WorldWideScience

Sample records for competing surface fields

  1. Ising systems with pairwise competing surface fields

    Energy Technology Data Exchange (ETDEWEB)

    Milchev, A [Institut fuer Physik, Johannes Gutenberg-Universitaet, D-55099 Mainz, Staudinger Weg 7 (Germany); Institute for Physical Chemistry, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); De Virgiliis, A [Institut fuer Physik, Johannes Gutenberg-Universitaet, D-55099 Mainz, Staudinger Weg 7 (Germany); Binder, K [Institut fuer Physik, Johannes Gutenberg-Universitaet, D-55099 Mainz, Staudinger Weg 7 (Germany)

    2005-11-02

    The magnetization distribution and phase behaviour of large but finite Ising simple cubic L x L x L lattices in d = 3 dimensions and square L x L lattices in d = 2 dimensions are studied for the case where four free boundaries are present, at which surface fields +H{sub s} act on one pair of opposite boundaries while surface fields -H{sub s} act on the other pair (in d 3, periodic boundary conditions are used for the remaining pair). Both the distribution P{sub L}(m) of the global magnetization and also the distribution of the local magnetization m(x,z) are obtained by Monte Carlo simulations, where x and z denote the coordinates when the boundaries are oriented along the x-axis and z-axis (in d = 2); or along the xy-plane and zy-plane (in d = 3, where the periodic boundary condition applies in the y-direction). Varying the temperature T and linear dimension L it is found that a single bulk rounded phase transition occurs, which converges to the bulk transition temperature T{sub cb} as L {yields} {infinity}, unlike other geometric arrangements of competing boundary fields, where a second transition occurs in the bulk due to interface formation or delocalization, related to wedge or corner filling or wetting transitions, respectively. In the present geometry, only precursors of wetting layers form on those boundaries where the field is oppositely oriented to the magnetization in the bulk and the thickness of these layers is found to scale like L{sup 1/2} (in d = 2) or lnL (in d = 3), respectively. These findings are explained in terms of a phenomenological theory based on the effective interface Hamiltonian and scaling considerations.

  2. Ising systems with pairwise competing surface fields

    Science.gov (United States)

    Milchev, A.; DeVirgiliis, A.; Binder, K.

    2005-11-01

    The magnetization distribution and phase behaviour of large but finite Ising simple cubic L × L × L lattices in d = 3 dimensions and square L × L lattices in d = 2 dimensions are studied for the case where four free boundaries are present, at which surface fields +Hs act on one pair of opposite boundaries while surface fields -Hs act on the other pair (in d = 3, periodic boundary conditions are used for the remaining pair). Both the distribution PL(m) of the global magnetization and also the distribution of the local magnetization m(x,z) are obtained by Monte Carlo simulations, where x and z denote the coordinates when the boundaries are oriented along the x-axis and z-axis (in d = 2); or along the xy-plane and zy-plane (in d = 3, where the periodic boundary condition applies in the y-direction). Varying the temperature T and linear dimension L it is found that a single bulk rounded phase transition occurs, which converges to the bulk transition temperature Tcb as L \\rightarrow \\infty , unlike other geometric arrangements of competing boundary fields, where a second transition occurs in the bulk due to interface formation or delocalization, related to wedge or corner filling or wetting transitions, respectively. In the present geometry, only precursors of wetting layers form on those boundaries where the field is oppositely oriented to the magnetization in the bulk and the thickness of these layers is found to scale like L1/2 (in d = 2) or lnL (in d = 3), respectively. These findings are explained in terms of a phenomenological theory based on the effective interface Hamiltonian and scaling considerations.

  3. Interfaces in the confined Ising system with competing surface fields

    Science.gov (United States)

    De Virgiliis, A.; Albano, E. V.; Müller, M.; Binder, K.

    2005-07-01

    When a magnetic Ising film is confined in a L×M geometry (L≪M) short-range competing magnetic fields ( h1) are applied at opposite walls along the M-direction, a (weakly rounded) localization-delocalization transition of the interface between domains of different orientation that runs parallel to walls can be observed. This transition is the precursor of a wetting phase transition that occurs in the limit of infinite film thickness (L→∞) at the critical curve Tw(h1). For TTw(h1)) such an interface is bound to (unbound from) the walls, while right at Tw(h1) the interface is freely fluctuating around the center of the film. We present extensive Monte Carlo simulations of Ising stripes in the L×M geometry, in order to describe both the localization-delocalization transition and the properties of the delocalized interface. To this aim, we take advantage of several available theoretical results. We make use of a suitable algorithm to define the local position of the interface along the film, such that its probability distribution can be used to account for the transition itself and the fluctuations in the local position of the interface (capillary waves). After describing the interface localization-delocalization transition, we pay attention to the properties of the delocalized interface with an emphasis on the effects of confinement. We analyze several quantities of interest in terms of the film thickness L. The width of the capillary waves (s) can be related to the width of the magnetization profiles (w) by means of a simple approximation. From this relation we estimate a value for the intrinsic width (w0) of the interface which agrees with the theoretical one. Also the correlation length ξ∥ along the film is considered, and the behavior ξ∥∼L2 compares very well to available exact results. Additionally, the interfacial stiffness βΓ obtained from the Fourier spectrum of the capillary waves reproduces the asymptotic theoretical value.

  4. Phase transitions in thin films with competing surface fields and gradients.

    Science.gov (United States)

    Pang, Lijun; Landau, D P; Binder, K

    2011-10-01

    As a generic model for phase equilibria under confinement in a thin-film geometry in the presence of a gradient in the field conjugate to the order parameter, an Ising-lattice gas system is studied by both Monte Carlo simulations and a phenomenological theory. Choosing an L×L×D geometry with L≫D and periodic boundary conditions in the x,y directions, we place competing surface fields on the two L×L surfaces. In addition, a field gradient g is present in the z direction across the film, in competition with the surface fields. At temperatures T exceeding the critical temperature of the interface localization-delocalization transition, one finds a phase coexistence between oppositely oriented domains, aligned parallel to the surface fields and separated by an interface in the center of the film, for small enough g. For a weak gradient, a second-order transition to a monodomain state occurs, but it becomes first order if g exceeds a tricritical threshold. For sufficiently large gradients, another domain state becomes stabilized with domains oriented antiparallel to the surface fields.

  5. Phase transitions in nanosystems caused by interface motion: the Ising bipyramid with competing surface fields.

    Science.gov (United States)

    Milchev, A; Müller, M; Binder, K

    2005-09-01

    The phase behavior of a large but finite Ising ferromagnet in the presence of competing surface magnetic fields +/-H(s) is studied by Monte Carlo simulations and by phenomenological theory. Specifically, the geometry of a double pyramid of height 2L is considered, such that the surface field is positive on the four upper triangular surfaces of the bipyramid and negative on the lower ones. It is shown that the total spontaneous magnetization vanishes (for L --> infinity) at the temperature Tf(H), related to the "filling transition" of a semi-infinite pyramid, which can be well below the critical temperature of the bulk. The discontinuous vanishing of the magnetization is accompanied by a susceptibility that diverges with a Curie-Weiss power law, when the transition is approached from either side. A Landau theory with size-dependent critical amplitudes is proposed to explain these observations, and confirmed by finite size scaling analysis of the simulation results. The extension of these results to other nanosystems (gas-liquid systems, binary mixtures, etc.) is briefly discussed.

  6. Phase transitions and interface fluctuations in double wedges and bi-pyramids with competing surface fields

    Science.gov (United States)

    Müller, M.; Milchev, A.; Binder, K.; Landau, D. P.

    2008-08-01

    The interplay between surface and interface effects on binary AB mixtures that are confined in unconventional geometries is investigated by Monte Carlo simulations and phenomenological considerations. Both double-wedge and bi-pyramid confinements are considered and competing surface fields are applied at the two opposing halves of the system. Below the bulk critical temperature, domains of opposite order parameter are stabilized at the corresponding corners and an interface runs across the middle of the bi-partite geometry. Upon decreasing the temperature further one encounters a phase transition at which the AB symmetry is broken. The interface is localized in one of the two wedges or pyramids, respectively, and the order parameter is finite. In both cases, the transition becomes discontinuous in the thermodynamic limit but it is not a first-order phase transition. In an antisymmetric double wedge geometry the transition is closely related to the wedge-filling transition. Choosing the ratio of the cross-section L × L of the wedge and its length L y according to L y / L 3 = const., simulations and phenomenological consideration show that the new type of phase transition is characterized by critical exponents α = 3/4, β = 0, and γ = 5/4 for the specific heat, order parameter, and susceptibility, respectively. In an antisymmetric bi-pyramid the transition occurs at the cone-filling transition of a single pyramid. The important critical fluctuations are associated with the uniform translation of the interface and they can be described by a Landau-type free energy. Monte Carlo results provide evidence that the coefficients of this Landau-type free energy exhibit a system-size dependence, which gives rise to critical amplitudes that diverge with system size and result in a transition that becomes discontinuous in the thermodynamic limit.

  7. Self-assembly of condensates with advanced surface by means of the competing field selectivity and Gibbs-Thomson effect

    Science.gov (United States)

    Perekrestov, Vyacheslav; Kosminska, Yuliya; Mokrenko, Alexander; Davydenko, Taras

    2014-04-01

    Copper and silicon layers were deposited using the accumulative plasma-condensate system. Their surface was found to possess the complex developed morphology using SEM technique. Competing processes of the field selectivity and Gibbs-Thomson effect are considered to describe the formation of the surface. The mathematical model is created on the basis of these effects which describes self-assembly of the surface at the form of adjoining elements of an elliptic section. The comparative analyses of theoretical and experimental results are given.

  8. Properties of the interface in the confined Ising magnet with competing surface fields

    Science.gov (United States)

    Albano, Ezequiel V.; de Virgiliis, Andres; Müller, Marcus; Binder, Kurt

    2007-02-01

    A two-dimensional magnetic Ising system confined in an L×D geometry ( L≪D) in the presence of competing magnetic fields ( h) acting at opposite walls along the D-direction, exhibits an interface between domains of different orientation that run parallel to the walls. In the limit L→∞, this interface undergoes a wetting transition that occurs at the critical curve Tw(h), so that for Tinterface is bound to the walls, while for Tw(h)⩽Tinterface is freely fluctuating around the center of the film, where Tcb is the bulk critical temperature. By considering both short- and long-range magnetic fields acting at the walls, we study the divergence of the (equilibrated) average position of the interface when approaching the wetting critical point. Furthermore, starting from a monodomain structure with the interface bound to one wall, we also study the dynamics of the interface unbinding.

  9. Properties of the interface in the confined Ising magnet with competing surface fields

    Energy Technology Data Exchange (ETDEWEB)

    Albano, Ezequiel V. [Facultad de Ciencias Exactas, INIFTA: Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas, UNLP, CONICET, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)]. E-mail: ealbano@inifta.unlp.edu.ar; Virgiliis, Andres de [Facultad de Ciencias Exactas, INIFTA: Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas, UNLP, CONICET, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina) and Institut fuer Physik, Johannes Gutenberg Universitaet, WA331, Staudingerweg 7, D-55099 Mainz (Germany); Mueller, Marcus [Institut fuer Physik, Johannes Gutenberg Universitaet, WA331, Staudingerweg 7, D-55099 Mainz (Germany); Institut fuer Theoretische Physik, Georg-August Universitaet, Friedrich Hund Platz 1, 37077 Goettingen (Germany); Binder, Kurt [Institut fuer Physik, Johannes Gutenberg Universitaet, WA331, Staudingerweg 7, D-55099 Mainz (Germany)

    2007-02-01

    A two-dimensional magnetic Ising system confined in an LxD geometry (L-bar D) in the presence of competing magnetic fields (h) acting at opposite walls along the D-direction, exhibits an interface between domains of different orientation that run parallel to the walls. In the limit L->{approx}, this interface undergoes a wetting transition that occurs at the critical curve T{sub w}(h), so that for Tfields acting at the walls, we study the divergence of the (equilibrated) average position of the interface when approaching the wetting critical point. Furthermore, starting from a monodomain structure with the interface bound to one wall, we also study the dynamics of the interface unbinding.

  10. Study of the dynamic growth of wetting layers in the confined Ising model with competing surface fields

    Science.gov (United States)

    Albano, Ezequiel V.; DeVirgiliis, Andres; Müller, Marcus; Binder, Kurt

    2006-03-01

    A two-dimensional magnetic Ising system confined in an L × D geometry (L \\ll D ) in the presence of competing magnetic fields (h) acting at opposite walls along the D-direction exhibits an interface between domains of different orientation that runs parallel to the walls. In the limit of infinite film thickness (L \\to \\infty ) this interface undergoes a wetting transition that occurs at the critical curve Tw(h), so that for Tinterface is bound to the walls, while for Tw(h)interface is freely fluctuating around the centre of the film, where Tcb is the bulk critical temperature. Starting from a monodomain structure with the interface bound to one wall, we study the onset of the interface unbinding by considering both short- and long-range magnetic fields acting at the walls. It is shown that, within the critical wetting regime, in both cases the correlation length of interfacial fluctuations \\xi _{\\parallel } grows with time t as \\xi_{\\parallel } \\propto t^{1/z} with z = 2, while the interfacial position follows Z_{0}(t) \\propto t^{1/2z}=t^{1/4} both in the case of short-range and long-range surface fields, respectively, consistent with dynamic scaling predictions. Furthermore, considering the complete wetting regime and in the presence of a bulk magnetic field, we find that the interface location also obeys standard dynamic scaling behaviour for both short-range and long-range fields.

  11. Dynamical behavior of three-dimensional confined Ising systems with short- and long-range competing surface fields

    Science.gov (United States)

    Manias, M. V.; de Virgiliis, A.; Albano, E. V.; Müller, M.; Binder, K.

    2007-05-01

    The dynamical behavior of ferromagnetic Ising films confined in a D×L×L geometry (D≪L,1⩽i⩽D) is studied by means of Monte Carlo simulations when either short- or long-range competing magnetic fields H(i) of equal strength but opposite sign are applied at opposite walls, given by the L×L surfaces. It is well known that, for appropriate choices of the control parameters, these systems exhibit wetting phase transitions that occur in the limit of infinite film thickness at the critical curve Tw(hw) , where hw=H(i=1) is the magnitude of the surface field at the wall. Results of the dynamical approach to equilibrium, at criticality and for the complete wetting regime, obtained by starting the systems from different (far-from equilibrium) initial conditions, are presented and discussed. We determine quite accurately a wetting critical point [Tw=0.8982(57),hw=0.555] for the case of short-range fields, by measuring the detachment of the wetting layer from a wall, which for this type of field obeys a logarithmic dependence on time. For retarded van der Waals forces we obtained [Tw=0.8982,hw=0.449(1)] for the critical point. The scaling behavior of the average position of the interface is also studied for the complete wetting regime at T=0.8982 and in the presence of a bulk magnetic field H=1 . The numerical results are in full agreement with the theoretical expectations for the cases of short-range and long-range (both retarded and nonretarded van der Waals forces) fields, where logarithmic and power-law divergences are found, respectively.

  12. Study of the dynamic growth of wetting layers in the confined Ising model with competing surface fields

    Energy Technology Data Exchange (ETDEWEB)

    Albano, Ezequiel V [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), UNLP, CONICET, Casilla de Correo 16, Sucursal 4 (1900) La Plata (Argentina); Institut fuer Physik, WA331, Johannes Gutenberg Universitaet, Staudingerweg 7, D-55099 Mainz (Germany); Virgiliis, Andres de [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), UNLP, CONICET, Casilla de Correo 16, Sucursal 4 (1900) La Plata (Argentina); Institut fuer Physik, WA331, Johannes Gutenberg Universitaet, Staudingerweg 7, D-55099 Mainz (Germany); Mueller, Marcus [Institut fuer Physik, WA331, Johannes Gutenberg Universitaet, Staudingerweg 7, D-55099 Mainz (Germany); Institut fuer Theoretische Physik, Georg-August Universitaet, Friedrich Hund Platz 1, 37077 Goettingen (Germany); Binder, Kurt [Institut fuer Physik, WA331, Johannes Gutenberg Universitaet, Staudingerweg 7, D-55099 Mainz (Germany)

    2006-03-15

    A two-dimensional magnetic Ising system confined in an L x D geometry (L<competing magnetic fields (h) acting at opposite walls along the D-direction exhibits an interface between domains of different orientation that runs parallel to the walls. In the limit of infinite film thickness (L {yields} {infinity}) this interface undergoes a wetting transition that occurs at the critical curve T{sub w}(h), so that for Tfields acting at the walls. It is shown that, within the critical wetting regime, in both cases the correlation length of interfacial fluctuations {xi}{sub parallel} grows with time t as {xi}{sub parallel} {proportional_to} t{sup 1/z} with z = 2, while the interfacial position follows Z{sub 0}(t) {proportional_to} t{sup 1/2z}=t{sup 1/4} both in the case of short-range and long-range surface fields, respectively, consistent with dynamic scaling predictions. Furthermore, considering the complete wetting regime and in the presence of a bulk magnetic field, we find that the interface location also obeys standard dynamic scaling behaviour for both short-range and long-range fields.

  13. Dynamical behavior of three-dimensional confined Ising systems with short- and long-range competing surface fields.

    Science.gov (United States)

    Manias, M V; De Virgiliis, A; Albano, E V; Müller, M; Binder, K

    2007-05-01

    The dynamical behavior of ferromagnetic Ising films confined in a DxLxL geometry (Dinterface is also studied for the complete wetting regime at T=0.8982 and in the presence of a bulk magnetic field H=1 . The numerical results are in full agreement with the theoretical expectations for the cases of short-range and long-range (both retarded and nonretarded van der Waals forces) fields, where logarithmic and power-law divergences are found, respectively.

  14. [Competence diagnostic in the field of nursing].

    Science.gov (United States)

    Darmann-Finck, Ingrid; Glissmann, Gerlinde

    2011-06-01

    The efficiency and effectiveness of educational programmes in the occupational field of nursing are only assessable through testing and comparing achieved learning results. In search of an appropriate diagnostic instrument, a comprehensive literature research in German-speaking countries concerning the current state of competence diagnostics in the occupational field of nursing had been conducted. Additionally, a similar research of international, professional journals had been done. The investigations lead to the result that a massive gap exists concerning national and international research of systematic, theoretically and empirically well-founded development of instruments measuring nursing competence. Finally, a conclusion for the development of instruments in nursing competence diagnostics is drawn.

  15. Competencies of Track and Field coaches. An Exploratory Study

    Directory of Open Access Journals (Sweden)

    Alexandra Tripolitsioti

    2012-01-01

    Full Text Available The aim of this study was to construct a questionnaire to identify the knowledge and skills needed by track and field coaches in Greece to perform their role. Following standard procedures, an instrument with 42 items was constructed. Three hundred and forty nine Greek track and field coaches, who have been working 15+-2.8 y in the first and second division, aged 45+-4.4 y, participated in the study and rated the items of the questionnaire according to a Likert scale. Exploratory factor analysis revealed five factors comprising 22 competency statements: a field management techniques (7 items, b sport science (5 items, c injury prevention/crisis management (3 items; d biology (3 items; and e field training (4 items. The internal validity revealed a Cronbach’s alpha factor of 0.894 with subscales ranging from 0.657 to 0.886. Results also showed that demonstrating an understanding of specific inherent risks of sport activity and an understanding of psychology were the top rated competencies, while preparing a budget proposal and utilizing effective office procedures to handle registrations, reports, notices, etc., were the lower rated competencies. It is concluded that the questionnaire developed in this study is a reliable and valid instrument to measure the competencies of track and field coaches in Greece.

  16. Markov Random Field Surface Reconstruction

    DEFF Research Database (Denmark)

    Paulsen, Rasmus Reinhold; Bærentzen, Jakob Andreas; Larsen, Rasmus

    2010-01-01

    ) and knowledge about data (the observation model) in an orthogonal fashion. Local models that account for both scene-specific knowledge and physical properties of the scanning device are described. Furthermore, how the optimal distance field can be computed is demonstrated using conjugate gradients, sparse......A method for implicit surface reconstruction is proposed. The novelty in this paper is the adaption of Markov Random Field regularization of a distance field. The Markov Random Field formulation allows us to integrate both knowledge about the type of surface we wish to reconstruct (the prior...

  17. Identifying Student Competencies in Macro Practice: Articulating the Practice Wisdom of Field Instructors

    Science.gov (United States)

    Regehr, Cheryl; Bogo, Marion; Donovan, Kirsten; Lim, April; Anstice, Susan

    2012-01-01

    Although a growing literature examines competencies in clinical practice, competencies of students in macro social work practice have received comparatively little attention. A grounded-theory methodology was used to elicit field instructor views of student competencies in community, organization, and policy contexts. Competencies described by…

  18. Determining Student Competency in Field Placements: An Emerging Theoretical Model

    Directory of Open Access Journals (Sweden)

    Twyla L. Salm

    2016-06-01

    Full Text Available This paper describes a qualitative case study that explores how twenty-three field advisors, representing three human service professions including education, nursing, and social work, experience the process of assessment with students who are struggling to meet minimum competencies in field placements. Five themes emerged from the analysis of qualitative interviews. The field advisors primary concern was the level of professional competency achieved by practicum students. Related to competency were themes concerned with the field advisor's role in being accountable and protecting the reputation of his/her profession as well as the reputation of the professional program affiliated with the practicum student's professional education. The final theme – teacher-student relationship –emerged from the data, both as a stand-alone and global or umbrella theme. As an umbrella theme, teacher-student relationship permeated each of the other themes as the participants interpreted their experiences of the process of assessment through the mentor relationships. A theoretical model was derived from these findings and the description of the model is presented. Cet article décrit une étude de cas qualitative qui explore comment vingt-trois conseillers de stages, représentant trois professions de services sociaux comprenant l’éducation, les soins infirmiers et le travail social, ont vécu l’expérience du processus d’évaluation avec des étudiants qui ont des difficultés à acquérir les compétences minimales durant les stages. Cinq thèmes ont été identifiés lors de l’analyse des entrevues qualitatives. La préoccupation principale des conseillers de stages était le niveau de compétence professionnelle acquis par les stagiaires. Les thèmes liés à la compétence étaient le rôle des conseillers de stages dans leur responsabilité pour protéger la réputation de leur profession ainsi que la réputation d’un programme professionnel

  19. Factors Affecting Teachers' Competence in the Field of Information Technology

    Science.gov (United States)

    Tambunan, Hamonangan

    2014-01-01

    The development of learning technology today, have a direct impact on improving teachers' information technology competence. This paper is presented the results of research related to teachers' information technology competence. The study was conducted with a survey of some 245 vocational high school teachers. There are two types of instrument…

  20. Electric field distribution of electron emitter surfaces

    Science.gov (United States)

    Tagawa, M.; Takenobu, S.; Ohmae, N.; Umeno, M.

    1987-03-01

    The electric field distribution of a tungsten field emitter surface and a LaB6 thermionic emitter surface has been studied. The computer simulation of electric field distribution on the emitter surface was carried out with a charge simulation method. The electric field distribution of the LaB6 thermionic emitter was experimentally evaluated by the Schottky plot. Two independent equations are necessary for obtaining local electric field and work function; the Fowler-Nordheim equation and the equation of total energy distribution of emitted electron being used to evaluate the electric field distribution of the tungsten field emitter. The experimental results agreed with the computer simulation.

  1. Functional Competency Development Model for Academic Personnel Based on International Professional Qualification Standards in Computing Field

    Science.gov (United States)

    Tumthong, Suwut; Piriyasurawong, Pullop; Jeerangsuwan, Namon

    2016-01-01

    This research proposes a functional competency development model for academic personnel based on international professional qualification standards in computing field and examines the appropriateness of the model. Specifically, the model consists of three key components which are: 1) functional competency development model, 2) blended training…

  2. Design of a Competency-Based Assessment Model in the Field of Accounting

    Science.gov (United States)

    Ciudad-Gómez, Adelaida; Valverde-Berrocoso, Jesús

    2012-01-01

    This paper presents the phases involved in the design of a methodology to contribute both to the acquisition of competencies and to their assessment in the field of Financial Accounting, within the European Higher Education Area (EHEA) framework, which we call MANagement of COMpetence in the areas of Accounting (MANCOMA). Having selected and…

  3. Teachers’ Competencies for the Implementation of Educational Offers in the Field of Education for Sustainable Development

    Directory of Open Access Journals (Sweden)

    Franziska Bertschy

    2013-11-01

    Full Text Available The term of education is an integral part of any programmatic political document on sustainable development. This fact underlines the significance that is assigned to education in the context of sustainable development. It leads to the question of what competencies teachers need in order to develop and implement educational offers in the field of Education for Sustainable Development (ESD so that they can aspire to and attain specific educational goals with their students. This touches on the question of the building of corresponding competencies in teacher education and further education. So far, few attempts have been made to describe teachers’ competencies regarding ESD and to develop corresponding competence models. The following article presents two models—Curriculum, Sustainable Development, Competences, Teacher Training (CSCT Model and Learning for the future: The Competences in Education for Sustainable Development (ECE Model—and discusses their benefit for teacher education and further education. These models differ in how broadly they define ESD and in what audiences they target at. This comparison shows and explains why competence models should focus on profession-specific core competencies if they are to be used as a basis for the conception of educational offers in the field of ESD in education and further education of teachers. The drawn conclusion consists in initial considerations for the conception of another competence model.

  4. Early psychosis workforce development: Core competencies for mental health professionals working in the early psychosis field.

    Science.gov (United States)

    Osman, Helen; Jorm, Anthony F; Killackey, Eoin; Francey, Shona; Mulcahy, Dianne

    2017-08-09

    The aim of this study was to identify the core competencies required of mental health professionals working in the early psychosis field, which could function as an evidence-based tool to support the early psychosis workforce and in turn assist early psychosis service implementation and strengthen early psychosis model fidelity. The Delphi method was used to establish expert consensus on the core competencies. In the first stage, a systematic literature search was conducted to generate competency items. In the second stage, a panel consisting of expert early psychosis clinicians from around the world was formed. Panel members then rated each of the competency items on how essential they are to the clinical practice of all early psychosis clinicians. In total, 1023 pieces of literature including textbooks, journal articles and grey literature were reviewed. A final 542 competency items were identified for inclusion in the questionnaire. A total of 63 early psychosis experts participated in 3 rating rounds. Of the 542 competency items, 242 were endorsed as the required core competencies. There were 29 competency items that were endorsed by 62 or more experts, and these may be considered the foundational competencies for early psychosis practice. The study generated a set of core competencies that provide a common language for early psychosis clinicians across professional disciplines and country of practice, and potentially are a useful professional resource to support early psychosis workforce development and service reform. © 2017 John Wiley & Sons Australia, Ltd.

  5. Vector fields on nonorientable surfaces

    Directory of Open Access Journals (Sweden)

    Dorin Ghisa

    2003-01-01

    Full Text Available A one-to-one correspondence is established between the germs of functions and tangent vectors on a NOS X and the bi-germs of functions, respectively, elementary fields of tangent vectors (EFTV on the orientable double cover of X. Some representation theorems for the algebra of germs of functions, the tangent space at an arbitrary point of X, and the space of vector fields on X are proved by using a symmetrisation process. An example related to the normal derivative on the border of the Möbius strip supports the nontriviality of the concepts introduced in this paper.

  6. [The construction process of managerial profile competencies for nurse coordinators in the hospital field].

    Science.gov (United States)

    Manenti, Simone Alexandra; Ciampone, Maria Helena Trench; Mira, Vera Lucia; Minami, Lígia Fumiko; Soares, Jaqueline Maria Sousa

    2012-06-01

    The objective of this study was to construct a profile of managerial competencies, based on the consensus of nurse coordinators in the field. This study was developed in a philanthropic hospital in São Paulo, following the research-action model, and included 13 nurse coordinators as participants. The data collection was performed using the focal group technique. Data analysis was performed using the theoretical frameworks related to the working process and managerial competencies. The results identified the greater emphasis assigned to the competencies related to the mentor, coordinator and director roles. It was, therefore, possible to construct a professional development plan that is based on competencies in the technical, ethical-political, and communicative domains, as well as the development of citizenship. The analysis of the managerial working process and the study of the competencies within the managerial environment were shown to be important, because they highlighted the professionals' need to improve, thus fulfilling personal, professional, and organizational demands.

  7. Weibel magnetic field competes with Biermann fields in laser-solid interactions

    Science.gov (United States)

    Shukla, Nitin; Schoeffler, Kevin; Vieira, Jorge; Fonseca, Ricardo; Silva, Luis

    2016-10-01

    Biermann battery induced magnetic fields caused by non-parallel density and temperature gradients, first investigated experimentally, continue to be measured in many current experiments. A detailed study of Biermann generated magnetic fields in collisionless systems has been carried out, showing that for large system sizes (L /de >= 100) , where de is the electron inertial length, the Weibel instability dominates as the major source of magnetic field. In this work, we demonstrate the possibility of experimentally generating this strong Weibel magnetic field. We model, using ab initio PIC simulations, the interaction of a short (ps) high intensity (a0 >= 1) laser pulse, with a target of sufficiently large gradient scale length, L. The expanding hot energetic electron population generated by the laser produces an anisotropy in the velocity distribution. This anisotropy provides the free energy that drives the Weibel instability that appears on the surfaces of the target and dominates over the Biermann battery field.

  8. Competence is Competence

    DEFF Research Database (Denmark)

    Bramming, Pia

    2004-01-01

    The article will address competence, its' diffusion, application, and the consequence of this application within the field of Human Resource Management (HRM). The concept competence-in-practice will be presented and in conclusion the article will consider implications and possibilities of compete...

  9. Field theoretic description of partially reflective surfaces

    CERN Document Server

    Barone, F E

    2014-01-01

    The issue of electric charges in interaction with partially reflective surfaces is addressed by means of field theoretic methods. It is proposed an enlarged Maxwell lagrangian, describing the electromagnetic field in the presence of a semitransparent surface, and its corresponding photon propagator is computed exactly. The amended Green function reduces to the one for a perfect conductor in the appropriate limit, and leads to the interaction between charges and surfaces with varying degrees of transparency, featured by a phenomenological parameter. The interaction found via image method is recovered, in the limiting case of perfect mirrors, as a testimony to the validity of the model.

  10. Imaging interferometry to measure surface rotation field

    DEFF Research Database (Denmark)

    Travaillot, Thomas; Dohn, Søren; Boisen, Anja

    2013-01-01

    This paper describes a polarized-light imaging interferometer to measure the rotation field of reflecting surfaces. This setup is based on a homemade prism featuring a birefringence gradient. The arrangement is presented before focusing on the homemade prism and its manufacturing process....... The dependence of the measured optical phase on the rotation of the surface is derived, thus highlighting the key parameters driving the sensitivity. The system’s capabilities are illustrated by imaging the rotation field at the surface of a tip-loaded polymer specimen....

  11. Electric Field Induced Surface Modification of Au

    Energy Technology Data Exchange (ETDEWEB)

    Erchak, A.A.; Franklin, G.F.; Houston, J.E.; Mayer, T.M.; Michalske, T.A.

    1999-02-15

    We discuss the role of localized high electric fields in the modification of Au surfaces with a W probe using the Interfacial Force Microscope. Upon bringing a probe close to a Au surface, we measure both the interfacial force and the field emission current as a function of separation with a constant potential of 100 V between tip and sample. The current initially increases exponentially as the separation decreases. However, at a distance of less than {approximately} 500{angstrom} the current rises sharply as the surface begins to distort and rapidly close the gap. Retraction of the tip before contact is made reveals the formation of a mound on the surface. We propose a simple model, in which the localized high electric field under the tip assists the production of mobile Au adatoms by detachment from surface steps, and a radial field gradient causes a net flux of atoms toward the tip by surface diffusion. These processes give rise to an unstable surface deformation which, if left unchecked, results in a destructive mechanical contact. We discuss our findings with respect to earlier work using voltage pulses in the STM as a means of nanofabrication.

  12. Denmarks future as leading centre of competence within the field of wind power

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    Megavind has developed the present report with the intention of assessing the challenges involved, if Denmark is to maintain its position as an internationally leading centre of competence within the field of wind power. Furthermore, with the report, the partnership Megavind also wishes to point out specific initiatives within testing, demonstration, innovation and research as well as presenting recommendations for a strengthened effort within education that can take part in developing Denmark as an internationally leading centre of competence within the field of wind power. (au)

  13. A Comparative Analysis of Competency Frameworks for Youth Workers in the Out-of-School Time Field

    OpenAIRE

    Vance, Femi

    2010-01-01

    Research suggests that the quality of out-of-school time (OST) programs is related to positive youth outcomes and skilled staff are a critical component of high quality programming. This descriptive case study of competency frameworks for youth workers in the OST field demonstrates how experts and practitioners characterize a skilled youth worker. A comparative analysis of 11 competency frameworks is conducted to identify a set of common core competencies. A set of 12 competency areas that ar...

  14. Study of the confined Ising magnet with long-range competing boundary fields

    Energy Technology Data Exchange (ETDEWEB)

    Virgiliis, Andres de [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), UNLP, CONICET, Casilla de Correo 16, Sucursal 4 (1900) La Plata (Argentina); Institut fuer Physik, Johannes Gutenberg Universitaet, Staudingerweg 7, D-55099 Mainz (Germany); Albano, Ezequiel V [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), UNLP, CONICET, Casilla de Correo 16, Sucursal 4 (1900) La Plata (Argentina); Institut fuer Physik, Johannes Gutenberg Universitaet, Staudingerweg 7, D-55099 Mainz (Germany); Mueller, Marcus [Institut fuer Physik, Johannes Gutenberg Universitaet, Staudingerweg 7, D-55099 Mainz (Germany); Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, WI 53706-1390 (United States); Binder, Kurt [Institut fuer Physik, Johannes Gutenberg Universitaet, Staudingerweg 7, D-55099 Mainz (Germany)

    2005-07-27

    We present extensive Monte Carlo simulations of the Ising film confined in an L ? M geometry (L << M) in the presence of long-range competing magnetic fields h(n) = h{sub 1}/n{sup 3}(n = 1,2,...,L) which are applied at opposite walls along the M-direction. Due to the fields, an interface between domains of different orientations that runs parallel to the walls forms and can be located close to one of the two surfaces or fluctuate in the centre of the film (localization-delocalization transition). This transition is the precursor of the wetting phase transition that occurs in the limit of infinite film thickness (L {yields} {infinity}) at the critical curve T{sub w}(h{sub 1}). For T=}T{sub w}(h{sub 1})) such an interface is bound to (unbound from) the walls. We study this transition by measuring the magnetization profiles across the sample and the distribution function of both the magnetization of the whole sample and that of the centre of the film as a function of temperature, T, or strength of the wall field, h{sub 1}. We obtain estimates of the size-dependent wetting 'critical' points that allow us to extrapolate to the thermodynamic limit. Using the results of these extrapolations, confirmed by independent measurements of the cumulant, we draw the phase diagram of the wetting transition with long-range surface fields. We show that, starting from a localized interface well inside the non-wet phase, the position of the interface diverges exponentially when approaching the transition point, in contrast to the power-law divergence observed in the case of short-range fields. The properties of the delocalized interface are also studied. Within the wet phase the width of the capillary waves broadens the observed interface profiles. The spectrum of capillary waves is cut off at large wavelengths by the correlation length, {xi}{sub parallel}, which scales like {xi}{sub parallel} {proportional_to} L{sup 2}, similar to the short-range case

  15. Multicultural Group Work on Field Excursions to Promote Student Teachers' Intercultural Competence

    Science.gov (United States)

    Brendel, Nina; Aksit, Fisun; Aksit, Selahattin; Schrüfer, Gabriele

    2016-01-01

    As a response to the intercultural challenges of Geography Education, this study seeks to determine factors fostering intercultural competence of student teachers. Based on a one-week multicultural field excursion of eight German and eight Turkish students in Kayseri (Turkey) on Education for Sustainable Development, we used qualitative interviews…

  16. Multicultural Group Work on Field Excursions to Promote Student Teachers' Intercultural Competence

    Science.gov (United States)

    Brendel, Nina; Aksit, Fisun; Aksit, Selahattin; Schrüfer, Gabriele

    2016-01-01

    As a response to the intercultural challenges of Geography Education, this study seeks to determine factors fostering intercultural competence of student teachers. Based on a one-week multicultural field excursion of eight German and eight Turkish students in Kayseri (Turkey) on Education for Sustainable Development, we used qualitative interviews…

  17. FORMATION OF STUDENTS’ FOREIGN LANGUAGE COMPETENCE IN THE INFORMATIONAL FIELD OF CROSS CULTURAL INTERACTION

    Directory of Open Access Journals (Sweden)

    Vitaly Vyacheslavovich Tomin

    2015-09-01

    Full Text Available Knowledge of foreign languages is becoming an integral feature of competitive persona-lity, ability to engage in cross-cultural communication and productive cross-cultural inte-raction, characterized by an adequate degree of tolerance and multi-ethnic competence, the ability for cross-cultural adaptation, critical thinking and creativity. However, the concept of foreign language competence has so far no clear, unambiguous definitions, thereby indicating the complexity and diversity of the phenomenon, which is an integrative, practice-oriented outcome of the wish and ability for intercultural communication. There have been mentioned a variety of requirements, conditions, principles, objectives, means and forms of foreign language competence forming, among which special attention is paid to non-traditional forms of practical training and information field in a cross-cultural interaction. There have been explained the feasibility of their application, which allows solving a complex of series of educational and teaching tasks more efficiently. There have been clarified the term «information field» in cross-cultural interaction, which is a cross-section of internally inherent in every individual «sections» of knowledge, skills, and experience, arising in certain given educational frameworks and forming a communication channel. The resultative indicators of the formation of foreign language competence and ways to improve its effectiveness are presented.

  18. A Competency-Based and Field-Centered Teacher Education Program in French: Teacher Competencies and Evidence of Achievement.

    Science.gov (United States)

    Papalia, Anthony

    The foreign language teacher training program described here is competency-based and therefore assumes the use of stated assessment criteria. Foreign language teacher competencies are listed in three categories: (1) content area, (2) learning-teaching process, and (3) teacher-school-community and profession. The team leader responsible for…

  19. External Field QED on Cauchy Surfaces

    CERN Document Server

    Deckert, D -A

    2015-01-01

    The Shale-Stinespring Theorem (1965) together with Ruijsenaar's criterion (1977) provide a necessary and sufficient condition for the implementability of the evolution of external field quantum electrodynamics between constant-time hyperplanes on standard Fock space. The assertion states that an implementation is possible if and only if the spacial components of the external electromagnetic four-vector potential $A_\\mu$ are zero. We generalize this result to smooth, space-like Cauchy surfaces and, for general $A_\\mu$, show how the second-quantized Dirac evolution can always be implemented as a map between varying Fock spaces. Furthermore, we give equivalence classes of polarizations, including an explicit representative, that give rise to those admissible Fock spaces. We prove that the polarization classes only depend on the tangential components of $A_\\mu$ w.r.t. the particular Cauchy surface, and show that they behave naturally under Lorentz and gauge transformations.

  20. Building the field of population health intervention research: The development and use of an initial set of competencies

    Directory of Open Access Journals (Sweden)

    Barbara Riley

    2015-01-01

    This initial set of competencies, released in 2013, may be used to develop graduate student curriculum, recruit trainees and faculty to academic institutions, plan non-degree professional development, and develop job descriptions for PHIR-related research and professional positions. The competencies provide some initial guideposts for the field and will need to be adapted as the PHIR field matures and to meet unique needs of different jurisdictions.

  1. Building the field of population health intervention research: The development and use of an initial set of competencies.

    Science.gov (United States)

    Riley, Barbara; Harvey, Jean; Di Ruggiero, Erica; Potvin, Louise

    2015-01-01

    Population health intervention research (PHIR) is a relatively new research field that studies interventions that can improve health and health equity at a population level. Competencies are one way to give legitimacy and definition to a field. An initial set of PHIR competencies was developed with leadership from a multi-sector group in Canada. This paper describes the development process for these competencies and their possible uses. Methods to develop the competencies included key informant interviews; a targeted review of scientific and gray literature; a 2-round, online adapted Delphi study with a 24-member panel; and a focus group with 9 international PHIR experts. The resulting competencies consist of 25 items grouped into 6 categories. They include principles of good science applicable though not exclusive to PHIR, and more suitable for PHIR teams rather than individuals. This initial set of competencies, released in 2013, may be used to develop graduate student curriculum, recruit trainees and faculty to academic institutions, plan non-degree professional development, and develop job descriptions for PHIR-related research and professional positions. The competencies provide some initial guideposts for the field and will need to be adapted as the PHIR field matures and to meet unique needs of different jurisdictions.

  2. Using field notes to evaluate competencies in family medicine training: a study of predictors of intention

    Directory of Open Access Journals (Sweden)

    Miriam Lacasse

    2013-03-01

    Methods: This mixed-methods study involved clinical teachers (CT and residents from two family medicine units. Main outcomes were: 1 intention (and its predictors: attitude, perceived behavioural control (PBC and normative belief to use FN, assessed using a 7-item Likert scale questionnaire (1: strongly disagree to 7: strongly agree and 2 related salient beliefs, explored in focus groups three and six months after FN implementation. Results: 27 CT and 28 residents participated. Intention to use FN was 6.20±1.20 and 5.74±1.03 in CT and residents respectively. Predictors of this intention were attitude and PBC (mutually influential: p = 0.04, and normative belief (p = 0.007. Focus groups identified underlying beliefs regarding their use (perceived advantages/disadvantages and facilitators/barriers. Conclusion: Intention to adopt field notes to document competency is influenced by attitude, perceived behavioural control and normative belief. Implementation of field notes should be preceded by interventions that target the identified salient beliefs to improve this competency-based evaluation strategy.

  3. „Trust me, I know what I'm doing!“ Competence Fields as a Means of Establishing Political Leadership

    Directory of Open Access Journals (Sweden)

    Martin Neumann

    2014-04-01

    Full Text Available Competence fields are conceptualised as an alternative to the median-voter approach to the relationship between political leaders and constituencies. The notion of competence fields assumes that prospective political leaders need be regarded as competent in order to convince constituencies of their leadership abilities. It is argued that competence is a constructivist concept – political actors invoke claims of competence, backed by more or less strong, contextually dependent reasons in speech acts, by means of which they attempt to convince the audience of their leadership abilities. It is also argued that the construction of competence becomes particularly problematic in times of crisis, when pressures from the social context onto the prospective leaders make their claims of competence generally less convincing. Leaders are then expected to resort to all sorts of rhetorical devices and draw public attention to those competence fields in which minimal costs are to be incurred in order to establish themselves as competent in front of the constituencies. An example of an agent-based model of ethnicity as one such competence field is provided. It is argued that competence fields can be further investigated by a combination of traditional social-scientific methods and various methods and techniques from the fields of information retrieval and computer modelling, which can be particularly helpful in providing empirical evidence of competence fields.

  4. An anthropological approach to teaching health sciences students cultural competency in a field school program.

    Science.gov (United States)

    Hutchins, Frank T; Brown, Lori DiPrete; Poulsen, Keith P

    2014-02-01

    International immersion experiences do not, in themselves, provide students with the opportunity to develop cultural competence. However, using an anthropological lens to educate students allows them to learn how to negotiate cultural differences by removing their own cultural filters and seeing events through the eyes of those who are culturally different. Faculty at the University of Wisconsin-Madison's Global Health Institute believed that an embedded experience, in which students engaged with local communities, would encourage them to adopt this Cultural Competency 2.0 position. With this goal in mind, they started the Field School for the Study of Language, Culture, and Community Health in Ecuador in 2003 to teach cultural competency to medical, veterinary, pharmacy, and nursing students. The program was rooted in medical anthropology and embraced the One Health initiative, which is a collaborative effort of multiple disciplines working locally, nationally, and globally to obtain optimal health for people, animals, and the environment. In this article, the authors identify effective practices and challenges for using a biocultural approach to educating students. In a semester-long preparatory class, students study the Spanish language, region-specific topics, and community engagement principles. While in Ecuador for five weeks, students apply their knowledge during community visits that involve homestays and service learning projects, for which they partner with local communities to meet their health needs. This combination of language and anthropological course work and community-based service learning has led to positive outcomes for the local communities as well as professional development for students and faculty.

  5. Competing Atmospheric and Surface-Driven Impacts of Absorbing Aerosols on the East Asian Summer Monsoon

    Science.gov (United States)

    Persad, G.; Paynter, D.; Ming, Y.; Ramaswamy, V.

    2015-12-01

    Absorbing aerosols, by attenuating shortwave radiation within the atmosphere and reemitting it as longwave radiation, redistribute energy both vertically within the surface-atmosphere column and horizontally between polluted and unpolluted regions. East Asia has the largest concentrations of anthropogenic absorbing aerosols globally, and these, along with the region's scattering aerosols, have both reduced the amount of solar radiation reaching the Earth's surface regionally ("solar dimming") and increased shortwave absorption within the atmosphere, particularly during the peak months of the East Asian Summer Monsoon (EASM). We here analyze how atmospheric absorption and surface solar dimming compete in driving the response of EASM circulation to anthropogenic absorbing aerosols, which dominates, and why—issues of particular importance for predicting how the EASM will respond to projected changes in absorbing and scattering aerosol emissions in the future. We probe these questions in a state-of-the-art general circulation model (GCM) using a combination of realistic and idealized aerosol perturbations that allow us to analyze the relative influence of absorbing aerosols' atmospheric and surface-driven impacts on EASM circulation. In combination, our results make clear that, although absorption-driven dimming has a less detrimental effect on EASM circulation than purely scattering-driven dimming, aerosol absorption is still a net impairment to EASM strength when both its atmospheric and surface effects are considered. Because atmospheric heating is not efficiently conveyed to the surface, the surface dimming and associated cooling from even a pure absorber is sufficient to counteract its atmospheric heating, resulting in a net reduction in EASM strength. These findings elevate the current understanding of the impacts of aerosol absorption on the EASM, improving our ability to diagnose EASM responses to current and future regional changes in aerosol emissions.

  6. Probing surface electric field noise with a single ion

    CERN Document Server

    Daniilidis, N; Bolloten, G; Ramm, M; Ransford, A; Ulin-Avila, E; Talukdar, I; Häffner, H

    2013-01-01

    We report room-temperature electric field noise measurements combined with in-situ surface characterization and cleaning of a microfabricated ion trap. We used a single-ion electric field noise sensor in combination with surface cleaning and analysis tools, to investigate the relationship between electric field noise from metal surfaces in vacuum and the composition of the surface. These experiments were performed in a novel setup that integrates ion trapping capabilities with surface analysis tools. We find that surface cleaning of an aluminum-copper surface significantly reduces the level of electric field noise, but the surface does not need to be atomically clean to show noise levels comparable to those of the best cryogenic traps. The post-cleaning noise levels are low enough to allow fault-tolerant trapped-ion quantum information processing on a microfabricated surface trap.

  7. Keratocyte fragments and cells utilize competing pathways to move in opposite directions in an electric field.

    Science.gov (United States)

    Sun, Yaohui; Do, Hao; Gao, Jing; Zhao, Ren; Zhao, Min; Mogilner, Alex

    2013-04-08

    Sensing of an electric field (EF) by cells-galvanotaxis-is important in wound healing [1], development [2], cell division, nerve growth, and angiogenesis [3]. Different cell types migrate in opposite directions in EFs [4], and the same cell can switch the directionality depending on conditions [5]. A tug-of-war mechanism between multiple signaling pathways [6] can direct Dictyostelium cells to either cathode or anode. Mechanics of motility is simplest in fish keratocytes, so we turned to keratocytes to investigate their migration in EFs. Keratocytes sense electric fields and migrate to the cathode [7, 8]. Keratocyte fragments [9, 10] are the simplest motile units. Cell fragments from leukocytes are able to respond to chemotactic signals [11], but whether cell fragments are galvanotactic was unknown. We found that keratocyte fragments are the smallest motile electric field-sensing unit: they migrate to the anode, in the opposite direction of whole cells. Myosin II was essential for the direction sensing of fragments but not for parental cells, while PI3 kinase was essential for the direction sensing of whole cells but not for fragments. Thus, two signal transduction pathways, one depending on PI3K, another on myosin, compete to orient motile cells in the electric field. Galvanotaxis is not due to EF force and does not depend on cell or fragment size. We propose a "compass" model according to which protrusive and contractile actomyosin networks self-polarize to the front and rear of the motile cell, respectively, and the electric signal orients both networks toward cathode with different strengths.

  8. The field of competence of the specialist in physical and rehabilitation medicine (PRM).

    Science.gov (United States)

    Gutenbrunner, C; Lemoine, F; Yelnik, A; Joseph, P-A; de Korvin, G; Neumann, V; Delarque, A

    2011-07-01

    The Field of Competence (FOC) of specialists in Physical and Rehabilitation Medicine (PRM) in Europe follows uniform basic principles described in the White Book of PRM in Europe. An agreed basis of the field of competence is the European Board curriculum for the PRM-specialist certification. However, due to national traditions, different health systems and other factors, PRM practice varies between regions and countries in Europe. Even within a country the professional practice of the individual doctor may vary because of the specific setting he or she is working in. For that reason this paper aims at a comprehensive description of the FOC in PRM. PRM specialists deal with/intervene in a wide range of diseases and functional deficits. Their interventions include, prevention of diseases and their complications, diagnosis of diseases, functional assessment, information and education of patients, families and professionals, treatments (physical modalities, drugs and other interventions). PRM interventions are often organized within PRM programmes of care. PRM interventions benefit from the involvement of PRM specialists in research. PRM specialists have knowledge of the rehabilitation process, team working, medical and physical treatments, rehabilitation technology, prevention and management of complications and methodology of research in the field. PRM specialists are involved in reducing functional consequences of many health conditions and manage functioning and disability in the respective patients. Diagnostic skills include all dimensions of body functions and structures, activities and participation issues relevant for the rehabilitation process. Additionally relevant contextual factors are assessed. PRM interventions range from medication, physical treatments, psychosocial interventions and rehabilitation technology. As PRM is based on the principles of evidence-based medicine PRM specialist are involved in research too. Quality management programs for PRM

  9. Importance of education and competence maintenance in metrology field (measurement science)

    Science.gov (United States)

    Dobiliene, J.; Meskuotiene, A.

    2015-02-01

    For certain tasks in metrology field trained employers might be necessary to fulfill specific requirements. It is important to pay attention that metrologists are responsible for fluent work of devices that belong to huge variety of vide spectrum of measurements. People who perform measurements (that are related to our safety, security or everyday life) with reliable measuring instruments must be sure for trueness of their results or conclusions. So with the purpose to reach the harmony between the ordinary man and his used means it is very important to ensure competence of specialists that are responsible for mentioned harmony implementation. Usually these specialists have a university degree and perform highly specified tasks in science, industry or laboratories. Their task is quite narrow. For example, type approval of measuring instrument or calibration and verification. Due to the fact that the number of such employers and their tasks is relatively small in the field of legal metrology, this paper focuses on the significance of training and qualification of legal metrology officers.

  10. Mercury's Surface Magnetic Field Determined from Proton-Reflection Magnetometry

    Science.gov (United States)

    Winslow, Reka M.; Johnson, Catherine L.; Anderson, Brian J.; Gershman, Daniel J.; Raines, Jim M.; Lillis, Robert J.; Korth, Haje; Slavin, James A.; Solomon, Sean C.; Zurbuchen, Thomas H.; Zuber, Maria T.

    2014-01-01

    Solar wind protons observed by the MESSENGER spacecraft in orbit about Mercury exhibit signatures of precipitation loss to Mercury's surface. We apply proton-reflection magnetometry to sense Mercury's surface magnetic field intensity in the planet's northern and southern hemispheres. The results are consistent with a dipole field offset to the north and show that the technique may be used to resolve regional-scale fields at the surface. The proton loss cones indicate persistent ion precipitation to the surface in the northern magnetospheric cusp region and in the southern hemisphere at low nightside latitudes. The latter observation implies that most of the surface in Mercury's southern hemisphere is continuously bombarded by plasma, in contrast with the premise that the global magnetic field largely protects the planetary surface from the solar wind.

  11. Electric fields associated with transient surface currents

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1992-01-01

    The boundary condition to be fulfilled by the potential functions associated with a transient surface current is derived and expressed in terms of generalized orthogonal coordinates. From the analysis, it can be deduced that the use of the method of separation of variables is restricted to three ...

  12. Gaussian vector fields on triangulated surfaces

    DEFF Research Database (Denmark)

    Ipsen, John H

    2016-01-01

    proven to be very useful to resolve the complex interplay between in-plane ordering of membranes and membrane conformations. In the present work we have developed a procedure for realistic representations of Gaussian models with in-plane vector degrees of freedoms on a triangulated surface. The method...

  13. The Tate conjecture for K3 surfaces over finite fields

    Science.gov (United States)

    Charles, François

    2013-10-01

    Artin's conjecture states that supersingular K3 surfaces over finite fields have Picard number 22. In this paper, we prove Artin's conjecture over fields of characteristic p>3. This implies Tate's conjecture for K3 surfaces over finite fields of characteristic p>3. Our results also yield the Tate conjecture for divisors on certain holomorphic symplectic varieties over finite fields, with some restrictions on the characteristic. As a consequence, we prove the Tate conjecture for cycles of codimension 2 on cubic fourfolds over finite fields of characteristic p>3.

  14. Classification of magnons in rotated ferromagnetic Heisenberg model and their competing responses in transverse fields

    Science.gov (United States)

    Sun, Fadi; Ye, Jinwu; Liu, Wu-Ming

    2016-07-01

    In this paper, we study the rotated ferromagnetic Heisenberg model (RFHM) in two different transverse fields, hx and hz, which can be intuitively visualized as studying spin-orbit coupling (SOC) effects in two-dimensional (2D) Ising or anisotropic X Y model in a transverse field. At a special SOC class, it was found in our previous work [Phys. Rev. A 92, 043609 (2015), 10.1103/PhysRevA.92.043609] that the RFHM at a zero field owns an exact spin-orbit coupled ground state called the Y -x state. It supports not only the commensurate magnons (called C -C0 and C -Cπ ), but also the incommensurate magnons (called C-IC). These magnons are nonrelativistic, not embedded in the exact ground state, so need to be thermally excited or generated by various external probes. Their dramatic response under a longitudinal hy field was recently worked out by Sun et al. [arXiv:1502.05338]. Here we find they respond very differently under the two transverse fields. Any hx (hz) introduces quantum fluctuations to the ground state and changes the collinear Y -x state to a canted coplanar Y X -x (Y Z -x ) state. The C -C0,C -Cπ , and C-IC magnons become relativistic and sneak into the quantum ground state. We determine the competing boundaries among the C -C0,C -Cπ , and C-IC magnons, especially the detailed dispersions of the C-IC magnons inside the canted phases, which can be mapped out by the transverse spin structure factors. As hx (hz) increases further, the C -C0 magnons always win the competition and emerge as the seeds to drive a transition from the Y X -x (or Y Z -x ) to the ferromagnetic along the X (orZ ) direction called the X -FM (or Z -FM) phase. We show that the transition is in the 3D Ising universality class and it becomes the 3D X Y transition at the two Abelian points. We evaluate these magnons' contributions to magnetization and specific heat at low temperatures which can be measured by various established experimental techniques. The nature of the finite

  15. 'Communicative competence' in the field of augmentative and alternative communication: a review and critique.

    Science.gov (United States)

    Teachman, Gail; Gibson, Barbara E

    2014-01-01

    Understandings of 'communicative competency' (CC) have an important influence on the ways that researchers and practitioners in augmentative and alternative communication (AAC) work toward achieving positive outcomes with AAC users. Yet, very little literature has critically examined conceptualizations of CC in AAC. Following an overview of the emergence of the concept of CC and of the field of AAC, we review seven conceptualizations of CC identified in the literature. To consider the contributions and potential shortcomings of conceptualizations of CC in AAC. We use a critical theoretical approach to review, critique and synthesize conceptualizations of CC in AAC, with a particular focus on uncovering 'taken for granted' assumptions. By historically situating the reviewed literature, we examine the shifting boundaries and tensions among theoretical conceptualizations of CC in AAC and their potential impacts on practice. We suggest ways that revisiting past scholarly work, alongside emergent, innovative conceptualizations of CC might shift ways of thinking about CC in AAC which tend to focus on the individual who communicates differently, toward (re)location of CC as a shared, socially incorporated and performed communication construct. We propose that emerging critical perspectives drawn from AAC and other interdisciplinary literatures offer innovative ways of theorizing communication difference, which might inform evolving conceptualizations of CC in AAC. © 2013 Royal College of Speech and Language Therapists.

  16. Visualizing 3D velocity fields near contour surfaces. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Max, N.; Crawfis, R.; Grant, C.

    1994-08-08

    Vector field rendering is difficult in 3D because the vector icons overlap and hide each other. We propose four different techniques for visualizing vector fields only near surfaces. The first uses motion blurred particles in a thickened region around the surface. The second uses a voxel grid to contain integral curves of the vector field. The third uses many antialiased lines through the surface, and the fourth uses hairs sprouting from the surface and then bending in the direction of the vector field. All the methods use the graphics pipeline, allowing real time rotation and interaction, and the first two methods can animate the texture to move in the flow determined by the velocity field.

  17. Visualizing 3D velocity fields near contour surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Max, N.; Crawfis, R.; Grant, C.

    1994-03-01

    Vector field rendering is difficult in 3D because the vector icons overlap and hide each other. We propose four different techniques for visualizing vector fields only near surfaces. The first uses motion blurred particles in a thickened region around the surface. The second uses a voxel grid to contain integral curves of the vector field. The third uses many antialiased lines through the surface, and the fourth uses hairs sprouting from the surface and then bending in the direction of the vector field. All the methods use the graphite pipeline, allowing real time rotation and interaction, and the first two methods can animate the texture to move in the flow determined by the velocity field.

  18. Nanotomography of Cell Surfaces with Evanescent Fields

    Directory of Open Access Journals (Sweden)

    Michael Wagner

    2008-01-01

    Full Text Available The technique of variable-angle total internal reflection fluorescence microscopy (TIRFM and its application to nanotomography of cell surfaces are described. Present applications include (1 3D imaging of chromosomes in their metaphase to demonstrate axial resolution in the nanometre range, (2 measurements of cell-substrate topology, which upon cholesterol depletion shows some loosening of cell-substrate contacts, and (3 measurements of cell topology upon photodynamic therapy (PDT, which demonstrate cell swelling and maintenance of focal contacts. The potential of the method for in vitro diagnostics, but also some requirements and limitations are discussed.

  19. Earth's field NMR; a surface moisture detector?

    Science.gov (United States)

    Fukushima, Eiichi; Altobelli, Stephen; McDowell, Andrew; Zhang, Tongsheng

    2012-10-01

    Earth's field NMR (EFNMR), being free of magnets, would be an ideal teaching medium as well as a mobile NMR technique except for its weak S/N. The common EFNMR apparatus uses a powerful prepolarization field to enhance the spin magnetization before the experiment. We introduce a coil design geared to larger but manageable samples with sufficient sensitivity without prepolarization to move EFNMR closer to routine use and to provide an inexpensive teaching tool. Our coil consists of parallel wires spread out on a plywood to form a current sheet with the current return wires separated so they will not influence the main part of the coil assembly. The sensitive region is a relatively thin region parallel to the coil and close to it. A single turn of the coil is wound to be topologically equivalent to a figure-8. The two crossing segments in the center of a figure-8 form two of the parallel wires of the flat coil. Thus, a two-turn figure-8 has four crossing wires so its topologically equivalent coil will have four parallel wires with currents in phase. Together with the excellent sensitivity, this coil offers outstanding interference rejection because of the figure-8 geometry. An example of such a coil has 328 parallel wires covering a ˜1 meter square plywood which yields a good NMR signal from 26 liters of water spread out roughly over the area of the coil in less than one minute in a nearby park.

  20. Surface electric fields for North America during historical geomagnetic storms

    Science.gov (United States)

    Wei, Lisa H.; Homeier, Nichole; Gannon, Jennifer L.

    2013-01-01

    To better understand the impact of geomagnetic disturbances on the electric grid, we recreate surface electric fields from two historical geomagnetic storms—the 1989 “Quebec” storm and the 2003 “Halloween” storms. Using the Spherical Elementary Current Systems method, we interpolate sparsely distributed magnetometer data across North America. We find good agreement between the measured and interpolated data, with larger RMS deviations at higher latitudes corresponding to larger magnetic field variations. The interpolated magnetic field data are combined with surface impedances for 25 unique physiographic regions from the United States Geological Survey and literature to estimate the horizontal, orthogonal surface electric fields in 1 min time steps. The induced horizontal electric field strongly depends on the local surface impedance, resulting in surprisingly strong electric field amplitudes along the Atlantic and Gulf Coast. The relative peak electric field amplitude of each physiographic region, normalized to the value in the Interior Plains region, varies by a factor of 2 for different input magnetic field time series. The order of peak electric field amplitudes (largest to smallest), however, does not depend much on the input. These results suggest that regions at lower magnetic latitudes with high ground resistivities are also at risk from the effect of geomagnetically induced currents. The historical electric field time series are useful for estimating the flow of the induced currents through long transmission lines to study power flow and grid stability during geomagnetic disturbances.

  1. Green's functions potential fields on surfaces

    CERN Document Server

    Melnikov, Yuri A

    2017-01-01

    This book is comprehensive in its classical mathematical physics presentation, providing the reader with detailed instructions for obtaining Green's functions from scratch. Green's functions is an instrument easily accessible to practitioners who are engaged in design and exploitation of machines and structures in modern engineering practice. To date, there are no books available on the market that are devoted to the Green's function formalism for equations covered in this volume. The reader, with an undergraduate background in applied mathematics, can become an active user of the Green's function approach. For the first time, Green's functions are discussed for a specific class of problems dealing with potential fields induced in thin-wall structures and therefore, the reader will have first-hand access to a novel issue. This Work is accessible to researchers in applied mathematics, mechanics, and relevant disciplines such as engineering, as well as to upper level undergraduates and graduate students.

  2. Theory of back-surface-field solar cells

    Science.gov (United States)

    Vonroos, O.

    1979-01-01

    Report describes simple concise theory of back-surface-field (BSF) solar cells (npp + junctions) based on Shockley's depletion-layer approximation and cites superiority of two-junction devices over conventional unijunction cells.

  3. Ab initio dynamics of field emission from diamond surfaces

    Science.gov (United States)

    Miyamoto, Yoshiyuki; Miyazaki, Takehide; Takeuchi, Daisuke; Okushi, Hideyo; Yamasaki, Satoshi

    2013-09-01

    We propose a new interpretation of the efficiency of field emission, which is understood based on the concept of electron affinity. We use time-dependent density functional theory to simulate field emission from clean and chemically modified diamond (001) surfaces under applied electric fields. We find that the emission efficiency is governed by the self-consistent electrostatic potential (VSCF) at the surface rather than by the sign of the electron affinity, which is determined by VSCF in the vacuum region far from the surface. We resolve the paradox that the emission efficiency of a clean (001) surface with positive electron affinity is even higher than that of a H/OH-co-terminated (001) surface with negative electron affinity.

  4. Capillary condensation in a square geometry with surface fields

    Science.gov (United States)

    Zubaszewska, M.; Gendiar, A.; Drzewiński, A.

    2012-12-01

    We study the influence of wetting on capillary condensation for a simple fluid in a square geometry with surface fields, where the reference system is an infinitely long slit. The corner transfer matrix renormalization group method has been extended to study a two-dimensional Ising model confined in an L×L geometry with equal surface fields. Our results have confirmed that in both geometries the coexistence line shift is governed by the same scaling powers, but their prefactors are different.

  5. Near-field thermal imaging of nanostructured surfaces

    Science.gov (United States)

    Kittel, A.; Wischnath, U. F.; Welker, J.; Huth, O.; Rüting, F.; Biehs, S.-A.

    2008-11-01

    We show that a near-field scanning thermal microscope, which essentially detects the local density of states of the thermally excited electromagnetic modes at nanometer distances from some material, can be employed for nanoscale imaging of structures on that material's surface. This finding is explained theoretically by an approach which treats the surface structure perturbatively.

  6. Surface paraconductivity induced by an external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, B.Y. (Jack and Pearl Resnik Institute of Advance Technology, Physics Department, Bar-Ilan University, Ramat Gan 52900 (Israel))

    1993-12-01

    The fluctuating properties of the surface superconducting layers created by an electric field perpendicular to the surface are investigated. Shifts of the critical temperature, heat capacity, and the conductivity above the critical temperature have been calculated for arbitrary relations between the screening and coherence lengths.

  7. Computation of Surface Integrals of Curl Vector Fields

    Science.gov (United States)

    Hu, Chenglie

    2007-01-01

    This article presents a way of computing a surface integral when the vector field of the integrand is a curl field. Presented in some advanced calculus textbooks such as [1], the technique, as the author experienced, is simple and applicable. The computation is based on Stokes' theorem in 3-space calculus, and thus provides not only a means to…

  8. Primordial Magnetic Field at the Photon Last Scattering Surface

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, D.G. [Department of Astronomy, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588 (Japan); Ichiki, K. [Department of Astronomy, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588 (Japan); Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588 (Japan); Department of Astronomy, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2005-07-25

    We construct the original method and numerical code to calculate the effects of magnetic field on CMB at the last scattering surface (LSS). In order to investigate the specific nature of the magnetic field effects on the CMB, we compare our calculated perturbation and the WMAP data.

  9. Maurer-cartan forms for fields on surfaces

    DEFF Research Database (Denmark)

    Piuze, Emmanuel; Sporring, Jon; Siddiqi, Kaleem

    2015-01-01

    We study the space of first order models of smooth frame fields using the method of moving frames. By exploiting the Maurer-Cartan matrix of connection forms we develop geometrical embeddings for frame fields which lie on spherical, ellipsoidal and generalized helicoid surfaces. We design methods...

  10. Generation and near-field imaging of Airy surface plasmons

    CERN Document Server

    Minovich, Alexander; Janunts, Norik; Pertsch, Thomas; Neshev, Dragomir N; Kivshar, Yuri S

    2011-01-01

    We demonstrate experimentally the generation and near-field imaging of nondiffracting surface waves - plasmonic Airy beams, propagating on the surface of a gold metal film. The Airy plasmons are excited by an engineered nanoscale phase grating, and demonstrate significant beam bending over their propagation. We show that the observed Airy plasmons exhibit self-healing properties, suggesting novel applications in plasmonic circuitry and surface optical manipulation.

  11. Magnetic field effect in photodetachment from negative ion in electric field near metal surface

    Institute of Scientific and Technical Information of China (English)

    Tang Tian-Tian; Wang De-Hua; Huang Kai-Yun; Wang Shan-Shan

    2011-01-01

    Based on the closed-orbit theory, the magnetic field effect in the photodetachment of negative ion in the electric field near a metal surface is studied for the first time. The results show that the magnetic field can produce a significant effect on the photodetachment of negative ion near a metal surface. Besides the closed orbits previously found by Du et al. for the H-in the electric field near a metal surface (J. Phys. B 43 035002 (2010)), some additional closed orbits are produced due to the effect of magnetic field. For a given ion-surface distance and an electric field strength, the cross section depends sensitively on the magnetic field strength. As the magnetic field strength is very small, its influence can be neglected. With the increase of the magnetic field strength, the number of the closed orbits increases greatly and the oscillation in the cross section becomes much more complex. Therefore we can control the photodetachment cross section of the negative ion by changing the magnetic field strength. We hope that our results may guide future experimental studies for the photodetachment process of negative ion in the presence of external fields and surfaces.

  12. Characterization of complementary electric field coupled resonant surfaces

    Science.gov (United States)

    Hand, Thomas H.; Gollub, Jonah; Sajuyigbe, Soji; Smith, David R.; Cummer, Steven A.

    2008-11-01

    We present angle-resolved free-space transmission and reflection measurements of a surface composed of complementary electric inductive-capacitive (CELC) resonators. By measuring the reflection and transmission coefficients of a CELC surface with different polarizations and particle orientations, we show that the CELC only responds to in-plane magnetic fields. This confirms the Babinet particle duality between the CELC and its complement, the electric field coupled LC resonator. Characterization of the CELC structure serves to expand the current library of resonant elements metamaterial designers can draw upon to make unique materials and surfaces.

  13. Detection of reflector surface error from near-field data: Effect of edge diffracted field

    Science.gov (United States)

    Cherrette, Alan R.; Lee, Shong W.; Acosta, Roberto J.

    1987-01-01

    The surface accuracy of large reflector antennas must be maintained within certain tolerances if high gain/low sidelobe performance is to be achieved. Thus the measurement of the surface profile is an important part of the quality control procedure when constructing antennas of this type. An efficient method for surface profile measurement has been proposed, i.e., the reflector surface is calculated from the measured near-field phase data using the theory of geometric optics. For a surface profile calculation of this kind, it is necessary to know the margin of error built into the method of calculation. This will enable a specification of the tolerance from which the surface profile can be determined. When calculating the surface profile from near-field phase data, there are two main sources of error. The first is the measurement error in near-field phase data. The second arises from the edge diffracted fields that are superimposed on the reflected fields in the measured near-field data. The error in the calculated surface profile produced by the edge diffracted fields is examined.

  14. Electromagnetic field in matter. Surface enhanced Raman scattering

    Directory of Open Access Journals (Sweden)

    Marian Apostol

    2013-07-01

    Full Text Available The polarization and magnetization degrees of freedom are included in the general treatment of the electromagnetic field in matter, and their governing equations are given. Particular cases of solutions are discussed for polarizable, non-magnetic matter, including quasi-static fields, surface plasmons, propagation, zero-point fluctuations of the eigenmodes, especially for a semi-infinite homogeneous body (half-space. The van der Waals London-Casimir force acting between a neutral nano-particle and a half-space is computed and the response of this electromagnetically coupled system to an external field is given, with relevance for the surface enhanced Raman scattering.

  15. Tailoring optical complex fields with nano-metallic surfaces

    Directory of Open Access Journals (Sweden)

    Rui Guanghao

    2015-04-01

    Full Text Available Recently there is an increasing interest in complex optical fields with spatially inhomogeneous state of polarizations and optical singularities. Novel effects and phenomena have been predicted and observed for light beams with these unconventional states. Nanostructured metallic thin film offers unique opportunities to generate, manipulate and detect these novel fields. Strong interactions between nano-metallic surfaces and complex optical fields enable the development of highly compact and versatile functional devices and systems. In this review, we first briefly summarize the recent developments in complex optical fields. Various nano-metallic surface designs that can produce and manipulate complex optical fields with tailored characteristics in the optical far field will be presented. Nano-metallic surfaces are also proven to be very effective for receiving and detection of complex optical fields in the near field. Advances made in this nascent field may enable the design of novel photonic devices and systems for a variety of applications such as quantum optical information processing and integrated photonic circuits.

  16. Generating arbitrary ultrasound fields with tailored optoacoustic surface profiles

    Science.gov (United States)

    Brown, M. D.; Nikitichev, D. I.; Treeby, B. E.; Cox, B. T.

    2017-02-01

    Acoustic fields with multiple foci have many applications in physical acoustics ranging from particle manipulation to neural modulation. However, the generation of multiple foci at arbitrary locations in three-dimensional is challenging using conventional transducer technology. In this work, the optical generation of acoustic fields focused at multiple points using a single optical pulse is demonstrated. This is achieved using optically absorbing surface profiles designed to generate specific, user-defined, wavefields. An optimisation approach for the design of these tailored surface profiles is developed. This searches for a smoothly varying surface that will generate a high peak pressure at a set of target focal points. The designed surface profiles are then realised via a combination of additive manufacturing and absorber deposition techniques. Acoustic field measurements from a sample designed to generate the numeral "7" are used to demonstrate the design method.

  17. On the spectrum of turbulent magnetic fields. [on solar surface

    Science.gov (United States)

    Knobloch, E.; Rosner, R.

    1981-01-01

    Theoretical power spectra of magnetic fields subject to turbulent fluid motions in the kinematic regime are presented, and previous theories are reviewed, with reference to magnetic fields on the sun. Magnetic field diffusion in turbulence with persistent eddies is predicted to be described by an effective negative magnetic diffusivity. It is found that observations cannot be explained on the basis of turbulent kinematic theories unless the turbulent motions are three-dimensional, and the effective diffusivities are larger than the molecular diffusivities. Lower bounds on the turbulent viscosity are derived, suggesting that dynamical processes controlling the magnetic field spectrum occur at least 15,000 km below the surface. The results, which remain consistent with the assumption that effective diffusivity is uniform, suggest that surface magnetic field observations can be used as a diagnostic for subsurface flows.

  18. On Discrete Killing Vector Fields and Patterns on Surfaces

    KAUST Repository

    Ben-Chen, Mirela

    2010-09-21

    Symmetry is one of the most important properties of a shape, unifying form and function. It encodes semantic information on one hand, and affects the shape\\'s aesthetic value on the other. Symmetry comes in many flavors, amongst the most interesting being intrinsic symmetry, which is defined only in terms of the intrinsic geometry of the shape. Continuous intrinsic symmetries can be represented using infinitesimal rigid transformations, which are given as tangent vector fields on the surface - known as Killing Vector Fields. As exact symmetries are quite rare, especially when considering noisy sampled surfaces, we propose a method for relaxing the exact symmetry constraint to allow for approximate symmetries and approximate Killing Vector Fields, and show how to discretize these concepts for generating such vector fields on a triangulated mesh. We discuss the properties of approximate Killing Vector Fields, and propose an application to utilize them for texture and geometry synthesis. Journal compilation © 2010 The Eurographics Association and Blackwell Publishing Ltd.

  19. Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces.

    Science.gov (United States)

    Miljkovic, Nenad; Preston, Daniel J; Enright, Ryan; Wang, Evelyn N

    2013-12-23

    When condensed droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump due to the conversion of excess surface energy into kinetic energy. This phenomenon has been shown to enhance condensation heat transfer by up to 30% compared to state-of-the-art dropwise condensing surfaces. However, after the droplets jump away from the surface, the existence of the vapor flow toward the condensing surface increases the drag on the jumping droplets, which can lead to complete droplet reversal and return to the surface. This effect limits the possible heat transfer enhancement because larger droplets form upon droplet return to the surface, which impedes heat transfer until they can be either removed by jumping again or finally shedding via gravity. By characterizing individual droplet trajectories during condensation on superhydrophobic nanostructured copper oxide (CuO) surfaces, we show that this vapor flow entrainment dominates droplet motion for droplets smaller than R ≈ 30 μm at moderate heat fluxes (q″ > 2 W/cm(2)). Subsequently, we demonstrate electric-field-enhanced condensation, whereby an externally applied electric field prevents jumping droplet return. This concept leverages our recent insight that these droplets gain a net positive charge due to charge separation of the electric double layer at the hydrophobic coating. As a result, with scalable superhydrophobic CuO surfaces, we experimentally demonstrated a 50% higher overall condensation heat transfer coefficient compared to that on a jumping-droplet surface with no applied field for low supersaturations (condensation heat transfer enhancement but also offers avenues for improving the performance of self-cleaning and anti-icing surfaces as well as thermal diodes.

  20. Generation of Focused Electric Field Patterns at Dielectric Surfaces

    Science.gov (United States)

    Olofsson, Jessica; Levin, Mikael; Strömberg, Anette; Weber, Stephen G.; Ryttsén, Frida; Orwar, Owe

    2006-01-01

    We here report on a concept for creating well-defined electric field gradients between the boundaries of capillary electrode (a capillary of a nonconducting material equipped with an interior metal electrode) outlets, and dielectric surfaces. By keeping a capillary electrode opening close to a boundary between a conducting solution and a nonconducting medium, a high electric field can be created close to the interface by field focusing effects. By varying the inner and outer diameters of the capillary, the span of electric field strengths and the field gradient obtained can be controlled, and by varying the slit height between the capillary rim and the surface, or the applied current, the average field strength and gradient can be varied. Field focusing effects and generation of electric field patterns were analyzed using finite element method simulations. We experimentally verified the method by electroporation of a fluorescent dye (fluorescein diphosphate) into adherent, monolayered cells (PC-12 and WSS-1) and obtained a pattern of fluorescent cells corresponding to the focused electric field. PMID:16013887

  1. Spot--like Structures of Neutron Star Surface Magnetic Fields

    CERN Document Server

    Geppert, U; Gil, J

    2003-01-01

    There is growing evidence, based on both X-ray and radio observations of isolated neutron stars, that besides the large--scale (dipolar) magnetic field, which determines the pulsar spin--down behaviour, small--scale poloidal field components are present, which have surface strengths one to two orders of magnitude larger than the dipolar component. We argue in this paper that the Hall--effect can be an efficient process in producing such small--scale field structures just above the neutron star surface. It is shown that due to a Hall--drift induced instability, poloidal magnetic field structures can be generated from strong subsurface toroidal fields, which are the result of either a dynamo or a thermoelectric instability acting at early times of a neutron star's life. The geometrical structure of these small--scale surface anomalies of the magnetic field resembles that of some types of ``star--spots''. The magnetic field strength and the length--scales are comparable with values that can be derived from vario...

  2. Competencies Analysis in the Sustainable Development Field of Electrical Engineering Baccalaureate Program Alumni

    Directory of Open Access Journals (Sweden)

    Ivanova Veronica

    2015-01-01

    Full Text Available The term “sustainable development” is clarified. Criteria for the development of sustainable development in universities are selected. The analysis of the Electrical Engineering Baccalaureate Program for the development of competences for sustainable development is done. The conclusion about the need to develop smart university - sustainable development strategy of universities is made.

  3. Instructional Competencies Needed to Develop Instructional Strategies for Mobile Learning in Fields of Agricultural Education

    Science.gov (United States)

    Irby, Travis; Strong, Robert

    2015-01-01

    Mobile learning is an evolving form of technology-based learning. The novelty of mobile learning gives educators a new tool for evaluating how to develop effective instruction for this new medium. A Delphi study was conducted using a 30-member panel comprised of experts across 20 states. The purpose was to determine the competencies needed to…

  4. Building Competency-Based Pathways: Successes and Challenges from Leaders in the Field. A Forum

    Science.gov (United States)

    American Youth Policy Forum, 2011

    2011-01-01

    This forum provided an overview of competency-based pathways to education and described programs that have successfully utilized these pathways to move all students to success in high school and beyond. Speakers highlighted how innovative learning environments that base student advancement upon mastery of measurable learning objectives have been…

  5. Polarization of electric field noise near metallic surfaces

    CERN Document Server

    Schindler, Philipp; Daniilidis, Nikos; Häffner, Hartmut

    2015-01-01

    Electric field noise in proximity to metallic surfaces is a poorly understood phenomenon that appears in different areas of physics. Trapped ion quantum information processors are particular susceptible to this noise, leading to motional decoherence which ultimately limits the fidelity of quantum operations. On the other hand they present an ideal tool to study this effect, opening new possibilities in surface science. In this work we analyze and measure the polarization of the noise field in a micro-fabricated ion trap for various noise sources. We find that technical noise sources and noise emanating directly from the surface give rise to different degrees of polarization which allows us to differentiate between the two noise sources. Based on this, we demonstrate a method to infer the magnitude of surface noise in the presence of technical noise.

  6. Surface structure of quark stars with magnetic fields

    Indian Academy of Sciences (India)

    Prashanth Jaikumar

    2006-11-01

    We investigate the impact of magnetic fields on the electron distribution of the electrosphere of quark stars. For moderately strong magnetic fields of ∼ 1013 G, quantization effects are generally weak due to the large number density of electrons at surface, but can nevertheless affect the photon emission properties of quark stars. We outline the main observational characteristics of quark stars as determined by their surface emission, and briefly discuss their formation in explosive events termed as quark-novae, which may be connected to the -process.

  7. C=1 conformal field theories on Riemann surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, R.; Verlinde, E.; Verlinde, H.

    1988-03-01

    We study the theory of c=1 torus and Z/sub 2/-orbifold models on general Riemann surfaces. The operator content and occurrence of multi-critical points in this class of theories is discussed. The partition functions and correlation functions of vertex operators and twist fields are calculated using the theory of double covered Riemann surfaces. It is shown that orbifold partition functions are sensitive to the Torelli group. We give an algebraic construction of the operator formulation of these nonchiral theories on higher genus surfaces. Modular transformations are naturally incorporated as canonical transformations in the Hilbert space.

  8. C=1 conformal field theories on Riemann surfaces

    Science.gov (United States)

    Dijkgraaf, Robbert; Verlinde, Erik; Verlinde, Herman

    1988-12-01

    We study the theory of c=1 torus and ℤ2-orbifold models on general Riemann surfaces. The operator content and occurrence of multi-critical points in this class of theories is discussed. The partition functions and correlation functions of vertex operators and twist fields are calculated using the theory of double covered Riemann surfaces. It is shown that orbifold partition functions are sensitive to the Torelli group. We give an algebraic construction of the operator formulation of these nonchiral theories on higher genus surfaces. Modular transformations are naturally incorporated as canonical transformations in the Hilbert space.

  9. Surface field in an ensemble of superconducting spheres under external magnetic field

    CERN Document Server

    Peñaranda, A; Ramírez-Piscina, L

    1999-01-01

    We perform calculations of the magnetic field on the surface of an ensemble of superconducting spheres when placed into an external magnetic field, which is the configuration employed in superheated superconducting granule detectors. The Laplace equation is numerically solved with appropriate boundary conditions by means of an iterative procedure and a multipole expansion.

  10. Mesogranulation and the solar surface magnetic field distribution

    CERN Document Server

    Chaouche, L Yelles; Pillet, V Martínez; Wiegelmann, T; Bonet, J A; Knölker, M; Rubio, L R Bellot; Iniesta, J C del Toro; Barthol, P; Gandorfer, A; Schmidt, W; Solanki, S K

    2010-01-01

    The relation of the solar surface magnetic field with mesogranular cells is studied using high spatial (~ 100 km) and temporal (~ 30 sec) resolution data obtained with the IMaX instrument aboard SUNRISE. First, mesogranular cells are identified using Lagrange tracers (corks) based on horizontal velocity fields obtained through Local Correlation Tracking. After ~ 20 min of integration, the tracers delineate a sharp mesogranular network with lanes of width below about 280 km. The preferential location of magnetic elements in mesogranular cells is tested quantitatively. Roughly 85% of pixels with magnetic field higher than 100 G are located in the near neighborhood of mesogranular lanes. Magnetic flux is therefore concentrated in mesogranular lanes rather than intergranular ones. Secondly, magnetic field extrapolations are performed to obtain field lines anchored in the observed flux elements. This analysis, therefore, is independent of the horizontal flows determined in the first part. A probability density fun...

  11. Assessment of the situation of centres of competence in the fields of nuclear fission and radiation protection. Final report

    CERN Document Server

    Wolfert, K; Glaeser, H; Klener, V; Métivier, H; Richard, P; Riebold, W L; Vasa, I; Zimmermann, M

    2003-01-01

    An assessment of the present situation concerning centres of competence in the fields of Nuclear Fission and Radiation Protection has been carried out with the intention to draw strategic conclusions as regards further needs in these fields, based on the actual situation and perceived future developments. This study was initiated by the programme committee for the Euratom research and training programme in the field of Nuclear Energy (1998 - 2002). To carry out this exercise, a Panel of four independent experts had been set up. The Panel had prepared a questionnaire comprising a comprehensive set of questions aiming at the acquisition of the information needed to carry out the assessment exercise. The questionnaire consisted in ten different form sheets and had been put on the Internet in order to ease the access and offer a comfortable way of filling in the form sheets. Out of 420 organisations invited to participate in the exercise, 293 organisations from EU member states, Central and Eastern European Acces...

  12. Influence of Surface Energy Effects on Elastic Fields of a Layered Elastic Medium under Surface Loading

    Directory of Open Access Journals (Sweden)

    Supakorn Tirapat

    2017-01-01

    Full Text Available This paper presents the analysis of a layered elastic half space under the action of axisymmetric surface loading and the influence of the surface energy effects. The boundary value problems for the bulk and the surface are formulated based on classical linear elasticity and a complete Gurtin-Murdoch constitutive relation. An analytical technique using Love’s representation and the Hankel integral transform is employed to derive an integral-form solution for both displacement and stress fields. An efficient numerical quadrature is then applied to accurately evaluate all involved integrals. Selected numerical results are presented to portray the influence of various parameters on elastic fields. Numerical results indicate that the surface stress displays a significant influence on both displacement and stress fields. It is also found that the layered half space becomes stiffer with the presence of surface stresses. In addition, unlike the classical elasticity solution, size-dependent behavior of elastic fields is noted. The present analytical solutions provide fundamental understanding of the influence of surface energy on layered elastic materials. It can also be used as a benchmark solution for the development of numerical techniques such as FEM and BEM, for analysis of more complex problems involving a layered medium under the influence of surface energy effects.

  13. Ultimate limit of field confinement by surface plasmon polaritons

    CERN Document Server

    Khurgin, Jacob B

    2014-01-01

    We show that electric field confinement in surface plasmon polaritons propagating at the metal/dielectric interfaces enhances the loss due to Landau damping and which effectively limits the degree of confinement itself. We prove that Landau damping and associated with it surface collision damping follow directly from Lindhard formula for the dielectric constant of free electron gas Furthermore, we demonstrate that even if all the conventional loss mechanisms, caused by phonons, electron-electron, and interface roughness scattering, were eliminated, the maximum attainable degree of confinement and the loss accompanying it would not change significantly compared to the best existing plasmonic materials, such as silver.

  14. On the Low Surface Magnetic Field Structure of Quark Stars

    CERN Document Server

    Nag, Nandini; Saha, Roni; Chakrabarty, Somenath

    2008-01-01

    Following some of the recent articles on hole super-conductivity and related phenomena by Hirsch \\cite{H1,H2,H3}, a simple model is proposed to explain the observed low surface magnetic field of the expected quark stars. It is argued that the diamagnetic moments of the electrons circulating in the electro-sphere induce a magnetic field, which forces the existing quark star magnetic flux density to become dilute. We have also analysed the instability of normal-superconducting interface due to excess accumulation of magnetic flux lines, assuming an extremely slow growth of superconducting phase through a first order bubble nucleation type transition.

  15. The near-surface wind field over the Antarctic continent

    Science.gov (United States)

    van Lipzig, N. P. M.; Turner, J.; Colwell, S. R.; van den Broeke, M. R.

    2004-12-01

    A 14 year integration with a regional atmospheric model has been used to determine the near-surface climatological wind field over the Antarctic ice sheet at a horizontal grid spacing of 55 km. Previous maps of the near-surface wind field were generally based on models ignoring the large-scale pressure-gradient forcing term in the momentum equation. Presently, state-of-the-art atmospheric models include all pressure-gradient forcing terms. Evaluation of our model output against in situ data shows that the model is able to represent realistically the observed increase in wind speed going from the interior to the coast, as well as the observed wind direction at South Pole and Dumont d'Urville and the bimodal wind distribution at Halley.

  16. Fault detection by surface seismic scanning tunneling macroscope: Field test

    KAUST Repository

    Hanafy, Sherif M.

    2014-08-05

    The seismic scanning tunneling macroscope (SSTM) is proposed for detecting the presence of near-surface impedance anomalies and faults. Results with synthetic data are consistent with theory in that scatterers closer to the surface provide brighter SSTM profiles than those that are deeper. The SSTM profiles show superresolution detection if the scatterers are in the near-field region of the recording line. The field data tests near Gulf of Aqaba, Haql, KSA clearly show the presence of the observable fault scarp, and identify the subsurface presence of the hidden faults indicated in the tomograms. Superresolution detection of the fault is achieved, even when the 35 Hz data are lowpass filtered to the 5-10 Hz band.

  17. All-Optical Surface Micropatterning by Electric Field Intensity Gradient

    Directory of Open Access Journals (Sweden)

    U. Gertners

    2015-01-01

    Full Text Available In this report an all-optical photo-induced formation of surface relief gratings is shown. For the surface patterning of As2S3 and As4S1.5Se4.5 films a direct holographic recording setup with a 532 nm wavelength Nd:YAG CW laser light was used. Our investigations have shown that the light-induced mass transfer process strongly depends on the material itself and on the polarization of the light. It has been shown that an electric field intensity gradient has to be obtained to achieve a direct patterning. The evolution of a surface relief in relation to recording parameters and thickness of the sample has been investigated in detail.

  18. Evolution of vortex-surface fields in transitional boundary layers

    Science.gov (United States)

    Yang, Yue; Zhao, Yaomin; Xiong, Shiying

    2016-11-01

    We apply the vortex-surface field (VSF), a Lagrangian-based structure-identification method, to the DNS database of transitional boundary layers. The VSFs are constructed from the vorticity fields within a sliding window at different times and locations using a recently developed boundary-constraint method. The isosurfaces of VSF, representing vortex surfaces consisting of vortex lines with different wall distances in the laminar stage, show different evolutionary geometries in transition. We observe that the vortex surfaces with significant deformation evolve from wall-parallel planar sheets through hairpin-like structures and packets into a turbulent spot with regeneration of small-scale hairpins. From quantitative analysis, we show that a small number of representative or influential vortex surfaces can contribute significantly to the increase of the drag coefficient in transition, which implies a reduced-order model based on VSF. This work has been supported in part by the National Natural Science Foundation of China (Grant Nos. 11472015, 11522215 and 11521091), and the Thousand Young Talents Program of China.

  19. Towards field malaria diagnosis using surface enhanced Raman spectroscopy

    Science.gov (United States)

    Chen, Keren; Xiong, Aoli; Yuen, Clement; Preiser, Peter; Liu, Quan

    2016-04-01

    We report three strategies of surface enhanced Raman spectroscopy (SERS) for β-hematin and hemozoin detection in malaria infected human blood, which can be potentially developed for field malaria diagnosis. In the first strategy, we used silver coated magnetic nanoparticles (Fe3O4@Ag) in combination with an external magnetic field to enhance the Raman signal of β-hematin. Then we developed two SERS methods without the requirement of magnetic field for malaria infection diagnosis. In Method 1, silver nanoparticles were synthesized separately and then mixed with lysed blood just like in traditional SERS measurements; while in Method 2, we developed an ultrasensitive SERS method by synthesizing silver nanoparticles directly inside the parasites of Plasmodium falciparum. Method 2 can be also used to detect single parasites in the ring stage.

  20. Between Fan Pilgrimage and Dark Tourism: Competing Agendas in Overseas Field Learning

    Science.gov (United States)

    McMorran, Chris

    2015-01-01

    An overseas field learning itinerary can be a powerful pedagogical tool for both directing student attention and complicating preexisting spatial narratives. However, one must beware of using the itinerary to replace one narrative with another. This paper examines the itinerary negotiation for a 15-day overseas field module conducted three…

  1. Between Fan Pilgrimage and Dark Tourism: Competing Agendas in Overseas Field Learning

    Science.gov (United States)

    McMorran, Chris

    2015-01-01

    An overseas field learning itinerary can be a powerful pedagogical tool for both directing student attention and complicating preexisting spatial narratives. However, one must beware of using the itinerary to replace one narrative with another. This paper examines the itinerary negotiation for a 15-day overseas field module conducted three…

  2. Generalized Topological Simplification of Scalar Fields on Surfaces.

    Science.gov (United States)

    Tierny, J; Pascucci, V

    2012-12-01

    We present a combinatorial algorithm for the general topological simplification of scalar fields on surfaces. Given a scalar field f, our algorithm generates a simplified field g that provably admits only critical points from a constrained subset of the singularities of f, while guaranteeing a small distance ||f - g||∞ for data-fitting purpose. In contrast to previous algorithms, our approach is oblivious to the strategy used for selecting features of interest and allows critical points to be removed arbitrarily. When topological persistence is used to select the features of interest, our algorithm produces a standard ϵ-simplification. Our approach is based on a new iterative algorithm for the constrained reconstruction of sub- and sur-level sets. Extensive experiments show that the number of iterations required for our algorithm to converge is rarely greater than 2 and never greater than 5, yielding O(n log(n)) practical time performances. The algorithm handles triangulated surfaces with or without boundary and is robust to the presence of multi-saddles in the input. It is simple to implement, fast in practice and more general than previous techniques. Practically, our approach allows a user to arbitrarily simplify the topology of an input function and robustly generate the corresponding simplified function. An appealing application area of our algorithm is in scalar field design since it enables, without any threshold parameter, the robust pruning of topological noise as selected by the user. This is needed for example to get rid of inaccuracies introduced by numerical solvers, thereby providing topological guarantees needed for certified geometry processing. Experiments show this ability to eliminate numerical noise as well as validate the time efficiency and accuracy of our algorithm. We provide a lightweight C++ implementation as supplemental material that can be used for topological cleaning on surface meshes.

  3. Electric field enhanced dropwise condensation on hydrophobic surfaces

    Science.gov (United States)

    Baratian, Davood; Hoek, Harmen; van den Ende, Dirk; Mugele, Frieder; Physics of Complex Fluids Team

    2016-11-01

    Dropwise condensation occurs when vapor condenses on a low surface energy surface, and the substrate is just partially wetted by the condensate. Dropwise condensation has attracted significant attention due to its reported superior heat transfer performance compared to filmwise condensation. Extensive research efforts are focused on how to promote, and enhance dropwise condensation by considering both physical and chemical factors. We have studied electrowetting-actuated condensation on hydrophobic surfaces, aiming for enhancement of heat transfer in dropwise condensation. The idea is to use suitably structured patterns of micro-electrodes that generate a heterogeneous electric field at the interface and thereby promote both the condensation itself and the shedding of condensed drops. Comforting the shedding of droplets on electrowetting-functionalized surfaces allows more condensing surface area for re-nucleation of small droplets, leading to higher condensation rates. Possible applications of this innovative concept include heat pipes for (micro) coolers in electronics as well as in more efficient heat exchangers. We acknowledge financial support by the Dutch Technology Foundation STW, which is part of the Netherlands Organization for Scientific Research (NWO), within the VICI program.

  4. All-(111) surface silicon nanowire field effect transistor devices: Effects of surface preparations

    NARCIS (Netherlands)

    Masood, Muhammad Nasir; Carlen, Edwin T.; Berg, van den Albert

    2014-01-01

    Etching/hydrogen termination of All-(111) surface silicon nanowire field effect (SiNW-FET) devices developed by conventional photolithography and plane dependent wet etchings is studied with X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and

  5. Scanning Michelson interferometer for imaging surface acoustic wave fields.

    Science.gov (United States)

    Knuuttila, J V; Tikka, P T; Salomaa, M M

    2000-05-01

    A scanning homodyne Michelson interferometer is constructed for two-dimensional imaging of high-frequency surface acoustic wave (SAW) fields in SAW devices. The interferometer possesses a sensitivity of ~10(-5)nm/ radicalHz , and it is capable of directly measuring SAW's with frequencies ranging from 0.5 MHz up to 1 GHz. The fast scheme used for locating the optimum operation point of the interferometer facilitates high measuring speeds, up to 50,000 points/h. The measured field image has a lateral resolution of better than 1 mu;m . The fully optical noninvasive scanning system can be applied to SAW device development and research, providing information on acoustic wave distribution that cannot be obtained by merely electrical measurements.

  6. Weak competing interactions control assembly of strongly bonded TCNQ ionic acceptor molecules on silver surfaces

    Science.gov (United States)

    Park, Changwon; Rojas, Geoffrey A.; Jeon, Seokmin; Kelly, Simon J.; Smith, Sean C.; Sumpter, Bobby G.; Yoon, Mina; Maksymovych, Petro

    2014-09-01

    The energy scales of interactions that control molecular adsorption and assembly on surfaces can vary by several orders of magnitude, yet the importance of each contributing interaction is not apparent a priori. Tetracyanoquinodimethane (TCNQ) is an archetypal electron acceptor molecule and it is a key component of organic metals. On metal surfaces, this molecule also acts as an electron acceptor, producing negatively charged adsorbates. It is therefore rather intriguing to observe attractive molecular interactions in this system that were reported previously for copper and silver surfaces. Our experiments compared TCNQ adsorption on noble metal surfaces of Ag(100) and Ag(111). In both cases we found net attractive interactions down to the lowest coverage. However, the morphology of the assemblies was strikingly different, with two-dimensional islands on Ag(100) and one-dimensional chains on Ag(111) surfaces. This observation suggests that the registry effect governed by the molecular interaction with the underlying lattice potential is critical in determining the dimensionality of the molecular assembly. Using first-principles density functional calculations with a van der Waals correction scheme, we revealed that the strengths of major interactions (i.e., lattice potential corrugation, intermolecular attraction, and charge-transfer-induced repulsion) are all similar in energy. The van der Waals interactions, in particular, almost double the strength of attractive interactions, making the intermolecular potential comparable in strength to the diffusion potential and promoting self-assembly. However, it is the anisotropy of local intermolecular interactions that is primarily responsible for the difference in the topology of the molecular islands on Ag(100) and Ag(111) surfaces. We anticipate that the intermolecular potential will become more attractive and dominant over the diffusion potential with increasing molecular size, providing new design strategies for the

  7. Aha Malawi! Envisioning Field Experiences That Nurture Cultural Competencies for Preservice Teachers

    Science.gov (United States)

    Talbot, Patricia A.

    2011-01-01

    This theoretical study uses the context of the writer's personal encounters in Malawi, Africa, to propose a conceptual model for creating diverse field experiences based on best practices in critical pedagogy, service learning, and the underpinnings of transformational learning theory, for the purpose of increasing the probability of meaningful…

  8. Field Heat Treatment Technician: Competency Profile. Apprenticeship and Industry Training. 20908.1

    Science.gov (United States)

    Alberta Advanced Education and Technology, 2008

    2008-01-01

    The graduate of the Field Heat Treatment Technician apprenticeship program is a certified journeyperson who will be able: (1) use heat treatment equipment to apply heat to materials in order to change a material's properties; (2) Use their knowledge of the properties of heat, industry codes and specifications to determine how heat treatment will…

  9. Managerial Competences in the Field of University Curriculum for Virtual Learning Communities

    OpenAIRE

    Claudiu Marian BUNĂIAŞU; Ștefan VLĂDUŢESCU; Alexandru Constantin STRUNGĂ

    2014-01-01

    Virtual communities are learning environments that facilitate effective learning, in attractive and flexible ways, facilitated by information and communication technologies. If in traditional instruction, teacher training is focused on developing scientific and didactic skills, in the digital curriculum the emphasis is on managerial skills of facilitating learning and networking within virtual communities. Analysis of managerial skills in the field of digital curriculum involves multidimensio...

  10. Collective and convective effects compete in patterns of dissolving surface droplets

    NARCIS (Netherlands)

    Laghezaa, G.; Dietrich, E.; Yeomans, J.M.; Ledesma-Aguilar, R.A.; Kooij, Ernst S.; Zandvliet, Henricus J.W.; Lohse, Detlef

    2016-01-01

    The effects of neighboring droplets on the dissolution of a sessile droplet, i.e. collective effects, are investigated both experimentally and numerically. On the experimental side small approximately 20 nL mono-disperse surface droplets arranged in an ordered pattern were dissolved and their size

  11. Collective and convective effects compete in patterns of dissolving surface droplets

    NARCIS (Netherlands)

    Laghezaa, G.; Dietrich, E.; Yeomans, J.M.; Ledesma-Aguilar, R.A.; Kooij, E.S.; Zandvliet, H.J.W.; Lohse, D.

    2016-01-01

    The effects of neighboring droplets on the dissolution of a sessile droplet, i.e. collective effects, are investigated both experimentally and numerically. On the experimental side small approximately 20 nL mono-disperse surface droplets arranged in an ordered pattern were dissolved and their size e

  12. Cyclic Evolution of Coronal Fields from a Coupled Dynamo Potential-Field Source-Surface Model.

    Science.gov (United States)

    Dikpati, Mausumi; Suresh, Akshaya; Burkepile, Joan

    The structure of the Sun's corona varies with the solar-cycle phase, from a near spherical symmetry at solar maximum to an axial dipole at solar minimum. It is widely accepted that the large-scale coronal structure is governed by magnetic fields that are most likely generated by dynamo action in the solar interior. In order to understand the variation in coronal structure, we couple a potential-field source-surface model with a cyclic dynamo model. In this coupled model, the magnetic field inside the convection zone is governed by the dynamo equation; these dynamo-generated fields are extended from the photosphere to the corona using a potential-field source-surface model. Assuming axisymmetry, we take linear combinations of associated Legendre polynomials that match the more complex coronal structures. Choosing images of the global corona from the Mauna Loa Solar Observatory at each Carrington rotation over half a cycle (1986 - 1991), we compute the coefficients of the associated Legendre polynomials up to degree eight and compare with observations. We show that at minimum the dipole term dominates, but it fades as the cycle progresses; higher-order multipolar terms begin to dominate. The amplitudes of these terms are not exactly the same for the two limbs, indicating that there is a longitude dependence. While both the 1986 and the 1996 minimum coronas were dipolar, the minimum in 2008 was unusual, since there was a substantial departure from a dipole. We investigate the physical cause of this departure by including a North-South asymmetry in the surface source of the magnetic fields in our flux-transport dynamo model, and find that this asymmetry could be one of the reasons for departure from the dipole in the 2008 minimum.

  13. Controlling magnetism on metal surfaces with non-magnetic means: electric fields and surface charging.

    Science.gov (United States)

    Brovko, Oleg O; Ruiz-Díaz, Pedro; Dasa, Tamene R; Stepanyuk, Valeri S

    2014-03-01

    We review the state of the art of surface magnetic property control with non-magnetic means, concentrating on metallic surfaces and techniques such as charge-doping or external electric field (EEF) application. Magneto-electric coupling via EEF-based charge manipulation is discussed as a way to tailor single adatom spins, exchange interaction between adsorbates or anisotropies of layered systems. The mechanisms of paramagnetic and spin-dependent electric field screening and the effect thereof on surface magnetism are discussed in the framework of theoretical and experimental studies. The possibility to enhance the effect of EEF by immersing the target system into an electrolyte or ionic liquid is discussed by the example of substitutional impurities and metallic alloy multilayers. A similar physics is pointed out for the case of charge traps, metallic systems decoupled from a bulk electron bath. In that case the charging provides the charge carrier density changes necessary to affect the magnetic moments and anisotropies in the system. Finally, the option of using quasi-free electrons rather than localized atomic spins for surface magnetism control is discussed with the example of Shockley-type metallic surface states confined to magnetic nanoislands.

  14. Field dependent surface resistance of niobium on copper cavities

    Directory of Open Access Journals (Sweden)

    T. Junginger

    2015-07-01

    Full Text Available The surface resistance R_{S} of superconducting cavities prepared by sputter coating a niobium film on a copper substrate increases significantly stronger with the applied rf field compared to cavities of bulk material. A possible cause is that the thermal boundary resistance between the copper substrate and the niobium film induces heating of the inner cavity wall, resulting in a higher R_{S}. Introducing helium gas in the cavity, and measuring its pressure as a function of applied field allowed to conclude that the inner surface of the cavity is heated up by less than 120 mK when R_{S} increases with E_{acc} by 100  nΩ. This is more than one order of magnitude less than what one would expect from global heating. Additionally, the effects of cooldown speed and low temperature baking have been investigated in the framework of these experiments. It is shown that for the current state of the art niobium on copper cavities there is only a detrimental effect of low temperature baking. A fast cooldown results in a lowered R_{S}.

  15. A Mean-Field Theory for Coarsening Faceted Surfaces

    CERN Document Server

    Norris, Scott A

    2009-01-01

    A mean-field theory is developed for the scale-invariant length distributions observed during the coarsening of one-dimensional faceted surfaces. This theory closely follows the Lifshitz-Slyozov-Wagner theory of Ostwald ripening in two-phase systems [1-3], but the mechanism of coarsening in faceted surfaces requires the addition of convolution terms recalling the work of Smoluchowski [4] and Schumann [5] on coalescence. The model is solved by the exponential distribution, but agreement with experiment is limited by the assumption that neighboring facet lengths are uncorrelated. However, the method concisely describes the essential processes operating in the scaling state, illuminates a clear path for future refinement, and offers a framework for the investigation of faceted surfaces evolving under arbitrary dynamics. [1] I. Lifshitz, V. Slezov, Soviet Physics JETP 38 (1959) 331-339. [2] I. Lifshitz, V. Slyozov, J. Phys. Chem. Solids 19 (1961) 35-50. [3] C. Wagner, Elektrochemie 65 (1961) 581-591. [4] M. von S...

  16. Gravitational spectra from direct measurements. [of surface field

    Science.gov (United States)

    Wagner, C. A.; Colombo, O. L.

    1979-01-01

    A simple rapid method is described for determining the spectrum of a surface field (in spherical harmonics) from harmonic analysis of direct (in situ) measurements along great circle arcs. The method is shown to give excellent overall trends (smoothed spectra) to very high degree from even a few short arcs of satellite data. Three examples are taken with perfect measurements of satellite tracking over a planet made up of hundreds of point masses using (1) altimetric heights from a low-orbiting spacecraft, (2) velocity (range rate) residuals between a low and a high satellite in circular orbits, and (3) range rate data between a station at infinity and a satellite in a highly eccentric orbit. In particular, the smoothed spectrum of the earth's gravitational field is determined to about degree 400(50-km half wavelength) from 1 x 1 deg gravimetry and the equivalent of 11 revolutions of GEOS 3 and Skylab altimetry. This measurement shows that there is about 46 cm of geoid height (rms worldwide) remaining in the field beyond degree 180.

  17. Ginzburg-Landau-type multiphase field model for competing fcc and bcc nucleation.

    Science.gov (United States)

    Tóth, G I; Morris, J R; Gránásy, L

    2011-01-28

    We address crystal nucleation and fcc-bcc phase selection in alloys using a multiphase field model that relies on Ginzburg-Landau free energies of the liquid-fcc, liquid-bcc, and fcc-bcc subsystems, and determine the properties of the nuclei as a function of composition, temperature, and structure. With a realistic choice for the free energy of the fcc-bcc interface, the model predicts well the fcc-bcc phase-selection boundary in the Fe-Ni system.

  18. Imaging near-surface heterogeneities by natural migration of backscattered surface waves: Field data test

    KAUST Repository

    Liu, Zhaolun

    2017-03-06

    We have developed a methodology for detecting the presence of near-surface heterogeneities by naturally migrating backscattered surface waves in controlled-source data. The near-surface heterogeneities must be located within a depth of approximately one-third the dominant wavelength λ of the strong surface-wave arrivals. This natural migration method does not require knowledge of the near-surface phase-velocity distribution because it uses the recorded data to approximate the Green’s functions for migration. Prior to migration, the backscattered data are separated from the original records, and the band-passed filtered data are migrated to give an estimate of the migration image at a depth of approximately one-third λ. Each band-passed data set gives a migration image at a different depth. Results with synthetic data and field data recorded over known faults validate the effectiveness of this method. Migrating the surface waves in recorded 2D and 3D data sets accurately reveals the locations of known faults. The limitation of this method is that it requires a dense array of receivers with a geophone interval less than approximately one-half λ.

  19. Diffusion of hydrogen interstitials in the near-surface region of Pd(111) under the influence of surface coverage and external static electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Rey, M. [Departamento de Física de Materiales, Facultad de Químicas UPV/EHU, Apartado 1072, 20018 Donostia-San Sebastián (Spain); Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Tremblay, J. C. [Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin (Germany)

    2015-04-21

    Past scanning tunneling microscopy (STM) experiments of H manipulation on Pd(111), at low temperature, have shown that it is possible to induce diffusion of surface species as well as of those deeply buried under the surface. Several questions remain open regarding the role of subsurface site occupancies. In the present work, the interaction potential of H atoms with Pd(111) under various H coverage conditions is determined by means of density functional theory calculations in order to provide an answer to two of these questions: (i) whether subsurface sites are the final locations for the H impurities that attempt to emerge from bulk regions, and (ii) whether penetration of the surface is a competing route of on-surface diffusion during depletion of surface H on densely covered Pd(111). We find that a high H coverage has the effect of blocking resurfacing of H atoms travelling from below, which would otherwise reach the surface fcc sites, but it hardly alters deeper diffusion energy barriers. Penetration is unlikely and restricted to high occupancies of hcp hollows. In agreement with experiments, the Pd lattice expands vertically as a consequence of H atoms being blocked at subsurface sites, and surface H enhances this expansion. STM tip effects are included in the calculations self-consistently as an external static electric field. The main contribution to the induced surface electric dipoles originates from the Pd substrate polarisability. We find that the electric field has a non-negligible effect on the H-Pd potential in the vicinity of the topmost Pd atomic layer, yet typical STM intensities of 1-2 VÅ{sup −1} are insufficient to invert the stabilities of the surface and subsurface equilibrium sites.

  20. Atomistic modeling of metal surfaces under electric fields: direct coupling of electric fields to a molecular dynamics algorithm

    CERN Document Server

    Djurabekova, Flyura; Pohjonen, Aarne; Nordlund, Kai

    2011-01-01

    The effect of electric fields on metal surfaces is fairly well studied, resulting in numerous analytical models developed to understand the mechanisms of ionization of surface atoms observed at very high electric fields, as well as the general behavior of a metal surface in this condition. However, the derivation of analytical models does not include explicitly the structural properties of metals, missing the link between the instantaneous effects owing to the applied field and the consequent response observed in the metal surface as a result of an extended application of an electric field. In the present work, we have developed a concurrent electrodynamic–molecular dynamic model for the dynamical simulation of an electric-field effect and subsequent modification of a metal surface in the framework of an atomistic molecular dynamics (MD) approach. The partial charge induced on the surface atoms by the electric field is assessed by applying the classical Gauss law. The electric forces acting on the partially...

  1. Enhanced Field Emission Studies on Niobium Surfaces Relevant to High Field Superconducting Radio-Frequency Devices

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tong [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2002-09-18

    Enhanced field emission (EFE) presents the main impediment to higher acceleration gradients in superconducting niobium (Nb) radiofrequency cavities for particle accelerators. The strength, number and sources of EFE sites strongly depend on surface preparation and handling. The main objective of this thesis project is to systematically investigate the sources of EFE from Nb, to evaluate the best available surface preparation techniques with respect to resulting field emission, and to establish an optimized process to minimize or eliminate EFE. To achieve these goals, a scanning field emission microscope (SFEM) was designed and built as an extension to an existing commercial scanning electron microscope (SEM). In the SFEM chamber of ultra high vacuum, a sample is moved laterally in a raster pattern under a high voltage anode tip for EFE detection and localization. The sample is then transferred under vacuum to the SEM chamber equipped with an energy-dispersive x-ray spectrometer for individual emitting site characterization. Compared to other systems built for similar purposes, this apparatus has low cost and maintenance, high operational flexibility, considerably bigger scan area, as well as reliable performance. EFE sources from planar Nb have been studied after various surface preparation, including chemical etching and electropolishing, combined with ultrasonic or high-pressure water rinse. Emitters have been identified, analyzed and the preparation process has been examined and improved based on EFE results. As a result, field-emission-free or near field-emission-free surfaces at ~140 MV/m have been consistently achieved with the above techniques. Characterization on the remaining emitters leads to the conclusion that no evidence of intrinsic emitters, i.e., no fundamental electric field limit induced by EFE, has been observed up to ~140 MV/m. Chemically etched and electropolished Nb are compared and no significant difference is observed up to ~140 MV/m. To

  2. Field investigation to assess nutrient emission from paddy field to surface water in river catchment

    Science.gov (United States)

    Kogure, Kanami; Aichi, Masaatsu; Zessner, Matthias

    2015-04-01

    In order to maintain good river environment, it is remarkably important to understand and to control nutrient behavior such as Nitrogen and Phosphorus. Our former research dealing with nutrient emission analysis in the Tone River basin area in Japan, in addition to urban and industrial waste water, nutrient emission from agricultural activity is dominant pollution source into the river system. Japanese style agriculture produces large amount of rice and paddy field occupies large areas in Japanese river basin areas. While paddy field can deteriorate river water quality by outflow of fertilizer, it is also suggested that paddy field has water purification function. As we carried out investigation in the Tone River Basin area, data were obtained which dissolved nitrogen concentration is lower in discharging water from paddy field than inflowing water into the field. Regarding to nutrient emission impact from paddy field, sufficient data are required to discuss quantitatively seasonal change of material behavior including flooding season and dry season, difference of climate condition, soil type, and rice species, to evaluate year round comprehensive impact from paddy field to the river system. In this research, field survey in paddy field and data collection relating rice production were carried out as a preliminary investigation to assess how Japanese style paddy field contributes year round on surface water quality. Study sites are three paddy fields located in upper reach of the Tone River basin area. The fields are flooded from June to September. In 2014, field investigations were carried out three times in flooding period and twice in dry period. To understand characteristics of each paddy field and seasonal tendency accompanying weather of agricultural event, short term investigations were conducted and we prepare for further long term investigation. Each study site has irrigation water inflow and outflow. Two sites have tile drainage system under the field and

  3. Simulation and Optimization of Silicon Solar Cell Back Surface Field

    Directory of Open Access Journals (Sweden)

    Souad TOBBECHE

    2015-11-01

    Full Text Available In this paper, TCAD Silvaco (Technology Computer Aided Design software has been used to study the Back Surface Field (BSF effect of a p+ silicon layer for a n+pp+ silicon solar cell. To study this effect, the J-V characteristics and the external quantum efficiency (EQE are simulated under AM 1.5 illumination for two types of cells. The first solar cell is without BSF (n+p structure while the second one is with BSF (n+pp+ structure. The creation of the BSF on the rear face of the cell results in efficiency h of up to 16.06% with a short-circuit current density Jsc = 30.54 mA/cm2, an open-circuit voltage Voc = 0.631 V, a fill factor FF = 0.832 and a clear improvement of the spectral response obtained in the long wavelengths range. An electric field and a barrier of potential are created by the BSF and located at the junction p+/p with a maximum of 5800 V/cm and 0.15 V, respectively. The optimization of the BSF layer shows that the cell performance improves with the p+ thickness between 0.35 – 0.39 µm, the p+ doping dose is about 2 × 1014 cm-2, the maximum efficiency up to 16.19 %. The cell efficiency is more sensitive to the value of the back surface recombination velocity above a value of 103 cm/s in n+p than n+pp+ solar cell.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9565

  4. Antiferromagnetic Ising spin glass competing with BCS pairing interaction in a transverse field

    Science.gov (United States)

    Magalhães, S. G.; Zimmer, F. M.; Kipper, C. J.; Calegari, E. J.

    2006-07-01

    The competition among spin glass (SG), antiferromagnetism (AF) and local pairing superconductivity (PAIR) is studied in a two-sublattice fermionic Ising spin glass model with a local BCS pairing interaction in the presence of an applied magnetic transverse field Γ. In the present approach, spins in different sublattices interact with a Gaussian random coupling with an antiferromagnetic mean J0 and standard deviation J. The problem is formulated in the path integral formalism in which spin operators are represented by bilinear combinations of Grassmann variables. The saddle-point Grand Canonical potential is obtained within the static approximation and the replica symmetric ansatz. The results are analysed in phase diagrams in which the AF and the SG phases can occur for small g (g is the strength of the local superconductor coupling written in units of J), while the PAIR phase appears as unique solution for large g. However, there is a complex line transition separating the PAIR phase from the others. It is second order at high temperature that ends in a tricritical point. The quantum fluctuations affect deeply the transition lines and the tricritical point due to the presence of Γ.

  5. Evaluation of the level of the competence development in the field of disease prevention and healthy lifestyle among medical students

    OpenAIRE

    N. V. Sivas

    2014-01-01

    The principles of competent approach in the teaching of the medical university students in the disease prevention and healthy lifestyle are given in the article. For the formation of competence in the disease prevention and healthy lifestyles the pedagogical integral technology is used, developed by integrating content and disciplines of the medical education and Physical Culture. Further formation of competences in the preventive medicine and healthy lifestyle is being accomplished through t...

  6. Surface mapping of field-induced piezoelectric strain at elevated temperature employing full-field interferometry.

    Science.gov (United States)

    Stevenson, Tim; Quast, Tatjana; Bartl, Guido; Schmitz-Kempen, Thorsten; Weaver, Paul M

    2015-01-01

    Piezoelectric actuators and sensors are widely used for flow control valves, including diesel injectors, ultrasound generation, optical positioning, printing, pumps, and locks. Degradation and failure of material and electrical properties at high temperature typically limits these applications to operating temperatures below 200°C, based on the ubiquitous Pb(Zr,Ti)O3 ceramic. There are, however, many applications in sectors such as automotive, aerospace, energy and process control, and oil and gas, where the ability to operate at higher temperatures would open up new markets for piezoelectric actuation. Presented here is a review of recent progress and initial results toward a European effort to develop measurement techniques to characterize high-temperature materials. Full-field, multi-wavelength absolute length interferometry has, for the first time, been used to map the electric-field-induced piezoelectric strain across the surface of a PZT ceramic. The recorded variation as a function of temperature has been evaluated against a newly developed commercial single-beam system. Conventional interferometry allows measurement of the converse piezoelectric effect with high precision and resolution, but is often limited to a single point, average measurement and to limited sample environments because of optical aberrations in varying atmospheres. Here, the full-field technique allows the entire surface to be analyzed for strain and, in a bespoke sample chamber, for elevated temperatures.

  7. White Privilege and Multicultural Counseling Competence: The Influence of Field of Study, Sex, and Racial/Ethnic Exposure

    Science.gov (United States)

    Mindrup, Robert M.; Spray, Beverly J.; Lamberghini-West, Alicia

    2011-01-01

    This study explores the association between white privilege attitudes and multicultural counseling competencies among white European-American graduate students (N = 298) in clinical psychology and social work. Results revealed a significant positive association between white privilege attitudes and multicultural counseling competencies. Social…

  8. The problems of determining the competence of the subjects of the Russian Federation in the field of family protection

    Directory of Open Access Journals (Sweden)

    Svetlana Narutto

    2017-01-01

    the list of powers of authorities of subjects of the Russian Federation including those provided by protection and family support. The main problem of realization of the competence of subjects of the Russian Federation in the field of protection of the family the author is seen in the shortcomings of their legal definition, in securing for the subjects of authority without adequate financial support.

  9. Soil type dependent rhizosphere competence and biocontrol of two bacterial inoculant strains and their effects on the rhizosphere microbial community of field-grown lettuce.

    Directory of Open Access Journals (Sweden)

    Susanne Schreiter

    Full Text Available Rhizosphere competence of bacterial inoculants is assumed to be important for successful biocontrol. Knowledge of factors influencing rhizosphere competence under field conditions is largely lacking. The present study is aimed to unravel the effects of soil types on the rhizosphere competence and biocontrol activity of the two inoculant strains Pseudomonas jessenii RU47 and Serratia plymuthica 3Re4-18 in field-grown lettuce in soils inoculated with Rhizoctonia solani AG1-IB or not. Two independent experiments were carried out in 2011 on an experimental plot system with three soil types sharing the same cropping history and weather conditions for more than 10 years. Rifampicin resistant mutants of the inoculants were used to evaluate their colonization in the rhizosphere of lettuce. The rhizosphere bacterial community structure was analyzed by denaturing gradient gel electrophoresis of 16S rRNA gene fragments amplified from total community DNA to get insights into the effects of the inoculants and R. solani on the indigenous rhizosphere bacterial communities. Both inoculants showed a good colonization ability of the rhizosphere of lettuce with more than 10(6 colony forming units per g root dry mass two weeks after planting. An effect of the soil type on rhizosphere competence was observed for 3Re4-18 but not for RU47. In both experiments a comparable rhizosphere competence was observed and in the presence of the inoculants disease symptoms were either significantly reduced, or at least a non-significant trend was shown. Disease severity was highest in diluvial sand followed by alluvial loam and loess loam suggesting that the soil types differed in their conduciveness for bottom rot disease. Compared to effect of the soil type of the rhizosphere bacterial communities, the effects of the pathogen and the inoculants were less pronounced. The soil types had a surprisingly low influence on rhizosphere competence and biocontrol activity while they

  10. Occupational therapy students’ perspectives on the core competencies of graduates to practise in the field of neurology

    Directory of Open Access Journals (Sweden)

    L Jacobs-Nzuzi Khuabi

    2017-03-01

    Full Text Available Background. The South African (SA health system is characterised by limited resources, high bed turnover rates and a high therapist-to-patient ratio. Patients with neurological dysfunction form a large majority of the caseload of occupational therapists. Feedback from stakeholders alluded to some discrepancies between the content taught in the Stellenbosch University undergraduate curriculum and what is expected within the clinical setting. This raises questions regarding the relevance and applicability of what undergraduate occupational therapists are taught, given the nature and demands of the SA public health system. Objective. To explore the perspectives of final-year occupational therapy students with regard to the core competencies required for optimal preparation of students for practice in the field of neurology. Methods. This explorative study used three focus groups to obtain the perspectives of 18 final-year students who had experienced clinical placements in neurology. Information from the focus groups was transcribed and analysed thematically to determine the findings. Results. Analysis of the data revealed four themes, i.e. core knowledge and skills; attitude; resource and time constraints in clinical areas; and factors influencing optimal learning experiences. Conclusion. The curriculum should prepare students to be well equipped for the current climate of the profession. While the current neurology curriculum may be viewed as having some positive features, there are some aspects that need to be updated and revised. Key considerations to optimise learning include a more regular interface between clinical areas and the university, scheduling of teaching blocks, and applying relevant teaching methods.

  11. Stability of skyrmions on curved surfaces in the presence of a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho-Santos, V.L., E-mail: vagson.carvalho@usach.cl [Instituto Federal de Educação, Ciência e Tecnologia Baiano - Campus Senhor do Bonfim, Km 04 Estrada da Igara, 48970-000 Senhor do Bonfim, Bahia (Brazil); Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Elias, R.G.; Altbir, D. [Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Fonseca, J.M. [Universidade Federal de Viçosa, Departamento de Física, Avenida Peter Henry Rolfs s/n, 36570-000 Viçosa, MG (Brazil)

    2015-10-01

    We study the stability and energetics associated to skyrmions appearing as excitations on curved surfaces. Using a continuum model we show that the presence of cylindrically radial and azimuthal fields destabilize the skyrmions that appear in the absence of an external field. Weak fields generate fractional skyrmions while strong magnetic fields yield stable 2π-skyrmions, which have their widths diminished by the magnetic field strength. Under azimuthal fields vortex appears as stable state on the curved surface. - Highlights: • Stability of skyrmions on curved surfaces in the presence of a magnetic field. • Weak fields can destabilize skyrmions. • Strong magnetic fields yield the appearing of 2π-skyrmions. • The width of skyrmions is determined by the curvature and magnetic field strength. • Under azimuthal fields vortex appears as stable states.

  12. Delta self-consistent field method to obtain potential energy surfaces of excited molecules on surfaces

    DEFF Research Database (Denmark)

    Gavnholt, Jeppe; Olsen, Thomas; Engelund, Mads;

    2008-01-01

    We present a modification of the Delta self-consistent field (Delta SCF) method of calculating energies of excited states in order to make it applicable to resonance calculations of molecules adsorbed on metal surfaces, where the molecular orbitals are highly hybridized. The Delta SCF approximation...... is a density-functional method closely resembling standard density-functional theory (DFT), the only difference being that in Delta SCF one or more electrons are placed in higher lying Kohn-Sham orbitals instead of placing all electrons in the lowest possible orbitals as one does when calculating the ground......-state energy within standard DFT. We extend the Delta SCF method by allowing excited electrons to occupy orbitals which are linear combinations of Kohn-Sham orbitals. With this extra freedom it is possible to place charge locally on adsorbed molecules in the calculations, such that resonance energies can...

  13. Surface plasmon transmission through discontinuous conducting surfaces: Plasmon amplitude modulation by grazing scattered fields

    Directory of Open Access Journals (Sweden)

    L. A. Mayoral-Astorga

    2016-04-01

    Full Text Available We have studied numerically the diffraction of a surface plasmon polariton (SPP when it encounters a wide multi-wavelength slit in conducting films. As a jump process a SPP is excited beyond the slit by wave scattering at the second slit edge. The exciting radiation is produced when the incident SPP collapses at the first slit edge. We have found that the transmitted SPP supports inherent and unavoidable interference with grazing scattered radiation; the spatial modulation extends to the fields in the diffraction region where a series of low intensity spots arises. We demonstrate that the SPP generated on the second slab depends on the frequency but not on the wave vector of the collapsed SPP; a SPP is transmitted even when the two metals forming the slit are different. The numerical results were obtained using the Finite Difference Time Domain (FDTD method with a grid size λ/100.

  14. Surface plasmon transmission through discontinuous conducting surfaces: Plasmon amplitude modulation by grazing scattered fields

    Energy Technology Data Exchange (ETDEWEB)

    Mayoral-Astorga, L. A.; Gaspar-Armenta, J. A.; Ramos-Mendieta, F. [Departamento de Investigación en Física, Universidad de Sonora, Apartado Postal 5-088, Hermosillo, Sonora, 83190 México (Mexico)

    2016-04-15

    We have studied numerically the diffraction of a surface plasmon polariton (SPP) when it encounters a wide multi-wavelength slit in conducting films. As a jump process a SPP is excited beyond the slit by wave scattering at the second slit edge. The exciting radiation is produced when the incident SPP collapses at the first slit edge. We have found that the transmitted SPP supports inherent and unavoidable interference with grazing scattered radiation; the spatial modulation extends to the fields in the diffraction region where a series of low intensity spots arises. We demonstrate that the SPP generated on the second slab depends on the frequency but not on the wave vector of the collapsed SPP; a SPP is transmitted even when the two metals forming the slit are different. The numerical results were obtained using the Finite Difference Time Domain (FDTD) method with a grid size λ/100.

  15. Optimizing Sustainable Integrated Use of Groundwater, Surface Water and Reclaimed Water for the Competing Demands of Agricultural Net Return and Urban Population

    OpenAIRE

    Landa, Silvia Anastasia

    2016-01-01

    Rapid population growth increases the competing water demand for agriculture and municipalities. This situation urges the necessity of using integrated water management to increase water supply and find possible symbiotic urban-agriculture relationships. Many studies have been done to simulate the integrated use of surface water, groundwater and reclaimed water for different water users. However, few studies use simulation/optimization (S-O) models for water resources to explicitly represent ...

  16. Electric field cancellation on quartz: a Rb adsorbate induced negative electron affinity surface

    CERN Document Server

    Sedlacek, J A; Rittenhouse, S T; Weck, P F; Sadeghpour, H R; Shaffer, J P

    2015-01-01

    We investigate the (0001) surface of single crystal quartz with a submonolayer of Rb adsorbates. Using Rydberg atom electromagnetically induced transparency, we investigate the electric fields resulting from Rb adsorbed on the quartz surface, and measure the activation energy of the Rb adsorbates. We show that the adsorbed Rb induces a negative electron affinity (NEA) on the quartz surface. The NEA surface allows low energy electrons to bind to the surface and cancel the electric field from the Rb adsorbates. Our results are important for integrating Rydberg atoms into hybrid quantum systems and the fundamental study of atom-surface interactions, as well as applications for electrons bound to a 2D surface.

  17. Photodetachment of H- in a Static Electric Field near a Surface

    Institute of Scientific and Technical Information of China (English)

    YANG Guang-Can; LIU Yong; CHI Xian-Xing

    2005-01-01

    @@ The photodetachment of H- in a static electric field near a surface is investigated based on the closed orbit theory. It is found the distance between the ion and the surface modulates the cross section of photodetachment.For an elastic surface perpendicular to electric field, the detachment spectrum displays a staircase structure, in contrast with the smooth oscillation when only the electric field exists.

  18. Destruction of Invariant Surfaces and Magnetic Coordinates for Perturbed Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    S.R. Hudson

    2003-11-20

    Straight-field-line coordinates are constructed for nearly integrable magnetic fields. The coordinates are based on the robust, noble-irrational rotational-transform surfaces, whose existence is determined by an application of Greene's residue criterion. A simple method to locate these surfaces is described. Sequences of surfaces with rotational-transform converging to low order rationals maximize the region of straight-field-line coordinates.

  19. Evaluation of the level of the competence development in the field of disease prevention and healthy lifestyle among medical students

    Directory of Open Access Journals (Sweden)

    N. V. Sivas

    2014-01-01

    Full Text Available The principles of competent approach in the teaching of the medical university students in the disease prevention and healthy lifestyle are given in the article. For the formation of competence in the disease prevention and healthy lifestyles the pedagogical integral technology is used, developed by integrating content and disciplines of the medical education and Physical Culture. Further formation of competences in the preventive medicine and healthy lifestyle is being accomplished through the project method of teaching based on active projects. Advantages of the assessment of the competence of the medical university students in disease prevention and healthy lifestyle in the form of an authentic representational portfolio are given in the article. Modern assessment activity in education is focused on personal achievements of students, which may be reflected in different versions of portfolio. Authentic assessment is the most convenient and reliable in the case of the competence assessment, since it focuses primarily on the practical results of activity takes into account and promotes initiative, personal potential of the student, provides an opportunity to see the results and to obtain an assessment of achievements, allows not only to generate individual educational trajectory, but also to monitor the level of development of the educational content. The article reveals the content of the authentic representational portfolio and provides recommendations on its design and evaluation.

  20. The effect of bulk and surface fields on correlations in the semi-infinite ferromagnet

    Science.gov (United States)

    Korneta, W.; Pytel, Z.

    1990-05-01

    The three-dimensional semi-infinite Ising-like ferromagnet, in which surface and bulk interactions may be different, is considered. The bulk and surface external magnetic fields are applied parallel to the magnetization. The response of a spin to small additional uniform magnetic field and the responses of a spin to small additional uniform magnetic fields applied in different planes parallel to the surface are studied. The analytical formulae for susceptibilities describing these responses are obtained. The Landau continuum theory is used. The effect of the surface field on the susceptibilities at temperatures below and close to the ordinary phase transition temperature is discussed.

  1. Stainless steel surface wettability control via laser ablation in external electric field

    Science.gov (United States)

    Serkov, A. A.; Shafeev, G. A.; Barmina, E. V.; Loufardaki, A.; Stratakis, E.

    2016-12-01

    Laser ablation of stainless steel in external electric field (up to 10 kV/cm) is experimentally studied. The dependencies of both morphology and chemical properties of surface structures on laser parameters and electric field strength are investigated. Surface wettability properties of the laser-treated samples are considered by means of contact angle measurement. It is shown that under certain conditions laser irradiation in external electric field can render the surface superhydrophobic. Influence of electric field on the laser surface treatment is discussed on basis of its impact on melt solidification and oxidation processes.

  2. Near-field investigation of surface plasmon polaritons

    NARCIS (Netherlands)

    Jose, Jincy

    2010-01-01

    The interaction of light with metals contains a resonant phenomenon called the Surface Plasmon Resonance (SPR), at which the free electrons in the metal collectively oscillate. This collective oscillation of the free electrons, called Surface Plasmon Polaritons (SPPs), is highly sensitive to the med

  3. What Core Competencies Are Related to Teachers' Innovative Teaching?

    Science.gov (United States)

    Zhu, Chang; Wang, Di; Cai, Yonghong; Engels, Nadine

    2013-01-01

    The purpose of this study is to investigate teachers' core competencies in relation to their innovative teaching performance. Based on the literature and previous studies in this field, four competencies (learning competency, educational competency, social competency and technological competency) are theorised as core competencies for teachers'…

  4. What Core Competencies Are Related to Teachers' Innovative Teaching?

    Science.gov (United States)

    Zhu, Chang; Wang, Di; Cai, Yonghong; Engels, Nadine

    2013-01-01

    The purpose of this study is to investigate teachers' core competencies in relation to their innovative teaching performance. Based on the literature and previous studies in this field, four competencies (learning competency, educational competency, social competency and technological competency) are theorised as core competencies for teachers'…

  5. Stellar dynamo models with prominent surface toroidal fields

    CERN Document Server

    Bonanno, Alfio

    2016-01-01

    Recent spectro-polarimetric observations of solar-type stars have shown the presence of photospheric magnetic fields with a predominant toroidal component. If the external field is assumed to be current-free it is impossible to explain these observations within the framework of standard mean-field dynamo theory. In this work it will be shown that if the coronal field of these stars is assumed to be harmonic, the underlying stellar dynamo mechanism can support photospheric magnetic fields with a prominent toroidal component even in the presence of axisymmetric magnetic topologies. In particular it is argued that the observed increase in the toroidal energy in low mass fast rotating stars can be naturally explained with an underlying $\\alpha\\Omega$ mechanism.

  6. Stellar Dynamo Models with Prominent Surface Toroidal Fields

    Science.gov (United States)

    Bonanno, Alfio

    2016-12-01

    Recent spectro-polarimetric observations of solar-type stars have shown the presence of photospheric magnetic fields with a predominant toroidal component. If the external field is assumed to be current-free it is impossible to explain these observations within the framework of standard mean-field dynamo theory. In this work, it will be shown that if the coronal field of these stars is assumed to be harmonic, the underlying stellar dynamo mechanism can support photospheric magnetic fields with a prominent toroidal component even in the presence of axisymmetric magnetic topologies. In particular, it is argued that the observed increase in the toroidal energy in low-mass fast-rotating stars can be naturally explained with an underlying αΩ mechanism.

  7. Photodetachment of negative ion in a gradient electric field near a metal surface

    Institute of Scientific and Technical Information of China (English)

    Liu Tian-Qi; Wang De-Hun; Han Cai; Liu Jiang; Liang Dong-Qi; Xie Si-Cheng

    2012-01-01

    Based on closed-orbit theory,the photodetachment of Hˉ in a gradient electric field near a metal surface is studied.It is demonstrated that the gradient electric field has a significant influence on the photodetachment of negative ions near a metal surface.With the increase of the gradient of the electric field,the oscillation in the photodetachment cross section becomes strengthened.Besides,in contrast to the photodetachment of Hˉ near a metal surface in a uniform electric field,the oscillating amplitude and the oscillating region in the cross section of a gradient electric field also become enlarged.Therefore,we can use the gradient electric field to control the photodetachment of negative ions near a metal surface.We hope that our results will be useful for understanding the photodetachment of negative ions in the vicinity of surfaces,cavities,and ion traps.

  8. Measurement of diffusion length and surface recombination velocity in Interdigitated Back Contact (IBC) and Front Surface Field (FSF) solar cells

    Science.gov (United States)

    Verlinden, Pierre; Van de Wiele, Fernand

    1985-03-01

    A method is proposed for measuring the diffusion length and surface recombination velocity of Interdigitated Back Contact (IBC) solar cells by means of a simple linear regression on experimental quantum efficiency values versus the inverse of the absorption coefficient. This method is extended to the case of Front Surface Field (FSF) solar cells. Under certain conditions, the real or the effective surface recombination velocity may be measured.

  9. Effective field theories for superconducting systems with multiple Fermi surfaces

    Science.gov (United States)

    Braga, P. R.; Granado, D. R.; Guimaraes, M. S.; Wotzasek, C.

    2016-11-01

    In this work we investigate the description of superconducting systems with multiple Fermi surfaces. For the case of one Fermi surface we re-obtain the result that the superconductor is more precisely described as a topological state of matter. Studying the case of more than one Fermi surface, we obtain the effective theory describing a time reversal symmetric topological superconductor. These results are obtained by employing a general procedure to construct effective low energy actions describing states of electromagnetic systems interacting with charges and defects. The procedure consists in taking into account the proliferation or dilution of these charges and defects and its consequences for the low energy description of the electromagnetic response of the system. We find that the main ingredient entering the low energy characterization of the system with more than one Fermi surface is a non-conservation of the canonical supercurrent triggered by particular vortex configurations.

  10. Effective field theories for superconducting systems with multiple Fermi surfaces

    CERN Document Server

    Braga, P R; Guimaraes, M S; Wotzasek, C

    2016-01-01

    In this work we investigate the description of superconducting systems with multiple Fermi surfaces. For the case of one Fermi surface we re-obtain the result that the superconductor is more precisely described as a topological state of matter. Studying the case of more than one Fermi surface, we obtain the effective theory describing a time reversal symmetric topological superconductor. These results are obtained by employing a general procedure to construct effective low energy actions describing states of electromagnetic systems interacting with charges and defects. The procedure consists in taking into account the proliferation or dilution of these charges and defects and its consequences for the low energy description of the electromagnetic response of the system. We find that the main ingredient entering the low energy characterization of the system with more the one Fermi surface is a non-conservation of the canonical supercurrent triggered by particular vortex configurations.

  11. Effective field theories for superconducting systems with multiple Fermi surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Braga, P.R., E-mail: pedro.rangel.braga@gmail.com [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Granado, D.R., E-mail: diegorochagrana@uerj.br [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Department of Physics and Astronomy, Ghent University, Krijgslaan 281-S9, 9000 Gent (Belgium); Guimaraes, M.S., E-mail: msguimaraes@uerj.br [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Wotzasek, C., E-mail: clovis@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972, Rio de Janeiro (Brazil)

    2016-11-15

    In this work we investigate the description of superconducting systems with multiple Fermi surfaces. For the case of one Fermi surface we re-obtain the result that the superconductor is more precisely described as a topological state of matter. Studying the case of more than one Fermi surface, we obtain the effective theory describing a time reversal symmetric topological superconductor. These results are obtained by employing a general procedure to construct effective low energy actions describing states of electromagnetic systems interacting with charges and defects. The procedure consists in taking into account the proliferation or dilution of these charges and defects and its consequences for the low energy description of the electromagnetic response of the system. We find that the main ingredient entering the low energy characterization of the system with more than one Fermi surface is a non-conservation of the canonical supercurrent triggered by particular vortex configurations.

  12. Impact of non-uniform surface magnetic fields on stellar winds

    CERN Document Server

    Holzwarth, V R

    2005-01-01

    Observations of active stars reveal highly non-uniform surface distributions of magnetic flux. Theoretical models considering magnetised stellar winds however often presume uniform surface magnetic fields, characterised by a single magnetic field strength. The present work investigates the impact of non-uniform surface magnetic field distributions on the stellar mass and angular momentum loss rates. The approach of Weber & Davis (1967) is extended to non-equatorial latitudes to quantify the impact of latitude-dependent magnetic field distributions over a large range of stellar rotation rates and thermal wind properties. The analytically prescribed field patterns are dominated by magnetic flux concentrations at intermediate and high latitudes. The global stellar mass loss rates are found to be rather insensitive to non-uniformities of the surface magnetic field. Depending on the non-uniformity of the field distribution, the angular momentum loss rates deviate in contrast at all rotation rates between -60% ...

  13. Evaluation of the effects of Streptococcus mutans chaperones and protein secretion machinery components on cell surface protein biogenesis, competence, and mutacin production.

    Science.gov (United States)

    Crowley, P J; Brady, L J

    2016-02-01

    The respective contributions of components of the protein translocation/maturation machinery to cell surface biogenesis in Streptococcus mutans are not fully understood. Here we used a genetic approach to characterize the effects of deletion of genes encoding the ribosome-associated chaperone RopA (Trigger Factor), the surface-localized foldase PrsA, and the membrane-localized chaperone insertases YidC1 and YidC2, both singly and in combination, on bacterial growth, chain length, self-aggregation, cell surface hydrophobicity, autolysis, and antigenicity of surface proteins P1 (AgI/II, PAc), WapA, GbpC, and GtfD. The single and double deletion mutants, as well as additional mutant strains lacking components of the signal recognition particle pathway, were also evaluated for their effects on mutacin production and genetic competence.

  14. Gravity field, geoid and ocean surface by space techniques

    Science.gov (United States)

    Anderle, R. J.

    1978-01-01

    Knowledge of the earth's gravity field continued to increase during the last four years. Altimetry data from the GEOS-3 satellite has provided the geoid over most of the ocean to an accuracy of about one meter. Increasing amounts of laser data has permitted the solution for 566 terms in the gravity field with which orbits of the GEOS-3 satellite have been computed to an accuracy of about one to two meters. The combination of satellite tracking data, altimetry and gravimetry has yielded a solution for 1360 terms in the earth's gravity field. A number of problems remain to be solved to increase the accuracy of the gravity field determination. New satellite systems would provide gravity data in unsurveyed areas and correction for topographic features of the ocean and improved computational procedures together with a more extensive laser network will considerably improve the accuracy of the results.

  15. Coupling between magnetic field and curvature in Heisenberg spins on surfaces with rotational symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho-Santos, Vagson L., E-mail: vagson.santos@ufv.br [Instituto Federal de Educação, Ciência e Tecnologia Baiano, Campus Senhor do Bonfim, 48970-000 Senhor do Bonfim, Bahia (Brazil); Dandoloff, Rossen [Laboratoire de Physique Théorique et Modélisation, Université de Cergy-Pontoise, 95302 Cergy-Pontoise (France)

    2012-10-15

    We study the nonlinear σ-model in an external magnetic field applied on curved surfaces with rotational symmetry. The Euler–Lagrange equations derived from the Hamiltonian yield the double sine-Gordon equation (DSG) provided the magnetic field is tuned with the curvature of the surface. A 2π skyrmion appears like a solution for this model and surface deformations are predicted at the sector where the spins point in the opposite direction to the magnetic field. We also study some specific examples by applying the model on three rotationally symmetric surfaces: the cylinder, the catenoid and the hyperboloid.

  16. Effects of alternative electromagnetic field on surface tension and filling ability of molten metal

    Institute of Scientific and Technical Information of China (English)

    HE Hong-liang; KANG Fu-wei; WANG Li-ping

    2005-01-01

    Surface tension and filling ability of molten metal play an important role on the shaping of the molten metal. The surface tension was calculated from wetting angles of the molten metal by the sessile drop method. The specimen for filling ability was designed and the filling ability experiments under the alternative electromagnetic field were performed. The results show that the intensity and frequency of the alternative electromagnetic field have significant effects on the surface tension of the molten metal. The surface tension of Al-6%Si alloy decreases with increasing the intensity of the electromagnetic field. For pure Sn, the surface tension decreases gradually when the frequency of electromagnetic field is reduced. The filling ability is improved by applying the alternative electromagnetic field.

  17. Influence of magnetic field on microstructure and properties of Ni60 plasma surfacing layer

    Institute of Scientific and Technical Information of China (English)

    Liu Zhengjun; Sun Jinggang; Liu Duo; Wang Jibing; Zhang Guiqing

    2005-01-01

    In order to control the shape and distribution of hardening phase in plasma surfacing deposit, a longitudinal DC magnetic field was applied during plasma surfacing of nickel-based alloy Ni60. Hardness, wearing resistance, microstructure and phase constituent of the plasma surfacing layer were investigated. It was revealed that the hardness and wearing resistance of the Ni60 plasma surfacing layer could gotten significantly enhanced through introducing magnetic field. The mechanical properties of the surfacing deposit were optimal when magnetic field current is 1 A. The metallurgical analysis showed that the microstructure of the Ni60 plasma surfacing layer was mainly composed of γ solid solution and some hardening phase particles such as Cr7 C3 with an application of the magnetic field.

  18. Field Study of Infiltration Capacity Reduction of Porous Mixture Surfaces

    Directory of Open Access Journals (Sweden)

    Luis A. Sañudo-Fontaneda

    2014-03-01

    Full Text Available Porous surfaces have been used all over the world in source control techniques to minimize flooding problems in car parks. Several studies highlighted the reduction in the infiltration capacity of porous mixture surfaces after several years of use. Therefore, it is necessary to design and develop a new methodology to quantify this reduction and to identify the hypothetical differences in permeability between zones within the same car park bay due to the influence of static loads in the parked vehicles. With this aim, nine different zones were selected in order to check this hypothesis (four points under the wheels of a standard vehicle and five points between wheels. This article presents the infiltration capacity reduction results, using the LCS permeameter, of Polymer-Modified Porous Concrete (9 bays and Porous Asphalt (9 bays surfaces in the University of Cantabria Campus parking area (Spain 5 years after their construction. Statistical analysis methodology was proposed for assessing the results. Significant differences were observed in permeability and reduction in infiltration capacity in the case of porous concrete surfaces, while no differences were found for porous asphalt depending on the measurement zone.

  19. Core surface magnetic field evolution 2000–2010

    DEFF Research Database (Denmark)

    Finlay, Chris; Jackson, A.; Gillet, N.;

    2012-01-01

    traditional quadratic or maximum entropy regularization in space, and second or third time derivative regularization in time. Entropy regularization allows the construction of models with approximately constant spectral slope at the core surface, avoiding both the divergence characteristic of the crustal...

  20. Strong horizontal photospheric magnetic field in a surface dynamo simulation

    NARCIS (Netherlands)

    SchÜssler, M.; Vögler, A.

    2008-01-01

    Context. Observations with the Hinode spectro-polarimeter have revealed strong horizontal internetwork magnetic fields in the quiet solar photosphere. Aims. We aim to interpret the observations with results from numerical simulations. Methods. Radiative MHD simulations of dynamo action by near-surfa

  1. Near field evidence of backward surface plasmon polaritons on negative index material boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Cuevas, Mauro, E-mail: cuevas@df.uba.ar [Facultad de Ingeniería y Tecnología Informática, Universidad de Belgrano, Villanueva 1324, C1426BMJ, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Grunhut, Vivian [Facultad de Ingeniería, Universidad Austral (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Depine, Ricardo A. [Grupo de Electromagnetismo Aplicado, Departamento de Física, FCEN, Universidad de Buenos Aires and IFIBA, Ciudad Universitaria, Pabellón I, C1428EHA, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina)

    2016-12-09

    Highlights: • Electromagnetic scattering from a localized defect on a NIM surface is presented. • The electromagnetic response strongly depends on the SPPs excited. • Near field distribution reveals the forward or backward character of SPPs excited. - Abstract: We present a detailed analysis about the electromagnetic response of a metamaterial surface with a localized defect. The excitation of electromagnetic surface waves leads to a near-field distribution showing a periodic dependence along the metamaterial surface. We find that this periodic pattern provides a direct demonstration of the forward or backward surface wave propagation.

  2. Determine electric field directions at semiconductor surfaces by femtosecond frequency domain interferometric second harmonic (FDISH) generation

    Science.gov (United States)

    Nelson, C. A.; Zhu, X.-Y.

    2016-10-01

    Optical excitations at semiconductor surfaces or interfaces are accompanied by transient interfacial electric fields due to charge redistribution or transfer. While such transient fields may be probed by time-resolved second harmonic generation (TR-SHG), it is difficult to determine the field direction, which is invaluable to unveiling the underlying physics. Here we apply a time-resolved frequency domain interferometric second harmonic (TR-FDISH) generation technique to determine the phase relationship between the SH field emitted from bulk GaAs(1 0 0) and the transient SH field from the space charge region. The interference between these two SH fields allow us to unambiguously determine the directions of transient electric fields. Since SH fields from a static bulk contribution and a changing electric field contribution are present at most semiconductor surfaces or interfaces under optical excitation, the TR-FDISH technique is of general significance to probing the dynamics of interfacial charge transfer/redistribution.

  3. Redistribution of mobile surface charges of an oil droplet in water in applied electric field.

    Science.gov (United States)

    Li, Mengqi; Li, Dongqing

    2016-10-01

    Most researches on oil droplets immersed in aqueous solutions assume that the surface charges of oil droplets are, similar to that of solid particles, immobile and distributed uniformly under external electric field. However, the surface charges at the liquid-liquid interface are mobile and will redistribute under external electric field. This paper studies the redistribution of surface charges on an oil droplet under the influence of the external electrical field. Analytical expressions of the local zeta potential on the surface of an oil droplet after the charge redistribution in a uniform electrical field were derived. The effects of the initial zeta potential, droplet radius and strength of applied electric field on the surface charge redistribution were studied. In analogy to the mobile surface charges, the redistribution of Al2O3-passivated aluminum nanoparticles on the oil droplet surface was observed under applied electrical field. Experimental results showed that these nanoparticles moved and accumulated towards one side of the oil droplet under electric field. The redistribution of the nanoparticles is in qualitative agreement with the redistribution model of the mobile surface charges developed in this work.

  4. Modelling of the surface emission of the low magnetic field magnetar SGR 0418+5729

    NARCIS (Netherlands)

    Guillot, S.; Perna, R.; Rea, N.; Viganò, D.; Pons, J.A.

    2015-01-01

    We perform a detailed modelling of the post-outburst surface emission of the low magnetic field magnetar SGR 0418+5729. The dipolar magnetic field of this source, B=6×1012G estimated from its spin-down rate, is in the observed range of magnetic fields for normal pulsars. The source is further

  5. Specificity for field enumeration of Escherichia coli in tropical surface waters

    DEFF Research Database (Denmark)

    Jensen, Peter Kjær Mackie; Aalbaek, B; Aslam, R

    2001-01-01

    In remote rural areas in developing countries, bacteriological monitoring often depends on the use of commercial field media. This paper evaluates a commercial field medium used for the enumeration of Escherichia coli in different surface waters under primitive field conditions in rural Pakistan....

  6. Mathematical Competences

    DEFF Research Database (Denmark)

    Westphael, Henning; Mogensen, Arne

    2013-01-01

    In this article we present the notion of Mathematical competences as a tool to describe the mathematically gifted students.......In this article we present the notion of Mathematical competences as a tool to describe the mathematically gifted students....

  7. Electromagnetic Fields at the Surface of Human-Body Cylinders

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren H.; Thaysen, Jesper

    2016-01-01

    transverse electric and transverse magnetic polarization. The results show that the material assumption when modeling the human body as a homogeneous material is very important. Furthermore, it is shown that one assumption might lead to higher fields for a specific polarization, angle of incidence...... and frequency, but that does not translate to similar relative performance at another polarization, angle of incidence, and frequency....

  8. Detrimental adsorbate fields in experiments with cold Rydberg gases near surfaces

    CERN Document Server

    Hattermann, H; Karlewski, F; Jessen, F; Cano, D; Fortágh, J

    2012-01-01

    We observe the shift of Rydberg levels of rubidium close to a copper surface when atomic clouds are repeatedly deposited on it. We measure transition frequencies of rubidium to S and D Rydberg states with principal quantum numbers n between 31 and 48 using the technique of electromagnetically induced transparency. The spectroscopic measurement shows a strong increase of electric fields towards the surface that evolves with the deposition of atoms. Starting with a clean surface, we measure the evolution of electrostatic fields in the range between 30 and 300 \\mum from the surface. We find that after the deposition of a few hundred atomic clouds, each containing ~10^6 atoms, the field of adsorbates reaches 1 V/cm for a distance of 30 \\mum from the surface. This evolution of the electrostatic field sets serious limitations on cavity QED experiments proposed for Rydberg atoms on atom chips.

  9. Detrimental adsorbate fields in experiments with cold Rydberg gases near surfaces

    Science.gov (United States)

    Hattermann, H.; Mack, M.; Karlewski, F.; Jessen, F.; Cano, D.; Fortágh, J.

    2012-08-01

    We observe the shift of Rydberg levels of rubidium close to a copper surface when atomic clouds are repeatedly deposited on it. We measure transition frequencies of rubidium to S and D Rydberg states with principal quantum numbers n between 31 and 48 using the technique of electromagnetically induced transparency. The spectroscopic measurement shows a strong increase of electric fields towards the surface that evolves with the deposition of atoms. Starting with a clean surface, we measure the evolution of electrostatic fields in the range between 30 and 300 μm from the surface. We find that after the deposition of a few hundred atomic clouds, each containing ˜106 atoms, the field of adsorbates reaches 1 V/cm for a distance of 30 μm from the surface. This evolution of the electrostatic field sets serious limitations on cavity QED experiments proposed for Rydberg atoms on atom chips.

  10. Photodetachment of H- near Elastic Surface in Parallel Electric and Magnetic Fields

    Institute of Scientific and Technical Information of China (English)

    WANG De-Hua

    2007-01-01

    The photodetachment cross section of H- in parallel electric and magnetic fields near an elastic surface is derived and calculated by using the closed orbit theory. It is found that the elastic surface can produce some interesting effects. Besides the closed orbits previously found by Peters et al. for the H- in parallel electric and magnetic fields, some additional closed orbits are produced due to the effect of the elastic surface. The results show that the cross section oscillation is much more complicated in comparison with the cross section of H- in parallel external fields without surface. Each peak in the Fourier transformed cross section corresponds to the period of one detached electron closed orbit. This study provides a new understanding of the photodetachment of negative ions in the presence of external fields and surface.

  11. Polarized transfer functions of the ocean surface for above-surface determination of the vector submarine light field.

    Science.gov (United States)

    Foster, Robert; Gilerson, Alexander

    2016-11-20

    A method is developed to determine the underwater polarized light field from above sea surface observations. A hybrid approach combining vector radiative transfer simulations and the Monte Carlo method is used to determine the transfer functions of polarized light for wind-driven ocean surfaces. Transfer functions for surface-reflected skylight and upward transmission of light through the sea surface are presented for many common viewing and solar geometries for clear-sky conditions. Sensitivity of reflection matrices to environmental conditions is examined and can vary up to 50% due to wind speed, 25% due to atmospheric aerosol load, and 10% due to radiometer field-of-view. Scalar transmission is largely independent of water type and varies a few percent with wind speed, while polarized components can change up to 10% in high winds. Considerations for determining the water-leaving radiance (scalar or vector) are discussed.

  12. Long-range Coulomb interactions in surface systems: a first-principles description within self-consistently combined GW and dynamical mean-field theory.

    Science.gov (United States)

    Hansmann, P; Ayral, T; Vaugier, L; Werner, P; Biermann, S

    2013-04-19

    Systems of adatoms on semiconductor surfaces display competing ground states and exotic spectral properties typical of two-dimensional correlated electron materials which are dominated by a complex interplay of spin and charge degrees of freedom. We report a fully ab initio derivation of low-energy Hamiltonians for the adatom systems Si(111):X, with X=Sn, Si, C, Pb, that we solve within self-consistently combined GW and dynamical mean-field theory. Calculated photoemission spectra are in agreement with available experimental data. We rationalize experimentally observed trends from Mott physics toward charge ordering along the series as resulting from substantial long-range interactions.

  13. Molecular dynamics simulations of ion irradiation of a surface under an electric field

    Energy Technology Data Exchange (ETDEWEB)

    Parviainen, S., E-mail: stefan.parviainen@iki.fi; Djurabekova, F.

    2014-11-15

    The presence of high electric fields may affect significantly the process of sputtering of metal surfaces by energetic ions, especially in the vicinity of rough surface features. The effect can be significant if the energy of ions is fairly low. Moreover, the nanosized rough surface features – invisible to a naked eye, both intrinsic ones due to technological processing of surfaces and those forming because of sputtering – may affect the topology of surface erosion under ion bombardment. In this work we study by means of concurrent electrodynamics–molecular dynamics the sputtering yield of Cu{sup +} ions hitting a flat Cu surface or a nanosized Cu protrusion as a function of both ion energy and electric field strength. The results show that the sputtering yield is significantly enhanced in the presence of an electric field in both cases.

  14. Sound field separating on arbitrary surfaces enclosing a sound scatterer based on combined integral equations.

    Science.gov (United States)

    Fan, Zongwei; Mei, Deqing; Yang, Keji; Chen, Zichen

    2014-12-01

    To eliminate the limitations of the conventional sound field separation methods which are only applicable to regular surfaces, a sound field separation method based on combined integral equations is proposed to separate sound fields directly in the spatial domain. In virtue of the Helmholtz integral equations for the incident and scattering fields outside a sound scatterer, combined integral equations are derived for sound field separation, which build the quantitative relationship between the sound fields on two arbitrary separation surfaces enclosing the sound scatterer. Through boundary element discretization of the two surfaces, corresponding systems of linear equations are obtained for practical application. Numerical simulations are performed for sound field separation on different shaped surfaces. The influences induced by the aspect ratio of the separation surfaces and the signal noise in the measurement data are also investigated. The separated incident and scattering sound fields agree well with the original corresponding fields described by analytical expressions, which validates the effectiveness and accuracy of the combined integral equations based separation method. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Local field distribution and configuration of CO molecules adsorbed on the nanostructure platinum surface

    Institute of Scientific and Technical Information of China (English)

    Huang Xiao-Jing; He Su-Zhen; Wu Chen-Xu

    2006-01-01

    This paper shows that the local electric field distribution near the nanostructure metallic surface is obtained by solving the Laplace equation, and furthermore, the configuration of CO molecules adsorbed on a Pt nanoparticle surface is obtained by using Monte Carlo simulation. It is found that the uneven local electric field distribution induced by the nanostructure surface can influence the configuration of carbon monoxide (CO) molecules by a force, which drags the adsorbates to the poles of the nanoparticles. This result, together with our results obtained before, may explain the experimental results that the nanostructure metallic surface can lead to abnormal phenomena such as anti-absorption infrared effects.

  16. Unipolar and Bipolar High-Magnetic-Field Sensors Based on Surface Acoustic Wave Resonators

    Science.gov (United States)

    Polewczyk, V.; Dumesnil, K.; Lacour, D.; Moutaouekkil, M.; Mjahed, H.; Tiercelin, N.; Petit Watelot, S.; Mishra, H.; Dusch, Y.; Hage-Ali, S.; Elmazria, O.; Montaigne, F.; Talbi, A.; Bou Matar, O.; Hehn, M.

    2017-08-01

    While surface acoustic wave (SAW) sensors have been used to measure temperature, pressure, strains, and low magnetic fields, the capability to measure bipolar fields and high fields is lacking. In this paper, we report magnetic surface acoustic wave sensors that consist of interdigital transducers made of a single magnetostrictive material, either Ni or TbFe2 , or based on exchange-biased (Co /IrMn ) multilayers. By controlling the ferromagnet magnetic properties, high-field sensors can be obtained with unipolar or bipolar responses. The issue of hysteretic response of the ferromagnetic material is especially addressed, and the control of the magnetic properties ensures the reversible behavior in the SAW response.

  17. Field-Emission from Chemically Functionalized Diamond Surfaces: Does Electron Affinity Picture Work?

    Science.gov (United States)

    Miyamoto, Yoshiyuki; Miyazaki, Takehide; Takeuchi, Daisuke; Okushi, Hideyo; Yamasaki, Satoshi

    2014-03-01

    By means of the time-dependent density functional electron dynamics, we have revisited the field-emission efficiency of chemically functionalized diamond (100) surfaces. In order to achieve high efficiency and high (chemical) stability, proper chemical species are needed to terminate diamond surfaces. Hydrogen (H) termination is well known to achieve the negative electron affinity (NEA) of diamond surface which indeed enhances field emission performance than that of clean surface with positive electron affinity (PEA). Yet, the durability of H-terminated diamond surface was concerned for long-time operation of the field-emission. Meantime, oxidation, or hydroxyl (OH) termination was considered to achieve chemical stability of the surface but presence of oxygen (O) atom should reduce the emission efficiency. Recently, H- OH-co-terminated surface is reported as NEA and was expected to achieve both emission efficiency and chemical stability. However, our simulation showed that emission efficiency of the H- OH- co-terminated surface is much lower than clean surface with PEA, thus we note that the electron affinity cannot be a unique measure to determine the emission efficiency. In this talk, we introduce necessity of new concept to understand the emission efficiency which needs to know detailed potential profile from bulk to vacuum through surface, which is strongly dependent on the surface chemical functionalization. This work was supported by ALCA project conducted by Japan Science and Technology Agency.

  18. Vector competence and innate immune responses to dengue virus infection in selected laboratory and field-collected Stegomyia aegypti (= Aedes aegypti).

    Science.gov (United States)

    Serrato, I M; Caicedo, P A; Orobio, Y; Lowenberger, C; Ocampo, C B

    2017-09-01

    Control of dengue virus (DenV) transmission, primarily based on strategies to reduce populations of the principle vector Stegomya aegypti (= Aedes aegypti) (Diptera: Culicidae), is difficult to sustain over time. Other potential strategies aim to manipulate characteristics such as vector competence (VC), the innate capacity of the vector to transmit the virus. Previous studies have identified genetic factors, including differential expression of apoptosis-related genes, associated with the refractory and susceptible phenotypes in selected strains of S. aegypti from Cali, Colombia. The present study was designed to evaluate the variability of VC in selected strains against different DenV serotypes and to determine whether field-collected mosquitoes respond similarly to selected laboratory strains in terms of enhanced or reduced expression of apoptosis-related genes. Vector competence differed between strains, but did not differ in response to different DenV serotypes. Differences in VC were observed among mosquitoes collected from different localities in Cali. The overexpression of the pro-apoptosis genes, caspase 16 and Aedronc, was conserved in field-collected refractory mosquitoes and the selected laboratory refractory strain. The results suggest that the apoptosis response is conserved among all refractory mosquitoes to inhibit the development of all DenV serotypes. © 2017 The Royal Entomological Society.

  19. Hydrothermal surface alteration in the Copahue Geothermal Field (Argentina)

    Energy Technology Data Exchange (ETDEWEB)

    Mas, Graciela R.; Mas, Luis C.; Bengochea, Leandro

    1996-01-24

    In the area of the Copahue Geothermal Field, there are five active geothermal manifestations, which mainly consist of fumaroles, hot springs and mud pots. Four of these manifestations are located in Argentina: Las Máquinas, Termas de Copahue, Las Maquinitas and El Anfiteatro, and the fifth on the Chilean side: Chancho Co. All of them present a strong acid sulfate country rock alteration, characterized by the assemblage alunite + kaolinite + quartz + cristobalite + pyrite + sulfur + jarosite, as the result of the base leaching by fluids concentrated in H2SO4 by atmospheric oxidation at the water table in a steam heated environment of H2S released by deeper boiling fluids. Another alteration zone in this area, called COP-2, is a fossil geothermal manifestation which shows characteristics of neutral to alkaline alteration represented mainly by the siliceous sinter superimposed over the acid alteration. The mineralogy and zoning of these alteration zones, and their relation with the hidrothermal solutions and the major structures of the area are analized.

  20. A simple theory of back surface field /BSF/ solar cells

    Science.gov (United States)

    Von Roos, O.

    1978-01-01

    A theory of an n-p-p/+/ junction is developed, entirely based on Shockley's depletion layer approximation. Under the further assumption of uniform doping the electrical characteristics of solar cells as a function of all relevant parameters (cell thickness, diffusion lengths, etc.) can quickly be ascertained with a minimum of computer time. Two effects contribute to the superior performance of a BSF cell (n-p-p/+/ junction) as compared to an ordinary solar cell (n-p junction). The sharing of the applied voltage among the two junctions (the n-p and the p-p/+/ junction) decreases the dark current and the reflection of minority carriers by the builtin electron field of the p-p/+/ junction increases the short-circuit current. The theory predicts an increase in the open-circuit voltage (Voc) with a decrease in cell thickness. Although the short-circuit current decreases at the same time, the efficiency of the cell is virtually unaltered in going from a thickness of 200 microns to a thickness of 50 microns. The importance of this fact for space missions where large power-to-weight ratios are required is obvious.

  1. Gauge theories on compact toric surfaces, conformal field theories and equivariant Donaldson invariants

    CERN Document Server

    Bershtein, Mikhail; Ronzani, Massimiliano; Tanzini, Alessandro

    2016-01-01

    We show that equivariant Donaldson polynomials of compact toric surfaces can be calculated as residues of suitable combinations of Virasoro conformal blocks, by building on AGT correspondence between N = 2 supersymmetric gauge theories and two-dimensional conformal field theory.

  2. The thermal energy of a scalar field on a unidimensional Riemann surface

    CERN Document Server

    Elizalde, E

    2002-01-01

    We discuss some controverted aspects of the evaluation of the thermal energy of a scalar field on a unidimensional Riemann surface. The calculations are carried out using a generalised zeta function approach.

  3. Tailoring the Electromagnetic Near Field with Patterned Surfaces: Near-Field Plates

    Science.gov (United States)

    2014-12-10

    near-field plates possible. A linear near-field plate is shown in Fig. 1, which can create a subwavelength line (1D) focus when excited by an...concentric annular slots on a circular grounded dielectric slab. The plate is excited through a coaxial cable and its rim is short circuited. The slots are...standard printed circuit board technology. The plates consist of concentric annular slots on a circular grounded dielectric slab excited through a coaxial

  4. Effect of interstitial impurities on the field dependent microwave surface resistance of niobium

    CERN Document Server

    Martinello, M; Checchin, M; Romanenko, A; Melnychuck, O; Sergatskov, D A; Posen, S; Zasadzinski, J F

    2016-01-01

    Previous work has demonstrated that the radio frequency surface resistance of niobium resonators is dramatically reduced when nitrogen impurities are dissolved as interstitial in the material. The origin of this effect is attributed to the lowering of the Mattis and Bardeen surface resistance contribution with increasing accelerating field. Meanwhile, an enhancement of the sensitivity to trapped magnetic field is typically observed for such cavities. In this paper we conduct the first systematic study on these different components contributing to the total surface resistance as a function of different levels of dissolved nitrogen, in comparison with standard surface treatments for niobium resonators. Adding these results together we are able to show for the first time which is the optimum surface treatment that maximizes the Q-factor of superconducting niobium resonators as a function of expected trapped magnetic field in the cavity walls. These results also provide new insights on the physics behind the chan...

  5. Measured ground-surface movements, Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Massey, B.L.

    1981-01-01

    The Cerro Prieto geothermal area in the Mexicali Valley, 30 kilometers southeast of Mexicali, Baja California, incurred slight deformation because of the extraction of hot water and steam, and probably, active tectonism. During 1977 to 1978, the US Geological Survey established and measured two networks of horizontal control in an effort to define both types of movement. These networks consisted of: (1) a regional trilateration net brought into the mountain ranges west of the geothermal area from stations on an existing US Geological Survey crustal-strain network north of the international border; and (2) a local net tied to stations in the regional net and encompassing the present and planned geothermal production area. Electronic distance measuring instruments were used to measure the distances between stations in both networks in 1978, 1979 and 1981. Lines in the regional net averaged 25 km. in length and the standard deviation of an individual measurement is estimated to be approx. 0.3 part per million of line length. The local network was measured using different instrumentation and techniques. The average line length was about 5 km. and the standard deviation of an individual measurement approached 3 parts per million per line length. Ground-surface movements in the regional net, as measured by both the 1979 and 1981 resurveys, were small and did not exceed the noise level. The 1979 resurvey of the local net showed an apparent movement of 2 to 3 centimeters inward toward the center of the production area. This apparent movement was restricted to the general limits of the production area. The 1981 resurvey of the local net did not show increased movement attributable to fluid extraction.

  6. Surface amorphization in a transverse Ising nanowire; effects of a transverse field

    Energy Technology Data Exchange (ETDEWEB)

    Kaneyoshi, T., E-mail: kaneyosi@is.nagoya-u.ac.Jp

    2017-05-15

    Using the effective-field theory with correlations, the phase diagrams and the thermal variations of total magnetization in an Ising nanowire with surface amorphization are investigated by applying a magnetic field to the direction perpendicular to the spin direction. Some unconventional and novel phenomena have been found in them. Furthermore, phase diagrams in the two transverse Ising nanowires with surface amorphizations are compared and discussed.

  7. Field and material stresses predict observable surface forces in optical and electrostatic manipulation

    Science.gov (United States)

    Kemp, Brandon A.; Sheppard, Cheyenne J.

    2016-09-01

    The momentum of light in media has been one of the most debated topics in physics over the past one hundred years. Originally a theoretical debate over the electrodynamics of moving media, practical applications have emerged over the past few decades due to interest in optical manipulation and nanotechnology. Resolution of the debate identifies a kinetic momentum as the momentum of the fields responsible for center of mass translations and a canonical momentum related to the coupled field and material system. The optical momentum resolution has been considered incomplete because it did not uniquely identify the full stress-energy-momentum (SEM) tensor of the field-kinetic subsystem. A consequence of this partial resolution is that the field-kinetic momentum could be described by three of the leading formulations found in the literature. The Abraham, Einstein-Laub, and Chu SEM tensors share the field-kinetic momentum, but their SEM tensors differ resulting in competing force densities. We can show now that the Abraham and Einstein-Laub formulations are invalid since their SEM tensors are not frame invariant, whereas the Chu SEM tensor satisfies relativistic principles as the field-kinetic formulation. However, a number of reports indicate that the force distribution in matter may not accurately represent experimental observations. In this correspondence, we show that the field-kinetic SEM tensor can be used along with the corresponding material subsystem to accurately predict experimental force and stress distributions. We model experimental examples from optical and static manipulation of particles and fluids.

  8. Designing for competences

    DEFF Research Database (Denmark)

    Christiansen, Rene B; Gundersen, Peter Bukovica

    2014-01-01

    of these professionals has changed - and has become more cross-professional, more complex and analytic and reflective competencies have entered the policy papers of these human-professions as central, important forms of knowledge. These bachelor degrees in Denmark within the field of education (teaching and preschool...... and generating solutions in the form of design principles when moving from a focus of knowledge to a focus of competences....

  9. Spatially resolved surface topography retrieved from far-field intensity scattering measurements.

    Science.gov (United States)

    Zerrad, Myriam; Lequime, Michel; Amra, Claude

    2014-02-01

    A far-field setup based on the fast and simultaneous recording of 1 million intensity angle-resolved-light-scattering patterns allows both to reconstruct surface topography and to cancel local defects in this topography. A spectral analysis is performed on measured data and allows to extract roughness and slopes mapping of a surface taking into account the spectral bandpass.

  10. Formation of Root Singularities on the Free Surface of a Conducting Fluid in an Electric Field

    CERN Document Server

    Zubarev, N M

    1998-01-01

    The formation of singularities on a free surface of a conducting ideal fluid in a strong electric field is considered. It is found that the nonlinear equations of two-dimensional fluid motion can be solved in the small-angle approximation. This enables us to show that for almost arbitrary initial conditions the surface curvature becomes infinite in a finite time.

  11. High-field 3He-F interaction at the surface of fluorocarbon spheres

    DEFF Research Database (Denmark)

    Schuhl, A.; Chapellier, M.; Rasmussen, Finn Berg

    1984-01-01

    High-field experiments on the relaxation betweenF in small Teflon spheres andHe on the surface are reported. WithHe as a monolayer, coupling times are found to be less than 5 sec, in magnetic fields up to 3 T and temperatures down to 50 mK, where electronic centers are completely polarized...

  12. Corona field effect surface passivation of n-type IBC cells

    OpenAIRE

    Bonilla, RS; Wilshaw, PR; Reichel, C; Hermle, M.

    2016-01-01

    Passivation of silicon surfaces is an important requirement in achieving high energy conversion efficiencies in interdigitated back contact cells. Surface passivation, commonly achieved by dielectric coatings, can be greatly improved by extrinsic addition of chemical and field effect components. In particular, cell performance is strongly dependent on front surface passivation. In this work device modelling is used to show that 200% relatively better performance can be achieved using charge e...

  13. Atmospheres and radiating surfaces of neutron stars with strong magnetic fields

    CERN Document Server

    Potekhin, A Y; Chabrier, G

    2016-01-01

    We review the current status of the theory of thermal emission from the surface layers of neutron stars with strong magnetic fields $B\\sim 10^{10}-10^{15}$ G, including formation of the spectrum in a partially ionized atmosphere and at a condensed surface. In particular, we describe recent progress in modeling partially ionized atmospheres of central compact objects in supernova remnants, which may have moderately strong fields $B\\sim 10^{10}-10^{11}$ G. Special attention is given to polarization of thermal radiation emitted by a neutron star surface. Finally, we briefly describe applications of the theory to observations of thermally emitting isolated neutron stars.

  14. Two-dimensional circulation and mixing in the far field of a surface-advected river plume

    Science.gov (United States)

    Mazzini, Piero L. F.; Chant, Robert J.

    2016-06-01

    Field observations of the Hudson River plume are presented to discuss circulation and mixing in the far field of this coastally trapped buoyant flow. The plume was surface advected and propagated downshelf near the internal wave speed. The plume outflow was characterized by a two-layer bulge-like feature but became continuously stratified and vertically sheared in the far field, where Richardson numbers are generally below 0.5. High-frequency velocity and backscatter data from a moored ADCP revealed strong vertical and horizontal oscillatory motions at the front with a wavelength approximately 7-8 times the plume thickness, consistent with Kelvin-Helmholtz instabilities. These motions quickly died out after 2-3 cycles. The combination of vertical shear and stratification in the plume leads to a buoyancy flux toward the nose of the plume, which competes with mixing. However, the continued salinity increase of the plume as it propagated downshelf indicates that mixing overcomes this delivery of freshwater to the plume front. A simple 2-D model is developed, which relates the time rate-of-change of the plume salinity to: (1) salt entrainment due to vertical mixing, and (2) freshwater flux and salt removal due to the vertical shear of the stratified plume. Estimates of an entrainment coefficient from this model are consistent with previous estimates from the near field of a river outflow. A scaling of the plume width is obtained by assuming that vertical shears are controlled by both thermal wind and a critical Richardson number. This scaling yields plume widths that are consistent with previous laboratory studies.

  15. Surface salinity fields in the Arctic Ocean and statistical approaches to predicting anomalies and patterns

    CERN Document Server

    Chernyavskaya, Ekaterina A; Golden, Kenneth M; Timokhov, Leonid A

    2014-01-01

    Significant salinity anomalies have been observed in the Arctic Ocean surface layer during the last decade. Using gridded data of winter salinity in the upper 50 m layer of the Arctic Ocean for the period 1950-1993 and 2007-2012, we investigated the inter-annual variability of the salinity fields, attempted to identify patterns and anomalies, and developed a statistical model for the prediction of surface layer salinity. The statistical model is based on linear regression equations linking the principal components with environmental factors, such as atmospheric circulation, river runoff, ice processes, and water exchange with neighboring oceans. Using this model, we obtained prognostic fields of the surface layer salinity for the winter period 2013-2014. The prognostic fields demonstrated the same tendencies of surface layer freshening that were observed previously. A phase portrait analysis involving the first two principal components exhibits a dramatic shift in behavior of the 2007-2012 data in comparison ...

  16. Surface profile and stress field evaluation using digital gradient sensing method

    Science.gov (United States)

    Miao, C.; Sundaram, B. M.; Huang, L.; Tippur, H. V.

    2016-09-01

    Shape and surface topography evaluation from measured orthogonal slope/gradient data is of considerable engineering significance since many full-field optical sensors and interferometers readily output such a data accurately. This has applications ranging from metrology of optical and electronic elements (lenses, silicon wafers, thin film coatings), surface profile estimation, wave front and shape reconstruction, to name a few. In this context, a new methodology for surface profile and stress field determination based on a recently introduced non-contact, full-field optical method called digital gradient sensing (DGS) capable of measuring small angular deflections of light rays coupled with a robust finite-difference-based least-squares integration (HFLI) scheme in the Southwell configuration is advanced here. The method is demonstrated by evaluating (a) surface profiles of mechanically warped silicon wafers and (b) stress gradients near growing cracks in planar phase objects.

  17. The Electric Field of a Uniformly Charged Non-Conducting Cubic Surface

    CERN Document Server

    McCreery, Kaitlin

    2016-01-01

    As an integrative and insightful example for undergraduates learning about electrostatics, we discuss how to use symmetry, Coulomb's Law, superposition, Gauss's law, and visualization to understand the electric field produced by a non-conducting cubic surface that is covered with a uniform surface charge density. We first discuss how to deduce qualitatively, using only elementary physics, the surprising fact that the electric field inside the cubic surface is nonzero and has a complex structure, pointing inwards towards the cube center from the midface of each cube and pointing outwards towards each edge and corner. We then discuss how to understand the quantitative features of the electric field by plotting an analytical expression for E along symmetry lines and on symmetry surfaces. This example would be a good choice for group problem solving in a recitation or flipped classroom.

  18. A New First-Principles Calculation of Field-Dependent RF Surface Impedance of BCS Superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Binping [Brookhaven National Laboratory, Upton, New York (United States); Reece, Charles E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2014-02-01

    There is a need to understand the intrinsic limit of radiofrequency (RF) surface impedance that determines the performance of superconducting RF cavities in particle accelerators. Here we present a field-dependent derivation of Mattis-Bardeen theory of the RF surface impedance of BCS superconductors based on the shifted density of states resulting from coherently moving Cooper pairs. Our theoretical prediction of the effective BCS RF surface resistance (Rs) of niobium as a function of peak surface magnetic field amplitude agrees well with recently reported record low loss resonant cavity measurements from JLab and FNAL with carefully, yet differently, prepared niobium material. The surprising reduction in resistance with increasing field is explained to be an intrinsic effect.

  19. Emergent gauge field for a chiral bound state on curved surface

    Science.gov (United States)

    Shi, Zhe-Yu; Zhai, Hui

    2017-09-01

    Emergent physics is one of the most important concepts in modern physics, and one of the most intriguing examples is the emergent gauge field. Here we show that a gauge field emerges for a chiral bound state formed by two attractively interacting particles on a curved surface. We demonstrate explicitly that the center-of-mass wave function of such a deeply bound state is monopole harmonic instead of spherical harmonic, which means that the bound state experiences a magnetic monopole at the center of the sphere. This emergent gauge field is due to the coupling between the center-of-mass and the relative motion on a curved surface, and our results can be generalized to an arbitrary curved surface. This result establishes an intriguing connection between the space curvature and gauge field, and paves an alternative way to engineer a topological state with space curvature, and may be observed in a cold atom system.

  20. Imaging of transient surface acoustic waves by full-field photorefractive interferometry

    Science.gov (United States)

    Xiong, Jichuan; Xu, Xiaodong; Glorieux, Christ; Matsuda, Osamu; Cheng, Liping

    2015-05-01

    A stroboscopic full-field imaging technique based on photorefractive interferometry for the visualization of rapidly changing surface displacement fields by using of a standard charge-coupled device (CCD) camera is presented. The photorefractive buildup of the space charge field during and after probe laser pulses is simulated numerically. The resulting anisotropic diffraction upon the refractive index grating and the interference between the polarization-rotated diffracted reference beam and the transmitted signal beam are modeled theoretically. The method is experimentally demonstrated by full-field imaging of the propagation of photoacoustically generated surface acoustic waves with a temporal resolution of nanoseconds. The surface acoustic wave propagation in a 23 mm × 17 mm area on an aluminum plate was visualized with 520 × 696 pixels of the CCD sensor, yielding a spatial resolution of 33 μm. The short pulse duration (8 ns) of the probe laser yields the capability of imaging SAWs with frequencies up to 60 MHz.

  1. Imaging of transient surface acoustic waves by full-field photorefractive interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Jichuan [Key Laboratory of Modern Acoustics, Nanjing University, Nanjing 210093 (China); School of Electronic and Optical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094 (China); Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee (Belgium); Xu, Xiaodong, E-mail: xdxu@nju.edu.cn, E-mail: christ.glorieux@fys.kuleuven.be [Key Laboratory of Modern Acoustics, Nanjing University, Nanjing 210093 (China); Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee (Belgium); Glorieux, Christ, E-mail: xdxu@nju.edu.cn, E-mail: christ.glorieux@fys.kuleuven.be [Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee (Belgium); Matsuda, Osamu [Division of Applied Physics, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Cheng, Liping [Key Laboratory of Modern Acoustics, Nanjing University, Nanjing 210093 (China)

    2015-05-15

    A stroboscopic full-field imaging technique based on photorefractive interferometry for the visualization of rapidly changing surface displacement fields by using of a standard charge-coupled device (CCD) camera is presented. The photorefractive buildup of the space charge field during and after probe laser pulses is simulated numerically. The resulting anisotropic diffraction upon the refractive index grating and the interference between the polarization-rotated diffracted reference beam and the transmitted signal beam are modeled theoretically. The method is experimentally demonstrated by full-field imaging of the propagation of photoacoustically generated surface acoustic waves with a temporal resolution of nanoseconds. The surface acoustic wave propagation in a 23 mm × 17 mm area on an aluminum plate was visualized with 520 × 696 pixels of the CCD sensor, yielding a spatial resolution of 33 μm. The short pulse duration (8 ns) of the probe laser yields the capability of imaging SAWs with frequencies up to 60 MHz.

  2. Co-non-solvency: Mean-field polymer theory does not describe polymer collapse transition in a mixture of two competing good solvents

    Energy Technology Data Exchange (ETDEWEB)

    Mukherji, Debashish; Stuehn, Torsten; Kremer, Kurt [Max-Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz (Germany); Marques, Carlos M. [Max-Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz (Germany); Institut Charles Sadron, Université de Strasbourg, CNRS, Strasbourg (France)

    2015-03-21

    Smart polymers are a modern class of polymeric materials that often exhibit unpredictable behavior in mixtures of solvents. One such phenomenon is co-non-solvency. Co-non-solvency occurs when two (perfectly) miscible and competing good solvents, for a given polymer, are mixed together. As a result, the same polymer collapses into a compact globule within intermediate mixing ratios. More interestingly, polymer collapses when the solvent quality remains good and even gets increasingly better by the addition of the better cosolvent. This is a puzzling phenomenon that is driven by strong local concentration fluctuations. Because of the discrete particle based nature of the interactions, Flory-Huggins type mean field arguments become unsuitable. In this work, we extend the analysis of the co-non-solvency effect presented earlier [D. Mukherji et al., Nat. Commun. 5, 4882 (2014)]. We explain why co-non-solvency is a generic phenomenon, which can only be understood by the thermodynamic treatment of the competitive displacement of (co)solvent components. This competition can result in a polymer collapse upon improvement of the solvent quality. Specific chemical details are not required to understand these complex conformational transitions. Therefore, a broad range of polymers are expected to exhibit similar reentrant coil-globule-coil transitions in competing good solvents.

  3. Co-non-solvency: Mean-field polymer theory does not describe polymer collapse transition in a mixture of two competing good solvents

    Science.gov (United States)

    Mukherji, Debashish; Marques, Carlos M.; Stuehn, Torsten; Kremer, Kurt

    2015-03-01

    Smart polymers are a modern class of polymeric materials that often exhibit unpredictable behavior in mixtures of solvents. One such phenomenon is co-non-solvency. Co-non-solvency occurs when two (perfectly) miscible and competing good solvents, for a given polymer, are mixed together. As a result, the same polymer collapses into a compact globule within intermediate mixing ratios. More interestingly, polymer collapses when the solvent quality remains good and even gets increasingly better by the addition of the better cosolvent. This is a puzzling phenomenon that is driven by strong local concentration fluctuations. Because of the discrete particle based nature of the interactions, Flory-Huggins type mean field arguments become unsuitable. In this work, we extend the analysis of the co-non-solvency effect presented earlier [D. Mukherji et al., Nat. Commun. 5, 4882 (2014)]. We explain why co-non-solvency is a generic phenomenon, which can only be understood by the thermodynamic treatment of the competitive displacement of (co)solvent components. This competition can result in a polymer collapse upon improvement of the solvent quality. Specific chemical details are not required to understand these complex conformational transitions. Therefore, a broad range of polymers are expected to exhibit similar reentrant coil-globule-coil transitions in competing good solvents.

  4. Analysis of the time-domain spectrum of hydrogen in electric field near helium surface

    Institute of Scientific and Technical Information of China (English)

    Xiaoqing Gong; Guangcan Yang

    2011-01-01

    The Ryderberg electronic wave packet dynamics of hydrogen atom near helium surface in an electric field is investigated using the semiclassical method. The autocorrelation function is calculated when the photoionized electron is excited by a short laser pulse for different atom-surface separations. The results show that new recurrences appear because of the helium surface, and the number of recurrent peaks increases with the decrease in atom-surface distance. The new feature is ascribed to the bifurcation of new closed orbits in the classical dynamics of the photoionized electron. Therefore, surface properties have a significant effect on the spectrum of nearby atoms or ions.%@@ The Ryderberg electronic wave packet dynamics of hydrogen atom near helium surface in an electric field is investigated using the semiclassical method.The autocorrelation function is calculated when the photoionized electron is excited by a short laser pulse for different atom-surface separations.The results show that new recurrences appear because of the helium surface, and the number of recurrent peaks increases with the decrease in atom-surface distance.The new feature is ascribed to the bifurcation of new closed orbits in the classical dynamics of the photoionized electron.Therefore, surface properties have a significant effect on the spectrum of nearby atoms or ions.

  5. Outsourcing competence

    NARCIS (Netherlands)

    Bergstra, J.; Delen, G.; van Vlijmen, B.

    2011-01-01

    The topic of this paper, competences needed for outsourcing, is organized by first providing a generic competence scheme, which is subsequently instantiated to the area of sourcing and outsourcing. Sourcing and outsourcing are positioned as different areas of activity, neither one of which is

  6. On Verbal Competence

    Directory of Open Access Journals (Sweden)

    Zhongxin Dai

    2014-04-01

    Full Text Available This paper explored a new concept, verbal competence, to present a challenge to Chomsky’s linguistic competence and Hymes’ communicative competence. It is generally acknowledged that Chomsky concerned himself only with the syntactic/grammatical structures, and viewed the speaker’s generation and transformation of syntactic structures as the production of language. Hymes challenged Chomsky’s conception of linguistic competence and argued for an ethnographic or sociolinguistic concept, communicative competence, but his concept is too broad to be adequately grasped and followed in such fields as linguistics and second language acquisition. Communicative competence can include abilities to communicate with nonverbal behaviors, e.g. gestures, postures or even silence. The concept of verbal competence concerns itself with the mental and psychological processes of verbal production in communication. These processes originate from the speaker’s personal experience, in a certain situation of human communication, and with the sudden appearance of the intentional notion, shape up as the meaning images and end up in the verbal expression.

  7. Timespacing competence

    DEFF Research Database (Denmark)

    Laursen, Helle Pia; Mogensen, Naja Dahlstrup

    2016-01-01

    Drawing on Kramsch’s (2009) conceptualization of the multilingual subject and the symbolic self, in this paper, we explore how multilingual children re-signify three intertwined myths about the bilingual student, linguistic diversity and language competence, when, in the researcher-generated acti......Drawing on Kramsch’s (2009) conceptualization of the multilingual subject and the symbolic self, in this paper, we explore how multilingual children re-signify three intertwined myths about the bilingual student, linguistic diversity and language competence, when, in the researcher....... By perceiving competences from a subjective child perspective, we learn how children do what we call timespacing competence. On that basis, we suggest paying attention to how children themselves timespace competence by focusing (more consistently) on the subjective, social, spatial and temporal dimensions...

  8. Evaluation of Contralateral Breast Surface Dose in FIF (Field In Field) Tangential Irradiation Technique for Patients Undergone Breast Conservative Surgery

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byung Moon; Bang, Dong Wan; Bae, Yong Ki; Lee, Jeong Woo [Dept. of Radiation Oncology, Konkuk University Medical Center, Seoul (Korea, Republic of); Kim, You Hyun [Dept. of Radiological Science, College of Health Science, Korea University, Seoul (Korea, Republic of)

    2008-12-15

    The aim of this study is to evaluate contra-lateral breast (CLB) surface dose in Field-in-Field (FIF) technique for breast conserving surgery patients. For evaluation of surface dose in FIF technique, we have compared with other techniques, which were open fields (Open), metal wedge (MW), and enhanced dynamic wedge (EDW) techniques under same geometrical condition and prescribed dose. The three dimensional treatment planning system was used for dose optimization. For the verification of dose calculation, measurements using MOSFET detectors with Anderson Rando phantom were performed. The measured points for four different techniques were at the depth of 0 cm (epidermis) and 0.5 cm bolus (dermis), and spacing toward 2 cm, 4 cm, 6 cm, 8 cm, 10 cm apart from the edge of tangential medial beam. The dose calculations were done in 0.25 cm grid resolution by modified Batho method for inhomogeneity correction. In the planning results, the surface doses were differentiated in the range of 19.6-36.9, 33.2-138.2 for MW, 1.0-7.9, 1.6-37.4 for EDW, and for FIF at the depth of epidermis and dermis as compared to Open respectively. In the measurements, the surface doses were differentiated in the range of 11.1-71, 22.9-161 for MW, 4.1-15.5, 8.2-37.9 for EDW, and 4.9% for FIF at the depth of epidermis and dermis as compared to Open respectively. The surface doses were considered as underestimating in the planning calculation as compared to the measurement with MOSFET detectors. Was concluded as the lowest one among the techniques, even if it was compared with Open method. Our conclusion could be stated that the FIF technique could make the optimum dose distribution in Breast target, while effectively reduce the probability of secondary carcinogenesis due to undesirable scattered radiation to contra-lateral breast.

  9. Using simulated rainfall to evaluate field and indoor surface runoff phosphorus relationships.

    Science.gov (United States)

    Guidry, A R; Schindler, F V; German, D R; Gelderman, R H; Gerwing, J R

    2006-01-01

    While numerous studies have evaluated the efficacy of outdoor rainfall simulations to predict P concentrations in surface runoff, few studies have linked indoor rainfall simulations to P concentrations in surface runoff from agricultural fields. The objective of this study was to evaluate the capacity of indoor rainfall simulation to predict total dissolved P concentrations [TP(runoff for four dominant agricultural soils in South Dakota. Surface runoff from 10 residue-free field plots (2 m wide by 2 m long, 2-3% slope) and packed soil boxes (1 m long by 20 cm wide by 7.5 cm high, 2-3% slope) was compared. Surface runoff was generated via rainfall simulation at an intensity of 65 mm h(-1) and was collected for 30 min. Packed boxes produced approximately 24% more runoff (range = 2.8-3.4 cm) than field plots (range = 2.3-2.7 cm) among all soils. No statistical differences in either TP(runoff from packed boxes and field plots among soil series (0.17 runoff from field plots can be predicted from TP(runoff from the packed boxes (0.68 runoff using surface runoff TP(runoff can adequately predict TP(runoff for select soils.

  10. Tailored optical vector fields for ultrashort-pulse laser induced complex surface plasmon structuring.

    Science.gov (United States)

    Ouyang, J; Perrie, W; Allegre, O J; Heil, T; Jin, Y; Fearon, E; Eckford, D; Edwardson, S P; Dearden, G

    2015-05-18

    Precise tailoring of optical vector beams is demonstrated, shaping their focal electric fields and used to create complex laser micro-patterning on a metal surface. A Spatial Light Modulator (SLM) and a micro-structured S-waveplate were integrated with a picosecond laser system and employed to structure the vector fields into radial and azimuthal polarizations with and without a vortex phase wavefront as well as superposition states. Imprinting Laser Induced Periodic Surface Structures (LIPSS) elucidates the detailed vector fields around the focal region. In addition to clear azimuthal and radial plasmon surface structures, unique, variable logarithmic spiral micro-structures with a pitch Λ ∼1μm, not observed previously, were imprinted on the surface, confirming unambiguously the complex 2D focal electric fields. We show clearly also how the Orbital Angular Momentum(OAM) associated with a helical wavefront induces rotation of vector fields along the optic axis of a focusing lens and confirmed by the observed surface micro-structures.

  11. Profiling the Near field of Nanoshells Using Surface Enhanced Raman Spectroscopy

    Science.gov (United States)

    Lal, Surbhi

    2005-03-01

    There is tremendous interest in the enhancement of electromagnetic fields near metal surfaces. The spatial extent of the near field as a function of distance from the metal surface is of particular interest for applications such as surface enhanced Raman spectroscopy. By using specially designed molecular scaffolds with Raman-active constituents, we measure the profile of this fringing field at a nanoshell surface. Nanoshells are colloidal particles composed of a silica core covered by a gold shell, which exhibit a tunable plasmon resonance; close to this resonance there is a strong enhancement of the electromagnetic near field. The molecular scaffolds consist of polyadenine DNA strands as tethers with a terminal fluorescein molecule. By varying the length of the DNA strand, the fluorescein molecule is placed at controlled distances from the nanoshell surface. Both the DNA scaffold and the terminal fluorescein molecule provide us with independent SERS Stokes modes whose relative intensities permit us to map the average spatial decay length of the near field of the nanoparticle at its plasmon resonance.

  12. Singular surfaces in the open field line region of a diverted tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, A.

    1995-05-01

    The structure of the open field lines of a slightly nonaxisymmetric, poloidally diverted tokamak is explored by numerical integration of the field line equations for a simple model field. In practice, the nonaxisymmetry could be produced self-consistently by the nonlinear evolution of a free-boundary MHD mode, or it could be produced by field errors, or it could be imposed externally by design. In the presence of a nonaxisymmetric perturbation, the tokamak is shown to develop open field line regions of differing topology separated by singular surfaces. It is argued that the singular surfaces can be expected to play a role analogous to that of rational toroidal flux surfaces, in terms of constraining ideal MHD perturbations and thus constraining the free-energy that can be tapped by ideal MHD instabilities. The possibility of active control of free-boundary instabilities by means of currents driven on the open singular surfaces, which are directly accessible from the divertor plates, is discussed. Also discussed is the possibility of early detection of imminent disruptions through localized measurement of the singular surface currents.

  13. Surface Plasmon mediated near-field imaging and optical addressing in nanoscience

    CERN Document Server

    Drezet, A; Krenn, J R; Brun, M; Huant, S

    2007-01-01

    We present an overview of recent progress in plasmonics. We focus our study on the observation and excitation of surface plasmon polaritons (SPPs) with optical near-field microscopy. We discuss in particular recent applications of photon scanning tunnelling microscope (PSTM) for imaging of SPP propagating in metal and dielectric wave guides. We show how near-field scanning optical microscopy (NSOM) can be used to optically and actively address remotely nano-objects such as quantum dots. Additionally we compare results obtained with near-field microscopy to those obtained with other optical far-field methods of analysis such as leakage radiation microscopy (LRM).

  14. Electric field sensing near the surface microstructure of an atom chip using cold Rydberg atoms

    CERN Document Server

    Carter, J D; Martin, J D D

    2012-01-01

    The electric fields near the heterogeneous metal/dielectric surface of an atom chip were measured using cold atoms. The atomic sensitivity to electric fields was enhanced by exciting the atoms to Rydberg states that are 10^8 times more polarizable than the ground state. We attribute the measured fields to charging of the insulators between the atom chip wires. Surprisingly, it is observed that these fields may be dramatically lowered with appropriate voltage biasing, suggesting configurations for the future development of hybrid quantum systems.

  15. Computational Study of Field Initiated Surface Reactions for Synthesis of Diamond and Silicon

    Science.gov (United States)

    Musgrave, Charles Bruce

    1999-01-01

    This project involves using quantum chemistry to simulate surface chemical reactions in the presence of an electric field for nanofabrication of diamond and silicon. A field delivered by a scanning tunneling microscope (STM) to a nanometer scale region of a surface affects chemical reaction potential energy surfaces (PES) to direct atomic scale surface modification to fabricate sub-nanometer structures. Our original hypothesis is that the applied voltage polarizes the charge distribution of the valence electrons and that these distorted molecular orbitals can be manipulated with the STM so as to change the relative stabilities of the electronic configurations over the reaction coordinates and thus the topology of the PES and reaction kinetics. Our objective is to investigate the effect of applied bias on surface reactions and the extent to which STM delivered fields can be used to direct surface chemical reactions on an atomic scale on diamond and silicon. To analyze the fundamentals of field induced chemistry and to investigate the application of this technique for the fabrication of nanostructures, we have employed methods capable of accurately describing molecular electronic structure. The methods we employ are density functional theory (DFT) quantum chemical (QC) methods. To determine the effect of applied bias on surface reactions we have calculated the QC PESs in various applied external fields for various reaction steps for depositing or etching diamond and silicon. We have chosen reactions which are thought to play a role in etching and the chemical vapor deposition growth of Si and diamond. The PESs of the elementary reaction steps involved are then calculated under the applied fields, which we vary in magnitude and configuration. We pay special attention to the change in the reaction barriers, and transition state locations, and search for low energy reaction channels which were inaccessible without the applied bias.

  16. Core Competence Development : paradigm and practical implementations

    OpenAIRE

    Koay, Ze Wei; E.Markov, Denis

    2011-01-01

    The theory of core competence has drawn a large amount of attention in the academic field as well as of practitioners in the corporate world. Theory asserts that long-term value creation and competitiveness of the corporation relies on full-scale exploitation and timely development of company Core Competences; business strategies should be built around the core competencies of a firm. Identification and exploitation of Core Competences as well as essential elements comprising Core Competences...

  17. Botswana water and surface energy balance research program. Part 1: Integrated approach and field campaign results

    Science.gov (United States)

    Vandegriend, A. A.; Owe, M.; Vugts, H. F.; Ramothwa, G. K.

    1992-01-01

    The Botswana water and surface energy balance research program was developed to study and evaluate the integrated use of multispectral satellite remote sensing for monitoring the hydrological status of the Earth's surface. Results of the first part of the program (Botswana 1) which ran from 1 Jan. 1988 - 31 Dec. 1990 are summarized. Botswana 1 consisted of two major, mutually related components: a surface energy balance modeling component, built around an extensive field campaign; and a passive microwave research component which consisted of a retrospective study of large scale moisture conditions and Nimbus scanning multichannel microwave radiometer microwave signatures. The integrated approach of both components in general are described and activities performed during the surface energy modeling component including the extensive field campaign are summarized. The results of the passive microwave component are summarized. The key of the field campaign was a multilevel approach, whereby measurements by various similar sensors were made at several altitudes and resolution. Data collection was performed at two adjacent sites of contrasting surface character. The following measurements were made: micrometeorological measurements, surface temperatures, soil temperatures, soil moisture, vegetation (leaf area index and biomass), satellite data, aircraft data, atmospheric soundings, stomatal resistance, and surface emissivity.

  18. Model Research on the Effect of Surface Film on Ammonia Volatilization from Rice Field

    Institute of Scientific and Technical Information of China (English)

    ZHUANG Shun-yao; YIN Bin; ZHU Zhao-liang

    2002-01-01

    Pan and field experiments were conducted to investigate the effect of surface film on ammonia volatilization from water and paddy soil. The results showed that the addition of the surface film on floodwater reduced the rate of ammonia volatilization, however, the reduction of the latter varied greatly with its rates of addition. Jayaweera-Mikkelsen ammonia volatilization model with the introduction of a parameter Kf, a relative measure of the resistance of the surface film on ammonia volatilization, was used to elucidate the effectiveness of the surface film on lowering ammonia volatilization. The Kf value was calculated from the results obtained in the pan experiment with different rates of surface film addition. With the modified model and the optimized Kf value, the effects of the surface film in reducing ammonia volatilization under different environmental conditions were simulated and analyzed. However, it was found that the simulation was not satisfactory in the field experiment and the parameter Kf should be further tuned so as to improve the simulation and to optimize the addition rate of the surface film in field conditions.

  19. Identification of Surface Manifestation at Geothermal Field Using SAR Dual Orbit Data

    Science.gov (United States)

    Akbari, Dinul; Saepuloh, Asep

    2016-09-01

    The Wayang -Windu Geothermal Field located in West Java, Indonesia is a geothermal field under tropical zone which is identified by high precipitation, dense vegetation, and extensive weathering/alteration. The clouds due to high precipitation and vegetation conditions on the tropical zone inhibit the identification of surface manifestation using optical remote sensing techniques. In this paper, we reduced these inhibiting factors using microwave remote sensing techniques termed as Synthetic Aperture Radar (SAR). The SAR dual orbits were used to observe the targets on the surface by minimizing the effects from the clouds and dense vegetation cover. This study is aimed to identify surface manifestation based on Geo morphologic and Structural Features (GSF) of the SAR in Ascending and Descending orbits. The Linear Features Density of SAR (lifedSAR) method was applied to quantify the linear features of the ground surface and served as basis of surface manifestation identification. Based on the lifedSAR and field observations, the surface manifestations could be detected succesfully at Wayang and Cibolang craters with density about 45%. The soil measurements were used validate the result and to interpret the correlation between LFD and surface manifestations.

  20. Calculation of the integral magnetic field of a star accounting for the surface distribution of elements

    Science.gov (United States)

    Gerth, E.; Glagolevskij, Yu. V.

    The observable magnetic field of a star is the result of integration over its visible hemisphere, related to the information transferring medium: the spectral line profile. The hitherto practised simple integration of the magnetic field strength neglects the spotty face of the star and is physically wrong. Because of the topographically distributed line-generating elements in the stellar atmosphere, the contribution of all parts of the surface to the integration is different. For an effective computation, both the magnetic field and the element distribution are transformed from globes to Mercator maps and arranged as right-angled matrices. The numerical evaluation is performed by a special computer program, which uses matrices and vector algebra. The theory is based on the mathematical derivation of convolution integrals for the rotation of the star and the line profiles formed in its atmosphere, whereby the radiation from all surface areas in direction to the observer is integrated, accounting for the geometrical and radiation transfer conditions of the disk-like visible hemisphere and the element distribution of chemically peculiar (CP) stars. The computation starts from a given magnetic field structure on the surface of a star and progresses straightforward over convolution integrals to the phase curves of the integral magnetic field strength. The calculation procedure is independent of a special generation model of the stellar magnetic field and possesses common validity. In consideration of other approaches to the problem of field structure analysis, also the inversion of the convolution is discussed.

  1. A time-dependent vector field topology based on streak surfaces.

    Science.gov (United States)

    Uffinger, Markus; Sadlo, Filip; Ertl, Thomas

    2013-03-01

    It was shown recently how the 2D vector field topology concept, directly applicable to stationary vector fields only, can be generalized to time-dependent vector fields by replacing the role of stream lines by streak lines. The present paper extends this concept to 3D vector fields. In traditional 3D vector field topology separatrices can be obtained by integrating stream lines from 0D seeds corresponding to critical points. We show that in our new concept, in contrast, 1D seeding constructs are required for computing streak-based separatrices. In analogy to the 2D generalization we show that invariant manifolds can be obtained by seeding streak surfaces along distinguished path surfaces emanating from intersection curves between codimension-1 ridges in the forward and reverse finite-time Lyapunov exponent (FTLE) fields. These path surfaces represent a time-dependent generalization of critical points and convey further structure in time-dependent topology of vector fields. Compared to the traditional approach based on FTLE ridges, the resulting streak manifolds ease the analysis of Lagrangian coherent structures (LCS) with respect to visual quality and computational cost, especially when time series of LCS are computed. We exemplify validity and utility of the new approach using both synthetic examples and computational fluid dynamics results.

  2. Enhanced field emission from nanosecond laser based surface micro-structured stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.K., E-mail: anilks@barc.gov.in [Laser & Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400085< p/ostalC> (India); Shinde, Deodatta; More, Mahendra A. [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Sinha, Sucharita [Laser & Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400085< p/ostalC> (India)

    2015-12-01

    Highlights: • Stainless steel (SS) sheets have been surface treated using a frequency doubled nanosecond pulsed Nd:YAG laser at laser fluence level ∼0.7 J/cm{sup 2} resulting in formation of micro protrusions. • In regions near periphery of the laser treated spot showed formation of micro-protrusions with density as high as ∼4.5 × 10{sup 7} cones/cm{sup 2}. • Energy dispersive X-ray spectroscopy (EDS) analysis of untreated and laser treated samples reveals trend in change of elemental composition of the sample on laser treatment. • Grazing incidence X-ray diffraction analysis of untreated and laser treated samples shows formation of oxides and nitrides of iron upon laser treatment. • Field emission study on the laser micro-structured (SS) sample has shown low turn on field in comparison to untreated stainless steel. • Parameters characterizing large area field emitters such as turn ON field, macroscopic field enhancement factor and pre exponential factor corresponding to the laser micro-structured steel surface have been estimated. • Field emission current has shown good stability when tested over a period of 140 min at a preset level of 4 μA. - Abstract: This paper presents results of field emission study of laser based surface micro-structured stainless steel (SS). Surface micro-structuring of SS samples has been performed by direct irradiation of sample surface with a frequency doubled Nd:YAG nanosecond (ns) laser in atmospheric ambience. Laser treated samples have been characterized in terms of their surface morphology, elemental composition and field emission properties. Our results reveal formation of micro-protrusions of varying height and tip diameter depending on incident laser fluence. Within the laser irradiated spot, regions near periphery showed formation of micro-protrusions with number density as high as 4.5 × 10{sup 7} protrusions/cm{sup 2}. Such laser micro-structured samples have shown much lower turn on electric field (7.5 V

  3. Features of wind field over the sea surface in the coastal area

    Science.gov (United States)

    Monzikova, A. K.; Kudryavtsev, V. N.; Myasoedov, A. G.; Chapron, B.; Zilitinkevich, S. S.

    2017-01-01

    In this paper we analyze SAR wind field features, in particular the effects of wind shadowing. These effects represent the dynamics of the internal atmospheric boundary layer, which is formed due to the transition of the air flow arriving from the rough land surface to the "smooth" water surface. In the wind-shadowed area, the flow accelerates, and a surface wind stress increases with fetch. The width of the shadow depends not only on the wind speed and atmospheric boundary layer stratification, but also on geographic features such as windflow multiple transformations over the complex surface land-Lake Chudskoe-land-Gulf of Finland. Measurements showed that, in the area of wind acceleration, the surface stress normalized by an equilibrium value (far from the coast) is a universal function of dimensionless fetch Xf/G. Surface wind stress reaches an equilibrium value at Xf/G ≈ 0.4, which is the scale of the planetary-boundary-layer relaxation.

  4. Competence Building

    DEFF Research Database (Denmark)

    Borrás, Susana; Edquist, Charles

    on the one hand, and the real world of innovation policy-making on the other, typically not speaking to each other. With this purpose in mind, this paper discusses the role of competences and competence-building in the innovation process from a perspective of innovation systems; it examines how governments...... and public agencies in different countries and different times have actually approached the issue of building, maintaining and using competences in their innovation systems; it examines what are the critical and most important issues at stake from the point of view of innovation policy, looking particularly...

  5. A synergetic application of surface plasmon and field effect to improve Si solar cell performance

    Science.gov (United States)

    Zhou, Zhi-Quan; Wang, Liang-Xing; Shi, Wei; Sun, Shu-Lin; Lu, Ming

    2016-04-01

    We report a synergetic application of surface plasmon (SP) and field effect (FE) to improve crystalline Si solar cell performance. The SPs are supported by small-sized Ag nanoparticles with an average diameter of 36.7 nm. The localized SP electromagnetic field from Ag nanoparticles excites extra electron-hole pairs at the surface region of the Si solar cell emitter, and meanwhile, the electron-hole pairs are detached by the electrostatic field that crosses the emitter surface. This synergism of SP and FE produces extra charges and enhances the Si solar cell efficiency. As compared to a Si solar cell applying SP and FE independently, a more than 10% efficiency enhancement is achieved by using them synergistically.

  6. Simulation of the surface wind field and wind waves over the Oman Sea

    Science.gov (United States)

    Hamzeloo, Sima; Hadi Moeini, Mohammad; Jandaghi Alaee, Majid

    2016-04-01

    Surface wind field is one of the most important factors in the generation of the marine hydrodynamic phenomena such as wind waves that highly affected by the surface winds. Therefore, accessibility to the correct wind field is of great importance for accurate prediction and simulation of the hydrodynamic variables. Nowadays numerical mesoscale weather prediction models are widely applied as powerful tools to simulate wind and other atmospheric variables with predefined temporal and spatial resolution in desired areas. Despite appropriate results of the numerical models in many regions, there are still some complications in the simulation of the surface wind field in areas with complex orography since the surface wind field is highly affected by the local topography, land-sea discontinuity, temperature gradient etc. Nowadays, with the development of high-speed processors the third generation spectral models are generally used for simulation of wind waves. Wind data are the main input parameters of the numerical spectral wave model. Therefore, the quality of the input wind data can be assessed by comparison of the wave model outputs with measured values. The main goal of the current study is to simulate surface wind field over the Oman Sea using WRF modeling system. To verify the model results, the simulated wind speeds were compared with synoptic and buoy measurements and satellite observations. Wind-wave parameters simulated by the spectral model were also compared with wave measurements to verify simulated surface wind field as the input of the wave model. The Comparison simulated wind speed and directions in coastal synoptic stations and QuikSCAT satellite shows sufficient results for both offshore and coastal areas.

  7. Field experiment on coalmine heat disaster governance using cold source from surface water

    Institute of Scientific and Technical Information of China (English)

    Guo Pingye; Zhu Guolong; Liu Yuqing; Duan Mengmeng; Wu Junyin

    2014-01-01

    Regarding the lack of cold source for underground cooling systems from either mine inflow or return air, field experiments were taken in a high temperature deep coal mine with abundant cold source from surface water. Taking Sanhejian coal mine as an example, this paper introduced the technology scheme of heat disaster governance using surface water cold source. The paper presents the basics of this field experiment at the beginning, following by the design and site layout of the cooling system including the analysis and calculation of cold source. Numerical calculation method is also applied based on the operation parameters to simulate the influence to the surface river ecosystem. The results suggest that the temperature of surface water shall be lower than 34 ?C after heat exchange, and when more cooling capacities are needed in the future, increasing the water flow is more favorable than increasing the cooling range of water, which is better for the ecological environment protection.

  8. High-fidelity simulation in the nonmedical domain: practices and potential transferable competencies for the medical field

    Directory of Open Access Journals (Sweden)

    Carron PN

    2011-05-01

    Full Text Available Pierre-Nicolas Carron, Lionel Trueb, Bertrand YersinEmergency Service, University Hospital Center, Lausanne, SwitzerlandAbstract: Simulation is a promising pedagogical tool in the area of medical education. High-fidelity simulators can reproduce realistic environments or clinical situations. This allows for the practice of teamwork and communication skills, thereby enhancing reflective reasoning and experiential learning. Use of high-fidelity simulators is not limited to the medical and aeronautical fields, but has developed in a large number of nonmedical organizations as well. The techniques and pedagogical tools which have evolved through the use of nonmedical simulations serve not only as teaching examples but also as avenues which can help further the evolution of the concept of high-fidelity simulation in the field of medicine. This paper presents examples of high-fidelity simulations in the military, maritime, and aeronautical fields. We compare the implementation of high-fidelity simulation in the medical and nonmedical domains, and discuss the possibilities and limitations of simulators in medicine, based on recent nonmedical applications.Keywords: high-fidelity simulation, crew resource management, experiential learning

  9. Competing effects of magnetic impurities in the anomalous Hall effect on the surface of a topological insulator

    Science.gov (United States)

    Deng, Ming-Xun; Luo, Wei; Deng, W. Y.; Chen, M. N.; Sheng, L.; Xing, D. Y.

    2016-12-01

    We investigate the anomalous Hall effect (AHE) on the surface of a topological insulator induced by a finite concentration of magnetic impurities, and find topologically nontrivial and trivial mechanisms simultaneously contributing to the Hall conductivity. In the topologically nontrivial mechanism, the impurities gap the surface spectrum and result in a half-integer quantized intrinsic Hall conductivity in units e2/h , while in the topologically trivial mechanism, the half-integer quantized plateau is modified by impurity-induced localized states via a gap-filling process. The nonmagnetic charge potential itself, though participating in the gap-filling process, cannot induce the AHE. In the presence of a finite magnetic potential, the charge potential would destroy the symmetric distribution of the Hall conductivity by redistributing the localized levels. More interestingly, the sign of the Hall conductivity is tunable by changing the strength of the charge potential.

  10. SURFACE FILMS TO SUPPRESS FIELD EMISSION IN HIGH-POWER MICROWAVE COMPONENTS

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay l

    2014-02-07

    Results are reported on attempts to reduce the RF breakdown probability on copper accelerator structures by applying thin surface films that could suppress field emission of electrons. Techniques for application and testing of copper samples with films of metals with work functions higher than copper are described, principally for application of platinum films, since platinum has the second highest work function of any metal. Techniques for application of insulating films are also described, since these can suppress field emission and damage on account of dielectric shielding of fields at the copper surface, and on account of the greater hardness of insulating films, as compared with copper. In particular, application of zirconium oxide films on high-field portions of a 11.424 GHz SLAC cavity structure for breakdown tests are described.

  11. Temperature- and electric-field-induced inverse Freedericksz transition in a nematogen with weak surface anchoring

    Science.gov (United States)

    Kumar, T. Arun; Sathyanarayana, P.; Sastry, V. S. S.; Takezoe, Hideo; Madhusudana, N. V.; Dhara, Surajit

    2010-07-01

    We report electric field dependence of the anchoring transition in a mesogen on cooling in a cell with perfluoropolymer treated surfaces. Below a crossover voltage Vco the transition is discontinuous between planar and homeotropic alignments, and as the temperature is lowered, the transition temperature decreases quadratically with the field. Above Vco the transition is continuous between planar and tilted alignments, the transition temperature decreasing essentially linearly with the rms field. We develop a simple model to account for these results and argue that the higher field regime corresponds to a temperature driven inverse Freedericksz transition in which the director orientation starts tilting at the weakly anchored surfaces while the tilt angle remains zero at the midplane of the cell.

  12. Field-emission microscopy of the surface of an Ir-C-Cs point emitter

    Science.gov (United States)

    Bernatskii, D. P.; Pavlov, V. G.

    2013-12-01

    The emissive properties of an iridium-based point emitter with various forms of carbon (chemisorbed species, two-dimensional graphite structures) and cesium atoms adsorbed on the surface has been studied by the field-electron emission microscopy (FEM) and field-desorption microscopy (FDM) techniques. The FEE and FDM images of the emitter surface corresponding to various phase states of carbon have been obtained. It is established that two-dimensional graphite structures grow predominantly in the regions of (100) and (111) faces of iridium.

  13. Precision analysis of non-conformal reconstruction for the surface acoustic field on axisymmetric structures

    Institute of Scientific and Technical Information of China (English)

    HE Yuanan; HE Zuoyong

    2003-01-01

    Reconstruction of the surface acoustic field of axisymmetric body with arbitrary boundary conditions using near-field acoustic data is studied. The method of numerical reconstruction based on orthonormalization function expansion (OFE) and boundary element integral (BEI) is presented which can overcome the singular integral problem in the boundary integral equations. By numerical examples, the precision of reconstruction for the non-conformal surface with the axisymmetric or non-axisymmetric vibrating on axisymmetric body is given.The results of the numerical simulation are shown that this kind of reconstruction method is available for engineering.

  14. Trace projection transformation: a new method for measurement of debris flow surface velocity fields

    Science.gov (United States)

    Yan, Yan; Cui, Peng; Guo, Xiaojun; Ge, Yonggang

    2016-12-01

    Spatiotemporal variation of velocity is important for debris flow dynamics. This paper presents a new method, the trace projection transformation, for accurate, non-contact measurement of a debris-flow surface velocity field based on a combination of dense optical flow and perspective projection transformation. The algorithm for interpreting and processing is implemented in C ++ and realized in Visual Studio 2012. The method allows quantitative analysis of flow motion through videos from various angles (camera positioned at the opposite direction of fluid motion). It yields the spatiotemporal distribution of surface velocity field at pixel level and thus provides a quantitative description of the surface processes. The trace projection transformation is superior to conventional measurement methods in that it obtains the full surface velocity field by computing the optical flow of all pixels. The result achieves a 90% accuracy of when comparing with the observed values. As a case study, the method is applied to the quantitative analysis of surface velocity field of a specific debris flow.

  15. Ultrafast dark-field surface inspection with hybrid-dispersion laser scanning

    Science.gov (United States)

    Yazaki, Akio; Kim, Chanju; Chan, Jacky; Mahjoubfar, Ata; Goda, Keisuke; Watanabe, Masahiro; Jalali, Bahram

    2014-06-01

    High-speed surface inspection plays an important role in industrial manufacturing, safety monitoring, and quality control. It is desirable to go beyond the speed limitation of current technologies for reducing manufacturing costs and opening a new window onto a class of applications that require high-throughput sensing. Here, we report a high-speed dark-field surface inspector for detection of micrometer-sized surface defects that can travel at a record high speed as high as a few kilometers per second. This method is based on a modified time-stretch microscope that illuminates temporally and spatially dispersed laser pulses on the surface of a fast-moving object and detects scattered light from defects on the surface with a sensitive photodetector in a dark-field configuration. The inspector's ability to perform ultrafast dark-field surface inspection enables real-time identification of difficult-to-detect features on weakly reflecting surfaces and hence renders the method much more practical than in the previously demonstrated bright-field configuration. Consequently, our inspector provides nearly 1000 times higher scanning speed than conventional inspectors. To show our method's broad utility, we demonstrate real-time inspection of the surface of various objects (a non-reflective black film, transparent flexible film, and reflective hard disk) for detection of 10 μm or smaller defects on a moving target at 20 m/s within a scan width of 25 mm at a scan rate of 90.9 MHz. Our method holds promise for improving the cost and performance of organic light-emitting diode displays for next-generation smart phones, lithium-ion batteries for green electronics, and high-efficiency solar cells.

  16. Mapping Surface Soil Organic Carbon for Crop Fields with Remote Sensing

    Science.gov (United States)

    Chen, Feng; Kissel, David E.; West, Larry T.; Rickman, Doug; Luvall, J. C.; Adkins, Wayne

    2004-01-01

    The organic C concentration of surface soil can be used in agricultural fields to vary crop production inputs. Organic C is often highly spatially variable, so that maps of soil organic C can be used to vary crop production inputs using precision farming technology. The objective of this research was to demonstrate the feasibility of mapping soil organic C on three fields, using remotely sensed images of the fields with a bare surface. Enough soil samples covering the range in soil organic C must be taken from each field to develop a satisfactory relationship between soil organic C content and image reflectance values. The number of soil samples analyzed in the three fields varied from 22 to 26. The regression equations differed between fields, but gave highly significant relationships with R2 values of 0.93, 0.95, and 0.89 for the three fields. A comparison of predicted and measured values of soil organic C for an independent set of 2 soil samples taken on one of the fields gave highly satisfactory results, with a comparison equation of % organic C measured + 1.02% organic C predicted, with r2 = 0.87.

  17. The Electromagnetic Fields Under, On and Up Earth Surface As Precursor of Local Earthquake

    Science.gov (United States)

    Chterev Mavrodiev, Strachimir

    The analysis of accurasy measured Earth magnetic field gives a signal for near future near enîugh and strong enough eartquake. The correlation wit the tide gravitational potential derivatives permits to predict the day of the earthquake. It is formulated a Programm for electromagnetic field monitoring under on and up Earth surface and data analysis for investigation of possibilities for predicting the time, place, Magnitude and destractive power of future earthquake in Balkan and Black Sea region.

  18. Near-field radiative heat transfer between arbitrarily-shaped objects and a surface

    CERN Document Server

    Edalatpour, Sheila

    2016-01-01

    A fluctuational electrodynamics-based formalism for calculating near-field radiative heat transfer between objects of arbitrary size and shape and an infinite surface is presented. The surface interactions are treated analytically via Sommerfeld's theory of electric dipole radiation above an infinite plane. The volume integral equation for the electric field is discretized using the thermal discrete dipole approximation (T-DDA). The framework is verified against exact results in the sphere-surface configuration, and is applied to analyze near-field radiative heat transfer between a complex-shaped probe and an infinite plane both made of silica. It is found that when the probe tip size is approximately equal to or smaller than the gap d separating the probe and the surface, coupled localized surface phonon (LSPh)-surface phonon-polariton (SPhP) mediated heat transfer occurs. In this regime, the net spectral heat rate exhibits four resonant modes due to LSPhs along the minor axis of the probe while the net tota...

  19. Unraveling brackish groundwater - surface water interaction in an agricultural field using direct measurements at the field scale

    Science.gov (United States)

    Delsman, Joost; Waterloo, Maarten; Groen, Michel; Groen, Koos

    2014-05-01

    Understanding the interaction between groundwater and surface water is important for a myriad of reasons, including flow forecasting, nutrient transport, and water allocation for agriculture and other water users. This understanding is especially important in deep polder areas in the Netherlands, where brackish groundwater seepage (upward flowing regional groundwater) results in a significant salt load to surface water, and may damage crops if salts reach the rootzone in dry summers. Research on groundwater - surface water interaction historically focused on relatively pristine headwater catchments, only recently shifting somewhat to agricultural catchments. The latter pose specific research challenges, as agricultural activities and active water management can have a significant influence on hydrology. A brackish seepage flux, with a different density as precipitation, may significantly influence flow paths to surface water. Research on this specific topic is, however, lacking. We therefore investigated the interaction between groundwater and surface water in an agricultural catchment with a significant brackish seepage flux. In addition, we investigated the effects of intake of fresh water during periods of precipitation deficits, a common management strategy in lowland regions. We instrumented an agricultural ditch to enable direct, 15 min interval measurements of water fluxes and salinity to both agricultural drains and the ditch separately. These measurements are supported by piezometer nests, soil moisture sensors, temperature sensors, geophysics and a meteorological tower. Measurements focused on the summer period and were taken during two measurement periods: May 2012 - November 2012, and April 2013 - October 2013. Our measurements allowed for a direct, high-frequency separation of hydrological flow routes on this agricultural field between flow to agricultural drains and the ditch. The salinity of seepage water allowed for a relatively easy separation of

  20. On the flow magnitude and field-flow alignment at Earth's core surface

    DEFF Research Database (Denmark)

    Finlay, Chris; Amit, H.

    We present a method to estimate the typical magnitude of flow close toEarth's core surface based on observational knowledge of the maingeomagnetic field (MF) and its secular variation (SV), together withprior information concerning field-flow alignment gleaned from numericaldynamo models. An expr......We present a method to estimate the typical magnitude of flow close toEarth's core surface based on observational knowledge of the maingeomagnetic field (MF) and its secular variation (SV), together withprior information concerning field-flow alignment gleaned from numericaldynamo models....... An expression linking the core surface flow magnitude tospherical harmonic spectra of the MF and SV is derived from the magneticinduction equation. This involves the angle gamma between the flowand the horizontal gradient of the radial field. We study gamma in asuite of numerical dynamo models and discuss...... that the amount of field-flow alignment depends primarily on amagnetic modified Rayleigh number Raeta = alpha g0 Delta T D / eta Omega , which measures the vigorof convective driving relative to the strength of magnetic dissipation.Synthetic tests of the flow magnitude estimation scheme are encouraging...

  1. On the flow magnitude and field-flow alignment at Earth's core surface

    DEFF Research Database (Denmark)

    Finlay, Chris; Amit, H.

    We present a method to estimate the typical magnitude of flow close toEarth's core surface based on observational knowledge of the maingeomagnetic field (MF) and its secular variation (SV), together withprior information concerning field-flow alignment gleaned from numericaldynamo models. An expr......We present a method to estimate the typical magnitude of flow close toEarth's core surface based on observational knowledge of the maingeomagnetic field (MF) and its secular variation (SV), together withprior information concerning field-flow alignment gleaned from numericaldynamo models....... An expression linking the core surface flow magnitude tospherical harmonic spectra of the MF and SV is derived from the magneticinduction equation. This involves the angle gamma between the flowand the horizontal gradient of the radial field. We study gamma in asuite of numerical dynamo models and discuss...... that the amount of field-flow alignment depends primarily on amagnetic modified Rayleigh number Raeta = alpha g0 Delta T D / eta Omega , which measures the vigorof convective driving relative to the strength of magnetic dissipation.Synthetic tests of the flow magnitude estimation scheme are encouraging...

  2. An Extrapolation Method of Vector Magnetic Field via Surface Integral Technique

    Institute of Scientific and Technical Information of China (English)

    YAN Hui; XIAO Chang-han; ZHOU Guo-hua

    2009-01-01

    According to the integral relationship between the vector magnetic flux density on a spatial point and that over a closed surface around magnetic sources, a technique for the extrapolation of vector magnetic field of a ferromagnetic object is given without computing scalar potential and its gradient. The vector magnetic flux density on a remote spatial point can be extrapolated by surface integral from the vector values over a closed measureed surface around the ferromagnetic object. The correctness of the technique testified by a special example and simulation. The experimented result shows that its accuracy is satisfying and the execution time is less than 1 second.

  3. Tunable far-field acoustic imaging by two-dimensional sonic crystal with concave incident surface

    Science.gov (United States)

    Shen, Feng-Fu; Lu, Dan-Feng; Zhu, Hong-Wei; Ji, Chang-Ying; Shi, Qing-Fan

    2017-01-01

    An additional concave incident surface comprised of two-dimensional (2D) sonic crystals (SCs) is employed to tune the acoustic image in the far-field region. The tunability is realized through changing the curvature of the concave surface. To explain the tuning mechanism, a simple ray-trace analysis is demonstrated based on the wave-beam negative refractive law. Then, a numerical confirmation is carried out. Results show that both the position and the intensity of the image can be tuned by the introduced concave surface.

  4. A one-dimensional model for the quantum efficiency of front-surface-field solar cells

    Science.gov (United States)

    Yernaux, M. I.; Battochio, C.; Verlinden, P.; van de Wiele, F.

    1984-11-01

    A one-dimensional analytical model is proposed to calculate the photocurrent generated in interdigitated back contact solar cells with a high-low junction at the front illuminated surface. The high-low junction is simulated by constant doping levels, mobilities and lifetimes. A study of the quantum efficiency of front-surface-field (FSF) solar cells is made and the computer results are compared with experimental results. A method of determining the real and the effective surface recombination velocity of FSF solar cells is proposed.

  5. Plot-scale field experiment of surface hydrologic processes with EOS implications

    Science.gov (United States)

    Laymon, Charles A.; Macari, Emir J.; Costes, Nicholas C.

    1992-01-01

    Plot-scale hydrologic field studies were initiated at NASA Marshall Space Flight Center to a) investigate the spatial and temporal variability of surface and subsurface hydrologic processes, particularly as affected by vegetation, and b) develop experimental techniques and associated instrumentation methodology to study hydrologic processes at increasingly large spatial scales. About 150 instruments, most of which are remotely operated, have been installed at the field site to monitor ground atmospheric conditions, precipitation, interception, soil-water status, and energy flux. This paper describes the nature of the field experiment, instrumentation and sampling rationale, and presents preliminary findings.

  6. Thermocapillary motion of bubbles inside drops. [in free fall environment with axisymmetric surface temperature field

    Science.gov (United States)

    Shankar, N.; Cole, R.; Subramanian, R. S.

    1982-01-01

    A quasi-static analysis is performed for the thermocapillary motion of a bubble located inside a drop in free fall, with arbitrary axisymmetric temperature fields prescribed on the drop surface. It is shown that in the case of an axially symmetric temperature field, the bubble moves along the axis of symmetry toward the nearest warm pole. The bubble velocity as well as the velocity and temperature fields in the drop can be predicted on the basis of the quasi-static assumptions. An approximation is presented which adequately describes bubble migration velocities in the case where the ratio of the bubble radius to the drop radius is relatively small.

  7. Tuning the competing phases of bilayer ruthenate C a3R u2O7 via dilute Mn impurities and magnetic field

    Science.gov (United States)

    Zhu, M.; Peng, J.; Tian, W.; Hong, T.; Mao, Z. Q.; Ke, X.

    2017-04-01

    We have systematically investigated the evolution of the magnetic structure of the bilayer ruthenate C a3(Ru1-xM nx) 2O7 induced upon Mn doping. For 0 field-induced transitions in C a3(Ru0.96Mn0.04) 2O7 , which is positioned at the phase boundary. Below TMIT, the magnetic transition is accompanied by a structural transition, as well as a dramatic change in the electronic properties from a Mott insulator to a localized phase. On the contrary, an incommensurate-to-commensurate spin structure transition is observed for TMITcompeting magnetic tendencies in this bilayer ruthenate system that are very susceptible to 3 d transition-metal substitution and magnetic field.

  8. Nonequilibrium depletion relaxation in strong electric fields under various conditions at the silicon surface

    Energy Technology Data Exchange (ETDEWEB)

    Kirillova, S.I.; Primachenko, V.E.; Snitko, O.V.

    1985-04-16

    The nonequilibrium depletion relaxation processes at real, clean, thermally oxidized, and Au and Zn doped n- and p-type Si surfaces are studied. A strong acceleration of the relaxation process with field increase is observed. This is explained by the Frenkel and Franz-Keldysh effect during the transition of majority charge carriers from the surface states into an allowed band. The acceleration is also believed to be due to a tunnel-activation mechanism of majority carriers from surface layer traps into an allowed band. The parameters of the surface states taking part in the relaxation of nonequilibrium depletion (the electron-phonon interaction parameter sigma, being very sensitive to the state of the Si surface, for example) are determined.

  9. Microstructure evolution and surface cleaning of Cu nanoparticles during micro-forming fields activated sintering technology

    Directory of Open Access Journals (Sweden)

    Wu Mingxia

    2015-01-01

    Full Text Available For the purpose of extensive utilization of powder metallurgy to micro/nano- fabrication of materials, the micro gear was prepared by a novel method, named as micro- forming fields activated sintering technology (Micro-FAST. Surface-cleaning of particles, especially during the initial stage of sintering, is a crucial issue for the densification mechanism. However, up to date, the mechanism of surface-cleaning is too complicated to be known. In this paper, the process of surface-cleaning of Micro-FAST was studied, employing the high resolution transmission electron microscopy (HRTEM for observation of microstructure of micro-particles. According to the evolution of the microstructure, surface-cleaning is mainly ascribed to the effect of electro-thermal focusing. The process of surface-cleaning is achieved through rearrangement of grains, formation of vacancy, migration of vacancy and enhancement of electro-thermal focusing.

  10. Assessment of Clinical Supervisor Competencies.

    Science.gov (United States)

    Getz, Hildy

    1999-01-01

    Presents a focus and process to assist those training clinical supervisors to assess competencies of the supervisor. States that process creates a practical framework that can be adapted for supervision competencies in other fields. Concludes that assessment methodology gives meaning to the support and structure vital at all levels of training…

  11. Competences of IT Architects

    NARCIS (Netherlands)

    Wieringa, Roel; Eck, van Pascal; Steghuis, Claudia; Proper, Erik

    2009-01-01

    The field of architecture in the digital world uses a plethora of terms to refer to different kinds of architects, and recognises a confusing variety of competences that these architects are required to have. Different service providers use different terms for similar architects and even if they use

  12. Competences of IT Architects

    NARCIS (Netherlands)

    Wieringa, Roelf J.; van Eck, Pascal; Steghuis, Claudia; Proper, Erik

    The field of architecture in the digital world uses a plethora of terms to refer to different kinds of architects, and recognises a confusing variety of competences that these architects are required to have. Different service providers use different terms for similar architects and even if they use

  13. Competences of IT Architects

    NARCIS (Netherlands)

    Wieringa, Roelf J.; van Eck, Pascal; Steghuis, C.; Proper, E.

    2008-01-01

    The field of architecture in the digital world uses a plethora of terms to refer to different kinds of architects, and recognizes a confusing variety of competences that these architects are required to have. Different service providers use different terms for similar architects and even if they use

  14. First measurements of error fields on W7-X using flux surface mapping

    Science.gov (United States)

    Lazerson, Samuel A.; Otte, Matthias; Bozhenkov, Sergey; Biedermann, Christoph; Pedersen, Thomas Sunn; the W7-X Team

    2016-10-01

    Error fields have been detected and quantified using the flux surface mapping diagnostic system on Wendelstein 7-X (W7-X). A low-field ‘{\\rlap- \\iota} =1/2 ’ magnetic configuration ({\\rlap- \\iota} =\\iota /2π ), sensitive to error fields, was developed in order to detect their presence using the flux surface mapping diagnostic. In this configuration, a vacuum flux surface with rotational transform of n/m  =  1/2 is created at the mid-radius of the vacuum flux surfaces. If no error fields are present a vanishingly small n/m  =  5/10 island chain should be present. Modeling indicates that if an n  =  1 perturbing field is applied by the trim coils, a large n/m  =  1/2 island chain will be opened. This island chain is used to create a perturbation large enough to be imaged by the diagnostic. Phase and amplitude scans of the applied field allow the measurement of a small ∼ 0.04 m intrinsic island chain with a {{130}\\circ} phase relative to the first module of the W7-X experiment. These error fields are determined to be small and easily correctable by the trim coil system. Notice: This manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the U.S. Department of Energy. The publisher, by accepting the article for publication acknowledges, that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  15. Zero modes of the Dirac operator on a noncompact two-dimensional surface in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sitenko, Y.A. (Institute of Theoretical Physics, Academy of Sciences, Ukrainian SSR (UA))

    1989-09-01

    We investigate zero modes of the two-dimensional Dirac operator on a noncompact singly connected surface in an external magnetic field. The number of square-integrable zero modes is shown to be determined by global characteristics of the external field and surface: the flux of the magnetic field through the surface and the Gauss curvature integrated over the surface. The equivalence of the square integrability condition for the noncompact surface to the conditions of the index theorem for a closed compact surface is discussed.

  16. Can Surface Flux Transport Account for the Weak Polar Field in Cycle 23?

    Science.gov (United States)

    Jiang, Jie; Cameron, Robert H.; Schmitt, Dieter; Schüssler, Manfred

    2013-06-01

    To reproduce the weak magnetic field on the polar caps of the Sun observed during the declining phase of cycle 23 poses a challenge to surface flux transport models since this cycle has not been particularly weak. We use a well-calibrated model to evaluate the parameter changes required to obtain simulated polar fields and open flux that are consistent with the observations. We find that the low polar field of cycle 23 could be reproduced by an increase of the meridional flow by 55% in the last cycle. Alternatively, a decrease of the mean tilt angle of sunspot groups by 28% would also lead to a similarly low polar field, but cause a delay of the polar field reversals by 1.5 years in comparison to the observations.

  17. Can surface flux transport account for the weak polar field in cycle 23?

    CERN Document Server

    Jiang, Jie; Schmitt, Dieter; Schuessler, Manfred

    2011-01-01

    To reproduce the weak magnetic field on the polar caps of the Sun observed during the declining phase of cycle 23 poses a challenge to surface flux transport models since this cycle has not been particularly weak. We use a well-calibrated model to evaluate the parameter changes required to obtain simulated polar fields and open flux that are consistent with the observations. We find that the low polar field of cycle 23 could be reproduced by an increase of the meridional flow by 55% in the last cycle. Alternatively, a decrease of the mean tilt angle of sunspot groups by 28% would also lead to a similarly low polar field, but cause a delay of the polar field reversals by 1.5 years in comparison to the observations.

  18. ANALYSIS OF HIGH FIELD NON-LINEAR LOSSES ON SRF SURFACES DUE TO SPECIFIC TOPOGRAPHIC ROUGHNESS

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xu,Charles Reece,Michael Kelley

    2012-07-01

    The high-field performance of SRF cavities will eventually be limited by the realization of fundamental material limits, whether it is Hc1 or Hsh, or some derivative thereof, at which the superconductivity is lost. Before reaching this fundamental field limit at the macro level, it must be encountered at localized, perhaps microscopic, sites of field enhancement due to local topography. If such sites are small enough, they may produce thermally stabilized normal-conducting regions which contribute non-linear losses when viewed from the macro resonant field perspective, and thus produce degradation in Q0. We have undertaken a calculation of local surface magnetic field enhancement from specific fine topographic structure by conformal mapping method and numerically. A solution of the resulting normal conducting volume has been derived and the corresponding RF Ohmic loss simulated.

  19. Electron field emission from nanostructured surfaces of GaN and AlGaN

    Energy Technology Data Exchange (ETDEWEB)

    Evtukh, A.; Litovchenko, V.; Semenenko, M.; Gorbanyuk, T.; Grygoriev, A. [Institute of Semiconductor Physics, 41 prospekt Nauki, 03028 Kiev (Ukraine); Yilmazoglu, O.; Hartnagel, H.; Pavlidis, D. [Technische Universitaet Darmstadt, Institut fuer Hochfrequenztechnik, Merckstr. 25, 64283 Darmstadt (Germany)

    2008-07-01

    The possibility of high frequency electromagnetic wave generation by field emission based devices has great interest. The wide bandgap materials GaN and AlGaN are very promising for these applications due to low electron affinity and the existence of satellite valleys in conduction band. The results of investigations of the peculiarities of electron field emission from nanostructured surfaces of GaN and AlGaN are presented. Multilayer GaN and AlGaN structures with various levels of layer doping on sapphire and bulk GaN substrates were used as initial wafers. The surface of the upper layers was nanostructured by photoelectrochemical etching in water solution of KOH. Intensive electron field emission into vacuum was observed and explained by low electron affinity and electric field enhancement on surface nanowires. A decrease of the slope in the Fowler-Nordheim characteristics was revealed. The changing slope suggests a lowering of effective work function. It is caused by electron heating and transfer into an upper satellite valley with lower electron affinity. A theory was developed for the observed phenomena and interpretation of results. It is based on electron intervalley transition upon heating and on energy band reconstruction of the surface of the nanowires due to quantum size-confinement effect. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Photodetachment microscopy of a hydrogen negative ion in an electric field near a metal surface

    Institute of Scientific and Technical Information of China (English)

    Tang Tian-Tian; Wang De-Hua; Wang Shan-Shan

    2012-01-01

    According to the semi-classical theory,we study the photodetachment microscopy of H- in the electric field near a metal surface.During the photodetachment,the electron is photo-detached by a laser and the electron is drawn toward a position-sensitive detector.The electron flux distribution is measured as a function of position.Two classical paths lead the ion to any point in the classically allowed region on the detector,and waves traveling along these paths produce an interference pattern.If the metal surface perpendicular to the electric field is added,we find that the interference pattern is related not only to the electron energy and the electric-field strength,but also to the ion-surface distance.In addition,the laser polarization also has a great influence on the electron flux distribution.We present calculations predicting the interference pattern that may be seen in experiment.We hope that our study can provide a new nnderstanding of the electron flux distribution of negative ions in an external field and surface,and can guide future experimental research on negative ion photo-detachment microscopy.

  1. High resolution imaging of dielectric surfaces with an evanescent field optical microscope

    NARCIS (Netherlands)

    Hulst, van N.F.; Segerink, F.B.; Bölger, B.

    1992-01-01

    An evanescent field optical microscope (EFOM) is presented which employs frustrated total internal reflection o­n a localized scale by scanning a dielectric tip in close proximity to a sample surface. High resolution images of dielectric gratings and spheres containing both topographic and dielectri

  2. High surface magnetic field in red giants as a new signature of planet engulfment?

    CERN Document Server

    Privitera, Giovanni; Eggenberger, Patrick; Georgy, Cyril; Ekström, Sylvia; Vidotto, Aline A; Bianda, Michele; Villaver, Eva; ud-Doula, Asif

    2016-01-01

    Context. Red-giant stars may engulf planets. This may increase the rotation rate of their convective envelope, which could lead to strong dynamo-triggered magnetic fields. Aims. We explore the possibility of generating magnetic fields in red giants that have gone through the process of a planet engulfment. We compare them with similar models that evolve without any planets. We discuss the impact of stellar wind magnetic braking on the evolution of the surface velocity of the parent star. Methods. With rotating stellar models with and without planets and an empirical relation between the Rossby number and the surface magnetic field, we deduce the evolution of the surface magnetic field along the red-giant branch. The effects of wind magnetic braking is explored using a relation deduced from MHD simulations. Results. The stellar evolution model of a 1.7 M$_\\odot$ without planet engulfment and that has a time-averaged rotation velocity during the Main-Sequence equal to 100 km s$^{-1}$, shows a surface magnetic f...

  3. Space-Time Co-Evolution of the Surface Wave and Langmuir Turbulence Fields

    Science.gov (United States)

    2015-09-30

    Langmuir Turbulence Fields J.A. Smith/R. Pinkel/A.J. Lucas Marine Physical Laboratory Scripps Institution of Oceanography University of California, San...fluorometer and turbulence sensors; and a floating, kilometer-long optical fiber temperature array that can make direct measurement of sea-surface

  4. Optical near-field lithography on hydrogen-passivated silicon surfaces

    DEFF Research Database (Denmark)

    Madsen, Steen; Müllenborn, Matthias; Birkelund, Karen

    1996-01-01

    We report on a novel lithography technique for patterning of hydrogen-passivated amorphous silicon surfaces. A reflection mode scanning near-field optical microscope with uncoated fiber probes has been used to locally oxidize a thin amorphous silicon layer. Lines of 110 nm in width, induced...

  5. An experimental method to determine the electrostatic field enhancement factor of a practical conductor surface

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson; Crichton, George C

    1989-01-01

    A method of determining the field enhancement factor of a practical conductor is presented. The method is developed from a modified theory of discharge onset in a gaseous medium. This modification incorporates the influence of conductor surface roughness. Onset data from an experimental study tha...

  6. Ultrahigh Enhancement of Electromagnetic Fields by Exciting Localized with Extended Surface Plasmons

    CERN Document Server

    Li, Anran; Abdulhalim, Ibrahim; Li, Shuzhou

    2015-01-01

    Excitation of localized surface plasmons (LSPs) of metal nanoparticles (NPs) residing on a flat metal film has attracted great attentions recently due to the enhanced electromagnetic (EM) fields found to be higher than the case of NPs on a dielectric substrate. In the present work, it is shown that even much higher enhancement of EM fields is obtained by exciting the LSPs through extended surface plasmons (ESPs) generated at the metallic film surface using the Kretschmann-Raether configuration. We show that the largest EM field enhancement and the highest surface-enhanced fluorescence intensity are obtained when the incidence angle is the ESP resonance angle of the underlying metal film. The finite-difference time-domain simulations indicate that excitation of LSPs using ESPs can generate 1-3 orders higher EM field intensity than direct excitation of the LSPs using incidence from free space. The ultrahigh enhancement is attributed to the strong confinement of the ESP waves in the vertical direction. The drast...

  7. Local electric field and configuration of CO molecules adsorbed on a nanostructured surface with nanocones

    Institute of Scientific and Technical Information of China (English)

    You Rong-Yi; Huang Xiao-Jing

    2009-01-01

    Based on the nanostructured surface model that the (platinum,Pt) nanocones grow out symmetrically from a plane substrate,the local electric field near the conical nanoparticle surface is computed and discussed. On the basis of these results,the adsorbed CO molecules are modelled as dipoles,and three kinds of interactions,I.e. Interactions between dipoles and local electric field,between dipoles and dipoles,as well as between dipoles and nanostructured substrate,are taken into account. The spatial configuration of CO molecules adsorbed on the nanocone surface is then given by Monte-Carlo simulation. Our results show that the CO molecules adsorbed on the nanocone surface cause local agglomeration under the action of an external electric field,and this agglomeration becomes more compact with decreasing conical angle,which results in a stronger interaction among molecules. These results serve as a basis for explaining abnormal phenomena such as the abnormal infrared effect (AIRE),which was found when CO molecules were adsorbed on the nancetructured transition-metal surface.

  8. Competing effects of surface phonon softening and quantum size effects on the superconducting properties of nanostructured Pb

    Energy Technology Data Exchange (ETDEWEB)

    Bose, Sangita; Galande, Charudatta; Chockalingam, S P; Raychaudhuri, Pratap; Ayyub, Pushan [Department of Condensed Matter Physics and Material Science, Tata Institute of Fundamental Research, Mumbai 400005 (India); Banerjee, Rajarshi [Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203-5310 (United States)], E-mail: Sangita.Bose@fkf.mpg.de, E-mail: pratap@tifr.res.in, E-mail: pushan@tifr.res.in

    2009-05-20

    The superconducting transition temperature (T{sub C}) in nanostructured Pb decreases from 7.24 to 6.4 K as the particle size is reduced from 65 to 7 nm, below which superconductivity is lost rather abruptly. In contrast, there is a large enhancement in the upper critical field (H{sub C2}) in the same size regime. We explore the origin of the unusual robustness of T{sub C} over such a large particle size range in nanostructured Pb by measuring the temperature dependence of the superconducting energy gap in planar tunnel junctions of Al/Al{sub 2}O{sub 3}/nano-Pb. We show that below 22 nm, the electron-phonon coupling strength increases monotonically with decreasing particle size, and almost exactly compensates for the quantum size effect, which is expected to suppress T{sub C}.

  9. Solar physics. The crucial role of surface magnetic fields for the solar dynamo.

    Science.gov (United States)

    Cameron, Robert; Schüssler, Manfred

    2015-03-20

    Sunspots and the plethora of other phenomena occurring in the course of the 11-year cycle of solar activity are a consequence of the emergence of magnetic flux at the solar surface. The observed orientations of bipolar sunspot groups imply that they originate from toroidal (azimuthally orientated) magnetic flux in the convective envelope of the Sun. We show that the net toroidal magnetic flux generated by differential rotation within a hemisphere of the convection zone is determined by the emerged magnetic flux at the solar surface and thus can be calculated from the observed magnetic field distribution. The main source of the toroidal flux is the roughly dipolar surface magnetic field at the polar caps, which peaks around the minima of the activity cycle.

  10. Temperature and phase transformations fields during surfacing by welding of CCS machine roll

    Directory of Open Access Journals (Sweden)

    J. Winczek

    2008-08-01

    Full Text Available In work have been presented models of temperature fields and kinetics of phase transformations in continuous casting steel machine roll surfacing spiral welding sequence with swinging motion of welding head. The temperature field was determined by analytical solution for massive body heated by moving voluminal heat source. The progress of diffusional phase transformations was described basing on equation of kinetics JMA-K and Koistinen-Marburger’s for martensitic transfomation. Deliberations were illustrated by computational example of surfaced roll made from steel 13CrMo4. The temperature field and structural components fraction was calcualated in section of regenerated area of material decline (along the roll axis. Considering critical temperatures, heat-affected zones have been determined: A1 and A3 – austenitic transformation, and solidus - fusion line. Accepted technological parameters of rebuilding gave results that reproduce geometry of padding weld heat-affected zones confirmed experimentally.

  11. Surface-Controlled Properties of Myosin Studied by Electric Field Modulation.

    Science.gov (United States)

    van Zalinge, Harm; Ramsey, Laurence C; Aveyard, Jenny; Persson, Malin; Mansson, Alf; Nicolau, Dan V

    2015-08-04

    The efficiency of dynamic nanodevices using surface-immobilized protein molecular motors, which have been proposed for diagnostics, drug discovery, and biocomputation, critically depends on the ability to precisely control the motion of motor-propelled, individual cytoskeletal filaments transporting cargo to designated locations. The efficiency of these devices also critically depends on the proper function of the propelling motors, which is controlled by their interaction with the surfaces they are immobilized on. Here we use a microfluidic device to study how the motion of the motile elements, i.e., actin filaments propelled by heavy mero-myosin (HMM) motor fragments immobilized on various surfaces, is altered by the application of electrical loads generated by an external electric field with strengths ranging from 0 to 8 kVm(-1). Because the motility is intimately linked to the function of surface-immobilized motors, the study also showed how the adsorption properties of HMM on various surfaces, such as nitrocellulose (NC), trimethylclorosilane (TMCS), poly(methyl methacrylate) (PMMA), poly(tert-butyl methacrylate) (PtBMA), and poly(butyl methacrylate) (PBMA), can be characterized using an external field. It was found that at an electric field of 5 kVm(-1) the force exerted on the filaments is sufficient to overcome the frictionlike resistive force of the inactive motors. It was also found that the effect of assisting electric fields on the relative increase in the sliding velocity was markedly higher for the TMCS-derivatized surface than for all other polymer-based surfaces. An explanation of this behavior, based on the molecular rigidity of the TMCS-on-glass surfaces as opposed to the flexibility of the polymer-based ones, is considered. To this end, the proposed microfluidic device could be used to select appropriate surfaces for future lab-on-a-chip applications as illustrated here for the almost ideal TMCS surface. Furthermore, the proposed methodology can

  12. Homodyne full-field interferometer for measuring dynamic surface phenomena in microstructures

    Science.gov (United States)

    Lipiäinen, Lauri; Kokkonen, Kimmo; Kaivola, Matti

    2017-01-01

    We describe a stabilized homodyne full-field interferometer capable of measuring vertical surface deformations of microstructures in the time domain. The interferometer is stabilized to a chosen operation point by obtaining a feedback signal from a non-moving, freely selectable, reference region on the sample surface. The stabilized full-field interferometer enables detection of time-dependent changes in the surface profile with nanometer scale vertical resolution, while the temporal resolution of the measurement is ultimately limited by the refresh rate of the camera only. The lateral resolution of the surface deformation is determined by the combination of the imaging optics together with the pixel size of the camera. The setup is used to measure the deformation of an Aluminum nitride membrane as a function of time-dependent pressure change. The data analysis allows for unambiguous determination of surface deformations over multiple fringes of the interferogram, hence enabling the study of a wide range of physical phenomena with varying magnitude of vertical surface movement.

  13. Variation of surface electric field during geomagnetic disturbed period at Maitri, Antarctica

    Indian Academy of Sciences (India)

    N Jeni Victor; C Panneerselvam; C P Anil Kumar

    2015-12-01

    The paper discusses on the variations of the atmospheric vertical electric field measured at sub-auroral station Maitri (70°75′S, 11°75′E), and polar station Vostok (78.5°S, 107°E) during the geomagnetic disturbances on 25–26 January 2006. Diurnal variation of surface electric field measured at Maitri shows a similar variation with worldwide thunderstorm activity, whereas the departure of the field is observed during disturbed periods. This part of the field corresponds to the magnetospheric/ionospheric (an additional generator in the polar regions) voltage generators. Solar wind parameters and planetary indices represent the temporal variation of the disturbances, and digital fluxgate magnetometer variation continuously monitored to trace the auroral movement at Maitri. We have observed that the electrojet movement leaves its signature on vertical and horizontal components of the DFM in addition; the study infers the position of auroral current wedge with respect to Maitri. To exhibit the auroral oval, OVATION model is obtained with the aid of DMSP satellite and UV measurements. It is noted that the Maitri is almost within the auroral oval during the periods of disturbances. To examine the simultaneous changes in the vertical electric field associated with this magnetic disturbance, the dawn–dusk potential is studied for every UT hours; the potential was obtained from Weimer model and SuperDARN radar. The comparison reveals the plausible situation for the superposition of dawn–dusk potential on surface electric field over Maitri. This observation also shows that the superposition may not be consistent with the phase of the electrojet. Comparison of surface electric field at Maitri and Vostok shows that the parallel variation exhibits with each other, but during the period of geomagnetic disturbances, the influence is not much discerned at Vostok.

  14. Direct design of two freeform optical surfaces for wide field of view line imaging applications

    Science.gov (United States)

    Nie, Yunfeng; Thienpont, Hugo; Duerr, Fabian

    2016-04-01

    In this paper, we propose a multi-fields direct design method aiming to calculate two freeform surfaces with an entrance pupil incorporated for wide field of view on-axis line imaging applications. Both infinite and finite conjugate objectives can be designed with this approach. Since a wide angle imaging system requires more than few discrete perfect imaging points, the multi-fields design approach is based on partial coupling of multiple fields, which guarantees a much more balanced imaging performance over the full field of view. The optical path lengths (OPLs) and image points of numerous off-axis fields are calculated during the procedure, thus very few initial parameters are needed. The procedure to calculate such a freeform lens is explained in detail. We have designed an exemplary monochromatic single lens to demonstrate the functionality of the design method. A rotationally symmetric counterpart following the same specifications is compared in terms of RMS spot radius to demonstrate the clear benefit that freeform lens brings to on-axis line imaging systems. In addition, a practical achromatic wide angle objective is designed by combining our multi-fields design method with classic optical design strategies, serving as a very good starting point for further optimization in a commercial optical design program. The results from the perspective of aberrations plots and MTF values show a very good and well balanced performance over the full field of view.

  15. Influence of fractality of fracture surfaces on stress and displacement fields at crack tips

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In the classic theory of fracture mechanics,expressions for calculating the stresses and displacements in the vicinity of the crack tip are deduced on the basis of the assumption that a fracture surface is a smooth surface or that a crack is a smooth crack.In fact,the surface of a crack formed during the fracture is usually very irregular.So the real asymptotic form of the stress and displacement fields at the crack tip is different from the classic one.Considering the irregularity of a real fracture surface or a real crack profile,the crack is taken as a fractal one,and then the real asymptotic form at the crack tip is developed by applying Griffith’s energy balance principle and fractal geometry.Through the developed asymptotic form,it is discovered that the fractality of the crack reduces the stress singularity at the crack tip.

  16. Modulating protein behaviors on responsive surface by external electric fields: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yun, E-mail: xieyunxx@gdpu.edu.cn; Pan, Yufang; Zhang, Rong; Liang, Ying; Li, Zhanchao

    2015-01-30

    Graphical abstract: The adsorption of Cyt c on phosphorylcholine self-assembled monolayers (N atoms of the choline groups are colored in blue while the P atoms of the phosphate groups in orange). - Highlights: • PC-SAM could sensitively adjust its charge distribution to applied electric fields. • Adsorption of Cyt c on the PC-SAM is promoted or retarded as the charge distribution of the SAM changes. • Orientations of Cyt c on the PC-SAM are regulated by the structural changes of the SAM. • The structural changes of the SAM cause little deformation in Cyt c. - Abstract: Molecular dynamics simulations were employed to investigate the modulation of protein behaviors on the electrically responsive zwitterionic phosphorylcholine self-assembled monolayers (PC-SAMs). Results show that PC-SAMs could sensitively respond to the applied electric fields and exhibit three states with different charge distributions, namely both the negatively charged phosphate groups and the positively charged choline groups are exposed to the solution in the absence of electric fields (state 1), phosphate groups exposed in the presence of positive electric fields (state 2), and choline groups exposed in the presence of negative electric fields (state 3). Under state 1, the adsorption of Cyt c on the PC-SAM is reversible and the orientations of Cyt c are randomly distributed. Under state 2, the adsorption of Cyt c is enhanced due to the electrostatic attractions between the exposed phosphate groups and the positively charged protein; when adsorbed on the PC-SAMs, Cyt c tends to adopt the orientation with the heme plane perpendicular to the surface plane, and the percentage of this orientation increases as the field strength rises up. Under state 3, the adsorption of Cyt c is retarded because of the electrostatic repulsions between the exposed choline groups and the protein; however, if the gaps between PC chains are large enough, Cyt c could insert into the PC-SAM and access the

  17. Calculation of the surface effect in the ferromagnetic conductor with the harmonic electromagnetic field

    Science.gov (United States)

    Nosov, G. V.; Kuleshova, E. O.; Vassilyeva, Yu Z.; Elizarov, A. I.

    2016-04-01

    The authors of the paper have obtained formulas for analytical calculation of the constants with the harmonic electromagnetic field, which characterize the surface layer (a skin layer) of the ferromagnetic conductors in case of heating and nonlinear magnetic properties, which can be used for practical calculation of the electromagnetic screens, rotors of the electrical machines and inductive heating installations. A nonlinear dependence of the magnetic induction on the magnetic tension of the ferromagnetic conductor is replaced by one or two linear sections. It is considered that the skin layer of the conductor has constant quantities of the specific conductivity and averaged temperature. Linear electrodynamics equations are solved for the conductive half-space. Parameters of the ferromagnetic conductor's surface layer are calculated: magnetic permeability, the thickness of the skin layer and its averaged temperature, exposure time of the electromagnetic field on the conductor with the established maximum temperature on the conductor's surface, pressure of the field on the conductor and its resistance, inductivity of the internal magnetic field in the conductor, the thermal energy capacity. The methods credibility is confirmed with the concurrence of the resistance and inductiviry of the ferromagnetic conductor with analogous quantities from other methods.

  18. Coronal structure analysis based on the potential field source surface modeling and total solar eclipse observation

    Science.gov (United States)

    Muhamad, Johan; Mumtahana, Farahhati; Sutastio, Heri; Imaduddin, Irfan; Putri, Gerhana P.

    2016-11-01

    We constructed global coronal magnetic fields of the Sun during the Total Solar Eclipse (TSE) 9 March 2016 by using Potential Field Source Surface (PFSS) model. Synoptic photospheric magnetogram data from Helioseismic and Magnetic Imager (HMI) onboard Solar Dynamics Observatory (SDO) was used as a boundary condition to extrapolate the coronal magnetic fields of the Sun. This extrapolated structure was analyzed by comparing the alignment of the fields from the model with coronal structure from the observation. We also used observational data of coronal structure during the total solar eclipse to know how well the model agree with the observation. As a result, we could identify several coronal streamers which were produced by the large closed loops in the lower regime of the corona. This result verified that the PFSS extrapolation can be used as a tool to model the inner corona with several constraints. We also discussed how the coronal structure can be used to deduce the phase of the solar cycle.

  19. Study of the change of surface magnetic field associated with flares

    Science.gov (United States)

    Li, Yixuan; Jing, Ju; Fan, Yuhong; Wang, Haimin

    2011-08-01

    How magnetic field structure changes with eruptive events (e.g., flares and CMEs) has been a long-standing problem in solar physics. Here we present the analysis of eruption-associated changes in the magnetic inclination angle, the transverse component of magnetic field and the Lorentz force. The analysis is based on an observation of the X3.4 flare on Dec.13 2006 and a numerical simulation of a solar eruption made by Yuhong Fan. Both observation and simulation show that (1) the magnetic inclination angle in the decayed peripheral penumbra increases, while that in the central area close to flaring polarity inversion line (PIL) deceases after the flare; (2) the transverse component of magnetic field increases at the lower altitude near flaring PIL after the flare. The result suggests that the field lines at flaring neutral line turn to more horizontal near the surface, that is in agreement with the prediction of Hudson, Fisher & Welsch (2008).

  20. Critical and near-critical phase behavior and interplay between the thermodynamic Casimir and van der Waals forces in a confined nonpolar fluid medium with competing surface and substrate potentials

    Science.gov (United States)

    Valchev, Galin; Dantchev, Daniel

    2015-07-01

    We study, using general scaling arguments and mean-field type calculations, the behavior of the critical Casimir force and its interplay with the van der Waals force acting between two parallel slabs separated at a distance L from each other, confining some fluctuating fluid medium, say a nonpolar one-component fluid or a binary liquid mixture. The surfaces of the slabs are coated by thin layers exerting strong preference to the liquid phase of the fluid, or one of the components of the mixture, modeled by strong adsorbing local surface potentials ensuring the so-called (+,+) boundary conditions. The slabs, on the other hand, influence the fluid by long-range competing dispersion potentials, which represent irrelevant interactions in renormalization-group sense. Under such conditions, one usually expects attractive Casimir force governed by universal scaling function, pertinent to the extraordinary surface universality class of Ising type systems, to which the dispersion potentials provide only corrections to scaling. We demonstrate, however, that below a given threshold thickness of the system Lcrit for a suitable set of slabs-fluid and fluid-fluid coupling parameters the competition between the effects due to the coatings and the slabs can result in sign change of the Casimir force acting between the surfaces confining the fluid when one changes the temperature T , the chemical potential of the fluid μ , or L . The last implies that by choosing specific materials for the slabs, coatings, and the fluid for L ≲Lcrit one can realize repulsive Casimir force with nonuniversal behavior which, upon increasing L , gradually turns into an attractive one described by a universal scaling function, depending only on the relevant scaling fields related to the temperature and the excess chemical potential, for L ≫Lcrit . We present arguments and relevant data for specific substances in support of the experimental feasibility of the predicted behavior of the force. It can

  1. A Comparative Study of German Competency-based Learning Fields and Australia Competency-based Training%德国能力本位学习领域与澳大利亚能力本位培训比较研究

    Institute of Scientific and Technical Information of China (English)

    徐涵; 梁丹

    2015-01-01

    德国和澳大利亚对能力概念的理解不同,德国对能力的界定主要指职业行动能力,强调职业行动能力各个组成部分之间重要的相互依存关系,能力被认为是一个整体的、相互依存的概念.澳大利亚对能力的界定更加关注技术和工作岗位能力,这些能力由于其模块化的特征,彼此之间相互独立.由于对能力理解的不同,德国能力本位学习领域与澳大利亚能力本位培训呈现出不同的基本特征.前者是基于培训职业而设计的系统化的跨学科课程,强调对技能型人才的系统化培养;而后者是基于岗位而设计的模块课程,模块之间相互独立、缺乏系统性,但灵活性强.两种模式各具特色,我国职业教育教学改革可以整合两种模式的优势,探索符合国情的改革之路.%Germany and Australia have different understanding about the concept of competency. Germany defines competency as professional action competency and emphasizes the important interdependent relationship among each component of professional action competency, competency is considered as a whole and interdependent concept. The Australian concept of competency is more focused on technical and work post competencies that are independent from each other due to their modularized character. Due to different understanding of competency, the German competency-based learning fields and Australian competency-based training show different characteristics. The former is designed as systematic interdisciplinary curriculum which is based on training profession, and emphasizes on cultivating skilled talents systematically; the latter is designed as modular curriculum which is based on position, the modules are independent with each other, which lacks systematization but has good flexibility. China can integrate their advantages to promote the teaching reform of vocational education.

  2. Exploiting SENTINEL-1 Amplitude Data for Glacier Surface Velocity Field Measurements: Feasibility Demonstration on Baltoro Glacier

    Science.gov (United States)

    Nascetti, A.; Nocchi, F.; Camplani, A.; Di Rico, C.; Crespi, M.

    2016-06-01

    The leading idea of this work is to continuously retrieve glaciers surface velocity through SAR imagery, in particular using the amplitude data from the new ESA satellite sensor Sentinel-1 imagery. These imagery key aspects are the free access policy, the very short revisit time (down to 6 days with the launch of the Sentinel-1B satellite) and the high amplitude resolution (up to 5 m). In order to verify the reliability of the proposed approach, a first experiment has been performed using Sentinel-1 imagery acquired over the Karakoram mountain range (North Pakistan) and Baltoro and other three glaciers have been investigated. During this study, a stack of 11 images acquired in the period from October 2014 to September 2015 has been used in order to investigate the potentialities of the Sentinel-1 SAR sensor to retrieve the glacier surface velocity every month. The aim of this test was to measure the glacier surface velocity between each subsequent pair, in order to produce a time series of the surface velocity fields along the investigated period. The necessary coregistration procedure between the images has been performed and subsequently the glaciers areas have been sampled using a regular grid with a 250 × 250 meters posting. Finally the surface velocity field has been estimated, for each image pair, using a template matching procedure, and an outlier filtering procedure based on the signal to noise ratio values has been applied, in order to exclude from the analysis unreliable points. The achieved velocity values range from 10 to 25 meters/month and they are coherent to those obtained in previous studies carried out on the same glaciers and the results highlight that it is possible to have a continuous update of the glacier surface velocity field through free Sentinel-1 imagery, that could be very useful to investigate the seasonal effects on the glaciers fluid-dynamics.

  3. Full-field micro surface profilometry using digital fringe projection with spatial encoding principle

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L-C [Graduate Institute of Automation Technology, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd, Taipei, 106, Taiwan (China); Liao, C-C [Graduate Institute of Mechatronics, National Taipei University of Technology, 1 Sec. Chung-Hsiao East Rd, Taipei, 106, Taiwan (China); Lai, M-J [Graduate Institute of Mechatronics, National Taipei University of Technology, 1 Sec. Chung-Hsiao East Rd, Taipei, 106, Taiwan (China)

    2005-01-01

    This article describes an effective full-field three-dimensional micro surface profilometer using digital fringe projection with digital micromirror device (DMD) technology and triangulation measurement principle. Fast and accurate three-dimensional measurement techniques with full-field measurement capability are thus highly demanded for sharpening product competitiveness. Traditional laser triangulation methods have difficulty in detecting the accurate centre position of projected points or lines when encountered with light scattering problems caused by the object's geometric discontinuities, such as surface boundaries or edges. The newly developed profilometer deploys a DMD to project flexible digital structured light patterns of white light onto the object to suit various inspection requirements, such as the object's size and surface condition. Micro structured light patterns can be generated by using optical zoom and collimating lens sets. Accurate system parameters of 3-D surface profilometry can be obtained by developing a calibration process based on least squares minimization. Micro 3-D contours with a large surface gradient can be reconstructed accurately and efficiently.

  4. Free-surface flow of liquid oxygen under non-uniform magnetic field

    Science.gov (United States)

    Bao, Shi-Ran; Zhang, Rui-Ping; Wang, Kai; Zhi, Xiao-Qin; Qiu, Li-Min

    2017-01-01

    The paramagnetic property of oxygen makes it possible to control the two-phase flow at cryogenic temperatures by non-uniform magnetic fields. The free-surface flow of vapor-liquid oxygen in a rectangular channel was numerically studied using the two-dimensional phase field method. The effects of magnetic flux density and inlet velocity on the interface deformation, flow pattern and pressure drop were systematically revealed. The liquid level near the high-magnetic channel center was lifted upward by the inhomogeneous magnetic field. The interface height difference increased almost linearly with the magnetic force. For all inlet velocities, pressure drop under 0.25 T was reduced by 7-9% due to the expanded local cross-sectional area, compared to that without magnetic field. This work demonstrates the effectiveness of employing non-uniform magnetic field to control the free-surface flow of liquid oxygen. This non-contact method may be used for promoting the interface renewal, reducing the flow resistance, and improving the flow uniformity in the cryogenic distillation column, which may provide a potential for enhancing the operating efficiency of cryogenic air separation.

  5. The anisotropy of the surface tension at the magnetic-field-induced phase transformations

    CERN Document Server

    Cebers, A

    2002-01-01

    The surface properties of the magnetic colloid phases arising at the magnetic-field-induced phase separation in the Hele-Shaw cell are considered. By the numerical resolution of the equation for the concentration distribution in the transition layer between the phases, the anisotropy of the surface tension is calculated. The anisotropic shapes of the droplets of the concentrated phase are found by the Wulff construction and are compared with that obtained by the numerical simulation of the kinetics of the magnetic colloid phase separation in the Hele-Shaw cell.

  6. Optical field-induced surface relief formation on chalcogenide and azo-benzene polymer films

    Science.gov (United States)

    Teteris, J.; Gertners, U.

    2012-08-01

    The dependence of the surface relief formation in amorphous As2S3 and Disperse Red 1dye grafted polyurethane polymer films on the polarization state of recording light was studied. It is shown that the direction of mass transport on the film surface is determined by the direction of light electric vector and photoinduced anisotropy in the film. We propose a photoinduced dielectropfhoretic model to explain the photoinduced mass transport in amorphous films. Model is based on the photoinduced softening of the matrix, formation of defects with enhanced or decreased polarizability, and their drift under the electrical field gradient of light.

  7. Analysis on MHD Stability of Free Surface Jet flow in a Gradient Magnetic Fields

    Institute of Scientific and Technical Information of China (English)

    许增裕; 康伟山; 潘传杰

    2004-01-01

    The simplified modeling for analysis on MHD stability of free surface jet flow in a gradient magnetic fields is based on the theoretical and experimental results on channel liquid metal MHD flow, especially, the results of MHD flow velocity distribution in cross-section of channels (rectangular duct and circular pipe), and the expected results from the modeling are well agreed with the recent experimental data obtained. It is the first modeling which can efficiently explain the experimental results of liquid-metal free surface jet flow.

  8. Mean-field theory of photoinduced formation of surface reliefs in side-chain azobenzene polymers

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm; Johansen, Per Michael; Holme, N.C.R.

    1998-01-01

    A mean-field model of photoinduced surface reliefs in dye containing side-chain polymers is presented. It is demonstrated that photoinduced ordering of dye molecules subject to anisotropic intermolecular interactions leads to mass transport even when the intensity of the incident light is spatially...... uniform. Theoretical profiles are obtained using a simple variational method and excellent agreement with experimental surface reliefs recorded under various polarization configurations is found. The polarization dependence of both period and shape of the profiles is correctly reproduced by the model....

  9. Bacterial inhibiting surfaces caused by the effects of silver release and/or electrical field

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Hilbert, Lisbeth Rischel; Schroll, Casper

    2008-01-01

    used for the evaluation of inhibiting effects and the inhibiting mechanism. For silver-palladium surfaces combined with bacteria in media, the inhibiting effect was a result of electrochemical interactions and/or electrical field, and in some specific media, such as ammonium containing, undesired......In this study, silver-palladium surfaces and silver-bearing stainless steels were designed and investigated focusing on electrochemical principles to form inhibiting effects on planktonic and/or biofilm bacteria in water systems. Silver-resistant Escherichia coli and silver-sensitive E. coli were...

  10. Spreading and atomization of droplets on a vibrating surface in a standing pressure field

    Science.gov (United States)

    Deepu, P.; Basu, Saptarshi; Saha, Abhishek; Kumar, Ranganathan

    2012-10-01

    We report the first observation and analytical model of deformation and spreading of droplets on a vibrating surface under the influence of an ultrasonic standing pressure field. The standing wave allows the droplet to spread, and the spreading rate varies inversely with viscosity. In low viscosity droplets, the synergistic effect of radial acoustic force and the transducer surface acceleration also leads to capillary waves. These unstable capillary modes grow to cause ultimate disintegration into daughter droplets. We find that using nanosuspensions, spreading and disintegration can be prevented by suppressing the development of capillary modes and subsequent break-up.

  11. Novas competências profissionais em saúde e o envelhecimento populacional brasileiro: integralidade, interdisciplinaridade e intersetorialidade New professional competences in the field of health and the aging Brazilian population: integrality, interdisciplinarity, intersectoriality

    Directory of Open Access Journals (Sweden)

    Luciana Branco da Motta

    2007-04-01

    Full Text Available Este trabalho discute as características da formação médica frente ao processo de envelhecimento e as especificidades da atenção à saúde do idoso, de forma a sistematizar as competências necessárias para profissionais de saúde. A premissa é que existe uma distância marcante entre, por um lado, conteúdos necessários à boa prática geriátrica e diretrizes das políticas de saúde e educação e, por outro lado, o currículo atual da graduação e da pós-graduação. A transição epidemiológica e demográfica coloca a Geriatria e Gerontologia como uma especialidade com mercado em expansão, tanto no setor público como privado, implicando a discussão da normatização da formação e distribuição de RH na saúde. Porém, a pouca valorização da presença de seus conteúdos nos currículos não reflete apenas uma questão pedagógica. Ao que tudo indica, apesar da legislação existente, ainda não está clara a importância destes conteúdos para a sociedade. A inclusão do processo de envelhecimento como curso de vida e em todos os seus aspectos nos currículos de graduação é uma prioridade. É também necessário ampliar a discussão sobre o papel da pós-graduação, da educação permanente e da educação continuada a fim de fazer frente ao desafio de envelhecer com qualidade.This paper discusses the challenges faced by medical education with regard to the aging Brazilian population as well as the specificities of senior health care services, aiming at systematizing the contents and practices needed to prepare health professionals. The assumption is based on a clear gap between appropriate contents for quality geriatric practices and health policy guidelines on the one hand, and current undergraduate and graduate level medical programs on the other. This epidemiological and demographic transition positions Geriatrics and Gerontology as fields of expertise in an expanding market, both in the public and private sectors

  12. Engineering Topological Surface State of Cr-doped Bi2Se3 under external electric field

    Science.gov (United States)

    Zhang, Jian-Min; Lian, Ruqian; Yang, Yanmin; Xu, Guigui; Zhong, Kehua; Huang, Zhigao

    2017-03-01

    External electric field control of topological surface states (SSs) is significant for the next generation of condensed matter research and topological quantum devices. Here, we present a first-principles study of the SSs in the magnetic topological insulator (MTI) Cr-doped Bi2Se3 under external electric field. The charge transfer, electric potential, band structure and magnetism of the pure and Cr doped Bi2Se3 film have been investigated. It is found that the competition between charge transfer and spin-orbit coupling (SOC) will lead to an electrically tunable band gap in Bi2Se3 film under external electric field. As Cr atom doped, the charge transfer of Bi2Se3 film under external electric field obviously decreases. Remarkably, the band gap of Cr doped Bi2Se3 film can be greatly engineered by the external electric field due to its special band structure. Furthermore, magnetic coupling of Cr-doped Bi2Se3 could be even mediated via the control of electric field. It is demonstrated that external electric field plays an important role on the electronic and magnetic properties of Cr-doped Bi2Se3 film. Our results may promote the development of electronic and spintronic applications of magnetic topological insulator.

  13. Nonlinear waves on the free surface of a dielectric liquid in an oblique electric field

    Energy Technology Data Exchange (ETDEWEB)

    Gashkov, M. A.; Zubarev, N. M., E-mail: nick@iep.uran.ru; Kochurin, E. A., E-mail: kochurin@iep.uran.ru [Ural Branch, Russian Academy of Sciences, Institute of Electrophysics (Russian Federation)

    2015-09-15

    The nonlinear dynamics of the free surface of an ideal dielectric liquid that is exposed to an external oblique electric field has been studied theoretically. In the framework of the Hamiltonian formalism, a system of nonlinear integro-differential equations has been derived that describes the dynamics of nonlinear waves in the small-angle approximation. It is established that for a liquid with high dielectric permittivity, these equations have a solution in the form of plane waves of arbitrary shape that propagate without distortion in the direction of the horizontal component of the external field.

  14. Small-scale field evaluation of the monomolecular surface film 'Arosurf MSF' against Anopheles arabiensis Patton.

    Science.gov (United States)

    Karanja, D M; Githeko, A K; Vulule, J M

    1994-04-01

    A field trial was conducted to test the insecticidal action of the monolayer surface film 'Arosurf MSF' applied by knapsack sprayers, against larvae and pupae of Anopheles arabiensis Patton in a rice irrigation scheme in Western Kenya. Larval and pupal densities and the number of emerging adults were determined by dipping and emergence cages respectively. Application of the monolayer by knapsack sprayers provided good coverage. There were high daily mortalities of the fourth instar larvae, with no adult emergence from 'Arosurf MSF' treated plots compared to lower fourth instar mortalities and continuous adult emergence from untreated control plots, indicating the potential of the monolayer for control of An. arabiensis mosquitoes in rice fields.

  15. Competencies for the Contemporary Career: Development and Preliminary Validation of the Career Competencies Questionnaire

    NARCIS (Netherlands)

    Akkermans, J.; Brenninkmeijer, V.; Huibers, M.; Blonk, R.W.B.

    2013-01-01

    A new and promising area of research has recently emerged in the field of career development: career competencies. The present article provides a framework of career competencies that integrates several perspectives from the literature. The framework distinguishes between reflective, communicative,

  16. Competing effects of viscosity and surface-tension depression on the hygroscopicity and CCN activity of laboratory surrogates for oligomers in atmospheric aerosol

    Science.gov (United States)

    Hodas, N.; Zuend, A.; Shiraiwa, M.; Flagan, R. C.; Seinfeld, J.; Schilling, K.; Berkemeier, T.

    2015-12-01

    The presence of oligomers in biomass burning aerosol, as well as secondary organic aerosol derived from other sources, influences particle viscosity and can introduce kinetic limitations to water uptake. This, in turn, impacts aerosol optical properties and the efficiency with which these particles serve as cloud condensation nuclei (CCN). To explore the influence of organic-component viscosity on aerosol hygroscopicity, the water-uptake behavior of aerosol systems comprised of polyethylene glycol (PEG) and mixtures of PEG and ammonium sulfate (AS) was measured under sub- and supersaturated relative humidity (RH) conditions. Experiments were conducted with systems containing PEG with average molecular weights ranging from 200 to 10,000 g/mol, corresponding to a range in viscosity of 0.004 - 4.5 Pa s under dry conditions. While evidence suggests that viscous aerosol components can suppress water uptake at RH activity with increasing PEG molecular weight was observed. We attribute this to an increase in the efficiency with which PEG serves as a surfactant with increasing molecular weight. This effect is most pronounced for PEG-AS mixtures and, in fact, a modest increase in CCN activity is observed for the PEG 10,000-AS mixture as compared to pure AS, as evidenced by a 4% reduction in critical activation diameter. Experimental results are compared with calculations of hygroscopic growth at thermodynamic equilibrium using the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients model and the potential influence of kinetic limitations to observed water uptake is further explored with the Kinetic Multi-Layer Model of Gas-Particle Interactions. Results suggest the competing effects of organic-component viscosity and surface-tension depression may lead to RH-dependent differences in hygroscopicity for oligomers and other surface-active compounds present in atmospheric aerosols, for which PEG serves as a surrogate in these experiments.

  17. An Electric Field Volume Integral Equation Approach to Simulate Surface Plasmon Polaritons

    Directory of Open Access Journals (Sweden)

    R. Remis

    2013-02-01

    Full Text Available In this paper we present an electric field volume integral equation approach to simulate surface plasmon propagation along metal/dielectric interfaces. Metallic objects embedded in homogeneous dielectric media are considered. Starting point is a so-called weak-form of the electric field integral equation. This form is discretized on a uniform tensor-product grid resulting in a system matrix whose action on a vector can be computed via the fast Fourier transform. The GMRES iterative solver is used to solve the discretized set of equations and numerical examples, illustrating surface plasmon propagation, are presented. The convergence rate of GMRES is discussed in terms of the spectrum of the system matrix and through numerical experiments we show how the eigenvalues of the discretized volume scattering operator are related to plasmon propagation and the medium parameters of a metallic object.

  18. Spoof surface plasmon-based stripe antennas with extreme field enhancement in the terahertz regime.

    Science.gov (United States)

    Han, Zhanghua; Zhang, Yusheng; Bozhevolnyi, Sergey I

    2015-06-01

    Retardation-based stripe antennas due to the excitation of spoof surface plasmons on a corrugated metal stripe are proposed and numerically studied in the terahertz regime, revealing sharp Fabry-Perot resonances in scattering cross-section spectra with strongly enhanced local fields. The order of the resonance exhibiting the sharpest scattering cross section and strongest field enhancements (FEs) is found to coincide with the number of grooves, due to the hybridization of the antenna resonance with the individual groove resonance. The proposed (spoof surface plasmon-based) antennas with narrow resonances and large FE open up new possibilities for metamaterial design and seem very promising for sensing applications in the terahertz frequencies.

  19. Influence of surface roughness on field emission of electrons from carbon nanotube films.

    Science.gov (United States)

    Liu, Huarong; Saito, Yahachi

    2010-06-01

    Electron field emission properties of a nanotube film are influenced not only by a field enhancement factor of carbon nanotubes (CNTs) beta(CNT) but also by that of film morphology beta(P). A simple method to separate beta(P), and beta(CNT) is proposed by using their different dependences on the cathode-anode distance. Analyses conducted for CNT emitters with rough surface exhibit that beta(P) ranges from 1 to approximately 4.5. The separated beta(CNT) values are in good agreement with the CNT geometries observed by a scanning electron microscope. Variation in beta(P)-values is ascribed to the surface roughness of the CNT films.

  20. Towards a cleaner graphene surface in graphene field effect transistor via N,N-Dimethylacetamide

    Science.gov (United States)

    Mao, Da-Cheng; Peng, Song-Ang; Wang, Shao-Qing; Zhang, Da-Yong; Shi, Jing-Yuan; Wang, Xinnan; Jin, Zhi

    2016-09-01

    Graphene is a two-dimensional material with a high surface to volume ratio and the fabrication process of graphene field effect transistors always introduces unintended contaminates like photoresidues on the surface of graphene. These contaminations are difficult to remove by conventional acetone solvent and suppress the intrinsic properties of graphene. To address the problem, a wet-chemical approach employing N,N-Dimethylacetamide (C4H9NO) was developed in this study, which shows an increase of the carrier mobility and a reduction of minimum conductance point in our devices. Raman spectroscopy and atomic force microscope were carried out to verify the cleaning effect of the approach. Our method provides a simple and effective way to enhance the electrical performance of graphene field effect transistors and can be readily integrated into the CMOS fabrication pilot line.

  1. A Huygens Surface Approach to Antenna Implementation in Near-Field Radar Imaging System Simulations

    Science.gov (United States)

    2015-08-01

    critical geometrical details; re- casting the FDTD update equations on a grid conformal to a curvilinear coordinate system (e.g., cylindrical); and...Imaging System Simulations by Traian Dogaru and DaHan Liao Approved for public release; distribution unlimited...A Huygens Surface Approach to Antenna Implementation in Near-Field Radar Imaging System Simulations by Traian Dogaru and DaHan Liao Sensors

  2. Advances in the theory and application of BSF cells. [Back Surface Field solar cells

    Science.gov (United States)

    Mandelkorn, J.; Lamneck, J. H.

    1975-01-01

    A study to determine the influence of fabrication processes and bulk material properties on the behavior of back surface field (BSF) cells is reported. It is concluded that a photovoltage is generated at the p(+), p back junction of the cell. The concept of majority carrier collection is proposed as a possible mechanism for this generation. Advantages accruing to the advent of BSF cells are outlined.

  3. Aeolian transport in the field: A comparison of the effects of different surface treatments

    Science.gov (United States)

    Dong, Zhibao; Lv, Ping; Zhang, Zhengcai; Qian, Guangqiang; Luo, Wanyin

    2012-05-01

    Aeolian transport represents the result of wind-surface interactions, and therefore depends strongly on variations in the characteristics of the sediment surface. We conducted field observations of aeolian transport of typical dune sand in three 80 m × 80 m plots with different surface treatments: gravel-covered sand, enclosed shifting sand, and open (unprotected) shifting sand. The study was performed at the Shapotou Aeolian Experiment Site in the southeastern part of China's Tengger Desert to compare the effects of these different surface treatments on aeolian transport. To do so, we analyzed the flux density profiles and transport rates above each surface. The flux density profiles for all three treatments followed the exponential decay law that was proposed by most previous researchers to describe the saltation flux density profiles. Coefficients of the exponential decay function were defined as a function of the surface and the wind velocity. The enclosed and open plots with shifting sand had similar flux density profiles, but the flux density above gravel-covered plots showed that transport decayed more slowly with increasing height, producing flux density profiles with a higher average saltation height. The transport rate above the three treatment plots tended to increase proportionally with the cube of the mean wind velocity and with the maximum wind velocity during the observation period, but was more strongly correlated with the square of drift potential. Transport rates above the plot with open shifting sand were greater than those above the plots with enclosed shifting sand and the gravel-covered plot.

  4. Surface temperature of a magnetized neutron star and interpretation of the ROSAT data. 1: Dipole fields

    Science.gov (United States)

    Page, Dany

    1995-01-01

    We model the temperature distribution at the surface of a magnetized neutron star and study the effects on the observed X-ray spectra and light curves. Generalrelativistic effects, i.e., redshift and lensing, are fully taken into account. Atmospheric effects on the emitted spectral flux are not included: we consider only blackbody emission at the local effective temperature. In this first paper we restrict ourselves to dipole fields. General features are studied and compared with the ROSAT data from the pulsars 0833 - 45 (Vela), 0656 + 14, 0630 + 178 (Geminga), and 1055 - 52, the four cases for which there is strong evidence that thermal radiation from the stellar surface is detected. The composite spectra we obtain are not very different from a blackbody spectrum at the star's effective temperature. We conclude that, as far as blackbody spectra are considered, temperature estimates using single-temperature models give results practically identical to our composite models. The change of the (composite blackbody) spectrum with the star's rotational phase is also not very large and may be unobservable inmost cases. Gravitational lensing strongly suppresses the light curve pulsations. If a dipole field is assumed, pulsed fractions comparable to the observed ones can be obtained only with stellar radii larger than those which are predicted by current models of neutron star struture, or with low stellar masses. Moreover, the shapes of the theoretical light curves with dipole fields do not correspond to the observations. The use of magnetic spectra may raise the pulsed fraction sufficiently but will certainly make the discrepancy with the light curve shapes worse: dipole fields are not sufficient to interpret the data. Many neutron star models with a meson condensate or hypersons predict very small radii, and hence very strong lensing, which will require highly nondipolar fields to be able to reproduce the observed pulsed fractions, if possible at all: this may be a new

  5. Investigations of diffuse sound fields using systematic changes in surface scattering

    Science.gov (United States)

    Herder, John

    Systematically varying the surface scattering in an enclosure provides insight towards the impact of field diffusion on acoustic phenomena. Two independent studies are presented, each utilizing three distinct cases of field diffusion created through the introduction of boundary irregularities. First, dodecaspherical loudspeakers used in acoustic measurement exhibit non-uniform radiation. Also, the interaction of the source sound with room boundaries impacts the degree of energy interference and decay over time. As such, the amount of variation in sound pressure level and clarity over a grid of receivers is investigated with respect to stand-alone cases as well as the promotion of field diffusion. By sequentially expanding the extent of energy mixing in a volume, it is expected that variations in the acoustic parameters over an area will be reduced. Developing a consistent aural experience over a listening area is an important topic in room acoustics, so exploring the physical impact of field diffusion on sound field variance advances this aim. The second experiment reinforces a method for understanding the time arrival of diffuse sound fields in a volume. By systematically promoting greater diffusion, it is expected that the corresponding diffuse sound field will arrive earlier. The turning point property of experimental double sloped energy decays is investigated against a diffusion equation model, relating the valid range of the numerical model to the time onset of the diffuse sound field. In this way, the time arrival of the diffuse sound field is calculated in terms of the change in mean free time between cases. The effect of overall absorption is also discussed, reinforcing the validity of the outcome.

  6. Bis(terpyridine)-based surface template structures on graphite: a force field and DFT study.

    Science.gov (United States)

    Künzel, Daniela; Markert, Thomas; Gross, Axel; Benoit, David M

    2009-10-21

    Host-guest networks formed by ordered organic layers are promising candidates for applications in molecular storage and quantum computing. We have studied 2-dimensionally ordered surface template structures of bis(terpyridine)-derived molecules (BTPs) on graphite using force field and DFT methods and compared the results to recent experimental observations. In order to determine the force field best suited for surface calculations, bond lengths and angles, torsional potentials, adsorption and stacking energies of smaller aromatic molecules were calculated with different force fields (Compass, UFF, Dreiding and CVFF). Density functional perturbation theory calculations were used to study the intermolecular interactions between 3,3'-BTP molecules. Structural properties, adsorption energies and rotational barriers of the 3,3'-BTP surface structure and its host-guest systems with phthalocyanine (PcH(2)) or excess 3,3'-BTP as guest molecules have been addressed. In addition, STM images of oligopyridine and phthalocyanine molecules were simulated based on periodic and local density functional theory calculations.

  7. Field enhancement at silicon surfaces by gold ellipsoids probed by optical second-harmonic generation spectroscopy

    Science.gov (United States)

    Ulriksen, Hans Ulrik; Pedersen, Kjeld

    2016-12-01

    Optical second-harmonic generation (SHG) spectroscopy has been used to determine the field enhancements from Au nanoparticles on a silicon substrate. Au particles with diameters from 30 to 250 nm have been deposited on a Si substrate passivated by a 1 nm thick surface oxide. The linear optical spectra are dominated by a horizontal plasmon resonance near 1.0 eV, and the experimental spectra are modelled by the island film model in order to extract the linear properties of the metal particles. SHG spectroscopy from this system shows resonances from the metal particles and from the silicon/oxide substrate. By following the evolution of these Si resonances with the size of the Au particles, the field enhancement in the Si surface has been modelled. The effect of the Au particles on SHG at the Si E1 resonance is a combination of charge transfer through the thin oxide that changes the space charge region and an enhancement of the optical field in a thin surface layer of the Si substrate.

  8. Bordered surfaces, off-shell amplitudes, sewing, and string field theory

    Science.gov (United States)

    Carlip, Steven

    1989-04-01

    These lectures will deal with the current status of the sewing problem. The rationale for this approach is that any nonperturbative string theory must reproduce the Polyakov path integral as a perturbation series. If our experience in ordinary field theory is a guide, and admittedly it may not be, the terms in such a perturbation series, like Feynman diagrams, are likely to be built up from simple vertices and propagators, which can themselves be represented as (off-shell) Polyakov amplitudes. Hence an understanding of how to put together simple components into more complicated world sheet amplitudes is likely to give us much-needed information about the structure of nonperturbative string theory. To understand sewing, we must first understand the building blocks, off-shell Polyakov amplitudes. This is the subject of my first lecture. Next, we will explore the sewing of conformal field theories at a fixed conformal structure, that is, the reconstruction of correlation functions for a fixed surface (Sigma) from those on a pair of surfaces (Sigma)(sub 1) and (Sigma)(sub 2) obtained by cutting (Sigma) along a closed curve. We will then look at the problem of sewing amplitudes, integrals of correlation functions over moduli space. This will necessitate an understanding of how to build the moduli space of a complicated surface from simpler moduli spaces. Finally, we will briefly examine vertices and string field theories.

  9. Electric field effects on the dynamics of bubble detachment from an inclined surface

    Science.gov (United States)

    Di Marco, P.; Morganti, N.; Saccone, G.

    2015-11-01

    An experimental apparatus to study bubble detachment from an inclined surface under the action of electric forces is described. It consists of a container filled with FC72 at room temperature and pressure where a train of gas bubbles is injected from an orifice. An electrostatic field can be imposed around the bubble, while the cell can be tilted from 0 to 90°. It is possible to study interface growth with the aid of high-speed cinematography. Since the interface is asymmetrical, a mirror system allowed to acquire, in the same frame, two images at 90° of the bubble. Different inclinations, injection rates and voltages were tested in order to couple the effects of shear gravity and electric field. Curvature and contact angles have been derived with appropriate interpolation methods of the profile. Force balances on the bubble were checked, finding an electric force, which, at first pulls the bubbles from the orifice, then pushes it against the surface. The motion of the center of gravity confirms this behaviour. A power balance has been developed to determine the energy contributions, revealing that surface growth incorporates both the effects of inlet power and electric field.

  10. Effect of Ionic Advection on Electroosmosis over Charge Surfaces: Beyond the Weak Field Limit

    CERN Document Server

    Ghosh, Uddipta

    2015-01-01

    The present study deals with the effect of ionic advection on electroosmotic flow over charge modulated surfaces in a generalized paradigm when the classically restrictive "weak field" limit may be relaxed. Going beyond the commonly portrayed weak field limit (i.e, the externally applied electric field is over-weighed by the surface-induced electrical potential, towards charge distribution in an electrified wall-adhering layer) for electroosmotic transport, we numerically solve the coupled full set of Poisson-Nernst-Planck (PNP) and Navier-Stokes equations, in a semi-infinite domain, bounded at the bottom by a charged wall. Further, in an effort to obtain deeper physical insight, we solve the simplified forms of the relevant governing equations for low surface potential in two separate asymptotic limits: (i) a regular perturbation solution for Low Ionic Peclet number (Pe), where Pe is employed as the gauge function and (ii) a matched asymptotic solution for O(1) Pe in the Thin Electric Double Layer (EDL) limi...

  11. Gravitational Field equations near an Arbitrary Null Surface expressed as a Thermodynamic Identity

    CERN Document Server

    Chakraborty, Sumanta; Padmanabhan, T

    2015-01-01

    Previous work has demonstrated that the gravitational field equations in all Lanczos-Lovelock models imply a thermodynamic identity TdS=dE+PdV (where the variations are interpreted as changes due to virtual displacement along the affine parameter) in the near-horizon limit in static spacetimes. Here we generalize this result to any arbitrary null surface in an arbitrary spacetime and show that certain components of the Einstein's equations can be expressed in the form of the above thermodynamic identity. We also obtain an explicit expression for the thermodynamic energy associated with the null surface. Under appropriate limits, our expressions reduce to those previously derived in the literature. The components of the field equations used in obtaining the current result are orthogonal to the components used previously to obtain another related result, viz. that some components of the field equations reduce to a Navier-Stokes equation on any null surface, in any spacetime. We also describe the structure of Ei...

  12. Measurement of Ammonia Emission Following Surface Application of Urea Fertilizer from Irrigated Paddy Rice Fields

    Institute of Scientific and Technical Information of China (English)

    Md.Toufiq Iqbal; TIAN Guang-ming; LIANG Xin-qiang; Fatima Rukshana

    2005-01-01

    Ammonia emission is one of the most important pathways of nitrogen loss from agricultural cultivated field. In this paper, we report the measurement of ammonia emission from paddy rice field obtained by surface application of urea fertilizer with water management. The main objective of the present study were to assess the amount of NH3 emission and the loss of nitrogen from paddy field as affected by various N doses, i.e., 0 (control), 90 (N1), 180 (N2), 270 (N3) and 360 (N4) kg ha-1, following field surface application of urea fertilizer with water management. Ammonia emissions were measured by continuous airflow enclosure method from plots fertilized with the application of surface urea. Increase in urea-N dosage increased NH3 emission thatwas measured from paddy rice field. Ammonia emission started immediately and was almost complete within 12 days after top dressing of urea application to the soils. Ammonia emissions were nearly constant in all treatments from 12 days after fertilizer application. Highest ammonia emission rate was 28 g/day and total amount of ammonia emission was 56.21 kg ha-1 for 360 kg N ha-1 dose. No remarkable observation was found about temperature for ammonia emission. Due to proper water management practices less emission was observed throughout the experiment period. The results also show that N loss through NH3 emission accounted for 11 to 16% during the ricegrowing season. These magnitudes of loss of N appear to be most important for environmental point of view.

  13. Geomechanical modeling of reservoir compaction, surface subsidence, and casing damage at the Belridge diatomite field

    Energy Technology Data Exchange (ETDEWEB)

    FREDRICH,JOANNE T.; DEITRICK,G.L.; ARGUELLO JR.,JOSE G.; DEROUFFIGNAC,E.P.

    2000-05-01

    Geologic, and historical well failure, production, and injection data were analyzed to guide development of three-dimensional geomechanical models of the Belridge diatomite field, California. The central premise of the numerical simulations is that spatial gradients in pore pressure induced by production and injection in a low permeability reservoir may perturb the local stresses and cause subsurface deformation sufficient to result in well failure. Time-dependent reservoir pressure fields that were calculated from three-dimensional black oil reservoir simulations were coupled uni-directionally to three-dimensional non-linear finite element geomechanical simulations. The reservoir models included nearly 100,000 gridblocks (100--200 wells), and covered nearly 20 years of production and injection. The geomechanical models were meshed from structure maps and contained more than 300,000 nodal points. Shear strain localization along weak bedding planes that causes casing dog-legs in the field was accommodated in the model by contact surfaces located immediately above the reservoir and at two locations in the overburden. The geomechanical simulations are validated by comparison of the predicted surface subsidence with field measurements, and by comparison of predicted deformation with observed casing damage. Additionally, simulations performed for two independently developed areas at South Belridge, Sections 33 and 29, corroborate their different well failure histories. The simulations suggest the three types of casing damage observed, and show that although water injection has mitigated surface subsidence, it can, under some circumstances, increase the lateral gradients in effective stress, that in turn can accelerate subsurface horizontal motions. Geomechanical simulation is an important reservoir management tool that can be used to identify optimal operating policies to mitigate casing damage for existing field developments, and applied to incorporate the effect of

  14. Hydrothermal alteration of sediments associated with surface emissions from the Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Valette-Silver, J.N.; Esquer P., I.; Elders, W.A.; Collier, P.C.; Hoagland, J.R.

    1981-01-01

    A study of the mineralogical changes associated with these hydrothermal vents was initiated with the aim of developing possible exploration tools for geothermal resources. The Cerro Prieto reservoir has already been explored by extensive deep drilling so that relationships between surface manifestations and deeper hydrothermal processes could be established directly. Approximately 120 samples of surface sediments were collected both inside and outside of the vents. The mineralogy of the altered sediments studied appears to be controlled by the type of emission. A comparison between the changes in mineralogy due to low temperature hydrothermal activity in the reservoir, seen in samples from boreholes, and mineralogical changes in the surface emission samples shows similar general trends below 180 C: increase of quartz, feldspar and illite, with subsequent disappearance of kaolinite, montmorillonite, calcite and dolomite. These mineral assemblages seem to be characteristic products of the discharge from high intensity geothermal fields.

  15. Surface-wave plasma source with magnetic multicusp fields; Multicusp jiba tojikome hyomenha plasma gen

    Energy Technology Data Exchange (ETDEWEB)

    Tsuda, M.; Ono, K.; Tsuchihashi, M.; Hanazaki, M.; Komemura, T. [Mitsubishi Electric Corp., Tokyo (Japan)

    1998-11-01

    A new-type microwave plasma source has been developed for materials processing. The plasma reactor employed a launcher of azimuthally symmetric surface waves at a frequency of 2.45 GHz and also magnetic multicusp fields around the reactor chamber walls. This configuration yielded high-density (Ne {>=} 10{sup 11}cm{sup -3}) plasmas sustained by surface waves even at low gas pressures below 10 m Torr, following easy plasma ignition by electron cyclotron resonance (ECR) discharges. Electrical and optical diagnostics were made to obtain the plasma properties in Ar. It was shown that a transition from ECR excited to surface-wave excited plasmas occurs under conditions where the plasma electron density exceeds a critical value of Ne-1 times 10{sup 11}cm{sup -3}. 21 refs., 14 figs.

  16. [Application progress of laser-induced breakdown spectroscopy for surface analysis in materials science field].

    Science.gov (United States)

    Zhang, Yong; Jia, Yun-Hai; Chen, Ji-Wen; Liu, Ying; Shen, Xue-Jing; Zhao, Lei; Wang, Shu-Ming; Yu, Hong; Han, Peng-Cheng; Qu, Hua-Yang; Liu, Shao-Zun

    2012-06-01

    As a truly surface analytical tool, laser-induced breakdown spectroscopy (LIBS) was developed in recent ten years, and in this paper, fundamental theory, instrumentation and it's applications in material science are reviewed in detail. Application progress of elemental distribution and depth profile analysis are mainly discussed in the field of metallurgy, semiconductor and electronical materials at home and abroad. It is pointed out that the pulse energy, ambient gas and it's pressure, and energy distribution of laser beam strongly influence spatial and depth resolution, and meanwhile a approach to improving resolution considering analytical sensitivity is provided. Compared with traditional surface analytical methods, the advantage of LIBS is very large scanning area, high analytical speed, and that conducting materials or non-conducting materials both can be analyzed. It becomes a powerful complement of traditional surface analytical tool.

  17. Light Irradiation through Small Particles and Its Applications for Surface Nanostructuring in Near Field

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yi; HONG Ming-Hui; FUH Ying-Hsi Jerry; LU Li; TAN Leng Seow; Luk(y)anchuk B S

    2007-01-01

    We investigate the light scattering through small particles and its applications in nanostructuring, such as nanobumping, nanopatterning and dry laser cleaning. The theoretical calculation based on Mie theory provides an exact solution for sphere cavity resonance and plasmon resonance, which are two mechanisms for dielectric and metallic particles assisted surface nanostructuring in near field. The experimental results indicate that nanobumps on glass surface and subwavelength holes array on silicon surface can be formed without cracks with the self-assembly of 1 μm silica particle mask under laser irradiation. It is also found that the scattering wave by 40 nm gold particles can propagate 200 times away in terms of particle radius as recorded by photoresist under the UV light irradiation. Meanwhile, dry laser cleaning of 40 nm gold particle on silicon wafer is demonstrated at plasmonic resonance frequency. The total cleaning efficiency is estimated to be 80%.

  18. SHAPE RESTORATIONS OF OBJECT SURFACE ON POLARIZATION STRUCTURE OF REFLECTED ELECTROMAGNETIC WAVE FIELD

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available A problem of electromagnetic wave backscattering on a chosen 3D object is solved. A differential equation which is linked change of polarization coefficient of reflected wave with variation of matrix elements of object scattering is ob- tained. Obtained relation enables to develop algorithms of fast numerical solution of inverse problem of scattering on this object that is determination of complex function of object surface scattering and restoration of unknown object shape on phase distribution of reflected wave. The method uses ray representation of scattering fields based on principle Huygens- Fresnel. The algorithm of object shape restoration on phase of reflected wave allows to restore not only smooth surfaces, but also object surfaces with smaller roughness than a wave length.

  19. Surface evolution in stable magnetic fields: the case of the fully convective dwarf V374 Peg

    CERN Document Server

    Vida, K; K\\Hovári, Zs

    2010-01-01

    We present BV(RI)_C photometric measurements of the dM4-type V374 Peg covering ~430 days. The star has a mass of ~0.28M_Sun, so it is supposed to be fully convective. Previous observations detected almost-rigid-body rotation and stable, axisymmetric poloidal magnetic field. Our photometric data agree well with this picture, one persistent active nest is found on the stellar surface. Nevertheless, the surface is not static: night-to-night variations and frequent flaring are observed. The flares seem to be concentrated on the brighter part of the surface. The short-time changes of the light curve could indicate emerging flux ropes in the same region, resembling to the active nests on the Sun. We have observed flaring and quiet states of V374 Peg changing on monthly timescale.

  20. Temperature field modeling in laser-heated metals for laser cleaning of surfaces

    Science.gov (United States)

    Oane, Mihai; Apostol, Ileana; Timcu, Adrian

    2003-10-01

    Laser induced surface cleaning is the adequate method in a large variety of industrial domains as microelectronics, optics, photonics. By comparison to chemical and/or mechanical cleaning, laser cleaning has the advantage of a very good selectivity on the surface and in depth of the material, no surface contamination, without stress in the material volume and environmental safe. It seems that laser cleaning can be developed in a method to be currently used in microelectronic industry. For an efficient laser cleaning of metallic thin films without damage of the silicon wafer, a careful optimization of the incident laser energy, fluence, intensity and number of laser pulses is needed. We have developed an analytical procedure to study the temperature fields in pulsed laser heated solids, for a deeper knowledge of the laser-thin film substrate interaction.

  1. Surface strain-field determination of tympanic membrane using 3D-digital holographic interferometry

    Science.gov (United States)

    Hernandez-Montes, María del S.; Mendoza Santoyo, Fernando; Muñoz, Silvino; Perez, Carlos; de la Torre, Manuel; Flores, Mauricio; Alvarez, Luis

    2015-08-01

    In order to increase the understanding of soft tissues mechanical properties, 3D Digital Holographic Interferometry (3D-DHI) was used to quantify the strain-field on a cat tympanic membrane (TM) surface. The experiments were carried out applying a constant sound-stimuli pressure of 90 dB SPL (0.632 Pa) on the TM at 1.2 kHz. The technique allows the accurate acquisition of the micro-displacement data along the x, y and z directions, which is a must for a full characterization of the tissue mechanical behavior under load, and for the calculation of the strain-field in situ. The displacements repeatability in z direction shows a standard deviation of 0.062 μm at 95% confidence level. In order to realize the full 3D characterization correctly the contour of the TM surface was measured employing the optically non-contact two-illumination positions contouring method. The x, y and z displacements combined with the TM contour data allow the evaluation its strain-field by spatially differentiating the u(m,n), v(m,n), and w(m,n) deformation components. The accurate and correct determination of the TM strain-field leads to describing its elasticity, which is an important parameter needed to improve ear biomechanics studies, audition processes and TM mobility in both experimental measurements and theoretical analysis of ear functionality and its modeling.

  2. Probing the surface magnetic field structure in RX J1856.5-3754

    CERN Document Server

    Popov, S B; Turolla, R

    2016-01-01

    The evolution of magnetic field in isolated neutron stars is one of the most important ingredients in the attempt to build a unified description of these objects. A prediction of field evolution models is the existence of an equilibrium configuration, in which the Hall cascade vanishes. Recent calculations have explored the field structure in this stage, called the Hall attractor. We use X-ray data of near-by, cooling neutron stars to probe this prediction, as these sources are surmised to be close to or at Hall attractor phase. We show that the source RX J1856.5-3754 might be closer to the attractor than other sources of its class. Our modelling indicates that the properties of surface thermal emission, assuming that the star is in the Hall attractor, are in contradiction with the spectral data of RX J1856.5-3754.

  3. Magnetic Fields above the Surface of aSuperconductor with Internal Magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Bluhm, Hendrik; /Stanford U., Phys. Dept. /SLAC, SSRl

    2007-06-26

    The author presents a method for calculating the magnetic fields near a planar surface of a superconductor with a given intrinsic magnetization in the London limit. He computes solutions for various magnetic domain boundary configurations and derives relations between the spectral densities of the magnetization and the resulting field in the vacuum half space, which are useful if the magnetization can be considered as a statistical quantity and its features are too small to be resolved individually. The results are useful for analyzing and designing magnetic scanning experiments. Application to existing data from such experiments on Sr{sub 2}RuO{sub 4} show that a domain wall would have been detectable, but the magnetic field of randomly oriented small domains and small defects may have been smaller than the experimental noise level.

  4. Genetic polymorphism of merozoite surface protein-1 and merozoite surface protein-2 in Plasmodium falciparum field isolates from Myanmar.

    Science.gov (United States)

    Kang, Jung-Mi; Moon, Sung-Ung; Kim, Jung-Yeon; Cho, Shin-Hyeong; Lin, Khin; Sohn, Woon-Mok; Kim, Tong-Soo; Na, Byoung-Kuk

    2010-05-17

    Merozoite surface protein-1 (MSP-1) and MSP-2 of Plasmodium falciparum are potential vaccine candidate antigens for malaria vaccine development. However, extensive genetic polymorphism of the antigens in field isolates of P. falciparum represents a major obstacle for the development of an effective vaccine. In this study, genetic polymorphism of MSP-1 and MSP-2 among P. falciparum field isolates from Myanmar was analysed. A total of 63 P. falciparum infected blood samples, which were collected from patients attending a regional hospital in Mandalay Division, Myanmar, were used in this study. The regions flanking the highly polymorphic characters, block 2 for MSP-1 and block 3 for MSP-2, were genotyped by allele-specific nested-PCR to analyse the population diversity of the parasite. Sequence analysis of the polymorphic regions of MSP-1 and MSP-2 was also conducted to identify allelic diversity in the parasite population. Diverse allelic polymorphism of MSP-1 and MSP-2 was identified in P. falciparum isolates from Myanmar and most of the infections were determined to be mixed infections. Sequence analysis of MSP-1 block 2 revealed that 14 different alleles for MSP-1 (5 for K1 type and 9 for MAD20 type) were identified. For MSP-2 block 3, a total of 22 alleles (7 for FC27 type and 15 for 3D7 type) were identified. Extensive genetic polymorphism with diverse allele types was identified in MSP-1 and MSP-2 in P. falciparum field isolates from Myanmar. A high level of mixed infections was also observed, as was a high degree of multiplicity of infection.

  5. Genetic polymorphism of merozoite surface protein-1 and merozoite surface protein-2 in Plasmodium falciparum field isolates from Myanmar

    Directory of Open Access Journals (Sweden)

    Kim Tong-Soo

    2010-05-01

    Full Text Available Abstract Background Merozoite surface protein-1 (MSP-1 and MSP-2 of Plasmodium falciparum are potential vaccine candidate antigens for malaria vaccine development. However, extensive genetic polymorphism of the antigens in field isolates of P. falciparum represents a major obstacle for the development of an effective vaccine. In this study, genetic polymorphism of MSP-1 and MSP-2 among P. falciparum field isolates from Myanmar was analysed. Methods A total of 63 P. falciparum infected blood samples, which were collected from patients attending a regional hospital in Mandalay Division, Myanmar, were used in this study. The regions flanking the highly polymorphic characters, block 2 for MSP-1 and block 3 for MSP-2, were genotyped by allele-specific nested-PCR to analyse the population diversity of the parasite. Sequence analysis of the polymorphic regions of MSP-1 and MSP-2 was also conducted to identify allelic diversity in the parasite population. Results Diverse allelic polymorphism of MSP-1 and MSP-2 was identified in P. falciparum isolates from Myanmar and most of the infections were determined to be mixed infections. Sequence analysis of MSP-1 block 2 revealed that 14 different alleles for MSP-1 (5 for K1 type and 9 for MAD20 type were identified. For MSP-2 block 3, a total of 22 alleles (7 for FC27 type and 15 for 3D7 type were identified. Conclusion Extensive genetic polymorphism with diverse allele types was identified in MSP-1 and MSP-2 in P. falciparum field isolates from Myanmar. A high level of mixed infections was also observed, as was a high degree of multiplicity of infection.

  6. Hamilton--Jacobi theory for continuation of magnetic field across a toroidal surface supporting a plasma pressure discontinuity

    CERN Document Server

    McGann, M; Dewar, R L; von Nessi, G

    2010-01-01

    The vanishing of the divergence of the total stress tensor (magnetic plus kinetic) in a neighborhood of an equilibrium plasma containing a toroidal surface of discontinuity gives boundary and jump conditions that strongly constrain allowable continuations of the magnetic field across the surface. The boundary conditions allow the magnetic fields on either side of the discontinuity surface to be described by surface magnetic potentials, reducing the continuation problem to that of solving a Hamilton--Jacobi equation. The characteristics of this equation obey Hamiltonian equations of motion, and a necessary condition for the existence of a continued field across a general toroidal surface is that there exist invariant tori in the phase space of this Hamiltonian system. It is argued from the Birkhoff theorem that existence of such an invariant torus is also, in general, sufficient for continuation to be possible. An important corollary is that the rotational transform of the continued field on a surface of disco...

  7. Soil Type Dependent Rhizosphere Competence and Biocontrol of Two Bacterial Inoculant Strains and Their Effects on the Rhizosphere Microbial Community of Field-Grown Lettuce: e103726

    National Research Council Canada - National Science Library

    Susanne Schreiter; Martin Sandmann; Kornelia Smalla; Rita Grosch

    2014-01-01

    .... The present study is aimed to unravel the effects of soil types on the rhizosphere competence and biocontrol activity of the two inoculant strains Pseudomonas jessenii RU47 and Serratia plymuthica...

  8. Soil type dependent rhizosphere competence and biocontrol of two bacterial inoculant strains and their effects on the rhizosphere microbial community of field-grown lettuce

    National Research Council Canada - National Science Library

    Schreiter, Susanne; Sandmann, Martin; Smalla, Kornelia; Grosch, Rita

    2014-01-01

    .... The present study is aimed to unravel the effects of soil types on the rhizosphere competence and biocontrol activity of the two inoculant strains Pseudomonas jessenii RU47 and Serratia plymuthica...

  9. Estimation of surface curvature from full-field shape data using principal component analysis

    Science.gov (United States)

    Sharma, Sameer; Vinuchakravarthy, S.; Subramanian, S. J.

    2017-01-01

    Three-dimensional digital image correlation (3D-DIC) is a popular image-based experimental technique for estimating surface shape, displacements and strains of deforming objects. In this technique, a calibrated stereo rig is used to obtain and stereo-match pairs of images of the object of interest from which the shapes of the imaged surface are then computed using the calibration parameters of the rig. Displacements are obtained by performing an additional temporal correlation of the shapes obtained at various stages of deformation and strains by smoothing and numerically differentiating the displacement data. Since strains are of primary importance in solid mechanics, significant efforts have been put into computation of strains from the measured displacement fields; however, much less attention has been paid to date to computation of curvature from the measured 3D surfaces. In this work, we address this gap by proposing a new method of computing curvature from full-field shape measurements using principal component analysis (PCA) along the lines of a similar work recently proposed to measure strains (Grama and Subramanian 2014 Exp. Mech. 54 913-33). PCA is a multivariate analysis tool that is widely used to reveal relationships between a large number of variables, reduce dimensionality and achieve significant denoising. This technique is applied here to identify dominant principal components in the shape fields measured by 3D-DIC and these principal components are then differentiated systematically to obtain the first and second fundamental forms used in the curvature calculation. The proposed method is first verified using synthetically generated noisy surfaces and then validated experimentally on some real world objects with known ground-truth curvatures.

  10. A Comprehensive Model of Electric-Field-Enhanced Jumping-Droplet Condensation on Superhydrophobic Surfaces.

    Science.gov (United States)

    Birbarah, Patrick; Li, Zhaoer; Pauls, Alexander; Miljkovic, Nenad

    2015-07-21

    Superhydrophobic micro/nanostructured surfaces for dropwise condensation have recently received significant attention due to their potential to enhance heat transfer performance by shedding positively charged water droplets via coalescence-induced droplet jumping at length scales below the capillary length and allowing the use of external electric fields to enhance droplet removal and heat transfer, in what has been termed electric-field-enhanced (EFE) jumping-droplet condensation. However, achieving optimal EFE conditions for enhanced heat transfer requires capturing the details of transport processes that is currently lacking. While a comprehensive model has been developed for condensation on micro/nanostructured surfaces, it cannot be applied for EFE condensation due to the dynamic droplet-vapor-electric field interactions. In this work, we developed a comprehensive physical model for EFE condensation on superhydrophobic surfaces by incorporating individual droplet motion, electrode geometry, jumping frequency, field strength, and condensate vapor-flow dynamics. As a first step toward our model, we simulated jumping droplet motion with no external electric field and validated our theoretical droplet trajectories to experimentally obtained trajectories, showing excellent temporal and spatial agreement. We then incorporated the external electric field into our model and considered the effects of jumping droplet size, electrode size and geometry, condensation heat flux, and droplet jumping direction. Our model suggests that smaller jumping droplet sizes and condensation heat fluxes require less work input to be removed by the external fields. Furthermore, the results suggest that EFE electrodes can be optimized such that the work input is minimized depending on the condensation heat flux. To analyze overall efficiency, we defined an incremental coefficient of performance and showed that it is very high (∼10(6)) for EFE condensation. We finally proposed mechanisms

  11. Cultural competence: a constructivist definition.

    Science.gov (United States)

    Blanchet Garneau, Amélie; Pepin, Jacinthe

    2015-01-01

    In nursing education, most of the current teaching practices perpetuate an essentialist perspective of culture and make it imperative to refresh the concept of cultural competence in nursing. The purpose of this article is to propose a constructivist definition of cultural competence that stems from the conclusions of an extensive critical review of the literature on the concepts of culture, cultural competence, and cultural safety among nurses and other health professionals. The proposed constructivist definition is situated in the unitary-transformative paradigm in nursing as defined by Newman and colleagues. It makes the connection between the field of competency-based education and the nursing discipline. Cultural competence in a constructivist paradigm that is oriented toward critical, reflective practice can help us develop knowledge about the role of nurses in reducing health inequalities and lead to a comprehensive ethical reflection about the social mandate of health care professionals.

  12. The effect of interplanetary magnetic field orientation on the solar wind flux impacting Mercury's surface

    CERN Document Server

    Varela, J; Moncuquet, M

    2016-01-01

    The aim of this paper is to study the plasma flows on the Mercury surface for different interplanetary magnetic field orientations on the day side of the planet. We use a single fluid MHD model in spherical coordinates to simulate the interaction of the solar wind with the Hermean magnetosphere for six solar wind realistic configurations with different magnetic field orientations: Mercury-Sun, Sun-Mercury, aligned with the magnetic axis of Mercury (Northward and Southward) and with the orbital plane perpendicular to the previous cases. In the Mercury-Sun (Sun-Mercury) simulation the Hermean magnetic field is weakened in the South-East (North-East) of the magnetosphere leading to an enhancement of the flows on the South (North) hemisphere. For a Northward (Southward) orientation there is an enhancement (weakening) of the Hermean magnetic field in the nose of the bow shock so the fluxes are reduced and drifted to the poles (enhanced and drifted to the equator). If the solar wind magnetic field is in the orbital...

  13. Photodetachment of H near an elastic surface in a magnetic field

    Institute of Scientific and Technical Information of China (English)

    Wang Lei; Yang Hai-Feng; Liu Xiao-Jun; Liu Hong-Ping

    2011-01-01

    This paper investigates the photodetachment of the negative hydrogen ion H-near an elastic wall in a magnetic field. The magnetic field confines the perpendicular motion of the electron, which results in a real three-dimensional well for the detached electron. The analytical formulas for the cross section of the photodetachment in the three-dimensional quantum well are derived based on both the quantum approach and closed-orbit theory. The magnetic field and the elastic surface lead to two completely different modulations to the cross section of the photodetachment. The oscillation amplitude depends on the strength of the magnetic field, the ion-wall distance and the photon polarization as well. Specially, for the circularly polarized photon-induced photodetachment, the cross sections display a suppressed (E -Eth)1/2 threshold law with energy E in the vicinity above Landau energy Eth, contrasting with the (E -Eth)-1/2 threshold law in the presence of only the magnetic field. The semiclassical calculation fits the quantum result quite well, although there are still small deviations. The difference is attributed to the failure of semiclassical mechanics.

  14. Wedge filling and interface delocalization in finite Ising lattices with antisymmetric surface fields

    Science.gov (United States)

    Milchev, Andrey; Müller, M.; Binder, K.; Landau, D. P.

    2003-09-01

    Theoretical predictions by Parry et al. for wetting phenomena in a wedge geometry are tested by Monte Carlo simulations. Simple cubic L×L×Ly Ising lattices with nearest neighbor ferromagnetic exchange and four free L×Ly surfaces, at which antisymmetric surface fields ±Hs act, are studied for a wide range of linear dimensions (4⩽L⩽320, 30⩽Ly⩽1000), in an attempt to clarify finite size effects on the wedge filling transition in this “double-wedge” geometry. Interpreting the Ising model as a lattice gas, the problem is equivalent to a liquid-gas transition in a pore with quadratic cross section, where two walls favor the liquid and the other two walls favor the gas. For temperatures T below the bulk critical temperature Tc this boundary condition (where periodic boundary conditions are used in the y direction along the wedges) leads to the formation of two domains with oppositely oriented magnetization and separated by an interface. For L,Ly→∞ and T larger than the filling transition temperature Tf(Hs), this interface runs from the one wedge where the surface planes with a different sign of the surface field meet (on average) straight to the opposite wedge, so that the average magnetization of the system is zero. For Tinterface is bound either to the wedge where the two surfaces with field -Hs meet (then the total magnetization m of the system is positive) or to the opposite wedge (then minterface midpoint from the wedges is studied as T→Tf(Hs) from below, as is the corresponding behavior of the magnetization and its moments. We consider the variation of l0 for T>Tf(Hs) as a function of a bulk field and find that the associated exponents agree with theoretical predictions. The correlation length ξy in the y direction along the wedges is also studied, and we find no transition for finite L and Ly→∞. For L→∞ the prediction l0∝(Hsc-Hs)-1/4 is verified, where Hsc(T) is the inverse function of Tf(Hs) and ξy∝(Hsc-Hs)-3/4, respectively. We

  15. Wedge filling and interface delocalization in finite Ising lattices with antisymmetric surface fields.

    Science.gov (United States)

    Milchev, Andrey; Müller, M; Binder, K; Landau, D P

    2003-09-01

    Theoretical predictions by Parry et al. for wetting phenomena in a wedge geometry are tested by Monte Carlo simulations. Simple cubic LxLxL(y) Ising lattices with nearest neighbor ferromagnetic exchange and four free LxL(y) surfaces, at which antisymmetric surface fields +/-H(s) act, are studied for a wide range of linear dimensions (4Ising model as a lattice gas, the problem is equivalent to a liquid-gas transition in a pore with quadratic cross section, where two walls favor the liquid and the other two walls favor the gas. For temperatures T below the bulk critical temperature T(c) this boundary condition (where periodic boundary conditions are used in the y direction along the wedges) leads to the formation of two domains with oppositely oriented magnetization and separated by an interface. For L,L(y)--> infinity and T larger than the filling transition temperature T(f)(H(s)), this interface runs from the one wedge where the surface planes with a different sign of the surface field meet (on average) straight to the opposite wedge, so that the average magnetization of the system is zero. For Tinterface is bound either to the wedge where the two surfaces with field -H(s) meet (then the total magnetization m of the system is positive) or to the opposite wedge (then minterface midpoint from the wedges is studied as T-->T(f)(H(s)) from below, as is the corresponding behavior of the magnetization and its moments. We consider the variation of l(0) for T>T(f)(H(s)) as a function of a bulk field and find that the associated exponents agree with theoretical predictions. The correlation length xi(y) in the y direction along the wedges is also studied, and we find no transition for finite L and L(y)--> infinity. For L--> infinity the prediction l(0) proportional, variant (H(sc)-H(s))(-1/4) is verified, where H(sc)(T) is the inverse function of T(f)(H(s)) and xi(y) proportional, variant (H(sc)-H(s))(-3/4), respectively. We also find that m vanishes discontinuously at the

  16. Modeling surface energy fluxes from a patchwork of fields with different soils and crops

    Science.gov (United States)

    Klein, Christian; Thieme, Christoph; Heinlein, Florian; Priesack, Eckart

    2017-04-01

    Agroecosystems are a dominant terrestrial land-use on planet earth and cover about 36% of the ice-free surface (12% pasture, 26% agriculture) [Foley2011]. Within this land use type, management practices vary strongly due to climate, cultural preferences, degree of industrialization, soil properties, crop rotations, field sizes, degree of land use sustainability, water availability, sowing and harvest dates, tillage, etc. These management practices influence abiotic environmental factors like water flow and heat transport within the ecosystem leading to changes of land surface fluxes. The relevance of vegetation (e.g. crops), ground cover, and soil properties to the moisture and energy exchanges between the land surface and the atmosphere is well known [McPherson 2007], but the impact of vegetation growth dynamics on energy fluxes is only partly understood [Gayler et al. 2014]. Thus, the structure of turbulence and the albedo evolve during the cropping period and large variations of heat can be measured on the field scale [Aubinet2012]. One issue of local distributed mixture of different land use is the measurement process which makes it challenging to evaluate simulations. Unfortunately, for meteorological flux-measurements like the Flux-Gradient or the Eddy Covariance (EC) method, comparability with simulations only exists in the ideal case, where fields have to be completely uniform in land use and flat within the reach of the footprint. Then a model with one specific land use would have the same underlying source area as the measurement. An elegant method to avoid the shortcoming of grid cell resolution is the so called mixed approach, which was recently implemented into the ecosystem model framework Expert-N [Biernath et al. 2013]. The aim of this study was to analyze the impact of the characteristics of five managed field plots, planted with winter wheat, potato and maize on the near surface soil moistures and on the near surface energy flux exchanges of the

  17. Religious competence as cultural competence

    Science.gov (United States)

    2012-01-01

    Definitions of cultural competence often refer to the need to be aware and attentive to the religious and spiritual needs and orientations of patients. However, the institution of psychiatry maintains an ambivalent attitude to the incorporation of religion and spirituality into psychiatric practice. This is despite the fact that many patients, especially those from underserved and underprivileged minority backgrounds, are devotedly religious and find much solace and support in their religiosity. I use the case of mental health of African Americans as an extended example to support the argument that psychiatric services must become more closely attuned to religious matters. I suggest ways in which this can be achieved. Attention to religion can aid in the development of culturally competent and accessible services, which in turn, may increase engagement and service satisfaction among religious populations. PMID:22421686

  18. NH 3 soil and soil surface gas measurements in a triticale wheat field

    Science.gov (United States)

    Neftel, A.; Blatter, A.; Gut, A.; Högger, D.; Meixner, F.; Ammann, C.; Nathaus, F. J.

    We present a new approach for a continuous determination of NH 3 concentration in the open pore space of the soil and on the soil surface. In a semi-permeable membrane of 0.5 m length a flow of 0.5 s1pm maintained. In the tube the NH 3 concentration adjusts itself to the surrounding air concentration by diffusion through the membrane. Continuous measurements have been performed in a triticale wheat field over a period of several weeks in a field experiment at Bellheim (FRG) during June and July 1995 within the frame of the European program EXAMINE (Exchange of Atmospheric Ammonia with European Ecosystems). Soil concentrations are generally below the detection limit of 0.1 μg m -3. We conclude, that the investigated soil is generally a sink for NH 3. The NH 3 concentration on the soil surface shows a diurnal variation due to a combination of physico-chemical desorption and adsorption phenomena associated with changes in wetness of the surrounding surfaces and the NH 3 concentration in the canopy.

  19. Effect of surface bilayer charges on the magnetic field around ionic channels

    Science.gov (United States)

    Gomes Soares, Marília Amável; Cortez, Celia Martins; Oliveira Cruz, Frederico Alan de; Silva, Dilson

    2017-01-01

    In this work, we present a physic-mathematical model for representing the ion transport through membrane channels, in special Na+ and K+-channels, and discuss the influence of surface bilayer charges on the magnetic field behavior around the ionic current. The model was composed of a set of equations, including: a nonlinear differential Poisson-Boltzmann equation which usually allows to estimate the surface potentials and electric potential profile across membrane; equations for the ionic flux through channel and the ionic current density based on Armstrong's model for Na+ and K+ permeability and other Physics concepts; and a magnetic field expression derived from the classical Ampère equation. Results from computational simulations using the finite element method suggest that the ionic permeability is strongly dependent of surface bilayer charges, the current density through a K+-channel is very less sensible to temperature changes than the current density through a Na+- channel, active Na+-channels do not directly interfere with the K+-channels around, and vice-versa, since the magnetic perturbation generated by an active channel is of short-range.

  20. Curling probe measurement of large-volume pulsed plasma confined by surface magnetic field

    Science.gov (United States)

    Pandey, Anil; Sakakibara, Wataru; Matsuoka, Hiroyuki; Nakamura, Keiji; Sugai, Hideo; Chubu University Team; DOWA Thermotech Collaboration

    2015-09-01

    Curling probe (CP) has recently been developed which enables the local electron density measurement even in plasma for non-conducting film CVD. The electron density is obtained from a shift of resonance frequency of spiral antenna in discharge ON and OFF monitored by a network analyzer (NWA). In case of a pulsed glow discharge, synchronization of discharge pulse with frequency sweep of NWA must be established. In this paper, we report time and space-resolved CP measurement of electron density in a large volume plasma (80 cm diameter, 110 cm length) confined by surface magnetic field (multipole cusp field ~0.03 T). For plasma-aided modification of metal surface, the plasma is produced by 1 kV glow discharge at pulse frequency of 0.3 - 25 kHz with various duty ratio in gas (Ar, N2, C2H2) at pressure ~ 1 Pa. A radially movable CP revealed a remarkable effect of surface magnetic confinement: detach of plasma from the vessel wall and a fairly uniform plasma in the central region. In afterglow phase, the electron density was observed to decrease much faster in C2H2 discharge than in Ar discharge.

  1. Radiation magnetohydrodynamic simulation of plasma formed on a surface by a megagauss field.

    Science.gov (United States)

    Esaulov, A A; Bauer, B S; Makhin, V; Siemon, R E; Lindemuth, I R; Awe, T J; Reinovsky, R E; Struve, K W; Desjarlais, M P; Mehlhorn, T A

    2008-03-01

    Radiation magnetohydrodynamic modeling is used to study the plasma formed on the surface of a cylindrical metallic load, driven by megagauss magnetic field at the 1MA Zebra generator (University of Nevada, Reno). An ionized aluminum plasma is used to represent the "core-corona" behavior in which a heterogeneous Z-pinch consists of a hot low-density corona surrounding a dense low-temperature core. The radiation dynamics model included simultaneously a self-consistent treatment of both the opaque and transparent plasma regions in a corona. For the parameters of this experiment, the boundary of the opaque plasma region emits the major radiation power with Planckian black-body spectrum in the extreme ultraviolet corresponding to an equilibrium temperature of 16 eV. The radiation heat transport significantly exceeds the electron and ion kinetic heat transport in the outer layers of the opaque plasma. Electromagnetic field energy is partly radiated (13%) and partly deposited into inner corona and core regions (87%). Surface temperature estimates are sensitive to the radiation effects, but the surface motion in response to pressure and magnetic forces is not. The general results of the present investigation are applicable to the liner compression experiments at multi-MA long-pulse current accelerators such as Atlas and Shiva Star. Also the radiation magnetohydrodynamic model discussed in the paper may be useful for understanding key effects of wire array implosion dynamics.

  2. Probing three-dimensional surface force fields with atomic resolution: Measurement strategies, limitations, and artifact reduction

    Directory of Open Access Journals (Sweden)

    Mehmet Z. Baykara

    2012-09-01

    Full Text Available Noncontact atomic force microscopy (NC-AFM is being increasingly used to measure the interaction force between an atomically sharp probe tip and surfaces of interest, as a function of the three spatial dimensions, with picometer and piconewton accuracy. Since the results of such measurements may be affected by piezo nonlinearities, thermal and electronic drift, tip asymmetries, and elastic deformation of the tip apex, these effects need to be considered during image interpretation.In this paper, we analyze their impact on the acquired data, compare different methods to record atomic-resolution surface force fields, and determine the approaches that suffer the least from the associated artifacts. The related discussion underscores the idea that since force fields recorded by using NC-AFM always reflect the properties of both the sample and the probe tip, efforts to reduce unwanted effects of the tip on recorded data are indispensable for the extraction of detailed information about the atomic-scale properties of the surface.

  3. Effect of surface bilayer charges on the magnetic field around ionic channels

    Energy Technology Data Exchange (ETDEWEB)

    Gomes Soares, Marília Amável [Post-graduation in Computational Sciences, Rio de Janeiro State University (Brazil); Cortez, Celia Martins, E-mail: ccortezs@ime.uerj.br [Post-graduation in Computational Sciences, Rio de Janeiro State University (Brazil); Department of Applied Mathematics, Rio de Janeiro State University (Brazil); Oliveira Cruz, Frederico Alan de [Post-graduation in Computational Sciences, Rio de Janeiro State University (Brazil); Department of Physics, Rural Federal University of Rio de Janeiro (Brazil); Silva, Dilson [Post-graduation in Computational Sciences, Rio de Janeiro State University (Brazil); Department of Applied Mathematics, Rio de Janeiro State University (Brazil)

    2017-01-01

    In this work, we present a physic-mathematical model for representing the ion transport through membrane channels, in special Na{sup +} and K{sup +}-channels, and discuss the influence of surface bilayer charges on the magnetic field behavior around the ionic current. The model was composed of a set of equations, including: a nonlinear differential Poisson-Boltzmann equation which usually allows to estimate the surface potentials and electric potential profile across membrane; equations for the ionic flux through channel and the ionic current density based on Armstrong's model for Na{sup +} and K{sup +} permeability and other Physics concepts; and a magnetic field expression derived from the classical Ampère equation. Results from computational simulations using the finite element method suggest that the ionic permeability is strongly dependent of surface bilayer charges, the current density through a K{sup +}-channel is very less sensible to temperature changes than the current density through a Na{sup +}- channel, active Na{sup +}-channels do not directly interfere with the K{sup +}-channels around, and vice-versa, since the magnetic perturbation generated by an active channel is of short-range.

  4. Longevity of Sclerotinia sclerotiorum sclerotia on the soil surface under field conditions

    Directory of Open Access Journals (Sweden)

    Ricardo Brustolin

    2016-06-01

    Full Text Available ABSTRACT The longevity of Sclerotinia sclerotiorum sclerotia was quantified in an experiment carried out in the field. Sclerotia naturally formed in soybean plants in an infested commercial field were collected in a grain-cleaning machine and those present in the stem pith, with c.a. 8 mm in length and 1.9 mm in diameter were selected. Fifty sclerotia were kept inside a white nylon mesh (0.25mm screen bag (25 x 25cm. Eighty bags were laid on the soil surface-simulating no till farming. At monthly intervals, four bags were taken and brought to the laboratory. Sclerotia were washed with tap water and surface desinfested with sodium hypochlorite and exposed to germinate on sterilized moist river sand in a growth chamber at 15oC and 12h photoperiod. After 12 months, sclerotia kept on the soil surface, lost their viability. It may be concluded that under no till, crop rotation with nonsusceptible crops, can reduce the sclerotia bank in the soil.

  5. Methodology of licensing for field applications of Weld Inlay and Ultrasonic Nanocrystal Surface Modification

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hong Seok; Jung, Kwang Woon [KEPCO KPS, Naju (Korea, Republic of); Park, Ik Keun [Seoul National Univ, Seoul (Korea, Republic of); Pyun, Young Sik [Sun Moon University, Asan (Korea, Republic of)

    2015-10-15

    There are many attempts to relieve or change high tensile residual stress to compressive residual stress for a mitigation of PWSCC. LSP(Laser Shot Peening) and WJP(Water Jet Peening) have been applied in several NPPs of Japan and technical and topical reports under Materials Reliability Program of EPRI(Electric Power Research Institute ) USA have been developed. Weld Inlay technology and UNSM(Ultrasonic Nanocrystal Surface Modification) technology using ultrasonic vibration energy as the method for a mitigation of tensile residual stress generated after Weld Inlay have been developing in Korea. So in this study, the methodology of licensing for field application of these technologies is suggested. The results of residual stress measured before and after UNSM for Weld Inlay specimens using UNSM equipment of domestic source technology holdings to obtain an equivalent effect, which has the simplification of equipment and the flexibility of field application in comparison with LSP and WJP, indicated to obtain a mitigation effect of residual stress until 0.5 mm of surface depth. In order to accomplish field application of Weld Inlay that the Code Case was already developed, the approval of a regulation agency through the preparation of TR or RR based on ASME Code Case N-766, N-803 is necessary.

  6. Souring in low-temperature surface facilities of two high-temperature Argentinian oil fields.

    Science.gov (United States)

    Agrawal, Akhil; An, Dongshan; Cavallaro, Adriana; Voordouw, Gerrit

    2014-09-01

    Produced waters from the Barrancas and Chihuido de la Salina (CHLS) fields in Argentina had higher concentrations of sulfate than were found in the injection waters, suggesting that the formation waters in these reservoirs had a high sulfate concentration and that sulfate-reducing bacteria were inactive downhole. Incubation of produced waters with produced oil gave rapid reduction of sulfate to sulfide (souring) at 37 °C, some at 60 °C, but none at 80 °C. Alkylbenzenes and alkanes served as electron donor, especially in incubations with CHLS oil. Dilution with water to decrease the ionic strength or addition of inorganic phosphate did not increase souring at 37 or 60 °C. These results indicate that souring in these reservoirs is limited by the reservoir temperature (80 °C for the Barrancas and 65-70 °C for the CHLS field) and that souring may accelerate in surface facilities where the oil-water mixture cools. As a result, significant sulfide concentrations are present in these surface facilities. The activity and presence of chemolithotrophic Gammaproteobacteria of the genus Thiomicrospira, which represented 85% of the microbial community in a water plant in the Barrancas field, indicated reoxidation of sulfide and sulfur to sulfate. The presence of these bacteria offers potential for souring control by microbial oxidation in aboveground facilities, provided that formation of corrosive sulfur can be avoided.

  7. Modelling of the Surface Emission of the Low-Magnetic Field Magnetar SGR 0418+5729

    CERN Document Server

    Guillot, Sebastien; Rea, Nanda; Vigano, Daniele; Pons, Jose

    2015-01-01

    We perform a detailed modelling of the post-outburst surface emission of the low magnetic field magnetar SGR 0418+5729. The dipolar magnetic field of this source, B=6x10^12 G estimated from its spin-down rate, is in the observed range of magnetic fields for normal pulsars. The source is further characterized by a high pulse fraction and a single-peak profile. Using synthetic temperature distribution profiles, and fully accounting for the general-relativistic effects of light deflection and gravitational redshift, we generate synthetic X-ray spectra and pulse profiles that we fit to the observations. We find that asymmetric and symmetric surface temperature distributions can reproduce equally well the observed pulse profiles and spectra of SGR 0418. Nonetheless, the modelling allows us to place constraints on the system geometry (i.e. the angles $\\psi$ and $\\xi$ that the rotation axis makes with the line of sight and the dipolar axis, respectively), as well as on the spot size and temperature contrast on the n...

  8. ForceFit: a code to fit classical force fields to quantum mechanical potential energy surfaces.

    Science.gov (United States)

    Waldher, Benjamin; Kuta, Jadwiga; Chen, Samuel; Henson, Neil; Clark, Aurora E

    2010-09-01

    The ForceFit program package has been developed for fitting classical force field parameters based upon a force matching algorithm to quantum mechanical gradients of configurations that span the potential energy surface of the system. The program, which runs under UNIX and is written in C++, is an easy-to-use, nonproprietary platform that enables gradient fitting of a wide variety of functional force field forms to quantum mechanical information obtained from an array of common electronic structure codes. All aspects of the fitting process are run from a graphical user interface, from the parsing of quantum mechanical data, assembling of a potential energy surface database, setting the force field, and variables to be optimized, choosing a molecular mechanics code for comparison to the reference data, and finally, the initiation of a least squares minimization algorithm. Furthermore, the code is based on a modular templated code design that enables the facile addition of new functionality to the program. Copyright 2010 Wiley Periodicals, Inc.

  9. Representações dos profissionais do desporto acerca do conceito de competência profissional Representations of the sport workers over the concept of professional competence

    Directory of Open Access Journals (Sweden)

    Paula Maria Fazendeiro Batista

    2011-06-01

    used procedures of content analysis. The results show us the fragile structure that still characterizes the field of the sports professional, although common traits come to the surface, starting to reveal a unique identity centred on knowledge and ethics competence seconded by personal and social competence in close connection with functional competence. Meta-competencies and motivation are highly valued factors and act as warrants of professional competence.

  10. Electromigration occurrences and its effects on metallic surfaces submitted to high electromagnetic field : A novel approach to breakdown in accelerators

    CERN Document Server

    Antoine, C; Pimpec, F Le

    2011-01-01

    The application of a high electrical field on metallic surfaces leads to the well described phenomena of breakdown. In the classical scenario, explosive electron emission (EEE), breakdown (BD) originates from an emitting site (surface protrusion). The conditioning process consists of "burning" the emitting sites one after another and numerous observations exhibit surfaces covered with molten craters that more or less overlap. When dealing with RF cavities for accelerators, where increasingly fields are now sought, one can legitimately wonder if other physical phenomena should also be taken into account. In particular, we believe that electromigration, especially at surfaces or grain boundaries cannot be neglected anymore at high field (i.e. 50-100 MV/m). Many publications in the domain of liquid metal emission sources show that very stable and strong emission sources, either ions or electrons, build up on metallic surfaces submitted to electrical fields through a mechanism that is slightly different from the ...

  11. Modelling of the surface emission of the low magnetic field magnetar SGR 0418+5729

    Science.gov (United States)

    Guillot, S.; Perna, R.; Rea, N.; Viganò, D.; Pons, J. A.

    2015-10-01

    We perform a detailed modelling of the post-outburst surface emission of the low magnetic field magnetar SGR 0418+5729. The dipolar magnetic field of this source, B=6 {× 10^{12}}{ G} estimated from its spin-down rate, is in the observed range of magnetic fields for normal pulsars. The source is further characterized by a high pulse fraction and a single-peak profile. Using synthetic temperature distribution profiles, and fully accounting for the general-relativistic effects of light deflection and gravitational redshift, we generate synthetic X-ray spectra and pulse profiles that we fit to the observations. We find that asymmetric and symmetric surface temperature distributions can reproduce equally well the observed pulse profiles and spectra of SGR 0418. None the less, the modelling allows us to place constraints on the system geometry (i.e. the angles ψ and ξ that the rotation axis makes with the line of sight and the dipolar axis, respectively), as well as on the spot size and temperature contrast on the neutron star surface. After performing an analysis iterating between the pulse profile and spectra, as done in similar previous works, we further employed, for the first time in this context, a Markov-Chain Monte Carlo approach to extract constraints on the model parameters from the pulse profiles and spectra, simultaneously. We find that, to reproduce the observed spectrum and flux modulation: (a) the angles must be restricted to 65° ≲ ψ + ξ ≲ 125° or 235° ≲ ψ + ξ ≲ 295°; (b) the temperature contrast between the poles and the equator must be at least a factor of ˜6, and (c) the size of the hottest region ranges between 0.2 and 0.7 km (including uncertainties on the source distance). Lastly, we interpret our findings within the context of internal and external heating models.

  12. The Regional Surface Heating Field over the Heterogeneous Landscape of the Tibetan Plateau Using MODIS and In-Situ Data

    Institute of Scientific and Technical Information of China (English)

    MA Yaoming; WANG Binbin; ZHONG Lei; MA Weiqiang

    2012-01-01

    In this study,a parameterization scheme based on Moderate Resolution Imaging Spectroradiometer (MODIS) data and in-situ data was tested for deriving the regional surface heating field over a heterogeneous landscape.As a case study,the methodology was applied to the whole Tibetan Plateau (TP) area.Four images of MODIS data (i.e.,30 January 2007,15 April 2007,1 August 2007,and 25 October 2007) were used in this study for comparison among winter,spring,summer,and autumn.The results were validated using the observations measured at the stations of the Tibetan Observation and Research Platform (TORP).The results show the following:(1) The derived surface heating field for the TP area was in good accord with the land-surface status,showing a wide range of values due to the strong contrast of surface features in the area.(2) The derived surface heating field for the TP was very close to the field measurements (observations).The APD (absolute percent difference) between the derived results and the field observations was <10%.(3) The mean surface heating field over the TP increased from January to April to August,and decreased in October.Therefore,the reasonable regional distribution of the surface heating field over a heterogeneous landscape can be obtained using this methodology.The limitations and further improvement of this method are also discussed.

  13. Near-field thermal radiative emission of materials demonstrating near infrared surface polariton resonance

    Science.gov (United States)

    Petersen, Spencer Justin

    Surface polariton mediated near-field radiative transfer exceeds the blackbody limit by orders of magnitude and is quasimonochromatic. Thermophotovoltaic (TPV) power generation consists of converting thermal radiation into useful electrical energy and exhibits a peak performance near the TPV cell bandgap, which is typically located within the near infrared bandwidth. Therefore, an ideal emission source for a nanoscale gap TPV device, in which the emitter and cell are separated by no more than one peak emitted wavelength, will sustain surface polariton resonance at or near the TPV cell bandgap in the near infrared. To date, few materials have been identified that satisfy this requirement. The first objective of this dissertation is to theoretically explore dielectric Mie resonance-based (DMRB) electromagnetic metamaterials for the potential to sustain near infrared surface polariton resonance. Electromagnetic metamaterials are composite media, consisting of subwavelength, repeating unit structures called "meta-atoms." The microscopic configuration of the meta-atom can be engineered, dictating the effective macroscale electromagnetic properties of the bulk metamaterial, including the surface polariton resonance wavelength. DMRB metamaterials consist of dielectric nanoparticles within a host medium and are analyzed using an effective medium theory. The local density of electromagnetic states, an indicator of possibly harvestable energy near an emitting surface, is calculated for two DMRB metamaterials: spherical nanoparticles of 1) silicon carbide, and 2) silicon embedded in a host medium. Results show that the surface polariton resonance of these metamaterials is tunable and, for the silicon metamaterial only, is found in the near infrared bandwidth, making it a viable candidate for use in a nano-TPV device. In order to demonstrate the practicality thereof, the second objective is to fabricate and characterize DMRB metamaterials. Specimens are fabricated by hand

  14. Spontaneous down conversion of surface plasmon polaritons: strong-field consideration

    CERN Document Server

    Hizhnyakov, Vladimir

    2016-01-01

    A non-perturbative theory of the spontaneous down conversion (SDC) of surface plasmon polaritons at a metal-dielectric interface is presented. It is shown that the process is resonantly enhanced for the characteristic power of excitation, typically of the order of tens of watts. At a stronger excitation the yield of SDC decreases rapidly. At a stronger excitation the yield of SDC decreases rapidly. The reason for this decrease is the high rate of the change of surface plasmon polaritons by the laser field, exceeding the rate of the zero-point fluctuations responsible for the SDC process. The obtained results may help one to construct miniature sources of entangled photons for quantum communication.

  15. Non-Gaussian statistical models of surface wave fields for remote sensing applications

    Science.gov (United States)

    Huang, N. E.

    1984-01-01

    Based on the complete Stokes wave model with the bias term and using a simple mapping approach and an iteration solution method, we established a formula for the joint probability density function of the surface slope elevation of a nonlinear random wave field. The formula requires three parameters to define the whole density function: the rms surface elevation and slope values and the significant slope. This model represents the dynamics of the wave in a more direct way than the Gram-Charlier approximation. Based on this new statistical model and laboratory experiments, formula and numerical values of EM bias and dynamics bias are derived. The results indicate that various biases should be considered seriously if accuracy of the altimeter measurement is required in centimeter range.

  16. A Controlled Field Pilot for Testing Near Surface CO2 Detection Techniques and Transport Models

    Science.gov (United States)

    Spangler, L. H.; Dobeck, L.

    2007-12-01

    A field facility has been developed to allow controlled studies of near surface CO2transport and detection technologies. The key component of the facility is a shallow horizontal, well slotted over 70m of its length and divided into seven zones via packers with mass flow control in each individual zone. The scale and fluxes were designed to address large scale CO2 storage projects and desired retention rates for those projects and those design parameters will be discussed. A wide variety of detection techniques were deployed by collaborators from Los Alamos National Lab, Lawrence Berkeley National Lab, the National Energy Technology Lab, Pacific Northwest National Lab, Lawrence Livermore National Lab and West Virginia University. Techniques included eddy covariance, soil gas measurements, hyperspectral imaging for plant stress detection, differential absorption LIDAR (both free space atmospheric and below surface soil gas), tracer studies, water sampling, stable isotope studies, and soil flux chambers. An overview of these results will be presented.

  17. Nanoscale Lubrication of Ionic Surfaces Controlled via a Strong Electric Field

    Science.gov (United States)

    Strelcov, Evgheni; Kumar, Rajeev; Bocharova, Vera; Sumpter, Bobby G.; Tselev, Alexander; Kalinin, Sergei V.

    2015-01-01

    Frictional forces arise whenever objects around us are set in motion. Controlling them in a rational manner means gaining leverage over mechanical energy losses and wear. This paper presents a way of manipulating nanoscale friction by means of in situ lubrication and interfacial electrochemistry. Water lubricant is directionally condensed from the vapor phase at a moving metal-ionic crystal interface by a strong confined electric field, thereby allowing friction to be tuned up or down via an applied bias. The electric potential polarity and ionic solid solubility are shown to strongly influence friction between the atomic force microscope (AFM) tip and salt surface. An increase in friction is associated with the AFM tip digging into the surface, whereas reducing friction does not influence its topography. No current flows during friction variation, which excludes Joule heating and associated electrical energy losses. The demonstrated novel effect can be of significant technological importance for controlling friction in nano- and micro-electromechanical systems.

  18. A Calderón multiplicative preconditioner for coupled surface-volume electric field integral equations

    KAUST Repository

    Bagci, Hakan

    2010-08-01

    A well-conditioned coupled set of surface (S) and volume (V) electric field integral equations (S-EFIE and V-EFIE) for analyzing wave interactions with densely discretized composite structures is presented. Whereas the V-EFIE operator is well-posed even when applied to densely discretized volumes, a classically formulated S-EFIE operator is ill-posed when applied to densely discretized surfaces. This renders the discretized coupled S-EFIE and V-EFIE system ill-conditioned, and its iterative solution inefficient or even impossible. The proposed scheme regularizes the coupled set of S-EFIE and V-EFIE using a Calderón multiplicative preconditioner (CMP)-based technique. The resulting scheme enables the efficient analysis of electromagnetic interactions with composite structures containing fine/subwavelength geometric features. Numerical examples demonstrate the efficiency of the proposed scheme. © 2006 IEEE.

  19. Exploring combined dark and bright field illumination to improve the detection of defects on specular surfaces

    Science.gov (United States)

    Forte, Paulo M. F.; Felgueiras, P. E. R.; Ferreira, Flávio P.; Sousa, M. A.; Nunes-Pereira, Eduardo J.; Bret, Boris P. J.; Belsley, Michael S.

    2017-01-01

    An automatic optical inspection system for detecting local defects on specular surfaces is presented. The system uses an image display to produce a sequence of structured diffuse illumination patterns and a digital camera to acquire the corresponding sequence of images. An image enhancement algorithm, which measures the local intensity variations between bright- and dark-field illumination conditions, yields a final image in which the defects are revealed with a high contrast. Subsequently, an image segmentation algorithm, which compares statistically the enhanced image of the inspected surface with the corresponding image for a defect-free template, allows separating defects from non-defects with an adjusting decision threshold. The method can be applied to shiny surfaces of any material including metal, plastic and glass. The described method was tested on the plastic surface of a car dashboard system. We were able to detect not only scratches but also dust and fingerprints. In our experiment we observed a detection contrast increase from about 40%, when using an extended light source, to more than 90% when using a structured light source. The presented method is simple, robust and can be carried out with short cycle times, making it appropriate for applications in industrial environments.

  20. Full-field dynamic characterization of superhydrophobic condensation on biotemplated nanostructured surfaces.

    Science.gov (United States)

    Ölçeroğlu, Emre; Hsieh, Chia-Yun; Rahman, Md Mahamudur; Lau, Kenneth K S; McCarthy, Matthew

    2014-07-01

    While superhydrophobic nanostructured surfaces have been shown to promote condensation heat transfer, the successful implementation of these coatings relies on the development of scalable manufacturing strategies as well as continued research into the fundamental physical mechanisms of enhancement. This work demonstrates the fabrication and characterization of superhydrophobic coatings using a simple scalable nanofabrication technique based on self-assembly of the Tobacco mosaic virus (TMV) combined with initiated chemical vapor deposition. TMV biotemplating is compatible with a wide range of surface materials and applicable over large areas and complex geometries without the use of any power or heat. The virus-structured coatings fabricated here are macroscopically superhydrophobic (contact angle >170°) and have been characterized using environmental electron scanning microscopy showing sustained and robust coalescence-induced ejection of condensate droplets. Additionally, full-field dynamic characterization of these surfaces during condensation in the presence of noncondensable gases is reported. This technique uses optical microscopy combined with image processing algorithms to track the wetting and growth dynamics of 100s to 1000s of microscale condensate droplets simultaneously. Using this approach, over 3 million independent measurements of droplet size have been used to characterize global heat transfer performance as a function of nucleation site density, coalescence length, and the apparent wetted surface area during dynamic loading. Additionally, the history and behavior of individual nucleation sites, including coalescence events, has been characterized. This work elucidates the nature of superhydrophobic condensation and its enhancement, including the role of nucleation site density during transient operation.

  1. Driving and controlling molecular surface rotors with a terahertz electric field.

    Science.gov (United States)

    Neumann, Jan; Gottschalk, Kay E; Astumian, R Dean

    2012-06-26

    Great progress has been made in the design and synthesis of molecular motors and rotors. Loosely inspired by biomolecular machines such as kinesin and the FoF1 ATPsynthase, these molecules are hoped to provide elements for construction of more elaborate structures that can carry out tasks at the nanoscale corresponding to the tasks accomplished by elementary machines in the macroscopic world. Most of the molecular motors synthesized to date suffer from the drawback that they operate relatively slowly (less than kHz). Here we show by molecular dynamics studies of a diethyl sulfide rotor on a gold(111) surface that a high-frequency oscillating electric field normal to the surface can drive directed rotation at GHz frequencies. The maximum directed rotation rate is 10(10) rotations per second, significantly faster than the rotation of previously reported directional molecular rotors. Understanding the fundamental basis of directed motion of surface rotors is essential for the further development of efficient externally driven artificial rotors. Our results represent a step toward the design of a surface-bound molecular rotary motor with a tunable rotation frequency and direction.

  2. Visualization and optimization of cavitation activity at a solid surface in high frequency ultrasound fields.

    Science.gov (United States)

    Kauer, Markus; Belova-Magri, Valentina; Cairós, Carlos; Schreier, Hans-Jürgen; Mettin, Robert

    2017-01-01

    Despite the increasing use of high frequency ultrasound in heterogeneous reactions, knowledge about the spatial distribution of cavitation bubbles at the irradiated solid surface is still lacking. This gap hinders controllable surface sonoreactions. Here we present an optimization study of the cavitation bubble distribution at a solid sample using sonoluminescence and sonochemiluminescence imaging. The experiments were performed at three ultrasound frequencies, namely 580, 860 and 1142kHz. We found that position and orientation of the sample to the transducer, as well as its material properties influence the distribution of active cavitation bubbles at the sample surface in the reactor. The reason is a significant modification of the acoustic field due to reflections and absorption of the ultrasonic wave by the solid. This is retraced by numerical simulations employing the Finite Element Method, yielding reasonable agreement of luminescent zones and high acoustic pressure amplitudes in 2D simulations. A homogeneous coverage of the test sample surface with cavitation is finally reached at nearly vertical inclination with respect to the incident wave.

  3. Using gapped topological surface states of Bi2Se3 films in a field effect transistor

    Science.gov (United States)

    Sun, Jifeng; Singh, David J.

    2017-02-01

    Three dimensional topological insulators are insulators with topologically protected surface states that can have a high band velocity and high mobility at room temperature. This suggests electronic applications that exploit these surface states, but the lack of a band gap poses a fundamental difficulty. We report a first principles study based on density functional theory for thin Bi2Se3 films in the context of a field effect transistor. It is known that a gap is induced in thin layers due to hybridization between the top and bottom surfaces, but it is not known whether it is possible to use the topological states in this type of configuration. In particular, it is unclear whether the benefits of topological protection can be retained to a sufficient degree. We show that there is a thickness regime in which the small gap induced by hybridization between the two surfaces is sufficient to obtain transistor operation at room temperature, and furthermore, that the band velocity and spin texture that are important for the mobility are preserved for Fermi levels of relevance to device application.

  4. Phase field modeling and simulation of three-phase flow on solid surfaces

    Science.gov (United States)

    Zhang, Qian; Wang, Xiao-Ping

    2016-08-01

    Phase field models are widely used to describe the two-phase system. The evolution of the phase field variables is usually driven by the gradient flow of a total free energy functional. The generalization of the approach to an N phase (N ≥ 3) system requires some extra consistency conditions on the free energy functional in order for the model to give physically relevant results. A projection approach is proposed for the derivation of a consistent free energy functional for the three-phase Cahn-Hilliard equations. The system is then coupled with the Navier-Stokes equations to describe the three-phase flow on solid surfaces with moving contact line. An energy stable scheme is developed for the three-phase flow system. The discrete energy law of the numerical scheme is proved which ensures the stability of the scheme. We also show some numerical results for the dynamics of triple junctions and four phase contact lines.

  5. Strong Near-Field Enhancement of Radiative Heat Transfer between Metallic Surfaces

    Science.gov (United States)

    Kralik, Tomas; Hanzelka, Pavel; Zobac, Martin; Musilova, Vera; Fort, Tomas; Horak, Michal

    2012-11-01

    Near-field heat transfer across a gap between plane-parallel tungsten layers in vacuo was studied experimentally with the temperature of the cold sample near 5 K and the temperature of the hot sample in the range 10-40 K as a function of the gap size d. At gaps smaller than one-third of the peak wavelength λm given by Wien’s displacement law, the near-field effect was observed. In comparison with blackbody radiation, hundred times higher values of heat flux were achieved at d≈1μm. Heat flux normalized to the radiative power transferred between black surfaces showed scaling (λm/d)n, where n≈2.6. This Letter describes the results of experiment and a comparison with present theory over 4 orders of magnitude of heat flux.

  6. Radiation Acoustic Field of a Linear Phased Array on a Cylindrical Surface

    Institute of Scientific and Technical Information of China (English)

    DENG Fang-Qing; ZHANG Bi-Xing; WANG Dong; SONG Gong-Pu

    2006-01-01

    A new linear ultrasonic phased array fixed on a cylindrical surface is designed. This kind of the cylindrical phased array can meet the specific requirements of the application in testing pipe quality inside pipes. Using the transducer, we can not only avoid mechanical rotating but also test the quality of any point in a pipe by ultrasonic phase array technology. The focused acoustic field distributions in the axial, radial and tangential directions of the transducer are investigated theoretically by numerical simulation. The energy flux density, the width of the main lobe, the imaging resolution, the grating lobe elimination and other characteristics are analysed. The effect of the focal distance, effective aperture, transducer radius, number of total element, and steering angle on the acoustic field distribution is also studied.thoroughly. Many important results are obtained.

  7. Surface Breakdown of Printed Circuit Board under Magnetic Field with Reduced Pressure

    Institute of Scientific and Technical Information of China (English)

    杜伯学; 朱晓辉; 高宇; 卢欣

    2010-01-01

    Epoxy resin laminate onto which a pair of copper foil was printed was employed as test samples.The samples were placed in an artificial atmospheric chamber, which was vacuumed by a rotary pump from 100 kPa to 5 kPa.The magnetic field was produced by permanent magnets that were assembled to make E×B drift away from, into and parallel to the sample surface, respectively.Magnetic flux density was adjusted at 120 mT, 180 mT and 240 mT respectively.By applying a negative bias voltage between the electrodes, the ...

  8. Fourier power spectra of the geomagnetic field for circular paths on the Earth's surface.

    Science.gov (United States)

    Alldredge, L.R.; Benton, E.R.

    1986-01-01

    The Fourier power spectra of geomagnetic component values, synthesized from spherical harmonic models, have been computed for circular paths on the Earth's surface. They are not found to be more useful than is the spectrum of magnetic energy outside the Earth for the purpose of separating core and crustal sources of the geomagnetic field. The Fourier power spectra of N and E geomagnetic components along nearly polar great circle paths exhibit some unusual characteristics that are explained by the geometric perspective of Fourier series on spheres developed by Yee. -Authors

  9. Surface-potential-based physical compact model for graphene field effect transistor

    Science.gov (United States)

    Wang, Lingfei; Peng, Songang; Wang, Wei; Xu, Guangwei; Ji, Zhuoyu; Lu, Nianduan; Li, Ling; Jin, Zhi; Liu, Ming

    2016-08-01

    A surface potential based physical compact model for a graphene field effect transistor is proposed, including Boltzmann transport and thermally activated transport. We verified it by the experiments and Gummel symmetry test, showing good accuracy and continuity over a wide range of operation regions. Coded in Verilog-A, this model provides physics-based consistent DC and AC characteristics, which can be easily embedded into a vendor CAD tool to simulate circuits. Based on this model, a direct insight into the relationship between physical parameters and circuit performances can be achieved.

  10. Electric field induced domain formation in surface stabilized ferroelectric liquid crystal cells

    OpenAIRE

    Dierking, Ingo; Gießelmann, Frank; Schacht, Jochen; Zugenmaier, Peter

    1994-01-01

    Two types of domains have been observed for S sub(C) ferroelectric liquid crystals in surface stabilized cells (SSFLC) by application of a high electric field with the smectic layers tilted by the amount of the chevron angle with respect to the normal of the rubbing direction in the substrate plane. The layer structure resembles that of a chevron configuration in the plane of the substrate similar to the recently reported stripe-shaped SSFLC structure. The two domain types 'appear' to switch ...

  11. NUMERICAL MODELING OF THE ELECTROMAGNETIC FIELD WITHIN THE INDUCTION HARDENING OF INNER CYLINDRICAL SURFACES

    Directory of Open Access Journals (Sweden)

    C. O. MOLNAR

    2008-05-01

    Full Text Available The paper presents the numerical modeling ofelectromagnetic field within the induction hardening ofinner cylindrical surface. The numerical computation hasbeen done by means of finite element method in order tosolve the coupled electromagnetic and thermal fieldquestion. The obtained results provide informationregarding the heating process taking into account therelative movement between the inductor and workpiece,the over heating of thin layers, the geometricalconfiguration of the inductor as well the technologicalrequirements correlated with electrical parameters andrepresents an active tool to setup the induction heatingequipment in order to get best results during hardeningprocess .

  12. Optimization of autonomous magnetic field sensor consisting of giant magnetoimpedance sensor and surface acoustic wave transducer

    KAUST Repository

    Li, Bodong

    2012-11-01

    This paper presents a novel autonomous thin film magnetic field sensor consisting of a tri-layer giant magnetoimpedance sensor and a surface acoustic wave transponder. Double and single electrode interdigital transducer (IDT) designs are employed and compared. The integrated sensor is fabricated using standard microfabrication technology. The results show the double electrode IDT has an advantage in terms of the sensitivity. In order to optimize the matching component, a simulation based on P-matrix is carried out. A maximum change of 2.4 dB of the reflection amplitude and a sensitivity of 0.34 dB/Oe are obtained experimentally. © 2012 IEEE.

  13. Ship-based Surface Flux Observations Under Atmospheric Rivers During the CALWATER 2015 Field Campaign

    Science.gov (United States)

    Blomquist, B.; Fairall, C. W.; Intrieri, J. M.; Wolfe, D. E.; Pezoa, S.

    2015-12-01

    The NOAA Physical Sciences Division portable flux system was deployed on the R/V Ron Brown as part of the surface observational strategy for the CALWATER 2015 field investigation. Measurements included turbulent fluxes of temperature, water vapor and wind stress. A refined 'best' set of bulk meteorological measurements for the duration of the cruise was produced from combined NOAA, DOE ARM-AMF2 and shipboard sensors. Direct eddy correlation and bulk model estimates of sensible and latent heat are broadly consistent (RMSE transport budget.

  14. Numerical Investigation Of Surface Roughness Effects On The Flow Field In A Swirl Flow

    Directory of Open Access Journals (Sweden)

    Ali SAKİN

    2014-12-01

    Full Text Available The aim of this study is to investigate axial and tangential velocity profiles, turbulent dissipation rate, turbulent kinetic energy and pressure losses under the influence of surface roughness for the swirling flow in a cyclone separator. The governing equations for this flow were solved by using Fluent CFD code. First, numerical analyses were run to verify numerical solution and domain with experimental results. Velocity profiles, turbulent parameters and pressure drops were calculated by increasing inlet velocity from 10 to 20 m/s and roughness height from 0 to 4 mm. Analyses of results showed that pressure losses are decreased and velocity field is considerably affected by increasing roughness height.

  15. A controlled field pilot for testing near surface CO2 detection techniques and transport models

    Science.gov (United States)

    Spangler, L.H.; Dobeck, L.M.; Repasky, K.; Nehrir, A.; Humphries, S.; Keith, C.; Shaw, J.; Rouse, J.; Cunningham, A.; Benson, S.; Oldenburg, C.M.; Lewicki, J.L.; Wells, A.; Diehl, R.; Strazisar, B.; Fessenden, J.; Rahn, Thomas; Amonette, J.; Barr, J.; Pickles, W.; Jacobson, J.; Silver, E.; Male, E.; Rauch, H.; Gullickson, K.; Trautz, R.; Kharaka, Y.; Birkholzer, J.; Wielopolski, L.

    2009-01-01

    A field facility has been developed to allow controlled studies of near surface CO2 transport and detection technologies. The key component of the facility is a shallow, slotted horizontal well divided into six zones. The scale and fluxes were designed to address large scale CO2 storage projects and desired retention rates for those projects. A wide variety of detection techniques were deployed by collaborators from 6 national labs, 2 universities, EPRI, and the USGS. Additionally, modeling of CO2 transport and concentrations in the saturated soil and in the vadose zone was conducted. An overview of these results will be presented. ?? 2009 Elsevier Ltd. All rights reserved.

  16. Scanning near-field optical microscopy on rough surfaces: applications in chemistry, biology, and medicine

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Shear-force apertureless scanning near-field optical microscopy (SNOM with very sharp uncoated tapered waveguides relies on the unexpected enhancement of reflection in the shear-force gap. It is the technique for obtaining chemical (materials contrast in the optical image of “real world” surfaces that are rough and very rough without topographical artifacts, and it is by far less complicated than other SNOM techniques that can only be used for very flat surfaces. The experimental use of the new photophysical effect is described. The applications of the new technique are manifold. Important mechanistic questions in solid-state chemistry (oxidation, diazotization, photodimerization, surface hydration, hydrolysis are answered with respect to simultaneous AFM (atomic force microscopy and detailed crystal packing. Prehistoric petrified bacteria and concomitant pyrite inclusions are also investigated with local RAMAN SNOM. Polymer beads and unstained biological objects (rabbit heart, shrimp eye allow for nanoscopic analysis of cell organelles. Similarly, human teeth and a cancerous tissue are analyzed. Bladder cancer tissue is clearly differentiated from healthy tissue without staining and this opens a new highly promising diagnostic tool for precancer diagnosis. Industrial applications are demonstrated at the corrosion behavior of dental alloys (withdrawal of a widely used alloy, harmless substitutes, improvement of paper glazing, behavior of blood bags upon storage, quality assessment of metal particle preparations for surface enhanced RAMAN spectroscopy, and determination of diffusion coefficient and light fastness in textile fiber dyeing. The latter applications include fluorescence SNOM. Local fluorescence SNOM is also used in the study of partly aggregating dye nanoparticles within resin/varnish preparations. Unexpected new insights are obtained in all of the various fields that cannot be obtained by other techniques.

  17. Occurrence of methicillin-resistant Staphylococcus aureus in surface waters near industrial hog operation spray fields.

    Science.gov (United States)

    Hatcher, S M; Myers, K W; Heaney, C D; Larsen, J; Hall, D; Miller, M B; Stewart, J R

    2016-09-15

    Industrial hog operations (IHOs) have been identified as a source of antibiotic-resistant Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA). However, few studies have investigated the presence of antibiotic-resistant S. aureus in the environment near IHOs, specifically surface waters proximal to spray fields where IHO liquid lagoon waste is sprayed. Surface water samples (n=179) were collected over the course of approximately one year from nine locations in southeastern North Carolina and analyzed for the presence of presumptive MRSA using CHROMagar MRSA media. Culture-based, biochemical, and molecular tests, as well as matrix-assisted laser desorption/ionization-time of flight mass spectrometry were used to confirm that isolates that grew on CHROMagar MRSA media were S. aureus. Confirmed S. aureus isolates were then tested for susceptibility to 16 antibiotics and screened for molecular markers of MRSA (mecA, mecC) and livestock adaptation (absence of scn). A total of 12 confirmed MRSA were detected in 9 distinct water samples. Nine of 12 MRSA isolates were also multidrug-resistant (MDRSA [i.e., resistant to ≥3 antibiotic classes]). All MRSA were scn-positive and most (11/12) belonged to a staphylococcal protein A (spa) type t008, which is commonly associated with humans. Additionally, 12 confirmed S. aureus that were methicillin-susceptible (MSSA) were recovered, 7 of which belonged to spa type t021 and were scn-negative (a marker of livestock-adaptation). This study demonstrated the presence of MSSA, MRSA, and MDRSA in surface waters adjacent to IHO lagoon waste spray fields in southeastern North Carolina. To our knowledge, this is the first report of waterborne S. aureus from surface waters proximal to IHOs.

  18. Hemispherical Field-of-View Above-Water Surface Imager for Submarines

    Science.gov (United States)

    Hemmati, Hamid; Kovalik, Joseph M.; Farr, William H.; Dannecker, John D.

    2012-01-01

    A document discusses solutions to the problem of submarines having to rise above water to detect airplanes in the general vicinity. Two solutions are provided, in which a sensor is located just under the water surface, and at a few to tens of meter depth under the water surface. The first option is a Fish Eye Lens (FEL) digital-camera combination, situated just under the water surface that will have near-full- hemisphere (360 azimuth and 90 elevation) field of view for detecting objects on the water surface. This sensor can provide a three-dimensional picture of the airspace both in the marine and in the land environment. The FEL is coupled to a camera and can continuously look at the entire sky above it. The camera can have an Active Pixel Sensor (APS) focal plane array that allows logic circuitry to be built directly in the sensor. The logic circuitry allows data processing to occur on the sensor head without the need for any other external electronics. In the second option, a single-photon sensitive (photon counting) detector-array is used at depth, without the need for any optics in front of it, since at this location, optical signals are scattered and arrive at a wide (tens of degrees) range of angles. Beam scattering through clouds and seawater effectively negates optical imaging at depths below a few meters under cloudy or turbulent conditions. Under those conditions, maximum collection efficiency can be achieved by using a non-imaging photon-counting detector behind narrowband filters. In either case, signals from these sensors may be fused and correlated or decorrelated with other sensor data to get an accurate picture of the object(s) above the submarine. These devices can complement traditional submarine periscopes that have a limited field of view in the elevation direction. Also, these techniques circumvent the need for exposing the entire submarine or its periscopes to the outside environment.

  19. Regional magnetic anomaly fields: 3D Taylor polynomial and surface spline models

    Science.gov (United States)

    Feng, Yan; Jiang, Yong; Jiang, Yi; Li, Zheng; Jiang, Jin; Liu, Zhong-Wei; Ye, Mei-Chen; Wang, Hong-Sheng; Li, Xiu-Ming

    2016-03-01

    We used data from 1960.0, 1970.0, 1980.0, 1990.0, and 2000.0 to study the geomagnetic anomaly field over the Chinese mainland by using the three-dimensional Taylor polynomial (3DTP) and the surface spline (SS) models. To obtain the pure anomaly field, the main field and the induced field of the ionospheric and magnetospheric fields were removed from measured data. We also compared the SS model anomalies and the data obtained with Kriging interpolation (KI). The geomagnetic anomaly distribution over the mainland was analyzed based on the SS and 3DTP models by transferring all points from 1960.0-1990.0 to 2000.0. The results suggest that the total intensity F anomalies estimated based on the SS and KI for each year are basically consistent in distribution and intensity. The anomalous distributions in the X-, Y-, and Z-direction and F are mainly negative. The 3DTP model anomalies suggest that the intensity in the X-direction increases from -100 nT to 0 nT with longitude, whereas the intensity in the Y-direction decreases from 400 nT to 20 nT with longitude and over the eastern mainland is almost negative. The intensity in the Z-direction and F are very similar and in most areas it is about -50nT and higher in western Tibet. The SS model anomalies overall reflect the actual distribution of the magnetic field anomalies; however, because of the uneven distribution of measurements, it yields several big anomalies. Owing to the added altitude term, the 3DTP model offers higher precision and is consistent with KI.

  20. SOUND FIELD DIFFUSIVITY AT THE TOP SURFACE OF SCHROEDER DIFFUSER BARRIERS

    Directory of Open Access Journals (Sweden)

    M. R. Monazzam

    2006-10-01

    Full Text Available Reactive barriers are one of the most promising and novel environmental noise barriers. In this case using Schroeder diffusers (e.g. quadratic residue diffusers on the top surface of the T-shape barrier was shown to significantly improve the performance of absorbent T-shape barriers. The reasons behind the high performance of diffuser barriers are considered in this investigation. A question about the diffusivity behavior of Schroeder diffusers when they are utilized on the top of barrier was raised. Diffusion coefficients of a diffuser in different conditions at some receiver locations were predicted by using a 2D boundary element method. It was found that the diffusion coefficient of diffuser at the top of barrier is so small that the diffusivity of the structure is almost the same as rigid T-shape barrier. To find the barrier’s cap behavior, the total field above the top surface of profile barriers was also predicted. It was found that the lowest total energy is at the receiver side of the cap very close to the top surface,which could demonstrate the effect of top surface on absorbing the energy as wave transfers from source edge toward the receiver side of the cap. In this case the amount of minimum total energy depends on the frequency and the configuration of the top surface. A comparison between the reductions of total field at the source side of the cap with the improvements of barrier’s performance was also done. It was shown that the amount of decrease in total field compared to that of an absorbent barrier “Ref” is directly associated to the amount of improvement in the insertion loss made by the diffuser barrier compared to the “Ref” barrier in the wide area on the ground at the shadow zone. Finally it was concluded that the diffuser on the top of barrier does not act as a diffuser and a kind of similarity between the contribution of diffuser and absorbent material on the top of T-profile barrier is seen.

  1. A transferable force field to predict phase equilibria and surface tension of ethers and glycol ethers.

    Science.gov (United States)

    Ferrando, Nicolas; Lachet, Véronique; Pérez-Pellitero, Javier; Mackie, Allan D; Malfreyt, Patrice; Boutin, Anne

    2011-09-15

    We propose a new transferable force field to simulate phase equilibrium and interfacial properties of systems involving ethers and glycol ethers. On the basis of the anisotropic united-atom force field, only one new group is introduced: the ether oxygen atom. The optimized Lennard-Jones (LJ) parameters of this atom are identical whatever the molecule simulated (linear ether, branched ether, cyclic ether, aromatic ether, diether, or glycol ether). Accurate predictions are achieved for pure compound saturated properties, critical properties, and surface tensions of the liquid-vapor interface, as well as for pressure-composition binary mixture diagrams. Multifunctional molecules (1,2-dimethoxyethane, 2-methoxyethanol, diethylene glycol) have also been studied using a recently proposed methodology for the calculation of the intramolecular electrostatic energy avoiding the use of additional empirical parameters. This new force field appears transferable for a wide variety of molecules and properties. It is furthermore worth noticing that binary mixtures have been simulated without introducing empirical binary parameters, highlighting also the transferability to mixtures. Hence, this new force field gives future opportunities to simulate complex systems of industrial interest involving molecules with ether functions.

  2. A Method for Sea Surface Wind Field Retrieval from SAR Image Mode Data

    Institute of Scientific and Technical Information of China (English)

    SHAO Weizeng; SUN Jian; GUAN Changlong; SUN Zhanfeng

    2014-01-01

    To retrieve wind field from SAR images, the development for surface wind field retrieval from SAR images based on the improvement of new inversion model is present. Geophysical Model Functions (GMFs) have been widely applied for wind field retrieval from SAR images. Among them CMOD4 has a good performance under low and moderate wind conditions. Although CMOD5 is developed recently with a more fundamental basis, it has ambiguity of wind speed and a shape gradient of normalized radar cross section under low wind speed condition. This study proposes a method of wind field retrieval from SAR image by com-bining CMOD5 and CMOD4 Five VV-polarisation RADARSAT2 SAR images are implemented for validation and the retrieval re-sults by a combination method (CMOD5 and CMOD4) together with CMOD4 GMF are compared with QuikSCAT wind data. The root-mean-square error (RMSE) of wind speed is 0.75 m s-1 with correlation coefficient 0.84 using the combination method and the RMSE of wind speed is 1.01 m s-1 with correlation coefficient 0.72 using CMOD4 GMF alone for those cases. The proposed method can be applied to SAR image for avoiding the internal defect in CMOD5 under low wind speed condition.

  3. Comparison of unsteady pressure fields on turrets with different surface features using pressure-sensitive paint

    Science.gov (United States)

    Gordeyev, Stanislav; De Lucca, Nicholas; Jumper, Eric J.; Hird, Kyle; Juliano, Thomas J.; Gregory, James W.; Thordahl, James; Wittich, Donald J.

    2014-01-01

    Spatially temporally resolved unsteady pressure fields on a surface of a hemisphere-on-cylinder turret with either a flat or a conformal window with realistic features such as gaps and "smile" cutouts were characterized using fast-response pressure-sensitive paint at M = 0.33 for several window viewing angles. Various statistical properties of pressure fields were computed, and geometry effects on the unsteady pressure fields were analyzed and discussed. Proper orthogonal decomposition was also used to extract dominant pressure modes and corresponding temporal coefficients and to analyze and compare instantaneous pressure structures for different turret geometric features and the window viewing angles. An unsteady separation off the turret and a recirculation region downstream of the turret were identified as dominant sources of the unsteady pressure. It was found that while all geometric features affected the unsteady pressure field, the "smiles," positioned spanwise-symmetrically on both sides of the turret, were the leading cause of these changes, followed by the looking forward flat window. The gaps, the side- and the back-looking flat window introduced only small local changes.

  4. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons

    Science.gov (United States)

    Zhou, You; Scuri, Giovanni; Wild, Dominik S.; High, Alexander A.; Dibos, Alan; Jauregui, Luis A.; Shu, Chi; de Greve, Kristiaan; Pistunova, Kateryna; Joe, Andrew Y.; Taniguchi, Takashi; Watanabe, Kenji; Kim, Philip; Lukin, Mikhail D.; Park, Hongkun

    2017-09-01

    Transition metal dichalcogenide (TMD) monolayers with a direct bandgap feature tightly bound excitons, strong spin-orbit coupling and spin-valley degrees of freedom. Depending on the spin configuration of the electron-hole pairs, intra-valley excitons of TMD monolayers can be either optically bright or dark. Dark excitons involve nominally spin-forbidden optical transitions with a zero in-plane transition dipole moment, making their detection with conventional far-field optical techniques challenging. Here, we introduce a method for probing the optical properties of two-dimensional materials via near-field coupling to surface plasmon polaritons (SPPs). This coupling selectively enhances optical transitions with dipole moments normal to the two-dimensional plane, enabling direct detection of dark excitons in TMD monolayers. When a WSe2 monolayer is placed on top of a single-crystal silver film, its emission into near-field-coupled SPPs displays new spectral features whose energies and dipole orientations are consistent with dark neutral and charged excitons. The SPP-based near-field spectroscopy significantly improves experimental capabilities for probing and manipulating exciton dynamics of atomically thin materials, thus opening up new avenues for realizing active metasurfaces and robust optoelectronic systems, with potential applications in information processing and communication.

  5. Field experiment provides ground truth for surface nuclear magnetic resonance measurement

    Science.gov (United States)

    Knight, R.; Grunewald, E.; Irons, T.; Dlubac, K.; Song, Y.; Bachman, H.N.; Grau, B.; Walsh, D.; Abraham, J.D.; Cannia, J.

    2012-01-01

    The need for sustainable management of fresh water resources is one of the great challenges of the 21st century. Since most of the planet's liquid fresh water exists as groundwater, it is essential to develop non-invasive geophysical techniques to characterize groundwater aquifers. A field experiment was conducted in the High Plains Aquifer, central United States, to explore the mechanisms governing the non-invasive Surface NMR (SNMR) technology. We acquired both SNMR data and logging NMR data at a field site, along with lithology information from drill cuttings. This allowed us to directly compare the NMR relaxation parameter measured during logging,T2, to the relaxation parameter T2* measured using the SNMR method. The latter can be affected by inhomogeneity in the magnetic field, thus obscuring the link between the NMR relaxation parameter and the hydraulic conductivity of the geologic material. When the logging T2data were transformed to pseudo-T2* data, by accounting for inhomogeneity in the magnetic field and instrument dead time, we found good agreement with T2* obtained from the SNMR measurement. These results, combined with the additional information about lithology at the site, allowed us to delineate the physical mechanisms governing the SNMR measurement. Such understanding is a critical step in developing SNMR as a reliable geophysical method for the assessment of groundwater resources.

  6. A surface acoustic wave passive and wireless sensor for magnetic fields, temperature, and humidity

    KAUST Repository

    Li, Bodong

    2015-01-01

    In this paper, we report an integrated single-chip surface acoustic wave sensor with the capability of measuring magnetic field, temperature, and humidity. The sensor is fabricated using a thermally sensitive LiNbO3 substrate, a humidity sensitive hydrogel coating, and a magnetic field sensitive impedance load. The sensor response to individually and simultaneously changing magnetic field, temperature and humidity is characterized by connecting a network analyzer directly to the sensor. Analytical models for each measurand are derived and used to compensate noise due to cross sensitivities. The results show that all three measurands can be monitored in parallel with sensitivities of 75 ppm/°C, 0.13 dB/%R.H. (at 50%R.H.), 0.18 dB/Oe and resolutions of 0.1 °C, 0.4%R.H., 1 Oe for temperature, humidity and magnetic field, respectively. A passive wireless measurement is also conducted on a current line using, which shows the sensors capability to measure both temperature and current signals simultaneously.

  7. Surface Evolution of the Sun's Magnetic Field: A Historical Review of the Flux-Transport Mechanism

    Directory of Open Access Journals (Sweden)

    Sheeley Jr. Neil R.

    2005-10-01

    Full Text Available This paper reviews our attempts to understand the transport of magnetic flux on the Sun from the Babcock and Leighton models to the recent revisions that are being used to simulate the field over many sunspot cycles. In these models, the flux originates in sunspot groups and spreads outward on the surface via supergranular diffusion; the expanding patterns become sheared by differential rotation, and the remnants are carried poleward by meridional flow. The net result of all of the flux eruptions during a sunspot cycle is to replace the initial polar fields with new fields of opposite polarity. A central issue in this process is the role of meridional flow, whose relatively low speed is near the limit of detection with Doppler techniques. A compelling feature of Leighton’s original model was that it reversed the polar fields without the need for meridional flow. Now, we think that meridional flow is central to the reversal and to the dynamo itself.

  8. Search for Surface Magnetic Fields in Mira Stars. First Detection in chi Cyg

    CERN Document Server

    Lèbre, A; Fabas, N; Gillet, D; Herpin, F; Konstantinova-Antova, R; Petit, P

    2013-01-01

    In order to complete the knowledge of the magnetic field and of its influence during the transition from Asymptotic Giant Branch to Planetary Nebulae stages, we have undertaken a search for magnetic fields at the surface of Mira stars. We used spectropolarimetric observations, collected with the Narval instrument at TBL, in order to detect - with Least Squares Deconvolution method - a Zeeman signature in the visible part of the spectrum. We present the first spectropolarimetric observations of the S-type Mira star chi Cyg, performed around its maximum light. We have detected a polarimetric signal in the Stokes V spectra and we have established its Zeeman origin. We claim that it is likely to be related to a weak magnetic field present at the photospheric level and in the lower part of the stellar atmosphere. We have estimated the strength of its longitudinal component to about 2-3 Gauss. This result favors a 1/r law for the variation of the magnetic field strength across the circumstellar envelope of chi Cyg....

  9. Surface Flux Transport and the Evolution of the Sun's Polar Fields

    Science.gov (United States)

    Wang, Y.-M.

    2017-09-01

    The evolution of the polar fields occupies a central place in flux transport (Babcock-Leighton) models of the solar cycle. We discuss the relationship between surface flux transport and polar field evolution, focusing on two main issues: the latitudinal profile of the meridional flow and the axial tilts of active regions. Recent helioseismic observations indicate that the poleward flow speed peaks at much lower latitudes than inferred from magnetic feature tracking, which includes the effect of supergranular diffusion and thus does not represent the actual bulk flow. Employing idealized simulations, we demonstrate that flow profiles that peak at mid latitudes give rise to overly strong and concentrated polar fields. We discuss the differences between magnetic and white-light measurements of tilt angles, noting the large uncertainties inherent in the sunspot group measurements and their tendency to underestimate the actual tilts. We find no clear evidence for systematic cycle-to-cycle variations in Joy's law during cycles 21-23. Finally, based on the observed evolution of the Sun's axial dipole component and polar fields up to the end of 2015, we predict that cycle 25 will be similar in amplitude to cycle 24.

  10. Spatial-temporal variation of the land surface temperature field and present-day tectonic activity

    Directory of Open Access Journals (Sweden)

    Jin Ma

    2010-10-01

    Full Text Available This study attempts to acquire information on tectonic activity in western China from land surface temperature (LST field data. On the basis of the established relationship between heat and strain, we analyzed the LST distribution in western China using the satellite data product MODIS/Terra. Our results show that: 1. There are departures from annual changes of LST in some areas, and that these changes are associated with the activity of some active tectonic zones. 2. When annual-change background values caused by climate factors are removed, the long-period component (LSTLOW of temperature residual (ΔT of the LST is able to serve as an indicator for tectonic activity. We have found that a major earthquake can produce different effects on the LST fields of surrounding areas. These effects are characterized by both rises and drops in temperature. For example, there was a noteworthy temperature decline associated with the Sumatran M9 earthquake of 2004 in the Bayan Har-Songpan block of central Tibetan Plateau. 3. On the other hand, the LST field of a single area may respond differently to major shocks occurring in different areas in the regions surrounding China. For instance, the Kunlun M 8.1 event made the LST on the Longmen Mountains fault zone increase, whereas the Zaisan Lake M 7.9 quake of 2003, and the Sumatran M 9 event of 2004, caused decreases in the same area’s LST. 4. The variations of land surface temperature (LST over time are different in different tectonic areas. These phenomena may provide clues for the study of tectonic deformation processes. On the basis of these phenomena, we use a combination of temperature data obtained at varied depths, regional seismicity and strain results obtained with GPS measurements, to test the information related to tectonic activity derived from variations of the LST field, and discuss its implications to the creation of models of regional tectonic deformation.

  11. Competencies for the Contemporary Career: Development and Preliminary Validation of the Career Competencies Questionnaire

    Science.gov (United States)

    Akkermans, Jos; Brenninkmeijer, Veerle; Huibers, Marthe; Blonk, Roland W. B.

    2013-01-01

    A new and promising area of research has recently emerged in the field of career development: career competencies. The present article provides a framework of career competencies that integrates several perspectives from the literature. The framework distinguishes between reflective, communicative, and behavioral career competencies. Six career…

  12. Effect of Cu surface segregation on the exchange coupling field of NiFe/FeMn bilayers

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The NiFe/FeMn bilayers with different buffer layers (Ta or Ta/Cu) were prepared by magnetron sputtering.Results show that the exchange coupling field of NiFe/FeMn films with Ta buffer is higher than that of the films with Ta/ Cu buffer. We analysed the reasons by investigating the crystallographic texture, surface roughness and surface segregation of both films, respectively. We found that the decrease of the exchange coupling fields of NiFe/FeMn films with Ta/Cu buffer layers was mainly caused by the Cu surface segregation on NiFe surface.

  13. A field study of colloid transport in surface and subsurface flows

    Science.gov (United States)

    Zhang, Wei; Tang, Xiang-Yu; Xian, Qing-Song; Weisbrod, Noam; Yang, Jae E.; Wang, Hong-Lan

    2016-11-01

    Colloids have been recognized to enhance the migration of strongly-sorbing contaminants. However, few field investigations have examined combined colloid transport via surface runoff and subsurface flows. In a headwater catchment of the upper Yangtze River, a 6 m (L) by 4 m (W) sloping (6°) farmland plot was built by cement walls to form no-flow side boundaries. The plot was monitored in the summer of 2014 for the release and transport of natural colloids via surface runoff and subsurface flows (i.e., the interflow from the soil-mudrock interface and fracture flow from the mudrock-sandstone interface) in response to rain events. The water sources of the subsurface flows were apportioned to individual rain events using a two end-member model (i.e., mobile pre-event soil water extracted by a suction-cup sampler vs. rainwater (event water)) based on δ18O measurements. For rain events with high preceding soil moisture, mobile pre-event soil water was the main contributor (generally >60%) to the fracture flow. The colloid concentration in the surface runoff was 1-2 orders of magnitude higher than that in the subsurface flows. The lowest colloid concentration was found in the subsurface interflow, which was probably the result of pore-scale colloid straining mechanisms. The rainfall intensity and its temporal variation govern the dynamics of the colloid concentrations in both surface runoff and subsurface flows. The duration of the antecedent dry period affected not only the relative contributions of the rainwater and the mobile pre-event soil water to the subsurface flows but also the peak colloid concentration, particularly in the fracture flow. The rain period because their transport in association with colloids may occur rapidly over long distances via both surface runoff and subsurface flows with rainfall.

  14. Influence of manure application on surface energy and snow cover: field experiments.

    Science.gov (United States)

    Kongoli, C E; Bland, W L

    2002-01-01

    Application of manure to frozen and/or snow-covered soils of high-latitude, continental climate regions is associated with enhanced P losses to surface water bodies, but the practice is an essential part of most animal farming systems in these regions. Field experiments of the fates of winter-applied manure P are so difficult as to make them essentially impractical, so a mechanistic, modeling approach is required. Central to a mechanistic understanding of manure P snow-melt runoff is knowledge of snowpack disappearance (ablation) as affected by manure application. The objective of this study was to learn how solid manure applied to snow-covered fields modulates the surface energy balance and thereby snow cover ablation. Manure landspreading experiments were conducted in Arlington, WI during the winters of 1998 and 1999. Solid dairy manure was applied on top of snow at a rate of 70 Mg ha(-1) in 1998, and at 45 and 100 Mg ha(-1) in 1999. Results showed that the manure retarded melt, in proportion to the rate applied. The low-albedo manure increased absorption of shortwave radiation compared with snow, but this extra energy was lost in longwave radiation and turbulent flux of sensible and latent heat. These losses result in significant attenuation of melt peaks, retarding snowmelt. Lower snowmelt rates beneath manure may allow more infiltration of meltwater compared with bare snow. This infiltration and attenuated snowmelt runoff may partially mitigate the enhanced likelihood of P runoff from unincorporated winter-spread manure.

  15. The boundary-constraint method for constructing vortex-surface fields

    Science.gov (United States)

    Xiong, Shiying; Yang, Yue

    2016-11-01

    We develop a boundary-constraint method for constructing the vortex-surface field (VSF) in a three-dimensional fluid velocity field. The isosurface of VSF is a vortex surface consisting of vortex lines, which can be used to identify and track the evolution of vortical structures in a Lagrangian sense. The evolution equation with pseudo-time is solved under the boundary constraint of VSF to obtain an approximate solution of VSF. Using the boundary-constraint method, we construct the VSFs in Taylor-Green flow and transitional channel flow. The uniqueness of VSF are demonstrated with different initial conditions, and the consistency of this boundary-constraint method and the previous two-time approach for constructing VSF is discussed. In addition, the convergence error in the calculation of VSF is analyzed. This work has been supported in part by the National Natural Science Foundation of China (Grant Nos. 11522215 and 11521091), and the Thousand Young Talents Program of China.

  16. Ubiquitous Creation of Bas-Relief Surfaces with Depth-of-Field Effects Using Smartphones.

    Science.gov (United States)

    Sohn, Bong-Soo

    2017-03-11

    This paper describes a new method to automatically generate digital bas-reliefs with depth-of-field effects from general scenes. Most previous methods for bas-relief generation take input in the form of 3D models. However, obtaining 3D models of real scenes or objects is often difficult, inaccurate, and time-consuming. From this motivation, we developed a method that takes as input a set of photographs that can be quickly and ubiquitously captured by ordinary smartphone cameras. A depth map is computed from the input photographs. The value range of the depth map is compressed and used as a base map representing the overall shape of the bas-relief. However, the resulting base map contains little information on details of the scene. Thus, we construct a detail map using pixel values of the input image to express the details. The base and detail maps are blended to generate a new depth map that reflects both overall depth and scene detail information. This map is selectively blurred to simulate the depth-of-field effects. The final depth map is converted to a bas-relief surface mesh. Experimental results show that our method generates a realistic bas-relief surface of general scenes with no expensive manual processing.

  17. On the field dependent surface resistance of niobium on copper cavities

    CERN Document Server

    Junginger, Tobias

    2015-01-01

    The surface resistance Rs of superconducting cavities prepared by sputter coating a thin niobium film on a copper substrate increases significantly stronger with the applied RF field compared to cavities of bulk material. A possible cause is that due to the thermal boundary resistance between the copper substrate and the niobium film Rs is enhanced due to global heating of the inner cavity wall. Introducing helium gas in the cavity and measuring its pressure as a function of applied field allowed to conclude that the inner surface of the cavity is heated up by only 60+/-60 mK when Rs increases with Eacc by 100 nOhm. This is more than one order of magnitude less than what one would expect from global heating. Additionally the effect of cooldown speed and low temperature baking have been investigated in the framework of these experiments. It is shown that for current state of the art niobium on copper cavities there is only a detrimental effect of low temperature baking. A fast cooldown results in a lowered Rs.

  18. Ubiquitous Creation of Bas-Relief Surfaces with Depth-of-Field Effects Using Smartphones

    Directory of Open Access Journals (Sweden)

    Bong-Soo Sohn

    2017-03-01

    Full Text Available This paper describes a new method to automatically generate digital bas-reliefs with depth-of-field effects from general scenes. Most previous methods for bas-relief generation take input in the form of 3D models. However, obtaining 3D models of real scenes or objects is often difficult, inaccurate, and time-consuming. From this motivation, we developed a method that takes as input a set of photographs that can be quickly and ubiquitously captured by ordinary smartphone cameras. A depth map is computed from the input photographs. The value range of the depth map is compressed and used as a base map representing the overall shape of the bas-relief. However, the resulting base map contains little information on details of the scene. Thus, we construct a detail map using pixel values of the input image to express the details. The base and detail maps are blended to generate a new depth map that reflects both overall depth and scene detail information. This map is selectively blurred to simulate the depth-of-field effects. The final depth map is converted to a bas-relief surface mesh. Experimental results show that our method generates a realistic bas-relief surface of general scenes with no expensive manual processing.

  19. Ubiquitous Creation of Bas-Relief Surfaces with Depth-of-Field Effects Using Smartphones

    Science.gov (United States)

    Sohn, Bong-Soo

    2017-01-01

    This paper describes a new method to automatically generate digital bas-reliefs with depth-of-field effects from general scenes. Most previous methods for bas-relief generation take input in the form of 3D models. However, obtaining 3D models of real scenes or objects is often difficult, inaccurate, and time-consuming. From this motivation, we developed a method that takes as input a set of photographs that can be quickly and ubiquitously captured by ordinary smartphone cameras. A depth map is computed from the input photographs. The value range of the depth map is compressed and used as a base map representing the overall shape of the bas-relief. However, the resulting base map contains little information on details of the scene. Thus, we construct a detail map using pixel values of the input image to express the details. The base and detail maps are blended to generate a new depth map that reflects both overall depth and scene detail information. This map is selectively blurred to simulate the depth-of-field effects. The final depth map is converted to a bas-relief surface mesh. Experimental results show that our method generates a realistic bas-relief surface of general scenes with no expensive manual processing. PMID:28287487

  20. Intercultural Competence – Key Competence of Multicultural Teams

    Directory of Open Access Journals (Sweden)

    Diana Bebenova - Nikolova

    2014-08-01

    Full Text Available The article deals with intercultural competence of multicultural teams elaborating European projects. Firstly, it discusses basic theoretical aspects of the related concepts: culture and intercultural competence, then presents its impact on multicultural team effectiveness and models for improving it. The article finds ground on studies of intercultural competence as a set of strategic, personal, social and professional competences. The paper uses the project cycle management theory and proves that in multi-ethnic surroundings, the project membersř communication skills might not be sufficient to generate mutual understanding. Provisionally, the study performed a standardized Internet survey on self-assessment of intercultural competence among 50 experts on European projects. Another applied approach is field observation (attendance and note-taking of the 5- day training "To become diplomats between cultures", based on Bennettřs theoretical model for "Development of Intercultural Sensitivity". A training model for improving intercultural competence of multicultural team members. Possible approach for improvement of project management of crossborder or trans-border funding programs. Building intercultural competence in European project management is important, timely and necessity-driven, especially under the framework of the Danube Region Strategy.

  1. Field and numerical study of wind and surface waves at short fetches

    Science.gov (United States)

    Baydakov, Georgy; Kuznetsova, Alexandra; Sergeev, Daniil; Papko, Vladislav; Kandaurov, Alexander; Vdovin, Maxim; Troitskaya, Yuliya

    2016-04-01

    Measurements were carried out in 2012-2015 from May to October in the waters of Gorky Reservoir belonging to the Volga Cascade. The methods of the experiment focus on the study of airflow in the close proximity to the water surface. The sensors were positioned at the oceanographic Froude buoy including five two-component ultrasonic sensors WindSonic by Gill Instruments at different levels (0.1, 0.85, 1.3, 2.27, 5.26 meters above the mean water surface level), one water and three air temperature sensors, and three-channel wire wave gauge. One of wind sensors (0.1 m) was located on the float tracking the waveform for measuring the wind speed in the close proximity to the water surface. Basic parameters of the atmospheric boundary layer (the friction velocity u∗, the wind speed U10 and the drag coefficient CD) were calculated from the measured profiles of wind speed. Parameters were obtained in the range of wind speeds of 1-12 m/s. For wind speeds stronger than 4 m/s CD values were lower than those obtained before (see eg. [1,2]) and those predicted by the bulk parameterization. However, for weak winds (less than 3 m/s) CD values considerably higher than expected ones. The new parameterization of surface drag coefficient was proposed on the basis of the obtained data. The suggested parameterization of drag coefficient CD(U10) was implemented within wind input source terms in WAVEWATCH III [3]. The results of the numerical experiments were compared with the results obtained in the field experiments on the Gorky Reservoir. The use of the new drag coefficient improves the agreement in significant wave heights HS [4]. At the same time, the predicted mean wave periods are overestimated using both built-in source terms and adjusted source terms. We associate it with the necessity of the adjusting of the DIA nonlinearity model in WAVEWATCH III to the conditions of the middle-sized reservoir. Test experiments on the adjusting were carried out. The work was supported by the

  2. Developing Creative Competencies

    DEFF Research Database (Denmark)

    Friis, Silje Alberthe Kamille

    2012-01-01

    This paper offers a theoretical framework for how to think about and understand creativity – and how to work with the development of creative competencies in design education. Most design students experience recurrent, individual challenges in design work, which have to do with their personal......, psychological configuration. The objective of the present research is to provide new insight into the dynamics underlying our individual strengths and challenges, and develop approaches to help design students come full circle in creative work processes. The paper builds on contemporary theory and techniques...... from the field of psychology, as well as research-in-practice with students at the Kolding School of Design and presents the outline of a model for how to work with and facilitate the development of creative competencies. While the research is still in its early phases, response from participants...

  3. Eddy formation and surface flow field in the Luzon Strait area during the summer of 2009

    Science.gov (United States)

    Liu, Ze; Hou, Yijun; Xie, Qiang

    2015-09-01

    The formation of mesoscale eddies and the structure of the surface flow field in the Luzon Strait area were examined using in-situ CTD data, Argo float data, and multi-satellite remote sensing data collected from May to August 2009. The results show that vigorous water exchange between Kuroshio water and South China Sea (SCS) water began to emerge over the 200 m water column throughout the strait. Based on an objective definition of surface currents, float A69 tracked an anti-cyclonic eddy southwest of Taiwan Island under a Lagrangian current measurement. The salinity inside the anti-cyclonic eddy was higher than in typical SCS water but lower than in Kuroshio mainstream water, indicating that this eddy was induced by Kuroshio frontal intrusion through the Luzon Strait and into the SCS. From hydrographic data, we propose that continuous horizontal diffusion with high-salinity characteristics in the subsurface layer could extend to 119°E or even further west. The high-temperature filament, large positive sea level anomaly and clockwise geostrophic current all confirmed the existence of this warm eddy in May and June. A strongly negative wind stress curl maintained the eddy until it died. The surface flow field during July and August was rather complicated. Float A83 described an east-west orientated shuttle run in the 20°N section that was not reported by previous studies. At the same time, float A80 indicated a Kuroshio bend into the north-central region of Luzon Strait but it did not cross 120.5°E. The water mass rejoining the Kuroshio mainstream from the southern tip of Taiwan Island was less saline, indicating an entrainment of water from SCS by the Kuroshio bend.

  4. Modeling of integrated sunlight velocity measurements: The effect of surface darkening by magnetic fields

    Science.gov (United States)

    Ulrich, R. K.; Henney, C. J.; Schimpf, S.; Fossat, E.; Gelly, B.; Grec, G.; Loudagh, S.; Schmider, F.-X; Palle, P.; Regulo, C.

    1993-01-01

    It has been known since the work by Claverie et al. (1982) that integrated-sunlight velocities measured with the resonance scattering technique show variations with time scales of weeks to months. The cause can be understood in terms of the effects of solar activity as was pointed out by Edmunds & Gough (1983) and Andersen & Maltby (1983). The latter authors included a model calculation based on sunspot areas which showed good promise of being able to quantitatively reproduce the observed velocity shifts. We discuss in this paper a new modeling effort based on daily magnetograms obtained at the 150-ft tower on Mt. Wilson. This type of database is more quantitative than sunspot area. Similar maps of magnetically sensitive quantities will be measured on a continuous time base as part of several planned helioseismology experiments (from space with the Solar Oscillations Imagery/Michelson Doppler Imager (SOI/MDI) experiment on the Solar and Heliospheric Observatory (SOHO), see Scherrer et al. (1991) or with ground-based networks, see Hill & Leibacher (1991)). We discuss the correlations between various magnetically sensitive quantities and develop a new model for the effects of magnetic field on line profiles and surface brightness. From these correlations we integrate the line profile changes over the solar surface using observed magnetic field strengths measured at lambda 5250.2. The final output is a new model for the effects of magnetic fields on integrated sunlight velocities which we compare with daily offset velocities derived from the International Research on the Interior of the Sun (IRIS)-T instrument at the Observatorio del Teide.

  5. The Helium Field Effect Transistor (I): Storing Surface State Electrons on Helium Films

    Science.gov (United States)

    Ashari, M.; Rees, D. G.; Kono, K.; Scheer, E.; Leiderer, P.

    2012-04-01

    We present investigations of surface state electrons on liquid helium films in confined geometry, using a suitable substrate structure microfabricated on a silicon wafer, similar to a Field Effect Transistor (FET). The sample has a source and drain region, separated by a gate structure, which consists of two gold electrodes with a narrow gap (channel) through which the transport of the surface state electrons takes place. The sample is illuminated to provide a sufficient number of free carriers in the silicon substrate, such that a well-defined potential distribution is achieved. The eventual goal of these experiments is to study the electron transport through a narrow channel in the various states of the phase diagram of the 2D electron system. In the present work we focus on storing the electrons in the source area of the FET, and investigate the spatial distribution of these electrons. It is shown that under the influence of a potential gradient in the silicon substrate the electrons accumulate in front of the potential barrier of the gate. The electron distribution, governed by Coulomb repulsion and by the substrate potential, is determined experimentally. The result is found to be in good agreement with a parallel-plate capacitor model of the system, developed with the aid of a finite element calculation of the surface potential profile of the device.

  6. Loss mechanisms and back surface field effect in photon enhanced thermionic emission converters

    Science.gov (United States)

    Segev, Gideon; Rosenwaks, Yossi; Kribus, Abraham

    2013-07-01

    Photon Enhanced Thermionic Emission (PETE) solar converters are based on emission of energetic electrons from a semiconductor cathode that is illuminated and heated with solar radiation. By using a semiconductor cathode, photo generated electrons enable high electron emission at temperatures much lower than the common range for thermionic emitters. Simple models show that PETE conversion can theoretically reach high efficiency, for example, above 40% at concentration of 1000 suns. In this work, we present a detailed one-dimensional model of PETE conversion, accounting for recombination mechanisms, surface effects, and spatial distribution of potential and carrier concentration. As in the previous PETE models, negative space charge effects, photon recycling, and temperature gradients are not considered. The conversion efficiency was calculated for Si and GaAs based cathodes under a wide range of operating conditions. The calculated efficiencies are lower than predictions of previous zero-dimensional models. We analyze the loss mechanisms and show that electron recombination at the cathode contact is a significant loss. An electron-blocking junction at the cathode back contact is therefore essential for achieving high efficiency. The predicted efficiencies for Si and GaAs cathodes with homo-junction back surface field layers are both around 31%, but with more favorable assumptions on the contact structure, it may be near 40%. The analysis leads to important conclusions regarding the selection of cathode material and back surface junction configuration.

  7. Wide-field surface plasmon microscopy of nano- and microparticles: features, benchmarking, limitations, and bioanalytical applications

    Science.gov (United States)

    Nizamov, Shavkat; Scherbahn, Vitali; Mirsky, Vladimir M.

    2017-05-01

    Detection of nano- and micro-particles is an important task for chemical analytics, food industry, biotechnology, environmental monitoring and many other fields of science and industry. For this purpose, a method based on the detection and analysis of minute signals in surface plasmon resonance images due to adsorption of single nanopartciles was developed. This new technology allows one a real-time detection of interaction of single nano- and micro-particles with sensor surface. Adsorption of each nanoparticle leads to characteristic diffraction image whose intensity depends on the size and chemical composition of the particle. The adsorption rate characterizes volume concentration of nano- and micro-particles. Large monitored surface area of sensor enables a high dynamic range of counting and to a correspondingly high dynamic range in concentration scale. Depending on the type of particles and experimental conditions, the detection limit for aqueous samples can be below 1000 particles per microliter. For application of method in complex media, nanoparticle images are discriminated from image perturbations due to matrix components. First, the characteristic SPRM images of nanoparticles (templates) are collected in aqueous suspensions or spiked real samples. Then, the detection of nanoparticles in complex media using template matching is performed. The detection of various NPs in consumer products like cosmetics, mineral water, juices, and wines was shown at sub-ppb level. The method can be applied for ultrasensitive detection and analysis of nano- and micro-particles of biological (bacteria, viruses, endosomes), biotechnological (liposomes, protein nanoparticles for drug delivery) or technical origin.

  8. Statistical Distribution of Surface Slope in A 3-D Ocean Wave Field

    Institute of Scientific and Technical Information of China (English)

    XU Delun; LIU Xuehai; ZHANG Jun

    2000-01-01

    A joint probability density fnnction (PDF) for surface slopes in two arbitrary directions is de rived on the basis of Longuet-Higgins's linear model for three-dimensional (3-D) random wave field, and the correlation moments of surface slopes, as parameters in the PDF, are expressed in terms of directional spectrum of ocean waves. So long as the directional spectrum model is given, these parameters are deter mined. Since the directional spectrum models proposed so far are mostly parameterized by the wind speed and fetch, this allows for substituling these parameters with the wind speed and fetch. As an example, the wind speed and fetch are taken to be 14 m/s and 200 km, and the Hasselmann and Donelan directional spectra are, respectively, used to compute these paraneters. Some novel results are obtained. One of the in teresting results is that the variances of surface slope in downwind and cross-wind directions determined by the Donelan directional spectra are close to those measured by Cox and Munk (1954). Some discussionsare made on these results.

  9. Surface resistance measurement of superconducting YBa sub 2 Cu sub 3 O sub 7 in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Chin, C.C. (Center for Materials Science and Engineering, Massachusetts Institute of Technology, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA (USA)); Rainville, P.J.; Drehman, A.J.; Derov, J.S.; Steinbeck, J. (Rome Air Development Center (RADC), Hanscom AFB, MA (USA)); Dresselhaus, G. (Francis Bitter National Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA (USA)); Dresselhaus, M.S. (Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA (USA))

    1990-08-01

    We report on the magnetic-field dependent surface resistance of polycrystalline YBa{sub 2}Cu{sub 3}O{sub 7} ({ital T}{sub {ital c}}{congruent}92 K), measured using a brass cylindrical cavity resonator, operating at 16.5 GHz in the TE{sub 011} mode. A dc magnetic field {ital H}{sub app} is applied parallel to the superconducting sample surface, and the temperature dependence of the surface resistance is measured for four different values of {ital H}{sub app} (0 T, 0.22 T, 1 T, 5 T). An effective medium theory and the two-fluid model are used to fit the surface resistance versus temperature measurements both in zero field and for various applied fields. These results are applied to characterize the microwave properties of a polycrystalline ceramic superdconductor.

  10. Extent of Abandoned Underground Coal Mines and Surface Mines in the Boulder-Weld Coal Field (friminedu)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This file is a digital polygon representation of the areal extent of abandoned underground coal mines and surface mines in the Boulder-Weld coal field, Denver Basin,...

  11. Connecting the surface of the Sun to the Heliosphere : wind speed and magnetic field geometry

    Science.gov (United States)

    Pinto, Rui

    2016-07-01

    The large-scale solar wind speed distribution varies in time in response to the cyclic variations of the strength and geometry of the magnetic field of the corona. Based on this idea, semi-empirical predictive laws for the solar wind speed (such as in the widely-used WSA law) use simple parameters describing the geometry of the coronal magnetic field. In practice, such scaling laws require ad-hoc corrections and empirical fits to in-situ spacecraft data, and a predictive law based solely on physical principles is still missing. I will discuss improvements to this kind of laws based on the analysis of very large samples of wind acceleration profiles in open flux-tubes (both from MHD simulations and potential-field extrapolations), and possible strategies for corona and heliosphere model coupling. I will, furthermore present an ongoing modelling effort to determine the magnetic connectivity, paths and propagation delays of any type of disturbance (slow/fast solar wind, waves, energetic particles, ballistic propagation) between the solar surface and any point in the interplanetary space at any time. This is a key point for the exploitation of data from Solar Orbiter and Solar Probe Plus, and more generally for establishing connections between remote and in-situ spacecraft data. This is work is supported by the FP7 project #606692 (HELCATS).

  12. Formation of binary millisecond pulsars with relatively high surface dipole magnetic fields

    CERN Document Server

    Sutantyo, W

    2000-01-01

    We have carried out numerical evolutionary calculations of binary systems to investigate the formation of binary millisecond pulsars (pulsars with white dwarf companions). We apply the ``standard scenario'' in which the binary pulsars are formed from low-mass and intermediate-mass X-ray binaries as well the alternative scenario in which the neutron stars are formed by accretion-induced collapse (AIC) of white dwarfs. The mass transfer processes are carefully followed by taking into account a number of binary interactions. Assuming that the magnetic fields of the neutron stars decay due to the accretion, we calculate the pulsar surface dipole magnetic field strength at the end of the mass transfer as a function of the final orbital period. We find that while the observed data of the majority of pulsars are compatible with the derived relations, we fail to produce binary pulsars with relatively high magnetic fields and short orbital periods (such as PSR B0655+64). We conclude that those systems are most likely ...

  13. A remotely operated, field deployable tritium analysis system for surface and groundwater measurement

    Energy Technology Data Exchange (ETDEWEB)

    Cable, P.R.; Hofstetter, K.J.; Beals, D.M.; Jones, J.D.; Collins, S.L. [Westinghouse Savannah River Co., Aiken, SC (United States); Noakes, J.E.; Spaulding, J.D.; Neary, M.P. [Center for Applied Isotope Studies, Athens, GA (United States); Peterson, R. [Sampling Systems, Inc., Old Ocean, TX (United States)

    1996-12-31

    A prototype system for the remote, in situ analysis of tritium in surface and ground waters has been developed at the Savannah River Site through the combined efforts of university, private industry, and government laboratory personnel under a project funded by the DOE/OTD. Using automated liquid scintillation counting techniques, the Field Deployable Tritium Analysis System (FDTAS) has been shown in laboratory and limited field tests to have sufficient sensitivity to measure tritium in water samples at environmental levels (10 Bq/L [{approximately}300 pCi/L] for a 100-minute count) on a near-real time basis. These limits are well below the EPA drinking water standard for tritium at 740 Bq/L (1) and lower than the normal upstream Savannah River tritium concentration of {approximately}40 Bq/L (2). The FDTAS consists of a fixed volume sampler (50 mL), an on-line water purification system, and a stop-flow liquid scintillation counter for detecting tritium in the purified sample. All operations are controlled and monitored by a remote computer using standard telephone line modem communications. The FDTAS offers a cost-effective alternative to the expensive and time-consuming methods of field sample collection and laboratory analyses for tritium in contaminated groundwater.

  14. Field Performance of Dieldrin/Resin Wettable Powders on Sorptive Mud Surface

    Science.gov (United States)

    Van Tiel, N.

    1961-01-01

    Recent field experiments on the relative performance of dieldrin and dieldrin/resin wettable powders on sorptive mud surface have not confirmed the promising results obtained with the latter products in earlier laboratory tests. In view of this a renewed investigation into the possible factors governing the performance of such products was considered desirable, and further laboratory and field experiments were carried out in co-operation with the Colonial Pesticides Research Unit at Arusha, Tanganyika. The results of these experiments have given a better understanding of the factors involved, and a coherent interpretation of the differences in performance shown by various products under different conditions. The main factors to be taken into account appear to be: mobility of the insects during exposure, as influenced by insect species and exposure conditions; inherent toxicity of the dieldrin/resin particles; and the average relative humidity inside the experimental huts. The sorption phenomenon can be demonstrated in the field, but in view of the humidity conditions it does not seem likely that it will interfere seriously with practical mosquito control. A potential critical condition might be prevalent only in areas where the presence of sorptive mud is coupled with long periods of low humidity inside the huts, but further experimental data are necessary to confirm this. PMID:13780061

  15. Waves on the surface of a magnetic fluid layer in a traveling magnetic field[75.50.Mm; 43.35.Pt; Magnetic fluid film; Surface waves; Traveling magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, K.; Zeidis, I.; Naletova, V.A. E-mail: naletova@imec.msu.ru; Turkov, V.A

    2004-01-01

    The plane flow of a layer of incompressible viscous magnetic fluid with constant magnetic permeability under the action of a traveling magnetic field is analyzed. The strength of the magnetic field producing a sinusoidal traveling small-amplitude wave on the surface of a magnetic fluid is found. This flow can be used in designing mobile robots.

  16. A Field Guide to Competency-Based Adult Education, or How Do You Know Its a CBAE? (With Apologies to Roger Tory Peterson).

    Science.gov (United States)

    Nickse, Ruth S.

    Two definitions most often used by adult educators to describe competency-based adult education (CBAE) are one posited by Spady (1977) and another formulated by state adult basic education directors. The first, a "prescriptive-consensual" definition, describes conditions of a phenomenon (CBAE) and relies on the experience of acknowledged experts,…

  17. Staircase and saw-tooth field emission steps from nanopatterned n-type GaSb surfaces

    CERN Document Server

    Kildemo, M.; Le Roy, S.; Søndergård, E.

    2009-01-01

    High resolution field emission experiments from nanopatterned GaSb surfaces consisting of densely packed nanocones prepared by low ion-beam-energy sputtering are presented. Both uncovered and metal-covered nanopatterned surfaces were studied. Surprisingly, the field emission takes place by regular steps in the field emitted current. Depending on the field, the steps are either regular, flat, plateaus, or saw-tooth shaped. To the author’s knowledge, this is the first time that such results have been reported. Each discrete jump in the field emission may be understood in terms of resonant tunneling through an extended surface space charge region in an n-type, high aspect ratio, single GaSb nanocone. The staircase shape may be understood from the spatial distribution of the aspect ratio of the cones.

  18. Instrumental system for the quick relief of surface temperatures in fumaroles fields and steam heated soils

    Science.gov (United States)

    Diliberto, Iole; Cappuzzo, Santo; Inguaggiato, Salvatore; Cosenza, Paolo

    2014-05-01

    We present an instrumental system to measure and to map the space variation of the surface temperature in volcanic fields. The system is called Pirogips, its essential components are a Pyrometer and a Global Position System but also other devices useful to obtain a good performance of the operating system have been included. In the framework of investigation to define and interpret volcanic scenarios, the long-term monitoring of gas geochemistry can improve the resolution of the scientific approaches by other specific disciplines. Indeed the fluid phase is released on a continuous mode from any natural system which produces energy in excess respect to its geological boundaries. This is the case of seismic or magmatic active areas where the long-term geochemical monitoring is able to highlight, and to follow in real time, changes in the rate of energy release and/or in the feeding sources of fluids, thus contributing to define the actual behaviour of the investigated systems (e.g. Paonita el al., 2013; 2002; Taran, 2011; Zettwood and Tazieff, 1973). The demand of pirogips starts from the personal experience in long term monitoring of gas geochemistry (e.g. Diliberto I.S, 2013; 2011; et al., 2002; Inguaggiato et al.,2012a, 2012b). Both space and time variation of surface temperature highlight change of energy and mass release from the deep active system, they reveal the upraise of deep and hot fluid and can be easily detected. Moreover a detailed map of surface temperature can be very useful for establishing a network of sampling points or installing a new site for geochemical monitoring. Water is commonly the main component of magmatic or hydrothermal fluid release and it can reach the ground surface in the form of steam, as in the high and low temperature fumaroles fields, or it can even condense just below the ground surface. In this second case the water disperses in pores or circulates in the permeable layers while the un-condensable gases reach the surface (e

  19. Satellite SAR observation of the sea surface wind field caused by rain cells

    Institute of Scientific and Technical Information of China (English)

    YE Xiaomin; LIN Mingsen; YUAN Xinzhe; DING Jing; XIE Xuetong; ZHANG Yi; XU Ying

    2016-01-01

    Rain cells or convective rain, the dominant form of rain in the tropics and subtropics, can be easy detected by satellite Synthetic Aperture Radar (SAR) images with high horizontal resolution. The footprints of rain cells on SAR images are caused by the scattering and attenuation of the rain drops, as well as the downward airflow. In this study, we extract sea surface wind field and its structure caused by rain cells by using a RADARSAT-2 SAR image with a spatial resolution of 100 m for case study. We extract the sea surface wind speeds from SAR image by using CMOD4 geophysical model function with outside wind directions of NCEP final operational global analysis data, Advance Scatterometer (ASCAT) onboard European MetOp-A satellite and microwave scatterometer onboard Chinese HY-2 satellite, respectively. The root-mean-square errors (RMSE) of these SAR wind speeds, validated against NCEP, ASCAT and HY-2, are 1.48 m/s, 1.64 m/s and 2.14 m/s, respectively. Circular signature patterns with brighter on one side and darker on the opposite side on SAR image are interpreted as the sea surface wind speed (or sea surface roughness) variety caused by downdraft associated with rain cells. The wind speeds taken from the transect profile which superposes to the wind ambient vectors and goes through the center of the circular footprint of rain cell can be fitted as a cosine or sine curve in high linear correlation with the values of no less than 0.80. The background wind speed, the wind speed caused by rain cell and the diameter of footprint of the rain cell with kilometers or tens of kilometers can be acquired by fitting curve. Eight cases interpreted and analyzed in this study all show the same conclusion.

  20. Field Investigation of a New Recharge Approach for ASR Projects in Near-Surface Aquifers.

    Science.gov (United States)

    Liu, Gaisheng; Knobbe, Steven; Reboulet, Edward C; Whittemore, Donald O; Händel, Falk; Butler, James J

    2016-05-01

    Aquifer storage and recovery (ASR) is the artificial recharge and temporary storage of water in an aquifer when water is abundant, and recovery of all or a portion of that water when it is needed. One key limiting factor that still hinders the effectiveness of ASR is the high costs of constructing, maintaining, and operating the artificial recharge systems. Here we investigate a new recharge method for ASR in near-surface unconsolidated aquifers that uses small-diameter, low-cost wells installed with direct-push (DP) technology. The effectiveness of a DP well for ASR recharge is compared with that of a surface infiltration basin at a field site in north-central Kansas. The performance of the surface basin was poor at the site due to the presence of a shallow continuous clay layer, identified with DP profiling methods, that constrained the downward movement of infiltrated water and significantly reduced the basin recharge capacity. The DP well penetrated through this clay layer and was able to recharge water by gravity alone at a much higher rate. Most importantly, the costs of the DP well, including both the construction and land costs, were only a small fraction of those for the infiltration basin. This low-cost approach could significantly expand the applicability of ASR as a water resources management tool to entities with limited fiscal resources, such as many small municipalities and rural communities. The results of this investigation demonstrate the great potential of DP wells as a new recharge option for ASR projects in near-surface unconsolidated aquifers.

  1. Near-Field Deformation Associated with the M6.0 South Napa Earthquake Surface Rupture

    Science.gov (United States)

    Brooks, B. A.; Hudnut, K. W.; Glennie, C. L.; Ericksen, T.

    2014-12-01

    We characterize near-field deformation associated with the surface rupture of the M6.0 South Napa earthquake from repeat mobile laser scanning (MLS) surveys. Starting the day after the main shock, we operated, sometime simultaneously, short (~75 m range) and medium (~400m range) range laser scanners on a truck or backpack. We scanned most of the length of the principal and secondary surface ruptures at speeds less than 10 km/hr. Scanning occurred primarily in either suburban subdivisions or cultivated vineyards of varying varietals with differing leaf patterns and stages of maturity. Spot-spacing is dense enough (100s of points/m^2) to permit creation of 10-25cm digital elevation models of much of the surface rupture. Scanned features of the right-lateral rupture include classic mole tracks through a variety of soil types, en echelon cracks, offset vine rows, and myriad types of pavement-related deformation. We estimate coseismic surface displacements ranging from 5 to 45 cm by examining offset cultural features and vine rows and by comparing the MLS data with preexisting airborne laser scans from 2003 using point-cloud and solid-modeling methodologies. Additionally, we conducted repeat MLS scans to measure the magnitude and spatial variation of fault afterslip, exceeding 20 cm in some places, particularly in the southern portion of the rupture zone. We anticipate these data sets, in conjunction with independently collected ground-based alinement arrays and space-based geodetic data will contribute significant insight into topics of current debate including assessing the most appropriate material models for shallow fault zones and how shallow and deeper fault slip relate to one another.

  2. Competitive adsorption and ordered packing of counterions near highly charged surfaces: From mean-field theory to Monte Carlo simulations.

    Science.gov (United States)

    Wen, Jiayi; Zhou, Shenggao; Xu, Zhenli; Li, Bo

    2012-04-01

    Competitive adsorption of counterions of multiple species to charged surfaces is studied by a size-effect-included mean-field theory and Monte Carlo (MC) simulations. The mean-field electrostatic free-energy functional of ionic concentrations, constrained by Poisson's equation, is numerically minimized by an augmented Lagrangian multiplier method. Unrestricted primitive models and canonical ensemble MC simulations with the Metropolis criterion are used to predict the ionic distributions around a charged surface. It is found that, for a low surface charge density, the adsorption of ions with a higher valence is preferable, agreeing with existing studies. For a highly charged surface, both the mean-field theory and the MC simulations demonstrate that the counterions bind tightly around the charged surface, resulting in a stratification of counterions of different species. The competition between mixed entropy and electrostatic energetics leads to a compromise that the ionic species with a higher valence-to-volume ratio has a larger probability to form the first layer of stratification. In particular, the MC simulations confirm the crucial role of ionic valence-to-volume ratios in the competitive adsorption to charged surfaces that had been previously predicted by the mean-field theory. The charge inversion for ionic systems with salt is predicted by the MC simulations but not by the mean-field theory. This work provides a better understanding of competitive adsorption of counterions to charged surfaces and calls for further studies on the ionic size effect with application to large-scale biomolecular modeling.

  3. Field limit and nano-scale surface topography of superconducting radio-frequency cavity made of extreme type II superconductor

    CERN Document Server

    Kubo, Takayuki

    2014-01-01

    The field limit of superconducting radio-frequency cavity made of type II superconductor with a large Ginzburg-Landau parameter is studied with taking effects of nano-scale surface topography into account. If the surface is ideally flat, the field limit is imposed by the superheating field. On the surface of cavity, however, nano-defects almost continuously distribute and suppress the superheating field everywhere. The field limit is imposed by an effective superheating field given by the product of the superheating field for ideal flat surface and a suppression factor that contains effects of nano-defects. A nano-defect is modeled by a triangular groove with a depth smaller than the penetration depth. An analytical formula for the suppression factor of bulk and multilayer superconductors are derived in the framework of the London theory. As an immediate application, the suppression factor of the dirty Nb processed by the electropolishing is evaluated by using results of surface topographic study. The estimat...

  4. Computer simulations of phase field drops on super-hydrophobic surfaces

    Science.gov (United States)

    Fedeli, Livio

    2017-09-01

    We present a novel quasi-Newton continuation procedure that efficiently solves the system of nonlinear equations arising from the discretization of a phase field model for wetting phenomena. We perform a comparative numerical analysis that shows the improved speed of convergence gained with respect to other numerical schemes. Moreover, we discuss the conditions that, on a theoretical level, guarantee the convergence of this method. At each iterative step, a suitable continuation procedure develops and passes to the nonlinear solver an accurate initial guess. Discretization performs through cell-centered finite differences. The resulting system of equations is solved on a composite grid that uses dynamic mesh refinement and multi-grid techniques. The final code achieves three-dimensional, realistic computer experiments comparable to those produced in laboratory settings. This code offers not only new insights into the phenomenology of super-hydrophobicity, but also serves as a reliable predictive tool for the study of hydrophobic surfaces.

  5. Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Khaing Oo, Maung Kyaw; Han, Yun; Kanka, Jiri; Sukhishvili, Svetlana; Du, Henry

    2010-02-15

    We report numerical simulation and hyperspectral Raman imaging of three index-guiding solid-core photonic crystal fibers (PCFs) of different air-cladding microstructures to assess their respective potential for evanescent-field Raman spectroscopy, with an emphasis on achieving surface-enhanced Raman scattering (SERS) over the entire fiber length. Suspended-core PCF consisting of a silica core surrounded by three large air channels conjoined by a thin silica web is the most robust of the three SERS-active PCFs, with a demonstrated detection sensitivity of 1x10(-10) M R6G in an aqueous solution of only approximately 7.3 microL sampling volume.

  6. Surface Plasmon Resonance and Field Enhancement of Au/Ag Alloyed Hollow Nanoshells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Li; YU Xue-Feng; FU Xiao-Feng; HAO Zhong-Hua; LI Kai-Yang

    2008-01-01

    We investigate the nanostructure,surface plasmon resonance (SPR) absorption and nonlinear enhancement of Au/Ag alloyed hollow nanoshells prepared by the replacement reaction of Ag nanoparticles in a HAuCl4 aqueous solution.As the volume of HA uCl4 increases from 0 mL to 0.5 mL,the SPR band of the Au/Ag alloyed nanoshells is tuned from 430nm to 780nm,and the third-order nonlinear optical susceptibility is enhanced nearly by an order of magnitude,which indicates a large enhancement of local field in the Au/Ag alloyed hollow nanoshells with hole defects.

  7. Magnetic field analysis in a suspension of gyrotactic microorganisms and nanoparticles over a stretching surface

    Energy Technology Data Exchange (ETDEWEB)

    Akbar, Noreen Sher, E-mail: noreensher@yahoo.com [DBS& H, CEME, National University of Sciences and Technology, Islamabad (Pakistan); Khan, Zafar Hayat [Department of Mathematics, University of Malakand, Dir (Lower), Khyber Pakhtunkhwa (Pakistan)

    2016-07-15

    The combine effects of magnetic field bioconvection, Brownian motion and thermophoresis on a free convection nanofluid flow over a stretching sheet containing gyrotactic microorganisms are investigated. The self-similar Buongiorno model is analyzed first time for stretching sheet numerically. The present results are compared with available data and are found in an excellent agreement. Pertinent results are presented graphically and discussed quantitatively with respect to variation in bioconvection parameters. - Highlights: • Two dimensional MHD flow in a suspension of gyrotactic microorganisms and nanoparticles over a stretching surface is discussed first paper in literature. • Governed problem for proposed model solved numerically using fourth-order Runge–Kutta–Fehlberg method. • Good agreement in comparison with previous studies. • Tabulated physical quantities and graphics of all flow profiles. • Graphics of reduced skin friction coefficient, when the different flow parameters vary.

  8. Numerical Analysis of Novel Back Surface Field for High Efficiency Ultrathin CdTe Solar Cells

    OpenAIRE

    Matin, M.A.; Tomal, M. U.; A. M. Robin; N. Amin

    2013-01-01

    This paper numerically explores the possibility of high efficiency, ultrathin, and stable CdTe cells with different back surface field (BSF) using well accepted simulator AMPS-1D (analysis of microelectronics and photonic structures). A modified structure of CdTe based PV cell SnO2/Zn2SnO4/CdS/CdTe/BSF/BC has been proposed over reference structure SnO2/Zn2SnO4/CdS/CdTe/Cu. Both higher bandgap materials like ZnTe and Cu2Te and low bandgap materials like As2Te3 and Sb2Te3 have been used as BSF ...

  9. Retrieval of the polarized submarine light field from above surface measurements using polarimetric imaging

    Science.gov (United States)

    Foster, Robert; McGilloway, Anna; Ottaviani, Matteo; Carrizo, Carlos; Gilerson, Alex; El-Habashi, Ahmed; Ahmed, Sam

    2016-05-01

    Knowledge of the underwater light field is fundamental to determining the health of the world's oceans and coastal regions. For decades, traditional remote sensing retrieval methods that rely solely on the spectral intensity of the water-leaving light have provided indicators of marine ecosystem health. As the demand for retrieval accuracy rises, use of the polarized nature of light as an additional remote sensing tool is becoming necessary. For two weeks in December 2015, the NOAA NPP-VIIRS Calibration/Validation cruise continuously observed the polarized radiance of the ocean and the sky using a HyperSAS-POL system. Additionally, a full Stokes imaging polarimetric camera was used to acquire images and videos of the sea surface and sky during stations at coincident angles with HyperSAS-POL. Polarized remote sensing reflectance is computed for all viewing elevations present in the polarization images, and the results are compared to vector radiative transfer calculations.

  10. Biodegradation of marine surface floating crude oil in a large-scale field simulated experiment.

    Science.gov (United States)

    Bao, Mutai; Sun, Peiyan; Yang, Xiaofei; Wang, Xinping; Wang, Lina; Cao, Lixin; Li, Fujuan

    2014-08-01

    Biodegradation of marine surface floating crude oil with hydrocarbon degrading bacteria, rhamnolipid biosurfactants, and nutrients was carried out by a large-scale field simulated experiment in this paper. After a 103 day experiment, for n-alkanes, the maximum biodegradation rate reached 71% and the results showed hydrocarbon degrading bacteria, rhamnolipid biosurfactants, and nutrients have a comprehensive effect. It also showed that rhamnolipid biosurfactants could shorten the biodegradation time through an emulsifying function; the nutrients could greatly increase the biodegradation rate by promoting HDB production. For PAHs, the chrysene series had higher weathering resistance. For the same series, the weathering resistance ability is C1- biodegradation was found for different n-alkanes in two pools which only had added rhamnolipid biosurfactants or nutrients, respectively. Except for C14, C15 and C16 sesquiterpanes, most of the steranes and terpanes had high antibiodegradability.

  11. Defining Tobacco Regulatory Science Competencies.

    Science.gov (United States)

    Wipfli, Heather L; Berman, Micah; Hanson, Kacey; Kelder, Steven; Solis, Amy; Villanti, Andrea C; Ribeiro, Carla M P; Meissner, Helen I; Anderson, Roger

    2017-02-01

    In 2013, the National Institutes of Health and the Food and Drug Administration funded a network of 14 Tobacco Centers of Regulatory Science (TCORS) with a mission that included research and training. A cross-TCORS Panel was established to define tobacco regulatory science (TRS) competencies to help harmonize and guide their emerging educational programs. The purpose of this paper is to describe the Panel's work to develop core TRS domains and competencies. The Panel developed the list of domains and competencies using a semistructured Delphi method divided into four phases occurring between November 2013 and August 2015. The final proposed list included a total of 51 competencies across six core domains and 28 competencies across five specialized domains. There is a need for continued discussion to establish the utility of the proposed set of competencies for emerging TRS curricula and to identify the best strategies for incorporating these competencies into TRS training programs. Given the field's broad multidisciplinary nature, further experience is needed to refine the core domains that should be covered in TRS training programs versus knowledge obtained in more specialized programs. Regulatory science to inform the regulation of tobacco products is an emerging field. The paper provides an initial list of core and specialized domains and competencies to be used in developing curricula for new and emerging training programs aimed at preparing a new cohort of scientists to conduct critical TRS research. © The Author 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Surface-enhanced Raman scattering: effective optical constants for electric field modelling of nanostructured Ag films

    Science.gov (United States)

    Perera, M. Nilusha M. N.; Schmidt, Daniel; Gibbs, W. E. Keith; Juodkazis, Saulius; Stoddart, Paul R.

    2016-09-01

    Surface-enhanced Raman scattering (SERS) is drawing increasing interest in fields such as chemical and biomolecular sensing, nanoscale plasmonic engineering and surface science. In addition to the electromagnetic and chemical enhancements in SERS, several studies have reported a "back-side" enhancement when nanostructures are excited through a transparent base rather than directly through air. This additional enhancement has been attributed to a local increase in the electric field for propagation from high to low refractive index media. In this study, Mueller matrix ellipsometry was used to derive the effective optical constants of Ag nanostructures fabricated by thermal evaporation at oblique angles. The results confirm that the effective optical constants of the nanostructured Ag film depart substantially from the bulk properties. Detailed analysis suggests that the optical constants of the nano-island Ag structures exhibit uniaxial optical properties with the optical axis inclined from the substrate normal towards the deposition direction of the vapour flux. The substrates were functionalized with thiophenol and used to measure the wavelength dependence of the additional SERS signal. Further, a model based on the Fresnel equations was developed, using the Ag film optical constants and thickness as determined by ellipsometry. Both experimental data and the model show a significant additional enhancement in the back-side SERS, blue shifted from the plasmon resonance of the nanostructures. This information will be useful for a range of applications where it is necessary to understand the effective optical behaviour of thin films and in designing miniaturized optical fibre sensors for remote sensing applications.

  13. Effect of Surface Hydrogen Coverage on Field Emission Properties of DiamondFilms Investigated by High-Resolution Electron Energy Loss Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-Guang; XIONG Yan-Yun; LIN Zhang-Da; FENG Ke-An; GU Chang-Zhi; JIN Zeng-Sun

    2000-01-01

    The influence of surface hydrogen coverage on the electron field emission of diamond films was investigated by high-resolution electron energy loss spectroscopy. It was found that hydrogen plasma treatment increased the surface hydrogen coverage while annealing caused hydrogen desorption and induced surface reconstruction. Field electron emission measurements manifested that increase of surface hydrogen coverage could improve the field emission properties, due to the decrease of electron affinity of the diamond .surface hy hvdrogen adsorption.

  14. Local changes of work function near rough features on Cu surfaces operated under high external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Djurabekova, Flyura, E-mail: flyura.djurabekova@helsinki.fi; Ruzibaev, Avaz; Parviainen, Stefan [Helsinki Institute of Physics and Department of Physics, University of Helsinki, P.O. Box 43, FI-00014 Helsinki (Finland); Holmström, Eero [Department of Physics, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki (Finland); Department of Earth Sciences, Faculty of Maths and Physical Sciences, UCL Earth Sciences, Gower Street, London WC1E 6BT (United Kingdom); Hakala, Mikko [Department of Physics, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki (Finland)

    2013-12-28

    Metal surfaces operated under high electric fields produce sparks even if they are held in ultra high vacuum. In spite of extensive research on the topic of vacuum arcs, the mystery of vacuum arc origin still remains unresolved. The indications that the sparking rates depend on the material motivate the research on surface response to extremely high external electric fields. In this work by means of density-functional theory calculations we analyze the redistribution of electron density on (100) Cu surfaces due to self-adatoms and in presence of high electric fields from −1 V/nm up to −2 V/nm (−1 to −2 GV/m, respectively). We also calculate the partial charge induced by the external field on a single adatom and a cluster of two adatoms in order to obtain reliable information on charge redistribution on surface atoms, which can serve as a benchmarking quantity for the assessment of the electric field effects on metal surfaces by means of molecular dynamics simulations. Furthermore, we investigate the modifications of work function around rough surface features, such as step edges and self-adatoms.

  15. Fifth-order field aberration coefficients for an optical surface of rotational symmetry.

    Science.gov (United States)

    Gaj, M

    1971-07-01

    The approximate formulas for the principal ray parameters, such as directional cosines and heights of incidence, as well as for the paraxial sagittal quantities h(s) and H (s) have been expressed by paraxial quantities and Seidel aberrations to fifth-order accuracy. On the basis of these relations an expression for the sagittal radius of curvature r(s), (for a given y ) has been obtained. These quantities are used to derive fifth-order field aberration coefficients for arbitrary surfaces of rotational symmetry by using the wave aberration formula for sagittal focus {M. Gaj, Opt. Spectrosk. 21, 373 (1966) [Opt. Spectrosc. 21, 209 (1966)]}. The resulting expression has four terms. The first one depends only on asphericity and tends to equal zero when the surface becomes spherical. The second is a disturbance term and disappears in the Seidel region. The third and fourth terms may be treated as a generalization of the Petzval curvature and of the Seidel astigmatism, respectively. The limits of the terms, when h tends to zero, has been examined.

  16. Quantitative assessments of residual stress fields at the surface of alumina hip joints.

    Science.gov (United States)

    Pezzotti, Giuseppe; Munisso, Maria Chiara; Lessnau, Kristina; Zhu, Wenliang

    2010-11-01

    In-depth and in-plane response functions of photo- and electro-stimulated probes have been modeled and quantitatively evaluated in order to assess their suitability to detect the highly graded residual stress fields generated at the surface of alumina hip joints. Optical calibrations revealed large differences in probe size, which strongly affected the detected magnitude of residual stress. A comparison between the responses of Raman and fluorescence probes in polycrystalline alumina showed that the depth of those probes spread to an extent in the order of the tens of microns even with using a confocal probe configuration. On the other hand, the electro-stimulated luminescence emitted by oxygen vacancy sites (F(+) center) in the alumina lattice represented the most suitable choice for confining to a shallow volume the stress probe. This latter probe enabled us to reduce the measurement depth to the order of the tens of nanometers. We show maps of surface residual stress as collected on both main-wear and nonwear zones of an alumina femoral head. A comparison among stress maps taken at exactly the same location, but employing different probes, revealed averaging effects on the stress magnitude detected with photo-stimulated probes, while proving the superior spatial resolution of the electron probe.

  17. High capacitance organic field-effect transistors with modified gate insulator surface

    Science.gov (United States)

    Majewski, L. A.; Schroeder, R.; Grell, M.; Glarvey, P. A.; Turner, M. L.

    2004-11-01

    In this paper, we report on flexible, high capacitance, pentacene, and regioregular poly(3-hexylthiophene) (rr-P3HT) organic field-effect transistors fabricated on metallized Mylar films. The gate insulator, Al2O3, was prepared by means of anodization. We show that covering the anodized gate insulator with an octadecyltrichlorosilane self-assembled monolayer or apoly(α-methylstyrene) capping layer has the same effect on carrier mobility as for thermally grown silicon oxide. In addition, temperature-dependent measurements of mobility were performed on transistors fabricated with and without modification of the gate dielectric. In the case of both the pentacene and the rr-P3HT transistors, the μ(T ) behavior shows that the cause of the mobility enhancement through surface modification is not a reduction in the level of energetic disorder (σ in Bässler's model), as in the case of the fully amorphous organic semiconductor poly(triarylamine) [Veres et al., Adv. Funct. Mater. 13, 199 (2003)]. It appears that the surface modification improves mobility by changing the morphology of the semiconducting films.

  18. Front surface field formation and diffusion profiles for industrial interdigitated back contact solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cascant, M.; Morecroft, D.; Boulif, K.; Vauche, L.; Yuste, H.; Castano, F.J. [Siliken, High efficiency solar cell pilot line, R and D department, Ciudad Politecnica de la Innovacion- UPV Camino de Vera 14, 46022 Valencia, (Spain); Bende, E.E. [ECN Solar Energy, Petten (Netherlands)

    2012-09-15

    Optimization of the Front Surface Field (FSF) for IBC cells is important for passivation, lowering series resistance and reducing UV light degradation. This work presents results for optimizing the FSF diffusion from an industrial perspective, focusing on optimizing the process flow to achieve excellent FSF performance, whilst at the same time reducing the number of process steps. The ideal FSF profile is a compromise since a lightly doped deep diffusion reduces recombination losses close the cell surface where the light is captured, whilst increased doping reduces series resistance. This work investigates diffusing the FSF (1) at the beginning, (2) in the middle and (3) towards the end of the IBC process flow. The advantage of the first option is that the diffusion depth can be increased by subsequent thermal steps. However a diffusion barrier is required to protect the FSF throughout the subsequent processing, which increases the number of process steps and results in increased costs. By placing the FSF diffusion later in the process flow it is possible to simplify the process reducing the number of steps. Experimental results show excellent FSF diffusion passivation performance over 156mm, with lifetime values of over 500 {mu}s. Simulations confirm that high current generation can be achieved with a short circuit current of over 40 mA cm-{sup 2}.

  19. Flat Central Density Profile and Constant DM Surface Density in Galaxies from Scalar Field Dark Matter

    CERN Document Server

    Robles, Victor H

    2012-01-01

    The scalar field dark matter (SFDM) model proposes that galaxies form by condensation of a scalar field (SF) very early in the universe forming Bose-Einstein Condensates (BEC) drops, i.e., in this model haloes of galaxies are gigantic drops of SF. Here big structures form like in the LCDM model, by hierarchy, thus all the predictions of the LCDM model at big scales are reproduced by SFDM. This model predicts that all galaxies must be very similar and exist for bigger redshifts than in the LCDM model. In this work we show that BEC dark matter haloes fit high-resolution rotation curves of a sample of thirteen low surface brightness galaxies. We compare our fits to those obtained using a Navarro-Frenk-White and Pseudo-Isothermal (PI) profiles and found a better agreement with the SFDM and PI profiles. The mean value of the logarithmic inner density slopes is -0.27 +/- 0.18. As a second result we find a natural way to define the core radius with the advantage of being model-independent. Using this new definition ...

  20. Magnetic field controlled single crystal growth and surface modification of titanium alloys exposed for biocompatibility

    Science.gov (United States)

    Hermann, Regina; Uhlemann, Margitta; Wendrock, Horst; Gerbeth, Gunter; Büchner, Bernd

    2011-03-01

    The aim of this work is growth and characterisation of Ti55Nb45 (wt%) single crystals by floating-zone single crystal growth of intermetallic compounds using two-phase radio-frequency (RF) electromagnetic heating. Thereby, the process and, in particular, the flow field in the molten zone is influenced by additional magnetic fields. The growth of massive intermetallic single crystals is very often unsuccessful due to an unfavourable solid-liquid interface geometry enclosing concave fringes. It is generally known that the crystallization process stability is enhanced if the crystallization interface is convex. For this, a tailored magnetic two-phase stirrer system has been developed, which enables a controlled influence on the melt ranging from intensive inwards to outwards flows. Since Ti is favourably light, strong and biocompatible, it is one of the few materials that naturally match the requirements for implantation in the human body. Therefore, the magnetic system was applied to crystal growth of Ti alloys. The grown crystals were oriented and cut to cubes with the desired crystallographic orientations [1 0 0] and [1 0 1] normally on a plane. The electron backscatter diffraction (EBSD) technique was applied to clearly determine crystal orientation and to localize grain boundaries. The formation of oxidic nanotubes on Ti surfaces in dependence of the grain orientation was investigated, performed electrochemically by anodic oxidation from fluoride containing electrolyte.

  1. Radiative correction to the Casimir energy for massive scalar field on a spherical surface

    Science.gov (United States)

    Valuyan, M. A.

    2017-08-01

    In this paper, the first-order radiative correction to the Casimir energy for a massive scalar field in the ϕ4 theory on a spherical surface with S2 topology was calculated. In common methods for calculating the radiative correction to the Casimir energy, the counter-terms related to free theory are used. However, in this study, by using a systematic perturbation expansion, the obtained counter-terms in renormalization program were automatically position-dependent. We maintained that this dependency was permitted, reflecting the effects of the boundary conditions imposed or background space in the problem. Additionally, along with the renormalization program, a supplementary regularization technique that we named Box Subtraction Scheme (BSS) was performed. This scheme presents a useful method for the regularization of divergences, providing a situation that the infinities would be removed spontaneously without any ambiguity. Analysis of the necessary limits of the obtained results for the Casimir energy of the massive and massless scalar field confirmed the appropriate and reasonable consistency of the answers.

  2. The Magnetic Fields at the Surface of Active Single G-K Giants

    CERN Document Server

    Aurière, M; Charbonnel, C; Wade, G A; Tsvetkova, S; Petit, P; Dintrans, B; Drake, N A; Decressin, T; Lagarde, N; Donati, J -F; Roudier, T; Lignières, F; Schröder, K -P; Landstreet, J D; Lèbre, A; Weiss, W W; Zahn, J-P

    2014-01-01

    We investigate the magnetic field at the surface of 48 red giants selected as promising for detection of Stokes V Zeeman signatures in their spectral lines. We use the spectropolarimeters Narval and ESPaDOnS to detect circular polarization within the photospheric absorption lines of our targets and use the least-squares deconvolution (LSD) method. We also measure the classical S-index activity indicator, and the stellar radial velocity. To infer the evolutionary status of our giants and to interpret our results, we use state-of-the-art stellar evolutionary models with predictions of convective turnover times. We unambiguously detect magnetic fields via Zeeman signatures in 29 of the 48 red giants in our sample. Zeeman signatures are found in all but one of the 24 red giants exhibiting signs of activity, as well as 6 out of 17 bright giant stars.The majority of the magnetically detected giants are either in the first dredge up phase or at the beginning of core He burning, i.e. phases when the convective turnov...

  3. Nano optical propeller based on localized field intensity enhancement of surface plasmons

    Science.gov (United States)

    Jiao, Jiao; Lin, En; Liang, Gaofeng; Zhao, Qing

    2017-05-01

    There is acting force that light has on any substances, but the force is too weak to be sensed. While the momentum transfer between light and substance can be greatly improved within nanoscales. Scientists have successfully captured and transported micro-particles by using focusing light in liquid state, which is called optical tweezers. However, this approach needs to be processed with removable powerful focal source and meanwhile in a state of liquid. These requirements seriously restrict its development from optical tweezers to optical propeller. This paper proposes a new method: to produce localized surface plasmons enhancement by asymmetric nanostructures so that a gradient optical field whose intensity is 70 times higher than that of incident light is formed on a nano orbit with a length of 200nm. The strong gradient force makes it possible for the small particles laid on nanostructure to get strong momentum at a certain direction without strong light sources, which breaks through the near field gravitation to move. Meanwhile, the nanostructure can be expanded into multistage accelerating structure, and expanded into an array, thus providing a plane thrust and forming an optical propeller in real sense. At last, electron beam lithography (EBL) is employed to prepare structures with only tens of nanometers in size. A series of better preparation technics are concluded to get samples with good shapes, which provides technical guarantee for the application of nano optical propeller in the future.

  4. Full Field X-Ray Fluorescence Imaging Using Micro Pore Optics for Planetary Surface Exploration

    Science.gov (United States)

    Sarrazin, P.; Blake, D. F.; Gailhanou, M.; Walter, P.; Schyns, E.; Marchis, F.; Thompson, K.; Bristow, T.

    2016-01-01

    Many planetary surface processes leave evidence as small features in the sub-millimetre scale. Current planetary X-ray fluorescence spectrometers lack the spatial resolution to analyse such small features as they only provide global analyses of areas greater than 100 mm(exp 2). A micro-XRF spectrometer will be deployed on the NASA Mars 2020 rover to analyse spots as small as 120m. When using its line-scanning capacity combined to perpendicular scanning by the rover arm, elemental maps can be generated. We present a new instrument that provides full-field XRF imaging, alleviating the need for precise positioning and scanning mechanisms. The Mapping X-ray Fluorescence Spectrometer - "Map-X" - will allow elemental imaging with approximately 100µm spatial resolution and simultaneously provide elemental chemistry at the scale where many relict physical, chemical and biological features can be imaged in ancient rocks. The arm-mounted Map-X instrument is placed directly on the surface of an object and held in a fixed position during measurements. A 25x25 mm(exp 2) surface area is uniformly illuminated with X-rays or alpha-particles and gamma-rays. A novel Micro Pore Optic focusses a fraction of the emitted X-ray fluorescence onto a CCD operated at a few frames per second. On board processing allows measuring the energy and coordinates of each X-ray photon collected. Large sets of frames are reduced into 2d histograms used to compute higher level data products such as elemental maps and XRF spectra from selected regions of interest. XRF spectra are processed on the ground to further determine quantitative elemental compositions. The instrument development will be presented with an emphasis on the characterization and modelling of the X-ray focussing Micro Pore Optic. An outlook on possible alternative XRF imaging applications will be discussed.

  5. 2010 August 1-2 sympathetic eruptions: I. Magnetic topology of the source-surface background field

    CERN Document Server

    Titov, V S; Török, T; Linker, J A; Panasenco, O

    2012-01-01

    A sequence of apparently coupled eruptions was observed on 2010 August 1-2 by SDO and STEREO. The eruptions were closely synchronized with one another, even though some of them occurred at widely separated locations. In an attempt to identify a plausible reason for such synchronization, we study the large-scale structure of the background magnetic configuration. The coronal field was computed from the photospheric magnetic field observed at the appropriate time period by using the potential field source-surface model. We investigate the resulting field structure by analyzing the so-called squashing factor calculated at the photospheric and source-surface boundaries, as well as at different coronal cross-sections. Using this information as a guide, we determine the underlying structural skeleton of the configuration, including separatrix and quasi-separatrix surfaces. Our analysis reveals, in particular, several pseudo-streamers in the regions where the eruptions occurred. Of special interest to us are the mag...

  6. Very low surface recombination velocity in n-type c-Si using extrinsic field effect passivation

    Science.gov (United States)

    Bonilla, Ruy S.; Woodcock, Frederick; Wilshaw, Peter R.

    2014-08-01

    In this article, field-effect surface passivation is characterised as either intrinsic or extrinsic, depending on the origin of the charges present in passivation dielectric layers. The surface recombination velocity of float zone, 1 Ω cm, n-type silicon was reduced to 0.15 cm/s, the lowest ever observed for a passivating double layer consisting of thermally grown silicon dioxide and plasma enhanced chemical vapour deposited silicon nitride. This result was obtained by enhancing the intrinsic chemical and field-effect passivation of the dielectric layers with uniform, extrinsic field-effect passivation induced by corona discharge. The position and stability of charges, both intrinsic and extrinsic, were characterised and their passivation effect was seen stable for two months with surface recombination velocity field-effect passivation provided a further decrease by a factor of 3.

  7. Conceptualization and Pilot Testing of a Core Competency-Based Training Workshop in Suicide Risk Assessment and Management: Notes From the Field.

    Science.gov (United States)

    Cramer, Robert J; Bryson, Claire N; Eichorst, Morgam K; Keyes, Lee N; Ridge, Brittany E

    2017-03-01

    As professional psychology training programs and continuing education have moved toward competency based approaches, it has become equally important to develop uniform, evidence-based approaches for suicide risk assessment and management. The present article presents a workshop curriculum based on established core competencies in suicide risk assessment and management. Drawing on theories suicide risk formation, the workshop features an integration of didactic, process, and experiential components. We present pilot data from 2 small group workshops (n = 17): 1 from a clinical psychology doctoral program and 1 from a university counseling center. Workshop participation yielded increases in (a) the ability to recognize appropriate clinician responses to suicidal client statements, (b) self-perceptions of general capacity to interface with suicidal patients and mastery of the 10 core competencies, (c) factual knowledge concerning suicide risk assessment and management, and (d) the self-rated ability to assess and manage a suicidal patient. We discuss statistical and generalizability limitations as well as implications for future modification, implementation, and provision of this training method. © 2016 Wiley Periodicals, Inc.

  8. Inferring three-dimensional surface displacement field by combining SAR interferometric phase and amplitude information of ascending and descending orbits

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Conventional Interferometric Synthetic Aperture Radar(InSAR) technology can only measure one-dimensional surface displacement(along the radar line-of-sight(LOS) direction).Here we presents a method to infer three-dimensional surface displacement field by combining SAR interferometric phase and amplitude information of ascending and descending orbits.The method is realized in three steps:(1) measuring surface displacements along the LOS directions of both ascending and descending orbits based on interferometric phases;(2) measuring surface displacements along the azimuth directions of both the ascending and descending orbits based on the SAR amplitude data;and(3) estimating the three-dimensional(3D) surface displacement field by combining the above four independent one-dimensional displacements using the method of least squares and Helmert variance component estimation.We apply the method to infer the 3D surface displacement field caused by the 2003 Bam,Iran,earthquake.The results reveal that in the northern part of Bam the ground surface experienced both subsidence and southwestward horizontal movement,while in the southern part uplift and southeastward horizontal movement occurred.The displacement field thus determined matches the location of the fault very well with the maximal displacements reaching 22,40,and 30 cm,respectively in the up,northing and easting directions.Finally,we compare the 3D displacement field with that simulated from the Okada model.The results demonstrate that the method presented here can be used to generate reliable and highly accurate 3D surface displacement fields.

  9. Derivation of characteristics of the relation between geomagnetic and geoelectric variation fields from the surface impedance for a two-layer earth

    National Research Council Canada - National Science Library

    Pirjola, Risto

    2010-01-01

    ... at the earth’s surface in the frequency domain. Studying the properties of the surface impedance enables conclusions about the corresponding relation between the surface electric and magnetic variation fields in the time domain...

  10. Hermitian and gauge-covariant Hamiltonians for a particle in a magnetic field on cylindrical and spherical surfaces

    Science.gov (United States)

    Shikakhwa, M. S.; Chair, N.

    2017-01-01

    We construct the Hermitian Schrödinger Hamiltonian of spin-less particles and the gauge-covariant Pauli Hamiltonian of spin one-half particles in a magnetic field, which are confined to cylindrical and spherical surfaces. The approach does not require the use of involved differential-geometrical methods and is intuitive and physical, relying on the general requirements of Hermicity and gauge-covariance. The surfaces are embedded in the full three-dimensional space and confinement to the surfaces is achieved by strong radial potentials. We identify the Hermitian and gauge-covariant (in the presence of a magnetic field) physical radial momentum in each case and set it to zero upon confinement to the surfaces. The resulting surface Hamiltonians are seen to be automatically Hermitian and gauge-covariant. The well-known geometrical kinetic energy also emerges naturally.

  11. Dynamic surface deformation of silicone elastomers for management of marine biofouling: laboratory and field studies using pneumatic actuation.

    Science.gov (United States)

    Shivapooja, Phanindhar; Wang, Qiming; Szott, Lizzy M; Orihuela, Beatriz; Rittschof, Daniel; Zhao, Xuanhe; López, Gabriel P

    2015-01-01

    Many strategies have been developed to improve the fouling release (FR) performance of silicone coatings. However, biofilms inevitably build on these surfaces over time. Previous studies have shown that intentional deformation of silicone elastomers can be employed to detach biofouling species. In this study, inspired by the methods used in soft-robotic systems, controlled deformation of silicone elastomers via pneumatic actuation was employed to detach adherent biofilms. Using programmed surface deformation, it was possible to release > 90% of biofilm from surfaces in both laboratory and field environments. A higher substratum strain was required to remove biofilms accumulated in the field environment as compared with laboratory-grown biofilms. Further, the study indicated that substratum modulus influences the strain needed to de-bond biofilms. Surface deformation-based approaches have potential for use in the management of biofouling in a number of technological areas, including in niche applications where pneumatic actuation of surface deformation is feasible.

  12. Pressure Evolution of a Field-Induced Fermi Surface Reconstruction and of the Neel Critical Field in CeIn3

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, C.; Purcell, K.M.; Graf, D.; Kano, M.; Bourg, J.; Palm, E.C.; Murphy, T.; McDonald, R.; Mielke, C.H.; Altarawneh, M.M.; Hu, R.; Ebihara, T.; Cooley, J.; Schlottmann, P.; Tozer, S.W.

    2009-06-01

    We report high-pressure skin-depth measurements on the heavy fermion material CeIn{sub 3} in magnetic fields up to 64 T using a self-resonant tank circuit based on a tunnel diode oscillator. At ambient pressure, an anomaly in the skin depth is seen at 45 T. The field where this anomaly occurs decreases with applied pressure until approximately 1.0 GPa, where it begins to increase before merging with the antiferromagnetic phase boundary. Possible origins for this transport anomaly are explored in terms of a Fermi surface reconstruction. The critical magnetic field at which the Neel-ordered phase is suppressed, is also mapped as a function of pressure and extrapolates to the previous ambient-pressure measurements at high magnetic fields and high-pressure measurements at zero magnetic field.

  13. Templating Biomineralization: Surface Directed Protein Self-assembly and External Magnetic Field Stimulation of Osteoblasts

    Science.gov (United States)

    Ba, Xiaolan

    Biomineralization is a wide-spread phenomenon in the biological systems, which is the process of mineral formation by organisms through interaction between its organic contents and the inorganic minerals. The process is essential in a broad spectrum of biological phenomena ranging from bone and tooth formation to pathological mineralization under hypoxic conditions or cancerous formations. In this thesis I studied biomineralization at the earliest stages in order to obtain a better understanding of the fundamental principals involved. This knowledge is essential if we want to engineer devices which will increase bone regeneration or prevent unwanted mineral deposits. Extracellular matrix (ECM) proteins play an essential role during biomineralization in bone and engineered tissues. In this dissertation, I present an approach to mimic the ECM in vitro to probe the interactions of these proteins with calcium phosphate mineral and with each other. Early stage of mineralization is investigated by mechanical properties of the protein fibers using Scanning Probe Microscopy (SPM) and Shear Modulation Force Microscopy (SMFM). The development of mineral crystals on the protein matrices is also characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Grazing Incidence X-ray Diffraction (GIXRD). The results demonstrate complementary actions of the two ECM proteins to collect cations and template calcium phosphate mineral, respectively. Magnets have been clinically used as an "induction source" in various bone or orthodontic treatments. However, the mechanism and effects of magnetic fields remain unclear. In this dissertation, I also undertake the present investigation to study the effects of 150 mT static magnetic fields (SMF) on ECM development and cell biomineralization using MC3T3-E1 osteobalst-like cells. Early stage of biomineralization is characterized by SPM, SMFM and confocal laser scanning microscopy (CSLM). Late stage of

  14. Competency model and standards for media education

    Directory of Open Access Journals (Sweden)

    Gerhard TULODZIECKI

    2012-12-01

    Full Text Available In Germany, educational standards for key school subjects have been developed as a consequence of the results of international comparative studies like PISA. Subsequently, supporters of interdisciplinary fields such as media education have also started calling for goals in the form of competency models and standards. In this context a competency standard model for media education will be developed with regard to the discussion about media competence and media education. In doing so the development of a competency model and the formulation of standards is described consequently as a decision making process. In this process decisions have to be made on competence areas and competence aspects to structure the model, on criteria to differentiate certain levels of competence, on the number of competence levels, on the abstraction level of standard formulations and on the tasks to test the standards. It is shown that the discussion on media education as well as on competencies and standards provides different possibilities of structuring, emphasizing and designing a competence standard model. Against this background we describe and give reasons for our decisions and our competency standards model. At the same time our contribution is meant to initiate further developments, testing and discussion.

  15. Construction of Advanced Application Talents' Competency Model in the Field of Health Informatization%卫生信息化高级应用型人才能力素质模型构建

    Institute of Scientific and Technical Information of China (English)

    黄成; 陈中元; 罗丽娟; 赵文龙; 胡虹

    2014-01-01

    通过调查125名来自医院信息科、病案室、信息化软件公司、图书馆、高等教育、卫生行政管理等卫生信息化相关从业人员,利用探索性因子分析对量表进行降维,结合定性分析形成了包含7个维度的卫生信息化高级应用型人才能力素质模型。最后,结合胜任力冰山模型理论构建了卫生信息化高级应用型人才能力素质冰山模型。%By investigating 125 practitioners in the field of Health Informatization, which come from the department of Information technology in hospitals, medical records department, information technology software companies, libraries, universities, health administration department and so on, this paper used exploratory factor analysis to reduce the scale. It constructed advanced application talents' competency model in the field of health Informatization with qualitative analysis. Finally, it built a competency iceberg model of advanced application talents’in the field of Health Informatization.

  16. Laboratory and field testing results of the LMT/GTM primary surface actuators

    Science.gov (United States)

    Smith, David R.; Souccar, Kamal; Montalvo, Gabriela; Arteaga Magaña, César; Hernández Rebollar, José Luis; Olmos Tapia, Arak; Gallieni, Daniele; Lazzarini, Paolo; Fumi, Pierluigi; Anaclerio, Enzo

    2016-07-01

    With the final installation of the two outermost rings of the primary surface of the Large Millimeter Telescope/ Gran Telescopio Milimétrico (LMT/GTM), the project is also upgrading the primary surface actuators. There are commercial actuators that can approach the required operational accuracy and stroke, but the combination of the size and load requirements ultimately required a customized design. The new actuators fit within the volume constraints imposed by the tighter interior angles in the outer rings and are designed to support the operational and survival loading conditions even for the largest surface segments. Laboratory testing confirmed that the actuators should meet the precision, repeatability, load, and lifetime requirements. However, the LMT/GTM is at a particularly difficult site for electromechanical systems. The high altitude has the usual effect of reducing cooling effectiveness for the drives and motors, and the ambient temperature hovers near freezing. Since there is a significant amount of precipitation during some times of the year, there are frequent freeze/thaw cycles. The constant formation and either sublimation or melting of ice, along with the associated high humidity, has been a challenge for the environmental protection of many devices at the LMT/GTM. Because there are a total of 720 primary surface actuators in the system, it is particularly important that the actuators, their local drive control boxes, and their cable connections be able to meet its specifications even under the site conditions. To confirm the suitability of the actuators, the LMT/GTM procured an initial set of sixteen actuators for testing at the site. After laboratory testing, the actuators were installed into the outer two rings of the telescope and cycled during the early winter months of the 2015-16 scientific observing season. Because of the continuing installation activities in these two rings, they are not illuminated by the receivers, so field testing

  17. An AlGaN/GaN HEMT with a reduced surface electric field and an improved breakdown voltage

    Institute of Scientific and Technical Information of China (English)

    Xie Gang; Edward Xu; Niloufar Hashemi; Zhang Bo; Fred Y. Fu; Wai Tung Ng

    2012-01-01

    A reduced surface electric field in an AlGaN/GaN high electron mobility transistor (HEMT) is investigated by employing a localized Mg-doped layer under the two-dimensional electron gas (2-DEG) channel as an electric field shaping layer.The electric field strength around the gate edge is effectively relieved and the surface electric field is distributed evenly as compared with those of HEMTs with conventional source-connected field plate and double field plate structures with the same device physical dimensions.Compared with the HEMTs with conventional sourceconnected field plates and double field plates,the HEMT with a Mg-doped layer also shows that the breakdown location shifts from the surface of the gate edge to the bulk Mg-doped layer edge.By optimizing both the length of Mg-doped layer,Lm,and the doping concentration,a 5.5 times and 3 times the reduction in the peak electric field near the drain side gate edge is observed as compared with those of the HEMTs with source-connected field plate structure and double field plate structure,respectively.In a device with VGS =-5 V,Lm =1.5 μm,a peak Mg doping concentration of 8×1017 cm-3 and a drift region length of 10 μm,the breakdown voltage is observed to increase from 560 V in a conventional device without field plate structure to over 900 V without any area overhead penalty.

  18. Experimental study of the free surface velocity field in an asymmetrical confluence

    Science.gov (United States)

    Creelle, Stephan; Mignot, Emmanuel; Schindfessel, Laurent; De Mulder, Tom

    2017-04-01

    The hydrodynamic behavior of open channel confluences is highly complex because of the combination of different processes that interact with each other. To gain further insights in how the velocity uniformization between the upstream channels and the downstream channel is proceeding, experiments are performed in a large scale 90 degree angled concrete confluence flume with a chamfered rectangular cross-section and a width of 0.98m. The dimensions and lay-out of the flume are representative for a prototype scale confluence in e.g. drainage and irrigation systems. In this type of engineered channels with sharp corners the separation zone is very large and thus the velocity difference between the most contracted section and the separation zone is pronounced. With the help of surface particle tracking velocimetry the velocity field is recorded from upstream of the confluence to a significant distance downstream of the confluence. The resulting data allow to analyze the evolution of the incoming flows (with a developed velocity profile) that interact with the stagnation zone and each other, causing a shear layer between the two bulk flows. Close observation of the velocity field near the stagnation zone shows that there are actually two shear layers in the vicinity of the upstream corner. Furthermore, the data reveals that the shear layer observed more downstream between the two incoming flows is actually one of the two shear layers next to the stagnation zone that continues, while the other shear layer ceases to exist. The extensive measurement domain also allows to study the shear layer between the contracted section and the separation zone. The shear layers of the stagnation zone between the incoming flows and the one between the contracted flow and separation zone are localized and parameters such as the maximum gradient, velocity difference and width of the shear layer are calculated. Analysis of these data shows that the shear layer between the incoming flows

  19. Response of the Shockley surface state to an external electrical field: A density-functional theory study of Cu(111)

    Science.gov (United States)

    Berland, K.; Einstein, T. L.; Hyldgaard, P.

    2012-01-01

    The response of the Cu(111) Shockley surface state to an external electrical field is characterized by combining a density-functional theory calculation for a slab geometry with an analysis of the Kohn-Sham wave functions. Our analysis is facilitated by a decoupling of the Kohn-Sham states via a rotation in Hilbert space. We find that the surface state displays isotropic dispersion, quadratic until the Fermi wave vector but with a significant quartic contribution beyond. We calculate the shift in energetic position and effective mass of the surface state for an electrical field perpendicular to the Cu(111) surface; the response is linear over a broad range of field strengths. We find that charge transfer occurs beyond the outermost copper atoms and that accumulation of electrons is responsible for a quarter of the screening of the electrical field. This allows us to provide well converged determinations of the field-induced changes in the surface state for a moderate number of layers in the slab geometry.

  20. The Motion of a Charged Particle on a Riemannian Surface under a Non-Zero Magnetic Field

    Science.gov (United States)

    Castilho, César

    2001-03-01

    In this paper we study the motion of a charged particle on a Riemmanian surface under the influence of a positive magnetic field B. Using Moser's Twist Theorem and ideas from classical pertubation theory we find sufficient conditions to perpetually trap the motion of a particle with a sufficient large charge in a neighborhood of a level set of the magnetic field. The conditions on the level set of the magnetic field that guarantee the trapping are local and hold near all non-degenerate critical local minima or maxima of B. Using symplectic reduction we apply the results of our work to certain S1-invariant magnetic fields on R3.

  1. Calculation of Electric Field at Ground Surface and ADSS Cable Prepared Hanging Point near EHV Power Transmission Tower

    Directory of Open Access Journals (Sweden)

    Xu Bao-Qing

    2016-01-01

    Full Text Available A simplified model of the 750kV tower is established by CDEGS software which is based on the Method Of Moment. The power frequency electric field distribution on the ground is achieved by software calculation and field-measuring. The validity of the calculation is proved when compare the calculation and experiment results. The model also can be used to calculate the electric field in prepared hanging points on the tower. Results show that the electric field distribution on the ground surface around the tower and prepared hanging points are meet the standard by calculation and experiment.

  2. Surface plasmon hurdles leading to a strongly localized giant field enhancement on two-dimensional (2D) metallic diffraction gratings.

    Science.gov (United States)

    Brûlé, Yoann; Demésy, Guillaume; Gralak, Boris; Popov, Evgeny

    2015-04-01

    An extensive numerical study of diffraction of a plane monochromatic wave by a single gold cone on a plane gold substrate and by a periodical array of such cones shows formation of curls in the map of the Poynting vector. They result from the interference between the incident wave, the wave reflected by the substrate, and the field scattered by the cone(s). In case of a single cone, when going away from its base along the surface, the main contribution in the scattered field is given by the plasmon surface wave (PSW) excited on the surface. As expected, it has a predominant direction of propagation, determined by the incident wave polarization. Two particular cones with height approximately 1/6 and 1/3 of the wavelength are studied in detail, as they present the strongest absorption and field enhancement when arranged in a periodic array. While the PSW excited by the smaller single cone shows an energy flux globally directed along the substrate surface, we show that curls of the Poynting vector generated with the larger cone touch the diopter surface. At this point, their direction is opposite to the energy flow of the PSW, which is then forced to jump over the vortex regions. Arranging the cones in a two-dimensional subwavelength periodic array (diffraction grating), supporting a specular reflected order only, resonantly strengthens the field intensity at the tip of cones and leads to a field intensity enhancement of the order of 10 000 with respect to the incident wave intensity. The enhanced field is strongly localized on the rounded top of the cones. It is accompanied by a total absorption of the incident light exhibiting large angular tolerances. This strongly localized giant field enhancement can be of much interest in many applications, including fluorescence spectroscopy, label-free biosensing, surface-enhanced Raman scattering (SERS), nonlinear optical effects and photovoltaics.

  3. The Evidence of Giant Surface Flexoelectric Field in (111) Oriented BiFeO3 Thin Film.

    Science.gov (United States)

    Yang, Tieying; Zhang, Xingmin; Chen, Bin; Guo, Haizhong; Jin, Kuijuan; Wu, Xiaoshan; Gao, Xingyu; Li, Zhong; Wang, Can; Li, Xiaolong

    2017-02-15

    In this work, the surface structure of a single-domain epitaxial BiFeO3 film with (111) orientation was investigated by in situ grazing incidence X-ray diffraction and X-ray reflectivity. We found that a large strain gradient exists in the surface region (2-3 nm) of the BiFeO3 film. The strain gradient is approximately 10(7) m(-1), which is 2 or 3 orders of magnitude larger than the value inside the film. Moreover, we found that a surface layer with a lower electron density compared with the underlying BiFeO3 layer exists on the surface of BiFeO3 film, and this layer exhibits an irreversible surface structure transition occurs at 500 K, which should be associated with the surface flexoelectric field. We considered that this large strain gradient is originated from the surface depolarization field of ferroelectrics. Our results suggest a coupling between the surface structure and the flexoelectricity and imply that the surface layer and properties would be controlled by the strain gradient in ferroelectric films.

  4. Oral Communicative Competence of Primary School Students

    Science.gov (United States)

    Mayo, Isabel Cantón; Barrioluengo, Elena Pérez

    2017-01-01

    Oral communicative competence enables speakers of a language to interact effectively with each other. Oral communicative competence includes a wide semantic field since the oral expression is a way of expression for the thought and it provides feedback and develops by means of the linguistic function (Vygotsky, 1992; Piaget, 1983a, 1983b; Pinker,…

  5. Chemically-doped graphene with improved surface plasmon characteristics: an optical near-field study.

    Science.gov (United States)

    Zheng, Zebo; Wang, Weiliang; Ma, Teng; Deng, Zexiang; Ke, Yanlin; Zhan, Runze; Zou, Qionghui; Ren, Wencai; Chen, Jun; She, Juncong; Zhang, Yu; Liu, Fei; Chen, Huanjun; Deng, Shaozhi; Xu, Ningsheng

    2016-10-01

    One of the most fascinating and important merits of graphene plasmonics is their tunability over a wide range. While chemical doping has proven to be a facile and effective way to create graphene plasmons, most of the previous studies focused on the macroscopic behaviors of the plasmons in chemically-doped graphene and little was known about their nanoscale responses and related mechanisms. Here, to the best of our knowledge, we present the first experimental near-field optical study on chemically-doped graphene with improved surface plasmon characteristics. By using a scattering-type scanning near-field optical microscope (s-SNOM), we managed to show that the graphene plasmons can be tuned and improved using a facile chemical doping method. Specifically, the plasmon interference patterns near the edge of the monolayer graphene were substantially enhanced via nitric acid (HNO3) exposure. The plasmon-related characteristics can be deduced by analyzing such plasmonic fringes, which exhibited a longer plasmon wavelength and reduced plasmon damping rate. In addition, the local carrier density and therefore the Fermi energy level (EF) of graphene can be obtained from the plasmonic nano-imaging, which indicated that the enhanced plasmon oscillation originated from the injection of free holes into graphene by HNO3. These findings were further corroborated by theoretical calculations using density functional theory (DFT). We believe that our findings provide a clear nanoscale picture on improving graphene plasmonics by chemical doping, which will be helpful for optimizing graphene plasmonics and for elucidating the mechanisms of two-dimensional light confinement by atomically thick materials.

  6. Effects of electromagnetic field and lubricate condition on the surface quality of magnesium alloy billet during LFEC processing

    Institute of Scientific and Technical Information of China (English)

    LE QiChi; ZHANG ZhiQiang; CUI JianZhong

    2009-01-01

    The microstructures of the magnesium billets could be improved markedly by low-frequency electro-magnetic casting (LFEC) processing. In fact, the low-frequency electromagnetic field (LFEF) also has favorite effect on the surface quality of billet. However, few public reports on the surface quality of LFEC magnesium billets could be found. Therefore, a new crystallizer with a metal internal sleeve to-gether with a kind of lubricant was designed aiming at lowing surface turning quantity, and the effects of casting velocity, electromagnetic condition and lubrication on the surface quality of magnesium billets were investigated. The results indicate that LFEF together with the lubricate condition would be responsible for the surface quality of the billets, and the high surface quality billets could be achieved by optimizing the casting conditions.

  7. Internal and near-surface electromagnetic fields for a dielectric spheroid illuminated by a zero-order Bessel beam.

    Science.gov (United States)

    Han, Lu; Han, Yiping; Wang, Jiajie; Cui, Zhiwei

    2014-09-01

    Within the framework of generalized Lorenz-Mie theory, scattering from a homogeneous spheroidal particle illuminated by an on-axis zero-order Bessel beam is formulated analytically, with special attention paid to the investigation of internal and near-surface fields. Numerical results concerning the spatial distributions of internal and near-surface fields are presented for various parameter values, such as the half-cone angle of the incident zero-order Bessel beam, the major axis, the minor axis, and the refractive index of the spheroid. The study of internal and near-surface field distributions will contribute to the understanding of Bessel beam scattering by nonspherical particles with sizes close to the incident wavelength.

  8. Influence of standard RF coil materials on surface and buildup dose from a 6 MV photon beam in magnetic field.

    Science.gov (United States)

    Ghila, A; Fallone, B G; Rathee, S

    2016-11-01

    Magnetic resonance guided teletherapy systems aspire to image the patient concurrently with the radiation delivery. Thus, the radiofrequency (RF) coils used for magnetic resonance imaging, placed on or close to patient skin and in close proximity to the treatment volume, would be irradiated leading to modifications of radiation dose to the skin and in the buildup region. The purpose of this work is to measure and assess these dose modifications due to standard off-the-shelf RF coil materials. A typical surface coil was approximated as layered sheets of polycarbonate, copper tape, and Teflon to emulate the base, conductor, and cover, respectively. A separate investigation used additional coil materials, such as copper pipe, plastic coil housing, a typical coil padding material, and a thin copper conductor. The materials were placed in the path of a 6 MV photon beam at various distances from polystyrene phantoms in which the surface and buildup doses were measured. The experiments were performed on a clinical Varian linac with no magnetic field and with a 0.21 T electromagnet producing a magnetic field parallel to the beam central axis. The authors repeated similar experiments in the presence of a 0.22 T magnetic field oriented perpendicular to the beam central axis using an earlier linac-MR prototype, with a biplanar permanent magnet. The radiation detectors used for the measurements were two different parallel plate ion chambers and GAFChromic films. A typical open beam surface dose of 20% (relative to open beam Dmax) was increased to 63% by the coil padding material and to >74% by all other materials when placed in direct contact with the phantom, irrespective of magnetic field presence or orientation. Without a magnetic field, the surface dose decreased as the test materials were moved away from the phantom surface toward the radiation source, reaching between 30% and 40% at 10 cm gap between the phantom and the test materials. In the presence of the transverse

  9. Sea surface Ka-band radar cross-section from field observations in the Black Sea

    Science.gov (United States)

    Yurovsky, Yury; Kudryavtsev, Vladimir; Grodsky, Semyon; Chapron, Bertrand

    2016-04-01

    An interest in Ka-band radar backscattering from the ocean surface is growing due to better spatial resolution and more accurate Doppler anomaly estimate. But, available empirical models of Ka-band cross-section are quite scarce and sometime controversial. Here we present multi-year (2009-2015) field measurements of Ka-band co-polarized (VV and HH) sea surface normalized radar cross-section (NRCS) from research platform in the Black sea collected in a wide range of observation and sea state conditions. The data are fitted by polynomial function of incidence angle, azimuth and wind speed with accounting for measured radar antenna pattern. This empirical NRCS is compared with published Ka- and Ku-band data. Our Ka-band NRCS is close to Ku-band, but is 5-7 dB higher than 'pioneer' measurements by Masuko et al. (1986). Following the two-scale Bragg paradigm, the NRCS is split into polarized (Bragg) and non-polarized components and analyzed in terms of polarization ratio (VV/HH) and polarization difference (VV-HH) to estimate wave spectra at the Bragg wave number. Non-polarized component dominates at low incidence angles 60°) NRCS azimuth dependency is unimodal (upwind peak) for HH and bimodal (with up- and downwind peaks) for VV polarization. This again can be attributed to different backscattering mechanisms for VV and HH polarizations. With decreasing of incidence angle, up- to downwind ratio tends to 1, and under light wind conditions (4-6 m/s) can be less than 1. The same situation is observed for polarization difference, which reflects Bragg backscattering properties only. This effect can be explained by enhanced roughness on upwind (windward) face of the tilting wave. Retrieval of Bragg roughness properties shows that omni-directional saturation spectra at ~1000 rad/m are 2-3 times higher (0.01 at 10 m/s wind speed) than the spectra obtained from optical measurements of regular sea surface without wave breaking. This suggests that observed difference can arise

  10. Quantum magnetotransport for the surface states of three-dimensional topological insulators in the presence of a Zeeman field

    KAUST Repository

    Tahir, Muhammad

    2013-05-01

    We show that the surface states of magnetic topological insulators realize an activated behavior and Shubnikov de Haas oscillations. Applying an external magnetic field perpendicular to the surface of the topological insulator in the presence of Zeeman interaction, we investigate the opening of a gap at the Dirac point, making the surface Dirac fermions massive, and the effects on the transport properties. Analytical expressions are derived for the collisional conductivity for elastic impurity scattering in the first Born approximation. We also calculate the Hall conductivity using the Kubo formalism. Evidence for a transition from gapless to gapped surface states at n = 0 and activated transport is found from the temperature and magnetic-field dependence of the collisional and Hall conductivities. © Copyright EPLA, 2013.

  11. Construction of initial vortex-surface fields and Clebsch potentials for flows with high-symmetry using first integrals

    Science.gov (United States)

    He, Pengyu; Yang, Yue

    2016-03-01

    We report a systematic study on the construction of the explicit, general form of vortex-surface fields (VSFs) and Clebsch potentials in the initial fields with the zero helicity density and high symmetry. The construction methodology is based on finding independent first integrals of the characteristic equation of a given three-dimensional velocity-vorticity field. In particular, we derive the analytical VSFs and Clebsch potentials for the initial field with the Kida-Pelz symmetry. These analytical results can be useful for the evolution of VSFs to study vortical structures in transitional flows. Moreover, the generality of the construction method is discussed with the synthetic initial fields and the initial Taylor-Green field with multiple wavenumbers.

  12. Quantitative Imaging of Surface Resistance and Electric Fields by Scanning Near-Field Microwave Microscopy (SNFiMM)^1

    Science.gov (United States)

    Feenstra, B. J.

    1998-03-01

    After a brief survey and an introduction to the field of microwave microscopy, our novel scanning near-field microwave microscope (SNFiMM) based on a resonant coaxial cable will be described. Using this system we have imaged dielectric and conducting properties and electromagnetic fields on length scales far smaller than the free space wavelength of the radiation.(C. P. Vlahacos, R. C. Black, S. M. Anlage, A. Amar, and F. C. Wellstood, Appl. Phys. Lett. 69), 3272 (1996). Some of the merits of SNFiMM are the simplicity of its construction, the broad frequency coverage, ranging from 0.15 to 50 GHz, and the ability to alternate easily between different modes (reflection, receiving, frequency following etc.). The versatility of the system will be illustrated through images of the absolute sheet resistance and absolute electric fields, measured on a μm length scale.(D. E. Steinhauer, C. P. Vlahacos, S. K. Dutta, F. C. Wellstood, and Steven M. Anlage, Appl. Phys. Lett 71), 1736 (1997). In addition, potential applications will be discussed, including the use of SNFiMM for the diagnostics of active microwave circuits, both at room and cryogenic temperatures.

  13. Variations in Cell Surfaces of Estrogen Treated Breast Cancer Cells Detected by A Combined Instrument for Far-Field and Near-Field Microscopy

    Directory of Open Access Journals (Sweden)

    P. Perner

    2002-01-01

    Full Text Available The response of single breast cancer cells (cell line T‐47D to 17β‐estradiol (E2 under different concentrations was studied by using an instrument that allows to combine far‐field light microscopy with high resolution scanning near‐field (AFM/SNOM microscopy on the same cell. Different concentrations of E2 induce clearly different effects as well on cellular shape (in classical bright‐field imaging as on surface topography (atomic force imaging and absorbance (near‐field light transmission imaging. The differences range from a polygonal shape at zero via a roughly spherical shape at physiological up to a spindle‐like shape at un‐physiologically high concentrations. The surface topography of untreated control cells was found to be regular and smooth with small overall height modulations. At physiological E2 concentrations the surfaces became increasingly jagged as detected by an increase in membrane height. After application of the un‐physiological high E2 concentration the cell surface structures appeared to be smoother again with an irregular fine structure. The general behaviour of dose dependent differences was also found in the near‐field light transmission images. In order to quantify the treatment effects, line scans through the normalised topography images were drawn and a rate of co‐localisation between high topography and high transmission areas was calculated. The cell biological aspects of these observations are, so far, not studied in detail but measurements on single cells offer new perspectives to be empirically used in diagnosis and therapy control of breast cancers.

  14. Conformal field theory of critical Casimir forces between surfaces with alternating boundary conditions in two dimensions

    Science.gov (United States)

    Dubail, J.; Santachiara, R.; Emig, T.

    2017-03-01

    Systems as diverse as binary mixtures and inclusions in biological membranes, and many more, can be described effectively by interacting spins. When the critical fluctuations in these systems are constrained by boundary conditions, critical Casimir forces (CCF) emerge. Here we analyze CCF between boundaries with alternating boundary conditions in two dimensions, employing conformal field theory (CFT). After presenting the concept of boundary changing operators, we specifically consider two different boundary configurations for a strip of critical Ising spins: (I) alternating equi-sized domains of up and down spins on both sides of the strip, with a possible lateral shift, and (II) alternating domains of up and down spins of different size on one side and homogeneously fixed spins on the other side of the strip. Asymptotic results for the CCF at small and large distances are derived. We introduce a novel modified Szegö formula for determinants of real antisymmetric block Toeplitz matrices to obtain the exact CCF and the corresponding scaling functions at all distances. We demonstrate the existence of a surface renormalization group flow between universal force amplitudes of different magnitude and sign. The Casimir force can vanish at a stable equilibrium position that can be controlled by parameters of the boundary conditions. Lateral Casimir forces assume a universal simple cosine form at large separations.

  15. Si/PEDOT:PSS Hybrid Solar Cells with Advanced Antireflection and Back Surface Field Designs

    Science.gov (United States)

    Sun, Yiling; Yang, Zhenhai; Gao, Pingqi; He, Jian; Yang, Xi; Sheng, Jiang; Wu, Sudong; Xiang, Yong; Ye, Jichun

    2016-08-01

    Molybdenum oxide (MoO3) is one of most suitable antireflection (AR) layers for silicon/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (Si/PEDOT:PSS) hybrid solar cells due to its well-matched refractive index (2.1). A simulation model was employed to predict the optical characteristics of Si/PEDOT:PSS hybrid solar cells with the MoO3 layers as antireflection coatings (ARCs), as well as to analyze the loss in current density. By adding an optimum thickness of a 34-nm-thick ARC of MoO3 on the front side and an effective rear back surface field (BSF) of phosphorus-diffused N + layer at the rear side, the hybrid cells displayed higher light response in the visible and near infrared regions, boosting a short-circuit current density ( J sc) up to 28.7 mA/cm2. The average power conversion efficiency (PCE) of the Si/PEDOT:PSS hybrid solar cells was thus increased up to 11.90 %, greater than the value of 9.23 % for the reference devices.

  16. Lithium abundance and surface magnetic fields: new constraints in magnetic models of M dwarfs

    CERN Document Server

    MacDonald, James

    2013-01-01

    Precision modeling of M dwarfs has become worthwhile in recent years due to the increasingly precise values of masses and radii which can be obtained from eclipsing binary studies. Torres (2013) has identified 4 prime M dwarf pairs with the most precise empirical determinations of masses and radii. The measured radii are consistently larger than standard stellar models predict. We have previously modeled M dwarfs in the context of a criterion due to Gough & Tayler in which magnetic fields inhibit the onset of convection according to a physics-based prescription. New constraints on the models of M dwarfs are now provided by measurements of lithium abundances. The key aspect of Li in terms of setting constraints on magnetic modeling is that Li burning starts at T = 2.5 MK, and temperatures of just such magnitude are associated with the base of the convection zone: magnetic inhibition of convective onset can shift this base slightly closer to the surface, i.e. to slightly lower temperatures, thereby reducing...

  17. Screening-induced surface polar optical phonon scattering in dual-gated graphene field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Bo, E-mail: hubo2011@semi.ac.cn

    2015-03-15

    The effect of surface polar optical phonons (SOs) from the dielectric layers on electron mobility in dual-gated graphene field effect transistors (GFETs) is studied theoretically. By taking into account SO scattering of electron as a main scattering mechanism, the electron mobility is calculated by the iterative solution of Boltzmann transport equation. In treating scattering with the SO modes, the dynamic dielectric screening is included and compared to the static dielectric screening and the dielectric screening in the static limit. It is found that the dynamic dielectric screening effect plays an important role in the range of low net carrier density. More importantly, in-plane acoustic phonon scattering and charged impurity scattering are also included in the total mobility for SiO{sub 2}-supported GFETs with various high-κ top-gate dielectric layers considered. The calculated total mobility results suggest both Al{sub 2}O{sub 3} and AlN are the promising candidate dielectric layers for the enhancement in room temperature mobility of graphene in the future.

  18. Numerical simulations and observations of surface wave fields under an extreme tropical cyclone

    Science.gov (United States)

    Fan, Y.; Ginis, I.; Hara, T.; Wright, C.W.; Walsh, E.J.

    2009-01-01

    The performance of the wave model WAVEWATCH III under a very strong, category 5, tropical cyclone wind forcing is investigated with different drag coefficient parameterizations and ocean current inputs. The model results are compared with field observations of the surface wave spectra from an airborne scanning radar altimeter, National Data Buoy Center (NDBC) time series, and satellite altimeter measurements in Hurricane Ivan (2004). The results suggest that the model with the original drag coefficient parameterization tends to overestimate the significant wave height and the dominant wavelength and produces a wave spectrum with narrower directional spreading. When an improved drag parameterization is introduced and the wave-current interaction is included, the model yields an improved forecast of significant wave height, but underestimates the dominant wavelength. When the hurricane moves over a preexisting mesoscale ocean feature, such as the Loop Current in the Gulf of Mexico or a warm-and cold-core ring, the current associated with the feature can accelerate or decelerate the wave propagation and significantly modulate the wave spectrum. ?? 2009 American Meteorological Society.

  19. Effect of the interplanetary magnetic field orientation and intensity in the mass and energy deposition on the Hermean surface

    CERN Document Server

    Varela, J; Moncuquet, M

    2016-01-01

    The aim of the present study is to simulate the interaction between the solar wind and the Hermean magnetosphere. We use the MHD code PLUTO in spherical coordinates with an axisymmetric multipolar expansion of the Hermean magnetic field, to perform a set of simulations with different interplanetary magnetic field orientations and intensities. We fix the hydrodynamic parameters of the solar wind to study the distortions driven by the interplanetary magnetic field in the topology of the Hermean magnetosphere, leading to variations of the mass and energy deposition distributions, the integrated mass deposition, the oval aperture, the area covered by open magnetic field lines and the regions of efficient particle sputtering on the planet surface. The simulations show a correlation between the reconnection regions and the local maxima of plasma inflow and energy deposition on the planet surface.

  20. First detection of surface magnetic fields in Post-AGB stars : the cases of U Monocerotis and R Scuti

    CERN Document Server

    Sabin, L; Lèbre, A

    2014-01-01

    While several observational investigations have revealed the presence of magnetic fields in the circumstellar envelopes, jets and outflows of post-Asymptotic Giant Branch stars (PAGBs) and planetary nebulae (PNe), none has clearly demonstrated their presence at the stellar surface. The lack of information on the strength of the surface magnetic fields prevents us from performing any thorough assessment of their dynamic capability (i.e. material mixing, envelope shaping, etc). We present new high resolution spectropolarimetric (Stokes V ) observations of a sample of PAGB stars, realised with the instruments ESPaDOnS and Narval, where we searched for the presence of photospheric magnetic fields. Out of the seven targets investigated the RV Tauri stars U Mon and R Sct display a clear Zeeman signature and return a definite detection after performing a least squares deconvolution (LSD) analysis. The remaining five PAGBs show no significant detection. We derived longitudinal magnetic fields of 10.2 +/- 1.7 G for U ...

  1. External magnetic field dependent shift of superparamagnetic blocking temperature due to core/surface disordered spin interactions

    Science.gov (United States)

    Lee, Kwan; Jang, Jung-tak; Nakano, Hiroshi; Nakagawa, Shigeki; Paek, Sun Ha; Bae, Seongtae

    2017-02-01

    Although the blocking temperature of superparamagnetic nanoparticles (SPNPs) is crucial for various spintronics and biomedical applications, the precise determination of the blocking temperature is still not clear. Here, we present ‘intrinsic’ and ‘extrinsic’ characteristics of the blocking temperature in SPNP systems. In zero-field-cooled/field-cooled (ZFC-FC) curves, there was no shift of ‘intrinsic blocking temperature’ at different applied external (excitation) magnetic fields. However, ‘extrinsic blocking temperature’ shift is clearly dependent on the external (excitation) magnetic field. According to our newly proposed physical model, the ‘intermediate spin layer’ located between the core and surface disordered spin layers is primarily responsible for the physical nature of the shift of extrinsic blocking temperature. Our new findings offer possibilities for characterizing the thermally induced physical properties of SPNPs. Furthermore, these findings provide a new empirical approach to indirectly estimate the qualitative degree of the disordered surface spin status in SPNPs.

  2. A synergetic effect of surface texture and field-effect passivations on improving Si solar cell performance

    Science.gov (United States)

    Qiu, Ying; Wang, Liangxing; Hao, Hongchen; Shi, Wei; Lu, Ming

    2015-07-01

    P-type Si substrate based solar cells were prepared with indium-tin-oxide thin films as the front top electrodes and Al layers as the rear ones. A synergetic effect of surface texture and field-effect passivations on improving Si solar cell performance was investigated. The surface texture was conducted by NaOH etching of Si, and field-effect passivations were performed by introducing SiO2 and Al2O3 thin film layers at the front and rear sides of the Si solar cell, respectively. The surface texture treatment makes the Si solar cell efficiency increase from 9.81% to 11.08%. After the synergetic treatments of surface texture and field-effect passivations, the efficiency further increased to 15.04%, that is, a more than 50% relative efficiency enhancement was obtained. This work demonstrates the significant effectiveness and facile applicability of the synergetic effect of surface texture and field-effect passivations on improving Si solar cell performance.

  3. Near-field observation of spatial phase shifts associated with Goos-Hänschen and Surface Plasmon Resonance effects.

    Science.gov (United States)

    Jose, J; Segerink, F B; Korterik, J P; Offerhaus, H L

    2008-02-04

    We report the near-field observation of the phase shifts associated with total internal reflection on a glass-air interface and surface plasmon resonance on a glass-gold-air system. The phase of the evanescent waves on glass and gold surfaces, as a function of incident angle, is measured using a phase-sensitive Photon Scanning Tunneling Microscope (PSTM) and shows a good agreement with theory.

  4. Field Investigation of Surface-Lake Processes on Ice Shelves: Results of the 2015/16 Field Campaign on McMurdo Ice Shelf, Antarctica

    Science.gov (United States)

    MacAyeal, Doug; Banwell, Alison; Willis, Ian; Macdonald, Grant

    2016-04-01

    Ice-shelf instability and breakup of the style exhibited by Larsen B Ice Shelf in 2002 remains the most difficult glaciological process of consequence to observe in detail. It is, however, vital to do so because ice-shelf breakup has the potential to influence the buttressing controls on inland ice discharge, and thus to affect sea level. Several mechanisms enabling Larsen B style breakup have been proposed, including the ability of surface lakes to introduce ice-shelf fractures when they fill and drain, thereby changing the surface loads the ice-shelf must adjust to. Our model suggest that these fractures resulted in a chain-reaction style drainage of >2750 surface lakes on the Larsen B in the days prior to its demise. To validate this and other models, we began a field project on the McMurdo Ice Shelf (MIS) during the 2015/16 austral summer. Advantages of the MIS study site are: there is considerable surface melting during 3-6 weeks of the summer season, the ice is sufficiently thin (logistical support (McMurdo Station). Here we show initial results from the field campaign, including GPS and water-depth observations of a lake that has filled and drained over multiple week timescales in previous austral summers. We also report on the analysis of high-resolution WorldView satellite imagery from several summers that reveals the complexity of surface meltwater movement in channels and subsurface void spaces. Initial reconnaissance of the largest surface-lake features reveal that they have a central circular depression surrounded by an uplifted ring, which supports one of the central tenets of our ice-shelf flexure theory. A second field season is anticipated for the 2016/17 austral summer.

  5. The local autocorrelation time near the surface of a system with uniaxial anisotropy in a transverse field

    Science.gov (United States)

    Korneta, W.; Pytel, Z.

    1988-07-01

    A three-dimensional semi-infinite system with strong uniaxial anisotropy ina transverse field is considered. The behaviour of the local autocorrelation time for the component of the order parameter in the direction parallel to the easy axis near the second-order phase transition for this component induced by the transverse field is given. The effect of the surface on this behaviour is discussed. The Landau approximation is used.

  6. The discovery of seven extremely low surface brightness galaxies in the field of the nearby spiral galaxy M101

    CERN Document Server

    Merritt, Allison; Abraham, Roberto

    2014-01-01

    Dwarf satellite galaxies are a key probe of dark matter and of galaxy formation on small scales and of the dark matter halo masses of their central galaxies. They have very low surface brightness, which makes it difficult to identify and study them outside of the Local Group. We used a low surface brightness-optimized telescope, the Dragonfly Telephoto Array, to search for dwarf galaxies in the field of the massive spiral galaxy M101. We identify seven large, low surface brightness objects in this field, with effective radii of \\(10 - 30\\) arcseconds and central surface brightnesses of \\(\\mu_{g} \\sim 25.5 - 27.5\\) mag arcsec\\(^{-2}\\). Given their large apparent sizes and low surface brightnesses, these objects would likely be missed by standard galaxy searches in deep fields. Assuming the galaxies are dwarf satellites of M101, their absolute magnitudes are in the range \\(-11.6 \\lesssim M_{V} \\lesssim -9.3\\) and their effective radii are \\(350\\) pc \\(-\\) \\(1.3\\) kpc. Their radial surface brightness profiles ar...

  7. Electron field emission characteristics of different surface morphologies of ZnO nanostructures coated on carbon nanotubes.

    Science.gov (United States)

    Li, Kuan-Wei; Lian, Huan-Bin; Cai, Jhen-Hong; Wang, Yao-Te; Lee, Kuei-Yi

    2011-12-01

    The optimal carbon nanotube (CNT) bundles with a hexagonal arrangement were synthesized using thermal chemical vapor deposition (TCVD). To enhance the electron field emission characteristics of the pristine CNTs, the zinc oxide (ZnO) nanostructures coated on CNT bundles using another TCVD technique. Transmission electron microscopy (TEM) images showed that the ZnO nanostructures were grown onto the CNT surface uniformly, and the surface morphology of ZnO nanostructures varied with the distance between the CNT bundle and the zinc acetate. The results of field emissions showed that the ZnO nanostructures grown onto the CNTs could improve the electron field emission characteristics. The enhancement of field emission characteristics was attributed to the increase of emission sites formed by the nanostructures of ZnO grown onto the CNT surface, and each ZnO nanostructure could be regarded as an individual field emission site. In addition, ZnO-coated CNT bundles exhibited a good emission uniformity and stable current density. These results demonstrated that ZnO-coated CNTs is a promising field emitter material.

  8. Evaporation of water droplets on Pt-surface in presence of external electric field--A molecular dynamics study.

    Science.gov (United States)

    Hens, Abhiram; Biswas, Gautam; De, Sudipta

    2015-09-01

    Evaporation of a sessile droplet on a hot solid substrate is an important problem in fluid mechanics. It is relevant to theoretical issues in heat transfer as well as several practical applications. This study investigates the spreading and evaporation of a nanoscale water droplet on a solid platinum surface. The major objective was to analyze the effect of an external electric field on these phenomena. Varying the intensity and direction of the external electric field, a series of molecular dynamics simulations were carried out to understand these phenomena at a molecular level. The results reveal that a horizontal electric field assists in droplet spreading, whereas a vertical electric field enhances the rate of evaporation for a certain range of field intensities. It also shows that the substrate temperature plays an important role in such processes. It is seen that the effect of an external electric field on droplet evaporation becomes significant at an intermediate range of surface temperatures and this effect is not clearly visible for either very high or very low range of surface temperatures.

  9. Optical multi-frequency swept sensing for wide-field vibration measurement of interior surfaces in biological tissue

    Science.gov (United States)

    Choi, S.; Nin, F.; Hibino, H.; Suzuki, T.

    2015-12-01

    Multifrequency sensing technique adopting the wide field heterodyne detection technique is demonstrated for interior surface vibration measurements in thick biological tissue. These arrangements allow obtaining not only 3D tomographic images but also various vibration parameters such as spatial amplitude, phase, and frequency, with high temporal and transverse resolutions over a wide field. The axial resolution and the accuracy of vibration amplitude measurement were estimated to be 2.5 μm and 3 nm, respectively. This wide-field tomographic sensing method can be applied for measuring microdynamics of a variety of biological samples, thus contributing to the progress in life sciences research.

  10. Influence of a single lightning on the intensity of an air electric field and acoustic emission of near surface rocks

    Directory of Open Access Journals (Sweden)

    S. E. Smirnov

    2012-06-01

    Full Text Available The effect of a single lightning discharge on electric field intensity in the near ground atmosphere was investigated. The effect appeared as a sharp fall of electric field potential gradient from 80 V m−1 up to −21 V m−1. The process of intensity recovery is described by flat capacitor model with characteristic time of recovery of 17 c. Simultaneously with electric field, the acoustic emission response in the near surface rocks on lightning discharge was registered in the frequency range of 6.5–11 kHz.

  11. Measurement of Frequency, Temperature, RF Field Dependence of Surface Resistance of Superconductors Using a Half Wave Cavity

    Science.gov (United States)

    Park, Hyekyoung; Delayen, Jean

    2017-01-01

    A theory of surface resistance of superconductor was rigorously formulated by Bardeen, Cooper, Schrieffer more than 50 years ago. Since then the accelerator community has been used the theory as a guideline to improve the surface resistance of the superconducting cavity. It has been observed that the surface resistance is dependent on frequency, temperature and rf field strength, and surface preparation. To verify these dependences, a well-controlled study is required. Although many different types of cavities have been tested, the typical superconducting cavities are built for specific frequencies of their application. They do not provide data other than at its own frequency. A superconducting half wave cavity is a cavity that enables us to collect the surface resistance data across frequencies of interest for particle accelerators and evaluate preparation techniques. This paper will present the design of the half wave cavity, its electromagnetic mode characteristics and experimental results. Research supported by NSF Award PHY-1416051.

  12. Verifying field-effect passivation of a SiNx layer on a silicon nanopillar array using surface photovoltage characterization

    Science.gov (United States)

    Kim, Eunah; Cho, Yunae; Sohn, Ahrum; Kim, Dong-Wook; Park, Hyeong-Ho; Kim, Joondong

    In silicon (Si) wafer based photovoltaic (PV) devices, light-trapping strategies to improve optical absorption are very important due to the indirect bandgap of Si. Surface nano-patterned Si enable omnidirectional broadband antireflection (AR) effects with the help of graded refractive index, multiple scattering, diffraction, and Mie resonance. In this work, the surface photovoltage (SPV) of periodic nanopillar (NP) arrays were investigated using Kelvin probe force microscopy (KPFM). The SPV characteristics clearly revealed that positive fixed charges in SiNx layers induced downward band bending at the Si surface and increased SPV at the NP top surface. The similar SPV value of NPs and planar counterpart suggests that field effect passivation by the dielectric layer coating could help improve PV performance of nanostructure-based Si solar cells and that KPFM measurements are useful tool for quantitative investigation of surface electrical properties of Si nanostructures.

  13. Field detection of Tembusu virus in western Thailand by rt-PCR and vector competence determination of select culex mosquitoes for transmission of the virus.

    Science.gov (United States)

    O'Guinn, Monica L; Turell, Michael J; Kengluecha, Ampornpan; Jaichapor, Boonsong; Kankaew, Prasan; Miller, R Scott; Endy, Timothy P; Jones, James W; Coleman, Russell E; Lee, John S

    2013-11-01

    Tembusu virus (TMUV; Ntaya serocomplex) was detected in two pools of mosquitoes captured near Sangkhlaburi, Thailand, as well as from sera from sentinel ducks from the same area. Although TMUV has been isolated from several mosquito species in Asia, no studies have ever shown competent vectors for this virus. Therefore, we allowed mosquitoes captured near Sangkhlaburi to feed on young chickens that had been infected with TMUV. These mosquitoes were tested approximately 2 weeks later to determine infection, dissemination, and transmission rates. Culex vishnui developed high viral titers after feeding on TMUV-infected chicks and readily transmitted virus to naïve chickens. In contrast, Cx. fuscocephala seemed less susceptible to infection, and more importantly, zero of five fuscocephala with a disseminated infection transmitted virus by bite, indicating a salivary gland barrier. These results provide evidence for the involvement of Culex mosquitoes in the transmission of TMUV in the environment.

  14. Electromagnetic fields induced by surface ring waves in the deep sea

    OpenAIRE

    Kozitskiy, S. B.

    2014-01-01

    The paper deals with electromagnetic effects associated with a radially symmetric system of progressive surface waves in the deep sea, induced by underwater oscillating sources or by dispersive decay of the initial localized perturbations of the sea surface.

  15. Remote Sensing and Synchronous Land Surface Measurements of Soil Moisture and Soil Temperature in the Field

    Science.gov (United States)

    Kolev, N. V.; Penev, K. P.; Kirkova, Y. M.; Krustanov, B. S.; Nazarsky, T. G.; Dimitrov, G. K.; Levchev, C. P.; Prodanov, H. I.; Kraleva, L. H.

    1998-01-01

    The paper presents the results of remote sensing and synchronous land surface measurements for estimation of soil (surface and profile) water content and soil temperature for different soil types in Bulgaria. The relationship between radiometric temperature and soil surface water content is shown. The research is illustrated by some results from aircraft and land surface measurements carried out over three test areas near Pleven, Sofia and Plovdiv, respectively, during the period 1988-1990.

  16. Oscillating electric-field effects on adsorbed-water at rutile- and anatase-TiO2 surfaces

    Science.gov (United States)

    Futera, Zdenek; English, Niall J.

    2016-11-01

    We have performed non-equilibrium molecular dynamics simulations of various TiO2/water interfaces at ambient temperature in presence of oscillating electric fields in frequency range 20-100 GHz and RMS intensities 0.05-0.25 V/Å. Although the externally applied fields are by one order of magnitude lower than the intrinsic electric field present on the interfaces (˜1.5-4.5 V/Å), significant non-thermal coupling of rotational and translational motion of water molecules was clearly observed. Enhancement of the motion, manifested by increase of diffusivity, was detected in the first hydration layer, which is known to be heavily confined by adsorption to the TiO2 surface. Interestingly, the diffusivity increases more rapidly on anatase than on rutile facets where the adsorbed water was found to be more organized and restrained. We observed that the applied oscillating field reduces number of hydrogen bonds on the interface. The remaining H-bonds are weaker than those detected under zero-field conditions; however, their lifetime increases on most of the surfaces when the low-frequency fields are applied. Reduction of adsorption interaction was observed also in IR spectra of interfacial water where the directional patterns are smeared as the intensities of applied fields increase.

  17. Integrated modeling of groundwater–surface water interactions in a tile-drained agricultural field

    NARCIS (Netherlands)

    Rosemeijer, J.C.; Velde, van der Y.; McLaren, R.G.; Geer, van F.C.; Broers, H.P.; Bierkens, M.F.P.

    2010-01-01

    Understanding the dynamics of groundwater–surface water interaction is needed to evaluate and simulate water and solute transport in catchments. However, direct measurements of the contributions of different flow routes from specific surfaces within a catchment toward the surface water are rarely av

  18. Daytime aircraft HONO Measurements over water surface during NOMASS Field Study

    Science.gov (United States)

    Ye, C.; Pu, D.; Zhou, X.; Stutz, J.; Mauldin, R.; Cantrell, C. A.; Weinheimer, A. J.; Knapp, D. J.; Haggerty, J. A.; Campos, T. L.; Guenther, A. B.; Kaser, L.; Jensen, J. B.

    2013-12-01

    The NOMDASS (Nitrogen, Oxidants, Mercury and Aerosol Distributions, Sources and Sinks) study is an NSF sponsored airborne experiment, integrating 3 PI-initiated projects: the NAAMEX (The North American Airborne Mercury Experiment), the SOAS (Southern Oxidant and Aerosol Study), and the TROPHONO (TROPospheric HONO) projects. During the NOMDASS field campaign from June 1 to July 15, 2013, based in Smyrna, TN, HONO was measured onboard NCAR's C-130 research aircraft in 19 research flights. In order to study in situ HONO production (i.e., volume production) within air masses, four research flights were designed and conducted over open waters to eliminate potential HONO contributions from ground surface sources. In the 2 inflow flights over the Atlantic Ocean off of the Carolina coast, up to 15 ppt HONO was observed in the clean marine boundary layer (MBL). To sustain the observed levels of HONO, a significant in situ HONO source, at a rate of ~60 ppt hr-1, must exist. Since the NOx mixing ratio was very low, ~ 40 ppt, NOx is unlikely to be a significant HONO precursor in the clean MBL. On the other hand, significant levels of particular nitrate were observed, up to 50 ppt. Photolysis of particulate nitrate may be a significant or even a major HONO source and may be an important re-NOx-ification pathway in this clean and low-NOx marine environment. In a flight over the Gulf of Mexico off of Houston, up to 40 ppt HONO was observed in the Houston plume; in a flight over Lake Michigan, up to 60 ppt HONO was observed in the Chicago plume. At elevated concentrations in urban plumes, HONO may be a significant OH precursor and may play an important role in the photochemical evolution of urban plume.

  19. Numerical Analysis of Novel Back Surface Field for High Efficiency Ultrathin CdTe Solar Cells

    Directory of Open Access Journals (Sweden)

    M. A. Matin

    2013-01-01

    Full Text Available This paper numerically explores the possibility of high efficiency, ultrathin, and stable CdTe cells with different back surface field (BSF using well accepted simulator AMPS-1D (analysis of microelectronics and photonic structures. A modified structure of CdTe based PV cell SnO2/Zn2SnO4/CdS/CdTe/BSF/BC has been proposed over reference structure SnO2/Zn2SnO4/CdS/CdTe/Cu. Both higher bandgap materials like ZnTe and Cu2Te and low bandgap materials like As2Te3 and Sb2Te3 have been used as BSF to reduce minority carrier recombination loss at the back contact in ultra-thin CdTe cells. In this analysis the highest conversion efficiency of CdTe based PV cell without BSF has been found to be around 17% using CdTe absorber thickness of 5 μm. However, the proposed structures with different BSF have shown acceptable efficiencies with an ultra-thin CdTe absorber of only 0.6 μm. The proposed structure with As2Te3 BSF showed the highest conversion efficiency of 20.8% ( V,  mA/cm2, and . Moreover, the proposed structures have shown improved stability in most extents, as it was found that the cells have relatively lower negative temperature coefficient. However, the cell with ZnTe BSF has shown better overall stability than other proposed cells with temperature coefficient (TC of −0.3%/°C.

  20. Dynamics in groundwater and surface water quality : from field-scale processes to catchment-scale monitoring

    NARCIS (Netherlands)

    Rozemeijer, J.C.|info:eu-repo/dai/nl/304838403

    2010-01-01

    Clean water is essential for our existence on earth. In areas with intensive agricultural land use, such as The Netherlands, groundwater and surface water resources are threatened. The leaching of agrochemicals from agricultural fields leads to contamination of drinking water resources and toxic