WorldWideScience

Sample records for complement protein c2

  1. Radioassays for quantitation of intact complement proteins C2 and B in human serum

    Energy Technology Data Exchange (ETDEWEB)

    Oglesby, T J; Ueda, A; Volanakis, J E

    1988-05-25

    Availability of polyclonal and monoclonal antibodies recognizing determinants on the major cleavage fragments of complement proteins C2 and B enabled development of sensitive radioassays which can be used to quantitate the intact proteins in human sera. Changes in C2 and B concentrations indicative of classical or alternative pathway activation, or both, were seen in normal serum after incubation with complement activators. The authors determined the normal range of C2 concentration to be 11-35 ..mu..g/ml in 32 healthy individuals, and that of protein B to be 74-286 ..mu..g/ml. Sera from patients with systemic lupus erythematosus (SLE), septic shock, infections, and following orthopedic surgery were then assayed. Mean protein B concentration was significantly higher in SLE sera and in the infected and post-operative sera, and the mean C2 concentration in the septic shock group was significantly lower than the mean of healthy individuals. Intact C2 was not detected in known C2-deficient individuals. These assays allow parallel quantitation of the structurally and functionally homologous proteins of the classical (C2) and alternative (B) pathways, which is of interest in patients with genetic and acquired hypocomplementemia. 22 refs.; 3 figs.

  2. Complement system proteins which interact with C3b or C4b A superfamily of structurally related proteins

    DEFF Research Database (Denmark)

    Reid, K B M; Bentley, D R; Campbell, R D

    1986-01-01

    Recent cDNA sequencing data has allowed the prediction of the entire amino acid sequences of complement components factor B and C2, the complement control proteins factor H and C4b-binding protein and a partial sequence for the Cab/C4b receptor CR1. These proteins all contain internal repeating u...

  3. Borrelia burgdorferi outer surface protein C (OspC) binds complement component C4b and confers bloodstream survival.

    Science.gov (United States)

    Caine, Jennifer A; Lin, Yi-Pin; Kessler, Julie R; Sato, Hiromi; Leong, John M; Coburn, Jenifer

    2017-12-01

    Borrelia burgdorferi (Bb) is the causative agent of Lyme disease in the United States, a disease that can result in carditis, and chronic and debilitating arthritis and/or neurologic symptoms if left untreated. Bb survives in the midgut of the Ixodes scapularis tick, or within tissues of immunocompetent hosts. In the early stages of infection, the bacteria are present in the bloodstream where they must resist clearance by the innate immune system of the host. We have found a novel role for outer surface protein C (OspC) from B. burgdorferi and B. garinii in interactions with the complement component C4b and bloodstream survival in vivo. Our data show that OspC inhibits the classical and lectin complement pathways and competes with complement protein C2 for C4b binding. Resistance to complement is important for maintenance of the lifecycle of Bb, enabling survival of the pathogen within the host as well as in the midgut of a feeding tick when ospC expression is induced. © 2017 John Wiley & Sons Ltd.

  4. The structure of C2b, a fragment of complement component C2 produced during C3 convertase formation

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Vengadesan [Center for Biophysical Sciences and Engineering, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Xu, Yuanyuan [Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Macon, Kevin [Center for Biophysical Sciences and Engineering, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Volanakis, John E. [Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Narayana, Sthanam V. L., E-mail: narayana@uab.edu [Center for Biophysical Sciences and Engineering, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294 (United States)

    2009-03-01

    The crystal structure of C2b has been determined at 1.8 Å resolution, which reveals the arrangement of its three complement control protein (CCP) modules. A model for complement component C2 is presented and its conformational changes during the C3-convertase formation are also discussed. The second component of complement (C2) is a multi-domain serine protease that provides catalytic activity for the C3 and C5 convertases of the classical and lectin pathways of human complement. The formation of these convertases requires the Mg{sup 2+}-dependent binding of C2 to C4b and the subsequent cleavage of C2 by C1s or MASP2, respectively. The crystal structure of full-length C2 is not yet available, although the structure of its C-terminal catalytic segment C2a has been determined. The crystal structure of the N-terminal segment C2b of C2 determined to 1.8 Å resolution presented here reveals the arrangement of its three CCP domains. The domains are arranged differently compared with most other CCP-domain assemblies, but their arrangement is similar to that found in the Ba part of the full-length factor B structure. The crystal structures of C2a, C2b and full-length factor B are used to generate a model for C2 and a discussion of the domain association and possible interactions with C4b during formation of the C4b–C2 complex is presented. The results of this study also suggest that upon cleavage by C1s, C2a domains undergo conformational rotation while bound to C4b and the released C2b domains may remain folded together similar to as observed in the intact protein.

  5. The structure of C2b, a fragment of complement component C2 produced during C3 convertase formation

    International Nuclear Information System (INIS)

    Krishnan, Vengadesan; Xu, Yuanyuan; Macon, Kevin; Volanakis, John E.; Narayana, Sthanam V. L.

    2009-01-01

    The crystal structure of C2b has been determined at 1.8 Å resolution, which reveals the arrangement of its three complement control protein (CCP) modules. A model for complement component C2 is presented and its conformational changes during the C3-convertase formation are also discussed. The second component of complement (C2) is a multi-domain serine protease that provides catalytic activity for the C3 and C5 convertases of the classical and lectin pathways of human complement. The formation of these convertases requires the Mg 2+ -dependent binding of C2 to C4b and the subsequent cleavage of C2 by C1s or MASP2, respectively. The crystal structure of full-length C2 is not yet available, although the structure of its C-terminal catalytic segment C2a has been determined. The crystal structure of the N-terminal segment C2b of C2 determined to 1.8 Å resolution presented here reveals the arrangement of its three CCP domains. The domains are arranged differently compared with most other CCP-domain assemblies, but their arrangement is similar to that found in the Ba part of the full-length factor B structure. The crystal structures of C2a, C2b and full-length factor B are used to generate a model for C2 and a discussion of the domain association and possible interactions with C4b during formation of the C4b–C2 complex is presented. The results of this study also suggest that upon cleavage by C1s, C2a domains undergo conformational rotation while bound to C4b and the released C2b domains may remain folded together similar to as observed in the intact protein

  6. Human factor H-related protein 2 (CFHR2 regulates complement activation.

    Directory of Open Access Journals (Sweden)

    Hannes U Eberhardt

    Full Text Available Mutations and deletions within the human CFHR gene cluster on chromosome 1 are associated with diseases, such as dense deposit disease, CFHR nephropathy or age-related macular degeneration. Resulting mutant CFHR proteins can affect complement regulation. Here we identify human CFHR2 as a novel alternative pathway complement regulator that inhibits the C3 alternative pathway convertase and terminal pathway assembly. CFHR2 is composed of four short consensus repeat domains (SCRs. Two CFHR2 molecules form a dimer through their N-terminal SCRs, and each of the two C-terminal ends can bind C3b. C3b bound CFHR2 still allows C3 convertase formation but the CFHR2 bound convertases do not cleave the substrate C3. Interestingly CFHR2 hardly competes off factor H from C3b. Thus CFHR2 likely acts in concert with factor H, as CFHR2 inhibits convertases while simultaneously allowing factor H assisted degradation by factor I.

  7. Yersinia enterocolitica serum resistance proteins YadA and ail bind the complement regulator C4b-binding protein.

    Directory of Open Access Journals (Sweden)

    Vesa Kirjavainen

    Full Text Available Many pathogens are equipped with factors providing resistance against the bactericidal action of complement. Yersinia enterocolitica, a Gram-negative enteric pathogen with invasive properties, efficiently resists the deleterious action of human complement. The major Y. enterocolitica serum resistance determinants include outer membrane proteins YadA and Ail. Lipopolysaccharide (LPS O-antigen (O-ag and outer core (OC do not contribute directly to complement resistance. The aim of this study was to analyze a possible mechanism whereby Y. enterocolitica could inhibit the antibody-mediated classical pathway of complement activation. We show that Y. enterocolitica serotypes O:3, O:8, and O:9 bind C4b-binding protein (C4bp, an inhibitor of both the classical and lectin pathways of complement. To identify the C4bp receptors on Y. enterocolitica serotype O:3 surface, a set of mutants expressing YadA, Ail, O-ag, and OC in different combinations was tested for the ability to bind C4bp. The studies showed that both YadA and Ail acted as C4bp receptors. Ail-mediated C4bp binding, however, was blocked by the O-ag and OC, and could be observed only with mutants lacking these LPS structures. C4bp bound to Y. enterocolitica was functionally active and participated in the factor I-mediated degradation of C4b. These findings show that Y. enterocolitica uses two proteins, YadA and Ail, to bind C4bp. Binding of C4bp could help Y. enterocolitica to evade complement-mediated clearance in the human host.

  8. Plasmin cleaves fibrinogen and the human complement proteins C3b and C5 in the presence of Leptospira interrogans proteins: A new role of LigA and LigB in invasion and complement immune evasion.

    Science.gov (United States)

    Castiblanco-Valencia, Mónica Marcela; Fraga, Tatiana Rodrigues; Pagotto, Ana Helena; Serrano, Solange Maria de Toledo; Abreu, Patricia Antonia Estima; Barbosa, Angela Silva; Isaac, Lourdes

    2016-05-01

    Plasminogen is a single-chain glycoprotein found in human plasma as the inactive precursor of plasmin. When converted to proteolytically active plasmin, plasmin(ogen) regulates both complement and coagulation cascades, thus representing an important target for pathogenic microorganisms. Leptospira interrogans binds plasminogen, which is converted to active plasmin. Leptospiral immunoglobulin-like (Lig) proteins are surface exposed molecules that interact with extracellular matrix components and complement regulators, including proteins of the FH family and C4BP. In this work, we demonstrate that these multifunctional molecules also bind plasminogen through both N- and C-terminal domains. These interactions are dependent on lysine residues and are affected by ionic strength. Competition assays suggest that plasminogen does not share binding sites with C4BP or FH on Lig proteins at physiological molar ratios. Plasminogen bound to Lig proteins is converted to proteolytic active plasmin in the presence of urokinase-type plasminogen activator (uPA). Lig-bound plasmin is able to cleave the physiological substrates fibrinogen and the complement proteins C3b and C5. Taken together, our data point to a new role of LigA and LigB in leptospiral invasion and complement immune evasion. Plasmin(ogen) acquisition by these versatile proteins may contribute to Leptospira infection, favoring bacterial survival and dissemination inside the host. Copyright © 2016. Published by Elsevier GmbH.

  9. conformational complexity of complement component C3

    NARCIS (Netherlands)

    Janssen, B.J.C.

    2007-01-01

    The complement system is an important part of the immune system and critical for the elimination of pathogens. In mammals the complement system consists of an intricate set of about 35 soluble and cell-surface plasma proteins. Central to complement is component C3, a large protein of 1,641 residues.

  10. Human pentraxin 3 binds to the complement regulator c4b-binding protein.

    Directory of Open Access Journals (Sweden)

    Anne Braunschweig

    Full Text Available The long pentraxin 3 (PTX3 is a soluble recognition molecule with multiple functions including innate immune defense against certain microbes and the clearance of apoptotic cells. PTX3 interacts with recognition molecules of the classical and lectin complement pathways and thus initiates complement activation. In addition, binding of PTX3 to the alternative complement pathway regulator factor H was shown. Here, we show that PTX3 binds to the classical and lectin pathway regulator C4b-binding protein (C4BP. A PTX3-binding site was identified within short consensus repeats 1-3 of the C4BP α-chain. PTX3 did not interfere with the cofactor activity of C4BP in the fluid phase and C4BP maintained its complement regulatory activity when bound to PTX3 on surfaces. While C4BP and factor H did not compete for PTX3 binding, the interaction of C4BP with PTX3 was inhibited by C1q and by L-ficolin. PTX3 bound to human fibroblast- and endothelial cell-derived extracellular matrices and recruited functionally active C4BP to these surfaces. Whereas PTX3 enhanced the activation of the classical/lectin pathway and caused enhanced C3 deposition on extracellular matrix, deposition of terminal pathway components and the generation of the inflammatory mediator C5a were not increased. Furthermore, PTX3 enhanced the binding of C4BP to late apoptotic cells, which resulted in an increased rate of inactivation of cell surface bound C4b and a reduction in the deposition of C5b-9. Thus, in addition to complement activators, PTX3 interacts with complement inhibitors including C4BP. This balanced interaction on extracellular matrix and on apoptotic cells may prevent excessive local complement activation that would otherwise lead to inflammation and host tissue damage.

  11. Solid-phase classical complement activation by C-reactive protein (CRP) is inhibited by fluid-phase CRP-C1q interaction

    International Nuclear Information System (INIS)

    Sjoewall, Christopher; Wetteroe, Jonas; Bengtsson, Torbjoern; Askendal, Agneta; Almroth, Gunnel; Skogh, Thomas; Tengvall, Pentti

    2007-01-01

    C-reactive protein (CRP) interacts with phosphorylcholine (PC), Fcγ receptors, complement factor C1q and cell nuclear constituents, yet its biological roles are insufficiently understood. The aim was to characterize CRP-induced complement activation by ellipsometry. PC conjugated with keyhole limpet hemocyanin (PC-KLH) was immobilized to cross-linked fibrinogen. A low-CRP serum with different amounts of added CRP was exposed to the PC-surfaces. The total serum protein deposition was quantified and deposition of IgG, C1q, C3c, C4, factor H, and CRP detected with polyclonal antibodies. The binding of serum CRP to PC-KLH dose-dependently triggered activation of the classical pathway. Unexpectedly, the activation was efficiently down-regulated at CRP levels >150 mg/L. Using radial immunodiffusion, CRP-C1q interaction was observed in serum samples with high CRP concentrations. We propose that the underlying mechanism depends on fluid-phase interaction between C1q and CRP. This might constitute another level of complement regulation, which has implications for systemic lupus erythematosus where CRP is often low despite flare-ups

  12. ErpC, a member of the complement regulator-acquiring family of surface proteins from Borrelia burgdorferi, possesses an architecture previously unseen in this protein family

    International Nuclear Information System (INIS)

    Caesar, Joseph J. E.; Johnson, Steven; Kraiczy, Peter; Lea, Susan M.

    2013-01-01

    The structure of ErpC, a member of the complement regulator-acquiring surface protein family from B. burgdorferi, has been solved, providing insights into the strategies of complement evasion by this zoonotic bacterium and suggesting a common architecture for other members of this protein family. Borrelia burgdorferi is a spirochete responsible for Lyme disease, the most commonly occurring vector-borne disease in Europe and North America. The bacterium utilizes a set of proteins, termed complement regulator-acquiring surface proteins (CRASPs), to aid evasion of the human complement system by recruiting and presenting complement regulator factor H on its surface in a manner that mimics host cells. Presented here is the atomic resolution structure of a member of this protein family, ErpC. The structure provides new insights into the mechanism of recruitment of factor H and other factor H-related proteins by acting as a molecular mimic of host glycosaminoglycans. It also describes the architecture of other CRASP proteins belonging to the OspE/F-related paralogous protein family and suggests that they have evolved to bind specific complement proteins, aiding survival of the bacterium in different hosts

  13. Binding of complement proteins C1q and C4bp to serum amyloid P component (SAP) in solid contra liquid phase

    DEFF Research Database (Denmark)

    Sørensen, Inge Juul; Nielsen, EH; Andersen, Ove

    1996-01-01

    Serum amyloid P component (SAP), a member of the conserved pentraxin family of plasma proteins, binds calcium dependently to its ligands. The authors investigated SAPs interaction with the complement proteins C4b binding protein (C4bp) and C1q by ELISA, immunoelectrophoresis and electron microscopy....... Binding of these proteins to SAP was demonstrated when SAP was immobilized using F(ab')2 anti-SAP, but not when SAP reacted with these proteins in liquid phase; thus the binding to human SAP was markedly phase state dependent. Presaturation of solid phase SAP with heparin, which binds SAP with high...... affinity, did not interfere with the subsequent binding of C4bp or C1q to SAP. In contrast, collagen I and IV showed partial competition with the binding of C1q to SAP. Using fresh serum, immobilized native SAP bound C4bp whereas binding of C1q/C1 could not be demonstrated. Altogether the results indicate...

  14. Complement activation by ceramide transporter proteins.

    Science.gov (United States)

    Bode, Gerard H; Losen, Mario; Buurman, Wim A; Veerhuis, Robert; Molenaar, Peter C; Steinbusch, Harry W M; De Baets, Marc H; Daha, Mohamed R; Martinez-Martinez, Pilar

    2014-02-01

    C1q is the initiator of the classical complement pathway and, as such, is essential for efficient opsonization and clearance of pathogens, altered self-structures, and apoptotic cells. The ceramide transporter protein (CERT) and its longer splicing isoform CERTL are known to interact with extracellular matrix components, such as type IV collagen, and with the innate immune protein serum amyloid P. In this article, we report a novel function of CERT in the innate immune response. Both CERT isoforms, when immobilized, were found to bind the globular head region of C1q and to initiate the classical complement pathway, leading to activation of C4 and C3, as well as generation of the membrane attack complex C5b-9. In addition, C1q was shown to bind to endogenous CERTL on the surface of apoptotic cells. These results demonstrate the role of CERTs in innate immunity, especially in the clearance of apoptotic cells.

  15. complement C3, Complement C4 and C-reactive protein

    African Journals Online (AJOL)

    ajl yemi

    2011-12-19

    Dec 19, 2011 ... (IL-6), E-selectin and P-selectin (Perlstein and Lee,. 2006). Studies have ... of cigarette smoke causes complement activation which is in turn ..... are decreased by long term smoking cessation in male smokers. Prevent. Med.

  16. Structural analysis of human complement protein H: homology with C4b binding protein, beta 2-glycoprotein I, and the Ba fragment of B2

    DEFF Research Database (Denmark)

    Kristensen, Torsten; Wetsel, R A; Tack, B F

    1986-01-01

    We report here a partial primary structure for human complement protein H. Tryptic peptides comprising 27% of the H molecule were isolated by conventional techniques and were sequenced (333 amino acid residues). Several mixed-sequence oligonucleotide probes were constructed, based on the peptide...... sequence data, and were used to screen a human liver cDNA library. The largest recombinant plasmid (pH1050), which hybridized with two probes, was further characterized. The cDNA insert of this plasmid contained coding sequence (672 bp) for 224 amino acids of H. The 3' end of this clone had...... a polyadenylated tail preceded by a polyadenylation recognition site (ATTAAA) and a 3'-untranslated region (229 bp). Four regions of internal homology, each about 60 amino acids in length, were observed in the derived protein sequence from this cDNA clone, and a further seven from the tryptic peptide sequences...

  17. Hepatitis C virus NS3/4A protease inhibits complement activation by cleaving complement component 4.

    Directory of Open Access Journals (Sweden)

    Seiichi Mawatari

    Full Text Available BACKGROUND: It has been hypothesized that persistent hepatitis C virus (HCV infection is mediated in part by viral proteins that abrogate the host immune response, including the complement system, but the precise mechanisms are not well understood. We investigated whether HCV proteins are involved in the fragmentation of complement component 4 (C4, composed of subunits C4α, C4β, and C4γ, and the role of HCV proteins in complement activation. METHODS: Human C4 was incubated with HCV nonstructural (NS 3/4A protease, core, or NS5. Samples were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and then subjected to peptide sequencing. The activity of the classical complement pathway was examined using an erythrocyte hemolysis assay. The cleavage pattern of C4 in NS3/4A-expressing and HCV-infected cells, respectively, was also examined. RESULTS: HCV NS3/4A protease cleaved C4γ in a concentration-dependent manner, but viral core and NS5 did not. A specific inhibitor of NS3/4A protease reduced C4γ cleavage. NS3/4A protease-mediated cleavage of C4 inhibited classical pathway activation, which was abrogated by a NS3/4A protease inhibitor. In addition, co-transfection of cells with C4 and wild-type NS3/4A, but not a catalytic-site mutant of NS3/4A, produced cleaved C4γ fragments. Such C4 processing, with a concomitant reduction in levels of full-length C4γ, was also observed in HCV-infected cells expressing C4. CONCLUSIONS: C4 is a novel cellular substrate of the HCV NS3/4A protease. Understanding disturbances in the complement system mediated by NS3/4A protease may provide new insights into the mechanisms underlying persistent HCV infection.

  18. Complement-mediated solubilization of immune complexes and their interaction with complement C3 receptors

    DEFF Research Database (Denmark)

    Petersen, Ivan; Baatrup, Gunnar; Jepsen, H H

    1985-01-01

    Some of the molecular events in the complement (C)-mediated solubilization of immune complexes (IC) have been clarified in recent years. The solubilization is primarily mediated by alternative C pathway proteins whereas factors in the classical pathway accelerate the process. Components of the me......Some of the molecular events in the complement (C)-mediated solubilization of immune complexes (IC) have been clarified in recent years. The solubilization is primarily mediated by alternative C pathway proteins whereas factors in the classical pathway accelerate the process. Components...... of the cellular localization, expression and structure of the C3 receptors, especially the C3b (CR1) receptor, has been considerably extended in the last few years, whereas our understanding of the physiological role of these receptors is still fragmentary. However, it is becoming increasingly evident...

  19. The C-type lectin of the aggrecan G3 domain activates complement.

    Directory of Open Access Journals (Sweden)

    Camilla Melin Fürst

    Full Text Available Excessive complement activation contributes to joint diseases such as rheumatoid arthritis and osteoarthritis during which cartilage proteins are fragmented and released into the synovial fluid. Some of these proteins and fragments activate complement, which may sustain inflammation. The G3 domain of large cartilage proteoglycan aggrecan interacts with other extracellular matrix proteins, fibulins and tenascins, via its C-type lectin domain (CLD and has important functions in matrix organization. Fragments containing G3 domain are released during normal aggrecan turnover, but increasingly so in disease. We now show that the aggrecan CLD part of the G3 domain activates the classical and to a lesser extent the alternative pathway of complement, via binding of C1q and C3, respectively. The complement control protein (CCP domain adjacent to the CLD showed no effect on complement initiation. The binding of C1q to G3 depended on ionic interactions and was decreased in D2267N mutant G3. However, the observed complement activation was attenuated due to binding of complement inhibitor factor H to CLD and CCP domains. This was most apparent at the level of deposition of terminal complement components. Taken together our observations indicate aggrecan CLD as one factor involved in the sustained inflammation of the joint.

  20. Reference distributions for complement proteins C3 and C4: a practical, simple and clinically relevant approach in a large cohort.

    Science.gov (United States)

    Ritchie, Robert F; Palomaki, Glenn E; Neveux, Louis M; Navolotskaia, Olga; Ledue, Thomas B; Craig, Wendy Y

    2004-01-01

    The two serum proteins of the complement cascade in the highest concentrations, C3 and C4, respond to various conditions in much the same manner as do other positive acute-phase proteins. A major difference is that they are relatively sluggish in response to cytokine drive, requiring several days rather than hours to be detectably elevated by serial measurements. As with other acute-phase proteins, there are many processes that up- or down-regulate synthesis, including infection or inflammation, hepatic failure, and immune-complex formation. Clinicians may find it difficult to distinguish among these processes, because they often occur simultaneously. The situation is further complicated by genetic polymorphism, with rare instances of markedly reduced synthesis and circulating levels, and consequent vulnerability to infection. C3 and C4 are measured for clinical purposes to help define certain rheumatic and immunologically mediated renal diseases. Interpreting the measured blood levels of these two components requires one to consider the intensity of the inflammatory drive, the timing of the suspected clinical process, the production of complement-consuming immune complexes, and the possible existence of benign circumstances. In this fifth article in a series, reference ranges for serum levels of two complement proteins (C3 and C4) are examined. The study is based on a cohort of over 55,000 Caucasian individuals from northern New England, who were tested in our laboratory in 1994-1999. Measurements were standardized against certified reference material (CRM) 470/reference preparation for proteins in human serum (RPPHS), and analyzed using a previously described statistical approach. Individuals with unequivocal laboratory evidence of inflammation (C-reactive protein of 10 mg/L or higher) were excluded. Our results show that the levels of C3 and C4 change little during life and between the sexes, except that they increase slightly and then fall after age 20 in males

  1. Complement factor H-related proteins CFHR2 and CFHR5 represent novel ligands for the infection-associated CRASP proteins of Borrelia burgdorferi.

    Directory of Open Access Journals (Sweden)

    Corinna Siegel

    2010-10-01

    Full Text Available One virulence property of Borrelia burgdorferi is its resistance to innate immunity, in particular to complement-mediated killing. Serum-resistant B. burgdorferi express up to five distinct complement regulator-acquiring surface proteins (CRASP which interact with complement regulator factor H (CFH and factor H-like protein 1 (FHL1 or factor H-related protein 1 (CFHR1. In the present study we elucidate the role of the infection-associated CRASP-3 and CRASP-5 protein to serve as ligands for additional complement regulatory proteins as well as for complement resistance of B. burgdorferi.To elucidate whether CRASP-5 and CRASP-3 interact with various human proteins, both borrelial proteins were immobilized on magnetic beads. Following incubation with human serum, bound proteins were eluted and separated by Glycine-SDS-PAGE. In addition to CFH and CFHR1, complement regulators CFHR2 and CFHR5 were identified as novel ligands for both borrelial proteins by employing MALDI-TOF. To further assess the contributions of CRASP-3 and CRASP-5 to complement resistance, a serum-sensitive B. garinii strain G1 which lacks all CFH-binding proteins was used as a valuable model for functional analyses. Both CRASPs expressed on the B. garinii outer surface bound CFH as well as CFHR1 and CFHR2 in ELISA. In contrast, live B. garinii bound CFHR1, CFHR2, and CFHR5 and only miniscute amounts of CFH as demonstrated by serum adsorption assays and FACS analyses. Further functional analysis revealed that upon NHS incubation, CRASP-3 or CRASP-5 expressing borreliae were killed by complement.In the absence of CFH and the presence of CFHR1, CFHR2 and CFHR5, assembly and integration of the membrane attack complex was not efficiently inhibited indicating that CFH in co-operation with CFHR1, CFHR2 and CFHR5 supports complement evasion of B. burgdorferi.

  2. The Murine Factor H-Related Protein FHR-B Promotes Complement Activation

    Directory of Open Access Journals (Sweden)

    Marcell Cserhalmi

    2017-09-01

    Full Text Available Factor H-related (FHR proteins consist of varying number of complement control protein domains that display various degrees of sequence identity to respective domains of the alternative pathway complement inhibitor factor H (FH. While such FHR proteins are described in several species, only human FHRs were functionally investigated. Their biological role is still poorly understood and in part controversial. Recent studies on some of the human FHRs strongly suggest a role for FHRs in enhancing complement activation via competing with FH for binding to certain ligands and surfaces. The aim of the current study was the functional characterization of a murine FHR, FHR-B. To this end, FHR-B was expressed in recombinant form. Recombinant FHR-B bound to human C3b and was able to compete with human FH for C3b binding. FHR-B supported the assembly of functionally active C3bBb alternative pathway C3 convertase via its interaction with C3b. This activity was confirmed by demonstrating C3 activation in murine serum. In addition, FHR-B bound to murine pentraxin 3 (PTX3, and this interaction resulted in murine C3 fragment deposition due to enhanced complement activation in mouse serum. FHR-B also induced C3 deposition on C-reactive protein, the extracellular matrix (ECM extract Matrigel, and endothelial cell-derived ECM when exposed to mouse serum. Moreover, mouse C3 deposition was strongly enhanced on necrotic Jurkat T cells and the mouse B cell line A20 by FHR-B. FHR-B also induced lysis of sheep erythrocytes when incubated in mouse serum with FHR-B added in excess. Altogether, these data demonstrate that, similar to human FHR-1 and FHR-5, mouse FHR-B modulates complement activity by promoting complement activation via interaction with C3b and via competition with murine FH.

  3. Complement Activation by Ceramide Transporter Proteins

    NARCIS (Netherlands)

    Bode, G.H.; Losen, M.; Buurman, W.A.; Veerhuis, R.; Molenaar, P.C.; Steinbusch, H.W.M.; De Baets, M.H.; Daha, MR; Martinez-Martinez, P.

    2014-01-01

    C1q is the initiator of the classical complement pathway and, as such, is essential for efficient opsonization and clearance of pathogens, altered self-structures, and apoptotic cells. The ceramide transporter protein (CERT) and its longer splicing isoform CERTL are known to interact with

  4. Human alpha2-macroglobulin is composed of multiple domains, as predicted by homology with complement component C3.

    Science.gov (United States)

    Doan, Ninh; Gettins, Peter G W

    2007-10-01

    Human alpha2M (alpha2-macroglobulin) and the complement components C3 and C4 are thiol ester-containing proteins that evolved from the same ancestral gene. The recent structure determination of human C3 has allowed a detailed prediction of the location of domains within human alpha2M to be made. We describe here the expression and characterization of three alpha(2)M domains predicted to be involved in the stabilization of the thiol ester in native alpha2M and in its activation upon bait region proteolysis. The three newly expressed domains are MG2 (macroglobulin domain 2), TED (thiol ester-containing domain) and CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domain. Together with the previously characterized RBD (receptor-binding domain), they represent approx. 42% of the alpha2M polypeptide. Their expression as folded domains strongly supports the predicted domain organization of alpha2M. An X-ray crystal structure of MG2 shows it to have a fibronectin type-3 fold analogous to MG1-MG8 of C3. TED is, as predicted, an alpha-helical domain. CUB is a spliced domain composed of two stretches of polypeptide that flank TED in the primary structure. In intact C3 TED interacts with RBD, where it is in direct contact with the thiol ester, and with MG2 and CUB on opposite, flanking sides. In contrast, these alpha2M domains, as isolated species, show negligible interaction with one another, suggesting that the native conformation of alpha2M, and the consequent thiol ester-stabilizing domain-domain interactions, result from additional restraints imposed by the physical linkage of these domains or by additional domains in the protein.

  5. Human α2-macroglobulin is composed of multiple domains, as predicted by homology with complement component C3

    Science.gov (United States)

    Doan, Ninh; Gettins, Peter G. W.

    2007-01-01

    Human α2M (α2-macroglobulin) and the complement components C3 and C4 are thiol ester-containing proteins that evolved from the same ancestral gene. The recent structure determination of human C3 has allowed a detailed prediction of the location of domains within human α2M to be made. We describe here the expression and characterization of three α2M domains predicted to be involved in the stabilization of the thiol ester in native α2M and in its activation upon bait region proteolysis. The three newly expressed domains are MG2 (macroglobulin domain 2), TED (thiol ester-containing domain) and CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domain. Together with the previously characterized RBD (receptor-binding domain), they represent approx. 42% of the α2M polypeptide. Their expression as folded domains strongly supports the predicted domain organization of α2M. An X-ray crystal structure of MG2 shows it to have a fibronectin type-3 fold analogous to MG1–MG8 of C3. TED is, as predicted, an α-helical domain. CUB is a spliced domain composed of two stretches of polypeptide that flank TED in the primary structure. In intact C3 TED interacts with RBD, where it is in direct contact with the thiol ester, and with MG2 and CUB on opposite, flanking sides. In contrast, these α2M domains, as isolated species, show negligible interaction with one another, suggesting that the native conformation of α2M, and the consequent thiol ester-stabilizing domain–domain interactions, result from additional restraints imposed by the physical linkage of these domains or by additional domains in the protein. PMID:17608619

  6. The Surface-Exposed Protein SntA Contributes to Complement Evasion in Zoonotic Streptococcus suis.

    Science.gov (United States)

    Deng, Simin; Xu, Tong; Fang, Qiong; Yu, Lei; Zhu, Jiaqi; Chen, Long; Liu, Jiahui; Zhou, Rui

    2018-01-01

    Streptococcus suis is an emerging zoonotic pathogen causing streptococcal toxic shock like syndrome (STSLS), meningitis, septicemia, and even sudden death in human and pigs. Serious septicemia indicates this bacterium can evade the host complement surveillance. In our previous study, a functionally unknown protein SntA of S. suis has been identified as a heme-binding protein, and contributes to virulence in pigs. SntA can interact with the host antioxidant protein AOP2 and consequently inhibit its antioxidant activity. In the present study, SntA is identified as a cell wall anchored protein that functions as an important player in S. suis complement evasion. The C3 deposition and membrane attack complex (MAC) formation on the surface of sntA -deleted mutant strain Δ sntA are demonstrated to be significantly higher than the parental strain SC-19 and the complementary strain CΔ sntA . The abilities of anti-phagocytosis, survival in blood, and in vivo colonization of Δ sntA are obviously reduced. SntA can interact with C1q and inhibit hemolytic activity via the classical pathway. Complement activation assays reveal that SntA can also directly activate classical and lectin pathways, resulting in complement consumption. These two complement evasion strategies may be crucial for the pathogenesis of this zoonotic pathogen. Concerning that SntA is a bifunctional 2',3'-cyclic nucleotide 2'-phosphodiesterase/3'-nucleotidase in many species of Gram-positive bacteria, these complement evasion strategies may have common biological significance.

  7. Storage of the complement components C4, C3, and C 3-activator in the human liver as PAS-negative globular hyaline bodies.

    Science.gov (United States)

    Storch, W; Riedel, H; Trautmann, B; Justus, J; Hiemann, D

    1982-01-01

    Liver biopsies of a 58-year-old clinically healthy patient with a hepatomegaly and intracisternal PAS-negative globular hyaline bodies were immunofluorescent-optically examined for the content of the complement components C 1 q, C 4, C 9, C 1-inactivator, C 3-activator. Further examinations were performed for fibrinogen, IgG, IgA, IgM, IgD, IgE, L-chain (type chi and lambda), alpha 1-antitrypsin, alpha 1-fetoprotein, alpha 1- and alpha 2-glycoprotein, cholinesterase, ceruloplasmin, myoglobin, hemopexin, HBsAg and HBsAg. Th inclusion bodies reacted with antisera against the complement components C 4, C 3 and C 3-activator, as also identified by double immunofluorescence. Probably this is a disturbance of the protein metabolism of the liver cell with abnormal complement storage in the presence of normal total complement and normal complement components in the serum.

  8. Staphylococcus aureus SdrE captures complement factor H's C-terminus via a novel 'close, dock, lock and latch' mechanism for complement evasion.

    Science.gov (United States)

    Zhang, Yingjie; Wu, Minhao; Hang, Tianrong; Wang, Chengliang; Yang, Ye; Pan, Weimin; Zang, Jianye; Zhang, Min; Zhang, Xuan

    2017-05-04

    Complement factor H (CFH) is a soluble complement regulatory protein essential for the down-regulation of the alternative pathway on interaction with specific markers on the host cell surface. It recognizes the complement component 3b (C3b) and 3d (C3d) fragments in addition to self cell markers (i.e. glycosaminoglycans, sialic acid) to distinguish host cells that deserve protection from pathogens that should be eliminated. The Staphylococcus aureus surface protein serine-aspartate repeat protein E (SdrE) was previously reported to bind human CFH as an immune-evasion tactic. However, the molecular mechanism underlying SdrE-CFH-mediated immune evasion remains unknown. In the present study, we identified a novel region at CFH's C-terminus (CFH 1206-1226 ), which binds SdrE N2 and N3 domains (SdrE N2N3 ) with high affinity, and determined the crystal structures of apo-SdrE N2N3 and the SdrE N2N3 -CFH 1206-1226 complex. Comparison of the structure of the CFH-SdrE complex with other CFH structures reveals that CFH's C-terminal tail flips from the main body to insert into the ligand-binding groove of SdrE. In addition, SdrE N2N3 adopts a 'close' state in the absence of CFH, which undergoes a large conformational change on CFH binding, suggesting a novel 'close, dock, lock and latch' (CDLL) mechanism for SdrE to recognize its ligand. Our findings imply that SdrE functions as a 'clamp' to capture CFH's C-terminal tail via a unique CDLL mechanism and sequesters CFH on the surface of S. aureus for complement evasion. © 2017 The Author(s).

  9. Acquisition of complement inhibitor serine protease factor I and its cofactors C4b-binding protein and factor H by Prevotella intermedia.

    Science.gov (United States)

    Malm, Sven; Jusko, Monika; Eick, Sigrun; Potempa, Jan; Riesbeck, Kristian; Blom, Anna M

    2012-01-01

    Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with (125)I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases.

  10. Evaluation of lysozyme, complement C3, and total protein in different developmental stages of Caspian kutum (Rutilus frisii kutum K.

    Directory of Open Access Journals (Sweden)

    Abdollahi Razieh

    2016-03-01

    Full Text Available In this study, non–specific immune parameters in fertilized eggs, eyed embryos, larvae 10, 25, 50, 60, and 70 days post hatch (DPH, and female broodstock of Caspian kutum, Rutilus frisii kutum (Kamensky, were evaluated. The lysozyme activity, complement C3, and total protein levels were measured with the turbidimetric, immunoturbidimetric, and Bradford methods, respectively. The results showed that lysozyme levels decreased from levels noted in the fertilized eggs until the larvae were 10 days old. Subsequently, significant increases in lysozyme levels were observed until 70 DPH. An increasing trend of complement component C3 was noted from the levels in fertilized eggs to 10 DPH, following which it decreased significantly. Total protein levels differed significantly in early developmental stages of Caspian kutum. The higher values of complement component C3 than of lysozyme in the early life stages could be indicative of the former’s more fundamental role.

  11. Comprehensive approach to study complement C4 in systemic lupus erythematosus: Gene polymorphisms, protein levels and functional activity

    NARCIS (Netherlands)

    Tsang-A-Sjoe, M. W. P.; Bultink, I. E. M.; Korswagen, L. A.; van der Horst, A. [=Anneke; Rensink, I.; de Boer, M.; Hamann, D.; Voskuyl, A. E.; Wouters, D.

    2017-01-01

    Genetic variation of the genes encoding complement component C4 is strongly associated with systemic lupus erythematosus (SLE), a chronic multi-organ auto-immune disease. This study examined C4 and its isotypes on a genetic, protein, and functional level in 140 SLE patients and 104 healthy controls.

  12. Staphylococcus aureus SdrE captures complement factor H's C-terminus via a novel ‘close, dock, lock and latch' mechanism for complement evasion

    Science.gov (United States)

    Zhang, Yingjie; Wu, Minhao; Hang, Tianrong; Wang, Chengliang; Yang, Ye; Pan, Weimin; Zang, Jianye

    2017-01-01

    Complement factor H (CFH) is a soluble complement regulatory protein essential for the down-regulation of the alternative pathway on interaction with specific markers on the host cell surface. It recognizes the complement component 3b (C3b) and 3d (C3d) fragments in addition to self cell markers (i.e. glycosaminoglycans, sialic acid) to distinguish host cells that deserve protection from pathogens that should be eliminated. The Staphylococcus aureus surface protein serine–aspartate repeat protein E (SdrE) was previously reported to bind human CFH as an immune-evasion tactic. However, the molecular mechanism underlying SdrE–CFH-mediated immune evasion remains unknown. In the present study, we identified a novel region at CFH's C-terminus (CFH1206–1226), which binds SdrE N2 and N3 domains (SdrEN2N3) with high affinity, and determined the crystal structures of apo-SdrEN2N3 and the SdrEN2N3–CFH1206–1226 complex. Comparison of the structure of the CFH–SdrE complex with other CFH structures reveals that CFH's C-terminal tail flips from the main body to insert into the ligand-binding groove of SdrE. In addition, SdrEN2N3 adopts a ‘close’ state in the absence of CFH, which undergoes a large conformational change on CFH binding, suggesting a novel ‘close, dock, lock and latch' (CDLL) mechanism for SdrE to recognize its ligand. Our findings imply that SdrE functions as a ‘clamp' to capture CFH's C-terminal tail via a unique CDLL mechanism and sequesters CFH on the surface of S. aureus for complement evasion. PMID:28258151

  13. C-reactive protein and pentraxin-3 binding of factor H-like protein 1 differs from complement factor H: Implications for retinal inflammation

    NARCIS (Netherlands)

    Swinkels, M. (Maurice); Zhang, J.H. (Justine H.); Tilakaratna, V. (Viranga); Black, G. (Graeme); Perveen, R. (Rahat); McHarg, S. (Selina); Inforzato, A. (Antonio); Day, A.J. (Anthony J.); Clark, S.J. (Simon J.)

    2018-01-01

    textabstractRetinal inflammation plays a key role in the progression of age-related macular degeneration (AMD), a condition that leads to loss of central vision. The deposition of the acute phase pentraxin C-reactive protein (CRP) in the macula activates the complement system, thereby contributing

  14. Phagocytosis escape by a Staphylococcus aureus protein that connects complement and coagulation proteins at the bacterial surface.

    Directory of Open Access Journals (Sweden)

    Ya-Ping Ko

    Full Text Available Upon contact with human plasma, bacteria are rapidly recognized by the complement system that labels their surface for uptake and clearance by phagocytic cells. Staphylococcus aureus secretes the 16 kD Extracellular fibrinogen binding protein (Efb that binds two different plasma proteins using separate domains: the Efb N-terminus binds to fibrinogen, while the C-terminus binds complement C3. In this study, we show that Efb blocks phagocytosis of S. aureus by human neutrophils. In vitro, we demonstrate that Efb blocks phagocytosis in plasma and in human whole blood. Using a mouse peritonitis model we show that Efb effectively blocks phagocytosis in vivo, either as a purified protein or when produced endogenously by S. aureus. Mutational analysis revealed that Efb requires both its fibrinogen and complement binding residues for phagocytic escape. Using confocal and transmission electron microscopy we show that Efb attracts fibrinogen to the surface of complement-labeled S. aureus generating a 'capsule'-like shield. This thick layer of fibrinogen shields both surface-bound C3b and antibodies from recognition by phagocytic receptors. This information is critical for future vaccination attempts, since opsonizing antibodies may not function in the presence of Efb. Altogether we discover that Efb from S. aureus uniquely escapes phagocytosis by forming a bridge between a complement and coagulation protein.

  15. Association between lectin complement pathway initiators, C-reactive protein and left ventricular remodeling in myocardial infarction-a magnetic resonance study

    DEFF Research Database (Denmark)

    Schoos, Mikkel Malby; Munthe-Fog, Lea; Skjoedt, Mikkel-Ole

    2013-01-01

    Lectin complement pathway (LP) activation is an important mechanism in myocardial ischemia reperfusion injury (IRI). LP is activated via the recognition molecules mannose-binding lectin (MBL), ficolins-2 and-3 and is regulated by MBL/Ficolin-associated Protein-1 (MAP-1). Also, C-reactive protein...... (CRP) and ficolin-2 interact in vitro, but the role of the ficolins in IRI is unknown.Methods and results In 55 patients with ST segment elevation myocardial infarction, we investigated the association of LP components and CRP in plasma samples with left ventricular (LV) end systolic and diastolic......-activation in IRI and LV remodeling....

  16. Complement Evasion by Pathogenic Leptospira.

    Science.gov (United States)

    Fraga, Tatiana Rodrigues; Isaac, Lourdes; Barbosa, Angela Silva

    2016-01-01

    Leptospirosis is a neglected infectious disease caused by spirochetes from the genus Leptospira . Pathogenic microorganisms, notably those which reach the blood circulation such as Leptospira , have evolved multiple strategies to escape the host complement system, which is important for innate and acquired immunity. Leptospira avoid complement-mediated killing through: (i) recruitment of host complement regulators; (ii) acquisition of host proteases that cleave complement proteins on the bacterial surface; and, (iii) secretion of proteases that inactivate complement proteins in the Leptospira surroundings. The recruitment of host soluble complement regulatory proteins includes the acquisition of Factor H (FH) and FH-like-1 (alternative pathway), C4b-binding protein (C4BP) (classical and lectin pathways), and vitronectin (Vn) (terminal pathway). Once bound to the leptospiral surface, FH and C4BP retain cofactor activity of Factor I in the cleavage of C3b and C4b, respectively. Vn acquisition by leptospires may result in terminal pathway inhibition by blocking C9 polymerization. The second evasion mechanism lies in plasminogen (PLG) binding to the leptospiral surface. In the presence of host activators, PLG is converted to enzymatically active plasmin, which is able to degrade C3b, C4b, and C5 at the surface of the pathogen. A third strategy used by leptospires to escape from complement system is the active secretion of proteases. Pathogenic, but not saprophytic leptospires, are able to secrete metalloproteases that cleave C3 (central complement molecule), Factor B (alternative pathway), and C4 and C2 (classical and lectin pathways). The purpose of this review is to fully explore these complement evasion mechanisms, which act together to favor Leptospira survival and multiplication in the host.

  17. Feeding common carp Cyprinus carpio with β-glucan supplemented diet stimulates C-reactive protein and complement immune acute phase responses following PAMPs injection.

    Science.gov (United States)

    Pionnier, Nicolas; Falco, Alberto; Miest, Joanna J; Shrive, Annette K; Hoole, Dave

    2014-08-01

    The effect of β-glucan as a feed additive on the serum and gene profile of C-reactive protein (CRP) and complement acute phase responses was ascertained in common carp Cyprinus carpio. In addition effects of subsequent intraperitoneal injections of pathogen-associated molecular patterns (PAMPs), i.e. LPS or poly(I:C), to mimic bacterial or viral infection respectively, were studied. Carp were first orally fed with β-glucan (MacroGard®) with a daily β-glucan intake of 6 mg per kg body weight or with control food for 25 days and then injected with PBS containing either LPS (4 mg/kg) or poly(I:C) (5 mg/kg) or PBS alone. Fish were sampled during the 25 days of the feeding period and up to 7 days post-PAMPs injections for serum and liver, head kidney and mid-gut tissues. Oral administration of β-glucan for 25 days significantly increased serum CRP levels and alternative complement activity (ACP). In addition, the subsequent LPS and poly(I:C) challenges significantly affected CRP and complement related gene expression profiles (crp1, crp2, c1r/s, bf/c2, c3 and masp2), with the greatest effects observed in the β-glucan fed fish. However, in fish fed β-glucan the PAMPs injections had less effects on CRP levels and complement activity in the serum than in control fed fish, suggesting that the 25 days of β-glucan immunostimulation was sufficient enough to reduce the effects of LPS and poly(I:C) injections. Results suggest that MacroGard® stimulated CRP and complement responses to PAMPs immunological challenges in common carp thus highlighting the beneficial β-glucan immunostimulant properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Variants in Complement Factor H and Complement Factor H-Related Protein Genes, CFHR3 and CFHR1, Affect Complement Activation in IgA Nephropathy.

    Science.gov (United States)

    Zhu, Li; Zhai, Ya-Ling; Wang, Feng-Mei; Hou, Ping; Lv, Ji-Cheng; Xu, Da-Min; Shi, Su-Fang; Liu, Li-Jun; Yu, Feng; Zhao, Ming-Hui; Novak, Jan; Gharavi, Ali G; Zhang, Hong

    2015-05-01

    Complement activation is common in patients with IgA nephropathy (IgAN) and associated with disease severity. Our recent genome-wide association study of IgAN identified susceptibility loci on 1q32 containing the complement regulatory protein-encoding genes CFH and CFHR1-5, with rs6677604 in CFH as the top single-nucleotide polymorphism and CFHR3-1 deletion (CFHR3-1∆) as the top signal for copy number variation. In this study, to explore the clinical effects of variation in CFH, CFHR3, and CFHR1 on IgAN susceptibility and progression, we enrolled two populations. Group 1 included 1178 subjects with IgAN and available genome-wide association study data. Group 2 included 365 subjects with IgAN and available clinical follow-up data. In group 1, rs6677604 was associated with mesangial C3 deposition by genotype-phenotype correlation analysis. In group 2, we detected a linkage between the rs6677604-A allele and CFHR3-1∆ and found that the rs6677604-A allele was associated with higher serum levels of CFH and lower levels of the complement activation split product C3a. Furthermore, CFH levels were positively associated with circulating C3 levels and negatively associated with mesangial C3 deposition. Moreover, serum levels of the pathogenic galactose-deficient glycoform of IgA1 were also associated with the degree of mesangial C3 deposition in patients with IgAN. Our findings suggest that genetic variants in CFH, CFHR3, and CFHR1 affect complement activation and thereby, predispose patients to develop IgAN. Copyright © 2015 by the American Society of Nephrology.

  19. Induction of complement proteins in a mouse model for cerebral microvascular Aβ deposition

    Directory of Open Access Journals (Sweden)

    DeFilippis Kelly

    2007-09-01

    Full Text Available Abstract The deposition of amyloid β-protein (Aβ in cerebral vasculature, known as cerebral amyloid angiopathy (CAA, is a common pathological feature of Alzheimer's disease and related disorders. In familial forms of CAA single mutations in the Aβ peptide have been linked to the increase of vascular Aβ deposits accompanied by a strong localized activation of glial cells and elevated expression of neuroinflammatory mediators including complement proteins. We have developed human amyloid-β precursor protein transgenic mice harboring two CAA Aβ mutations (Dutch E693Q and Iowa D694N that mimic the prevalent cerebral microvascular Aβ deposition observed in those patients, and the Swedish mutations (K670N/M671L to increase Aβ production. In these Tg-SwDI mice, we have reported predominant fibrillar Aβ along microvessels in the thalamic region and diffuse plaques in cortical region. Concurrently, activated microglia and reactive astrocytes have been detected primarily in association with fibrillar cerebral microvascular Aβ in this model. Here we show that three native complement components in classical and alternative complement pathways, C1q, C3, and C4, are elevated in Tg-SwDI mice in regions rich in fibrillar microvascular Aβ. Immunohistochemical staining of all three proteins was increased in thalamus, hippocampus, and subiculum, but not frontal cortex. Western blot analysis showed significant increases of all three proteins in the thalamic region (with hippocampus as well as the cortical region, except C3 that was below detection level in cortex. Also, in the thalamic region (with hippocampus, C1q and C3 mRNAs were significantly up-regulated. These complement proteins appeared to be expressed largely by activated microglial cells associated with the fibrillar microvascular Aβ deposits. Our findings demonstrate that Tg-SwDI mice exhibit elevated complement protein expression in response to fibrillar vascular Aβ deposition that is

  20. Complement inhibitory proteins expression in placentas of thrombophilic women Complement inhibitory proteins expression in placentas of thrombophilic women

    Directory of Open Access Journals (Sweden)

    Przemysław Krzysztof Wirstlein

    2012-10-01

    Full Text Available Factors controlling complement activation appear to exert a protective effect on pregnancy. This is
    particularly important in women with thrombophilia. The aim of this study was to determine the transcript and
    protein levels of complement decay-accelerating factor (DAF and membrane cofactor protein (MCP in the
    placentas of women with acquired and inherited thrombophilia. Also, we assessed immunohistochemistry staining
    of inhibitors of the complement cascade, DAF and MCP proteins, in the placentas of thrombophilic women.
    Placentas were collected from eight women with inherited thrombophilia and ten with acquired thrombophilia.
    The levels of DAF and MCP transcripts were evaluated by qPCR, the protein level was evaluated by Western
    blot. We observed a higher transcript (p < 0.05 and protein (p < 0.001 levels of DAF and MCP in the placentas
    of thrombophilic women than in the control group. DAF and MCP were localized on villous syncytiotrophoblast
    membranes, but the assessment of staining in all groups did not differ. The observed higher expression level of
    proteins that control activation of complement control proteins is only seemingly contradictory to the changes
    observed for example in the antiphospholipid syndrome. However, given the hitherto known biochemical changes
    associated with thrombophilia, a mechanism in which increased expression of DAF and MCP in the placentas is
    an effect of proinflammatory cytokines, which accompanies thrombophilia, is probable.Factors controlling complement activation appear to exert a protective effect on pregnancy. This is
    particularly important in women with thrombophilia. The aim of this study was to determine the transcript and
    protein levels of complement decay-accelerating factor (DAF and membrane cofactor protein (MCP in the
    placentas of women with acquired and inherited thrombophilia. Also, we assessed immunohistochemistry

  1. Complement fixation test to C burnetii

    Science.gov (United States)

    ... complement fixation test; Coxiella burnetii - complement fixation test; C burnetii - complement fixation test ... a specific foreign substance ( antigen ), in this case, C burnetii . Antibodies defend the body against bacteria, viruses, ...

  2. Genetic Association of the Porcine C9 Complement Component with Hemolytic Complement Activity

    Directory of Open Access Journals (Sweden)

    D. V. A. Khoa

    2015-09-01

    Full Text Available The complement system is a part of the natural immune regulation mechanism against invading pathogens. Complement activation from three different pathways (classical, lectin, and alternative leads to the formation of C5-convertase, an enzyme for cleavage of C5 into C5a and C5b, followed by C6, C7, C8, and C9 in membrane attack complex. The C9 is the last complement component of the terminal lytic pathway, which plays an important role in lysis of the target cells depending on its self-polymerization to form transmembrane channels. To address the association of C9 with traits related to disease resistance, the complete porcine C9 cDNA was comparatively sequenced to detect single nucleotide polymorphisms (SNPs in pigs of the breeds Hampshire (HS, Duroc (DU, Berlin miniature pig (BMP, German Landrace (LR, Pietrain (PIE, and Muong Khuong (Vietnamese potbelly pig. Genotyping was performed in 417 F2 animals of a resource population (DUMI: DU×BMP that were vaccinated with Mycoplasma hyopneumoniae, Aujeszky diseases virus and porcine respiratory and reproductive syndrome virus at 6, 14 and 16 weeks of age, respectively. Two SNPs were detected within the third exon. One of them has an amino acid substitution. The European porcine breeds (LR and PIE show higher allele frequency of these SNPs than Vietnamese porcine breed (MK. Association of the substitution SNP with hemolytic complement activity indicated statistically significant differences between genotypes in the classical pathway but not in the alternative pathway. The interactions between eight time points of measurement of complement activity before and after vaccinations and genotypes were significantly different. The difference in hemolytic complement activity in the both pathways depends on genotype, kind of vaccine, age and the interaction to the other complement components. These results promote the porcine C9 (pC9 as a candidate gene to improve general animal health in the future.

  3. Hijacking Complement Regulatory Proteins for Bacterial Immune Evasion.

    Science.gov (United States)

    Hovingh, Elise S; van den Broek, Bryan; Jongerius, Ilse

    2016-01-01

    The human complement system plays an important role in the defense against invading pathogens, inflammation and homeostasis. Invading microbes, such as bacteria, directly activate the complement system resulting in the formation of chemoattractants and in effective labeling of the bacteria for phagocytosis. In addition, formation of the membrane attack complex is responsible for direct killing of Gram-negative bacteria. In turn, bacteria have evolved several ways to evade complement activation on their surface in order to be able to colonize and invade the human host. One important mechanism of bacterial escape is attraction of complement regulatory proteins to the microbial surface. These molecules are present in the human body for tight regulation of the complement system to prevent damage to host self-surfaces. Therefore, recruitment of complement regulatory proteins to the bacterial surface results in decreased complement activation on the microbial surface which favors bacterial survival. This review will discuss recent advances in understanding the binding of complement regulatory proteins to the bacterial surface at the molecular level. This includes, new insights that have become available concerning specific conserved motives on complement regulatory proteins that are favorable for microbial binding. Finally, complement evasion molecules are of high importance for vaccine development due to their dominant role in bacterial survival, high immunogenicity and homology as well as their presence on the bacterial surface. Here, the use of complement evasion molecules for vaccine development will be discussed.

  4. Increased complement C1q level marks active disease in human tuberculosis.

    Directory of Open Access Journals (Sweden)

    Yi Cai

    Full Text Available BACKGROUND: Complement functions as an important host defense system and complement C5 and C7 have been implicated in immunopathology of tuberculosis. However, little is known about the role of other complement components in tuberculosis. METHODS: Complement gene expression in peripheral blood mononuclear cells of tuberculosis patients and controls were determined using whole genome transcriptional microarray assays. The mRNA and protein levels of three C1q components, C1qA, C1qB, and C1qC, were further validated by qRT-PCR and enzyme-linked immunosorbent assay, respectively. The percentages of C1q expression in CD14 positive cells were determined by flow cytometry. Finally, C1qC protein level was quantified in the pleural fluid of tuberculosis and non-tuberculosis pleurisy. RESULTS: C1q expression increases significantly in the peripheral blood of patients with active tuberculosis compared to healthy controls and individuals with latent TB infection. The percentage of C1q-expressing CD14 positive cells is significantly increased in active TB patients. C1q expression in the peripheral blood correlates with sputum smear positivity in tuberculosis patients and is reduced after anti-tuberculosis chemotherapy. Notably, receiver operating characteristic analysis showed that C1qC mRNA levels in peripheral blood efficiently discriminate active from latent tuberculosis infection and healthy controls. Additionally, C1qC protein level in pleural effusion shows improved power in discriminating tuberculosis from non-tuberculosis pleurisy when compared to other inflammatory markers, such as IL-6 and TNF-α. CONCLUSIONS: C1q expression correlates with active disease in human tuberculosis. C1q could be a potential diagnostic marker to discriminate active tuberculosis from latent tuberculosis infection as well as tuberculosis pleurisy from non-tuberculosis pleurisy.

  5. C-Reactive Protein Binds to Cholesterol Crystals and Co-Localizes with the Terminal Complement Complex in Human Atherosclerotic Plaques

    DEFF Research Database (Denmark)

    Pilely, Katrine; Fumagalli, Stefano; Rosbjerg, Anne

    2017-01-01

    Inflammation is a part of the initial process leading to atherosclerosis and cholesterol crystals (CC), found in atherosclerotic plaques, which are known to induce complement activation. The pentraxins C-reactive protein (CRP), long pentraxin 3 (PTX3), and serum amyloid P component (SAP) are seru...

  6. Dietary β-glucan stimulate complement and C-reactive protein acute phase responses in common carp (Cyprinus carpio) during an Aeromonas salmonicida infection.

    Science.gov (United States)

    Pionnier, Nicolas; Falco, Alberto; Miest, Joanna; Frost, Patrick; Irnazarow, Ilgiz; Shrive, Annette; Hoole, Dave

    2013-03-01

    The effect of β-glucans as feed additive on the profile of C-reactive protein (CRP) and complement acute phase responses was studied in common carp Cyprinus carpio after exposition to a bacterial infection with Aeromonas salmonicida. Carp were orally administered with β-glucan (MacroGard®) for 14 days with a daily β-glucan intake of 6 mg per kg body weight. Fish were then intraperitoneally injected with either PBS or 1 × 10⁸ bacteria per fish and sampled at time 0, 6, 12, 24, 48, 72, 96 and 120 h post-injection (p.i.) for serum and head kidney, liver and mid-gut tissues. CRP levels and complement activity were determined in the serum samples whilst the gene expression profiles of CRP and complement related genes (crp1, crp2, c1r/s, bf/c2, c3 and masp2) were analysed in the tissues by quantitative PCR. Results obtained showed that oral administration of β-glucan for 14 days significantly increased serum CRP levels up to 2 fold and serum alternative complement activity (ACP) up to 35 fold. The bacterial infection on its own (i.e. not combined with a β-glucan feeding) did have significant effects on complement response whilst CRP was not detectably induced during the carp acute phase reaction. However, the combination of the infection and the β-glucan feeding did show significant effects on both CRP and complement profiles with higher serum CRP levels and serum ACP activity in the β-glucan fed fish than in the control fed fish. In addition, a distinct organ and time dependent expression profile pattern was detected for all the selected genes: a peak of gene expression first occurred in the head kidney tissue (6 h p.i. or 12 h p.i.), then an up-regulation in the liver several hours later (24 h p.i.) and finally up- or down-regulations in the mid-gut at 24 h p.i. and 72 h p.i. In conclusion, the results of this study suggest that MacroGard® stimulated CRP and complement responses to A. salmonicida infection in common carp. Copyright © 2013 Elsevier Ltd. All

  7. Protection by meningococcal outer membrane protein PorA-specific antibodies and a serogroup B capsular polysaccharide-specific antibody in complement-sufficient and C6-deficient infant rats.

    Science.gov (United States)

    Toropainen, Maija; Saarinen, Leena; Vidarsson, Gestur; Käyhty, Helena

    2006-05-01

    The relative contributions of antibody-induced complement-mediated bacterial lysis and antibody/complement-mediated phagocytosis to host immunity against meningococcal infections are currently unclear. Further, the in vivo effector functions of antibodies may vary depending on their specificity and Fc heavy-chain isotype. In this study, a mouse immunoglobulin G2a (mIgG2a) monoclonal antibody (MN12H2) to meningococcal outer membrane protein PorA (P1.16), its human IgG subclass derivatives (hIgG1 to hIgG4), and an mIgG2a monoclonal antibody (Nmb735) to serogroup B capsular polysaccharide (B-PS) were evaluated for passive protection against meningococcal serogroup B strain 44/76-SL (B:15:P1.7,16) in an infant rat infection model. Complement component C6-deficient (PVG/c-) rats were used to assess the importance of complement-mediated bacterial lysis for protection. The PorA-specific parental mIgG2a and the hIgG1 to hIgG3 derivatives all induced efficient bactericidal activity in vitro in the presence of human or infant rat complement and augmented bacterial clearance in complement-sufficient HsdBrlHan:WIST rats, while the hIgG4 was unable to do so. In C6-deficient PVG/c- rats, lacking complement-mediated bacterial lysis, the augmentation of bacterial clearance by PorA-specific mIgG2a and hIgG1 antibodies was impaired compared to that in the syngeneic complement-sufficient PVG/c+ rat strain. This was in contrast to the case for B-PS-specific mIgG2a, which conferred similar protective activity in both rat strains. These data suggest that while anti-B-PS antibody can provide protection in the infant rats without membrane attack complex formation, the protection afforded by anti-PorA antibody is more dependent on the activation of the whole complement pathway and subsequent bacterial lysis.

  8. Streptococcus pneumoniae PspC Subgroup Prevalence in Invasive Disease and Differences in Contribution to Complement Evasion.

    Science.gov (United States)

    van der Maten, Erika; van den Broek, Bryan; de Jonge, Marien I; Rensen, Kim J W; Eleveld, Marc J; Zomer, Aldert L; Cremers, Amelieke J H; Ferwerda, Gerben; de Groot, Ronald; Langereis, Jeroen D; van der Flier, Michiel

    2018-04-01

    The pneumococcal capsular serotype is an important determinant of complement resistance and invasive disease potential, but other virulence factors have also been found to contribute. Pneumococcal surface protein C (PspC), a highly variable virulence protein that binds complement factor H to evade C3 opsonization, is divided into two subgroups: choline-bound subgroup I and LPxTG-anchored subgroup II. The prevalence of different PspC subgroups in invasive pneumococcal disease (IPD) and functional differences in complement evasion are unknown. The prevalence of PspC subgroups in IPD isolates was determined in a collection of 349 sequenced strains of Streptococcus pneumoniae isolated from adult patients. pspC deletion mutants and isogenic pspC switch mutants were constructed to study differences in factor H binding and complement evasion in relation to capsule thickness. Subgroup I pspC was far more prevalent in IPD isolates than subgroup II pspC The presence of capsule was associated with a greater ability of bound factor H to reduce complement opsonization. Pneumococcal subgroup I PspC bound significantly more factor H and showed more effective complement evasion than subgroup II PspC in isogenic encapsulated pneumococci. We conclude that variation in the PspC subgroups, independent of capsule serotypes, affects pneumococcal factor H binding and its ability to evade complement deposition. Copyright © 2018 American Society for Microbiology.

  9. Detection and characterisation of Complement protein activity in bovine milk by bactericidal sequestration assay.

    Science.gov (United States)

    Maye, Susan; Stanton, Catherine; Fitzgerald, Gerald F; Kelly, Philip M

    2015-08-01

    While the Complement protein system in human milk is well characterised, there is little information on its presence and activity in bovine milk. Complement forms part of the innate immune system, hence the importance of its contribution during milk ingestion to the overall defences of the neonate. A bactericidal sequestration assay, featuring a Complement sensitive strain, Escherichia coli 0111, originally used to characterise Complement activity in human milk was successfully applied to freshly drawn bovine milk samples, thus, providing an opportunity to compare Complement activities in both human and bovine milks. Although not identical in response, the levels of Complement activity in bovine milk were found to be closely comparable with that of human milk. Differential counts of Esch. coli 0111 after 2 h incubation were 6.20 and 6.06 log CFU/ml, for raw bovine and human milks, respectively - the lower value representing a stronger Complement response. Exposing bovine milk to a range of thermal treatments e.g. 42, 45, 65, 72, 85 or 95 °C for 10 min, progressively inhibited Complement activity by increasing temperature, thus confirming the heat labile nature of this immune protein system. Low level Complement activity was found, however, in 65 and 72 °C heat treated samples and in retailed pasteurised milk which highlights the outer limit to which high temperature, short time (HTST) industrial thermal processes should be applied if retention of activity is a priority. Concentration of Complement in the fat phase was evident following cream separation, and this was also reflected in the further loss of activity recorded in low fat variants of retailed pasteurised milk. Laboratory-based churning of the cream during simulated buttermaking generated an aqueous (buttermilk) phase with higher levels of Complement activity than the fat phase, thus pointing to a likely association with the milk fat globule membrane (MFGM) layer.

  10. Complement-related proteins control the flavivirus infection of Aedes aegypti by inducing antimicrobial peptides.

    Directory of Open Access Journals (Sweden)

    Xiaoping Xiao

    2014-04-01

    Full Text Available The complement system functions during the early phase of infection and directly mediates pathogen elimination. The recent identification of complement-like factors in arthropods indicates that this system shares common ancestry in vertebrates and invertebrates as an immune defense mechanism. Thioester (TE-containing proteins (TEPs, which show high similarity to mammalian complement C3, are thought to play a key role in innate immunity in arthropods. Herein, we report that a viral recognition cascade composed of two complement-related proteins limits the flaviviral infection of Aedes aegypti. An A. aegypti macroglobulin complement-related factor (AaMCR, belonging to the insect TEP family, is a crucial effector in opposing the flaviviral infection of A. aegypti. However, AaMCR does not directly interact with DENV, and its antiviral effect requires an A. aegypti homologue of scavenger receptor-C (AaSR-C, which interacts with DENV and AaMCR simultaneously in vitro and in vivo. Furthermore, recognition of DENV by the AaSR-C/AaMCR axis regulates the expression of antimicrobial peptides (AMPs, which exerts potent anti-DENV activity. Our results both demonstrate the existence of a viral recognition pathway that controls the flaviviral infection by inducing AMPs and offer insights into a previously unappreciated antiviral function of the complement-like system in arthropods.

  11. Critical role for complement receptor C5aR2 in the pathogenesis of renal ischemia-reperfusion injury

    NARCIS (Netherlands)

    Poppelaars, Felix; van Werkhoven, Maaike B; Kotimaa, Juha; Veldhuis, Zwanida J; Ausema, Albertina; Broeren, Stefan G M; Damman, Jeffrey; Hempel, Julia C.; Leuvenink, Henri G D; Daha, Mohamed R; van Son, Willem J; van Kooten, Cees; van Os, Ronald P; Hillebrands, Jan-Luuk; Seelen, Marc A

    The complement system, and specifically C5a, is involved in renal ischemia-reperfusion (IR) injury. The 2 receptors for complement anaphylatoxin C5a (C5aR1 and C5aR2) are expressed on leukocytes as well as on renal epithelium. Extensive evidence shows that C5aR1 inhibition protects kidneys from IR

  12. An Anti-C1s Monoclonal, TNT003, Inhibits Complement Activation Induced by Antibodies Against HLA.

    Science.gov (United States)

    Thomas, K A; Valenzuela, N M; Gjertson, D; Mulder, A; Fishbein, M C; Parry, G C; Panicker, S; Reed, E F

    2015-08-01

    Antibody-mediated rejection (AMR) of solid organ transplants (SOT) is characterized by damage triggered by donor-specific antibodies (DSA) binding donor Class I and II HLA (HLA-I and HLA-II) expressed on endothelial cells. While F(ab')2 portions of DSA cause cellular activation and proliferation, Fc regions activate the classical complement cascade, resulting in complement deposition and leukocyte recruitment, both hallmark features of AMR. We characterized the ability of an anti-C1s monoclonal antibody, TNT003, to inhibit HLA antibody (HLA-Ab)-induced complement activation. Complement deposition induced by HLA-Ab was evaluated using novel cell- and bead-based assays. Human aortic endothelial cells (HAEC) were cultured with HLA-Ab and human complement; production of activated complement proteins was measured by flow cytometry. Additionally, C3d deposition was measured on single antigen beads (SAB) mixed with HLA-Ab and human complement. TNT003 inhibited HLA-Ab mediated complement deposition on HAEC in a concentration-dependent manner; C3a, C4a and C5a anaphylatoxin production was also diminished by TNT003. Finally, TNT003 blocked C3d deposition induced by Class I (HLAI-Ab)- and Class II (HLAII-Ab)-specific antibodies on SAB. These data suggest TNT003 may be useful for modulating the effects of DSA, as TNT003 inhibits complement deposition and split product formation generated by HLA-I/II-Ab in vitro. © 2015 The Authors. American Journal of Transplantation Published by Wiley Periodicals, Inc.

  13. Spontaneous complement activation on human B cells results in localized membrane depolarization and the clustering of complement receptor type 2 and C3 fragments

    DEFF Research Database (Denmark)

    Løbner, Morten; Leslie, Robert G Q; Prodinger, Wolfgang M

    2009-01-01

    While our previous studies have demonstrated that complement activation induced by complement receptors type 2 (CR2/CD21) and 1 (CR1/CD35) results in C3-fragment deposition and membrane attack complex (MAC) formation in human B cells, the consequences of these events for B-cell functions remain u...

  14. Crystal structures of the Erp protein family members ErpP and ErpC from Borrelia burgdorferi reveal the reason for different affinities for complement regulator factor H.

    Science.gov (United States)

    Brangulis, Kalvis; Petrovskis, Ivars; Kazaks, Andris; Akopjana, Inara; Tars, Kaspars

    2015-05-01

    Borrelia burgdorferi is the causative agent of Lyme disease, which can be acquired after the bite of an infected Ixodes tick. As a strategy to resist the innate immunity and to successfully spread and proliferate, B. burgdorferi expresses a set of outer membrane proteins that are capable of binding complement regulator factor H (CFH), factor H-like protein 1 (CFHL-1) and factor H-related proteins (CFHR) to avoid complement-mediated killing. B. burgdorferi B31 contains three proteins that belong to the Erp (OspE/F-related) protein family and are capable of binding CFH and some CFHRs, namely ErpA, ErpC and ErpP. We have determined the crystal structure of ErpP at 2.53Å resolution and the crystal structure of ErpC at 2.15Å resolution. Recently, the crystal structure of the Erp family member OspE from B. burgdorferi N40 was determined in complex with CFH domains 19-20, revealing the residues involved in the complex formation. Despite the high sequence conservation between ErpA, ErpC, ErpP and the homologous protein OspE (78-80%), the affinity for CFH and CFHRs differs markedly among the Erp family members, suggesting that ErpC may bind only CFHRs but not CFH. A comparison of the binding site in OspE with those of ErpC and ErpP revealed that the extended loop region, which is only observed in the potential binding site of ErpC, plays an important role by preventing the binding of CFH. These results can explain the inability of ErpC to bind CFH, whereas ErpP and ErpA still possess the ability to bind CFH. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Isolation and initial characterisation of complement components C3 and C4 of the nurse shark and the channel catfish.

    Science.gov (United States)

    Dodds, A W; Smith, S L; Levine, R P; Willis, A C

    1998-01-01

    Complement components C3 and C4 have been isolated from the serum of the nurse shark (Ginglymostoma cirratum) and of the channel catfish (Ictalurus punctatus). As in the higher vertebrates, the fish C4 proteins have three-chain structures while the C3 proteins have two-chain structures. All four proteins have intra-chain thioesters located within their highest molecular mass polypeptides. N-terminal sequence analysis of the polypeptides has confirmed the identity of the proteins. In all cases except the catfish C3 alpha-chain, which appears to have a blocked N-terminus, sequence similarities are apparent in comparisons with the chains of C3 and C4 from higher vertebrates. We have confirmed that the activity/protein previously designated C2n is the nurse shark analogue of mammalian C4. This is the first report of structural evidence for C4 in both the bony and cartilaginous fish.

  16. Structure and function of complement protein C1q and its role in the development of autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Katarzyna Smykał-Jankowiak

    2009-09-01

    Full Text Available Complement plays an important role in the immune system. Three different pathways of complement activation are known: the classical, alternative, and lectin dependent. They involve more than 30 serum peptides. C1q is the first subcomponent of the classical pathway of complement activation. It is composed of three types of chains, A, B, and C, which form a molecule containing 18 peptides. Each of the chains has a short amino-terminal region followed by a collagen-like region (playing a role in the activation of C1r2C1s2 and a carboxy-terminal head, which binds to immune complexes. Recent studies have shown a great number of ligands for C1q, including aggregated IgG, IgM, human T-cell lymphotropic virus-I (HTLV-I, gp21 peptide, human immunodeficiency virus-1 (HIV-1 gp21 peptide, β-amyloid, fragments of bacterial walls, apoptotic cells, and many others. However, the role of C1q is not only associated with complement activation. It also helps in the removal of immune complexes and necrotic cells, stimulates the production of some cytokines, and modulates the function of lymphocytes. Complete C1q deficiency is a rare genetic disorder. The C1q gene is located on the short arm of chromosome 1. So far, only a few mutations in C1q gene have been reported. The presence of these mutations is strongly associated with recurrent bacterial infections and the development of systemic lupus erythematosus (SLE. Recent clinical studies point to the significance of anti-C1q antibodies in the diagnosis and assessment of lupus nephritis activity.

  17. In vitro and in vivo mapping of the Prunus necrotic ringspot virus coat protein C-terminal dimerization domain by bimolecular fluorescence complementation.

    Science.gov (United States)

    Aparicio, Frederic; Sánchez-Navarro, Jesús A; Pallás, Vicente

    2006-06-01

    Interactions between viral proteins are critical for virus viability. Bimolecular fluorescent complementation (BiFC) technique determines protein interactions in real-time under almost normal physiological conditions. The coat protein (CP) of Prunus necrotic ringspot virus is required for multiple functions in its replication cycle. In this study, the region involved in CP dimerization has been mapped by BiFC in both bacteria and plant tissue. Full-length and C-terminal deleted forms of the CP gene were fused in-frame to the N- and C-terminal fragments of the yellow fluorescent protein. The BiFC analysis showed that a domain located between residues 9 and 27 from the C-end plays a critical role in dimerization. The importance of this C-terminal region in dimer formation and the applicability of the BiFC technique to analyse viral protein interactions are discussed.

  18. Complement activation and inhibition: a delicate balance

    DEFF Research Database (Denmark)

    Sjöberg, A P; Trouw, L A; Blom, A M

    2009-01-01

    proteins, pentraxins, amyloid deposits, prions and DNA, all bind the complement activator C1q, but also interact with complement inhibitors C4b-binding protein and factor H. This contrasts to the interaction between C1q and immune complexes, in which case no inhibitors bind, resulting in full complement...

  19. Comprehensive approach to study complement C4 in systemic lupus erythematosus: Gene polymorphisms, protein levels and functional activity.

    Science.gov (United States)

    Tsang-A-Sjoe, M W P; Bultink, I E M; Korswagen, L A; van der Horst, A; Rensink, I; de Boer, M; Hamann, D; Voskuyl, A E; Wouters, D

    2017-12-01

    Genetic variation of the genes encoding complement component C4 is strongly associated with systemic lupus erythematosus (SLE), a chronic multi-organ auto-immune disease. This study examined C4 and its isotypes on a genetic, protein, and functional level in 140 SLE patients and 104 healthy controls. Gene copy number (GCN) variation, silencing CT-insertion, and the retroviral HERV-K(C4) insertion) were analyzed with multiplex ligation-dependent probe amplification. Increased susceptibility to SLE was found for low GCN (≪2) of C4A. Serositis was the only clinical manifestation associated with low C4A GCN. One additional novel silencing mutation in the C4A gene was found by Sanger sequencing. This mutation causes a premature stop codon in exon 11. Protein concentrations of C4 isoforms C4A and C4B were determined with ELISA and were significantly lower in SLE patients compared to healthy controls. To study C4 isotypes on a functional level, a new C4 assay was developed, which distinguishes C4A from C4B by its binding capacity to amino or hydroxyl groups, respectively. This assay showed high correlation with ELISA and detected crossing over of Rodgers and Chido antigens in 3.2% (8/244) of individuals. The binding capacity of available C4 to its substrates was unaffected in SLE. Our study provides, for the first time, a complete overview of C4 in SLE from genetic variation to binding capacity using a novel test. As this test detects crossing over of Rodgers and Chido antigens, it will allow for more accurate measurement of C4 in future studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Trichinella spiralis Calreticulin Binds Human Complement C1q As an Immune Evasion Strategy.

    Science.gov (United States)

    Zhao, Limei; Shao, Shuai; Chen, Yi; Sun, Ximeng; Sun, Ran; Huang, Jingjing; Zhan, Bin; Zhu, Xinping

    2017-01-01

    As a multicellular parasitic nematode, Trichinella spiralis regulates host immune responses by producing a variety of immunomodulatory molecules to escape from host immune attack, but the mechanisms underlying the immune evasion are not well understood. Here, we identified that T. spiralis calreticulin ( Ts -CRT), a Ca 2+ -binding protein, facilitated T. spiralis immune evasion by interacting with the first component of human classical complement pathway, C1q. In the present study, Ts -CRT was found to be expressed on the surface of different developmental stages of T. spiralis as well as in the secreted products of adult and muscle larval worms. Functional analysis identified that Ts -CRT was able to bind to human C1q, resulting in the inhibition of C1q-initiated complement classical activation pathway reflected by reduced C4/C3 generation and C1q-dependent lysis of antibody-sensitized sheep erythrocytes. Moreover, recombinant Ts -CRT (r Ts -CRT) binding to C1q suppressed C1q-induced THP-1-derived macrophages chemotaxis and reduced monocyte-macrophages release of reactive oxygen intermediates (ROIs). Blocking Ts -CRT on the surface of newborn larvae (NBL) of T. spiralis with anti- Ts -CRT antibody increased the C1q-mediated adherence of monocyte-macrophages to larvae and impaired larval infectivity. All of these results suggest that T. spiralis -expressed Ts -CRT plays crucial roles in T. spiralis immune evasion and survival in host mostly by directly binding to host complement C1q, which not only reduces C1q-mediated activation of classical complement pathway but also inhibits the C1q-induced non-complement activation of macrophages.

  1. Self-association and domain rearrangements between complement C3 and C3u provide insight into the activation mechanism of C3.

    Science.gov (United States)

    Li, Keying; Gor, Jayesh; Perkins, Stephen J

    2010-10-01

    Component C3 is the central protein of the complement system. During complement activation, the thioester group in C3 is slowly hydrolysed to form C3u, then the presence of C3u enables the rapid conversion of C3 into functionally active C3b. C3u shows functional similarities to C3b. To clarify this mechanism, the self-association properties and solution structures of C3 and C3u were determined using analytical ultracentrifugation and X-ray scattering. Sedimentation coefficients identified two different dimerization events in both proteins. A fast dimerization was observed in 50 mM NaCl but not in 137 mM NaCl. Low amounts of a slow dimerization was observed for C3u and C3 in both buffers. The X-ray radius of gyration RG values were unchanged for both C3 and C3u in 137 mM NaCl, but depend on concentration in 50 mM NaCl. The C3 crystal structure gave good X-ray fits for C3 in 137 mM NaCl. By randomization of the TED (thioester-containing domain)/CUB (for complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domains in the C3b crystal structure, X-ray fits showed that the TED/CUB domains in C3u are extended and differ from the more compact arrangement of C3b. This TED/CUB conformation is intermediate between those of C3 and C3b. The greater exposure of the TED domain in C3u (which possesses the hydrolysed reactive thioester) accounts for the greater self-association of C3u in low-salt conditions. This conformational variability of the TED/CUB domains would facilitate their interactions with a broad range of antigenic surfaces. The second dimerization of C3 and C3u may correspond to a dimer observed in one of the crystal structures of C3b.

  2. Changes in blood levels of proteinase inhibitors, pregnancy zone protein, steroid carriers and complement factors induced by oral contraceptives

    DEFF Research Database (Denmark)

    Nielsen, C H; Poulsen, H K; Teisner, B

    1993-01-01

    levels of antithrombin III (AT III), alpha 2-macroglobulin (alpha 2M) alpha 1-antitrypsin (alpha 1at), complement factors (factor B, C3, C4), pregnancy zone protein (PZP), corticosteroid binding globulin (CBG), sex hormone binding globulin (SHBG) and albumin were measured before treatment and during...

  3. Systemic complement activation in age-related macular degeneration.

    Directory of Open Access Journals (Sweden)

    Hendrik P N Scholl

    Full Text Available Dysregulation of the alternative pathway (AP of complement cascade has been implicated in the pathogenesis of age-related macular degeneration (AMD, the leading cause of blindness in the elderly. To further test the hypothesis that defective control of complement activation underlies AMD, parameters of complement activation in blood plasma were determined together with disease-associated genetic markers in AMD patients. Plasma concentrations of activation products C3d, Ba, C3a, C5a, SC5b-9, substrate proteins C3, C4, factor B and regulators factor H and factor D were quantified in patients (n = 112 and controls (n = 67. Subjects were analyzed for single nucleotide polymorphisms in factor H (CFH, factor B-C2 (BF-C2 and complement C3 (C3 genes which were previously found to be associated with AMD. All activation products, especially markers of chronic complement activation Ba and C3d (p<0.001, were significantly elevated in AMD patients compared to controls. Similar alterations were observed in factor D, but not in C3, C4 or factor H. Logistic regression analysis revealed better discriminative accuracy of a model that is based only on complement activation markers Ba, C3d and factor D compared to a model based on genetic markers of the complement system within our study population. In both the controls' and AMD patients' group, the protein markers of complement activation were correlated with CFH haplotypes.This study is the first to show systemic complement activation in AMD patients. This suggests that AMD is a systemic disease with local disease manifestation at the ageing macula. Furthermore, the data provide evidence for an association of systemic activation of the alternative complement pathway with genetic variants of CFH that were previously linked to AMD susceptibility.

  4. A versatile selection system for folding competent proteins using genetic complementation in a eukaryotic host

    DEFF Research Database (Denmark)

    Lyngsø, C.; Kjaerulff, S.; Muller, S.

    2010-01-01

    in vivo selection system for folded proteins. It is based on genetic complementation of the Schizosaccharomyces pombe growth marker gene invertase fused C-terminally to a protein library. The fusion proteins are directed to the secretion system, utilizing the ability of the eukaryotic protein quality...

  5. The superfamily of C3b/C4b-binding proteins

    DEFF Research Database (Denmark)

    Kristensen, Torsten; D'Eustachio, P; Ogata, R T

    1987-01-01

    The determination of primary structures by amino acid and nucleotide sequencing for the C3b-and/or C4b-binding proteins H, C4BP, CR1, B, and C2 has revealed the presence of a common structural element. This element is approximately 60 amino acids long and is repeated in a tandem fashion, commencing...... at the amino-terminal end of each molecule. Two other complement components, C1r and C1s, have two of these repeating units in the carboxy-terminal region of their noncatalytic A chains. Three noncomplement proteins, beta 2-glycoprotein I (beta 2I), the interleukin 2 receptor (IL 2 receptor), and the b chain...... of factor XIII, have 4, 2 and 10 of these repeating units, respectively. These proteins obviously belong to the above family, although there is no evidence that they interact with C3b and/or C4b. Human haptoglobin and rat leukocyte common antigen also contain two and three repeating units, respectively...

  6. Prediction of Protein-Protein Interactions by NanoLuc-Based Protein-Fragment Complementation Assay | Office of Cancer Genomics

    Science.gov (United States)

    The CTD2 Center at Emory has developed a new NanoLuc®-based protein-fragment complementation assay (NanoPCA) which allows the detection of novel protein-protein interactions (PPI). NanoPCA allows the study of PPI dynamics with reversible interactions.  Read the abstract. Experimental Approaches Read the detailed Experimetnal Approaches. 

  7. The Scl1 protein of M6-type group A Streptococcus binds the human complement regulatory protein, factor H, and inhibits the alternative pathway of complement.

    Science.gov (United States)

    Caswell, Clayton C; Han, Runlin; Hovis, Kelley M; Ciborowski, Pawel; Keene, Douglas R; Marconi, Richard T; Lukomski, Slawomir

    2008-02-01

    Non-specific activation of the complement system is regulated by the plasma glycoprotein factor H (FH). Bacteria can avoid complement-mediated opsonization and phagocytosis through acquiring FH to the cell surface. Here, we characterize an interaction between the streptococcal collagen-like protein Scl1.6 of M6-type group A Streptococcus (GAS) and FH. Using affinity chromatography with immobilized recombinant Scl1.6 protein, we co-eluted human plasma proteins with molecular weight of 155 kDa, 43 kDa and 38 kDa. Mass spectrometry identified the 155 kDa band as FH and two other bands as isoforms of the FH-related protein-1. The identities of all three bands were confirmed by Western immunoblotting with specific antibodies. Structure-function relation studies determined that the globular domain of the Scl1.6 variant specifically binds FH while fused to collagenous tails of various lengths. This binding is not restricted to Scl1.6 as the phylogenetically linked Scl1.55 variant also binds FH. Functional analyses demonstrated the cofactor activity of the rScl1.6-bound FH for factor I-mediated cleavage of C3b. Finally, purified FH bound to the Scl1.6 protein present in the cell wall material obtained from M6-type GAS. In conclusion, we have identified a functional interaction between Scl1 and plasma FH, which may contribute to GAS evasion of complement-mediated opsonization and phagocytosis.

  8. Dextrose-mediated aggregation of therapeutic monoclonal antibodies in human plasma: Implication of isoelectric precipitation of complement proteins.

    Science.gov (United States)

    Luo, Shen; Zhang, Baolin

    2015-01-01

    Many therapeutic monoclonal antibodies (mAbs) are clinically administered through intravenous infusion after mixing with a diluent, e.g., saline, 5% dextrose. Such a clinical setting increases the likelihood of interactions among mAb molecules, diluent, and plasma components, which may adversely affect product safety and efficacy. Avastin® (bevacizumab) and Herceptin® (trastuzumab), but not Remicade® (infliximab), were shown to undergo rapid aggregation upon dilution into 5% dextrose when mixed with human plasma in vitro; however, the biochemical pathways leading to the aggregation were not clearly defined. Here, we show that dextrose-mediated aggregation of Avastin or Herceptin in plasma involves isoelectric precipitation of complement proteins. Using mass spectrometry, we found that dextrose-induced insoluble aggregates were composed of mAb itself and multiple abundant plasma proteins, namely complement proteins C3, C4, factor H, fibronectin, and apolipoprotein. These plasma proteins, which are characterized by an isoelectronic point of 5.5-6.7, lost solubility at the resulting pH in the mixture with formulated Avastin (pH 6.2) and Herceptin (pH 6.0). Notably, switching formulation buffers for Avastin (pH 6.2) and Remicade (pH 7.2) reversed their aggregation profiles. Avastin formed little, if any, insoluble aggregates in dextrose-plasma upon raising the buffer pH to 7.2 or above. Furthermore, dextrose induced pH-dependent precipitation of plasma proteins, with massive insoluble aggregates being detected at pH 6.5-6.8. These data show that isoelectric precipitation of complement proteins is a prerequisite of dextrose-induced aggregation of mAb in human plasma. This finding highlights the importance of assessing the compatibility of a therapeutic mAb with diluent and human plasma during product development.

  9. Molecular cloning, structural analysis and expression of complement component Bf/C2 genes in the nurse shark, Ginglymostoma cirratum.

    Science.gov (United States)

    Shin, Dong-Ho; Webb, Barbara; Nakao, Miki; Smith, Sylvia L

    2007-01-01

    Factor B and C2 are serine proteases that provide the catalytic subunits of C3 and C5 convertases of the alternative (AP) and classical (CP) complement pathways. Two Bf/C2 cDNAs, GcBf/C2-1 and -2 (previously referred to as nsBf/C2-A and nsBf/C2-B), were isolated from the nurse shark, Ginglymostoma cirratum. GcBf/C2-1 and -2 are 3364 and 3082bp in length and encode a leader peptide, three CCPs, one VWFA, the serine protease domain and have a putative factor D/C1s/MASP cleavage site. Southern blots show that there might be up to two Bf/C2-like genes for each of the two GcBf/C2 isoforms. GcBf/C2-1 and -2 are constitutively expressed, albeit at different levels, in all nine tissues examined. Expression in erythrocytes is a novel finding. Structural analysis has revealed that the localization of glycosylation sites in the SP domain of both putative proteins indicates that the molecular organization of the shark molecules is more like C2 than factor B. Phylogenetic analysis indicates that GcBf/C2-1 and -2 and TrscBf of Triakis scyllia (another shark species) originated from a common ancestor and share a remote ancestor with Bf and C2 of mammals and bony fish.

  10. Complementary DNA and derived amino acid sequence of the β subunit of human complement protein C8: identification of a close structural and ancestral relationship to the α subunit and C9

    International Nuclear Information System (INIS)

    Howard, O.M.Z.; Rao, A.G.; Sodetz, J.M.

    1987-01-01

    A cDNA clone encoding the β subunit (M/sub r/ 64,000) of the eighth component of complement (C8) has been isolated from a human liver cDNA library. This clone has a cDNA insert of 1.95 kilobases (kb) and contains the entire β sequence [1608 base pairs (bp)]. Analysis of total cellular RNA isolated from the hepatoma cell line HepG2 revealed the mRNA for β to be ∼ 2.5 kb. This is similar to the message size for the α subunit of C8 and confirms the existence of different mRNAs for α and β. This finding supports genetic evidence that α and β are encoded at different loci. Analysis of the derived amino acid sequence revealed several membrane surface seeking segments that may facilitate β interaction with target membranes during complement-mediated cytolysis. Determined of the carbohydrate composition indicated 1 or 2 asparagine-linked but no O-linked oligosaccharide chains. Comparison of the β sequence to that reported earlier and to that of human C9 revealed a striking homology between all three proteins. For β and α, the overall homology is 33% on the basis of identity and 53% when conserved substitutions are allowed. For β and C9, the values are 26% and 47 5 , respectively. All three have a large internal domain that is nearly cysteine free and N- and C-termini that are cysteine-rich and homologous to the low-density lipoprotein receptor repeat and epidermal growth factor type sequences, respectively. The overall homology and similarities in size and structural organization are indicative of a close ancestral relationship. It is concluded that α, β and C9 are members of a family of structurally related proteins that are capable of interacting to produce a hydrophilic to amphiphilic transition and membrane association

  11. Correlation of systemic lupus erythematosus disease activity with classical complement (CH50 function and related protein levels

    Directory of Open Access Journals (Sweden)

    Salesi M

    2008-09-01

    Full Text Available "nBackground: The components of the classical complement pathway play an important role in the pathogenesis of systemic lupus erythematosus (SLE and are reportedly useful biomarkers of disease activity. In this study, we evaluate disease activity, complement function (total hemolytic complement, CH50 and complement protein levels (C3, C4, C3d, C4d, SC5b-9, comparing the results of patients with active disease versus those with inactive disease."n"nMethods: This cross-sectional study included 78 hospitalized women with SLE, 24 of whom were in the active group, with SLE disease activity indexes (SLEDAI.2K of >6, and 54 in the inactive group, with SLEDAI.2K of ≤6. Serum CH50 was measured using a red blood cell hemolytic assay. C3 and C4 levels were determined by nephlometry and plasma levels of C3d, C4d, SC5b-9 by ELISA. The data were statistically analyzed using SPSS."n"nResults: The mean (±standard error C4d levels of the inactive group were significantly higher than those of the active group (23.39±1.1µg/ml and 16.9±1.6µg/ml, respectively; p=0.003. There was also a significant correlation between C3 and C4 levels (p=0.807. The mean values of the other proteins (C3, C4, CH50, SC5b-9, and C3d circulating immune complex concentrations were not significantly different between the inactive group vs. the active group: 89.35±6.8 vs. 85.54±7.6mg/dl, 18.33±2.3 vs. 20.45±2.4mg/dl, 149.03±4.3 vs. 157±4.3U, 1414.4±114.94 vs. 1471.1±216.9ng/ml, 9.43±0.96 vs. 13.31±3.16µgEq/ml, respectively (p>0.05."n"nConclusions: According to our results, C4d levels may be used as a biomarker of disease activity. The significant correlation between C3 and C4 may confirm the activity of the classical pathway in SLE patients."n"nKeywords: Systemic lupus erythematosus, CH50, C3, C4, C3d, C4d, SC5b-9, inactive, flare.

  12. The Complement C3a-C3aR Axis Promotes Development of Thoracic Aortic Dissection via Regulation of MMP2 Expression.

    Science.gov (United States)

    Ren, Weihong; Liu, Yan; Wang, Xuerui; Piao, Chunmei; Ma, Youcai; Qiu, Shulan; Jia, Lixin; Chen, Boya; Wang, Yuan; Jiang, Wenjian; Zheng, Shuai; Liu, Chang; Dai, Nan; Lan, Feng; Zhang, Hongjia; Song, Wen-Chao; Du, Jie

    2018-03-01

    Thoracic aortic dissection (TAD), once ruptured, is devastating to patients, and no effective pharmaceutical therapy is available. Anaphylatoxins released by complement activation are involved in a variety of diseases. However, the role of the complement system in TAD is unknown. We found that plasma levels of C3a, C4a, and C5a were significantly increased in patients with TAD. Elevated circulating C3a levels were also detected in the developmental process of mouse TAD, which was induced by β-aminopropionitrile monofumarate (BAPN) treatment, with enhanced expression of C1q and properdin in mouse dissected aortas. These findings indicated activation of classical and alternative complement pathways. Further, expression of C3aR was obviously increased in smooth muscle cells of human and mouse dissected aortas, and knockout of C3aR notably inhibited BAPN-induced formation and rupture of TAD in mice. C3aR antagonist administered pre- and post-BAPN treatment attenuated the development of TAD. We found that C3aR knockout decreased matrix metalloproteinase 2 (MMP2) expression in BAPN-treated mice. Additionally, recombinant C3a stimulation enhanced MMP2 expression and activation in smooth muscle cells that were subjected to mechanical stretch. Finally, we generated MMP2-knockdown mice by in vivo MMP2 short hairpin RNA delivery using recombinant adeno-associated virus and found that MMP2 deficiency significantly reduced the formation of TAD. Therefore, our study suggests that the C3a - C3aR axis contributes to the development of TAD via regulation of MMP2 expression. Targeting the C3a-C3aR axis may represent a strategy for inhibiting the formation of TAD. Copyright © 2018 by The American Association of Immunologists, Inc.

  13. Shark complement: an assessment.

    Science.gov (United States)

    Smith, S L

    1998-12-01

    The classical (CCP) and alternative (ACP) pathways of complement activation have been established for the nurse shark (Ginglymostoma cirratum). The isolation of a cDNA clone encoding a mannan-binding protein-associated serine protease (MASP)-1-like protein from the Japanese dogfish (Triakis scyllia) suggests the presence of a lectin pathway. The CCP consists of six functionally distinct components: C1n, C2n, C3n, C4n, C8n and C9n, and is activated by immune complexes in the presence of Ca++ and Mg++ ions. The ACP is antibody independent, requiring Mg++ ions and a heat-labile 90 kDa factor B-like protein for activity. Proteins considered homologues of C1q, C3 and C4 (C2n) of the mammalian complement system have been isolated from nurse shark serum. Shark C1q is composed of at least two chain types each showing 50% identity to human C1q chains A and B. Partial sequence of the globular domain of one of the chains shows it to be C1q-like rather than like mannan-binding protein. N-terminal amino acid sequences of the alpha and beta chain of shark C3 and C4 molecules show significant identity with corresponding human C3 and C4 chains. A sequence representing shark C4 gamma chain, shows little similarity to human C4 gamma chain. The terminal shark components C8n and C9n are functional analogues of mammalian C8 and C9. Anaphylatoxin activity has been demonstrated in activated shark serum, and porcine C5a desArg induces shark leucocyte chemotaxis. The deduced amino acid sequence of a partial C3 cDNA clone from the nurse shark shows 50%, 30% and 24% homology with the corresponding region of mammalian C3, C4 and alpha 2-macroglobulin. Deduced amino acid sequence data from partial Bf/C2 cDNA clones, two from the nurse shark and one from the Japanese dogfish, suggest that at least one species of elasmobranch has two distinct Bf/C2 genes.

  14. Autocrine Effects of Tumor-Derived Complement

    Directory of Open Access Journals (Sweden)

    Min Soon Cho

    2014-03-01

    Full Text Available We describe a role for the complement system in enhancing cancer growth. Cancer cells secrete complement proteins that stimulate tumor growth upon activation. Complement promotes tumor growth via a direct autocrine effect that is partially independent of tumor-infiltrating cytotoxic T cells. Activated C5aR and C3aR signal through the PI3K/AKT pathway in cancer cells, and silencing the PI3K or AKT gene in cancer cells eliminates the progrowth effects of C5aR and C3aR stimulation. In patients with ovarian or lung cancer, higher tumoral C3 or C5aR mRNA levels were associated with decreased overall survival. These data identify a role for tumor-derived complement proteins in promoting tumor growth, and they therefore have substantial clinical and therapeutic implications.

  15. Electroluminescent TCC, C3dg and fB/Bb epitope assays for profiling complement cascade activation in vitro using an activated complement serum calibration standard.

    Science.gov (United States)

    van Vuuren, B Jansen; Bergseth, G; Mollnes, T E; Shaw, A M

    2014-01-15

    Electroluminescent assays for epitopes on the complement components C3dg, terminal complement complex (TCC) and factor B/Bb (fB/Bb) have been developed with capture and detection antibodies to produce detection limits C3dg=91±9ng/mL, TCC=3±0.1ng/mL and fB=55.7±0.1ng/mL. The assay performance was assessed against a series of zymosan and heat aggregated IgG (HAIgG) in vitro activations of complement using a calibrated activated complement serum (ACS) as calibration standard. The ACS standard was stable within 20% accuracy over a 6-month period with freeze-thaw cycles as required. Differential activation of the complement cascade was observed for TCC showing a pseudo-first order formation half-life of 3.5h after activation with zymosan. The C3dg activation fragment indicates a 10% total activation for both activation agents. The kinetic-epitope analysis for fB indicates that the capture epitope is on the fB/Bb protein fragment which can then become covered by the formation of C3bBb or C3bBbP complexes during the time course of the cascade. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Defining the complement biomarker profile of c3 glomerulopathy

    DEFF Research Database (Denmark)

    Zhang, Yuzhou; Nester, Carla M; Martin, Bertha

    2014-01-01

    BACKGROUND AND OBJECTIVES: C3 glomerulopathy (C3G) applies to a group of renal diseases defined by a specific renal biopsy finding: a dominant pattern of C3 fragment deposition on immunofluorescence. The primary pathogenic mechanism involves abnormal control of the alternative complement pathway......, although a full description of the disease spectrum remains to be determined. This study sought to validate and define the association of complement dysregulation with C3G and to determine whether specific complement pathway abnormalities could inform disease definition. DESIGN, SETTING, PARTICIPANTS......, & MEASUREMENTS: This study included 34 patients with C3G (17 with C3 glomerulonephritis [C3GN] and 17 with dense deposit disease [DDD]) diagnosed between 2008 and 2013 selected from the C3G Registry. Control samples (n=100) were recruited from regional blood drives. Nineteen complement biomarkers were assayed...

  17. Thyroid status influence on adiponectin, acylation stimulating protein (ASP and complement C3 in hyperthyroid and hypothyroid subjects

    Directory of Open Access Journals (Sweden)

    Zhang Jianhua

    2006-02-01

    Full Text Available Abstract Background Thyroid abnormalities (hyperthyroid and hypothyroid are accompanied by changes in intermediary metabolism including alterations in body weight, insulin resistance and lipid profile. The aims of this study were to examine plasma ASP, its precursor C3 and adiponectin in hyperthyroid and hypothyroid subjects as compared to controls. Methods A total of 99 subjects were recruited from endocrinology/out-patient clinics: 46 hyperthyroid subjects, 23 hypothyroid subjects and 30 control subjects. Subjects were evaluated for FT4, FT3, TSH, glucose, insulin, complete lipid profile and the adipokines: adiponectin, acylation stimulating protein (ASP and complement C3. Results Hyperthyroidism was associated with a 95% increase in adiponectin (p = 0.0002, a 47% decrease in C3 (p Conclusion These changes suggest that thyroid disease may be accompanied by changes in adipokines, which may contribute to the phenotype expressed.

  18. Mutations in complement regulatory proteins predispose to preeclampsia: a genetic analysis of the PROMISSE cohort.

    Directory of Open Access Journals (Sweden)

    Jane E Salmon

    2011-03-01

    Full Text Available Pregnancy in women with systemic lupus erythematosus (SLE or antiphospholipid antibodies (APL Ab--autoimmune conditions characterized by complement-mediated injury--is associated with increased risk of preeclampsia and miscarriage. Our previous studies in mice indicate that complement activation targeted to the placenta drives angiogenic imbalance and placental insufficiency.We use PROMISSE, a prospective study of 250 pregnant patients with SLE and/or APL Ab, to test the hypothesis in humans that impaired capacity to limit complement activation predisposes to preeclampsia. We sequenced genes encoding three complement regulatory proteins--membrane cofactor protein (MCP, complement factor I (CFI, and complement factor H (CFH--in 40 patients who had preeclampsia and found heterozygous mutations in seven (18%. Five of these patients had risk variants in MCP or CFI that were previously identified in atypical hemolytic uremic syndrome, a disease characterized by endothelial damage. One had a novel mutation in MCP that impairs regulation of C4b. These findings constitute, to our knowledge, the first genetic defects associated with preeclampsia in SLE and/or APL Ab. We confirmed the association of hypomorphic variants of MCP and CFI in a cohort of non-autoimmune preeclampsia patients in which five of 59 were heterozygous for mutations.The presence of risk variants in complement regulatory proteins in patients with SLE and/or APL Ab who develop preeclampsia, as well as in preeclampsia patients lacking autoimmune disease, links complement activation to disease pathogenesis and suggests new targets for treatment of this important public health problem.ClinicalTrials.gov NCT00198068.

  19. Skin Inqjuries Reduce Survival and Modulate Corticosterone, C-Reactive Protein, Complement Component 3, IgM, and Prostaglandin E2 after Whole-Body Reactor-Produced Mixed Field (n + γ-Photons Irradiation

    Directory of Open Access Journals (Sweden)

    Juliann G. Kiang

    2013-01-01

    Full Text Available Skin injuries such as wounds or burns following whole-body γ-irradiation (radiation combined injury (RCI increase mortality more than whole-body γ-irradiation alone. Wound-induced decreases in survival after irradiation are triggered by sustained activation of inducible nitric oxide synthase pathways, persistent alteration of cytokine homeostasis, and increased susceptibility to systemic bacterial infection. Among these factors, radiation-induced increases in interleukin-6 (IL-6 concentrations in serum were amplified by skin wound trauma. Herein, the IL-6-induced stress proteins including C-reactive protein (CRP, complement 3 (C3, immunoglobulin M (IgM, and prostaglandin E2 (PGE2 were evaluated after skin injuries given following a mixed radiation environment that might be found after a nuclear incident. In this report, mice received 3 Gy of reactor-produced mixed field (n+γ-photons radiations at 0.38 Gy/min followed by nonlethal skin wounding or burning. Both wounds and burns reduced survival and increased CRP, C3, and PGE2 in serum after radiation. Decreased IgM production along with an early rise in corticosterone followed by a subsequent decrease was noted for each RCI situation. These results suggest that RCI-induced alterations of corticosterone, CRP, C3, IgM, and PGE2 cause homeostatic imbalance and may contribute to reduced survival. Agents inhibiting these responses may prove to be therapeutic for RCI and improve related survival.

  20. Synergistic inhibition of the intrinsic factor X activation by protein S and C4b-binding protein

    NARCIS (Netherlands)

    Koppelman, S.J.

    1995-01-01

    The complement protein C4b-binding protein plays an important role in the regulation of the protein C anticoagulant pathway. C4b-binding protein can bind to protein S, thereby inhibiting the cofactor activity of protein S for activated protein C. In this report, we describe a new role for

  1. Complementation studies with the novel "Bungowannah" virus provide new insights in the compatibility of pestivirus proteins.

    Science.gov (United States)

    Richter, Maria; Reimann, Ilona; Wegelt, Anne; Kirkland, Peter D; Beer, Martin

    2011-09-30

    In recent years several atypical pestiviruses have been described. Bungowannah virus is the most divergent virus in this group. Therefore, heterologous complementation was used to clarify the phylogenetic relationship and to analyze the exchangeability of genome regions encoding structural proteins. Using a BVDV type 1 backbone, chimeric constructs with substituted envelope proteins E(rns), E1 and E2, were investigated. While all constructs replicated autonomously, infectious high titer chimeric virus could only be observed after exchanging the complete E1-E2 encoding region. The complementation of E1 and E2 alone resulted only in replicons. Complementation of BVDV-E(rns) was only efficient if Bungowannah virus-E(rns) was expressed from a bicistronic construct. Our data provide new insights in the compatibility of pestivirus proteins and demonstrate that heterologous complementation could be useful to characterize new pestiviruses. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. The Sand Fly Salivary Protein Lufaxin Inhibits the Early Steps of the Alternative Pathway of Complement by Direct Binding to the Proconvertase C3b-B

    Directory of Open Access Journals (Sweden)

    Antonio F. Mendes-Sousa

    2017-08-01

    Full Text Available Saliva of the blood feeding sand fly Lutzomyia longipalpis was previously shown to inhibit the alternative pathway (AP of the complement system. Here, we have identified Lufaxin, a protein component in saliva, as the inhibitor of the AP. Lufaxin inhibited the deposition of C3b, Bb, Properdin, C5b, and C9b on agarose-coated plates in a dose-dependent manner. It also inhibited the activation of factor B in normal serum, but had no effect on the components of the membrane attack complex. Surface plasmon resonance (SPR experiments demonstrated that Lufaxin stabilizes the C3b-B proconvertase complex when passed over a C3b surface in combination with factor B. Lufaxin was also shown to inhibit the activation of factor B by factor D in a reconstituted C3b-B, but did not inhibit the activation of C3 by reconstituted C3b-Bb. Proconvertase stabilization does not require the presence of divalent cations, but addition of Ni2+ increases the stability of complexes formed on SPR surfaces. Stabilization of the C3b-B complex to prevent C3 convertase formation (C3b-Bb formation is a novel mechanism that differs from previously described strategies used by other organisms to inhibit the AP of the host complement system.

  3. The Sand Fly Salivary Protein Lufaxin Inhibits the Early Steps of the Alternative Pathway of Complement by Direct Binding to the Proconvertase C3b-B.

    Science.gov (United States)

    Mendes-Sousa, Antonio F; do Vale, Vladimir Fazito; Silva, Naylene C S; Guimaraes-Costa, Anderson B; Pereira, Marcos H; Sant'Anna, Mauricio R V; Oliveira, Fabiano; Kamhawi, Shaden; Ribeiro, José M C; Andersen, John F; Valenzuela, Jesus G; Araujo, Ricardo N

    2017-01-01

    Saliva of the blood feeding sand fly Lutzomyia longipalpis was previously shown to inhibit the alternative pathway (AP) of the complement system. Here, we have identified Lufaxin, a protein component in saliva, as the inhibitor of the AP. Lufaxin inhibited the deposition of C3b, Bb, Properdin, C5b, and C9b on agarose-coated plates in a dose-dependent manner. It also inhibited the activation of factor B in normal serum, but had no effect on the components of the membrane attack complex. Surface plasmon resonance (SPR) experiments demonstrated that Lufaxin stabilizes the C3b-B proconvertase complex when passed over a C3b surface in combination with factor B. Lufaxin was also shown to inhibit the activation of factor B by factor D in a reconstituted C3b-B, but did not inhibit the activation of C3 by reconstituted C3b-Bb. Proconvertase stabilization does not require the presence of divalent cations, but addition of Ni 2+ increases the stability of complexes formed on SPR surfaces. Stabilization of the C3b-B complex to prevent C3 convertase formation (C3b-Bb formation) is a novel mechanism that differs from previously described strategies used by other organisms to inhibit the AP of the host complement system.

  4. The Sand Fly Salivary Protein Lufaxin Inhibits the Early Steps of the Alternative Pathway of Complement by Direct Binding to the Proconvertase C3b-B

    Science.gov (United States)

    Mendes-Sousa, Antonio F.; do Vale, Vladimir Fazito; Silva, Naylene C. S.; Guimaraes-Costa, Anderson B.; Pereira, Marcos H.; Sant’Anna, Mauricio R. V.; Oliveira, Fabiano; Kamhawi, Shaden; Ribeiro, José M. C.; Andersen, John F.; Valenzuela, Jesus G.; Araujo, Ricardo N.

    2017-01-01

    Saliva of the blood feeding sand fly Lutzomyia longipalpis was previously shown to inhibit the alternative pathway (AP) of the complement system. Here, we have identified Lufaxin, a protein component in saliva, as the inhibitor of the AP. Lufaxin inhibited the deposition of C3b, Bb, Properdin, C5b, and C9b on agarose-coated plates in a dose-dependent manner. It also inhibited the activation of factor B in normal serum, but had no effect on the components of the membrane attack complex. Surface plasmon resonance (SPR) experiments demonstrated that Lufaxin stabilizes the C3b-B proconvertase complex when passed over a C3b surface in combination with factor B. Lufaxin was also shown to inhibit the activation of factor B by factor D in a reconstituted C3b-B, but did not inhibit the activation of C3 by reconstituted C3b-Bb. Proconvertase stabilization does not require the presence of divalent cations, but addition of Ni2+ increases the stability of complexes formed on SPR surfaces. Stabilization of the C3b-B complex to prevent C3 convertase formation (C3b-Bb formation) is a novel mechanism that differs from previously described strategies used by other organisms to inhibit the AP of the host complement system. PMID:28912782

  5. Zonulin as prehaptoglobin2 regulates lung permeability and activates the complement system

    OpenAIRE

    Rittirsch, Daniel; Flierl, Michael A.; Nadeau, Brian A.; Day, Danielle E.; Huber-Lang, Markus S.; Grailer, Jamison J.; Zetoune, Firas S.; Andjelkovic, Anuska V.; Fasano, Alessio; Ward, Peter A.

    2013-01-01

    Zonulin is a protein involved in the regulation of tight junctions (TJ) in epithelial or endothelial cells. Zonulin is known to affect TJ in gut epithelial cells, but little is known about its influences in other organs. Prehaptoglobin2 has been identified as zonulin and is related to serine proteases (MASPs, C1qrs) that activate the complement system. The current study focused on the role of zonulin in development of acute lung injury (ALI) in C57BL/6 male mice following intrapulmonary depos...

  6. Structural insight into the recognition of complement C3 activation products by integrin receptors

    DEFF Research Database (Denmark)

    Bajic, Goran

    2015-01-01

    fragment C3a called anaphylatoxin. Complement leads to opsonization as the proteolytic fragment C3b becomes covalently linked to the activator surface through a reactive thioester. Self-surfaces are protected by complement regulators, whereas complement activation vividly amplifies on pathogens...... and their clearance by dendritic cells is mediated by αMβ2. The central molecule in my project, αMβ2 integrin, recognizes many diverse ligands including iC3b, but the molecular basis for such recognition was lacking. During my PhD I have obtained a major breakthrough in the dissection of iC3b interaction with αMβ2. I...

  7. C1q protein binds to the apoptotic nucleolus and causes C1 protease degradation of nucleolar proteins.

    Science.gov (United States)

    Cai, Yitian; Teo, Boon Heng Dennis; Yeo, Joo Guan; Lu, Jinhua

    2015-09-11

    In infection, complement C1q recognizes pathogen-congregated antibodies and elicits complement activation. Among endogenous ligands, C1q binds to DNA and apoptotic cells, but whether C1q binds to nuclear DNA in apoptotic cells remains to be investigated. With UV irradiation-induced apoptosis, C1q initially bound to peripheral cellular regions in early apoptotic cells. By 6 h, binding concentrated in the nuclei to the nucleolus but not the chromatins. When nucleoli were isolated from non-apoptotic cells, C1q also bound to these structures. In vivo, C1q exists as the C1 complex (C1qC1r2C1s2), and C1q binding to ligands activates the C1r/C1s proteases. Incubation of nucleoli with C1 caused degradation of the nucleolar proteins nucleolin and nucleophosmin 1. This was inhibited by the C1 inhibitor. The nucleoli are abundant with autoantigens. C1q binding and C1r/C1s degradation of nucleolar antigens during cell apoptosis potentially reduces autoimmunity. These findings help us to understand why genetic C1q and C1r/C1s deficiencies cause systemic lupus erythematosus. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Zonulin as prehaptoglobin2 regulates lung permeability and activates the complement system.

    Science.gov (United States)

    Rittirsch, Daniel; Flierl, Michael A; Nadeau, Brian A; Day, Danielle E; Huber-Lang, Markus S; Grailer, Jamison J; Zetoune, Firas S; Andjelkovic, Anuska V; Fasano, Alessio; Ward, Peter A

    2013-06-15

    Zonulin is a protein involved in the regulation of tight junctions (TJ) in epithelial or endothelial cells. Zonulin is known to affect TJ in gut epithelial cells, but little is known about its influences in other organs. Prehaptoglobin2 has been identified as zonulin and is related to serine proteases (MASPs, C1qrs) that activate the complement system. The current study focused on the role of zonulin in development of acute lung injury (ALI) in C57BL/6 male mice following intrapulmonary deposition of IgG immune complexes. A zonulin antagonist (AT-1001) and a related peptide with permeability agonist activities (AT-1002) were employed and given intratracheally or intravenously. Also, zonulin was blocked in lung with a neutralizing antibody. In a dose-dependent manner, AT-1001 or zonulin neutralizing antibody attenuated the intensity of ALI (as quantitated by albumin leak, neutrophil accumulation, and proinflammatory cytokines). A similar pattern was found using the bacterial lipopolysaccharide model of ALI. Using confocal microscopy on sections of injured lungs, staining patterns for TJ proteins were discontinuous, reduced, and fragmented. As expected, the leak of blood products into the alveolar space confirmed the passage of 3 and 20 kDa dextran, and albumin. In contrast to AT-1001, application of the zonulin agonist AT-1002 intensified ALI. Zonulin both in vitro and in vivo induced generation of complement C3a and C5a. Collectively, these data suggest that zonulin facilitates development of ALI both by enhancing albumin leak and complement activation as well as increased buildup of neutrophils and cytokines during development of ALI.

  9. Complement C4 phenotypes in dementia of the Alzheimer type

    NARCIS (Netherlands)

    Eikelenboom, P.; Goetz, J.; Pronk, J. C.; Hauptmann, G.

    1988-01-01

    Complement C4 phenotype distribution was studied in 64 patients with dementia of the Alzheimer type. In contrast to reported findings we failed to find a significant association between C4B2 gene frequency and Alzheimer's dementia

  10. Complement System in the Pathogenesis of Benign Lymphoepithelial Lesions of the Lacrimal Gland.

    Directory of Open Access Journals (Sweden)

    Jing Li

    Full Text Available We aimed to examine the potential involvement of local complement system gene expression in the pathogenesis of benign lymphoepithelial lesions (BLEL of the lacrimal gland.We collected data from 9 consecutive pathologically confirmed patients with BLEL of the lacrimal gland and 9 cases with orbital cavernous hemangioma as a control group, and adopted whole genome microarray to screen complement system-related differential genes, followed by RT-PCR verification and in-depth enrichment analysis (Gene Ontology analysis of the gene sets.The expression of 14 complement system-related genes in the pathologic tissue, including C2, C3, ITGB2, CR2, C1QB, CR1, ITGAX, CFP, C1QA, C4B|C4A, FANCA, C1QC, C3AR1 and CFHR4, were significantly upregulated while 7 other complement system-related genes, C5, CFI, CFHR1|CFH, CFH, CD55, CR1L and CFD were significantly downregulated in the lacrimal glands of BLEL patients. The microarray results were consistent with RT-PCR analysis results. Immunohistochemistry analysis of C3c and C1q complement component proteins in the resected tissue were positive in BLEL patients, while the control group had negative expression of these proteins. Gene ontology (GO analysis revealed that activation of the genes of complement system-mediated signaling pathways were the most enriched differential gene group in BLEL patients.Local expression of complement components is prominently abnormal in BLEL, and may well play a role in its pathogenesis.

  11. Complete cDNA sequence of human complement C1s and close physical linkage of the homologous genes C1s and C1r

    International Nuclear Information System (INIS)

    Tosi, M.; Duponchel, C.; Meo, T.; Julier, C.

    1987-01-01

    Overlapping molecular clones encoding the complement subcomponent C1s were isolated from a human liver cDNA library. The nucleotide sequence reconstructed from these clones spans about 85% of the length of the liver C1s messenger RNAs, which occur in three distinct size classes around 3 kilobases in length. Comparisons with the sequence of C1r, the other enzymatic subcomponent of C1, reveal 40% amino acid identity and conservation of all the cysteine residues. Beside the serine protease domain, the following sequence motifs, previously described in C1r, were also found in C1s: (a) two repeats of the type found in the Ba fragment of complement factor B and in several other complement but also noncomplement proteins, (b) a cysteine-rich segment homologous to the repeats of epidermal growth factor precursor, and (c) a duplicated segment found only in C1r and C1s. Differences in each of these structural motifs provide significant clues for the interpretation of the functional divergence of these interacting serine protease zymogens. Hybridizations of C1r and C1s probes to restriction endonuclease fragments of genomic DNA demonstrate close physical linkage of the corresponding genes. The implications of this finding are discussed with respect to the evolution of C1r and C1s after their origin by tandem gene duplication and to the previously observed combined hereditary deficiencies of Clr and Cls

  12. Proteolysis of complement factors iC3b and C5 by the serine protease prostate-specific antigen in prostatic fluid and seminal plasma.

    Science.gov (United States)

    Manning, Michael L; Williams, Simon A; Jelinek, Christine A; Kostova, Maya B; Denmeade, Samuel R

    2013-03-15

    Prostate-specific Ag (PSA) is a serine protease that is expressed exclusively by normal and malignant prostate epithelial cells. The continued high-level expression of PSA by the majority of men with both high- and low-grade prostate cancer throughout the course of disease progression, even in the androgen-ablated state, suggests that PSA has a role in the pathogenesis of disease. Current experimental and clinical evidence suggests that chronic inflammation, regardless of the cause, may predispose men to prostate cancer. The responsibility of the immune system in immune surveillance and eventually tumor progression is well appreciated but not completely understood. In this study, we used a mass spectrometry-based evaluation of prostatic fluid obtained from diseased prostates after removal by radical prostatectomy to identify potential immunoregulatory proteins. This analysis revealed the presence of Igs and the complement system proteins C3, factor B, and clusterin. Verification of these findings by Western blot confirmed the high-level expression of C3 in the prostatic fluid and the presence of a previously uncharacterized C-terminal C3 cleavage product. Biochemical analysis of this C3 cleavage fragment revealed a putative PSA cleavage site after tyrosine-1348. Purified PSA was able to cleave iC3b and the related complement protein C5. These results suggest a previously uncharacterized function of PSA as an immunoregulatory protease that could help to create an environment hospitable to malignancy through proteolysis of the complement system.

  13. Complement C5a-C5aR interaction enhances MAPK signaling pathway activities to mediate renal injury in trichloroethylene sensitized BALB/c mice.

    Science.gov (United States)

    Zhang, Jia-xiang; Zha, Wan-sheng; Ye, Liang-ping; Wang, Feng; Wang, Hui; Shen, Tong; Wu, Chang-hao; Zhu, Qi-xing

    2016-02-01

    We have previously shown complement activation as a possible mechanism for trichloroethylene (TCE) sensitization, leading to multi-organ damage including the kidneys. In particular, excessive deposition of C5 and C5b-9-the membrane attack complex, which can generate significant tissue damage, was observed in the kidney tissue after TCE sensitization. The present study tested the hypothesis that anaphylatoxin C5a binding to its receptor C5aR mediates renal injury in TCE-sensitized BALB/c mice. BALB/c mice were sensitized through skin challenge with TCE, with or without pretreatment by the C5aR antagonist W54011. Kidney histopathology and the renal functional test were performed to assess renal injury, and immunohistochemistry and fluorescent labeling were carried out to assess C5a and C5aR expressions. TCE sensitization up-regulated C5a and C5aR expressions in kidney tissue, generated inflammatory infiltration, renal tubule damage, glomerular hypercellularity and impaired renal function. Antagonist pretreatment blocked C5a binding to C5aR and attenuated TCE-induced tissue damage and renal dysfunction. TCE sensitization also caused the deposition of major pro-inflammatory cytokines IL-2, TNF-α and IFN-γ in the kidney tissue (P < 0.05); this was accompanied by increased expression of P-p38, P-ERK and P-JNK proteins (P < 0.05). Pretreatment with the C5aR antagonist attenuated the increase of expression of P-p38, P-ERK and P-JNK proteins (P < 0.05) and also consistently reduced the TCE sensitization-induced increase of IL-2, TNF-α and IFN-γ (P < 0.05). These data identify C5a binding to C5aR, MAP kinase activation, and inflammatory cytokine release as a novel mechanism for complement-mediated renal injury by sensitization with TCE or other environmental chemicals. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Increase in complement iC3b is associated with anti-inflammatory cytokine expression during late pregnancy in mice.

    Directory of Open Access Journals (Sweden)

    Keigo Nakamura

    Full Text Available Immunological tolerance between fetal allograft and mother is crucial for pregnancy establishment and maintenance; however, these mechanisms particularly those during the latter part of pregnancy have not been definitively elucidated. The aim of this study was to examine the presence and potential function of innate immunity characteristic to the middle to late pregnancy. We first characterized up-regulated proteins in decidua from day 11 pregnant (P11 mice using 2D-PAGE, followed by MALDI-TOF/MS analysis. These analyses identified increased complement component 3 (C3 and its derivatives in P11 decidua. We then found that in the decidual tissues, C3 mRNA increased on P15 and remained high on P19. C3 is converted to C3b and then iC3b by complement component factor I (Cfi and complement receptor 1-like protein (Crry, both of which were present in P19 placentas. In addition, iC3b proteins and its receptor CR3 (Cd11b/Cd18 in decidual and placental tissues increased toward the latter phase of pregnancy. Moreover, CR3 subunit CD11b protein was predominantly localized to spongiotrophoblast layer in the P19 placenta. Because iC3b is known to induce anti-inflammatory cytokine production, the analysis was extended to examine changes in pro- and anti-inflammatory cytokines, Il12, Il10, and Tgfb1. Il12 expression decreased in P15 and P19 placenta, while high mRNA expression of Il10 and Tgfb1 was found in P19 placental tissues. Furthermore, placental Il10 and Tgfb1 mRNAs were down-regulated when pregnant mice were treated with an anti-C3 antibody, detecting C3, C3b and iC3b. These results indicated that C3 derivatives, in particular, iC3b and its receptor CR3 were up-regulated at the fetal-maternal interface, and suggest that iC3b may regulate the placental expression of anti-inflammatory cytokines, IL10 and TGFB1, during the latter phase of pregnancy.

  15. Characterization of the third component of complement (C3) after activation by cigarette smoke

    International Nuclear Information System (INIS)

    Kew, R.R.; Ghebrehiwet, B.; Janoff, A.

    1987-01-01

    Activation of lung complement by tobacco smoke may be an important pathogenetic factor in the development of pulmonary emphysema in smokers. We previously showed that cigarette smoke can modify C3 and activate the alternative pathway of complement in vitro. However, the mechanism of C3 activation was not fully delineated in these earlier studies. In the present report, we show that smoke-treated C3 induces cleavage of the alternative pathway protein, Factor B, when added to serum containing Mg-EGTA. This effect of cigarette smoke is specific for C3 since smoke-treated C4, when added to Mg-EGTA-treated serum, fails to activate the alternative pathway and fails to induce Factor B cleavage. Smoke-modified C3 no longer binds significant amounts of [ 14 C]methylamine (as does native C3), and relatively little [ 14 C]methylamine is incorporated into its alpha-chain. Thus, prior internal thiolester bond cleavage appears to have occurred in C3 activated by cigarette smoke. Cigarette smoke components also induce formation of noncovalently associated, soluble C3 multimers, with a Mr ranging from 1 to 10 million. However, prior cleavage of the thiolester bond in C3 with methylamine prevents the subsequent formation of these smoke-induced aggregates. These data indicate that cigarette smoke activates the alternative pathway of complement by specifically modifying C3 and that these modifications include cleavage of the thiolester bond in C3 and formation of noncovalently linked C3 multimers

  16. Lack of evidence from studies of soluble protein fragments that Knops blood group polymorphisms in complement receptor-type 1 are driven by malaria.

    Directory of Open Access Journals (Sweden)

    Patience B Tetteh-Quarcoo

    Full Text Available Complement receptor-type 1 (CR1, CD35 is the immune-adherence receptor, a complement regulator, and an erythroid receptor for Plasmodium falciparum during merozoite invasion and subsequent rosette formation involving parasitized and non-infected erythrocytes. The non-uniform geographical distribution of Knops blood group CR1 alleles Sl1/2 and McC(a/b may result from selective pressures exerted by differential exposure to infectious hazards. Here, four variant short recombinant versions of CR1 were produced and analyzed, focusing on complement control protein modules (CCPs 15-25 of its ectodomain. These eleven modules encompass a region (CCPs 15-17 key to rosetting, opsonin recognition and complement regulation, as well as the Knops blood group polymorphisms in CCPs 24-25. All four CR1 15-25 variants were monomeric and had similar axial ratios. Modules 21 and 22, despite their double-length inter-modular linker, did not lie side-by-side so as to stabilize a bent-back architecture that would facilitate cooperation between key functional modules and Knops blood group antigens. Indeed, the four CR1 15-25 variants had virtually indistinguishable affinities for immobilized complement fragments C3b (K(D = 0.8-1.1 µM and C4b (K(D = 5.0-5.3 µM. They were all equally good co-factors for factor I-catalysed cleavage of C3b and C4b, and they bound equally within a narrow affinity range, to immobilized C1q. No differences between the variants were observed in assays for inhibition of erythrocyte invasion by P. falciparum or for rosette disruption. Neither differences in complement-regulatory functionality, nor interactions with P. falciparum proteins tested here, appear to have driven the non-uniform geographic distribution of these alleles.

  17. CipA of Acinetobacter baumannii Is a Novel Plasminogen Binding and Complement Inhibitory Protein.

    Science.gov (United States)

    Koenigs, Arno; Stahl, Julia; Averhoff, Beate; Göttig, Stephan; Wichelhaus, Thomas A; Wallich, Reinhard; Zipfel, Peter F; Kraiczy, Peter

    2016-05-01

    Acinetobacter baumannii is an emerging opportunistic pathogen, responsible for up to 10% of gram-negative, nosocomial infections. The global increase of multidrug-resistant and pan-resistant Acinetobacter isolates presents clinicians with formidable challenges. To establish a persistent infection,A. baumannii must overcome the detrimental effects of complement as the first line of defense against invading microorganisms. However, the immune evasion principles underlying serum resistance inA. baumannii remain elusive. Here, we identified a novel plasminogen-binding protein, termed CipA. Bound plasminogen, upon conversion to active plasmin, degraded fibrinogen and complement C3b and contributed to serum resistance. Furthermore, CipA directly inhibited the alternative pathway of complement in vitro, irrespective of its ability to bind plasminogen. A CipA-deficient mutant was efficiently killed by human serum and showed a defect in the penetration of endothelial monolayers, demonstrating that CipA is a novel multifunctional protein that contributes to the pathogenesis ofA. baumannii. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  18. Plasma complement biomarkers distinguish multiple sclerosis and neuromyelitis optica spectrum disorder.

    Science.gov (United States)

    Hakobyan, Svetlana; Luppe, Sebastian; Evans, David Rs; Harding, Katharine; Loveless, Samantha; Robertson, Neil P; Morgan, B Paul

    2017-06-01

    Multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) are autoimmune inflammatory demyelinating diseases of the central nervous system. Although distinguished by clinicoradiological and demographic features, early manifestations can be similar complicating management. Antibodies against aquaporin-4 support the diagnosis of NMOSD but are negative in some patients. Therefore, there is unmet need for biomarkers that enable early diagnosis and disease-specific intervention. We investigated whether plasma complement proteins are altered in MS and NMOSD and provide biomarkers that distinguish these diseases. Plasma from 54 NMOSD, 40 MS and 69 control donors was tested in multiplex assays measuring complement activation products and proteins. Using logistic regression, we tested whether combinations of complement analytes distinguished NMOSD from controls and MS. All activation products were elevated in NMOSD compared to either control or MS. Four complement proteins (C1inh, C1s, C5 and FH) were higher in NMOSD compared to MS or controls. A model comprising C1inh and terminal complement complex (TCC) distinguished NMOSD from MS (area under the curve (AUC): 0.98), while C1inh and C5 distinguished NMOSD from controls (AUC: 0.94). NMOSD is distinguished from MS by plasma complement biomarkers. Selected complement analytes enable differential diagnosis. Findings support trials of anti-complement therapies in NMOSD.

  19. Structure of the extracellular portion of CD46 provides insights into its interactions with complement proteins and pathogens.

    Directory of Open Access Journals (Sweden)

    B David Persson

    2010-09-01

    Full Text Available The human membrane cofactor protein (MCP, CD46 is a central component of the innate immune system. CD46 protects autologous cells from complement attack by binding to complement proteins C3b and C4b and serving as a cofactor for their cleavage. Recent data show that CD46 also plays a role in mediating acquired immune responses, and in triggering autophagy. In addition to these physiologic functions, a significant number of pathogens, including select adenoviruses, measles virus, human herpes virus 6 (HHV-6, Streptococci, and Neisseria, use CD46 as a cell attachment receptor. We have determined the crystal structure of the extracellular region of CD46 in complex with the human adenovirus type 11 fiber knob. Extracellular CD46 comprises four short consensus repeats (SCR1-SCR4 that form an elongated structure resembling a hockey stick, with a long shaft and a short blade. Domains SCR1, SCR2 and SCR3 are arranged in a nearly linear fashion. Unexpectedly, however, the structure reveals a profound bend between domains SCR3 and SCR4, which has implications for the interactions with ligands as well as the orientation of the protein at the cell surface. This bend can be attributed to an insertion of five hydrophobic residues in a SCR3 surface loop. Residues in this loop have been implicated in interactions with complement, indicating that the bend participates in binding to C3b and C4b. The structure provides an accurate framework for mapping all known ligand binding sites onto the surface of CD46, thereby advancing an understanding of how CD46 acts as a receptor for pathogens and physiologic ligands of the immune system.

  20. Molecular cloning of the alpha subunit of complement component C8 (CpC8α) of whitespotted bamboo shark (Chiloscyllium plagiosum).

    Science.gov (United States)

    Wang, Ying; Zhang, Mengmeng; Wang, Conghui; Ye, Boping; Hua, Zichun

    2013-12-01

    Complement-mediated cytolysis is the important effect of immune response, which results from the assembly of terminal complement components (C5b-9). Among them, α subunit of C8 (C8α) is the first protein that traverses the lipid bilayer, and then initiates the recruitment of C9 molecules to form pore on target membranes. In this article, a full-length cDNA of C8α (CpC8α) is identified from the whitespotted bamboo shark (Chiloscyllium plagiosum) by RACE. The CpCcDNA is 2183 bp in length, encoding a protein of 591 amino acids. The deduced CpC8α exhibits 89%, 49% and 44% identity with nurse shark, frog and human orthologs, respectively. Sequence alignment indicates that the C8α is well conserved during the evolution process from sharks to mammals, with the same modular architecture as well as the identical cysteine composition in the mature protein. Phylogenetic analysis places CpC8α and nurse shark C8α in cartilaginous fish clade, in parallel with the teleost taxa, to form the C8α cluster with higher vertebrates. Hydrophobicity analysis also indicates a similar hydrophobicity of CpC8α to mammals. Finally, expression analysis revealed CpC8α transcripts were constitutively highly expressed in shark liver, with much less expression in other tissues. The well conserved structure and properties suggests an analogous function of CpC8α to mammalian C8α, though it remains to be confirmed by further study. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Therapeutic inhibition of the complement system. Y2K update.

    Science.gov (United States)

    Asghar, S S; Pasch, M C

    2000-09-01

    Activation of complement is an essential part of the mechanism of pathogenesis of a large number of human diseases; its inhibition by pharmacological means is likely to suppress disease processes in complement mediated diseases. From this point of view low molecular weight synthetic inhibitors of complement are being developed and high molecular weight natural inhibitors of human origin present in plasma or embedded in cell membrane are being purified or produced in their recombinant forms. This review is concerned with high molecular weight inhibitors, some of which are already in clinical use but may be efficacious in many other diseases in which they have not yet been tried. C1-esterase inhibitor (C1-INH) concentrate prepared from human plasma is being successfully used for the treatment of hereditary angioneurotic edema. Recently, C1-INH has been found to be consumed in severe inflammation and has been shown to exert beneficial effects in several inflammatory conditions such as human sepsis, post-operative myocardial dysfunction due to reperfusion injury, severe capillary leakage syndrome after bone marrow transplantation, reperfusion injury after lung transplantation, burn, and cytotoxicity caused by IL-2 therapy in cancer. Factor I has been used for the treatment of factor I deficiency. Recombinant soluble forms of membrane cofactor protein (MCP), and decay accelerating factor (DAF) have not yet been tried in humans but have been shown to be effective in immune complex mediate inflammation in animals. Organs of pigs transgenic for one or more of human membrane regulators of complement namely membrane cofactor protein (MCP), decay accelerating factor (DAF) or CD59, are being produced for transplantation into humans. They have been shown to be resistant to hyperacute rejection in non-human primates; acute vascular rejection is still a problem in their clinical use. It is hoped that these observations together with future developments will make xeno

  2. Complementation of Saccharomyces cerevisiae mutations in genes involved in translation and protein folding (EFB1 and SSB1) with Candida albicans cloned genes.

    Science.gov (United States)

    Maneu, V; Roig, P; Gozalbo, D

    2000-11-01

    We have demonstrated that the expression of Candida albicans genes involved in translation and protein folding (EFB1 and SSB1) complements the phenotype of Saccharomyces cerevisiae mutants. The elongation factor 1beta (EF-1beta) is essential for growth and efb1 S. cerevisiae null mutant cells are not viable; however, viable haploid cells, carrying the disrupted chromosomal allele of the S. cerevisiae EFB1 gene and pEFB1, were isolated upon sporulation of a diploid strain which was heterozygous at the EFB1 locus and transformed with pEFB1 (a pEMBLYe23 derivative plasmid containing an 8-kb DNA fragment from the C. albicans genome which contains the EFB1 gene). This indicates that the C. albicans EFB1 gene encodes a functional EF-1beta. Expression of the SSB1 gene from C. albicans, which codes for a member of the 70-kDa heat shock protein family, in S. cerevisiae ssb1 ssb2 double mutant complements the mutant phenotype (poor growth particularly at low temperature, and sensitivity to certain protein synthesis inhibitors, such as paromomycin). This complementation indicates that C. albicans Ssbl may function as a molecular chaperone on the translating ribosomes, as described in S. cerevisiae. Northern blot analysis showed that SSB mRNA levels increased after mild cold shift (28 degrees C to 23 degrees C) and rapidly decreased after mild heat shift (from 28 degrees C to 37 degrees C, and particularly to 42 degrees C), indicating that SSB1 expression is regulated by temperature. Therefore, Ssb1 may be considered as a molecular chaperone whose pattern of expression is similar to that found in ribosomal proteins, according to its common role in translation.

  3. Cloning and characterization of cDNAs encoding the complete sequence of decay-accelerating factor of human complement

    International Nuclear Information System (INIS)

    Medof, M.E.; Lublin, D.M.; Holers, V.M.; Ayers, D.J.; Getty, R.R.; Leykam, J.F.; Atkinson, J.P.; Tykocinski, M.L.

    1987-01-01

    cDNAs encoding the complement decay-accelerating factor (DAF) were isolated from HeLa and differentiated HL-60 λgt cDNA libraries by screening with a codon preference oligonucleotide corresponding to DAF NH 2 -terminal amino acids 3-14. The composite cDNA sequence showed a 347-amino acid protein preceded by an NH 2 -terminal leader peptide sequence. The translated sequence beginning at the DAF NH 2 terminus encodes four contiguous ≅ 61-amino acid long repetitive units of internal homology. The repetitive regions contain four conserved cysteines, one proline, one glycine, one glycine/alanine, four leucines/isoleucines/valines, one serine, three tyrosines/phenylalanines, and on tryptophan and show striking homology to similar regions previously identified in factor B, C2, C4 binding protein, factor H, C1r, factor XIII, interleukin 2 receptor, and serum β 2 -glycoprotein I. The consensus repeats are attached to a 70-amino acid long segment rich in serine and threonine (potential O-glycosylation sites), which is in turn followed by a stretch of hydrophobic amino acids. RNA blot analysis of HeLa and HL-60 RNA revealed three DAF mRNA species of 3.1, 2.7, and 2.0 kilobases. The results indicate that portions of the DAF gene may have evolved from a DNA element common to the above proteins, that DAF cDNA predicts a COOH-terminal anchoring polypeptide, and that distinct species of DAF message are elaborated in cells

  4. Feeding common carp Cyprinus carpio with b-glucan supplemented \\ud diet stimulates C-reactive protein and complement immune acute\\ud phase responses following PAMPs injection

    OpenAIRE

    Pionnier, Nicolas; Falco, Alberto; Miest, Joanna J.; Shrive, Annette K.; Hoole, Dave

    2014-01-01

    The effect of β-glucan as a feed additive on the serum and gene profile of C-reactive protein (CRP) and complement acute phase responses was ascertained in common carp Cyprinus carpio. In addition effects of subsequent intraperitoneal injections of pathogen-associated molecular patterns (PAMPs), i.e. LPS or poly(I:C), to mimic bacterial or viral infection respectively, were studied. Carp were first orally fed with β-glucan (MacroGard®) with a daily β-glucan intake of 6 mg per kg body weight o...

  5. A study of immunoglobulins and complements (C3 &C4 in alopecia areata

    Directory of Open Access Journals (Sweden)

    Sharma R

    1995-01-01

    Full Text Available Estimation of serum Immunoglobulins (IgG, IgM and IgA and complements (C3 and C4 was carried out in 100 cases of alopecia areata as per method described by Mancini (1965.[1] Clinically patients were divided in two groups, alopecia areata circumscribed (group I and severe alopecia areata (group II. Significant decrease in levels of one or more Immunoglobulins were observed in most of the patients. However, Serum complements (C3 and C4 were within range of normal control values

  6. Fibulin-1C, C1 Esterase Inhibitor and Glucose Regulated Protein 75 Interact with the CREC Proteins, Calumenin and Reticulocalbin.

    Directory of Open Access Journals (Sweden)

    Gry Aune Westergaard Hansen

    Full Text Available Affinity purification, immunoprecipitation, gel electrophoresis and mass spectrometry were used to identify fibulin-1C, C1 esterase inhibitor and glucose regulated protein 75, grp75, as binding partners of the CREC proteins, calumenin and reticulocalbin. Surface plasmon resonance was used to verify the interaction of all three proteins with each of the CREC proteins. Fibulin-1C interacts with calumenin and reticulocalbin with an estimated dissociation constant around 50-60 nM. The interaction, at least for reticulocalbin, was not dependent upon the presence of Ca2+. C1 esterase inhibitor interacted with both proteins with an estimated dissociation constant at 1 μM for reticulocalbin and 150 nM for calumenin. The interaction, at least for calumenin, was dependent upon the presence of Ca2+ with strong interaction at 3.5 mM while no detectable interaction could be found at 0.1 mM. Grp75 binds with an affinity of approximately 3-7 nM with reticulocalbin as well as with calumenin. These interactions suggest functional participation of the CREC proteins in chaperone activity, cell proliferation and transformation, cellular aging, haemostasis and thrombosis as well as modulation of the complement system in fighting bacterial infection.

  7. Generation of a C3c specific monoclonal antibody and assessment of C3c as a putative inflammatory marker derived from complement factor C3

    DEFF Research Database (Denmark)

    Palarasah, Yaseelan; Skjodt, Karsten; Brandt, Jette

    2010-01-01

    complex (C5b-C9) and quantification of complement split products by precipitation-in-gel techniques (e.g. C3d). We have developed a mouse monoclonal antibody (mAb) that is able to detect fluid phase C3c without interference from other products generated from the complement component C3. The C3c specific m....... The C3c mAb was confirmed to be C3c specific, as it showed no cross-reactivity with native (un-cleaved) C3, with C3b, iC3b, or with C3d. Also, no significant reaction was observed with C3 fragments in factor I deficient sera or plasma. This antibody forms the basis for the generation of a robust ELISA...... that allows for a quick and reliable evaluation of complement activation and consumption as a marker for inflammatory processes. We established the C3c plasma range in 100 healthy Danish blood donors with a mean of 3.47 μg/ml and a range of 2.12-4.92 μg/ml. We believe that such an antibody might...

  8. Molecular and expression analysis of complement component C5 in the nurse shark (Ginglymostoma cirratum) and its predicted functional role.

    Science.gov (United States)

    Graham, Matthew; Shin, Dong-Ho; Smith, Sylvia L

    2009-07-01

    We present the complete cDNA sequence of shark (Ginglymostoma cirratum) pro-C5 and its molecular characterization with a descriptive analysis of the structural elements necessary for its potential functional role as a potent mediator of inflammation (fragment C5a) and initiator molecule (fragment C5b) for the assembly of the membrane attack complex (MAC) upon activation by C5 convertase. In mammals the three complement activation cascades, the classical, alternative and lectin pathways, converge at the activation of C3, a pivotal complement protein. It is, however, the subsequent activation of the next complement component, C5, which is the focal point at which the initiation of the terminal lytic pathway takes place and involves the stepwise assembly of the MAC. The effector cytolytic function of complement occurs with the insertion of MAC into target membranes causing dough-nut like holes and cell leakage. The lytic activity of shark complement results in structurally similar holes in target membranes suggesting the assembly of a shark MAC that likely involves a functional analogue of C5. The composition of shark MAC remains unresolved and to date conclusive evidence has been lacking for shark C5. The gene has not been cloned nor has the serum protein been characterized for any elasmobranch species. This report is the first to confirm the presence of C5 homologue in the shark. GcC5 is remarkably similar to human C5 in overall structure and domain arrangement. The GcC5 cDNA measured 5160-bp with 5' and 3' UTRs of 35 bp and 79 bp, respectively. Structural analysis of the derived protein sequence predicts a molecule that is a two-chain structure which lacks a thiolester bond and contains a C5 convertase cleavage site indicating that activation will generate two peptides, akin to C5b and C5a. The putative GcC5 molecule also contains the C-terminal C345C/Netrin module that characterizes C3, C4 and C5. Multiple alignment of deduced amino acid sequences shows that GcC5

  9. Further structural insights into the binding of complement factor H by complement regulator-acquiring surface protein 1 (CspA) of Borrelia burgdorferi

    International Nuclear Information System (INIS)

    Caesar, Joseph J. E.; Wallich, Reinhard; Kraiczy, Peter; Zipfel, Peter F.; Lea, Susan M.

    2013-01-01

    B. burgdorferi binds complement factor H using a dimeric surface protein, CspA (BbCRASP-1). Presented here is a new structure of CspA that suggests that there is a degree of flexibility between subunits which may have implications for complement regulator binding. Borrelia burgdorferi has evolved many mechanisms of evading the different immune systems across its range of reservoir hosts, including the capture and presentation of host complement regulators factor H and factor H-like protein-1 (FHL-1). Acquisition is mediated by a family of complement regulator-acquiring surface proteins (CRASPs), of which the atomic structure of CspA (BbCRASP-1) is known and shows the formation of a homodimeric species which is required for binding. Mutagenesis studies have mapped a putative factor H binding site to a cleft between the two subunits. Presented here is a new atomic structure of CspA which shows a degree of flexibility between the subunits which may be critical for factor H scavenging by increasing access to the binding interface and allows the possibility that the assembly can clamp around the bound complement regulators

  10. Acquisition of C1 inhibitor by Bordetella pertussis virulence associated gene 8 results in C2 and C4 consumption away from the bacterial surface.

    Science.gov (United States)

    Hovingh, Elise S; van den Broek, Bryan; Kuipers, Betsy; Pinelli, Elena; Rooijakkers, Suzan H M; Jongerius, Ilse

    2017-07-01

    Whooping cough, or pertussis, is a contagious disease of the respiratory tract that is re-emerging worldwide despite high vaccination coverage. The causative agent of this disease is the Gram-negative Bordetella pertussis. Knowledge on complement evasion strategies of this pathogen is limited. However, this is of great importance for future vaccine development as it has become apparent that a novel pertussis vaccine is needed. Here, we unravel the effect of Virulence associated gene 8 (Vag8) of B. pertussis on the human complement system at the molecular level. We show that both recombinant and endogenously secreted Vag8 inhibit complement deposition on the bacterial surface at the level of C4b. We reveal that Vag8 binding to human C1-inhibitor (C1-inh) interferes with the binding of C1-inh to C1s, C1r and MASP-2, resulting in the release of active proteases that subsequently cleave C2 and C4 away from the bacterial surface. We demonstrate that the depletion of these complement components in the bacterial surrounding and subsequent decreased deposition on B. pertussis leads to less complement-mediated bacterial killing. Vag8 is the first protein described that specifically prevents C1s, C1r and MASP-2 binding to C1-inh and thereby mediates complement consumption away from the bacterial surface. Unravelling the mechanism of this unique complement evasion strategy of B. pertussis is one of the first steps towards understanding the interactions between the first line of defense complement and B. pertussis.

  11. Acquisition of C1 inhibitor by Bordetella pertussis virulence associated gene 8 results in C2 and C4 consumption away from the bacterial surface

    Science.gov (United States)

    Hovingh, Elise S.; Kuipers, Betsy; Pinelli, Elena; Rooijakkers, Suzan H. M.

    2017-01-01

    Whooping cough, or pertussis, is a contagious disease of the respiratory tract that is re-emerging worldwide despite high vaccination coverage. The causative agent of this disease is the Gram-negative Bordetella pertussis. Knowledge on complement evasion strategies of this pathogen is limited. However, this is of great importance for future vaccine development as it has become apparent that a novel pertussis vaccine is needed. Here, we unravel the effect of Virulence associated gene 8 (Vag8) of B. pertussis on the human complement system at the molecular level. We show that both recombinant and endogenously secreted Vag8 inhibit complement deposition on the bacterial surface at the level of C4b. We reveal that Vag8 binding to human C1-inhibitor (C1-inh) interferes with the binding of C1-inh to C1s, C1r and MASP-2, resulting in the release of active proteases that subsequently cleave C2 and C4 away from the bacterial surface. We demonstrate that the depletion of these complement components in the bacterial surrounding and subsequent decreased deposition on B. pertussis leads to less complement-mediated bacterial killing. Vag8 is the first protein described that specifically prevents C1s, C1r and MASP-2 binding to C1-inh and thereby mediates complement consumption away from the bacterial surface. Unravelling the mechanism of this unique complement evasion strategy of B. pertussis is one of the first steps towards understanding the interactions between the first line of defense complement and B. pertussis. PMID:28742139

  12. Developmentally regulated expression by Trypanosoma cruzi of molecules that accelerate the decay of complement C3 convertases

    International Nuclear Information System (INIS)

    Rimoldi, M.T.; Sher, A.; Heiny, A.; Lituchy, A.; Hammer, C.H.; Joiner, K.

    1988-01-01

    The authors recently showed that culture-derived metacyclic trypomastigotes (CMT), but not epimastigotes (Epi), of the Miranda 99 strain of Trypanosoma cruzi evade lysis by the human alternative complement pathway because of inefficient binding of factor B to complement component C3b on the parasite surface. These results suggested that CMT and tissue-culture-derived trypomastigotes (TCT), which also activate the alternative pathway poorly, might produce a molecule capable of interfering with factor B binding to C3b. They now demonstrate that CMT and TCT lysates, as well as molecules spontaneously shed from CMT and TCT but not Epi, accelerate decay of 125 I-labeled factor Bb from the alternative-pathway C3 convertase (C3bBb) assembled on zymosan or Epi and also accelerate decay of the classical-pathway C3 convertase (C4b2a) on sheep erythrocytes. Parasites metabolically labeled with [ 35 S]methionine spontaneously shed a limited number of radioactive components, ranging in molecular mass from 86 to 155 kDa for trypomastigotes and 25 to 80 kDa for Epi. Decay-accelerating activity within supernatants is inactivated by papain and is coeluted with 35 S-containing polypeptides on FPLC anion-exchange chromatography, suggesting that the active constituents are protein molecules. Molecules with decay-accelerating activity may explain the developmentally regulated resistance to complement-mediated lysis in infective and vertebrate stages for T. cruzi life cycle

  13. The interaction between circulating complement proteins and cutaneous microvascular endothelial cells in the development of childhood Henoch-Schonlein Purpura.

    Directory of Open Access Journals (Sweden)

    Yao-Hsu Yang

    Full Text Available In addition to IgA, the deposition of complement (C3 in dermal vessels is commonly found in Henoch-Schönlein purpura (HSP. The aim of this study is to elucidate the role of circulating complement proteins in the pathogenesis of childhood HSP.Plasma levels of C3a, C4a, C5a, and Bb in 30 HSP patients and 30 healthy controls were detected by enzyme-linked immunosorbent assay (ELISA. The expression of C3a receptor (C3aR, C5a receptor (CD88, E-selectin, intercellular adhesion molecule 1 (ICAM-1, C3, C5, interleukin (IL-8, monocyte chemotactic protein (MCP-1, and RANTES by human dermal microvascular endothelial cells (HMVEC-d was evaluated either by flow cytometry or by ELISA.At the acute stage, HSP patients had higher plasma levels of C3a (359.5 ± 115.3 vs. 183.3 ± 94.1 ng/ml, p < 0.0001, C5a (181.4 ± 86.1 vs. 33.7 ± 26.3 ng/ml, p < 0.0001, and Bb (3.7 ± 2.6 vs. 1.0 ± 0.6 μg/ml, p < 0.0001, but not C4a than healthy controls. Although HSP patient-derived acute phase plasma did not alter the presentation of C3aR and CD88 on HMVEC-d, it enhanced the production of endothelial C3 and C5. Moreover, C5a was shown in vitro to up-regulate the expression of IL-8, MCP-1, E-selectin, and ICAM-1 by HMVEC-d with a dose-dependent manner.In HSP, the activation of the complement system in part through the alternative pathway may have resulted in increased plasma levels of C3a and C5a, which, especially C5a, may play a role in the disease pathogenesis by activating endothelium of cutaneous small vessels.

  14. Tissue Destruction in Bullous Pemphigoid Can Be Complement Independent and May Be Mitigated by C5aR2

    Directory of Open Access Journals (Sweden)

    Christian M. Karsten

    2018-03-01

    Full Text Available Bullous pemphigoid (BP, the most frequent autoimmune bullous disorder, is a paradigmatic autoantibody-mediated disease associated with autoantibodies against BP180 (type XVII collagen, Col17. Several animal models have been developed that reflect important clinical and immunological features of human BP. Complement activation has been described as a prerequisite for blister formation, however, the recent finding that skin lesions can be induced by anti-Col17 F(ab′2 fragments indicates complement-independent mechanisms to contribute to blister formation in BP. Here, C5−/− mice injected with anti-Col17 IgG showed a reduction of skin lesions by about 50% associated with significantly less skin-infiltrating neutrophils compared to wild-type mice. Reduction of skin lesions and neutrophil infiltration was seen independently of the employed anti-Col17 IgG dose. Further, C5ar1−/− mice were protected from disease development, whereas the extent of skin lesions was increased in C5ar2−/− animals. Pharmacological inhibition of C5a receptor 1 (C5aR1 by PMX53 led to reduced disease activity when applied in a prophylactic setting. In contrast, PMX-53 treatment had no effect when first skin lesions had already developed. While C5aR1 was critically involved in neutrophil migration in vitro, its role for Col17-anti-Col17 IgG immune complex-mediated release of reactive oxygen species from neutrophils was less pronounced. Our data demonstrate that complement-dependent and -independent mechanisms coexist in anti-Col17-autoantibody-mediated tissue destruction. C5aR1 and C5aR2 seem to play opposing roles in this process with C5aR1 exerting its primary effect in recruiting inflammatory cells to the skin during the early phase of the disease. Further studies are required to fully understand the role of C5aR2 in autoantibody-mediated skin inflammation.

  15. Coordinated Expression of Borrelia burgdorferi Complement Regulator-Acquiring Surface Proteins during the Lyme Disease Spirochete's Mammal-Tick Infection Cycle▿

    OpenAIRE

    Bykowski, Tomasz; Woodman, Michael E.; Cooley, Anne E.; Brissette, Catherine A.; Brade, Volker; Wallich, Reinhard; Kraiczy, Peter; Stevenson, Brian

    2007-01-01

    The Lyme disease spirochete, Borrelia burgdorferi, is largely resistant to being killed by its hosts’ alternative complement activation pathway. One possible resistance mechanism of these bacteria is to coat their surfaces with host complement regulators, such as factor H. Five different B. burgdorferi outer surface proteins having affinities for factor H have been identified: complement regulator-acquiring surface protein 1 (BbCRASP-1), encoded by cspA; BbCRASP-2, encoded by cspZ; and three ...

  16. Relationship of Circulating C5a and Complement Factor H Levels With Disease Control in Pregnant Women With Asthma.

    Science.gov (United States)

    Bohács, Anikó; Bikov, András; Ivancsó, István; Czaller, Ibolya; Böcskei, Renáta; Müller, Veronika; Rigó, János; Losonczy, György; Tamási, Lilla

    2016-04-01

    Asthma often complicates pregnancy and represents a risk of serious pregnancy complications. The complement system contributes to asthma pathogenesis and is up-regulated in healthy gestation as well. The anaphylatoxin C5a has a major pro-inflammatory role, and the complement factor H is a main soluble regulator protein both in asthma and during pregnancy; however, peripheral levels of these complement factors and their relationship to disease control have not yet been evaluated in pregnant subjects with asthma. The present study aimed to investigate circulating C5a and complement factor H levels in asthma (non-pregnant subjects with asthma; n = 19) and in pregnancy with asthma (pregnant subjects with asthma; n = 22), compared with healthy non-pregnant (n = 21) and healthy pregnant women (n = 13) and to test their relationship to clinical parameters of asthma (lung function, airway inflammation, and symptoms). Circulating C5a levels were higher in the pregnant asthma subject group compared with the healthy non-pregnant, healthy pregnant, and non-pregnant asthma groups: median 2.629 (interquartile range [IQR] 2.257-3.052) ng/mL versus 1.84 (IQR 1.576-2.563), 1.783 (IQR 0.6064-2.786), and 2.024 (IQR 1.232-2.615) ng/mL, respectively (P = .02 in all cases). C5a correlated negatively with FEV1 (r = -0.44, P = .039) and FVC values (r = -0.64, P = .001) in the pregnant asthma group and positively with fraction of exhaled nitric oxide levels in the non-pregnant asthma group (n = 12, r = 0.78, P = .004). Complement factor H levels were elevated in both the healthy pregnant and pregnant asthma subject groups compared with the healthy non-pregnant group (median 1,082 [IQR 734.9-1,224] and 910.7 [IQR 614.5-1076] μg/mL vs. 559.7 [IQR 388.7-783.1] μg/mL, P = .002 and P = .004, respectively) but not in the pregnant asthma group compared with the non-pregnant asthma group (median 687.4 [IQR 441.6-947.6] μg/mL, P = .10). Asthma during pregnancy increases the circulating level of

  17. Intragenic complementation by the nifJ-coded protein of Klebsiella pneumoniae.

    OpenAIRE

    Stacey, G; Zhu, J; Shah, V K; Shen, S C; Brill, W J

    1982-01-01

    A single mutation, nifC1005 (Jin et al. Sci. Sin. 23:108-118, 1980), located between nifH and nifJ in the nif cluster of Klebsiella pneumoniae, genetically complemented mutations in each of the 17 known nif genes. This suggested that the mutation is located in a new nif gene. We showed by complementation analyses that only 3 of 12 nifJ mutations tested were complemented by nifC1005. Nitrogenase activity in cell extracts of the mutant with nifC1005 as well as NifJ- mutants was stimulated by th...

  18. Complement receptors type 1 (CR1, CD35) and 2 (CR2, CD21) cooperate in the binding of hydrolyzed complement factor 3 (C3i) to human B lymphocytes

    DEFF Research Database (Denmark)

    Leslie, Robert Graham Quinton; Prodinger, Wolfgang Maria; Nielsen, Claus Henrik

    2003-01-01

    The C3b-binding receptor, CR1/CD35, supports CR2/CD21-mediated activation of complement by human B lymphocytes, possibly by associating with CR2 to promote or stabilize the binding of hydrolyzed C3 (C3i), the primary component of the AP convertase, C3i-Bb. To evaluate this hypothesis, we examined...... the uptake kinetics and binding equilibria for C3i dimer interaction with human blood cells in the absence and presence of CR1- and CR2-blocking mAb. C3i displayed dual uptake kinetics to B lymphocytes, comprising of rapid binding to CR1 and slower binding to CR2. The forward rate constants (k(1)) for CR1...... and CR2, operating independently, differed ca. 9-fold (k(1)=193+/-9.4 and 22.2+/-6.0 x 10(3) M(-1)s(-1), respectively). Equilibrium binding of C3i to B lymphocytes was also complex, varying in strength by ca. 13-fold over the C3i concentration range examined. The maximum association constant (K(a, max...

  19. Dephosphorylation of chicken cardiac myofibril C-protein by protein phosphatases 1 and 2A

    International Nuclear Information System (INIS)

    Thysseril, T.J.; Hegazy, M.G.; Schlender, K.K.

    1987-01-01

    C-Protein, which is a regulatory component of cardiac muscle myofibrils, is phosphorylated in response to β-adrenergic agonists by a cAMP-dependent mechanism and dephosphorylated in response to cholinergic agonists. It is believed that the cAMP-dependent phosphorylation is due to cAMP-dependent protein kinase. The protein phosphatase(s) involved in the dephosphorylation of C-protein has not been determined. In this study, chicken cardiac C-protein was phosphorylated with the cAMP-dependent protein kinase to about 3 mol phosphate/mol C-protein. Incubation of [ 32 P]C-protein with the catalytic subunit of protein phosphatase 1 or 2A rapidly removed 30-40% of 32 [P]. Phosphopeptide maps and phosphoamino acid analysis revealed that the major site(s) dephosphorylated by either phosphatase was a phosphothreonine residue(s) located on the same tryptic peptide and on the same CNBr fragment. Increasing the incubation period or the phosphatase concentration did not result in any further dephosphorylation of C-protein by phosphatase 1, but phosphatase 2A completely dephosphorylated C-protein. Preliminary studies showed that the major protein phosphatase associated with the myofibril was phosphatase 2A. These results indicate the phosphatase 2A may be important in the regulation of the phosphorylation state of C-protein

  20. Mesenchymal stromal cells engage complement and complement receptor bearing innate effector cells to modulate immune responses.

    Directory of Open Access Journals (Sweden)

    Guido Moll

    Full Text Available Infusion of human third-party mesenchymal stromal cells (MSCs appears to be a promising therapy for acute graft-versus-host disease (aGvHD. To date, little is known about how MSCs interact with the body's innate immune system after clinical infusion. This study shows, that exposure of MSCs to blood type ABO-matched human blood activates the complement system, which triggers complement-mediated lymphoid and myeloid effector cell activation in blood. We found deposition of complement component C3-derived fragments iC3b and C3dg on MSCs and fluid-phase generation of the chemotactic anaphylatoxins C3a and C5a. MSCs bound low amounts of immunoglobulins and lacked expression of complement regulatory proteins MCP (CD46 and DAF (CD55, but were protected from complement lysis via expression of protectin (CD59. Cell-surface-opsonization and anaphylatoxin-formation triggered complement receptor 3 (CD11b/CD18-mediated effector cell activation in blood. The complement-activating properties of individual MSCs were furthermore correlated with their potency to inhibit PBMC-proliferation in vitro, and both effector cell activation and the immunosuppressive effect could be blocked either by using complement inhibitor Compstatin or by depletion of CD14/CD11b-high myeloid effector cells from mixed lymphocyte reactions. Our study demonstrates for the first time a major role of the complement system in governing the immunomodulatory activity of MSCs and elucidates how complement activation mediates the interaction with other immune cells.

  1. Surviving mousepox infection requires the complement system.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Moulton

    2008-12-01

    Full Text Available Poxviruses subvert the host immune response by producing immunomodulatory proteins, including a complement regulatory protein. Ectromelia virus provides a mouse model for smallpox where the virus and the host's immune response have co-evolved. Using this model, our study investigated the role of the complement system during a poxvirus infection. By multiple inoculation routes, ectromelia virus caused increased mortality by 7 to 10 days post-infection in C57BL/6 mice that lack C3, the central component of the complement cascade. In C3(-/- mice, ectromelia virus disseminated earlier to target organs and generated higher peak titers compared to the congenic controls. Also, increased hepatic inflammation and necrosis correlated with these higher tissue titers and likely contributed to the morbidity in the C3(-/- mice. In vitro, the complement system in naïve C57BL/6 mouse sera neutralized ectromelia virus, primarily through the recognition of the virion by natural antibody and activation of the classical and alternative pathways. Sera deficient in classical or alternative pathway components or antibody had reduced ability to neutralize viral particles, which likely contributed to increased viral dissemination and disease severity in vivo. The increased mortality of C4(-/- or Factor B(-/- mice also indicates that these two pathways of complement activation are required for survival. In summary, the complement system acts in the first few minutes, hours, and days to control this poxviral infection until the adaptive immune response can react, and loss of this system results in lethal infection.

  2. Early Intra-Articular Complement Activation in Ankle Fractures

    Directory of Open Access Journals (Sweden)

    Hagen Schmal

    2014-01-01

    Full Text Available Cytokine regulation possibly influences long term outcome following ankle fractures, but little is known about synovial fracture biochemistry. Eight patients with an ankle dislocation fracture were included in a prospective case series and matched with patients suffering from grade 2 osteochondritis dissecans (OCD of the ankle. All fractures needed external fixation during which joint effusions were collected. Fluid analysis was done by ELISA measuring aggrecan, bFGF, IL-1β, IGF-1, and the complement components C3a, C5a, and C5b-9. The time periods between occurrence of fracture and collection of effusion were only significantly associated with synovial aggrecan and C5b-9 levels (P<0.001. Furthermore, synovial expressions of both proteins correlated with each other (P<0.001. Although IL-1β expression was relatively low, intra-articular levels correlated with C5a (P<0.01 and serological C-reactive protein concentrations 2 days after surgery (P<0.05. Joint effusions were initially dominated by neutrophils, but the portion of monocytes constantly increased reaching 50% at day 6 after fracture (P<0.02. Whereas aggrecan and IL-1β concentrations were not different in fracture and OCD patients, bFGF, IGF-1, and all complement components were significantly higher concentrated in ankle joints with fractures (P<0.01. Complement activation and inflammatory cell infiltration characterize the joint biology following acute ankle fractures.

  3. Complement factor H family proteins in their non-canonical role as modulators of cellular functions.

    Science.gov (United States)

    Józsi, Mihály; Schneider, Andrea E; Kárpáti, Éva; Sándor, Noémi

    2018-01-04

    Complement factor H is a major regulator of the alternative pathway of the complement system. The factor H-related proteins are less characterized, but recent data indicate that they rather promote complement activation. These proteins have some common ligands with factor H and have both overlapping and distinct functions depending on domain composition and the degree of conservation of amino acid sequence. Factor H and some of the factor H-related proteins also appear in a non-canonical function that is beyond their role in the modulation of complement activation. This review covers our current understanding on this emerging role of factor H family proteins in modulating the activation and function of various cells by binding to receptors or receptor ligands. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Molecular basis for genetic deficiency of the second component of human complement

    International Nuclear Information System (INIS)

    Cole, F.S.; Whitehead, A.S.; Auerbach, H.S.; Lint, T.; Zeitz, H.J.; Kilbridge, P.; Colten, H.R.

    1985-01-01

    Genetic deficiency of the second component of complement (C2) is the most common complement-deficiency state among Western Europeans and is frequently associated with autoimmune diseases. To examine the molecular basis of this deficiency, the authors established cultures of blood monocytes from four families with C2-deficient members. Using a hemolytic-plaque assay, [ 35 S]methionine metabolic labeling of proteins in tissue culture and immunoprecipitation, RNA extraction and Northern blot analysis, and DNA restriction-enzyme digestion and Southern blot analysis, the authors found that C2 deficiency is not due to a major gene deletion or rearrangement but is the result of a specific and selective pretranslational regulatory defect in C2 gene expression. This leads to a lack of detectable C2 mRNA and a lack of synthesis of C2 protein. The approach used in this study should prove useful in examination of other plasma protein deficiencies, especially those in which the deficient gene is normally expressed in peripheral-blood monocytes or tissue macrophages and in which ethical considerations preclude the use of liver or other tissue for study

  5. Analysis of Complement C3 Gene Reveals Susceptibility to Severe Preeclampsia

    Directory of Open Access Journals (Sweden)

    A. Inkeri Lokki

    2017-05-01

    Full Text Available Preeclampsia (PE is a common vascular disease of pregnancy with genetic predisposition. Dysregulation of the complement system has been implicated, but molecular mechanisms are incompletely understood. In this study, we determined the potential linkage of severe PE to the most central complement gene, C3. Three cohorts of Finnish patients and controls were recruited for a genetic case-control study. Participants were genotyped using Sequenom genotyping and Sanger sequencing. Initially, we studied 259 Finnish patients with severe PE and 426 controls from the Southern Finland PE and the Finnish population-based PE cohorts. We used a custom-made single nucleotide polymorphism (SNP genotyping assay consisting of 98 SNPs in 18 genes that encode components of the complement system. Following the primary screening, C3 was selected as the candidate gene and consequently Sanger sequenced. Fourteen SNPs from C3 were also genotyped by a Sequenom panel in 960 patients with severe PE and 705 controls, including already sequenced individuals. Three of the 43 SNPs observed within C3 were associated with severe PE: rs2287845 (p = 0.038, OR = 1.158, rs366510 (p = 0.039, OR = 1.158, and rs2287848 (p = 0.041, OR = 1.155. We also discovered 16 SNP haplotypes with extreme linkage disequilibrium in the middle of the gene with a protective (p = 0.044, OR = 0.628 or a predisposing (p = 0.011, OR = 2.110 effect to severe PE depending on the allele combination. Genetic variants associated with PE are located in key domains of C3 and could thereby influence the function of C3. This is, as far as we are aware, the first candidate gene in the complement system with an association to a clinically relevant PE subphenotype, severe PE. The result highlights a potential role for the complement system in the pathogenesis of PE and may help in defining prognostic and therapeutic subgroups of preeclamptic women.

  6. Peptide Inhibitor of Complement C1 (PIC1 Rapidly Inhibits Complement Activation after Intravascular Injection in Rats.

    Directory of Open Access Journals (Sweden)

    Julia A Sharp

    Full Text Available The complement system has been increasingly recognized to play a pivotal role in a variety of inflammatory and autoimmune diseases. Consequently, therapeutic modulators of the classical, lectin and alternative pathways of the complement system are currently in pre-clinical and clinical development. Our laboratory has identified a peptide that specifically inhibits the classical and lectin pathways of complement and is referred to as Peptide Inhibitor of Complement C1 (PIC1. In this study, we determined that the lead PIC1 variant demonstrates a salt-dependent binding to C1q, the initiator molecule of the classical pathway. Additionally, this peptide bound to the lectin pathway initiator molecule MBL as well as the ficolins H, M and L, suggesting a common mechanism of PIC1 inhibitory activity occurs via binding to the collagen-like tails of these collectin molecules. We further analyzed the effect of arginine and glutamic acid residue substitution on the complement inhibitory activity of our lead derivative in a hemolytic assay and found that the original sequence demonstrated superior inhibitory activity. To improve upon the solubility of the lead derivative, a pegylated, water soluble variant was developed, structurally characterized and demonstrated to inhibit complement activation in mouse plasma, as well as rat, non-human primate and human serum in vitro. After intravenous injection in rats, the pegylated derivative inhibited complement activation in the blood by 90% after 30 seconds, demonstrating extremely rapid function. Additionally, no adverse toxicological effects were observed in limited testing. Together these results show that PIC1 rapidly inhibits classical complement activation in vitro and in vivo and is functional for a variety of animal species, suggesting its utility in animal models of classical complement-mediated diseases.

  7. The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria.

    NARCIS (Netherlands)

    Hillmen, P.; Young, N.S.; Schubert, J.; Brodsky, R.A.; Socie, G.; Muus, P.; Roth, A.; Szer, J.; Elebute, M.O.; Nakamura, R.; Browne, P.; Risitano, A.M.; Hill, A.; Schrezenmeier, H.; Fu, C.L.; Maciejewski, J; Rollins, S.A.; Mojcik, C.F.; Rother, R.P.; Luzzatto, L.

    2006-01-01

    BACKGROUND: We tested the safety and efficacy of eculizumab, a humanized monoclonal antibody against terminal complement protein C5 that inhibits terminal complement activation, in patients with paroxysmal nocturnal hemoglobinuria (PNH). METHODS: We conducted a double-blind, randomized,

  8. A potent complement factor C3 specific nanobody inhibiting multiple functions in the alternative pathway of human and murine complement.

    Science.gov (United States)

    Jensen, Rasmus K; Pihl, Rasmus; Gadeberg, Trine A F; Jensen, Jan K; Andersen, Kasper R; Thiel, Steffen; Laursen, Nick S; Andersen, Gregers Rom

    2018-03-01

    The complement system is a complex, carefully regulated proteolytic cascade for which suppression of aberrant activation is of increasing clinical relevance and inhibition of the complement alternative pathway is a subject of intense research. Here, we describe the nanobody hC3Nb1 that binds to multiple functional states of C3 with sub-nanomolar affinity. The nanobody causes a complete shutdown of alternative pathway activity in human and murine serum when present in concentrations comparable to C3, and hC3Nb1 is shown to prevent both proconvertase assembly as well as binding of the C3 substrate to C3 convertases. Our crystal structure of the C3b-hC3Nb1 complex and functional experiments demonstrate that proconvertase formation is blocked by steric hindrance between the nanobody and an Asn-linked glycan on complement factor B. In addition, hC3Nb1 is shown to prevent factor H binding to C3b rationalizing its inhibition of factor I activity. Our results identify hC3Nb1 as a versatile, inexpensive, and powerful inhibitor of the alternative pathway in both human and murine in vitro model systems of complement activation. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Suppression of complement regulatory protein C1 inhibitor in vascular endothelial activation by inhibiting vascular cell adhesion molecule-1 action

    International Nuclear Information System (INIS)

    Zhang, Haimou; Qin, Gangjian; Liang, Gang; Li, Jinan; Chiu, Isaac; Barrington, Robert A.; Liu, Dongxu

    2007-01-01

    Increased expression of adhesion molecules by activated endothelium is a critical feature of vascular inflammation associated with the several diseases such as endotoxin shock and sepsis/septic shock. Our data demonstrated complement regulatory protein C1 inhibitor (C1INH) prevents endothelial cell injury. We hypothesized that C1INH has the ability of an anti-endothelial activation associated with suppression of expression of adhesion molecule(s). C1INH blocked leukocyte adhesion to endothelial cell monolayer in both static assay and flow conditions. In inflammatory condition, C1INH reduced vascular cell adhesion molecule (VCAM-1) expression associated with its cytoplasmic mRNA destabilization and nuclear transcription level. Studies exploring the underlying mechanism of C1INH-mediated suppression in VCAM-1 expression were related to reduction of NF-κB activation and nuclear translocation in an IκBα-dependent manner. The inhibitory effects were associated with reduction of inhibitor IκB kinase activity and stabilization of the NF-κB inhibitor IκB. These findings indicate a novel role for C1INH in inhibition of vascular endothelial activation. These observations could provide the basis for new therapeutic application of C1INH to target inflammatory processes in different pathologic situations

  10. Complement factor H-related proteins in IgA nephropathy-sometimes a gentle nudge does the trick.

    Science.gov (United States)

    Thurman, Joshua M; Laskowski, Jennifer

    2017-10-01

    Complement activation probably contributes to glomerular inflammation and damage in IgA nephropathy. In this issue, 2 groups report that levels of factor H-related protein 1 are elevated in patients with IgA nephropathy and correlate with disease progression. These studies provide new evidence that the complement cascade is important to the pathogenesis of this disease. These results also suggest that factor H-related protein 1 levels may be useful for identifying those patients at high risk of disease progression. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  11. Activation and binding of opsonic fragments of C3 on encapsulated Cryptococcus neoformans by using an alternative complement pathway reconstituted from six isolated proteins.

    Science.gov (United States)

    Kozel, T R; Wilson, M A; Pfrommer, G S; Schlageter, A M

    1989-07-01

    Encapsulated Cryptococcus neoformans yeast cells are potent activators of the complement system. We examined the interaction of the yeast cells with an alternative complement pathway reconstituted from isolated factor D, factor B, factor H, factor I, C3, and properdin. Incubation of encapsulated cryptococci with the reconstituted pathway led to activation and binding of C3 fragments to the yeast cells that was quantitatively and qualitatively identical to that observed with normal human serum. Incubation with either normal serum or a mixture of isolated proteins led to binding of 4 x 10(7) to 5 x 10(7) C3 molecules to the yeast cells. The kinetics for activation and binding of C3 were identical, with maximum binding observed after a 20-min incubation. Immunoglobulin G was not needed for optimal activation kinetics. C3 fragments eluted from the yeast cells by treatment with hydroxylamine and subsequent analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated the presence primarily of iC3b on yeast cells incubated with either normal serum or the reconstituted pathway. Ultrastructural examination of the opsonized yeast cells showed that the cryptococcal capsule was the site for binding of C3 activated from normal serum or the reconstituted pathway, with a dense accumulation of C3 at the periphery of the capsule. Thus, incubation of encapsulated cryptococci in the reconstituted pathway led to deposition of opsonic complement fragments at a site that was appropriate for interaction with phagocyte receptors. Cryptococci opsonized with the reconstituted pathway showed a markedly enhanced interaction with cultured human monocytes compared with unopsonized yeast cells, indicating that the alternative pathway alone is opsonic for yeast cells. However, the results indicate that additional serum factors are needed for optimal opsonization of yeast cells because a 35% reduction in the number of cryptococci bound to macrophages was observed with

  12. Complement modulation of T cell immune responses during homeostasis and disease.

    Science.gov (United States)

    Clarke, Elizabeth V; Tenner, Andrea J

    2014-11-01

    The complement system is an ancient and critical effector mechanism of the innate immune system as it senses, kills, and clears infectious and/or dangerous particles and alerts the immune system to the presence of the infection and/or danger. Interestingly, an increasing number of reports have demonstrated a clear role for complement in the adaptive immune system as well. Of note, a number of recent studies have identified previously unknown roles for complement proteins, receptors, and regulators in T cell function. Here, we will review recent data demonstrating the influence of complement proteins C1q, C3b/iC3b, C3a (and C3aR), and C5a (and C5aR) and complement regulators DAF (CD55) and CD46 (MCP) on T cell function during homeostasis and disease. Although new concepts are beginning to emerge in the field of complement regulation of T cell function, future experiments should focus on whether complement is interacting directly with the T cell or is having an indirect effect on T cell function via APCs, the cytokine milieu, or downstream complement activation products. Importantly, the identification of the pivotal molecular pathways in the human systems will be beneficial in the translation of concepts derived from model systems to therapeutic targeting for treatment of human disorders. © 2014 Society for Leukocyte Biology.

  13. Phospholipid Binding Protein C Inhibitor (PCI) Is Present on Microparticles Generated In Vitro and In Vivo

    Science.gov (United States)

    Einfinger, Katrin; Badrnya, Sigrun; Furtmüller, Margareta; Handschuh, Daniela; Lindner, Herbert; Geiger, Margarethe

    2015-01-01

    Protein C inhibitor is a secreted, non-specific serine protease inhibitor with broad protease reactivity. It binds glycosaminoglycans and anionic phospholipids, which can modulate its activity. Anionic phospholipids, such as phosphatidylserine are normally localized to the inner leaflet of the plasma membrane, but are exposed on activated and apoptotic cells and on plasma membrane-derived microparticles. In this report we show by flow cytometry that microparticles derived from cultured cells and activated platelets incorporated protein C inhibitor during membrane blebbing. Moreover, protein C inhibitor is present in/on microparticles circulating in normal human plasma as judged from Western blots, ELISAs, flow cytometry, and mass spectrometry. These plasma microparticles are mainly derived from megakaryocytes. They seem to be saturated with protein C inhibitor, since they do not bind added fluorescence-labeled protein C inhibitor. Heparin partially removed microparticle-bound protein C inhibitor, supporting our assumption that protein C inhibitor is bound via phospholipids. To assess the biological role of microparticle-bound protein C inhibitor we performed protease inhibition assays and co-precipitated putative binding partners on microparticles with anti-protein C inhibitor IgG. As judged from amidolytic assays microparticle-bound protein C inhibitor did not inhibit activated protein C or thrombin, nor did microparticles modulate the activity of exogenous protein C inhibitor. Among the proteins co-precipitating with protein C inhibitor, complement factors, especially complement factor 3, were most striking. Taken together, our data do not support a major role of microparticle-associated protein C inhibitor in coagulation, but rather suggest an interaction with proteins of the complement system present on these phospholipid vesicles. PMID:26580551

  14. Inactivation of complement by Loxosceles reclusa spider venom.

    Science.gov (United States)

    Gebel, H M; Finke, J H; Elgert, K D; Cambell, B J; Barrett, J T

    1979-07-01

    Zymosan depletion of serum complement in guinea pigs rendered them highly resistant to lesion by Loxosceles reclusa spider venom. Guinea pigs deficient in C4 of the complement system are as sensitive to the venom as normal guinea pigs. The injection of 35 micrograms of whole recluse venom intradermally into guinea pigs lowered their complement level by 35.7%. Brown recluse spider venom in concentrations as slight as 0.02 micrograms protein/ml can totally inactivate one CH50 of guinea pig complement in vitro. Bee, scorpion, and other spider venoms had no influence on the hemolytic titer of complement. Fractionation of recluse spider venom by Sephadex G-200 filtration separated the complement-inactivating property of the venom into three major regions which could be distinguished on the basis of heat stability as well as size. None was neutralized by antivenom. Polyacrylamide gel electrophoresis of venom resolved the complement inactivators into five fractions. Complement inactivated by whole venom or the Sephadex fractions could be restored to hemolytic activity by supplements of fresh serum but not by heat-inactivated serum, pure C3, pure C5, or C3 and C5 in combination.

  15. Protein replacement by receptor-mediated endocytosis corrects the sensitivity of Fanconi anemia group C cells to mitomycin C

    NARCIS (Netherlands)

    Youssoufian, H; Kruyt, FAE; Li, XT

    1999-01-01

    Current methods for direct gene transfer into hematopoietic cells are inefficient. Here we show that functional complementation of Fanconi anemia (FA) group C cells by protein replacement can be as efficacious as by transfection with wild-type FAC cDNA, We expressed a chimeric protein (called

  16. [Renal risks of dietary complements: a forgotten cause].

    Science.gov (United States)

    Dori, Olympia; Humbert, Antoine; Burnier, Michel; Teta, Daniel

    2014-02-26

    The use of dietary complements like vitamins, minerals, trace elements, proteins, aminoacids and plant-derived agents is prevalent in the general population, in order to promote health and treat diseases. Dietary complements are considered as safe natural products and are easily available without prescription. However, these can lead to severe renal toxicity, especially in cases of unknown pre-existing chronic kidney disease (CKD). In particular, Chinese herbs including aristolochic acid, high doses of vitamine C, creatine and protein complements may lead to acute and chronic renal failure, sometimes irreversible. Dietary complement toxicity should be suspected in any case of unexplained renal impairement. In the case of pre-existing CKD, the use of potentially nephrotoxic dietary complements should be screened for.

  17. A potent complement factor C3 specific nanobody inhibiting multiple functions in the alternative pathway of human and murine complement

    DEFF Research Database (Denmark)

    Jensen, Rasmus K; Pihl, Rasmus; Gadeberg, Trine A F

    2018-01-01

    The complement system is a complex, carefully regulated proteolytic cascade for which suppression of aberrant activation is of increasing clinical relevance and inhibition of the complement alternative pathway is a subject of intense research. Here, we describe the nanobody hC3Nb1 that binds...... to multiple functional states of C3 with sub-nanomolar affinity. The nanobody causes a complete shutdown of alternative pathway activity in human and murine serum when present in concentrations comparable to C3, and hC3Nb1 is shown to prevent both proconvertase assembly as well as binding of the C3 substrate...... to C3 convertases. Our crystal structure of the C3b-hC3Nb1 complex and functional experiments demonstrate that proconvertase formation is blocked by steric hindrance between the nanobody and an Asn-linked glycan on complement factor B. In addition, hC3Nb1 is shown to prevent factor H binding to C3b...

  18. vProtein: identifying optimal amino acid complements from plant-based foods.

    Directory of Open Access Journals (Sweden)

    Peter J Woolf

    Full Text Available BACKGROUND: Indispensible amino acids (IAAs are used by the body in different proportions. Most animal-based foods provide these IAAs in roughly the needed proportions, but many plant-based foods provide different proportions of IAAs. To explore how these plant-based foods can be better used in human nutrition, we have created the computational tool vProtein to identify optimal food complements to satisfy human protein needs. METHODS: vProtein uses 1251 plant-based foods listed in the United States Department of Agriculture standard release 22 database to determine the quantity of each food or pair of foods required to satisfy human IAA needs as determined by the 2005 daily recommended intake. The quantity of food in a pair is found using a linear programming approach that minimizes total calories, total excess IAAs, or the total weight of the combination. RESULTS: For single foods, vProtein identifies foods with particularly balanced IAA patterns such as wheat germ, quinoa, and cauliflower. vProtein also identifies foods with particularly unbalanced IAA patterns such as macadamia nuts, degermed corn products, and wakame seaweed. Although less useful alone, some unbalanced foods provide unusually good complements, such as Brazil nuts to legumes. Interestingly, vProtein finds no statistically significant bias toward grain/legume pairings for protein complementation. These analyses suggest that pairings of plant-based foods should be based on the individual foods themselves instead of based on broader food group-food group pairings. Overall, the most efficient pairings include sweet corn/tomatoes, apple/coconut, and sweet corn/cherry. The top pairings also highlight the utility of less common protein sources such as the seaweeds laver and spirulina, pumpkin leaves, and lambsquarters. From a public health perspective, many of the food pairings represent novel, low cost food sources to combat malnutrition. Full analysis results are available online

  19. Complement activation in Ghanaian children with severe Plasmodium falciparum malaria

    Directory of Open Access Journals (Sweden)

    Ofori Michael F

    2007-12-01

    Full Text Available Abstract Background Severe anaemia (SA, intravascular haemolysis (IVH and respiratory distress (RD are severe forms of Plasmodium falciparum malaria, with RD reported to be of prognostic importance in African children with malarial anaemia. Complement factors have been implicated in the mechanism leading to excess anaemia in acute P. falciparum infection. Methods The direct Coombs test (DCT and flow cytometry were used to investigate the mean levels of RBC-bound complement fragments (C3d and C3bαβ and the regulatory proteins [complement receptor 1 (CD35 and decay accelerating factor (CD55] in children with discrete clinical forms of P. falciparum malaria. The relationship between the findings and clinical parameters including coma, haemoglobin (Hb levels and RD were investigated. Results Of the 484 samples tested, 131(27% were positive in DCT, out of which 115/131 (87.8% were positive for C3d alone while 16/131 (12.2% were positive for either IgG alone or both. 67.4% of the study population were below 5 years of age and DCT positivity was more common in this age group relative to children who were 5 years or older (Odds ratio, OR = 3.8; 95%CI, 2.2–6.7, p Conclusion These results suggest that complement activation contributed to anaemia in acute childhood P. falciparum malaria, possibly through induction of erythrophagocytosis and haemolysis. In contrast to other studies, this study did not find association between levels of the complement regulatory proteins, CD35 and CD55 and malarial anaemia. These findings suggest that complement activation could also be involved in the pathogenesis of RD but larger studies are needed to confirm this finding.

  20. Interactions of the humoral pattern recognition molecule PTX3 with the complement system

    DEFF Research Database (Denmark)

    Doni, Andrea; Garlanda, Cecilia; Bottazzi, Barbara

    2012-01-01

    The innate immune system comprises a cellular and a humoral arm. The long pentraxin PTX3 is a fluid phase pattern recognition molecule, which acts as an essential component of the humoral arm of innate immunity. PTX3 has antibody-like properties including interactions with complement components....... PTX3 interacts with C1q, ficolin-1 and ficolin-2 as well as mannose-binding lectin, recognition molecules in the classical and lectin complement pathways. The formation of these heterocomplexes results in cooperative pathogen recognition and complement activation. Interactions with C4b binding protein...

  1. Zinc-induced Self-association of Complement C3b and Factor H

    Science.gov (United States)

    Nan, Ruodan; Tetchner, Stuart; Rodriguez, Elizabeth; Pao, Po-Jung; Gor, Jayesh; Lengyel, Imre; Perkins, Stephen J.

    2013-01-01

    The sub-retinal pigment epithelial deposits that are a hallmark of age-related macular degeneration contain both C3b and millimolar levels of zinc. C3 is the central protein of complement, whereas C3u is formed by the spontaneous hydrolysis of the thioester bridge in C3. During activation, C3 is cleaved to form active C3b, then C3b is inactivated by Factor I and Factor H to form the C3c and C3d fragments. The interaction of zinc with C3 was quantified using analytical ultracentrifugation and x-ray scattering. C3, C3u, and C3b associated strongly in >100 μm zinc, whereas C3c and C3d showed weak association. With zinc, C3 forms soluble oligomers, whereas C3u and C3b precipitate. We conclude that the C3, C3u, and C3b association with zinc depended on the relative positions of C3d and C3c in each protein. Computational predictions showed that putative weak zinc binding sites with different capacities exist in all five proteins, in agreement with experiments. Factor H forms large oligomers in >10 μm zinc. In contrast to C3b or Factor H alone, the solubility of the central C3b-Factor H complex was much reduced at 60 μm zinc and even more so at >100 μm zinc. The removal of the C3b-Factor H complex by zinc explains the reduced C3u/C3b inactivation rates by zinc. Zinc-induced precipitation may contribute to the initial development of sub-retinal pigment epithelial deposits in the retina as well as reducing the progression to advanced age-related macular degeneration in higher risk patients. PMID:23661701

  2. Identification of protein kinase C activation as a novel mechanism for RGS2 protein upregulation through phenotypic screening of natural product extracts.

    Science.gov (United States)

    Raveh, Avi; Schultz, Pamela J; Aschermann, Lauren; Carpenter, Colleen; Tamayo-Castillo, Giselle; Cao, Shugeng; Clardy, Jon; Neubig, Richard R; Sherman, David H; Sjögren, Benita

    2014-10-01

    Biochemical high-throughput screening is widely used in drug discovery, using a variety of small molecule libraries. However, broader screening strategies may be more beneficial to identify novel biologic mechanisms. In the current study we used a β-galactosidase complementation method to screen a selection of microbial-derived pre-fractionated natural product extracts for those that increase regulator of G protein signaling 2 (RGS2) protein levels. RGS2 is a member of a large family of proteins that all regulate signaling through G protein-coupled receptors (GPCRs) by accelerating GTPase activity on active Gα as well as through other mechanisms. RGS2(-/-) mice are hypertensive, show increased anxiety, and are prone to heart failure. RGS2 has a very short protein half-life due to rapid proteasomal degradation, and we propose that enhancement of RGS2 protein levels could be a beneficial therapeutic strategy. Bioassay-guided fractionation of one of the hit strains yielded a pure compound, Indolactam V, a known protein kinase C (PKC) activator, which selectively increased RGS2 protein levels in a time- and concentration-dependent manner. Similar results were obtained with phorbol 12-myristate 13-acetate as well as activation of the Gq-coupled muscarinic M3 receptor. The effect on RGS2 protein levels was blocked by the nonselective PKC inhibitor Gö6983 (3-[1-[3-(dimethylamino)propyl]-5-methoxy-1H-indol-3-yl]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione), the PKCβ-selective inhibitor Ruboxastaurin, as well as small interfering RNA-mediated knockdown of PKCβ. Indolactam V-mediated increases in RGS2 protein levels also had functional effects on GPCR signaling. This study provides important proof-of-concept for our screening strategy and could define a negative feedback mechanism in Gq/Phospholipase C signaling through RGS2 protein upregulation. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  3. The role of complement receptors type 1 (CR1, CD35) and 2 (CR2, CD21) in promoting C3 fragment deposition and membrane attack complex formation on normal peripheral human B cells

    DEFF Research Database (Denmark)

    Nielsen, Claus Henrik; Pedersen, Morten Løbner; Marquart, Hanne Vibeke Hansen

    2002-01-01

    Normal human B lymphocytes are known to activate the alternative pathway (AP) of complement, leading to C3-fragment deposition and membrane attack complex (MAC) formation. The process is mediated via complement receptor type 2 (CR2, CD21), with complement receptor type 1 (CR1, CD35) playing...... a subsidiary role. In this study, we examine the relative contributions of CR1 and CR2 to the deposition of C3 fragments and MAC on B lymphocytes under circumstances where all complement pathways are operational. C3-fragment deposition and MAC formation were assessed on human peripheral B lymphocytes...... in the presence of 30% autologous serum. Blocking the CR2 ligand-binding site with monoclonal antibody (mAb) FE8 resulted in significant reduction (37.9+/-11.9%) in C3-fragment deposition, whereas MAC formation was only marginally affected (12.1+/-22.2% reduction). Blocking the CR1 binding-site resulted...

  4. Interpain A, a cysteine proteinase from Prevotella intermedia, inhibits complement by degrading complement factor C3.

    Directory of Open Access Journals (Sweden)

    Michal Potempa

    2009-02-01

    Full Text Available Periodontitis is an inflammatory disease of the supporting structures of the teeth caused by, among other pathogens, Prevotella intermedia. Many strains of P. intermedia are resistant to killing by the human complement system, which is present at up to 70% of serum concentration in gingival crevicular fluid. Incubation of human serum with recombinant cysteine protease of P. intermedia (interpain A resulted in a drastic decrease in bactericidal activity of the serum. Furthermore, a clinical strain 59 expressing interpain A was more serum-resistant than another clinical strain 57, which did not express interpain A, as determined by Western blotting. Moreover, in the presence of the cysteine protease inhibitor E64, the killing of strain 59 by human serum was enhanced. Importantly, we found that the majority of P. intermedia strains isolated from chronic and aggressive periodontitis carry and express the interpain A gene. The protective effect of interpain A against serum bactericidal activity was found to be attributable to its ability to inhibit all three complement pathways through the efficient degradation of the alpha-chain of C3 -- the major complement factor common to all three pathways. P. intermedia has been known to co-aggregate with P. gingivalis, which produce gingipains to efficiently degrade complement factors. Here, interpain A was found to have a synergistic effect with gingipains on complement degradation. In addition, interpain A was able to activate the C1 complex in serum, causing deposition of C1q on inert and bacterial surfaces, which may be important at initial stages of infection when local inflammatory reaction may be beneficial for a pathogen. Taken together, the newly characterized interpain A proteinase appears to be an important virulence factor of P. intermedia.

  5. Neighborhood Walkable Urban Form and C-Reactive Protein

    Science.gov (United States)

    Background: Walkable urban form predicts physical activity and lower body mass index, which lower C-reactive protein (CRP). However, urban form is also related to pollution, noise, social and health behavior, crowding, and other stressors, which may complement or contravene walka...

  6. Assembly and activation of alternative complement components on endothelial cell-anchored ultra-large von Willebrand factor links complement and hemostasis-thrombosis.

    Directory of Open Access Journals (Sweden)

    Nancy A Turner

    Full Text Available Vascular endothelial cells (ECs express and release protein components of the complement pathways, as well as secreting and anchoring ultra-large von Willebrand factor (ULVWF multimers in long string-like structures that initiate platelet adhesion during hemostasis and thrombosis. The alternative complement pathway (AP is an important non-antibody-requiring host defense system. Thrombotic microangiopathies can be associated with defective regulation of the AP (atypical hemolytic-uremic syndrome or with inadequate cleavage by ADAMTS-13 of ULVWF multimeric strings secreted by/anchored to ECs (thrombotic thrombocytopenic purpura. Our goal was to determine if EC-anchored ULVWF strings caused the assembly and activation of AP components, thereby linking two essential defense mechanisms.We quantified gene expression of these complement components in cultured human umbilical vein endothelial cells (HUVECs by real-time PCR: C3 and C5; complement factor (CF B, CFD, CFP, CFH and CFI of the AP; and C4 of the classical and lectin (but not alternative complement pathways. We used fluorescent microscopy, monospecific antibodies against complement components, fluorescent secondary antibodies, and the analysis of >150 images to quantify the attachment of HUVEC-released complement proteins to ULVWF strings secreted by, and anchored to, the HUVECs (under conditions of ADAMTS-13 inhibition. We found that HUVEC-released C4 did not attach to ULVWF strings, ruling out activation of the classical and lectin pathways by the strings. In contrast, C3, FB, FD, FP and C5, FH and FI attached to ULVWF strings in quantitative patterns consistent with assembly of the AP components into active complexes. This was verified when non-functional FB blocked the formation of AP C3 convertase complexes (C3bBb on ULVWF strings.AP components are assembled and activated on EC-secreted/anchored ULVWF multimeric strings. Our findings provide one possible molecular mechanism for clinical

  7. Complement 5a Enhances Hepatic Metastases of Colon Cancer via Monocyte Chemoattractant Protein-1-mediated Inflammatory Cell Infiltration*

    Science.gov (United States)

    Piao, Chunmei; Cai, Lun; Qiu, Shulan; Jia, Lixin; Song, Wenchao; Du, Jie

    2015-01-01

    Complement 5a (C5a), a potent immune mediator generated by complement activation, promotes tumor growth; however, its role in tumor metastasis remains unclear. We demonstrate that C5a contributes to tumor metastases by modulating tumor inflammation in hepatic metastases of colon cancer. Colon cancer cell lines generate C5a under serum-free conditions, and C5a levels increase over time in a murine syngeneic colon cancer hepatic metastasis model. Furthermore, in the absence of C5a receptor or upon pharmacological inhibition of C5a production with an anti-C5 monoclonal antibody, tumor metastasis is severely impaired. A lack of C5a receptor in colon cancer metastatic foci reduces the infiltration of macrophages, neutrophils, and dendritic cells, and the role for C5a receptor on these cells were further verified by bone marrow transplantation experiments. Moreover, C5a signaling increases the expression of the chemokine monocyte chemoattractant protein-1 and the anti-inflammatory molecules arginase-1, interleukin 10, and transforming growth factor β, but is inversely correlated with the expression of pro-inflammatory molecules, which suggests a mechanism for the role of C5a in the inflammatory microenvironment required for tumor metastasis. Our results indicate a new and potentially promising therapeutic application of complement C5a inhibitor for the treatment of malignant tumors. PMID:25739439

  8. X-ray repair cross complementing protein 1 in base excision repair

    DEFF Research Database (Denmark)

    Hanssen-Bauer, Audun; Solvang-Garten, Karin; Akbari, Mansour

    2012-01-01

    X-ray Repair Cross Complementing protein 1 (XRCC1) acts as a scaffolding protein in the converging base excision repair (BER) and single strand break repair (SSBR) pathways. XRCC1 also interacts with itself and rapidly accumulates at sites of DNA damage. XRCC1 can thus mediate the assembly of large...

  9. Rivaroxaban limits complement activation compared with warfarin in antiphospholipid syndrome patients with venous thromboembolism.

    Science.gov (United States)

    Arachchillage, D R J; Mackie, I J; Efthymiou, M; Chitolie, A; Hunt, B J; Isenberg, D A; Khamashta, M; Machin, S J; Cohen, H

    2016-11-01

    Essentials Complement activation has a pathogenic role in thrombotic antiphospholipid syndrome (APS). Coagulation proteases such as factor Xa can activate complement proteins. Complement activation markers were elevated in anticoagulated thrombotic APS patients. Complement activation decreased in APS patients switching from warfarin to rivaroxaban. Background Complement activation may play a major role in the pathogenesis of thrombotic antiphospholipid syndrome (APS). Coagulation proteases such as factor Xa can activate complement proteins. Aims To establish whether rivaroxaban, a direct factor Xa inhibitor, limits complement activation compared with warfarin in APS patients with previous venous thromboembolism (VTE). Methods A total of 111 APS patients with previous VTE, on warfarin target INR 2.5, had blood samples taken at baseline and at day 42 after randomization in the RAPS (Rivaroxaban in Antiphospholipid Syndrome) trial. Fifty-six patients remained on warfarin and 55 switched to rivaroxaban. Fifty-five normal controls (NC) were also studied. Markers of complement activation (C3a, C5a, terminal complement complex [SC5b-9] and Bb fragment) were assessed. Results APS patients had significantly higher complement activation markers compared with NC at both time-points irrespective of the anticoagulant. There were no differences between the two patient groups at baseline, or patients remaining on warfarin at day 42. In 55 patients randomized to rivaroxaban, C3a, C5a and SC5b-9 were lower at day 42 (median (ng mL -1 ) [confidence interval] 64 [29-125] vs. 83 [35-147], 9 [2-15] vs. 12 [4-18] and 171 [56-245] vs. 201 [66-350], respectively) but levels of Bb fragment were unchanged. There were no correlations between rivaroxaban levels and complement activation markers. Conclusions APS patients with previous VTE on warfarin exhibit increased complement activation, which is likely to occur via the classical pathway and is decreased by rivaroxaban administration

  10. Evaluation of complement proteins as screening markers for colorectal cancer

    DEFF Research Database (Denmark)

    Storm, Line; Christensen, Ib J; Jensenius, Jens C

    2015-01-01

    BACKGROUND: Colorectal cancer (CRC) is a leading cause of cancer death worldwide. Lack of symptoms results in late detection and increased mortality. Inflammation, including complement activation, plays an important role in tumorigenesis. EXPERIMENTAL DESIGN: The concentrations of nine proteins...

  11. GLUCOCORTICOSTEROIDS' EFFECT UPON THE COMPLEMENT LEVEL

    Directory of Open Access Journals (Sweden)

    Voja Pavlovic

    2001-03-01

    Full Text Available The effect of high doses of cortisol upon the level of the overall complements'hemolytic activity and particular complements' components is studies. The experimentsinvolved guinea pigs of male sex of the body mass from 300 to 400 g, namelythose that have not been treated by anything so far. The doses of hydrocortisone(Hemofarm DD were also used for the experiment. The overall complements'activity was determined by testing the capabilities of a series of various solutions ofthe guinea pigs' serum to separate sheep erythrocytes that were made sensitive byrabbit anti-erythrocyte antibodies. The determination of the C1, C2, C3 and C4complements' components was done by the method of the quantitative diffusion ofthe radial type by using the Partigen blocks Behringwerke AG. The series comprised25 guinea pigs of male sex. The low cortisol level rapidly increase the overallhemolytic activity of the complements of the C1 est erase concentration. Along withthe cortisol dose increase the overall hemolytic complements' activity is dropping aswell as that of the C1, C2, C3 and C4 complements' components.

  12. Human antibodies fix complement to inhibit Plasmodium falciparum invasion of erythrocytes and are associated with protection against malaria.

    Science.gov (United States)

    Boyle, Michelle J; Reiling, Linda; Feng, Gaoqian; Langer, Christine; Osier, Faith H; Aspeling-Jones, Harvey; Cheng, Yik Sheng; Stubbs, Janine; Tetteh, Kevin K A; Conway, David J; McCarthy, James S; Muller, Ivo; Marsh, Kevin; Anders, Robin F; Beeson, James G

    2015-03-17

    Antibodies play major roles in immunity to malaria; however, a limited understanding of mechanisms mediating protection is a major barrier to vaccine development. We have demonstrated that acquired human anti-malarial antibodies promote complement deposition on the merozoite to mediate inhibition of erythrocyte invasion through C1q fixation and activation of the classical complement pathway. Antibody-mediated complement-dependent (Ab-C') inhibition was the predominant invasion-inhibitory activity of human antibodies; most antibodies were non-inhibitory without complement. Inhibitory activity was mediated predominately via C1q fixation, and merozoite surface proteins 1 and 2 were identified as major targets. Complement fixation by antibodies was very strongly associated with protection from both clinical malaria and high-density parasitemia in a prospective longitudinal study of children. Ab-C' inhibitory activity could be induced by human immunization with a candidate merozoite surface-protein vaccine. Our findings demonstrate that human anti-malarial antibodies have evolved to function by fixing complement for potent invasion-inhibitory activity and protective immunity. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. A KAS2 cDNA complements the phenotypes of the Arabidopsis fab1 mutant that differs in a single residue bordering the substrate binding pocket

    DEFF Research Database (Denmark)

    Carlsson, A.S.; LaBrie, S.T.; Kinney, A.J.

    2002-01-01

    The fab1 mutant of Arabidopsis is partially deficient in activity of ß-ketoacyl-[acyl carrier protein] synthase II (KAS II). This defect results in increased levels of 16 : 0 fatty acid and is associated with damage and death of the mutants at low temperature. Transformation of fab1 plants with a c......DNA from Brassica napus encoding a KAS II enzyme resulted in complementation of both mutant phenotypes. The dual complementation by expression of the single gene proves that low-temperature damage is a consequence of altered membrane unsaturation. The fab1 mutation is a single nucleotide change...... chain to bend. For functional analysis the equivalent Leu207Phe mutation was introduced into the fabB gene encoding the E. coli KAS I enzyme. Compared to wild-type, the Leu207Phe protein showed a 10-fold decrease in binding affinity for the fatty acid substrate, exhibited a modified behavior during size...

  14. Genetic analysis of complement C1s deficiency associated with systemic lupus erythematosus highlights alternative splicing of normal C1s gene

    DEFF Research Database (Denmark)

    Amano, Mariane T; Ferriani, Virgínia P L; Florido, Marlene P C

    2008-01-01

    Deficiencies of complement proteins of the classical pathway are strongly associated with the development of autoimmune diseases. Deficiency of C1r has been observed to occur concomitantly with deficiency in C1s and 9 out of 15 reported cases presented systemic lupus erythematosus (SLE). Here, we...... describe a family in which all four children are deficient in C1s but only two of them developed SLE. Hemolytic activity mediated by the alternative and the lectin pathways were normal, but classical pathway activation was absent in all children's sera. C1s was undetectable, while in the parents' sera...

  15. Characterization of a Gene Coding for the Complement System Component FB from Loxosceles laeta Spider Venom Glands.

    Science.gov (United States)

    Myamoto, Daniela Tiemi; Pidde-Queiroz, Giselle; Gonçalves-de-Andrade, Rute Maria; Pedroso, Aurélio; van den Berg, Carmen W; Tambourgi, Denise V

    2016-01-01

    The human complement system is composed of more than 30 proteins and many of these have conserved domains that allow tracing the phylogenetic evolution. The complement system seems to be initiated with the appearance of C3 and factor B (FB), the only components found in some protostomes and cnidarians, suggesting that the alternative pathway is the most ancient. Here, we present the characterization of an arachnid homologue of the human complement component FB from the spider Loxosceles laeta. This homologue, named Lox-FB, was identified from a total RNA L. laeta spider venom gland library and was amplified using RACE-PCR techniques and specific primers. Analysis of the deduced amino acid sequence and the domain structure showed significant similarity to the vertebrate and invertebrate FB/C2 family proteins. Lox-FB has a classical domain organization composed of a control complement protein domain (CCP), a von Willebrand Factor domain (vWFA), and a serine protease domain (SP). The amino acids involved in Mg2+ metal ion dependent adhesion site (MIDAS) found in the vWFA domain in the vertebrate C2/FB proteins are well conserved; however, the classic catalytic triad present in the serine protease domain is not conserved in Lox-FB. Similarity and phylogenetic analyses indicated that Lox-FB shares a major identity (43%) and has a close evolutionary relationship with the third isoform of FB-like protein (FB-3) from the jumping spider Hasarius adansoni belonging to the Family Salcitidae.

  16. Characterization of a Gene Coding for the Complement System Component FB from Loxosceles laeta Spider Venom Glands.

    Directory of Open Access Journals (Sweden)

    Daniela Tiemi Myamoto

    Full Text Available The human complement system is composed of more than 30 proteins and many of these have conserved domains that allow tracing the phylogenetic evolution. The complement system seems to be initiated with the appearance of C3 and factor B (FB, the only components found in some protostomes and cnidarians, suggesting that the alternative pathway is the most ancient. Here, we present the characterization of an arachnid homologue of the human complement component FB from the spider Loxosceles laeta. This homologue, named Lox-FB, was identified from a total RNA L. laeta spider venom gland library and was amplified using RACE-PCR techniques and specific primers. Analysis of the deduced amino acid sequence and the domain structure showed significant similarity to the vertebrate and invertebrate FB/C2 family proteins. Lox-FB has a classical domain organization composed of a control complement protein domain (CCP, a von Willebrand Factor domain (vWFA, and a serine protease domain (SP. The amino acids involved in Mg2+ metal ion dependent adhesion site (MIDAS found in the vWFA domain in the vertebrate C2/FB proteins are well conserved; however, the classic catalytic triad present in the serine protease domain is not conserved in Lox-FB. Similarity and phylogenetic analyses indicated that Lox-FB shares a major identity (43% and has a close evolutionary relationship with the third isoform of FB-like protein (FB-3 from the jumping spider Hasarius adansoni belonging to the Family Salcitidae.

  17. Circulating complement-C1q TNF-related protein 1 levels are increased in patients with type 2 diabetes and are associated with insulin sensitivity in Chinese subjects.

    Directory of Open Access Journals (Sweden)

    Xuebo Pan

    Full Text Available BACKGROUND: Complement-C1q TNF-related protein 1 (CTRP1, a member of the CTRP superfamily, possesses anti-inflammatory and anti-diabetic effects in mice. However, the clinical relevance of CTRP1 has been seldom explored. The current study aimed to investigate the association of circulating CTRP1 and type 2 diabetes mellitus (T2DM in a Chinese population. DESIGN AND METHODS: Serum CTRP1 and adiponectin levels of 96 T2DM patients and 85 healthy subjects were determined by ELISA, and their associations with adiposity, glucose and lipid profiles were studied. In a subgroup of this study, the 75-g oral glucose tolerance test (OGTT was performed in 20 healthy and 20 T2DM subjects to evaluate the relationship among serum levels of CTRP1 and adiponectin, insulin secretion and insulin sensitivity. RESULTS: Serum CTRP1 levels were significantly increased in patients with T2DM, compared with healthy controls (p<0.001. Similar to adiponectin, serum levels of CTRP1 were significantly correlated to several parameters involved in glucose metabolism and insulin resistance, and independently associated with fasting glucose levels (p<0.05 after BMI and gender adjustments. Furthermore, CTRP1 levels were positively correlated to insulin secretion, while negatively to insulin sensitivity, as measured by OGTT. CONCLUSION: CTRP1 is a novel adipokine associated with T2DM in humans. The paradoxical increase of serum CTRP1 levels in T2DM subjects may be due to a compensatory response to the adverse glucose and lipid metabolism, which warrants further investigation.

  18. Interactions between the Hepatitis C Virus Nonstructural 2 Protein and Host Adaptor Proteins 1 and 4 Orchestrate Virus Release

    Directory of Open Access Journals (Sweden)

    Fei Xiao

    2018-03-01

    Full Text Available Hepatitis C virus (HCV spreads via secreted cell-free particles or direct cell-to-cell transmission. Yet, virus-host determinants governing differential intracellular trafficking of cell-free- and cell-to-cell-transmitted virus remain unknown. The host adaptor proteins (APs AP-1A, AP-1B, and AP-4 traffic in post-Golgi compartments, and the latter two are implicated in basolateral sorting. We reported that AP-1A mediates HCV trafficking during release, whereas the endocytic adaptor AP-2 mediates entry and assembly. We demonstrated that the host kinases AAK1 and GAK regulate HCV infection by controlling these clathrin-associated APs. Here, we sought to define the roles of AP-4, a clathrin-independent adaptor; AP-1A; and AP-1B in HCV infection. We screened for interactions between HCV proteins and the μ subunits of AP-1A, AP-1B, and AP-4 by mammalian cell-based protein fragment complementation assays. The nonstructural 2 (NS2 protein emerged as an interactor of these adaptors in this screening and by coimmunoprecipitations in HCV-infected cells. Two previously unrecognized dileucine-based motifs in the NS2 C terminus mediated AP binding and HCV release. Infectivity and coculture assays demonstrated that while all three adaptors mediate HCV release and cell-free spread, AP-1B and AP-4, but not AP-1A, mediate cell-to-cell spread. Live-cell imaging revealed HCV cotrafficking with AP-1A, AP-1B, and AP-4 and that AP-4 mediates HCV trafficking in a post-Golgi compartment. Lastly, HCV cell-to-cell spread was regulated by AAK1 and GAK and thus susceptible to treatment with AAK1 and GAK inhibitors. These data provide a mechanistic understanding of HCV trafficking in distinct release pathways and reveal a requirement for APs in cell-to-cell viral spread.

  19. Complement 5a Enhances Hepatic Metastases of Colon Cancer via Monocyte Chemoattractant Protein-1-mediated Inflammatory Cell Infiltration.

    Science.gov (United States)

    Piao, Chunmei; Cai, Lun; Qiu, Shulan; Jia, Lixin; Song, Wenchao; Du, Jie

    2015-04-24

    Complement 5a (C5a), a potent immune mediator generated by complement activation, promotes tumor growth; however, its role in tumor metastasis remains unclear. We demonstrate that C5a contributes to tumor metastases by modulating tumor inflammation in hepatic metastases of colon cancer. Colon cancer cell lines generate C5a under serum-free conditions, and C5a levels increase over time in a murine syngeneic colon cancer hepatic metastasis model. Furthermore, in the absence of C5a receptor or upon pharmacological inhibition of C5a production with an anti-C5 monoclonal antibody, tumor metastasis is severely impaired. A lack of C5a receptor in colon cancer metastatic foci reduces the infiltration of macrophages, neutrophils, and dendritic cells, and the role for C5a receptor on these cells were further verified by bone marrow transplantation experiments. Moreover, C5a signaling increases the expression of the chemokine monocyte chemoattractant protein-1 and the anti-inflammatory molecules arginase-1, interleukin 10, and transforming growth factor β, but is inversely correlated with the expression of pro-inflammatory molecules, which suggests a mechanism for the role of C5a in the inflammatory microenvironment required for tumor metastasis. Our results indicate a new and potentially promising therapeutic application of complement C5a inhibitor for the treatment of malignant tumors. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. The two sides of complement C3d: evolution of electrostatics in a link between innate and adaptive immunity.

    Science.gov (United States)

    Kieslich, Chris A; Morikis, Dimitrios

    2012-01-01

    The interaction between complement fragment C3d and complement receptor 2 (CR2) is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor complex, including the C3d-CR2 interaction, is a much more recent adaptation. Human C3d and CR2 have net charges of -1 and +7 respectively, and are believed to have evolved favoring the role of electrostatics in their functions. To investigate the role of electrostatics in the function and evolution of human C3d and CR2, we have applied electrostatic similarity methods to identify regions of evolutionarily conserved electrostatic potential based on 24 homologues of complement C3d and 4 homologues of CR2. We also examine the effects of structural perturbation, as introduced through molecular dynamics and mutations, on spatial distributions of electrostatic potential to identify perturbation resistant regions, generated by so-called electrostatic "hot-spots". Distributions of electrostatic similarity based on families of perturbed structures illustrate the presence of electrostatic "hot-spots" at the two functional sites of C3d, while the surface of CR2 lacks electrostatic "hot-spots" despite its excessively positive nature. We propose that the electrostatic "hot-spots" of C3d have evolved to optimize its dual-functionality (covalently attaching to pathogen surfaces and interaction with CR2), which are both necessary for the formation B-cell co-receptor complexes. Comparison of the perturbation resistance of the electrostatic character of the homologues of C3d suggests that there was an emergence of a new role of electrostatics, and a transition in the function of C3d, after the

  1. The two sides of complement C3d: evolution of electrostatics in a link between innate and adaptive immunity.

    Directory of Open Access Journals (Sweden)

    Chris A Kieslich

    Full Text Available The interaction between complement fragment C3d and complement receptor 2 (CR2 is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor complex, including the C3d-CR2 interaction, is a much more recent adaptation. Human C3d and CR2 have net charges of -1 and +7 respectively, and are believed to have evolved favoring the role of electrostatics in their functions. To investigate the role of electrostatics in the function and evolution of human C3d and CR2, we have applied electrostatic similarity methods to identify regions of evolutionarily conserved electrostatic potential based on 24 homologues of complement C3d and 4 homologues of CR2. We also examine the effects of structural perturbation, as introduced through molecular dynamics and mutations, on spatial distributions of electrostatic potential to identify perturbation resistant regions, generated by so-called electrostatic "hot-spots". Distributions of electrostatic similarity based on families of perturbed structures illustrate the presence of electrostatic "hot-spots" at the two functional sites of C3d, while the surface of CR2 lacks electrostatic "hot-spots" despite its excessively positive nature. We propose that the electrostatic "hot-spots" of C3d have evolved to optimize its dual-functionality (covalently attaching to pathogen surfaces and interaction with CR2, which are both necessary for the formation B-cell co-receptor complexes. Comparison of the perturbation resistance of the electrostatic character of the homologues of C3d suggests that there was an emergence of a new role of electrostatics, and a transition in the function of C3

  2. Protective role of complement C3 against cytokine-mediated beta cell apoptosis

    DEFF Research Database (Denmark)

    Dos Santos, R. S.; Marroqui, L.; Grieco, F. A.

    2017-01-01

    Background and aims: Type 1 diabetes is a chronic autoimmune disease characterized by pancreatic islet inflammation and β-cell destruction by pro-inflammatory cytokines and other mediators. The complement system, a major component of the immune system, has been recently shown to also act in metab...... in metabolic organs, such as liver, adipose tissue, and pancreas. In the present study we identified complement C3 as an important hub of a cytokine-modified complement network in human islets and characterized the role of C3 in β-cell survival....

  3. Complement activation and liver impairment in trichloroethylene-sensitized BALB/c mice.

    Science.gov (United States)

    Zhang, Jiaxiang; Zha, Wansheng; Wang, Feng; Jiang, Tao; Xu, Shuhai; Yu, Junfeng; Zhou, Chengfan; Shen, Tong; Wu, Changhao; Zhu, Qixing

    2013-01-01

    Our recent studies have shown that trichloroethylene (TCE) was able to induce multisystem injuries in the form of occupational medicamentosa-like dermatitis, including skin, kidney, and liver damages. However, the role of complement activation in the immune-mediated liver injury is not known. This study examined the role of complement activation in the liver injury in a mouse model of TCE-induced sensitization. Treatment of female BALB/c mice with TCE under specific dosing protocols resulted in skin inflammation and sensitization. Skin edema and erythema occurred in TCE-sensitized groups. Trichloroethylene sensitization produced liver histopathological lesions, increased serum alanine aminotransferase, aspartate transaminase activities, and the relative liver weight. The concentrations of serum complement components C3a-desArg, C5a-desArg, and C5b-9 were significantly increased in 24-hour, 48-hour, and 72-hour sensitization-positive groups treated with TCE and peaked in the 72-hour sensitization-positive group. Depositions of C3a, C5a, and C5b-9 into the liver tissue were also revealed by immunohistochemistry. Immunofluorescence further verified high C5b-9 expression in 24-hour, 48-hour, and 72-hour sensitization-positive groups in response to TCE treatment. Reverse transcription-polymerase chain reaction detected C3 messenger RNA expression in the liver, and this was significantly increased in 24-hour and 48-hour sensitization-positive groups with a transient reduction at 72 hours. These results provide the first experimental evidence that complement activation may play a key role in the generation and progression of immune-mediated hepatic injury by exposure to TCE.

  4. Ancylostoma ceylanicum Excretory-Secretory Protein 2 Adopts a Netrin-Like Fold and Defines a Novel Family of Nematode Proteins

    Energy Technology Data Exchange (ETDEWEB)

    K Kucera; L Harrison; M Cappello; Y Modis

    2011-12-31

    Hookworms are human parasites that have devastating effects on global health, particularly in underdeveloped countries. Ancylostoma ceylanicum infects humans and animals, making it a useful model organism to study disease pathogenesis. A. ceylanicum excretory-secretory protein 2 (AceES-2), a highly immunoreactive molecule secreted by adult worms at the site of intestinal attachment, is partially protective when administered as a mucosal vaccine against hookworm anemia. The crystal structure of AceES-2 determined at 1.75 {angstrom} resolution shows that it adopts a netrin-like fold similar to that found in tissue inhibitors of matrix metalloproteases (TIMPs) and in complement factors C3 and C5. However, recombinant AceES-2 does not significantly inhibit the 10 most abundant human matrix metalloproteases or complement-mediated cell lysis. The presence of a highly acidic surface on AceES-2 suggests that it may function as a cytokine decoy receptor. Several small nematode proteins that have been annotated as TIMPs or netrin-domain-containing proteins display sequence homology in structurally important regions of AceES-2's netrin-likefold. Together, our results suggest that AceES-2 defines a novel family of nematode netrin-like proteins, which may function to modulate the host immune response to hookworm and other parasites.

  5. Deposition of C3, the terminal complement complex and vitronectin in primary biliary cirrhosis and primary sclerosing cholangitis

    DEFF Research Database (Denmark)

    Garred, P; Lyon, H; Christoffersen, P

    1993-01-01

    -dependent cytotoxic mechanisms in the pathogenesis. Therefore, we investigated liver biopsy specimens from 21 patients with PBC, six patients with PSC and six controls for complement deposits by immunohistochemistry using polyclonal and monoclonal antibodies against C3d, the terminal complement complex (TCC......) and vitronectin (S-protein). We found C3d, TCC and vitronectin deposits only in the portal tracts. C3d and TCC were present in the walls of the hepatic arteries and in the connective tissue stroma but never around the bile ducts. We found vitronectin deposits throughout the connective tissue, often independent...... of the TCC deposits. When vitronectin and TCC were co-localized, the staining patterns were inverse; that is, intense staining for TCC accompanied weak staining for vitronectin and vice versa. Occasionally complete dissociation between TCC and vitronectin staining was observed. Deposits of TCC...

  6. Complement-mediated bactericidal activity of anti-factor H binding protein monoclonal antibodies against the meningococcus relies upon blocking factor H binding.

    Science.gov (United States)

    Giuntini, Serena; Reason, Donald C; Granoff, Dan M

    2011-09-01

    Binding of the complement-downregulating protein factor H (fH) to the surface of the meningococcus is important for survival of the organism in human serum. The meningococcal vaccine candidate factor H binding protein (fHbp) is an important ligand for human fH. While some fHbp-specific monoclonal antibodies (MAbs) block binding of fH to fHbp, the stoichiometry of blocking in the presence of high serum concentrations of fH and its effect on complement-mediated bactericidal activity are unknown. To investigate this question, we constructed chimeric antibodies in which the human IgG1 constant region was paired with three murine fHbp-specific binding domains designated JAR 3, JAR 5, and MAb502. By surface plasmon resonance, the association rates for binding of all three MAbs to immobilized fHbp were >50-fold higher than that for binding of fH to fHbp, and the MAb dissociation rates were >500-fold lower than that for fH. While all three MAbs elicited similar C1q-dependent C4b deposition on live bacteria (classical complement pathway), only those antibodies that inhibited binding of fH to fHbp (JAR 3 and JAR 5) had bactericidal activity with human complement. MAb502, which did not inhibit fH binding, had complement-mediated bactericidal activity only when tested with fH-depleted human complement. When an IgG1 anti-fHbp MAb binds to sparsely exposed fHbp on the bacterial surface, there appears to be insufficient complement activation for bacteriolysis unless fH binding also is inhibited. The ability of fHbp vaccines to elicit protective antibodies, therefore, is likely to be enhanced if the antibody repertoire is of high avidity and includes fH-blocking activity.

  7. [Cloning of cDNA for RNA polymerase subunit from the fission yeast Schizosaccharomyces pombe by heterospecific complementation in Saccharomyces cerevisiae].

    Science.gov (United States)

    Shpakovskiĭ, G V; Lebedenko, E N; Thuriaux, P

    1997-02-01

    The rpb10 cDNA of the fission yeast Schizosaccharomyces pombe, encoding one of the five small subunits common to all three nuclear DNA-dependent RNA polymerases, was isolated from an expression cDNA library by two independent approaches: PCR-based screening and direct suppression by means of heterospecific complementation of a temperature-sensitive mutant defective in the corresponding gene of Saccharomyces cerevisiae. The cloned Sz. pombe cDNA encodes a protein Rpb10 of 71 amino acids with an M of 8,275 Da, sharing 51 amino acids (71% identity) with the subunit ABC10 beta of RNA polymerases I-III from S. cerevisiae. All eukaryotic members of this protein family have the same general organization featuring two highly conserved motifs (RCFT/SCGK and RYCCRRM) around an atypical zinc finger and an additional invariant HVDLIEK motif toward the C-terminal end. The last motif is only characteristics for homologs from eukaryotes. In keeping with this remarkable structural conservation, the Sz. pombe cDNA also fully complemented a S. cerevisiae deletion mutant lacking subunit ABC10 beta (null allele rpb10-delta 1::HIS3).

  8. Controlling the complement system in inflammation.

    Science.gov (United States)

    Kirschfink, M

    1997-12-01

    Inappropriate or excessive activation of the complement system can lead to harmful, potentially life-threatening consequences due to severe inflammatory tissue destruction. These consequences are clinically manifested in various disorders, including septic shock, multiple organ failure and hyperacute graft rejection. Genetic complement deficiencies or complement depletion have been proven to be beneficial in reducing tissue injury in a number of animal models of severe complement-dependent inflammation. It is therefore believed that therapeutic inhibition of complement is likely to arrest the process of certain diseases. Attempts to efficiently inhibit complement include the application of endogenous soluble complement inhibitors (C1-inhibitor, recombinant soluble complement receptor 1- rsCR1), the administration of antibodies, either blocking key proteins of the cascade reaction (e.g. C3, C5), neutralizing the action of the complement-derived anaphylatoxin C5a, or interfering with complement receptor 3 (CR3, CD18/11b)-mediated adhesion of inflammatory cells to the vascular endothelium. In addition, incorporation of membrane-bound complement regulators (DAF-CD55, MCP-CD46, CD59) has become possible by transfection of the correspondent cDNA into xenogeneic cells. Thereby, protection against complement-mediated inflammatory tissue damage could be achieved in various animal models of sepsis, myocardial as well as intestinal ischemia/reperfusion injury, adult respiratory distress syndrome, nephritis and graft rejection. Supported by results from first clinical trials, complement inhibition appears to be a suitable therapeutic approach to control inflammation. Current strategies to specifically inhibit complement in inflammation have been discussed at a recent meeting on the 'Immune Consequences of Trauma, Shock and Sepsis', held from March 4-8, 1997, in Munich, Germany. The Congress (chairman: E. Faist, Munich, Germany), which was held in close cooperation with various

  9. The paralogous salivary anti-complement proteins IRAC I and IRAC II encoded by Ixodes ricinus ticks have broad and complementary inhibitory activities against the complement of different host species.

    Science.gov (United States)

    Schroeder, Hélène; Daix, Virginie; Gillet, Laurent; Renauld, Jean-Christophe; Vanderplasschen, Alain

    2007-02-01

    Several observations suggest that inhibition of the host complement alternative pathway by Ixodes tick saliva is crucial to achieve blood feeding. We recently described two paralogous anti-complement proteins called Ixodes ricinus anti-complement (IRAC) proteins I and II co-expressed in I. ricinus salivary glands. Phylogenetic analyses suggested that these sequences were diversifying by a process of positive Darwinian selection, possibly leading to molecules with different biological properties. In the present study, we tested the hypothesis that each paralogue may have different inhibitory activities against the complement of different natural host species, thereby contributing to broaden the host range of I. ricinus ticks. IRAC I and IRAC II were tested against the complement of eight I. ricinus natural host species (six mammals and two birds). The results demonstrate that IRAC I and IRAC II have broad and complementary inhibition activities against the complement of different host species. This report is the first description of paralogous anti-complement molecules encoded by a pathogen with broad and complementary inhibitory activities against the complement of different host species.

  10. Excretion of complement proteins and its activation marker C5b-9 in IgA nephropathy in relation to renal function

    Directory of Open Access Journals (Sweden)

    Onda Kisara

    2011-11-01

    Full Text Available Abstract Background Glomerular damage in IgA nephropathy (IgAN is mediated by complement activation via the alternative and lectin pathways. Therefore, we focused on molecules stabilizing and regulating the alternative pathway C3 convertase in urine which might be associated with IgAN pathogenesis. Methods Membrane attack complex (MAC, properdin (P, factor H (fH and Complement receptor type 1 (CR1 were quantified in urine samples from 71 patients with IgAN and 72 healthy controls. Glomerular deposition of C5, fH and P was assessed using an immunofluorescence technique and correlated with histological severity of IgAN and clinical parameters. Fibrotic changes and glomerular sclerosis were evaluated in renal biopsy specimens. Results Immunofluorescence studies revealed glomerular depositions of C5, fH and P in patients with IgAN. Urinary MAC, fH and P levels in IgAN patients were significantly higher than those in healthy controls (p Conclusions Complement activation occurs in the urinary space in IgAN and the measurement of levels of MAC and fH in the urine could be a useful indicator of renal injury in patients with IgAN.

  11. Residues 240-250 in the C-terminus of the Pirh2 protein complement the function of the RING domain in self-ubiquitination of the Pirh2 protein.

    Directory of Open Access Journals (Sweden)

    Rami Abou Zeinab

    Full Text Available Pirh2 is a p53 inducible gene that encodes a RING-H2 domain and is proposed to be a main regulator of p53 protein, thus fine tuning the DNA damage response. Pirh2 interacts physically with p53 and promotes its MDM2-independent ubiquitination and subsequent degradation as well as participates in an auto-regulatory feedback loop that controls p53 function. Pirh2 also self-ubiquitinates. Interestingly, Pirh2 is overexpressed in a wide range of human tumors. In this study, we investigated the domains and residues essential for Pirh2 self-ubiquitination. Deletions were made in each of the three major domains of Pirh2: the N-terminal domain (NTD, Ring domain (RING, and C-terminal domain (CTD. The effects of these deletions on Pirh2 self-ubiquitination were then assessed using in vitro ubiquitination assays. Our results demonstrate that the RING domain is essential, but not sufficient, for Pirh2 self-ubiquitination and that residues 240-250 of the C-terminal domain are also essential. Our results demonstrate that Pirh2 mediated p53 polyubiquitination occurs mainly through the K48 residue of ubiquitin in vitro. Our data further our understanding of the mechanism of Pirh2 self-ubiquitination and may help identify valuable therapeutic targets that play roles in reducing the effects of the overexpression of Pirh2, thus maximizing p53's response to DNA damage.

  12. Molecular Characterization of the Rhesus Rhadinovirus (RRV) ORF4 Gene and the RRV Complement Control Protein It Encodes▿

    Science.gov (United States)

    Mark, Linda; Spiller, O. Brad; Okroj, Marcin; Chanas, Simon; Aitken, Jim A.; Wong, Scott W.; Damania, Blossom; Blom, Anna M.; Blackbourn, David J.

    2007-01-01

    The diversity of viral strategies to modulate complement activation indicates that this component of the immune system has significant antiviral potential. One example is the Kaposi's sarcoma-associated herpesvirus (KSHV) complement control protein (KCP), which inhibits progression of the complement cascade. Rhesus rhadinovirus (RRV), like KSHV, is a member of the subfamily Gammaherpesvirinae and currently provides the only in vivo model of KSHV pathobiology in primates. In the present study, we characterized the KCP homologue encoded by RRV, RRV complement control protein (RCP). Two strains of RRV have been sequenced to date (H26-95 and 17577), and the RCPs they encode differ substantially in structure: RCP from strain H26-95 has four complement control protein (CCP) domains, whereas RCP from strain 17577 has eight CCP domains. Transcriptional analyses of the RCP gene (ORF4, referred to herein as RCP) in infected rhesus macaque fibroblasts mapped the ends of the transcripts of both strains. They revealed that H26-95 encodes a full-length, unspliced RCP transcript, while 17577 RCP generates a full-length unspliced mRNA and two alternatively spliced transcripts. Western blotting confirmed that infected cells express RCP, and immune electron microscopy disclosed this protein on the surface of RRV virions. Functional studies of RCP encoded by both RRV strains revealed their ability to suppress complement activation by the classical (antibody-mediated) pathway. These data provide the foundation for studies into the biological significance of gammaherpesvirus complement regulatory proteins in a tractable, non-human primate model. PMID:17287274

  13. The protein C omega-loop substitution Asn2Ile is associated with reduced protein C anticoagulant activity.

    LENUS (Irish Health Repository)

    Preston, Roger J S

    2012-02-01

    We report a kindred with heritable protein C (PC) deficiency in which two siblings with severe thrombosis showed a composite type I and IIb PC deficiency phenotype, identified using commercial PC assays (proband: PC antigen 42 u\\/dl, amidolytic activity 40 u\\/dl, anticoagulant activity 9 u\\/dl). The independent PROC nucleotide variations c.669C>A (predictive of Ser181Arg) and c.131C>T (predictive of Asn2Ile) segregated with the type I and type IIb PC deficiency phenotypes respectively, but co-segregated in the siblings with severe thrombosis. Soluble thrombomodulin (sTM)-mediated inhibition of plasma thrombin generation from an individual with PC-Asn2Ile was lower (endogenous thrombin potential (ETP) 56 +\\/- 1% that of ETP determined without sTM) than control plasma (ETP 15 +\\/- 2%) indicating reduced PC anticoagulant activity. Recombinant APC-Asn2Ile exhibited normal amidolytic activity but impaired anticoagulant activity. Protein S (PS)-dependent anticoagulant activity of recombinant APC-Asn2Ile and binding of recombinant APC-Asn2Ile to endothelial protein C receptor (EPCR) were reduced compared to recombinant wild-type APC. Asn2 lies within the omega-loop of the PC\\/APC Gla domain and this region is critical for calcium-induced folding and subsequent interactions with anionic phospholipids, EPCR and PS. The disruption of these interactions in this naturally-occurring PC variant highlights their collective importance in mediating APC anticoagulant activity in vivo.

  14. Human complement component C3

    DEFF Research Database (Denmark)

    Behrendt, N

    1985-01-01

    The two common genetic variants of human C3, C3 S and C3 F, were purified and characterized by SDS-PAGE, agarose gel electrophoresis, isoelectric focusing and amino acid analysis. The difference in electrophoretic mobility between the two variants was conserved after purification, and by isoelect......The two common genetic variants of human C3, C3 S and C3 F, were purified and characterized by SDS-PAGE, agarose gel electrophoresis, isoelectric focusing and amino acid analysis. The difference in electrophoretic mobility between the two variants was conserved after purification......, and by isoelectric focusing of the hemolytically active proteins, pI values of 5.86 and 5.81 were determined for C3 S and C3 F, respectively. Any difference in amino acid composition was too small to be detected by amino acid analysis, and the two proteins had the same molecular weight as determined by SDS-PAGE....

  15. Complement factors C4 and C3 are down regulated in response to short term overfeeding in healthy young men

    DEFF Research Database (Denmark)

    Foghmar, Caroline; Brøns, Charlotte; Pilely, Katrine

    2017-01-01

    individuals only, while both groups had the same degree of hepatic insulin resistance after HFO. Viewing all individuals circulating levels of C4, C3, C3bc, TCC and complement activation capacity decreased paradoxically along the development of insulin resistance after HFO (P = 0.0015, P ...Insulin resistance is associated with high circulating level of complement factor C3. Animal studies suggest that improper complement activation mediates high-fat-diet-induced insulin resistance. Individuals born with low birth weight (LBW) are at increased risk of developing insulin resistance. We...... hypothesized that high-fat overfeeding (HFO) increase circulating C3 and induce complement activation in a birth weight differential manner. Twenty LBW and 26 normal birth weight (NBW) young men were studied using a randomised crossover design. Insulin resistance was measured after a control-diet and after 5...

  16. Elevated levels of the complement activation product C4d in bronchial fluids for the diagnosis of lung cancer.

    Directory of Open Access Journals (Sweden)

    Daniel Ajona

    Full Text Available Molecular markers in bronchial fluids may contribute to the diagnosis of lung cancer. We previously observed a significant increase of C4d-containing complement degradation fragments in bronchoalveolar lavage (BAL supernatants from lung cancer patients in a cohort of 50 cases and 22 controls (CUN cohort. The present study was designed to determine the diagnostic performance of these complement fragments (hereinafter jointly referred as C4d in bronchial fluids. C4d levels were determined in BAL supernatants from two independent cohorts: the CU cohort (25 cases and 26 controls and the HUVR cohort (60 cases and 98 controls. A series of spontaneous sputum samples from 68 patients with lung cancer and 10 controls was also used (LCCCIO cohort. Total protein content, complement C4, complement C5a, and CYFRA 21-1 were also measured in all cohorts. C4d levels were significantly increased in BAL samples from lung cancer patients. The area under the ROC curve was 0.82 (95%CI = 0.71-0.94 and 0.67 (95%CI = 0.58-0.76 for the CU and HUVR cohorts, respectively. In addition, unlike the other markers, C4d levels in BAL samples were highly consistent across the CUN, CU and HUVR cohorts. Interestingly, C4d test markedly increased the sensitivity of bronchoscopy in the two cohorts in which cytological data were available (CUN and HUVR cohorts. Finally, in the LCCCIO cohort, C4d levels were higher in sputum supernatants from patients with lung cancer (area under the ROC curve: 0.7; 95%CI = 0.56-0.83. In conclusion, C4d is consistently elevated in bronchial fluids from lung cancer patients and may be used to improve the diagnosis of the disease.

  17. Preferential repair of nuclear matrix associated DNA in xeroderma pigmentosum complementation group C

    International Nuclear Information System (INIS)

    Mullenders, L.H.F.; Kesteren, A.C. van; Bussmann, C.J.M.; Zeeland, A.A. van; Natarajan, A.T.

    1984-01-01

    The distribution of ultraviolet-induced DNA repair patches in the genome of xeroderma pigmentosum cells of complementation group C was investigated by determining the molecular weight distribution of repair labeled DNA and prelabeled DNA in alkaline sucrose gradients after treatment with the dimer-specific endonuclease V of bacteriophage T 4 . The results suggest that DNA-repair synthesis in xeroderma pigmentosum cells of complementation group C occurs in localized regions of the genome. Analysis of the spatial distribution of ultraviolet-induced repair patches in DNA loops attached to the nuclear matrix revealed that in xeroderma pigmentosum cells of complementation group C repair patches are preferentially situated near the attachment sites of DNA loops at the nuclear matrix. In normal human fibroblasts the authors observed no enrichment of repair-labeled DNA at the nuclear matrix and repair patches appeared to be distributed randomly along the DNA loops. The enrichment of repair-labeled DNA at the nuclear matrix in xeroderma pigmentosum cells of complementation group C may indicate that the residual DNA-repair synthesis in these cells occurs preferentially in regions of the genome. (Auth.)

  18. Complement activation in astrocytomas: deposition of C4d and patient outcome

    International Nuclear Information System (INIS)

    Mäkelä, Katri; Helén, Pauli; Haapasalo, Hannu; Paavonen, Timo

    2012-01-01

    C4d is a cleavage product of complement component C4 and is considered to serve as a marker for the site of complement activation. In this study C4d staining of grade I-IV astrocytic tumors was studied to explore if there is an association between complement activation and the grade of tumor, or patient survival. Tissue micro-array samples of 102 astrocytomas were stained immunohistochemically. The material consisted of 9 pilocytic astrocytomas and 93 grade II-IV astrocytomas, of which 67 were primary resections and 26 recurrent tumors. The intensity of C4d staining as well as extent of C4d and CD34 staining were evaluated. The intensity of C4d staining was scored semiquantitatively. The extent of the staining was counted morphometrically with a point counting grid yielding a percent of C4d and CD34 positive area of the sample. The intensity and extent of C4d staining increased in grade II-IV diffusely infiltrating astrocytoma tumors in line with the malignancy grade (p = 0.034 and p = 0.016, respectively, Kruskal-Wallis test). However, C4d positive tumor area percentages were higher in grade I pilocytic astrocytomas than in grade II-IV diffusely infiltrating astrocytomas (p = 0.041, Mann–Whitney test). There was a significant correlation between CD34 positive and C4d positive endothelial area fraction in diffusely infiltrating astrocytomas (p < 0.001, Pearson correlation). In these tumors, the increasing intensity of C4d staining was also associated with worsened patient outcome (p = 0.014, log-rank test). The worsening of patient outcome and malignant progression of tumor cells seem to be connected to microenvironmental changes evoked by chronically activated complement

  19. Age-related macular degeneration and modification of systemic complement factor H production through liver transplantation.

    Science.gov (United States)

    Khandhadia, Samir; Hakobyan, Svetlana; Heng, Ling Z; Gibson, Jane; Adams, David H; Alexander, Graeme J; Gibson, Jonathan M; Martin, Keith R; Menon, Geeta; Nash, Kathryn; Sivaprasad, Sobha; Ennis, Sarah; Cree, Angela J; Morgan, B Paul; Lotery, Andrew J

    2013-08-01

    To investigate whether modification of liver complement factor H (CFH) production, by alteration of liver CFH Y402H genotype through liver transplantation (LT), influences the development of age-related macular degeneration (AMD). Multicenter, cross-sectional study. We recruited 223 Western European patients ≥ 55 years old who had undergone LT ≥ 5 years previously. We determined AMD status using a standard grading system. Recipient CFH Y402H genotype was obtained from DNA extracted from recipient blood samples. Donor CFH Y402H genotype was inferred from recipient plasma CFH Y402H protein allotype, measured using enzyme-linked immunosorbent assays. This approach was verified by genotyping donor tissue from a subgroup of patients. Systemic complement activity was ascertained by measuring levels of plasma complement proteins using an enzyme-linked immunosorbent assay, including substrates (C3, C4), activation products (C3a, C4a, and terminal complement complex), and regulators (total CFH, C1 inhibitor). We evaluated AMD status and recipient and donor CFH Y402H genotype. In LT patients, AMD was associated with recipient CFH Y402H genotype (P = 0.036; odds ratio [OR], 1.6; 95% confidence interval [CI], 1.0-2.4) but not with donor CFH Y402H genotype (P = 0.626), after controlling for age, sex, smoking status, and body mass index. Recipient plasma CFH Y402H protein allotype predicted donor CFH Y402H genotype with 100% accuracy (n = 49). Plasma complement protein or activation product levels were similar in LT patients with and without AMD. Compared with previously reported prevalence figures (Rotterdam Study), LT patients demonstrated a high prevalence of both AMD (64.6% vs 37.1%; OR, 3.09; Pproduction. In addition, AMD is not associated with systemic complement activity in LT patients. These findings suggest that local intraocular complement activity is of greater importance in AMD pathogenesis. The high AMD prevalence observed in LT patients may be associated with

  20. AKT1, LKB1, and YAP1 revealed as MYC interactors with NanoLuc-based protein-fragment complementation assay. | Office of Cancer Genomics

    Science.gov (United States)

    The c-Myc (MYC) transcription factor is a major cancer driver and a well-validated therapeutic target. However, directly targeting MYC has been challenging. Thus, identifying proteins that interact with and regulate MYC may provide alternative strategies to inhibit its oncogenic activity. Here we report the development of a NanoLuc®-based protein-fragment complementation assay (NanoPCA) and mapping of the MYC protein interaction hub in live mammalian cells.

  1. Pasteurella pneumotropica evades the human complement system by acquisition of the complement regulators factor H and C4BP.

    Directory of Open Access Journals (Sweden)

    Alfredo Sahagún-Ruiz

    Full Text Available Pasteurella pneumotropica is an opportunist Gram negative bacterium responsible for rodent pasteurellosis that affects upper respiratory, reproductive and digestive tracts of mammals. In animal care facilities the presence of P. pneumotropica causes severe to lethal infection in immunodeficient mice, being also a potential source for human contamination. Indeed, occupational exposure is one of the main causes of human infection by P. pneumotropica. The clinical presentation of the disease includes subcutaneous abscesses, respiratory tract colonization and systemic infections. Given the ability of P. pneumotropica to fully disseminate in the organism, it is quite relevant to study the role of the complement system to control the infection as well as the possible evasion mechanisms involved in bacterial survival. Here, we show for the first time that P. pneumotropica is able to survive the bactericidal activity of the human complement system. We observed that host regulatory complement C4BP and Factor H bind to the surface of P. pneumotropica, controlling the activation pathways regulating the formation and maintenance of C3-convertases. These results show that P. pneumotropica has evolved mechanisms to evade the human complement system that may increase the efficiency by which this pathogen is able to gain access to and colonize inner tissues where it may cause severe infections.

  2. Lipopolysaccharide-binding protein for monitoring of postoperative sepsis: complemental to C-reactive protein or redundant?

    Directory of Open Access Journals (Sweden)

    Klaus Tschaikowsky

    Full Text Available INTRODUCTION: To prospectively evaluate the performance of Lipopolysaccharide-Binding Protein (LBP in prediction of hospital mortality and its correlation to C-reactive Protein (CRP, we studied sixty consecutive, postoperative patients with sepsis admitted to the university hospital intensive care unit. MEASUREMENTS AND METHODS: Plasma LBP and CRP were serially measured from day(d1 (onset of sepsis to d14 in parallel with clinical data until d28. Predictive value and correlation of LBP and CRP were analyzed by Receiver Operating Characteristic (ROC curve analysis and Pearson's test, respectively. MAIN RESULTS: LBP and CRP showed the highest levels on d2 or d3 after the onset of sepsis with no significant difference between survivors and nonsurvivors. Only at d7, nonsurvivors had significantly (p = .03 higher levels of CRP than survivors. Accordingly, in ROC analysis, concentration of CRP and LBP on d7 poorly discriminated survivors from nonsurvivors (area under curve = .62 and .55, respectively without significant difference between LBP- and CRP-ROC curves for paired comparison. LBP and CRP plasma levels allocated to quartiles correlated well with each other (r(2 = .95; p = .02. Likewise, changes in plasma concentrations of LBP and CRP from one observation to the next showed a marked concordance as both parameters concomitantly increased or decreased in 76% of all cases. CONCLUSIONS: During the first 14 days of postoperative sepsis, LBP plasma concentrations showed a time course that was very similar to CRP with a high concordance in the pattern of day-to-day changes. Furthermore, like CRP, LBP does not provide a reliable clue for outcome in this setting.

  3. Virulence of Group A Streptococci Is Enhanced by Human Complement Inhibitors

    DEFF Research Database (Denmark)

    Ermert, David; Shaughnessy, Jutamas; Joeris, Thorsten

    2015-01-01

    Streptococcus pyogenes, also known as Group A Streptococcus (GAS), is an important human bacterial pathogen that can cause invasive infections. Once it colonizes its exclusively human host, GAS needs to surmount numerous innate immune defense mechanisms, including opsonization by complement and c...... in studies of GAS pathogenesis and for developing vaccines and therapeutics that rely on human complement activation for efficacy.......Streptococcus pyogenes, also known as Group A Streptococcus (GAS), is an important human bacterial pathogen that can cause invasive infections. Once it colonizes its exclusively human host, GAS needs to surmount numerous innate immune defense mechanisms, including opsonization by complement...... and consequent phagocytosis. Several strains of GAS bind to human-specific complement inhibitors, C4b-binding protein (C4BP) and/or Factor H (FH), to curtail complement C3 (a critical opsonin) deposition. This results in diminished activation of phagocytes and clearance of GAS that may lead to the host being...

  4. Early Components of the Complement Classical Activation Pathway in Human Systemic Autoimmune Diseases

    Science.gov (United States)

    Lintner, Katherine E.; Wu, Yee Ling; Yang, Yan; Spencer, Charles H.; Hauptmann, Georges; Hebert, Lee A.; Atkinson, John P.; Yu, C. Yung

    2016-01-01

    The complement system consists of effector proteins, regulators, and receptors that participate in host defense against pathogens. Activation of the complement system, via the classical pathway (CP), has long been recognized in immune complex-mediated tissue injury, most notably systemic lupus erythematosus (SLE). Paradoxically, a complete deficiency of an early component of the CP, as evidenced by homozygous genetic deficiencies reported in human, are strongly associated with the risk of developing SLE or a lupus-like disease. Similarly, isotype deficiency attributable to a gene copy-number (GCN) variation and/or the presence of autoantibodies directed against a CP component or a regulatory protein that result in an acquired deficiency are relatively common in SLE patients. Applying accurate assay methodologies with rigorous data validations, low GCNs of total C4, and heterozygous and homozygous deficiencies of C4A have been shown as medium to large effect size risk factors, while high copy numbers of total C4 or C4A as prevalent protective factors, of European and East-Asian SLE. Here, we summarize the current knowledge related to genetic deficiency and insufficiency, and acquired protein deficiencies for C1q, C1r, C1s, C4A/C4B, and C2 in disease pathogenesis and prognosis of SLE, and, briefly, for other systemic autoimmune diseases. As the complement system is increasingly found to be associated with autoimmune diseases and immune-mediated diseases, it has become an attractive therapeutic target. We highlight the recent developments and offer a balanced perspective concerning future investigations and therapeutic applications with a focus on early components of the CP in human systemic autoimmune diseases. PMID:26913032

  5. Complement C3 deficiency attenuates chronic hypoxia-induced pulmonary hypertension in mice.

    Directory of Open Access Journals (Sweden)

    Eileen M Bauer

    Full Text Available Evidence suggests a role of both innate and adaptive immunity in the development of pulmonary arterial hypertension. The complement system is a key sentry of the innate immune system and bridges innate and adaptive immunity. To date there are no studies addressing a role for the complement system in pulmonary arterial hypertension.Immunofluorescent staining revealed significant C3d deposition in lung sections from IPAH patients and C57Bl6/J wild-type mice exposed to three weeks of chronic hypoxia to induce pulmonary hypertension. Right ventricular systolic pressure and right ventricular hypertrophy were increased in hypoxic vs. normoxic wild-type mice, which were attenuated in C3-/- hypoxic mice. Likewise, pulmonary vascular remodeling was attenuated in the C3-/- mice compared to wild-type mice as determined by the number of muscularized peripheral arterioles and morphometric analysis of vessel wall thickness. The loss of C3 attenuated the increase in interleukin-6 and intracellular adhesion molecule-1 expression in response to chronic hypoxia, but not endothelin-1 levels. In wild-type mice, but not C3-/- mice, chronic hypoxia led to platelet activation as assessed by bleeding time, and flow cytometry of platelets to determine cell surface P-selectin expression. In addition, tissue factor expression and fibrin deposition were increased in the lungs of WT mice in response to chronic hypoxia. These pro-thrombotic effects of hypoxia were abrogated in C3-/- mice.Herein, we provide compelling genetic evidence that the complement system plays a pathophysiologic role in the development of PAH in mice, promoting pulmonary vascular remodeling and a pro-thrombotic phenotype. In addition we demonstrate C3d deposition in IPAH patients suggesting that complement activation plays a role in the development of PAH in humans.

  6. A selection that reports on protein-protein interactions within a thermophilic bacterium.

    Science.gov (United States)

    Nguyen, Peter Q; Silberg, Jonathan J

    2010-07-01

    Many proteins can be split into fragments that exhibit enhanced function upon fusion to interacting proteins. While this strategy has been widely used to create protein-fragment complementation assays (PCAs) for discovering protein-protein interactions within mesophilic organisms, similar assays have not yet been developed for studying natural and engineered protein complexes at the temperatures where thermophilic microbes grow. We describe the development of a selection for protein-protein interactions within Thermus thermophilus that is based upon growth complementation by fragments of Thermotoga neapolitana adenylate kinase (AK(Tn)). Complementation studies with an engineered thermophile (PQN1) that is not viable above 75 degrees C because its adk gene has been replaced by a Geobacillus stearothermophilus ortholog revealed that growth could be restored at 78 degrees C by a vector that coexpresses polypeptides corresponding to residues 1-79 and 80-220 of AK(Tn). In contrast, PQN1 growth was not complemented by AK(Tn) fragments harboring a C156A mutation within the zinc-binding tetracysteine motif unless these fragments were fused to Thermotoga maritima chemotaxis proteins that heterodimerize (CheA and CheY) or homodimerize (CheX). This enhanced complementation is interpreted as arising from chemotaxis protein-protein interactions, since AK(Tn)-C156A fragments having only one polypeptide fused to a chemotaxis protein did not complement PQN1 to the same extent. This selection increases the maximum temperature where a PCA can be used to engineer thermostable protein complexes and to map protein-protein interactions.

  7. Effects of obesity, total fasting and re-alimentation on L-thyroxine (T4), 3,5,3'-L-triiodothyronine (T3), 3,3',5'-L-triiodothyronine (rT3), thyroxine binding globulin (TBG), cortisol, thyrotrophin, cortisol binding globulin (CBG), transferrin, alpha 2-haptoglobin and complement C'3 in serum.

    Science.gov (United States)

    Scriba, P C; Bauer, M; Emmert, D; Fateh-Moghadam, A; Hofmann, G G; Horn, K; Pickardt, C R

    1979-08-01

    The effects of total fasting for 31 +/- 10 days followed by re-alimentation with an 800 calorie diet on thyroid function, i.e. T4,T3,rT3,RT3U (resin T3 uptake), and TSH, and on TBG levels in serum were studied sequentially in obese hospitalized patients (N=18). Additionally, cortisol, growth hormone, prolactin, parathyrin and free fatty acids were followed as hormonal and metabolic parameters, respectively. Further, CBG, transferrin, alpha 2-haptoglobin and complement C'3 were measured as representatives of other serum proteins. Results before fasting: T4, T3, TBG, cortisol, CBG, alpha 2-haptoglobin and complement C'3 of the obese patients were elevated when compared with healthy normal weight controls, whereas rT3, T4/TBG ratio, T3/TBG ratio, TSH, coritsol/cbg ratio, growth hormone, prolactin, parathyrin and transferrin of the obese group were normal. RT3U and fT4 index were decreased in the obese patients. Results during fasting: Significant decreases were observed during fasting for the following parameters -- T3, TBG, T3/TBG ratio, transferrin, alpha 2-haptoglobin complement C'3. rT3, T4/TBG ratio, RT3U, fT4 index and FFA increased. T4, tsh response to TRH stimulation, cortisol, CBG, cortisol/cbg ratio, parathyrin, growth hormone and prolactin did not change. Results during re-alimentation: T3, TBG, T3/TBG ratio, TSH response to TRH, transferrin, alpha 2-haptoglobin and complement C'3 increased. Conversely, fT3, RT3U, FFA, cortisol and cortisol/cbg ratio decreased whereas the other parameters did not change. 1) There is no evidence for primary hypothyroidism in obese patients during prolonged fasting and re-alimentation. 2) The rapid decrease of T3 and increase of RT3U after initiation of fasting are not fully explained by the observed slower decreases in TBG. 3) The alterations of T3, rT3 and RT3U resemble in their kinetics the changes in FFA levels. 4) Fasting reduced the levels of only certain serum proteins, interestingly TBG, transferrin, alpha 2

  8. C2 Domains as Protein-Protein Interaction Modules in the Ciliary Transition Zone

    Directory of Open Access Journals (Sweden)

    Kim Remans

    2014-07-01

    Full Text Available RPGR-interacting protein 1 (RPGRIP1 is mutated in the eye disease Leber congenital amaurosis (LCA and its structural homolog, RPGRIP1-like (RPGRIP1L, is mutated in many different ciliopathies. Both are multidomain proteins that are predicted to interact with retinitis pigmentosa G-protein regulator (RPGR. RPGR is mutated in X-linked retinitis pigmentosa and is located in photoreceptors and primary cilia. We solved the crystal structure of the complex between the RPGR-interacting domain (RID of RPGRIP1 and RPGR and demonstrate that RPGRIP1L binds to RPGR similarly. RPGRIP1 binding to RPGR affects the interaction with PDEδ, the cargo shuttling factor for prenylated ciliary proteins. RPGRIP1-RID is a C2 domain with a canonical β sandwich structure that does not bind Ca2+ and/or phospholipids and thus constitutes a unique type of protein-protein interaction module. Judging from the large number of C2 domains in most of the ciliary transition zone proteins identified thus far, the structure presented here seems to constitute a cilia-specific module that is present in multiprotein transition zone complexes.

  9. The Complement Binding and Inhibitory Protein CbiA of Borrelia miyamotoi Degrades Extracellular Matrix Components by Interacting with Plasmin(ogen

    Directory of Open Access Journals (Sweden)

    Ngoc T. T. Nguyen

    2018-02-01

    Full Text Available The emerging relapsing fever spirochete Borrelia (B. miyamotoi is transmitted by ixodid ticks and causes the so-called hard tick-borne relapsing fever or B. miyamotoi disease (BMD. More recently, we identified a surface-exposed molecule, CbiA exhibiting complement binding and inhibitory capacity and rendering spirochetes resistant to complement-mediated lysis. To gain deeper insight into the molecular principles of B. miyamotoi-host interaction, we examined CbiA as a plasmin(ogen receptor that enables B. miyamotoi to interact with the serine protease plasmin(ogen. Recombinant CbiA was able to bind plasminogen in a dose-dependent fashion. Moreover, lysine residues appear to play a crucial role in the protein-protein interaction as binding of plasminogen was inhibited by the lysine analog tranexamic acid as well as increasing ionic strength. Of relevance, plasminogen bound to CbiA can be converted by urokinase-type plasminogen activator (uPa to active plasmin which cleaved both, the chromogenic substrate S-2251 and its physiologic substrate fibrinogen. Concerning the involvement of specific amino acids in the interaction with plasminogen, lysine residues located at the C-terminus are frequently involved in the binding as reported for various other plasminogen-interacting proteins of Lyme disease spirochetes. Lysine residues located within the C-terminal domain were substituted with alanine to generate single, double, triple, and quadruple point mutants. However, binding of plasminogen to the mutated CbiA proteins was not affected, suggesting that lysine residues distant from the C-terminus might be involved in the interaction.

  10. Radioimmunoelectrophoresis, a sensitive method for detecting cleavage of the fifth component of human complement (C5)

    International Nuclear Information System (INIS)

    Perez, H.D.; Ong, R.; Banda, D.; Goldstein, I.M.

    1983-01-01

    A method has been developed for detecting cleavage of human C5 in serum and whole blood as a consequence of complement activation. Standard, single-dimension immunoelectrophoresis was performed using as antibody a radioiodinated IgG fraction prepared from a commercially available antiserum to human C5. Autoradiographs developed after radioimmunoelectrophoresis of either normal human serum or functionally pure human C5 revealed only one precipitin band. In contrast, when either zymosan-treated serum or trypsin-treated human C5 were examined with this technique, two additional precipitin bands were detected. One migrated more anodally than native C5 while the other remained at the origin (cathode). Radioimmunoelectrophoresis was significantly more sensitive as an indicator of complement activation in human serum than either measurements of total hemolytic complement or a standard assay for complement (C5)-derived chemotactic activity. (Auth.)

  11. Activation of the classical pathway of complement by tobacco glycoprotein (TGP).

    Science.gov (United States)

    Koethe, S M; Nelson, K E; Becker, C G

    1995-07-15

    Tobacco glycoprotein (TGP), a polyphenol-rich glycoprotein isolated from tobacco leaves, activates the classical complement pathway through a mechanism that appears to involve direct interaction with C1q. A binding site on C1q for TGP can be localized by competitive inhibition with DNA to a region located in the junction between the collagen-like and globular regions of the molecule. A protein with activity similar to TGP has also been isolated from cigarette smoke condensate (TGP-S); it shares a binding site on C1q with TGP and has similar functional activity, with the exception that complement activation does not proceed to formation of a C3 cleaving enzyme. The ability of TGP and TGP-S to activate complement can be partially duplicated using polyphenols associated with tobacco leaf and smoke, i.e., chlorogenic acid and rutin. These polyphenols also compete with TGP for a binding site on immobilized C1q, suggesting that the polyphenol portion of TGP is critical for activation of complement. These results provide an additional mechanism for complement activation by cigarette products that, in vivo, could result in a localized complement depletion, generation of biologically active complement cleavage products, and initiation of an inflammatory response.

  12. The Complement System: A Prey of Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Kárita C. F. Lidani

    2017-04-01

    Full Text Available Trypanosoma cruzi is a protozoan parasite known to cause Chagas disease (CD, a neglected sickness that affects around 6–8 million people worldwide. Originally, CD was mainly found in Latin America but more recently, it has been spread to countries in North America, Asia, and Europe due the international migration from endemic areas. Thus, at present CD represents an important concern of global public health. Most of individuals that are infected by T. cruzi may remain in asymptomatic form all lifelong, but up to 40% of them will develop cardiomyopathy, digestive mega syndromes, or both. The interaction between the T. cruzi infective forms and host-related immune factors represents a key point for a better understanding of the physiopathology of CD. In this context, the complement, as one of the first line of host defense against infection was shown to play an important role in recognizing T. cruzi metacyclic trypomastigotes and in controlling parasite invasion. The complement consists of at least 35 or more plasma proteins and cell surface receptors/regulators, which can be activated by three pathways: classical (CP, lectin (LP, and alternative (AP. The CP and LP are mainly initiated by immune complexes or pathogen-associated molecular patterns (PAMPs, respectively, whereas AP is spontaneously activated by hydrolysis of C3. Once activated, several relevant complement functions are generated which include opsonization and phagocytosis of particles or microorganisms and cell lysis. An important step during T. cruzi infection is when intracellular trypomastigotes are release to bloodstream where they may be target by complement. Nevertheless, the parasite uses a sequence of events in order to escape from complement-mediated lysis. In fact, several T. cruzi molecules are known to interfere in the initiation of all three pathways and in the assembly of C3 convertase, a key step in the activation of complement. Moreover, T. cruzi promotes secretion

  13. The membrane attack complex as an indicator of complement hyperactivation in type 2 diabetes mellitus

    OpenAIRE

    Elina Aleksandrovna Arakelova; Meri Robertovna Ovsepyan; Anna Surenovna Boyadzhyan; Arsen Artashesovich Arakelyan; Astkhik Artavazdovna Gevorkyan; Ashot Andreevich Mamikonyan

    2011-01-01

    Aim. Comparative analysis of the levels of the membrane attack complex (MAC) - an end product of complement activation, and of hemolytic activities of C1 and C3 complement components in sera of patients with diabetes mellitus 2 (DM2) and healthy subjects. Materials and methods. 37 DM2 patients (7 men, 26 women, mean age 58±9 years (M±б) and 37 healthy subjects without a family history of hereditary diabetes (17 men, 20 women, mean age 52±12 years). Serum MAC levels were measured by E...

  14. Complement activation on the surface of cell-derived microparticles during cardiac surgery with cardiopulmonary bypass - is retransfusion of pericardial blood harmful?

    Science.gov (United States)

    Biró, E; van den Goor, J M; de Mol, B A; Schaap, M C; Ko, L-Y; Sturk, A; Hack, C E; Nieuwland, R

    2011-01-01

    To investigate whether cell-derived microparticles play a role in complement activation in pericardial blood of patients undergoing cardiac surgery with cardiopulmonary bypass (CPB) and whether microparticles in pericardial blood contribute to systemic complement activation upon retransfusion. Pericardial blood of 13 patients was retransfused in 9 and discarded in 4 cases. Microparticles were isolated from systemic blood collected before anesthesia (T1) and at the end of CPB (T2), and from pericardial blood. The microparticles were analyzed by flow cytometry for bound complement components C1q, C4 and C3, and bound complement activator molecules C-reactive protein (CRP), serum amyloid P-component (SAP), immunoglobulin (Ig)M and IgG. Fluid-phase complement activation products (C4b/c, C3b/c) and activator molecules were determined by ELISA. Compared with systemic T1 blood, pericardial blood contained increased C4b/c and C3b/c, and increased levels of microparticles with bound complement components. In systemic T1 samples, microparticle-bound CRP, whereas in pericardial blood, microparticle-bound SAP and IgM were associated with complement activation. At the end of CPB, increased C3b/c (but not C4b/c) was present in systemic T2 blood compared with T1, while concentrations of microparticles binding complement components and of those binding complement activator molecules were similar. Concentrations of fluid-phase complement activation products and microparticles were similar in patients whether or not retransfused with pericardial blood. In pericardial blood of patients undergoing cardiac surgery with CPB, microparticles contribute to activation of the complement system via bound SAP and IgM. Retransfusion of pericardial blood, however, does not contribute to systemic complement activation.

  15. Multiple activities of LigB potentiate virulence of Leptospira interrogans: inhibition of alternative and classical pathways of complement.

    Directory of Open Access Journals (Sweden)

    Henry A Choy

    Full Text Available Microbial pathogens acquire the immediate imperative to avoid or counteract the formidable defense of innate immunity as soon as they overcome the initial physical barriers of the host. Many have adopted the strategy of directly disrupting the complement system through the capture of its components, using proteins on the pathogen's surface. In leptospirosis, pathogenic Leptospira spp. are resistant to complement-mediated killing, in contrast to the highly vulnerable non-pathogenic strains. Pathogenic L. interrogans uses LenA/LfhA and LcpA to respectively sequester and commandeer the function of two regulators, factor H and C4BP, which in turn bind C3b or C4b to interrupt the alternative or classical pathways of complement activation. LigB, another surface-proximal protein originally characterized as an adhesin binding multiple host proteins, has other activities suggesting its importance early in infection, including binding extracellular matrix, plasma, and cutaneous repair proteins and inhibiting hemostasis. In this study, we used a recent model of ectopic expression of LigB in the saprophyte, L. biflexa, to test the hypothesis that LigB also interacts with complement proteins C3b and C4b to promote the virulence of L. interrogans. The surface expression of LigB partially rescued the non-pathogen from killing by 5% normal human serum, showing 1.3- to 48-fold greater survival 4 to 6 d following exposure to complement than cultures of the non-expressing parental strain. Recombinant LigB7'-12 comprising the LigB-specific immunoglobulin repeats binds directly to human complement proteins, C3b and C4b, with respective K(ds of 43±26 nM and 69±18 nM. Repeats 9 to 11, previously shown to contain the binding domain for fibronectin and fibrinogen, are also important in LigB-complement interactions, which interfere with the alternative and classical pathways measured by complement-mediated hemolysis of erythrocytes. Thus, LigB is an adaptable interface

  16. SALO, a novel classical pathway complement inhibitor from saliva of the sand fly Lutzomyia longipalpis.

    Science.gov (United States)

    Ferreira, Viviana P; Fazito Vale, Vladimir; Pangburn, Michael K; Abdeladhim, Maha; Mendes-Sousa, Antonio Ferreira; Coutinho-Abreu, Iliano V; Rasouli, Manoochehr; Brandt, Elizabeth A; Meneses, Claudio; Lima, Kolyvan Ferreira; Nascimento Araújo, Ricardo; Pereira, Marcos Horácio; Kotsyfakis, Michalis; Oliveira, Fabiano; Kamhawi, Shaden; Ribeiro, Jose M C; Gontijo, Nelder F; Collin, Nicolas; Valenzuela, Jesus G

    2016-01-13

    Blood-feeding insects inject potent salivary components including complement inhibitors into their host's skin to acquire a blood meal. Sand fly saliva was shown to inhibit the classical pathway of complement; however, the molecular identity of the inhibitor remains unknown. Here, we identified SALO as the classical pathway complement inhibitor. SALO, an 11 kDa protein, has no homology to proteins of any other organism apart from New World sand flies. rSALO anti-complement activity has the same chromatographic properties as the Lu. longipalpis salivary gland homogenate (SGH)counterparts and anti-rSALO antibodies blocked the classical pathway complement activity of rSALO and SGH. Both rSALO and SGH inhibited C4b deposition and cleavage of C4. rSALO, however, did not inhibit the protease activity of C1s nor the enzymatic activity of factor Xa, uPA, thrombin, kallikrein, trypsin and plasmin. Importantly, rSALO did not inhibit the alternative or the lectin pathway of complement. In conclusion our data shows that SALO is a specific classical pathway complement inhibitor present in the saliva of Lu. longipalpis. Importantly, due to its small size and specificity, SALO may offer a therapeutic alternative for complement classical pathway-mediated pathogenic effects in human diseases.

  17. Complement Mutations in Diacylglycerol Kinase-ε–Associated Atypical Hemolytic Uremic Syndrome

    Science.gov (United States)

    Sánchez Chinchilla, Daniel; Pinto, Sheila; Hoppe, Bernd; Adragna, Marta; Lopez, Laura; Justa Roldan, Maria Luisa; Peña, Antonia; Lopez Trascasa, Margarita; Sánchez-Corral, Pilar; Rodríguez de Córdoba, Santiago

    2014-01-01

    Background and objectives Atypical hemolytic uremic syndrome is characterized by vascular endothelial damage caused by complement dysregulation. Consistently, complement inhibition therapies are highly effective in most patients with atypical hemolytic uremic syndrome. Recently, it was shown that a significant percentage of patients with early-onset atypical hemolytic uremic syndrome carry mutations in diacylglycerol kinase-ε, an intracellular protein with no obvious role in complement. These data support an alternative, complement-independent mechanism leading to thrombotic microangiopathy that has implications for treatment of early-onset atypical hemolytic uremic syndrome. To get additional insights into this new form of atypical hemolytic uremic syndrome, the diacylglycerol kinase-ε gene in a cohort with atypical hemolytic uremic syndrome was analyzed. Design, setting, participants, & measurements Eighty-three patients with early-onset atypical hemolytic uremic syndrome (<2 years) enrolled in the Spanish atypical hemolytic uremic syndrome registry between 1999 and 2013 were screened for mutations in diacylglycerol kinase-ε. These patients were also fully characterized for mutations in the genes encoding factor H, membrane cofactor protein, factor I, C3, factor B, and thrombomodulin CFHRs copy number variations and rearrangements, and antifactor H antibodies. Results Four patients carried mutations in diacylglycerol kinase-ε, one p.H536Qfs*16 homozygote and three compound heterozygotes (p.W322*/p.P498R, two patients; p.Q248H/p.G484Gfs*10, one patient). Three patients also carried heterozygous mutations in thrombomodulin or C3. Extensive plasma infusions controlled atypical hemolytic uremic syndrome recurrences and prevented renal failure in the two patients with diacylglycerol kinase-ε and thrombomodulin mutations. A positive response to plasma infusions and complement inhibition treatment was also observed in the patient with concurrent diacylglycerol

  18. Complement mutations in diacylglycerol kinase-ε-associated atypical hemolytic uremic syndrome.

    Science.gov (United States)

    Sánchez Chinchilla, Daniel; Pinto, Sheila; Hoppe, Bernd; Adragna, Marta; Lopez, Laura; Justa Roldan, Maria Luisa; Peña, Antonia; Lopez Trascasa, Margarita; Sánchez-Corral, Pilar; Rodríguez de Córdoba, Santiago

    2014-09-05

    Atypical hemolytic uremic syndrome is characterized by vascular endothelial damage caused by complement dysregulation. Consistently, complement inhibition therapies are highly effective in most patients with atypical hemolytic uremic syndrome. Recently, it was shown that a significant percentage of patients with early-onset atypical hemolytic uremic syndrome carry mutations in diacylglycerol kinase-ε, an intracellular protein with no obvious role in complement. These data support an alternative, complement-independent mechanism leading to thrombotic microangiopathy that has implications for treatment of early-onset atypical hemolytic uremic syndrome. To get additional insights into this new form of atypical hemolytic uremic syndrome, the diacylglycerol kinase-ε gene in a cohort with atypical hemolytic uremic syndrome was analyzed. Eighty-three patients with early-onset atypical hemolytic uremic syndrome (<2 years) enrolled in the Spanish atypical hemolytic uremic syndrome registry between 1999 and 2013 were screened for mutations in diacylglycerol kinase-ε. These patients were also fully characterized for mutations in the genes encoding factor H, membrane cofactor protein, factor I, C3, factor B, and thrombomodulin CFHRs copy number variations and rearrangements, and antifactor H antibodies. Four patients carried mutations in diacylglycerol kinase-ε, one p.H536Qfs*16 homozygote and three compound heterozygotes (p.W322*/p.P498R, two patients; p.Q248H/p.G484Gfs*10, one patient). Three patients also carried heterozygous mutations in thrombomodulin or C3. Extensive plasma infusions controlled atypical hemolytic uremic syndrome recurrences and prevented renal failure in the two patients with diacylglycerol kinase-ε and thrombomodulin mutations. A positive response to plasma infusions and complement inhibition treatment was also observed in the patient with concurrent diacylglycerol kinase-ε and C3 mutations. Data suggest that complement dysregulation influences

  19. Complement and alcoholic liver disease: role of C1q in the pathogenesis of ethanol-induced liver injury in mice.

    Science.gov (United States)

    Cohen, Jessica I; Roychowdhury, Sanjoy; McMullen, Megan R; Stavitsky, Abram B; Nagy, Laura E

    2010-08-01

    Complement is involved in the development of alcoholic liver disease in mice; however, the mechanisms for complement activation during ethanol exposure have not been identified. C1q, the recognition subunit of the first complement component, binds to apoptotic cells, thereby activating the classical complement pathway. Because ethanol exposure increases hepatocellular apoptosis, we hypothesized that ethanol-induced apoptosis would lead to activation of complement via the classical pathway. Wild-type and C1qa-/- mice were allowed free access to ethanol-containing diets or pair-fed control diets for 4 or 25 days. Ethanol feeding for 4 days increased apoptosis of Kupffer cells in both wild-type and C1qa-/- mice. Ethanol-induced deposition of C1q and C3b/iC3b/C3c was colocalized with apoptotic Kupffer cells in wild-type, but not C1qa-/-, mice. Furthermore, ethanol-induced increases in tumor necrosis factor-alpha and interleukin-6 expression at this early time point were suppressed in C1q-deficient mice. Chronic ethanol feeding (25 days) increased steatosis, hepatocyte apoptosis, and activity of serum alanine and aspartate aminotransferases in wild-type mice. These markers of hepatocyte injury were attenuated in C1qa-/- mice. In contrast, chronic ethanol (25 days)-induced increases in cytochrome P450 2E1 expression and oxidative stress did not differ between wild-type and C1qa-/- mice. For the first time, these data indicate that ethanol activates the classical complement pathway via C1q binding to apoptotic cells in the liver and that C1q contributes to the pathogenesis of ethanol-induced liver injury. Copyright (c) 2010 AGA Institute. Published by Elsevier Inc. All rights reserved.

  20. Complement anaphylatoxin C3a is a potent inducer of embryonic chick retina regeneration

    Science.gov (United States)

    Haynes, Tracy; Luz-Madrigal, Agustin; Reis, Edimara S.; Echeverri Ruiz, Nancy P.; Grajales-Esquivel, Erika; Tzekou, Apostolia; Tsonis, Panagiotis A.; Lambris, John D.; Del Rio-Tsonis, Katia

    2013-01-01

    Identifying the initiation signals for tissue regeneration in vertebrates is one of the major challenges in regenerative biology. Much of the research thus far has indicated that certain growth factors have key roles. Here we show that complement fragment C3a is sufficient to induce complete regeneration of the embryonic chick retina from stem/progenitor cells present in the eye, independent of fibroblast growth factor receptor signaling. Instead, C3a induces retina regeneration via STAT3 activation, which in turn activates the injury- and inflammation-responsive factors, IL-6, IL-8 and TNF-α. This activation sets forth regulation of Wnt2b, Six3 and Sox2, genes associated with retina stem and progenitor cells. Thus, our results establish a mechanism for retina regeneration based on injury and inflammation signals. Furthermore, our results indicate a unique function for complement anaphylatoxins that implicate these molecules in the induction and complete regeneration of the retina, opening new avenues of experimentation in the field. PMID:23942241

  1. Reconstitution of nucleotide excision nuclease with UvrA and UvrB proteins from Escherichia coli and UvrC protein from Bacillus subtilis

    International Nuclear Information System (INIS)

    Lin, J.J.; Sancar, A.

    1990-01-01

    Recently, an open reading frame which has a deduced amino acid sequence that shows 38% homology to Escherichia coli UvrC protein was found upstream of the aspartokinase II gene (ask) in Bacillus subtilis. We found that plasmids containing this open reading frame complement the uvrC mutations in E. coli. We joined the open reading frame to a tac promoter to amplify the gene product in E. coli and purified the protein to near homogeneity. The apparent molecular weight of the gene product is 69,000, which is consistent with the calculated molecular weight of 69,378 fro the deduced gene product of the open reading frame. The purified gene product causes the nicking of DNA at the 8th phosphodiester bond 5' and the 5th phosphodiester bond 3' to a thymine dimer when mixed with E. coli UvrA and UvrB proteins and a DNA substrate containing a uniquely located thymine dimer. We conclude that the gene product of the open reading frame is the B. subtilis UvrC protein. Our results suggest that the B. subtilis nucleotide excision repair system is quite similar to that of E. coli. Furthermore, complementation of the UvrA and UvrB proteins from a Gram-negative bacterium with the UvrC protein of Gram-positive B. subtilis indicates a significant evolutionary conservation of the nucleotide excision repair system

  2. Does host complement kill Borrelia burgdorferi within ticks?

    Science.gov (United States)

    Rathinavelu, Sivaprakash; Broadwater, Anne; de Silva, Aravinda M

    2003-02-01

    The Lyme disease spirochete, Borrelia burgdorferi, inhabits the gut lumen of the tick vector. At this location the spirochete is exposed to host blood when a tick feeds. We report here on studies that were done with normal and complement-deficient (C3-knockout) mice to determine if the host complement system killed spirochetes within the vector. We found that spirochete numbers within feeding nymphs were not influenced by complement, most likely because host complement was inactivated within the vector. The Lyme disease outer surface protein A (OspA) vaccine is a transmission-blocking vaccine that targets spirochetes in the vector. In experiments with mice hyperimmunized with OspA, complement was not required to kill spirochetes within nymphs and to block transmission from nymphs to the vaccinated host. However, host complement did enhance the ability of OspA antibody to block larvae from acquiring spirochetes. Thus, the effects of OspA antibody on nymphal transmission and larval acquisition appear to be based on different mechanisms.

  3. Ail and PagC-related proteins in the entomopathogenic bacteria of Photorhabdus genus.

    Directory of Open Access Journals (Sweden)

    Annabelle Mouammine

    Full Text Available Among pathogenic Enterobacteriaceae, the proteins of the Ail/OmpX/PagC family form a steadily growing family of outer membrane proteins with diverse biological properties, potentially involved in virulence such as human serum resistance, adhesion and entry into eukaryotic culture cells. We studied the proteins Ail/OmpX/PagC in the bacterial Photorhabdus genus. The Photorhabdus bacteria form symbiotic complexes with nematodes of Heterorhabditis species, associations which are pathogenic to insect larvae. Our phylogenetic analysis indicated that in Photorhabdus asymbiotica and Photorhabdus luminescens only Ail and PagC proteins are encoded. The genomic analysis revealed that the Photorhabdus ail and pagC genes were present in a unique copy, except two ail paralogs from P. luminescens. These genes, referred to as ail1Pl and ail2Pl, probably resulted from a recent tandem duplication. Surprisingly, only ail1Pl expression was directly controlled by PhoPQ and low external Mg2+ conditions. In P. luminescens, the magnesium-sensing two-component regulatory system PhoPQ regulates the outer membrane barrier and is required for pathogenicity against insects. In order to characterize Ail functions in Photorhabdus, we showed that only ail2Pl and pagCPl had the ability, when expressed into Escherichia coli, to confer resistance to complement in human serum. However no effect in resistance to antimicrobial peptides was found. Thus, the role of Ail and PagC proteins in Photorhabdus life cycle is discussed.

  4. 1H, 15N, and 13C resonance assignments of the third domain from the S. aureus innate immune evasion protein Eap.

    Science.gov (United States)

    Herrera, Alvaro I; Ploscariu, Nicoleta T; Geisbrecht, Brian V; Prakash, Om

    2018-04-01

    Staphylococcus aureus is a widespread and persistent pathogen of humans and livestock. The bacterium expresses a wide variety of virulence proteins, many of which serve to disrupt the host's innate immune system from recognizing and clearing bacteria with optimal efficiency. The extracellular adherence protein (Eap) is a multidomain protein that participates in various protein-protein interactions that inhibit the innate immune response, including both the complement system (Woehl et al in J Immunol 193:6161-6171, 2014) and Neutrophil Serine Proteases (NSPs) (Stapels et al in Proc Natl Acad Sci USA 111:13187-13192, 2014). The third domain of Eap, Eap3, is an ~ 11 kDa protein that was recently shown to bind complement component C4b (Woehl et al in Protein Sci 26:1595-1608, 2017) and therefore play an essential role in inhibiting the classical and lectin pathways of complement (Woehl et al in J Immunol 193:6161-6171, 2014). Since structural characterization of Eap3 is still incomplete, we acquired a series of 2D and 3D NMR spectra of Eap3 in solution. Here we report the backbone and side-chain 1 H, 15 N, and 13 C resonance assignments of Eap3 and its predicted secondary structure via the TALOS-N server. The assignment data have been deposited in the BMRB data bank under accession number 27087.

  5. Uncoupling protein 2 G(-866A polymorphism: a new gene polymorphism associated with C-reactive protein in type 2 diabetic patients C-reactive protein in type 2 diabetic patients

    Directory of Open Access Journals (Sweden)

    Cocozza Sergio

    2010-10-01

    Full Text Available Abstract Background This study evaluated the relationship between the G(-866A polymorphism of the uncoupling protein 2 (UCP2 gene and high-sensitivity C reactive protein (hs-CRP plasma levels in diabetic patients. Methods We studied 383 unrelated people with type 2 diabetes aged 40-70 years. Anthropometry, fasting lipids, glucose, HbA1c, and hs-CRP were measured. Participants were genotyped for the G (-866A polymorphism of the uncoupling protein 2 gene. Results Hs-CRP (mg/L increased progressively across the three genotype groups AA, AG, or GG, being respectively 3.0 ± 3.2, 3.6 ± 5.0, and 4.8 ± 5.3 (p for trend = 0.03. Since hs-CRP values were not significantly different between AA and AG genotype, these two groups were pooled for further analyses. Compared to participants with the AA/AG genotypes, homozygotes for the G allele (GG genotype had significantly higher hs-CRP levels (4.8 ± 5.3 vs 3.5 ± 4.7 mg/L, p = 0.01 and a larger proportion (53.9% vs 46.1%, p = 0.013 of elevated hs-CRP (> 2 mg/L. This was not explained by major confounders such as age, gender, BMI, waist circumference, HbA1c, smoking, or medications use which were comparable in the two genotype groups. Conclusions The study shows for the first time, in type 2 diabetic patients, a significant association of hs-CRP levels with the G(-866A polymorphism of UCP2 beyond the effect of major confounders.

  6. Cyclosporine Induces Endothelial Cell Release of Complement-Activating Microparticles

    Science.gov (United States)

    Renner, Brandon; Klawitter, Jelena; Goldberg, Ryan; McCullough, James W.; Ferreira, Viviana P.; Cooper, James E.; Christians, Uwe

    2013-01-01

    Defective control of the alternative pathway of complement is an important risk factor for several renal diseases, including atypical hemolytic uremic syndrome. Infections, drugs, pregnancy, and hemodynamic insults can trigger episodes of atypical hemolytic uremic syndrome in susceptible patients. Although the mechanisms linking these clinical events with disease flares are unknown, recent work has revealed that each of these clinical conditions causes cells to release microparticles. We hypothesized that microparticles released from injured endothelial cells promote intrarenal complement activation. Calcineurin inhibitors cause vascular and renal injury and can trigger hemolytic uremic syndrome. Here, we show that endothelial cells exposed to cyclosporine in vitro and in vivo release microparticles that activate the alternative pathway of complement. Cyclosporine-induced microparticles caused injury to bystander endothelial cells and are associated with complement-mediated injury of the kidneys and vasculature in cyclosporine-treated mice. Cyclosporine-induced microparticles did not bind factor H, an alternative pathway regulatory protein present in plasma, explaining their complement-activating phenotype. Finally, we found that in renal transplant patients, the number of endothelial microparticles in plasma increases 2 weeks after starting tacrolimus, and treatment with tacrolimus associated with increased C3 deposition on endothelial microparticles in the plasma of some patients. These results suggest that injury-associated release of endothelial microparticles is an important mechanism by which systemic insults trigger intravascular complement activation and complement-dependent renal diseases. PMID:24092930

  7. Complement activating soluble pattern recognition molecules with collagen-like regions, mannan-binding lectin, ficolins and associated proteins

    DEFF Research Database (Denmark)

    Thiel, Steffen

    2007-01-01

    Mannan-binding lectin (MBL), L-ficolin, M-ficolin and H-ficolin are all complement activating soluble pattern recognition molecules with recognition domains linked to collagen-like regions. All four may form complexes with four structurally related proteins, the three MBL-associated serine...... proteases (MASPs), MASP-1, MASP-2 and MASP-3, and a smaller MBL-associated protein (MAp19). The four recognition molecules recognize patterns of carbohydrate or acetyl-group containing ligands. After binding to the relevant targets all four are able to activate the complement system. We thus have a system...... where four different and/or overlapping patterns of microbial origin or patterns of altered-self may be recognized, but in all cases the signalling molecules, the MASPs, are shared. MASP-1 and MASP-3 are formed from one gene, MASP1/3, by alternative splicing generating two different mRNAs from a single...

  8. Inhibition of protein kinase C induces differentiation in Neuro-2a cells

    International Nuclear Information System (INIS)

    Minana, M.D.; Felipo, V.; Grisolia, S.

    1990-01-01

    1-(5-Isoquinolinylsulfonyl)-2-methylpiperazine (H7), a potent inhibitor of protein kinase C, induced neuritogenesis in Neuro-2a cells, whereas N-(2-guanidinoethyl)-5-isoquinolinesulfonamide (HA 1004), which inhibits more efficiently cAMP- and cGMP-dependent protein kinases, did not. The effect, noticeable after 3 hr, was maximum (13-fold increase at 500 μM H7) between 1 and 3 days and was maintained over 2 months. In controls, 90% of the cells were undifferentiated, whereas after 3 hr with 500 μM H7 only 25% of the cells remained undifferentiated. DNA synthesis decreased as the number of differentiated cells increased. Differentiation is also functional since acetylcholinesterase activity increased ∼7-fold after 48 hr with 500 μM H7. Phorbol 12-myristate 13-acetate, a specific activator of protein kinase C, prevented or reversed the induction of neuritogenesis and the inhibition of DNA synthesis by H7. There is a good correlation between the level of protein kinase C and the percentage of differentiated cells. The results indicate that protein kinase C may play a key role in the control of differentiation of neural cells. Some possible clinical implications are briefly discussed

  9. [Identification of C(2)M interacting proteins by yeast two-hybrid screening].

    Science.gov (United States)

    Yue, Shan-shan; Xia, Lai-xin

    2015-11-01

    The synaptonemal complex (SC) is a huge structure which assembles between the homologous chromosomes during meiotic prophase I. Drosophila germ cell-specific nucleoprotein C(2)M clustering at chromosomes can induce SC formation. To further study the molecular function and mechanism of C(2)M in meiosis, we constructed a bait vector for C(2)M and used the yeast two-hybrid system to identify C(2)M interacting proteins. Forty interacting proteins were obtained, including many DNA and histone binding proteins, ATP synthases and transcription factors. Gene silencing assays in Drosophila showed that two genes, wech and Psf1, may delay the disappearance of SC. These results indicate that Wech and Psf1 may form a complex with C(2)M to participate in the formation or stabilization of the SC complex.

  10. Francisella tularensis Confronts the Complement System

    Directory of Open Access Journals (Sweden)

    Susan R. Brock

    2017-12-01

    Full Text Available Francisella tularensis has developed a number of effective evasion strategies to counteract host immune defenses, not the least of which is its ability to interact with the complement system to its own advantage. Following exposure of the bacterium to fresh human serum, complement is activated and C3b and iC3b can be found covalently attached to the bacterial surface. However, the lipopolysaccharide and capsule of the F. tularensis cell wall prevent complement-mediated lysis and endow the bacterium with serum resistance. Opsonization of F. tularensis with C3 greatly increases its uptake by human neutrophils, dendritic cells and macrophages. Uptake occurs by an unusual looping morphology in human macrophages. Complement receptor 3 is thought to play an important role in opsonophagocytosis by human macrophages, and signaling through this receptor can antagonize Toll-like receptor 2-initiated macrophage activation. Complement C3 also determines the survival of infected human macrophages and perhaps other cell types. C3-opsonization of F. tularensis subsp. tularensis strain SCHU S4 results in greatly increased death of infected human macrophages, which requires more than complement receptor engagement and is independent of the intracellular replication by the pathogen. Given its entry into the cytosol of host cells, F. tularensis has the potential for a number of other complement-mediated interactions. Studies on the uptake C3-opsonized adenovirus have suggested the existence of a C3 sensing system that initiates cellular responses to cytosolic C3b present on invading microbes. Here we propose that C3 peptides enter the cytosol of human macrophages following phagosome escape of F. tularensis and are recognized as intruding molecular patterns that signal host cell death. With the discovery of new roles for intracellular C3, a better understanding of tularemia pathogenesis is likely to emerge.

  11. Intratracheally instilled titanium dioxide nanoparticles translocate to heart and liver and activate complement cascade in the heart of C57BL/6 mice

    DEFF Research Database (Denmark)

    Husain, Mainul; Wu, Dongmei; Saber, Anne T.

    2015-01-01

    translocation from the lungs. Adult female C57BL/6 mice were exposed via intratracheal instillation to 18 or 162 mu g of industrially relevant titanium dioxide nanoparticles (nano-TiO2) alongside vehicle controls. Using the nano-scale hyperspectral microscope, translocation to heart and liver was confirmed...... of translocation are unclear. We employed a nano-scale hyperspectral microscope to spatially observe and spectrally profile NPs in tissues and blood following pulmonary deposition in mice. In addition, we characterized effects occurring in blood, liver and heart at the mRNA and protein level following...... at both doses, and to blood at the highest dose, in mice analyzed 24 h post-exposure. Global gene expression profiling and ELISA analysis revealed activation of complement cascade and inflammatory processes in heart and specific activation of complement factor 3 in blood, suggesting activation of an early...

  12. The meningococcal vaccine candidate neisserial surface protein A (NspA binds to factor H and enhances meningococcal resistance to complement.

    Directory of Open Access Journals (Sweden)

    Lisa A Lewis

    2010-07-01

    Full Text Available Complement forms an important arm of innate immunity against invasive meningococcal infections. Binding of the alternative complement pathway inhibitor factor H (fH to fH-binding protein (fHbp is one mechanism meningococci employ to limit complement activation on the bacterial surface. fHbp is a leading vaccine candidate against group B Neisseria meningitidis. Novel mechanisms that meningococci employ to bind fH could undermine the efficacy of fHbp-based vaccines. We observed that fHbp deletion mutants of some meningococcal strains showed residual fH binding suggesting the presence of a second receptor for fH. Ligand overlay immunoblotting using membrane fractions from one such strain showed that fH bound to a approximately 17 kD protein, identified by MALDI-TOF analysis as Neisserial surface protein A (NspA, a meningococcal vaccine candidate whose function has not been defined. Deleting nspA, in the background of fHbp deletion mutants, abrogated fH binding and mAbs against NspA blocked fH binding, confirming NspA as a fH binding molecule on intact bacteria. NspA expression levels vary among strains and expression correlated with the level of fH binding; over-expressing NspA enhanced fH binding to bacteria. Progressive truncation of the heptose (Hep I chain of lipooligosaccharide (LOS, or sialylation of lacto-N-neotetraose LOS both increased fH binding to NspA-expressing meningococci, while expression of capsule reduced fH binding to the strains tested. Similar to fHbp, binding of NspA to fH was human-specific and occurred through fH domains 6-7. Consistent with its ability to bind fH, deleting NspA increased C3 deposition and resulted in increased complement-dependent killing. Collectively, these data identify a key complement evasion mechanism with important implications for ongoing efforts to develop meningococcal vaccines that employ fHbp as one of its components.

  13. Association between Leptin and Complement in Hepatitis C Patients with Viral Clearance: Homeostasis of Metabolism and Immunity.

    Science.gov (United States)

    Chang, Ming-Ling; Kuo, Chia-Jung; Huang, Hsin-Chih; Chu, Yin-Yi; Chiu, Cheng-Tang

    2016-01-01

    The association between leptin and complement in hepatitis C virus (HCV) infection remains unknown. A prospective study was conducted including 474 (250 genotype 1, 224 genotype 2) consecutive chronic hepatitis C (CHC) patients who had completed an anti-HCV therapy course and undergone pre-therapy and 24-week post-therapy assessments of interferon λ3-rs12979860 and HCV RNA/genotypes, anthropometric measurements, metabolic and liver profiles, and complement component 3 (C3), C4, and leptin levels. Of the 474 patients, 395 had a sustained virological response (SVR). Pre-therapy leptin levels did not differ between patients with and without an SVR. Univariate and multivariate analyses showed that sex (pre- and post-therapy, pimmune and metabolic homeostasis through association with C4 and TC. Positive alterations in C4 and TC levels reflect viral clearance after therapy in CHC patients.

  14. Site-targeted complement inhibition by a complement receptor 2-conjugated inhibitor (mTT30) ameliorates post-injury neuropathology in mouse brains.

    Science.gov (United States)

    Rich, Megan C; Keene, Chesleigh N; Neher, Miriam D; Johnson, Krista; Yu, Zhao-Xue; Ganivet, Antoine; Holers, V Michael; Stahel, Philip F

    2016-03-23

    Intracerebral complement activation after severe traumatic brain injury (TBI) leads to a cascade of neuroinflammatory pathological sequelae that propagate host-mediated secondary brain injury and adverse outcomes. There are currently no specific pharmacological agents on the market to prevent or mitigate the development of secondary cerebral insults after TBI. A novel chimeric CR2-fH compound (mTT30) provides targeted inhibition of the alternative complement pathway at the site of tissue injury. This experimental study was designed to test the neuroprotective effects of mTT30 in a mouse model of closed head injury. The administration of 500 μg mTT30 i.v. at 1 h, 4 h and 24 h after head injury attenuated complement C3 deposition in injured brains, reduced the extent of neuronal cell death, and decreased post-injury microglial activation, compared to vehicle-injected placebo controls. These data imply that site-targeted alternative pathway complement inhibition may represent a new promising therapeutic avenue for the future management of severe TBI. Copyright © 2016. Published by Elsevier Ireland Ltd.

  15. Regulation of CD93 cell surface expression by protein kinase C isoenzymes.

    Science.gov (United States)

    Ikewaki, Nobunao; Kulski, Jerzy K; Inoko, Hidetoshi

    2006-01-01

    Human CD93, also known as complement protein 1, q subcomponent, receptor (C1qRp), is selectively expressed by cells with a myeloid lineage, endothelial cells, platelets, and microglia and was originally reported to be involved in the complement protein 1, q subcomponent (C1q)-mediated enhancement of phagocytosis. The intracellular molecular events responsible for the regulation of its expression on the cell surface, however, have not been determined. In this study, the effect of protein kinases in the regulation of CD93 expression on the cell surface of a human monocyte-like cell line (U937), a human NK-like cell line (KHYG-1), and a human umbilical vein endothelial cell line (HUV-EC-C) was investigated using four types of protein kinase inhibitors, the classical protein kinase C (cPKC) inhibitor Go6976, the novel PKC (nPKC) inhibitor Rottlerin, the protein kinase A (PKA) inhibitor H-89 and the protein tyrosine kinase (PTK) inhibitor herbimycin A at their optimum concentrations for 24 hr. CD93 expression was analyzed using flow cytometry and glutaraldehyde-fixed cellular enzyme-linked immunoassay (EIA) techniques utilizing a CD93 monoclonal antibody (mAb), mNI-11, that was originally established in our laboratory as a CD93 detection probe. The nPKC inhibitor Rottlerin strongly down-regulated CD93 expression on the U937 cells in a dose-dependent manner, whereas the other inhibitors had little or no effect. CD93 expression was down-regulated by Go6976, but not by Rottlerin, in the KHYG-1 cells and by both Rottlerin and Go6976 in the HUV-EC-C cells. The PKC stimulator, phorbol myristate acetate (PMA), strongly up-regulated CD93 expression on the cell surface of all three cell-lines and induced interleukin-8 (IL-8) production by the U937 cells and interferon-gamma (IFN-gamma) production by the KHYG-1 cells. In addition, both Go6976 and Rottlerin inhibited the up-regulation of CD93 expression induced by PMA and IL-8 or IFN-gamma production in the respective cell

  16. A Revised Mechanism for the Activation of Complement C3 to C3b

    Science.gov (United States)

    Rodriguez, Elizabeth; Nan, Ruodan; Li, Keying; Gor, Jayesh; Perkins, Stephen J.

    2015-01-01

    The solution structure of complement C3b is crucial for the understanding of complement activation and regulation. C3b is generated by the removal of C3a from C3. Hydrolysis of the C3 thioester produces C3u, an analog of C3b. C3b cleavage results in C3c and C3d (thioester-containing domain; TED). To resolve functional questions in relation to C3b and C3u, analytical ultracentrifugation and x-ray and neutron scattering studies were used with C3, C3b, C3u, C3c, and C3d, using the wild-type allotype with Arg102. In 50 mm NaCl buffer, atomistic scattering modeling showed that both C3b and C3u adopted a compact structure, similar to the C3b crystal structure in which its TED and macroglobulin 1 (MG1) domains were connected through the Arg102–Glu1032 salt bridge. In physiological 137 mm NaCl, scattering modeling showed that C3b and C3u were both extended in structure, with the TED and MG1 domains now separated by up to 6 nm. The importance of the Arg102–Glu1032 salt bridge was determined using surface plasmon resonance to monitor the binding of wild-type C3d(E1032) and mutant C3d(A1032) to immobilized C3c. The mutant did not bind, whereas the wild-type form did. The high conformational variability of TED in C3b in physiological buffer showed that C3b is more reactive than previously thought. Because the Arg102-Glu1032 salt bridge is essential for the C3b-Factor H complex during the regulatory control of C3b, the known clinical associations of the major C3S (Arg102) and disease-linked C3F (Gly102) allotypes of C3b were experimentally explained for the first time. PMID:25488663

  17. Anti-complement activities of human breast-milk.

    Science.gov (United States)

    Ogundele, M O

    1999-08-01

    It has long been observed that the human milk possesses significant anti-inflammatory properties, while simultaneously protecting the infant against many intestinal and respiratory pathogens. There is, however, a paucity of information on the degree and extent of this anti-inflammatory activity. In the present study, the inhibitory effects of different fractions of human milk on serum complement activity were analysed. Colostrum and milk samples from healthy voluntary lactating donors at different postpartum ages were obtained and pooled normal human serum was used as source of complement in a modified CH50 assay. Inherent complement activity in human milk was also investigated by measuring the deposition of an activated C3 fragment on a serum-sensitive bacteria, and by haemolytic assays. Most whole- and defatted-milk samples consistently showed a dose-dependent inhibition of the serum complement activity. This inhibition was greater in mature milk compared to transitional milk samples. It was enhanced by inactivation of milk complement, and diminished by centrifugation of milk samples, which partly removed fat and larger protein components including casein micelles. Inherent complement activity in human milk was also demonstrated by haemolysis of sensitised sheep erythrocytes and deposition of C3 fragments on solid-phase bacteria. These activities were highest in the colostrum and gradually decreased as lactation proceeded. Several natural components abundant in the fluid phase of the human breast-milk have been shown to be inhibitors of complement activation in vitro. Their physiological significance probably reside in their ability to prevent inflammatory-induced tissue damage of the delicate immature gastrointestinal tract of the new-born as well as the mammary gland itself, which may arise from ongoing complement activation.

  18. Identification and functional characterisation of Complement Regulator Acquiring Surface Protein-1 of serum resistant Borrelia garinii OspA serotype 4

    Directory of Open Access Journals (Sweden)

    Zipfel Peter F

    2010-02-01

    Full Text Available Abstract Background B. burgdorferi sensu lato (sl is the etiological agent of Lyme borreliosis in humans. Spirochetes have adapted themselves to the human immune system in many distinct ways. One important immune escape mechanism for evading complement activation is the binding of complement regulators Factor H (CFH or Factor H-like protein1 (FHL-1 to Complement Regulator-Acquiring Surface Proteins (CRASPs. Results We demonstrate that B. garinii OspA serotype 4 (ST4 PBi resist complement-mediated killing by binding of FHL-1. To identify the primary ligands of FHL-1 four CspA orthologs from B. garinii ST4 PBi were cloned and tested for binding to human CFH and FHL-1. Orthologs BGA66 and BGA71 were found to be able to bind both complement regulators but with different intensities. In addition, all CspA orthologs were tested for binding to mammalian and avian CFH. Distinct orthologs were able to bind to CFH of different animal origins. Conclusions B. garinii ST4 PBi is able to evade complement killing and it can bind FHL-1 to membrane expressed proteins. Recombinant proteins BGA66 can bind FHL-1 and human CFH, while BGA71 can bind only FHL-1. All recombinant CspA orthologs from B. garinii ST4 PBi can bind CFH from different animal origins. This partly explains the wide variety of animals that can be infected by B. garinii.

  19. Nickel and low CO2-controlled motility in Chlamydomonas through complementation of a paralyzed flagella mutant with chemically regulated promoters

    Directory of Open Access Journals (Sweden)

    Rosenbaum Joel L

    2011-01-01

    Full Text Available Abstract Background Chlamydomonas reinhardtii is a model system for the biology of unicellular green algae. Chemically regulated promoters, such as the nickel-inducible CYC6 or the low CO2-inducible CAH1 promoter, may prove useful for expressing, at precise times during its cell cycle, proteins with relevant biological functions, or complementing mutants in genes encoding such proteins. To this date, this has not been reported for the above promoters. Results We fused the CYC6 and CAH1 promoters to an HA-tagged RSP3 gene, encoding a protein of the flagellar radial spoke complex. The constructs were used for chemically regulated complementation of the pf14 mutant, carrying an ochre mutation in the RSP3 gene. 7 to 8% of the transformants showed cells with restored motility after induction with nickel or transfer to low CO2 conditions, but not in non-inducing conditions. Maximum complementation (5% motile cells was reached with very different kinetics (5-6 hours for CAH1, 48 hours for CYC6. The two inducible promoters drive much lower levels of RSP3 protein expression than the constitutive PSAD promoter, which shows almost complete rescue of motility. Conclusions To our knowledge, this is the first example of the use of the CYC6 or CAH1 promoters to perform a chemically regulated complementation of a Chlamydomonas mutant. Based on our data, the CYC6 and CAH1 promoters should be capable of fully complementing mutants in genes whose products exert their biological activity at low concentrations.

  20. The alternative complement pathway control protein H binds to immune complexes and serves their detection

    International Nuclear Information System (INIS)

    Nydegger, U.E.; Corvetta, A.; Spaeth, P.J.; Spycher, M.

    1983-01-01

    During solubilization of immune complexes C3b becomes fixed to the immunoglobulin part and serves as a receptor for the alternative complement pathway control protein H. The H-C3b immune complex interaction can be made detectable using 4% polyethyleneglycol to separate free from bound 125 I-H. Tetanus toxoid (Te)/anti-Te complexes kept soluble with fresh serum and containing 125 IU of specific antibody bound 18% of 125 I-H; when fresh serum was chelated with 10 mM EDTA, 125 I-H binding was only 5%. On sucrose density gradients, the H-binding material sedimented in the range of 12 to 30 S. In 36 serum samples from rheumatoid arthritis (RA) patients and in 12 serum samples from patients with systemic lupus erythematosus (SLE), 125 I-H binding was significantly elevated to 9.5 +/- 4.7% (mean +/- 1 SD) and 13.3 +/- 5.6%, respectively, while 125 I-H binding by 36 normal human sera was 4 +/- 2%. RA samples (17/36, 47%) and SLE samples (9/12, 75%) had H-binding values increased by more than 2 SD above the normal mean. The serum samples were also assessed for conglutinin- and C1q-binding activities; a significant correlation between H and C1q binding was observed (P less than 0.001); there was no correlation between H and conglutinin binding. Although binding to immune complexes through its interaction with C3b, H clearly detects a population of complexes other than conglutinin, thus expanding the possibilities of further characterizing pathological complexes

  1. Complementary DNA and derived amino acid sequence of the α subunit of human complement protein C8: evidence for the existence of a separate α subunit messenger RNA

    International Nuclear Information System (INIS)

    Rao, A.G.; Howard, O.M.Z.; Ng, S.C.; Whitehead, A.S.; Colten, H.R.; Sodetz, J.M.

    1987-01-01

    The entire amino acid sequence of the α subunit (M/sub r/ 64,000) of the eight component of complement (C8) was determined by characterizing cDNA clones isolated from a human liver cDNA library. Two clones with overlapping inserts of net length 2.44 kilobases (kb) were isolated and found to contain the entire α coding region [1659 base pairs (bp)]. The 5' end consists of an untranslated region and a leader sequence of 30 amino acids. This sequence contains an apparent initiation Met, signal peptide, and propeptide which ends with an arginine-rich sequence that is characteristic of proteolytic processing sites found in the pro form of protein precursors. The 3' untranslated region contains two polyadenylation signals and a poly(A)sequence. RNA blot analysis of total cellular RNA from the human hepatoma cell line HepG2 revealed a message size of ∼2.5 kb. Features of the 5' and 3' sequences and the message size suggest that a separate mRNA codes for α and argues against the occurrence of a single-chain precursor form of the disulfide-linked α-λ subunit found in mature C8. Analysis of the derived amino acid sequence revealed several membrane surface seeking domains and a possible transmembrane domain. Analysis of the carbohydrate composition indicates 1 or 2 asparagine-linked but no O-linked oligosaccharide chains, a result consistent with predictions from the amino acid sequence. Most significantly, it exhibits a striking overall homology to human C9, with values of 24% on the basis of identity and 46% when conserved substitutions are allowed. As described in an accompanying report this homology also extends to the β subunit of C8

  2. Calcineurin inhibitor-induced complement system activation via ERK1/2 signalling is inhibited by SOCS-3 in human renal tubule cells.

    Science.gov (United States)

    Loeschenberger, Beatrix; Niess, Lea; Würzner, Reinhard; Schwelberger, Hubert; Eder, Iris E; Puhr, Martin; Guenther, Julia; Troppmair, Jakob; Rudnicki, Michael; Neuwirt, Hannes

    2018-02-01

    One factor that significantly contributes to renal allograft loss is chronic calcineurin inhibitor (CNI) nephrotoxicity (CIN). Among other factors, the complement (C-) system has been proposed to be involved CIN development. Hence, we investigated the impact of CNIs on intracellular signalling and the effects on the C-system in human renal tubule cells. In a qPCR array, CNI treatment upregulated C-factors and downregulated SOCS-3 and the complement inhibitors CD46 and CD55. Additionally, ERK1/-2 was required for these regulations. Following knock-down and overexpression of SOCS-3, we found that SOCS-3 inhibits ERK1/-2 signalling. Finally, we assessed terminal complement complex formation, cell viability and apoptosis. Terminal complement complex formation was induced by CNIs. Cell viability was significantly decreased, whereas apoptosis was increased. Both effects were reversed under complement component-depleted conditions. In vivo, increased ERK1/-2 phosphorylation and SOCS-3 downregulation were observed at the time of transplantation in renal allograft patients who developed a progressive decline of renal function in the follow-up compared to stable patients. The progressive cohort also had lower total C3 levels, suggesting higher complement activity at baseline. In conclusion, our data suggest that SOCS-3 inhibits CNI-induced ERK1/-2 signalling, thereby blunting the negative control of C-system activation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A new location to split Cre recombinase for protein fragment complementation.

    Science.gov (United States)

    Rajaee, Maryam; Ow, David W

    2017-11-01

    We have previously described a recombinase-mediated gene stacking system in which the Cre recombinase is used to remove lox-site flanked DNA no longer needed after each round of Bxb1 integrase-mediated site-specific integration. The Cre recombinase can be conveniently introduced by hybridization with a cre-expressing plant. However, maintaining an efficient cre-expressing line over many generations can be a problem, as high production of this DNA-binding protein might interfere with normal chromosome activities. To counter this selection against high Cre activity, we considered a split-cre approach, in which Cre activity is reconstituted after separate parts of Cre are brought into the same genome by hybridization. To insure that the recombinase-mediated gene stacking system retains its freedom to operate, we tested for new locations to split Cre into complementing fragments. In this study, we describe testing four new locations for splitting the Cre recombinase for protein fragment complementation and show that the two fragments of Cre split between Lys244 and Asn245 can reconstitute activity that is comparable to that of wild-type Cre. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  4. Real-time PCR quantification of human complement C4A and C4B genes

    Directory of Open Access Journals (Sweden)

    Fust George

    2006-01-01

    Full Text Available Abstract Background The fourth component of human complement (C4, an essential factor of the innate immunity, is represented as two isoforms (C4A and C4B in the genome. Although these genes differ only in 5 nucleotides, the encoded C4A and C4B proteins are functionally different. Based on phenotypic determination, unbalanced production of C4A and C4B is associated with several diseases, such as systemic lupus erythematosus, type 1 diabetes, several autoimmune diseases, moreover with higher morbidity and mortality of myocardial infarction and increased susceptibility for bacterial infections. Despite of this major clinical relevance, only low throughput, time and labor intensive methods have been used so far for the quantification of C4A and C4B genes. Results A novel quantitative real-time PCR (qPCR technique was developed for rapid and accurate quantification of the C4A and C4B genes applying a duplex, TaqMan based methodology. The reliable, single-step analysis provides the determination of the copy number of the C4A and C4B genes applying a wide range of DNA template concentration (0.3–300 ng genomic DNA. The developed qPCR was applied to determine C4A and C4B gene dosages in a healthy Hungarian population (N = 118. The obtained data were compared to the results of an earlier study of the same population. Moreover a set of 33 samples were analyzed by two independent methods. No significant difference was observed between the gene dosages determined by the employed techniques demonstrating the reliability of the novel qPCR methodology. A Microsoft Excel worksheet and a DOS executable are also provided for simple and automated evaluation of the measured data. Conclusion This report describes a novel real-time PCR method for single-step quantification of C4A and C4B genes. The developed technique could facilitate studies investigating disease association of different C4 isotypes.

  5. Spores of Mucor ramosissimus, Mucor plumbeus and Mucor circinelloides and their ability to activate human complement system in vitro.

    Science.gov (United States)

    Granja, Luiz Fernando Zmetek; Pinto, Lysianne; Almeida, Cátia Amancio; Alviano, Daniela Sales; Da Silva, Maria Helena; Ejzemberg, Regina; Alviano, Celuta Sales

    2010-03-01

    Complement activation by spores of Mucor ramosissimus, Mucor plumbeus and Mucor circinelloides was studied using absorbed human serum in the presence or absence of chelators (EGTA or EDTA). We found that the spore caused full complement activation when incubated with EGTA-Mg2+ or without chelators, indicating that the alternative pathway is mainly responsible for this response. In order to compare activation profiles from each species, ELISAs for C3 and C4 fragments, mannan binding lectin (MBL), C-reactive protein (CRP) and IgG studies were carried out. All proteins were present on the species tested. Immunofluorescence tests demonstrated the presence of C3 fragments on the surface of all samples, which were confluent throughout fungal surfaces. The same profile of C3, C4, MBL, CRP and IgG deposition, observed in all species, suggests a similar activation behavior for these species.

  6. Immunological evaluation of Escherichia coli-derived hepatitis C virus second envelope protein (E2) variants.

    Science.gov (United States)

    Dueñas-Carrera, S; Viña, A; Garay, H E; Reyes, O; Alvarez-Lajonchere, L; Guerra, I; González, L J; Morales, J

    2001-09-01

    Two variants of the hepatitis C virus (HCV) E2 envelope protein, lacking the C-terminal domain and comprising amino acids 458-650 (E2A) and 382-605 (E2C), respectively, were efficiently produced in BL21 (DE3) Escherichia coli cells. E2A and E2C were used to immunize mice. The E2C variant induced the maximal mean antibody titer. Anti-E2C mouse sera reacted mainly with E2 synthetic peptides covering the 70 amino acid N-terminal region of the E2 protein. Moreover, a panel of anti-HCV positive human sera recognized only the E2C protein (28.2%) and the synthetic peptide covering the HVR-1 of the E2 protein (23.1%). These data indicate the existence of an immunologically relevant region in the HVR-1 of the HCV E2 protein.

  7. Structure-function mapping of BbCRASP-1, the key complement factor H and FHL-1 binding protein of Borrelia burgdorferi.

    Science.gov (United States)

    Cordes, Frank S; Kraiczy, Peter; Roversi, Pietro; Simon, Markus M; Brade, Volker; Jahraus, Oliver; Wallis, Russell; Goodstadt, Leo; Ponting, Chris P; Skerka, Christine; Zipfel, Peter F; Wallich, Reinhard; Lea, Susan M

    2006-05-01

    Borrelia burgdorferi, a spirochaete transmitted to human hosts during feeding of infected Ixodes ticks, is the causative agent of Lyme disease, the most frequent vector-borne disease in Eurasia and North America. Sporadically Lyme disease develops into a chronic, multisystemic disorder. Serum-resistant B. burgdorferi strains bind complement factor H (FH) and FH-like protein 1 (FHL-1) on the spirochaete surface. This binding is dependent on the expression of proteins termed complement-regulator acquiring surface proteins (CRASPs). The atomic structure of BbCRASP-1, the key FHL-1/FH-binding protein of B. burgdorferi, has recently been determined. Our analysis indicates that its protein topology apparently evolved to provide a high affinity interaction site for FH/FHL-1 and leads to an atomic-level hypothesis for the functioning of BbCRASP-1. This work demonstrates that pathogens interact with complement regulators in ways that are distinct from the mechanisms used by the host and are thus obvious targets for drug design.

  8. Acquisition of negative complement regulators by the saprophyte Leptospira biflexa expressing LigA or LigB confers enhanced survival in human serum.

    Science.gov (United States)

    Castiblanco-Valencia, Mónica M; Fraga, Tatiana R; Breda, Leandro C D; Vasconcellos, Sílvio A; Figueira, Cláudio P; Picardeau, Mathieu; Wunder, Elsio; Ko, Albert I; Barbosa, Angela S; Isaac, Lourdes

    2016-05-01

    Leptospiral immunoglobulin-like (Lig) proteins are surface exposed molecules present in pathogenic but not in saprophytic Leptospira species. We have previously shown that Lig proteins interact with the soluble complement regulators Factor H (FH), FH like-1 (FHL-1), FH related-1 (FHR-1) and C4b Binding Protein (C4BP). In this study, we used the saprophyte L. biflexa serovar Patoc as a surrogate host to address the specific role of LigA and LigB proteins in leptospiral complement evasion. L. biflexa expressing LigA or LigB was able to acquire FH and C4BP. Bound complement regulators retained their cofactor activities of FI in the proteolytic cleavage of C3b and C4b. Moreover, heterologous expression of ligA and ligB genes in the saprophyte L. biflexa enhanced bacterial survival in human serum. Complement deposition on lig-transformed L. biflexa was assessed by flow cytometry analysis. With regard to MAC deposition, L. biflexa expressing LigA or LigB presented an intermediate profile: MAC deposition levels were greater than those found in the pathogenic L. interrogans, but lower than those observed for L. biflexa wildtype. In conclusion, Lig proteins contribute to in vitro control of complement activation on the leptospiral surface, promoting an increased bacterial survival in human serum. Copyright © 2016 European Federation of Immunological Societies. All rights reserved.

  9. Cefditoren and ceftriaxone enhance complement-mediated immunity in the presence of specific antibodies against antibiotic-resistant pneumococcal strains.

    Directory of Open Access Journals (Sweden)

    Elisa Ramos-Sevillano

    Full Text Available BACKGROUND: Specific antibodies mediate humoral and cellular protection against invading pathogens such as Streptococcus pneumoniae by activating complement mediated immunity, promoting phagocytosis and stimulating bacterial clearance. The emergence of pneumococcal strains with high levels of antibiotic resistance is of great concern worldwide and a serious threat for public health. METHODOLOGY/PRINCIPAL FINDINGS: Flow cytometry was used to determine whether complement-mediated immunity against three antibiotic-resistant S. pneumoniae clinical isolates is enhanced in the presence of sub-inhibitory concentrations of cefditoren and ceftriaxone. The binding of acute phase proteins such as C-reactive protein and serum amyloid P component, and of complement component C1q, to pneumococci was enhanced in the presence of serum plus either of these antibiotics. Both antibiotics therefore trigger the activation of the classical complement pathway against S. pneumoniae. C3b deposition was also increased in the presence of specific anti-pneumococcal antibodies and sub-inhibitory concentrations of cefditoren and ceftriaxone confirming that the presence of these antibiotics enhances complement-mediated immunity to S. pneumoniae. CONCLUSIONS/SIGNIFICANCE: Using cefditoren and ceftriaxone to promote the binding of acute phase proteins and C1q to pneumococci, and to increase C3b deposition, when anti-pneumococcal antibodies are present, might help reduce the impact of antibiotic resistance in S. pneumoniae infections.

  10. Targeted Delivery of Neutralizing Anti-C5 Antibody to Renal Endothelium Prevents Complement-Dependent Tissue Damage

    Directory of Open Access Journals (Sweden)

    Paolo Durigutto

    2017-09-01

    Full Text Available Complement activation is largely implicated in the pathogenesis of several clinical conditions and its therapeutic neutralization has proven effective in preventing tissue and organ damage. A problem that still needs to be solved in the therapeutic control of complement-mediated diseases is how to avoid side effects associated with chronic neutralization of the complement system, in particular, the increased risk of infections. We addressed this issue developing a strategy based on the preferential delivery of a C5 complement inhibitor to the organ involved in the pathologic process. To this end, we generated Ergidina, a neutralizing recombinant anti-C5 human antibody coupled with a cyclic-RGD peptide, with a distinctive homing property for ischemic endothelial cells and effective in controlling tissue damage in a rat model of renal ischemia/reperfusion injury (IRI. As a result of its preferential localization on renal endothelium, the molecule induced complete inhibition of complement activation at tissue level, and local protection from complement-mediated tissue damage without affecting circulating C5. The ex vivo binding of Ergidina to surgically removed kidney exposed to cold ischemia supports its therapeutic use to prevent posttransplant IRI leading to delay of graft function. Moreover, the finding that the ex vivo binding of Ergidina was not restricted to the kidney, but was also seen on ischemic heart, suggests that this RGD-targeted anti-C5 antibody may represent a useful tool to treat organs prior to transplantation. Based on this evidence, we propose preliminary data showing that Ergidina is a novel targeted drug to prevent complement activation on the endothelium of ischemic kidney.

  11. Bioactive lysophospholipids generated by hepatic lipase degradation of lipoproteins lead to complement activation via the classical pathway.

    Science.gov (United States)

    Ma, Wanchao; Paik, David C; Barile, Gaetano R

    2014-09-09

    We determined bioactivity of lysophospholipids generated by degradation of the low-density (LDL), very low-density (VLDL), and high-density (HDL) lipoproteins with hepatic lipase (HL), cholesterol esterase (CE), and lipoprotein-associated phospholipase A2 (Lp-PLA2). The LDL, VLDL, and HDL were treated with HL, CE, and Lp-PLA2 after immobilization on plates, and complement activation studies were performed with diluted human serum. Complement component 3 (C3) fixation, a marker for complement activation, was determined with a monoclonal anti-human C3d antibody. Enzymatic properties of HL and CE were assayed with triglyceride and phosphatidylcholine substrates for triglyceride hydrolase and phospholipase A activities. The ARPE-19 cells were used for viability studies. The HL degradation of human lipoproteins LDL, VLDL, or HDL results in the formation of modified lipoproteins that can activate the complement pathway. Complement activation is dose- and time-dependent upon HL and occurs via the classical pathway. Enzymatic studies suggest that the phospholipase A1 activity of HL generates complement-activating lysophospholipids. C-reactive protein (CRP), known to simultaneously interact with complement C1 and complement factor H (CFH), further enhances HL-induced complement activation. The lysophospholipids, 1-Palmitoyl-sn-glycero-3-phosphocholine and 1-Oleoyl-sn-glycero-3-phosphocholine, can be directly cytotoxic to ARPE-19 cells. The HL degradation of lipoproteins, known to accumulate in the outer retina and in drusen, can lead to the formation of bioactive lysophospholipids that can trigger complement activation and induce RPE cellular dysfunction. Given the known risk associations for age-related macular degeneration (AMD) with HL, CRP, and CFH, this study elucidates a possible damage pathway for age-related macular degeneration (AMD) in genetically predisposed individuals, that HL activity may lead to accumulation of lysophospholipids to initiate complement

  12. OsLOL1, a C2C2-type zinc finger protein, interacts with OsbZIP58 to promote seed germination through the modulation of gibberellin biosynthesis in Oryza sativa.

    Science.gov (United States)

    Wu, Jiahe; Zhu, Chuanfeng; Pang, Jinhuan; Zhang, Xiangrong; Yang, Chunlin; Xia, Guixian; Tian, Yingchuan; He, Chaozu

    2014-12-01

    Seed germination is a key developmental process in the plant life cycle that is influenced by various environmental cues and phytohormones through gene expression and a series of metabolism pathways. In the present study, we investigated a C2C2-type finger protein, OsLOL1, which promotes gibberellin (GA) biosynthesis and affects seed germination in Oryza sativa (rice). We used OsLOL1 antisense and sense transgenic lines to explore OsLOL1 functions. Seed germination timing in antisense plants was restored to wild type when exogenous GA3 was applied. The reduced expression of the GA biosynthesis gene OsKO2 and the accumulation of ent-kaurene were observed during germination in antisense plants. Based on yeast two-hybrid and firefly luciferase complementation analyses, OsLOL1 interacted with the basic leucine zipper protein OsbZIP58. The results from electrophoretic mobility shift and dual-luciferase reporter assays showed that OsbZIP58 binds the G-box cis-element of the OsKO2 promoter and activates LUC reporter gene expression, and that interaction between OsLOL1 and OsbZIP58 activates OsKO2 gene expression. In addition, OsLOL1 decreased SOD1 gene expression and accelerated programmed cell death (PCD) in the aleurone layer of rice grains. These findings demonstrate that the interaction between OsLOL1 and OsbZIP58 influences GA biosynthesis through the activation of OsKO2 via OsbZIP58, thereby stimulating aleurone PCD and seed germination. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  13. Amblyomma americanum tick calreticulin binds C1q but does not inhibit activation of the classical complement cascade.

    Science.gov (United States)

    Kim, Tae Kwon; Ibelli, Adriana Mércia Guaratini; Mulenga, Albert

    2015-02-01

    In this study we characterized Amblyomma americanum (Aam) tick calreticulin (CRT) homolog in tick feeding physiology. In nature, different tick species can be found feeding on the same animal host. This suggests that different tick species found feeding on the same host can modulate the same host anti-tick defense pathways to successfully feed. From this perspective it's plausible that different tick species can utilize universally conserved proteins such as CRT to regulate and facilitate feeding. CRT is a multi-functional protein found in most taxa that is injected into the vertebrate host during tick feeding. Apart from it's current use as a biomarker for human tick bites, role(s) of this protein in tick feeding physiology have not been elucidated. Here we show that annotated functional CRT amino acid motifs are well conserved in tick CRT. However our data show that despite high amino acid identity levels to functionally characterized CRT homologs in other organisms, AamCRT is apparently functionally different. Pichia pastoris expressed recombinant (r) AamCRT bound C1q, the first component of the classical complement system, but it did not inhibit activation of this pathway. This contrast with reports of other parasite CRT that inhibited activation of the classical complement pathway through sequestration of C1q. Furthermore rAamCRT did not bind factor Xa in contrast to reports of parasite CRT binding factor Xa, an important protease in the blood clotting system. Consistent with this observation, rAamCRT did not affect plasma clotting or platelet aggregation. We discuss our findings in the context of tick feeding physiology.

  14. Down-regulation of complement receptors on the surface of host monocyte even as in vitro complement pathway blocking interferes in dengue infection.

    Directory of Open Access Journals (Sweden)

    Cintia Ferreira Marinho

    Full Text Available In dengue virus (DENV infection, complement system (CS activation appears to have protective and pathogenic effects. In severe dengue fever (DF, the levels of DENV non-structural-1 protein and of the products of complement activation, including C3a, C5a and SC5b-9, are higher before vascular leakage occurs, supporting the hypothesis that complement activation contributes to unfavourable outcomes. The clinical manifestations of DF range from asymptomatic to severe and even fatal. Here, we aimed to characterise CS by their receptors or activation product, in vivo in DF patients and in vitro by DENV-2 stimulation on monocytes. In comparison with healthy controls, DF patients showed lower expression of CR3 (CD11b, CR4 (CD11c and, CD59 on monocytes. The DF patients who were high producers of SC5b-9 were also those that showed more pronounced bleeding or vascular leakage. Those findings encouraged us to investigate the role of CS in vitro, using monocytes isolated from healthy subjects. Prior blocking with CR3 alone (CD11b or CR3 (CD11b/CD18 reduced viral infection, as quantified by the levels of intracellular viral antigen expression and soluble DENV non-structural viral protein. However, we found that CR3 alone (CD11b or CR3 (CD11b/CD18 blocking did not influence major histocompatibility complex presentation neither active caspase-1 on monocytes, thus probably ruling out inflammasome-related mechanisms. Although it did impair the secretion of tumour necrosis factor alpha and interferon alpha. Our data provide strategies of blocking CR3 (CD11b pathways could have implications for the treatment of viral infection by antiviral-related mechanisms.

  15. CR2-mediated activation of the complement alternative pathway results in formation of membrane attack complexes on human B lymphocytes

    DEFF Research Database (Denmark)

    Nielsen, C H; Marquart, H V; Prodinger, W M

    2001-01-01

    of the CR1 binding site with the monoclonal antibody 3D9 also resulted in a minor reduction in MAC deposition, while FE8 and 3D9, in combination, markedly reduced deposition of both C3 fragments (91 +/- 5%) and C9 (95 +/- 3%). The kinetics of C3-fragment and MAC deposition, as well as the dependence of both......Normal human B lymphocytes activate the alternative pathway of complement via complement receptor type 2 (CR2, CD21), that binds hydrolysed C3 (iC3) and thereby promotes the formation of a membrane-bound C3 convertase. We have investigated whether this might lead to the generation of a C5...... convertase and consequent formation of membrane attack complexes (MAC). Deposition of C3 fragments and MAC was assessed on human peripheral B lymphocytes in the presence of 30% autologous serum containing 4.4 mM MgCl2/20 mM EGTA, which abrogates the classical pathway of complement without affecting...

  16. Monitoring Protein Conformation Changes as an Activating Step for Protein Interactions with Cross-linking/MS Analysis. / Chen, Zhuo; Rasmussen, Morten; Tahir, Salman; Clark, C.A.C; Barlow, Paul; Rappsilber, Juri

    DEFF Research Database (Denmark)

    Rasmussen, Morten

    of C3 to its active form C3b. C3 (187kDa) is a twelve domain protein (ANA, CUB, TED and MG1 to MG9). During the conversion of C3 to C3b, one domain, ANA (99 residues), is proteolytically removed and a number of domains change their position. This exposes protein-binding sites for downstream...... interactions in the complement response.   Methods 250 pmol of C3 and C3b were both cross-linked with a 1000X excess of cross-linkers. BS2G, BS3, and sulfo-EGS were applied respectively. The cross-linking products were separated with 1D-PAGE gel. Monomer bands were sliced and digested with trypsin. Cross......-terminus. The TED domain relocates as is revealed by three cross-links to the ANA domain in C3 and four cross-links to the MG1 domain in C3b, a domain that is remote in C3. In C3b case, a cross-link within the CUB domain suggests a folded structure of this domain, a matter of dispute in the competing crystal...

  17. Functional analysis of the putative peroxidase domain of FANCA, the Fanconi anemia complementation group A protein.

    Science.gov (United States)

    Ren, J; Youssoufian, H

    2001-01-01

    Fanconi anemia (FA) is an autosomal recessive disorder manifested by chromosomal breakage, birth defects, and susceptibility to bone marrow failure and cancer. At least seven complementation groups have been identified, and the genes defective in four groups have been cloned. The most common subtype is complementation group A. Although the normal functions of the gene products defective in FA cells are not completely understood, a clue to the function of the FA group A gene product (FANCA) was provided by the detection of limited homology in the amino terminal region to a class of heme peroxidases. We evaluated this hypothesis by mutagenesis and functional complementation studies. We substituted alanine residues for the most conserved FANCA residues in the putative peroxidase domain and tested their effects on known biochemical and cellular functions of FANCA. While the substitution mutants were comparable to wild-type FANCA with regard to their stability, subcellular localization, and interaction with FANCG, only the Trp(183)-to-Ala substitution (W183A) abolished the ability of FANCA to complement the sensitivity of FA group A cells to mitomycin C. By contrast, TUNEL assays for apoptosis after exposure to H2O2 showed no differences between parental FA group A cells, cells complemented with wild-type FANCA, and cells complemented with the W183A of FANCA. Moreover, semiquantitative RT-PCR analysis for the expression of the peroxide-sensitive heme oxygenase gene showed appropriate induction after H2O2 exposure. Thus, W183A appears to be essential for the in vivo activity of FANCA in a manner independent of its interaction with FANCG. Moreover, neither wild-type FANCA nor the W183A mutation appears to alter the peroxide-induced apoptosisor peroxide-sensing ability of FA group A cells. Copyright 2001 Academic Press.

  18. Characterization and expression analysis of a complement component gene in sea cucumber ( Apostichopus japonicus)

    Science.gov (United States)

    Chen, Zhong; Zhou, Zunchun; Yang, Aifu; Dong, Ying; Guan, Xiaoyan; Jiang, Bei; Wang, Bai

    2015-12-01

    The complement system plays a crucial role in the innate immune system of animals. It can be activated by distinct yet overlapping classical, alternative and lectin pathways. In the alternative pathway, complement factor B (Bf) serves as the catalytic subunit of complement component 3 (C3) convertase, which plays the central role among three activation pathways. In this study, the Bf gene in sea cucumber ( Apostichopus japonicus), termed AjBf, was obtained by rapid amplification of cDNA ends (RACE). The full-length cDNA of AjBf was 3231 bp in length barring the poly (A) tail. It contained an open reading frame (ORF) of 2742 bp encoding 913 amino acids, a 105 bp 5'-UTR (5'-terminal untranslated region) and a 384 bp 3'-UTR. AjBf was a mosaic protein with six CCP (complement control protein) domains, a VWA (von Willebrand factor A) domain, and a serine protease domain. The deduced molecular weight of AjBf protein was 101 kDa. Quantitative real time PCR (qRT-PCR) analysis indicated that the expression level of AjBf in A. japonicus was obviously higher at larval stage than that at embryonic stage. Expression detection in different tissues showed that AjBf expressed higher in coelomocytes than in other four tissues. In addation, AjBf expression in different tissues was induced significantly after LPS or PolyI:C challenge. These results indicated that AjBf plays an important role in immune responses to pathogen infection.

  19. Microinjection of Escherichia coli UvrA, B, C and D proteins into fibroblasts of xeroderma pigmentosum complementation groups A and C does not result in restoration of UV-induced DNA synthesis.

    NARCIS (Netherlands)

    J.C.M. Zwetsloot; A.P. Barbeiro; W. Vermeulen (Wim); J.H.J. Hoeijmakers (Jan); C.M.P. Backendorf (Claude)

    1986-01-01

    textabstractThe UV-induced unscheduled DNA synthesis (UDS) in cultured human fibroblasts of repair-deficient xeroderma pigmentosum complementation groups A and C was assayed after injection of identical activities of either Uvr excinuclease (UvrA, B, C and D) from Escherichia coli or endonuclease V

  20. Surface complement C3 fragments and cellular binding of microparticles in patients with SLE

    DEFF Research Database (Denmark)

    Winberg, Line Kjær; Nielsen, Claus Henrik; Jacobsen, Søren

    2017-01-01

    Objectives: To examine microparticles (MPs) from patients with SLE and healthy controls (HCs) by determining the cellular origin of the MPs, quantifying attached fragments of complement component 3 (C3) and assessing the ability of MPs to bind to circulating phagocytes and erythrocytes. These fea......Objectives: To examine microparticles (MPs) from patients with SLE and healthy controls (HCs) by determining the cellular origin of the MPs, quantifying attached fragments of complement component 3 (C3) and assessing the ability of MPs to bind to circulating phagocytes and erythrocytes...

  1. Roles for C-X-C chemokines and C5a in lung injury after hindlimb ischemia-reperfusion

    DEFF Research Database (Denmark)

    Bless, N M; Warner, R L; Padgaonkar, V A

    1999-01-01

    We evaluated the roles of the C-X-C chemokines cytokine-induced neutrophil chemoattractant (CINC) and macrophage inflammatory protein-2 (MIP-2) as well as the complement activation product C5a in development of lung injury after hindlimb ischemia-reperfusion in rats. During reperfusion, CD11b...... and CD18, but not CD11a, were upregulated on neutrophils [bronchoalveolar lavage (BAL) and blood] and lung macrophages. BAL levels of CINC and MIP-2 were increased during the ischemic and reperfusion periods. Treatment with either anti-CINC or anti-MIP-2 IgG significantly reduced lung vascular......, 58, and 23%, respectively (P MIP-2 as well as the complement activation product C5a are required for lung neutrophil recruitment and full induction of lung injury after hindlimb ischemia-reperfusion in rats....

  2. The C1q complement family of synaptic organizers: not just complementary.

    Science.gov (United States)

    Yuzaki, Michisuke

    2017-08-01

    Molecules that regulate formation, differentiation, and maintenance of synapses are called synaptic organizers. Recently, various 'C1q family' proteins have been shown to be released from neurons, and serve as a new class of synaptic organizers. Cbln1 and C1ql1 proteins regulate the formation and maintenance of parallel fiber-Purkinje cell and climbing fiber-Purkinje cell synapses, respectively, in the cerebellum. Cbln1 also modulates the function of postsynaptic delta2 glutamate receptors to regulate synaptic plasticity. C1ql2 and C1ql3, released from mossy fibers, determine the synaptic localization of postsynaptic kainate receptors in the hippocampus. C1ql3 also regulates the formation of synapses between the basolateral amygdala and the prefrontal cortex. These findings indicate the diverse functions of C1q family proteins in various brain regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. IrC2/Bf - A yeast and Borrelia responsive component of the complement system from the hard tick Ixodes ricinus

    Czech Academy of Sciences Publication Activity Database

    Urbanová, V.; Hajdušek, O.; Šíma, R.; Franta, Z.; Hönig Mondeková, Helena; Grunclová, L.; Bartošová-Sojková, P.; Jalovecká, M.; Kopáček, P.

    2018-01-01

    Roč. 76, FEB 2018 (2018), s. 86-94 ISSN 0145-305X Institutional support: RVO:61388971 Keywords : Borrelia * C3-complement convertase * Factor B Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 3.218, year: 2016

  4. TaPP2C1, a Group F2 Protein Phosphatase 2C Gene, Confers Resistance to Salt Stress in Transgenic Tobacco.

    Directory of Open Access Journals (Sweden)

    Wei Hu

    Full Text Available Group A protein phosphatases 2Cs (PP2Cs are essential components of abscisic acid (ABA signaling in Arabidopsis; however, the function of group F2 subfamily PP2Cs is currently less known. In this study, TaPP2C1 which belongs to group F2 was isolated and characterized from wheat. Expression of the TaPP2C1-GFP fusion protein suggested its ubiquitous localization within a cell. TaPP2C1 expression was downregulated by abscisic acid (ABA and NaCl treatments, but upregulated by H2O2 treatment. Overexpression of TaPP2C1 in tobacco resulted in reduced ABA sensitivity and increased salt resistance of transgenic seedlings. Additionally, physiological analyses showed that improved resistance to salt stress conferred by TaPP2C1 is due to the reduced reactive oxygen species (ROS accumulation, the improved antioxidant system, and the increased transcription of genes in the ABA-independent pathway. Finally, transgenic tobacco showed increased resistance to oxidative stress by maintaining a more effective antioxidant system. Taken together, these results demonstrated that TaPP2C1 negatively regulates ABA signaling, but positively regulates salt resistance. TaPP2C1 confers salt resistance through activating the antioxidant system and ABA-independent gene transcription process.

  5. Pseudomonas aeruginosa alkaline protease blocks complement activation via the classical and lectin pathways.

    Science.gov (United States)

    Laarman, Alexander J; Bardoel, Bart W; Ruyken, Maartje; Fernie, Job; Milder, Fin J; van Strijp, Jos A G; Rooijakkers, Suzan H M

    2012-01-01

    The complement system rapidly detects and kills Gram-negative bacteria and supports bacterial killing by phagocytes. However, bacterial pathogens exploit several strategies to evade detection by the complement system. The alkaline protease (AprA) of Pseudomonas aeruginosa has been associated with bacterial virulence and is known to interfere with complement-mediated lysis of erythrocytes, but its exact role in bacterial complement escape is unknown. In this study, we analyzed how AprA interferes with complement activation and whether it could block complement-dependent neutrophil functions. We found that AprA potently blocked phagocytosis and killing of Pseudomonas by human neutrophils. Furthermore, AprA inhibited opsonization of bacteria with C3b and the formation of the chemotactic agent C5a. AprA specifically blocked C3b deposition via the classical and lectin pathways, whereas the alternative pathway was not affected. Serum degradation assays revealed that AprA degrades both human C1s and C2. However, repletion assays demonstrated that the mechanism of action for complement inhibition is cleavage of C2. In summary, we showed that P. aeruginosa AprA interferes with classical and lectin pathway-mediated complement activation via cleavage of C2.

  6. Myocardial ischemic preconditioning upregulated protein 1(Mipu1):zinc finger protein 667 - a multifunctional KRAB/C{sub 2}H{sub 2} zinc finger protein

    Energy Technology Data Exchange (ETDEWEB)

    Han, D.; Zhang, C. [Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province (China); Fan, W.J. [Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province (China); The Second Affiliated Hospital, University of South China, Hengyang City, Hunan Province (China); Pan, W.J.; Feng, D.M.; Qu, S.L.; Jiang, Z.S. [Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province (China)

    2014-10-31

    Myocardial ischemic preconditioning upregulated protein 1 (Mipu1) is a newly discovered upregulated gene produced in rats during the myocardial ischemic preconditioning process. Mipu1 cDNA contains a 1824-base pair open reading frame and encodes a 608 amino acid protein with an N-terminal Krüppel-associated box (KRAB) domain and classical zinc finger C{sub 2}H{sub 2} motifs in the C-terminus. Mipu1 protein is located in the cell nucleus. Recent studies found that Mipu1 has a protective effect on the ischemia-reperfusion injury of heart, brain, and other organs. As a nuclear factor, Mipu1 may perform its protective function through directly transcribing and repressing the expression of proapoptotic genes to repress cell apoptosis. In addition, Mipu1 also plays an important role in regulating the gene expression of downstream inflammatory mediators by inhibiting the activation of activator protein-1 and serum response element.

  7. Direct interaction between two viral proteins, the nonstructural protein 2C and the capsid protein VP3, is required for enterovirus morphogenesis.

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2010-08-01

    Full Text Available In spite of decades-long studies, the mechanism of morphogenesis of plus-stranded RNA viruses belonging to the genus Enterovirus of Picornaviridae, including poliovirus (PV, is not understood. Numerous attempts to identify an RNA encapsidation signal have failed. Genetic studies, however, have implicated a role of the non-structural protein 2C(ATPase in the formation of poliovirus particles. Here we report a novel mechanism in which protein-protein interaction is sufficient to explain the specificity in PV encapsidation. Making use of a novel "reporter virus", we show that a quasi-infectious chimera consisting of the capsid precursor of C-cluster coxsackie virus 20 (C-CAV20 and the nonstructural proteins of the closely related PV translated and replicated its genome with wild type kinetics, whereas encapsidation was blocked. On blind passages, encapsidation of the chimera was rescued by a single mutation either in capsid protein VP3 of CAV20 or in 2C(ATPase of PV. Whereas each of the single-mutation variants expressed severe proliferation phenotypes, engineering both mutations into the chimera yielded a virus encapsidating with wild type kinetics. Biochemical analyses provided strong evidence for a direct interaction between 2C(ATPase and VP3 of PV and CAV20. Chimeras of other C-CAVs (CAV20/CAV21 or CAV18/CAV20 were blocked in encapsidation (no virus after blind passages but could be rescued if the capsid and 2C(ATPase coding regions originated from the same virus. Our novel mechanism explains the specificity of encapsidation without apparent involvement of an RNA signal by considering that (i genome replication is known to be stringently linked to translation, (ii morphogenesis is known to be stringently linked to genome replication, (iii newly synthesized 2C(ATPase is an essential component of the replication complex, and (iv 2C(ATPase has specific affinity to capsid protein(s. These conditions lead to morphogenesis at the site where newly

  8. Combination of neurofilament heavy chain and complement c3 as CSF biomarkers for ALS

    Science.gov (United States)

    Ganesalingam, Jeban; An, Jiyan; Shaw, Christopher E; Shaw, Gerry; Lacomis, David; Bowser, Robert

    2011-01-01

    Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and ultimately fatal neurodegenerative disease with an average survival of 3 years from symptom onset. Rapid and conclusive early diagnosis is essential if interventions with disease-modifying therapies are to be successful. Cytoskeletal modification and inflammation are known to occur during the pathogenesis of ALS. We measured levels of cytoskeletal proteins and inflammatory markers in the cerebrospinal fluid (CSF) of ALS, disease controls and healthy subjects. We determined threshold values for each protein that provided the optimal sensitivity and specificity for ALS within a training set, as determined by receiver operating characteristic (ROC) analysis. Interestingly, the optimal assay was a ratio of the levels for phosphorylated neurofilament heavy chain and complement C3 (pNFH/C3). We next applied this assay to a separate test set of CSF samples to verify our results. Overall, the predictive pNFH/C3 ratio identified ALS with 87.3% sensitivity and 94.6% specificity in a total of 71 ALS subjects, 52 disease control subjects and 40 healthy subjects. In addition, the level of CSF pNFH correlated with survival of ALS patients. We also detected increased pNFH in the plasma of ALS patients and observed a correlation between CSF and plasma pNFH levels within the same subjects. These findings support large-scale prospective biomarker studies to determine the clinical utility of diagnostic and prognostic signatures in ALS. PMID:21418221

  9. Arterial Blood Pressure Induces Transient C4b-Binding Protein in Human Saphenous Vein Grafts.

    Science.gov (United States)

    Kupreishvili, Koba; Meischl, Christof; Vonk, Alexander B A; Stooker, Wim; Eijsman, Leon; Blom, Anna M; Quax, Paul H A; van Hinsbergh, Victor W M; Niessen, Hans W M; Krijnen, Paul A J

    2017-05-01

    Complement is an important mediator in arterial blood pressure-induced vein graft failure. Previously, we noted activation of cell protective mechanisms in human saphenous veins too. Here we have analyzed whether C4b-binding protein (C4bp), an endogenous complement inhibitor, is present in the vein wall. Human saphenous vein segments obtained from patients undergoing coronary artery bypass grafting (n = 55) were perfused in vitro at arterial blood pressure with either autologous blood for 1, 2, 4, or 6 hr or with autologous blood supplemented with reactive oxygen species scavenger N-acetylcysteine. The segments were subsequently analyzed quantitatively for presence of C4bp and complement activation product C3d using immunohistochemistry. Perfusion induced deposition of C3d and C4bp within the media of the vessel wall, which increased reproducibly and significantly over a period of 4 hr up to 3.8% for C3d and 81% for C4bp of the total vessel area. Remarkably after 6 hr of perfusion, the C3d-positive area decreased significantly to 1.3% and the C4bp-positive area to 19% of the total area of the vein. The areas positive for both C4bp and C3d were increased in the presence of N-acetylcysteine. Exposure to arterial blood pressure leads to a transient presence of C4bp in the vein wall. This may be part of a cell-protective mechanism to counteract arterial blood pressure-induced cellular stress and inflammation in grafted veins. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Mechanisms of Host-Pathogen Protein Complex Formation and Bacterial Immune Evasion of Streptococcus suis Protein Fhb.

    Science.gov (United States)

    Li, Xueqin; Liu, Peng; Gan, Shuzhen; Zhang, Chunmao; Zheng, Yuling; Jiang, Yongqiang; Yuan, Yuan

    2016-08-12

    Streptococcus suis serotype 2 (S. suis 2)-induced sepsis and meningitis are often accompanied by bacteremia. The evasion of polymorphonuclear leukocyte-mediated phagocytic clearance is central to the establishment of bacteremia caused by S. suis 2 and is facilitated by the ability of factor H (FH)-binding protein (Fhb) to bind FH on the bacterial surface, thereby impeding alternative pathway complement activation and phagocytic clearance. Here, C3b/C3d was found to bind to Fhb, along with FH, forming a large immune complex. The formation of this immune complex was mediated by domain II of Fhb via electrostatic and hydrophobic interactions, which, to our knowledge, is a new type of interaction. Interestingly, Fhb was found to be associated with the cell envelope and also present in the culture supernatant, where secreted Fhb inhibited complement activation via interactions with domain II, thereby enhancing antiphagocytic clearance by polymorphonuclear leukocytes. Thus, Fhb is a multifunctional bacterial protein, which binds host complement component C3 as well as FH and interferes with innate immune recognition in a secret protein manner. S. suis 2 therefore appears to have developed a new strategy to combat host innate immunity and enhance survival in host blood. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Mechanisms of Host-Pathogen Protein Complex Formation and Bacterial Immune Evasion of Streptococcus suis Protein Fhb*

    Science.gov (United States)

    Li, Xueqin; Liu, Peng; Gan, Shuzhen; Zhang, Chunmao; Zheng, Yuling; Jiang, Yongqiang; Yuan, Yuan

    2016-01-01

    Streptococcus suis serotype 2 (S. suis 2)-induced sepsis and meningitis are often accompanied by bacteremia. The evasion of polymorphonuclear leukocyte-mediated phagocytic clearance is central to the establishment of bacteremia caused by S. suis 2 and is facilitated by the ability of factor H (FH)-binding protein (Fhb) to bind FH on the bacterial surface, thereby impeding alternative pathway complement activation and phagocytic clearance. Here, C3b/C3d was found to bind to Fhb, along with FH, forming a large immune complex. The formation of this immune complex was mediated by domain II of Fhb via electrostatic and hydrophobic interactions, which, to our knowledge, is a new type of interaction. Interestingly, Fhb was found to be associated with the cell envelope and also present in the culture supernatant, where secreted Fhb inhibited complement activation via interactions with domain II, thereby enhancing antiphagocytic clearance by polymorphonuclear leukocytes. Thus, Fhb is a multifunctional bacterial protein, which binds host complement component C3 as well as FH and interferes with innate immune recognition in a secret protein manner. S. suis 2 therefore appears to have developed a new strategy to combat host innate immunity and enhance survival in host blood. PMID:27342778

  12. Complement is activated in progressive multiple sclerosis cortical grey matter lesions.

    Science.gov (United States)

    Watkins, Lewis M; Neal, James W; Loveless, Sam; Michailidou, Iliana; Ramaglia, Valeria; Rees, Mark I; Reynolds, Richard; Robertson, Neil P; Morgan, B Paul; Howell, Owain W

    2016-06-22

    The symptoms of multiple sclerosis (MS) are caused by damage to myelin and nerve cells in the brain and spinal cord. Inflammation is tightly linked with neurodegeneration, and it is the accumulation of neurodegeneration that underlies increasing neurological disability in progressive MS. Determining pathological mechanisms at play in MS grey matter is therefore a key to our understanding of disease progression. We analysed complement expression and activation by immunocytochemistry and in situ hybridisation in frozen or formalin-fixed paraffin-embedded post-mortem tissue blocks from 22 progressive MS cases and made comparisons to inflammatory central nervous system disease and non-neurological disease controls. Expression of the transcript for C1qA was noted in neurons and the activation fragment and opsonin C3b-labelled neurons and glia in the MS cortical and deep grey matter. The density of immunostained cells positive for the classical complement pathway protein C1q and the alternative complement pathway activation fragment Bb was significantly increased in cortical grey matter lesions in comparison to control grey matter. The number of cells immunostained for the membrane attack complex was elevated in cortical lesions, indicating complement activation to completion. The numbers of classical (C1-inhibitor) and alternative (factor H) pathway regulator-positive cells were unchanged between MS and controls, whilst complement anaphylatoxin receptor-bearing microglia in the MS cortex were found closely apposed to cortical neurons. Complement immunopositive neurons displayed an altered nuclear morphology, indicative of cell stress/damage, supporting our finding of significant neurodegeneration in cortical grey matter lesions. Complement is activated in the MS cortical grey matter lesions in areas of elevated numbers of complement receptor-positive microglia and suggests that complement over-activation may contribute to the worsening pathology that underlies the

  13. Serum immunoglobulin and complement levels in prematures with parenteral feeding--preliminary results.

    Science.gov (United States)

    Tamaro, G; Morena, C; Uxa, F; Candusso, M; Trappan, A; de Vonderweid, U

    1993-01-01

    Immunoglobulins IgA, IgG and IgM and complement factors C3 and C4 have been measured in a population of premature infants to evaluate their degree of immunological maturity. All the infants were receiving complete parenteral nutrition. In parallel, the same parameters were measured in twenty two full term, healthy neonates. To explore maturation and liver function, the authors used other proteins as nutritional markers. Differences in the immunoglobulins, but not in the complement fractions were seen between the two groups. Two applications are suggested: incidence of infections and post partum maturation.

  14. Complementation of essential yeast GPI mannosyltransferase mutations suggests a novel specificity for certain Trypanosoma and Plasmodium PigB proteins.

    Directory of Open Access Journals (Sweden)

    Leslie K Cortes

    Full Text Available The glycosylphosphatidylinositol (GPI anchor is an essential glycolipid that tethers certain eukaryotic proteins to the cell surface. The core structure of the GPI anchor is remarkably well conserved across evolution and consists of NH2-CH2-CH2-PO4-6Manα1,2Manα1,6Manα1,4-GlcNα1,6-myo-inositol-PO4-lipid. The glycan portion of this structure may be modified with various side-branching sugars or other compounds that are heterogeneous and differ from organism to organism. One such modification is an α(1,2-linked fourth mannose (Man-IV that is side-branched to the third mannose (Man-III of the trimannosyl core. In fungi and mammals, addition of Man-III and Man-IV occurs by two distinct Family 22 α(1,2-mannosyltransferases, Gpi10/PigB and Smp3/PigZ, respectively. However, in the five protozoan parasite genomes we examined, no genes encoding Smp3/PigZ proteins were observed, despite reports of tetramannosyl-GPI structures (Man4-GPIs being produced by some parasites. In this study, we tested the hypothesis that the Gpi10/PigB proteins produced by protozoan parasites have the ability to add both Man-III and Man-IV to GPI precursors. We used yeast genetics to test the in vivo specificity of Gpi10/PigB proteins from several Plasmodium and Trypanosoma species by examining their ability to restore viability to Saccharomyces cerevisiae strains harboring lethal defects in Man-III (gpi10Δ or Man-IV (smp3Δ addition to GPI precursor lipids. We demonstrate that genes encoding PigB enzymes from T. cruzi, T. congolense and P. falciparum are each capable of separately complementing essential gpi10Δ and smp3Δ mutations, while PIGB genes from T. vivax and T. brucei only complement gpi10Δ. Additionally, we show the ability of T. cruzi PIGB to robustly complement a gpi10Δ/smp3Δ double mutant. Our data suggest that certain Plasmodium and Trypanosoma PigB mannosyltransferases can transfer more than one mannose to GPI precursors in vivo, and suggest a novel

  15. The stability of complement-mediated bactericidal activity in human serum against Salmonella.

    Directory of Open Access Journals (Sweden)

    Colette M O'Shaughnessy

    Full Text Available The complement cascade includes heat-labile proteins and care is required when handling serum in order to preserve its functional integrity. We have previously used a whole human serum bactericidal assay to show that antibody and an intact complement system are required in blood for killing of invasive isolates of Salmonella. The aim of the present study was to evaluate the conditions under which human serum can be stored and manipulated while maintaining complement integrity. Serum bactericidal activity against Salmonella was maintained for a minimum of 35 days when stored at 4°C, eight days at 22°C and 54 hours at 37°C. Up to three freeze-thaw cycles had no effect on the persistence of bactericidal activity and hemolytic complement assays confirmed no effect on complement function. Delay in the separation of serum for up to four days from clotted blood stored at 22°C did not affect bactericidal activity. Dilution of serum resulted in an increased rate of loss of bactericidal activity and so serum should be stored undiluted. These findings indicate that the current guidelines concerning manipulation and storage of human serum to preserve complement integrity and function leave a large margin for safety with regards to bactericidal activity against Salmonella. The study provides a scheme for determining the requirements for serum handling in relation to functional activity of complement in other systems.

  16. CR2-mediated activation of the complement alternative pathway results in formation of membrane attack complexes on human B lymphocytes

    DEFF Research Database (Denmark)

    Nielsen, C H; Marquart, H V; Prodinger, W M

    2001-01-01

    the alternative pathway. Blockade of the CR2 ligand-binding site with the monoclonal antibody FE8 resulted in 56 +/- 13% and 71 +/- 9% inhibition of the C3-fragment and MAC deposition, respectively, whereas the monoclonal antibody HB135, directed against an irrelevant CR2 epitope, had no effect. Blockade......Normal human B lymphocytes activate the alternative pathway of complement via complement receptor type 2 (CR2, CD21), that binds hydrolysed C3 (iC3) and thereby promotes the formation of a membrane-bound C3 convertase. We have investigated whether this might lead to the generation of a C5...... processes on CR2, indicate that MAC formation is a consequence of alternative pathway activation....

  17. Identification of human hnRNP C1/C2 as a dengue virus NS1-interacting protein

    International Nuclear Information System (INIS)

    Noisakran, Sansanee; Sengsai, Suchada; Thongboonkerd, Visith; Kanlaya, Rattiyaporn; Sinchaikul, Supachok; Chen, Shui-Tein; Puttikhunt, Chunya

    2008-01-01

    Dengue virus nonstructural protein 1 (NS1) is a key glycoprotein involved in the production of infectious virus and the pathogenesis of dengue diseases. Very little is known how NS1 interacts with host cellular proteins and functions in dengue virus-infected cells. This study aimed at identifying NS1-interacting host cellular proteins in dengue virus-infected cells by employing co-immunoprecipitation, two-dimensional gel electrophoresis, and mass spectrometry. Using lysates of dengue virus-infected human embryonic kidney cells (HEK 293T), immunoprecipitation with an anti-NS1 monoclonal antibody revealed eight isoforms of dengue virus NS1 and a 40-kDa protein, which was subsequently identified by quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS) as human heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2. Further investigation by co-immunoprecipitation and co-localization confirmed the association of hnRNP C1/C2 and dengue virus NS1 proteins in dengue virus-infected cells. Their interaction may have implications in virus replication and/or cellular responses favorable to survival of the virus in host cells

  18. Acylation stimulating protein, complement C3 and lipid metabolism in ketosis-prone diabetic subjects.

    Directory of Open Access Journals (Sweden)

    Yan Liu

    Full Text Available Ketosis-prone diabetes (KPDM is new-onset diabetic ketoacidosis without precipitating factors in non-type 1 diabetic patients; after management, some are withdrawn from exogenous insulin, although determining factors remain unclear.Twenty KPDM patients and twelve type 1 diabetic patients (T1DM, evaluated at baseline, 12 and 24 months with/without insulin maintenance underwent a standardized mixed-meal tolerance test (MMTT for 2 h.At baseline, triglyceride and C3 were higher during MMTT in KPDM vs. T1DM (p<0.0001 with no differences in non-esterified fatty acids (NEFA while Acylation Stimulating Protein (ASP tended to be higher. Within 12 months, 11 KPDM were withdrawn from insulin treatment (KPDM-ins, while 9 were maintained (KPDM+ins. NEFA was lower in KPDM-ins vs. KPDM+ins at baseline (p = 0.0006, 12 months (p<0.0001 and 24 months (p<0.0001 during MMTT. NEFA in KPDM-ins decreased over 30-120 minutes (p<0.05, but not in KPDM+ins. Overall, C3 was higher in KPDM-ins vs KPDM+ins at 12 months (p = 0.0081 and 24 months (p = 0.0019, while ASP was lower at baseline (p = 0.0024 and 12 months (p = 0.0281, with a decrease in ASP/C3 ratio.Notwithstanding greater adiposity in KPDM-ins, greater NEFA decreases and lower ASP levels during MMTT suggest better insulin and ASP sensitivity in these patients.

  19. Protective function of complement against alcohol-induced rat liver damage.

    Science.gov (United States)

    Bykov, Igor L; Väkevä, Antti; Järveläinen, Harri A; Meri, Seppo; Lindros, Kai O

    2004-11-01

    The complement system can promote tissue damage or play a homeostatic role in the clearance and disposal of damaged tissue. We assessed the role of the terminal complement pathway in alcohol-induced liver damage in complement C6 (C6-/-) genetically deficient rats. C6-/- and corresponding C6+/+ rats were continuously exposed to ethanol by feeding ethanol-supplemented liquid diet for six weeks. Liver samples were analyzed for histopathology and complement component deposition by immunofluorescence microscopy. Prostaglandin E receptors and cytokine mRNA levels were analyzed by RT-PCR and plasma cytokines by ELISA. Deposition of complement components C1, C3, C8 and C9 was observed in C6+/+ rats, but not in C6-/- animals. The histopathological changes, the liver weight increase and the elevation of the plasma pro-/anti-inflammatory TNF-alpha/IL-10 ratio were, on the other hand, more marked in C6-/- rats. Furthermore, ethanol enhanced the hepatic mRNA expression of the prostaglandin E receptors EP2R and EP4R exclusively in the C6-/- rats. Our results indicate that a deficient terminal complement pathway predisposes to tissue injury and promotes a pro-inflammatory cytokine response. This suggests that an intact complement system has a protective function in the development of alcoholic liver damage.

  20. The role of C-reactive protein and polyarginine in tumor immunotherapy.

    Science.gov (United States)

    Rizk, S L; Mold, C; Haklin, M; Roseman, D L

    1986-07-01

    C-reactive protein (CRP) is an acute-phase reactant whose serum level rises rapidly in response to tissue injury. C-reactive protein binding to cells can activate the classical complement pathway, and enhance opsonophagocytosis. The polycation poly-L-arginine (PLA) can artificially fix CRP to target cells. The effects of CRP and PLA on tumor growth were evaluated, both independently and synergistically, using the V X 2 tumor line in the rabbit host. Ten normal animals and seven acute-phase animals were bilaterally inoculated with V X 2 cells (control side) and PLA-treated V X 2 cells (experimental side). Tumor growth was significantly retarded on the treatment side (P less than 0.005), in both animal groups. It is concluded that topical PLA is a potent inhibitor of V X 2 tumor growth. Comparison of normal and acute-phase animals revealed no persistent difference in tumor growth for either cell inoculum. Similarly, cell treatment with topical CRP did not inhibit tumor growth, whether PLA was present or not. Thus, circulating and topical CRP did not alter the rate of V X 2 tumor growth. PLA cytotoxicity remains to be evaluated when the agent is administered orthotopically, selectively, or systemically.

  1. The complement system: a gateway to gene-environment interactions in schizophrenia pathogenesis.

    Science.gov (United States)

    Nimgaonkar, V L; Prasad, K M; Chowdari, K V; Severance, E G; Yolken, R H

    2017-11-01

    The pathogenesis of schizophrenia is considered to be multi-factorial, with likely gene-environment interactions (GEI). Genetic and environmental risk factors are being identified with increasing frequency, yet their very number vastly increases the scope of possible GEI, making it difficult to identify them with certainty. Accumulating evidence suggests a dysregulated complement pathway among the pathogenic processes of schizophrenia. The complement pathway mediates innate and acquired immunity, and its activation drives the removal of damaged cells, autoantigens and environmentally derived antigens. Abnormalities in complement functions occur in many infectious and autoimmune disorders that have been linked to schizophrenia. Many older reports indicate altered serum complement activity in schizophrenia, though the data are inconclusive. Compellingly, recent genome-wide association studies suggest repeat polymorphisms incorporating the complement 4A (C4A) and 4B (C4B) genes as risk factors for schizophrenia. The C4A/C4B genetic associations have re-ignited interest not only in inflammation-related models for schizophrenia pathogenesis, but also in neurodevelopmental theories, because rodent models indicate a role for complement proteins in synaptic pruning and neurodevelopment. Thus, the complement system could be used as one of the 'staging posts' for a variety of focused studies of schizophrenia pathogenesis. They include GEI studies of the C4A/C4B repeat polymorphisms in relation to inflammation-related or infectious processes, animal model studies and tests of hypotheses linked to autoimmune diseases that can co-segregate with schizophrenia. If they can be replicated, such studies would vastly improve our understanding of pathogenic processes in schizophrenia through GEI analyses and open new avenues for therapy.

  2. Depression of Complement Regulatory Factors in Rat and Human Renal Grafts Is Associated with the Progress of Acute T-Cell Mediated Rejection.

    Directory of Open Access Journals (Sweden)

    Kazuaki Yamanaka

    Full Text Available The association of complement with the progression of acute T cell mediated rejection (ATCMR is not well understood. We investigated the production of complement components and the expression of complement regulatory proteins (Cregs in acute T-cell mediated rejection using rat and human renal allografts.We prepared rat allograft and syngeneic graft models of renal transplantation. The expression of Complement components and Cregs was assessed in the rat grafts using quantitative real-time PCR (qRT-PCR and immunofluorescent staining. We also administered anti-Crry and anti-CD59 antibodies to the rat allograft model. Further, we assessed the relationship between the expression of membrane cofactor protein (MCP by immunohistochemical staining in human renal grafts and their clinical course.qRT-PCR results showed that the expression of Cregs, CD59 and rodent-specific complement regulator complement receptor 1-related gene/protein-y (Crry, was diminished in the rat allograft model especially on day 5 after transplantation in comparison with the syngeneic model. In contrast, the expression of complement components and receptors: C3, C3a receptor, C5a receptor, Factor B, C9, C1q, was increased, but not the expression of C4 and C5, indicating a possible activation of the alternative pathway. When anti-Crry and anti-CD59 mAbs were administered to the allograft, the survival period for each group was shortened. In the human ATCMR cases, the group with higher MCP expression in the grafts showed improved serum creatinine levels after the ATCMR treatment as well as a better 5-year graft survival rate.We conclude that the expression of Cregs in allografts is connected with ATCMR. Our results suggest that controlling complement activation in renal grafts can be a new strategy for the treatment of ATCMR.

  3. Glucohexaose-induced protein phosphatase 2C regulates cell redox ...

    Indian Academy of Sciences (India)

    Q M Chen

    2018-02-13

    Feb 13, 2018 ... glucohexaose, CsPP2C80s play a positive regulatory role in process of ABA combined with ABA receptors ..... protein kinases (SnRKs) involve in the stress responses .... In this work, the endogenous ABA content increased.

  4. Interaction of C1q and mannan-binding lectin (MBL) with C1r, C1s, MBL-associated serine proteases 1 and 2, and the MBL-associated protein MAp19

    DEFF Research Database (Denmark)

    Thiel, S; Petersen, Steen Vang; Vorup-Jensen, T

    2000-01-01

    . There is controversy as to whether MBL can utilize C1r and C1s or, inversely, whether C1q can utilize MASP-1 and 2. Serum deficient in C1r produced no complement activation in IgG-coated microwells, whereas activation was seen in mannan-coated microwells. In serum, C1r and C1s were found to be associated only with C1q...

  5. Genetic Variation in Complement Component 2 of the Classical Complement Pathway is Associated with Increased Mortality and Infection: A Study of 627 Trauma Patients

    Science.gov (United States)

    Morris, John A.; Francois, Cedric; Olson, Paul K.; Cotton, Bryan A.; Summar, Marshall; Jenkins, Judith M.; Norris, Patrick R.; Moore, Jason H.; Williams, Anna E.; McNew, Brent S.; Canter, Jeffrey A.

    2009-01-01

    Trauma is a disease of inflammation. Complement Component 2 (C2) is a protease involved in activation of complement through the classical pathway and has been implicated in a variety of chronic inflammatory diseases. We hypothesized that genetic variation in C2 (E318D) identifies a high-risk subgroup of trauma patients reflecting increased mortality and infection (Ventilator associated pneumonia: VAP). Consequently, genetic variation in C2 may stratify patient risk and illuminate underlying mechanisms for therapeutic intervention. Methods DNA samples from 702 trauma patients were genotyped for C2 E318D and linked with covariates (age: mean 42.8 years, gender: 74% male, ethnicity: 80% Caucasian, mechanism: 84% blunt, ISS: mean 25.0, admission lactate: mean 3.13 mEq/L) and outcomes: mortality 9.9% and VAP: 18.5%. VAP was defined by quantitative bronchoalveolar lavage (>104). Multivariate regression determined the relationship of genotype and covariates to risk of death and VAP. However, patients with ISS ≥ 45 were excluded from the multivariate analysis, as magnitude of injury overwhelms genetics and covariates in determining outcome. Results 52 patients (8.3%) had the high-risk heterozygous genotype, associated with a significant increase in mortality and VAP. Conclusion In 702 trauma patients, 8.3% had a high-risk genetic variation in C2 associated with increased mortality (OR=2.65) and infection (OR=2.00). This variation: 1) Identifies a previously unknown high risk group for infection and mortality; 2) Can be determined on admission; 3) May provide opportunity for early therapeutic intervention; and 4) Requires validation in a distinct cohort of patients. PMID:19430225

  6. Identification of poly(rC) binding protein 2 (PCBP2) as a target protein of immunosuppressive agent 15-deoxyspergualin

    Energy Technology Data Exchange (ETDEWEB)

    Murahashi, Masataka; Simizu, Siro; Morioka, Masahiko [Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Umezawa, Kazuo, E-mail: umezawa@aichi-med-u.ac.jp [Department of Molecular Target Medicine, Aichi Medical University School of Medicine, 1-1 Yazako-Karimata, Nagakute 480-1195 (Japan)

    2016-08-05

    15-Deoxyspergualin (DSG) is an immunosuppressive agent being clinically used. Unlike tacrolimus and cyclosporine A, it does not inhibit the calcineurin pathway, and its mechanism of action and target molecule have not been elucidated. Therefore, we previously prepared biotinylated derivative of DSG (BDSG) to fish up the target protein. In the present research, we identified poly(rC) binding protein 2 (PCBP2) as a DSG-binding protein using this probe. DSG was confirmed to bind to PCBP2 by pull-down assay. Intracellular localization of PCBP2 was changed from the nucleus to the cytoplasm by DSG treatment. DSG inhibited the cell growth, and over-expression of PCBP2 reduced the anti-proliferative activity of DSG. PCBP2 is known to regulate various proteins including STAT1/2. Thus, we found PCBP2 as the first target protein of DSG that can explain the immunosuppressive activity. -- Highlights: •Fifteen-deoxyspergualin (DSG) is an immunosuppressive agent clinically used. •We have identified PCBP2, an RNA-binding protein, as a molecular target of DSG. •Alteration of PCBP2 activity may explain the immunosuppressive activity of DSG.

  7. Deficiency of C5L2 increases macrophage infiltration and alters adipose tissue function in mice.

    Directory of Open Access Journals (Sweden)

    Danny Gauvreau

    Full Text Available BACKGROUND: Obesity is considered as a systemic chronic low grade inflammation characterized by increased serum pro-inflammatory proteins and accumulation of macrophages within white adipose tissue (WAT of obese patients. C5L2, a 7-transmembrane receptor, serves a dual function, binding the lipogenic hormone acylation stimulating protein (ASP, and C5a, involved in innate immunity. AIM: We evaluated the impact of C5L2 on macrophage infiltration in WAT of wildtype (Ctl and C5L2 knock-out (C5L2(-/- mice over 6, 12 and 24 weeks on a chow diet and moderate diet-induced obesity (DIO conditions. RESULTS: In Ctl mice, WAT C5L2 and C5a receptor mRNA increased (up to 10-fold both over time and with DIO. By contrast, in C5L2(-/-, there was no change in C5aR in WAT. C5L2(-/- mice displayed higher macrophage content in WAT, varying by time, fat depot and diet, associated with altered systemic and WAT cytokine patterns compared to Ctl mice. However, in all cases, the M1 (pro- vs M2 (anti-inflammatory macrophage proportion was unchanged but C5L2(-/- adipose tissue secretome appeared to be more chemoattractant. Moreover, C5L2(-/- mice have increased food intake, increased WAT, and altered WAT lipid gene expression, which is reflected systemically. Furthermore, C5L2(-/- mice have altered glucose/insulin metabolism, adiponectin and insulin signalling gene expression in WAT, which could contribute to development of insulin resistance. CONCLUSION: Disruption of C5L2 increases macrophage presence in WAT, contributing to obesity-associated pathologies, and further supports a dual role of complement in WAT. Understanding this effect of the complement system pathway could contribute to targeting treatment of obesity and its comorbidities.

  8. Vernonia DGATs can complement the disrupted oil and protein metabolism in epoxygenase-expressing soybean seeds.

    Science.gov (United States)

    Li, Runzhi; Yu, Keshun; Wu, Yongmei; Tateno, Mizuki; Hatanaka, Tomoko; Hildebrand, David F

    2012-01-01

    Plant oils can be useful chemical feedstocks such as a source of epoxy fatty acids. High seed-specific expression of a Stokesia laevis epoxygenase (SlEPX) in soybeans only results in 3-7% epoxide levels. SlEPX-transgenic soybean seeds also exhibited other phenotypic alterations, such as altered seed fatty acid profiles, reduced oil accumulation, and variable protein levels. SlEPX-transgenic seeds showed a 2-5% reduction in total oil content and protein levels of 30.9-51.4%. To address these pleiotrophic effects of SlEPX expression on other traits, transgenic soybeans were developed to co-express SlEPX and DGAT (diacylglycerol acyltransferase) genes (VgDGAT1 & 2) isolated from Vernonia galamensis, a high accumulator of epoxy fatty acids. These side effects of SlEPX expression were largely overcome in the DGAT co-expressing soybeans. Total oil and protein contents were restored to the levels in non-transgenic soybeans, indicating that both VgDGAT1 and VgDGAT2 could complement the disrupted phenotypes caused by over-expression of an epoxygenase in soybean seeds. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Complement regulation in murine and human hypercholesterolemia and role in the control of macrophage and smooth muscle cell proliferation.

    Science.gov (United States)

    Verdeguer, Francisco; Castro, Claudia; Kubicek, Markus; Pla, Davinia; Vila-Caballer, Marian; Vinué, Angela; Civeira, Fernando; Pocoví, Miguel; Calvete, Juan José; Andrés, Vicente

    2007-11-01

    Mounting evidence suggests that activation of complement, an important constituent of innate immunity, contributes to atherosclerosis. Here we investigated the expression of complement components (CCs) in the setting of experimental and clinical hypercholesterolemia, a major risk factor for atherosclerosis, their effects on vascular smooth muscle cell (VSMC) and macrophage proliferation, and the underlying molecular mechanisms. For this study we analyzed the mRNA and protein expression of several CCs in plasma and aorta of hypercholesterolemic atherosclerosis-prone apolipoprotein E-null mice (apoE-KO) and in plasma of normocholesterolemic subjects and familial hypercholesterolemia (FH) patients. We also carried out in vitro molecular studies to assess the role of CCs on the control of macrophage and VSMC proliferation. Fat-fed apoE-KO mice experiencing severe hypercholesterolemia (approximately 400 mg/dL), but not fat-fed wild-type controls with plasma cholesterol levelfeeding when hypercholesterolemia was manifested yet atherosclerotic lesions were absent or incipient. Rapid C3 and C4 protein upregulation was also observed in the plasma of fat-fed apoE-KO mice, and FH patients exhibited higher plasmatic C3a, C4 gamma chain, C1s and C3c alpha chain protein levels than normocholesterolemic subjects. In vitro, C3 and C3a, but not C3a-desArg, C4 and C1q, promoted macrophage and VSMC proliferation through Gi protein-dependent activation of extracellular signal-regulated kinase 1/2 (ERK1/2). We also found that C3-enriched FH plasma evoked a stronger mitogenic response in macrophages than normocholesterolemic plasma, and treatment with anti-C3 antibodies eliminated this difference. Both experimental and clinical hypercholesterolemia coincides with a concerted activation of several CCs. However, only C3 and C3a elicited a mitogenic response in cultured VSMCs and macrophages through Gi protein-dependent ERK1/2 activation. Thus, excess of C3/C3a in hypercholesterolemic apo

  10. The salivary scavenger and agglutinin (SALSA binds MBL and regulates the lectin pathway of complement in solution and on surfaces

    Directory of Open Access Journals (Sweden)

    Martin eParnov Reichhardt

    2012-07-01

    Full Text Available The scavenger receptor cysteine-rich (SRCR protein SALSA, also known as gp340, salivary agglutinin (SAG and deleted in malignant brain tumor 1 (DMBT1, is a 340 kDa glycoprotein expressed on mucosal surfaces and secreted into several body fluids. SALSA binds to a broad variety of microbes and endogenous ligands, such as complement factor C1q, surfactant proteins D and A (SP-D and SP-A and IgA. Our search for novel ligands of SALSA by direct protein-interaction studies led to the identification of mannan binding lectin (MBL as a new binding partner. We observed that surface-associated SALSA activates complement via binding of MBL. On the other hand, soluble SALSA was found to inhibit C. albicans-induced complement activation. Thus, SALSA has a dual complement regulatory function. It activates the lectin pathway when bound to a surface and inhibits it when free in the fluid-phase. These activities are mediated via a direct interaction with MBL.

  11. Large-scale protein-protein interaction analysis in Arabidopsis mesophyll protoplasts by split firefly luciferase complementation.

    Science.gov (United States)

    Li, Jian-Feng; Bush, Jenifer; Xiong, Yan; Li, Lei; McCormack, Matthew

    2011-01-01

    Protein-protein interactions (PPIs) constitute the regulatory network that coordinates diverse cellular functions. There are growing needs in plant research for creating protein interaction maps behind complex cellular processes and at a systems biology level. However, only a few approaches have been successfully used for large-scale surveys of PPIs in plants, each having advantages and disadvantages. Here we present split firefly luciferase complementation (SFLC) as a highly sensitive and noninvasive technique for in planta PPI investigation. In this assay, the separate halves of a firefly luciferase can come into close proximity and transiently restore its catalytic activity only when their fusion partners, namely the two proteins of interest, interact with each other. This assay was conferred with quantitativeness and high throughput potential when the Arabidopsis mesophyll protoplast system and a microplate luminometer were employed for protein expression and luciferase measurement, respectively. Using the SFLC assay, we could monitor the dynamics of rapamycin-induced and ascomycin-disrupted interaction between Arabidopsis FRB and human FKBP proteins in a near real-time manner. As a proof of concept for large-scale PPI survey, we further applied the SFLC assay to testing 132 binary PPIs among 8 auxin response factors (ARFs) and 12 Aux/IAA proteins from Arabidopsis. Our results demonstrated that the SFLC assay is ideal for in vivo quantitative PPI analysis in plant cells and is particularly powerful for large-scale binary PPI screens.

  12. Large-scale protein-protein interaction analysis in Arabidopsis mesophyll protoplasts by split firefly luciferase complementation.

    Directory of Open Access Journals (Sweden)

    Jian-Feng Li

    Full Text Available Protein-protein interactions (PPIs constitute the regulatory network that coordinates diverse cellular functions. There are growing needs in plant research for creating protein interaction maps behind complex cellular processes and at a systems biology level. However, only a few approaches have been successfully used for large-scale surveys of PPIs in plants, each having advantages and disadvantages. Here we present split firefly luciferase complementation (SFLC as a highly sensitive and noninvasive technique for in planta PPI investigation. In this assay, the separate halves of a firefly luciferase can come into close proximity and transiently restore its catalytic activity only when their fusion partners, namely the two proteins of interest, interact with each other. This assay was conferred with quantitativeness and high throughput potential when the Arabidopsis mesophyll protoplast system and a microplate luminometer were employed for protein expression and luciferase measurement, respectively. Using the SFLC assay, we could monitor the dynamics of rapamycin-induced and ascomycin-disrupted interaction between Arabidopsis FRB and human FKBP proteins in a near real-time manner. As a proof of concept for large-scale PPI survey, we further applied the SFLC assay to testing 132 binary PPIs among 8 auxin response factors (ARFs and 12 Aux/IAA proteins from Arabidopsis. Our results demonstrated that the SFLC assay is ideal for in vivo quantitative PPI analysis in plant cells and is particularly powerful for large-scale binary PPI screens.

  13. Adaptation of Tri-molecular fluorescence complementation allows assaying of regulatory Csr RNA-protein interactions in bacteria.

    Science.gov (United States)

    Gelderman, Grant; Sivakumar, Anusha; Lipp, Sarah; Contreras, Lydia

    2015-02-01

    sRNAs play a significant role in controlling and regulating cellular metabolism. One of the more interesting aspects of certain sRNAs is their ability to make global changes in the cell by interacting with regulatory proteins. In this work, we demonstrate the use of an in vivo Tri-molecular Fluorescence Complementation assay to detect and visualize the central regulatory sRNA-protein interaction of the Carbon Storage Regulatory system in E. coli. The Carbon Storage Regulator consists primarily of an RNA binding protein, CsrA, that alters the activity of mRNA targets and of an sRNA, CsrB, that modulates the activity of CsrA. We describe the construction of a fluorescence complementation system that detects the interactions between CsrB and CsrA. Additionally, we demonstrate that the intensity of the fluorescence of this system is able to detect changes in the affinity of the CsrB-CsrA interaction, as caused by mutations in the protein sequence of CsrA. While previous methods have adopted this technique to study mRNA or RNA localization, this is the first attempt to use this technique to study the sRNA-protein interaction directly in bacteria. This method presents a potentially powerful tool to study complex bacterial RNA protein interactions in vivo. © 2014 Wiley Periodicals, Inc.

  14. Crystallization and X-ray diffraction analysis of the complement component-3 (C3) inhibitory domain of Efb from Staphylococcus aureus

    International Nuclear Information System (INIS)

    Hammel, Michal; Ramyar, Kasra X.; Spencer, Charles T.; Geisbrecht, Brian V.

    2006-01-01

    The crystallization and results of multiwavelength anomalous diffraction studies of a recombinant C3-inhibitory fragment of Efb from S. aureus are reported. The extracellular fibrinogen-binding protein (Efb) of Staphylococcus aureus is a multifunctional virulence factor capable of potent inhibition of complement component-3 (C3) activity in addition to its previously described fibrinogen-binding properties. A truncated recombinant form of Efb (Efb-C) that binds C3 has been overexpressed and purified and has been crystallized using the hanging-drop vapor-diffusion technique. Crystals of native Efb-C grew in the tetragonal space group P4 3 (unit-cell parameters a = b = 59.53, c = 46.63 Å) with two molecules in the asymmetric unit and diffracted well beyond 1.25 Å limiting Bragg spacing. To facilitate de novo phasing of the Efb-C crystals, two independent site-directed mutants were engineered in which either residue Ile112 or Val140 was replaced with methionine and crystals isomorphous to those of native Efb-C were reproduced using a seleno-l-methionine-labeled form of each mutant protein. Multiwavelength anomalous diffraction (MAD) data were collected on both mutants and analyzed for their phasing power toward solution and refinement of a high-resolution Efb-C crystal structure

  15. A targeted complement-dependent strategy to improve the outcome of mAb therapy, and characterization in a murine model of metastatic cancer

    Science.gov (United States)

    Elvington, Michelle; Huang, Yuxiang; Morgan, B. Paul; Qiao, Fei; van Rooijen, Nico; Atkinson, Carl

    2012-01-01

    Complement inhibitors expressed on tumor cells provide an evasion mechanism against mAb therapy and may modulate the development of an acquired antitumor immune response. Here we investigate a strategy to amplify mAb-targeted complement activation on a tumor cell, independent of a requirement to target and block complement inhibitor expression or function, which is difficult to achieve in vivo. We constructed a murine fusion protein, CR2Fc, and demonstrated that the protein targets to C3 activation products deposited on a tumor cell by a specific mAb, and amplifies mAb-dependent complement activation and tumor cell lysis in vitro. In syngeneic models of metastatic lymphoma (EL4) and melanoma (B16), CR2Fc significantly enhanced the outcome of mAb therapy. Subsequent studies using the EL4 model with various genetically modified mice and macrophage-depleted mice revealed that CR2Fc enhanced the therapeutic effect of mAb therapy via both macrophage-dependent FcγR-mediated antibody-dependent cellular cytotoxicity, and by direct complement-mediated lysis. Complement activation products can also modulate adaptive immunity, but we found no evidence that either mAb or CR2Fc treatment had any effect on an antitumor humoral or cellular immune response. CR2Fc represents a potential adjuvant treatment to increase the effectiveness of mAb therapy of cancer. PMID:22442351

  16. Complement Receptors C5aR and C5L2 Are Associated with Metabolic Profile, Sex Hormones, and Liver Enzymes in Obese Women Pre- and Postbariatric Surgery

    Directory of Open Access Journals (Sweden)

    Reza Rezvani

    2014-01-01

    Full Text Available Objective. Obesity is associated with metabolic dysfunction with sex differences and chronic, low-grade inflammation. We proposed that hepatic expression of immune complement C3 related receptors (C3aR, C5aR, and C5L2 would be associated with pre- or postmenopausal status and metabolic profile in severely obese women. We hypothesized that C5L2/C5aR ratio, potentially influencing the ASP/C5L2 metabolic versus C5a/C5aR immune response, would predict metabolic profiles after weight loss surgery. Materials and Methods. Fasting plasma (hormone, lipid, and enzyme analysis and liver biopsies (RT-PCR gene expression were obtained from 91 women during surgery. Results. Hepatic C5L2 mRNA expression was elevated in pre- versus postmenopausal women (P<0.01 and correlated positively with circulating estradiol, estrone, ApoB, ApoA1, ApoA1/B, waist circumference, age, and LDL-C (all P<0.05. While plasma ASP was lower in pre- versus postmenopausal women (P<0.01, the hepatic C5L2/C5aR mRNA ratio was increased (P<0.001 and correlated positively with estrone (P<0.01 and estradiol (P<0.001 and negatively with circulating ApoB and liver enzymes ALT, AST, and GGT (all P<0.05. Over 12 months postoperatively, liver enzymes in low C5L2/C5aR mRNA ratio group remained higher (ALP and ALT, P<0.05, AST and GGT, P<0.001 2-way-ANOVA. Conclusion. C5L2-C5aR association with other mediators including estrogens may contribute to hepatic metabolic and inflammatory function.

  17. Identification, activity and disulfide connectivity of C-di-GMP regulating proteins in Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Kajal Gupta

    2010-11-01

    Full Text Available C-di-GMP, a bacterial second messenger plays a key role in survival and adaptation of bacteria under different environmental conditions. The level of c-di-GMP is regulated by two opposing activities, namely diguanylate cyclase (DGC and phosphodiesterase (PDE-A exhibited by GGDEF and EAL domain, respectively in the same protein. Previously, we reported a bifunctional GGDEF-EAL domain protein, MSDGC-1 from Mycobacterium smegmatis showing both these activities (Kumar and Chatterji, 2008. In this current report, we have identified and characterized the homologous protein from Mycobacterium tuberculosis (Rv 1354c named as MtbDGC. MtbDGC is also a bifunctional protein, which can synthesize and degrade c-di-GMP in vitro. Further we expressed Mtbdgc in M. smegmatis and it was able to complement the MSDGC-1 knock out strain by restoring the long term survival of M. smegmatis. Another protein Rv 1357c, named as MtbPDE, is an EAL domain protein and degrades c-di-GMP to pGpG in vitro. Rv1354c and 1357c have seven cysteine amino acids in their sequence, distributed along the full length of the protein. Disulfide bonds play an important role in stabilizing protein structure and regulating protein function. By proteolytic digestion and mass spectrometric analysis of MtbDGC, connectivity between cysteine pairs Cys94-Cys584, Cys2-Cys479 and Cys429-Cys614 was determined, whereas the third cysteine (Cys406 from N terminal was found to be free in MtbDGC protein, which was further confirmed by alkylation with iodoacetamide labeling. Bioinformatics modeling investigations also supported the pattern of disulfide connectivity obtained by Mass spectrometric analysis. Cys406 was mutated to serine by site directed mutagenesis and the mutant MtbC406S was not found to be active and was not able to synthesize or degrade c-di-GMP. The disulfide connectivity established here would help further in understanding the structure - function relationship in MtbDGC.

  18. Fanconi anemia complementation group A (FANCA) protein has intrinsic affinity for nucleic acids with preference for single-stranded forms.

    Science.gov (United States)

    Yuan, Fenghua; Qian, Liangyue; Zhao, Xinliang; Liu, Jesse Y; Song, Limin; D'Urso, Gennaro; Jain, Chaitanya; Zhang, Yanbin

    2012-02-10

    The Fanconi anemia complementation group A (FANCA) gene is one of 15 disease-causing genes and has been found to be mutated in ∼60% of Fanconi anemia patients. Using purified protein, we report that human FANCA has intrinsic affinity for nucleic acids. FANCA binds to both single-stranded (ssDNA) and double-stranded (dsDNA) DNAs; however, its affinity for ssDNA is significantly higher than for dsDNA in an electrophoretic mobility shift assay. FANCA also binds to RNA with an intriguingly higher affinity than its DNA counterpart. FANCA requires a certain length of nucleic acids for optimal binding. Using DNA and RNA ladders, we determined that the minimum number of nucleotides required for FANCA recognition is ∼30 for both DNA and RNA. By testing the affinity between FANCA and a variety of DNA structures, we found that a 5'-flap or 5'-tail on DNA facilitates its interaction with FANCA. A patient-derived FANCA truncation mutant (Q772X) has diminished affinity for both DNA and RNA. In contrast, the complementing C-terminal fragment of Q772X, C772-1455, retains the differentiated nucleic acid-binding activity (RNA > ssDNA > dsDNA), indicating that the nucleic acid-binding domain of FANCA is located primarily at its C terminus, where most disease-causing mutations are found.

  19. Fanconi Anemia Complementation Group A (FANCA) Protein Has Intrinsic Affinity for Nucleic Acids with Preference for Single-stranded Forms*

    Science.gov (United States)

    Yuan, Fenghua; Qian, Liangyue; Zhao, Xinliang; Liu, Jesse Y.; Song, Limin; D'Urso, Gennaro; Jain, Chaitanya; Zhang, Yanbin

    2012-01-01

    The Fanconi anemia complementation group A (FANCA) gene is one of 15 disease-causing genes and has been found to be mutated in ∼60% of Fanconi anemia patients. Using purified protein, we report that human FANCA has intrinsic affinity for nucleic acids. FANCA binds to both single-stranded (ssDNA) and double-stranded (dsDNA) DNAs; however, its affinity for ssDNA is significantly higher than for dsDNA in an electrophoretic mobility shift assay. FANCA also binds to RNA with an intriguingly higher affinity than its DNA counterpart. FANCA requires a certain length of nucleic acids for optimal binding. Using DNA and RNA ladders, we determined that the minimum number of nucleotides required for FANCA recognition is ∼30 for both DNA and RNA. By testing the affinity between FANCA and a variety of DNA structures, we found that a 5′-flap or 5′-tail on DNA facilitates its interaction with FANCA. A patient-derived FANCA truncation mutant (Q772X) has diminished affinity for both DNA and RNA. In contrast, the complementing C-terminal fragment of Q772X, C772–1455, retains the differentiated nucleic acid-binding activity (RNA > ssDNA > dsDNA), indicating that the nucleic acid-binding domain of FANCA is located primarily at its C terminus, where most disease-causing mutations are found. PMID:22194614

  20. Soya bean Gα proteins with distinct biochemical properties exhibit differential ability to complement Saccharomyces cerevisiae gpa1 mutant.

    Science.gov (United States)

    Roy Choudhury, Swarup; Wang, Yuqi; Pandey, Sona

    2014-07-01

    Signalling pathways mediated by heterotrimeric G-proteins are common to all eukaryotes. Plants have a limited number of each of the G-protein subunits, with the most elaborate G-protein network discovered so far in soya bean (Glycine max, also known as soybean) which has four Gα, four Gβ and ten Gγ proteins. Biochemical characterization of Gα proteins from plants suggests significant variation in their properties compared with the well-characterized non-plant proteins. Furthermore, the four soya bean Gα (GmGα) proteins exhibit distinct biochemical activities among themselves, but the extent to which such biochemical differences contribute to their in vivo function is also not known. We used the yeast gpa1 mutant which displays constitutive signalling and growth arrest in the pheromone-response pathway as an in vivo model to evaluate the effect of distinct biochemical activities of GmGα proteins. We showed that specific GmGα proteins can be activated during pheromone-dependent receptor-mediated signalling in yeast and they display different strengths towards complementation of yeast gpa1 phenotypes. We also identified amino acids that are responsible for differential complementation abilities of specific Gα proteins. These data establish that specific plant Gα proteins are functional in the receptor-mediated pheromone-response pathway in yeast and that the subtle biochemical differences in their activity are physiologically relevant.

  1. Complement's participation in acquired immunity

    DEFF Research Database (Denmark)

    Nielsen, Claus Henrik; Leslie, Robert Graham Quinton

    2002-01-01

    of the B cell receptor for antigen (BCR), a complex composed of the iC3b/C3d fragment-binding complement type 2 receptor (CR2, CD21) and its signaling element CD19 and the IgG-binding receptor FcgammaRIIb (CD32). The positive or negative outcome of signaling through this triad is determined by the context...

  2. Identification of Open Stomata1-Interacting Proteins Reveals Interactions with Sucrose Non-fermenting1-Related Protein Kinases2 and with Type 2A Protein Phosphatases That Function in Abscisic Acid Responses1[OPEN

    Science.gov (United States)

    Waadt, Rainer; Manalansan, Bianca; Rauniyar, Navin; Munemasa, Shintaro; Booker, Matthew A.; Brandt, Benjamin; Waadt, Christian; Nusinow, Dmitri A.; Kay, Steve A.; Kunz, Hans-Henning; Schumacher, Karin; DeLong, Alison; Yates, John R.; Schroeder, Julian I.

    2015-01-01

    The plant hormone abscisic acid (ABA) controls growth and development and regulates plant water status through an established signaling pathway. In the presence of ABA, pyrabactin resistance/regulatory component of ABA receptor proteins inhibit type 2C protein phosphatases (PP2Cs). This, in turn, enables the activation of Sucrose Nonfermenting1-Related Protein Kinases2 (SnRK2). Open Stomata1 (OST1)/SnRK2.6/SRK2E is a major SnRK2-type protein kinase responsible for mediating ABA responses. Arabidopsis (Arabidopsis thaliana) expressing an epitope-tagged OST1 in the recessive ost1-3 mutant background was used for the copurification and identification of OST1-interacting proteins after osmotic stress and ABA treatments. These analyses, which were confirmed using bimolecular fluorescence complementation and coimmunoprecipitation, unexpectedly revealed homo- and heteromerization of OST1 with SnRK2.2, SnRK2.3, OST1, and SnRK2.8. Furthermore, several OST1-complexed proteins were identified as type 2A protein phosphatase (PP2A) subunits and as proteins involved in lipid and galactolipid metabolism. More detailed analyses suggested an interaction network between ABA-activated SnRK2-type protein kinases and several PP2A-type protein phosphatase regulatory subunits. pp2a double mutants exhibited a reduced sensitivity to ABA during seed germination and stomatal closure and an enhanced ABA sensitivity in root growth regulation. These analyses add PP2A-type protein phosphatases as another class of protein phosphatases to the interaction network of SnRK2-type protein kinases. PMID:26175513

  3. SAS-1 Is a C2 Domain Protein Critical for Centriole Integrity in C. elegans

    Science.gov (United States)

    Delattre, Marie; Balestra, Fernando R.; Blanchoud, Simon; Finger, Susanne; Knott, Graham; Müller-Reichert, Thomas; Gönczy, Pierre

    2014-01-01

    Centrioles are microtubule-based organelles important for the formation of cilia, flagella and centrosomes. Despite progress in understanding the underlying assembly mechanisms, how centriole integrity is ensured is incompletely understood, including in sperm cells, where such integrity is particularly critical. We identified C. elegans sas-1 in a genetic screen as a locus required for bipolar spindle assembly in the early embryo. Our analysis reveals that sperm-derived sas-1 mutant centrioles lose their integrity shortly after fertilization, and that a related defect occurs when maternal sas-1 function is lacking. We establish that sas-1 encodes a C2 domain containing protein that localizes to centrioles in C. elegans, and which can bind and stabilize microtubules when expressed in human cells. Moreover, we uncover that SAS-1 is related to C2CD3, a protein required for complete centriole formation in human cells and affected in a type of oral-facial-digital (OFD) syndrome. PMID:25412110

  4. SAS-1 is a C2 domain protein critical for centriole integrity in C. elegans.

    Directory of Open Access Journals (Sweden)

    Lukas von Tobel

    2014-11-01

    Full Text Available Centrioles are microtubule-based organelles important for the formation of cilia, flagella and centrosomes. Despite progress in understanding the underlying assembly mechanisms, how centriole integrity is ensured is incompletely understood, including in sperm cells, where such integrity is particularly critical. We identified C. elegans sas-1 in a genetic screen as a locus required for bipolar spindle assembly in the early embryo. Our analysis reveals that sperm-derived sas-1 mutant centrioles lose their integrity shortly after fertilization, and that a related defect occurs when maternal sas-1 function is lacking. We establish that sas-1 encodes a C2 domain containing protein that localizes to centrioles in C. elegans, and which can bind and stabilize microtubules when expressed in human cells. Moreover, we uncover that SAS-1 is related to C2CD3, a protein required for complete centriole formation in human cells and affected in a type of oral-facial-digital (OFD syndrome.

  5. Complement anaphylatoxins as immune regulators in cancer

    OpenAIRE

    Sayegh, Eli T; Bloch, Orin; Parsa, Andrew T

    2014-01-01

    The role of the complement system in innate immunity is well characterized. However, a recent body of research implicates the complement anaphylatoxins C3a and C5a as insidious propagators of tumor growth and progression. It is now recognized that certain tumors elaborate C3a and C5a and that complement, as a mediator of chronic inflammation and regulator of immune function, may in fact foster rather than defend against tumor growth. A putative mechanism for this function is complement-mediat...

  6. Complement component C1r mediated cleavage of the heavy chain of the major histocompatibility class I antigens

    DEFF Research Database (Denmark)

    Eriksson, H; Nissen, Mogens Holst

    1992-01-01

    Apart from cleaving C1s, we demonstrate for the first time that: 1) at concentrations found in serum, the activated forms of the complement components C1r in addition to C1s can cleave the heavy chain of MHC class I antigens, 2) the cleavage by C1r and C1s is seemingly dependent upon a native con......-chain of MHC class I was shown to take place between the alpha 2- and alpha 3- domains as estimated by the Con A-Sepharose precipitation pattern on SDS-PAGE. The alpha 1/alpha 2 fragment was still shown to interact with beta 2-microglobulin as shown by immunoprecipitation....

  7. iTRAQ based investigation of plasma proteins in HIV infected and HIV/HBV coinfected patients - C9 and KLK are related to HIV/HBV coinfection.

    Science.gov (United States)

    Sun, Tao; Liu, Li; Wu, Ao; Zhang, Yujiao; Jia, Xiaofang; Yin, Lin; Lu, Hongzhou; Zhang, Lijun

    2017-10-01

    Human immunodeficiency virus (HIV) and hepatitis B virus (HBV) share similar routes of transmission, and rapid progression of hepatic and immunodeficiency diseases has been observed in coinfected individuals. Our main objective was to investigate the molecular mechanism of HIV/HBV coinfections. We selected HIV infected and HIV/HBV coinfected patients with and without Highly Active Antiretroviral Therapy (HAART). Low abundance proteins enriched using a multiple affinity removal system (MARS) were labeled with isobaric tags for relative and absolute quantitation (iTRAQ) kits and analyzed using liquid chromatography-mass spectrometry (LC-MS). The differential proteins were analyzed by Gene Ontology (GO) database. A total of 41 differential proteins were found in HIV/HBV coinfected patients as compared to HIV mono-infected patients with or without HAART treatment, including 7 common HBV-regulated proteins. The proteins involved in complement and coagulation pathways were significantly enriched, including plasma kallikrein (KLK) and complement component C9 (C9). C9 and KLK were verified to be down-regulated in HIV/HBV coinfected patients through ELISA analysis. The present iTRAQ based proteomic analyses identified 7 proteins that are related to HIV/HBV coinfection. HBV might influence hepatic and immune functions by deregulating complement and coagulation pathways. C9 and KLK could potentially be used as targets for the treatment of HIV/HBV coinfections. Copyright © 2017. Published by Elsevier Ltd.

  8. Hepatitis C virus NS2 protein activates cellular cyclic AMP-dependent pathways

    International Nuclear Information System (INIS)

    Kim, Kyoung Mi; Kwon, Shi-Nae; Kang, Ju-Il; Lee, Song Hee; Jang, Sung Key; Ahn, Byung-Yoon; Kim, Yoon Ki

    2007-01-01

    Chronic infection of the hepatitis C virus (HCV) leads to liver cirrhosis and cancer. The mechanism leading to viral persistence and hepatocellular carcinoma, however, has not been fully understood. In this study, we show that the HCV infection activates cellular cAMP-dependent pathways. Expression of a luciferase reporter gene controlled by a basic promoter with the cAMP response element (CRE) was significantly elevated in human hepatoma Huh-7 cells infected with the HCV JFH1. Analysis with viral subgenomic replicons indicated that the HCV NS2 protein is responsible for the effect. Furthermore, the level of cellular transcripts whose stability is known to be regulated by cAMP was specifically reduced in cells harboring NS2-expressing replicons. These results allude to the HCV NS2 protein having a novel function of regulating cellular gene expression and proliferation through the cAMP-dependent pathway

  9. Complement anaphylatoxins as immune regulators in cancer.

    Science.gov (United States)

    Sayegh, Eli T; Bloch, Orin; Parsa, Andrew T

    2014-08-01

    The role of the complement system in innate immunity is well characterized. However, a recent body of research implicates the complement anaphylatoxins C3a and C5a as insidious propagators of tumor growth and progression. It is now recognized that certain tumors elaborate C3a and C5a and that complement, as a mediator of chronic inflammation and regulator of immune function, may in fact foster rather than defend against tumor growth. A putative mechanism for this function is complement-mediated suppression of immune effector cells responsible for immunosurveillance within the tumor microenvironment. This paradigm accords with models of immune dysregulation, such as autoimmunity and infectious disease, which have defined a pathophysiological role for abnormal complement signaling. Several types of immune cells express the cognate receptors for the complement anaphylatoxins, C3aR and C5aR, and demonstrate functional modulation in response to complement stimulation. In turn, impairment of antitumor immunity has been intimately tied to tumor progression in animal models of cancer. In this article, the literature was systematically reviewed to identify studies that have characterized the effects of the complement anaphylatoxins on the composition and function of immune cells within the tumor microenvironment. The search identified six studies based upon models of lymphoma and ovarian, cervical, lung, breast, and mammary cancer, which collectively support the paradigm of complement as an immune regulator in the tumor microenvironment. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  10. Pathogens' toolbox to manipulate human complement.

    Science.gov (United States)

    Fernández, Francisco J; Gómez, Sara; Vega, M Cristina

    2017-12-14

    The surveillance and pathogen fighting functions of the complement system have evolved to protect mammals from life-threatening infections. In turn, pathogens have developed complex molecular mechanisms to subvert, divert and evade the effector functions of the complement. The study of complement immunoevasion by pathogens sheds light on their infection drivers, knowledge that is essential to implement therapies. At the same time, complement evasion also acts as a discovery ground that reveals important aspects of how complement works under physiological conditions. In recent years, complex interrelationships between infection insults and the onset of autoimmune and complement dysregulation diseases have led to propose that encounters with pathogens can act as triggering factors for disease. The correct management of these diseases involves the recognition of their triggering factors and the development and administration of complement-associated molecular therapies. Even more recently, unsuspected proteins from pathogens have been shown to possess moonlighting functions as virulence factors, raising the possibility that behind the first line of virulence factors there be many more pathogen proteins playing secondary, helping and supporting roles for the pathogen to successfully establish infections. In an era where antibiotics have a progressively reduced effect on the management and control of infectious diseases worldwide, knowledge on the mechanisms of pathogenic invasion and evasion look more necessary and pressing than ever. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome

    Directory of Open Access Journals (Sweden)

    Böhm Siegfried

    2004-07-01

    Full Text Available Background The classical C2H2 zinc finger domain is involved in a wide range of functions and can bind to DNA, RNA and proteins. The comparison of zinc finger proteins in several eukaryotes has shown that there is a lot of lineage specific diversification and expansion. Although the number of characterized plant proteins that carry the classical C2H2 zinc finger motifs is growing, a systematic classification and analysis of a plant genome zinc finger gene set is lacking. Results We found through in silico analysis 176 zinc finger proteins in Arabidopsis thaliana that hence constitute the most abundant family of putative transcriptional regulators in this plant. Only a minority of 33 A. thaliana zinc finger proteins are conserved in other eukaryotes. In contrast, the majority of these proteins (81% are plant specific. They are derived from extensive duplication events and form expanded families. We assigned the proteins to different subgroups and families and focused specifically on the two largest and evolutionarily youngest families (A1 and C1 that are suggested to be primarily involved in transcriptional regulation. The newly defined family A1 (24 members comprises proteins with tandemly arranged zinc finger domains. Family C1 (64 members, earlier described as the EPF-family in Petunia, comprises proteins with one isolated or two to five dispersed fingers and a mostly invariant QALGGH motif in the zinc finger helices. Based on the amino acid pattern in these helices we could describe five different signature sequences prevalent in C1 zinc finger domains. We also found a number of non-finger domains that are conserved in these families. Conclusions Our analysis of the few evolutionarily conserved zinc finger proteins of A. thaliana suggests that most of them could be involved in ancient biological processes like RNA metabolism and chromatin-remodeling. In contrast, the majority of the unique A. thaliana zinc finger proteins are known or

  12. Anchoring tick salivary anti-complement proteins IRAC I and IRAC II to membrane increases their immunogenicity.

    Science.gov (United States)

    Gillet, Laurent; Schroeder, Hélène; Mast, Jan; Thirion, Muriel; Renauld, Jean-Christophe; Dewals, Benjamin; Vanderplasschen, Alain

    2009-01-01

    Tick salivary proteins are promising targets for the development of anti-tick vaccines. Recently, we described two paralogous anti-complement proteins, called Ixodes ricinus anti-complement (IRAC) proteins I and II, that are co-expressed in tick I. ricinus salivary glands. However, our previous attempts to immunize rabbits against IRAC via infection with recombinant Bovine herpesvirus 4 (BoHV-4) vectors invariably failed although both recombinants expressed high levels of functional IRAC proteins in vitro. As IRAC are soluble monovalent antigens, one of the possible explanations is that monovalent ligation of the B-cell receptor induces receptor activation but fails to promote antigen presentation, a phenomenon that is thought to induce a state of B-cell tolerance. In the present study, we tried to increase IRAC immunogenicity by expressing them as oligovalent antigens. To this end, IRAC were fused to membrane anchors and BoHV-4 vectors expressing these recombinant forms were produced. The immunization potentials of recombinant viruses expressing either secreted or transmembrane IRAC proteins were then compared. While the former did not induce a detectable immune response against IRAC, the latter led to high titres of anti-IRAC antibodies that only marginally affected tick blood feeding. All together, the data presented in this study demonstrate that the immunogenicity of a soluble antigen can be greatly improved by anchoring it in membrane.

  13. Mesenchymal Stem Cells Control Complement C5 Activation by Factor H in Lupus Nephritis

    Directory of Open Access Journals (Sweden)

    Haijun Ma

    2018-06-01

    Full Text Available Lupus nephritis (LN is one of the most severe complications of systemic lupus erythematosus (SLE caused by uncontrolled activation of the complement system. Mesenchymal stem cells (MSCs exhibit clinical efficacy for severe LN in our previous studies, but the underlying mechanisms of MSCs regulating complement activation remain largely unknown. Here we show that significantly elevated C5a and C5b-9 were found in patients with LN, which were notably correlated with proteinuria and different renal pathological indexes of LN. MSCs suppressed systemic and intrarenal activation of C5, increased the plasma levels of factor H (FH, and ameliorated renal disease in lupus mice. Importantly, MSCs transplantation up-regulated the decreased FH in patients with LN. Mechanistically, interferon-α enhanced the secretion of FH by MSCs. These data demonstrate that MSCs inhibit the activation of pathogenic C5 via up-regulation of FH, which improves our understanding of the immunomodulatory mechanisms of MSCs in the treatment of lupus nephritis. Keywords: Lupus nephritis, C5, MSCs, FH

  14. Functional genomics of tick thioester-containing proteins reveal the ancient origin of the complement system

    Czech Academy of Sciences Publication Activity Database

    Burešová, Veronika; Hajdušek, Ondřej; Franta, Zdeněk; Loosová, Gabriela; Grunclová, Lenka; Levashina, E.A.; Kopáček, Petr

    2011-01-01

    Roč. 3, č. 6 (2011), s. 623-630 ISSN 1662-811X R&D Projects: GA ČR GAP506/10/2136; GA MŠk(CZ) LC06009 Institutional research plan: CEZ:AV0Z60220518 Keywords : tick * thioester-containing proteins * complement Subject RIV: EC - Immunology Impact factor: 4.209, year: 2011

  15. Expression, crystallization and preliminary crystallographic analysis of C-reactive protein from zebrafish

    International Nuclear Information System (INIS)

    Chen, Rong; Qi, Jianxun; Yao, Shugang; Pan, Xiaocheng; Gao, Feng; Xia, Chun

    2011-01-01

    Crystals of native and selenomethionine-substituted C-reactive protein from zebrafish diffracted to 2.3 and 1.7 Å resolution, respectively, and belonged to space group R3 with one molecule per asymmetric unit. The Matthews coefficient was calculated to be 3.28 Å 3 Da −1 . C-reactive protein (CRP) is an acute phase protein that is found in blood, the concentration of which in plasma rises rapidly in response to inflammation. It functions as a pattern-recognition molecule, recognizing dead cells and various pathogenic agents and eliminating them by utilizing the classical complement pathway and activating macrophages. CRP is phylogenetically highly conserved in invertebrates and mammals. To date, information on the CRP gene has been reported from numerous species of animals, but little is known about the structure of CRP from species other than humans. In order to solve the structure of CRP from bony fish, the CRP gene from zebrafiah (Danio rerio) was cloned and expressed in Escherichia coli. The zebrafish CRP (Dare-CRP) was then purified and crystallized. The crystal diffracted to 2.3 Å resolution and belonged to space group R3, with unit-cell parameters a = b = 114.7, c = 61.0 Å. The Matthews coefficient and solvent content were calculated to be 3.28 Å 3 Da −1 and 62.55%, respectively. Determination of the zebrafish CRP structure should be helpful in investigating the evolution of CRPs in the innate immune system

  16. The Anticomplementary Activity of ’Fusobacterium polymorphum’ in Normal and C-4 Deficient Sources of Guinea Pig Complement.

    Science.gov (United States)

    1977-01-12

    A complement consumption assay was used to show that the anticomplementary activity of a cell wall preparation from F. polymorphum in guinea pig complement...tests with C𔃾-deficient guinea pig sera confirmed that F. polymorphum cell walls were capable of generating alternate complement pathway activity in guinea pig sera.

  17. Bacteriophage SP6 encodes a second tailspike protein that recognizes Salmonella enterica serogroups C2 and C3

    International Nuclear Information System (INIS)

    Gebhart, Dana; Williams, Steven R.; Scholl, Dean

    2017-01-01

    SP6 is a salmonella phage closely related to coliphage K1-5. K1-5 is notable in that it encodes two polysaccharide-degrading tailspike proteins, an endosialidase that allows it to infect E. coli K1, and a lyase that enables it to infect K5 strains. SP6 is similar to K1-5 except that it encodes a P22-like endorhamnosidase tailspike, gp46, allowing it to infect group B Salmonella. We show here that SP6 can also infect Salmonella serogroups C 2 and C 3 and that a mutation in a putative second tailspike, gp47, eliminates this specificity. Gene 47 was fused to the coding region of the N-terminal portion of the Pseudomonas aeruginosa R2 pyocin tail fiber and expressed in trans such that the fusion protein becomes incorporated into pyocin particles. These pyocins, termed AvR2-SP47, killed serogroups C 2 and C 3 Salmonella. We conclude that SP6 encodes two tail proteins providing it a broad host range among Salmonella enterica. - Highlights: • SP6 is a “dual specificity” bacteriophage that encodes two different receptor binding proteins giving it a broad host range. • These receptor binding proteins can be used to re-target the spectrum of R-type bacteriocins to Salmonella enterica. • Both SP6 and the engineered R-type bacteriocins can kill the Salmonella serovars most associated with human disease making them attractive for development as antimicrobial agents.

  18. The solvent at antigen-binding site regulated C3d-CR2 interactions through the C-terminal tail of C3d at different ion strengths: insights from molecular dynamics simulation.

    Science.gov (United States)

    Zhang, Yan; Guo, Jingjing; Li, Lanlan; Liu, Xuewei; Yao, Xiaojun; Liu, Huanxiang

    2016-10-01

    The interactions of complement receptor 2 (CR2) and the degradation fragment C3d of complement component C3 play important links between the innate and adaptive immune systems. Due to the importance of C3d-CR2 interaction in the design of vaccines and inhibitors, a number of studies have been performed to investigate C3d-CR2 interaction. Many studies have indicated C3d-CR2 interactions are ionic strength-dependent. To investigate the molecular mechanism of C3d-CR2 interaction and the origin of effects of ionic strength, molecular dynamics simulations for C3d-CR2 complex together with the energetic and structural analysis were performed. Our results revealed the increased interactions between charged protein and ions weaken C3d-CR2 association, as ionic strengths increase. Moreover, ion strengths have similar effects on antigen-binding site and CR2 binding site. Meanwhile, Ala17 and Gln20 will transform between the activated and non-activated states mediated by His133 and Glu135 at different ion strengths. Our results reveal the origins of the effects of ionic strengths on C3d-CR2 interactions are due to the changes of water, ion occupancies and distributions. This study uncovers the origin of the effect of ionic strength on C3d-CR2 interaction and deepens the understanding of the molecular mechanism of their interaction, which is valuable for the design of vaccines and small molecule inhibitors. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Relative contributions of decay accelerating factor (DAF), membrane cofactor protein (MCP) and CD59 in the protection of melanocytes from homologous complement

    NARCIS (Netherlands)

    Venneker, G. T.; Vodegel, R. M.; Okada, N.; Westerhof, W.; Bos, J. D.; Asghar, S. S.

    1998-01-01

    Complement regulatory molecules, membrane cofactor protein (MCP), decay accelerating factor (DAF) and CD59, protect body cells from autologous complement. They have wide tissue distribution but nothing is known about the expression of these molecules on human melanocytes. Since melanocytes are lysed

  20. An Ixodes ricinus Tick Salivary Lectin Pathway Inhibitor Protects Borrelia burgdorferi sensu lato from Human Complement.

    Science.gov (United States)

    Wagemakers, Alex; Coumou, Jeroen; Schuijt, Tim J; Oei, Anneke; Nijhof, Ard M; van 't Veer, Cornelis; van der Poll, Tom; Bins, Adriaan D; Hovius, Joppe W R

    2016-04-01

    We previously identified tick salivary lectin pathway inhibitor (TSLPI) in Ixodes scapularis, a vector for Borrelia burgdorferi sensu stricto (s.s.) in North America. TSLPI is a salivary protein facilitating B. burgdorferi s.s. transmission and acquisition by inhibiting the host lectin complement pathway through interference with mannose binding lectin (MBL) activity. Since Ixodes ricinus is the predominant vector for Lyme borreliosis in Europe and transmits several complement sensitive B. burgdorferi sensu lato (s.l.) strains, we aimed to identify, describe, and characterize the I. ricinus ortholog of TSLPI. We performed (q)PCRs on I. ricinus salivary gland cDNA to identify a TSLPI ortholog. Next, we generated recombinant (r)TSLPI in a Drosophila expression system and examined inhibition of the MBL complement pathway and complement-mediated killing of B. burgdorferi s.l. in vitro. We identified a TSLPI ortholog in I. ricinus salivary glands with 93% homology at the RNA and 89% at the protein level compared to I. scapularis TSLPI, which was upregulated during tick feeding. In silico analysis revealed that TSLPI appears to be part of a larger family of Ixodes salivary proteins among which I. persulcatus basic tail salivary proteins and I. scapularis TSLPI and Salp14. I. ricinus rTSLPI inhibited the MBL complement pathway and protected B. burgdorferi s.s. and Borrelia garinii from complement-mediated killing. We have identified a TSLPI ortholog, which protects B. burgdorferi s.l. from complement-mediated killing in I. ricinus, the major vector for tick-borne diseases in Europe.

  1. Complement and thrombosis in the antiphospholipid syndrome.

    Science.gov (United States)

    Oku, Kenji; Nakamura, Hiroyuki; Kono, Michihiro; Ohmura, Kazumasa; Kato, Masaru; Bohgaki, Toshiyuki; Horita, Tetsuya; Yasuda, Shinsuke; Amengual, Olga; Atsumi, Tatsuya

    2016-10-01

    The involvement of complement activation in the pathophysiology of antiphospholipid syndrome (APS) was first reported in murine models of antiphospholipid antibody (aPL)-related pregnancy morbidities. We previously reported that complement activation is prevalent and may function as a source of procoagulant cell activation in the sera of APS patients. Recently, autoantibodies against C1q, a component of complement 1, were reported to be correlated with complement activation in systemic lupus erythematosus. These antibodies target neoepitopes of deformed C1q bound to various molecules (i.e., anionic phospholipids) and induce accelerated complement activation. We found that anti-C1q antibodies are more frequently detected in primary APS patients than in control patients and in refractory APS patients with repeated thrombotic events. The titer of anti-C1q antibodies was significantly higher in refractory APS patients than in APS patients without flare. The binding of C1q to anionic phospholipids may be associated with the surge in complement activation in patients with anti-C1q antibodies when triggered by 'second-hit' biological stressors such as infection. Such stressors will induce overexpression of anionic phospholipids, with subsequent increases in deformed C1q that is targeted by anti-C1q antibodies. Copyright © 2016. Published by Elsevier B.V.

  2. Depressed activation of the lectin pathway of complement in hereditary angioedema

    DEFF Research Database (Denmark)

    Varga, L; Széplaki, G; Laki, J

    2008-01-01

    ) in three complement activation pathways. Functional activity of the CP, LP and AP were measured in the sera of 68 adult patients with hereditary angioedema (HAE) and 64 healthy controls. In addition, the level of C1q, MBL, MBL-associated serine protease-2 (MASP-2), C4-, C3- and C1INH was measured...... by standard laboratory methods. MBL-2 genotypes were determined by polymerase chain reaction. Besides the complement alterations (low CP and C1INH activity, low C4-, C1INH concentrations), which characterize HAE, the level of MASP-2 was also lower (P = 0.0001) in patients compared with controls. Depressed LP...

  3. In vitro biosynthesis of complement protein D

    International Nuclear Information System (INIS)

    Barnum, S.R.

    1985-01-01

    The aim of this study was twofold: to determine site(s) of complement protein D biosynthesis and to examine D biosynthesis with respect to the kinetics of D secretion, the post-translational modification of D and the tissue-specific differences in D secretion and processing. Antigenic D was detected in the culture supernatants of two cell lines, U937 and HepG2, and adherent blood monocytes by a solid-phase radioimmunoassay. D secreted by U937 cells was hemolytically active with a specific activity comparable to D in serum. De novo synthesis of D by U937 cells was demonstrated with the use of cycloheximide. Biosynthetic labeling using 35 S labeled methionine or cysteine, followed by immunoprecipitation demonstrated a single d band intra- and extra-cellularly in all three cell types as analyzed by SDS-PAGE and auto-radiography. Elevated serum D levels in individuals with IgA nephropathy led to studies on the D levels in serum and urine of individuals with chronic renal failure and an individual with Fanconi's syndrome. The former group had elevated serum D levels, compared to normals, and insignificant levels of D in their urine while the patient with Fanconi's syndrome had normal serum D levels but markedly elevated urinary D levels. These studies demonstrate that the monocyte and hepatocyte are both sites of D synthesis and that there are no apparent differences in the secretion rates and processing of D produced by these cell types. The results also suggest that D is not synthesized or secreted as a precursor molecule. Additionally, these studies suggest that the kidney is a major site of D catabolism

  4. A novel antihuman C3d monoclonal antibody with specificity to the C3d complement split product

    DEFF Research Database (Denmark)

    Rasmussen, Karina Juhl; Skjødt, Mikkel-Ole; Vitved, Lars

    2017-01-01

    The complement component C3 and the cleavage products of C3b/iC3b, C3c and C3d are used as biomarkers in clinical diagnostics. Currently, no specific antibodies are able to differentiate C3d from other fragments, although such a distinction could be very valuable considering that they may reflect...... different pathophysiological mechanisms. We have developed a rat antihuman C3d monoclonal antibody with specificity to the end sequence of the N-terminal region of C3d. The antibody can therefore only bind to C3d when it manifests itself as the final end product of cleaved C3. We believe...

  5. Molecular characterization of the alpha subunit of complement component C8 (GcC8alpha) in the nurse shark (Ginglymostoma cirratum).

    Science.gov (United States)

    Aybar, Lydia; Shin, Dong-Ho; Smith, Sylvia L

    2009-09-01

    Target cell lysis by complement is achieved by the assembly and insertion of the membrane attack complex (MAC) composed of glycoproteins C5b through C9. The lytic activity of shark complement involves functional analogues of mammalian C8 and C9. Mammalian C8 is composed of alpha, beta, and gamma subunits. The subunit structure of shark C8 is not known. This report describes a 2341 nucleotide sequence that translates into a polypeptide of 589 amino acid residues, orthologue to mammalian C8alpha and has the same modular architecture with conserved cysteines forming the peptide bond backbone. The C8gamma-binding cysteine is conserved in the perforin-like domain. Hydrophobicity profile indicates the presence of hydrophobic residues essential for membrane insertion. It shares 41.1% and 47.4% identity with human and Xenopus C8alpha respectively. Southern blot analysis showed GcC8alpha exists as a single copy gene expressed in most tissues except the spleen with the liver being the main site of synthesis. Phylogenetic analysis places it in a clade with C8alpha orthologs and as a sister taxa to the Xenopus. 2009 Elsevier Ltd.

  6. Optimizing complement-activating antibody-based cancer immunotherapy: a feasible strategy?

    Directory of Open Access Journals (Sweden)

    Maio Michele

    2004-06-01

    Full Text Available Abstract Passive immunotherapy with monoclonal antibodies (mAb targeted to specific tumor-associated antigens is amongst the most rapidly expanding approaches to biological therapy of cancer. However, until now a limited number of therapeutic mAb has demonstrated clinical efficacy in selected neoplasia. Results emerging from basic research point to a deeper characterization of specific biological features of neoplastic cells as crucial to optimize the clinical potential of therapeutic mAb, and to identify cancer patients who represent the best candidates to antibody-based immunotherapy. Focus on the tissue distribution and on the functional role of membrane complement-regulatory proteins such as Protectin (CD59, which under physiologic conditions protects tissues from Complement (C-damage, might help to optimize the efficacy of immunotherapeutic strategies based on C-activating mAb.

  7. Viral mimicry of the complement system

    Indian Academy of Sciences (India)

    The complement system is a potent innate immune mechanism consisting of cascades of proteins which are designed to fight against and annul intrusion of all the foreign pathogens. Although viruses are smaller in size and have relatively simple structure, they are not immune to complement attack. Thus, activation of the ...

  8. Cloning, Sequencing, and Expression of the Pyruvate Carboxylase Gene in Lactococcus lactis subsp. lactis C2

    OpenAIRE

    Wang, H.; O'Sullivan, D. J.; Baldwin, K. A.; McKay, L. L.

    2000-01-01

    A functional pyc gene was isolated from Lactococcus lactis subsp. lactis C2 and was found to complement a Pyc defect in L. lactis KB4. The deduced lactococcal Pyc protein was highly homologous to Pyc sequences of other bacteria. The pyc gene was also detected in Lactococcus lactis subsp. cremoris and L. lactis subsp. lactis bv. diacetylactis strains.

  9. Genetics Home Reference: complement component 2 deficiency

    Science.gov (United States)

    ... Topic: Immune System and Disorders Health Topic: Lupus Genetic and Rare Diseases Information Center (1 link) Complement component 2 deficiency Additional NIH Resources (1 link) National Institute of Allergy and Infectious Diseases: Primary Immune Deficiency Diseases Educational Resources (6 ...

  10. Low copy numbers of complement C4 and homozygous deficiency of C4A may predispose to severe disease and earlier disease onset in patients with systemic lupus erythematosus.

    Science.gov (United States)

    Jüptner, M; Flachsbart, F; Caliebe, A; Lieb, W; Schreiber, S; Zeuner, R; Franke, A; Schröder, J O

    2018-04-01

    Objectives Low copy numbers and deletion of complement C4 genes are potent risk factors for systemic lupus erythematosus (SLE). However, it is not known whether this genetic association affects the clinical outcome. We investigated C4 copy number variation and its relationship to clinical and serological features in a Northern European lupus cohort. Methods We genotyped the C4 gene locus using polymerase chain reaction (PCR)-based TaqMan assays in 169 patients with SLE classified according to the 1997 revised American College of Rheumatology (ACR) criteria and in 520 matched controls. In the patient group the mean C4 serum protein concentrations nephelometrically measured during a 12-month period prior to genetic analysis were compared to C4 gene copy numbers. Severity of disease was classified according to the intensity of the immunosuppressive regimens applied and compared to C4 gene copy numbers, too. In addition, we performed a TaqMan based analysis of three lupus-associated single-nucleotide polymorphisms (SNPs) located inside the major histocompatibility complex (MHC) to investigate the independence of complement C4 in association with SLE. Results Homozygous deficiency of the C4A isotype was identified as the strongest risk factor for SLE (odds ratio (OR) = 5.329; p = 7.7 × 10 -3 ) in the case-control comparison. Moreover, two copies of total C4 were associated with SLE (OR = 3.699; p = 6.8 × 10 -3 ). C4 serum levels were strongly related to C4 gene copy numbers in patients, the mean concentration ranging from 0.110 g/l (two copies) to 0.256 g/l (five to six copies; p = 4.9 × 10 -6 ). Two copies of total C4 and homozygous deletion of C4A were associated with a disease course requiring cyclophosphamide therapy (OR = 4.044; p = 0.040 and OR = 5.798; p = 0.034, respectively). Homozygous deletion of C4A was associated with earlier onset of SLE (median 24 vs. 34 years; p = 0.019) but not significant after

  11. The functional significance of the autolysis loop in protein C and activated protein C.

    Science.gov (United States)

    Yang, Likui; Manithody, Chandrashekhara; Rezaie, Alireza R

    2005-07-01

    The autolysis loop of activated protein C (APC) is five residues longer than the autolysis loop of other vitamin K-dependent coagulation proteases. To investigate the role of this loop in the zymogenic and anticoagulant properties of the molecule, a protein C mutant was constructed in which the autolysis loop of the protein was replaced with the corresponding loop of factor X. The protein C mutant was activated by thrombin with approximately 5-fold higher rate in the presence of Ca2+. Both kinetics and direct binding studies revealed that the Ca2+ affinity of the mutant has been impaired approximately 3-fold. The result of a factor Va degradation assay revealed that the anticoagulant function of the mutant has been improved 4-5-fold in the absence but not in the presence of protein S. The improvement was due to a better recognition of both the P1-Arg506 and P1-Arg306 cleavage sites by the mutant protease. However, the plasma half-life of the mutant was markedly shortened due to faster inactivation by plasma serpins. These results suggest that the autolysis loop of protein C is critical for the Ca(2+)-dependence of activation by thrombin. Moreover, a longer autolysis loop in APC is not optimal for interaction with factor Va in the absence of protein S, but it contributes to the lack of serpin reactivity and longer half-life of the protease in plasma.

  12. Scaffold protein harmonin (USH1C) provides molecular links between Usher syndrome type 1 and type 2.

    Science.gov (United States)

    Reiners, Jan; van Wijk, Erwin; Märker, Tina; Zimmermann, Ulrike; Jürgens, Karin; te Brinke, Heleen; Overlack, Nora; Roepman, Ronald; Knipper, Marlies; Kremer, Hannie; Wolfrum, Uwe

    2005-12-15

    Usher syndrome (USH) is the most frequent cause of combined deaf-blindness in man. USH is clinically and genetically heterogeneous with at least 11 chromosomal loci assigned to the three USH types (USH1A-G, USH2A-C, USH3A). Although the different USH types exhibit almost the same phenotype in human, the identified USH genes encode for proteins which belong to very different protein classes and families. We and others recently reported that the scaffold protein harmonin (USH1C-gene product) integrates all identified USH1 molecules in a USH1-protein network. Here, we investigated the relationship between the USH2 molecules and this USH1-protein network. We show a molecular interaction between the scaffold protein harmonin (USH1C) and the USH2A protein, VLGR1 (USH2C) and the candidate for USH2B, NBC3. We pinpoint these interactions to interactions between the PDZ1 domain of harmonin and the PDZ-binding motifs at the C-termini of the USH2 proteins and NBC3. We demonstrate that USH2A, VLGR1 and NBC3 are co-expressed with the USH1-protein harmonin in the synaptic terminals of both retinal photoreceptors and inner ear hair cells. In hair cells, these USH proteins are also localized in the signal uptaking stereocilia. Our data indicate that the USH2 proteins and NBC3 are further partners in the supramolecular USH-protein network in the retina and inner ear which shed new light on the function of USH2 proteins and the entire USH-protein network. These findings provide first evidence for a molecular linkage between the pathophysiology in USH1 and USH2. The organization of USH molecules in a mutual 'interactome' related to the disease can explain the common phenotype in USH.

  13. The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes

    International Nuclear Information System (INIS)

    Kamolrat, Torkamol; Gray, Stuart R.

    2013-01-01

    Highlights: ► EPA can enhance protein synthesis and retard protein breakdown in muscle cells. ► These effects were concurrent with increases in p70s6k and FOXO3a phosphorylation. ► EPA may be a useful tool in the treatment of muscle wasting conditions. -- Abstract: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been found to stimulate protein synthesis with little information regarding their effects on protein breakdown. Furthermore whether there are distinct effects of EPA and DHA remains to be established. The aim of the current study was to determine the distinct effects of EPA and DHA on protein synthesis, protein breakdown and signalling pathways in C2C12 myotubes. Fully differentiated C2C12 cells were incubated for 24 h with 0.1% ethanol (control), 50 μM EPA or 50 μM DHA prior to experimentation. After serum (4 h) and amino acid (1 h) starvation cells were stimulated with 2 mM L-leucine and protein synthesis measured using 3 H-labelled phenylalanine. Protein breakdown was measured using 3 H-labelled phenylalanine and signalling pathways (Akt, mTOR, p70S6k, 4EBP1, rps6 and FOXO3a) via Western blots. Data revealed that after incubation with EPA protein synthesis was 25% greater (P < 0.05) compared to control cells, with no effect of DHA. Protein breakdown was 22% (P < 0.05) lower, compared to control cells, after incubation with EPA, with no effect of DHA. Analysis of signalling pathways revealed that both EPA and DHA incubation increased (P < 0.05) p70s6k phosphorylation, EPA increased (P < 0.05) FOXO3a phosphorylation, with no alteration in other signalling proteins. The current study has demonstrated distinct effects of EPA and DHA on protein metabolism with EPA showing a greater ability to result in skeletal muscle protein accretion

  14. The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kamolrat, Torkamol [Musculoskeletal Research Programme, Institute of Medical Sciences, University of Aberdeen, AB25 2ZD (United Kingdom); Gray, Stuart R., E-mail: s.r.gray@abdn.ac.uk [Musculoskeletal Research Programme, Institute of Medical Sciences, University of Aberdeen, AB25 2ZD (United Kingdom)

    2013-03-22

    Highlights: ► EPA can enhance protein synthesis and retard protein breakdown in muscle cells. ► These effects were concurrent with increases in p70s6k and FOXO3a phosphorylation. ► EPA may be a useful tool in the treatment of muscle wasting conditions. -- Abstract: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been found to stimulate protein synthesis with little information regarding their effects on protein breakdown. Furthermore whether there are distinct effects of EPA and DHA remains to be established. The aim of the current study was to determine the distinct effects of EPA and DHA on protein synthesis, protein breakdown and signalling pathways in C2C12 myotubes. Fully differentiated C2C12 cells were incubated for 24 h with 0.1% ethanol (control), 50 μM EPA or 50 μM DHA prior to experimentation. After serum (4 h) and amino acid (1 h) starvation cells were stimulated with 2 mM L-leucine and protein synthesis measured using {sup 3}H-labelled phenylalanine. Protein breakdown was measured using {sup 3}H-labelled phenylalanine and signalling pathways (Akt, mTOR, p70S6k, 4EBP1, rps6 and FOXO3a) via Western blots. Data revealed that after incubation with EPA protein synthesis was 25% greater (P < 0.05) compared to control cells, with no effect of DHA. Protein breakdown was 22% (P < 0.05) lower, compared to control cells, after incubation with EPA, with no effect of DHA. Analysis of signalling pathways revealed that both EPA and DHA incubation increased (P < 0.05) p70s6k phosphorylation, EPA increased (P < 0.05) FOXO3a phosphorylation, with no alteration in other signalling proteins. The current study has demonstrated distinct effects of EPA and DHA on protein metabolism with EPA showing a greater ability to result in skeletal muscle protein accretion.

  15. Acquired partial lipodystrophy and C3 glomerulopathy: Dysregulation of the complement system as a common mechanism

    Directory of Open Access Journals (Sweden)

    Fernando Corvillo

    2018-05-01

    Full Text Available The activation of the alternative pathway of the complement is involved in the development of several renal diseases, such as atypical haemolytic uraemic syndrome and C3 glomerulopathy. In C3 glomerulopathy, a high percentage of patients have circulating levels of the autoantibody called C3NeF, which causes systemic dysregulation of the complement system. In some cases, the presence of this antibody has been related with abnormalities of adipose tissue, causing acquired partial lipodystrophy (Barraquer–Simons syndrome. Acquired partial lipodystrophy is an extremely rare disorder affecting the distribution of subcutaneous adipose tissue and that mainly onsets during childhood. These patients, in addition to possibly presenting with all the metabolic disorders associated with the adipose tissue defect, present with C3 hypocomplementemia and C3NeF and 25% have developed C3 glomerulopathy. Although it has been known for some time how the dysregulation of the complement system affects the kidneys, it remains unknown how it exactly affects adipose tissue; nevertheless, the relationship is quite clear. In this paper, we describe the connection between the complement system with the biology of the adipose tissue and its pathogenesis reflected from acquired partial lipodystrophy. Resumen: La activación de la vía alternativa del complemento interviene en el desarrollo de varias enfermedades renales, como el síndrome hemolítico urémico atípico o la glomerulopatía C3. En esta última enfermedad un elevado porcentaje de los pacientes presentan niveles circulantes de un autoanticuerpo denominado C3NeF, causante de la desregulación del complemento a nivel sistémico. En ciertos casos, la presencia de este anticuerpo se asocia con alteraciones en el tejido adiposo, causando lipodistrofia parcial adquirida (síndrome de Barraquer-Simons, una enfermedad ultra-rara que afecta a la distribución del tejido adiposo subcutáneo y que comienza principalmente

  16. The incorporation of 2-[14C]glycine into porcine lens protein

    International Nuclear Information System (INIS)

    Lee, Y.B.; Kauffman, R.G.; DeVenecia, G.

    1977-01-01

    A series of experiments was conducted to estimate the apparent turnover rate of lens soluble protein, the incorporation rate of 2-[ 14 C]glycine into various soluble protein components and the effect of nutritional stress on the disappearance of radioactivity with time. Evidence is presented that there are two fractions of soluble lens protein with different turnover rates: one is a fast turnover fraction with a half-life of 20.8 hr and the other is a metabolically inert fraction with an infinitely long half-life. It is postulated that the fast turnover fraction is present in the newly-formed younger fibers in the periphery, whereas the inert fraction is in the old lens fibers of the cortex and nucleus. Sephadex G-200 column chromatography was used to separate the soluble lens protein into four components: A, B, C and D in the order of elution. The changes in specific activities of the four components with the time course after injection were followed. Prolonged starvation did not affect the disappearance of carbon incorporated into lens protein with the time course after injection, suggesting normal synthesis and degradation of lens protein without regard to dietary stress. (author)

  17. Regulation of C3 Activation by the Alternative Complement Pathway in the Mouse Retina.

    Directory of Open Access Journals (Sweden)

    Jennifer A E Williams

    Full Text Available The purpose of this study was to examine the retinas of mice carrying hemizygous and null double deletions of Cfb-/- and Cfh-/-, and to compare these with the single knockouts of Cfb, Cfh and Cfd. Retinas were isolated from wild type (WT, Cfb-/-/Cfh-/-, Cfb-/-/Cfh+/-, Cfh-/-/Cfb+/-, Cfb-/-, Cfh-/- Cfd-/-, and Cfd+/- mice. Complement proteins were evaluated by western blotting, ELISA and immunocytochemistry, and retinal morphology was assessed using toluidine blue stained semi-thin sections. WT mice showed staining for C3 and its breakdown products in the retinal vasculature and the basal surface of the retinal pigment epithelium (RPE. Cfb-/- mice exhibited a similar C3 staining pattern to WT in the retinal vessels but a decrease in C3 and its breakdown products at the basal surface of the RPE. Deletion of both Cfb and Cfh restored C3 to levels similar to those observed in WT mice, however this reversal of phenotype was not observed in Cfh-/-/Cfb+/- or Cfb-/-/Cfh+/- mice. Loss of CFD caused an increase in C3 and a decrease in C3 breakdown products along the basal surface of the RPE. Overall the retinal morphology and retinal vasculature did not appear different across the various genotypes. We observed that C3 accumulates at the basal RPE in Cfb-/-, Cfb-/-/Cfh-/-, Cfb-/-/Cfh+/-, Cfd-/- and WT mice, but is absent in Cfh-/- and Cfh-/-/Cfb+/- mice, consistent with its consumption in the serum of mice lacking CFH when CFB is present. C3 breakdown products along the surface of the RPE were either decreased or absent when CFB, CFH or CFD was deleted or partially deleted.

  18. Complement component 1, q subcomponent binding protein (C1QBP) in lipid rafts mediates hepatic metastasis of pancreatic cancer by regulating IGF-1/IGF-1R signaling.

    Science.gov (United States)

    Shi, Haojun; Fang, Winston; Liu, Minda; Fu, Deliang

    2017-10-01

    Pancreatic cancer shows a remarkable predilection for hepatic metastasis. Complement component 1, q subcomponent binding protein (C1QBP) can mediate growth factor-induced cancer cell chemotaxis and distant metastasis by activation of receptor tyrosine kinases. Coincidentally, insulin-like growth factor-1 (IGF-1) derived from the liver and cancer cells itself has been recognized as a critical inducer of hepatic metastasis. However, the mechanism underlying IGF-1-dependent hepatic metastasis of pancreatic cancer, in which C1QBP may be involved, remains unknown. In the study, we demonstrated a significant association between C1QBP expression and hepatic metastasis in patients with pancreatic cancer. IGF-1 induced the translocation of C1QBP from cytoplasm to lipid rafts and further drove the formation of CD44 variant 6 (CD44v6)/C1QBP complex in pancreatic cancer cells. C1QBP interacting with CD44v6 in lipid rafts promoted phosphorylation of IGF-1R and thus activated downstream PI3K and MAPK signaling pathways which mediated metastatic potential of pancreatic cancer cells including proliferation, apoptosis, invasion, adhesion and energy metabolism. Furthermore, C1QBP knockdown suppressed hepatic metastasis of pancreatic cancer cells in nude mice. We therefore conclude that C1QBP in lipid rafts serves a key regulator of IGF-1/IGF-1R-induced hepatic metastasis from pancreatic cancer. Our findings about C1QBP in lipid rafts provide a novel strategy to block IGF-1/IGF-1R signaling in pancreatic cancer and a reliable premise for more efficient combined modality therapies. © 2017 UICC.

  19. Triatoma infestans Calreticulin: Gene Cloning and Expression of a Main Domain That Interacts with the Host Complement System.

    Science.gov (United States)

    Weinberger, Katherine; Collazo, Norberto; Aguillón, Juan Carlos; Molina, María Carmen; Rosas, Carlos; Peña, Jaime; Pizarro, Javier; Maldonado, Ismael; Cattan, Pedro E; Apt, Werner; Ferreira, Arturo

    2017-02-08

    Triatoma infestans is an important hematophagous vector of Chagas disease, a neglected chronic illness affecting approximately 6 million people in Latin America. Hematophagous insects possess several molecules in their saliva that counteract host defensive responses. Calreticulin (CRT), a multifunctional protein secreted in saliva, contributes to the feeding process in some insects. Human CRT (HuCRT) and Trypanosoma cruzi CRT (TcCRT) inhibit the classical pathway of complement activation, mainly by interacting through their central S domain with complement component C1. In previous studies, we have detected CRT in salivary gland extracts from T. infestans We have called this molecule TiCRT. Given that the S domain is responsible for C1 binding, we have tested its role in the classical pathway of complement activation in vertebrate blood. We have cloned and characterized the complete nucleotide sequence of CRT from T. infestans , and expressed its S domain. As expected, this S domain binds to human C1 and, as a consequence, it inhibits the classical pathway of complement, at its earliest stage of activation, namely the generation of C4b. Possibly, the presence of TiCRT in the salivary gland represents an evolutionary adaptation in hematophagous insects to control a potential activation of complement proteins, present in the massive blood meal that they ingest, with deleterious consequences at least on the anterior digestive tract of these insects. © The American Society of Tropical Medicine and Hygiene.

  20. Ndrg2 is a PGC-1α/ERRα target gene that controls protein synthesis and expression of contractile-type genes in C2C12 myotubes.

    Science.gov (United States)

    Foletta, Victoria C; Brown, Erin L; Cho, Yoshitake; Snow, Rod J; Kralli, Anastasia; Russell, Aaron P

    2013-12-01

    The stress-responsive, tumor suppressor N-myc downstream-regulated gene 2 (Ndrg2) is highly expressed in striated muscle. In response to anabolic and catabolic signals, Ndrg2 is suppressed and induced, respectively, in mouse C2C12 myotubes. However, little is known about the mechanisms regulating Ndrg2 expression in muscle, as well as the biological role for Ndrg2 in differentiated myotubes. Here, we show that Ndrg2 is a target of a peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) and estrogen-related receptor alpha (ERRα) transcriptional program and is induced in response to endurance exercise, a physiological stress known also to increase PGC-1α/ERRα activity. Analyses of global gene and protein expression profiles in C2C12 myotubes with reduced levels of NDRG2, suggest that NDRG2 affects muscle growth, contractile properties, MAPK signaling, ion and vesicle transport and oxidative phosphorylation. Indeed, suppression of NDRG2 in myotubes increased protein synthesis and the expression of fast glycolytic myosin heavy chain isoforms, while reducing the expression of embryonic myosin Myh3, other contractile-associated genes and the MAPK p90 RSK1. Conversely, enhanced expression of NDRG2 reduced protein synthesis, and furthermore, partially blocked the increased protein synthesis rates elicited by a constitutively active form of ERRα. In contrast, suppressing or increasing levels of NDRG2 did not affect mRNA expression of genes involved in mitochondrial biogenesis that are regulated by PGC-1α or ERRα. This study shows that in C2C12 myotubes Ndrg2 is a novel PGC-1α/ERRα transcriptional target, which influences protein turnover and the regulation of genes involved in muscle contraction and function. © 2013 Elsevier B.V. All rights reserved.

  1. The Structure of the Human Centrin 2-Xeroderma Pigmentosum Group C Protein Complex

    Energy Technology Data Exchange (ETDEWEB)

    Thompson,J.; Ryan, Z.; Salisbury, J.; Kumar, R.

    2006-01-01

    Human centrin-2 plays a key role in centrosome function and stimulates nucleotide excision repair by binding to the xeroderma pigmentosum group C protein. To determine the structure of human centrin-2 and to develop an understanding of molecular interactions between centrin and xeroderma pigmentosum group C protein, we characterized the crystal structure of calcium-loaded full-length centrin-2 complexed with a xeroderma pigmentosum group C peptide. Our structure shows that the carboxyl-terminal domain of centrin-2 binds this peptide and two calcium atoms, whereas the amino-terminal lobe is in a closed conformation positioned distantly by an ordered {alpha}-helical linker. A stretch of the amino-terminal domain unique to centrins appears disordered. Two xeroderma pigmentosum group C peptides both bound to centrin-2 also interact to form an {alpha}-helical coiled-coil. The interface between centrin-2 and each peptide is predominantly nonpolar, and key hydrophobic residues of XPC have been identified that lead us to propose a novel binding motif for centrin.

  2. The Structure of the Human Centrin 2-Xeroderma Pigmentosum Group C Protein Complex

    International Nuclear Information System (INIS)

    Thompson, J.; Ryan, Z.; Salisbury, J.; Kumar, R.

    2006-01-01

    Human centrin-2 plays a key role in centrosome function and stimulates nucleotide excision repair by binding to the xeroderma pigmentosum group C protein. To determine the structure of human centrin-2 and to develop an understanding of molecular interactions between centrin and xeroderma pigmentosum group C protein, we characterized the crystal structure of calcium-loaded full-length centrin-2 complexed with a xeroderma pigmentosum group C peptide. Our structure shows that the carboxyl-terminal domain of centrin-2 binds this peptide and two calcium atoms, whereas the amino-terminal lobe is in a closed conformation positioned distantly by an ordered α-helical linker. A stretch of the amino-terminal domain unique to centrins appears disordered. Two xeroderma pigmentosum group C peptides both bound to centrin-2 also interact to form an α-helical coiled-coil. The interface between centrin-2 and each peptide is predominantly nonpolar, and key hydrophobic residues of XPC have been identified that lead us to propose a novel binding motif for centrin

  3. Overexpression of MIP2, a novel WD-repeat protein, promotes proliferation of H9c2 cells

    International Nuclear Information System (INIS)

    Wei, Xing; Song, Lan; Jiang, Lei; Wang, Guiliang; Luo, Xinjing; Zhang, Bin; Xiao, Xianzhong

    2010-01-01

    WD40 repeat proteins have a wide range of diverse biological functions including signal transduction, cell cycle regulation, RNA splicing, and transcription. Myocardial ischemic preconditioning up-regulated protein 2 (MIP2) is a novel member of the WD40 repeat proteins superfamily that contains five WD40 repeats. Little is known about its biological role, and the purpose of this study was to determine the role of MIP2 in regulating cellular proliferation. Transfection and constitutive expression of MIP2 in the rat cardiomyoblast cell line H9c2 results in enhanced growth of those cells as measured by cell number and is proportional to the amount of MIP2 expressed. Overexpression of MIP2 results in a shorter cell cycle, as measured by flow cytometry. Collectively, these data suggest that MIP2 may participate in the progression of cell proliferation in H9c2 cells.

  4. Receptor residence time trumps drug-likeness and oral bioavailability in determining efficacy of complement C5a antagonists

    Science.gov (United States)

    Seow, Vernon; Lim, Junxian; Cotterell, Adam J.; Yau, Mei-Kwan; Xu, Weijun; Lohman, Rink-Jan; Kok, W. Mei; Stoermer, Martin J.; Sweet, Matthew J.; Reid, Robert C.; Suen, Jacky Y.; Fairlie, David P.

    2016-04-01

    Drug discovery and translation are normally based on optimizing efficacy by increasing receptor affinity, functional potency, drug-likeness (rule-of-five compliance) and oral bioavailability. Here we demonstrate that residence time of a compound on its receptor has an overriding influence on efficacy, exemplified for antagonists of inflammatory protein complement C5a that activates immune cells and promotes disease. Three equipotent antagonists (3D53, W54011, JJ47) of inflammatory responses to C5a (3nM) were compared for drug-likeness, receptor affinity and antagonist potency in human macrophages, and anti-inflammatory efficacy in rats. Only the least drug-like antagonist (3D53) maintained potency in cells against higher C5a concentrations and had a much longer duration of action (t1/2 ~ 20 h) than W54011 or JJ47 (t1/2 ~ 1-3 h) in inhibiting macrophage responses. The unusually long residence time of 3D53 on its receptor was mechanistically probed by molecular dynamics simulations, which revealed long-lasting interactions that trap the antagonist within the receptor. Despite negligible oral bioavailability, 3D53 was much more orally efficacious than W54011 or JJ47 in preventing repeated agonist insults to induce rat paw oedema over 24 h. Thus, residence time on a receptor can trump drug-likeness in determining efficacy, even oral efficacy, of pharmacological agents.

  5. Complement System Part II: Role in Immunity

    Science.gov (United States)

    Merle, Nicolas S.; Noe, Remi; Halbwachs-Mecarelli, Lise; Fremeaux-Bacchi, Veronique; Roumenina, Lubka T.

    2015-01-01

    The complement system has been considered for a long time as a simple lytic cascade, aimed to kill bacteria infecting the host organism. Nowadays, this vision has changed and it is well accepted that complement is a complex innate immune surveillance system, playing a key role in host homeostasis, inflammation, and in the defense against pathogens. This review discusses recent advances in the understanding of the role of complement in physiology and pathology. It starts with a description of complement contribution to the normal physiology (homeostasis) of a healthy organism, including the silent clearance of apoptotic cells and maintenance of cell survival. In pathology, complement can be a friend or a foe. It acts as a friend in the defense against pathogens, by inducing opsonization and a direct killing by C5b–9 membrane attack complex and by triggering inflammatory responses with the anaphylatoxins C3a and C5a. Opsonization plays also a major role in the mounting of an adaptive immune response, involving antigen presenting cells, T-, and B-lymphocytes. Nevertheless, it can be also an enemy, when pathogens hijack complement regulators to protect themselves from the immune system. Inadequate complement activation becomes a disease cause, as in atypical hemolytic uremic syndrome, C3 glomerulopathies, and systemic lupus erythematosus. Age-related macular degeneration and cancer will be described as examples showing that complement contributes to a large variety of conditions, far exceeding the classical examples of diseases associated with complement deficiencies. Finally, we discuss complement as a therapeutic target. PMID:26074922

  6. Modular organization of proteins containing C1q-like globular domain.

    Science.gov (United States)

    Kishore, U; Reid, K B

    1999-05-01

    The first step in the activation of the classical pathway of complement cascade by immune complexes involves the binding of the six globular heads of C1q to the Fc regions of immunoglobulin G (IgG) or immunoglobulin M (IgM). The globular heads of C1q are located C-terminal to the six triple-helical stalks present in the molecule, each head is considered to be composed of the C-terminal halves (3 x 135 residues) of one A-, one B- and one C-chain. It is not known if the C-terminal globular regions, present in each of the three types of chains, are independently folded modules (with each chain having distinct binding properties towards immunoglobulins) or whether the different binding functions of C1q are dependent upon a globular structure which relies on contributions from all three chains. Recent reports of recombinant production and characterisation of soluble globular head regions of all the three chains indicate that the globular regions of C1q may adopt a modular organization, i.e., each globular head of C1q may be composed of three, structurally and functionally, independent domains, thus retaining multivalency in the form of a heterotrimer. Modules of the same type as the C1q C-terminal module are also found in a variety of noncomplement proteins that include the C-terminal regions of the human type VIII and type X collagens, precerebellin, the chipmunk hibernation proteins, the human endothelial cell protein, multimerin, the serum protein, Acrp-30 which is secreted from mouse adipocytes, and the sunfish inner-ear specific structural protein. The C1q molecule is the only one of these proteins for which, to date, a function has been ascribed to the module. The existence of a shared structural region between C1q and certain collagens may suggest an evolutionarily common ancestral precursor. Various structural and biochemical data suggest that these modules may be responsible for multimerisation through patches of aromatic residues within them.

  7. DRAGON, a GPI-anchored membrane protein, inhibits BMP signaling in C2C12 myoblasts.

    Science.gov (United States)

    Kanomata, Kazuhiro; Kokabu, Shoichiro; Nojima, Junya; Fukuda, Toru; Katagiri, Takenobu

    2009-06-01

    Bone morphogenetic proteins (BMPs) induce osteoblastic differentiation of myoblasts via binding to cell surface receptors. Repulsive guidance molecules (RGMs) have been identified as BMP co-receptors. We report here that DRAGON/RGMb, a member of the RGM family, suppressed BMP signaling in C2C12 myoblasts via a novel mechanism. All RGMs were expressed in C2C12 cells that were differentiated into myocytes and osteoblastic cells, but RGMc was not detected in immature cells. In C2C12 cells, only DRAGON suppressed ALP and Id1 promoter activities induced by BMP-4 or by constitutively activated BMP type I receptors. This inhibition by DRAGON was dependent on the secretory form of the von Willbrand factor type D domain. DRAGON even suppressed BMP signaling induced by constitutively activated Smad1. Over-expression of neogenin did not alter the inhibitory capacity of DRAGON. Taken together, these findings indicate that DRAGON may be an inhibitor of BMP signaling in C2C12 myoblasts. We also suggest that a novel molecule(s) expressed on the cell membrane may mediate the signal transduction of DRAGON in order to suppress BMP signaling in C2C12 myoblasts.

  8. The Plastidial 2-C-Methyl-d-Erythritol 4-Phosphate Pathway Provides the Isoprenyl Moiety for Protein Geranylgeranylation in Tobacco BY-2 Cells[C][W

    Science.gov (United States)

    Gerber, Esther; Hemmerlin, Andréa; Hartmann, Michael; Heintz, Dimitri; Hartmann, Marie-Andrée; Mutterer, Jérôme; Rodríguez-Concepción, Manuel; Boronat, Albert; Van Dorsselaer, Alain; Rohmer, Michel; Crowell, Dring N.; Bach, Thomas J.

    2009-01-01

    Protein farnesylation and geranylgeranylation are important posttranslational modifications in eukaryotic cells. We visualized in transformed Nicotiana tabacum Bright Yellow-2 (BY-2) cells the geranylgeranylation and plasma membrane localization of GFP-BD-CVIL, which consists of green fluorescent protein (GFP) fused to the C-terminal polybasic domain (BD) and CVIL isoprenylation motif from the Oryza sativa calmodulin, CaM61. Treatment with fosmidomycin (Fos) or oxoclomazone (OC), inhibitors of the plastidial 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway, caused mislocalization of the protein to the nucleus, whereas treatment with mevinolin, an inhibitor of the cytosolic mevalonate pathway, did not. The nuclear localization of GFP-BD-CVIL in the presence of MEP pathway inhibitors was completely reversed by all-trans-geranylgeraniol (GGol). Furthermore, 1-deoxy-d-xylulose (DX) reversed the effects of OC, but not Fos, consistent with the hypothesis that OC blocks 1-deoxy-d-xylulose 5-phosphate synthesis, whereas Fos inhibits its conversion to 2-C-methyl-d-erythritol 4-phosphate. By contrast, GGol and DX did not rescue the nuclear mislocalization of GFP-BD-CVIL in the presence of a protein geranylgeranyltransferase type 1 inhibitor. Thus, the MEP pathway has an essential role in geranylgeranyl diphosphate (GGPP) biosynthesis and protein geranylgeranylation in BY-2 cells. GFP-BD-CVIL is a versatile tool for identifying pharmaceuticals and herbicides that interfere either with GGPP biosynthesis or with protein geranylgeranylation. PMID:19136647

  9. The Role of Properdin in Zymosan- and Escherichia coli-Induced Complement Activation

    DEFF Research Database (Denmark)

    Harboe, Morten; Garred, Peter; Lindstad, Julie K

    2012-01-01

    Properdin is well known as an enhancer of the alternative complement amplification loop when C3 is activated, whereas its role as a recognition molecule of exogenous pathogen-associated molecular patterns and initiator of complement activation is less understood. We therefore studied the role...... of properdin in activation of complement in normal human serum by zymosan and various Escherichia coli strains. In ELISA, microtiter plates coated with zymosan induced efficient complement activation with deposition of C4b and terminal complement complex on the solid phase. Virtually no deposition of C4b...... cytometry was used to further explore whether properdin acts as an initial recognition molecule reacting directly with zymosan and three E. coli strains. Experiments reported by other authors were made with EGTA Mg(2+) buffer, permitting autoactivation of C3. We found inhibition by compstatin...

  10. Trypanosoma cruzi Evades the Complement System as an Efficient Strategy to Survive in the Mammalian Host: The Specific Roles of Host/Parasite Molecules and Trypanosoma cruzi Calreticulin

    Directory of Open Access Journals (Sweden)

    Galia Ramírez-Toloza

    2017-09-01

    Full Text Available American Trypanosomiasis is an important neglected reemerging tropical parasitism, infecting about 8 million people worldwide. Its agent, Trypanosoma cruzi, exhibits multiple mechanisms to evade the host immune response and infect host cells. An important immune evasion strategy of T. cruzi infective stages is its capacity to inhibit the complement system activation on the parasite surface, avoiding opsonizing, immune stimulating and lytic effects. Epimastigotes, the non-infective form of the parasite, present in triatomine arthropod vectors, are highly susceptible to complement-mediated lysis while trypomastigotes, the infective form, present in host bloodstream, are resistant. Thus T. cruzi susceptibility to complement varies depending on the parasite stage (amastigote, trypomastigotes or epimastigote and on the T. cruzi strain. To avoid complement-mediated lysis, T. cruzi trypomastigotes express on the parasite surface a variety of complement regulatory proteins, such as glycoprotein 58/68 (gp58/68, T. cruzi complement regulatory protein (TcCRP, trypomastigote decay-accelerating factor (T-DAF, C2 receptor inhibitor trispanning (CRIT and T. cruzi calreticulin (TcCRT. Alternatively, or concomitantly, the parasite captures components with complement regulatory activity from the host bloodstream, such as factor H (FH and plasma membrane-derived vesicles (PMVs. All these proteins inhibit different steps of the classical (CP, alternative (AP or lectin pathways (LP. Thus, TcCRP inhibits the CP C3 convertase assembling, gp58/68 inhibits the AP C3 convertase, T-DAF interferes with the CP and AP convertases assembling, TcCRT inhibits the CP and LP, CRIT confers ability to resist the CP and LP, FH is used by trypomastigotes to inhibit the AP convertases and PMVs inhibit the CP and LP C3 convertases. Many of these proteins have similar molecular inhibitory mechanisms. Our laboratory has contributed to elucidate the role of TcCRT in the host

  11. Functional analysis of Ficolin-3 mediated complement activation

    DEFF Research Database (Denmark)

    Hein, Estrid; Honoré, Christian Le Fèvre; Skjoedt, Mikkel-Ole

    2010-01-01

    assessed by C4, C3 and terminal complement complex (TCC) deposition. Serum Ficolin-3 bound to acBSA in a calcium dependent manner, while only minimal binding of Ficolin-2 and no binding of Ficolin-1 were observed. No binding to normal BSA was seen for any of the Ficolins. Serum C4, C3 and TCC deposition...... was applied to the samples that inhibited interference from the classical pathway due to the presence of anti-BSA antibodies in some sera. We describe a novel functional method for measuring complement activation mediated by Ficolin-3 in human serum up to the formation of TCC. The assay provides...

  12. Novel Evasion Mechanisms of the Classical Complement Pathway.

    Science.gov (United States)

    Garcia, Brandon L; Zwarthoff, Seline A; Rooijakkers, Suzan H M; Geisbrecht, Brian V

    2016-09-15

    Complement is a network of soluble and cell surface-associated proteins that gives rise to a self-amplifying, yet tightly regulated system with fundamental roles in immune surveillance and clearance. Complement becomes activated on the surface of nonself cells by one of three initiating mechanisms known as the classical, lectin, and alternative pathways. Evasion of complement function is a hallmark of invasive pathogens and hematophagous organisms. Although many complement-inhibition strategies hinge on hijacking activities of endogenous complement regulatory proteins, an increasing number of uniquely evolved evasion molecules have been discovered over the past decade. In this review, we focus on several recent investigations that revealed mechanistically distinct inhibitors of the classical pathway. Because the classical pathway is an important and specific mediator of various autoimmune and inflammatory disorders, in-depth knowledge of novel evasion mechanisms could direct future development of therapeutic anti-inflammatory molecules. Copyright © 2016 by The American Association of Immunologists, Inc.

  13. Complement component C5a Promotes Expression of IL-22 and IL-17 from Human T cells and its Implication in Age-related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Klein Michael L

    2011-07-01

    Full Text Available Abstract Background Age related macular degeneration (AMD is the leading cause of irreversible blindness in elderly populations worldwide. Inflammation, among many factors, has been suggested to play an important role in AMD pathogenesis. Recent studies have demonstrated a strong genetic association between AMD and complement factor H (CFH, the down-regulatory factor of complement activation. Elevated levels of complement activating molecules including complement component 5a (C5a have been found in the serum of AMD patients. Our aim is to study whether C5a can impact human T cells and its implication in AMD. Methods Human peripheral blood mononuclear cells (PBMCs were isolated from the blood of exudative form of AMD patients using a Ficoll gradient centrifugation protocol. Intracellular staining and enzyme-linked immunosorbent assays were used to measure protein expression. Apoptotic cells were detected by staining of cells with the annexin-V and TUNEL technology and analyzed by a FACS Caliber flow cytometer. SNP genotyping was analyzed by TaqMan genotyping assay using the Real-time PCR system 7500. Results We show that C5a promotes interleukin (IL-22 and IL-17 expression by human CD4+ T cells. This effect is dependent on B7, IL-1β and IL-6 expression from monocytes. We have also found that C5a could protect human CD4+ cells from undergoing apoptosis. Importantly, consistent with a role of C5a in promoting IL-22 and IL-17 expression, significant elevation in IL-22 and IL-17 levels was found in AMD patients as compared to non-AMD controls. Conclusions Our results support the notion that C5a may be one of the factors contributing to the elevated serum IL-22 and IL-17 levels in AMD patients. The possible involvement of IL-22 and IL-17 in the inflammation that contributes to AMD may herald a new approach to treat AMD.

  14. A mechanism of acquired resistance to complement-mediated lysis by Entamoeba histolytica.

    Science.gov (United States)

    Gutiérrez-Kobeh, L; Cabrera, N; Pérez-Montfort, R

    1997-04-01

    Some Entamoeba histolytica strains resist complement-mediated lysis by serum. Susceptible and resistant strains activate the complement system equivalently, but resistant amebas evade killing by membrane attack complexes. Our objective was to determine the mechanism by which trophozoites of E. histolytica resist lysis by human serum. Amebas were made resistant to lysis by incubation with increasing concentrations of normal human serum. The possibility that resistant cells ingest membrane attack complexes was explored by subcellular fractionation of susceptible and resistant trophozoites treated with sublytic concentrations of human serum containing radiolabeled C9. In both cases, most of the label was in the fractions containing plasma membrane. The susceptible strain consistently showed more label associated with these fractions than the resistant strain. Thus, the possibility that the membrane attack complexes were released to the medium was explored. Both resistant and susceptible trophozoites release to the medium similar amounts of material excluded by Sepharose CL-2B in the presence or absence of normal human serum. Labeled C9 elutes together with the main bulk of proteins from the medium: this indicates that it is not in vesicles or high molecular weight aggregates. Coincubation of susceptible amebas with lysates of resistant trophozoites confers resistance to susceptible cells within 30 min. Resistance to lysis by serum can also be acquired by susceptible amebas after coincubation with lysates from human erythrocytes or after feeding them with whole human red blood cells. Resistant but not susceptible trophozoites show intense immunofluorescent staining on their surface with anti-human erythrocytic membrane antibody. These results suggest that amebas acquire resistance to lysis by serum by incorporating into their membranes complement regulatory proteins.

  15. Proteolysis of the heavy chain of major histocompatibility complex class I antigens by complement component C1s

    DEFF Research Database (Denmark)

    Eriksson, H; Nissen, Mogens Holst

    1990-01-01

    weights of the fragments are in agreement with the cleavage located in the area between the disulphide loops of the alpha 2-and alpha 3-domains of the heavy chain. In addition human C1s complement is able to cleave H-2 antigens from mouse in a similar fashion but not rat MHC class I antigen or mouse MHC...... class II antigen (I-Ad). Mouse MHC class I antigen-specific determinants could also be detected in supernatant from mouse spleen cells incubated with C1r and C1s. These results indicate the presence in the body fluids of a non-membrane-bound soluble form of the alpha 1-and alpha 2-domains which...

  16. Complement activation by Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Jensen, E T; Kharazmi, A; Garred, P

    1993-01-01

    In chronic infections, such as the bronchopulmonary Pseudomonas aeruginosa infection in cystic fibrosis (CF) patients, bacteria persist despite an intact host immune defense and frequent antibiotic treatment. An important reason for the persistence of the bacteria is their capacity for the biofilm...... mode of growth. In this study we investigated the role of biofilms in activation of complement, a major contributor to the inflammatory process. Complement activation by P. aeruginosa was examined in a complement consumption assay, production of C3 and factor B conversion products assessed by crossed...... immuno-electrophoresis, C5a generation tested by a PMN chemotactic assay, and terminal complement complex formation measured by ELISA. Two of the four assays showed that P. aeruginosa grown in biofilm activated complement less than planktonic bacteria, and all assays showed that activation by intact...

  17. Protein metabolism in obese patients during very low-calorie mixed diets containing different amounts of proteins and carbohydrates.

    Science.gov (United States)

    Pasquali, R; Casimirri, F; Melchionda, N

    1987-12-01

    To assess long-term nitrogen sparing capacity of very low-calorie mixed diets, we administered two isoenergetic (2092KJ) liquid formula regimens of different composition for 8 weeks to two matched groups of massively obese patients (group 1: proteins 60 g, carbohydrate 54 g; group 2: proteins 41 g, carbohydrates 81 g). Weight loss was similar in both groups. Daily nitrogen balance (g) during the second month resulted more a negative in group 2 with respect to group 1. However, within the groups individual nitrogen sparing capacity varied markedly; only a few in group 1 and one in group 2 were able to attain nitrogen equilibrium throughout the study. Daily urine excretion of 3-methylhistidine fell significantly in group 1 but did not change in group 2. Unlike total proteins, albumins, and transferrin, serum levels of retinol-binding protein, thyroxin-binding globulin, and complement-C3 fell significantly in both groups but per cent variations of complement-C3 were more pronounced in the first group. Prealbumin levels fell persistently in group 1 and transiently in group 2. The results indicate that even with this type of diet an adequate amount of dietary protein represents the most important factor in minimizing whole body protein catabolism during long-term semistarvation in massively obese patients. Moreover, they confirm the possible role of dietary carbohydrates in the regulation of some visceral protein metabolism.

  18. Regulation of cardiac C-protein phosphorylation

    International Nuclear Information System (INIS)

    Titus, F.L.

    1985-01-01

    Molecular mechanisms of cardiac sympathetic and parasympathetic responses were addressed by studying subcellular changes in protein phosphorylation, cAMP-dependent protein kinase activity and protein phosphatase activity in frog hearts. B-adrenergic agonists increased and muscarinic cholinergic agonists decreased [ 32 P]phosphate incorporation into C-protein, a thick filament component. Regulation of protein phosphatase activity by Iso and methacholine (MCh) was assayed using extracts of drug treated frog hearts and [ 32 P]phospho-C-protein as substrate. Total phosphatase activity decreased 21% in extracts from hearts perfused with 0.1 μM Iso and 17% in hearts exposed to Iso plus 1 μM methacholine. This decrease reflected decreased phosphatase-2A activity. No changes in total phosphatase activity were measurable in broken cells treated with Iso or MCh. The results suggest adrenergic stimulation changes contractile activity in frog hearts by activating cAMP-dependent protein kinase associated with particulate cellular elements and inactivating soluble protein phosphatase-2A. This is the first demonstration of coordinated regulation of these enzymes by B-adrenergic agonists favoring phosphorylation of effector proteins. Coordinated regulation by methacholine in the presence of Iso was not observed

  19. Identification of expressed genes in cDNA library of hemocytes from the RLO-challenged oyster, Crassostrea ariakensis Gould with special functional implication of three complement-related fragments (CaC1q1, CaC1q2 and CaC3).

    Science.gov (United States)

    Xu, Ting; Xie, Jiasong; Li, Jianming; Luo, Ming; Ye, Shigen; Wu, Xinzhong

    2012-06-01

    A SMARTer™ cDNA library of hemocyte from Rickettsia-like organism (RLO) challenged oyster, Crassostrea ariakensis Gould was constructed. Random clones (400) were selected and single-pass sequenced, resulted in 200 unique sequences containing 96 known genes and 104 unknown genes. The 96 known genes were categorized into 11 groups based on their biological process. Furthermore, we identified and characterized three complement-related fragments (CaC1q1, CaC1q2 and CaC3). Tissue distribution analysis revealed that all of three fragments were ubiquitously expressed in all tissues studied including hemocyte, gills, mantle, digestive glands, gonads and adductor muscle, while the highest level was seen in the hemocyte. Temporal expression profile in the hemocyte monolayers reveled that the mRNA expression levels of three fragments presented huge increase after the RLO incubation at 3 h and 6 h in post-challenge, respectively. And the maximal expression levels at 3 h in post-challenge are about 256, 104 and 64 times higher than the values detected in the control of CaC1q1, CaC1q2 and CaC3, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Susceptibility to invasive meningococcal disease: polymorphism of complement system genes and Neisseria meningitidis factor H binding protein.

    Directory of Open Access Journals (Sweden)

    Declan T Bradley

    Full Text Available Neisseria meningitidis can cause severe infection in humans. Polymorphism of Complement Factor H (CFH is associated with altered risk of invasive meningococcal disease (IMD. We aimed to find whether polymorphism of other complement genes altered risk and whether variation of N. meningitidis factor H binding protein (fHBP affected the risk association.We undertook a case-control study with 309 European cases and 5,200 1958 Birth Cohort and National Blood Service cohort controls. We used additive model logistic regression, accepting P<0.05 as significant after correction for multiple testing. The effects of fHBP subfamily on the age at infection and severity of disease was tested using the independent samples median test and Student's T test. The effect of CFH polymorphism on the N. meningitidis fHBP subfamily was investigated by logistic regression and Chi squared test.Rs12085435 A in C8B was associated with odds ratio (OR of IMD (0.35 [95% CI 0.19-0.67]; P = 0.03 after correction. A CFH haplotype tagged by rs3753396 G was associated with IMD (OR 0.56 [95% CI 0.42-0.76], P = 1.6x10⁻⁴. There was no bacterial load (CtrA cycle threshold difference associated with carriage of this haplotype. Host CFH haplotype and meningococcal fHBP subfamily were not associated. Individuals infected with meningococci expressing subfamily A fHBP were younger than those with subfamily B fHBP meningococci (median 1 vs 2 years; P = 0.025.The protective CFH haplotype alters odds of IMD without affecting bacterial load for affected heterozygotes. CFH haplotype did not affect the likelihood of infecting meningococci having either fHBP subfamily. The association between C8B rs12085435 and IMD requires independent replication. The CFH association is of interest because it is independent of known functional polymorphisms in CFH. As fHBP-containing vaccines are now in use, relationships between CFH polymorphism and vaccine effectiveness and side-effects may become

  1. Elevated factor H-related protein 1 and factor H pathogenic variants decrease complement regulation in IgA nephropathy.

    Science.gov (United States)

    Tortajada, Agustín; Gutiérrez, Eduardo; Goicoechea de Jorge, Elena; Anter, Jaouad; Segarra, Alfons; Espinosa, Mario; Blasco, Miquel; Roman, Elena; Marco, Helena; Quintana, Luis F; Gutiérrez, Josué; Pinto, Sheila; Lopez-Trascasa, Margarita; Praga, Manuel; Rodriguez de Córdoba, Santiago

    2017-10-01

    IgA nephropathy (IgAN), a frequent cause of chronic kidney disease worldwide, is characterized by mesangial deposition of galactose-deficient IgA1-containing immune complexes. Complement involvement in IgAN pathogenesis is suggested by the glomerular deposition of complement components and the strong protection from IgAN development conferred by the deletion of the CFHR3 and CFHR1 genes (Δ CFHR3-CFHR1 ). Here we searched for correlations between clinical progression and levels of factor H (FH) and FH-related protein 1 (FHR-1) using well-characterized patient cohorts consisting of 112 patients with IgAN, 46 with non-complement-related autosomal dominant polycystic kidney disease (ADPKD), and 76 control individuals. Patients with either IgAN or ADPKD presented normal FH but abnormally elevated FHR-1 levels and FHR-1/FH ratios compared to control individuals. Highest FHR-1 levels and FHR-1/FH ratios are found in patients with IgAN with disease progression and in patients with ADPKD who have reached chronic kidney disease, suggesting that renal function impairment elevates the FHR-1/FH ratio, which may increase FHR-1/FH competition for activated C3 fragments. Interestingly, Δ CFHR3-CFHR1 homozygotes are protected from IgAN, but not from ADPKD, and we found five IgAN patients with low FH carrying CFH or CFI pathogenic variants. These data support a decreased FH activity in IgAN due to increased FHR-1/FH competition or pathogenic CFH variants. They also suggest that alternative pathway complement activation in patients with IgAN, initially triggered by galactose-deficient IgA1-containing immune complexes, may exacerbate in a vicious circle as renal function deterioration increase FHR-1 levels. Thus, a role of FHR-1 in IgAN pathogenesis is to compete with complement regulation by FH. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  2. Complement-Mediated Enhancement of Monocyte Adhesion to Endothelial Cells by HLA Antibodies, and Blockade by a Specific Inhibitor of the Classical Complement Cascade, TNT003

    Science.gov (United States)

    Valenzuela, Nicole M.; Thomas, Kimberly A.; Mulder, Arend; Parry, Graham C.; Panicker, Sandip; Reed, Elaine F.

    2017-01-01

    Background Antibody-mediated rejection (AMR) of most solid organs is characterized by evidence of complement activation and/or intragraft macrophages (C4d + and CD68+ biopsies). We previously demonstrated that crosslinking of HLA I by antibodies triggered endothelial activation and monocyte adhesion. We hypothesized that activation of the classical complement pathway at the endothelial cell surface by HLA antibodies would enhance monocyte adhesion through soluble split product generation, in parallel with direct endothelial activation downstream of HLA signaling. Methods Primary human aortic endothelial cells (HAEC) were stimulated with HLA class I antibodies in the presence of intact human serum complement. C3a and C5a generation, endothelial P-selectin expression, and adhesion of human primary and immortalized monocytes (Mono Mac 6) were measured. Alternatively, HAEC or monocytes were directly stimulated with purified C3a or C5a. Classical complement activation was inhibited by pretreatment of complement with an anti-C1s antibody (TNT003). Results Treatment of HAEC with HLA antibody and human complement increased the formation of C3a and C5a. Monocyte recruitment by human HLA antibodies was enhanced in the presence of intact human serum complement or purified C3a or C5a. Specific inhibition of the classical complement pathway using TNT003 or C1q-depleted serum significantly reduced adhesion of monocytes in the presence of human complement. Conclusions Despite persistent endothelial viability in the presence of HLA antibodies and complement, upstream complement anaphylatoxin production exacerbates endothelial exocytosis and leukocyte recruitment. Upstream inhibition of classical complement may be therapeutic to dampen mononuclear cell recruitment and endothelial activation characteristic of microvascular inflammation during AMR. PMID:28640789

  3. Deletion of the complement C5a receptor alleviates the severity of acute pneumococcal otitis media following influenza A virus infection in mice.

    Directory of Open Access Journals (Sweden)

    Hua Hua Tong

    Full Text Available There is considerable evidence that influenza A virus (IAV promotes adherence, colonization, and superinfection by S. pneumoniae (Spn and contributes to the pathogenesis of otitis media (OM. The complement system is a critical innate immune defense against both pathogens. To assess the role of the complement system in the host defense and the pathogenesis of acute pneumococcal OM following IAV infection, we employed a well-established transtympanically-induced mouse model of acute pneumococcal OM. We found that antecedent IAV infection enhanced the severity of acute pneumococcal OM. Mice deficient in complement C1qa (C1qa-/- or factor B (Bf -/- exhibited delayed viral and bacterial clearance from the middle ear and developed significant mucosal damage in the eustachian tube and middle ear. This indicates that both the classical and alternative complement pathways are critical for the oto-immune defense against acute pneumococcal OM following influenza infection. We also found that Spn increased complement activation following IAV infection. This was characterized by sustained increased levels of anaphylatoxins C3a and C5a in serum and middle ear lavage samples. In contrast, mice deficient in the complement C5a receptor (C5aR demonstrated enhanced bacterial clearance and reduced severity of OM. Our data support the concept that C5a-C5aR interactions play a significant role in the pathogenesis of acute pneumococcal OM following IAV infection. It is possible that targeting the C5a-C5aR axis might prove useful in attenuating acute pneumococcal OM in patients with influenza infection.

  4. Human genes for complement components C1r and C1s in a close tail-to-tail arrangement

    International Nuclear Information System (INIS)

    Kusumoto, H.; Hirosawa, S.; Salier, J.P.; Hagen, F.S.; Kurachi, K.

    1988-01-01

    Complementary DNA clones for human C1s were isolated from cDNA libraries that were prepared with poly(A) + RNAs of human liver and HepG2 cells. A clone with the largest cDNA insert of 2,664 base pairs (bp) was analyzed for its complete nucleotide sequence. It contained 202 bp of a 5' untranslated region, 45 bp of coding for a signal peptide (15 amino acid residues), 2,019 bp for complement component C1s zymogen (673 amino acid residues), 378 bp for a 3' untranslated region, a stop codon, and 17 bp of a poly(A) tail. The amino acid sequence of C1s was 40.5% identical to that of C1r, with excellent matches of tentative disulfide bond locations conserving the overall domain structure of C1r. DNA blotting and sequencing analyses of genomic DNA and of an isolated genomic DNA clone clearly showed that the human genes for C1r and C1s are closely located in a tail-to-tail arrangement at a distance of about 9.5 kilobases. Furthermore, RNA blot analyses showed that both C1r and C1s genes are primarily expressed in liver, whereas most other tissues expressed both C1r and C1s genes at much lower levels (less than 10% of that in liver). Multiple molecular sizes of specific mRNAs were observed in the RNA blot analyses for both C1r and C1s, indicating that alternative RNA processing(s), likely an alternative polyadenylylation, might take place for both genes

  5. Complement components of nerve regeneration conditioned fluid influence the microenvironment of nerve regeneration

    Directory of Open Access Journals (Sweden)

    Guang-shuai Li

    2016-01-01

    Full Text Available Nerve regeneration conditioned fluid is secreted by nerve stumps inside a nerve regeneration chamber. A better understanding of the proteinogram of nerve regeneration conditioned fluid can provide evidence for studying the role of the microenvironment in peripheral nerve regeneration. In this study, we used cylindrical silicone tubes as the nerve regeneration chamber model for the repair of injured rat sciatic nerve. Isobaric tags for relative and absolute quantitation proteomics technology and western blot analysis confirmed that there were more than 10 complement components (complement factor I, C1q-A, C1q-B, C2, C3, C4, C5, C7, C8ß and complement factor D in the nerve regeneration conditioned fluid and each varied at different time points. These findings suggest that all these complement components have a functional role in nerve regeneration.

  6. CovR Regulates Streptococcus mutans Susceptibility To Complement Immunity and Survival in Blood

    Science.gov (United States)

    Alves, Lívia A.; Nomura, Ryota; Mariano, Flávia S.; Harth-Chu, Erika N.; Stipp, Rafael N.; Nakano, Kazuhiko

    2016-01-01

    Streptococcus mutans, a major pathogen of dental caries, may promote systemic infections after accessing the bloodstream from oral niches. In this study, we investigate pathways of complement immunity against S. mutans and show that the orphan regulator CovR (CovRSm) modulates susceptibility to complement opsonization and survival in blood. S. mutans blood isolates showed reduced susceptibility to C3b deposition compared to oral isolates. Reduced expression of covRSm in blood strains was associated with increased transcription of CovRSm-repressed genes required for S. mutans interactions with glucans (gbpC, gbpB, and epsC), sucrose-derived exopolysaccharides (EPS). Consistently, blood strains showed an increased capacity to bind glucan in vitro. Deletion of covRSm in strain UA159 (UAcov) impaired C3b deposition and binding to serum IgG and C-reactive protein (CRP) as well as phagocytosis through C3b/iC3b receptors and killing by neutrophils. Opposite effects were observed in mutants of gbpC, epsC, or gtfBCD (required for glucan synthesis). C3b deposition on UA159 was abolished in C1q-depleted serum, implying that the classical pathway is essential for complement activation on S. mutans. Growth in sucrose-containing medium impaired the binding of C3b and IgG to UA159, UAcov, and blood isolates but had absent or reduced effects on C3b deposition in gtfBCD, gbpC, and epsC mutants. UAcov further showed increased ex vivo survival in human blood in an EPS-dependent way. Consistently, reduced survival was observed for the gbpC and epsC mutants. Finally, UAcov showed an increased ability to cause bacteremia in a rat model. These results reveal that CovRSm modulates systemic virulence by regulating functions affecting S. mutans susceptibility to complement opsonization. PMID:27572331

  7. Genetic susceptibility to chronic wasting disease in free-ranging white-tailed deer: complement component C1q and Prnp polymorphisms

    Science.gov (United States)

    Blanchong, Julie A.; Heisey, Dennis M.; Scribner, Kim T.; Libants, Scot V.; Johnson, Chad; Aiken, Judd M.; Langenberg, Julia A.; Samuel, Michael D.

    2009-01-01

    The genetic basis of susceptibility to chronic wasting disease (CWD) in free-ranging cervids is of great interest. Association studies of disease susceptibility in free-ranging populations, however, face considerable challenges including: the need for large sample sizes when disease is rare, animals of unknown pedigree create a risk of spurious results due to population admixture, and the inability to control disease exposure or dose. We used an innovative matched case–control design and conditional logistic regression to evaluate associations between polymorphisms of complement C1q and prion protein (Prnp) genes and CWD infection in white-tailed deer from the CWD endemic area in south-central Wisconsin. To reduce problems due to admixture or disease-risk confounding, we used neutral genetic (microsatellite) data to identify closely related CWD-positive (n = 68) and CWD-negative (n = 91) female deer to serve as matched cases and controls. Cases and controls were also matched on factors (sex, location, age) previously demonstrated to affect CWD infection risk. For Prnp, deer with at least one Serine (S) at amino acid 96 were significantly less likely to be CWD-positive relative to deer homozygous for Glycine (G). This is the first characterization of genes associated with the complement system in white-tailed deer. No tests for association between any C1q polymorphism and CWD infection were significant at p of CWD infection in deer with at least one Glycine (G) at amino acid 56 of the C1qC gene. While we documented numerous amino acid polymorphisms in C1q genes none appear to be strongly associated with CWD susceptibility.

  8. Implication of the C terminus of the Prunus necrotic ringspot virus movement protein in cell-to-cell transport and in its interaction with the coat protein.

    Science.gov (United States)

    Aparicio, Frederic; Pallás, Vicente; Sánchez-Navarro, Jesús

    2010-07-01

    The movement protein (MP) of Prunus necrotic ringspot virus (PNRSV) is required for viral transport. Previous analysis with MPs of other members of the family Bromoviridae has shown that the C-terminal part of these MPs plays a critical role in the interaction with the cognate coat protein (CP) and in cell-to-cell transport. Bimolecular fluorescence complementation and overlay analysis confirm an interaction between the C-terminal 38 aa of PNRSV MP and its cognate CP. Mutational analysis of the C-terminal region of the PNRSV MP revealed that its C-terminal 38 aa are dispensable for virus transport, however, the 4 aa preceding the dispensable C terminus are necessary to target the MP to the plasmodesmata and for the functionality of the protein. The capacity of the PNRSV MP to use either a CP-dependent or a CP-independent cell-to-cell transport is discussed.

  9. Inhibition of the complement system by saliva of Anopheles (Nyssorhynchus) aquasalis.

    Science.gov (United States)

    Mendes-Sousa, Antonio Ferreira; Vale, Vladimir Fazito; Queiroz, Daniel Costa; Pereira-Filho, Adalberto Alves; da Silva, Naylene Carvalho Sales; Koerich, Leonardo Barbosa; Moreira, Luciano Andrade; Pereira, Marcos Horácio; Sant'Anna, Maurício Roberto; Araújo, Ricardo Nascimento; Andersen, John; Valenzuela, Jesus Gilberto; Gontijo, Nelder Figueiredo

    2018-01-01

    Anopheline mosquitoes are vectors of malaria parasites. Their saliva contains anti-hemostatic and immune-modulator molecules that favor blood feeding and parasite transmission. In this study, we describe the inhibition of the alternative pathway of the complement system (AP) by Anopheles aquasalis salivary gland extracts (SGE). According to our results, the inhibitor present in SGE acts on the initial step of the AP blocking deposition of C3b on the activation surfaces. Properdin, which is a positive regulatory molecule of the AP, binds to SGE. When SGE was treated with an excess of properdin, it was unable to inhibit the AP. Through SDS-PAGE analysis, A. aquasalis presented a salivary protein with the same molecular weight as recombinant complement inhibitors belonging to the SG7 family described in the saliva of other anopheline species. At least some SG7 proteins bind to properdin and are AP inhibitors. Searching for SG7 proteins in the A. aquasalis genome, we retrieved a salivary protein that shared an 85% identity with albicin, which is the salivary alternative pathway inhibitor from A. albimanus. This A. aquasalis sequence was also very similar (81% ID) to the SG7 protein from A. darlingi, which is also an AP inhibitor. Our results suggest that the salivary complement inhibitor from A. aquasalis is an SG7 protein that can inhibit the AP by binding to properdin and abrogating its stabilizing activity. Albicin, which is the SG7 from A. albimanus, can directly inhibit AP convertase. Given the high similarity of SG7 proteins, the SG7 from A. aquasalis may also directly inhibit AP convertase in the absence of properdin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Plasma complement and vascular complement deposition in patients with coronary artery disease with and without inflammatory rheumatic diseases

    Science.gov (United States)

    2017-01-01

    Purpose Inflammatory rheumatic diseases (IRD) are associated with accelerated coronary artery disease (CAD), which may result from both systemic and vascular wall inflammation. There are indications that complement may be involved in the pathogenesis of CAD in Systemic Lupus Erythematosus (SLE) and Rheumatoid Arthritis (RA). This study aimed to evaluate the associations between circulating complement and complement activation products with mononuclear cell infiltrates (MCI, surrogate marker of vascular inflammation) in the aortic media and adventitia in IRDCAD and non-IRDCAD patients undergoing coronary artery bypass grafting (CABG). Furthermore, we compared complement activation product deposition patterns in rare aorta adventitial and medial biopsies from SLE, RA and non-IRD patients. Methods We examined plasma C3 (p-C3) and terminal complement complexes (p-TCC) in 28 IRDCAD (SLE = 3; RA = 25), 52 non-IRDCAD patients, and 32 IRDNo CAD (RA = 32) from the Feiring Heart Biopsy Study. Aortic biopsies taken from the CAD only patients during CABG were previously evaluated for adventitial MCIs. The rare aortic biopsies from 3 SLE, 3 RA and 3 non-IRDCAD were assessed for the presence of C3 and C3d using immunohistochemistry. Results IRDCAD patients had higher p-TCC than non-IRDCAD or IRDNo CAD patients (prheumatic disease, and, in particular, SLE with the complement system. Exaggerated systemic and vascular complement activation may accelerate CVD, serve as a CVD biomarker, and represent a target for new therapies. PMID:28362874

  11. Reduction in erythrocyte-bound complement activation products and titres of anti-C1q antibodies associate with clinical improvement in systemic lupus erythematosus.

    Science.gov (United States)

    Buyon, Jill; Furie, Richard; Putterman, Chaim; Ramsey-Goldman, Rosalind; Kalunian, Kenneth; Barken, Derren; Conklin, John; Dervieux, Thierry

    2016-01-01

    The relationship between cell-bound complement activation products (CB-CAPs: EC4d, EC3d), anti-C1q, soluble complement C3/C4 and disease activity in systemic lupus erythematosus (SLE) was evaluated. Per protocol, at baseline all SLE subjects enrolled in this longitudinal study presented with active disease and elevated CB-CAPs. At each monthly visit, the non-serological (ns) Safety of Estrogens in Lupus Erythematosus: National Assessment (SELENA-SLEDAI) and the British Isles Lupus Assessment Group (BILAG)-2004 index scores were determined as was a random urinary protein to creatinine ratio (uPCR). Short-form 36 (SF-36) questionnaires were also collected. All soluble markers were determined using immunoassays, while EC4d and EC3d were determined using flow cytometry. Statistical analysis consisted of linear mixed models with random intercept and fixed slopes. A total of 36 SLE subjects (mean age 34 years; 94% female) were enrolled and evaluated monthly for an average 11 visits per subject. Clinical improvements were observed during the study, with significant decreases in ns-SELENA-SLEDAI scores, BILAG-2004 index scores and uPCR, and increases in all domains of SF-36 (pimprovements in at least six out of the eight domains of SF-36 and outperformed C3/C4. Anti-dsDNA titres did not correlate with changes in disease activity. These data indicate that CB-CAPs and anti-C1q are helpful in monitoring patients with SLE.

  12. Complement C3 gene: Expression characterization and innate immune response in razor clam Sinonovacula constricta.

    Science.gov (United States)

    Peng, Maoxiao; Niu, Donghong; Wang, Fei; Chen, Zhiyi; Li, Jiale

    2016-08-01

    Complement component 3 (C3) is central to the complement system, playing an important role in immune defense, immune regulation and immune pathology. Several C3 genes have been characterized in invertebrates but very few in shellfish. The C3 gene was identified from the razor clam Sinonovacula constricta, referred to here as Sc-C3. It was found to be highly homologous with the C3 gene of Ruditapes decussatus. All eight model motifs of the C3 gene were found to be included in the thiolester bond and the C345C region. Sc-C3 was widely expressed in all healthy tissues with expression being highest in hemolymph. A significant difference in expression was revealed at the umbo larvae development stage. The expression of Sc-C3 was highly regulated in the hemolymph and liver, with a distinct response pattern being noted after a challenge with Micrococcus lysodeikticus and Vibrio parahemolyticus. It is therefore suggested that a complicated and unique response pathway may be present in S. constricta. Further, serum of S. constricta containing Sc-C3 was extracted. This was activated by LPS or bacterium for verification for function. The more obvious immune function of Sc-C3 was described as an effective membrane rupture in hemocyte cells of rabbit, V. parahemolyticus and Vibrio anguillarum. Thus, Sc-C3 plays an essential role in the immune defense of S. constricta. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Regulation of the interaction between protein kinase C-related protein kinase 2 (PRK2) and its upstream kinase, 3-phosphoinositide-dependent protein kinase 1 (PDK1)

    DEFF Research Database (Denmark)

    Dettori, Rosalia; Sonzogni, Silvina; Meyer, Lucas

    2009-01-01

    of numerous AGC kinases, including the protein kinase C-related protein kinases (PRKs). Here we studied the docking interaction between PDK1 and PRK2 and analyzed the mechanisms that regulate this interaction. In vivo labeling of recombinant PRK2 by (32)P(i) revealed phosphorylation at two sites......, the activation loop and the Z/TM in the C-terminal extension. We provide evidence that phosphorylation of the Z/TM site of PRK2 inhibits its interaction with PDK1. Our studies further provide a mechanistic model to explain different steps in the docking interaction and regulation. Interestingly, we found...... that the mechanism that negatively regulates the docking interaction of PRK2 to the upstream kinase PDK1 is directly linked to the activation mechanism of PRK2 itself. Finally, our results indicate that the mechanisms underlying the regulation of the interaction between PRK2 and PDK1 are specific for PRK2 and do...

  14. Specific, sensitive, precise, and rapid functional chromogenic assay of activated first complement component (C1) in plasma

    DEFF Research Database (Denmark)

    Munkvad, S; Jespersen, J; Sidelmann, Johannes Jakobsen

    1990-01-01

    We present a new functional assay for the first complement component (C1) in plasma, based on its activation by inhibition of the C1-esterase inhibitor (C1-inh) when monospecific antiserum to C1-inh is added to the plasma. After maximal activation, we can determine the concentration of activated ...

  15. Colostral whey concentrate supplement increases complement activity in the sera of neonatal calves.

    Science.gov (United States)

    Rokka, S; Korhonen, B H; Nousiainen, J; Marnila, P

    2001-08-01

    We evaluated the effect of a commercial bovine colostral whey on the complement-mediated immune responses of calves. Two groups of neonatal calves were fed, in addition to whole milk (WM) and pooled colostrum (PC), different amounts of a commercial immunoglobulin concentrate made from pooled colostral whey (Ig-C) for the first two feedings post natum. The control group was fed WM and PC only. Serum samples were obtained at the ages of 2, 7, 14 and 30 d. Bacteriolytic activity against complement-sensitive Escherichia coli JM103 and opsonic activity against complement-lysis-resistant E. coli IH3080 strains were studied, as well as the levels of C3 complement component and E. coli JM103 specific antibodies in the sera. Groups fed Ig-C had 2-3 times higher bacteriolytic activity than the control group of both the classic (P complement activities of serum can be increased substantially by feeding colostral whey concentrate to calves during their first days of life.

  16. Omics-Based Approach Reveals Complement-Mediated Inflammation in Chronic Lymphocytic Inflammation With Pontine Perivascular Enhancement Responsive to Steroids (CLIPPERS

    Directory of Open Access Journals (Sweden)

    Morten Blaabjerg

    2018-04-01

    Full Text Available ObjectiveChronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS is a rare syndrome with relapsing brainstem/cerebellar symptoms. To examine the pathogenic processes and investigate potential biomarkers, we analyzed combined materials of brain and cerebrospinal fluid (CSF by comprehensive methodologies.Materials and methodsTo identify major pathways of perivascular inflammation in CLIPPERS, we first compared the CSF proteome (n = 5 to a neurodegenerative condition, Alzheimer’s disease (AD, n = 5. Activation of complement was confirmed by immunohistochemistry (IHC on CLIPPERS brain samples (n = 3 and by ELISA in the CSF. For potential biomarkers, we used biomarker arrays, and compared inflammatory and vessel-associated proteins in the CSF of CLIPPERS (n = 5 with another inflammatory relapsing CNS disease, multiple sclerosis (RMS, n = 9 and healthy subjects (HS, n = 7.ResultsTwo hundred and seven proteins in the CSF discriminated CLIPPERS from AD. The complement cascade, immunoglobulins, and matrix proteins were among the most frequently represented pathways. Pathway analysis of upstream regulators suggested the importance of vascular cell adhesion protein 1 (VCAM1, IFN-γ, interleukin (IL-1, and IL-10. Differential regulation of more than 10 complement proteins of the 3 complement pathways in the CSF pointed to the role of complement activation. IHC on brain samples confirmed the perivascular complement activation, i.e., deposition of C3bc, C3d, and the terminal C5b-9 complement complex that partially overlapped with accumulation of IgG in the vessel wall. Besides endothelial cell damage, reactivity to smooth muscle actin was lost in the walls of inflamed vessels, but the glia limitans was preserved. The semi-quantitative array indicated that increased level of IL-8/CXCL8 (p < 0.05, eotaxin/CCL11 (p < 0.01, and granulocyte colony-stimulating factor (p < 0.05 in

  17. Evasion Mechanisms Used by Pathogens to Escape the Lectin Complement Pathway.

    Science.gov (United States)

    Rosbjerg, Anne; Genster, Ninette; Pilely, Katrine; Garred, Peter

    2017-01-01

    The complement system is a crucial defensive network that protects the host against invading pathogens. It is part of the innate immune system and can be initiated via three pathways: the lectin, classical and alternative activation pathway. Overall the network compiles a group of recognition molecules that bind specific patterns on microbial surfaces, a group of associated proteases that initiates the complement cascade, and a group of proteins that interact in proteolytic complexes or the terminal pore-forming complex. In addition, various regulatory proteins are important for controlling the level of activity. The result is a pro-inflammatory response meant to combat foreign microbes. Microbial elimination is, however, not a straight forward procedure; pathogens have adapted to their environment by evolving a collection of evasion mechanisms that circumvent the human complement system. Complement evasion strategies features different ways of exploiting human complement proteins and moreover features different pathogen-derived proteins that interfere with the normal processes. Accumulated, these mechanisms target all three complement activation pathways as well as the final common part of the cascade. This review will cover the currently known lectin pathway evasion mechanisms and give examples of pathogens that operate these to increase their chance of invasion, survival and dissemination.

  18. Complement Factor H-Related Protein 4A Is the Dominant Circulating Splice Variant of CFHR4

    Directory of Open Access Journals (Sweden)

    Richard B. Pouw

    2018-04-01

    Full Text Available Recent research has elucidated circulating levels of almost all factor H-related (FHR proteins. Some of these proteins are hypothesized to act as antagonists of the important complement regulator factor H (FH, fine-tuning complement regulation on human surfaces. For the CFHR4 splice variants FHR-4A and FHR-4B, the individual circulating levels are unknown, with only total levels being described. Specific reagents for FHR-4A or FHR-4B are lacking due to the fact that the unique domains in FHR-4A show high sequence similarity with FHR-4B, making it challenging to distinguish them. We developed an assay that specifically measures FHR-4A using novel, well-characterized monoclonal antibodies (mAbs that target unique domains in FHR-4A only. Using various FHR-4A/FHR-4B-specific mAbs, no FHR-4B was identified in any of the serum samples tested. The results demonstrate that FHR-4A is the dominant splice variant of CFHR4 in the circulation, while casting doubt on the presence of FHR-4B. FHR-4A levels (avg. 2.55 ± 1.46 µg/mL were within the range of most of the previously reported levels for all other FHRs. FHR-4A was found to be highly variable among the population, suggesting a strong genetic regulation. These results shed light on the physiological relevance of the previously proposed role of FHR-4A and FHR-4B as antagonists of FH in the circulation.

  19. Combined roles of human IgG subclass, alternative complement pathway activation, and epitope density in the bactericidal activity of antibodies to meningococcal factor h binding protein.

    Science.gov (United States)

    Giuntini, Serena; Reason, Donald C; Granoff, Dan M

    2012-01-01

    Meningococcal vaccines containing factor H binding protein (fHbp) are in clinical development. fHbp binds human fH, which enables the meningococcus to resist complement-mediated bacteriolysis. Previously, we found that chimeric human IgG1 mouse anti-fHbp monoclonal antibodies (MAbs) had human complement-mediated bactericidal activity only if the MAb inhibited fH binding. Since IgG subclasses differ in their ability to activate complement, we investigated the role of human IgG subclasses on antibody functional activity. We constructed chimeric MAbs in which three different murine fHbp-specific binding domains were each paired with human IgG1, IgG2, or IgG3. Against a wild-type group B isolate, all three IgG3 MAbs, irrespective of their ability to inhibit fH binding, had bactericidal activity that was >5-fold higher than the respective IgG1 MAbs, while the IgG2 MAbs had the least activity. Against a mutant with increased fHbp expression, the anti-fHbp MAbs elicited greater C4b deposition (classical pathway) and greater bactericidal activity than against the wild-type strain, and the IgG1 MAbs had similar or greater activity than the respective IgG3 MAbs. The bactericidal activity against both wild-type and mutant strains also was dependent, in part, on activation of the alternative complement pathway. Thus, at lower epitope density in the wild-type strain, the IgG3 anti-fHbp MAbs had the greatest bactericidal activity. At a higher epitope density in the mutant, the IgG1 MAbs had similar or greater bactericidal activity than the IgG3 MAbs, and the activity was less dependent on the inhibition of fH binding than at a lower epitope density.

  20. The influence of gamma radiation upon the biological activity of the third serum complement component (C3)

    International Nuclear Information System (INIS)

    Steuhl, K.P.; Dierich, M.P.; Mainz Univ.

    1981-01-01

    For investigation of interaction between C3 and C3-binding cells the third complement component is to be labelled with radiotracer. After labelling C3 with high specific activity (0,2 μCi 125 l/μg C3) binding of C3 to Raji-cells was increased up to the twentyfold nine days after labelling. This effect was not to be reproduced with external gamma radiation using doses of 10, 200 and 1000 rad. The rosette inhibition test could demonstrate that with radiation doses of 200 and 1000 rad the radiated C3 lost its ability of specific binding to C3 receptors in Raji-cells. This functional alteration corresponded to amino acid analysis with relative increase of asparagine, glutamic acid and proline and relative decrease of cystine and phenylalanine in the C3 molecule. (orig.) [de

  1. Lsa30, a novel adhesin of Leptospira interrogans binds human plasminogen and the complement regulator C4bp.

    Science.gov (United States)

    Souza, Natalie M; Vieira, Monica L; Alves, Ivy J; de Morais, Zenaide M; Vasconcellos, Silvio A; Nascimento, Ana L T O

    2012-09-01

    Pathogenic Leptospira is the etiological agent of leptospirosis, a life-threatening disease that affects populations worldwide. Surface proteins have the potential to promote several activities, including adhesion. This work aimed to study the leptospiral coding sequence (CDS) LIC11087, genome annotated as hypothetical outer membrane protein. The LIC11087 gene was cloned and expressed in Escherichia coli BL21 (DE3) strain by using the expression vector pAE. The recombinant protein tagged with N-terminal 6XHis was purified by metal-charged chromatography and characterized by circular dichroism (CD) spectroscopy. The recombinant protein has the ability to mediate attachment to the extracellular matrix (ECM) components, laminin and plasma fibronectin, and was named Lsa30 (Leptospiral surface adhesin of 30 kDa). Lsa30 binds to laminin and to plasma fibronectin in a dose-dependent and saturable manner, with dissociation equilibrium constants (K(D)) of 292 ± 24 nm and 157 ± 35 nm, respectively. Moreover, the Lsa30 is a plasminogen (PLG) receptor, capable of generating plasmin, in the presence of activator. This protein may interfere with the complement cascade by interacting with C4bp regulator. The Lsa30 is probably a new surface protein of Leptospira as revealed by immunofluorescence assays with living organisms and the reactivity with antibodies present in serum samples of experimentally infected hamsters. Thus, Lsa30 is a novel versatile protein that may play a role in mediating adhesion and may help pathogenic Leptospira to overcome tissue barriers and to escape the immune system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Role of pathogenicity determinant protein C (PdpC in determining the virulence of the Francisella tularensis subspecies tularensis SCHU.

    Directory of Open Access Journals (Sweden)

    Akihiko Uda

    Full Text Available Francisella tularensis subspecies tularensis, the etiological agent of tularemia, is highly pathogenic to humans and animals. However, the SCHU strain of F. tularensis SCHU P0 maintained by passaging in artificial media has been found to be attenuated. To better understand the molecular mechanisms behind the pathogenicity of F. tularensis SCHU, we attempted to isolate virulent bacteria by serial passages in mice. SCHU P5 obtained after 5th passages in mice remained avirulent, while SCHU P9 obtained after 9th passages was completely virulent in mice. Moreover, SCHU P9 grew more efficiently in J774.1 murine macrophages compared with that in the less pathogenic SCHU P0 and P5. Comparison of the nucleotide sequences of the whole genomes of SCHU P0, P5, and P9 revealed only 1 nucleotide difference among P0, P5 and P9 in 1 of the 2 copies of pathogenicity determinant protein C (pdpC gene. An adenine residue deletion was observed in the pdpC1 gene of SCHU P0, P5, and P9 and in the pdpC2 gene of SCHU P0, and P5, while P9 was characterized by the wild type pdpC2 gene. Thus, SCHU P0 and P5 expressed only truncated forms of PdpC protein, while SCHU P9 expressed both wild type and truncated versions. To validate the pathogenicity of PdpC, both copies of the pdpC gene in SCHU P9 have been inactivated by Targetron mutagenesis. SCHU P9 mutants with inactivated pdpC gene showed low intracellular growth in J774.1 cells and did not induce severe disease in experimentally infected mice, while virulence of the mutants was restored by complementation with expression of the intact PdpC. These results demonstrate that PdpC is crucial in determining the virulence of F. tularensis SCHU.

  3. Guilty as charged: all available evidence implicates complement's role in fetal demise.

    Science.gov (United States)

    Girardi, Guillermina

    2008-03-01

    Appropriate complement inhibition is an absolute requirement for normal pregancy. Uncontrolled complement activation in the maternal-fetal interface leads to fetal death. Here we show that complement activation is a crucial and early mediator of pregnancy loss in two different mouse models of pregnancy loss. Using a mouse model of fetal loss and growth restriction (IUGR) induced by antiphospholipid antibodies (aPL), we examined the role of complement activation in fetal loss and IUGR. We found that C5a-C5aR interaction and neutrophils are key mediators of fetal injury. Treatment with heparin, the standard therapy for pregnant patients with aPL, prevents complement activation and protects mice from pregnancy complications induced by aPL, and anticoagulants that do not inhibit complement do not protect pregnancies. In an antibody-independent mouse model of spontaneous miscarriage and IUGR (CBA/JxDBA/2) we also identified C5a as an essential mediator. Complement activation caused dysregulation of the angiogenic factors required for normal placental development. In CBA/JxDBA/2 mice, we observed inflammatory infiltrates in placentas, functional deficiency of free vascular endothelial growth factor (VEGF), elevated levels of soluble VEGF receptor-1 (sVEGFR-1, also known as sFlt-1; a potent anti-angiogenic molecule), and defective placental development. Inhibition of complement activation blocked the increase in sVEGFR-1 and rescued pregnancies. Our studies in antibody-dependent and antibody-independent models of pregnancy complications identified complement activation as the key mediator of damage and will allow development of new interventions to prevent pregnancy loss and IUGR.

  4. Molecular dynamics of surfactant protein C

    DEFF Research Database (Denmark)

    Ramírez, Eunice; Santana, Alberto; Cruz, Anthony

    2006-01-01

    Surfactant protein C (SP-C) is a membrane-associated protein essential for normal respiration. It has been found that the alpha-helix form of SP-C can undergo, under certain conditions, a transformation from an alpha-helix to a beta-strand conformation that closely resembles amyloid fibrils, which...... are possible contributors to the pathogenesis of pulmonary alveolar proteinosis. Molecular dynamics simulations using the NAMD2 package were performed for systems containing from one to seven SP-C molecules to study their behavior in water. The results of our simulations show that unfolding of the protein...

  5. Screening a cDNA library for protein-protein interactions directly in planta

    Czech Academy of Sciences Publication Activity Database

    Lee, L.-Y.; Wu, F.-H.; Hsu, Ch.-T.; Shen, S.-Ch.; Yeh, H.-Y.; Liao, D.-Ch.; Fang, M.-J.; Liu, N.-T.; Yen, Y.-Ch.; Dokládal, Ladislav; Sýkorová, Eva; Gelvin, S.B.; Lin, Ch.-S.

    2012-01-01

    Roč. 24, č. 5 (2012), s. 1746-1759 ISSN 1040-4651 R&D Projects: GA AV ČR(CZ) IAA500040801 Institutional research plan: CEZ:AV0Z50040702 Keywords : bimolecular fluorescence complementation * telomerase-binding-protein * transformation Subject RIV: BO - Biophysics Impact factor: 9.251, year: 2012

  6. Interactions among the early Escherichia coli divisome proteins revealed by bimolecular fluorescence complementation.

    Science.gov (United States)

    Pazos, Manuel; Natale, Paolo; Margolin, William; Vicente, Miguel

    2013-12-01

    We used bimolecular fluorescence complementation (BiFC) assays to detect protein-protein interactions of all possible pairs of the essential Escherichia coli proto-ring components, FtsZ, FtsA and ZipA, as well as the non-essential FtsZ-associated proteins ZapA and ZapB. We found an unexpected interaction between ZipA and ZapB at potential cell division sites, and when co-overproduced, they induced long narrow constrictions at division sites that were dependent on FtsZ. These assays also uncovered an interaction between ZipA and ZapA that was mediated by FtsZ. BiFC with ZapA and ZapB showed that in addition to their expected interaction at midcell, they also interact at the cell poles. BiFC detected interaction between FtsZ and ZapB at midcell and close to the poles. Results from the remaining pairwise combinations confirmed known interactions between FtsZ and ZipA, and ZapB with itself. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. A fractionation method to identify qauntitative changes in protein expression mediated by IGF-1 on the proteome of murine C2C12 myoblasts

    Directory of Open Access Journals (Sweden)

    Friedmann Theodore

    2009-08-01

    Full Text Available Abstract Although much is known about signal transduction downstream of insulin-like growth factor-1 (IGF-1, relatively little is known about the global changes in protein expression induced by this hormone. In this study, the acute effects of IGF-1 on the proteome of murine C2C12 cells were examined. Cells were treated with IGF-1 for up to 24 hours, lysed, and fractionated into cytosolic, nuclear, and insoluble portions. Proteins from the cytosolic fraction were further separated using a new batch ion-exchange chromatography method to reduce sample complexity, followed by two-dimensional (2D electrophoresis, and identification of selected proteins by mass spectrometry. PDQuest software was utilized to identify and catalogue temporal changes in protein expression during IGF-1 stimulation. In response to IGF-1 stimulation, expression of 23 proteins increased at least three-fold and expression of 17 proteins decreased at least three-fold compared with control un-stimulated C2C12 cells. Changes in expression of selected proteins from each group, including Rho-GDI, cofillin, RAD50, enolase, IκB kinase b (IκBKb and Hsp70 were confirmed by Western blotting. Additionally, the position of 136 'landmark' proteins whose expression levels and physicochemical properties did not change appreciably or consistently during IGF-1 treatment were mapped and identified. This characterization of large-scale changes in protein expression in response to growth factor stimulation of C2C12 cells will further help to establish a comprehensive understanding of the networks and pathways involved in the action of IGF-1.

  8. Bacteriophage SP6 encodes a second tailspike protein that recognizes Salmonella enterica serogroups C{sub 2} and C{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Gebhart, Dana; Williams, Steven R.; Scholl, Dean, E-mail: dean@avidbiotics.com

    2017-07-15

    SP6 is a salmonella phage closely related to coliphage K1-5. K1-5 is notable in that it encodes two polysaccharide-degrading tailspike proteins, an endosialidase that allows it to infect E. coli K1, and a lyase that enables it to infect K5 strains. SP6 is similar to K1-5 except that it encodes a P22-like endorhamnosidase tailspike, gp46, allowing it to infect group B Salmonella. We show here that SP6 can also infect Salmonella serogroups C{sub 2} and C{sub 3} and that a mutation in a putative second tailspike, gp47, eliminates this specificity. Gene 47 was fused to the coding region of the N-terminal portion of the Pseudomonas aeruginosa R2 pyocin tail fiber and expressed in trans such that the fusion protein becomes incorporated into pyocin particles. These pyocins, termed AvR2-SP47, killed serogroups C{sub 2} and C{sub 3}Salmonella. We conclude that SP6 encodes two tail proteins providing it a broad host range among Salmonella enterica. - Highlights: • SP6 is a “dual specificity” bacteriophage that encodes two different receptor binding proteins giving it a broad host range. • These receptor binding proteins can be used to re-target the spectrum of R-type bacteriocins to Salmonella enterica. • Both SP6 and the engineered R-type bacteriocins can kill the Salmonella serovars most associated with human disease making them attractive for development as antimicrobial agents.

  9. Construction of a bimolecular fluorescence complementation (BiFC ...

    African Journals Online (AJOL)

    Protein–protein interactions are essential for signal transduction in cells. Bimolecular fluorescence complementation (BiFC) is a novel technology that utilises green fluorescent proteins to visualize protein–protein interactions and subcellular protein localisation. BiFC based on pSATN vectors are a good system for ...

  10. Construction of high-quality Caco-2 three-frame cDNA library and its application to yeast two-hybrid for the human astrovirus protein-protein interaction.

    Science.gov (United States)

    Zhao, Wei; Li, Xin; Liu, Wen-Hui; Zhao, Jian; Jin, Yi-Ming; Sui, Ting-Ting

    2014-09-01

    Human epithelial colorectal adenocarcinoma (Caco-2) cells are widely used as an in vitro model of the human small intestinal mucosa. Caco-2 cells are host cells of the human astrovirus (HAstV) and other enteroviruses. High quality cDNA libraries are pertinent resources and critical tools for protein-protein interaction research, but are currently unavailable for Caco-2 cells. To construct a three-open reading frame, full length-expression cDNA library from the Caco-2 cell line for application to HAstV protein-protein interaction screening, total RNA was extracted from Caco-2 cells. The switching mechanism at the 5' end of the RNA transcript technique was used for cDNA synthesis. Double-stranded cDNA was digested by Sfi I and ligated to reconstruct a pGADT7-Sfi I three-frame vector. The ligation mixture was transformed into Escherichia coli HST08 premium electro cells by electroporation to construct the primary cDNA library. The library capacity was 1.0×10(6)clones. Gel electrophoresis results indicated that the fragments ranged from 0.5kb to 4.2kb. Randomly picked clones show that the recombination rate was 100%. The three-frame primary cDNA library plasmid mixture (5×10(5)cfu) was also transformed into E. coli HST08 premium electro cells, and all clones were harvested to amplify the cDNA library. To detect the sufficiency of the cDNA library, HAstV capsid protein as bait was screened and tested against the Caco-2 cDNA library by a yeast two-hybrid (Y2H) system. A total of 20 proteins were found to interact with the capsid protein. These results showed that a high-quality three-frame cDNA library from Caco-2 cells was successfully constructed. This library was efficient for the application to the Y2H system, and could be used for future research. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Complement activation in emergency department patients with severe sepsis.

    Science.gov (United States)

    Younger, John G; Bracho, David O; Chung-Esaki, Hangyul M; Lee, Moonseok; Rana, Gurpreet K; Sen, Ananda; Jones, Alan E

    2010-04-01

    This study assessed the extent and mechanism of complement activation in community-acquired sepsis at presentation to the emergency department (ED) and following 24 hours of quantitative resuscitation. A prospective pilot study of patients with severe sepsis and healthy controls was conducted among individuals presenting to a tertiary care ED. Resuscitation, including antibiotics and therapies to normalize central venous and mean arterial pressure (MAP) and central venous oxygenation, was performed on all patients. Serum levels of Factor Bb (alternative pathway), C4d (classical and mannose-binding lectin [MBL] pathway), C3, C3a, and C5a were determined at presentation and 24 hours later among patients. Twenty patients and 10 healthy volunteer controls were enrolled. Compared to volunteers, all proteins measured were abnormally higher among septic patients (C4d 3.5-fold; Factor Bb 6.1-fold; C3 0.8-fold; C3a 11.6-fold; C5a 1.8-fold). Elevations in C5a were most strongly correlated with alternative pathway activation. Surprisingly, a slight but significant inverse relationship between illness severity (by sequential organ failure assessment [SOFA] score) and C5a levels at presentation was noted. Twenty-four hours of structured resuscitation did not, on average, affect any of the mediators studied. Patients with community-acquired sepsis have extensive complement activation, particularly of the alternative pathway, at the time of presentation that was not significantly reversed by 24 hours of aggressive resuscitation.

  12. Natural IgM antibodies that bind neoepitopes exposed as a result of spinal cord injury , drive secondary injury by activating complement.

    Science.gov (United States)

    Narang, Aarti; Qiao, Fei; Atkinson, Carl; Zhu, Hong; Yang, Xiaofeng; Kulik, Liudmila; Holers, V Michael; Tomlinson, Stephen

    2017-06-19

    Natural IgM antibodies (Abs) function as innate immune sensors of injury via recognition of neoepitopes expressed on damaged cells, although how this recognition systems function following spinal cord injury (SCI) exposes various neoepitopes and their precise nature remains largely unknown. Here, we investigated the role of two natural IgM monoclonal Abs (mAbs), B4 and C2, that recognize post-ischemic neoepitopes following ischemia and reperfusion in other tissues. Identification of post-SCI expressed neoepitopes was examined using previously characterized monoclonal Abs (B4 and C2 mAbs). The role of post-SCI neoepitopes and their recognition by natural IgM Abs in propagating secondary injury was examined in Ab-deficient Rag1-/- or wild type C57BL/6 mice using Ab reconstitution experiments and neoepitope-targeted therapeutic studies, respectively. Administration of B4 or C2 mAb following murine SCI increased lesion size and worsened functional outcome in otherwise protected Ab-deficient Rag1-/- mice. Injury correlated with colocalized deposition of IgM and C3d in injured spinal cords from both mAb reconstituted Rag1-/- mice and untreated wild-type mice. Depletion of peritoneal B1 B cells, a source of natural Abs, reduced circulating levels of IgM with B4 (annexin-IV) and C2 (subset of phospholipids) reactivity, reduced IgM and complement deposition in the spinal cord, and protected against SCI. We therefore investigated whether the B4 neoepitope represents a therapeutic target for complement inhibition. B4-Crry, a fusion protein consisting of a single-chain Ab derived from B4 mAb, linked to the complement inhibitor Crry, significantly protected against SCI. B4-Crry exhibited a dual function in that it inhibited both the binding of pathogenic IgM and blocked complement activation in the spinal cord. This study identifies important neoepitopes expressed within the spinal cord after injury. These neoepitopes are recognized by clonally specific natural IgM Abs that

  13. Comprehensive Proteoform Characterization of Plasma Complement Component C8αβγ by Hybrid Mass Spectrometry Approaches

    Science.gov (United States)

    Franc, Vojtech; Zhu, Jing; Heck, Albert J. R.

    2018-03-01

    The human complement hetero-trimeric C8αβγ (C8) protein assembly ( 150 kDa) is an important component of the membrane attack complex (MAC). C8 initiates membrane penetration and coordinates MAC pore formation. Here, we charted in detail the structural micro-heterogeneity within C8, purified from human plasma, combining high-resolution native mass spectrometry and (glyco)peptide-centric proteomics. The intact C8 proteoform profile revealed at least 20 co-occurring MS signals. Additionally, we employed ion exchange chromatography to separate purified C8 into four distinct fractions. Their native MS analysis revealed even more detailed structural micro-heterogeneity on C8. Subsequent peptide-centric analysis, by proteolytic digestion of C8 and LC-MS/MS, provided site-specific quantitative profiles of different types of C8 glycosylation. Combining all this data provides a detailed specification of co-occurring C8 proteoforms, including experimental evidence on N-glycosylation, C-mannosylation, and O-glycosylation. In addition to the known N-glycosylation sites, two more N-glycosylation sites were detected on C8. Additionally, we elucidated the stoichiometry of all C-mannosylation sites in all the thrombospondin-like (TSP) domains of C8α and C8β. Lastly, our data contain the first experimental evidence of O-linked glycans located on C8γ. Albeit low abundant, these O-glycans are the first PTMs ever detected on this subunit. By placing the observed PTMs in structural models of free C8 and C8 embedded in the MAC, it may be speculated that some of the newly identified modifications may play a role in the MAC formation. [Figure not available: see fulltext.

  14. Heterocomplexes of mannose-binding lectin and the pentraxins PTX3 or SAP trigger cross-activation of the complement system

    DEFF Research Database (Denmark)

    Ma, Ying Jie; Doni, Andrea; Skjødt, Mikkel-Ole

    2011-01-01

    The long pentraxin 3 (PTX3), serum amyloid P component (SAP) and C-reactive protein (CRP) belong to the pentraxin family of pattern recognition molecules involved in tissue homeostasis and innate immunity. They interact with C1q from the classical complement pathway. Whether this also occurs via...... the analogous mannose-binding lectin (MBL) from the lectin complement pathway is unknown. Thus, we investigated the possible interaction between MBL and the pentraxins. We report that MBL bound PTX3 and SAP partly via its collagen-like domain, but not CRP. MBL:PTX3 complex formation resulted in recruitment of C......1q, but this was not seen for the MBL:SAP complex. However, both MBL:PTX3 and MBL:SAP complexes enhanced C4 and C3 deposition and opsonophagocytosis of Candida albicans by polymorphonuclear leukocytes. Interaction between MBL and PTX3 lead to communication between the lectin and classical complement...

  15. Fusobacterium nucleatum binding to complement regulatory protein CD46 modulates the expression and secretion of cytokines and matrix metalloproteinases by oral epithelial cells.

    Science.gov (United States)

    Mahtout, Hayette; Chandad, Fatiha; Rojo, Jose M; Grenier, Daniel

    2011-02-01

    Periodontitis is a chronic inflammatory disease that results in the destruction of the supporting tissues of the teeth. Gingival epithelial cells are an important mechanical barrier and participate in the host inflammatory response to periodontopathogens. The aim of the present study is to investigate the capacity of Fusobacterium nucleatum to bind to the complement regulatory protein CD46 expressed by oral epithelial cells and to determine the impact of the binding on the gene expression and protein secretion of interleukin (IL)-6, IL-8, and matrix metalloproteinase (MMP)-9 by oral epithelial cells. Binding of recombinant human CD46 to the surface of F. nucleatum was demonstrated by immunologic assays. After stimulation of oral epithelial cells with F. nucleatum, gene expression was determined by real-time polymerase chain reaction analysis while protein secretion was monitored by enzyme-linked immunosorbent assays. Heat and protease treatments of bacterial cells reduced CD46 binding. F. nucleatum-bound CD46 mediated the cleavage of C3b in the presence of factor I. Stimulating oral epithelial cells with F. nucleatum at a multiplicity of infection of 50 resulted in a significant upregulation of the gene expression and protein secretion of IL-6, IL-8, and MMP-9 by oral epithelial cells. However, pretreating the epithelial cells with an anti-CD46 polyclonal antibody attenuated the production of IL-6, IL-8, and MMP-9 in response to F. nucleatum. Such an inhibitory effect was not observed with non-specific antibodies. The present study demonstrates that F. nucleatum can bind the complement regulatory protein CD46. The interaction of F. nucleatum with epithelial cell surface CD46 may contribute to increasing the levels of proinflammatory mediators and MMPs in periodontal sites and consequently modulate tissue destruction.

  16. C3 deposition in cholesterol-induced atherosclerosis in rabbits: a possible etiologic role for complement in atherogenesis.

    Science.gov (United States)

    Pang, A S; Katz, A; Minta, J O

    1979-09-01

    Hypercholesterolemia was induced in rabbits by feeding Purina Chow supplemented with cholesterol (5 g/kg body weight/day). The serum cholesterol levels of these rabbits increased progressively and after 3 to 5 months were 4 to 9-fold greater than those of the control animals. Decrease in total hemolytic complement was not apparent during the feeding regimen. Morphologic examination of aortae of these hypercholesterolemic rabbits showed typical atherosclerotic intimal plaques. Immunofluorescent microscopy with fluorescein (F)-labeled anti-rabbit C3 showed deposition of C3 in the intimal and inner medial layers as early as 3 months on high cholesterol diet. C3 deposits were also observed in the renal glomeruli and in the walls of coronary arteries. However, fluorescent studies failed to demonstrate the presence of IgG, IgM, and C4 at these sites. Tissues from control animals fed normal diets were negative for immunoglobulins, C3, and C4. These results suggest that the complement system may be implicated in the pathogenesis of cholesterol-induced atherosclerosis in rabbits.

  17. Complement protein C1q induces maturation of human dendritic cells

    DEFF Research Database (Denmark)

    Csomor, Eszter; Bajtay, Zsuzsa; Sándor, Noémi

    2007-01-01

    Maturation of dendritic cells (DCs) is known to be induced by several stimuli, including microbial products, inflammatory cytokines and immobilized IgG, as demonstrated recently. Since immune complexes formed in vivo also contain C1q, moreover apoptotic cells and several pathogens fix C1q...... activity of the cells was assessed by measuring cytokine secretion and their ability to activate allogeneic T lymphocytes. Cytokine production by T cells co-cultured with C1q-matured DCs was also investigated. C1q, but not the structurally related mannose-binding lectin was found to bind to imMDC in a dose......-dependent manner and induced NF-kappaB translocation to the nucleus. Immobilized C1q induced maturation of MDCs and enhanced secretion of IL-12 and TNF-alpha, moreover, elevated their T-cell stimulating capacity. As IFN-gamma levels were increased in supernatants of MDC-T cell co-cultures, our data suggest that C1...

  18. Evasion Mechanisms Used by Pathogens to Escape the Lectin Complement Pathway

    DEFF Research Database (Denmark)

    Rosbjerg, Anne; Genster, Ninette; Pilely, Katrine

    2017-01-01

    The complement system is a crucial defensive network that protects the host against invading pathogens. It is part of the innate immune system and can be initiated via three pathways: the lectin, classical and alternative activation pathway. Overall the network compiles a group of recognition...... the level of activity. The result is a pro-inflammatory response meant to combat foreign microbes. Microbial elimination is, however, not a straight forward procedure; pathogens have adapted to their environment by evolving a collection of evasion mechanisms that circumvent the human complement system....... Complement evasion strategies features different ways of exploiting human complement proteins and moreover features different pathogen-derived proteins that interfere with the normal processes. Accumulated, these mechanisms target all three complement activation pathways as well as the final common part...

  19. The effects of probiotic yoghurt on C-Reactive Protein in type 2 diabetic patients

    Directory of Open Access Journals (Sweden)

    hanoyesadat Ejtahed

    2013-09-01

    Conclusion: Consumption of probiotic yoghurt improved C-Reactive Protein concentration in type 2 diabetic patients. Probiotic yoghurt consumption is recommended as auxiliary therapy in type 2 diabetic patients.

  20. Renal AA amyloidosis in a patient with hereditary complete complement C4 deficiency

    Directory of Open Access Journals (Sweden)

    Imed Helal

    2011-01-01

    Full Text Available Hereditary complete C4 deficiency has until now been reported in 30 cases only. A disturbed clearance of immune- complexes probably predisposes these individuals to systemic lupus erythematosus, other immune- complex diseases and recurrent microbial infections. We present here a 20- year- old female with hereditary complete C4 deficiency. Renal biopsy demonstrated renal AA amyloidosis. This unique case further substantiates that deficiency of classical pathway components predisposes to the development of recurrent microbial infections and that the patients may develop AA amyloidosis. Furthermore, in clinical practice, the nephrotic syndrome occurring in a patient with hereditary complete complement C4 deficiency should lead to the suspicion of renal AA amyloidosis.

  1. Regulation of the Na(+)-K(+)-2Cl(-) cotransporter by cGMP/cGMP-dependent protein kinase I after furosemide administration.

    Science.gov (United States)

    Limmer, Franziska; Schinner, Elisabeth; Castrop, Hayo; Vitzthum, Helga; Hofmann, Franz; Schlossmann, Jens

    2015-10-01

    Sodium chloride reabsorption in the thick ascending limb of the loop of Henle is mediated by the Na(+)-K(+)-2Cl(-) cotransporter (NKCC2). The loop diuretic furosemide is a potent inhibitor of NKCC2. However, less is known about the mechanism regulating the electrolyte transporter. Considering the well-established effects of nitric oxide on NKCC2 activity, cGMP is likely involved in this regulation. cGMP-dependent protein kinase I (cGKI; PKGI) is a cGMP target protein that phosphorylates different substrates after activation through cGMP. We investigated the potential correlation between the cGMP/cGKI pathway and NKCC2 regulation. We treated wild-type (wt) and cGKIα-rescue mice with furosemide. cGKIα-rescue mice expressed cGKIα only under the control of the smooth muscle-specific transgelin (SM22) promoter in a cGKI deficient background. Furosemide treatment increased the urine excretion of sodium and chloride in cGKIα-rescue mice compared to that in wt mice. We analyzed the phosphorylation of NKCC2 by western blotting and immunostaining using the phosphospecific antibody R5. The administration of furosemide significantly increased the phosphorylated NKCC2 signal in wt but not in cGKIα-rescue mice. NKCC2 activation led to its phosphorylation and membrane translocation. To examine whether cGKI was involved in this process, we analyzed vasodilator-stimulated phosphoprotein, which is phosphorylated by cGKI. Furosemide injection resulted in increased vasodilator-stimulated phosphoprotein phosphorylation in wt mice. We hypothesize that furosemide administration activated cGKI, leading to NKCC2 phosphorylation and membrane translocation. This cGKI-mediated pathway could be a mechanism to compensate for the inhibitory effect of furosemide on NKCC2. © 2015 FEBS.

  2. Role of the CipA Scaffoldin Protein in Cellulose Solubilization, as Determined by Targeted Gene Deletion and Complementation in Clostridium thermocellum

    Science.gov (United States)

    Olson, Daniel G.; Giannone, Richard J.; Hettich, Robert L.

    2013-01-01

    The CipA scaffoldin protein plays a key role in the Clostridium thermocellum cellulosome. Previous studies have revealed that mutants deficient in binding or solubilizing cellulose also exhibit reduced expression of CipA. To confirm that CipA is, in fact, necessary for rapid solubilization of crystalline cellulose, the gene was deleted from the chromosome using targeted gene deletion technologies. The CipA deletion mutant exhibited a 100-fold reduction in cellulose solubilization rate, although it was eventually able to solubilize 80% of the 5 g/liter cellulose initially present. The deletion mutant was complemented by a copy of cipA expressed from a replicating plasmid. In this strain, Avicelase activity was restored, although the rate was 2-fold lower than that in the wild type and the duration of the lag phase was increased. The cipA coding sequence is located at the beginning of a gene cluster containing several other genes thought to be responsible for the structural organization of the cellulosome, including olpB, orf2p, and olpA. Tandem mass spectrometry revealed a 10-fold reduction in the expression of olpB, which may explain the lower growth rate. This deletion experiment adds further evidence that CipA plays a key role in cellulose solubilization by C. thermocellum, and it raises interesting questions about the differential roles of the anchor scaffoldin proteins OlpB, Orf2p, and SdbA. PMID:23204466

  3. Comparison of potential protection conferred by three immunization strategies (protein/protein, DNA/DNA, and DNA/protein) against Brucella infection using Omp2b in BALB/c Mice.

    Science.gov (United States)

    Golshani, Maryam; Rafati, Sima; Nejati-Moheimani, Mehdi; Ghasemian, Melina; Bouzari, Saeid

    2016-12-25

    In the present study, immunogenicity and protective efficacy of the Brucella outer membrane protein 2b (Omp2b) was evaluated in BALB/c mice using Protein/Protein, DNA/DNA and DNA/Protein vaccine strategies. Immunization of mice with three vaccine regimens elicited a strong specific IgG response (higher IgG2a titers over IgG1 titers) and provided Th1-oriented immune response. Vaccination of BALB/c mice with the DNA/Pro regimen induced higher levels of IFN-γ/IL-2 and conferred more protection levels against B. melitenisis and B. abortus challenge than did the protein or DNA alone. In conclusion, Omp2b is able to stimulate specific immune responses and to confer cross protection against B. melitensis and B. abortus infection. Therefore, it could be introduced as a new potential candidate for the development of a subunit vaccine against Brucella infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. C3 Glomerulopathy and Atypical Hemolytic Uremic Syndrome: Two Important Manifestations of Complement System Dysfunction

    Directory of Open Access Journals (Sweden)

    Ravneet Bajwa

    2018-02-01

    Full Text Available The advances in our understanding of the alternative pathway have emphasized that uncontrolled hyperactivity of this pathway causes 2 distinct disorders that adversely impact the kidney. In the so-called atypical hemolytic uremic syndrome (aHUS, renal dysfunction occurs along with thrombocytopenia, anemia, and target organ injury to multiple organs, most commonly the kidney. On the other hand, in the so-termed C3 glomerulopathy, kidney involvement is not associated with thrombocytopenia, anemia, or other system involvement. In this report, we present 2 cases of alternative pathway dysfunction. The 60-year-old female patient had biopsy-proven C3 glomerulopathy, while the 32-year-old female patient was diagnosed with aHUS based on renal dysfunction, thrombocytopenia, anemia, and normal ADAMTS-13 level. The aHUS patient was successfully treated with the monoclonal antibody (eculizumab for complement blockade. The patient with C3 glomerulopathy did not receive the monoclonal antibody. In this patient, management focused on blood pressure and proteinuria control with an angiotensin-converting enzyme inhibitor. This article focuses on the clinical differences, pathophysiology, and treatment of aHUS and C3 glomerulopathy.

  5. Loss of Niemann-Pick C1 or C2 protein results in similar biochemical changes suggesting that these proteins function in a common lysosomal pathway.

    Directory of Open Access Journals (Sweden)

    Sayali S Dixit

    Full Text Available Niemann-Pick Type C (NPC disease is a lysosomal storage disorder characterized by accumulation of unesterified cholesterol and other lipids in the endolysosomal system. NPC disease results from a defect in either of two distinct cholesterol-binding proteins: a transmembrane protein, NPC1, and a small soluble protein, NPC2. NPC1 and NPC2 are thought to function closely in the export of lysosomal cholesterol with both proteins binding cholesterol in vitro but they may have unrelated lysosomal roles. To investigate this possibility, we compared biochemical consequences of the loss of either protein. Analyses of lysosome-enriched subcellular fractions from brain and liver revealed similar decreases in buoyant densities of lysosomes from NPC1 or NPC2 deficient mice compared to controls. The subcellular distribution of both proteins was similar and paralleled a lysosomal marker. In liver, absence of either NPC1 or NPC2 resulted in similar alterations in the carbohydrate processing of the lysosomal protease, tripeptidyl peptidase I. These results highlight biochemical alterations in the lysosomal system of the NPC-mutant mice that appear secondary to lipid storage. In addition, the similarity in biochemical phenotypes resulting from either NPC1 or NPC2 deficiency supports models in which the function of these two proteins within lysosomes are linked closely.

  6. P-I Snake Venom Metalloproteinase Is Able to Activate the Complement System by Direct Cleavage of Central Components of the Cascade

    Science.gov (United States)

    Pidde-Queiroz, Giselle; Magnoli, Fábio Carlos; Portaro, Fernanda C. V.; Serrano, Solange M. T.; Lopes, Aline Soriano; Paes Leme, Adriana Franco; van den Berg, Carmen W.; Tambourgi, Denise V.

    2013-01-01

    Background Snake Venom Metalloproteinases (SVMPs) are amongst the key enzymes that contribute to the high toxicity of snake venom. We have recently shown that snake venoms from the Bothrops genus activate the Complement system (C) by promoting direct cleavage of C-components and generating anaphylatoxins, thereby contributing to the pathology and spread of the venom. The aim of the present study was to isolate and characterize the C-activating protease from Bothrops pirajai venom. Results Using two gel-filtration chromatography steps, a metalloproteinase of 23 kDa that activates Complement was isolated from Bothrops pirajai venom. The mass spectrometric identification of this protein, named here as C-SVMP, revealed peptides that matched sequences from the P-I class of SVMPs. C-SVMP activated the alternative, classical and lectin C-pathways by cleaving the α-chain of C3, C4 and C5, thereby generating anaphylatoxins C3a, C4a and C5a. In vivo, C-SVMP induced consumption of murine complement components, most likely by activation of the pathways and/or by direct cleavage of C3, leading to a reduction of serum lytic activity. Conclusion We show here that a P-I metalloproteinase from Bothrops pirajai snake venom activated the Complement system by direct cleavage of the central C-components, i.e., C3, C4 and C5, thereby generating biologically active fragments, such as anaphylatoxins, and by cleaving the C1-Inhibitor, which may affect Complement activation control. These results suggest that direct complement activation by SVMPs may play a role in the progression of symptoms that follow envenomation. PMID:24205428

  7. Tuning complement activation and pathway through controlled molecular architecture of dextran chains in nanoparticle corona.

    Science.gov (United States)

    Coty, Jean-Baptiste; Eleamen Oliveira, Elquio; Vauthier, Christine

    2017-11-05

    The understanding of complement activation by nanomaterials is a key to a rational design of safe and efficient nanomedicines. This work proposed a systematic study investigating how molecular design of nanoparticle coronas made of dextran impacts on mechanisms that trigger complement activation. The nanoparticles used for this work consisted of dextran-coated poly(isobutylcyanoacrylate) (PIBCA) nanoparticles have already been thoroughly characterized. Their different capacity to trigger complement activation established on the cleavage of the protein C3 was also already described making these nanoparticles good models to investigate the relation between the molecular feature of their corona and the mechanism by which they triggered complement activation. Results of this new study show that complement activation pathways can be selected by distinct architectures formed by dextran chains composing the nanoparticle corona. Assumptions that explain the relation between complement activation mechanisms triggered by the nanoparticles and the nanoparticle corona molecular feature were proposed. These results are of interest to better understand how the design of dextran-coated nanomaterials will impact interactions with the complement system. It can open perspectives with regard to the selection of a preferential complement activation pathway or prevent the nanoparticles to activate the complement system, based on a rational choice of the corona configuration. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Evasion Mechanisms Used by Pathogens to Escape the Lectin Complement Pathway

    DEFF Research Database (Denmark)

    Rosbjerg, Anne; Genster, Ninette; Pilely, Katrine

    2017-01-01

    the level of activity. The result is a pro-inflammatory response meant to combat foreign microbes. Microbial elimination is, however, not a straight forward procedure; pathogens have adapted to their environment by evolving a collection of evasion mechanisms that circumvent the human complement system....... Complement evasion strategies features different ways of exploiting human complement proteins and moreover features different pathogen-derived proteins that interfere with the normal processes. Accumulated, these mechanisms target all three complement activation pathways as well as the final common part...... of the cascade. This review will cover the currently known lectin pathway evasion mechanisms and give examples of pathogens that operate these to increase their chance of invasion, survival and dissemination....

  9. Human SAP is a novel peptidoglycan recognition protein that induces complement- independent phagocytosis of Staphylococcus aureus

    Science.gov (United States)

    An, Jang-Hyun; Kurokawa, Kenji; Jung, Dong-Jun; Kim, Min-Jung; Kim, Chan-Hee; Fujimoto, Yukari; Fukase, Koichi; Coggeshall, K. Mark; Lee, Bok Luel

    2014-01-01

    The human pathogen Staphylococcus aureus is responsible for many community-acquired and hospital-associated infections and is associated with high mortality. Concern over the emergence of multidrug-resistant strains has renewed interest in the elucidation of host mechanisms that defend against S. aureus infection. We recently demonstrated that human serum mannose-binding lectin (MBL) binds to S. aureus wall teichoic acid (WTA), a cell wall glycopolymer, a discovery that prompted further screening to identify additional serum proteins that recognize S. aureus cell wall components. In this report, we incubated human serum with 10 different S. aureus mutants and determined that serum amyloid P component (SAP) bound specifically to a WTA-deficient S. aureus ΔtagO mutant, but not to tagO-complemented, WTA-expressing cells. Biochemical characterization revealed that SAP recognizes bacterial peptidoglycan as a ligand and that WTA inhibits this interaction. Although SAP binding to peptidoglycan was not observed to induce complement activation, SAP-bound ΔtagO cells were phagocytosed by human polymorphonuclear leukocytes in an Fcγ receptor-dependent manner. These results indicate that SAP functions as a host defense factor, similar to other peptidoglycan recognition proteins and nucleotide-binding oligomerization domain (NOD)-like receptors. PMID:23966633

  10. Specific alterations in complement protein activity of little brown myotis (Myotis lucifugus hibernating in white-nose syndrome affected sites.

    Directory of Open Access Journals (Sweden)

    Marianne S Moore

    Full Text Available White-nose syndrome (WNS is the most devastating condition ever reported for hibernating bats, causing widespread mortality in the northeastern United States. The syndrome is characterized by cutaneous lesions caused by a recently identified psychrophilic and keratinophylic fungus (Geomyces destructans, depleted fat reserves, atypical behavior, and damage to wings; however, the proximate cause of mortality is still uncertain. To assess relative levels of immunocompetence in bats hibernating in WNS-affected sites compared with levels in unaffected bats, we describe blood plasma complement protein activity in hibernating little brown myotis (Myotis lucifugus based on microbicidal competence assays using Escherichia coli, Staphylococcus aureus and Candida albicans. Blood plasma from bats collected during mid-hibernation at WNS-affected sites had higher bactericidal ability against E. coli and S. aureus, but lower fungicidal ability against C. albicans when compared with blood plasma from bats collected at unaffected sites. Within affected sites during mid-hibernation, we observed no difference in microbicidal ability between bats displaying obvious fungal infections compared to those without. Bactericidal ability against E. coli decreased significantly as hibernation progressed in bats collected from an affected site. Bactericidal ability against E. coli and fungicidal ability against C. albicans were positively correlated with body mass index (BMI during late hibernation. We also compared complement activity against the three microbes within individuals and found that the ability of blood plasma from hibernating M. lucifugus to lyse microbial cells differed as follows: E. coli>S. aureus>C. albicans. Overall, bats affected by WNS experience both relatively elevated and reduced innate immune responses depending on the microbe tested, although the cause of observed immunological changes remains unknown. Additionally, considerable trade-offs may exist

  11. Specific alterations in complement protein activity of little brown myotis (Myotis lucifugus) hibernating in white-nose syndrome affected sites.

    Science.gov (United States)

    Moore, Marianne S; Reichard, Jonathan D; Murtha, Timothy D; Zahedi, Bita; Fallier, Renee M; Kunz, Thomas H

    2011-01-01

    White-nose syndrome (WNS) is the most devastating condition ever reported for hibernating bats, causing widespread mortality in the northeastern United States. The syndrome is characterized by cutaneous lesions caused by a recently identified psychrophilic and keratinophylic fungus (Geomyces destructans), depleted fat reserves, atypical behavior, and damage to wings; however, the proximate cause of mortality is still uncertain. To assess relative levels of immunocompetence in bats hibernating in WNS-affected sites compared with levels in unaffected bats, we describe blood plasma complement protein activity in hibernating little brown myotis (Myotis lucifugus) based on microbicidal competence assays using Escherichia coli, Staphylococcus aureus and Candida albicans. Blood plasma from bats collected during mid-hibernation at WNS-affected sites had higher bactericidal ability against E. coli and S. aureus, but lower fungicidal ability against C. albicans when compared with blood plasma from bats collected at unaffected sites. Within affected sites during mid-hibernation, we observed no difference in microbicidal ability between bats displaying obvious fungal infections compared to those without. Bactericidal ability against E. coli decreased significantly as hibernation progressed in bats collected from an affected site. Bactericidal ability against E. coli and fungicidal ability against C. albicans were positively correlated with body mass index (BMI) during late hibernation. We also compared complement activity against the three microbes within individuals and found that the ability of blood plasma from hibernating M. lucifugus to lyse microbial cells differed as follows: E. coli>S. aureus>C. albicans. Overall, bats affected by WNS experience both relatively elevated and reduced innate immune responses depending on the microbe tested, although the cause of observed immunological changes remains unknown. Additionally, considerable trade-offs may exist between energy

  12. Plasma-derived human C1-esterase inhibitor does not prevent mechanical ventilation-induced pulmonary complement activation in a rat model of Streptococcus pneumoniae pneumonia

    NARCIS (Netherlands)

    de Beer, F. M.; Aslami, H.; Hoeksma, J.; van Mierlo, G.; Wouters, D.; Zeerleder, S.; Roelofs, J. J. T. H.; Juffermans, N. P.; Schultz, M. J.; Lagrand, W. K.

    2014-01-01

    Mechanical ventilation has the potential to cause lung injury, and the role of complement activation herein is uncertain. We hypothesized that inhibition of the complement cascade by administration of plasma-derived human C1-esterase inhibitor (C1-INH) prevents ventilation-induced pulmonary

  13. Live cell imaging of interactions between replicase and capsid protein of Brome mosaic virus using Bimolecular Fluorescence Complementation: implications for replication and genome packaging.

    Science.gov (United States)

    Chaturvedi, Sonali; Rao, A L N

    2014-09-01

    In Brome mosaic virus, it was hypothesized that a physical interaction between viral replicase and capsid protein (CP) is obligatory to confer genome packaging specificity. Here we tested this hypothesis by employing Bimolecular Fluorescent Complementation (BiFC) as a tool for evaluating protein-protein interactions in living cells. The efficacy of BiFC was validated by a known interaction between replicase protein 1a (p1a) and protein 2a (p2a) at the endoplasmic reticulum (ER) site of viral replication. Additionally, co-expression in planta of a bona fide pair of interacting protein partners of p1a and p2a had resulted in the assembly of a functional replicase. Subsequent BiFC assays in conjunction with mCherry labeled ER as a fluorescent cellular marker revealed that CP physically interacts with p2a, but not p1a, and this CP:p2a interaction occurs at the cytoplasmic phase of the ER. The significance of the CP:p2a interaction in BMV replication and genome packaging is discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Is complement good, bad, or both? New functions of the complement factors associated with inflammation mechanisms in the central nervous system.

    Science.gov (United States)

    Tahtouh, Muriel; Croq, Françoise; Lefebvre, Christophe; Pestel, Joël

    2009-09-01

    The complement system is well known as an enzyme cascade that helps to defend against infections. Indeed, this ancestral system bridges innate and adaptive immunity. Its implication in diseases of the central nervous system (CNS), has led to an increased number of studies. Complement activation in the CNS has been generally considered to contribute to tissue damage. However, recent studies suggest that complement may be neuroprotective, and can participate in maintenance and repair of the adult brain. Here, we will review this dual role of complement proteins and some of their functional interactions with part of the chemokine and cytokine network associated with the protection of CNS integrity.

  15. Structural evaluation of a nanobody targeting complement receptor Vsig4 and its cross reactivity.

    Science.gov (United States)

    Wen, Yurong; Ouyang, Zhenlin; Schoonooghe, Steve; Luo, Siyu; De Baetselier, Patrick; Lu, Wuyuan; Muyldermans, Serge; Raes, Geert; Zheng, Fang

    2017-06-01

    Vsig4 is a recently identified immune regulatory protein related to the B7 family with dual functionality: a negative regulator of T cell activation and a receptor for the complement components C3b and C3c. Here we present a structural evaluation of a nanobody, Nb119, against the extracellular IgV domain protein of both mouse and human recombinant Vsig4, which have a high degree of sequence identity. Although mouse and human Vsig4 bind to Nb119 with a 250 times difference in dissociation constants, the interaction results in a highly identical assembly with a RMSD of 0.4Å. The molecular determinants for Vsig4 recognition and cross reactivity unveiled by the atomic structure of Nb119 in complex with mVsig4 and hVsig4 afford new insights useful for the further optimization of the nanobody for potential use in humans. Additionally, structural analysis of the Vsig4-Nb119 complexes indicates that Nb119 occupies the interface on Vsig4 recognized by the macroglobulin-like domains MG4 and MG5 of C3b. Thus an affinity-improved Nb119 may have the potential to influence the activation of both T cells and complement. Copyright © 2016. Published by Elsevier GmbH.

  16. Anti-protein C antibodies are associated with resistance to endogenous protein C activation and a severe thrombotic phenotype in antiphospholipid syndrome.

    Science.gov (United States)

    Arachchillage, D R J; Efthymiou, M; Mackie, I J; Lawrie, A S; Machin, S J; Cohen, H

    2014-11-01

    Antiphospholipid antibodies may interfere with the anticoagulant activity of activated protein C (APC) to induce acquired APC resistance (APCr). To investigate the frequency and characteristics of APCr by using recombinant human APC (rhAPC) and endogenous protein C activation in antiphospholipid syndrome (APS). APCr was assessed in APS and non-APS venous thromboembolism (VTE) patients on warfarin and normal controls with rhAPC or Protac by thrombin generation. IgG anti-protein C and anti-protein S antibodies and avidity were assessed by ELISA. APS patients showed greater resistance to both rhAPC and Protac than non-APS patients and normal controls (median normalized endogenous thrombin potential inhibition): APS patients with rhAPC, 81.3% (95% confidence interval [CI] 75.2-88.3%; non-APS patients with rhAPC, 97.7% (95% CI 93.6-101.8%; APS patients with Protac, 66.0% (95% CI 59.5-72.6%); and non-APS patients with Protac, 80.7 (95% CI 74.2-87.2%). APS patients also had a higher frequency and higher levels of anti-protein C antibodies, with 60% (15/25) high-avidity antibodies. High-avidity anti-protein C antibodies were associated with greater APCr and with a severe thrombotic phenotype (defined as the development of recurrent VTE while patients were receiving therapeutic anticoagulation or both venous and arterial thrombosis). Twelve of 15 (80%) patients with high-avidity anti-protein C antibodies were classified as APS category I. Thrombotic APS patients showed greater APCr to both rhAPC and activation of endogenous protein C by Protac. High-avidity anti-protein C antibodies, associated with greater APCr, may provide a marker for a severe thrombotic phenotype in APS. However, in patients with category I APS, it remains to be established whether anti-protein C or anti-β2 -glycoprotein I antibodies are responsible for APCr. © 2014 International Society on Thrombosis and Haemostasis.

  17. Tissue- and paralogue-specific functions of acyl-CoA-binding proteins in lipid metabolism in C. elegans

    DEFF Research Database (Denmark)

    Elle, Ida Coordt; Simonsen, Karina Trankjær; Olsen, Louise Cathrine Braun

    2011-01-01

    -deficient yeast cells, and that they exhibit distinct temporal- and tissue expression patterns in C. elegans. We have obtained loss-of-function mutants for six of these forms. All single mutants display relatively subtle phenotypes; however we find that functional loss of ACBP-1 leads to reduced triglyceride...... storage, and increased β-oxidation. Collectively, the present results suggest that each of the ACBP paralogues serves a distinct function in C. elegans....... of several ACBP paralogues in many eukaryotic species indicate that these proteins serve distinct functions. The nematode Caenorhabditis elegans expresses seven ACBPs; four basal forms and three ACBP-domain proteins. We find that each of these paralogues is capable of complementing growth of ACBP...

  18. Fibulin-1C, C1 esterase inhibitor and glucose regulated protein 75 interact with the CREC proteins, calumenin and reticulocalbin

    DEFF Research Database (Denmark)

    Hansen, Gry Aune Westergaard; Ludvigsen, Maja; Jacobsen, Christian

    2015-01-01

    Affinity purification, immunoprecipitation, gel electrophoresis and mass spectrometry were used to identify fibulin-1C, C1 esterase inhibitor and glucose regulated protein 75, grp75, as binding partners of the CREC proteins, calumenin and reticulocalbin. Surface plasmon resonance was used to verify...... the interaction of all three proteins with each of the CREC proteins. Fibulin-1C interacts with calumenin and reticulocalbin with an estimated dissociation constant around 50-60 nM. The interaction, at least for reticulocalbin, was not dependent upon the presence of Ca2+. C1 esterase inhibitor interacted...

  19. Complement and the control of HIV infection: an evolving story.

    Science.gov (United States)

    Frank, Michael M; Hester, Christopher; Jiang, Haixiang

    2014-05-01

    Thirty years ago, investigators isolated and later determined the structure of HIV-1 and its envelope proteins. Using techniques that were effective with other viruses, they prepared vaccines designed to generate antibody or T-cell responses, but they were ineffective in clinical trials. In this article, we consider the role of complement in host defense against enveloped viruses, the role it might play in the antibody response and why complement has not controlled HIV-1 infection. Complement consists of a large group of cell-bound and plasma proteins that are an integral part of the innate immune system. They provide a first line of defense against microbes and also play a role in the immune response. Here we review the studies of complement-mediated HIV destruction and the role of complement in the HIV antibody response. HIV-1 has evolved a complex defense to prevent complement-mediated killing reviewed here. As part of these studies, we have discovered that HIV-1 envelope, on administration into animals, is rapidly broken down into small peptides that may prove to be very inefficient at provident the type of antigenic stimulation that leads to an effective immune response. Improving complement binding and stabilizing envelope may improve the vaccine response.

  20. Involvement of C-Terminal Histidines in Soybean PM1 Protein Oligomerization and Cu2+ Binding.

    Science.gov (United States)

    Liu, Guobao; Liu, Ke; Gao, Yang; Zheng, Yizhi

    2017-06-01

    Late embryogenesis abundant (LEA) proteins are widely distributed among plant species, where they contribute to abiotic stress tolerance. LEA proteins can be classified into seven groups according to conserved sequence motifs. The PM1 protein from soybean, which belongs to the Pfam LEA_1 group, has been shown previously to be at least partially natively unfolded, to bind metal ions and potentially to stabilize proteins and membranes. Here, we investigated the role of the PM1 C-terminal domain and in particular the multiple histidine residues in this half of the protein. We constructed recombinant plasmids expressing full-length PM1 and two truncated forms, PM1-N and PM1-C, which represent the N- and C-terminal halves of the protein, respectively. Immunoblotting and cross-linking experiments showed that full-length PM1 forms oligomers and high molecular weight (HMW) complexes in vitro and in vivo, while PM1-C, but not PM1-N, also formed oligomers and HMW complexes in vitro. When the histidine residues in PM1 and PM1-C were chemically modified, oligomerization was abolished, suggesting that histidines play a key role in this process. Furthermore, we demonstrated that high Cu2+ concentrations promote oligomerization and induce PM1 and PM1-C to form HMW complexes. Therefore, we speculate that PM1 proteins not only maintain ion homeostasis in the cytoplasm, but also potentially stabilize and protect other proteins during abiotic stress by forming a large, oligomeric molecular shield around biological targets. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Effects of partial replacement of fish meal by yeast hydrolysate on complement system and stress resistance in juvenile Jian carp (Cyprinus carpio var. Jian).

    Science.gov (United States)

    Yuan, Xiang-Yang; Liu, Wen-Bin; Liang, Chao; Sun, Cun-Xin; Xue, Yun-Fei; Wan, Zu-De; Jiang, Guang-Zhen

    2017-08-01

    A 10-week feeding trial was carried out to investigate the effects of dietary fish meal replacement by yeast hydrolysate (YH) on growth performance, complement system and stress resistance of juvenile Jian carp (Cyprinus carpio var. Jian) (initial average weight 19.44 ± 0.06 g). In the study, there were five groups: one control group was fed with a basal diet (YH0), and four treatment groups were fed with dietary fish meal replaced by 1% YH (YH1), 3% (YH3), 5% (YH5) and 7% (YH7), respectively. Each group had four replicates. At the end of feeding trial, twelve fish from each group (three fish per replicate) were randomly selected for assessing the growth and immunity. Meanwhile, 20 fish per replicate were injected by Aeromonas hydrophila. The results showed that (1) Replacement levels of YH significantly affected the growth of the fish with the highest values of weight gain (WG) occurred in fish fed YH3 diet. However, no significant difference in feed conversion ratios (FCR) was observed among all groups. (2) Pre-stressed plasma lysozyme activity, total protein and albumin contents and complement component 3 (C3) and complement component 4 (C4) levels of fish fed YH3 diet were significantly higher than those of fish fed YH0 diet. However, post-stressed immune parameters of fish in all groups were significantly lower. (3) There was a trend that the expression levels of the complement-related genes (c1r/s-A, c4-1, c3-H1, c5-1, fb/c2-A, mbl-2 and masp) initially increased and then decreased except mbl-2 and masp, with the maximum values observed in fish fed YH3 diet. Before stress, the expression levels of the inflammation-related genes (alp, il-1β and tnf-α) in the hepatopancreas and spleen of fish fed YH1 diet and YH7 diet were significant higher than that of fish fed YH0 diet. After stress, no significant difference in the expression levels of those genes was observed among all groups. These results indicated that FM replacement by YH could improve growth

  2. Cloning and analysis of the mouse Fanconi anemia group A cDNA and an overlapping penta zinc finger cDNA.

    Science.gov (United States)

    Wong, J C; Alon, N; Norga, K; Kruyt, F A; Youssoufian, H; Buchwald, M

    2000-08-01

    Despite the cloning of four disease-associated genes for Fanconi anemia (FA), the molecular pathogenesis of FA remains largely unknown. To study FA complementation group A using the mouse as a model system, we cloned and characterized the mouse homolog of the human FANCA cDNA. The mouse cDNA (Fanca) encodes a 161-kDa protein that shares 65% amino acid sequence identity with human FANCA. Fanca is located at the distal region of mouse chromosome 8 and has a ubiquitous pattern of expression in embryonic and adult tissues. Expression of the mouse cDNA in human FA-A cells restores the cellular drug sensitivity to normal levels. Thus, the expression pattern, protein structure, chromosomal location, and function of FANCA are conserved in the mouse. We also isolated a novel zinc finger protein, Zfp276, which has five C(2)H(2) domains. Interestingly, Zfp276 is situated in the Fanca locus, and the 3'UTR of its cDNA overlaps with the last four exons of Fanca in a tail-to-tail manner. Zfp276 is expressed in the same tissues as Fanca, but does not complement the mitomycin C (MMC)-sensitive phenotype of FA-A cells. The overlapping genomic organization between Zfp276 and Fanca may have relevance to the disease phenotype of FA. Copyright 2000 Academic Press.

  3. Yeast two-hybrid screening of proteins interacting with plasmin receptor subunit: C-terminal fragment of annexin A2.

    Science.gov (United States)

    Li, Qun; Laumonnier, Yves; Syrovets, Tatiana; Simmet, Thomas

    2011-11-01

    To identify proteins that interact with the C-terminal fragment of annexin A2 (A2IC), generated by plasmin cleavage of the plasmin receptor, a heterotetramer (AA2t) containing annexin A2. The gene that encodes the A2IC fragment was obtained from PCR-amplified cDNA isolated from human monocytes, and was ligated into the pBTM116 vector using a DNA ligation kit. The resultant plasmid (pBTM116-A2IC) was sequenced with an ABI PRISM 310 Genetic Analyzer. The expression of an A2IC bait protein fused with a LexA-DNA binding domain (BD) was determined using Western blot analysis. The identification of proteins that interact with A2IC and are encoded in a human monocyte cDNA library was performed using yeast two-hybrid screening. The DNA sequences of the relevant cDNAs were determined using an ABI PRISM BigDye terminator cycle sequencing ready reaction kit. Nucleotide sequence databases were searched for homologous sequences using BLAST search analysis (http://www.ncbi.nlm.nih.gov). Confirmation of the interaction between the protein LexA-A2IC and each of cathepsin S and SNX17 was conducted using a small-scale yeast transformation and X-gal assay. The yeast transformed with plasmids encoding the bait proteins were screened with a human monocyte cDNA library by reconstituting full-length transcription factors containing the GAL4-active domain (GAL4-AD) as the prey in a yeast two-hybrid approach. After screening 1×10(7) clones, 23 independent β-Gal-positive clones were identified. Sequence analysis and a database search revealed that 15 of these positive clones matched eight different proteins (SNX17, ProCathepsin S, RPS2, ZBTB4, OGDH, CCDC32, PAPD4, and actin which was already known to interact with annexin A2). A2IC A2IC interacts with various proteins to form protein complexes, which may contribute to the molecular mechanism of monocyte activation induced by plasmin. The yeast two-hybrid system is an efficient approach for investigating protein interactions.

  4. Complement component 5 contributes to poor disease outcome in humans and mice with pneumococcal meningitis

    Science.gov (United States)

    Woehrl, Bianca; Brouwer, Matthijs C.; Murr, Carmen; Heckenberg, Sebastiaan G.B.; Baas, Frank; Pfister, Hans W.; Zwinderman, Aeilko H.; Morgan, B. Paul; Barnum, Scott R.; van der Ende, Arie; Koedel, Uwe; van de Beek, Diederik

    2011-01-01

    Pneumococcal meningitis is the most common and severe form of bacterial meningitis. Fatality rates are substantial, and long-term sequelae develop in about half of survivors. Disease outcome has been related to the severity of the proinflammatory response in the subarachnoid space. The complement system, which mediates key inflammatory processes, has been implicated as a modulator of pneumococcal meningitis disease severity in animal studies. Additionally, SNPs in genes encoding complement pathway proteins have been linked to susceptibility to pneumococcal infection, although no associations with disease severity or outcome have been established. Here, we have performed a robust prospective nationwide genetic association study in patients with bacterial meningitis and found that a common nonsynonymous complement component 5 (C5) SNP (rs17611) is associated with unfavorable disease outcome. C5 fragment levels in cerebrospinal fluid (CSF) of patients with bacterial meningitis correlated with several clinical indicators of poor prognosis. Consistent with these human data, C5a receptor–deficient mice with pneumococcal meningitis had lower CSF wbc counts and decreased brain damage compared with WT mice. Adjuvant treatment with C5-specific monoclonal antibodies prevented death in all mice with pneumococcal meningitis. Thus, our results suggest C5-specific monoclonal antibodies could be a promising new antiinflammatory adjuvant therapy for pneumococcal meningitis. PMID:21926466

  5. Low Serum Complement C3 Levels at Diagnosis of Renal ANCA-Associated Vasculitis Is Associated with Poor Prognosis.

    Directory of Open Access Journals (Sweden)

    Jean-François Augusto

    Full Text Available Recent studies have demonstrated the key role of the complement alternative pathway (cAP in the pathophysiology of experimental ANCA-associated vasculitis (AAV. However, in human AAV the role of cAP has not been extensively explored. In the present work, we analysed circulating serum C3 levels measured at AAV onset and their relation to outcomes.We conducted a retrospective observational cohort study including 45 consecutive patients with AAV diagnosed between 2000 and 2014 with serum C3 measurement at diagnosis, before immunosuppressive treatment initiation. Two groups were defined according to the median serum C3 level value: the low C3 group (C3<120 mg/dL and the high C3 level group (C3≥120 mg/dL. Patient and renal survivals, association between C3 level and renal pathology were analysed.Serum complement C3 concentration remained in the normal range [78-184 mg/dL]. Compared with the high C3 level, the patients in the low C3 level group had lower complement C4 concentrations (P = 0.008 and lower eGFR (P = 0.002 at diagnosis. The low C3 level group had poorer patient and death-censored renal survivals, compared with the high C3 level group (P = 0.047 and P = 0.001, respectively. We observed a significant negative correlation between C3 levels and the percentage of glomeruli affected by cellular crescent (P = 0.017, r = -0.407. According to the Berden et al renal histologic classification, patients in the crescentic/mixed category had low C3 levels more frequently (P<0.01. Interestingly, we observed that when patients with the crescentic/mixed histologic form were analysed according to C3 level, long term renal survival was significantly greater in the high C3 level group than in the low C3 level group (100% vs 40.7% at 6 years, p = 0.046. No relationship between serum C4 and renal outcome was observed.A Low C3 serum level in AAV patients at diagnosis is associated with worse long-term patient and renal survival.

  6. Acute high-caffeine exposure increases autophagic flux and reduces protein synthesis in C2C12 skeletal myotubes.

    Science.gov (United States)

    Hughes, M A; Downs, R M; Webb, G W; Crocker, C L; Kinsey, S T; Baumgarner, Bradley L

    2017-04-01

    Caffeine is a highly catabolic dietary stimulant. High caffeine concentrations (1-10 mM) have previously been shown to inhibit protein synthesis and increase protein degradation in various mammalian cell lines. The purpose of this study was to examine the effect of short-term caffeine exposure on cell signaling pathways that regulate protein metabolism in mammalian skeletal muscle cells. Fully differentiated C2C12 skeletal myotubes either received vehicle (DMSO) or 5 mM caffeine for 6 h. Our analysis revealed that caffeine promoted a 40% increase in autolysosome formation and a 25% increase in autophagic flux. In contrast, caffeine treatment did not significantly increase the expression of the skeletal muscle specific ubiquitin ligases MAFbx and MuRF1 or 20S proteasome activity. Caffeine treatment significantly reduced mTORC1 signaling, total protein synthesis and myotube diameter in a CaMKKβ/AMPK-dependent manner. Further, caffeine promoted a CaMKII-dependent increase in myostatin mRNA expression that did not significantly contribute to the caffeine-dependent reduction in protein synthesis. Our results indicate that short-term caffeine exposure significantly reduced skeletal myotube diameter by increasing autophagic flux and promoting a CaMKKβ/AMPK-dependent reduction in protein synthesis.

  7. Inhibition of the Secretory pathway by Foot-and-Mouth disease virus 2BC protein is reproduced by co-expression of 2B with 2C, and the site of inhibition is determined by the subcellular location of 2C

    DEFF Research Database (Denmark)

    Moffat, Katy; Knox, Caroline; Howell, Gareth

    2007-01-01

    immune responses in vivo. Foot-and-mouth disease virus (FMDV), another picornavirus, can cause persistent infection of ruminants, suggesting it too may inhibit immune responses. Endoplasmic reticulum (ER)-to-Golgi apparatus transport of proteins is blocked by the FMDV 2BC protein. The observation that 2...... blocked in FMDV-infected cells. The block could be reconstituted by coexpression of 2B and 2C, showing that processing of 2BC did not compromise the ability of FMDV to slow secretion. Under these conditions, 2C was located to the Golgi apparatus, and the block in transport also occurred in the Golgi...... apparatus. Interestingly, the block in transport could be redirected to the ER when 2B was coexpressed with a 2C protein fused to an ER retention element. Thus, for FMDV a block in secretion is dependent on both 2B and 2C, with the latter determining the site of the block....

  8. A method for functional trans-complementation of intracellular Francisella tularensis.

    Directory of Open Access Journals (Sweden)

    Shaun Steele

    Full Text Available Francisella tularensis is a highly infectious bacterial pathogen that invades and replicates within numerous host cell types. After uptake, F. tularensis bacteria escape the phagosome, replicate within the cytosol, and suppress cytokine responses. However, the mechanisms employed by F. tularensis to thrive within host cells are mostly unknown. Potential F. tularensis mutants involved in host-pathogen interactions are typically discovered by negative selection screens for intracellular replication or virulence. Mutants that fulfill these criteria fall into two categories: mutants with intrinsic intracellular growth defects and mutants that fail to modify detrimental host cell processes. It is often difficult and time consuming to discriminate between these two possibilities. We devised a method to functionally trans-complement and thus identify mutants that fail to modify the host response. In this assay, host cells are consistently and reproducibly infected with two different F. tularensis strains by physically tethering the bacteria to antibody-coated beads. To examine the efficacy of this protocol, we tested phagosomal escape, cytokine suppression, and intracellular replication for F. tularensis ΔripA and ΔpdpC. ΔripA has an intracellular growth defect that is likely due to an intrinsic defect and fails to suppress IL-1β secretion. In the co-infection model, ΔripA was unable to replicate in the host cell when wild-type bacteria infected the same cell, but cytokine suppression was rescued. Therefore, ΔripA intracellular growth is due to an intrinsic bacterial defect while cytokine secretion results from a failed host-pathogen interaction. Likewise, ΔpdpC is deficient for phagosomal escape, intracellular survival and suppression of IL-1β secretion. Wild-type bacteria that entered through the same phagosome as ΔpdpC rescued all of these phenotypes, indicating that ΔpdpC failed to properly manipulate the host. In summary, functional

  9. Identification and biochemical analysis of Slac2-c/MyRIP as a Rab27A-, myosin Va/VIIa-, and actin-binding protein.

    Science.gov (United States)

    Kuroda, Taruho S; Fukuda, Mitsunori

    2005-01-01

    Slac2-c/MyRIP is a specific Rab27A-binding protein that contains an N-terminal synaptotagmin-like protein (Slp) homology domain (SHD, a newly identified GTP-Rab27A-binding motif), but in contrast to the Slp family proteins, it lacks C-terminal tandem C2 domains. In vitro Slac2-c simultaneously directly interacts with both Rab27A and an actin-based motor protein, myosin Va, via its N-terminal SHD and middle region, respectively, consistent with the fact that the overall structure of Slac2-c is similar to that of Slac2-a/melanophilin, a linker protein between Rab27A and myosin Va in the melanosome transport in melanocytes. Unlike Slac2-a, however, the middle region of Slac2-c interacts with two types of myosins, myosin Va and myosin VIIa. In addition, the most C-terminal part of both Slac2-a and Slac2-c functions as an actin-binding domain: it directly interacts with globular and fibrous actin in vitro, and the actin-binding domain of Slac2-a and Slac2-c colocalizes with actin filaments when it is expressed in living cells (i.e., PC12 cells and mouse melanocytes). In this chapter we describe the methods that have been used to analyze the protein-protein interactions of Slac2-c, specifically with Rab27A, myosin Va/VIIa, and actin.

  10. Positive expression of p53, c-erbB2 and MRP proteins is correlated with survival rates of NSCLC patients.

    Science.gov (United States)

    Xu, Yujin; Wang, Liancong; Zheng, Xiao; Liu, Guan; Wang, Yuezhen; Lai, Xiaojing; Li, Jianqiang

    2013-05-01

    The incidence of lung cancer is one of the leading causes of mortality. This study aimed to investigate the prognostic and predictive importance of p53, c-erbB2 and multidrug resistance proteins (MRP) expression and its correlation with clinicopathological characteristics of patients with non-small cell lung cancer (NSCLC). Expression of p53, c-erbB2 and MRP proteins in 152 tumor samples from resected primary NSCLCs was detected by immunohistochemical staining. The correlation of proteins, survival and clinicopathological characteristics was investigated in 152 patients undergoing potentially curative surgery. The positive rates of p53, c-erbB2 and MRP expression were 53.9 (82/152), 44.1 (67/152) and 43.4% (66/152), respectively. Overall survival rates of patients were markedly correlated with the overexpression of p53, c-erbB2 and MRP proteins. One, 2- and 3-year survival rates of patients exhibiting a positive expression of these proteins were 72.6, 54.8 and 32.2%, respectively. These rates were lower compared with those of patients with a negative expression of these proteins (92.1, 78.5 and 63.4%) (P=0.02, 0.01 or 0.00, respectively). Results of Cox's regression analysis showed that c-erbB2 expression and cell differentiation were independent prognostic factors in patients with NSCLC. These findings suggest that the positive expression of p53, c-erbB2 and MRP proteins is correlated with the survival rates of NSCLC patients. Detection of positive p53, c-erbB2 and MRP expression may be a useful predictive indicator of prognosis. Positive c-erbB2 expression is an independent prognostic factor, with a potential to be used as a predictive indicator of chemotherapy efficacy in NSCLC patients.

  11. Deletion of Crry and DAF on murine platelets stimulates thrombopoiesis and increases factor H-dependent resistance of peripheral platelets to complement attack.

    Science.gov (United States)

    Barata, Lidia; Miwa, Takashi; Sato, Sayaka; Kim, David; Mohammed, Imran; Song, Wen-Chao

    2013-03-15

    Complement receptor 1-related gene/protein y (Crry) and decay-accelerating factor (DAF) are two murine membrane C3 complement regulators with overlapping functions. Crry deletion is embryonically lethal whereas DAF-deficient mice are generally healthy. Crry(-/-)DAF(-/-) mice were viable on a C3(-/-) background, but platelets from such mice were rapidly destroyed when transfused into C3-sufficient mice. In this study, we used the cre-lox system to delete platelet Crry in DAF(-/-) mice and studied Crry/DAF-deficient platelet development in vivo. Rather than displaying thrombocytopenia, Pf4-Cre(+)-Crry(flox/flox) mice had normal platelet counts and their peripheral platelets were resistant to complement attack. However, chimera mice generated with Pf4-Cre(+)-Crry(flox/flox) bone marrows showed platelets from C3(-/-) but not C3(+/+) recipients to be sensitive to complement activation, suggesting that circulating platelets in Pf4-Cre(+)-Crry(flox/flox) mice were naturally selected in a complement-sufficient environment. Notably, Pf4-Cre(+)-Crry(flox/flox) mouse platelets became complement susceptible when factor H function was blocked. Examination of Pf4-Cre(+)-Crry(flox/flox) mouse bone marrows revealed exceedingly active thrombopoiesis. Thus, under in vivo conditions, Crry/DAF deficiency on platelets led to abnormal platelet turnover, but peripheral platelet count was compensated for by increased thrombopoiesis. Selective survival of Crry/DAF-deficient platelets aided by factor H protection and compensatory thrombopoiesis demonstrates the cooperation between membrane and fluid phase complement inhibitors and the body's ability to adaptively respond to complement regulator deficiencies.

  12. The C. elegans SoxC protein SEM-2 opposes differentiation factors to promote a proliferative blast cell fate in the postembryonic mesoderm

    Science.gov (United States)

    Tian, Chenxi; Shi, Herong; Colledge, Clark; Stern, Michael; Waterston, Robert; Liu, Jun

    2011-01-01

    The proper development of multicellular organisms requires precise regulation and coordination of cell fate specification, cell proliferation and differentiation. Abnormal regulation and coordination of these processes could lead to disease, including cancer. We have examined the function of the sole C. elegans SoxC protein, SEM-2, in the M lineage, which produces the postembryonic mesoderm. We found that SEM-2/SoxC is both necessary and sufficient to promote a proliferating blast cell fate, the sex myoblast fate, over a differentiated striated bodywall muscle fate. A number of factors control the specific expression of sem-2 in the sex myoblast precursors and their descendants. This includes direct control of sem-2 expression by a Hox-PBC complex. The crucial nature of the HOX/PBC factors in directly enhancing expression of this proliferative factor in the C. elegans M lineage suggests a possible more general link between Hox-PBC factors and SoxC proteins in regulating cell proliferation. PMID:21307099

  13. Functional analysis of a novel KRAB/C2H2 zinc finger protein Mipu1

    International Nuclear Information System (INIS)

    Jiang, Lei; Tang, Daolin; Wang, Kangkai; Zhang, Huali; Yuan, Can; Duan, Dayue; Xiao, Xianzhong

    2007-01-01

    A novel rat gene, Mipu1, encodes a 608 amino acid protein with an amino-terminal KRAB domain and 14 carboxyl-terminal C 2 H 2 zinc finger motifs. Mipu1 is localized to the nucleus through its KRAB domain or the linker adjacent to its zinc finger region. Using the GST-Mipu1 bound to glutathione-Sepharose beads, a consensus putative DNA binding site (5'-TGTCTTATCGAA-3') was extracted from a random oligonucleotide library. EMSA and target detection assay showed that the probe containing the putative site can bind to purified GST-Mipu1 fusion protein. The oligonucleotide containing the putative site was inserted into the pGL3-promotor vector to produce a reporter construct. The expression of reporter gene was repressed by overexpression of Mipu1 in a dose-dependent manner. Mutation analysis of the consensus sequence indicated that the repression mediated by Mipu1 is sequence-dependent. These results suggest that Mipu1 is a nuclear protein, which functions as a transcriptional repressor

  14. [Fanconi Anemia, Complementation Group D1 Caused by Biallelic Mutations of BRCA2 Gene--Case Report].

    Science.gov (United States)

    Puchmajerová, A; Švojgr, K; Novotná, D; Macháčková, E; Sumerauer, D; Smíšek, P; Kodet, R; Kynčl, M; Křepelová, A; Foretová, L

    2016-01-01

    Fanconi anemia is a rare autosomal recessive disorder, clinically and genetically heterogeneous, characterized by typical clinical features, such as short stature, microcephaly, skeletal abnormalities, abnormal skin pigmentations, developmental delay and congenital heart, kidney anomalies etc. Pancytopenia leading to bone marrow failure occurs in the first decade. Patients with Fanconi anemia have a high risk of hematologic malignancies and solid tumors. The diagnosis of Fanconi anemia is based on cytogenetic testing for increased rates of spontaneous chromosomal breakage and increased sensitivity to diepoxybutane or mitomycin C. Fanconi anemia is a heterogeneous disorder, at least 15 complementation groups are described, and 15 genes in which mutations are responsible for all of the 15 Fanconi anemia complementation groups have been identified. Unlike other Fanconi anemia complementation groups, for complementation group D1 (FANCD1), the bone marrow failure is not a typical feature, but early-onset leukemia and specific solid tumors, most often medulloblastoma and Wilms tumor, are typical for this complementation group.

  15. Arthrogenicity of type II collagen monoclonal antibodies associated with complement activation and antigen affinity.

    Science.gov (United States)

    Koobkokkruad, Thongchai; Kadotani, Tatsuya; Hutamekalin, Pilaiwanwadee; Mizutani, Nobuaki; Yoshino, Shin

    2011-11-04

    The collagen antibody-induced arthritis (CAIA) model, which employs a cocktail of monoclonal antibodies (mAbs) to type II collagen (CII), has been widely used for studying the pathogenesis of autoimmune arthritis. In this model, not all mAbs to CII are capable of inducing arthritis because one of the initial events is the formation of collagen-antibody immune complexes on the cartilage surface or in the synovium, and subsequent activation of the complement by the complexes induces arthritis, suggesting that a combination of mAbs showing strong ability to bind mouse CII and activate the complement may effectively induce arthritis in mice. In the present study, we examined the relationship between the induction of arthritis by the combination of IgG2a (CII-6 and C2A-12), IgG2b (CII-3, C2B-14 and C2B-16) and IgM (CM-5) subclones of monoclonal antibodies (mAb) of anti-bovine or chicken CII and the ability of mAbs to activate complement and bind mouse CII. DBA/1J mice were injected with several combinations of mAbs followed by lipopolysaccharide. Furthermore, the ability of mAbs to activate the complement and bind mouse CII was examined by ELISA. First, DBA/1J mice were injected with the combined 4 mAbs (CII-3, CII-6, C2B-14, and CM-5) followed by lipopolysaccharide, resulting in moderate arthritis. Excluding one of the mAbs, i.e., using only CII-3, CII-6, and C2B-14, induced greater inflammation of the joints. Next, adding C2A-12 but not C2B-16 to these 3 mAbs produced more severe arthritis. A combination of five clones, consisting of all 5 mAbs, was less effective. Histologically, mice given the newly developed 4-clone cocktail had marked proliferation of synovial tissues, massive infiltration by inflammatory cells, and severe destruction of cartilage and bone. Furthermore, 4 of the 6 clones (CII-3, CII-6, C2B-14, and C2A-12) showed not only a strong cross-reaction with mouse CII but also marked activation of the complement in vitro. The combination of 4 mAbs showing

  16. Arthrogenicity of type II collagen monoclonal antibodies associated with complement activation and antigen affinity

    Directory of Open Access Journals (Sweden)

    Mizutani Nobuaki

    2011-11-01

    Full Text Available Abstract Background The collagen antibody-induced arthritis (CAIA model, which employs a cocktail of monoclonal antibodies (mAbs to type II collagen (CII, has been widely used for studying the pathogenesis of autoimmune arthritis. In this model, not all mAbs to CII are capable of inducing arthritis because one of the initial events is the formation of collagen-antibody immune complexes on the cartilage surface or in the synovium, and subsequent activation of the complement by the complexes induces arthritis, suggesting that a combination of mAbs showing strong ability to bind mouse CII and activate the complement may effectively induce arthritis in mice. In the present study, we examined the relationship between the induction of arthritis by the combination of IgG2a (CII-6 and C2A-12, IgG2b (CII-3, C2B-14 and C2B-16 and IgM (CM-5 subclones of monoclonal antibodies (mAb of anti-bovine or chicken CII and the ability of mAbs to activate complement and bind mouse CII. Methods DBA/1J mice were injected with several combinations of mAbs followed by lipopolysaccharide. Furthermore, the ability of mAbs to activate the complement and bind mouse CII was examined by ELISA. Results First, DBA/1J mice were injected with the combined 4 mAbs (CII-3, CII-6, C2B-14, and CM-5 followed by lipopolysaccharide, resulting in moderate arthritis. Excluding one of the mAbs, i.e., using only CII-3, CII-6, and C2B-14, induced greater inflammation of the joints. Next, adding C2A-12 but not C2B-16 to these 3 mAbs produced more severe arthritis. A combination of five clones, consisting of all 5 mAbs, was less effective. Histologically, mice given the newly developed 4-clone cocktail had marked proliferation of synovial tissues, massive infiltration by inflammatory cells, and severe destruction of cartilage and bone. Furthermore, 4 of the 6 clones (CII-3, CII-6, C2B-14, and C2A-12 showed not only a strong cross-reaction with mouse CII but also marked activation of the

  17. A novel polymorphism of human complement component C3 detected by means of a monoclonal antibody

    DEFF Research Database (Denmark)

    Koch, C; Behrendt, N

    1986-01-01

    A mouse monoclonal antibody, HAV 4-1, obtained after immunization of a BALB/c mouse with purified C3F, detected a novel genetic polymorphism of human complement component C3 in a simple immunoblotting system. The frequency of HAV 4-1-positive genes was 20.1%. Reactivity of HAV 4-1 was closely...... related to C3F, bu