development of models that provide accurate spatio-temporal predictions of ambient air pollution at small spatial scales is of great importance for the assessment of potential health effects of air pollution. Here we present a spatio-temporal framework that predicts ambient air pollution by combining data from several different monitoring networks and deterministic air pollution model(s) with geographic information system (GIS) covariates. The model presented in this paper has been implem...

  4. Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes

    International Nuclear Information System (INIS)

    Bachoc, Francois

    2014-01-01

    Covariance parameter estimation of Gaussian processes is analyzed in an asymptotic framework. The spatial sampling is a randomly perturbed regular grid and its deviation from the perfect regular grid is controlled by a single scalar regularity parameter. Consistency and asymptotic normality are proved for the Maximum Likelihood and Cross Validation estimators of the covariance parameters. The asymptotic covariance matrices of the covariance parameter estimators are deterministic functions of the regularity parameter. By means of an exhaustive study of the asymptotic covariance matrices, it is shown that the estimation is improved when the regular grid is strongly perturbed. Hence, an asymptotic confirmation is given to the commonly admitted fact that using groups of observation points with small spacing is beneficial to covariance function estimation. Finally, the prediction error, using a consistent estimator of the covariance parameters, is analyzed in detail. (authors)

  5. Spatial Pyramid Covariance based Compact Video Code for Robust Face Retrieval in TV-series.

    Science.gov (United States)

    Li, Yan; Wang, Ruiping; Cui, Zhen; Shan, Shiguang; Chen, Xilin

    2016-10-10

    We address the problem of face video retrieval in TV-series which searches video clips based on the presence of specific character, given one face track of his/her. This is tremendously challenging because on one hand, faces in TV-series are captured in largely uncontrolled conditions with complex appearance variations, and on the other hand retrieval task typically needs efficient representation with low time and space complexity. To handle this problem, we propose a compact and discriminative representation for the huge body of video data, named Compact Video Code (CVC). Our method first models the face track by its sample (i.e., frame) covariance matrix to capture the video data variations in a statistical manner. To incorporate discriminative information and obtain more compact video signature suitable for retrieval, the high-dimensional covariance representation is further encoded as a much lower-dimensional binary vector, which finally yields the proposed CVC. Specifically, each bit of the code, i.e., each dimension of the binary vector, is produced via supervised learning in a max margin framework, which aims to make a balance between the discriminability and stability of the code. Besides, we further extend the descriptive granularity of covariance matrix from traditional pixel-level to more general patchlevel, and proceed to propose a novel hierarchical video representation named Spatial Pyramid Covariance (SPC) along with a fast calculation method. Face retrieval experiments on two challenging TV-series video databases, i.e., the Big Bang Theory and Prison Break, demonstrate the competitiveness of the proposed CVC over state-of-the-art retrieval methods. In addition, as a general video matching algorithm, CVC is also evaluated in traditional video face recognition task on a standard Internet database, i.e., YouTube Celebrities, showing its quite promising performance by using an extremely compact code with only 128 bits.

  6. Lienard-Wiechert field as covariant dynamics of electric lines of force

    International Nuclear Information System (INIS)

    Arutyunyan, S.G.

    1989-01-01

    The Lienard-Wiechert field of an arbitrarily moving charge is presented as a system of Lorentz-covariant moving electric lines of force. It is shown that the 4-vector describing these lines is written as a sum of the 4-vector of the charge and the isotropic 4-vector directed to the observation point. The motion of this 4-vector is described by the equation coinciding with the equation of motion for magnetic moment in external fields provided that the intrinsic magnetic moment is zero. By the system of lines that corresponds to the complete equation of magnetic moment in external fields the electromagnetic field is restored. It turned out that the spatial magnetic current proportional to the isotropic 4-vector directed to the observation point corresponds to this field. 8 refs

  7. Retrodictive determinism. [covariant and transformational behavior of tensor fields in hydrodynamics and thermodynamics

    Science.gov (United States)

    Kiehn, R. M.

    1976-01-01

    With respect to irreversible, non-homeomorphic maps, contravariant and covariant tensor fields have distinctly natural covariance and transformational behavior. For thermodynamic processes which are non-adiabatic, the fact that the process cannot be represented by a homeomorphic map emphasizes the logical arrow of time, an idea which encompasses a principle of retrodictive determinism for covariant tensor fields.

  8. Covariant gauges for constrained systems

    International Nuclear Information System (INIS)

    Gogilidze, S.A.; Khvedelidze, A.M.; Pervushin, V.N.

    1995-01-01

    The method of constructing of extended phase space for singular theories which permits the consideration of covariant gauges without the introducing of a ghost fields, is proposed. The extension of the phase space is carried out by the identification of the initial theory with an equivalent theory with higher derivatives and applying to it the Ostrogradsky method of Hamiltonian description. 7 refs

  9. Covariant field theory of closed superstrings

    International Nuclear Information System (INIS)

    Siopsis, G.

    1989-01-01

    The authors construct covariant field theories of both type-II and heterotic strings. Toroidal compactification is also considered. The interaction vertices are based on Witten's vertex representing three strings interacting at the mid-point. For closed strings, the authors thus obtain a bilocal interaction

  10. Regularization with higher covariant derivatives, anomalies and the Adler-Bardeen theorem

    International Nuclear Information System (INIS)

    Day, M.

    1983-01-01

    Complications arising in the renormalization of a theory regulated by the method of higher covariant derivatives supplemented with a modified Pauli-Villars regularization are discussed. The proof of the Adler-Bardeen theorem using the method of higher covariant derivatives has to be modified. (orig.)

  11. QED on curved background and on manifolds with boundaries: Unitarity versus covariance

    International Nuclear Information System (INIS)

    Vassilevich, D.V.

    1994-11-01

    Some recent results show that the covariant path integral and the integral over physical degrees of freedom give contradicting results on curved background and on manifolds with boundaries. This looks like a conflict between unitarity and covariance. We argue that this effect is due to the use of non-covariant measure on the space of physical degrees of freedom. Starting with the reduced phase space path integral and using covariant measure throughout computations we recover standard path integral in the Lorentz gauge and the Moss and Poletti BRST-invariant boundary conditions. We also demonstrate by direct calculations that in the approach based on Gaussian path integral on the space of physical degrees of freedom some basic symmetries are broken. (author). 39 refs

  12. ℋ-matrix techniques for approximating large covariance matrices and estimating its parameters

    KAUST Repository

    Litvinenko, Alexander; Genton, Marc G.; Sun, Ying; Keyes, David E.

    2016-01-01

    In this work the task is to use the available measurements to estimate unknown hyper-parameters (variance, smoothness parameter and covariance length) of the covariance function. We do it by maximizing the joint log-likelihood function. This is a non-convex and non-linear problem. To overcome cubic complexity in linear algebra, we approximate the discretised covariance function in the hierarchical (ℋ-) matrix format. The ℋ-matrix format has a log-linear computational cost and storage O(knlogn), where rank k is a small integer. On each iteration step of the optimization procedure the covariance matrix itself, its determinant and its Cholesky decomposition are recomputed within ℋ-matrix format. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)

  13. ℋ-matrix techniques for approximating large covariance matrices and estimating its parameters

    KAUST Repository

    Litvinenko, Alexander

    2016-10-25

    In this work the task is to use the available measurements to estimate unknown hyper-parameters (variance, smoothness parameter and covariance length) of the covariance function. We do it by maximizing the joint log-likelihood function. This is a non-convex and non-linear problem. To overcome cubic complexity in linear algebra, we approximate the discretised covariance function in the hierarchical (ℋ-) matrix format. The ℋ-matrix format has a log-linear computational cost and storage O(knlogn), where rank k is a small integer. On each iteration step of the optimization procedure the covariance matrix itself, its determinant and its Cholesky decomposition are recomputed within ℋ-matrix format. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)

  14. The causes of variation in the presence of genetic covariance between sexual traits and preferences.

    Science.gov (United States)

    Fowler-Finn, Kasey D; Rodríguez, Rafael L

    2016-05-01

    Mating traits and mate preferences often show patterns of tight correspondence across populations and species. These patterns of apparent coevolution may result from a genetic association between traits and preferences (i.e. trait-preference genetic covariance). We review the literature on trait-preference covariance to determine its prevalence and potential biological relevance. Of the 43 studies we identified, a surprising 63% detected covariance. We test multiple hypotheses for factors that may influence the likelihood of detecting this covariance. The main predictor was the presence of genetic variation in mate preferences, which is one of the three main conditions required for the establishment of covariance. In fact, 89% of the nine studies where heritability of preference was high detected covariance. Variables pertaining to the experimental methods and type of traits involved in different studies did not greatly influence the detection of trait-preference covariance. Trait-preference genetic covariance appears to be widespread and therefore represents an important and currently underappreciated factor in the coevolution of traits and preferences. © 2015 Cambridge Philosophical Society.

  15. Toward a Mexican eddy covariance network for carbon cycle science

    Science.gov (United States)

    Vargas, Rodrigo; Yépez, Enrico A.

    2011-09-01

    First Annual MexFlux Principal Investigators Meeting; Hermosillo, Sonora, Mexico, 4-8 May 2011; The carbon cycle science community has organized a global network, called FLUXNET, to measure the exchange of energy, water, and carbon dioxide (CO2) between the ecosystems and the atmosphere using the eddy covariance technique. This network has provided unprecedented information for carbon cycle science and global climate change but is mostly represented by study sites in the United States and Europe. Thus, there is an important gap in measurements and understanding of ecosystem dynamics in other regions of the world that are seeing a rapid change in land use. Researchers met under the sponsorship of Red Temática de Ecosistemas and Consejo Nacional de Ciencia y Tecnologia (CONACYT) to discuss strategies to establish a Mexican eddy covariance network (MexFlux) by identifying researchers, study sites, and scientific goals. During the meeting, attendees noted that 10 study sites have been established in Mexico with more than 30 combined years of information. Study sites span from new sites installed during 2011 to others with 9 to 6 years of measurements. Sites with the longest span measurements are located in Baja California Sur (established by Walter Oechel in 2002) and Sonora (established by Christopher Watts in 2005); both are semiarid ecosystems. MexFlux sites represent a variety of ecosystem types, including Mediterranean and sarcocaulescent shrublands in Baja California; oak woodland, subtropical shrubland, tropical dry forest, and a grassland in Sonora; tropical dry forests in Jalisco and Yucatan; a managed grassland in San Luis Potosi; and a managed pine forest in Hidalgo. Sites are maintained with an individual researcher's funds from Mexican government agencies (e.g., CONACYT) and international collaborations, but no coordinated funding exists for a long-term program.

  16. Error Covariance Estimation of Mesoscale Data Assimilation

    National Research Council Canada - National Science Library

    Xu, Qin

    2005-01-01

    The goal of this project is to explore and develop new methods of error covariance estimation that will provide necessary statistical descriptions of prediction and observation errors for mesoscale data assimilation...

  17. Causal inference with missing exposure information: Methods and applications to an obstetric study.

    Science.gov (United States)

    Zhang, Zhiwei; Liu, Wei; Zhang, Bo; Tang, Li; Zhang, Jun

    2016-10-01

    Causal inference in observational studies is frequently challenged by the occurrence of missing data, in addition to confounding. Motivated by the Consortium on Safe Labor, a large observational study of obstetric labor practice and birth outcomes, this article focuses on the problem of missing exposure information in a causal analysis of observational data. This problem can be approached from different angles (i.e. missing covariates and causal inference), and useful methods can be obtained by drawing upon the available techniques and insights in both areas. In this article, we describe and compare a collection of methods based on different modeling assumptions, under standard assumptions for missing data (i.e. missing-at-random and positivity) and for causal inference with complete data (i.e. no unmeasured confounding and another positivity assumption). These methods involve three models: one for treatment assignment, one for the dependence of outcome on treatment and covariates, and one for the missing data mechanism. In general, consistent estimation of causal quantities requires correct specification of at least two of the three models, although there may be some flexibility as to which two models need to be correct. Such flexibility is afforded by doubly robust estimators adapted from the missing covariates literature and the literature on causal inference with complete data, and by a newly developed triply robust estimator that is consistent if any two of the three models are correct. The methods are applied to the Consortium on Safe Labor data and compared in a simulation study mimicking the Consortium on Safe Labor. © The Author(s) 2013.

  18. Bayesian estimation of covariance matrices: Application to market risk management at EDF

    International Nuclear Information System (INIS)

    Jandrzejewski-Bouriga, M.

    2012-01-01

    In this thesis, we develop new methods of regularized covariance matrix estimation, under the Bayesian setting. The regularization methodology employed is first related to shrinkage. We investigate a new Bayesian modeling of covariance matrix, based on hierarchical inverse-Wishart distribution, and then derive different estimators under standard loss functions. Comparisons between shrunk and empirical estimators are performed in terms of frequentist performance under different losses. It allows us to highlight the critical importance of the definition of cost function and show the persistent effect of the shrinkage-type prior on inference. In a second time, we consider the problem of covariance matrix estimation in Gaussian graphical models. If the issue is well treated for the decomposable case, it is not the case if you also consider non-decomposable graphs. We then describe a Bayesian and operational methodology to carry out the estimation of covariance matrix of Gaussian graphical models, decomposable or not. This procedure is based on a new and objective method of graphical-model selection, combined with a constrained and regularized estimation of the covariance matrix of the model chosen. The procedures studied effectively manage missing data. These estimation techniques were applied to calculate the covariance matrices involved in the market risk management for portfolios of EDF (Electricity of France), in particular for problems of calculating Value-at-Risk or in Asset Liability Management. (author)

  19. EQUIVALENT MODELS IN COVARIANCE STRUCTURE-ANALYSIS

    NARCIS (Netherlands)

    LUIJBEN, TCW

    1991-01-01

    Defining equivalent models as those that reproduce the same set of covariance matrices, necessary and sufficient conditions are stated for the local equivalence of two expanded identified models M1 and M2 when fitting the more restricted model M0. Assuming several regularity conditions, the rank

  20. Exact Covariance Thresholding into Connected Components for Large-Scale Graphical Lasso.

    Science.gov (United States)

    Mazumder, Rahul; Hastie, Trevor

    2012-03-01

    We consider the sparse inverse covariance regularization problem or graphical lasso with regularization parameter λ. Suppose the sample covariance graph formed by thresholding the entries of the sample covariance matrix at λ is decomposed into connected components. We show that the vertex-partition induced by the connected components of the thresholded sample covariance graph (at λ) is exactly equal to that induced by the connected components of the estimated concentration graph, obtained by solving the graphical lasso problem for the same λ. This characterizes a very interesting property of a path of graphical lasso solutions. Furthermore, this simple rule, when used as a wrapper around existing algorithms for the graphical lasso, leads to enormous performance gains. For a range of values of λ, our proposal splits a large graphical lasso problem into smaller tractable problems, making it possible to solve an otherwise infeasible large-scale problem. We illustrate the graceful scalability of our proposal via synthetic and real-life microarray examples.