Compatible Spatial Discretizations for Partial Differential Equations
Energy Technology Data Exchange (ETDEWEB)
Arnold, Douglas, N, ed.
2004-11-25
From May 11--15, 2004, the Institute for Mathematics and its Applications held a hot topics workshop on Compatible Spatial Discretizations for Partial Differential Equations. The numerical solution of partial differential equations (PDE) is a fundamental task in science and engineering. The goal of the workshop was to bring together a spectrum of scientists at the forefront of the research in the numerical solution of PDEs to discuss compatible spatial discretizations. We define compatible spatial discretizations as those that inherit or mimic fundamental properties of the PDE such as topology, conservation, symmetries, and positivity structures and maximum principles. A wide variety of discretization methods applied across a wide range of scientific and engineering applications have been designed to or found to inherit or mimic intrinsic spatial structure and reproduce fundamental properties of the solution of the continuous PDE model at the finite dimensional level. A profusion of such methods and concepts relevant to understanding them have been developed and explored: mixed finite element methods, mimetic finite differences, support operator methods, control volume methods, discrete differential forms, Whitney forms, conservative differencing, discrete Hodge operators, discrete Helmholtz decomposition, finite integration techniques, staggered grid and dual grid methods, etc. This workshop seeks to foster communication among the diverse groups of researchers designing, applying, and studying such methods as well as researchers involved in practical solution of large scale problems that may benefit from advancements in such discretizations; to help elucidate the relations between the different methods and concepts; and to generally advance our understanding in the area of compatible spatial discretization methods for PDE. Particular points of emphasis included: + Identification of intrinsic properties of PDE models that are critical for the fidelity of numerical
Spatially localized, temporally quasiperiodic, discrete nonlinear excitations
International Nuclear Information System (INIS)
Cai, D.; Bishop, A.R.; Gronbech-Jensen, N.
1995-01-01
In contrast to the commonly discussed discrete breather, which is a spatially localized, time-periodic solution, we present an exact solution of a discrete nonlinear Schroedinger breather which is a spatially localized, temporally quasiperiodic nonlinear coherent excitation. This breather is a multiple-soliton solution in the sense of the inverse scattering transform. A discrete breather of multiple frequencies is conceptually important in studies of nonlinear lattice systems. We point out that, for this breather, the incommensurability of its frequencies is a discrete lattice effect and these frequencies become commensurate in the continuum limit. To understand the dynamical properties of the breather, we also discuss its stability and its behavior in the presence of an external potential. Finally, we indicate how to obtain an exact N-soliton breather as a discrete generalization of the continuum multiple-soliton solution
Compatible discrete operator schemes on polyhedral meshes for elliptic and Stokes equations
International Nuclear Information System (INIS)
Bonelle, Jerome
2014-01-01
This thesis presents a new class of spatial discretization schemes on polyhedral meshes, called Compatible Discrete Operator (CDO) schemes and their application to elliptic and Stokes equations In CDO schemes, preserving the structural properties of the continuous equations is the leading principle to design the discrete operators. De Rham maps define the degrees of freedom according to the physical nature of fields to discretize. CDO schemes operate a clear separation between topological relations (balance equations) and constitutive relations (closure laws). Topological relations are related to discrete differential operators, and constitutive relations to discrete Hodge operators. A feature of CDO schemes is the explicit use of a second mesh, called dual mesh, to build the discrete Hodge operator. Two families of CDO schemes are considered: vertex-based schemes where the potential is located at (primal) mesh vertices, and cell-based schemes where the potential is located at dual mesh vertices (dual vertices being in one-to-one correspondence with primal cells). The CDO schemes related to these two families are presented and their convergence is analyzed. A first analysis hinges on an algebraic definition of the discrete Hodge operator and allows one to identify three key properties: symmetry, stability, and P0-consistency. A second analysis hinges on a definition of the discrete Hodge operator using reconstruction operators, and the requirements on these reconstruction operators are identified. In addition, CDO schemes provide a unified vision on a broad class of schemes proposed in the literature (finite element, finite element, mimetic schemes... ). Finally, the reliability and the efficiency of CDO schemes are assessed on various test cases and several polyhedral meshes. (author)
Pointing Hand Stimuli Induce Spatial Compatibility Effects and Effector Priming
Directory of Open Access Journals (Sweden)
Akio eNishimura
2013-04-01
Full Text Available The present study investigated the automatic influence of perceiving a picture that indicates other’s action on one’s own task performance in terms of spatial compatibility and effector priming. Participants pressed left and right buttons with their left and right hands respectively, depending on the color of a central dot target. Preceding the target, a left or right hand stimulus (pointing either to the left or right with the index or little finger was presented. In Experiment 1, with brief presentation of the pointing hand, a spatial compatibility effect was observed: Responses were faster when the direction of the pointed finger and the response position were spatially congruent than when incongruent. The spatial compatibility effect was larger for the pointing index finger stimulus compared to the pointing little finger stimulus. Experiment 2 employed longer duration of the pointing hand stimuli. In addition to the spatial compatibility effect for the pointing index finger, the effector priming effect was observed: Responses were faster when the anatomical left/right identity of the pointing and response hands matched than when the pointing and response hands differed in left/right identity. The results indicate that with sufficient processing time, both spatial/symbolic and anatomical features of a static body part implying another’s action simultaneously influence different aspects of the perceiver’s own action. Hierarchical coding, according to which an anatomical code is used only when a spatial code is unavailable, may not be applicable if stimuli as well as responses contain anatomical features.
Action compatibility in spatial knowledge developed through virtual navigation.
Wang, Qi; Taylor, Holly A; Brunyé, Tad T
2018-01-09
Action-compatibility effects (ACEs) arise due to incongruity between perceptuo-motor traces stored in memory and the perceptuo-motor demands of a retrieval task. Recent research has suggested that ACEs arising during spatial memory retrieval are additionally modulated by individual differences in how experienced participants are with a college campus environment. However, the extent and nature of experience with a real-world environment is difficult to assess and control, and characteristics of the retrieval task itself might modulate ACEs during spatial memory retrieval. The present study provides a more controlled and in-depth examination of how individual differences and task-based factors interact to shape ACEs when participants retrieve spatial memories. In two experiments, participants with varied video game experience learned a virtual environment and then used the computer mouse to verify spatial relationships from different perspectives. Mouse trajectories demonstrated ACEs, differing by retrieval perspective and video game experience. Videogame experts demonstrated the ACE based on learned spatial relationships during egocentric retrieval only, whereas videogame novices showed the ACE based on semantic processing of directional terms only. Specifically, gaming experts invoke perspective-specific perceptuo-motor associations to retrieve spatial knowledge, whereas non-experts are influenced by semantically based associations specific to the retrieval task. Results are discussed in the context of action-compatibility effects, the intentional weighting hypothesis, and the flexible encoding and retrieval of spatial information.
Asymptotic analysis of spatial discretizations in implicit Monte Carlo
International Nuclear Information System (INIS)
Densmore, Jeffery D.
2009-01-01
We perform an asymptotic analysis of spatial discretizations in Implicit Monte Carlo (IMC). We consider two asymptotic scalings: one that represents a time step that resolves the mean-free time, and one that corresponds to a fixed, optically large time step. We show that only the latter scaling results in a valid spatial discretization of the proper diffusion equation, and thus we conclude that IMC only yields accurate solutions when using optically large spatial cells if time steps are also optically large. We demonstrate the validity of our analysis with a set of numerical examples.
Simpson, R. N.; Liu, Z.; Vázquez, R.; Evans, J. A.
2018-06-01
We outline the construction of compatible B-splines on 3D surfaces that satisfy the continuity requirements for electromagnetic scattering analysis with the boundary element method (method of moments). Our approach makes use of Non-Uniform Rational B-splines to represent model geometry and compatible B-splines to approximate the surface current, and adopts the isogeometric concept in which the basis for analysis is taken directly from CAD (geometry) data. The approach allows for high-order approximations and crucially provides a direct link with CAD data structures that allows for efficient design workflows. After outlining the construction of div- and curl-conforming B-splines defined over 3D surfaces we describe their use with the electric and magnetic field integral equations using a Galerkin formulation. We use Bézier extraction to accelerate the computation of NURBS and B-spline terms and employ H-matrices to provide accelerated computations and memory reduction for the dense matrices that result from the boundary integral discretization. The method is verified using the well known Mie scattering problem posed over a perfectly electrically conducting sphere and the classic NASA almond problem. Finally, we demonstrate the ability of the approach to handle models with complex geometry directly from CAD without mesh generation.
Slab geometry spatial discretization schemes with infinite-order convergence
International Nuclear Information System (INIS)
Adams, M.L.; Martin, W.R.
1985-01-01
Spatial discretization schemes for the slab geometry discrete ordinates transport equation have received considerable attention in the past several years, with particular interest shown in developing methods that are more computationally efficient that standard schemes. Here the authors apply to the discrete ordinates equations a spectral method that is significantly more efficient than previously proposed schemes for high-accuracy calculations of homogeneous problems. This is a direct consequence of the exponential (infinite-order) convergence of spectral methods for problems with every smooth solutions. For heterogeneous problems where smooth solutions do not exist and exponential convergence is not observed with spectral methods, a spectral element method is proposed which does exhibit exponential convergence
Discrete field theories and spatial properties of strings
International Nuclear Information System (INIS)
Klebanov, I.; Susskind, L.
1988-10-01
We use the ground-state wave function in the light-cone gauge to study the spatial properties of fundamental strings. We find that, as the cut-off in the parameter space is removed, the strings are smooth and have a divergent size. Guided by these properties, we consider a large-N lattice gauge theory which has an unstable phase where the size of strings diverges. We show that this phase exactly describes free fundamental strings. The lattice spacing does not have to be taken to zero for this equivalence to hold. Thus, exact rotation and translation invariance is restored in a discrete space. This suggests that the number of fundamental short-distance degrees of freedom in string theory is much smaller than in a conventional field theory. 11 refs., 4 figs
International Nuclear Information System (INIS)
Larsen, E.W.; Alcouffe, R.E.
1981-01-01
In this article a new linear characteristic (LC) spatial differencing scheme for the discrete ordinates equations in (x,y)-geometry is described and numerical comparisons are given with the diamond difference (DD) method. The LC method is more stable with mesh size and is generally much more accurate than the DD method on both fine and coarse meshes, for eigenvalue and deep penetration problems. The LC method is based on computations involving the exact solution of a cell problem which has spatially linear boundary conditions and interior source. The LC method is coupled to the diffusion synthetic acceleration (DSA) algorithm in that the linear variations of the source are determined in part by the results of the DSA calculation from the previous inner iteration. An inexpensive negative-flux fixup is used which has very little effect on the accuracy of the solution. The storage requirements for LC are essentially the same as that for DD, while the computational times for LC are generally less than twice the DD computational times for the same mesh. This increase in computational cost is offset if one computes LC solutions on somewhat coarser meshes than DD; the resulting LC solutions are still generally much more accurate than the DD solutions. (orig.) [de
A new spatial multiple discrete-continuous modeling approach to land use change analysis.
2013-09-01
This report formulates a multiple discrete-continuous probit (MDCP) land-use model within a : spatially explicit economic structural framework for land-use change decisions. The spatial : MDCP model is capable of predicting both the type and intensit...
Mimetic discretization methods
Castillo, Jose E
2013-01-01
To help solve physical and engineering problems, mimetic or compatible algebraic discretization methods employ discrete constructs to mimic the continuous identities and theorems found in vector calculus. Mimetic Discretization Methods focuses on the recent mimetic discretization method co-developed by the first author. Based on the Castillo-Grone operators, this simple mimetic discretization method is invariably valid for spatial dimensions no greater than three. The book also presents a numerical method for obtaining corresponding discrete operators that mimic the continuum differential and
International Nuclear Information System (INIS)
Bailey, Teresa S.; Warsa, James S.; Chang, Jae H.; Adams, Marvin L.
2011-01-01
We present a new spatial discretization of the discrete-ordinates transport equation in two dimensional Cartesian (X-Y) geometry for arbitrary polygonal meshes. The discretization is a discontinuous finite element method (DFEM) that utilizes piecewise bi-linear (PWBL) basis functions, which are formally introduced in this paper. We also present a series of numerical results on quadrilateral and polygonal grids and compare these results to a variety of other spatial discretization that have been shown to be successful on these grid types. Finally, we note that the properties of the PWBL basis functions are such that the leading-order piecewise bi-linear discontinuous finite element (PWBLD) solution will satisfy a reasonably accurate diffusion discretization in the thick diffusion limit, making the PWBLD method a viable candidate for many different classes of transport problems. (author)
The effect of spatial discretization in LWR cell calculations with HELIOS 1.9
International Nuclear Information System (INIS)
Merk, B.; Koch, R.
2008-01-01
Cell and lattice calculations are the basis for all deterministic static and transient 3D full core calculations. The spatial discretization used for the cell and lattice calculations influences the results for these transport solutions significantly. The arising differences in the neutron flux distribution due to different spatial discretization are demonstrated. These differences in the flux distribution cause significant changes in the kinf value. An evaluation of the kinf value for the case of infinitely fine discretization is made. The influence of the discretization on the calculation of homogenized few group cross sections which are forwarded to the 3D full core calculations is investigated. Strategies for improving the discretization are developed and their influence on the calculation time is evaluated. (Authors)
International Nuclear Information System (INIS)
Bailey, T.S.; Chang, J.H.; Warsa, J.S.; Adams, M.L.
2010-01-01
We present a new spatial discretization of the discrete-ordinates transport equation in two-dimensional Cartesian (X-Y) geometry for arbitrary polygonal meshes. The discretization is a discontinuous finite element method (DFEM) that utilizes piecewise bi-linear (PWBL) basis functions, which are formally introduced in this paper. We also present a series of numerical results on quadrilateral and polygonal grids and compare these results to a variety of other spatial discretizations that have been shown to be successful on these grid types. Finally, we note that the properties of the PWBL basis functions are such that the leading-order piecewise bi-linear discontinuous finite element (PWBLD) solution will satisfy a reasonably accurate diffusion discretization in the thick diffusion limit, making the PWBLD method a viable candidate for many different classes of transport problems.
Energy Technology Data Exchange (ETDEWEB)
Bailey, T S; Chang, J H; Warsa, J S; Adams, M L
2010-12-22
We present a new spatial discretization of the discrete-ordinates transport equation in two-dimensional Cartesian (X-Y) geometry for arbitrary polygonal meshes. The discretization is a discontinuous finite element method (DFEM) that utilizes piecewise bi-linear (PWBL) basis functions, which are formally introduced in this paper. We also present a series of numerical results on quadrilateral and polygonal grids and compare these results to a variety of other spatial discretizations that have been shown to be successful on these grid types. Finally, we note that the properties of the PWBL basis functions are such that the leading-order piecewise bi-linear discontinuous finite element (PWBLD) solution will satisfy a reasonably accurate diffusion discretization in the thick diffusion limit, making the PWBLD method a viable candidate for many different classes of transport problems.
Spatial Treatment of the Slab-geometry Discrete Ordinates Equations Using Artificial Neural Networks
International Nuclear Information System (INIS)
Brantley, P S
2001-01-01
An artificial neural network (ANN) method is developed for treating the spatial variable of the one-group slab-geometry discrete ordinates (S N ) equations in a homogeneous medium with linearly anisotropic scattering. This ANN method takes advantage of the function approximation capability of multilayer ANNs. The discrete ordinates angular flux is approximated by a multilayer ANN with a single input representing the spatial variable x and N outputs representing the angular flux in each of the discrete ordinates angular directions. A global objective function is formulated which measures how accurately the output of the ANN approximates the solution of the discrete ordinates equations and boundary conditions at specified spatial points. Minimization of this objective function determines the appropriate values for the parameters of the ANN. Numerical results are presented demonstrating the accuracy of the method for both fixed source and incident angular flux problems
Spreading speed and travelling waves for a spatially discrete SIS epidemic model
International Nuclear Information System (INIS)
Zhang, Kate Fang; Zhao Xiaoqiang
2008-01-01
This paper is devoted to the study of the asymptotic speed of spread and travelling waves for a spatially discrete SIS epidemic model. By appealing to the theory of spreading speeds and travelling waves for monotonic semiflows, we establish the existence of asymptotic speed of spread and show that it coincides with the minimal wave speed for monotonic travelling waves. This also gives an affirmative answer to an open problem presented by Rass and Radcliffe (2003 Spatial Deterministic Epidemics (Mathematical Surveys and Monographs vol 102) (Providence, RI: American Mathematical Society)) in the case of discrete spatial habitat
Sowden, Sophie; Koehne, Svenja; Catmur, Caroline; Dziobek, Isabel; Bird, Geoffrey
2016-02-01
A lack of imitative behavior is frequently described as a core feature of Autism Spectrum Disorder (ASD), and is consistent with claims of mirror neuron system dysfunction in these individuals. Previous research has questioned this characterization of ASD however, arguing that when tests of automatic imitation are used--which do not require higher-level cognitive processing--imitative behavior is intact or even enhanced in individuals with ASD. In Experiment 1, 60 adult individuals with ASD and a matched Control group completed an automatic imitation task in which they were required to perform an index or a middle finger lift while observing a hand making either the same, or the alternate, finger movement. Both groups demonstrated a significant imitation effect whereby actions were executed faster when preceded by observation of the same action, than when preceded by the alternate action. The magnitude of this "imitation effect" was statistically indistinguishable in the ASD and Control groups. Experiment 2 utilized an improved automatic imitation paradigm to demonstrate that, when automatic imitation effects are isolated from those due to spatial compatibility, increasing autism symptom severity is associated with an increased tendency to imitate. Notably, there was no association between autism symptom severity and spatial compatibility, demonstrating the specificity of the link between ASD symptoms and increased imitation. These results provide evidence against claims of a lack of imitative behavior in ASD, and challenge the "Broken Mirror Theory of Autism." © 2015 International Society for Autism Research, Wiley Periodicals, Inc.
Normal scheme for solving the transport equation independently of spatial discretization
International Nuclear Information System (INIS)
Zamonsky, O.M.
1993-01-01
To solve the discrete ordinates neutron transport equation, a general order nodal scheme is used, where nodes are allowed to have different orders of approximation and the whole system reaches a final order distribution. Independence in the election of system discretization and order of approximation is obtained without loss of accuracy. The final equations and the iterative method to reach a converged order solution were implemented in a two-dimensional computer code to solve monoenergetic, isotropic scattering, external source problems. Two benchmark problems were solved using different automatic selection order methods. Results show accurate solutions without spatial discretization, regardless of the initial selection of distribution order. (author)
Spatial Discrete Soliton in Two dimensional with Kerr medium
International Nuclear Information System (INIS)
Aghdami, M.; Mostafavi, D.; Mokhtari, F.; Keradmand, R.
2012-01-01
In this theoretical work propagation of the Gaussian beam through a two dimensional waveguides array is numerically investigated, in which each waveguide contains medium with Kerr nonlinearity considering coupling to vertical, horizontal and diagonal neighbor through light electric field. Different values of intensity, nonlinear coefficient Kerr and Gaussian beam width of incident Gaussian beam are examined and finally suitable parameters for providing central spatial solitons are obtained.
Liu, Yung-Ching; Jhuang, Jing-Wun
2012-07-01
A driving simulator study was conducted to evaluate the effects of five in-vehicle warning information displays upon drivers' emergent response and decision performance. These displays include visual display, auditory displays with and without spatial compatibility, hybrid displays in both visual and auditory format with and without spatial compatibility. Thirty volunteer drivers were recruited to perform various tasks that involved driving, stimulus-response, divided attention and stress rating. Results show that for displays of single-modality, drivers benefited more when coping with visual display of warning information than auditory display with or without spatial compatibility. However, auditory display with spatial compatibility significantly improved drivers' performance in reacting to the divided attention task and making accurate S-R task decision. Drivers' best performance results were obtained for hybrid display with spatial compatibility. Hybrid displays enabled drivers to respond the fastest and achieve the best accuracy in both S-R and divided attention tasks. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Does cooperation mean kinship between spatially discrete ant nests?
Procter, Duncan S; Cottrell, Joan E; Watts, Kevin; A'Hara, Stuart W; Hofreiter, Michael; Robinson, Elva J H
2016-12-01
Eusociality is one of the most complex forms of social organization, characterized by cooperative and reproductive units termed colonies. Altruistic behavior of workers within colonies is explained by inclusive fitness, with indirect fitness benefits accrued by helping kin. Members of a social insect colony are expected to be more closely related to one another than they are to other conspecifics. In many social insects, the colony can extend to multiple socially connected but spatially separate nests (polydomy). Social connections, such as trails between nests, promote cooperation and resource exchange, and we predict that workers from socially connected nests will have higher internest relatedness than those from socially unconnected, and noncooperating, nests. We measure social connections, resource exchange, and internest genetic relatedness in the polydomous wood ant Formica lugubris to test whether (1) socially connected but spatially separate nests cooperate, and (2) high internest relatedness is the underlying driver of this cooperation. Our results show that socially connected nests exhibit movement of workers and resources, which suggests they do cooperate, whereas unconnected nests do not. However, we find no difference in internest genetic relatedness between socially connected and unconnected nest pairs, both show high kinship. Our results suggest that neighboring pairs of connected nests show a social and cooperative distinction, but no genetic distinction. We hypothesize that the loss of a social connection may initiate ecological divergence within colonies. Genetic divergence between neighboring nests may build up only later, as a consequence rather than a cause of colony separation.
Structure Preserving Spatial Discretization of a 1-D Piezoelectric Timoshenko Beam
Voss, T.; Scherpen, J. M. A.
2011-01-01
In this paper we show how to spatially discretize a distributed model of a piezoelectric beam representing the dynamics of an inflatable space reflector in port-Hamiltonian (pH) form. This model can then be used to design a controller for the shape of the inflatable structure. Inflatable structures
Density perturbations due to the inhomogeneous discrete spatial structure of space-time
International Nuclear Information System (INIS)
Wolf, C.
1998-01-01
For the case that space-time permits an inhomogeneous discrete spatial structure due to varying gravitational fields or a foam-like structure of space-time, it is demonstrated that thermodynamic reasoning implies that matter-density perturbations will arise in the early universe
Spatial discretizations for self-adjoint forms of the radiative transfer equations
International Nuclear Information System (INIS)
Morel, Jim E.; Adams, B. Todd; Noh, Taewan; McGhee, John M.; Evans, Thomas M.; Urbatsch, Todd J.
2006-01-01
There are three commonly recognized second-order self-adjoint forms of the neutron transport equation: the even-parity equations, the odd-parity equations, and the self-adjoint angular flux equations. Because all of these equations contain second-order spatial derivatives and are self-adjoint for the mono-energetic case, standard continuous finite-element discretization techniques have proved quite effective when applied to the spatial variables. We first derive analogs of these equations for the case of time-dependent radiative transfer. The primary unknowns for these equations are functions of the angular intensity rather than the angular flux, hence the analog of the self-adjoint angular flux equation is referred to as the self-adjoint angular intensity equation. Then we describe a general, arbitrary-order, continuous spatial finite-element approach that is applied to each of the three equations in conjunction with backward-Euler differencing in time. We refer to it as the 'standard' technique. We also introduce an alternative spatial discretization scheme for the self-adjoint angular intensity equation that requires far fewer unknowns than the standard method, but appears to give comparable accuracy. Computational results are given that demonstrate the validity of both of these discretization schemes
International Nuclear Information System (INIS)
Thompson, K.G.
2000-01-01
In this work, we develop a new spatial discretization scheme that may be used to numerically solve the neutron transport equation. This new discretization extends the family of corner balance spatial discretizations to include spatial grids of arbitrary polyhedra. This scheme enforces balance on subcell volumes called corners. It produces a lower triangular matrix for sweeping, is algebraically linear, is non-negative in a source-free absorber, and produces a robust and accurate solution in thick diffusive regions. Using an asymptotic analysis, we design the scheme so that in thick diffusive regions it will attain the same solution as an accurate polyhedral diffusion discretization. We then refine the approximations in the scheme to reduce numerical diffusion in vacuums, and we attempt to capture a second order truncation error. After we develop this Upstream Corner Balance Linear (UCBL) discretization we analyze its characteristics in several limits. We complete a full diffusion limit analysis showing that we capture the desired diffusion discretization in optically thick and highly scattering media. We review the upstream and linear properties of our discretization and then demonstrate that our scheme captures strictly non-negative solutions in source-free purely absorbing media. We then demonstrate the minimization of numerical diffusion of a beam and then demonstrate that the scheme is, in general, first order accurate. We also note that for slab-like problems our method actually behaves like a second-order method over a range of cell thicknesses that are of practical interest. We also discuss why our scheme is first order accurate for truly 3D problems and suggest changes in the algorithm that should make it a second-order accurate scheme. Finally, we demonstrate 3D UCBL's performance on several very different test problems. We show good performance in diffusive and streaming problems. We analyze truncation error in a 3D problem and demonstrate robustness in a
International Nuclear Information System (INIS)
Merk, B.; Weiss, F. P.
2009-01-01
Cell and burnup calculations are fundamental to all deterministic static and transient 3D full core calculations for different operational states of the reactor. The spatial discretization used for the cell and burnup calculations influences significantly the results of full integral transport solutions. The influence of the discretization on k inf is shown for the steady state case and the influence on the neutron spectrum is analyzed. Moreover, the differences in k inf are presented for different spatial discretization strategies in the burnup calculation of Uranium Oxide (UOX) fuel. The resulting different flux distributions cause significant changes in the isotopic densities. The influence of the discretization strategies on the calculation of homogenized few group cross-sections is investigated. This detailed discretization study demonstrates the need for sufficiently fine discretization to produce reliable and accurate results when using integral transport methods. In contrast to the currently used discretization schemes, refined discretization is especially important in the moderator region of the unit cell to reproduce the influence on the thermal neutron spectrum. Additionally, the need for sufficient discretization affects the idea of full core calculations based on integral transport methods since it has to be discussed whether it is worth to do full core calculations with reduced discretization when facing this strong discretization effect. The computer resources required for full core calculations with fine discretization are currently not available. (authors)
International Nuclear Information System (INIS)
Barros, R.C. de; Larsen, E.W.
1991-01-01
A generalization of the one-group Spectral Green's Function (SGF) method is developed for multigroup, slab-geometry discrete ordinates (S N ) problems. The multigroup SGF method is free from spatial truncation errors; it generated numerical values for the cell-edge and cell-average angular fluxes that agree with the analytic solution of the multigroup S N equations. Numerical results are given to illustrate the method's accuracy
Spatial and Angular Moment Analysis of Continuous and Discretized Transport Problems
International Nuclear Information System (INIS)
Brantley, Patrick S.; Larsen, Edward W.
2000-01-01
A new theoretical tool for analyzing continuous and discretized transport equations is presented. This technique is based on a spatial and angular moment analysis of the analytic transport equation, which yields exact expressions for the 'center of mass' and 'squared radius of gyration' of the particle distribution. Essentially the same moment analysis is applied to discretized particle transport problems to determine numerical expressions for the center of mass and squared radius of gyration. Because this technique makes no assumption about the optical thickness of the spatial cells or about the amount of absorption in the system, it is applicable to problems that cannot be analyzed by a truncation analysis or an asymptotic diffusion limit analysis. The spatial differencing schemes examined (weighted- diamond, lumped linear discontinuous, and multiple balance) yield a numerically consistent expression for computing the squared radius of gyration plus an error term that depends on the mesh spacing, quadrature constants, and material properties of the system. The numerical results presented suggest that the relative accuracy of spatial differencing schemes for different types of problems can be assessed by comparing the magnitudes of these error terms
International Nuclear Information System (INIS)
Žukovič, Milan; Hristopulos, Dionissios T
2009-01-01
A current problem of practical significance is how to analyze large, spatially distributed, environmental data sets. The problem is more challenging for variables that follow non-Gaussian distributions. We show by means of numerical simulations that the spatial correlations between variables can be captured by interactions between 'spins'. The spins represent multilevel discretizations of environmental variables with respect to a number of pre-defined thresholds. The spatial dependence between the 'spins' is imposed by means of short-range interactions. We present two approaches, inspired by the Ising and Potts models, that generate conditional simulations of spatially distributed variables from samples with missing data. Currently, the sampling and simulation points are assumed to be at the nodes of a regular grid. The conditional simulations of the 'spin system' are forced to respect locally the sample values and the system statistics globally. The second constraint is enforced by minimizing a cost function representing the deviation between normalized correlation energies of the simulated and the sample distributions. In the approach based on the N c -state Potts model, each point is assigned to one of N c classes. The interactions involve all the points simultaneously. In the Ising model approach, a sequential simulation scheme is used: the discretization at each simulation level is binomial (i.e., ± 1). Information propagates from lower to higher levels as the simulation proceeds. We compare the two approaches in terms of their ability to reproduce the target statistics (e.g., the histogram and the variogram of the sample distribution), to predict data at unsampled locations, as well as in terms of their computational complexity. The comparison is based on a non-Gaussian data set (derived from a digital elevation model of the Walker Lake area, Nevada, USA). We discuss the impact of relevant simulation parameters, such as the domain size, the number of
Žukovič, Milan; Hristopulos, Dionissios T.
2009-02-01
A current problem of practical significance is how to analyze large, spatially distributed, environmental data sets. The problem is more challenging for variables that follow non-Gaussian distributions. We show by means of numerical simulations that the spatial correlations between variables can be captured by interactions between 'spins'. The spins represent multilevel discretizations of environmental variables with respect to a number of pre-defined thresholds. The spatial dependence between the 'spins' is imposed by means of short-range interactions. We present two approaches, inspired by the Ising and Potts models, that generate conditional simulations of spatially distributed variables from samples with missing data. Currently, the sampling and simulation points are assumed to be at the nodes of a regular grid. The conditional simulations of the 'spin system' are forced to respect locally the sample values and the system statistics globally. The second constraint is enforced by minimizing a cost function representing the deviation between normalized correlation energies of the simulated and the sample distributions. In the approach based on the Nc-state Potts model, each point is assigned to one of Nc classes. The interactions involve all the points simultaneously. In the Ising model approach, a sequential simulation scheme is used: the discretization at each simulation level is binomial (i.e., ± 1). Information propagates from lower to higher levels as the simulation proceeds. We compare the two approaches in terms of their ability to reproduce the target statistics (e.g., the histogram and the variogram of the sample distribution), to predict data at unsampled locations, as well as in terms of their computational complexity. The comparison is based on a non-Gaussian data set (derived from a digital elevation model of the Walker Lake area, Nevada, USA). We discuss the impact of relevant simulation parameters, such as the domain size, the number of
S2SA preconditioning for the Sn equations with strictly non negative spatial discretization
International Nuclear Information System (INIS)
Bruss, D. E.; Morel, J. E.; Ragusa, J. C.
2013-01-01
Preconditioners based upon sweeps and diffusion-synthetic acceleration have been constructed and applied to the zeroth and first spatial moments of the 1-D S n transport equation using a strictly non negative nonlinear spatial closure. Linear and nonlinear preconditioners have been analyzed. The effectiveness of various combinations of these preconditioners are compared. In one dimension, nonlinear sweep preconditioning is shown to be superior to linear sweep preconditioning, and DSA preconditioning using nonlinear sweeps in conjunction with a linear diffusion equation is found to be essentially equivalent to nonlinear sweeps in conjunction with a nonlinear diffusion equation. The ability to use a linear diffusion equation has important implications for preconditioning the S n equations with a strictly non negative spatial discretization in multiple dimensions. (authors)
On the influence of spatial discretization in LWR cell- and lattice calculations with HELIOS 1.9
International Nuclear Information System (INIS)
Merk, B.; Koch, R.
2008-01-01
Cell- and lattice calculations are the fundamental for all deterministic static and transient 3D full core calculations. The spatial discretization used for the cell- and lattice calculations influences the results for these transport solutions significantly. The arising differences in the neutron flux distribution due to different spatial discretization are demonstrated. These differences in the flux distribution cause significant changes in the k inf value. An evaluation of the k inf value for the case of infinitely fine discretization is made. The influence of the discretization on the calculation of homogenized few group cross-sections which are forwarded to the 3D full core calculations is investigated. Strategies for improving the discretization are developed and their influence on the calculation time is evaluated
Testing Ecological Theories of Offender Spatial Decision Making Using a Discrete Choice Model
Summers, Lucia
2015-01-01
Research demonstrates that crime is spatially concentrated. However, most research relies on information about where crimes occur, without reference to where offenders reside. This study examines how the characteristics of neighborhoods and their proximity to offender home locations affect offender spatial decision making. Using a discrete choice model and data for detected incidents of theft from vehicles (TFV), we test predictions from two theoretical perspectives—crime pattern and social disorganization theories. We demonstrate that offenders favor areas that are low in social cohesion and closer to their home, or other age-related activity nodes. For adult offenders, choices also appear to be influenced by how accessible a neighborhood is via the street network. The implications for criminological theory and crime prevention are discussed. PMID:25866412
Testing Ecological Theories of Offender Spatial Decision Making Using a Discrete Choice Model.
Johnson, Shane D; Summers, Lucia
2015-04-01
Research demonstrates that crime is spatially concentrated. However, most research relies on information about where crimes occur, without reference to where offenders reside. This study examines how the characteristics of neighborhoods and their proximity to offender home locations affect offender spatial decision making. Using a discrete choice model and data for detected incidents of theft from vehicles (TFV) , we test predictions from two theoretical perspectives-crime pattern and social disorganization theories. We demonstrate that offenders favor areas that are low in social cohesion and closer to their home, or other age-related activity nodes. For adult offenders, choices also appear to be influenced by how accessible a neighborhood is via the street network. The implications for criminological theory and crime prevention are discussed.
On the influence of spatial discretization on cross section preparation with HELIOS 1.9
International Nuclear Information System (INIS)
Merk, B.; Koch, R.
2008-01-01
function'' [ 2]. This approximation requires a careful spatial discretization to produce reliable results. The problem of discretization for the solution of the diffusion equation by finite difference methods has been studied in the past [ 3]. The influence of the spatial discretization strategy on the infinite multiplication facto k inf , the neutron flux distribution and the prepared two group cross sections in a single cell will be investigated here for the collision probability method of the code system HELIOS 1.9. (orig.)
International Nuclear Information System (INIS)
Fischer, J.W.; Azmy, Y.Y.
2003-01-01
A previously reported parallel performance model for Angular Domain Decomposition (ADD) of the Discrete Ordinates method for solving multidimensional neutron transport problems is revisited for further validation. Three communication schemes: native MPI, the bucket algorithm, and the distributed bucket algorithm, are included in the validation exercise that is successfully conducted on a Beowulf cluster. The parallel performance model is comprised of three components: serial, parallel, and communication. The serial component is largely independent of the number of participating processors, P, while the parallel component decreases like 1/P. These two components are independent of the communication scheme, in contrast with the communication component that typically increases with P in a manner highly dependent on the global reduced algorithm. Correct trends for each component and each communication scheme were measured for the Arbitrarily High Order Transport (AHOT) code, thus validating the performance models. Furthermore, extensive experiments illustrate the superiority of the bucket algorithm. The primary question addressed in this research is: for a given problem size, which domain decomposition method, angular or spatial, is best suited to parallelize Discrete Ordinates methods on a specific computational platform? We address this question for three-dimensional applications via parallel performance models that include parameters specifying the problem size and system performance: the above-mentioned ADD, and a previously constructed and validated Spatial Domain Decomposition (SDD) model. We conclude that for large problems the parallel component dwarfs the communication component even on moderately large numbers of processors. The main advantages of SDD are: (a) scalability to higher numbers of processors of the order of the number of computational cells; (b) smaller memory requirement; (c) better performance than ADD on high-end platforms and large number of
WATERSHED SPATIAL DISCRETIZATION FOR THE ANALYSIS OF LAND USE CHANGE IN COASTAL REGIONS
Directory of Open Access Journals (Sweden)
Vassiliki Terezinha Galvão Boulomytis
Full Text Available In this study, we present a methodology to discretize a non-assessed basin based on terrain analysis using the SRTM digital elevation model (DEM and a high resolution surface model (DSM with a drainage network semi-automatic extraction process. The Juqueriquerê River Basin was used for the case study, which has the most representative non-urbanized plains of the northern coastline of São Paulo State, Brazil. The low-lying region is featured by elevations close to the sea level, mild slopes, and shallow water tables. It is also influenced by tidal variation and orographic rains. Therefore, frequent flooding occurs, even in vegetated areas. Two conflicting land use scenarios, proposed by the City Master Plan (CMP of Caraguatatuba and the Ecological-Economical Zoning (EEZ, were compared to analyze the flood vulnerability increase and geotechnical risk caused by the urbanization process. The drainage extraction techniques showed better results on high resolution DSM for low-lying regions than the SRTM DEM and determined with accuracy the locations of flood potentiality in the plains. The watershed spatial discretization allowed us to show the effects of the two different land use approaches, considering the flood vulnerability and geotechnical risk of each sub-basin
Effect of flux discontinuity on spatial approximations for discrete ordinates methods
International Nuclear Information System (INIS)
Duo, J.I.; Azmy, Y.Y.
2005-01-01
This work presents advances on error analysis of the spatial approximation of the discrete ordinates method for solving the neutron transport equation. Error norms for different non-collided flux problems over a two dimensional pure absorber medium are evaluated using three numerical methods. The problems are characterized by the incoming flux boundary conditions to obtain solutions with different level of differentiability. The three methods considered are the Diamond Difference (DD) method, the Arbitrarily High Order Transport method of the Nodal type (AHOT-N), and of the Characteristic type (AHOT-C). The last two methods are employed in constant, linear and quadratic orders of spatial approximation. The cell-wise error is computed as the difference between the cell-averaged flux computed by each method and the exact value, then the L 1 , L 2 , and L ∞ error norms are calculated. The results of this study demonstrate that the level of differentiability of the exact solution profoundly affects the rate of convergence of the numerical methods' solutions. Furthermore, in the case of discontinuous exact flux the methods fail to converge in the maximum error norm, or in the pointwise sense, in accordance with previous local error analysis. (authors)
Spatially discrete thermal drawing of biodegradable microneedles for vascular drug delivery.
Choi, Chang Kuk; Lee, Kang Ju; Youn, Young Nam; Jang, Eui Hwa; Kim, Woong; Min, Byung-Kwon; Ryu, WonHyoung
2013-02-01
Spatially discrete thermal drawing is introduced as a novel method for the fabrication of biodegradable microneedles with ultra-sharp tip ends. This method provides the enhanced control of microneedle shapes by spatially controlling the temperature of drawn polymer as well as drawing steps and speeds. Particular focus is given on the formation of sharp tip ends of microneedles at the end of thermal drawing. Previous works relied on the fracture of polymer neck by fast drawing that often causes uncontrolled shapes of microneedle tips. Instead, this approach utilizes the surface energy of heated polymer to form ultra-sharp tip ends. We have investigated the effect of such temperature control, drawing speed, and drawing steps in thermal drawing process on the final shape of microneedles using biodegradable polymers. XRD analysis was performed to analyze the effect of thermal cycle on the biodegradable polymer. Load-displacement measurement also showed the dependency of mechanical strengths of microneedles on the microneedle shapes. Ex vivo vascular tissue insertion and drug delivery demonstrated microneedle insertion to tunica media layer of canine aorta and drug distribution in the tissue layer. Copyright © 2012 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Densmore, Jeffery D.
2011-01-01
We perform an asymptotic analysis of the spatial discretization of radiation absorption and re-emission in Implicit Monte Carlo (IMC), a Monte Carlo technique for simulating nonlinear radiative transfer. Specifically, we examine the approximation of absorption and re-emission by a spatially continuous artificial-scattering process and either a piecewise-constant or piecewise-linear emission source within each spatial cell. We consider three asymptotic scalings representing (i) a time step that resolves the mean-free time, (ii) a Courant limit on the time-step size, and (iii) a fixed time step that does not depend on any asymptotic scaling. For the piecewise-constant approximation, we show that only the third scaling results in a valid discretization of the proper diffusion equation, which implies that IMC may generate inaccurate solutions with optically large spatial cells if time steps are refined. However, we also demonstrate that, for a certain class of problems, the piecewise-linear approximation yields an appropriate discretized diffusion equation under all three scalings. We therefore expect IMC to produce accurate solutions for a wider range of time-step sizes when the piecewise-linear instead of piecewise-constant discretization is employed. We demonstrate the validity of our analysis with a set of numerical examples.
International Nuclear Information System (INIS)
Minor, B.; Mathews, K.
1995-01-01
The exponential characteristic (EC) spatial quadrature for discrete ordinates neutral particle transport previously introduced in slab geometry is extended here to x-y geometry with rectangular cells. The method is derived and compared with current methods. It is similar to the linear characteristic (LC) quadrature (a linear-linear moments method) but differs by assuming an exponential distribution of the scattering source within each cell, S(x) = a exp(bx + cy), whose parameters are rootsolved to match the known (from the previous iteration) spatial average and first moments of the source over the cell. Similarly, EC assumes exponential distributions of flux along cell edges through which particles enter the cell, with parameters chosen to match the average and first moments of flux, as passed from the adjacent, upstream cells (or as determined by boundary conditions). Like the linear adaptive (LA) method, EC is positive and nonlinear. It is more accurate than LA and does not require subdivision of cells. The nonlinearity has not interfered with convergence. The exponential moment functions, which were introduced with the slab geometry method, are extended to arbitrary dimensions (numbers of arguments) and used to avoid numerical ill conditioning. As in slab geometry, the method approaches O(Δx 4 ) global truncation error on fine-enough meshes, while the error is insensitive to mesh size for coarse meshes. Performance of the method is compared with that of the step characteristic, LC, linear nodal, step adaptive, and LA schemes. The EC method is a strong performer with scattering ratios ranging from 0 to 0.9 (the range tested), particularly so for lower scattering ratios. As in slab geometry, EC is computationally more costly per cell than current methods but can be accurate with very thick cells, leading to increased computational efficiency on appropriate problems
Warren, Joshua L; Gordon-Larsen, Penny
2018-06-01
While there is a literature on the distribution of food stores across geographic and social space, much of this research uses cross-sectional data. Analyses attempting to understand whether the availability of stores across neighborhoods is associated with diet and/or health outcomes are limited by a lack of understanding of factors that shape the emergence of new stores and the closure of others. We used quarterly data on supermarket and convenience store locations spanning seven years (2006-2012) and tract-level census data in four US cities: Birmingham, Alabama; Chicago, Illinois; Minneapolis, Minnesota; San Francisco, California. A spatial discrete-time survival model was used to identify factors associated with an earlier and/or later closure time of a store. Sales volume was typically the strongest indicator of store survival. We identified heterogeneity in the association between tract-level poverty and racial composition with respect to store survival. Stores in high poverty, non-White tracts were often at a disadvantage in terms of survival length. The observed patterns of store survival varied by some of the same neighborhood sociodemographic factors associated with lifestyle and health outcomes, which could lead to confusion in interpretation in studies of the estimated effects of introduction of food stores into neighborhoods on health.
A verification regime for the spatial discretization of the SN transport equations
Energy Technology Data Exchange (ETDEWEB)
Schunert, S.; Azmy, Y. [North Carolina State Univ., Dept. of Nuclear Engineering, 2500 Stinson Drive, Raleigh, NC 27695 (United States)
2012-07-01
The order-of-accuracy test in conjunction with the method of manufactured solutions is the current state of the art in computer code verification. In this work we investigate the application of a verification procedure including the order-of-accuracy test on a generic SN transport solver that implements the AHOTN spatial discretization. Different types of semantic errors, e.g. removal of a line of code or changing a single character, are introduced randomly into the previously verified S{sub N} code and the proposed verification procedure is used to identify the coding mistakes (if possible) and classify them. Itemized by error type we record the stage of the verification procedure where the error is detected and report the frequency with which the errors are correctly identified at various stages of the verification. Errors that remain undetected by the verification procedure are further scrutinized to determine the reason why the introduced coding mistake eluded the verification procedure. The result of this work is that the verification procedure based on an order-of-accuracy test finds almost all detectable coding mistakes but rarely, 1.44% of the time, and under certain circumstances can fail. (authors)
A spatial discretization of the MHD equations based on the finite volume - spectral method
International Nuclear Information System (INIS)
Miyoshi, Takahiro
2000-05-01
Based on the finite volume - spectral method, we present new discretization formulae for the spatial differential operators in the full system of the compressible MHD equations. In this approach, the cell-centered finite volume method is adopted in a bounded plane (poloidal plane), while the spectral method is applied to the differential with respect to the periodic direction perpendicular to the poloidal plane (toroidal direction). Here, an unstructured grid system composed of the arbitrary triangular elements is utilized for constructing the cell-centered finite volume method. In order to maintain the divergence free constraint of the magnetic field numerically, only the poloidal component of the rotation is defined at three edges of the triangular element. This poloidal component is evaluated under the assumption that the toroidal component of the operated vector times the radius, RA φ , is linearly distributed in the element. The present method will be applied to the nonlinear MHD dynamics in an realistic torus geometry without the numerical singularities. (author)
International Nuclear Information System (INIS)
Mathews, K.; Sjoden, G.; Minor, B.
1994-01-01
The exponential characteristic spatial quadrature for discrete ordinates neutral particle transport in slab geometry is derived and compared with current methods. It is similar to the linear characteristic (or, in slab geometry, the linear nodal) quadrature but differs by assuming an exponential distribution of the scattering source within each cell, S(x) = a exp(bx), whose parameters are root-solved to match the known (from the previous iteration) average and first moment of the source over the cell. Like the linear adaptive method, the exponential characteristic method is positive and nonlinear but more accurate and more readily extended to other cell shapes. The nonlinearity has not interfered with convergence. The authors introduce the ''exponential moment functions,'' a generalization of the functions used by Walters in the linear nodal method, and use them to avoid numerical ill-conditioning. The method exhibits O(Δx 4 ) truncation error on fine enough meshes; the error is insensitive to mesh size for coarse meshes. In a shielding problem, it is accurate to 10% using 16-mfp-thick cells; conventional methods err by 8 to 15 orders of magnitude. The exponential characteristic method is computationally more costly per cell than current methods but can be accurate with very thick cells, leading to increased computational efficiency on appropriate problems
Jin, Xin; Jiang, Qian; Yao, Shaowen; Zhou, Dongming; Nie, Rencan; Lee, Shin-Jye; He, Kangjian
2018-01-01
In order to promote the performance of infrared and visual image fusion and provide better visual effects, this paper proposes a hybrid fusion method for infrared and visual image by the combination of discrete stationary wavelet transform (DSWT), discrete cosine transform (DCT) and local spatial frequency (LSF). The proposed method has three key processing steps. Firstly, DSWT is employed to decompose the important features of the source image into a series of sub-images with different levels and spatial frequencies. Secondly, DCT is used to separate the significant details of the sub-images according to the energy of different frequencies. Thirdly, LSF is applied to enhance the regional features of DCT coefficients, and it can be helpful and useful for image feature extraction. Some frequently-used image fusion methods and evaluation metrics are employed to evaluate the validity of the proposed method. The experiments indicate that the proposed method can achieve good fusion effect, and it is more efficient than other conventional image fusion methods.
International Nuclear Information System (INIS)
Yamamoto, Akio; Tatsumi, Masahiro
2006-01-01
In this paper, the scattered source subtraction (SSS) method is newly proposed to improve the spatial discretization error of the semi-analytic nodal method with the flat-source approximation. In the SSS method, the scattered source is subtracted from both side of the diffusion or the transport equation to make spatial variation of the source term to be small. The same neutron balance equation is still used in the SSS method. Since the SSS method just modifies coefficients of node coupling equations (those used in evaluation for the response of partial currents), its implementation is easy. Validity of the present method is verified through test calculations that are carried out in PWR multi-assemblies configurations. The calculation results show that the SSS method can significantly improve the spatial discretization error. Since the SSS method does not have any negative impact on execution time, convergence behavior and memory requirement, it will be useful to reduce the spatial discretization error of the semi-analytic nodal method with the flat-source approximation. (author)
Directory of Open Access Journals (Sweden)
J. Dehotin
2008-05-01
Full Text Available Distributed hydrological models are valuable tools to derive distributed estimation of water balance components or to study the impact of land-use or climate change on water resources and water quality. In these models, the choice of an appropriate spatial discretization is a crucial issue. It is obviously linked to the available data, their spatial resolution and the dominant hydrological processes. For a given catchment and a given data set, the "optimal" spatial discretization should be adapted to the modelling objectives, as the latter determine the dominant hydrological processes considered in the modelling. For small catchments, landscape heterogeneity can be represented explicitly, whereas for large catchments such fine representation is not feasible and simplification is needed. The question is thus: is it possible to design a flexible methodology to represent landscape heterogeneity efficiently, according to the problem to be solved? This methodology should allow a controlled and objective trade-off between available data, the scale of the dominant water cycle components and the modelling objectives.
In this paper, we propose a general methodology for such catchment discretization. It is based on the use of nested discretizations. The first level of discretization is composed of the sub-catchments, organised by the river network topology. The sub-catchment variability can be described using a second level of discretizations, which is called hydro-landscape units. This level of discretization is only performed if it is consistent with the modelling objectives, the active hydrological processes and data availability. The hydro-landscapes take into account different geophysical factors such as topography, land-use, pedology, but also suitable hydrological discontinuities such as ditches, hedges, dams, etc. For numerical reasons these hydro-landscapes can be further subdivided into smaller elements that will constitute the
Energy Technology Data Exchange (ETDEWEB)
Branny, Artur; Kumar, Santosh; Gerardot, Brian D., E-mail: b.d.gerardot@hw.ac.uk [Institute of Photonics and Quantum Sciences, SUPA, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Wang, Gang; Robert, Cedric; Lassagne, Benjamin; Marie, Xavier; Urbaszek, Bernhard, E-mail: urbaszek@insa-toulouse.fr [Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Av. Rangueil, 31077 Toulouse (France)
2016-04-04
Transition metal dichalcogenide monolayers such as MoSe{sub 2}, MoS{sub 2}, and WSe{sub 2} are direct bandgap semiconductors with original optoelectronic and spin-valley properties. Here we report on spectrally sharp, spatially localized emission in monolayer MoSe{sub 2}. We find this quantum dot-like emission in samples exfoliated onto gold substrates and also suspended flakes. Spatial mapping shows a correlation between the location of emitters and the existence of wrinkles (strained regions) in the flake. We tune the emission properties in magnetic and electric fields applied perpendicular to the monolayer plane. We extract an exciton g-factor of the discrete emitters close to −4, as for 2D excitons in this material. In a charge tunable sample, we record discrete jumps on the meV scale as charges are added to the emitter when changing the applied voltage.
SPATIAL SEARCH IN COMMERCIAL FISHING: A DISCRETE CHOICE DYNAMIC PROGRAMMING APPROACH
Smith, Martin D.; Provencher, Bill
2003-01-01
We specify a discrete choice dynamic programming model of commercial fishing participation and location choices. This approach allows us to examine how fishermen collect information about resource abundance and whether their behavior is forward-looking.
Helmholtz Natural Modes: the universal and discrete spatial fabric of electromagnetic wavefields
International Nuclear Information System (INIS)
El Gawhary, Omar
2017-01-01
The interaction of electromagnetic waves with matter is at the foundation of the way we perceive and explore the world around us. In fact, when a field interacts with an object, signatures on the object’s geometry and physical properties are recorded in the resulting scattered field and are transported away from the object, where they can eventually be detected and processed. An optical field can transport information through its spectral content, its polarization state, and its spatial distribution. Generally speaking, the field’s spatial structure is typically subjected to changes under free-space propagation and any information therein encoded gets reshuffled by the propagation process. We must ascribe to this fundamental reason the fact that spectroscopy was known to the ancient civilizations already, and founded as modern science in the middle of seventeenth century, while to date we do not have an established scientific of field of ‘spatial spectroscopy’ yet. In this work we tackle this issue and we show how any field, whose evolution is dictated by Helmholtz equation, contains a universal and invariant spatial structure. When expressed in the framework of this spatial fabric, the spatial information content carried by any field reveals its invariant nature. This opens the way to novel paradigms in optical digital communications, inverse scattering, materials inspection, nanometrology and quantum optics. (paper)
Development of a Discrete Spatial-Temporal SEIR Simulator for Modeling Infectious Diseases
Energy Technology Data Exchange (ETDEWEB)
McKenna, S.A.
2000-11-01
Multiple techniques have been developed to model the temporal evolution of infectious diseases. Some of these techniques have also been adapted to model the spatial evolution of the disease. This report examines the application of one such technique, the SEIR model, to the spatial and temporal evolution of disease. Applications of the SEIR model are reviewed briefly and an adaptation to the traditional SEIR model is presented. This adaptation allows for modeling the spatial evolution of the disease stages at the individual level. The transmission of the disease between individuals is modeled explicitly through the use of exposure likelihood functions rather than the global transmission rate applied to populations in the traditional implementation of the SEIR model. These adaptations allow for the consideration of spatially variable (heterogeneous) susceptibility and immunity within the population. The adaptations also allow for modeling both contagious and non-contagious diseases. The results of a number of numerical experiments to explore the effect of model parameters on the spread of an example disease are presented.
International Nuclear Information System (INIS)
Zerr, R.J.; Azmy, Y.Y.
2010-01-01
A spatial domain decomposition with a parallel block Jacobi solution algorithm has been developed based on the integral transport matrix formulation of the discrete ordinates approximation for solving the within-group transport equation. The new methodology abandons the typical source iteration scheme and solves directly for the fully converged scalar flux. Four matrix operators are constructed based upon the integral form of the discrete ordinates equations. A single differential mesh sweep is performed to construct these operators. The method is parallelized by decomposing the problem domain into several smaller sub-domains, each treated as an independent problem. The scalar flux of each sub-domain is solved exactly given incoming angular flux boundary conditions. Sub-domain boundary conditions are updated iteratively, and convergence is achieved when the scalar flux error in all cells meets a pre-specified convergence criterion. The method has been implemented in a computer code that was then employed for strong scaling studies of the algorithm's parallel performance via a fixed-size problem in tests ranging from one domain up to one cell per sub-domain. Results indicate that the best parallel performance compared to source iterations occurs for optically thick, highly scattering problems, the variety that is most difficult for the traditional SI scheme to solve. Moreover, the minimum execution time occurs when each sub-domain contains a total of four cells. (authors)
Ledyard, John O.
1987-01-01
Incentive compatibility is described and discussed. A summary of the current state of understanding is provided. Key words are: incentive compatibility, game theory, implementation, mechanism, Bayes, Nash, and revelation.
Cherenkov detectors for spatial imaging applications using discrete-energy photons
Energy Technology Data Exchange (ETDEWEB)
Rose, Paul B.; Erickson, Anna S., E-mail: erickson@gatech.edu [Georgia Institute of Technology, Nuclear and Radiological Engineering, G.W. Woodruff School of Mechanical Engineering, 770 State St., Atlanta, Georgia 30332 (United States)
2016-08-14
Cherenkov detectors can offer a significant advantage in spatial imaging applications when excellent timing response, low noise and cross talk, large area coverage, and the ability to operate in magnetic fields are required. We show that an array of Cherenkov detectors with crude energy resolution coupled with monochromatic photons resulting from a low-energy nuclear reaction can be used to produce a sharp image of material while providing large and inexpensive detector coverage. The analysis of the detector response to relative transmission of photons with various energies allows for reconstruction of material's effective atomic number further aiding in high-Z material identification.
Crowe, Lindsey Alexandra; Manasseh, Gibran; Chmielewski, Aneta; Hachulla, Anne-Lise; Speicher, Daniel; Greiser, Andreas; Muller, Hajo; de Perrot, Thomas; Vallee, Jean-Paul; Salomir, Rares
2018-02-01
We demonstrate the use of a magnetic-resonance (MR)-compatible ultrasound (US) imaging probe using spatially resolved Doppler for diagnostic quality cardiovascular MR imaging (MRI) as an initial step toward hybrid US/MR fetal imaging. A newly developed technology for a dedicated MR-compatible phased array ultrasound-imaging probe acquired pulsed color Doppler carotid images, which were converted in near-real time to a trigger signal for cardiac cine and flow quantification MRI. Ultrasound and MR data acquired simultaneously were interference free. Conventional electrocardiogram (ECG) and the proposed spatially resolved Doppler triggering were compared in 10 healthy volunteers. A synthetic "false-triggered" image was retrospectively processed using metric optimized gating (MOG). Images were scored by expert readers, and sharpness, cardiac function and aortic flow were quantified. Four-dimensional (4-D) flow (two volunteers) showed feasibility of Doppler triggering over a long acquisition time. Imaging modalities were compatible. US probe positioning was stable and comfortable. Image quality scores and quantified sharpness were statistically equal for Doppler- and ECG-triggering (p ). ECG-, Doppler-triggered, and MOG ejection fractions were equivalent (p ), with false-triggered values significantly lower (p 0.05). 4-D flow quantification gave consistent results between ECG and Doppler triggering. We report interference-free pulsed color Doppler ultrasound during MR data acquisition. Cardiovascular MRI of diagnostic quality was successfully obtained with pulsed color Doppler triggering. The hardware platform could further enable advanced free-breathing cardiac imaging. Doppler ultrasound triggering is applicable where ECG is compromised due to pathology or interference at higher magnetic fields, and where direct ECG is impossible, i.e., fetal imaging.
Time Discretization Techniques
Gottlieb, S.; Ketcheson, David I.
2016-01-01
The time discretization of hyperbolic partial differential equations is typically the evolution of a system of ordinary differential equations obtained by spatial discretization of the original problem. Methods for this time evolution include
International Nuclear Information System (INIS)
Liu, L.H.
2004-01-01
A discrete curved ray-tracing method is developed to analyze the radiative transfer in one-dimensional absorbing-emitting semitransparent slab with variable spatial refractive index. The curved ray trajectory is locally treated as straight line and the complicated and time-consuming computation of ray trajectory is cut down. A problem of radiative equilibrium with linear variable spatial refractive index is taken as an example to examine the accuracy of the proposed method. The temperature distributions are determined by the proposed method and compared with the data in references, which are obtained by other different methods. The results show that the discrete curved ray-tracing method has a good accuracy in solving the radiative transfer in one-dimensional semitransparent slab with variable spatial refractive index
Debowska, Weronika; Wolak, Tomasz; Soluch, Pawel; Orzechowski, Mateusz; Kossut, Malgorzata
2013-02-15
Neural correlates of Braille reading have been widely studied with different neuroimaging techniques. Nevertheless, the exact brain processes underlying this unique activity are still unknown, due to suboptimal accuracy of imaging and/or stimuli delivery methods. To study somatosensory perception effectively, the stimulation must reflect parameters of the natural stimulus and must be applied with precise timing. In functional magnetic resonance imaging (fMRI) providing these characteristics requires technologically advanced solutions and there have been several successful direct tactile stimulation devices designed that allow investigation of somatotopic organization of brain sensory areas. They may, however, be of limited applicability in studying brain mechanisms related to such distinctive tactile activity as Braille reading. In this paper we describe the design and experimental evaluation of an innovative MRI-compatible Braille Character Stimulator (BCS) enabling precise and stable delivery of standardized Braille characters with high temporal resolution. Our device is fully programmable, flexible in stimuli delivery and can be easily implemented in any research unit. The Braille Character Stimulator was tested with a same-different discrimination task on Braille characters during an event-related fMRI experiment in eleven right-handed sighted adult subjects. The results show significant activations in several cortical areas, including bilateral primary (SI) and secondary somatosensory (SII) cortices, bilateral premotor and supplementary motor areas, inferior frontal gyri, inferior temporal gyri and precuneus, as well as contralateral (to the stimulated hand) thalamus. The results validate the use of the BCS as a method of effective stimuli application in fMRI studies, in both sighted and visually impaired subjects. Copyright © 2012 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
2015-01-01
Highlights: • Using high-resolution spatial scheme in solving two-phase flow problems. • Fully implicit time integrations scheme. • Jacobian-free Newton–Krylov method. • Analytical solution for two-phase water faucet problem. - Abstract: The majority of the existing reactor system analysis codes were developed using low-order numerical schemes in both space and time. In many nuclear thermal–hydraulics applications, it is desirable to use higher-order numerical schemes to reduce numerical errors. High-resolution spatial discretization schemes provide high order spatial accuracy in smooth regions and capture sharp spatial discontinuity without nonphysical spatial oscillations. In this work, we adapted an existing high-resolution spatial discretization scheme on staggered grids in two-phase flow applications. Fully implicit time integration schemes were also implemented to reduce numerical errors from operator-splitting types of time integration schemes. The resulting nonlinear system has been successfully solved using the Jacobian-free Newton–Krylov (JFNK) method. The high-resolution spatial discretization and high-order fully implicit time integration numerical schemes were tested and numerically verified for several two-phase test problems, including a two-phase advection problem, a two-phase advection with phase appearance/disappearance problem, and the water faucet problem. Numerical results clearly demonstrated the advantages of using such high-resolution spatial and high-order temporal numerical schemes to significantly reduce numerical diffusion and therefore improve accuracy. Our study also demonstrated that the JFNK method is stable and robust in solving two-phase flow problems, even when phase appearance/disappearance exists
International Nuclear Information System (INIS)
Tiginyanu, I.M.; Volciuc, O.; Gutowski, J.; Stevens-Kalceff, M.A.; Popa, V.; Wille, S.; Adelung, R.; Foell, H.
2013-01-01
We show that the discrete nature of ion beam processing used as a component in the approach of surface charge lithography leads to spatial modulation of the edges of the GaN nanostructures such as nanobelts and nanoperforated membranes. According to the performed Monte Carlo simulations, the modulation of the nanostructure edges is caused by the stochastic spatial distribution of the radiation defects generated by the impacting ions and related recoils. The obtained results pave the way for direct visualization of the networks of radiation defects induced by individual ions impacting a solid-state material. (authors)
International Nuclear Information System (INIS)
Lydia, Emilio J.; Barros, Ricardo C.
2011-01-01
In this paper we describe a response matrix method for one-speed slab-geometry discrete ordinates (SN) neutral particle transport problems that is completely free from spatial truncation errors. The unknowns in the method are the cell-edge angular fluxes of particles. The numerical results generated for these quantities are exactly those obtained from the analytic solution of the SN problem apart from finite arithmetic considerations. Our method is based on a spectral analysis that we perform in the SN equations with scattering inside a discretization cell of the spatial grid set up on the slab. As a result of this spectral analysis, we are able to obtain an expression for the local general solution of the SN equations. With this local general solution, we determine the response matrix and use the prescribed boundary conditions and continuity conditions to sweep across the discretization cells from left to right and from right to left across the slab, until a prescribed convergence criterion is satisfied. (author)
International Nuclear Information System (INIS)
Asadzadeh, M.; Thevenot, L.
2010-01-01
The objective of this paper is to give a mathematical framework for a fully discrete numerical approach for the study of the neutron transport equation in a cylindrical domain (container model,). More specifically, we consider the discontinuous Galerkin (D G) finite element method for spatial approximation of the mono-energetic, critical neutron transport equation in an infinite cylindrical domain ??in R3 with a polygonal convex cross-section ? The velocity discretization relies on a special quadrature rule developed to give optimal estimates in discrete ordinate parameters compatible with the quasi-uniform spatial mesh. We use interpolation spaces and derive optimal error estimates, up to maximal available regularity, for the fully discrete scalar flux. Finally we employ a duality argument and prove superconvergence estimates for the critical eigenvalue.
Konstantinou, Nikos; Constantinidou, Fofi; Kanai, Ryota
2017-02-01
Working memory is responsible for keeping information in mind when it is no longer in view, linking perception with higher cognitive functions. Despite such crucial role, short-term maintenance of visual information is severely limited. Research suggests that capacity limits in visual short-term memory (VSTM) are correlated with sustained activity in distinct brain areas. Here, we investigated whether variability in the structure of the brain is reflected in individual differences of behavioral capacity estimates for spatial and object VSTM. Behavioral capacity estimates were calculated separately for spatial and object information using a novel adaptive staircase procedure and were found to be unrelated, supporting domain-specific VSTM capacity limits. Voxel-based morphometry (VBM) analyses revealed dissociable neuroanatomical correlates of spatial versus object VSTM. Interindividual variability in spatial VSTM was reflected in the gray matter density of the inferior parietal lobule. In contrast, object VSTM was reflected in the gray matter density of the left insula. These dissociable findings highlight the importance of considering domain-specific estimates of VSTM capacity and point to the crucial brain regions that limit VSTM capacity for different types of visual information. Hum Brain Mapp 38:767-778, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
DEFF Research Database (Denmark)
Sørensen, John Aasted
2011-01-01
The objectives of Discrete Mathematics (IDISM2) are: The introduction of the mathematics needed for analysis, design and verification of discrete systems, including the application within programming languages for computer systems. Having passed the IDISM2 course, the student will be able...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics......; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...
Lafaysse, M.; Hingray, B.; Etchevers, P.; Martin, E.; Obled, C.
2011-06-01
SummaryThe SAFRAN-ISBA-MODCOU hydrological model ( Habets et al., 2008) presents severe limitations for alpine catchments. Here we propose possible model adaptations. For the catchment discretization, Relatively Homogeneous Hydrological Units (RHHUs) are used instead of the classical 8 km square grid. They are defined from the dilineation of hydrological subbasins, elevation bands, and aspect classes. Glacierized and non-glacierized areas are also treated separately. In addition, new modules are included in the model for the simulation of glacier melt, and retention of underground water. The improvement resulting from each model modification is analysed for the Upper Durance basin. RHHUs allow the model to better account for the high spatial variability of the hydrological processes (e.g. snow cover). The timing and the intensity of the spring snowmelt floods are significantly improved owing to the representation of water retention by aquifers. Despite the relatively small area covered by glaciers, accounting for glacier melt is necessary for simulating the late summer low flows. The modified model is robust over a long simulation period and it produces a good reproduction of the intra and interannual variability of discharge, which is a necessary condition for its application in a modified climate context.
DEFF Research Database (Denmark)
Sørensen, John Aasted
2011-01-01
; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics...... to new problems. Relations and functions: Define a product set; define and apply equivalence relations; construct and apply functions. Apply these concepts to new problems. Natural numbers and induction: Define the natural numbers; apply the principle of induction to verify a selection of properties...
DEFF Research Database (Denmark)
Busch, Peter Andre; Zinner Henriksen, Helle
2018-01-01
discretion is suggested to reduce this footprint by influencing or replacing their discretionary practices using ICT. What is less researched is whether digital discretion can cause changes in public policy outcomes, and under what conditions such changes can occur. Using the concept of public service values......This study reviews 44 peer-reviewed articles on digital discretion published in the period from 1998 to January 2017. Street-level bureaucrats have traditionally had a wide ability to exercise discretion stirring debate since they can add their personal footprint on public policies. Digital......, we suggest that digital discretion can strengthen ethical and democratic values but weaken professional and relational values. Furthermore, we conclude that contextual factors such as considerations made by policy makers on the macro-level and the degree of professionalization of street...
DEFF Research Database (Denmark)
Sørensen, John Aasted
2010-01-01
The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Spring 2010 Ectent: 5 ects Class size: 18......The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Spring 2010 Ectent: 5 ects Class size: 18...
DEFF Research Database (Denmark)
Sørensen, John Aasted
2010-01-01
The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Autumn 2010 Ectent: 5 ects Class size: 15......The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Autumn 2010 Ectent: 5 ects Class size: 15...
International Nuclear Information System (INIS)
Wu Ming-Zhong; Bai Cheng-Ming
2015-01-01
A compatible Lie algebra is a pair of Lie algebras such that any linear combination of the two Lie brackets is a Lie bracket. We construct a bialgebra theory of compatible Lie algebras as an analogue of a Lie bialgebra. They can also be regarded as a “compatible version” of Lie bialgebras, that is, a pair of Lie bialgebras such that any linear combination of the two Lie bialgebras is still a Lie bialgebra. Many properties of compatible Lie bialgebras as the “compatible version” of the corresponding properties of Lie bialgebras are presented. In particular, there is a coboundary compatible Lie bialgebra theory with a construction from the classical Yang–Baxter equation in compatible Lie algebras as a combination of two classical Yang–Baxter equations in Lie algebras. Furthermore, a notion of compatible pre-Lie algebra is introduced with an interpretation of its close relation with the classical Yang–Baxter equation in compatible Lie algebras which leads to a construction of the solutions of the latter. As a byproduct, the compatible Lie bialgebras fit into the framework to construct non-constant solutions of the classical Yang–Baxter equation given by Golubchik and Sokolov. (paper)
Caltagirone, Jean-Paul
2014-01-01
This book presents the fundamental principles of mechanics to re-establish the equations of Discrete Mechanics. It introduces physics and thermodynamics associated to the physical modeling. The development and the complementarity of sciences lead to review today the old concepts that were the basis for the development of continuum mechanics. The differential geometry is used to review the conservation laws of mechanics. For instance, this formalism requires a different location of vector and scalar quantities in space. The equations of Discrete Mechanics form a system of equations where the H
International Nuclear Information System (INIS)
Lee, T.D.
1985-01-01
This paper reviews the role of time throughout all phases of mechanics: classical mechanics, non-relativistic quantum mechanics, and relativistic quantum theory. As an example of the relativistic quantum field theory, the case of a massless scalar field interacting with an arbitrary external current is discussed. The comparison between the new discrete theory and the usual continuum formalism is presented. An example is given of a two-dimensional random lattice and its duel. The author notes that there is no evidence that the discrete mechanics is more appropriate than the usual continuum mechanics
Discrete elements method of neutral particle transport
International Nuclear Information System (INIS)
Mathews, K.A.
1983-01-01
A new discrete elements (L/sub N/) transport method is derived and compared to the discrete ordinates S/sub N/ method, theoretically and by numerical experimentation. The discrete elements method is more accurate than discrete ordinates and strongly ameliorates ray effects for the practical problems studied. The discrete elements method is shown to be more cost effective, in terms of execution time with comparable storage to attain the same accuracy, for a one-dimensional test case using linear characteristic spatial quadrature. In a two-dimensional test case, a vacuum duct in a shield, L/sub N/ is more consistently convergent toward a Monte Carlo benchmark solution than S/sub N/, using step characteristic spatial quadrature. An analysis of the interaction of angular and spatial quadrature in xy-geometry indicates the desirability of using linear characteristic spatial quadrature with the L/sub N/ method
Compatibility of Mating Preferences
Bingol, Haluk O.; Basar, Omer
2016-01-01
Human mating is a complex phenomenon. Although men and women have different preferences in mate selection, there should be compatibility in these preferences since human mating requires agreement of both parties. We investigate how compatible the mating preferences of men and women are in a given property such as age, height, education and income. We use dataset of a large online dating site (N = 44, 255 users). (i) Our findings are based on the "actual behavior" of users trying to find a dat...
International Nuclear Information System (INIS)
Shi, Ying; Zhang, Da-jun; Nimmo, Jonathan J C
2014-01-01
The Hirota–Miwa equation can be written in ‘nonlinear’ form in two ways: the discrete KP equation and, by using a compatible continuous variable, the discrete potential KP equation. For both systems, we consider the Darboux and binary Darboux transformations, expressed in terms of the continuous variable, and obtain exact solutions in Wronskian and Grammian form. We discuss reductions of both systems to the discrete KdV and discrete potential KdV equation, respectively, and exploit this connection to find the Darboux and binary Darboux transformations and exact solutions of these equations. (paper)
Time Discretization Techniques
Gottlieb, S.
2016-10-12
The time discretization of hyperbolic partial differential equations is typically the evolution of a system of ordinary differential equations obtained by spatial discretization of the original problem. Methods for this time evolution include multistep, multistage, or multiderivative methods, as well as a combination of these approaches. The time step constraint is mainly a result of the absolute stability requirement, as well as additional conditions that mimic physical properties of the solution, such as positivity or total variation stability. These conditions may be required for stability when the solution develops shocks or sharp gradients. This chapter contains a review of some of the methods historically used for the evolution of hyperbolic PDEs, as well as cutting edge methods that are now commonly used.
Compatibility of Motion Facilitates Visuomotor Synchronization
Hove, Michael J.; Spivey, Michael J.; Krumhansl, Carol L.
2010-01-01
Prior research indicates that synchronized tapping performance is very poor with flashing visual stimuli compared with auditory stimuli. Three finger-tapping experiments compared flashing visual metronomes with visual metronomes containing a spatial component, either compatible, incompatible, or orthogonal to the tapping action. In Experiment 1,…
Parker, R Gary
1988-01-01
This book treats the fundamental issues and algorithmic strategies emerging as the core of the discipline of discrete optimization in a comprehensive and rigorous fashion. Following an introductory chapter on computational complexity, the basic algorithmic results for the two major models of polynomial algorithms are introduced--models using matroids and linear programming. Further chapters treat the major non-polynomial algorithms: branch-and-bound and cutting planes. The text concludes with a chapter on heuristic algorithms.Several appendixes are included which review the fundamental ideas o
Handbook of Spatial Statistics
Gelfand, Alan E
2010-01-01
Offers an introduction detailing the evolution of the field of spatial statistics. This title focuses on the three main branches of spatial statistics: continuous spatial variation (point referenced data); discrete spatial variation, including lattice and areal unit data; and, spatial point patterns.
International Nuclear Information System (INIS)
McGhee, J.M.; Roberts, R.M.; Morel, J.E.
1997-01-01
A spherical harmonics research code (DANTE) has been developed which is compatible with parallel computer architectures. DANTE provides 3-D, multi-material, deterministic, transport capabilities using an arbitrary finite element mesh. The linearized Boltzmann transport equation is solved in a second order self-adjoint form utilizing a Galerkin finite element spatial differencing scheme. The core solver utilizes a preconditioned conjugate gradient algorithm. Other distinguishing features of the code include options for discrete-ordinates and simplified spherical harmonics angular differencing, an exact Marshak boundary treatment for arbitrarily oriented boundary faces, in-line matrix construction techniques to minimize memory consumption, and an effective diffusion based preconditioner for scattering dominated problems. Algorithm efficiency is demonstrated for a massively parallel SIMD architecture (CM-5), and compatibility with MPP multiprocessor platforms or workstation clusters is anticipated
Discrete gradients in discrete classical mechanics
International Nuclear Information System (INIS)
Renna, L.
1987-01-01
A simple model of discrete classical mechanics is given where, starting from the continuous Hamilton equations, discrete equations of motion are established together with a proper discrete gradient definition. The conservation laws of the total discrete momentum, angular momentum, and energy are demonstrated
Discrete Curvature Theories and Applications
Sun, Xiang
2016-08-25
Discrete Di erential Geometry (DDG) concerns discrete counterparts of notions and methods in di erential geometry. This thesis deals with a core subject in DDG, discrete curvature theories on various types of polyhedral surfaces that are practically important for free-form architecture, sunlight-redirecting shading systems, and face recognition. Modeled as polyhedral surfaces, the shapes of free-form structures may have to satisfy di erent geometric or physical constraints. We study a combination of geometry and physics { the discrete surfaces that can stand on their own, as well as having proper shapes for the manufacture. These proper shapes, known as circular and conical meshes, are closely related to discrete principal curvatures. We study curvature theories that make such surfaces possible. Shading systems of freeform building skins are new types of energy-saving structures that can re-direct the sunlight. From these systems, discrete line congruences across polyhedral surfaces can be abstracted. We develop a new curvature theory for polyhedral surfaces equipped with normal congruences { a particular type of congruences de ned by linear interpolation of vertex normals. The main results are a discussion of various de nitions of normality, a detailed study of the geometry of such congruences, and a concept of curvatures and shape operators associated with the faces of a triangle mesh. These curvatures are compatible with both normal congruences and the Steiner formula. In addition to architecture, we consider the role of discrete curvatures in face recognition. We use geometric measure theory to introduce the notion of asymptotic cones associated with a singular subspace of a Riemannian manifold, which is an extension of the classical notion of asymptotic directions. We get a simple expression of these cones for polyhedral surfaces, as well as convergence and approximation theorems. We use the asymptotic cones as facial descriptors and demonstrate the
Firth, Jean M
1992-01-01
The analysis of signals and systems using transform methods is a very important aspect of the examination of processes and problems in an increasingly wide range of applications. Whereas the initial impetus in the development of methods appropriate for handling discrete sets of data occurred mainly in an electrical engineering context (for example in the design of digital filters), the same techniques are in use in such disciplines as cardiology, optics, speech analysis and management, as well as in other branches of science and engineering. This text is aimed at a readership whose mathematical background includes some acquaintance with complex numbers, linear differen tial equations, matrix algebra, and series. Specifically, a familiarity with Fourier series (in trigonometric and exponential forms) is assumed, and an exposure to the concept of a continuous integral transform is desirable. Such a background can be expected, for example, on completion of the first year of a science or engineering degree cour...
Socially compatible technology management
International Nuclear Information System (INIS)
Tschiedel, R.
1989-01-01
The public has a critical eye on the impacts of technology, and there is a growing awareness of the social impacts in addition to health hazards and economic and ecologic impacts. 'Socially compatible technology management' is the magic formula frequently used which has emerged as a political demand in the course of the social controversy about the hazards of large-scale technology. It marks a position in the conflict between those who declare existing market and policy instruments to be sufficient regulatory tools, and those who understand the incidents ranging from inadequacy to desaster as a warning, and call for more precaution in decisions with an impact on the future. The concept of 'social compatibility' has to be given shape by elaborating criteria and methods for achieving this goal. The book shows that social compatibility cannot sufficiently be defined either as a quality of a technology and of a socio-technical system (acceptability), or as the willingness of the people concerned to accept a technology (acceptance). The investigation explains by means of empirical analysis and examples that participation is the only way to combine acceptability and acceptance into a socially compatibly designed technology. The leading theoretical and political formula developed for this purpose is 'acquisition'. To put it in a provocative way: Man has to learn to manage and master technical systems as if they were an integral part of themselves. Which means, man has to acquire the required knowledge and skill in the changing social structures, and the real power of disposal. Sociology of technology is a branch of research that can and should give support in the process of designing and managing technological systems in a way compatible with social needs. (orig./HP) [de
Lax pairs for ultra-discrete Painleve cellular automata
International Nuclear Information System (INIS)
Joshi, N; Nijhoff, F W; Ormerod, C
2004-01-01
Ultra-discrete versions of the discrete Painleve equations are well known. However, evidence for their integrability has so far been restricted. In this letter, we show that their Lax pairs can be constructed and, furthermore, that compatibility conditions of the result yield the ultra-discrete Painleve equation. For conciseness, we restrict our attention to a new d-P III . (letter to the editor)
Discrete symmetries in the MSSM
Energy Technology Data Exchange (ETDEWEB)
Schieren, Roland
2010-12-02
The use of discrete symmetries, especially abelian ones, in physics beyond the standard model of particle physics is discussed. A method is developed how a general, abelian, discrete symmetry can be obtained via spontaneous symmetry breaking. In addition, anomalies are treated in the path integral approach with special attention to anomaly cancellation via the Green-Schwarz mechanism. All this is applied to the minimal supersymmetric standard model. A unique Z{sup R}{sub 4} symmetry is discovered which solves the {mu}-problem as well as problems with proton decay and allows to embed the standard model gauge group into a simple group, i.e. the Z{sup R}{sub 4} is compatible with grand unification. Also the flavor problem in the context of minimal flavor violation is addressed. Finally, a string theory model is presented which exhibits the mentioned Z{sup R}{sub 4} symmetry and other desirable features. (orig.)
Discrete symmetries in the MSSM
International Nuclear Information System (INIS)
Schieren, Roland
2010-01-01
The use of discrete symmetries, especially abelian ones, in physics beyond the standard model of particle physics is discussed. A method is developed how a general, abelian, discrete symmetry can be obtained via spontaneous symmetry breaking. In addition, anomalies are treated in the path integral approach with special attention to anomaly cancellation via the Green-Schwarz mechanism. All this is applied to the minimal supersymmetric standard model. A unique Z R 4 symmetry is discovered which solves the μ-problem as well as problems with proton decay and allows to embed the standard model gauge group into a simple group, i.e. the Z R 4 is compatible with grand unification. Also the flavor problem in the context of minimal flavor violation is addressed. Finally, a string theory model is presented which exhibits the mentioned Z R 4 symmetry and other desirable features. (orig.)
Discrete Curvatures and Discrete Minimal Surfaces
Sun, Xiang
2012-01-01
This thesis presents an overview of some approaches to compute Gaussian and mean curvature on discrete surfaces and discusses discrete minimal surfaces. The variety of applications of differential geometry in visualization and shape design leads
Discrete Curvatures and Discrete Minimal Surfaces
Sun, Xiang
2012-06-01
This thesis presents an overview of some approaches to compute Gaussian and mean curvature on discrete surfaces and discusses discrete minimal surfaces. The variety of applications of differential geometry in visualization and shape design leads to great interest in studying discrete surfaces. With the rich smooth surface theory in hand, one would hope that this elegant theory can still be applied to the discrete counter part. Such a generalization, however, is not always successful. While discrete surfaces have the advantage of being finite dimensional, thus easier to treat, their geometric properties such as curvatures are not well defined in the classical sense. Furthermore, the powerful calculus tool can hardly be applied. The methods in this thesis, including angular defect formula, cotangent formula, parallel meshes, relative geometry etc. are approaches based on offset meshes or generalized offset meshes. As an important application, we discuss discrete minimal surfaces and discrete Koenigs meshes.
DUPIC fuel compatibility assessment
Energy Technology Data Exchange (ETDEWEB)
Choi, Hang Bok; Rho, G. H.; Park, J. W. [and others
2000-03-01
The purpose of this study is to assess the compatibility of DUPIC(Direct Use of Spent PWR Fuel in CANDU Reactors) fuel with the current CANDU 6 reactor, which is one of the technology being developed to utilize the spent PWR fuel in CANDU reactors. The phase 1 study of this project includes the feasibility analysis on applicability of the current core design method, the feasibility analysis on operation of the DUPIC fuel core, the compatibility analysis on individual reactor system, the sensitivity analysis on the fuel composition, and the economic analysis on DUPIC fuel cycle. The results of the validation calculations have confirmed that the current core analysis system is acceptable for the feasibility study of the DUPIC fuel compatibility analysis. The results of core simulations have shown that both natural uranium and DUPIC fuel cores are almost the same from the viewpoint of the operational performance. For individual reactor system including reactively devices, the functional requirements of each system are satisfied in general. However, because of the pronounced power flattening in the DUPIC core, the radiation damage on the critical components increases, which should be investigated more in the future. The DUPIC fuel composition heterogeneity dose not to impose any serious effect on the reactor operation if the fuel composition is adjusted. The economics analysis has been performed through conceptual design studies on the DUPIC fuel fabrication, fuel handling in a plant, and spent fuel disposal, which has shown that the DUPIC fuel cycle is comparable to the once-trough fuel cycle considering uncertainties associated with unit costs of the fuel cycle components. The results of Phase 1 study have shown that it is feasible to use the DUPIC fuel in CANDU reactors without major changes in hardware. However further studies are required to confirm the safety of the reactor under accident condition.
DUPIC fuel compatibility assessment
International Nuclear Information System (INIS)
Choi, Hang Bok; Rho, G. H.; Park, J. W. and others
2000-03-01
The purpose of this study is to assess the compatibility of DUPIC(Direct Use of Spent PWR Fuel in CANDU Reactors) fuel with the current CANDU 6 reactor, which is one of the technology being developed to utilize the spent PWR fuel in CANDU reactors. The phase 1 study of this project includes the feasibility analysis on applicability of the current core design method, the feasibility analysis on operation of the DUPIC fuel core, the compatibility analysis on individual reactor system, the sensitivity analysis on the fuel composition, and the economic analysis on DUPIC fuel cycle. The results of the validation calculations have confirmed that the current core analysis system is acceptable for the feasibility study of the DUPIC fuel compatibility analysis. The results of core simulations have shown that both natural uranium and DUPIC fuel cores are almost the same from the viewpoint of the operational performance. For individual reactor system including reactively devices, the functional requirements of each system are satisfied in general. However, because of the pronounced power flattening in the DUPIC core, the radiation damage on the critical components increases, which should be investigated more in the future. The DUPIC fuel composition heterogeneity dose not to impose any serious effect on the reactor operation if the fuel composition is adjusted. The economics analysis has been performed through conceptual design studies on the DUPIC fuel fabrication, fuel handling in a plant, and spent fuel disposal, which has shown that the DUPIC fuel cycle is comparable to the once-trough fuel cycle considering uncertainties associated with unit costs of the fuel cycle components. The results of Phase 1 study have shown that it is feasible to use the DUPIC fuel in CANDU reactors without major changes in hardware. However further studies are required to confirm the safety of the reactor under accident condition
Energy Technology Data Exchange (ETDEWEB)
Stenta, Herman Roberto; Riccardi, Gerardo A; Basile, Pedro A [Universidad Nacional de Rosario (Mexico)
2008-07-15
Distributed hydrological models are suitable for the determination of time and space variability of hydrological responses within a given watershed. In a watershed, the model can be implemented with different levels of space resolution, mainly as a function of data availability, objectives of the numerical study, and requirements of the system to be modeled. In this paper, the effects on landscape representation due to different cell sizes are analyzed and scaling of parameters in a lower spatial resolution level is proposed in order to obtain similarity in hydrological responses between different degrees of discretization. The comparison was made in terms of maximum discharge, maximum flow velocity, and maximum water depth by simulating a number of observed and hypothetical hydrological events. The concept of total equilibrium state of the watershed was used. Under these circumstances, the roughness coefficients associated to overland and stream flow and the storage function of each discretization element were adjusted separately for the lower spatial resolution level. The results show that the similarity in hydrological responses, in terms of maximum water depth, obtained by adjusting the storage function of the cells, is better than that corresponding to the adjustment of roughness coefficients. [Spanish] Los modelos matematicos de parametros distribuidos resultan particularmente apropiados para determinar la variabilidad espacial y temporal de las respuestas hidrologicas dentro de un determinado sistema hidrico. En una cuenca es posible realizar la constitucion de un modelo con diferentes niveles de detalle en funcion principalmente de la disponibilidad de informacion de entrada necesaria, de los objetivos de estudio y de los requerimientos de modelado del sistema. En el presente trabajo se analizan los efectos producidos en la representacion del relieve debido a los diferentes tamanos de celda en que se ha discretizado una cuenca de llanura y se propone el
Chen, Huangxin; Sun, Shuyu; Zhang, Tao
2017-01-01
In this paper we consider the energy stability estimates for some fully discrete schemes which both consider time and spatial discretizations for the incompressible Navier–Stokes equations. We focus on three kinds of fully discrete schemes, i
Steganalysis based on JPEG compatibility
Fridrich, Jessica; Goljan, Miroslav; Du, Rui
2001-11-01
In this paper, we introduce a new forensic tool that can reliably detect modifications in digital images, such as distortion due to steganography and watermarking, in images that were originally stored in the JPEG format. The JPEG compression leave unique fingerprints and serves as a fragile watermark enabling us to detect changes as small as modifying the LSB of one randomly chosen pixel. The detection of changes is based on investigating the compatibility of 8x8 blocks of pixels with JPEG compression with a given quantization matrix. The proposed steganalytic method is applicable to virtually all steganongraphic and watermarking algorithms with the exception of those that embed message bits into the quantized JPEG DCT coefficients. The method can also be used to estimate the size of the secret message and identify the pixels that carry message bits. As a consequence of our steganalysis, we strongly recommend avoiding using images that have been originally stored in the JPEG format as cover-images for spatial-domain steganography.
Program For Parallel Discrete-Event Simulation
Beckman, Brian C.; Blume, Leo R.; Geiselman, John S.; Presley, Matthew T.; Wedel, John J., Jr.; Bellenot, Steven F.; Diloreto, Michael; Hontalas, Philip J.; Reiher, Peter L.; Weiland, Frederick P.
1991-01-01
User does not have to add any special logic to aid in synchronization. Time Warp Operating System (TWOS) computer program is special-purpose operating system designed to support parallel discrete-event simulation. Complete implementation of Time Warp mechanism. Supports only simulations and other computations designed for virtual time. Time Warp Simulator (TWSIM) subdirectory contains sequential simulation engine interface-compatible with TWOS. TWOS and TWSIM written in, and support simulations in, C programming language.
Subramanian, Ramanathan Vishnampet Ganapathi
Methods and computing hardware advances have enabled accurate predictions of complex compressible turbulence phenomena, such as the generation of jet noise that motivates the present effort. However, limited understanding of underlying physical mechanisms restricts the utility of such predictions since they do not, by themselves, indicate a route to design improvement. Gradient-based optimization using adjoints can circumvent the flow complexity to guide designs. Such methods have enabled sensitivity analysis and active control of turbulence at engineering flow conditions by providing gradient information at computational cost comparable to that of simulating the flow. They accelerate convergence of numerical design optimization algorithms, though this is predicated on the availability of an accurate gradient of the discretized flow equations. This is challenging to obtain, since both the chaotic character of the turbulence and the typical use of discretizations near their resolution limits in order to efficiently represent its smaller scales will amplify any approximation errors made in the adjoint formulation. Formulating a practical exact adjoint that avoids such errors is especially challenging if it is to be compatible with state-of-the-art simulation methods used for the turbulent flow itself. Automatic differentiation (AD) can provide code to calculate a nominally exact adjoint, but existing general-purpose AD codes are inefficient to the point of being prohibitive for large-scale turbulence simulations. We analyze the compressible flow equations as discretized using the same high-order workhorse methods used for many high-fidelity compressible turbulence simulations, and formulate a practical space--time discrete-adjoint method without changing the basic discretization. A key step is the definition of a particular discrete analog of the continuous norm that defines our cost functional; our selection leads directly to an efficient Runge--Kutta-like scheme
Fertilization compatibility of spawning corals
National Oceanic and Atmospheric Administration, Department of Commerce — This data set includes experimental results of fertilization assays to characterize genetic compatibility between individual parental genotypes. Targeted species...
Direct Discrete Method for Neutronic Calculations
International Nuclear Information System (INIS)
Vosoughi, Naser; Akbar Salehi, Ali; Shahriari, Majid
2002-01-01
The objective of this paper is to introduce a new direct method for neutronic calculations. This method which is named Direct Discrete Method, is simpler than the neutron Transport equation and also more compatible with physical meaning of problems. This method is based on physic of problem and with meshing of the desired geometry, writing the balance equation for each mesh intervals and with notice to the conjunction between these mesh intervals, produce the final discrete equations series without production of neutron transport differential equation and mandatory passing from differential equation bridge. We have produced neutron discrete equations for a cylindrical shape with two boundary conditions in one group energy. The correction of the results from this method are tested with MCNP-4B code execution. (authors)
Geometric Structure-Preserving Discretization Schemes for Nonlinear Elasticity
2015-08-13
sufficient conditions for the compatibility of displacement gradient and the existence of stress functions on non-contractible bodies. The main...conditions. 15. SUBJECT TERMS geometric theory for nonlinear elasticity, discrete exterior calculus 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...complex allows one to readily derive the necessary and sufficient conditions for the compatibility of displacement gradient and the existence of stress
Emissivity of discretized diffusion problems
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Davidson, Gregory; Carrington, David B.
2006-01-01
The numerical modeling of radiative transfer by the diffusion approximation can produce artificially damped radiation propagation if spatial cells are too optically thick. In this paper, we investigate this nonphysical behavior at external problem boundaries by examining the emissivity of the discretized diffusion approximation. We demonstrate that the standard cell-centered discretization produces an emissivity that is too low for optically thick cells, a situation that leads to the lack of radiation propagation. We then present a modified boundary condition that yields an accurate emissivity regardless of cell size. This modified boundary condition can be used with a deterministic calculation or as part of a hybrid transport-diffusion method for increasing the efficiency of Monte Carlo simulations. We also discuss the range of applicability, as a function of cell size and material properties, when this modified boundary condition is employed in a hybrid technique. With a set of numerical calculations, we demonstrate the accuracy and usefulness of this modified boundary condition
International Nuclear Information System (INIS)
Friedberg, R; Hohenberg, P C
2014-01-01
Formulations of quantum mechanics (QM) can be characterized as realistic, operationalist, or a combination of the two. In this paper a realistic theory is defined as describing a closed system entirely by means of entities and concepts pertaining to the system. An operationalist theory, on the other hand, requires in addition entities external to the system. A realistic formulation comprises an ontology, the set of (mathematical) entities that describe the system, and assertions, the set of correct statements (predictions) the theory makes about the objects in the ontology. Classical mechanics is the prime example of a realistic physical theory. A straightforward generalization of classical mechanics to QM is hampered by the inconsistency of quantum properties with classical logic, a circumstance that was noted many years ago by Birkhoff and von Neumann. The present realistic formulation of the histories approach originally introduced by Griffiths, which we call ‘compatible quantum theory (CQT)’, consists of a ‘microscopic’ part (MIQM), which applies to a closed quantum system of any size, and a ‘macroscopic’ part (MAQM), which requires the participation of a large (ideally, an infinite) system. The first (MIQM) can be fully formulated based solely on the assumption of a Hilbert space ontology and the noncontextuality of probability values, relying in an essential way on Gleason's theorem and on an application to dynamics due in large part to Nistico. Thus, the present formulation, in contrast to earlier ones, derives the Born probability formulas and the consistency (decoherence) conditions for frameworks. The microscopic theory does not, however, possess a unique corpus of assertions, but rather a multiplicity of contextual truths (‘c-truths’), each one associated with a different framework. This circumstance leads us to consider the microscopic theory to be physically indeterminate and therefore incomplete, though logically coherent. The
Multidimensional electron-photon transport with standard discrete ordinates codes
International Nuclear Information System (INIS)
Drumm, C.R.
1995-01-01
A method is described for generating electron cross sections that are compatible with standard discrete ordinates codes without modification. There are many advantages of using an established discrete ordinates solver, e.g. immediately available adjoint capability. Coupled electron-photon transport capability is needed for many applications, including the modeling of the response of electronics components to space and man-made radiation environments. The cross sections have been successfully used in the DORT, TWODANT and TORT discrete ordinates codes. The cross sections are shown to provide accurate and efficient solutions to certain multidimensional electronphoton transport problems
Statics and kinematics of discrete Cosserat-type granular materials
Kruyt, Nicolaas P.
2003-01-01
A theoretical framework is presented for the statics and kinematics of discrete Cosserat-type granular materials. In analogy to the force and moment equilibrium equations for particles, compatibility equations for closed loops are formulated in the two-dimensional case for relative displacements and
A study of discrete nonlinear systems
International Nuclear Information System (INIS)
Dhillon, H.S.
2001-04-01
An investigation of various spatially discrete time-independent nonlinear models was undertaken. These models are generically applicable to many different physical systems including electron-phonon interactions in solids, magnetic multilayers, layered superconductors and classical lattice systems. To characterise the possible magnetic structures created on magnetic multilayers a model has been formulated and studied. The Euler-Lagrange equation for this model is a discrete version of the Sine-Gordon equation. Solutions of this equation are generated by applying the methods of Chaotic Dynamics - treating the space variable associated with the layer number as a discrete time variable. The states found indicate periodic, quasiperiodic and chaotic structures. Analytic solutions to the discrete nonlinear Schroedinger Equation (DNSE) with cubic nonlinearity are presented in the strong coupling limit. Using these as a starting point, a procedure is developed to determine the wave function and the energy eigenvalue for moderate coupling. The energy eigenvalues of the different structures of the wave function are found to be in excellent agreement with the exact strong coupling result. The solutions to the DNSE indicate commensurate and incommensurate spatial structures associated with different localisation patterns of the wave function. The states which arise may be fractal, periodic, quasiperiodic or chaotic. This work is then extended to solve a first order discrete nonlinear equation. The exact solutions for both the first and second order discrete nonlinear equations with cubic nonlinearity suggests that this method of studying discrete nonlinear equations may be applied to solve discrete equations with any order difference and cubic nonlinearity. (author)
Discrete Events as Units of Perceived Time
Liverence, Brandon M.; Scholl, Brian J.
2012-01-01
In visual images, we perceive both space (as a continuous visual medium) and objects (that inhabit space). Similarly, in dynamic visual experience, we perceive both continuous time and discrete events. What is the relationship between these units of experience? The most intuitive answer may be similar to the spatial case: time is perceived as an…
Baecklund transformations for discrete Painleve equations: Discrete PII-PV
International Nuclear Information System (INIS)
Sakka, A.; Mugan, U.
2006-01-01
Transformation properties of discrete Painleve equations are investigated by using an algorithmic method. This method yields explicit transformations which relates the solutions of discrete Painleve equations, discrete P II -P V , with different values of parameters. The particular solutions which are expressible in terms of the discrete analogue of the classical special functions of discrete Painleve equations can also be obtained from these transformations
Discrete Gabor transform and discrete Zak transform
Bastiaans, M.J.; Namazi, N.M.; Matthews, K.
1996-01-01
Gabor's expansion of a discrete-time signal into a set of shifted and modulated versions of an elementary signal or synthesis window is introduced, along with the inverse operation, i.e. the Gabor transform, which uses an analysis window that is related to the synthesis window and with the help of
Discrete Mathematics Re "Tooled."
Grassl, Richard M.; Mingus, Tabitha T. Y.
1999-01-01
Indicates the importance of teaching discrete mathematics. Describes how the use of technology can enhance the teaching and learning of discrete mathematics. Explorations using Excel, Derive, and the TI-92 proved how preservice and inservice teachers experienced a new dimension in problem solving and discovery. (ASK)
Homogenization of discrete media
International Nuclear Information System (INIS)
Pradel, F.; Sab, K.
1998-01-01
Material such as granular media, beam assembly are easily seen as discrete media. They look like geometrical points linked together thanks to energetic expressions. Our purpose is to extend discrete kinematics to the one of an equivalent continuous material. First we explain how we build the localisation tool for periodic materials according to estimated continuum medium type (classical Cauchy, and Cosserat media). Once the bridge built between discrete and continuum media, we exhibit its application over two bidimensional beam assembly structures : the honey comb and a structural reinforced variation. The new behavior is then applied for the simple plan shear problem in a Cosserat continuum and compared with the real discrete solution. By the mean of this example, we establish the agreement of our new model with real structures. The exposed method has a longer range than mechanics and can be applied to every discrete problems like electromagnetism in which relationship between geometrical points can be summed up by an energetic function. (orig.)
International Nuclear Information System (INIS)
Aydin, Alhun; Sisman, Altug
2016-01-01
By considering the quantum-mechanically minimum allowable energy interval, we exactly count number of states (NOS) and introduce discrete density of states (DOS) concept for a particle in a box for various dimensions. Expressions for bounded and unbounded continua are analytically recovered from discrete ones. Even though substantial fluctuations prevail in discrete DOS, they're almost completely flattened out after summation or integration operation. It's seen that relative errors of analytical expressions of bounded/unbounded continua rapidly decrease for high NOS values (weak confinement or high energy conditions), while the proposed analytical expressions based on Weyl's conjecture always preserve their lower error characteristic. - Highlights: • Discrete density of states considering minimum energy difference is proposed. • Analytical DOS and NOS formulas based on Weyl conjecture are given. • Discrete DOS and NOS functions are examined for various dimensions. • Relative errors of analytical formulas are much better than the conventional ones.
Energy Technology Data Exchange (ETDEWEB)
Aydin, Alhun; Sisman, Altug, E-mail: sismanal@itu.edu.tr
2016-03-22
By considering the quantum-mechanically minimum allowable energy interval, we exactly count number of states (NOS) and introduce discrete density of states (DOS) concept for a particle in a box for various dimensions. Expressions for bounded and unbounded continua are analytically recovered from discrete ones. Even though substantial fluctuations prevail in discrete DOS, they're almost completely flattened out after summation or integration operation. It's seen that relative errors of analytical expressions of bounded/unbounded continua rapidly decrease for high NOS values (weak confinement or high energy conditions), while the proposed analytical expressions based on Weyl's conjecture always preserve their lower error characteristic. - Highlights: • Discrete density of states considering minimum energy difference is proposed. • Analytical DOS and NOS formulas based on Weyl conjecture are given. • Discrete DOS and NOS functions are examined for various dimensions. • Relative errors of analytical formulas are much better than the conventional ones.
Okuyama, Yoshifumi
2014-01-01
Discrete Control Systems establishes a basis for the analysis and design of discretized/quantized control systemsfor continuous physical systems. Beginning with the necessary mathematical foundations and system-model descriptions, the text moves on to derive a robust stability condition. To keep a practical perspective on the uncertain physical systems considered, most of the methods treated are carried out in the frequency domain. As part of the design procedure, modified Nyquist–Hall and Nichols diagrams are presented and discretized proportional–integral–derivative control schemes are reconsidered. Schemes for model-reference feedback and discrete-type observers are proposed. Although single-loop feedback systems form the core of the text, some consideration is given to multiple loops and nonlinearities. The robust control performance and stability of interval systems (with multiple uncertainties) are outlined. Finally, the monograph describes the relationship between feedback-control and discrete ev...
Discrete repulsive oscillator wavefunctions
International Nuclear Information System (INIS)
Munoz, Carlos A; Rueda-Paz, Juvenal; Wolf, Kurt Bernardo
2009-01-01
For the study of infinite discrete systems on phase space, the three-dimensional Lorentz algebra and group, so(2,1) and SO(2,1), provide a discrete model of the repulsive oscillator. Its eigenfunctions are found in the principal irreducible representation series, where the compact generator-that we identify with the position operator-has the infinite discrete spectrum of the integers Z, while the spectrum of energies is a double continuum. The right- and left-moving wavefunctions are given by hypergeometric functions that form a Dirac basis for l 2 (Z). Under contraction, the discrete system limits to the well-known quantum repulsive oscillator. Numerical computations of finite approximations raise further questions on the use of Dirac bases for infinite discrete systems.
Energy Technology Data Exchange (ETDEWEB)
Morris, J; Johnson, S
2007-12-03
The Distinct Element Method (also frequently referred to as the Discrete Element Method) (DEM) is a Lagrangian numerical technique where the computational domain consists of discrete solid elements which interact via compliant contacts. This can be contrasted with Finite Element Methods where the computational domain is assumed to represent a continuum (although many modern implementations of the FEM can accommodate some Distinct Element capabilities). Often the terms Discrete Element Method and Distinct Element Method are used interchangeably in the literature, although Cundall and Hart (1992) suggested that Discrete Element Methods should be a more inclusive term covering Distinct Element Methods, Displacement Discontinuity Analysis and Modal Methods. In this work, DEM specifically refers to the Distinct Element Method, where the discrete elements interact via compliant contacts, in contrast with Displacement Discontinuity Analysis where the contacts are rigid and all compliance is taken up by the adjacent intact material.
Blood compatibility--a perspective.
Ratner, B D
2000-01-01
This perspective on blood- materials interactions is intended to introduce the set of papers stemming from the symposium, "Devices and Diagnostics in Contact with Blood: Issues in Blood Compatibility at the Close of the 20th Century," organized on August 4-6, 1999 at the University of Washington by the University of Washington Engineered Biomaterials (UWEB) Engineering Research Center. This article outlines some of the history of blood contacting materials, overviews the work that has originated at the University of Washington over the past 28 years, speculates on the origins of the controversies on blood compatibility and considers the issues that should be addressed in future studies.
Izadi, F A; Bagirov, G
2009-01-01
With its origins stretching back several centuries, discrete calculus is now an increasingly central methodology for many problems related to discrete systems and algorithms. The topics covered here usually arise in many branches of science and technology, especially in discrete mathematics, numerical analysis, statistics and probability theory as well as in electrical engineering, but our viewpoint here is that these topics belong to a much more general realm of mathematics; namely calculus and differential equations because of the remarkable analogy of the subject to this branch of mathemati
Electromagnetic compatibility in power electronics
Costa , François; Revol , Bertrand
2014-01-01
Scientists largely attribute the recent deterioration of the electromagnetic environment to power electronics. This realization has spurred the study of methodical approaches to electromagnetic compatibility designs as explored in this text. The book addresses major challenges, such as handling numerous parameters vital to predicting electro magnetic effects and achieving compliance with line-harmonics norms, while proposing potential solutions.
Socio-compatible energy policies
International Nuclear Information System (INIS)
Renn, O.; Albrecht, G.; Kotte, U.; Peters, H.P.; Stegelmann, H.U.
1985-01-01
The socio-compatibility project comprises three central analytical elements: 1) The arborescent value analysis: Eminent social groups (such as the trade-unions or the ecological institutes) were questioned on their values and criteria applied to evaluate different energy systems. 2) The energy system and scenario impact analysis: Indicators deduced from the arborescent value analysis serve to approximately cover the value dimensions affected by above criteria. 3) Impact analysis weighing executed by a group of arbitrarily chosen citizens. All reflections considered, it is evident that none of the energy policies discussed may claim the title 'socio-compatible'. The individual, i.e. neither scientist nor politician, cannot decide upon the socio-compatibility of one or the other concept. An altogether socially compatible solution accepted and classified as such by different social groups may only crystallize and be set against different options by the political formation of opinion. The studys' primary concern lies in furnishing information, i.e. aids for politicians having to decide on energy policies. Above all the study aimed at finding out about reactions, social protest, opposition or approval to be coped with by those who, having the say in political matters, want to speak up for one of the energy policies under public discussion. (orig./HSCH) [de
Finite Discrete Gabor Analysis
DEFF Research Database (Denmark)
Søndergaard, Peter Lempel
2007-01-01
frequency bands at certain times. Gabor theory can be formulated for both functions on the real line and for discrete signals of finite length. The two theories are largely the same because many aspects come from the same underlying theory of locally compact Abelian groups. The two types of Gabor systems...... can also be related by sampling and periodization. This thesis extends on this theory by showing new results for window construction. It also provides a discussion of the problems associated to discrete Gabor bases. The sampling and periodization connection is handy because it allows Gabor systems...... on the real line to be well approximated by finite and discrete Gabor frames. This method of approximation is especially attractive because efficient numerical methods exists for doing computations with finite, discrete Gabor systems. This thesis presents new algorithms for the efficient computation of finite...
Adaptive Discrete Hypergraph Matching.
Yan, Junchi; Li, Changsheng; Li, Yin; Cao, Guitao
2018-02-01
This paper addresses the problem of hypergraph matching using higher-order affinity information. We propose a solver that iteratively updates the solution in the discrete domain by linear assignment approximation. The proposed method is guaranteed to converge to a stationary discrete solution and avoids the annealing procedure and ad-hoc post binarization step that are required in several previous methods. Specifically, we start with a simple iterative discrete gradient assignment solver. This solver can be trapped in an -circle sequence under moderate conditions, where is the order of the graph matching problem. We then devise an adaptive relaxation mechanism to jump out this degenerating case and show that the resulting new path will converge to a fixed solution in the discrete domain. The proposed method is tested on both synthetic and real-world benchmarks. The experimental results corroborate the efficacy of our method.
Goodrich, Christopher
2015-01-01
This text provides the first comprehensive treatment of the discrete fractional calculus. Experienced researchers will find the text useful as a reference for discrete fractional calculus and topics of current interest. Students who are interested in learning about discrete fractional calculus will find this text to provide a useful starting point. Several exercises are offered at the end of each chapter and select answers have been provided at the end of the book. The presentation of the content is designed to give ample flexibility for potential use in a myriad of courses and for independent study. The novel approach taken by the authors includes a simultaneous treatment of the fractional- and integer-order difference calculus (on a variety of time scales, including both the usual forward and backwards difference operators). The reader will acquire a solid foundation in the classical topics of the discrete calculus while being introduced to exciting recent developments, bringing them to the frontiers of the...
International Nuclear Information System (INIS)
Williams, Ruth M
2006-01-01
A review is given of a number of approaches to discrete quantum gravity, with a restriction to those likely to be relevant in four dimensions. This paper is dedicated to Rafael Sorkin on the occasion of his sixtieth birthday
Discrete computational structures
Korfhage, Robert R
1974-01-01
Discrete Computational Structures describes discrete mathematical concepts that are important to computing, covering necessary mathematical fundamentals, computer representation of sets, graph theory, storage minimization, and bandwidth. The book also explains conceptual framework (Gorn trees, searching, subroutines) and directed graphs (flowcharts, critical paths, information network). The text discusses algebra particularly as it applies to concentrates on semigroups, groups, lattices, propositional calculus, including a new tabular method of Boolean function minimization. The text emphasize
Materials compatibility information data bank
International Nuclear Information System (INIS)
Mead, K.E.
1977-01-01
A major concern in the design of weapons systems is the compatibility of the materials used with each other and with the enclosed environment. Usually these systems require long term storage with a high reliability for proper function at the end of this storage period. Materials selection is then based on both past experience and laboratory accelerated aging experiments to assure this long term reliability. To assist in the task of materials selection a computerized materials compatibility data bank is being established. This data bank will provide a source of annotated information and references to personnel and documents for both the designer and materials engineer to draw on for guidance in materials selection. The data bank storage and information retrieval philosophy will be discussed and procedures for information gathering outlined. Examples of data entries and search routines will be presented to demonstrate the usefulness and versatility of the proposed system
Multiparty Compatibility for Concurrent Objects
Directory of Open Access Journals (Sweden)
Roly Perera
2016-06-01
Full Text Available Objects and actors are communicating state machines, offering and consuming different services at different points in their lifecycle. Two complementary challenges arise when programming such systems. When objects interact, their state machines must be "compatible", so that services are requested only when they are available. Dually, when objects refine other objects, their state machines must be "compliant", so that services are honoured whenever they are promised. In this paper we show how the idea of multiparty compatibility from the session types literature can be applied to both of these problems. We present an untyped language in which concurrent objects are checked automatically for compatibility and compliance. For simple objects, checking can be exhaustive and has the feel of a type system. More complex objects can be partially validated via test cases, leading to a methodology closer to continuous testing. Our proof-of-concept implementation is limited in some important respects, but demonstrates the potential value of the approach and the relationship to existing software development practices.
Zhu, Guangpu; Chen, Huangxin; Sun, Shuyu; Yao, Jun
2018-01-01
In this paper, a fully discrete scheme which considers temporal and spatial discretizations is presented for the coupled Cahn-Hilliard equation in conserved form with the dynamic contact line condition and the Navier-Stokes equation
A practical discrete-adjoint method for high-fidelity compressible turbulence simulations
International Nuclear Information System (INIS)
Vishnampet, Ramanathan; Bodony, Daniel J.; Freund, Jonathan B.
2015-01-01
Methods and computing hardware advances have enabled accurate predictions of complex compressible turbulence phenomena, such as the generation of jet noise that motivates the present effort. However, limited understanding of underlying physical mechanisms restricts the utility of such predictions since they do not, by themselves, indicate a route to design improvements. Gradient-based optimization using adjoints can circumvent the flow complexity to guide designs, though this is predicated on the availability of a sufficiently accurate solution of the forward and adjoint systems. These are challenging to obtain, since both the chaotic character of the turbulence and the typical use of discretizations near their resolution limits in order to efficiently represent its smaller scales will amplify any approximation errors made in the adjoint formulation. Formulating a practical exact adjoint that avoids such errors is especially challenging if it is to be compatible with state-of-the-art simulation methods used for the turbulent flow itself. Automatic differentiation (AD) can provide code to calculate a nominally exact adjoint, but existing general-purpose AD codes are inefficient to the point of being prohibitive for large-scale turbulence simulations. Here, we analyze the compressible flow equations as discretized using the same high-order workhorse methods used for many high-fidelity compressible turbulence simulations, and formulate a practical space–time discrete-adjoint method without changing the basic discretization. A key step is the definition of a particular discrete analog of the continuous norm that defines our cost functional; our selection leads directly to an efficient Runge–Kutta-like scheme, though it would be just first-order accurate if used outside the adjoint formulation for time integration, with finite-difference spatial operators for the adjoint system. Its computational cost only modestly exceeds that of the flow equations. We confirm that
Dissociating Compatibility Effects and Distractor Costs in the Additional Singleton Paradigm
Directory of Open Access Journals (Sweden)
Charles eFolk
2013-07-01
Full Text Available The interpretation of identity compatibility effects associated with irrelevant items outside the nominal focus of attention has fueled much of the debate over early versus late selection and perceptual load theory. However, compatibility effects have also played a role in the debate over the extent to which the involuntary allocation of spatial attention (i.e., attentional capture is completely stimulus-driven or whether it is contingent on top-down control settings. For example, in the context of the additional singleton paradigm, irrelevant color singletons have been found to produce not only an overall cost in search performance but also significant compatibility effects. This combination of search costs and compatibility effects has been taken as evidence that spatial attention is indeed allocated in a bottom-up fashion to the salient but irrelevant singletons. However, it is possible that compatibility effects in the additional singleton paradigm reflect parallel processing of identity associated with low perceptual load rather than an involuntary shift of spatial attention. In the present experiments, manipulations of load were incorporated into the traditional additional singleton paradigm. Under low load conditions, both search costs and compatibility effects were obtained, replicating previous studies. Under high load conditions, search costs were still present, but compatibility effects were eliminated. This dissociation suggests that the costs associated with irrelevant singletons may reflect filtering processes rather than the allocation of spatial attention.
Homogenization of discrete media
Energy Technology Data Exchange (ETDEWEB)
Pradel, F.; Sab, K. [CERAM-ENPC, Marne-la-Vallee (France)
1998-11-01
Material such as granular media, beam assembly are easily seen as discrete media. They look like geometrical points linked together thanks to energetic expressions. Our purpose is to extend discrete kinematics to the one of an equivalent continuous material. First we explain how we build the localisation tool for periodic materials according to estimated continuum medium type (classical Cauchy, and Cosserat media). Once the bridge built between discrete and continuum media, we exhibit its application over two bidimensional beam assembly structures : the honey comb and a structural reinforced variation. The new behavior is then applied for the simple plan shear problem in a Cosserat continuum and compared with the real discrete solution. By the mean of this example, we establish the agreement of our new model with real structures. The exposed method has a longer range than mechanics and can be applied to every discrete problems like electromagnetism in which relationship between geometrical points can be summed up by an energetic function. (orig.) 7 refs.
Chen, Huangxin
2017-09-01
In this paper we consider the energy stability estimates for some fully discrete schemes which both consider time and spatial discretizations for the incompressible Navier–Stokes equations. We focus on three kinds of fully discrete schemes, i.e., the linear implicit scheme for time discretization with the finite difference method (FDM) on staggered grids for spatial discretization, pressure-correction schemes for time discretization with the FDM on staggered grids for the solutions of the decoupled velocity and pressure equations, and pressure-stabilization schemes for time discretization with the FDM on staggered grids for the solutions of the decoupled velocity and pressure equations. The energy stability estimates are obtained for the above each fully discrete scheme. The upwind scheme is used in the discretization of the convection term which plays an important role in the design of unconditionally stable discrete schemes. Numerical results are given to verify the theoretical analysis.
DISCRETE MATHEMATICS/NUMBER THEORY
Mrs. Manju Devi*
2017-01-01
Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous. In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics such as integers, graphs, and statements do not vary smoothly in this way, but have distinct, separated values. Discrete mathematics therefore excludes topics in "continuous mathematics" such as calculus and analysis. Discrete objects can often be enumerated by ...
Approximate Schur complement preconditioning of the lowest order nodal discretizations
Energy Technology Data Exchange (ETDEWEB)
Moulton, J.D.; Ascher, U.M. [Univ. of British Columbia, Vancouver, British Columbia (Canada); Morel, J.E. [Los Alamos National Lab., NM (United States)
1996-12-31
Particular classes of nodal methods and mixed hybrid finite element methods lead to equivalent, robust and accurate discretizations of 2nd order elliptic PDEs. However, widespread popularity of these discretizations has been hindered by the awkward linear systems which result. The present work exploits this awkwardness, which provides a natural partitioning of the linear system, by defining two optimal preconditioners based on approximate Schur complements. Central to the optimal performance of these preconditioners is their sparsity structure which is compatible with Dendy`s black box multigrid code.
Directory of Open Access Journals (Sweden)
Prateek Sharma
2015-04-01
Full Text Available Abstract Simulation can be regarded as the emulation of the behavior of a real-world system over an interval of time. The process of simulation relies upon the generation of the history of a system and then analyzing that history to predict the outcome and improve the working of real systems. Simulations can be of various kinds but the topic of interest here is one of the most important kind of simulation which is Discrete-Event Simulation which models the system as a discrete sequence of events in time. So this paper aims at introducing about Discrete-Event Simulation and analyzing how it is beneficial to the real world systems.
Discrete systems and integrability
Hietarinta, J; Nijhoff, F W
2016-01-01
This first introductory text to discrete integrable systems introduces key notions of integrability from the vantage point of discrete systems, also making connections with the continuous theory where relevant. While treating the material at an elementary level, the book also highlights many recent developments. Topics include: Darboux and Bäcklund transformations; difference equations and special functions; multidimensional consistency of integrable lattice equations; associated linear problems (Lax pairs); connections with Padé approximants and convergence algorithms; singularities and geometry; Hirota's bilinear formalism for lattices; intriguing properties of discrete Painlevé equations; and the novel theory of Lagrangian multiforms. The book builds the material in an organic way, emphasizing interconnections between the various approaches, while the exposition is mostly done through explicit computations on key examples. Written by respected experts in the field, the numerous exercises and the thoroug...
Exarchakis, Georgios; Lücke, Jörg
2017-11-01
Sparse coding algorithms with continuous latent variables have been the subject of a large number of studies. However, discrete latent spaces for sparse coding have been largely ignored. In this work, we study sparse coding with latents described by discrete instead of continuous prior distributions. We consider the general case in which the latents (while being sparse) can take on any value of a finite set of possible values and in which we learn the prior probability of any value from data. This approach can be applied to any data generated by discrete causes, and it can be applied as an approximation of continuous causes. As the prior probabilities are learned, the approach then allows for estimating the prior shape without assuming specific functional forms. To efficiently train the parameters of our probabilistic generative model, we apply a truncated expectation-maximization approach (expectation truncation) that we modify to work with a general discrete prior. We evaluate the performance of the algorithm by applying it to a variety of tasks: (1) we use artificial data to verify that the algorithm can recover the generating parameters from a random initialization, (2) use image patches of natural images and discuss the role of the prior for the extraction of image components, (3) use extracellular recordings of neurons to present a novel method of analysis for spiking neurons that includes an intuitive discretization strategy, and (4) apply the algorithm on the task of encoding audio waveforms of human speech. The diverse set of numerical experiments presented in this letter suggests that discrete sparse coding algorithms can scale efficiently to work with realistic data sets and provide novel statistical quantities to describe the structure of the data.
Introductory discrete mathematics
Balakrishnan, V K
2010-01-01
This concise text offers an introduction to discrete mathematics for undergraduate students in computer science and mathematics. Mathematics educators consider it vital that their students be exposed to a course in discrete methods that introduces them to combinatorial mathematics and to algebraic and logical structures focusing on the interplay between computer science and mathematics. The present volume emphasizes combinatorics, graph theory with applications to some stand network optimization problems, and algorithms to solve these problems.Chapters 0-3 cover fundamental operations involv
Prateek Sharma
2015-01-01
Abstract Simulation can be regarded as the emulation of the behavior of a real-world system over an interval of time. The process of simulation relies upon the generation of the history of a system and then analyzing that history to predict the outcome and improve the working of real systems. Simulations can be of various kinds but the topic of interest here is one of the most important kind of simulation which is Discrete-Event Simulation which models the system as a discrete sequence of ev...
Inheritance of graft compatibility in Douglas fir.
D.L. Copes
1973-01-01
Graft compatibility of genetically related and unrelated rootstock-scion combinations was compared. Scion clones were 75% compatible when grafted on half-related rootstocks but only 56% compatible when grafted on unrelated rootstocks. Most variance associated with graft incompatibility in Douglas-fir appears to be caused by multiple genes.
Electromagnetic compatibility principles and applications
Weston, David A
2001-01-01
This totally revised and expanded reference/text provides comprehensive, single-source coverage of the design, problem solving, and specifications of electromagnetic compatibility (EMC) into electrical equipment/systems-including new information on basic theories, applications, evaluations, prediction techniques, and practical diagnostic options for preventing EMI through cost-effective solutions. Offers the most recent guidelines, safety limits, and standards for human exposure to electromagnetic fields! Containing updated data on EMI diagnostic verification measurements, as well as over 900 drawings, photographs, tables, and equations-500 more than the previous edition
Indian Academy of Sciences (India)
We also describe discrete-time systems in terms of difference ... A more modern alternative, especially for larger systems, is to convert ... In other words, ..... picture?) State-variable equations are also called state-space equations because the ...
Discrete Lorentzian quantum gravity
Loll, R.
2000-01-01
Just as for non-abelian gauge theories at strong coupling, discrete lattice methods are a natural tool in the study of non-perturbative quantum gravity. They have to reflect the fact that the geometric degrees of freedom are dynamical, and that therefore also the lattice theory must be formulated
Sharp, Karen Tobey
This paper cites information received from a number of sources, e.g., mathematics teachers in two-year colleges, publishers, and convention speakers, about the nature of discrete mathematics and about what topics a course in this subject should contain. Note is taken of the book edited by Ralston and Young which discusses the future of college…
Detergent-compatible bacterial amylases.
Niyonzima, Francois N; More, Sunil S
2014-10-01
Proteases, lipases, amylases, and cellulases are enzymes used in detergent formulation to improve the detergency. The amylases are specifically supplemented to the detergent to digest starchy stains. Most of the solid and liquid detergents that are currently manufactured contain alkaline enzymes. The advantages of using alkaline enzymes in the detergent formulation are that they aid in removing tough stains and the process is environmentally friendly since they reduce the use of toxic detergent ingredients. Amylases active at low temperature are preferred as the energy consumption gets reduced, and the whole process becomes cost-effective. Most microbial alkaline amylases are used as detergent ingredients. Various reviews report on the production, purification, characterization, and application of amylases in different industry sectors, but there is no specific review on bacterial or fungal alkaline amylases or detergent-compatible amylases. In this mini-review, an overview on the production and property studies of the detergent bacterial amylases is given, and the stability and compatibility of the alkaline bacterial amylases in the presence of the detergents and the detergent components are highlighted.
Discrete Exterior Calculus Discretization of Incompressible Navier-Stokes Equations
Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi
2017-01-01
A conservative discretization of incompressible Navier-Stokes equations over surface simplicial meshes is developed using discrete exterior calculus (DEC). Numerical experiments for flows over surfaces reveal a second order accuracy
Discrete mKdV and discrete sine-Gordon flows on discrete space curves
International Nuclear Information System (INIS)
Inoguchi, Jun-ichi; Kajiwara, Kenji; Matsuura, Nozomu; Ohta, Yasuhiro
2014-01-01
In this paper, we consider the discrete deformation of the discrete space curves with constant torsion described by the discrete mKdV or the discrete sine-Gordon equations, and show that it is formulated as the torsion-preserving equidistant deformation on the osculating plane which satisfies the isoperimetric condition. The curve is reconstructed from the deformation data by using the Sym–Tafel formula. The isoperimetric equidistant deformation of the space curves does not preserve the torsion in general. However, it is possible to construct the torsion-preserving deformation by tuning the deformation parameters. Further, it is also possible to make an arbitrary choice of the deformation described by the discrete mKdV equation or by the discrete sine-Gordon equation at each step. We finally show that the discrete deformation of discrete space curves yields the discrete K-surfaces. (paper)
Discrete mathematics with applications
Koshy, Thomas
2003-01-01
This approachable text studies discrete objects and the relationsips that bind them. It helps students understand and apply the power of discrete math to digital computer systems and other modern applications. It provides excellent preparation for courses in linear algebra, number theory, and modern/abstract algebra and for computer science courses in data structures, algorithms, programming languages, compilers, databases, and computation.* Covers all recommended topics in a self-contained, comprehensive, and understandable format for students and new professionals * Emphasizes problem-solving techniques, pattern recognition, conjecturing, induction, applications of varying nature, proof techniques, algorithm development and correctness, and numeric computations* Weaves numerous applications into the text* Helps students learn by doing with a wealth of examples and exercises: - 560 examples worked out in detail - More than 3,700 exercises - More than 150 computer assignments - More than 600 writing projects*...
Discrete and computational geometry
Devadoss, Satyan L
2011-01-01
Discrete geometry is a relatively new development in pure mathematics, while computational geometry is an emerging area in applications-driven computer science. Their intermingling has yielded exciting advances in recent years, yet what has been lacking until now is an undergraduate textbook that bridges the gap between the two. Discrete and Computational Geometry offers a comprehensive yet accessible introduction to this cutting-edge frontier of mathematics and computer science. This book covers traditional topics such as convex hulls, triangulations, and Voronoi diagrams, as well as more recent subjects like pseudotriangulations, curve reconstruction, and locked chains. It also touches on more advanced material, including Dehn invariants, associahedra, quasigeodesics, Morse theory, and the recent resolution of the Poincaré conjecture. Connections to real-world applications are made throughout, and algorithms are presented independently of any programming language. This richly illustrated textbook also fe...
2002-01-01
Discrete geometry investigates combinatorial properties of configurations of geometric objects. To a working mathematician or computer scientist, it offers sophisticated results and techniques of great diversity and it is a foundation for fields such as computational geometry or combinatorial optimization. This book is primarily a textbook introduction to various areas of discrete geometry. In each area, it explains several key results and methods, in an accessible and concrete manner. It also contains more advanced material in separate sections and thus it can serve as a collection of surveys in several narrower subfields. The main topics include: basics on convex sets, convex polytopes, and hyperplane arrangements; combinatorial complexity of geometric configurations; intersection patterns and transversals of convex sets; geometric Ramsey-type results; polyhedral combinatorics and high-dimensional convexity; and lastly, embeddings of finite metric spaces into normed spaces. Jiri Matousek is Professor of Com...
Czech Academy of Sciences Publication Activity Database
Mesiar, Radko; Li, J.; Pap, E.
2013-01-01
Roč. 54, č. 3 (2013), s. 357-364 ISSN 0888-613X R&D Projects: GA ČR GAP402/11/0378 Institutional support: RVO:67985556 Keywords : concave integral * pseudo-addition * pseudo-multiplication Subject RIV: BA - General Mathematics Impact factor: 1.977, year: 2013 http://library.utia.cas.cz/separaty/2013/E/mesiar-discrete pseudo-integrals.pdf
Discrete variational Hamiltonian mechanics
International Nuclear Information System (INIS)
Lall, S; West, M
2006-01-01
The main contribution of this paper is to present a canonical choice of a Hamiltonian theory corresponding to the theory of discrete Lagrangian mechanics. We make use of Lagrange duality and follow a path parallel to that used for construction of the Pontryagin principle in optimal control theory. We use duality results regarding sensitivity and separability to show the relationship between generating functions and symplectic integrators. We also discuss connections to optimal control theory and numerical algorithms
International Nuclear Information System (INIS)
Jalnapurkar, Sameer M; Leok, Melvin; Marsden, Jerrold E; West, Matthew
2006-01-01
This paper develops the theory of Abelian Routh reduction for discrete mechanical systems and applies it to the variational integration of mechanical systems with Abelian symmetry. The reduction of variational Runge-Kutta discretizations is considered, as well as the extent to which symmetry reduction and discretization commute. These reduced methods allow the direct simulation of dynamical features such as relative equilibria and relative periodic orbits that can be obscured or difficult to identify in the unreduced dynamics. The methods are demonstrated for the dynamics of an Earth orbiting satellite with a non-spherical J 2 correction, as well as the double spherical pendulum. The J 2 problem is interesting because in the unreduced picture, geometric phases inherent in the model and those due to numerical discretization can be hard to distinguish, but this issue does not appear in the reduced algorithm, where one can directly observe interesting dynamical structures in the reduced phase space (the cotangent bundle of shape space), in which the geometric phases have been removed. The main feature of the double spherical pendulum example is that it has a non-trivial magnetic term in its reduced symplectic form. Our method is still efficient as it can directly handle the essential non-canonical nature of the symplectic structure. In contrast, a traditional symplectic method for canonical systems could require repeated coordinate changes if one is evoking Darboux' theorem to transform the symplectic structure into canonical form, thereby incurring additional computational cost. Our method allows one to design reduced symplectic integrators in a natural way, despite the non-canonical nature of the symplectic structure
Discrete port-Hamiltonian systems
Talasila, V.; Clemente-Gallardo, J.; Schaft, A.J. van der
2006-01-01
Either from a control theoretic viewpoint or from an analysis viewpoint it is necessary to convert smooth systems to discrete systems, which can then be implemented on computers for numerical simulations. Discrete models can be obtained either by discretizing a smooth model, or by directly modeling
A paradigm for discrete physics
International Nuclear Information System (INIS)
Noyes, H.P.; McGoveran, D.; Etter, T.; Manthey, M.J.; Gefwert, C.
1987-01-01
An example is outlined for constructing a discrete physics using as a starting point the insight from quantum physics that events are discrete, indivisible and non-local. Initial postulates are finiteness, discreteness, finite computability, absolute nonuniqueness (i.e., homogeneity in the absence of specific cause) and additivity
Role of value compatibility in IT adoption
DEFF Research Database (Denmark)
Bunker, Deborah; Kautz, Karlheinz; Nguyen, Anne Luu Thanh
2007-01-01
Compatibility has been recognised as an important element in the adoption of IT innovations in organisations but as a concept it has been generally limited to technical or functional factors. Compatibility is also significant, however, with regard to value compatibility between the organisation......, and the adopted IT innovation. We propose a framework to determine value compatibility analysing the organisation's and information system's structure, practices and culture, and explore the value compatibility of an organisation with its adopted self-service computer-based information system. A case study......-service acceptance and training issues experienced by the case organisation. These findings add insight into the problems experienced with value compatibility and the adoption of the information systems, and show the potential use of the proposed framework in the detection of such problems.Journal of Information...
Electromagnetic Compatibility Design of the Computer Circuits
Zitai, Hong
2018-02-01
Computers and the Internet have gradually penetrated into every aspect of people’s daily work. But with the improvement of electronic equipment as well as electrical system, the electromagnetic environment becomes much more complex. Electromagnetic interference has become an important factor to hinder the normal operation of electronic equipment. In order to analyse the computer circuit compatible with the electromagnetic compatibility, this paper starts from the computer electromagnetic and the conception of electromagnetic compatibility. And then, through the analysis of the main circuit and system of computer electromagnetic compatibility problems, we can design the computer circuits in term of electromagnetic compatibility. Finally, the basic contents and methods of EMC test are expounded in order to ensure the electromagnetic compatibility of equipment.
Two new discrete integrable systems
International Nuclear Information System (INIS)
Chen Xiao-Hong; Zhang Hong-Qing
2013-01-01
In this paper, we focus on the construction of new (1+1)-dimensional discrete integrable systems according to a subalgebra of loop algebra Ã 1 . By designing two new (1+1)-dimensional discrete spectral problems, two new discrete integrable systems are obtained, namely, a 2-field lattice hierarchy and a 3-field lattice hierarchy. When deriving the two new discrete integrable systems, we find the generalized relativistic Toda lattice hierarchy and the generalized modified Toda lattice hierarchy. Moreover, we also obtain the Hamiltonian structures of the two lattice hierarchies by means of the discrete trace identity
Discrete variable theory of triatomic photodissociation
International Nuclear Information System (INIS)
Heather, R.W.; Light, J.C.
1983-01-01
The coupled equations describing the photodissociation process are expressed in the discrete variable representation (DVR) in which the coupled equations are labeled by quadrature points rather than by internal basis functions. A large reduction in the dimensionality of the coupled equations can be realized since the spatially localized bound state nuclear wave function vanishes at most of the quadrature points, making only certain orientations of the fragments important in the region of strong interaction (small separation). The discrete variable theory of photodissociation is applied to the model dissociation of bent HCN in which the CN fragment is treated as a rigid rotor. The truncated DVR rotational distributions are compared with the exact close coupled rotational distributions, and excellent agreement with greatly reduced dimensionality of the equations is found
Constitutional compatibility of energy systems
International Nuclear Information System (INIS)
Rossnagel, A.
1983-01-01
The paper starts from the results of the Enquiry Commission on 'Future Nuclear Energy Policy' of the 8th Federal German Parliament outlining technically feasible energy futures in four 'pathways'. For the purpose of the project, which was to establish the comparative advantages and disadvantages of different energy systems, these four scenarios were reduced to two alternatives: cases K (= nuclear energy) and S (= solar energy). The question to Ge put is: Which changes within our legal system will be ushered in by certain technological developments and how do these changes relate to the legal condition intended so far. Proceeding in this manner will not lead to the result of a nuclear energy system or a solar energy system being in conformity or in contradiction with the constitutional law, but will provide a catalogue of implications orientated to the aims of legal standards: a person deciding in favour of a nuclear energy system or a solar energy system supports this or that development of constitutional policy, and a person purishing this or that aim of legal policy should be consistent and decide in favour of this or that energy system. The investigation of constitutional compatibility leads to the question what effects different energy systems will have on the forms of political intercourse laid down in the constitutional law, which are orientated to models of a liberal constitutional tradition of citizens. (orig./HSCH) [de
Hirsch, M; Peinado, E; Valle, J W F
2010-01-01
We propose a new motivation for the stability of dark matter (DM). We suggest that the same non-abelian discrete flavor symmetry which accounts for the observed pattern of neutrino oscillations, spontaneously breaks to a Z2 subgroup which renders DM stable. The simplest scheme leads to a scalar doublet DM potentially detectable in nuclear recoil experiments, inverse neutrino mass hierarchy, hence a neutrinoless double beta decay rate accessible to upcoming searches, while reactor angle equal to zero gives no CP violation in neutrino oscillations.
Wuensche, Andrew
DDLab is interactive graphics software for creating, visualizing, and analyzing many aspects of Cellular Automata, Random Boolean Networks, and Discrete Dynamical Networks in general and studying their behavior, both from the time-series perspective — space-time patterns, and from the state-space perspective — attractor basins. DDLab is relevant to research, applications, and education in the fields of complexity, self-organization, emergent phenomena, chaos, collision-based computing, neural networks, content addressable memory, genetic regulatory networks, dynamical encryption, generative art and music, and the study of the abstract mathematical/physical/dynamical phenomena in their own right.
International Nuclear Information System (INIS)
Souza, Manoelito M. de
1997-01-01
We discuss the physical meaning and the geometric interpretation of implementation in classical field theories. The origin of infinities and other inconsistencies in field theories is traced to fields defined with support on the light cone; a finite and consistent field theory requires a light-cone generator as the field support. Then, we introduce a classical field theory with support on the light cone generators. It results on a description of discrete (point-like) interactions in terms of localized particle-like fields. We find the propagators of these particle-like fields and discuss their physical meaning, properties and consequences. They are conformally invariant, singularity-free, and describing a manifestly covariant (1 + 1)-dimensional dynamics in a (3 = 1) spacetime. Remarkably this conformal symmetry remains even for the propagation of a massive field in four spacetime dimensions. We apply this formalism to Classical electrodynamics and to the General Relativity Theory. The standard formalism with its distributed fields is retrieved in terms of spacetime average of the discrete field. Singularities are the by-products of the averaging process. This new formalism enlighten the meaning and the problem of field theory, and may allow a softer transition to a quantum theory. (author)
Discrete Exterior Calculus Discretization of Incompressible Navier-Stokes Equations
Mohamed, Mamdouh S.
2017-05-23
A conservative discretization of incompressible Navier-Stokes equations over surface simplicial meshes is developed using discrete exterior calculus (DEC). Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy otherwise. The mimetic character of many of the DEC operators provides exact conservation of both mass and vorticity, in addition to superior kinetic energy conservation. The employment of barycentric Hodge star allows the discretization to admit arbitrary simplicial meshes. The discretization scheme is presented along with various numerical test cases demonstrating its main characteristics.
Energy Technology Data Exchange (ETDEWEB)
Breier, J. A.; Rauch, C. G.; McCartney, K.; Toner, B. M.; Fakra, S. C.; White, S. N.; German, C. R.
2010-06-22
To enable detailed investigations of early stage hydrothermal plume formation and abiotic and biotic plume processes we developed a new oceanographic tool. The Suspended Particulate Rosette sampling system has been designed to collect geochemical and microbial samples from the rising portion of deep-sea hydrothermal plumes. It can be deployed on a remotely operated vehicle for sampling rising plumes, on a wire-deployed water rosette for spatially discrete sampling of non-buoyant hydrothermal plumes, or on a fixed mooring in a hydrothermal vent field for time series sampling. It has performed successfully during both its first mooring deployment at the East Pacific Rise and its first remotely-operated vehicle deployments along the Mid-Atlantic Ridge. It is currently capable of rapidly filtering 24 discrete large-water-volume samples (30-100 L per sample) for suspended particles during a single deployment (e.g. >90 L per sample at 4-7 L per minute through 1 {mu}m pore diameter polycarbonate filters). The Suspended Particulate Rosette sampler has been designed with a long-term goal of seafloor observatory deployments, where it can be used to collect samples in response to tectonic or other events. It is compatible with in situ optical sensors, such as laser Raman or visible reflectance spectroscopy systems, enabling in situ particle analysis immediately after sample collection and before the particles alter or degrade.
Tank Farm Waste Transfer Compatibility Program
International Nuclear Information System (INIS)
FOWLER, K.D.
2001-01-01
The compatibility program described in this document formalizes the process for determining waste compatibility. The primary goal of the program is to ensure that sufficient controls are in place to prevent the formation of incompatible mixtures during future operations. The process described involves characterizing waste, comparing characteristics with criteria, resolving potential incompatibilities and documenting the process
Common Fixed Points for Weakly Compatible Maps
Indian Academy of Sciences (India)
The purpose of this paper is to prove a common fixed point theorem, from the class of compatible continuous maps to a larger class of maps having weakly compatible maps without appeal to continuity, which generalized the results of Jungck [3], Fisher [1], Kang and Kim [8], Jachymski [2], and Rhoades [9].
New Commitment Options: Compatibility with Emissions Trading
Energy Technology Data Exchange (ETDEWEB)
NONE
2006-07-01
This paper considers different options for quantitative greenhouse gas emission commitments from the standpoint of their technical compatibility with emissions trading. These are dynamic targets, binding targets with price caps, non-binding targets, sector-wide targets/mechanisms, action targets, allowances and endowments, and long-term permits. This paper considers these options from the standpoint of their compatibility with emissions trading.
Is Religious Education Compatible with Science Education?
Mahner, Martin; Bunge, Mario
1996-01-01
Addresses the problem of the compatibility of science and religion, and its bearing on science and religious education, challenges the popular view that science and religion are compatible or complementary. Discusses differences at the doctrinal, metaphysical, methodological, and attitudinal levels. Argues that religious education should be kept…
9 CFR 3.7 - Compatible grouping.
2010-01-01
... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Compatible grouping. 3.7 Section 3.7... Cats 1 Animal Health and Husbandry Standards § 3.7 Compatible grouping. Dogs and cats that are housed...; (c) Puppies or kittens 4 months of age or less may not be housed in the same primary enclosure with...
Mycelial compatibility groups and pathogenicity of Sclerotinia ...
African Journals Online (AJOL)
... was determined by mycelial compatibility grouping (MCG) and isolate aggressiveness comparisons. MCG, host specificity and aggressiveness of S. sclerotiorum isolates were assessed. Isolate pairs were designated compatible when no barrage zone formed at sites of contact. They were designated incompatible when a ...
Tank Farm Waste Transfer Compatibility Program
International Nuclear Information System (INIS)
FOWLER, K.D.
2000-01-01
The compatibility program described in this document formalizes the process for determining waste compatibility. The primary goal of the program is to ensure that sufficient controls are in place to prevent the formation of incompatible mixtures during future operations. The process described involves characterizing waste, comparing characteristics with criteria, resolving potential incompatibilities and documenting the process
Discrete Variational Approach for Modeling Laser-Plasma Interactions
Reyes, J. Paxon; Shadwick, B. A.
2014-10-01
The traditional approach for fluid models of laser-plasma interactions begins by approximating fields and derivatives on a grid in space and time, leading to difference equations that are manipulated to create a time-advance algorithm. In contrast, by introducing the spatial discretization at the level of the action, the resulting Euler-Lagrange equations have particular differencing approximations that will exactly satisfy discrete versions of the relevant conservation laws. For example, applying a spatial discretization in the Lagrangian density leads to continuous-time, discrete-space equations and exact energy conservation regardless of the spatial grid resolution. We compare the results of two discrete variational methods using the variational principles from Chen and Sudan and Brizard. Since the fluid system conserves energy and momentum, the relative errors in these conserved quantities are well-motivated physically as figures of merit for a particular method. This work was supported by the U. S. Department of Energy under Contract No. DE-SC0008382 and by the National Science Foundation under Contract No. PHY-1104683.
Parallel ray tracing for one-dimensional discrete ordinate computations
International Nuclear Information System (INIS)
Jarvis, R.D.; Nelson, P.
1996-01-01
The ray-tracing sweep in discrete-ordinates, spatially discrete numerical approximation methods applied to the linear, steady-state, plane-parallel, mono-energetic, azimuthally symmetric, neutral-particle transport equation can be reduced to a parallel prefix computation. In so doing, the often severe penalty in convergence rate of the source iteration, suffered by most current parallel algorithms using spatial domain decomposition, can be avoided while attaining parallelism in the spatial domain to whatever extent desired. In addition, the reduction implies parallel algorithm complexity limits for the ray-tracing sweep. The reduction applies to all closed, linear, one-cell functional (CLOF) spatial approximation methods, which encompasses most in current popular use. Scalability test results of an implementation of the algorithm on a 64-node nCube-2S hypercube-connected, message-passing, multi-computer are described. (author)
Advances in discrete differential geometry
2016-01-01
This is one of the first books on a newly emerging field of discrete differential geometry and an excellent way to access this exciting area. It surveys the fascinating connections between discrete models in differential geometry and complex analysis, integrable systems and applications in computer graphics. The authors take a closer look at discrete models in differential geometry and dynamical systems. Their curves are polygonal, surfaces are made from triangles and quadrilaterals, and time is discrete. Nevertheless, the difference between the corresponding smooth curves, surfaces and classical dynamical systems with continuous time can hardly be seen. This is the paradigm of structure-preserving discretizations. Current advances in this field are stimulated to a large extent by its relevance for computer graphics and mathematical physics. This book is written by specialists working together on a common research project. It is about differential geometry and dynamical systems, smooth and discrete theories, ...
Poisson hierarchy of discrete strings
International Nuclear Information System (INIS)
Ioannidou, Theodora; Niemi, Antti J.
2016-01-01
The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed.
Poisson hierarchy of discrete strings
Energy Technology Data Exchange (ETDEWEB)
Ioannidou, Theodora, E-mail: ti3@auth.gr [Faculty of Civil Engineering, School of Engineering, Aristotle University of Thessaloniki, 54249, Thessaloniki (Greece); Niemi, Antti J., E-mail: Antti.Niemi@physics.uu.se [Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108, Uppsala (Sweden); Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fédération Denis Poisson, Université de Tours, Parc de Grandmont, F37200, Tours (France); Department of Physics, Beijing Institute of Technology, Haidian District, Beijing 100081 (China)
2016-01-28
The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed.
Averaged multivalued solutions and time discretization for conservation laws
International Nuclear Information System (INIS)
Brenier, Y.
1985-01-01
It is noted that the correct shock solutions can be approximated by averaging in some sense the multivalued solution given by the method of characteristics for the nonlinear scalar conservation law (NSCL). A time discretization for the NSCL equation based on this principle is considered. An equivalent analytical formulation is shown to lead quite easily to a convergence result, and a third formulation is introduced which can be generalized for the systems of conservation laws. Various numerical schemes are constructed from the proposed time discretization. The first family of schemes is obtained by using a spatial grid and projecting the results of the time discretization. Many known schemes are then recognized (mainly schemes by Osher, Roe, and LeVeque). A second way to discretize leads to a particle scheme without space grid, which is very efficient (at least in the scalar case). Finally, a close relationship between the proposed method and the Boltzmann type schemes is established. 14 references
Synchronization of autonomous objects in discrete event simulation
Rogers, Ralph V.
1990-01-01
Autonomous objects in event-driven discrete event simulation offer the potential to combine the freedom of unrestricted movement and positional accuracy through Euclidean space of time-driven models with the computational efficiency of event-driven simulation. The principal challenge to autonomous object implementation is object synchronization. The concept of a spatial blackboard is offered as a potential methodology for synchronization. The issues facing implementation of a spatial blackboard are outlined and discussed.
Principles of discrete time mechanics
Jaroszkiewicz, George
2014-01-01
Could time be discrete on some unimaginably small scale? Exploring the idea in depth, this unique introduction to discrete time mechanics systematically builds the theory up from scratch, beginning with the historical, physical and mathematical background to the chronon hypothesis. Covering classical and quantum discrete time mechanics, this book presents all the tools needed to formulate and develop applications of discrete time mechanics in a number of areas, including spreadsheet mechanics, classical and quantum register mechanics, and classical and quantum mechanics and field theories. A consistent emphasis on contextuality and the observer-system relationship is maintained throughout.
Dark discrete gauge symmetries
International Nuclear Information System (INIS)
Batell, Brian
2011-01-01
We investigate scenarios in which dark matter is stabilized by an Abelian Z N discrete gauge symmetry. Models are surveyed according to symmetries and matter content. Multicomponent dark matter arises when N is not prime and Z N contains one or more subgroups. The dark sector interacts with the visible sector through the renormalizable kinetic mixing and Higgs portal operators, and we highlight the basic phenomenology in these scenarios. In particular, multiple species of dark matter can lead to an unconventional nuclear recoil spectrum in direct detection experiments, while the presence of new light states in the dark sector can dramatically affect the decays of the Higgs at the Tevatron and LHC, thus providing a window into the gauge origin of the stability of dark matter.
International Nuclear Information System (INIS)
Noyes, H.P.; Starson, S.
1991-03-01
Discrete physics, because it replaces time evolution generated by the energy operator with a global bit-string generator (program universe) and replaces ''fields'' with the relativistic Wheeler-Feynman ''action at a distance,'' allows the consistent formulation of the concept of signed gravitational charge for massive particles. The resulting prediction made by this version of the theory is that free anti-particles near the surface of the earth will ''fall'' up with the same acceleration that the corresponding particles fall down. So far as we can see, no current experimental information is in conflict with this prediction of our theory. The experiment crusis will be one of the anti-proton or anti-hydrogen experiments at CERN. Our prediction should be much easier to test than the small effects which those experiments are currently designed to detect or bound. 23 refs
International Nuclear Information System (INIS)
Uko, L.U.
1990-02-01
We study a scheme for the time-discretization of parabolic variational inequalities that is often easier to use than the classical method of Rothe. We show that if the data are compatible in a certain sense, then this scheme is of order ≥1/2. (author). 10 refs
Dynamics of breathers in discrete nonlinear Schrodinger models
DEFF Research Database (Denmark)
Christiansen, Peter Leth; Johansson, Magnus; Aubry, Serge
1998-01-01
We review some recent results concerning the existence and stability of spatially localized and temporally quasiperiodic (non-stationary) excitations in discrete nonlinear Schrodinger (DNLS) models. In two dimensions, we show the existence of linearly stable, stationary and non-stationary localized...
Adaptive discrete-ordinates algorithms and strategies
International Nuclear Information System (INIS)
Stone, J.C.; Adams, M.L.
2005-01-01
We present our latest algorithms and strategies for adaptively refined discrete-ordinates quadrature sets. In our basic strategy, which we apply here in two-dimensional Cartesian geometry, the spatial domain is divided into regions. Each region has its own quadrature set, which is adapted to the region's angular flux. Our algorithms add a 'test' direction to the quadrature set if the angular flux calculated at that direction differs by more than a user-specified tolerance from the angular flux interpolated from other directions. Different algorithms have different prescriptions for the method of interpolation and/or choice of test directions and/or prescriptions for quadrature weights. We discuss three different algorithms of different interpolation orders. We demonstrate through numerical results that each algorithm is capable of generating solutions with negligible angular discretization error. This includes elimination of ray effects. We demonstrate that all of our algorithms achieve a given level of error with far fewer unknowns than does a standard quadrature set applied to an entire problem. To address a potential issue with other algorithms, we present one algorithm that retains exact integration of high-order spherical-harmonics functions, no matter how much local refinement takes place. To address another potential issue, we demonstrate that all of our methods conserve partial currents across interfaces where quadrature sets change. We conclude that our approach is extremely promising for solving the long-standing problem of angular discretization error in multidimensional transport problems. (authors)
Quantum cosmology based on discrete Feynman paths
International Nuclear Information System (INIS)
Chew, Geoffrey F.
2002-01-01
Although the rules for interpreting local quantum theory imply discretization of process, Lorentz covariance is usually regarded as precluding time quantization. Nevertheless a time-discretized quantum representation of redshifting spatially-homogeneous universe may be based on discrete-step Feynman paths carrying causal Lorentz-invariant action--paths that not only propagate the wave function but provide a phenomenologically-promising elementary-particle Hilbert-space basis. In a model under development, local path steps are at Planck scale while, at a much larger ''wave-function scale'', global steps separate successive wave-functions. Wave-function spacetime is but a tiny fraction of path spacetime. Electromagnetic and gravitational actions are ''at a distance'' in Wheeler-Feynman sense while strong (color) and weak (isospin) actions, as well as action of particle motion, are ''local'' in a sense paralleling the action of local field theory. ''Nonmaterial'' path segments and ''trivial events'' collaborate to define energy and gravity. Photons coupled to conserved electric charge enjoy privileged model status among elementary fermions and vector bosons. Although real path parameters provide no immediate meaning for ''measurement'', the phase of the complex wave function allows significance for ''information'' accumulated through ''gentle'' electromagnetic events involving charged matter and ''soft'' photons. Through its soft-photon content the wave function is an ''information reservoir''
Analysis of stochastic effects in Kaldor-type business cycle discrete model
Bashkirtseva, Irina; Ryashko, Lev; Sysolyatina, Anna
2016-07-01
We study nonlinear stochastic phenomena in the discrete Kaldor model of business cycles. A numerical parametric analysis of stochastically forced attractors (equilibria, closed invariant curves, discrete cycles) of this model is performed using the stochastic sensitivity functions technique. A spatial arrangement of random states in stochastic attractors is modeled by confidence domains. The phenomenon of noise-induced transitions ;chaos-order; is discussed.
Erin L. Landguth; Michael K. Schwartz
2014-01-01
One of the most pressing issues in spatial genetics concerns sampling. Traditionally, substructure and gene flow are estimated for individuals sampled within discrete populations. Because many species may be continuously distributed across a landscape without discrete boundaries, understanding sampling issues becomes paramount. Given large-scale, geographically broad...
Control of Discrete Event Systems
Smedinga, Rein
1989-01-01
Systemen met discrete gebeurtenissen spelen in vele gebieden een rol. In dit proefschrift staat de volgorde van gebeurtenissen centraal en worden tijdsaspecten buiten beschouwing gelaten. In dat geval kunnen systemen met discrete gebeurtenissen goed worden gemodelleerd door gebruik te maken van
Discrete Mathematics and Its Applications
Oxley, Alan
2010-01-01
The article gives ideas that lecturers of undergraduate Discrete Mathematics courses can use in order to make the subject more interesting for students and encourage them to undertake further studies in the subject. It is possible to teach Discrete Mathematics with little or no reference to computing. However, students are more likely to be…
Discrete Mathematics and Curriculum Reform.
Kenney, Margaret J.
1996-01-01
Defines discrete mathematics as the mathematics necessary to effect reasoned decision making in finite situations and explains how its use supports the current view of mathematics education. Discrete mathematics can be used by curriculum developers to improve the curriculum for students of all ages and abilities. (SLD)
Connections on discrete fibre bundles
International Nuclear Information System (INIS)
Manton, N.S.; Cambridge Univ.
1987-01-01
A new approach to gauge fields on a discrete space-time is proposed, in which the fundamental object is a discrete version of a principal fibre bundle. If the bundle is twisted, the gauge fields are topologically non-trivial automatically. (orig.)
On the mixed discretization of the time domain magnetic field integral equation
Ulku, Huseyin Arda; Bogaert, Ignace; Cools, Kristof; Andriulli, Francesco P.; Bagci, Hakan
2012-01-01
Time domain magnetic field integral equation (MFIE) is discretized using divergence-conforming Rao-Wilton-Glisson (RWG) and curl-conforming Buffa-Christiansen (BC) functions as spatial basis and testing functions, respectively. The resulting mixed
Metaoptics for Spectral and Spatial Beam Manipulation
Raghu Srimathi, Indumathi
has been utilized to create metal-oxide nano-hair structures that are compatible with high power laser systems. These devices are multifunctional--acting as resonant structures for one wavelength regime and as effective index structures in a different wavelength regime. Discrete and continuous phase functions have been realized with this controlled fabrication process. The design, simulation, fabrication and experimental characterization of these optical elements are presented.
Discrete dynamics versus analytic dynamics
DEFF Research Database (Denmark)
Toxværd, Søren
2014-01-01
For discrete classical Molecular dynamics obtained by the “Verlet” algorithm (VA) with the time increment h there exists a shadow Hamiltonian H˜ with energy E˜(h) , for which the discrete particle positions lie on the analytic trajectories for H˜ . Here, we proof that there, independent...... of such an analytic analogy, exists an exact hidden energy invariance E * for VA dynamics. The fact that the discrete VA dynamics has the same invariances as Newtonian dynamics raises the question, which of the formulations that are correct, or alternatively, the most appropriate formulation of classical dynamics....... In this context the relation between the discrete VA dynamics and the (general) discrete dynamics investigated by Lee [Phys. Lett. B122, 217 (1983)] is presented and discussed....
Modern approaches to discrete curvature
Romon, Pascal
2017-01-01
This book provides a valuable glimpse into discrete curvature, a rich new field of research which blends discrete mathematics, differential geometry, probability and computer graphics. It includes a vast collection of ideas and tools which will offer something new to all interested readers. Discrete geometry has arisen as much as a theoretical development as in response to unforeseen challenges coming from applications. Discrete and continuous geometries have turned out to be intimately connected. Discrete curvature is the key concept connecting them through many bridges in numerous fields: metric spaces, Riemannian and Euclidean geometries, geometric measure theory, topology, partial differential equations, calculus of variations, gradient flows, asymptotic analysis, probability, harmonic analysis, graph theory, etc. In spite of its crucial importance both in theoretical mathematics and in applications, up to now, almost no books have provided a coherent outlook on this emerging field.
DOD Offshore Wind Mission Compatibility Assessments
National Oceanic and Atmospheric Administration, Department of Commerce — This data set represents the results of analyses conducted by the Department of Defense to assess the compatibility of offshore wind development with military assets...
Screening for attractants compatible with entomopathogenic fungus ...
African Journals Online (AJOL)
RACHEL
2016-04-27
Apr 27, 2016 ... Several thrips attractants were screened for compatibility with Metarhizium anisopliae (Metchnikoff). Sorokin (Hypocreales: Clavicipitaceae) and a subset of these for attraction to Megalurothrips sjostedti. Trybom (Thysanoptera: Thripidae). Conidial germination and germ tube length of M. anisopliae were.
Psychological compatibility of women's handball team
Directory of Open Access Journals (Sweden)
Shalar O.G.
2010-02-01
Full Text Available The results of study of psychological compatibility of womanish handball commands are presented. The psychological climate of command is investigational. Certain and adapted methods of estimation of psychological compatibility in the command playing types of sport. Psychological tests allow to expose the strong and weak sides of psychology of sportsmen. These information can be used for more effective program of psychological preparation of sportsmen development. It is necessary to improve determination of separate individual qualities of personality of sportsmen.
Discretion and Disproportionality
Directory of Open Access Journals (Sweden)
Jason A. Grissom
2015-12-01
Full Text Available Students of color are underrepresented in gifted programs relative to White students, but the reasons for this underrepresentation are poorly understood. We investigate the predictors of gifted assignment using nationally representative, longitudinal data on elementary students. We document that even among students with high standardized test scores, Black students are less likely to be assigned to gifted services in both math and reading, a pattern that persists when controlling for other background factors, such as health and socioeconomic status, and characteristics of classrooms and schools. We then investigate the role of teacher discretion, leveraging research from political science suggesting that clients of government services from traditionally underrepresented groups benefit from diversity in the providers of those services, including teachers. Even after conditioning on test scores and other factors, Black students indeed are referred to gifted programs, particularly in reading, at significantly lower rates when taught by non-Black teachers, a concerning result given the relatively low incidence of assignment to own-race teachers among Black students.
International Nuclear Information System (INIS)
Vlad, Valentin I.; Ionescu-Pallas, Nicholas
2000-10-01
The Planck radiation spectrum of ideal cubic and spherical cavities, in the region of small adiabatic invariance, γ = TV 1/3 , is shown to be discrete and strongly dependent on the cavity geometry and temperature. This behavior is the consequence of the random distribution of the state weights in the cubic cavity and of the random overlapping of the successive multiplet components, for the spherical cavity. The total energy (obtained by summing up the exact contributions of the eigenvalues and their weights, for low values of the adiabatic invariance) does not obey any longer Stefan-Boltzmann law. The new law includes a corrective factor depending on γ and imposes a faster decrease of the total energy to zero, for γ → 0. We have defined the double quantized regime both for cubic and spherical cavities by the superior and inferior limits put on the principal quantum numbers or the adiabatic invariance. The total energy of the double quantized cavities shows large differences from the classical calculations over unexpected large intervals, which are measurable and put in evidence important macroscopic quantum effects. (author)
On the mixed discretization of the time domain magnetic field integral equation
Ulku, Huseyin Arda
2012-09-01
Time domain magnetic field integral equation (MFIE) is discretized using divergence-conforming Rao-Wilton-Glisson (RWG) and curl-conforming Buffa-Christiansen (BC) functions as spatial basis and testing functions, respectively. The resulting mixed discretization scheme, unlike the classical scheme which uses RWG functions as both basis and testing functions, is proper: Testing functions belong to dual space of the basis functions. Numerical results demonstrate that the marching on-in-time (MOT) solution of the mixed discretized MFIE yields more accurate results than that of classically discretized MFIE. © 2012 IEEE.
Perfect discretization of path integrals
International Nuclear Information System (INIS)
Steinhaus, Sebastian
2012-01-01
In order to obtain a well-defined path integral one often employs discretizations. In the case of General Relativity these generically break diffeomorphism symmetry, which has severe consequences since these symmetries determine the dynamics of the corresponding system. In this article we consider the path integral of reparametrization invariant systems as a toy example and present an improvement procedure for the discretized propagator. Fixed points and convergence of the procedure are discussed. Furthermore we show that a reparametrization invariant path integral implies discretization independence and acts as a projector onto physical states.
Perfect discretization of path integrals
Steinhaus, Sebastian
2012-05-01
In order to obtain a well-defined path integral one often employs discretizations. In the case of General Relativity these generically break diffeomorphism symmetry, which has severe consequences since these symmetries determine the dynamics of the corresponding system. In this article we consider the path integral of reparametrization invariant systems as a toy example and present an improvement procedure for the discretized propagator. Fixed points and convergence of the procedure are discussed. Furthermore we show that a reparametrization invariant path integral implies discretization independence and acts as a projector onto physical states.
The origin of discrete particles
Bastin, T
2009-01-01
This book is a unique summary of the results of a long research project undertaken by the authors on discreteness in modern physics. In contrast with the usual expectation that discreteness is the result of mathematical tools for insertion into a continuous theory, this more basic treatment builds up the world from the discrimination of discrete entities. This gives an algebraic structure in which certain fixed numbers arise. As such, one agrees with the measured value of the fine-structure constant to one part in 10,000,000 (10 7 ). Sample Chapter(s). Foreword (56 KB). Chapter 1: Introduction
Synchronization Techniques in Parallel Discrete Event Simulation
Lindén, Jonatan
2018-01-01
Discrete event simulation is an important tool for evaluating system models in many fields of science and engineering. To improve the performance of large-scale discrete event simulations, several techniques to parallelize discrete event simulation have been developed. In parallel discrete event simulation, the work of a single discrete event simulation is distributed over multiple processing elements. A key challenge in parallel discrete event simulation is to ensure that causally dependent ...
3-D Discrete Analytical Ridgelet Transform
Helbert , David; Carré , Philippe; Andrès , Éric
2006-01-01
International audience; In this paper, we propose an implementation of the 3-D Ridgelet transform: the 3-D discrete analytical Ridgelet transform (3-D DART). This transform uses the Fourier strategy for the computation of the associated 3-D discrete Radon transform. The innovative step is the definition of a discrete 3-D transform with the discrete analytical geometry theory by the construction of 3-D discrete analytical lines in the Fourier domain. We propose two types of 3-D discrete lines:...
Uher, Vojtěch; Gajdoš, Petr; Radecký, Michal; Snášel, Václav
2016-01-01
The Differential Evolution (DE) is a widely used bioinspired optimization algorithm developed by Storn and Price. It is popular for its simplicity and robustness. This algorithm was primarily designed for real-valued problems and continuous functions, but several modified versions optimizing both integer and discrete-valued problems have been developed. The discrete-coded DE has been mostly used for combinatorial problems in a set of enumerative variants. However, the DE has a great potential in the spatial data analysis and pattern recognition. This paper formulates the problem as a search of a combination of distinct vertices which meet the specified conditions. It proposes a novel approach called the Multidimensional Discrete Differential Evolution (MDDE) applying the principle of the discrete-coded DE in discrete point clouds (PCs). The paper examines the local searching abilities of the MDDE and its convergence to the global optimum in the PCs. The multidimensional discrete vertices cannot be simply ordered to get a convenient course of the discrete data, which is crucial for good convergence of a population. A novel mutation operator utilizing linear ordering of spatial data based on the space filling curves is introduced. The algorithm is tested on several spatial datasets and optimization problems. The experiments show that the MDDE is an efficient and fast method for discrete optimizations in the multidimensional point clouds.
Exact analysis of discrete data
Hirji, Karim F
2005-01-01
Researchers in fields ranging from biology and medicine to the social sciences, law, and economics regularly encounter variables that are discrete or categorical in nature. While there is no dearth of books on the analysis and interpretation of such data, these generally focus on large sample methods. When sample sizes are not large or the data are otherwise sparse, exact methods--methods not based on asymptotic theory--are more accurate and therefore preferable.This book introduces the statistical theory, analysis methods, and computation techniques for exact analysis of discrete data. After reviewing the relevant discrete distributions, the author develops the exact methods from the ground up in a conceptually integrated manner. The topics covered range from univariate discrete data analysis, a single and several 2 x 2 tables, a single and several 2 x K tables, incidence density and inverse sampling designs, unmatched and matched case -control studies, paired binary and trinomial response models, and Markov...
Discrete geometric structures for architecture
Pottmann, Helmut
2010-01-01
. The talk will provide an overview of recent progress in this field, with a particular focus on discrete geometric structures. Most of these result from practical requirements on segmenting a freeform shape into planar panels and on the physical realization
Causal Dynamics of Discrete Surfaces
Directory of Open Access Journals (Sweden)
Pablo Arrighi
2014-03-01
Full Text Available We formalize the intuitive idea of a labelled discrete surface which evolves in time, subject to two natural constraints: the evolution does not propagate information too fast; and it acts everywhere the same.
Perfect discretization of path integrals
Steinhaus, Sebastian
2011-01-01
In order to obtain a well-defined path integral one often employs discretizations. In the case of General Relativity these generically break diffeomorphism symmetry, which has severe consequences since these symmetries determine the dynamics of the corresponding system. In this article we consider the path integral of reparametrization invariant systems as a toy example and present an improvement procedure for the discretized propagator. Fixed points and convergence of the procedure are discu...
Alfa, Attahiru S
2016-01-01
This book introduces the theoretical fundamentals for modeling queues in discrete-time, and the basic procedures for developing queuing models in discrete-time. There is a focus on applications in modern telecommunication systems. It presents how most queueing models in discrete-time can be set up as discrete-time Markov chains. Techniques such as matrix-analytic methods (MAM) that can used to analyze the resulting Markov chains are included. This book covers single node systems, tandem system and queueing networks. It shows how queues with time-varying parameters can be analyzed, and illustrates numerical issues associated with computations for the discrete-time queueing systems. Optimal control of queues is also covered. Applied Discrete-Time Queues targets researchers, advanced-level students and analysts in the field of telecommunication networks. It is suitable as a reference book and can also be used as a secondary text book in computer engineering and computer science. Examples and exercises are includ...
Ion implantation and bio-compatibility
Energy Technology Data Exchange (ETDEWEB)
Suzuki, Yoshiaki; Kusakabe, Masahiro [Sony Corp., Tokyo (Japan). Corporate Research Labs.; Iwaki, Masaya
1992-07-01
Surface modification of polymers by ion implantation has been carried out to control surface properties such as conductivity, wettability, blood and tissue compatibility. Ion implantation into silicone rubber, polystyrene and segmented polyurethane was performed at 150 keV with doses ranging from 1 x 10[sup 15] to 3 x 10[sup 17] ions/cm[sup 2] to improve bio-compatibility. The platelet accumulation on ion implanted silicone rubber decreased and non-thrombogenicity of ion implanted specimens were improved. The ion implanted polystyrene and segmented polyurethane have been found to exhibit remarkably higher adhesion and spreading of endothelial cells compared to the non-implanted case. It is concluded that ion implantation into polymers is effective in controlling their bio-compatibility. (author).
Serological evidence of discrete spatial clusters of Plasmodium falciparum parasites
DEFF Research Database (Denmark)
Bejon, Philip; Turner, Louise; Lavstsen, Thomas
2011-01-01
Malaria transmission may be considered to be homogenous with well-mixed parasite populations (as in the classic Ross/Macdonald models). Marked fine-scale heterogeneity of transmission has been observed in the field (i.e., over a few kilometres), but there are relatively few data on the degree...... of mixing. Since the Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) is highly polymorphic, the host's serological responses may be used to infer exposure to parasite sub-populations....
Compatibility and testing of electronic components
Jowett, C E
2013-01-01
Compatibility and Testing of Electronic Components outlines the concepts of component part life according to thresholds of failure; the advantages that result from identifying such thresholds; their identification; and the various tests used in their detection. The book covers topics such as the interconnection of miniature passive components; the integrated circuit compatibility and its components; the semiconductor joining techniques; and the thin film hybrid approach in integrated circuits. Also covered are topics such as thick film resistors, conductors, and insulators; thin inlays for el
Electromagnetic compatibility methods, analysis, circuits, and measurement
Weston, David A
2016-01-01
Revised, updated, and expanded, Electromagnetic Compatibility: Methods, Analysis, Circuits, and Measurement, Third Edition provides comprehensive practical coverage of the design, problem solving, and testing of electromagnetic compatibility (EMC) in electrical and electronic equipment and systems. This new edition provides novel information on theory, applications, evaluations, electromagnetic computational programs, and prediction techniques available. With sixty-nine schematics providing examples for circuit level electromagnetic interference (EMI) hardening and cost effective EMI problem solving, this book also includes 1130 illustrations and tables. Including extensive data on components and their correct implementation, the myths, misapplication, misconceptions, and fallacies that are common when discussing EMC/EMI will also be addressed and corrected.
[Compatibility of family and medical profession].
Bundy, B D; Bellemann, N; Weber, M-A
2011-09-01
The compatibility of family and profession is especially difficult for employees in medical professions because of shift work and overtime. It seems that in the future women are going to represent the majority of medical professionals. Hence, with the manifest lack of physicians social aspects will also play a bigger role in the choice of the place of employment. In most families the classic role model prevails although women are well educated and men also set a high value on the compatibility of family and profession and would like to take parental leave and work in flexible working hours. This represents a chance, especially for radiology.
Compatibility Between Electric Components in Wind Farms
DEFF Research Database (Denmark)
Holdyk, Andrzej; Holbøll, Joachim; Arana Aristi, Iván
2011-01-01
The paper describes a method for investigation of the compatibility between electric components in wind farms by identifying critical resonances at different points of an offshore wind farm (OWF), based on systematic variation of critical parameters. In this way, the design of future OWF can...... be improved at a very early stage of the process. It is also revealed what parameters are the most important ones when considering compatibility. It was observed that a change of capacitance in the collection grid shifts the resonance peaks. A change in WT transformer capacitances influences the admittance...
Simplified discrete ordinates method in spherical geometry
International Nuclear Information System (INIS)
Elsawi, M.A.; Abdurrahman, N.M.; Yavuz, M.
1999-01-01
The authors extend the method of simplified discrete ordinates (SS N ) to spherical geometry. The motivation for such an extension is that the appearance of the angular derivative (redistribution) term in the spherical geometry transport equation makes it difficult to decide which differencing scheme best approximates this term. In the present method, the angular derivative term is treated implicitly and thus avoids the need for the approximation of such term. This method can be considered to be analytic in nature with the advantage of being free from spatial truncation errors from which most of the existing transport codes suffer. In addition, it treats the angular redistribution term implicitly with the advantage of avoiding approximations to that term. The method also can handle scattering in a very general manner with the advantage of spending almost the same computational effort for all scattering modes. Moreover, the methods can easily be applied to higher-order S N calculations
Dissociating Simon and affordance compatibility effects: silhouettes and photographs.
Pappas, Zissis
2014-12-01
When a graspable object's handle is oriented to the same side as the response hand, responses are quicker and more accurate than when it is oriented to the opposite side. This effect has been attributed to the affordance of the object's handle (Tucker & Ellis, 1998). Recent findings suggest this effect results instead from an abstract spatial response code (i.e., Simon effect; Cho & Proctor, 2010). However, the stimuli used in these previous studies differ in the amount of object and environmental depth information they contain, which may be critical to conveying an affordance. This information could explain these disparate findings as well as dissociate Simon and affordance compatibility effects. Four experiments demonstrate that the Simon effect results from the absence of this information, as in a silhouette, and the affordance effect results from its presence, as in a photograph. A fifth experiment confirmed that modifying information associated with the affordance, rather than the modification itself, produced the effects observed in the previous experiments. These findings support the following: (a) the internal details of an object and environmental depth can dissociate Simon and affordance compatibility effects, (b) this information is necessary to convey the object's graspable affordance, and (c) the outer shape of the object is not sufficient to elicit an affordance effect. These findings are discussed in relation to the theory of embodied cognition. Copyright © 2014 Elsevier B.V. All rights reserved.
Analysis of Discrete Mittag - Leffler Functions
Directory of Open Access Journals (Sweden)
N. Shobanadevi
2015-03-01
Full Text Available Discrete Mittag - Leffler functions play a major role in the development of the theory of discrete fractional calculus. In the present article, we analyze qualitative properties of discrete Mittag - Leffler functions and establish sufficient conditions for convergence, oscillation and summability of the infinite series associated with discrete Mittag - Leffler functions.
Coal use in Italy and environmental compatibility
International Nuclear Information System (INIS)
1998-01-01
Fossil fuels have in Italy great importance. In Italy, in terms of environmental protection and for social acceptance, coal has had a real opposition not verified in other countries. Environmental compatibility of coal cycle and related technologies are discussed also consequently at the Kyoto protocol [it
Conflicting Multi-Objective Compatible Optimization Control
Xu, Lihong; Hu, Qingsong; Hu, Haigen; Goodman, Erik
2010-01-01
Based on ideas developed in addressing practical greenhouse environmental control, we propose a new multi-objective compatible control method. Several detailed algorithms are proposed to meet the requirements of different kinds of problem: 1) A two-layer MOCC framework is presented for problems with a precise model; 2) To deal with situations
A low-cost MRI compatible keyboard
DEFF Research Database (Denmark)
Jensen, Martin Snejbjerg; Heggli, Ole Adrian; Alves da Mota, Patricia
2017-01-01
, presenting a challenging environment for playing an instrument. Here, we present an MRI-compatible polyphonic keyboard with a materials cost of 850 $, designed and tested for safe use in 3T (three Tesla) MRI-scanners. We describe design considerations, and prior work in the field. In addition, we provide...
Improvement of crash compatibility between cars
Huibers, J.A.H.M.; Faerber, E.; Cesari, D.; Hobbs, A.C.; Kampen, B. van; Paez, J.; Wykes, N.J.
1998-01-01
This paper will provide an overview of the research work of the European Enhanced Vehicle-safety Committee (EEVC) in the field of crash compatibility between passenger cars. Since July 1997 the EC Commission is partly funding the research work of EEVC. The running period of this project will be two
Automatic kelvin probe compatible with ultrahigh vacuum
Baikie, I.D.; van der Werf, Kees; Oerbekke, H.; Broeze, J.; van Silfhout, Arend
1989-01-01
This article describes a new type of in situ ultrahigh‐vacuum compatible kelvin probe based on a voice‐coil driving mechanism. This design exhibits several advantages over conventional mechanical feed‐through and (in situ) piezoelectric devices in regard to the possibility of multiple probe
Are Naturalism and Moral Realism Compatible?
Peels, H.D.
2014-01-01
In a recent paper, Alvin Plantinga has argued that there is good reason to think that naturalism and moral realism are incompatible. He has done so by arguing that the most important argument for the compatibility of these two theses, which has been provided by Frank Jackson, fails and that any
Energetic materials standards – Chemical compatibility
Tuukkanen, I.M.; Bouma, R.H.B.
2014-01-01
Subgroup A Energetic Materials Team, SG/A (EMT), develops and maintains standards that are relevant to all life-cycle phases of ammunition/weapon systems. STANAG 4147 is the standard regarding chemical compatibility of explosives with munition components, and is a document of prime importance.
Alternative Work Schedules: Designing Compatible Work Systems
Steen, Pamela L.
1977-01-01
Attempts to improve the quality of working life through changes in environmental factors, such as flexible hours, are likely to bring limited and short-term advantages unless the work process itself is well-designed and compatible with the environmental changes. (Author/LBH)
Globalisation and international compatibility - a challenge to ...
African Journals Online (AJOL)
The contexts of institutions for higher education are in flux with consequent learning challenges. One of these challenges is that of globalisation and the need for international compatibility. Another challenge is that Mode 2 learning programmes, material and methods need to be relevant to the specific context in which they ...
The Construal (In)compatibility Effect
DEFF Research Database (Denmark)
Yang, Xiaojing; Ringberg, Torsten; Mao, Huifang
2011-01-01
incompatible with their mental construal, while ad claims construed at a level compatible with consumers' mental construal are more effective for those who possess a less creative mindset. We document that such differences in persuasion are driven by the fact that consumers with a creative (less creative) mind...
Foundations of a discrete physics
International Nuclear Information System (INIS)
McGoveran, D.; Noyes, P.
1988-01-01
Starting from the principles of finiteness, discreteness, finite computability and absolute nonuniqueness, we develop the ordering operator calculus, a strictly constructive mathematical system having the empirical properties required by quantum mechanical and special relativistic phenomena. We show how to construct discrete distance functions, and both rectangular and spherical coordinate systems(with a discrete version of ''π''). The richest discrete space constructible without a preferred axis and preserving translational and rotational invariance is shown to be a discrete 3-space with the usual symmetries. We introduce a local ordering parameter with local (proper) time-like properties and universal ordering parameters with global (cosmological) time-like properties. Constructed ''attribute velocities'' connect ensembles with attributes that are invariant as the appropriate time-like parameter increases. For each such attribute, we show how to construct attribute velocities which must satisfy the '' relativistic Doppler shift'' and the ''relativistic velocity composition law,'' as well as the Lorentz transformations. By construction, these velocities have finite maximum and minimum values. In the space of all attributes, the minimum of these maximum velocities will predominate in all multiple attribute computations, and hence can be identified as a fundamental limiting velocity, General commutation relations are constructed which under the physical interpretation are shown to reduce to the usual quantum mechanical commutation relations. 50 refs., 18 figs
fMRI-compatible rehabilitation hand device
Directory of Open Access Journals (Sweden)
Tzika Aria
2006-10-01
Full Text Available Abstract Background Functional magnetic resonance imaging (fMRI has been widely used in studying human brain functions and neurorehabilitation. In order to develop complex and well-controlled fMRI paradigms, interfaces that can precisely control and measure output force and kinematics of the movements in human subjects are needed. Optimized state-of-the-art fMRI methods, combined with magnetic resonance (MR compatible robotic devices for rehabilitation, can assist therapists to quantify, monitor, and improve physical rehabilitation. To achieve this goal, robotic or mechatronic devices with actuators and sensors need to be introduced into an MR environment. The common standard mechanical parts can not be used in MR environment and MR compatibility has been a tough hurdle for device developers. Methods This paper presents the design, fabrication and preliminary testing of a novel, one degree of freedom, MR compatible, computer controlled, variable resistance hand device that may be used in brain MR imaging during hand grip rehabilitation. We named the device MR_CHIROD (Magnetic Resonance Compatible Smart Hand Interfaced Rehabilitation Device. A novel feature of the device is the use of Electro-Rheological Fluids (ERFs to achieve tunable and controllable resistive force generation. ERFs are fluids that experience dramatic changes in rheological properties, such as viscosity or yield stress, in the presence of an electric field. The device consists of four major subsystems: a an ERF based resistive element; b a gearbox; c two handles and d two sensors, one optical encoder and one force sensor, to measure the patient induced motion and force. The smart hand device is designed to resist up to 50% of the maximum level of gripping force of a human hand and be controlled in real time. Results Laboratory tests of the device indicate that it was able to meet its design objective to resist up to approximately 50% of the maximum handgrip force. The detailed
Numerical Method for Darcy Flow Derived Using Discrete Exterior Calculus
Hirani, A. N.; Nakshatrala, K. B.; Chaudhry, J. H.
2015-05-01
We derive a numerical method for Darcy flow, and also for Poisson's equation in mixed (first order) form, based on discrete exterior calculus (DEC). Exterior calculus is a generalization of vector calculus to smooth manifolds and DEC is one of its discretizations on simplicial complexes such as triangle and tetrahedral meshes. DEC is a coordinate invariant discretization, in that it does not depend on the embedding of the simplices or the whole mesh. We start by rewriting the governing equations of Darcy flow using the language of exterior calculus. This yields a formulation in terms of flux differential form and pressure. The numerical method is then derived by using the framework provided by DEC for discretizing differential forms and operators that act on forms. We also develop a discretization for a spatially dependent Hodge star that varies with the permeability of the medium. This also allows us to address discontinuous permeability. The matrix representation for our discrete non-homogeneous Hodge star is diagonal, with positive diagonal entries. The resulting linear system of equations for flux and pressure are saddle type, with a diagonal matrix as the top left block. The performance of the proposed numerical method is illustrated on many standard test problems. These include patch tests in two and three dimensions, comparison with analytically known solutions in two dimensions, layered medium with alternating permeability values, and a test with a change in permeability along the flow direction. We also show numerical evidence of convergence of the flux and the pressure. A convergence experiment is included for Darcy flow on a surface. A short introduction to the relevant parts of smooth and discrete exterior calculus is included in this article. We also include a discussion of the boundary condition in terms of exterior calculus.
Discretization-dependent model for weakly connected excitable media
Arroyo, Pedro André; Alonso, Sergio; Weber dos Santos, Rodrigo
2018-03-01
Pattern formation has been widely observed in extended chemical and biological processes. Although the biochemical systems are highly heterogeneous, homogenized continuum approaches formed by partial differential equations have been employed frequently. Such approaches are usually justified by the difference of scales between the heterogeneities and the characteristic spatial size of the patterns. Under different conditions, for example, under weak coupling, discrete models are more adequate. However, discrete models may be less manageable, for instance, in terms of numerical implementation and mesh generation, than the associated continuum models. Here we study a model to approach discreteness which permits the computer implementation on general unstructured meshes. The model is cast as a partial differential equation but with a parameter that depends not only on heterogeneities sizes, as in the case of quasicontinuum models, but also on the discretization mesh. Therefore, we refer to it as a discretization-dependent model. We validate the approach in a generic excitable media that simulates three different phenomena: the propagation of action membrane potential in cardiac tissue, in myelinated axons of neurons, and concentration waves in chemical microemulsions.
International Nuclear Information System (INIS)
Miller, W.F. Jr.
1975-10-01
The coarse-mesh rebalance method, based on neutron conservation, is used in discrete ordinates neutron transport codes to accelerate convergence of the within-group scattering source. Though very powerful for this application, the method is ineffective in accelerating the iteration on the discrete-ordinates-to-spherical-harmonics fictitious sources used for ray-effect elimination. This is largely because this source makes a minimum contribution to the neutron balance equation. The traditional rebalance approach is derived in a variational framework and compared with new rebalance approaches tailored to be compatible with the fictitious source. The new approaches are compared numerically to determine their relative advantages. It is concluded that there is little incentive to use the new methods. (3 tables, 5 figures)
Trask, Nathaniel; Maxey, Martin; Hu, Xiaozhe
2018-02-01
A stable numerical solution of the steady Stokes problem requires compatibility between the choice of velocity and pressure approximation that has traditionally proven problematic for meshless methods. In this work, we present a discretization that couples a staggered scheme for pressure approximation with a divergence-free velocity reconstruction to obtain an adaptive, high-order, finite difference-like discretization that can be efficiently solved with conventional algebraic multigrid techniques. We use analytic benchmarks to demonstrate equal-order convergence for both velocity and pressure when solving problems with curvilinear geometries. In order to study problems in dense suspensions, we couple the solution for the flow to the equations of motion for freely suspended particles in an implicit monolithic scheme. The combination of high-order accuracy with fully-implicit schemes allows the accurate resolution of stiff lubrication forces directly from the solution of the Stokes problem without the need to introduce sub-grid lubrication models.
Zhu, Guangpu
2018-01-26
In this paper, a fully discrete scheme which considers temporal and spatial discretizations is presented for the coupled Cahn-Hilliard equation in conserved form with the dynamic contact line condition and the Navier-Stokes equation with the generalized Navier boundary condition. Variable densities and viscosities are incorporated in this model. A rigorous proof of energy stability is provided for the fully discrete scheme based on a semi-implicit temporal discretization and a finite difference method on the staggered grids for the spatial discretization. A splitting method based on the pressure stabilization is implemented to solve the Navier-Stokes equation, while the stabilization approach is also used for the Cahn-Hilliard equation. Numerical results in both 2-D and 3-D demonstrate the accuracy, efficiency and decaying property of discrete energy of the proposed scheme.
Discrete differential geometry. Consistency as integrability
Bobenko, Alexander I.; Suris, Yuri B.
2005-01-01
A new field of discrete differential geometry is presently emerging on the border between differential and discrete geometry. Whereas classical differential geometry investigates smooth geometric shapes (such as surfaces), and discrete geometry studies geometric shapes with finite number of elements (such as polyhedra), the discrete differential geometry aims at the development of discrete equivalents of notions and methods of smooth surface theory. Current interest in this field derives not ...
Integrable structure in discrete shell membrane theory.
Schief, W K
2014-05-08
We present natural discrete analogues of two integrable classes of shell membranes. By construction, these discrete shell membranes are in equilibrium with respect to suitably chosen internal stresses and external forces. The integrability of the underlying equilibrium equations is proved by relating the geometry of the discrete shell membranes to discrete O surface theory. We establish connections with generalized barycentric coordinates and nine-point centres and identify a discrete version of the classical Gauss equation of surface theory.
Degree distribution in discrete case
International Nuclear Information System (INIS)
Wang, Li-Na; Chen, Bin; Yan, Zai-Zai
2011-01-01
Vertex degree of many network models and real-life networks is limited to non-negative integer. By means of measure and integral, the relation of the degree distribution and the cumulative degree distribution in discrete case is analyzed. The degree distribution, obtained by the differential of its cumulative, is only suitable for continuous case or discrete case with constant degree change. When degree change is not a constant but proportional to degree itself, power-law degree distribution and its cumulative have the same exponent and the mean value is finite for power-law exponent greater than 1. -- Highlights: → Degree change is the crux for using the cumulative degree distribution method. → It suits for discrete case with constant degree change. → If degree change is proportional to degree, power-law degree distribution and its cumulative have the same exponent. → In addition, the mean value is finite for power-law exponent greater than 1.
DEFF Research Database (Denmark)
Kristensen, Thomas Bjørnsten
2012-01-01
The article thematizes a certain logic of reproduction that follows from a point in art history where the construction of images became a process of assembling or coding discrete signals through systematic methods. A logic which is not concerned with imitation but with creating an interchangeable...
Space discretization in SN methods: Features, improvements and convergence patterns
International Nuclear Information System (INIS)
Coppa, G.G.M.; Lapenta, G.; Ravetto, P.
1990-01-01
A comparative analysis of the space discretization schemes currently used in S N methods is performed and special attention is devoted to direct integration techniques. Some improvements are proposed in one- and two-dimensional applications, which are based on suitable choices for the spatial variation of the collision source. A study of the convergence pattern is carried out for eigenvalue calculations within the space asymptotic approximation by means of both analytical and numerical investigations. (orig.) [de
On the discrete Gabor transform and the discrete Zak transform
Bastiaans, M.J.; Geilen, M.C.W.
1996-01-01
Gabor's expansion of a discrete-time signal into a set of shifted and modulated versions of an elementary signal (or synthesis window) and the inverse operation -- the Gabor transform -- with which Gabor's expansion coefficients can be determined, are introduced. It is shown how, in the case of a
Discrete Choice and Rational Inattention
DEFF Research Database (Denmark)
Fosgerau, Mogens; Melo, Emerson; de Palma, André
2017-01-01
This paper establishes a general equivalence between discrete choice and rational inattention models. Matejka and McKay (2015, AER) showed that when information costs are modelled using the Shannon entropy, the result- ing choice probabilities in the rational inattention model take the multinomial...... logit form. We show that when information costs are modelled using a class of generalized entropies, then the choice probabilities in any rational inattention model are observationally equivalent to some additive random utility discrete choice model and vice versa. This equivalence arises from convex...
Shin, Yun Kyoung; Cho, Yang Seok; Lien, Mei-Ching; Proctor, Robert W
2007-09-01
It has been argued that the psychological refractory period (PRP) effect is eliminated with two ideomotor compatible tasks when instructions stress fast and simultaneous responding. Three experiments were conducted to test this hypothesis. In all experiments, Task 1 required spatially compatible manual responses (left or right) to the direction of an arrow, and Task 2 required saying the name of the auditory letter A or B. In Experiments 1 and 3, the manual responses were keypresses made with the left and right hands, whereas in Experiment 2 they were left-right toggle-switch movements made with the dominant hand. Instructions that stressed response speed reduced reaction time and increased error rate compared to standard instructions to respond fast and accurately, but did not eliminate the PRP effect on Task 2 reaction time. These results imply that, even when response speed is emphasized, ideomotor compatible tasks do not bypass response selection.
Matrix albedo for discrete ordinates infinite-medium boundary condition
International Nuclear Information System (INIS)
Mathews, K.; Dishaw, J.
2007-01-01
Discrete ordinates problems with an infinite exterior medium (reflector) can be more efficiently computed by eliminating grid cells in the exterior medium and applying a matrix albedo boundary condition. The albedo matrix is a discretized bidirectional reflection distribution function (BRDF) that accounts for the angular quadrature set, spatial quadrature method, and spatial grid that would have been used to model a portion of the exterior medium. The method is exact in slab geometry, and could be used as an approximation in multiple dimensions or curvilinear coordinates. We present an adequate method for computing albedo matrices and demonstrate their use in verifying a discrete ordinates code in slab geometry by comparison with Ganapol's infinite medium semi-analytic TIEL benchmark. With sufficient resolution in the spatial and angular grids and iteration tolerance to yield solutions converged to 6 digits, the conventional (scalar) albedo boundary condition yielded 2-digit accuracy at the boundary, but the matrix albedo solution reproduced the benchmark scalar flux at the boundary to all 6 digits. (authors)
Multidimensional electron-photon transport with standard discrete ordinates codes
International Nuclear Information System (INIS)
Drumm, C.R.
1997-01-01
A method is described for generating electron cross sections that are compatible with standard discrete ordinates codes without modification. There are many advantages to using an established discrete ordinates solver, e.g., immediately available adjoint capability. Coupled electron-photon transport capability is needed for many applications, including the modeling of the response of electronics components to space and synthetic radiation environments. The cross sections have been successfully used in the DORT, TWODANT, and TORT discrete ordinates codes. The cross sections are shown to provide accurate and efficient solutions to certain multidimensional electron-photon transport problems. The key to the method is a simultaneous solution of the continuous-slowing-down and elastic-scattering portions of the scattering source by the Goudsmit-Saunderson theory. The resulting multigroup-Legendre cross sections are much smaller than the true scattering cross sections that they represent. Under certain conditions, the cross sections are guaranteed positive and converge with a low-order Legendre expansion
Discrete Hamiltonian evolution and quantum gravity
International Nuclear Information System (INIS)
Husain, Viqar; Winkler, Oliver
2004-01-01
We study constrained Hamiltonian systems by utilizing general forms of time discretization. We show that for explicit discretizations, the requirement of preserving the canonical Poisson bracket under discrete evolution imposes strong conditions on both allowable discretizations and Hamiltonians. These conditions permit time discretizations for a limited class of Hamiltonians, which does not include homogeneous cosmological models. We also present two general classes of implicit discretizations which preserve Poisson brackets for any Hamiltonian. Both types of discretizations generically do not preserve first class constraint algebras. Using this observation, we show that time discretization provides a complicated time gauge fixing for quantum gravity models, which may be compared with the alternative procedure of gauge fixing before discretization
Automation of electromagnetic compatability (EMC) test facilities
Harrison, C. A.
1986-01-01
Efforts to automate electromagnetic compatibility (EMC) test facilities at Marshall Space Flight Center are discussed. The present facility is used to accomplish a battery of nine standard tests (with limited variations) deigned to certify EMC of Shuttle payload equipment. Prior to this project, some EMC tests were partially automated, but others were performed manually. Software was developed to integrate all testing by means of a desk-top computer-controller. Near real-time data reduction and onboard graphics capabilities permit immediate assessment of test results. Provisions for disk storage of test data permit computer production of the test engineer's certification report. Software flexibility permits variation in the tests procedure, the ability to examine more closely those frequency bands which indicate compatibility problems, and the capability to incorporate additional test procedures.
Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi
2016-01-01
A conservative discretization of incompressible Navier–Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a
Solving discrete zero point problems
van der Laan, G.; Talman, A.J.J.; Yang, Z.F.
2004-01-01
In this paper an algorithm is proposed to .nd a discrete zero point of a function on the collection of integral points in the n-dimensional Euclidean space IRn.Starting with a given integral point, the algorithm generates a .nite sequence of adjacent integral simplices of varying dimension and
Succinct Sampling from Discrete Distributions
DEFF Research Database (Denmark)
Bringmann, Karl; Larsen, Kasper Green
2013-01-01
We revisit the classic problem of sampling from a discrete distribution: Given n non-negative w-bit integers x_1,...,x_n, the task is to build a data structure that allows sampling i with probability proportional to x_i. The classic solution is Walker's alias method that takes, when implemented...
Symplectomorphisms and discrete braid invariants
Czechowski, Aleksander; Vandervorst, Robert
2017-01-01
Area and orientation preserving diffeomorphisms of the standard 2-disc, referred to as symplectomorphisms of D2, allow decompositions in terms of positive twist diffeomorphisms. Using the latter decomposition, we utilize the Conley index theory of discrete braid classes as introduced in Ghrist et
The remarkable discreteness of being
Indian Academy of Sciences (India)
Life is a discrete, stochastic phenomenon: for a biological organism, the time of the two most important events of its life (reproduction and death) is random and these events change the number of individuals of the species by single units. These facts can have surprising, counterintuitive consequences. I review here three ...
Discrete tomography in neutron radiography
International Nuclear Information System (INIS)
Kuba, Attila; Rodek, Lajos; Kiss, Zoltan; Rusko, Laszlo; Nagy, Antal; Balasko, Marton
2005-01-01
Discrete tomography (DT) is an imaging technique for reconstructing discrete images from their projections using the knowledge that the object to be reconstructed contains only a few homogeneous materials characterized by known discrete absorption values. One of the main reasons for applying DT is that we will hopefully require relatively few projections. Using discreteness and some a priori information (such as an approximate shape of the object) we can apply two DT methods in neutron imaging by reducing the problem to an optimization task. The first method is a special one because it is only suitable if the object is composed of cylinders and sphere shapes. The second method is a general one in the sense that it can be used for reconstructing objects of any shape. Software was developed and physical experiments performed in order to investigate the effects of several reconstruction parameters: the number of projections, noise levels, and complexity of the object to be reconstructed. We give a summary of the experimental results and make a comparison of the results obtained using a classical reconstruction technique (FBP). The programs we developed are available in our DT reconstruction program package DIRECT
Compatibility of refractory materials with boiling sodium
International Nuclear Information System (INIS)
Meacham, S.A.
1976-01-01
The program employed to determine the compatibility of commercially available refractories with boiling sodium is described. The effects of impurities contained within the refractory material, and their relations with the refractory's physical stability are discussed. Also, since consideration of refractories for use as an insulating material within Liquid Metal Fast Breeder Reactor Plants (LMFBR's) is currently under investigation; recommendations, based upon this program, are presented
Electromagnetic compatibility design and cabling system rules
International Nuclear Information System (INIS)
Raimbourg, J.
2009-01-01
This report is devoted to establish EMC (Electromagnetic Compatibility) design and cabling system rules. It is intended for hardware designers in charge of designing electronic maps or integrating existing materials into a comprehensive system. It is a practical guide. The rules described in this document do not require enhanced knowledge of advanced mathematical or physical concepts. The key point is to understand phenomena with a pragmatic approach to highlight the design and protection rules. (author)
Plasmonic Modulator Using CMOS Compatible Material Platform
DEFF Research Database (Denmark)
Babicheva, Viktoriia; Kinsey, Nathaniel; Naik, Gururaj V.
2014-01-01
In this work, a design of ultra-compact plasmonic modulator is proposed and numerically analyzed. The device l ayout utilizes alternative plas monic materials such as tr ansparent conducting oxides and titanium nitride which potentially can be applied for CMOS compatible process. The modulation i...... for integration with existing insulator-metal-insu lator plasmonic waveguides as well as novel photonic/electronic hybrid circuits...
A low-cost MRI compatible keyboard
DEFF Research Database (Denmark)
Jensen, Martin Snejbjerg; Heggli, Ole Adrian; Alves da Mota, Patricia
2017-01-01
, presenting a challenging environment for playing an instrument. Here, we present an MRI-compatible polyphonic keyboard with a materials cost of 850 $, designed and tested for safe use in 3T (three Tesla) MRI-scanners. We describe design considerations, and prior work in the field. In addition, we provide...... recommendations for future designs and comment on the possibility of using the keyboard in magnetoencephalography (MEG) systems. Preliminary results indicate a comfortable playing experience with no disturbance of the imaging process....
Batch Processing of CMOS Compatible Feedthroughs
DEFF Research Database (Denmark)
Rasmussen, F.E.; Heschel, M.; Hansen, Ole
2003-01-01
. The feedthrough technology employs a simple solution to the well-known CMOS compatibility issue of KOH by protecting the CMOS side of the wafer using sputter deposited TiW/Au. The fabricated feedthroughs exhibit excellent electrical performance having a serial resistance of 40 mOmega and a parasitic capacitance...... of 2.5 pF. (C) 2003 Elsevier Science B.V. All rights reserved....
Double Retort System for Materials Compatibility Testing
International Nuclear Information System (INIS)
V. Munne; EV Carelli
2006-01-01
With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the Space Nuclear Power Plant (SNPP) for Project Prometheus (References a and b) there was a need to investigate compatibility between the various materials to be used throughout the SNPP. Of particular interest was the transport of interstitial impurities from the nickel-base superalloys, which were leading candidates for most of the piping and turbine components to the refractory metal alloys planned for use in the reactor core. This kind of contamination has the potential to affect the lifetime of the core materials. This letter provides technical information regarding the assembly and operation of a double retort materials compatibility testing system and initial experimental results. The use of a double retort system to test materials compatibility through the transfer of impurities from a source to a sink material is described here. The system has independent temperature control for both materials and is far less complex than closed loops. The system is described in detail and the results of three experiments are presented
An MR-compatible neonatal incubator.
Paley, M N J; Hart, A R; Lait, M; Griffiths, P D
2012-07-01
To develop a neonatal MR-compatible incubator for transporting babies between a neonatal intensive care unit and an MRI unit that is within the same hospital but geographically separate. The system was strapped to a standard MR-compatible patient trolley, which provides space for resuscitation outside the incubator. A constant-temperature exothermic heat pad was used to maintain temperature together with a logging fluoro-optic temperature monitor and alarm system. The system has been designed to accommodate standard knee-sized coils from the major MR manufacturers. The original incubator was constructed from carbon fibre, but this required modification to prevent radiofrequency shading artefacts due to the conducting properties of the carbon fibre. A high-tensile polyester material was used, which combined light weight with high impact strength. The system could be moved onto the patient bed with the coils and infant in place by one technologist. Studies in eight neonatal patients produced high quality 1.5 T MR images with low motion artefacts. The incubator should also be compatible with imaging in 3 T MR systems, although further work is required to establish this. Images were acquired using both rapid and high-resolution sequences, including three-dimensional volumes, proton spectra and diffusion weighting. The incubator provides a safe, quiet environment for neonates during transport and imaging, at low cost.
Fully CMOS-compatible titanium nitride nanoantennas
Energy Technology Data Exchange (ETDEWEB)
Briggs, Justin A., E-mail: jabriggs@stanford.edu [Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305 (United States); Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305 (United States); Naik, Gururaj V.; Baum, Brian K.; Dionne, Jennifer A. [Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305 (United States); Petach, Trevor A.; Goldhaber-Gordon, David [Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305 (United States)
2016-02-01
CMOS-compatible fabrication of plasmonic materials and devices will accelerate the development of integrated nanophotonics for information processing applications. Using low-temperature plasma-enhanced atomic layer deposition (PEALD), we develop a recipe for fully CMOS-compatible titanium nitride (TiN) that is plasmonic in the visible and near infrared. Films are grown on silicon, silicon dioxide, and epitaxially on magnesium oxide substrates. By optimizing the plasma exposure per growth cycle during PEALD, carbon and oxygen contamination are reduced, lowering undesirable loss. We use electron beam lithography to pattern TiN nanopillars with varying diameters on silicon in large-area arrays. In the first reported single-particle measurements on plasmonic TiN, we demonstrate size-tunable darkfield scattering spectroscopy in the visible and near infrared regimes. The optical properties of this CMOS-compatible material, combined with its high melting temperature and mechanical durability, comprise a step towards fully CMOS-integrated nanophotonic information processing.
CROSAT: A digital computer program for statistical-spectral analysis of two discrete time series
International Nuclear Information System (INIS)
Antonopoulos Domis, M.
1978-03-01
The program CROSAT computes directly from two discrete time series auto- and cross-spectra, transfer and coherence functions, using a Fast Fourier Transform subroutine. Statistical analysis of the time series is optional. While of general use the program is constructed to be immediately compatible with the ICL 4-70 and H316 computers at AEE Winfrith, and perhaps with minor modifications, with any other hardware system. (author)
Discrete elements method of neutron transport
International Nuclear Information System (INIS)
Mathews, K.A.
1988-01-01
In this paper a new neutron transport method, called discrete elements (L N ) is derived and compared to discrete ordinates methods, theoretically and by numerical experimentation. The discrete elements method is based on discretizing the Boltzmann equation over a set of elements of angle. The discrete elements method is shown to be more cost-effective than discrete ordinates, in terms of accuracy versus execution time and storage, for the cases tested. In a two-dimensional test case, a vacuum duct in a shield, the L N method is more consistently convergent toward a Monte Carlo benchmark solution
Compatibility of Segments of Thermoelectric Generators
Snyder, G. Jeffrey; Ursell, Tristan
2009-01-01
A method of calculating (usually for the purpose of maximizing) the power-conversion efficiency of a segmented thermoelectric generator is based on equations derived from the fundamental equations of thermoelectricity. Because it is directly traceable to first principles, the method provides physical explanations in addition to predictions of phenomena involved in segmentation. In comparison with the finite-element method used heretofore to predict (without being able to explain) the behavior of a segmented thermoelectric generator, this method is much simpler to implement in practice: in particular, the efficiency of a segmented thermoelectric generator can be estimated by evaluating equations using only hand-held calculator with this method. In addition, the method provides for determination of cascading ratios. The concept of cascading is illustrated in the figure and the definition of the cascading ratio is defined in the figure caption. An important aspect of the method is its approach to the issue of compatibility among segments, in combination with introduction of the concept of compatibility within a segment. Prior approaches involved the use of only averaged material properties. Two materials in direct contact could be examined for compatibility with each other, but there was no general framework for analysis of compatibility. The present method establishes such a framework. The mathematical derivation of the method begins with the definition of reduced efficiency of a thermoelectric generator as the ratio between (1) its thermal-to-electric power-conversion efficiency and (2) its Carnot efficiency (the maximum efficiency theoretically attainable, given its hot- and cold-side temperatures). The derivation involves calculation of the reduced efficiency of a model thermoelectric generator for which the hot-side temperature is only infinitesimally greater than the cold-side temperature. The derivation includes consideration of the ratio (u) between the
Finite-element semi-discretization of linearized compressible and resistive MHD
International Nuclear Information System (INIS)
Kerner, W.; Jakoby, A.; Lerbinger, K.
1985-08-01
The full resistive MHD equations are linearized around an equilibrium with cylindrical symmetry and solved numerically as an initial-value problem. The semi-discretization using cubic and quadratic finite elements for the spatial discretization and a fully implicit time advance yields very accurate results even for small values of the resistivity. In the application different phenomena such as waves, resistive instabilities and overstable modes are addressed. (orig.)
Discrete gauge symmetries in discrete MSSM-like orientifolds
International Nuclear Information System (INIS)
Ibáñez, L.E.; Schellekens, A.N.; Uranga, A.M.
2012-01-01
Motivated by the necessity of discrete Z N symmetries in the MSSM to insure baryon stability, we study the origin of discrete gauge symmetries from open string sector U(1)'s in orientifolds based on rational conformal field theory. By means of an explicit construction, we find an integral basis for the couplings of axions and U(1) factors for all simple current MIPFs and orientifolds of all 168 Gepner models, a total of 32 990 distinct cases. We discuss how the presence of discrete symmetries surviving as a subgroup of broken U(1)'s can be derived using this basis. We apply this procedure to models with MSSM chiral spectrum, concretely to all known U(3)×U(2)×U(1)×U(1) and U(3)×Sp(2)×U(1)×U(1) configurations with chiral bi-fundamentals, but no chiral tensors, as well as some SU(5) GUT models. We find examples of models with Z 2 (R-parity) and Z 3 symmetries that forbid certain B and/or L violating MSSM couplings. Their presence is however relatively rare, at the level of a few percent of all cases.
Transverse discrete breathers in unstrained graphene
Barani, Elham; Lobzenko, Ivan P.; Korznikova, Elena A.; Soboleva, Elvira G.; Dmitriev, Sergey V.; Zhou, Kun; Marjaneh, Aliakbar Moradi
2017-02-01
Discrete breathers (DB) are spatially localized vibrational modes of large amplitude in defect-free nonlinear lattices. The search for DBs in graphene is of high importance, taking into account that this one atom thick layer of carbon is promising for a number of applications. There exist several reports on successful excitation of DBs in graphene, based on molecular dynamics and ab initio simulations. In a recent work by Hizhnyakov with co-authors the possibility to excite a DB with atoms oscillating normal to the graphene sheet has been reported. In the present study we use a systematic approach for finding initial conditions to excite transverse DBs in graphene. The approach is based on the analysis of the frequency-amplitude dependence for a delocalized, short-wavelength vibrational mode. This mode is a symmetry-dictated exact solution to the dynamic equations of the atomic motion, regardless the mode amplitude and regardless the type of interatomic potentials used in the simulations. It is demonstrated that if the AIREBO potential is used, the mode frequency increases with the amplitude bifurcating from the upper edge of the phonon spectrum for out-of-plane phonons. Then a bell-shaped function is superimposed on this delocalized mode to obtain a spatially localized vibrational mode, i.e., a DB. Placing the center of the bell-shaped function at different positions with respect to the lattice sites, three different DBs are found. Typically, the degree of spatial localization of DBs increases with the DB amplitude, but the transverse DBs in graphene reported here demonstrate the opposite trend. The results are compared to those obtained with the use of the Savin interatomic potential and no transverse DBs are found in this case. The results of this study contribute to a better understanding of the nonlinear dynamics of graphene and they call for the ab initio simulations to verify which of the two potentials used in this study is more precise.
Czech Academy of Sciences Publication Activity Database
Shaw, D. J.; Czekóová, Kristína; Porubanová, M.
2017-01-01
Roč. 81, č. 6 (2017), s. 1152-1165 ISSN 0340-0727 R&D Projects: GA ČR GA15-16738S Institutional support: RVO:68081740 Keywords : right temporoparietal junction * autism spectrum conditions * spatial compatibility * intransitive actions * social cognition * mirror neuron * reaction-time * experience * task * system Subject RIV: AN - Psychology OBOR OECD: Psychology (including human - machine relations) Impact factor: 3.119, year: 2016
Positivity for Convective Semi-discretizations
Fekete, Imre; Ketcheson, David I.; Loczi, Lajos
2017-01-01
We propose a technique for investigating stability properties like positivity and forward invariance of an interval for method-of-lines discretizations, and apply the technique to study positivity preservation for a class of TVD semi-discretizations
Preformulation compatibility screening of dika fat-drug mixtures ...
African Journals Online (AJOL)
Differential scanning calorimetry (DSC) was used as screening technique for assessing compatibility between dika fat and drug substances. Dika fat was found to be compatible with aspirin, ascorbic acid, paracetamol, sulphanilamide, phenylpropanolamine hydrochloride, bromopheniramine maleate, chlorpheniramire ...
Discrete diffusion Lyman α radiative transfer
Smith, Aaron; Tsang, Benny T.-H.; Bromm, Volker; Milosavljević, Miloš
2018-06-01
Due to its accuracy and generality, Monte Carlo radiative transfer (MCRT) has emerged as the prevalent method for Lyα radiative transfer in arbitrary geometries. The standard MCRT encounters a significant efficiency barrier in the high optical depth, diffusion regime. Multiple acceleration schemes have been developed to improve the efficiency of MCRT but the noise from photon packet discretization remains a challenge. The discrete diffusion Monte Carlo (DDMC) scheme has been successfully applied in state-of-the-art radiation hydrodynamics (RHD) simulations. Still, the established framework is not optimal for resonant line transfer. Inspired by the DDMC paradigm, we present a novel extension to resonant DDMC (rDDMC) in which diffusion in space and frequency are treated on equal footing. We explore the robustness of our new method and demonstrate a level of performance that justifies incorporating the method into existing Lyα codes. We present computational speedups of ˜102-106 relative to contemporary MCRT implementations with schemes that skip scattering in the core of the line profile. This is because the rDDMC runtime scales with the spatial and frequency resolution rather than the number of scatterings—the latter is typically ∝τ0 for static media, or ∝(aτ0)2/3 with core-skipping. We anticipate new frontiers in which on-the-fly Lyα radiative transfer calculations are feasible in 3D RHD. More generally, rDDMC is transferable to any computationally demanding problem amenable to a Fokker-Planck approximation of frequency redistribution.
International Nuclear Information System (INIS)
Elmer, Christopher E.; Vleck, Erik S. van
2003-01-01
This article is concerned with effect of spatial and temporal discretizations on traveling wave solutions to parabolic PDEs (Nagumo type) possessing piecewise linear bistable nonlinearities. Solution behavior is compared in terms of waveforms and in terms of the so-called (a,c) relationship where a is a parameter controlling the bistable nonlinearity by varying the potential energy difference of the two phases and c is the wave speed of the traveling wave. Uniform spatial discretizations and A(α) stable linear multistep methods in time are considered. Results obtained show that although the traveling wave solutions to parabolic PDEs are stationary for only one value of the parameter a,a 0 , spatial discretization of these PDEs produce traveling waves which are stationary for a nontrivial interval of a values which include a 0 , i.e., failure of the solution to propagate in the presence of a driving force. This is true no matter how wide the interface is with respect to the discretization. For temporal discretizations at large wave speeds the set of parameter a values for which there are traveling wave solutions is constrained. An analysis of a complete discretization points out the potential for nonuniqueness in the (a,c) relationship
Quantum chaos on discrete graphs
International Nuclear Information System (INIS)
Smilansky, Uzy
2007-01-01
Adapting a method developed for the study of quantum chaos on quantum (metric) graphs (Kottos and Smilansky 1997 Phys. Rev. Lett. 79 4794, Kottos and Smilansky 1999 Ann. Phys., NY 274 76), spectral ζ functions and trace formulae for discrete Laplacians on graphs are derived. This is achieved by expressing the spectral secular equation in terms of the periodic orbits of the graph and obtaining functions which belong to the class of ζ functions proposed originally by Ihara (1966 J. Mat. Soc. Japan 18 219) and expanded by subsequent authors (Stark and Terras 1996 Adv. Math. 121 124, Kotani and Sunada 2000 J. Math. Sci. Univ. Tokyo 7 7). Finally, a model of 'classical dynamics' on the discrete graph is proposed. It is analogous to the corresponding classical dynamics derived for quantum graphs (Kottos and Smilansky 1997 Phys. Rev. Lett. 79 4794, Kottos and Smilansky 1999 Ann. Phys., NY 274 76). (fast track communication)
Dark energy from discrete spacetime.
Directory of Open Access Journals (Sweden)
Aaron D Trout
Full Text Available Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, [Formula: see text] in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies.
Applied geometry and discrete mathematics
Sturm; Gritzmann, Peter; Sturmfels, Bernd
1991-01-01
This volume, published jointly with the Association for Computing Machinery, comprises a collection of research articles celebrating the occasion of Victor Klee's sixty-fifth birthday in September 1990. During his long career, Klee has made contributions to a wide variety of areas, such as discrete and computational geometry, convexity, combinatorics, graph theory, functional analysis, mathematical programming and optimization, and theoretical computer science. In addition, Klee made important contributions to mathematics education, mathematical methods in economics and the decision sciences, applications of discrete mathematics in the biological and social sciences, and the transfer of knowledge from applied mathematics to industry. In honor of Klee's achievements, this volume presents more than forty papers on topics related to Klee's research. While the majority of the papers are research articles, a number of survey articles are also included. Mirroring the breadth of Klee's mathematical contributions, th...
Domain Discretization and Circle Packings
DEFF Research Database (Denmark)
Dias, Kealey
A circle packing is a configuration of circles which are tangent with one another in a prescribed pattern determined by a combinatorial triangulation, where the configuration fills a planar domain or a two-dimensional surface. The vertices in the triangulation correspond to centers of circles...... to domain discretization problems such as triangulation and unstructured mesh generation techniques. We wish to ask ourselves the question: given a cloud of points in the plane (we restrict ourselves to planar domains), is it possible to construct a circle packing preserving the positions of the vertices...... and constrained meshes having predefined vertices as constraints. A standard method of two-dimensional mesh generation involves conformal mapping of the surface or domain to standardized shapes, such as a disk. Since circle packing is a new technique for constructing discrete conformal mappings, it is possible...
Discrete Bose-Einstein spectra
International Nuclear Information System (INIS)
Vlad, Valentin I.; Ionescu-Pallas, Nicholas
2001-03-01
The Bose-Einstein energy spectrum of a quantum gas, confined in a rigid cubic box, is shown to become discrete and strongly dependent on the box geometry (size L), temperature, T and atomic mass number, A at , in the region of small γ=A at TV 1/3 . This behavior is the consequence of the random state degeneracy in the box. Furthermore, we demonstrate that the total energy does not obey the conventional law any longer, but a new law, which depends on γ and on the quantum gas fugacity. This energy law imposes a faster decrease to zero than it is classically expected, for γ→0. The lighter the gas atoms, the higher the temperatures or the box size, for the same effects in the discrete Bose-Einstein regime. (author)
Dark energy from discrete spacetime.
Trout, Aaron D
2013-01-01
Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT) model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, [Formula: see text] in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies.
Discrete mathematics using a computer
Hall, Cordelia
2000-01-01
Several areas of mathematics find application throughout computer science, and all students of computer science need a practical working understanding of them. These core subjects are centred on logic, sets, recursion, induction, relations and functions. The material is often called discrete mathematics, to distinguish it from the traditional topics of continuous mathematics such as integration and differential equations. The central theme of this book is the connection between computing and discrete mathematics. This connection is useful in both directions: • Mathematics is used in many branches of computer science, in applica tions including program specification, datastructures,design and analysis of algorithms, database systems, hardware design, reasoning about the correctness of implementations, and much more; • Computers can help to make the mathematics easier to learn and use, by making mathematical terms executable, making abstract concepts more concrete, and through the use of software tools su...
Duality for discrete integrable systems
International Nuclear Information System (INIS)
Quispel, G R W; Capel, H W; Roberts, J A G
2005-01-01
A new class of discrete dynamical systems is introduced via a duality relation for discrete dynamical systems with a number of explicitly known integrals. The dual equation can be defined via the difference of an arbitrary linear combination of integrals and its upshifted version. We give an example of an integrable mapping with two parameters and four integrals leading to a (four-dimensional) dual mapping with four parameters and two integrals. We also consider a more general class of higher-dimensional mappings arising via a travelling-wave reduction from the (integrable) MKdV partial-difference equation. By differencing the trace of the monodromy matrix we obtain a class of novel dual mappings which is shown to be integrable as level-set-dependent versions of the original ones
Observability of discretized partial differential equations
Cohn, Stephen E.; Dee, Dick P.
1988-01-01
It is shown that complete observability of the discrete model used to assimilate data from a linear partial differential equation (PDE) system is necessary and sufficient for asymptotic stability of the data assimilation process. The observability theory for discrete systems is reviewed and applied to obtain simple observability tests for discretized constant-coefficient PDEs. Examples are used to show how numerical dispersion can result in discrete dynamics with multiple eigenvalues, thereby detracting from observability.
Hydrophobic Modification of Layered Clays and Compatibility for Epoxy Nanocomposites
Directory of Open Access Journals (Sweden)
Jiang-Jen Lin
2010-04-01
Full Text Available Recent studies on the intercalation and exfoliation of layered clays with polymeric intercalating agents involving poly(oxypropylene-amines and the particular uses for epoxy nanocomposites are reviewed. For intercalation, counter-ionic exchange reactions of clays including cationic layered silicates and anionic Al-Mg layered double hydroxide (LDH with polymeric organic ions afforded organoclays led to spatial interlayer expansion from 12 to 92 Å (X-ray diffraction as well as hydrophobic property. The inorganic clays of layered structure could be modified by the poly(oxypropyleneamine-salts as the intercalating agents with molecular weights ranging from 230 to 5,000 g/mol. Furthermore, natural montmorillonite (MMT clay could be exfoliated into thin layer silicate platelets (ca. 1 nm thickness in one step by using polymeric types of exfoliating agents. Different lateral dimensions of MMT, synthetic fluorinated Mica and LDH clays had been cured into epoxy nanocomposites. The hydrophobic amine-salt modification resulting in high spacing of layered or exfoliation of individual clay platelets is the most important factor for gaining significant improvements of properties. In particular, these modified clays were reported to gain significant improvements such as reduced coefficient of thermal expansion (CTE, enhanced thermal stability, and hardness. The utilization of these layered clays for initiating the epoxy self-polymerization was also reported to have a unique compatibility between clay and organic resin matrix. However, the matrix domain lacks of covalently bonded crosslink and leads to the isolation of powder material. It is generally concluded that the hydrophobic expansion of the clay inter-gallery spacing is the crucial step for enhancing the compatibility and the ultimate preparation of the advanced epoxy materials.
Hydrophobic Modification of Layered Clays and Compatibility for Epoxy Nanocomposites
Lin, Jiang-Jen; Chan, Ying-Nan; Lan, Yi-Fen
2010-01-01
Recent studies on the intercalation and exfoliation of layered clays with polymeric intercalating agents involving poly(oxypropylene)-amines and the particular uses for epoxy nanocomposites are reviewed. For intercalation, counter-ionic exchange reactions of clays including cationic layered silicates and anionic Al-Mg layered double hydroxide (LDH) with polymeric organic ions afforded organoclays led to spatial interlayer expansion from 12 to 92 Å (X-ray diffraction) as well as hydrophobic property. The inorganic clays of layered structure could be modified by the poly(oxypropylene)amine-salts as the intercalating agents with molecular weights ranging from 230 to 5,000 g/mol. Furthermore, natural montmorillonite (MMT) clay could be exfoliated into thin layer silicate platelets (ca. 1 nm thickness) in one step by using polymeric types of exfoliating agents. Different lateral dimensions of MMT, synthetic fluorinated Mica and LDH clays had been cured into epoxy nanocomposites. The hydrophobic amine-salt modification resulting in high spacing of layered or exfoliation of individual clay platelets is the most important factor for gaining significant improvements of properties. In particular, these modified clays were reported to gain significant improvements such as reduced coefficient of thermal expansion (CTE), enhanced thermal stability, and hardness. The utilization of these layered clays for initiating the epoxy self-polymerization was also reported to have a unique compatibility between clay and organic resin matrix. However, the matrix domain lacks of covalently bonded crosslink and leads to the isolation of powder material. It is generally concluded that the hydrophobic expansion of the clay inter-gallery spacing is the crucial step for enhancing the compatibility and the ultimate preparation of the advanced epoxy materials.
Rust transformation/rust compatible primers
Emeric, Dario A.; Miller, Christopher E.
1993-01-01
Proper surface preparation has been the key to obtain good performance by a surface coating. The major obstacle in preparing a corroded or rusted surface is the complete removal of the contaminants and the corrosion products. Sandblasting has been traditionally used to remove the corrosion products before painting. However, sandblasting can be expensive, may be prohibited by local health regulations and is not applicable in every situation. To get around these obstacles, Industry developed rust converters/rust transformers and rust compatible primers (high solids epoxies). The potential use of these products for military equipment led personnel of the Belvoir Research, Development and Engineering Center (BRDEC) to evaluate the commercially available rust transformers and rust compatible primers. Prior laboratory experience with commercially available rust converters, as well as field studies in Hawaii and Puerto Rico, revealed poor performance, several inherent limitations, and lack of reliability. It was obvious from our studies that the performance of rust converting products was more dependent on the amount and type of rust present, as well as the degree of permeability of the coating, than on the product's ability to form an organometallic complex with the rust. Based on these results, it was decided that the Military should develop their own rust converter formulation and specification. The compound described in the specification is for use on a rusted surface before the application of an organic coating (bituminous compounds, primer or topcoat). These coatings should end the need for sandblasting or the removing of the adherent corrosion products. They also will prepare the surface for the application of the organic coating. Several commercially available rust compatible primers (RCP) were also tested using corroded surfaces. All of the evaluated RCP failed our laboratory tests for primers.
An integrable (2+1)-dimensional Toda equation with two discrete variables
International Nuclear Information System (INIS)
Cao Cewen; Cao Jianli
2007-01-01
An integrable (2+1)-dimensional Toda equation with two discrete variables is presented from the compatible condition of a Lax triad composed of the ZS-AKNS (Zakharov, Shabat; Ablowitz, Kaup, Newell, Segur) eigenvalue problem and two discrete spectral problems. Through the nonlinearization technique, the Lax triad is transformed into a Hamiltonian system and two symplectic maps, respectively, which are integrable in the Liouville sense, sharing the same set of integrals, functionally independent and involutive with each other. In the Jacobi variety of the associated algebraic curve, both the continuous and the discrete flows are straightened out by the Abel-Jacobi coordinates, and are integrated by quadratures. An explicit algebraic-geometric solution in the original variable is obtained by the Riemann-Jacobi inversion
On the convergence of multigroup discrete-ordinates approximations
International Nuclear Information System (INIS)
Victory, H.D. Jr.; Allen, E.J.; Ganguly, K.
1987-01-01
Our analysis is divided into two distinct parts which we label for convenience as Part A and Part B. In Part A, we demonstrate that the multigroup discrete-ordinates approximations are well-defined and converge to the exact transport solution in any subcritical setting. For the most part, we focus on transport in two-dimensional Cartesian geometry. A Nystroem technique is used to extend the discrete ordinates multigroup approximates to all values of the angular and energy variables. Such an extension enables us to employ collectively compact operator theory to deduce stability and convergence of the approximates. In Part B, we perform a thorough convergence analysis for the multigroup discrete-ordinates method for an anisotropically-scattering subcritical medium in slab geometry. The diamond-difference and step-characteristic spatial approximation methods are each studied. The multigroup neutron fluxes are shown to converge in a Banach space setting under realistic smoothness conditions on the solution. This is the first thorough convergence analysis for the fully-discretized multigroup neutron transport equations
Evidence for discrete landmark use by pigeons during homing.
Mora, Cordula V; Ross, Jeremy D; Gorsevski, Peter V; Chowdhury, Budhaditya; Bingman, Verner P
2012-10-01
Considerable efforts have been made to investigate how homing pigeons (Columba livia f. domestica) are able to return to their loft from distant, unfamiliar sites while the mechanisms underlying navigation in familiar territory have received less attention. With the recent advent of global positioning system (GPS) data loggers small enough to be carried by pigeons, the role of visual environmental features in guiding navigation over familiar areas is beginning to be understood, yet, surprisingly, we still know very little about whether homing pigeons can rely on discrete, visual landmarks to guide navigation. To assess a possible role of discrete, visual landmarks in navigation, homing pigeons were first trained to home from a site with four wind turbines as salient landmarks as well as from a control site without any distinctive, discrete landmark features. The GPS-recorded flight paths of the pigeons on the last training release were straighter and more similar among birds from the turbine site compared with those from the control site. The pigeons were then released from both sites following a clock-shift manipulation. Vanishing bearings from the turbine site continued to be homeward oriented as 13 of 14 pigeons returned home. By contrast, at the control site the vanishing bearings were deflected in the expected clock-shift direction and only 5 of 13 pigeons returned home. Taken together, our results offer the first strong evidence that discrete, visual landmarks are one source of spatial information homing pigeons can utilize to navigate when flying over a familiar area.
Effective lagrangian description on discrete gauge symmetries
International Nuclear Information System (INIS)
Banks, T.
1989-01-01
We exhibit a simple low-energy lagrangian which describes a system with a discrete remnant of a spontaneously broken continuous gauge symmetry. The lagrangian gives a simple description of the effects ascribed to such systems by Krauss and Wilczek: black holes carry discrete hair and interact with cosmic strings, and wormholes cannot lead to violation of discrete gauge symmetries. (orig.)
Discrete port-Hamiltonian systems : mixed interconnections
Talasila, Viswanath; Clemente-Gallardo, J.; Schaft, A.J. van der
2005-01-01
Either from a control theoretic viewpoint or from an analysis viewpoint it is necessary to convert smooth systems to discrete systems, which can then be implemented on computers for numerical simulations. Discrete models can be obtained either by discretizing a smooth model, or by directly modeling
Discrete fractional solutions of a Legendre equation
Yılmazer, Resat
2018-01-01
One of the most popular research interests of science and engineering is the fractional calculus theory in recent times. Discrete fractional calculus has also an important position in fractional calculus. In this work, we acquire new discrete fractional solutions of the homogeneous and non homogeneous Legendre differential equation by using discrete fractional nabla operator.
The Effect of Birth Order on Roommate Compatibility
Schuh, John H.; Williams, Ondre J.
1977-01-01
A group of students were matched on the basis of compatible birth order; another was matched on the basis of conflicting birth order. After a month's experience in a residence hall their compatibility was examined. Students with conflicting birth order were more compatible than those with the same birth order. (Author)
Quadratic Poisson brackets compatible with an algebra structure
Balinsky, A. A.; Burman, Yu.
1994-01-01
Quadratic Poisson brackets on a vector space equipped with a bilinear multiplication are studied. A notion of a bracket compatible with the multiplication is introduced and an effective criterion of such compatibility is given. Among compatible brackets, a subclass of coboundary brackets is described, and such brackets are enumerated in a number of examples.
47 CFR 76.1622 - Consumer education program on compatibility.
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Consumer education program on compatibility. 76... SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Notices § 76.1622 Consumer education program on compatibility. Cable system operators shall provide a consumer education program on compatibility matters to...
Military electronic equipment shelter electrical wiring design of electromagnetic compatibility
International Nuclear Information System (INIS)
Yang Xuemei
2012-01-01
Electromagnetic compatibility is the military electronics shelter design is an important indicator of the shelter's electrical wiring is the key to the design of electromagnetic compatibility. Introduces the basic concepts of electromagnetic compatibility, and focusing on the shelter layout design problems that need attention, and to solve these problems. (authors)
The radiation destruction of blood compatible blockcopolymers
International Nuclear Information System (INIS)
Gorelik, B.A.; Raygorodsky, I.M.; Dubinskaya, O.V.; Goldberg, E.Sh.; Listvoyb, G.I.
1991-01-01
Among the blood compatible polymers such blockcopolymers as polyurethanes and polycarbonatesiloxanes the main problem of the production is the method of sterilization. It is considered that the radiation sterilization promising for articles like catheters made from these polymers. There are some data in the literature about radiation stability of polycarbonates and polysiloxane, but the influence of ionizing irradiation on polycarbonatesiloxane was not studied until now. The irradiation was carried out by γ-cell RHM-γ-20 in air. (author) 4 refs.; 5 figs
Differential Equations Compatible with KZ Equations
International Nuclear Information System (INIS)
Felder, G.; Markov, Y.; Tarasov, V.; Varchenko, A.
2000-01-01
We define a system of 'dynamical' differential equations compatible with the KZ differential equations. The KZ differential equations are associated to a complex simple Lie algebra g. These are equations on a function of n complex variables z i taking values in the tensor product of n finite dimensional g-modules. The KZ equations depend on the 'dual' variable in the Cartan subalgebra of g. The dynamical differential equations are differential equations with respect to the dual variable. We prove that the standard hypergeometric solutions of the KZ equations also satisfy the dynamical equations. As an application we give a new determinant formula for the coordinates of a basis of hypergeometric solutions
Rate-Compatible Protograph LDPC Codes
Nguyen, Thuy V. (Inventor); Nosratinia, Aria (Inventor); Divsalar, Dariush (Inventor)
2014-01-01
Digital communication coding methods resulting in rate-compatible low density parity-check (LDPC) codes built from protographs. Described digital coding methods start with a desired code rate and a selection of the numbers of variable nodes and check nodes to be used in the protograph. Constraints are set to satisfy a linear minimum distance growth property for the protograph. All possible edges in the graph are searched for the minimum iterative decoding threshold and the protograph with the lowest iterative decoding threshold is selected. Protographs designed in this manner are used in decode and forward relay channels.
Martensitic textures: Multiscale consequences of elastic compatibility
International Nuclear Information System (INIS)
Shenoy, S.R.; Lookman, T.; Saxena, A.; Bishop, A.R.
2001-03-01
We show that a free energy entirely in the order-parameter strain variable(s), rather than the displacement field, provides a unified understanding of martensitic textures. We use compatibility equations, linking the strain tensor components in the bulk and at interfaces, that induce anisotropic order-parameter strain interactions. These two long-range bulk/interface potentials, together with local compositional fluctuations, drive the formation of global elastic textures. Relaxational simulations show the spontaneous formation (and evolution under stress/temperature quenches) of equal width parallel twins, branched twins, and tweed, including characteristic scaling of twin width with twin length. (author)
Electromagnetic compatibility of nuclear power plants
International Nuclear Information System (INIS)
Cabayan, H.S.
1983-01-01
Lately, there has been a mounting concern about the electromagnetic compatibility of nuclear-power-plant systems mainly because of the effects due to the nuclear electromagnetic pulse, and also because of the introduction of more-sophisticated and, therefore, more-susceptible solid-state devices into the plants. Questions have been raised about the adequacy of solid-state-device protection against plant electromagnetic-interference sources and transients due to the nuclear electromagnetic pulse. In this paper, the author briefly reviews the environment, and the coupling, susceptibility, and vulnerability assessment issues of commercial nuclear power plants
Testing quantum contextuality. The problem of compatibility
International Nuclear Information System (INIS)
Szangolies, Jochen
2015-01-01
Jochen Szangolies contributes a novel way of dealing with the problem of the experimental testability of the Kochen-Specker theorem posed by realistic, that is, noisy, measurements. Such noise spoils perfect compatibility between successive measurements, which however is a necessary requirement to test the notion of contextuality in usual approaches. To overcome this difficulty, a new, extended notion of contextuality that reduces to Kochen-Specker contextuality in the limit of perfect measurement implementations is proposed by the author, together with a scheme to test this notion experimentally. Furthermore, the behaviour of these tests under realistic noise conditions is investigated.
Continuous versus discrete structures II -- Discrete Hamiltonian systems and Helmholtz conditions
Cresson, Jacky; Pierret, Frédéric
2015-01-01
We define discrete Hamiltonian systems in the framework of discrete embeddings. An explicit comparison with previous attempts is given. We then solve the discrete Helmholtz's inverse problem for the discrete calculus of variation in the Hamiltonian setting. Several applications are discussed.
Asymptotic behavior of discrete holomorphic maps z^c, log(z) and discrete Painleve transcedents
Agafonov, S. I.
2005-01-01
It is shown that discrete analogs of z^c and log(z) have the same asymptotic behavior as their smooth counterparts. These discrete maps are described in terms of special solutions of discrete Painleve-II equations, asymptotics of these solutions providing the behaviour of discrete z^c and log(z) at infinity.
International Nuclear Information System (INIS)
Zhang Yufeng; Fan Engui; Zhang Yongqing
2006-01-01
With the help of two semi-direct sum Lie algebras, an efficient way to construct discrete integrable couplings is proposed. As its applications, the discrete integrable couplings of the Toda-type lattice equations are obtained. The approach can be devoted to establishing other discrete integrable couplings of the discrete lattice integrable hierarchies of evolution equations
An Arbitrary Lagrangian-Eulerian Discretization of MHD on 3D Unstructured Grids
Energy Technology Data Exchange (ETDEWEB)
Rieben, R N; White, D A; Wallin, B K; Solberg, J M
2006-06-12
We present an arbitrary Lagrangian-Eulerian (ALE) discretization of the equations of resistive magnetohydrodynamics (MHD) on unstructured hexahedral grids. The method is formulated using an operator-split approach with three distinct phases: electromagnetic diffusion, Lagrangian motion, and Eulerian advection. The resistive magnetic dynamo equation is discretized using a compatible mixed finite element method with a 2nd order accurate implicit time differencing scheme which preserves the divergence-free nature of the magnetic field. At each discrete time step, electromagnetic force and heat terms are calculated and coupled to the hydrodynamic equations to compute the Lagrangian motion of the conducting materials. By virtue of the compatible discretization method used, the invariants of Lagrangian MHD motion are preserved in a discrete sense. When the Lagrangian motion of the mesh causes significant distortion, that distortion is corrected with a relaxation of the mesh, followed by a 2nd order monotonic remap of the electromagnetic state variables. The remap is equivalent to Eulerian advection of the magnetic flux density with a fictitious mesh relaxation velocity. The magnetic advection is performed using a novel variant of constrained transport (CT) that is valid for unstructured hexahedral grids with arbitrary mesh velocities. The advection method maintains the divergence free nature of the magnetic field and is second order accurate in regions where the solution is sufficiently smooth. For regions in which the magnetic field is discontinuous (e.g. MHD shocks) the method is limited using a novel variant of algebraic flux correction (AFC) which is local extremum diminishing (LED) and divergence preserving. Finally, we verify each stage of the discretization via a set of numerical experiments.
International Nuclear Information System (INIS)
Choi, Je-Eun; Takei, Masahiro; Doh, Deog-Hee; Jo, Hyo-Jae; Hassan, Yassin A.; Ortiz-Villafuerte, Javier
2008-01-01
Currently, wavelet transforms are widely used for the analyses of particle image velocimetry (PIV) velocity vector fields. This is because the wavelet provides not only spatial information of the velocity vectors, but also of the time and frequency domains. In this study, a discrete wavelet transform is applied to real PIV images of bubbly flows. The vector fields obtained by a self-made cross-correlation PIV algorithm were used for the discrete wavelet transform. The performances of the discrete wavelet transforms were investigated by changing the level of power of discretization. The images decomposed by wavelet multi-resolution showed conspicuous characteristics of the bubbly flows for the different levels. A high spatial bubble concentrated area could be evaluated by the constructed discrete wavelet transform algorithm, in which high-leveled wavelets play dominant roles in revealing the flow characteristics
Free Vibration of Rectangular Plates with Attached Discrete Sprung Masses
Directory of Open Access Journals (Sweden)
Ding Zhou
2012-01-01
Full Text Available A direct approach is used to derive the exact solution for the free vibration of thin rectangular plates with discrete sprung masses attached. The plate is simply supported along two opposite edges and elastically supported along the two other edges. The elastic support can represent a range of boundary conditions from free to clamped supports. Considering only the compatibility of the internal forces between the plate and the sprung masses, the equations of the coupled vibration of the plate-spring-mass system are derived. The exact expressions for mode and frequency equations of the coupled vibration of the plate and sprung masses are determined. The solutions converge steadily and monotonically to exact values. The correctness and accuracy of the solutions are demonstrated through comparison with published results. A parametric study is undertaken focusing on the plate with one or two sprung masses. The results can be used as a benchmark for further investigation.
Electromagnetic Compatibility of Matrix Converter System
Directory of Open Access Journals (Sweden)
S. Fligl
2006-12-01
Full Text Available The presented paper deals with matrix converters pulse width modulation strategies design with emphasis on the electromagnetic compatibility. Matrix converters provide an all-silicon solution to the problem of converting AC power from one frequency to another, offering almost all the features required of an ideal static frequency changer. They possess many advantages compared to the conventional voltage or current source inverters. A matrix converter does not require energy storage components as a bulky capacitor or an inductance in the DC-link, and enables the bi-directional power flow between the power supply and load. The most of the contemporary modulation strategies are able to provide practically sinusoidal waveforms of the input and output currents with negligible low order harmonics, and to control the input displacement factor. The perspective of matrix converters regarding EMC in comparison with other types of converters is brightly evident because it is no need to use any equipment for power factor correction and current and voltage harmonics reduction. Such converter with proper control is properly compatible both with the supply mains and with the supplied load. A special digital control system was developed for the realized experimental test bed which makes it possible to achieve greater throughput of the digital control system and its variability.
Mixed waste chemical compatibility with packaging components
International Nuclear Information System (INIS)
Nigrey, P.J.; Conroy, M.; Blalock, L.B.
1994-01-01
In this paper, a chemical compatibility testing program for packaging of mixed wastes at will be described. We will discuss the choice of four y-radiation doses, four time durations, four temperatures and four waste solutions to simulate the hazardous waste components of mixed wastes for testing materials compatibility of polymers. The selected simulant wastes are (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) a mixture of ketones. A selection of 10 polymers with anticipated high resistance to one or more of these types of environments are proposed for testing as potential liner or seal materials. These polymers are butadiene acrylonitrile copolymer, cross-linked polyethylene, epichlorhyarin, ethylene-propylene rubber, fluorocarbon, glass-filled tetrafluoroethylene, high-density poly-ethylene, isobutylene-isoprene copolymer, polypropylene, and styrene-butadiene rubber. We will describe the elements of the testing plan along with a metric for establishing time resistance of the packaging materials to radiation and chemicals
Studies of environmental compatability. Umweltbundesamt - Texte
Energy Technology Data Exchange (ETDEWEB)
1982-01-01
The evaluation of the methodical quality of the examples by means of a verification pattern had the result that approaches using quantitative methods - as for example the value in use analysis obtained better results: The representation of the state of the environment and of possible impairments of the environment, which had bejudged, achieved a higher degree of representativeness and completeness. Furthermore the concreteness of the used criteria for the description of the repercussions of a plan and the possibility to quantify same had to be judged more favourable. It must critically be remarked that by using quantitative methods difficulties may appear if impairments of the environment overlap or if there are correlations between the media respectively if there are non-linear repercussions of measures causing environmental damages. The present level of research should be developed to a strenghtened inclusion of complex and dynamic correlations of effects. More exacting investigations concerning environmental compatability are on the long term integrated in administrative procedures only at few authorities. With the demand for an extension of environmental compatability assessment to all steps of planning and procedure for the realization of a plan an early and more intensive participation of the public should be connected.
Cuspidal discrete series for projective hyperbolic spaces
DEFF Research Database (Denmark)
Andersen, Nils Byrial; Flensted-Jensen, Mogens
2013-01-01
Abstract. We have in [1] proposed a definition of cusp forms on semisimple symmetric spaces G/H, involving the notion of a Radon transform and a related Abel transform. For the real non-Riemannian hyperbolic spaces, we showed that there exists an infinite number of cuspidal discrete series......, and at most finitely many non-cuspidal discrete series, including in particular the spherical discrete series. For the projective spaces, the spherical discrete series are the only non-cuspidal discrete series. Below, we extend these results to the other hyperbolic spaces, and we also study the question...
Space-Time Discrete KPZ Equation
Cannizzaro, G.; Matetski, K.
2018-03-01
We study a general family of space-time discretizations of the KPZ equation and show that they converge to its solution. The approach we follow makes use of basic elements of the theory of regularity structures (Hairer in Invent Math 198(2):269-504, 2014) as well as its discrete counterpart (Hairer and Matetski in Discretizations of rough stochastic PDEs, 2015. arXiv:1511.06937). Since the discretization is in both space and time and we allow non-standard discretization for the product, the methods mentioned above have to be suitably modified in order to accommodate the structure of the models under study.
A Fully Discrete Galerkin Method for a Nonlinear Space-Fractional Diffusion Equation
Directory of Open Access Journals (Sweden)
Yunying Zheng
2011-01-01
Full Text Available The spatial transport process in fractal media is generally anomalous. The space-fractional advection-diffusion equation can be used to characterize such a process. In this paper, a fully discrete scheme is given for a type of nonlinear space-fractional anomalous advection-diffusion equation. In the spatial direction, we use the finite element method, and in the temporal direction, we use the modified Crank-Nicolson approximation. Here the fractional derivative indicates the Caputo derivative. The error estimate for the fully discrete scheme is derived. And the numerical examples are also included which are in line with the theoretical analysis.
Asymptotic analysis of discrete schemes for non-equilibrium radiation diffusion
International Nuclear Information System (INIS)
Cui, Xia; Yuan, Guang-wei; Shen, Zhi-jun
2016-01-01
Motivated by providing well-behaved fully discrete schemes in practice, this paper extends the asymptotic analysis on time integration methods for non-equilibrium radiation diffusion in [2] to space discretizations. Therein studies were carried out on a two-temperature model with Larsen's flux-limited diffusion operator, both the implicitly balanced (IB) and linearly implicit (LI) methods were shown asymptotic-preserving. In this paper, we focus on asymptotic analysis for space discrete schemes in dimensions one and two. First, in construction of the schemes, in contrast to traditional first-order approximations, asymmetric second-order accurate spatial approximations are devised for flux-limiters on boundary, and discrete schemes with second-order accuracy on global spatial domain are acquired consequently. Then by employing formal asymptotic analysis, the first-order asymptotic-preserving property for these schemes and furthermore for the fully discrete schemes is shown. Finally, with the help of manufactured solutions, numerical tests are performed, which demonstrate quantitatively the fully discrete schemes with IB time evolution indeed have the accuracy and asymptotic convergence as theory predicts, hence are well qualified for both non-equilibrium and equilibrium radiation diffusion. - Highlights: • Provide AP fully discrete schemes for non-equilibrium radiation diffusion. • Propose second order accurate schemes by asymmetric approach for boundary flux-limiter. • Show first order AP property of spatially and fully discrete schemes with IB evolution. • Devise subtle artificial solutions; verify accuracy and AP property quantitatively. • Ideas can be generalized to 3-dimensional problems and higher order implicit schemes.
Integrable discretizations of the short pulse equation
International Nuclear Information System (INIS)
Feng Baofeng; Maruno, Ken-ichi; Ohta, Yasuhiro
2010-01-01
In this paper, we propose integrable semi-discrete and full-discrete analogues of the short pulse (SP) equation. The key construction is the bilinear form and determinant structure of solutions of the SP equation. We also give the determinant formulas of N-soliton solutions of the semi-discrete and full-discrete analogues of the SP equations, from which the multi-loop and multi-breather solutions can be generated. In the continuous limit, the full-discrete SP equation converges to the semi-discrete SP equation, and then to the continuous SP equation. Based on the semi-discrete SP equation, an integrable numerical scheme, i.e. a self-adaptive moving mesh scheme, is proposed and used for the numerical computation of the short pulse equation.
Discrete geometric structures for architecture
Pottmann, Helmut
2010-06-13
The emergence of freeform structures in contemporary architecture raises numerous challenging research problems, most of which are related to the actual fabrication and are a rich source of research topics in geometry and geometric computing. The talk will provide an overview of recent progress in this field, with a particular focus on discrete geometric structures. Most of these result from practical requirements on segmenting a freeform shape into planar panels and on the physical realization of supporting beams and nodes. A study of quadrilateral meshes with planar faces reveals beautiful relations to discrete differential geometry. In particular, we discuss meshes which discretize the network of principal curvature lines. Conical meshes are among these meshes; they possess conical offset meshes at a constant face/face distance, which in turn leads to a supporting beam layout with so-called torsion free nodes. This work can be generalized to a variety of multilayer structures and laid the ground for an adapted curvature theory for these meshes. There are also efforts on segmenting surfaces into planar hexagonal panels. Though these are less constrained than planar quadrilateral panels, this problem is still waiting for an elegant solution. Inspired by freeform designs in architecture which involve circles and spheres, we present a new kind of triangle mesh whose faces\\' in-circles form a packing, i.e., the in-circles of two triangles with a common edge have the same contact point on that edge. These "circle packing (CP) meshes" exhibit an aesthetic balance of shape and size of their faces. They are closely tied to sphere packings on surfaces and to various remarkable structures and patterns which are of interest in art, architecture, and design. CP meshes constitute a new link between architectural freeform design and computational conformal geometry. Recently, certain timber structures motivated us to study discrete patterns of geodesics on surfaces. This
Radiative transfer on discrete spaces
Preisendorfer, Rudolph W; Stark, M; Ulam, S
1965-01-01
Pure and Applied Mathematics, Volume 74: Radiative Transfer on Discrete Spaces presents the geometrical structure of natural light fields. This book describes in detail with mathematical precision the radiometric interactions of light-scattering media in terms of a few well established principles.Organized into four parts encompassing 15 chapters, this volume begins with an overview of the derivations of the practical formulas and the arrangement of formulas leading to numerical solution procedures of radiative transfer problems in plane-parallel media. This text then constructs radiative tran
Spinors in euclidean field theory, complex structures and discrete symmetries
International Nuclear Information System (INIS)
Wetterich, C.
2011-01-01
We discuss fermions for arbitrary dimensions and signature of the metric, with special emphasis on euclidean space. Generalized Majorana spinors are defined for d=2,3,4,8,9mod8, independently of the signature. These objects permit a consistent analytic continuation of Majorana spinors in Minkowski space to euclidean signature. Compatibility of charge conjugation with complex conjugation requires for euclidean signature a new complex structure which involves a reflection in euclidean time. The possible complex structures for Minkowski and euclidean signature can be understood in terms of a modulo two periodicity in the signature. The concepts of a real action and hermitean observables depend on the choice of the complex structure. For a real action the expectation values of all hermitean multi-fermion observables are real. This holds for arbitrary signature, including euclidean space. In particular, a chemical potential is compatible with a real action for the euclidean theory. We also discuss the discrete symmetries of parity, time reversal and charge conjugation for arbitrary dimension and signature.
Fuel System Compatibility Issues for Prometheus-1
International Nuclear Information System (INIS)
DC-- Noe; KB Gibbard; MH Krohn
2006-01-01
Compatibility issues for the Prometheus-1 fuel system have been reviewed based upon the selection of UO 2 as the reference fuel material. In particular, the potential for limiting effects due to fuel- or fission product-component (cladding, liner, spring, etc) chemical interactions and clad-liner interactions have been evaluated. For UO 2 -based fuels, fuel-component interactions are not expected to significantly limit performance. However, based upon the selection of component materials, there is a potential for degradation due to fission products. In particular, a chemical liner may be necessary for niobium, tantalum, zirconium, or silicon carbide-based systems. Multiple choices exist for the configuration of a chemical liner within the cladding; there is no clear solution that eliminates all concerns over the mechanical performance of a clad/liner system. A series of tests to evaluate the performance of candidate materials in contact with real and simulated fission products is outlined
[Compatibility of different quality control systems].
Invernizzi, Enrico
2002-01-01
Management of the good laboratory practice (GLP) quality system presupposes its linking to a basic recognized and approved quality system, from which it can draw on management procedures common to all quality systems, such as the ISO 9000 set of norms. A quality system organized in this way can also be integrated with other dedicated quality systems, or parts of them, to obtain principles or management procedures for specific topics. The aim of this organization is to set up a reliable, recognized quality system compatible with the principles of GLP and other quality management systems, which provides users with a simplified set of easily accessible management tools and answers. The organization of this quality system is set out in the quality assurance programme, which is actually the document in which the test facility incorporates the GLP principles into its own quality organization.
fMRI-Compatible Electromagnetic Haptic Interface.
Riener, R; Villgrattner, T; Kleiser, R; Nef, T; Kollias, S
2005-01-01
A new haptic interface device is suggested, which can be used for functional magnetic resonance imaging (fMRI) studies. The basic component of this 1 DOF haptic device are two coils that produce a Lorentz force induced by the large static magnetic field of the MR scanner. A MR-compatible optical angular encoder and a optical force sensor enable the implementation of different control architectures for haptic interactions. The challenge was to provide a large torque, and not to affect image quality by the currents applied in the device. The haptic device was tested in a 3T MR scanner. With a current of up to 1A and a distance of 1m to the focal point of the MR-scanner it was possible to generate torques of up to 4 Nm. Within these boundaries image quality was not affected.
Chemical compatibility of DWPF canistered waste forms
International Nuclear Information System (INIS)
Harbour, J.R.
1993-01-01
The Waste Acceptance Preliminary Specifications (WAPS) require that the contents of the canistered waste form are compatible with one another and the stainless steel canister. The canistered waste form is a closed system comprised of a stainless steel vessel containing waste glass, air, and condensate. This system will experience a radiation field and an elevated temperature due to radionuclide decay. This report discusses possible chemical reactions, radiation interactions, and corrosive reactions within this system both under normal storage conditions and after exposure to temperatures up to the normal glass transition temperature, which for DWPF waste glass will be between 440 and 460 degrees C. Specific conclusions regarding reactions and corrosion are provided. This document is based on the assumption that the period of interim storage prior to packaging at the federal repository may be as long as 50 years
Is Christian Education Compatible With Science Education?
Martin, Michael
Science education and Christian education are not compatible if by Christian education one means teaching someone to be a Christian. One goal of science education is to give students factual knowledge. Even when there is no actual conflict of this knowledge with the dogmas of Christianity, there exists the potential for conflict. Another goal of science education is to teach students to have the propensity to be sensitive to evidence: to hold beliefs tentatively in light of evidence and to reject these beliefs in the light of new evidence if rejection is warranted by this evidence. This propensity conflicts with one way in which beliefs are often taught in Christian education: namely as fundamental dogmas, rather than as subject to revision in the light of the evidence.
Compatibility of elastomers in alternate jet fuels
Kalfayan, S. H.; Fedors, R. F.; Reilly, W. W.
1979-01-01
The compatibility of elastomeric compositions of known resistance to aircraft fuels was tested for potential use in Jet A type fuels obtainable from alternate sources, such as coal. Since such fuels were not available at the time, synthetic alternate fuels were prepared by adding tetralin to a petroleum based Jet A type fuel to simulate coal derived fuels which are expected to contain higher amounts of aromatic and hydroaromatic hydrocarbons. The elastomeric compounds tested were based on butadiene-acrylonitrile rubber, a castable Thiokol polysulfide rubber, and a castable fluorosilicone rubber. Batches of various cross-link densities of these rubbers were made and their chemical stress relaxation behavior in fuel, air, and nitrogen, their swelling properties, and response to mechanical testing were determined.
Incentive compatibility in kidney exchange problems.
Villa, Silvia; Patrone, Fioravante
2009-12-01
The problem of kidney exchanges shares common features with the classical problem of exchange of indivisible goods studied in the mechanism design literature, while presenting additional constraints on the size of feasible exchanges. The solution of a kidney exchange problem can be summarized in a mapping from the relevant underlying characteristics of the players (patients and their donors) to the set of matchings. The goal is to select only matchings maximizing a chosen welfare function. Since the final outcome heavily depends on the private information in possess of the players, a basic requirement in order to reach efficiency is the truthful revelation of this information. We show that for the kidney exchange problem, a class of (in principle) efficient mechanisms does not enjoy the incentive compatibility property and therefore is subject to possible manipulations made by the players in order to profit of the misrepresentation of their private information.
An overview of electromagnetic compatibility (EMC)
International Nuclear Information System (INIS)
Raffi, M.; Qadeer, S.; Anwar, M.
1998-01-01
The world is becoming increasingly dependent upon the use of electrical and electronic equipment. In the recent years, introduction of semiconductor based devices, microprocessor and micro computer have brought about a technological revolution that has had far reaching effects in the home, in industry, in commerce and in defense. Electromagnetic Compatibility (EMC) is the discipline which attempts to over come or, at least, minimize the effects of mismatch between equipment and the operating environment in accordance with agreed specifications, standards and regulations. Increased electromagnetic pollution in the environment has caused tremendous concern in the electronic industry and among users. Designers of the electronic products and systems want to be sure that their products do not emit excessive, unintentional radiation to interfere with the operation of the other systems, nor should these products be susceptible to electromagnetic interference which may degrade their performance. (author)
CMOS-compatible spintronic devices: a review
Makarov, Alexander; Windbacher, Thomas; Sverdlov, Viktor; Selberherr, Siegfried
2016-11-01
For many decades CMOS devices have been successfully scaled down to achieve higher speed and increased performance of integrated circuits at lower cost. Today’s charge-based CMOS electronics encounters two major challenges: power dissipation and variability. Spintronics is a rapidly evolving research and development field, which offers a potential solution to these issues by introducing novel ‘more than Moore’ devices. Spin-based magnetoresistive random-access memory (MRAM) is already recognized as one of the most promising candidates for future universal memory. Magnetic tunnel junctions, the main elements of MRAM cells, can also be used to build logic-in-memory circuits with non-volatile storage elements on top of CMOS logic circuits, as well as versatile compact on-chip oscillators with low power consumption. We give an overview of CMOS-compatible spintronics applications. First, we present a brief introduction to the physical background considering such effects as magnetoresistance, spin-transfer torque (STT), spin Hall effect, and magnetoelectric effects. We continue with a comprehensive review of the state-of-the-art spintronic devices for memory applications (STT-MRAM, domain wall-motion MRAM, and spin-orbit torque MRAM), oscillators (spin torque oscillators and spin Hall nano-oscillators), logic (logic-in-memory, all-spin logic, and buffered magnetic logic gate grid), sensors, and random number generators. Devices with different types of resistivity switching are analyzed and compared, with their advantages highlighted and challenges revealed. CMOS-compatible spintronic devices are demonstrated beginning with predictive simulations, proceeding to their experimental confirmation and realization, and finalized by the current status of application in modern integrated systems and circuits. We conclude the review with an outlook, where we share our vision on the future applications of the prospective devices in the area.
Developing 2 C-compatible investment criteria
Energy Technology Data Exchange (ETDEWEB)
Roeser, Frauke [NewClimate - Institute for Climate Policy and Global Sustainability gGmbH, Bonn (Germany); Weischer, Lutz [Germanwatch e.V., Koeln (Germany); Thomae, Jakob [2degrees Investing Initiative, New York, NY (United States); Hoehne, Niklas; Hagemann, Markus; El Alaoui, Alexander; Bals, Christoph; Eckstein, David; Kreft, Soenke; Rosse, Morten
2015-11-30
This report studies the development of criteria for assessing the compatibility of financial investments with the international goal to limit global temperature increase to below 2 C above pre-industrial levels. The findings are intended as a starting point and a key input for a longer term process to develop consensus-based 2 C investing criteria. The focus here is placed on investments in projects and physical assets, in particular of development and climate finance organisations. In order to limit global temperature increase to 2 C, global greenhouse gas (GHG) emissions will have to be reduced significantly, eventually to zero, during the course of this century. This requires shifting capital from high to low carbon investments as well as significant capital mobilisation for investments in 2 C-compatible infrastructure. Given the long lifetime of physical assets, and the urgency of decarbonisation over the coming decades, this needs to begin today. Public financial institutions can play a prominent role in contributing to aligning investment flows with the 2 C limit, as well as in closing the current infrastructure investment gap, responding to their explicit or implicit climate mandates and leadership role in the finance sector. The majority of international financial institutions integrate climate considerations into their finance decisions to some degree, and are familiar with different types of criteria, including positive and negative lists, qualitative and quantitative benchmarks, and the use of shadow carbon pricing. However, current approaches do not link to the 2 C limit. 2 C investment criteria are therefore needed to guide investors in this regard. Such criteria may also support other purposes, including an understanding of climate risks and improved reporting and accountability.
Developing 2 C-compatible investment criteria
International Nuclear Information System (INIS)
Roeser, Frauke; Weischer, Lutz; Thomae, Jakob; Hoehne, Niklas; Hagemann, Markus; El Alaoui, Alexander; Bals, Christoph; Eckstein, David; Kreft, Soenke; Rosse, Morten
2015-01-01
This report studies the development of criteria for assessing the compatibility of financial investments with the international goal to limit global temperature increase to below 2 C above pre-industrial levels. The findings are intended as a starting point and a key input for a longer term process to develop consensus-based 2 C investing criteria. The focus here is placed on investments in projects and physical assets, in particular of development and climate finance organisations. In order to limit global temperature increase to 2 C, global greenhouse gas (GHG) emissions will have to be reduced significantly, eventually to zero, during the course of this century. This requires shifting capital from high to low carbon investments as well as significant capital mobilisation for investments in 2 C-compatible infrastructure. Given the long lifetime of physical assets, and the urgency of decarbonisation over the coming decades, this needs to begin today. Public financial institutions can play a prominent role in contributing to aligning investment flows with the 2 C limit, as well as in closing the current infrastructure investment gap, responding to their explicit or implicit climate mandates and leadership role in the finance sector. The majority of international financial institutions integrate climate considerations into their finance decisions to some degree, and are familiar with different types of criteria, including positive and negative lists, qualitative and quantitative benchmarks, and the use of shadow carbon pricing. However, current approaches do not link to the 2 C limit. 2 C investment criteria are therefore needed to guide investors in this regard. Such criteria may also support other purposes, including an understanding of climate risks and improved reporting and accountability.
Compatibility testing of vitrified waste forms
International Nuclear Information System (INIS)
Rankin, W.N.
1978-01-01
The compatibility of vitrified radioactive waste with candidate canister materials will be evaluated with both cast and in-can melted vitrified waste. Both real and simulated sludges will be used. In addition, the compatibility of these materials with salt from a possible final storage location will be determined. Cast vitrified waste will be tested with ASTM A 333 and ASTM A 516 low-carbon steels and Type 304L stainless steel at 100, 600 and 800 0 C. Cast vitrified waste that has been devitrified by heat treatment will be tested at 100 0 C. Two types of test specimens will be used with either simulated or real sludges: (1) unsealed capsules made of pieces of mill-finished pipe into which vitrified waste is cast, and (2) sealed capsules containing a small container of vitrified waste identical to the ones in the unsealed capsule. In-can melted vitrified waste will be tested with synthetic sludge only and with ASTM A 333 and ASTM A 516 low-carbon steels, Type 304L stainless steel and Inconel 600. Two types of tests will be carried out: (1) melting vitrified waste in miniature metal canisters and (2) exposure of small (carefully measured) metal coupons to molten glass. The air oxidation rates of candidate canister materials will be determined, and specimens will also be exposed to salt from Drill Hole AEC-8 in Carlsbad, New Mexico. Sealed capsules containing an ASTM A 516 low-carbon steel or Type 304L stainless steel specimen partially embedded in a small block of salt will be heated
Discrete dipole approximation simulation of bead enhanced diffraction grating biosensor
International Nuclear Information System (INIS)
Arif, Khalid Mahmood
2016-01-01
We present the discrete dipole approximation simulation of light scattering from bead enhanced diffraction biosensor and report the effect of bead material, number of beads forming the grating and spatial randomness on the diffraction intensities of 1st and 0th orders. The dipole models of gratings are formed by volume slicing and image processing while the spatial locations of the beads on the substrate surface are randomly computed using discrete probability distribution. The effect of beads reduction on far-field scattering of 632.8 nm incident field, from fully occupied gratings to very coarse gratings, is studied for various bead materials. Our findings give insight into many difficult or experimentally impossible aspects of this genre of biosensors and establish that bead enhanced grating may be used for rapid and precise detection of small amounts of biomolecules. The results of simulations also show excellent qualitative similarities with experimental observations. - Highlights: • DDA was used to study the relationship between the number of beads forming gratings and ratio of first and zeroth order diffraction intensities. • A very flexible modeling program was developed to design complicated objects for DDA. • Material and spatial effects of bead distribution on surfaces were studied. • It has been shown that bead enhanced grating biosensor can be useful for fast detection of small amounts of biomolecules. • Experimental results qualitatively support the simulations and thus open a way to optimize the grating biosensors.
Localized solutions for a nonlocal discrete NLS equation
Energy Technology Data Exchange (ETDEWEB)
Ben, Roberto I. [Instituto de Desarrollo Humano, Universidad Nacional de General Sarmiento, J.M. Gutiérrez 1150, 1613 Los Polvorines (Argentina); Cisneros Ake, Luís [Department of Mathematics, ESFM, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos Edificio 9, 07738 México D.F. (Mexico); Minzoni, A.A. [Depto. Matemáticas y Mecánica, I.I.M.A.S.-U.N.A.M., Apdo. Postal 20-726, 01000 México D.F. (Mexico); Panayotaros, Panayotis, E-mail: panos@mym.iimas.unam.mx [Depto. Matemáticas y Mecánica, I.I.M.A.S.-U.N.A.M., Apdo. Postal 20-726, 01000 México D.F. (Mexico)
2015-09-04
We study spatially localized time-periodic solutions of breather type for a cubic discrete NLS equation with a nonlocal nonlinearity that models light propagation in a liquid crystal waveguide array. We show the existence of breather solutions in the limit where both linear and nonlinear intersite couplings vanish, and in the limit where the linear coupling vanishes with arbitrary nonlinear intersite coupling. Breathers of this nonlocal regime exhibit some interesting features that depart from what is seen in the NLS breathers with power nonlinearity. One property we see theoretically is the presence of higher amplitude at interfaces between sites with zero and nonzero amplitude in the vanishing linear coupling limit. A numerical study also suggests the presence of internal modes of orbitally stable localized modes. - Highlights: • Show existence of spatially localized solutions in nonlocal discrete NLS model. • Study spatial properties of localized solutions for arbitrary nonlinear nonlocal coupling. • Present numerical evidence that nonlocality leads to internal modes around stable breathers. • Present theoretical and numerical evidence for amplitude maxima at interfaces.
Localized solutions for a nonlocal discrete NLS equation
International Nuclear Information System (INIS)
Ben, Roberto I.; Cisneros Ake, Luís; Minzoni, A.A.; Panayotaros, Panayotis
2015-01-01
We study spatially localized time-periodic solutions of breather type for a cubic discrete NLS equation with a nonlocal nonlinearity that models light propagation in a liquid crystal waveguide array. We show the existence of breather solutions in the limit where both linear and nonlinear intersite couplings vanish, and in the limit where the linear coupling vanishes with arbitrary nonlinear intersite coupling. Breathers of this nonlocal regime exhibit some interesting features that depart from what is seen in the NLS breathers with power nonlinearity. One property we see theoretically is the presence of higher amplitude at interfaces between sites with zero and nonzero amplitude in the vanishing linear coupling limit. A numerical study also suggests the presence of internal modes of orbitally stable localized modes. - Highlights: • Show existence of spatially localized solutions in nonlocal discrete NLS model. • Study spatial properties of localized solutions for arbitrary nonlinear nonlocal coupling. • Present numerical evidence that nonlocality leads to internal modes around stable breathers. • Present theoretical and numerical evidence for amplitude maxima at interfaces
Stephan, Denise Nadine; Koch, Iring
2016-11-01
The present study was aimed at examining modality-specific influences in task switching. To this end, participants switched either between modality compatible tasks (auditory-vocal and visual-manual) or incompatible spatial discrimination tasks (auditory-manual and visual-vocal). In addition, auditory and visual stimuli were presented simultaneously (i.e., bimodally) in each trial, so that selective attention was required to process the task-relevant stimulus. The inclusion of bimodal stimuli enabled us to assess congruence effects as a converging measure of increased between-task interference. The tasks followed a pre-instructed sequence of double alternations (AABB), so that no explicit task cues were required. The results show that switching between two modality incompatible tasks increases both switch costs and congruence effects compared to switching between two modality compatible tasks. The finding of increased congruence effects in modality incompatible tasks supports our explanation in terms of ideomotor "backward" linkages between anticipated response effects and the stimuli that called for this response in the first place. According to this generalized ideomotor idea, the modality match between response effects and stimuli would prime selection of a response in the compatible modality. This priming would cause increased difficulties to ignore the competing stimulus and hence increases the congruence effect. Moreover, performance would be hindered when switching between modality incompatible tasks and facilitated when switching between modality compatible tasks.
3-D discrete analytical ridgelet transform.
Helbert, David; Carré, Philippe; Andres, Eric
2006-12-01
In this paper, we propose an implementation of the 3-D Ridgelet transform: the 3-D discrete analytical Ridgelet transform (3-D DART). This transform uses the Fourier strategy for the computation of the associated 3-D discrete Radon transform. The innovative step is the definition of a discrete 3-D transform with the discrete analytical geometry theory by the construction of 3-D discrete analytical lines in the Fourier domain. We propose two types of 3-D discrete lines: 3-D discrete radial lines going through the origin defined from their orthogonal projections and 3-D planes covered with 2-D discrete line segments. These discrete analytical lines have a parameter called arithmetical thickness, allowing us to define a 3-D DART adapted to a specific application. Indeed, the 3-D DART representation is not orthogonal, It is associated with a flexible redundancy factor. The 3-D DART has a very simple forward/inverse algorithm that provides an exact reconstruction without any iterative method. In order to illustrate the potentiality of this new discrete transform, we apply the 3-D DART and its extension to the Local-DART (with smooth windowing) to the denoising of 3-D image and color video. These experimental results show that the simple thresholding of the 3-D DART coefficients is efficient.
Farias, Ana Rita; Garrido, Margarida V; Semin, Gün R
2016-05-01
In two experiments, the role played by stimulus response compatibility in driving the spatial grounding of abstract concepts is examined. In Experiment 1, participants were asked to classify politics-related words appearing to the left or the right side of a computer monitor as socialist or conservative. Responses were given by pressing vertically aligned keys and thus orthogonal to the spatial information that may have been implied by the words. Responses given by left or right index finger were counterbalanced. In Experiment 2, a lexical decision task, participants categorized political words or non-words presented to the left or the right auditory channels, by pressing the top/bottom button of a response box. The response category labels (word or non-word) were also orthogonal to the spatial information that may have been implied by the stimulus words. In both experiments, responses were faster when socialism-related words were presented on the left and conservatism-related words were presented on the right, irrespective of the reference of the response keys or labels. Overall, our findings suggest that the spatial grounding of abstract concepts (or at least politics-related ones) is independent of experimentally driven stimulus-response compatibility effects. Copyright © 2016 Elsevier B.V. All rights reserved.
Left-right compatibility in the processing of trading verbs.
Vicario, Carmelo M; Rumiati, Raffaella I
2014-01-01
The research investigating the nature of cognitive processes involved in the representation of economical outcomes is growing. Within this research, the mental accounting model proposes that individuals may well use cognitive operations to organize, evaluate, and keep track of their financial activities (Thaler, 1999). Here we wanted to test this hypothesis by asking to a group of participants to detect a syntax mistake of verbs indicating incoming and going out activities related to economical profit (trading verbs), swapping (swapping verbs) and thinking (thinking verbs). We reported a left-right compatibility for trading verbs (i.e., participants were faster with their right hand while detecting verb referring to a monetary gain with respect to a monetary loss; and faster with their left hand while detecting a monetary loss with respect to a monetary gain). However, this pattern of result was not reported while detecting swapping verbs. Results are discussed taking into account the mental accounting theory as well as to the spatial mapping of valence hypothesis.
PET Performance Evaluation of an MR-Compatible PET Insert
Wu, Yibao; Catana, Ciprian; Farrell, Richard; Dokhale, Purushottam A.; Shah, Kanai S.; Qi, Jinyi; Cherry, Simon R.
2010-01-01
A magnetic resonance (MR) compatible positron emission tomography (PET) insert has been developed in our laboratory for simultaneous small animal PET/MR imaging. This system is based on lutetium oxyorthosilicate (LSO) scintillator arrays with position-sensitive avalanche photodiode (PSAPD) photodetectors. The PET performance of this insert has been measured. The average reconstructed image spatial resolution was 1.51 mm. The sensitivity at the center of the field of view (CFOV) was 0.35%, which is comparable to the simulation predictions of 0.40%. The average photopeak energy resolution was 25%. The scatter fraction inside the MRI scanner with a line source was 12% (with a mouse-sized phantom and standard 35 mm Bruker 1H RF coil), 7% (with RF coil only) and 5% (without phantom or RF coil) for an energy window of 350–650 keV. The front-end electronics had a dead time of 390 ns, and a trigger extension dead time of 7.32 μs that degraded counting rate performance for injected doses above ~0.75 mCi (28 MBq). The peak noise-equivalent count rate (NECR) of 1.27 kcps was achieved at 290 μCi (10.7 MBq). The system showed good imaging performance inside a 7-T animal MRI system; however improvements in data acquisition electronics and reduction of the coincidence timing window are needed to realize improved NECR performance. PMID:21072320
Left-right compatibility in the processing of trading verbs
Directory of Open Access Journals (Sweden)
Carmelo Mario Vicario
2014-01-01
Full Text Available The research investigating the nature of cognitive processes involved in the representation of economical outcomes is growing. Within this research, the mental accounting model proposes that individuals may well use cognitive operations to organize, evaluate, and keep track of their financial activities (Thaler, 1999. Here we wanted to test this hypothesis by asking to a group of participants to detect a syntax mistake of verbs indicating incoming and going out activities related to economical profit (trading verbs, swapping (swapping verbs and thinking (thinking verbs. We reported a left-right compatibility for trading verbs (i.e. participants were faster with their right hand while detecting verb referring to a monetary gain with respect to a monetary loss; and faster with their left hand while detecting a monetary loss with respect to a monetary gain. However, this pattern of result was not reported while detecting swapping verbs. Results are discussed taking into account the mental accounting theory as well as to the spatial mapping of valence hypothesis.
Discrete Analysis of Damage and Shear Banding in Argillaceous Rocks
Dinç, Özge; Scholtès, Luc
2018-05-01
A discrete approach is proposed to study damage and failure processes taking place in argillaceous rocks which present a transversely isotropic behavior. More precisely, a dedicated discrete element method is utilized to provide a micromechanical description of the mechanisms involved. The purpose of the study is twofold: (1) presenting a three-dimensional discrete element model able to simulate the anisotropic macro-mechanical behavior of the Callovo-Oxfordian claystone as a particular case of argillaceous rocks; (2) studying how progressive failure develops in such material. Material anisotropy is explicitly taken into account in the numerical model through the introduction of weakness planes distributed at the interparticle scale following predefined orientation and intensity. Simulations of compression tests under plane-strain and triaxial conditions are performed to clarify the development of damage and the appearance of shear bands through micromechanical analyses. The overall mechanical behavior and shear banding patterns predicted by the numerical model are in good agreement with respect to experimental observations. Both tensile and shear microcracks emerging from the modeling also present characteristics compatible with microstructural observations. The numerical results confirm that the global failure of argillaceous rocks is well correlated with the mechanisms taking place at the local scale. Specifically, strain localization is shown to directly result from shear microcracking developing with a preferential orientation distribution related to the orientation of the shear band. In addition, localization events presenting characteristics similar to shear bands are observed from the early stages of the loading and might thus be considered as precursors of strain localization.
Discrete-time Calogero-Moser system and Lagrangian 1-form structure
International Nuclear Information System (INIS)
Yoo-Kong, Sikarin; Lobb, Sarah; Nijhoff, Frank
2011-01-01
We study the Lagrange formalism of the (rational) Calogero-Moser (CM) system, both in discrete time and continuous time, as a first example of a Lagrangian 1-form structure in the sense of the recent paper (Lobb and Nijhoff 2009 J. Phys. A: Math. Theor.42 454013). The discrete-time model of the CM system was established some time ago arising as a pole reduction of a semi-discrete version of the Kadomtsev-Petviashvili (KP) equation, and was shown to lead to an exactly integrable correspondence (multivalued map). In this paper, we present the full KP solution based on the commutativity of the discrete-time flows in the two discrete KP variables. The compatibility of the corresponding Lax matrices is shown to lead directly to the relevant closure relation on the level of the Lagrangians. Performing successive continuum limits on both the level of the KP equation and the level of the CM system, we establish the proper Lagrangian 1-form structure for the continuum case of the CM model. We use the example of the three-particle case to elucidate the implementation of the novel least-action principle, which was presented in Lobb and Nijhoff (2009), for the simpler case of Lagrangian 1-forms. (paper)
High order backward discretization of the neutron diffusion equation
Energy Technology Data Exchange (ETDEWEB)
Ginestar, D.; Bru, R.; Marin, J. [Universidad Politecnica de Valencia (Spain). Departamento de Matematica Aplicada; Verdu, G.; Munoz-Cobo, J.L. [Universidad Politecnica de Valencia (Spain). Departamento de Ingenieria Quimica y Nuclear; Vidal, V. [Universidad Politecnica de Valencia (Spain). Departamento de Sistemas Informaticos y Computacion
1997-11-21
Fast codes capable of dealing with three-dimensional geometries, are needed to be able to simulate spatially complicated transients in a nuclear reactor. We propose a new discretization technique for the time integration of the neutron diffusion equation, based on the backward difference formulas for systems of stiff ordinary differential equations. This method needs to solve a system of linear equations for each integration step, and for this purpose, we have developed an iterative block algorithm combined with a variational acceleration technique. We tested the algorithm with two benchmark problems, and compared the results with those provided by other codes, concluding that the performance and overall agreement are very good. (author).
A subzone reconstruction algorithm for efficient staggered compatible remapping
Energy Technology Data Exchange (ETDEWEB)
Starinshak, D.P., E-mail: starinshak1@llnl.gov; Owen, J.M., E-mail: mikeowen@llnl.gov
2015-09-01
Staggered-grid Lagrangian hydrodynamics algorithms frequently make use of subzonal discretization of state variables for the purposes of improved numerical accuracy, generality to unstructured meshes, and exact conservation of mass, momentum, and energy. For Arbitrary Lagrangian–Eulerian (ALE) methods using a geometric overlay, it is difficult to remap subzonal variables in an accurate and efficient manner due to the number of subzone–subzone intersections that must be computed. This becomes prohibitive in the case of 3D, unstructured, polyhedral meshes. A new procedure is outlined in this paper to avoid direct subzonal remapping. The new algorithm reconstructs the spatial profile of a subzonal variable using remapped zonal and nodal representations of the data. The reconstruction procedure is cast as an under-constrained optimization problem. Enforcing conservation at each zone and node on the remapped mesh provides the set of equality constraints; the objective function corresponds to a quadratic variation per subzone between the values to be reconstructed and a set of target reference values. Numerical results for various pure-remapping and hydrodynamics tests are provided. Ideas for extending the algorithm to staggered-grid radiation-hydrodynamics are discussed as well as ideas for generalizing the algorithm to include inequality constraints.
The number of bound states for a discrete Schroedinger operator on ZN, N≥1, lattices
International Nuclear Information System (INIS)
Karachalios, N I
2008-01-01
We consider the discrete Schroedinger operator -Δ d +U in Z N , N≥1 in the case of a potential with negative part in an appropriate l σ -space (decays with an appropriate rate). We present a discrete analog of the method of Li and Yau (1983 Commun. Math. Phys. 88 309-18), proving an explicit upper estimate on the number of bound states N d (0)={j:μ j ≤0}, which is independent of the dimension of the lattice. This is a major difference with the continuous counterpart estimate, which is not valid when N = 1, 2. As a consequence, a dimension-independent smallness criterion for the existence of bound states is derived in contrast to the continuous case as well as to the discrete case of vanishing potential. A short comment is made on possible applications of the results to the study of the dynamics of some particular spatially discrete nonlinear systems
Fermion systems in discrete space-time
International Nuclear Information System (INIS)
Finster, Felix
2007-01-01
Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure
Fermion systems in discrete space-time
Energy Technology Data Exchange (ETDEWEB)
Finster, Felix [NWF I - Mathematik, Universitaet Regensburg, 93040 Regensburg (Germany)
2007-05-15
Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.
Fermion Systems in Discrete Space-Time
Finster, Felix
2006-01-01
Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.
Fermion systems in discrete space-time
Finster, Felix
2007-05-01
Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.
Trees and spatial topology change in CDT
DEFF Research Database (Denmark)
Ambjorn, Jan; Budd, Timothy George
2013-01-01
Generalized causal dynamical triangulations (generalized CDT) is a model of two-dimensional quantum gravity in which a limited number of spatial topology changes is allowed to occur. We solve the model at the discretized level using bijections between quadrangulations and trees. In the continuum...
Polyurethane Organosilicate Nanocomposites as Blood Compatible Coatings
Directory of Open Access Journals (Sweden)
Johnson H. Y. Chung
2012-02-01
Full Text Available Polymer clay nanocomposites (NCs show remarkable potential in the field of drug delivery due to their enhanced barrier properties. It is hypothesised that well dispersed clay particles within the polymer matrix create a tortuous pathway for diffusing therapeutic molecules, thereby resulting in more sustained release of the drug. As coatings for medical devices, these materials can simultaneously modulate drug release and improve the mechanical performance of an existing polymer system without introducing additional materials with new chemistries that can lead to regulatory concerns. In this study, polyurethane organosilicate nanocomposites (PUNCs coated onto stainless steel wires were evaluated for their feasibility as blood compatible coatings and as drug delivery systems. Heparin was selected as the model drug to examine the impact of silicate loading and modifier chain length in modulating release. Findings revealed that better dispersion was achieved from samples with lower clay loadings and longer alkyl chains. The blood compatibility of PUNCs as assessed by thrombin generation assays showed that the addition of silicate particles did not significantly decrease the thrombin generation lag time (TGT, p = 0.659 or the peak thrombin (p = 0.999 of polyurethane (PU. PUNC coatings fabricated in this research were not cytotoxic as examined by the cell growth inhibition assay and were uniformly intact, but had slightly higher growth inhibition compared to PU possibly due to the presence of organic modifiers (OM. The addition of heparin into PUNCs prolonged the TGT, indicating that heparin was still active after the coating process. Cumulative heparin release profiles showed that the majority of heparin released was from loosely attached residues on the surface of coils. The addition of heparin further prolonged the TGT as compared to coatings without added heparin, but a slight decrease in heparin activity was observed in the NCs
Directory of Open Access Journals (Sweden)
Anda VELICANU
2010-09-01
Full Text Available This paper contains a brief description of the most important operations that can be performed on spatial data such as spatial queries, create, update, insert, delete operations, conversions, operations on the map or analysis on grid cells. Each operation has a graphical example and some of them have code examples in Oracle and PostgreSQL.
DEFF Research Database (Denmark)
Thomsen, Bodil Marie Stavning
2011-01-01
The article analyses some of artist Søren Lose's photographic installations in which time, history and narration is reflected in the creation of allegoric, spatial relations.......The article analyses some of artist Søren Lose's photographic installations in which time, history and narration is reflected in the creation of allegoric, spatial relations....
2003-12-01
Computation and today’s microprocessors with the approach to operating system architecture, and the controversy between microkernels and monolithic kernels...Both Spatial Computation and microkernels break away a relatively monolithic architecture into in- dividual lightweight pieces, well specialized...for their particular functionality. Spatial Computation removes global signals and control, in the same way microkernels remove the global address
JPEG2000-Compatible Scalable Scheme for Wavelet-Based Video Coding
Directory of Open Access Journals (Sweden)
Thomas André
2007-03-01
Full Text Available We present a simple yet efficient scalable scheme for wavelet-based video coders, able to provide on-demand spatial, temporal, and SNR scalability, and fully compatible with the still-image coding standard JPEG2000. Whereas hybrid video coders must undergo significant changes in order to support scalability, our coder only requires a specific wavelet filter for temporal analysis, as well as an adapted bit allocation procedure based on models of rate-distortion curves. Our study shows that scalably encoded sequences have the same or almost the same quality than nonscalably encoded ones, without a significant increase in complexity. A full compatibility with Motion JPEG2000, which tends to be a serious candidate for the compression of high-definition video sequences, is ensured.
JPEG2000-Compatible Scalable Scheme for Wavelet-Based Video Coding
Directory of Open Access Journals (Sweden)
André Thomas
2007-01-01
Full Text Available We present a simple yet efficient scalable scheme for wavelet-based video coders, able to provide on-demand spatial, temporal, and SNR scalability, and fully compatible with the still-image coding standard JPEG2000. Whereas hybrid video coders must undergo significant changes in order to support scalability, our coder only requires a specific wavelet filter for temporal analysis, as well as an adapted bit allocation procedure based on models of rate-distortion curves. Our study shows that scalably encoded sequences have the same or almost the same quality than nonscalably encoded ones, without a significant increase in complexity. A full compatibility with Motion JPEG2000, which tends to be a serious candidate for the compression of high-definition video sequences, is ensured.
Inevitable randomness in discrete mathematics
Beck, Jozsef
2009-01-01
Mathematics has been called the science of order. The subject is remarkably good for generalizing specific cases to create abstract theories. However, mathematics has little to say when faced with highly complex systems, where disorder reigns. This disorder can be found in pure mathematical arenas, such as the distribution of primes, the 3n+1 conjecture, and class field theory. The purpose of this book is to provide examples--and rigorous proofs--of the complexity law: (1) discrete systems are either simple or they exhibit advanced pseudorandomness; (2) a priori probabilities often exist even when there is no intrinsic symmetry. Part of the difficulty in achieving this purpose is in trying to clarify these vague statements. The examples turn out to be fascinating instances of deep or mysterious results in number theory and combinatorics. This book considers randomness and complexity. The traditional approach to complexity--computational complexity theory--is to study very general complexity classes, such as P...
Quantum evolution by discrete measurements
International Nuclear Information System (INIS)
Roa, L; Guevara, M L Ladron de; Delgado, A; Olivares-RenterIa, G; Klimov, A B
2007-01-01
In this article we review two ways of driving a quantum system to a known pure state via a sequence discrete of von Neumann measurements. The first of them assumes that the initial state of the system is unknown, and the evolution is attained only with the help of two non-commuting observables. For this method, the overall success probability is maximized when the eigentstates of the involved observables constitute mutually unbiased bases. The second method assumes the initial state is known and it uses N observables which are consecutively measured to make the state of the system approach the target state. The probability of success of this procedure converges to 1 as the number of observables increases
Quantum evolution by discrete measurements
Energy Technology Data Exchange (ETDEWEB)
Roa, L [Center for Quantum Optics and Quantum Information, Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile); Guevara, M L Ladron de [Departamento de Fisica, Universidad Catolica del Norte, Casilla 1280, Antofagasta (Chile); Delgado, A [Center for Quantum Optics and Quantum Information, Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile); Olivares-RenterIa, G [Center for Quantum Optics and Quantum Information, Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile); Klimov, A B [Departamento de Fisica, Universidad de Guadalajara, Revolucion 1500, 44420 Guadalajara, Jalisco (Mexico)
2007-10-15
In this article we review two ways of driving a quantum system to a known pure state via a sequence discrete of von Neumann measurements. The first of them assumes that the initial state of the system is unknown, and the evolution is attained only with the help of two non-commuting observables. For this method, the overall success probability is maximized when the eigentstates of the involved observables constitute mutually unbiased bases. The second method assumes the initial state is known and it uses N observables which are consecutively measured to make the state of the system approach the target state. The probability of success of this procedure converges to 1 as the number of observables increases.
Discrete stochastic processes and applications
Collet, Jean-François
2018-01-01
This unique text for beginning graduate students gives a self-contained introduction to the mathematical properties of stochastics and presents their applications to Markov processes, coding theory, population dynamics, and search engine design. The book is ideal for a newly designed course in an introduction to probability and information theory. Prerequisites include working knowledge of linear algebra, calculus, and probability theory. The first part of the text focuses on the rigorous theory of Markov processes on countable spaces (Markov chains) and provides the basis to developing solid probabilistic intuition without the need for a course in measure theory. The approach taken is gradual beginning with the case of discrete time and moving on to that of continuous time. The second part of this text is more applied; its core introduces various uses of convexity in probability and presents a nice treatment of entropy.
Discrete calculus methods for counting
Mariconda, Carlo
2016-01-01
This book provides an introduction to combinatorics, finite calculus, formal series, recurrences, and approximations of sums. Readers will find not only coverage of the basic elements of the subjects but also deep insights into a range of less common topics rarely considered within a single book, such as counting with occupancy constraints, a clear distinction between algebraic and analytical properties of formal power series, an introduction to discrete dynamical systems with a thorough description of Sarkovskii’s theorem, symbolic calculus, and a complete description of the Euler-Maclaurin formulas and their applications. Although several books touch on one or more of these aspects, precious few cover all of them. The authors, both pure mathematicians, have attempted to develop methods that will allow the student to formulate a given problem in a precise mathematical framework. The aim is to equip readers with a sound strategy for classifying and solving problems by pursuing a mathematically rigorous yet ...
Modeling discrete competitive facility location
Karakitsiou, Athanasia
2015-01-01
This book presents an up-to-date review of modeling and optimization approaches for location problems along with a new bi-level programming methodology which captures the effect of competition of both producers and customers on facility location decisions. While many optimization approaches simplify location problems by assuming decision making in isolation, this monograph focuses on models which take into account the competitive environment in which such decisions are made. New insights in modeling, algorithmic and theoretical possibilities are opened by this approach and new applications are possible. Competition on equal term plus competition between market leader and followers are considered in this study, consequently bi-level optimization methodology is emphasized and further developed. This book provides insights regarding modeling complexity and algorithmic approaches to discrete competitive location problems. In traditional location modeling, assignment of customer demands to supply sources are made ...
Discrete modelling of drapery systems
Thoeni, Klaus; Giacomini, Anna
2016-04-01
Drapery systems are an efficient and cost-effective measure in preventing and controlling rockfall hazards on rock slopes. The simplest form consists of a row of ground anchors along the top of the slope connected to a horizontal support cable from which a wire mesh is suspended down the face of the slope. Such systems are generally referred to as simple or unsecured draperies (Badger and Duffy 2012). Variations such as secured draperies, where a pattern of ground anchors is incorporated within the field of the mesh, and hybrid systems, where the upper part of an unsecured drapery is elevated to intercept rockfalls originating upslope of the installation, are becoming more and more popular. This work presents a discrete element framework for simulation of unsecured drapery systems and its variations. The numerical model is based on the classical discrete element method (DEM) and implemented into the open-source framework YADE (Šmilauer et al., 2010). The model takes all relevant interactions between block, drapery and slope into account (Thoeni et al., 2014) and was calibrated and validated based on full-scale experiments (Giacomini et al., 2012).The block is modelled as a rigid clump made of spherical particles which allows any shape to be approximated. The drapery is represented by a set of spherical particle with remote interactions. The behaviour of the remote interactions is governed by the constitutive behaviour of the wire and generally corresponds to a piecewise linear stress-strain relation (Thoeni et al., 2013). The same concept is used to model wire ropes. The rock slope is represented by rigid triangular elements where material properties (e.g., normal coefficient of restitution, friction angle) are assigned to each triangle. The capabilities of the developed model to simulate drapery systems and estimate the residual hazard involved with such systems is shown. References Badger, T.C., Duffy, J.D. (2012) Drapery systems. In: Turner, A.K., Schuster R
Compatibility Grab Sampling and Analysis Plan for Fiscal Year 2001
International Nuclear Information System (INIS)
LAURICELLA, T.L.
2000-01-01
This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for grab samples obtained to address waste compatibility
[Magnetic resonance compatibility research for coronary mental stents].
Wang, Ying; Liu, Li; Wang, Shuo; Shang, Ruyao; Wang, Chunren
2015-01-01
The objective of this article is to research magnetic resonance compatibility for coronary mental stents, and to evaluate the magnetic resonance compatibility based on laboratory testing results. Coronary stents magnetic resonance compatibility test includes magnetically induced displacement force test, magnetically induced torque test, radio frequency induced heating and evaluation of MR image. By magnetic displacement force and torque values, temperature, and image distortion values to determine metal coronary stent demagnetization effect. The methods can be applied to test magnetic resonance compatibility for coronary mental stents and evaluate its demagnetization effect.
In search of fundamental discreteness in (2 + 1)-dimensional quantum gravity
Budd, T.G.; Loll, R.
2009-01-01
Inspired by previous work in (2 + 1)-dimensional quantum gravity, which found evidence for a discretization of time in the quantum theory, we reexamine the issue for the case of pure Lorentzian gravity with vanishing cosmological constant and spatially compact universes of genus g ≥ 2. Taking the
Discrete excitation of mode pulses using a diode-pumped solid-state digital laser
CSIR Research Space (South Africa)
Ngcobo, Sandile
2016-02-01
Full Text Available In this paper, we experimentally demonstrate novel method of generating discrete excitation of on-demand Lagaurre-Gaussian (LG) mode pulses, in a diode pumped solid-state digital laser. The digital laser comprises of an intra-cavity spatial light...
Switching between bistable states in a discrete nonlinear model with long-range dispersion
DEFF Research Database (Denmark)
Johansson, Magnus; Gaididei, Yuri B.; Christiansen, Peter Leth
1998-01-01
In the framework of a discrete nonlinear Schrodinger equation with long-range dispersion, we propose a general mechanism for obtaining a controlled switching between bistable localized excitations. We show that the application of a spatially symmetric kick leads to the excitation of an internal...
Molecular cooperativity and compatibility via full atomistic simulation
Kwan Yang, Kenny
Civil engineering has customarily focused on problems from a large-scale perspective, encompassing structures such as bridges, dams, and infrastructure. However, present day challenges in conjunction with advances in nanotechnology have forced a re-focusing of expertise. The use of atomistic and molecular approaches to study material systems opens the door to significantly improve material properties. The understanding that material systems themselves are structures, where their assemblies can dictate design capacities and failure modes makes this problem well suited for those who possess expertise in structural engineering. At the same time, a focus has been given to the performance metrics of materials at the nanoscale, including strength, toughness, and transport properties (e.g., electrical, thermal). Little effort has been made in the systematic characterization of system compatibility -- e.g., how to make disparate material building blocks behave in unison. This research attempts to develop bottom-up molecular scale understanding of material behavior, with the global objective being the application of this understanding into material design/characterization at an ultimate functional scale. In particular, it addresses the subject of cooperativity at the nano-scale. This research aims to define the conditions which dictate when discrete molecules may behave as a single, functional unit, thereby facilitating homogenization and up-scaling approaches, setting bounds for assembly, and providing a transferable assessment tool across molecular systems. Following a macro-scale pattern where the compatibility of deformation plays a vital role in the structural design, novel geometrical cooperativity metrics based on the gyration tensor are derived with the intention to define nano-cooperativity in a generalized way. The metrics objectively describe the general size, shape and orientation of the structure. To validate the derived measures, a pair of ideal macromolecules
SILICON COMPATIBLE ACOUSTIC WAVE RESONATORS: DESIGN, FABRICATION AND PERFORMANCE
Directory of Open Access Journals (Sweden)
Aliza Aini Md Ralib
2014-12-01
Full Text Available ABSTRACT: Continuous advancement in wireless technology and silicon microfabrication has fueled exciting growth in wireless products. The bulky size of discrete vibrating mechanical devices such as quartz crystals and surface acoustic wave resonators impedes the ultimate miniaturization of single-chip transceivers. Fabrication of acoustic wave resonators on silicon allows complete integration of a resonator with its accompanying circuitry. Integration leads to enhanced performance, better functionality with reduced cost at large volume production. This paper compiles the state-of-the-art technology of silicon compatible acoustic resonators, which can be integrated with interface circuitry. Typical acoustic wave resonators are surface acoustic wave (SAW and bulk acoustic wave (BAW resonators. Performance of the resonator is measured in terms of quality factor, resonance frequency and insertion loss. Selection of appropriate piezoelectric material is significant to ensure sufficient electromechanical coupling coefficient is produced to reduce the insertion loss. The insulating passive SiO2 layer acts as a low loss material and aims to increase the quality factor and temperature stability of the design. The integration technique also is influenced by the fabrication process and packaging. Packageless structure using AlN as the additional isolation layer is proposed to protect the SAW device from the environment for high reliability. Advancement in miniaturization technology of silicon compatible acoustic wave resonators to realize a single chip transceiver system is still needed. ABSTRAK: Kemajuan yang berterusan dalam teknologi tanpa wayar dan silikon telah menguatkan pertumbuhan yang menarik dalam produk tanpa wayar. Saiz yang besar bagi peralatan mekanikal bergetar seperti kristal kuarza menghalang pengecilan untuk merealisasikan peranti cip. Silikon serasi gelombang akustik resonator mempunyai potensi yang besar untuk menggantikan unsur
Electromagnetic compatibility in railways. Analysis and management
Energy Technology Data Exchange (ETDEWEB)
Ogunsola, Ade [Parsons Group International, Abu Dhabi (United Arab Emirates); Mariscotti, Andrea [Genoa Univ. (Italy)
2013-07-01
Recent research on electromagnetic compatibility (EMC) applied to railway systems. Focuses on the principles and application of EMC concepts to railway signalling, communications, power/traction and rolling stocks. Written by leading experts in the field. A railway is a complex distributed engineering system: the construction of a new railway or the modernisation of a existing one requires a deep understanding of the constitutive components and their interaction, inside the system itself and towards the outside world. The former covers the various subsystems (featuring a complex mix of high power sources, sensitive safety critical systems, intentional transmitters, etc.) and their interaction, including the specific functions and their relevance to safety. The latter represents all the additional possible external victims and sources of electromagnetic interaction. EMC thus starts from a comprehension of the emissions and immunity characteristics and the interactions between sources and victims, with a strong relationship to electromagnetics and to system modeling. On the other hand, the said functions are achieved and preserved and their relevance for safety is adequately handled, if the related requirements are well posed and managed throughout the process from the beginning. The link is represented by standards and their correct application, as a support to analysis, testing and demonstration.
Blood Compatibility of Sulfonated Cladophora Nanocellulose Beads
Directory of Open Access Journals (Sweden)
Igor Rocha
2018-03-01
Full Text Available Sulfonated cellulose beads were prepared by oxidation of Cladophora nanocellulose to 2,3-dialdehyde cellulose followed by sulfonation using bisulfite. The physicochemical properties of the sulfonated beads, i.e., high surface area, high degree of oxidation, spherical shape, and the possibility of tailoring the porosity, make them interesting candidates for the development of immunosorbent platforms, including their application in extracorporeal blood treatments. A desired property for materials used in such applications is blood compatibility; therefore in the present work, we investigate the hemocompatibility of the sulfonated cellulose beads using an in vitro whole blood model. Complement system activation (C3a and sC5b-9 levels, coagulation activation (thrombin-antithrombin (TAT levels and hemolysis were evaluated after whole blood contact with the sulfonated beads and the results were compared with the values obtained with the unmodified Cladophora nanocellulose. Results showed that neither of the cellulosic materials presented hemolytic activity. A marked decrease in TAT levels was observed after blood contact with the sulfonated beads, compared with Cladophora nanocellulose. However, the chemical modification did not promote an improvement in Cladophora nanocellulose hemocompatibility in terms of complement system activation. Even though the sulfonated beads presented a significant reduction in pro-coagulant activity compared with the unmodified material, further modification strategies need to be investigated to control the complement activation by the cellulosic materials.
Compatibility of molten salt and structural materials
International Nuclear Information System (INIS)
Kawakami, Masahiro
1994-01-01
As the important factors for considering the compatibility of fuel salt and coolant salt with structural materials in molten salt reactors, there are the moisture remaining in molten salt and the fluorine potential in molten salt. In this study, as for the metals which are the main components of corrosion resistant alloys, the corrosion by the moisture remaining in molten salt and the dependence of the corrosion on fluorine potential were examined. As the molten salts, an eutectic molten salt LiF-BeF 2 was mainly used, and LiF-KF was used in combination. As the metallic materials, Cr, Ni and Cu which are the main components of corrosion resistant and heat resistant alloys, Hastelloy and Monel, were used. In the experiment, the metal pieces were immersed in the molten salt, and by sampling the molten salt, the change with time lapse of the concentration of the dissolved metals was examined. Besides, the electrochemical measurement was carried out for Cr, of which the corrosion was remarkable, and the change with time lapse of the dissolved ions was examined. The experimental setup, the experimental method, and the results of the immersion test and the electrochemical test are reported. The experiment on the corrosion of metals depending on fluorine potential is also reported. (K.I.)
Studies of waste-canister compatibility
International Nuclear Information System (INIS)
McCoy, H.E.
1983-01-01
Compatibility studies were conducted between 7 waste forms and 15 potential canister structural materials. The waste forms were Al-Si and Pb-Sn matrix alloys, FUETAP, glass, Synroc D, and waste particles coated with carbon or carbon plus silicon carbide. The canister materials included carbon steel (bare and with chromium or nickel coatings), copper, Monel, Cu-35% Ni, titanium (grades 2 and 12), several Inconels, aluminum alloy 5052, and two stainless steels. Tests of either 6888 or 8821 h were conducted at 100 and 300 0 C, which bracket the low and high limits expected during storage. Glass and FUETAP evolved sulfur, which reacted preferentially with copper, nickel, and alloys of these metals. The Pb-Sn matrix alloy stuck to all samples and the carbon-coated particles to most samples at 300 0 C, but the extent of chemical reaction was not determined. Testing for 0.5 h at 800 0 C was included because it is representative of a transportation accident and is required of casks containing nuclear materials. During these tests (1) glass and FUETAP evolved sulfur, (2) FUETAP evolved large amounts of gas, (3) Synroc stuck to titanium alloys, (4) glass was molten, and (5) both matrix alloys were molten with considerable chemical interactions with many of the canister samples. If this test condition were imposed on waste canisters, it would be design limiting in many waste storage concepts
Maduramicin and tiamulin compatibility in broiler chickens.
Badiola, J J; Luco, D F; Perez, V; Vargas, M A; Lujan, L; Marin, J F
1994-03-01
A total of 480 1-day-old Hybro broiler chickens were divided into five treatment groups (A: unmedicated control, B: maduramicin, C: maduramicin + tiamulin, D: monensin + tiamulin and E: tiamulin) to study the effect on performance parameters, organ weights, blood haematology and biochemistry, and histopathology of liver and selected striated muscles, when maduramicin at 5 parts/10(6) and monensin at 100 parts/10(6) were included in feed in starter and grower periods, and tiamulin 9 in water at 270 parts/10(6) the recommended therapeutic level, from day 28 to 31. Performance parameters were significantly and negatively affected by monensin but not by maduramicin after treatment with tiamulin. Histopathological examination of striated muscles showed no incompatibility of maduramicin + tiamulin, while lesions were found in the monensin + tiamulin treated group. It is concluded that the use of tiamulin to a therapeutic level for 3 consecutive days is compatible with the simultaneous presence of maduramicin in the feed of broilers.
Electromagnetic Compatibility in Nuclear Power Plants
International Nuclear Information System (INIS)
Ewing, P.D.; Kercel, S.W.; Korsah, K.; Wood, R.T.
1999-01-01
Electromagnetic compatibility (EMC) has long been a key element of qualification for mission critical instrumentation and control (I ampersand C) systems used by the U.S. military. The potential for disruption of safety-related I ampersand C systems by electromagnetic interference (EMI), radio-frequency interference (RFI), or power surges is also an issue of concern for the nuclear industry. Experimental investigations of the potential vulnerability of advanced safety systems to EMI/RFI, coupled with studies of reported events at nuclear power plants (NPPs) that are attributed to EMI/RFI, confirm the safety significance of EMC for both analog and digital technology. As a result, Oak Ridge National Laboratory has been engaged in the development of the technical basis for guidance that addresses EMC for safety-related I ampersand C systems in NPPs. This research has involved the identification of engineering practices to minimize the potential impact of EMI/RFI and power surges and an evaluation of the ambient electromagnetic environment at NPPs to tailor those practices for use by the nuclear industry. Recommendations for EMC guidance have been derived from these research findings and are summarized in this paper
Blood Compatibility of Sulfonated Cladophora Nanocellulose Beads.
Rocha, Igor; Lindh, Jonas; Hong, Jaan; Strømme, Maria; Mihranyan, Albert; Ferraz, Natalia
2018-03-07
Sulfonated cellulose beads were prepared by oxidation of Cladophora nanocellulose to 2,3-dialdehyde cellulose followed by sulfonation using bisulfite. The physicochemical properties of the sulfonated beads, i.e., high surface area, high degree of oxidation, spherical shape, and the possibility of tailoring the porosity, make them interesting candidates for the development of immunosorbent platforms, including their application in extracorporeal blood treatments. A desired property for materials used in such applications is blood compatibility; therefore in the present work, we investigate the hemocompatibility of the sulfonated cellulose beads using an in vitro whole blood model. Complement system activation (C3a and sC5b-9 levels), coagulation activation (thrombin-antithrombin (TAT) levels) and hemolysis were evaluated after whole blood contact with the sulfonated beads and the results were compared with the values obtained with the unmodified Cladophora nanocellulose. Results showed that neither of the cellulosic materials presented hemolytic activity. A marked decrease in TAT levels was observed after blood contact with the sulfonated beads, compared with Cladophora nanocellulose. However, the chemical modification did not promote an improvement in Cladophora nanocellulose hemocompatibility in terms of complement system activation. Even though the sulfonated beads presented a significant reduction in pro-coagulant activity compared with the unmodified material, further modification strategies need to be investigated to control the complement activation by the cellulosic materials.
Cognitive compatibility of motorcyclists and car drivers.
Walker, Guy H; Stanton, Neville A; Salmon, Paul M
2011-05-01
Incompatibility between different types of road user is a problem that previous research has shown to be resistant to a range of interventions. Cars and motorcycles are particularly prone to this. Insight is provided in this paper by a naturalistic method using concurrent verbal protocols and an automatic, highly reliable semantic network creation tool. The method shows how the same road situation is interpreted differently by car drivers and motorcyclists in ways congruent with wider accident rates. Analysis of the structure and content of the semantic networks reveals a greater degree of cognitive compatibility on faster roads such as motorways, but evidence of more critical incompatibilities on country roads and junctions. Both of these road types are implicated in helping to activate cognitive schema which in turn generate stereotypical behaviors unfavourable to the anticipation of motorcyclists by car drivers. The results are discussed in terms of practical measures such as road signs which warn of events behind as well as in front, cross-mode training and the concept of route driveability. Copyright © 2010 Elsevier Ltd. All rights reserved.
Compatibility of molten salt and structural materials
Energy Technology Data Exchange (ETDEWEB)
Kawakami, Masahiro [Toyohashi Univ. of Technology, Aichi (Japan)
1994-12-01
As the important factors for considering the compatibility of fuel salt and coolant salt with structural materials in molten salt reactors, there are the moisture remaining in molten salt and the fluorine potential in molten salt. In this study, as for the metals which are the main components of corrosion resistant alloys, the corrosion by the moisture remaining in molten salt and the dependence of the corrosion on fluorine potential were examined. As the molten salts, an eutectic molten salt LiF-BeF{sub 2} was mainly used, and LiF-KF was used in combination. As the metallic materials, Cr, Ni and Cu which are the main components of corrosion resistant and heat resistant alloys, Hastelloy and Monel, were used. In the experiment, the metal pieces were immersed in the molten salt, and by sampling the molten salt, the change with time lapse of the concentration of the dissolved metals was examined. Besides, the electrochemical measurement was carried out for Cr, of which the corrosion was remarkable, and the change with time lapse of the dissolved ions was examined. The experimental setup, the experimental method, and the results of the immersion test and the electrochemical test are reported. The experiment on the corrosion of metals depending on fluorine potential is also reported. (K.I.).
Compatibility study between U-UO{sub 2} cermet fuel and T91 cladding
Energy Technology Data Exchange (ETDEWEB)
Mishra, Sudhir, E-mail: sudhir@barc.gov.in [Radiometallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kaity, Santu; Khan, K.B. [Radiometallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Sengupta, Pranesh; Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)
2016-12-01
Cermet is a new fuel concept for the fast reactor system and is ideally designed to combine beneficial properties of both ceramic and metal. In order to understand fuel clad chemical compatibility, diffusion couples were prepared with U-UO{sub 2} cermet fuel and T91 cladding material. These diffusion couples were annealed at 923–1073 K for 1000 h and 1223 K for 50 h, subsequently their microstructures were examined using scanning electron microscope (SEM), X-ray energy dispersive spectroscope (EDS) and electron probe microanalyser (EPMA). It was observed that the interaction between the fuel and constituents of T91 clad was limited to a very small region up to the temperature 993 K and discrete U{sub 6}(Fe,Cr) and U(Fe,Cr){sub 2} intermetallic phases developed. Eutectic microstructure was observed in the reaction zone at 1223 K. The activation energy for reaction at the fuel clad interface was determined.
A Discrete Spectral Problem and Related Hierarchy of Discrete Hamiltonian Lattice Equations
International Nuclear Information System (INIS)
Xu Xixiang; Cao Weili
2007-01-01
Staring from a discrete matrix spectral problem, a hierarchy of lattice soliton equations is presented though discrete zero curvature representation. The resulting lattice soliton equations possess non-local Lax pairs. The Hamiltonian structures are established for the resulting hierarchy by the discrete trace identity. Liouville integrability of resulting hierarchy is demonstrated.
Geometry and Hamiltonian mechanics on discrete spaces
International Nuclear Information System (INIS)
Talasila, V; Clemente-Gallardo, J; Schaft, A J van der
2004-01-01
Numerical simulation is often crucial for analysing the behaviour of many complex systems which do not admit analytic solutions. To this end, one either converts a 'smooth' model into a discrete (in space and time) model, or models systems directly at a discrete level. The goal of this paper is to provide a discrete analogue of differential geometry, and to define on these discrete models a formal discrete Hamiltonian structure-in doing so we try to bring together various fundamental concepts from numerical analysis, differential geometry, algebraic geometry, simplicial homology and classical Hamiltonian mechanics. For example, the concept of a twisted derivation is borrowed from algebraic geometry for developing a discrete calculus. The theory is applied to a nonlinear pendulum and we compare the dynamics obtained through a discrete modelling approach with the dynamics obtained via the usual discretization procedures. Also an example of an energy-conserving algorithm on a simple harmonic oscillator is presented, and its effect on the Poisson structure is discussed
Cuspidal discrete series for semisimple symmetric spaces
DEFF Research Database (Denmark)
Andersen, Nils Byrial; Flensted-Jensen, Mogens; Schlichtkrull, Henrik
2012-01-01
We propose a notion of cusp forms on semisimple symmetric spaces. We then study the real hyperbolic spaces in detail, and show that there exists both cuspidal and non-cuspidal discrete series. In particular, we show that all the spherical discrete series are non-cuspidal. (C) 2012 Elsevier Inc. All...
Discrete Riccati equation solutions: Distributed algorithms
Directory of Open Access Journals (Sweden)
D. G. Lainiotis
1996-01-01
Full Text Available In this paper new distributed algorithms for the solution of the discrete Riccati equation are introduced. The algorithms are used to provide robust and computational efficient solutions to the discrete Riccati equation. The proposed distributed algorithms are theoretically interesting and computationally attractive.
Painleve test and discrete Boltzmann equations
International Nuclear Information System (INIS)
Euler, N.; Steeb, W.H.
1989-01-01
The Painleve test for various discrete Boltzmann equations is performed. The connection with integrability is discussed. Furthermore the Lie symmetry vector fields are derived and group-theoretical reduction of the discrete Boltzmann equations to ordinary differentiable equations is performed. Lie Backlund transformations are gained by performing the Painleve analysis for the ordinary differential equations. 16 refs
Variance Swap Replication: Discrete or Continuous?
Directory of Open Access Journals (Sweden)
Fabien Le Floc’h
2018-02-01
Full Text Available The popular replication formula to price variance swaps assumes continuity of traded option strikes. In practice, however, there is only a discrete set of option strikes traded on the market. We present here different discrete replication strategies and explain why the continuous replication price is more relevant.
Discretization vs. Rounding Error in Euler's Method
Borges, Carlos F.
2011-01-01
Euler's method for solving initial value problems is an excellent vehicle for observing the relationship between discretization error and rounding error in numerical computation. Reductions in stepsize, in order to decrease discretization error, necessarily increase the number of steps and so introduce additional rounding error. The problem is…
Discrete/PWM Ballast-Resistor Controller
King, Roger J.
1994-01-01
Circuit offers low switching loss and automatic compensation for failure of ballast resistor. Discrete/PWM ballast-resistor controller improved shunt voltage-regulator circuit designed to supply power from high-resistance source to low-impedance bus. Provides both coarse discrete voltage levels (by switching of ballast resistors) and continuous fine control of voltage via pulse-width modulation.
Current Density and Continuity in Discretized Models
Boykin, Timothy B.; Luisier, Mathieu; Klimeck, Gerhard
2010-01-01
Discrete approaches have long been used in numerical modelling of physical systems in both research and teaching. Discrete versions of the Schrodinger equation employing either one or several basis functions per mesh point are often used by senior undergraduates and beginning graduate students in computational physics projects. In studying…
Geometry and Hamiltonian mechanics on discrete spaces
Talasila, V.; Clemente-Gallardo, J.; Schaft, A.J. van der
2004-01-01
Numerical simulation is often crucial for analysing the behaviour of many complex systems which do not admit analytic solutions. To this end, one either converts a ‘smooth’ model into a discrete (in space and time) model, or models systems directly at a discrete level. The goal of this paper is to
Geometry and Hamiltonian mechanics on discrete spaces
Talasila, V.; Clemente Gallardo, J.J.; Clemente-Gallardo, J.; van der Schaft, Arjan
2004-01-01
Numerical simulation is often crucial for analysing the behaviour of many complex systems which do not admit analytic solutions. To this end, one either converts a 'smooth' model into a discrete (in space and time) model, or models systems directly at a discrete level. The goal of this paper is to
Discrete mathematics in the high school curriculum
Anderson, I.; Asch, van A.G.; van Lint, J.H.
2004-01-01
In this paper we present some topics from the field of discrete mathematics which might be suitable for the high school curriculum. These topics yield both easy to understand challenging problems and important applications of discrete mathematics. We choose elements from number theory and various
Discrete Fourier analysis of multigrid algorithms
van der Vegt, Jacobus J.W.; Rhebergen, Sander
2011-01-01
The main topic of this report is a detailed discussion of the discrete Fourier multilevel analysis of multigrid algorithms. First, a brief overview of multigrid methods is given for discretizations of both linear and nonlinear partial differential equations. Special attention is given to the
Basin Assessment Spatial Planning Platform
Energy Technology Data Exchange (ETDEWEB)
2017-07-26
The tool is intended to facilitate hydropower development and water resource planning by improving synthesis and interpretation of disparate spatial datasets that are considered in development actions (e.g., hydrological characteristics, environmentally and culturally sensitive areas, existing or proposed water power resources, climate-informed forecasts). The tool enables this capability by providing a unique framework for assimilating, relating, summarizing, and visualizing disparate spatial data through the use of spatial aggregation techniques, relational geodatabase platforms, and an interactive web-based Geographic Information Systems (GIS). Data are aggregated and related based on shared intersections with a common spatial unit; in this case, industry-standard hydrologic drainage areas for the U.S. (National Hydrography Dataset) are used as the spatial unit to associate planning data. This process is performed using all available scalar delineations of drainage areas (i.e., region, sub-region, basin, sub-basin, watershed, sub-watershed, catchment) to create spatially hierarchical relationships among planning data and drainages. These entity-relationships are stored in a relational geodatabase that provides back-end structure to the web GIS and its widgets. The full technology stack was built using all open-source software in modern programming languages. Interactive widgets that function within the viewport are also compatible with all modern browsers.
Lavlesh Kumar Sharma; Ravindra Mohan Saxena
2014-01-01
In this paper, the study explores the benefits and advantages of Lean Practices or Lean Thinking in Job shop production/ Special job production/ Discrete production/ Batch shop production industries. The Lean Practices have been applied more compatible in Job shop production than in the continuous/ mass production because of several barriers and hurdles in the industrial context that influence the whole processes again and again, this happens due to the lack of knowledge about...
Blood compatibility of magnesium and its alloys.
Feyerabend, Frank; Wendel, Hans-Peter; Mihailova, Boriana; Heidrich, Stefanie; Agha, Nezha Ahmad; Bismayer, Ulrich; Willumeit-Römer, Regine
2015-10-01
Blood compatibility analysis in the field of biomaterials is a highly controversial topic. Especially for degradable materials like magnesium and its alloys no established test methods are available. The purpose of this study was to apply advanced test methodology for the analysis of degrading materials to get a mechanistic insight into the corrosion process in contact with human blood and plasma. Pure magnesium and two magnesium alloys were analysed in a modified Chandler-Loop setup. Standard clinical parameters were determined, and a thorough analysis of the resulting implant surface chemistry was performed. The contact of the materials to blood evoked an accelerated inflammatory and cell-induced osteoconductive reaction. Corrosion products formed indicate a more realistic, in vivo like situation. The active regulation of corrosion mechanisms of magnesium alloys by different cell types should be more in the focus of research to bridge the gap between in vitro and in vivo observations and to understand the mechanism of action. This in turn could lead to a better acceptance of these materials for implant applications. The presented study deals with the first mechanistic insights during whole human blood contact and its influence on a degrading magnesium-based biomaterial. The combination of clinical parameters and corrosion layer analysis has been performed for the first time. It could be of interest due to the intended use of magnesium-based stents and for orthopaedic applications for clinical applications. An interest for the readers of Acta Biomaterialia may be given, as one of the first clinically approved magnesium-based devices is a wound-closure device, which is in direct contact with blood. Moreover, for orthopaedic applications also blood contact is of high interest. Although this is not the focus of the manuscript, it could help to rise awareness for potential future applications. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All
HLW Flexible jumper materials compatibility evaluation
Energy Technology Data Exchange (ETDEWEB)
Skidmore, T. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
2017-11-13
H-Tank Farm Engineering tasked SRNL/Materials Science & Technology (MS&T) to evaluate the compatibility of Goodyear Viper® chemical transfer hose with HLW solutions. The hose is proposed as a flexible Safety Class jumper for up to six months service. SRNL/MS&T performed various tests to evaluate the effects of radiation, high pH chemistry and elevated temperature on the hose, particularly the inner liner. Test results suggest an upper dose limit of 50 Mrad for the hose. Room temperature burst pressure values at 50 Mrad are estimated at 600- 800 psi, providing a safety factor of 4.0-5.3X over the anticipated operating pressure of 150 psi and a safety factor of 3.0-4.0X over the working pressure of the hose (200 psi), independent of temperature effects. Radiation effects are minimal at doses less than 10 Mrad. Doses greater than 50 Mrad may be allowed, depending on operating conditions and required safety factors, but cannot be recommended at this time. At 250 Mrad, burst pressure values are reduced to the hose working pressure. At 300 Mrad, burst pressures are below 150 psi. At a bounding continuous dose rate of 57,870 rad/hr, the 50 Mrad dose limit is reached within 1.2 months. Actual dose rates may be lower, particularly during non-transfer periods. Refined dose calculations are therefore recommended to justify longer service. This report details the tests performed and interpretation of the results. Recommendations for shelf-life/storage, component quality verification, and post-service examination are provided.
47 CFR 76.1621 - Equipment compatibility offer.
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Equipment compatibility offer. 76.1621 Section... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Notices § 76.1621 Equipment compatibility offer. Cable system... offer to supply each subscriber with special equipment that will enable the simultaneous reception of...
47 CFR 76.630 - Compatibility with consumer electronics equipment.
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Compatibility with consumer electronics equipment. 76.630 Section 76.630 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST... Compatibility with consumer electronics equipment. (a) Cable system operators shall not scramble or otherwise...
30 CFR 57.6400 - Compatibility of electric detonators.
2010-07-01
... Electric Blasting-Surface and Underground § 57.6400 Compatibility of electric detonators. All electric detonators to be fired in a round shall be from the same manufacturer and shall have similar electrical... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compatibility of electric detonators. 57.6400...
30 CFR 56.6400 - Compatibility of electric detonators.
2010-07-01
... Electric Blasting § 56.6400 Compatibility of electric detonators. All electric detonators to be fired in a round shall be from the same manufacturer and shall have similar electrical firing characteristics. ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compatibility of electric detonators. 56.6400...
The compatibility between extension aims of staff and their ...
African Journals Online (AJOL)
This pilot investigation was done to investigate the compatibility between extension aims of extension staff and those of their employer. It shows that only 50 percent of respondents have an acceptable understanding of the official aims (vision), and that none of the components of the official vision has sufficient compatibility ...
Handbook on modelling for discrete optimization
Pitsoulis, Leonidas; Williams, H
2006-01-01
The primary objective underlying the Handbook on Modelling for Discrete Optimization is to demonstrate and detail the pervasive nature of Discrete Optimization. While its applications cut across an incredibly wide range of activities, many of the applications are only known to specialists. It is the aim of this handbook to correct this. It has long been recognized that "modelling" is a critically important mathematical activity in designing algorithms for solving these discrete optimization problems. Nevertheless solving the resultant models is also often far from straightforward. In recent years it has become possible to solve many large-scale discrete optimization problems. However, some problems remain a challenge, even though advances in mathematical methods, hardware, and software technology have pushed the frontiers forward. This handbook couples the difficult, critical-thinking aspects of mathematical modeling with the hot area of discrete optimization. It will be done in an academic handbook treatment...
Laplacians on discrete and quantum geometries
International Nuclear Information System (INIS)
Calcagni, Gianluca; Oriti, Daniele; Thürigen, Johannes
2013-01-01
We extend discrete calculus for arbitrary (p-form) fields on embedded lattices to abstract discrete geometries based on combinatorial complexes. We then provide a general definition of discrete Laplacian using both the primal cellular complex and its combinatorial dual. The precise implementation of geometric volume factors is not unique and, comparing the definition with a circumcentric and a barycentric dual, we argue that the latter is, in general, more appropriate because it induces a Laplacian with more desirable properties. We give the expression of the discrete Laplacian in several different sets of geometric variables, suitable for computations in different quantum gravity formalisms. Furthermore, we investigate the possibility of transforming from position to momentum space for scalar fields, thus setting the stage for the calculation of heat kernel and spectral dimension in discrete quantum geometries. (paper)
Discrete breathers in graphane: Effect of temperature
Energy Technology Data Exchange (ETDEWEB)
Baimova, J. A., E-mail: julia.a.baimova@gmail.com [Russian Academy of Sciences, Institute of Metal Physics, Ural Branch (Russian Federation); Murzaev, R. T.; Lobzenko, I. P.; Dmitriev, S. V. [Russian Academy of Sciences, Institute for Metals Superplasticity Problems (Russian Federation); Zhou, Kun [Nanyang Technological University, School of Mechanical and Aerospace Engineering (Singapore)
2016-05-15
The discrete breathers in graphane in thermodynamic equilibrium in the temperature range 50–600 K are studied by molecular dynamics simulation. A discrete breather is a hydrogen atom vibrating along the normal to a sheet of graphane at a high amplitude. As was found earlier, the lifetime of a discrete breather at zero temperature corresponds to several tens of thousands of vibrations. The effect of temperature on the decay time of discrete breathers and the probability of their detachment from a sheet of graphane are studied in this work. It is shown that closely spaced breathers can exchange energy with each other at zero temperature. The data obtained suggest that thermally activated discrete breathers can be involved in the dehydrogenation of graphane, which is important for hydrogen energetics.
van Noppen, Jean Pierre
1995-01-01
Descriptive theology («theography») frequently resorts to metaphorical modes of meaning. Among these metaphors, the spatial language of localization and orientation plays an important role to delineate tentative insights into the relationship between the human and the divine. These spatial metaphors are presumably based on the universal human experience of interaction between the body and its environment. It is dangerous, however, to postulate universal agreement on meanings associated with s...
Temporal dynamics of divided spatial attention.
Itthipuripat, Sirawaj; Garcia, Javier O; Serences, John T
2013-05-01
In naturalistic settings, observers often have to monitor multiple objects dispersed throughout the visual scene. However, the degree to which spatial attention can be divided across spatially noncontiguous objects has long been debated, particularly when those objects are in close proximity. Moreover, the temporal dynamics of divided attention are unclear: is the process of dividing spatial attention gradual and continuous, or does it onset in a discrete manner? To address these issues, we recorded steady-state visual evoked potentials (SSVEPs) as subjects covertly monitored two flickering targets while ignoring an intervening distractor that flickered at a different frequency. All three stimuli were clustered within either the lower left or the lower right quadrant, and our dependent measure was SSVEP power at the target and distractor frequencies measured over time. In two experiments, we observed a temporally discrete increase in power for target- vs. distractor-evoked SSVEPs extending from ∼350 to 150 ms prior to correct (but not incorrect) responses. The divergence in SSVEP power immediately prior to a correct response suggests that spatial attention can be divided across noncontiguous locations, even when the targets are closely spaced within a single quadrant. In addition, the division of spatial attention appears to be relatively discrete, as opposed to slow and continuous. Finally, the predictive relationship between SSVEP power and behavior demonstrates that these neurophysiological measures of divided attention are meaningfully related to cognitive function.
Deformation compatibility control for engineering structures methods and applications
Zhu, Hanhua; Chen, Mengchong; Deng, Jianliang
2017-01-01
This book presents essential methods of deformation compatibility control, and explicitly addresses the implied conditions on the methods’ deformation compatibility. Consequently, these conditions can be considered in engineering structure design, while the conditions on stable equilibrium can be taken into account in the design method. Thus, the designed deformation and the actual deformation of the respective structure are approximately identical, guaranteeing both the flexibility of the construction material in force transmission and the equilibrium of force in the structure. Though equilibrium theory in engineering structures has been extensively studied, there has been comparatively little research on compatibility. In the limited researches available, the topics are primarily the theories and assumptions on the deformation compatibility, while few systematic works focus on the mechanical theoretical principles and methods of deformation compatibility control. As such, the flexibility of the constructi...
International Nuclear Information System (INIS)
Ding Qing
2007-01-01
We prove that the integrable-nonintegrable discrete nonlinear Schroedinger equation (AL-DNLS) introduced by Cai, Bishop and Gronbech-Jensen (Phys. Rev. Lett. 72 591(1994)) is the discrete gauge equivalent to an integrable-nonintegrable discrete Heisenberg model from the geometric point of view. Then we study whether the transmission and bifurcation properties of the AL-DNLS equation are preserved under the action of discrete gauge transformations. Our results reveal that the transmission property of the AL-DNLS equation is completely preserved and the bifurcation property is conditionally preserved to those of the integrable-nonintegrable discrete Heisenberg model
Location Aggregation of Spatial Population CTMC Models
Directory of Open Access Journals (Sweden)
Luca Bortolussi
2016-10-01
Full Text Available In this paper we focus on spatial Markov population models, describing the stochastic evolution of populations of agents, explicitly modelling their spatial distribution, representing space as a discrete, finite graph. More specifically, we present a heuristic approach to aggregating spatial locations, which is designed to preserve the dynamical behaviour of the model whilst reducing the computational cost of analysis. Our approach combines stochastic approximation ideas (moment closure, linear noise, with computational statistics (spectral clustering to obtain an efficient aggregation, which is experimentally shown to be reasonably accurate on two case studies: an instance of epidemic spreading and a London bike sharing scenario.
An MR-compatible device for delivering smoked marijuana during functional imaging
Frederick, Blaise deB.; Lindsey, Kimberly P.; Nickerson, Lisa D.; Ryan, Elizabeth T.; Lukas, Scott E.
2007-01-01
Smoking is the preferred method of administration for two of the most frequently abused drugs, marijuana and nicotine. The high temporal and spatial resolution of functional magnetic resonance imaging (fMRI) make it a natural choice for studying the neurobiological effects of smoked drugs if the challenges of smoking in a magnetic resonance (MR) scanner can be overcome. We report on a design for an MR-compatible smoking device that can be used for smoking marijuana (or tobacco) during fMRI ex...
Compatible-strain mixed finite element methods for incompressible nonlinear elasticity
Faghih Shojaei, Mostafa; Yavari, Arash
2018-05-01
We introduce a new family of mixed finite elements for incompressible nonlinear elasticity - compatible-strain mixed finite element methods (CSFEMs). Based on a Hu-Washizu-type functional, we write a four-field mixed formulation with the displacement, the displacement gradient, the first Piola-Kirchhoff stress, and a pressure-like field as the four independent unknowns. Using the Hilbert complexes of nonlinear elasticity, which describe the kinematics and the kinetics of motion, we identify the solution spaces of the independent unknown fields. In particular, we define the displacement in H1, the displacement gradient in H (curl), the stress in H (div), and the pressure field in L2. The test spaces of the mixed formulations are chosen to be the same as the corresponding solution spaces. Next, in a conforming setting, we approximate the solution and the test spaces with some piecewise polynomial subspaces of them. Among these approximation spaces are the tensorial analogues of the Nédélec and Raviart-Thomas finite element spaces of vector fields. This approach results in compatible-strain mixed finite element methods that satisfy both the Hadamard compatibility condition and the continuity of traction at the discrete level independently of the refinement level of the mesh. By considering several numerical examples, we demonstrate that CSFEMs have a good performance for bending problems and for bodies with complex geometries. CSFEMs are capable of capturing very large strains and accurately approximating stress and pressure fields. Using CSFEMs, we do not observe any numerical artifacts, e.g., checkerboarding of pressure, hourglass instability, or locking in our numerical examples. Moreover, CSFEMs provide an efficient framework for modeling heterogeneous solids.
A discrete-element model for viscoelastic deformation and fracture of glacial ice
Riikilä, T. I.; Tallinen, T.; Åström, J.; Timonen, J.
2015-10-01
A discrete-element model was developed to study the behavior of viscoelastic materials that are allowed to fracture. Applicable to many materials, the main objective of this analysis was to develop a model specifically for ice dynamics. A realistic model of glacial ice must include elasticity, brittle fracture and slow viscous deformations. Here the model is described in detail and tested with several benchmark simulations. The model was used to simulate various ice-specific applications with resulting flow rates that were compatible with Glen's law, and produced under fragmentation fragment-size distributions that agreed with the known analytical and experimental results.
Perfect discretization of reparametrization invariant path integrals
International Nuclear Information System (INIS)
Bahr, Benjamin; Dittrich, Bianca; Steinhaus, Sebastian
2011-01-01
To obtain a well-defined path integral one often employs discretizations. In the case of gravity and reparametrization-invariant systems, the latter of which we consider here as a toy example, discretizations generically break diffeomorphism and reparametrization symmetry, respectively. This has severe implications, as these symmetries determine the dynamics of the corresponding system. Indeed we will show that a discretized path integral with reparametrization-invariance is necessarily also discretization independent and therefore uniquely determined by the corresponding continuum quantum mechanical propagator. We use this insight to develop an iterative method for constructing such a discretized path integral, akin to a Wilsonian RG flow. This allows us to address the problem of discretization ambiguities and of an anomaly-free path integral measure for such systems. The latter is needed to obtain a path integral, that can act as a projector onto the physical states, satisfying the quantum constraints. We will comment on implications for discrete quantum gravity models, such as spin foams.
Perfect discretization of reparametrization invariant path integrals
Bahr, Benjamin; Dittrich, Bianca; Steinhaus, Sebastian
2011-05-01
To obtain a well-defined path integral one often employs discretizations. In the case of gravity and reparametrization-invariant systems, the latter of which we consider here as a toy example, discretizations generically break diffeomorphism and reparametrization symmetry, respectively. This has severe implications, as these symmetries determine the dynamics of the corresponding system. Indeed we will show that a discretized path integral with reparametrization-invariance is necessarily also discretization independent and therefore uniquely determined by the corresponding continuum quantum mechanical propagator. We use this insight to develop an iterative method for constructing such a discretized path integral, akin to a Wilsonian RG flow. This allows us to address the problem of discretization ambiguities and of an anomaly-free path integral measure for such systems. The latter is needed to obtain a path integral, that can act as a projector onto the physical states, satisfying the quantum constraints. We will comment on implications for discrete quantum gravity models, such as spin foams.
Lan, Xiang; Chen, Zhong; Dai, Gaole; Lu, Xuxing; Ni, Weihai; Wang, Qiangbin
2013-08-07
Discrete three-dimensional (3D) plasmonic nanoarchitectures with well-defined spatial configuration and geometry have aroused increasing interest, as new optical properties may originate from plasmon resonance coupling within the nanoarchitectures. Although spherical building blocks have been successfully employed in constructing 3D plasmonic nanoarchitectures because their isotropic nature facilitates unoriented localization, it still remains challenging to assemble anisotropic building blocks into discrete and rationally tailored 3D plasmonic nanoarchitectures. Here we report the first example of discrete 3D anisotropic gold nanorod (AuNR) dimer nanoarchitectures formed using bifacial DNA origami as a template, in which the 3D spatial configuration is precisely tuned by rationally shifting the location of AuNRs on the origami template. A distinct plasmonic chiral response was experimentally observed from the discrete 3D AuNR dimer nanoarchitectures and appeared in a spatial-configuration-dependent manner. This study represents great progress in the fabrication of 3D plasmonic nanoarchitectures with tailored optical chirality.
Higher dimensional discrete Cheeger inequalities
Directory of Open Access Journals (Sweden)
Anna Gundert
2015-01-01
Full Text Available For graphs there exists a strong connection between spectral and combinatorial expansion properties. This is expressed, e.g., by the discrete Cheeger inequality, the lower bound of which states that $\\lambda(G \\leq h(G$, where $\\lambda(G$ is the second smallest eigenvalue of the Laplacian of a graph $G$ and $h(G$ is the Cheeger constant measuring the edge expansion of $G$. We are interested in generalizations of expansion properties to finite simplicial complexes of higher dimension (or uniform hypergraphs. Whereas higher dimensional Laplacians were introduced already in 1945 by Eckmann, the generalization of edge expansion to simplicial complexes is not straightforward. Recently, a topologically motivated notion analogous to edge expansion that is based on $\\mathbb{Z}_2$-cohomology was introduced by Gromov and independently by Linial, Meshulam and Wallach. It is known that for this generalization there is no direct higher dimensional analogue of the lower bound of the Cheeger inequality. A different, combinatorially motivated generalization of the Cheeger constant, denoted by $h(X$, was studied by Parzanchevski, Rosenthal and Tessler. They showed that indeed $\\lambda(X \\leq h(X$, where $\\lambda(X$ is the smallest non-trivial eigenvalue of the ($(k-1$-dimensional upper Laplacian, for the case of $k$-dimensional simplicial complexes $X$ with complete $(k-1$-skeleton. Whether this inequality also holds for $k$-dimensional complexes with non-com\\-plete$(k-1$-skeleton has been an open question.We give two proofs of the inequality for arbitrary complexes. The proofs differ strongly in the methods and structures employed,and each allows for a different kind of additional strengthening of the original result.
International Nuclear Information System (INIS)
Maruno, Ken-ichi; Biondini, Gino
2004-01-01
We present a class of solutions of the two-dimensional Toda lattice equation, its fully discrete analogue and its ultra-discrete limit. These solutions demonstrate the existence of soliton resonance and web-like structure in discrete integrable systems such as differential-difference equations, difference equations and cellular automata (ultra-discrete equations)
Hairs of discrete symmetries and gravity
Energy Technology Data Exchange (ETDEWEB)
Choi, Kang Sin [Scranton Honors Program, Ewha Womans University, Seodaemun-Gu, Seoul 03760 (Korea, Republic of); Center for Fields, Gravity and Strings, CTPU, Institute for Basic Sciences, Yuseong-Gu, Daejeon 34047 (Korea, Republic of); Kim, Jihn E., E-mail: jihnekim@gmail.com [Department of Physics, Kyung Hee University, 26 Gyungheedaero, Dongdaemun-Gu, Seoul 02447 (Korea, Republic of); Center for Axion and Precision Physics Research (IBS), 291 Daehakro, Yuseong-Gu, Daejeon 34141 (Korea, Republic of); Kyae, Bumseok [Department of Physics, Pusan National University, 2 Busandaehakro-63-Gil, Geumjeong-Gu, Busan 46241 (Korea, Republic of); Nam, Soonkeon [Department of Physics, Kyung Hee University, 26 Gyungheedaero, Dongdaemun-Gu, Seoul 02447 (Korea, Republic of)
2017-06-10
Gauge symmetries are known to be respected by gravity because gauge charges carry flux lines, but global charges do not carry flux lines and are not conserved by gravitational interaction. For discrete symmetries, they are spontaneously broken in the Universe, forming domain walls. Since the realization of discrete symmetries in the Universe must involve the vacuum expectation values of Higgs fields, a string-like configuration (hair) at the intersection of domain walls in the Higgs vacua can be realized. Therefore, we argue that discrete charges are also respected by gravity.
Hairs of discrete symmetries and gravity
Directory of Open Access Journals (Sweden)
Kang Sin Choi
2017-06-01
Full Text Available Gauge symmetries are known to be respected by gravity because gauge charges carry flux lines, but global charges do not carry flux lines and are not conserved by gravitational interaction. For discrete symmetries, they are spontaneously broken in the Universe, forming domain walls. Since the realization of discrete symmetries in the Universe must involve the vacuum expectation values of Higgs fields, a string-like configuration (hair at the intersection of domain walls in the Higgs vacua can be realized. Therefore, we argue that discrete charges are also respected by gravity.
Discrete Morse functions for graph configuration spaces
International Nuclear Information System (INIS)
Sawicki, A
2012-01-01
We present an alternative application of discrete Morse theory for two-particle graph configuration spaces. In contrast to previous constructions, which are based on discrete Morse vector fields, our approach is through Morse functions, which have a nice physical interpretation as two-body potentials constructed from one-body potentials. We also give a brief introduction to discrete Morse theory. Our motivation comes from the problem of quantum statistics for particles on networks, for which generalized versions of anyon statistics can appear. (paper)
Discrete Tomography and Imaging of Polycrystalline Structures
DEFF Research Database (Denmark)
Alpers, Andreas
High resolution transmission electron microscopy is commonly considered as the standard application for discrete tomography. While this has yet to be technically realized, new applications with a similar flavor have emerged in materials science. In our group at Ris� DTU (Denmark's National...... Laboratory for Sustainable Energy), for instance, we study polycrystalline materials via synchrotron X-ray diffraction. Several reconstruction problems arise, most of them exhibit inherently discrete aspects. In this talk I want to give a concise mathematical introduction to some of these reconstruction...... problems. Special focus is on their relationship to classical discrete tomography. Several open mathematical questions will be mentioned along the way....
Ensemble simulations with discrete classical dynamics
DEFF Research Database (Denmark)
Toxværd, Søren
2013-01-01
For discrete classical Molecular dynamics (MD) obtained by the "Verlet" algorithm (VA) with the time increment $h$ there exist a shadow Hamiltonian $\\tilde{H}$ with energy $\\tilde{E}(h)$, for which the discrete particle positions lie on the analytic trajectories for $\\tilde{H}$. $\\tilde......{E}(h)$ is employed to determine the relation with the corresponding energy, $E$ for the analytic dynamics with $h=0$ and the zero-order estimate $E_0(h)$ of the energy for discrete dynamics, appearing in the literature for MD with VA. We derive a corresponding time reversible VA algorithm for canonical dynamics...
Stochastic Kuramoto oscillators with discrete phase states
Jörg, David J.
2017-09-01
We present a generalization of the Kuramoto phase oscillator model in which phases advance in discrete phase increments through Poisson processes, rendering both intrinsic oscillations and coupling inherently stochastic. We study the effects of phase discretization on the synchronization and precision properties of the coupled system both analytically and numerically. Remarkably, many key observables such as the steady-state synchrony and the quality of oscillations show distinct extrema while converging to the classical Kuramoto model in the limit of a continuous phase. The phase-discretized model provides a general framework for coupled oscillations in a Markov chain setting.
Stochastic Kuramoto oscillators with discrete phase states.
Jörg, David J
2017-09-01
We present a generalization of the Kuramoto phase oscillator model in which phases advance in discrete phase increments through Poisson processes, rendering both intrinsic oscillations and coupling inherently stochastic. We study the effects of phase discretization on the synchronization and precision properties of the coupled system both analytically and numerically. Remarkably, many key observables such as the steady-state synchrony and the quality of oscillations show distinct extrema while converging to the classical Kuramoto model in the limit of a continuous phase. The phase-discretized model provides a general framework for coupled oscillations in a Markov chain setting.
Discrete-Time Biomedical Signal Encryption
Directory of Open Access Journals (Sweden)
Victor Grigoraş
2017-12-01
Full Text Available Chaotic modulation is a strong method of improving communication security. Analog and discrete chaotic systems are presented in actual literature. Due to the expansion of digital communication, discrete-time systems become more efficient and closer to actual technology. The present contribution offers an in-depth analysis of the effects chaos encryption produce on 1D and 2D biomedical signals. The performed simulations show that modulating signals are precisely recovered by the synchronizing receiver if discrete systems are digitally implemented and the coefficients precisely correspond. Channel noise is also applied and its effects on biomedical signal demodulation are highlighted.
Discrete symmetries and de Sitter spacetime
Energy Technology Data Exchange (ETDEWEB)
Cotăescu, Ion I., E-mail: gpascu@physics.uvt.ro; Pascu, Gabriel, E-mail: gpascu@physics.uvt.ro [West University of Timişoara, V. Pârvan Ave. 4, RO-300223 Timişoara (Romania)
2014-11-24
Aspects of the ambiguity in defining quantum modes on de Sitter spacetime using a commuting system composed only of differential operators are discussed. Discrete symmetries and their actions on the wavefunction in commonly used coordinate charts are reviewed. It is argued that the system of commuting operators can be supplemented by requiring the invariance of the wavefunction to combined discrete symmetries- a criterion which selects a single state out of the α-vacuum family. Two such members of this family are singled out by particular combined discrete symmetries- states between which exists a well-known thermality relation.
Observation of Discrete-Time-Crystal Signatures in an Ordered Dipolar Many-Body System
Rovny, Jared; Blum, Robert L.; Barrett, Sean E.
2018-05-01
A discrete time crystal (DTC) is a robust phase of driven systems that breaks the discrete time translation symmetry of the driving Hamiltonian. Recent experiments have observed DTC signatures in two distinct systems. Here we show nuclear magnetic resonance observations of DTC signatures in a third, strikingly different system: an ordered spatial crystal. We use a novel DTC echo experiment to probe the coherence of the driven system. Finally, we show that interactions during the pulse of the DTC sequence contribute to the decay of the signal, complicating attempts to measure the intrinsic lifetime of the DTC.
Energy Technology Data Exchange (ETDEWEB)
Wang, Chi-Jen [Iowa State Univ., Ames, IA (United States)
2013-01-01
In this thesis, we analyze both the spatiotemporal behavior of: (A) non-linear “reaction” models utilizing (discrete) reaction-diffusion equations; and (B) spatial transport problems on surfaces and in nanopores utilizing the relevant (continuum) diffusion or Fokker-Planck equations. Thus, there are some common themes in these studies, as they all involve partial differential equations or their discrete analogues which incorporate a description of diffusion-type processes. However, there are also some qualitative differences, as shall be discussed below.
Zero of the discrete beta function in SU(3) lattice gauge theory with color sextet fermions
International Nuclear Information System (INIS)
Shamir, Yigal; Svetitsky, Benjamin; DeGrand, Thomas
2008-01-01
We have carried out a Schrodinger functional calculation for the SU(3) lattice gauge theory with two flavors of Wilson fermions in the sextet representation of the gauge group. We find that the discrete beta function, which governs the change in the running coupling under a discrete change of spatial scale, changes sign when the Schrodinger functional renormalized coupling is in the neighborhood of g 2 =2.0. The simplest explanation is that the theory has an infrared-attractive fixed point, but more complicated possibilities are allowed by the data. While we compare rescalings by factors of 2 and 4/3, we work at a single lattice spacing.
Continuous time modelling of dynamical spatial lattice data observed at sparsely distributed times
DEFF Research Database (Denmark)
Rasmussen, Jakob Gulddahl; Møller, Jesper
2007-01-01
Summary. We consider statistical and computational aspects of simulation-based Bayesian inference for a spatial-temporal model based on a multivariate point process which is only observed at sparsely distributed times. The point processes are indexed by the sites of a spatial lattice......, and they exhibit spatial interaction. For specificity we consider a particular dynamical spatial lattice data set which has previously been analysed by a discrete time model involving unknown normalizing constants. We discuss the advantages and disadvantages of using continuous time processes compared...... with discrete time processes in the setting of the present paper as well as other spatial-temporal situations....
Exterior difference systems and invariance properties of discrete mechanics
International Nuclear Information System (INIS)
Xie Zheng; Xie Duanqiang; Li Hongbo
2008-01-01
Invariance properties describe the fundamental physical laws in discrete mechanics. Can those properties be described in a geometric way? We investigate an exterior difference system called the discrete Euler-Lagrange system, whose solution has one-to-one correspondence with solutions of discrete Euler-Lagrange equations, and use it to define the first integrals. The preservation of the discrete symplectic form along the discrete Hamilton phase flows and the discrete Noether's theorem is also described in the language of difference forms
On organizing principles of discrete differential geometry. Geometry of spheres
International Nuclear Information System (INIS)
Bobenko, Alexander I; Suris, Yury B
2007-01-01
Discrete differential geometry aims to develop discrete equivalents of the geometric notions and methods of classical differential geometry. This survey contains a discussion of the following two fundamental discretization principles: the transformation group principle (smooth geometric objects and their discretizations are invariant with respect to the same transformation group) and the consistency principle (discretizations of smooth parametrized geometries can be extended to multidimensional consistent nets). The main concrete geometric problem treated here is discretization of curvature-line parametrized surfaces in Lie geometry. Systematic use of the discretization principles leads to a discretization of curvature-line parametrization which unifies circular and conical nets.
Directory of Open Access Journals (Sweden)
Xiaorong eCheng
2015-11-01
Full Text Available A recent hierarchical model of numerical processing, initiated by Fischer and Brugger (2011 and Fisher (2012, suggested that situated factors, such as different body postures and body movements, can influence the magnitude representation and bias numerical processing. Indeed, Loetscher and colleagues (2008 found that participants’ behavior in a random number generation (RNG task was biased by head rotations. More small numbers were reported after leftward than rightward head turns, i.e. a motion–numerical compatibility effect. Here, by carrying out two experiments, we explored whether similar motion–numerical compatibility effects exist for movements of other important body components, e.g. arms, and for composite body movements as well, which are basis for complex human activities in many ecologically meaningful situations. In Experiment 1, a motion-numerical compatibility effect was observed for lateral rotations of two body components, i.e., the head and arms. Relatively large numbers were reported after making rightward compared to leftward movements for both lateral head and arm turns. The motion-numerical compatibility effect was observed again in Experiment 2 when participants were asked to perform composite body movements of congruent movement directions, e.g., simultaneous head left turns and arm left turns. However, it disappeared when the movement directions were incongruent, e.g., simultaneous head left turns and arm right turns. Taken together, our results extended Loetscher et al.'s (2008 finding by demonstrating that their effect is effector-general and exists for arm movements. Moreover, our study reveals for the first time that the impact of spatial information on numerical processing induced by each of the two sensorimotor-based situated factors, e.g., a lateral head turn and a lateral arm turn, can cancel each other out.
Can time be a discrete dynamical variable
International Nuclear Information System (INIS)
Lee, T.D.
1983-01-01
The possibility that time can be regarded as a discrete dynamical variable is examined through all phases of mechanics: from classical mechanics to nonrelativistic quantum mechanics, and to relativistic quantum field theories. (orig.)
Local discrete symmetries from superstring derived models
International Nuclear Information System (INIS)
Faraggi, A.E.
1996-10-01
Discrete and global symmetries play an essential role in many extensions of the Standard Model, for example, to preserve the proton lifetime, to prevent flavor changing neutral currents, etc. An important question is how can such symmetries survive in a theory of quantum gravity, like superstring theory. In a specific string model the author illustrates how local discrete symmetries may arise in string models and play an important role in preventing fast proton decay and flavor changing neutral currents. The local discrete symmetry arises due to the breaking of the non-Abelian gauge symmetries by Wilson lines in the superstring models and forbids, for example dimension five operators which mediate rapid proton decay, to all orders of nonrenormalizable terms. In the context of models of unification of the gauge and gravitational interactions, it is precisely this type of local discrete symmetries that must be found in order to insure that a given model is not in conflict with experimental observations
Breatherlike impurity modes in discrete nonlinear lattices
DEFF Research Database (Denmark)
Hennig, D.; Rasmussen, Kim; Tsironis, G. P.
1995-01-01
We investigate the properties of a disordered generalized discrete nonlinear Schrodinger equation, containing both diagonal and nondiagonal nonlinear terms. The equation models a Linear host lattice doped with nonlinear impurities. We find different types of impurity states that form itinerant...
Inferring gene networks from discrete expression data
Zhang, L.; Mallick, B. K.
2013-01-01
graphical models applied to continuous data, which give a closedformmarginal likelihood. In this paper,we extend network modeling to discrete data, specifically data from serial analysis of gene expression, and RNA-sequencing experiments, both of which
A discrete control model of PLANT
Mitchell, C. M.
1985-01-01
A model of the PLANT system using the discrete control modeling techniques developed by Miller is described. Discrete control models attempt to represent in a mathematical form how a human operator might decompose a complex system into simpler parts and how the control actions and system configuration are coordinated so that acceptable overall system performance is achieved. Basic questions include knowledge representation, information flow, and decision making in complex systems. The structure of the model is a general hierarchical/heterarchical scheme which structurally accounts for coordination and dynamic focus of attention. Mathematically, the discrete control model is defined in terms of a network of finite state systems. Specifically, the discrete control model accounts for how specific control actions are selected from information about the controlled system, the environment, and the context of the situation. The objective is to provide a plausible and empirically testable accounting and, if possible, explanation of control behavior.
Running Parallel Discrete Event Simulators on Sierra
Energy Technology Data Exchange (ETDEWEB)
Barnes, P. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jefferson, D. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-12-03
In this proposal we consider porting the ROSS/Charm++ simulator and the discrete event models that run under its control so that they run on the Sierra architecture and make efficient use of the Volta GPUs.
Effective Hamiltonian for travelling discrete breathers
MacKay, Robert S.; Sepulchre, Jacques-Alexandre
2002-05-01
Hamiltonian chains of oscillators in general probably do not sustain exact travelling discrete breathers. However solutions which look like moving discrete breathers for some time are not difficult to observe in numerics. In this paper we propose an abstract framework for the description of approximate travelling discrete breathers in Hamiltonian chains of oscillators. The method is based on the construction of an effective Hamiltonian enabling one to describe the dynamics of the translation degree of freedom of moving breathers. Error estimate on the approximate dynamics is also studied. The concept of the Peierls-Nabarro barrier can be made clear in this framework. We illustrate the method with two simple examples, namely the Salerno model which interpolates between the Ablowitz-Ladik lattice and the discrete nonlinear Schrödinger system, and the Fermi-Pasta-Ulam chain.
Comparing the Discrete and Continuous Logistic Models
Gordon, Sheldon P.
2008-01-01
The solutions of the discrete logistic growth model based on a difference equation and the continuous logistic growth model based on a differential equation are compared and contrasted. The investigation is conducted using a dynamic interactive spreadsheet. (Contains 5 figures.)
Discrete-time nonlinear sliding mode controller
African Journals Online (AJOL)
user
Keywords: Discrete-time delay system, Sliding mode control, nonlinear sliding ... of engineering systems such as chemical process control, delay in the actuator ...... instrumentation from Motilal Nehru National Institute of Technology (MNNIT),.
Rich dynamics of discrete delay ecological models
International Nuclear Information System (INIS)
Peng Mingshu
2005-01-01
We study multiple bifurcations and chaotic behavior of a discrete delay ecological model. New form of chaos for the 2-D map is observed: the combination of potential period doubling and reverse period-doubling leads to cascading bubbles
Discrete and Continuous Models for Partitioning Problems
Lellmann, Jan; Lellmann, Bjö rn; Widmann, Florian; Schnö rr, Christoph
2013-01-01
-based techniques. This work is concerned with the sources of such artifacts. We discuss the importance of differentiating between artifacts caused by discretization and those caused by relaxation and provide supporting numerical examples. Moreover, we consider
Memorized discrete systems and time-delay
Luo, Albert C J
2017-01-01
This book examines discrete dynamical systems with memory—nonlinear systems that exist extensively in biological organisms and financial and economic organizations, and time-delay systems that can be discretized into the memorized, discrete dynamical systems. It book further discusses stability and bifurcations of time-delay dynamical systems that can be investigated through memorized dynamical systems as well as bifurcations of memorized nonlinear dynamical systems, discretization methods of time-delay systems, and periodic motions to chaos in nonlinear time-delay systems. The book helps readers find analytical solutions of MDS, change traditional perturbation analysis in time-delay systems, detect motion complexity and singularity in MDS; and determine stability, bifurcation, and chaos in any time-delay system.
Barthélemy, Marc
2011-02-01
Complex systems are very often organized under the form of networks where nodes and edges are embedded in space. Transportation and mobility networks, Internet, mobile phone networks, power grids, social and contact networks, and neural networks, are all examples where space is relevant and where topology alone does not contain all the information. Characterizing and understanding the structure and the evolution of spatial networks is thus crucial for many different fields, ranging from urbanism to epidemiology. An important consequence of space on networks is that there is a cost associated with the length of edges which in turn has dramatic effects on the topological structure of these networks. We will thoroughly explain the current state of our understanding of how the spatial constraints affect the structure and properties of these networks. We will review the most recent empirical observations and the most important models of spatial networks. We will also discuss various processes which take place on these spatial networks, such as phase transitions, random walks, synchronization, navigation, resilience, and disease spread.
Stein, A.
1991-01-01
The theory and practical application of techniques of statistical interpolation are studied in this thesis, and new developments in multivariate spatial interpolation and the design of sampling plans are discussed. Several applications to studies in soil science are
Testing Preference Axioms in Discrete Choice experiments
DEFF Research Database (Denmark)
Hougaard, Jens Leth; Østerdal, Lars Peter; Tjur, Tue
Recent studies have tested the preference axioms of completeness and transitivity, and have detected other preference phenomena such as unstability, learning- and tiredness effects, ordering effects and dominance, in stated preference discrete choice experiments. However, it has not been explicitly...... of the preference axioms and other preference phenomena in the context of stated preference discrete choice experiments, and examine whether or how these can be subject to meaningful (statistical) tests...
Quadratic Term Structure Models in Discrete Time
Marco Realdon
2006-01-01
This paper extends the results on quadratic term structure models in continuos time to the discrete time setting. The continuos time setting can be seen as a special case of the discrete time one. Recursive closed form solutions for zero coupon bonds are provided even in the presence of multiple correlated underlying factors. Pricing bond options requires simple integration. Model parameters may well be time dependent without scuppering such tractability. Model estimation does not require a r...
Symmetries in discrete-time mechanics
International Nuclear Information System (INIS)
Khorrami, M.
1996-01-01
Based on a general formulation for discrete-time quantum mechanics, introduced by M. Khorrami (Annals Phys. 224 (1995), 101), symmetries in discrete-time quantum mechanics are investigated. It is shown that any classical continuous symmetry leads to a conserved quantity in classical mechanics, as well as quantum mechanics. The transformed wave function, however, has the correct evolution if and only if the symmetry is nonanomalous. Copyright copyright 1996 Academic Press, Inc
Nonlinear integrodifferential equations as discrete systems
Tamizhmani, K. M.; Satsuma, J.; Grammaticos, B.; Ramani, A.
1999-06-01
We analyse a class of integrodifferential equations of the `intermediate long wave' (ILW) type. We show that these equations can be formally interpreted as discrete, differential-difference systems. This allows us to link equations of this type with previous results of ours involving differential-delay equations and, on the basis of this, propose new integrable equations of ILW type. Finally, we extend this approach to pure difference equations and propose ILW forms for the discrete lattice KdV equation.
Definable maximal discrete sets in forcing extensions
DEFF Research Database (Denmark)
Törnquist, Asger Dag; Schrittesser, David
2018-01-01
Let be a Σ11 binary relation, and recall that a set A is -discrete if no two elements of A are related by . We show that in the Sacks and Miller forcing extensions of L there is a Δ12 maximal -discrete set. We use this to answer in the negative the main question posed in [5] by showing...
Application of multivariate splines to discrete mathematics
Xu, Zhiqiang
2005-01-01
Using methods developed in multivariate splines, we present an explicit formula for discrete truncated powers, which are defined as the number of non-negative integer solutions of linear Diophantine equations. We further use the formula to study some classical problems in discrete mathematics as follows. First, we extend the partition function of integers in number theory. Second, we exploit the relation between the relative volume of convex polytopes and multivariate truncated powers and giv...
Discrete symmetries and solar neutrino mixing
Energy Technology Data Exchange (ETDEWEB)
Kapetanakis, D.; Mayr, P.; Nilles, H.P. (Physik Dept., Technische Univ. Muenchen, Garching (Germany) Max-Planck-Inst. fuer Physik, Werner-Heisenberg-Inst., Muenchen (Germany))
1992-05-21
We study the question of resonant solar neutrino mixing in the framework of the supersymmetric extension of the standard model. Discrete symmetries that are consistent with solar neutrino mixing and proton stability are classified. In the minimal model they are shown to lead to two distinct patterns of allowed dimension-four operators. Imposing anomaly freedom, only three different discrete Z{sub N}-symmetries (with N=2, 3, 6) are found to be phenomenologically acceptable. (orig.).
Discrete symmetries and solar neutrino mixing
International Nuclear Information System (INIS)
Kapetanakis, D.; Mayr, P.; Nilles, H.P.
1992-01-01
We study the question of resonant solar neutrino mixing in the framework of the supersymmetric extension of the standard model. Discrete symmetries that are consistent with solar neutrino mixing and proton stability are classified. In the minimal model they are shown to lead to two distinct patterns of allowed dimension-four operators. Imposing anomaly freedom, only three different discrete Z N -symmetries (with N=2, 3, 6) are found to be phenomenologically acceptable. (orig.)
Discrete symmetries and coset space dimensional reduction
International Nuclear Information System (INIS)
Kapetanakis, D.; Zoupanos, G.
1989-01-01
We consider the discrete symmetries of all the six-dimensional coset spaces and we apply them in gauge theories defined in ten dimensions which are dimensionally reduced over these homogeneous spaces. Particular emphasis is given in the consequences of the discrete symmetries on the particle content as well as on the symmetry breaking a la Hosotani of the resulting four-dimensional theory. (orig.)
On discrete models of space-time
International Nuclear Information System (INIS)
Horzela, A.; Kempczynski, J.; Kapuscik, E.; Georgia Univ., Athens, GA; Uzes, Ch.
1992-02-01
Analyzing the Einstein radiolocation method we come to the conclusion that results of any measurement of space-time coordinates should be expressed in terms of rational numbers. We show that this property is Lorentz invariant and may be used in the construction of discrete models of space-time different from the models of the lattice type constructed in the process of discretization of continuous models. (author)
Discrete approximations to vector spin models
Energy Technology Data Exchange (ETDEWEB)
Van Enter, Aernout C D [University of Groningen, Johann Bernoulli Institute of Mathematics and Computing Science, Postbus 407, 9700 AK Groningen (Netherlands); Kuelske, Christof [Ruhr-Universitaet Bochum, Fakultaet fuer Mathematik, D44801 Bochum (Germany); Opoku, Alex A, E-mail: A.C.D.v.Enter@math.rug.nl, E-mail: Christof.Kuelske@ruhr-uni-bochum.de, E-mail: opoku@math.leidenuniv.nl [Mathematisch Instituut, Universiteit Leiden, Postbus 9512, 2300 RA, Leiden (Netherlands)
2011-11-25
We strengthen a result from Kuelske and Opoku (2008 Electron. J. Probab. 13 1307-44) on the existence of effective interactions for discretized continuous-spin models. We also point out that such an interaction cannot exist at very low temperatures. Moreover, we compare two ways of discretizing continuous-spin models, and show that except for very low temperatures, they behave similarly in two dimensions. We also discuss some possibilities in higher dimensions. (paper)
Discrete approximations to vector spin models
International Nuclear Information System (INIS)
Van Enter, Aernout C D; Külske, Christof; Opoku, Alex A
2011-01-01
We strengthen a result from Külske and Opoku (2008 Electron. J. Probab. 13 1307–44) on the existence of effective interactions for discretized continuous-spin models. We also point out that such an interaction cannot exist at very low temperatures. Moreover, we compare two ways of discretizing continuous-spin models, and show that except for very low temperatures, they behave similarly in two dimensions. We also discuss some possibilities in higher dimensions. (paper)
Mohamed, Mamdouh S.
2016-02-11
A conservative discretization of incompressible Navier–Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a combinatorial discretization of the wedge product. The governing equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. The discretization is then carried out by substituting with the corresponding discrete operators based on the DEC framework. Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy for otherwise unstructured meshes. By construction, the method is conservative in that both mass and vorticity are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step.
Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi
2016-05-01
A conservative discretization of incompressible Navier-Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a combinatorial discretization of the wedge product. The governing equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. The discretization is then carried out by substituting with the corresponding discrete operators based on the DEC framework. Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy for otherwise unstructured meshes. By construction, the method is conservative in that both mass and vorticity are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step.
Explicit solutions to the semi-discrete modified KdV equation and motion of discrete plane curves
International Nuclear Information System (INIS)
Inoguchi, Jun-ichi; Kajiwara, Kenji; Matsuura, Nozomu; Ohta, Yasuhiro
2012-01-01
We construct explicit solutions to continuous motion of discrete plane curves described by a semi-discrete potential modified KdV equation. Explicit formulas in terms of the τ function are presented. Bäcklund transformations of the discrete curves are also discussed. We finally consider the continuous limit of discrete motion of discrete plane curves described by the discrete potential modified KdV equation to motion of smooth plane curves characterized by the potential modified KdV equation. (paper)
Development of materials with blood compatibility by radiation processing
International Nuclear Information System (INIS)
Roesinger, S.; Fischer, J.P.; Fuhge, P.
1982-01-01
Biomedical applications, for example for rendering plastic materials blood compatible, have become a very important problem in recent years. Surface-grafted materials for blood compatibility have attracted attention for intra- and extracorporal applications. Numerous aspects of grafting monomers on to polymer surfaces by different grafting methods have been given. A large amount of work has been done during the last ten years, but nobody has prepared materials with properties that are desirable for long-term medical application in the human body, for example as replacements for small arteries or veins. The evaluation of blood compatibility of different plastic materials, and the search for correlations between blood compatibility and physical properties of the plastic materials surfaces, are well-known problems in the biomedical applications of polymers. This paper briefly reviews an approach to help solving these problems. (author)
Compatibility and economic assessment of sweetpotato and garden ...
African Journals Online (AJOL)
ecological zone of Nigeria, to determine the compatibility and economic viability of sweetpotato (Ipomoea batatas) and garden egg (Solanum gelio) intercrop during 2011 and 2012 cropping seasons. Two sweetpotato varieties; NR05/022 and ...
Kinematical Compatibility Conditions for Vorticity Across Shock Waves
Baty, Roy
2015-11-01
This work develops the general kinematical compatibility conditions for vorticity across arbitrary shock waves in compressible, inviscid fluids. The vorticity compatibility conditions are derived from the curl of the momentum equation using singular distributions defined on two-dimensional shock wave surfaces embedded in three-dimensional flow fields. The singular distributions are represented as generalized differential operators concentrated on moving shock wave surfaces. The derivation of the compatibility conditions for vorticity requires the application of second-order generalized derivatives and elementary tensor algebra. The well-known vorticity jump conditions across a shock wave are then shown to follow from the general kinematical compatibility conditions for vorticity by expressing the flow field velocity in vectorial components normal and tangential to a shock surface.
Compatibility of entomopathogenic fungi with extracts of plants and ...
African Journals Online (AJOL)
The compatibility of some commercial botanicals (Biospark, Phytophrate, Exodos, Biodos and Neemgold) and of solvent extracts of Syndrella nodiflora, Premna tomentosa, Vitex negundo, Ipomea carnea, Pteridium aquilinum (leaves) and Annona squomosa (seeds) with Beauveria bassiana (Bals.) Vuil., Isaria ...
Discrete modeling considerations in multiphase fluid dynamics
International Nuclear Information System (INIS)
Ransom, V.H.; Ramshaw, J.D.
1988-01-01
The modeling of multiphase flows play a fundamental role in light water reactor safety. The main ingredients in our discrete modeling Weltanschauung are the following considerations: (1) Any physical model must be cast into discrete form for a digital computer. (2) The usual approach of formulating models in differential form and then discretizing them is potentially hazardous. It may be preferable to formulate the model in discrete terms from the outset. (3) Computer time and storage constraints limit the resolution that can be employed in practical calculations. These limits effectively define the physical phenomena, length scales, and time scales which cannot be directly represented in the calculation and therefore must be modeled. This information should be injected into the model formulation process at an early stage. (4) Practical resolution limits are generally so coarse that traditional convergence and truncation-error analyses become irrelevant. (5) A discrete model constitutes a reduced description of a physical system, from which fine-scale details are eliminated. This elimination creates a statistical closure problem. Methods from statistical physics may therefore be useful in the formulation of discrete models. In the present paper we elaborate on these themes and illustrate them with simple examples. 48 refs
Theoretical Basics of Teaching Discrete Mathematics
Directory of Open Access Journals (Sweden)
Y. A. Perminov
2012-01-01
Full Text Available The paper deals with the research findings concerning the process of mastering the theoretical basics of discrete mathematics by the students of vocational pedagogic profile. The methodological analysis is based on the subject and functions of the modern discrete mathematics and its role in mathematical modeling and computing. The modern discrete mathematics (i.e. mathematics of the finite type structures plays the important role in modernization of vocational training. It is especially rele- vant to training students for vocational pedagogic qualifications, as in the future they will be responsible for training the middle and the senior level specialists in engineer- ing and technical spheres. Nowadays in different industries, there arise the problems which require for their solving both continual – based on the classical mathematical methods – and discrete modeling. The teaching course of discrete mathematics for the future vocational teachers should be relevant to the target qualification and aimed at mastering the mathematical modeling, systems of computer mathematics and computer technologies. The author emphasizes the fundamental role of mastering the language of algebraic and serial structures, as well as the logical, algorithmic, combinatory schemes dominating in dis- crete mathematics. The guidelines for selecting the content of the course in discrete mathematics are specified. The theoretical findings of the research can be put into practice whilst developing curricula and working programs for bachelors and masters’ training.
Current density and continuity in discretized models
International Nuclear Information System (INIS)
Boykin, Timothy B; Luisier, Mathieu; Klimeck, Gerhard
2010-01-01
Discrete approaches have long been used in numerical modelling of physical systems in both research and teaching. Discrete versions of the Schroedinger equation employing either one or several basis functions per mesh point are often used by senior undergraduates and beginning graduate students in computational physics projects. In studying discrete models, students can encounter conceptual difficulties with the representation of the current and its divergence because different finite-difference expressions, all of which reduce to the current density in the continuous limit, measure different physical quantities. Understanding these different discrete currents is essential and requires a careful analysis of the current operator, the divergence of the current and the continuity equation. Here we develop point forms of the current and its divergence valid for an arbitrary mesh and basis. We show that in discrete models currents exist only along lines joining atomic sites (or mesh points). Using these results, we derive a discrete analogue of the divergence theorem and demonstrate probability conservation in a purely localized-basis approach.
Discrete Calculus as a Bridge between Scales
Degiuli, Eric; McElwaine, Jim
2012-02-01
Understanding how continuum descriptions of disordered media emerge from the microscopic scale is a fundamental challenge in condensed matter physics. In many systems, it is necessary to coarse-grain balance equations at the microscopic scale to obtain macroscopic equations. We report development of an exact, discrete calculus, which allows identification of discrete microscopic equations with their continuum equivalent [1]. This allows the application of powerful techniques of calculus, such as the Helmholtz decomposition, the Divergence Theorem, and Stokes' Theorem. We illustrate our results with granular materials. In particular, we show how Newton's laws for a single grain reproduce their continuum equivalent in the calculus. This allows introduction of a discrete Airy stress function, exactly as in the continuum. As an application of the formalism, we show how these results give the natural mean-field variation of discrete quantities, in agreement with numerical simulations. The discrete calculus thus acts as a bridge between discrete microscale quantities and continuous macroscale quantities. [4pt] [1] E. DeGiuli & J. McElwaine, PRE 2011. doi: 10.1103/PhysRevE.84.041310
Recent developments in discrete ordinates electron transport
International Nuclear Information System (INIS)
Morel, J.E.; Lorence, L.J. Jr.
1986-01-01
The discrete ordinates method is a deterministic method for numerically solving the Boltzmann equation. It was originally developed for neutron transport calculations, but is routinely used for photon and coupled neutron-photon transport calculations as well. The computational state of the art for coupled electron-photon transport (CEPT) calculations is not as developed as that for neutron transport calculations. The only production codes currently available for CEPT calculations are condensed-history Monte Carlo codes such as the ETRAN and ITS codes. A deterministic capability for production calculations is clearly needed. In response to this need, we have begun the development of a production discrete ordinates code for CEPT calculations. The purpose of this paper is to describe the basic approach we are taking, discuss the current status of the project, and present some new computational results. Although further characterization of the coupled electron-photon discrete ordinates method remains to be done, the results to date indicate that the discrete ordinates method can be just as accurate and from 10 to 100 times faster than the Monte Carlo method for a wide variety of problems. We stress that these results are obtained with standard discrete ordinates codes such as ONETRAN. It is clear that even greater efficiency can be obtained by developing a new generation of production discrete ordinates codes specifically designed to solve the Boltzmann-Fokker-Planck equation. However, the prospects for such development in the near future appear to be remote
Discrete symmetries and their stringy origin
International Nuclear Information System (INIS)
Mayorga Pena, Damian Kaloni
2014-05-01
Discrete symmetries have proven to be very useful in controlling the phenomenology of theories beyond the standard model. In this work we explore how these symmetries emerge from string compactifications. Our approach is twofold: On the one hand, we consider the heterotic string on orbifold backgrounds. In this case the discrete symmetries can be derived from the orbifold conformal field theory, and it can be shown that they are in close relation with the orbifold geometry. We devote special attention to R-symmetries, which arise from discrete remnants of the Lorentz group in compact space. Further we discuss the physical implications of these symmetries both in the heterotic mini-landscape and in newly constructed models based on the Z 2 x Z 4 orbifold. In both cases we observe that the discrete symmetries favor particular locations in the orbifold where the particles of standard model should live. On the other hand we consider a class of F-theory models exhibiting an SU(5) gauge group, times additional U(1) symmetries. In this case, the smooth compactification background does not permit us to track the discrete symmetries as transparently as in orbifold models. Hence, we follow a different approach and search for discrete subgroups emerging after the U(1)s are broken. We observe that in this approach it is possible to obtain the standard Z 2 matter parity of the MSSM.
Higher-order Spatial Accuracy in Diffeomorphic Image Registration
DEFF Research Database (Denmark)
Jacobs, Henry O.; Sommer, Stefan
-jets. We show that the solutions convergence to optimal solutions of the original cost functional as the number of particles increases with a convergence rate of O(hd+k) where h is a resolution parameter. The effect of this approach over traditional particle methods is illustrated on synthetic examples......We discretize a cost functional for image registration problems by deriving Taylor expansions for the matching term. Minima of the discretized cost functionals can be computed with no spatial discretization error, and the optimal solutions are equivalent to minimal energy curves in the space of kk...
Fusion-reactor blanket and coolant material compatibility
International Nuclear Information System (INIS)
Jeppson, D.W.; Keough, R.F.
1981-01-01
Fusion reactor blanket and coolant compatibility tests are being conducted to aid in the selection and design of safe blanket and coolant systems for future fusion reactors. Results of scoping compatibility tests to date are reported for blanket material and water interactions at near operating temperatures. These tests indicate the quantitative hydrogen release, the maximum temperature and pressures produced and the rates of interactions for selected blanket materials
Analysis and Application of Antagonism Compound Prescription Compatibility
Li, Mengyan; Wang, Can; Bai, Ming; Miao, Mingsan
2018-01-01
Deer horn glue is deer family animals deer or red deer horn made of solid plastic animal medicine, according to Chinese medicine “seven emotions together” theory, the antler and other Chinese herbal medicines compatibility can be better play its Medicinal value. In this paper, the chemical composition, pharmacological effects, compatibility analysis, clinical application and classic ancient prescriptions of antler are reviewed in recent years.
Biochemical mechanisms determine the functional compatibility of heterologous genes
DEFF Research Database (Denmark)
Porse, Andreas; Schou, Thea S.; Munck, Christian
2018-01-01
-gene libraries have suggested that sequence composition is a strong barrier for the successful integration of heterologous genes. Here we sample 200 diverse genes, representing >80% of sequenced antibiotic resistance genes, to interrogate the factors governing genetic compatibility in new hosts. In contrast...... factors governing the functionality and fitness of antibiotic resistance genes. These findings emphasize the importance of biochemical mechanism for heterologous gene compatibility, and suggest physiological constraints as a pivotal feature orienting the evolution of antibiotic resistance....
Nonclassical Symmetries for Nonlinear Partial Differential Equations via Compatibility
International Nuclear Information System (INIS)
El-Sabbagh, Mostafa F.; Ahmad, Ali T.
2011-01-01
The determining equations for the nonclassical symmetry reductions of nonlinear partial differential equations with arbitrary order can be obtained by requiring the compatibility between the original equations and the invariant surface conditions. The (2+1)-dimensional shallow water wave equation, Boussinesq equation, and the dispersive wave equations in shallow water serve as examples illustrating how compatibility leads quickly and easily to the determining equations for their nonclassical symmetries. (general)
Mechanical compatibility and stress analyses in composite materials
International Nuclear Information System (INIS)
Schimmoeller, H.; Ruge, J.
1976-01-01
This paper gives a short description of the problem of mechanical interactions and mechanical compatibility in composite bodies. The formation of stress-strain states, caused by the mechanical compatibility by bonding of the interfaces, is discussed. The difference between the continuous and discontinuous type of material transition in the interface is described. Flat laminated materials are at first considered. For this type of composite bodies thermal stresses and thermal residual stresses are elastically-plastically calculated. (orig.) [de
Discrete integrable systems and deformations of associative algebras
International Nuclear Information System (INIS)
Konopelchenko, B G
2009-01-01
Interrelations between discrete deformations of the structure constants for associative algebras and discrete integrable systems are reviewed. Theory of deformations for associative algebras is presented. Closed left ideal generated by the elements representing the multiplication table plays a central role in this theory. Deformations of the structure constants are generated by the deformation driving algebra and governed by the central system of equations. It is demonstrated that many discrete equations such as discrete Boussinesq equation, discrete WDVV equation, discrete Schwarzian KP and BKP equations, discrete Hirota-Miwa equations for KP and BKP hierarchies are particular realizations of the central system. An interaction between the theories of discrete integrable systems and discrete deformations of associative algebras is reciprocal and fruitful. An interpretation of the Menelaus relation (discrete Schwarzian KP equation), discrete Hirota-Miwa equation for KP hierarchy, consistency around the cube as the associativity conditions and the concept of gauge equivalence, for instance, between the Menelaus and KP configurations are particular examples.
Studies on compatibility of energetic materials by thermal methods
Directory of Open Access Journals (Sweden)
Maria Alice Carvalho Mazzeu
2010-04-01
Full Text Available The chemical compatibility of explosives, pyrotechnics and propellants with those materials is studied to evaluate potential hazards when in contact with other materials during production, storage and handling. Compatibility can be studied by several thermal methods as DSC (differential scanning calorimetry, TG (Thermogravimetry, VST (Vacuum stability test and others. The test methods and well defined criteria are the most important elements when a compatibility study is being accomplished. In this paper, the compatibility of two very important high explosives used in ammunition, RDX (Cyclo-1,3,5-trimethylene-2,4,6-trinitramine and HMX (Cyclotetramethylene tetranitramine was studied with the materials: fluoroelastomer (Viton and powdered aluminum (Al, using DSC and VST methods. The criteria to judge the compatibility between materials is based on a standardization agreement (STANAG 4147, 2001, and the final conclusion is that explosives and this materials are compatible, but in DSC it was observed that the peak of decomposition temperature of the admixture of RDX with Al decreased in 3º C and another peak appeared after the decomposition peak.
Coproduction of detergent compatible bacterial enzymes and stain removal evaluation.
Niyonzima, Francois N; More, Sunil S
2015-10-01
Most of the detergents that are presently produced contain the detergent compatible enzymes to improve and accelerate the washing performance by removing tough stains. The process is environment friendly as the use of enzymes in the detergent formulation reduces the utilization of toxic detergent constituents. The current trend is to use the detergent compatible enzymes that are active at low and ambient temperature in order to save energy and maintain fabric quality. As the detergent compatible bacterial enzymes are used together in the detergent formulation, it is important to co-produce the detergent enzymes in a single fermentation medium as the enzyme stability is assured, and production cost gets reduced enormously. The review reports on the production, purification, characterization and application of detergent compatible amylases, lipases, and proteases are available. However, there is no specific review or minireview on the concomitant production of detergent compatible amylases, lipases, and proteases. In this minireview, the coproduction of detergent compatible enzymes by bacterial species, enzyme stability towards detergents and detergent components, and stain release analysis were discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
International Nuclear Information System (INIS)
Xu Quan; Tian Qiang
2013-01-01
Using numerical method, we investigate whether periodic, quasiperiodic, and chaotic breathers are supported by the two-dimensional discrete Fermi—Pasta—Ulam (FPU) lattice with linear dispersion term. The spatial profile and time evolution of the two-dimensional discrete β-FPU lattice are segregated by the method of separation of variables, and the numerical simulations suggest that the discrete breathers (DBs) are supported by the system. By introducing a periodic interaction into the linear interaction between the atoms, we achieve the coupling of two incommensurate frequencies for a single DB, and the numerical simulations suggest that the quasiperiodic and chaotic breathers are supported by the system, too. (condensed matter: structural, mechanical, and thermal properties)
Martin, D. F.; Cornford, S. L.; Schwartz, P.; Bhalla, A.; Johansen, H.; Ng, E.
2017-12-01
Correctly representing grounding line and calving-front dynamics is of fundamental importance in modeling marine ice sheets, since the configuration of these interfaces exerts a controlling influence on the dynamics of the ice sheet. Traditional ice sheet models have struggled to correctly represent these regions without very high spatial resolution. We have developed a front-tracking discretization for grounding lines and calving fronts based on the Chombo embedded-boundary cut-cell framework. This promises better representation of these interfaces vs. a traditional stair-step discretization on Cartesian meshes like those currently used in the block-structured AMR BISICLES code. The dynamic adaptivity of the BISICLES model complements the subgrid-scale discretizations of this scheme, producing a robust approach for tracking the evolution of these interfaces. Also, the fundamental discontinuous nature of flow across grounding lines is respected by mathematically treating it as a material phase change. We present examples of this approach to demonstrate its effectiveness.
A necessary condition for dispersal driven growth of populations with discrete patch dynamics.
Guiver, Chris; Packman, David; Townley, Stuart
2017-07-07
We revisit the question of when can dispersal-induced coupling between discrete sink populations cause overall population growth? Such a phenomenon is called dispersal driven growth and provides a simple explanation of how dispersal can allow populations to persist across discrete, spatially heterogeneous, environments even when individual patches are adverse or unfavourable. For two classes of mathematical models, one linear and one non-linear, we provide necessary conditions for dispersal driven growth in terms of the non-existence of a common linear Lyapunov function, which we describe. Our approach draws heavily upon the underlying positive dynamical systems structure. Our results apply to both discrete- and continuous-time models. The theory is illustrated with examples and both biological and mathematical conclusions are drawn. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Schutte, Anne R; Spencer, John P
2007-04-01
The timed-initiation paradigm developed by Ghez and colleagues (1997) has revealed two modes of motor planning: continuous and discrete. Continuous responding occurs when targets are separated by less than 60 degrees of spatial angle, and discrete responding occurs when targets are separated by greater than 60 degrees . Although these two modes are thought to reflect the operation of separable strategic planning systems, a new theory of movement preparation, the Dynamic Field Theory, suggests that two modes emerge flexibly from the same system. Experiment 1 replicated continuous and discrete performance using a task modified to allow for a critical test of the single system view. In Experiment 2, participants were allowed to correct their movements following movement initiation (the standard task does not allow corrections). Results showed continuous planning performance at large and small target separations. These results are consistent with the proposal that the two modes reflect the time-dependent "preshaping" of a single planning system.
High-order solution methods for grey discrete ordinates thermal radiative transfer
Energy Technology Data Exchange (ETDEWEB)
Maginot, Peter G., E-mail: maginot1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Ragusa, Jean C., E-mail: jean.ragusa@tamu.edu [Department of Nuclear Engineering, Texas A& M University, College Station, TX 77843 (United States); Morel, Jim E., E-mail: morel@tamu.edu [Department of Nuclear Engineering, Texas A& M University, College Station, TX 77843 (United States)
2016-12-15
This work presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation is accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.
DEFF Research Database (Denmark)
Borregaard, Michael Krabbe; Hendrichsen, Ditte Katrine; Nachman, Gøsta Støger
2008-01-01
, depending on the nature of intraspecific interactions between them: while the individuals of some species repel each other and partition the available area, others form groups of varying size, determined by the fitness of each group member. The spatial distribution pattern of individuals again strongly......Living organisms are distributed over the entire surface of the planet. The distribution of the individuals of each species is not random; on the contrary, they are strongly dependent on the biology and ecology of the species, and vary over different spatial scale. The structure of whole...... populations reflects the location and fragmentation pattern of the habitat types preferred by the species, and the complex dynamics of migration, colonization, and population growth taking place over the landscape. Within these, individuals are distributed among each other in regular or clumped patterns...
DEFF Research Database (Denmark)
Reeh, Henrik
2012-01-01
Spatial Culture – A Humanities Perspective Abstract of introductory essay by Henrik Reeh Secured by alliances between socio-political development and cultural practices, a new field of humanistic studies in spatial culture has developed since the 1990s. To focus on links between urban culture...... and modern society is, however, an intellectual practice which has a much longer history. Already in the 1980s, the debate on the modern and the postmodern cited Paris and Los Angeles as spatio-cultural illustrations of these major philosophical concepts. Earlier, in the history of critical studies, the work...... Foucault considered a constitutive feature of 20th-century thinking and one that continues to occupy intellectual and cultural debates in the third millennium. A conceptual framework is, nevertheless, necessary, if the humanities are to adequa-tely address city and space – themes that have long been...
Discretized kinetic theory on scale-free networks
Bertotti, Maria Letizia; Modanese, Giovanni
2016-10-01
The network of interpersonal connections is one of the possible heterogeneous factors which affect the income distribution emerging from micro-to-macro economic models. In this paper we equip our model discussed in [1, 2] with a network structure. The model is based on a system of n differential equations of the kinetic discretized-Boltzmann kind. The network structure is incorporated in a probabilistic way, through the introduction of a link density P(α) and of correlation coefficients P(β|α), which give the conditioned probability that an individual with α links is connected to one with β links. We study the properties of the equations and give analytical results concerning the existence, normalization and positivity of the solutions. For a fixed network with P(α) = c/α q , we investigate numerically the dependence of the detailed and marginal equilibrium distributions on the initial conditions and on the exponent q. Our results are compatible with those obtained from the Bouchaud-Mezard model and from agent-based simulations, and provide additional information about the dependence of the individual income on the level of connectivity.
2014-09-18
Approach to DOT GPS Adjacent Band Compatibility Assessment. Identify forums and provide public outreach to make sure the progress and work are as open and transparent as possible. Develop an implementation plan that incorporates aspects from the DOT ...
Coding Model and Mapping Method of Spherical Diamond Discrete Grids Based on Icosahedron
Directory of Open Access Journals (Sweden)
LIN Bingxian
2016-12-01
Full Text Available Discrete Global Grid(DGG provides a fundamental environment for global-scale spatial data's organization and management. DGG's encoding scheme, which blocks coordinate transformation between different coordination reference frames and reduces the complexity of spatial analysis, contributes a lot to the multi-scale expression and unified modeling of spatial data. Compared with other kinds of DGGs, Diamond Discrete Global Grid(DDGG based on icosahedron is beneficial to the spherical spatial data's integration and expression for much better geometric properties. However, its structure seems more complicated than DDGG on octahedron due to its initial diamond's edges cannot fit meridian and parallel. New challenges are posed when it comes to the construction of hierarchical encoding system and mapping relationship with geographic coordinates. On this issue, this paper presents a DDGG's coding system based on the Hilbert curve and designs conversion methods between codes and geographical coordinates. The study results indicate that this encoding system based on the Hilbert curve can express space scale and location information implicitly with the similarity between DDG and planar grid put into practice, and balances efficiency and accuracy of conversion between codes and geographical coordinates in order to support global massive spatial data's modeling, integrated management and all kinds of spatial analysis.
Földes, Noémi; Philipp, Andrea M; Badets, Arnaud; Koch, Iring
2018-05-01
The ideomotor principle states that actions are represented by their anticipated sensory effects. This notion is often tested using the response-effect compatibility (REC) paradigm, where participants' responses are followed either by a compatible or incompatible response effect (e.g., an effect on the right side after a right-hand response is considered R-E compatible due to the spatial overlap, whereas an effect on the left side after the right-hand response is considered incompatible). Shorter reaction times are typically observed in the compatible condition compared to the incompatible condition (i.e., REC effect), suggesting that effect anticipation plays a role in action control. Previous evidence from verbal REC suggested that effect anticipation can be due to conceptual R-E overlap, but there was also phonological overlap (i.e., anticipated reading of a word preceded by the vocal response of saying that very word). To examine the representational basis of REC, in three experiments, we introduced a bilingual R-E mapping to exclude phonological R-E overlap (i.e., in the R-E compatible condition, the translation equivalent of the response word is presented as an effect word in a different language). Our findings show that the REC effect is obtained when presenting the effect word in the same language as the response (i.e., monolingual condition), but the compatibility effect was not found when the semantically same word is presented in a different language, suggesting no conceptually generalized REC in a bilingual setting. (232 words). Copyright © 2018 Elsevier B.V. All rights reserved.
Applying Spatial-Temporal Model and Game Theory to Asymmetric Threat Prediction
National Research Council Canada - National Science Library
Wei, Mo; Chen, Genshe; Cruz, Jr., Jose B; Haynes, Leonard; Kruger, Martin
2007-01-01
.... In most Command and Control "C2" applications, the existing techniques, such as spatial-temporal point models for ECOA prediction or Discrete Choice Model "DCM", assume that insurgent attack features...
Adaptive discrete cosine transform coding algorithm for digital mammography
Baskurt, Atilla M.; Magnin, Isabelle E.; Goutte, Robert
1992-09-01
The need for storage, transmission, and archiving of medical images has led researchers to develop adaptive and efficient data compression techniques. Among medical images, x-ray radiographs of the breast are especially difficult to process because of their particularly low contrast and very fine structures. A block adaptive coding algorithm based on the discrete cosine transform to compress digitized mammograms is described. A homogeneous repartition of the degradation in the decoded images is obtained using a spatially adaptive threshold. This threshold depends on the coding error associated with each block of the image. The proposed method is tested on a limited number of pathological mammograms including opacities and microcalcifications. A comparative visual analysis is performed between the original and the decoded images. Finally, it is shown that data compression with rather high compression rates (11 to 26) is possible in the mammography field.
A discrete ordinate response matrix method for massively parallel computers
International Nuclear Information System (INIS)
Hanebutte, U.R.; Lewis, E.E.
1991-01-01
A discrete ordinate response matrix method is formulated for the solution of neutron transport problems on massively parallel computers. The response matrix formulation eliminates iteration on the scattering source. The nodal matrices which result from the diamond-differenced equations are utilized in a factored form which minimizes memory requirements and significantly reduces the required number of algorithm utilizes massive parallelism by assigning each spatial node to a processor. The algorithm is accelerated effectively by a synthetic method in which the low-order diffusion equations are also solved by massively parallel red/black iterations. The method has been implemented on a 16k Connection Machine-2, and S 8 and S 16 solutions have been obtained for fixed-source benchmark problems in X--Y geometry
Improved stochastic approximation methods for discretized parabolic partial differential equations
Guiaş, Flavius
2016-12-01
We present improvements of the stochastic direct simulation method, a known numerical scheme based on Markov jump processes which is used for approximating solutions of ordinary differential equations. This scheme is suited especially for spatial discretizations of evolution partial differential equations (PDEs). By exploiting the full path simulation of the stochastic method, we use this first approximation as a predictor and construct improved approximations by Picard iterations, Runge-Kutta steps, or a combination. This has as consequence an increased order of convergence. We illustrate the features of the improved method at a standard benchmark problem, a reaction-diffusion equation modeling a combustion process in one space dimension (1D) and two space dimensions (2D).