WorldWideScience

Sample records for comparing flexibility mechanisms

  1. Flexible solar-array mechanism

    Science.gov (United States)

    Olson, M. C.

    1972-01-01

    One of the key elements of the flexible rolled-up solar array system is a mechanism to deploy, retract, and store the flexible solar-cell arrays. The selection of components, the design of the mechanism assembly, and the tests that were performed are discussed. During 6 months in orbit, all mission objectives were satisfied, and inflight performance has shown good correlation with preflight analyses and tests.

  2. Measuring and Comparing Energy Flexibilities

    DEFF Research Database (Denmark)

    Valsomatzis, Emmanouil; Hose, Katja; Pedersen, Torben Bach

    2015-01-01

    Flexibility in energy supply and demand becomes more and more important with increasing Renewable Energy Sources (RES) production and the emergence of the Smart Grid. So-called prosumers, i.e., entities that produce and/or consume energy, can offer their inherent flexibilities through so......-called demand response and thus help stabilize the energy markets. Thus, prosumer flexibility becomes valuable and the ongoing Danish project TotalFlex [1] explores the use of prosumer flexibility in the energy market using the concept of a flex-offer [2], which captures energy flexibilities in time and...... induced by time and amount individually, and by their com- bination. To this end, we introduce several flexibility measures that take into account the combined effect of time and energy on flex-offer flexibility and discuss their respective pros and cons through a number of realistic examples....

  3. Method For Producing Mechanically Flexible Silicon Substrate

    KAUST Repository

    Hussain, Muhammad Mustafa

    2014-08-28

    A method for making a mechanically flexible silicon substrate is disclosed. In one embodiment, the method includes providing a silicon substrate. The method further includes forming a first etch stop layer in the silicon substrate and forming a second etch stop layer in the silicon substrate. The method also includes forming one or more trenches over the first etch stop layer and the second etch stop layer. The method further includes removing the silicon substrate between the first etch stop layer and the second etch stop layer.

  4. Mechanically Flexible Active Silicon Chips and Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Using innovative chip thinning technology married with recently available packaging technology, this effort will produce Mechanically Flexible Multifunctional Active...

  5. Robust disturbance rejection for flexible mechanical structures

    Science.gov (United States)

    Enzmann, Marc R.; Doeschner, Christian

    2000-06-01

    Topic of the presentation is a procedure to determine controller parameters using principles from Internal Model Control (IMC) in combination with Quantitative Feedback Theory (QFT) for robust vibration control of flexible mechanical structures. IMC design is based on a parameterization of all controllers that stabilize a given nominal plant, called the Q-parameter or Youla-parameter. It will be shown that it is possible to choose the controller structure and the Q- parameter in a very straightforward manner, so that a low order controller results, which stabilizes the given nominal model. Additional constraints can be implemented, so that the method allows for a direct and transparent trade-off between control performance and controller complexity and facilitates the inclusion of low-pass filters. In order to test (and if necessary augment) the inherent robust performance of the resulting controllers, boundaries based on the work of Kidron and Yaniv are calculated in the Nichols-Charts of the open loop and the complementary sensitivity function. The application of these boundaries is presented. Very simple uncertainty models for resonant modes are used to assess the robustness of the design. Using a simply structured plant as illustrative example we will demonstrate the design process. This will illuminate several important features of the design process, e.g. trade-off between conflicting objectives, trade- off between controller complexity and achievable performance.

  6. Curing mechanism of flexible aqueous polymeric coatings.

    Science.gov (United States)

    Irfan, Muhammad; Ahmed, Abid Riaz; Dashevskiy, Andriy; Kolter, Karl; Bodmeier, Roland

    2017-02-25

    The objective of this study was to explain curing phenomena for pellets coated with a flexible polymeric coating based on poly(vinyl acetate) (Kollicoat(®) SR 30D) with regard to the effect of starter cores, thickness of drug layer, adhesion of coating to drug-layered-cores as well as coating properties. In addition, appropriate approaches to eliminate the curing effect were identified. Sugar or MCC cores were layered with the model drugs carbamazepine, theophylline, propranolol HCl, tramadol HCl and metoprolol HCl using HPMC (5 or 25% w/w, based on drug) as a binder. Drug-layered pellets were coated with Kollicoat(®) SR 30D in a fluidized bed coater using TEC (10% w/w) as plasticizer and talc (35-100% w/w) as anti-tacking agent. Drug release, pellet properties (morphology, water uptake-weight loss and osmolality) and adhesion of the coating to the drug layer were investigated as a function of curing at 60 °C or 60 °C/75% RH for 24 h. The film formation of the aqueous dispersion of Kollicoat(®) SR 30D was complete, and therefore, a strong curing effect (decrease in drug release) at elevated temperature and humidity (60 °C/75% RH) could not be explained by the well-known hydroplasticization and the further gradual coalescence of the colloidal polymer particles. According to the provided mechanistic explanation, the observed curing effect was associated with 1) high flexibility of coating, 2) adhesion between coating and drug layer, 3) water retaining properties of the drug layer, and 4) osmotically active cores. Unwanted curing effects could be minimized/eliminated by the addition of talc or/and pore-forming water soluble polymers in the coating, increasing binder amount or applying an intermediate coating, by increasing the thickness of drug layer or using non-osmotic cores. A new insight into curing phenomena mainly associated with the adhesion between drug layer and coating was provided. Appropriate approaches to avoid unwanted curing effect were identified.

  7. Mechanism test bed. Flexible body model report

    Science.gov (United States)

    Compton, Jimmy

    1991-01-01

    The Space Station Mechanism Test Bed is a six degree-of-freedom motion simulation facility used to evaluate docking and berthing hardware mechanisms. A generalized rigid body math model was developed which allowed the computation of vehicle relative motion in six DOF due to forces and moments from mechanism contact, attitude control systems, and gravity. No vehicle size limitations were imposed in the model. The equations of motion were based on Hill's equations for translational motion with respect to a nominal circular earth orbit and Newton-Euler equations for rotational motion. This rigid body model and supporting software were being refined.

  8. Dynamic analysis and control of lightweight manipulators with flexible parallel link mechanisms

    Science.gov (United States)

    Lee, Jeh Won

    1991-01-01

    The flexible parallel link mechanism is designed for increased rigidity to sustain the buckling when it carries a heavy payload. Compared to a one link flexible manipulator, a two link flexible manipulator, especially the flexible parallel mechanism, has more complicated characteristics in dynamics and control. The objective of this research is the theoretical analysis and the experimental verification of dynamics and control of a two link flexible manipulator with a flexible parallel link mechanism. Nonlinear equations of motion of the lightweight manipulator are derived by the Lagrangian method in symbolic form to better understand the structure of the dynamic model. A manipulator with a flexible parallel link mechanism is a constrained dynamic system whose equations are sensitive to numerical integration error. This constrained system is solved using singular value decomposition of the constraint Jacobian matrix. The discrepancies between the analytical model and the experiment are explained using a simplified and a detailed finite element model. The step response of the analytical model and the TREETOPS model match each other well. The nonlinear dynamics is studied using a sinusoidal excitation. The actuator dynamic effect on a flexible robot was investigated. The effects are explained by the root loci and the Bode plot theoretically and experimentally. For the base performance for the advanced control scheme, a simple decoupled feedback scheme is applied.

  9. Melting mechanism in monolayers of flexible rod-shaped molecules

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Taub, H.

    1992-01-01

    mechanism for melting in monolayers of flexible rod-shaped molecules. Melting requires the formation of vacancies in the monolayer by molecular motion perpendicular to the surface. This ‘‘footprint reduction’’ mechanism implies that strictly two-dimensional theories of melting are inapplicable...

  10. Mechanically flexible optically transparent porous mono-crystalline silicon substrate

    KAUST Repository

    Rojas, Jhonathan Prieto

    2012-01-01

    For the first time, we present a simple process to fabricate a thin (≥5μm), mechanically flexible, optically transparent, porous mono-crystalline silicon substrate. Relying only on reactive ion etching steps, we are able to controllably peel off a thin layer of the original substrate. This scheme is cost favorable as it uses a low-cost silicon <100> wafer and furthermore it has the potential for recycling the remaining part of the wafer that otherwise would be lost and wasted during conventional back-grinding process. Due to its porosity, it shows see-through transparency and potential for flexible membrane applications, neural probing and such. Our process can offer flexible, transparent silicon from post high-thermal budget processed device wafer to retain the high performance electronics on flexible substrates. © 2012 IEEE.

  11. Flexibility.

    Science.gov (United States)

    Humphrey, L. Dennis

    1981-01-01

    Flexibility is an important aspect of all sports and recreational activities. Flexibility can be developed and maintained by stretching exercises. Exercises designed to develop flexibility in ankle joints, knees, hips, and the lower back are presented. (JN)

  12. Mechanisms behind the metabolic flexibility of an invasive comb jelly

    DEFF Research Database (Denmark)

    Augustine, Starrlight; Jaspers, Cornelia; Kooijman, Sebastiaan A. L.M.;

    2014-01-01

    . Intriguingly, the onset of the acceleration appears to be delayed and the data do not yet exist which allows determining what actually triggers it. It is hypothesised that this delay confers a lot of metabolic flexibility by controlling generation time. We compared the DEB model parameters for this species...

  13. A flexible navigation mechanism for complex data models

    Directory of Open Access Journals (Sweden)

    Oleg Burlaca

    2010-07-01

    Full Text Available The paper presents a way to build flexible navigation tools over a big dataset of well structured data models. The mechanism is underpinned by a search engine that is used to slice and dice the database. By applying a series of consecutive groupings, the result of a search query can be organized in a hierarchical structure and browsed using traditional user interface controls.

  14. Flexible Mechanical Conveyors for Regolith Extraction and Transport

    Science.gov (United States)

    Walton, Otis R.; Vollmer, Hubert J.

    2013-01-01

    A report describes flexible mechanical conveying systems for transporting fine cohesive regolith under microgravity and vacuum conditions. They are totally enclosed, virtually dust-free, and can include enough flexibility in the conveying path to enable an expanded range of extraction and transport scenarios, including nonlinear drill-holes and excavation of enlarged subsurface openings without large entry holes. The design of the conveyors is a modification of conventional screw conveyors such that the central screw-shaft and the outer housing or conveyingtube have a degree of bending flexibility, allowing the conveyors to become nonlinear conveying systems that can convey around gentle bends. The central flexible shaft is similar to those used in common tools like a weed whacker, consisting of multiple layers of tightly wound wires around a central wire core. Utilization of compliant components (screw blade or outer wall) increases the robustness of the conveying, allowing an occasional oversized particle to pass hough the conveyor without causing a jam or stoppage

  15. Kinematic analysis of a flexible six-DOF parallel mechanism.

    Science.gov (United States)

    Jing, Feng-Shui; Tan, Min; Hou, Zeng-Guang; Liang, Zi-Ze; Wang, Yun-Kuan; Gupta, Madan M; Nikiforuk, Peter N

    2006-04-01

    In this paper, a new type of six-degrees of freedom (DOF) flexible parallel mechanism (FPM) is presented. This type of parallel mechanism possesses several favorable properties: (1) its number of DOFs is independent of the number of serial chains which make up the mechanism; (2) it has no kinematical singularities; (3) it is designed to move on rails, and therefore its workspace is much larger than that of a conventional parallel manipulator; and (4) without changing the number of DOFs and the kinematics of the mechanisms, the number of the serial chains can be reconfigured according to the needs of the tasks. These properties make the mechanism very preferable in practice, especially for such tasks as joining huge ship blocks, in which the manipulated objects vary dramatically both in weights and dimensions. Furthermore, the mechanism can be used as either a fully actuated system or an underactuated system. In the fully actuated case, the mechanism has six DOF motion capabilities and manipulation capabilities. However, in the underactuated case, the mechanism still has six DOF motion capabilities, but it has only five DOF manipulation capabilities. In this paper, both the inverse and forward kinematics are studied and expressed in a closed form. The workspace and singularity analysis of the mechanism are also presented. An example is presented to illustrate how to calculate the kinematics of the mechanism in both fully-actuated and underactuated cases. Finally, an application of such a mechanism to manufacturing industry is introduced.

  16. Working Mechanism for Flexible Perovskite Solar Cells with Simplified Architecture.

    Science.gov (United States)

    Xu, Xiaobao; Chen, Qi; Hong, Ziruo; Zhou, Huanping; Liu, Zonghao; Chang, Wei-Hsuan; Sun, Pengyu; Chen, Huajun; De Marco, Nicholas; Wang, Mingkui; Yang, Yang

    2015-10-14

    In this communication, we report an efficient and flexible perovskite solar cell based on formamidinium lead trihalide (FAPbI3) with simplified configuration. The device achieved a champion efficiency of 12.70%, utilizing direct contact between metallic indium tin oxide (ITO) electrode and perovskite absorber. The underlying working mechanism is proposed subsequently, via a systematic investigation focusing on the heterojunction within this device. A significant charge storage has been observed in the perovskite, which is believed to generate photovoltage and serves as the driving force for charge transferring from the absorber to ITO electrode as well. More importantly, this simplified device structure on flexible substrates suggests its compatibility for scale-up fabrication, which paves the way for commercialization of perovskite photovoltaic technology.

  17. Randomized trial comparing office flexible to rigid cystoscopy in women.

    Science.gov (United States)

    Quiroz, Lieschen H; Shobeiri, S Abbas; Nihira, Mikio A; Brady, Jordan; Wild, Robert A

    2012-11-01

    The objective of the study was to compare office rigid cystoscopy (RC) versus flexible cystoscopy (FC) in women. This was a prospective randomized trial comparing FC to RC. Aims were to assess 1-week post-procedural complications, compare procedure pain scores, and to assess physician perception of patient discomfort. Pain scores were assessed by visual analogue scale (VAS) and 5-point verbal descriptor scale (VDS). Chi-square was used for categorical comparison and t tests or Wilcoxon test for continuous variables. One hundred women were enrolled. The mean age of participants was 59.7 years (± SD 14.6), and 91 % were Caucasian. This was the first cystoscopy for 86 % of participants. On the 1-week post-procedure questionnaire (85 % response rate), participants in the FC group reported urinary frequency more often than in the RC group (p = 0.041). The FC group reported urgency with urination lasting 1-2 days (p = 0.030) and burning with urination lasting >3 days (p = 0.026), more than the RC group. These symptoms did not persist at 7 days. The duration of the procedure was slightly faster for the FC group (4.6 ± 1.8 min vs 5.7 ± 3.4 min, p = 0.046). Median VAS scores were 0.9 (0.1-2.72) for the FC group and 0.5 (0-2.4) for the RC group (p = 0.505). There were no significant differences between patient or physician perception of pain in either group. Urinary frequency and duration of urinary burning post procedure occurred more frequently in the FC group, although these symptoms were transient. Both office FC and RC are generally well tolerated in women with overall low morbidity.

  18. Mechanisms and Materials of Flexible and Stretchable Skin Sensors

    Directory of Open Access Journals (Sweden)

    Yicong Zhao

    2017-02-01

    Full Text Available Wearable technology has attracted significant public attention and has generated huge societal and economic impact, leading to changes of both personal lifestyles and formats of healthcare. An important type of devices in wearable technology is flexible and stretchable skin sensors used primarily for biophysiological signal sensing and biomolecule analysis on skin. These sensors offer mechanical compatibility to human skin and maximum compliance to skin morphology and motion, demonstrating great potential as promising alternatives to current wearable electronic devices based on rigid substrates and packages. The mechanisms behind the design and applications of these sensors are numerous, involving profound knowledge about the physical and chemical properties of the sensors and the skin. The corresponding materials are diverse, featuring thin elastic films and unique stretchable structures based on traditional hard or ductile materials. In addition, the fabrication techniques that range from complementary metal-oxide semiconductor (CMOS fabrication to innovative additive manufacturing have led to various sensor formats. This paper reviews mechanisms, materials, fabrication techniques, and representative applications of flexible and stretchable skin sensors, and provides perspective of future trends of the sensors in improving biomedical sensing, human machine interfacing, and quality of life.

  19. Male and female runners demonstrate different sagittal plane mechanics as a function of static hamstring flexibility

    Directory of Open Access Journals (Sweden)

    D. S. Blaise Williams III

    2015-10-01

    Full Text Available ABSTRACTBackground:Injuries to runners are common. However, there are many potential contributing factors to injury. While lack of flexibility alone is commonly related to injury, there are clear differences in hamstring flexibility between males and females.Objective: To compare the effect of static hamstring length on sagittal plane mechanics between male and female runners.Method: Forty subjects (30.0±6.4 years participated and were placed in one of 4 groups: flexible males (n=10, inflexible males (n=10, flexible females (n=10, and inflexible females (n=10. All subjects were free of injury at the time of data collection. Three-dimensional kinematics and kinetics were collected while subjects ran over ground across 2 force platforms. Sagittal plane joint angles and moments were calculated at the knee and hip and compared with a 2-way (sex X flexibility ANOVA (α=0.05.Results: Males exhibited greater peak knee extension moment than females (M=2.80±0.47, F=2.48±0.52 Nm/kg*m, p=0.05 and inflexible runners exhibited greater peak knee extension moment than flexible runners (In=2.83±0.56, Fl=2.44±0.51 Nm/kg*m, p=0.01. For hip flexion at initial contact, a significant interaction existed (p<0.05. Flexible females (36.7±7.4º exhibited more hip flexion than inflexible females (27.9±4.6º, p<0.01 and flexible males (30.1±9.5º, p<0.05. No differences existed for knee angle at initial contact, peak knee angle, peak hip angle, or peak hip moment.Conclusion: Hamstring flexibility results in different mechanical profiles in males and females. Flexibility in the hamstrings may result in decreased moments via active or passive tension. These differences may have implications for performance and injury in flexible female runners.

  20. Understanding the Effects of Electrode Formulation on the Mechanical Strength of Composite Electrodes for Flexible Batteries.

    Science.gov (United States)

    Gaikwad, Abhinav M; Arias, Ana Claudia

    2017-02-22

    Flexible lithium-ion batteries are necessary for powering the next generation of wearable electronic devices. In most designs, the mechanical flexibility of the battery is improved by reducing the thickness of the active layers, which in turn reduces the areal capacity and energy density of the battery. The performance of a battery depends on the electrode composition, and in most flexible batteries, standard electrode formulation is used, which is not suitable for flexing. Even with considerable efforts made toward the development of flexible lithium-ion batteries, the formulation of the electrodes has received very little attention. In this study, we investigate the relation between the electrode formulation and the mechanical strength of the electrodes. Peel and drag tests are used to compare the adhesion and cohesion strength of the electrodes. The strength of an electrode is sensitive to the particle size and the choice of polymeric binder. By optimizing the electrode composition, we were able to fabricate a high areal capacity (∼2 mAh/cm(2)) flexible lithium-ion battery with conventional metal-based current collectors that shows superior electrochemical and mechanical performance in comparison to that of batteries with standard composition.

  1. Mechanical Flexibility Reduces the Foreign Body Response to Long-Term Implanted Microelectrodes in Rabbit Cortex

    Science.gov (United States)

    Sohal, Harbaljit S.; Clowry, Gavin J.

    2016-01-01

    Micromotion between the brain and implanted electrodes is a major contributor to the failure of invasive microelectrodes. Movements of the electrode tip cause recording instabilities while spike amplitudes decline over the weeks/months post-implantation due to glial cell activation caused by sustained mechanical trauma. We compared the glial response over a 26–96 week period following implantation in the rabbit cortex of microwires and a novel flexible electrode. Horizontal sections were used to obtain a depth profile of the radial distribution of microglia, astrocytes and neurofilament. We found that the flexible electrode was associated with decreased gliosis compared to the microwires over these long indwelling periods. This was in part due to a decrease in overall microgliosis and enhanced neuronal density around the flexible probe, especially at longer periods of implantation. PMID:27788240

  2. A COMPARATIVE STUDY ON EFFECTIVENESS OF STATIC STRETCH AND HOLD RELAX TECHNIQUES OVER HAMSTRING FLEXIBILITY

    Directory of Open Access Journals (Sweden)

    N. Vamsidhar

    2014-12-01

    Full Text Available Background: Flexibility is important in prevention of injury, muscular and postural imbalance more over the Hamstring flexibility has a lion share in sports performances and preventing DOMS. Stretching procedures increases the ROM by embarking on biomechanics and Neurologic and molecular mechanics. Hamstrings, the two joint muscle plays a crucial role in two joints integrity and also spine as they are in closed kinematic chain. The hamstring muscles represent the primary flexors of Knee. Hamstrings tightness results in Limits Knee extension when hip is flexed, Posterior Pelvic tilt, and flatten the lumbar spine. Methods: The subjects selected randomly and divided into two groups (Experimental group and control group.30 samples in One group applied with Static Stretch once a day for 3 repetitions 5 days a week for six weeks and 30 samples in other group applied with Hold relax technique once a day for 4 repetitions 5 days a week for six weeks. The knee joint range of motion was measured at the end of every week with Universal goniometer. Results: By comparing the means of Group – I, given Static Stretch and Group – II, given Hold relax Technique for six weeks implied that there is improvement of flexibility in Group – II and the ‘P’ value < 0.01 shows the difference is highly significant. Conclusion: This study concludes that the hold relax Technique method has proved to be better technique then the static stretch for improving hamstring flexibility.

  3. Modeling and Simulation of Flexible Transmission Mechanism with Multiclearance Joints for Ultrahigh Voltage Circuit Breakers

    Directory of Open Access Journals (Sweden)

    Fangang Meng

    2015-01-01

    Full Text Available The transmission mechanism, of which the dynamic characteristics determine the reliability of the circuit breaker, is the principal component of the ultrahigh voltage (UHV circuit breaker. The characteristics of transmission mechanism are quick motion, high sensibility, and high reliability. The transmission mechanism with multiclearance joints present strong no-linear vibration feature which strongly affects the reliability of the UHV circuit breaker. In this investigation, a planar rigid-flexible coupling model of the transmission mechanism considering the clearance joints and the flexibility of components is established by using ADAMS software. The dynamic contact model in clearance joints is performed, based on clearance vector model of clearance joint. Then, the reliability of the model is proved by means of comparing the results of experiments. The simulation results show that the dynamic response of the mechanism is greatly influenced by the clearance and the flexibility of components has a role of suspension for the mechanism. Moreover, the influence of the clearance size, input speed, and number of clearance joints on the dynamic characteristics of the mechanism are also investigated.

  4. Dynamic Model of a Rotating Flexible Arm-Flexible Root Mechanism Driven by a Shaft Flexible in Torsion

    Directory of Open Access Journals (Sweden)

    S.Z. Ismail

    2006-01-01

    Full Text Available This paper presents a dynamic model of a rotating flexible beam carrying a payload at its tip. The model accounts for the driving shaft and the arm root flexibilities. The finite element method and the Lagrangian dynamics are used in deriving the equations of motion with the small deformation theory assumptions and the Euler-Bernoulli beam theory. The obtained model is a nonlinear-coupled system of differential equations. The model is simulated for different combinations of shaft and root flexibilities and arm properties. The simulation results showed that the root flexibility is an important factor that should be considered in association with the arm and shaft flexibilities, as its dynamics influence the motor motion. Moreover, the effect of system non-linearity on the dynamic behavior is investigated by simulating the equivalent linearized system and it was found to be an important factor that should be considered, particularly when designing a control strategy for practical implementation.

  5. Flexible Elements in the Mechanisms of Weaving Machines

    Science.gov (United States)

    Žák, J.

    Weaving machines use several mechanisms to produce a fabric; their relative (mutual) position is exactly defined at any point of working cycle and must be maintained as accurately as possible. From that, it results some requirements on their design, such as stiffness of the joint frame, synchronization of their drives, accuracy and stiffness of particular links of those mechanisms and minimization of the clearances between them. In this paper, we have attempted to outline the possibility of replacing the binary links by using the flexible mechanism elements. In this step, we always removed one rotary constraint at least which is necessary when using a binary link, i.e., a rod, pitman or connecting rod. In practice, it means reducing the number of bearings which have a limited service life, require maintenance and when using them we cannot avoid the formation of clearances. In the case of a slay of the CAMEL weaving machine, it was furthermore possible to use the deformation energy to a relief of the drive, its better regulation and an overall reduction of energy consumption. Although this procedure is not subject to the use of special materials, there can be advantageously used fiber composites whose certain features make the design of such mechanisms easy to a great extent.

  6. Comparative void-volume analysis of psychrophilic and mesophilic enzymes: Structural bioinformatics of psychrophilic enzymes reveals sources of core flexibility

    Directory of Open Access Journals (Sweden)

    Bystroff Christopher

    2011-10-01

    Full Text Available Abstract Background Psychrophiles, cold-adapted organisms, have adapted to live at low temperatures by using a variety of mechanisms. Their enzymes are active at cold temperatures by being structurally more flexible than mesophilic enzymes. Even though, there are some indications of the possible structural mechanisms by which psychrophilic enzymes are catalytic active at cold temperatures, there is not a generalized structural property common to all psychrophilic enzymes. Results We examine twenty homologous enzyme pairs from psychrophiles and mesophiles to investigate flexibility as a key characteristic for cold adaptation. B-factors in protein X-ray structures are one way to measure flexibility. Comparing psychrophilic to mesophilic protein B-factors reveals that psychrophilic enzymes are more flexible in 5-turn and strand secondary structures. Enzyme cavities, identified using CASTp at various probe sizes, indicate that psychrophilic enzymes have larger average cavity sizes at probe radii of 1.4-1.5 Å, sufficient for water molecules. Furthermore, amino acid side chains lining these cavities show an increased frequency of acidic groups in psychrophilic enzymes. Conclusions These findings suggest that embedded water molecules may play a significant role in cavity flexibility, and therefore, overall protein flexibility. Thus, our results point to the important role enzyme flexibility plays in adaptation to cold environments.

  7. Job flexibility in Latin America: A comparative analysis

    Directory of Open Access Journals (Sweden)

    Manuel Alejandro Ibarra Cisneros

    2010-01-01

    Full Text Available Most of studies about labor flexibility show a partial image of the situation of Latin America labor markets. They are limited to confirm, the existence of high degrees of rigidity and the necessity to conduct labor reforms to the margin of specific national circumstances. The design of a synthetic labor rigidity indicator using methodology considered by the oecd, through a factor analysis for countries of IberoAmerica, allows obtaining certain advances in relation to this debate. The results establish the high importance of the rigidity in the procedures of collective dismissal, over normative aspects related to fixed term contracts. Finally, it is establish the little relation between flexibility levels and results in terms of economic development, putting into question the assertions that try to extrapolate strategies of flexibilization like isolated measurement to facilitate the economic progress of a country.

  8. Effect of Thermal Crosslink Conditions on Dynamic Mechanical Behaviors of Flexible Epoxy

    Institute of Scientific and Technical Information of China (English)

    DAI Ping; WANG Yanbing; HUANG Zhixiong

    2008-01-01

    The dynamic mechanical behavior of a new kind of flexible epoxy FE-1,which was crosslinked under four different thermal crosslink conditions,was studied.Dynamic mechanical measurement was carried out from 10 ℃ to 120 ℃,and loss factor,tan δ and the storage modulus as functions of temperature were presented under five different frequencies of 0.1 Hz,1 Hz,5 Hz,50 Hz and 100 Hz.The experimental results show that temperature has dramatic effects on the dynamic mechanical behavior of flexible epoxy.Compared with other common available epoxy,the flexible epoxy has higher loss factor over broad frequency and common temperature range.Activation energy corresponding to glass transition process of FE-1 was calculated from the temperature corresponding to tan δmax values,obtained at different measurement frequencies.The maximum value of loss factor is 0.75 and the Tg varies from 6 ℃ to 50 ℃,indicating the flexible epoxy can be used as damping polymer materials at common temperature or frequency range.

  9. Empirical prediction of mechanical properties of flexible pavement through GPR

    Science.gov (United States)

    Bianchini Ciampoli, Luca; Benedetto, Andrea

    2017-04-01

    To date, it is well known that the frequency of accidental events recorded on a road, is related to the deterioration rate of its pavement. In this sense, the monitoring of the pavement health over a road network is a crucial task for the administrations, to define a priority scale for maintenance works, and accordingly to lower the risk of accidents. Several studies suggest the possibility to employ Ground-penetrating Radar (GPR) to overcome the limits of traditional bearing tests, which due to their low productivity and high costs, can only give a discrete knowledge about the strength of the pavement. This work presents a GPR-based empirical model for the prediction of the bearing capacity of a road pavement, expressed as Young's Modulus. The model exploits the GPR to extract information on the thickness of the base course and the clay content, by referring to the signal velocity and attenuation, respectively. To test the effectiveness of the model, experimental activities have been accounted for. In particular, multi-frequency GPR tests have been performed along road sections of rural roads, composed of a flexible pavement, for a total of 45 Km. As ground-truth, light falling weight deflectometer (LFWD) and Curviameter have been employed. Both the electromagnetic and the mechanical datasets have been properly processed, in order to reduce misinterpretations and to raise the statistical significance of the procedure. Hence, the calibration of the parameters composing the model was run in a subsection, equal to 8% of the total length, randomly selected within the surveyed track. Finally, as validation, the model has been applied to the whole analysed dataset. As a result, the empirical model showed a good effectiveness in predicting the mechanical response of the pavement, with a normalised root mean squared deviation equal to 0.27. Finally, by averaging the measured and predicted mechanical data every 50 m and sorting the results into strength classes, a

  10. Book Review: The Political Economy of Work Security and Flexibility. Italy in Comparative Perspective

    DEFF Research Database (Denmark)

    Leschke, Janine

    2013-01-01

    Review of F.. Berton, M Richiardi, S. Sacchi: The Political Economy of Work Security and Flexibility: Italy in Comparative Perspective. Policy Press: Bristol, 2012. 190 pp.......Review of F.. Berton, M Richiardi, S. Sacchi: The Political Economy of Work Security and Flexibility: Italy in Comparative Perspective. Policy Press: Bristol, 2012. 190 pp....

  11. Mechanically flexible nanoscale silicon integrated circuits powered by photovoltaic energy harvesters

    Science.gov (United States)

    Shahrjerdi, D.; Bedell, S. W.; Khakifirooz, A.; Cheng, K.

    2016-03-01

    In this work, we demonstrate mechanically flexible extremely thin silicon on insulator (ETSOI) ring oscillators with a stage delay of ∼16 ps at a power supply voltage of 0.9 V. Extensive electrical analyses of the flexible ETSOI devices reveal the unchanged properties of the devices during the layer transfer process. Furthermore, we discuss the use of flexible silicon and gallium arsenide photovoltaic energy harvesters for powering flexible ETSOI ring oscillators under different illumination conditions. Our results illustrate innovative pathways for the implementation of optically powered flexible ETSOI technology in future flexible hybrid electronics.

  12. Flexible, Mechanically Durable Aerogel Composites for Oil Capture and Recovery.

    Science.gov (United States)

    Karatum, Osman; Steiner, Stephen A; Griffin, Justin S; Shi, Wenbo; Plata, Desiree L

    2016-01-13

    More than 30 years separate the two largest oil spills in North American history (the Ixtoc I and Macondo well blowouts), yet the responses to both disasters were nearly identical in spite of advanced material innovation during the same time period. Novel, mechanically durable sorbents could enable (a) sorbent use in the open ocean, (b) automated deployment to minimize workforce exposure to toxic chemicals, and (c) mechanical recovery of spilled oils. Here, we explore the use of two mechanically durable, low-density (0.1-0.2 g cm(-3)), highly porous (85-99% porosity), hydrophobic (water contact angles >120°), flexible aerogel composite blankets as sorbent materials for automated oil capture and recovery: Cabot Thermal Wrap (TW) and Aspen Aerogels Spaceloft (SL). Uptake of crude oils (Iraq and Sweet Bryan Mound oils) was 8.0 ± 0.1 and 6.5 ± 0.3 g g(-1) for SL and 14.0 ± 0.1 and 12.2 ± 0.1 g g(-1) for TW, respectively, nearly twice as high as similar polyurethane- and polypropylene-based devices. Compound-specific uptake experiments and discrimination against water uptake suggested an adsorption-influenced sorption mechanism. Consistent with that mechanism, chemical extraction oil recoveries were 95 ± 2 (SL) and 90 ± 2% (TW), but this is an undesirable extraction route in decentralized oil cleanup efforts. In contrast, mechanical extraction routes are favorable, and a modest compression force (38 N) yielded 44.7 ± 0.5% initially to 42.0 ± 0.4% over 10 reuse cycles for SL and initially 55.0 ± 0.1% for TW, degrading to 30.0 ± 0.2% by the end of 10 cycles. The mechanical integrity of SL deteriorated substantially (800 ± 200 to 80 ± 30 kPa), whereas TW was more robust (380 ± 80 to 700 ± 100 kPa) over 10 uptake-and-compression extraction cycles.

  13. National objectives and flexible mechanisms: A discussions report; Nationella maal och flexibla mekanismer: En diskussionsrapport

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Bengt

    2003-11-01

    The Swedish climate policy has the target that the national emissions of greenhouse gases should be reduced 4%, compared to the 1990 level. But according to the EU common policy in line with the Kyoto agreement, Sweden has the right to increase the emissions by 4%. The Kyoto obligations could also be fulfilled by acting through the flexible mechanisms. In the present report the following issues are discussed: Why did Sweden set so ambitious targets; How can you handle the interconnection between national targets and flexible mechanisms; Methods to determine the amounts of the emissions rights that should be allocated to the trading sectors; Are there alternative means for achieveing the targets that the national objectives have set.

  14. A supply chain contract with flexibility as a risk-sharing mechanism for demand forecasting

    Science.gov (United States)

    Kim, Whan-Seon

    2013-06-01

    Demand forecasting is one of the main causes of the bullwhip effect in a supply chain. As a countermeasure for demand uncertainty as well as a risk-sharing mechanism for demand forecasting in a supply chain, this article studies a bilateral contract with order quantity flexibility. Under the contract, the buyer places orders in advance for the predetermined horizons and makes minimum purchase commitments. The supplier, in return, provides the buyer with the flexibility to adjust the order quantities later, according to the most updated demand information. To conduct comparative simulations, four-echelon supply chain models, that employ the contracts and different forecasting techniques under dynamic market demands, are developed. The simulation outcomes show that demand fluctuation can be effectively absorbed by the contract scheme, which enables better inventory management and customer service. Furthermore, it has been verified that the contract scheme under study plays a role as an effective coordination mechanism in a decentralised supply chain.

  15. Dynamics, models, and mechanisms of the cognitive flexibility of preschoolers

    NARCIS (Netherlands)

    van Bers, B.M.C.W.

    2014-01-01

    Flexibility is a significant ability in the present rapidly changing society. In a novel situation or when circumstances change, one’s automatic inclinations provide no guidance, and conscious cognitive control is required. Cognitive flexibility is one of the component abilities that constitute cogn

  16. Highly flexible, mechanically robust superconducting wire consisting of NbN-carbon-nanotube nanofibril composites

    Science.gov (United States)

    Kim, Jeong-Gyun; Kang, Haeyong; Kim, Joonggyu; Lee, Young Hee; Suh, Dongseok

    A flexible superconducting fiber is prepared by twisting carbon nanotube (CNT) sheets coated with sputter-deposited niobium nitride (NbN) layer to form the shape of yarn. Twisted CNT yarn, which has been extensively studied due to its high flexibility as well as excellent mechanical properties, and NbN, which is a superconducting material with high transition temperature (Tc) and critical magnetic field (Hc), are combined together by the deposition of NbN layer on free-standing CNT-sheet substrate followed by the biscrolling process. We tried many experimental conditions to investigate the superconducting properties of NbN-CNT yarn as a function of NbN thickness and number of CNT-sheet layers, and found out that the superconducting property of NbN on CNT-sheet can be comparable to that of NbN thin film on the normal solid substrate. In addition, the superconducting property survived even under the condition of severe mechanical deformation such as knotting. These results show the potential application of this technology as a large-scale fabrication method of flexible, mechanically robust, high performance superconducting wire. This work is supported by the Institute for Basic Science (IBS-R011-D1), and by the National Research Foundation (BSR-2013R1A1A1076063) funded by the Ministry of Science, ICT & Future Planning, Republic of Korea.

  17. Flexible microfluidic device for mechanical property characterization of soft viscoelastic solids such as bacterial biofilms.

    Science.gov (United States)

    Hohne, Danial N; Younger, John G; Solomon, Michael J

    2009-07-01

    We introduce a flexible microfluidic device to characterize the mechanical properties of soft viscoelastic solids such as bacterial biofilms. In the device, stress is imposed on a test specimen by the application of a fixed pressure to a thin, flexible poly(dimethyl siloxane) (PDMS) membrane that is in contact with the specimen. The stress is applied by pressurizing a microfabricated air channel located above the test area. The strain resulting from the applied stress is quantified by measuring the membrane deflection with a confocal laser scanning microscope. The deflection is governed by the viscoelastic properties of the PDMS membrane and of the test specimen. The relative contributions of the membrane and test material to the measured deformation are quantified by comparing a finite element analysis with an independent (control) measurement of the PDMS membrane mechanical properties. The flexible microfluidic rheometer was used to characterize both the steady-state elastic modulus and the transient strain recoil of two soft materials: gellan gums and bacterial biofilms. The measured linear elastic moduli and viscoelastic relaxation times of gellan gum solutions were in good agreement with the results of conventional mechanical rheometry. The linear Young's moduli of biofilms of Staphylococcus epidermidis and Klebsiella pneumoniae, which could not be measured using conventional methods, were found to be 3.2 and 1.1 kPa, respectively, and the relaxation time of the S. epidermidis biofilm was 13.8 s. Additionally, strain hardening was observed in all the biofilms studied. Finally, design parameters and detection limits of the method show that the device is capable of characterizing soft viscoelastic solids with elastic moduli in the range of 102-105 Pa. The flexible microfluidic rheometer addresses the need for mechanical property characterization of soft viscoelastic solids common in fields such as biomaterials, food, and consumer products. It requires only 200 p

  18. Flexible aerogel composite for mechanical stability and process of fabrication

    Science.gov (United States)

    Coronado, Paul R.; Poco, John F.

    1999-01-01

    A flexible aerogel and process of fabrication. An aerogel solution is mixed with fibers in a mold and allowed to gel. The gel is then processed by supercritical extraction, or by air drying, to produce a flexible aerogel formed to the shape of the mold. The flexible aerogel has excellent thermal and acoustic properties, and can be utilized in numerous applications, such as for energy absorption, insulation (temperature and acoustic), to meet the contours of aircraft shapes, and where space is limited since an inch of aerogel is a 4-5 times better insulator than an inch of fiberglass. The flexible aerogel may be of an inorganic (silica) type or an organic (carbon) type, but containing fibers, such as glass or carbon fibers.

  19. Fixed and flexible formularies as cost-control mechanisms.

    Science.gov (United States)

    Dewa, Carolyn S; Hoch, Jeffrey S

    2003-06-01

    The purpose of this review is to consider the prevalent types of fixed and flexible formularies, the general economic principles on which they are based and the evidence for their effectiveness in controlling rising drug expenditures. The principal-agent relationship and economic model underlying the various types of formularies are described. The principal-agent model describes a relationship where there is an asymmetry of information between two parties involved in a particular task. As a result of this asymmetry of information, the party with less information (the principal) allows the party with more information (the agent) to make decisions about that task or activity for them. In the case of formularies and cost-control, the principal is the payer. Depending on the incentives offered by the formulary, the agent can alternately be the prescriber, dispenser or patient. The success of a formulary type to control costs is dependent on two main factors. First, the payer (the principal) must identify the agent for whom it is reasonable to create incentives that incorporate the financial risks associated with use of the drugs. Second, the payer must develop a structure that best aligns the principal and agent objectives. The principal-agent framework serves as the vehicle through which the authors examine five major types of formularies (i.e., closed, best available price, reference-based pricing, tiered and open formularies) and their inherent incentives and limitations. The evidence for their effectiveness as cost-control mechanisms is reviewed and the system factors that can affect formulary success will be discussed. Finally, the authors' observations are summarized and interpreted, and suggested implications for future use of formularies in controlling the costs of pharmaceutical use are offered.

  20. A comparative study of velocity increment generation between the rigid body and flexible models of MMET

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Norilmi Amilia, E-mail: aenorilmi@usm.my [School of Aerospace Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang (Malaysia)

    2016-02-01

    The motorized momentum exchange tether (MMET) is capable of generating useful velocity increments through spin–orbit coupling. This study presents a comparative study of the velocity increments between the rigid body and flexible models of MMET. The equations of motions of both models in the time domain are transformed into a function of true anomaly. The equations of motion are integrated, and the responses in terms of the velocity increment of the rigid body and flexible models are compared and analysed. Results show that the initial conditions, eccentricity, and flexibility of the tether have significant effects on the velocity increments of the tether.

  1. Mechanisms behind the metabolic flexibility of an invasive comb jelly

    Science.gov (United States)

    Augustine, Starrlight; Jaspers, Cornelia; Kooijman, Sebastiaan A. L. M.; Carlotti, François; Poggiale, Jean-Christophe; Freitas, Vânia; van der Veer, Henk; van Walraven, Lodewijk

    2014-11-01

    Mnemiopsis leidyi is an invasive comb jelly which has successfully established itself in European seas. The species is known to produce spectacular blooms yet it is holoplanktonic and not much is known about its population dynamics in between. One way to gain insight on how M. leidyi might survive between blooms and how it can bloom so fast is to study how the metabolism of this species actually responds to environmental changes in food and temperature over its different life-stages. To this end we combined modelling and data analysis to study the energy budget of M. leidyi over its full life-cycle using Dynamic Energy Budget (DEB) theory and literature data. An analysis of data obtained at temperatures ranging from 8 to 30 °C suggests that the optimum thermal tolerance range of M. leidyi is higher than 12 °C. Furthermore M. leidyi seems to undergo a so-called metabolic acceleration after hatching. Intriguingly, the onset of the acceleration appears to be delayed and the data do not yet exist which allows determining what actually triggers it. It is hypothesised that this delay confers a lot of metabolic flexibility by controlling generation time. We compared the DEB model parameters for this species with those of another holoplanktonic gelatinous zooplankton species (Pelagia noctiluca). After accounting for differences in water content, the comparison shows just how fundamentally different the two energy allocation strategies are. P. noctiluca has an extremely high reserve capacity, low turnover times of reserve compounds and high resistance to shrinking. M. leidyi adopts the opposite strategy: it has a low reserve capacity, high turnover rates of reserve compounds and fast shrinking.

  2. Study and Simulation of Deformation Mechanics Modeling of Flexible Workpiece Processing by Rayleigh-Ritz Method

    Directory of Open Access Journals (Sweden)

    Yaohua Deng

    2015-01-01

    Full Text Available This paper discusses the calculation problems of bending deformation of FWP processing. Take three axis CNC machining as an example, to establish mechanics model of flexible workpiece processing process. The flexible workpiece balance equation is a two-dimensional partial differential equation, to solve the problem of flexible workpiece bending deformation using Rayleigh-Ritz method and designing the test function of bending deformation of flexible workpiece. By satisfying the minimum potential energy condition of FWP processing to work out the approximate solution of bending deformation of flexible workpiece, find out the relationship between material properties of flexible piece, acting force Fz, and deformation value. Finally, the rectangle flexible workpiece which is made up of polyurethane sponge is selected as an experiment subject. The results show that the average relative deviation between theoretical value and observed value is only 5.51%. It is proved that the bending deformation test function satisfies the actual deformation calculation requirements.

  3. Behavioral flexibility as a mechanism for coping with climate change

    Science.gov (United States)

    Beever, Erik; Hall, L. Embere; Varner, Johanna; Loosen, Anne E.; Dunham, Jason; Gahl, Megan K.; Smith, Felisa A.; Lawler, Joshua J.

    2017-01-01

    Of the primary responses to contemporary climate change – “move, adapt, acclimate, or die” – that are available to organisms, “acclimate” may be effectively achieved through behavioral modification. Behavioral flexibility allows animals to rapidly cope with changing environmental conditions, and behavior represents an important component of a species’ adaptive capacity in the face of climate change. However, there is currently a lack of knowledge about the limits or constraints on behavioral responses to changing conditions. Here, we characterize the contexts in which organisms respond to climate variability through behavior. First, we quantify patterns in behavioral responses across taxa with respect to timescales, climatic stimuli, life-history traits, and ecology. Next, we identify existing knowledge gaps, research biases, and other challenges. Finally, we discuss how conservation practitioners and resource managers can incorporate an improved understanding of behavioral flexibility into natural resource management and policy decisions.

  4. Electromigration in Gold Films on Flexible Polyimide Substrates as a Self-healing Mechanism.

    Science.gov (United States)

    Putz, Barbara; Glushko, Oleksandr; Cordill, Megan J

    2016-01-02

    The study of electromigration (EM) in metallisations for flexible thin film systems has not been a major concern due to low applied current densities in today's flexible electronic devices. However, the trend towards smaller and more powerful devices demands increasing current densities for future applications, making EM a reliability matter. This work investigates EM in 50 nm Au thin films with a 10 nm Cr adhesion layer on a flexible polyimide substrate at high current densities. Results indicate that EM does occur and could be used as a self-healing mechanism for flexible electronics.

  5. Tuning the Mechanical Properties of Polymer Nanocomposites Filled with Grafted Nanoparticles by Varying the Grafted Chain Length and Flexibility

    Directory of Open Access Journals (Sweden)

    Zixuan Wang

    2016-08-01

    Full Text Available By employing coarse-grained molecular dynamics simulation, we simulate the spatial organization of the polymer-grafted nanoparticles (NPs in homopolymer matrix and the resulting mechanical performance, by particularly regulating the grafted chain length and flexibility. The morphologies ranging from the agglomerate, cylinder, sheet, and string to full dispersion are observed, by gradually increasing the grafted chain length. The radial distribution function and the total interaction energy between NPs are calculated. Meanwhile, the stress–strain behavior of each morphology and the morphological evolution during the uniaxial tension are simulated. In particular, the sheet structure exhibits the best mechanical reinforcement compared to other morphologies. In addition, the change of the grafted chain flexibility to semi-flexibility leads to the variation of the morphology. We also find that at long grafted chain length, the stress–strain behavior of the system with the semi-flexible grafted chain begins to exceed that of the system with the flexible grafted chain, attributed to the physical inter-locking interaction between the matrix and grafted polymer chains. A similar transition trend is as well found in the presence of the interfacial chemical couplings between grafted and matrix polymer chains. In general, this work is expected to help to design and fabricate high performance polymer nanocomposites filled with grafted NPs with excellent and controllable mechanical properties.

  6. ON THE DYNAMIC MODELING AND CONTROL OF 2-DOF PLANAR PARALLEL MECHANISM WITH FLEXIBLE LINKS

    Institute of Scientific and Technical Information of China (English)

    Luo Lei; Wang Shigang; Mo Jinqiu; Cai Jianguo

    2005-01-01

    The object of study is about dynamic modeling and control for a 2 degree-of-freedom (DOF) planar parallel mechanism (PM) with flexible links. The kinematic and dynamic equations are established according to the characteristics of mixed rigid and flexible structure. By using the singular perturbation approach (SPA), the model of the mechanism can be separated into slow and fast subsystems. Based on the feedback linearization theory and input shaping technique, the large scale rigid motion controller and the flexible link vibration controller can be designed separately to achieve fast and accurate positioning of the PM.

  7. Probing protein flexibility reveals a mechanism for selective promiscuity

    Science.gov (United States)

    Pabon, Nicolas A; Camacho, Carlos J

    2017-01-01

    Many eukaryotic regulatory proteins adopt distinct bound and unbound conformations, and use this structural flexibility to bind specifically to multiple partners. However, we lack an understanding of how an interface can select some ligands, but not others. Here, we present a molecular dynamics approach to identify and quantitatively evaluate the interactions responsible for this selective promiscuity. We apply this approach to the anticancer target PD-1 and its ligands PD-L1 and PD-L2. We discover that while unbound PD-1 exhibits a hard-to-drug hydrophilic interface, conserved specific triggers encoded in the cognate ligands activate a promiscuous binding pathway that reveals a flexible hydrophobic binding cavity. Specificity is then established by additional contacts that stabilize the PD-1 cavity into distinct bound-like modes. Collectively, our studies provide insight into the structural basis and evolution of multiple binding partners, and also suggest a biophysical approach to exploit innate binding pathways to drug seemingly undruggable targets. DOI: http://dx.doi.org/10.7554/eLife.22889.001 PMID:28432789

  8. Lower extremity kinematics in children with and without flexible flatfoot: a comparative study

    Directory of Open Access Journals (Sweden)

    Shih Yi-Fen

    2012-03-01

    Full Text Available Abstract Background A high percentage of young children present with flatfeet. Although the percentage of those with flatfeet declines with age, about 15% of the population maintains a flat arch. A reduction in longitudinal arch height usually combines with excessive subtalar joint pronation and may be related to other musculoskeletal problems of the lower extremity kinetic chain. The purpose of this study is to describe and compare the lower extremity kinematics between children with normal arches and those with flexible flatfeet, with the intent of providing practical information for decision making when treating children with flexible flatfeet. Methods Twenty children with flexible flatfeet (years age mean (SD, 9.7 (0.9 years and 10 children with normal arches (yeas age mean (SD, 9.6 (1.2 years were included. Kinematic data (maximum and minimum angles, and movement range, velocity, and excursion of the hip, knee and rearfoot were collected during walking using Liberty Electromagnetic Tracking System. Kinematic variables were compared between the normal arches and flexible flatfeet groups using repeated measures mixed effects ANOVA. Results Movement patterns at the hip, knee and ankle joints were similar between children with flexible flatfeet and with normal arches. The results of ANOVA showed no significant main effect or interaction in any of the kinematic variables (P ≥ 0.05. Conclusions This study identified no kinematic adaptation during walking in children with flexible flatfoot. We suggested that future research should take the influence of the mid-foot and forefoot into consideration when examining lower extremity kinematics in children with flexible flatfoot.

  9. Flexibility of short DNA helices under mechanical stretching

    CERN Document Server

    Zoli, Marco

    2016-01-01

    The flexibility of short DNA fragments is studied by a Hamiltonian model which treats the inter-strand and intra-strand forces at the level of the base pair. The elastic response of a set of homogeneous helices to externally applied forces is obtained by computing the average bending angles between adjacent base pairs along the molecule axis. The ensemble averages are performed over a room temperature equilibrium distribution of base pair separations and bending fluctuations. The analysis of the end-to-end distances and persistence lengths shows that even short sequences with less than $100$ base pairs maintain a significant bendability ascribed to thermal fluctuational effects and kinks with large bending angles. The discrepancies between the outcomes of the discrete model and those of the worm-like-chain model are examined pointing out the inadequacy of the latter on short length scales.

  10. Nonmagnetic rigid and flexible outer sheath with pneumatic interlocking mechanism for minimally invasive surgical approach.

    Science.gov (United States)

    Yamashita, Hiromasa; Zuo, Siyang; Masamune, Ken; Liao, Hongen; Dohi, Takeyoshi

    2009-01-01

    We developed a nonmagnetic rigid and flexible outer sheath with pneumatic interlocking mechanism using flexible toothed links and a wire-driven bending distal end. The outer sheath can be switched between rigid and flexible modes easily depending on surgical scenes, and the angle of its distal end can be controlled by three nylon wires. All components of flexible parts are made of MRI-compatible nonmagnetic plastics. We manufactured the device with 300-mm long, 16-mm outer diameter, 7-mm inner diameter and 90-mm bending distal end. Holding power of the device in rigid mode was maximum 3.6 N, which was sufficient for surgical tasks in body cavity. In vivo experiment using a swine, our device performed smooth insertion of a flexible endoscope and a biopsy forceps into reverse side of the liver, intestines and spleen with a curved path. In conclusion, our device shows availability of secure approach of surgical instruments into deep cavity.

  11. Flexibility and working conditions : a qualitive and comparative study in seven EU member states

    NARCIS (Netherlands)

    Goudswaard, A.; Nanteuil, M. de

    2000-01-01

    Within the context of profound transformations in work and employment, the European Foundation for the Improvement of Living and Working Conditions has undertaken a qualitative and comparative study concerning the impact of flexibility on working conditions in the European Union. Complementing other

  12. Comparative spring mechanics in mantis shrimp.

    Science.gov (United States)

    Patek, S N; Rosario, M V; Taylor, J R A

    2013-04-01

    Elastic mechanisms are fundamental to fast and efficient movements. Mantis shrimp power their fast raptorial appendages using a conserved network of exoskeletal springs, linkages and latches. Their appendages are fantastically diverse, ranging from spears to hammers. We measured the spring mechanics of 12 mantis shrimp species from five different families exhibiting hammer-shaped, spear-shaped and undifferentiated appendages. Across species, spring force and work increase with size of the appendage and spring constant is not correlated with size. Species that hammer their prey exhibit significantly greater spring resilience compared with species that impale evasive prey ('spearers'); mixed statistical results show that species that hammer prey also produce greater work relative to size during spring loading compared with spearers. Disabling part of the spring mechanism, the 'saddle', significantly decreases spring force and work in three smasher species; cross-species analyses show a greater effect of cutting the saddle on the spring force and spring constant in species without hammers compared with species with hammers. Overall, the study shows a more potent spring mechanism in the faster and more powerful hammering species compared with spearing species while also highlighting the challenges of reconciling within-species and cross-species mechanical analyses when different processes may be acting at these two different levels of analysis. The observed mechanical variation in spring mechanics provides insights into the evolutionary history, morphological components and mechanical behavior, which were not discernible in prior single-species studies. The results also suggest that, even with a conserved spring mechanism, spring behavior, potency and component structures can be varied within a clade with implications for the behavioral functions of power-amplified devices.

  13. A flexible nanobrush pad for the chemical mechanical planarization of Cu/ultra-low-к materials

    OpenAIRE

    Han, Guiquan; Liu, Yuhong; Lu, Xinchun; Luo, Jianbin

    2012-01-01

    A new idea of polishing pad called flexible nanobrush pad (FNP) has been proposed for the low down pressure chemical mechanical planarization (CMP) process of Cu/ultra-low-к materials. The FNP was designed with a surface layer of flexible brush-like nanofibers which can ‘actively’ carry nanoscale abrasives in slurry independent of the down pressure. Better planarization performances including high material removal rate, good planarization, good polishing uniformity, and low defectivity are ex...

  14. Vibration attenuation in two-link flexible mechanical arms with periodic composite materials

    OpenAIRE

    Yan Zhang; Xue-wei Kang; Lin-hua Jiang; Lin Han; Hong-qiang Chu; Qiao Zhu

    2015-01-01

    We introduce the periodic composite materials, so-called phononic crystals, to the flexible mechanical arms systems. Due to the transfer matrix method and the Bloch theorem, the theoretical solution of band structure of the two-link model is deduced and then verified by the frequency response by the finite element method. The influence of the included angle of arms to vibration characteristics is analyzed. The frequency response of the two-link flexible arms with/without phononic crystals is ...

  15. Modeling Interactions Between Flexible Flapping Wing Spars, Mechanisms, and Drive Motors

    Science.gov (United States)

    2011-09-01

    flapping wing spars. The model can be used to examine the coupled system-level behavior of brushed DC motors , gear trains, and any number of linkages and...mechanisms consist of a brushed DC motor and gear train in combination with linkage elements, flexible wing spars, and wing surfaces. The aerodynamic and...characteristics of the motion of flexible wing spars that are driven by ornithopter linkages and brushed DC motors . There are three principal types of

  16. Dynamics Research of rigid-flexible model of crank-rocker mechanism with Multi Clearance

    Directory of Open Access Journals (Sweden)

    Bo Shao Jun

    2016-01-01

    Full Text Available This paper takes the crank-rocker mechanism as the research object, purposed for the simulation of the motion pair with clearance utilizing the contact force model and the coulomb friction model, we build the virtual prototype of four-bar mechanism with clearance joints in the ADAMS. The article mainly contrasts the influence dynamics characteristics towards the mechanism multi-joint clearance between the rigid rocker and the flexible rocker. Considering the jointed arm’s flexibility, the four, five and six order modal of the rocker, generated by ANSYS as a neutral document, were imported into ADAMS for simulation. The result shows that Mechanism with four joint clearance increased the impact on the speed and the acceleration appeared greater fluctuation, the flexible rod has a buffer effect to the contact-impact forces, and the dynamic characteristics of fluctuations are improved.

  17. Estimating the size of the potential market for the Kyoto flexibility mechanisms

    NARCIS (Netherlands)

    Zhang, Z.X.

    2000-01-01

    The Kyoto Protocol incorporates three flexibility mechanisms to help Annex I countries to meet their Kyoto targets at a lower overall cost. This paper aims to estimate the size of the potential market for all three mechanisms over the first commitment period. Based on the national communications

  18. Estimating the size of the potential market for the Kyoto flexibility mechanisms

    NARCIS (Netherlands)

    Zhang, Z.X.

    2000-01-01

    The Kyoto Protocol incorporates three flexibility mechanisms to help Annex I countries to meet their Kyoto targets at a lower overall cost. This paper aims to estimate the size of the potential market for all three mechanisms over the first commitment period. Based on the national communications fro

  19. Comparative performance of high-fidelity training models for flexible ureteroscopy: Are all models effective?

    Directory of Open Access Journals (Sweden)

    Shashikant Mishra

    2011-01-01

    Full Text Available Objective: We performed a comparative study of high-fidelity training models for flexible ureteroscopy (URS. Our objective was to determine whether high-fidelity non-virtual reality (VR models are as effective as the VR model in teaching flexible URS skills. Materials and Methods: Twenty-one trained urologists without clinical experience of flexible URS underwent dry lab simulation practice. After a warm-up period of 2 h, tasks were performed on a high-fidelity non-VR (Uro-scopic Trainer TM ; Endo-Urologie-Modell TM and a high-fidelity VR model (URO Mentor TM . The participants were divided equally into three batches with rotation on each of the three stations for 30 min. Performance of the trainees was evaluated by an expert ureteroscopist using pass rating and global rating score (GRS. The participants rated a face validity questionnaire at the end of each session. Results: The GRS improved statistically at evaluation performed after second rotation (P<0.001 for batches 1, 2 and 3. Pass ratings also improved significantly for all training models when the third and first rotations were compared (P<0.05. The batch that was trained on the VR-based model had more improvement on pass ratings on second rotation but could not achieve statistical significance. Most of the realistic domains were higher for a VR model as compared with the non-VR model, except the realism of the flexible endoscope. Conclusions: All the models used for training flexible URS were effective in increasing the GRS and pass ratings irrespective of the VR status.

  20. Mechanism Design and Testing of a Self-Deploying Structure Using Flexible Composite Tape Springs

    Science.gov (United States)

    Footdale, Joseph N.; Murphey, Thomas W.

    2014-01-01

    The detailed mechanical design of a novel deployable support structure that positions and tensions a membrane optic for space imagining applications is presented. This is a complex three-dimensional deployment using freely deploying rollable composite tape spring booms that become load bearing structural members at full deployment. The deployment tests successfully demonstrate a new architecture based on rolled and freely deployed composite tape spring members that achieve simultaneous deployment without mechanical synchronization. Proper design of the flexible component mounting interface and constraint systems, which were critical in achieving a functioning unit, are described. These flexible composite components have much potential for advancing the state of the art in deployable structures, but have yet to be widely adopted. This paper demonstrates the feasibility and advantages of implementing flexible composite components, including the design details on how to integrate with required traditional mechanisms.

  1. Flexible Thick-Film Electrochemical Sensors: Impact of Mechanical Bending and Stress on the Electrochemical Behavior

    Science.gov (United States)

    Cai, Jiaying; Cizek, Karel; Long, Brenton; McAferty, Kenyon; Campbell, Casey G.; Allee, David R.; Vogt, Bryan D.; La Belle, Jeff; Wang, Joseph

    2009-01-01

    The influence of the mechanical bending, rolling and crimping of flexible screen-printed electrodes upon their electrical properties and electrochemical behavior has been elucidated. Three different flexible plastic substrates, Mylar, polyethylene naphthalate (PEN), and Kapton, have been tested in connection to the printing of graphite ink working electrodes. Our data indicate that flexible printed electrodes can be bent to extremely small radii of curvature and still function well, despite a marginal increase the electrical resistance. Below critical radii of curvature of ~8 mm, full recovery of the electrical resistance occurs upon strain release. The electrochemical response is maintained for sub-mm bending radii and a 180° pinch of the electrode does not lead to device failure. The electrodes appear to be resistant to repeated bending. Such capabilities are demonstrated using model compounds, including ferrocyanide, trinitrotoluene (TNT) and nitronaphthalene (NN). These printed electrodes hold great promise for widespread applications requiring flexible, yet robust non-planar sensing devices. PMID:20160861

  2. 3D-QSAR studies on glycogen phosphorylase inhibitors by flexible comparative molecular field analysis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Canceling grids accommodating probes in comparative molecular field analysis (CoMFA), the idea of flexibleness is introduced into the CoMFA, and in combination with swarm intelligent algorithm which attempts to optimize distributions of diverse probes around drug molecules, a new 3D-QSAR method is proposed in this context as flexible comparative molecular field analysis (FCoMFA). In preliminary at-tempts to performing QSAR studies on 47 glycogen phosphorylase inhibitors, FCoMFA is employed and confirmed to be potent to exploring ligand-receptor interaction manners at active positions and thus to generating stable and predictable models. Simultaneously by an intuitive graphics regarding probe distribution patterns, impacts of different substituted groups on activities is also given an insight into.

  3. 3D-QSAR studies on glycogen phosphorylase inhibitors by flexible comparative molecular field analysis

    Institute of Scientific and Technical Information of China (English)

    ZHOU Peng; LI ZhiLiang

    2007-01-01

    Canceling grids accommodating probes in comparative molecular field analysis (CoMFA), the idea of flexibleness is introduced into the CoMFA, and in combination with swarm intelligent algorithm which attempts to optimize distributions of diverse probes around drug molecules, a new 3D-QSAR method is proposed in this context as flexible comparative molecular field analysis (FCoMFA). In preliminary attempts to performing QSAR studies on 47 glycogen phosphorylase inhibitors, FCoMFA is employed and confirmed to be potent to exploring ligand-receptor interaction manners at active positions and thus to generating stable and predictable models. Simultaneously by an intuitive graphics regarding probe distribution patterns, impacts of different substituted groups on activities is also given an insight into.

  4. Mechanical Stability of Flexible Graphene-Based Displays.

    Science.gov (United States)

    Anagnostopoulos, George; Pappas, Panagiotis-Nektarios; Li, Zheling; Kinloch, Ian A; Young, Robert J; Novoselov, Kostya S; Lu, Ching Yu; Pugno, Nicola; Parthenios, John; Galiotis, Costas; Papagelis, Konstantinos

    2016-08-31

    The mechanical behavior of a prototype touch panel display, which consists of two layers of CVD graphene embedded into PET films, is investigated in tension and under contact-stress dynamic loading. In both cases, laser Raman spectroscopy was employed to assess the stress transfer efficiency of the embedded graphene layers. The tensile behavior was found to be governed by the "island-like" microstructure of the CVD graphene, and the stress transfer efficiency was dependent on the size of graphene "islands" but also on the yielding behavior of PET at relatively high strains. Finally, the fatigue tests, which simulate real operation conditions, showed that the maximum temperature gradient developed at the point of "finger" contact after 80 000 cycles does not exceed the glass transition temperature of the PET matrix. The effect of these results on future product development and the design of new graphene-based displays are discussed.

  5. A Direct Derivation of the Equations of Motion for 3D-Flexible Mechanical Systems

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard; Pedersen, Mads Leergaard

    1998-01-01

    Equations of motion for rigid bodies with the body-fixed co-ordinate system placed at or away from the centre of mass are derived in a clear and direct way by making use of the two basic equations of mechanics (Newton's second law and the corresponding law of angular momentum). The dynamic...... equations for flexible mechanical systems are derived using the principle of virtual work, which introduces inertia in a straightforward manner, because this principle treats inertia as a force. The flexible formulation is exemplified by the use of circular beam elements and some basic matrices are derived...

  6. Mechanical anomaly impact on metal-oxide-semiconductor capacitors on flexible silicon fabric

    KAUST Repository

    Ghoneim, Mohamed T.

    2014-06-09

    We report the impact of mechanical anomaly on high-κ/metal-oxide-semiconductor capacitors built on flexible silicon (100) fabric. The mechanical tests include studying the effect of bending radius up to 5 mm minimum bending radius with respect to breakdown voltage and leakage current of the devices. We also report the effect of continuous mechanical stress on the breakdown voltage over extended periods of times.

  7. Distractor suppression when attention fails: behavioral evidence for a flexible selective attention mechanism.

    Science.gov (United States)

    Elliott, James C; Giesbrecht, Barry

    2015-01-01

    Despite consistent evidence showing that attention is a multifaceted mechanism that can operate at multiple levels of processing depending on the structure and demands of the task, investigations of the attentional blink phenomenon have consistently shown that the impairment in reporting the second of two targets typically occurs at a late, or post-perceptual, stage of processing. This suggests that the attentional blink phenomenon may represent the operation of a unique attentional mechanism that is not as flexible as other attentional mechanisms. To test whether the attentional blink is a fixed or flexible phenomenon, we manipulated first target task demands (i.e., difficulty) and measured the influence this had on processing a subsequently presented distractor and the second target. If the attentional blink represents a mechanism that is fixed and consistently fails at a single stage of processing, then manipulations of task difficulty should not affect distractor processing. However, if the attentional blink represents a more multifaceted and flexible mechanism, then task difficulty should modulate distractor processing. The results revealed that distractor processing during the AB was attenuated under high task difficulty. In addition, unlike previous studies, we failed to find a correlation between distractor processing and the severity of the attentional blink. Using a simulation, we demonstrate that the previously reported correlations may have been spurious and due to using variables that were not independent. Overall, the present results support the conclusion that the selectivity of attention during the AB is flexible and depends on the structure and demands of the task.

  8. Electro-Mechanical Testing of Conductive Materials Used in Flexible Electronics

    Directory of Open Access Journals (Sweden)

    Megan J Cordill

    2016-02-01

    Full Text Available The use of flexible electronics has increased in recent years. In order to have robust and long lasting flexible displays and sensors, the combined electro-mechanical behavior needs to be assessed. The most common method to determine electrical and mechanical behavior of conductive thin films used in flexible electronics is the fragmentation test, or uniaxial tensile straining of the film and substrate. When performed in situ fracture and deformation behavior can be determined. The use of in situ electrical resistance measurements can be informative about the crack onset strain of brittle layers, such as transparent conductors, or the stretchability of metal interconnects. The combination of in situ electrical measurements with in situ X-ray or confocal laser scanning microscopy can provide even more information about the failure mechanisms of the material systems. Lattice strains and stresses can be measured with X-rays, while cracking and buckle delaminations can be studied with confocal laser scanning microscopy. These new combinations of in situ methods will be discussed as well as methods to quantify interfacial properties of conductive thin films on polymer substrates. The combined techniques provide valuable correlated electrical and mechanical data needed to understand failure mechanisms in flexible devices.

  9. Dynamic Analysis and Control of Lightweight Manipulators with Flexible Parallel Link Mechanisms. Ph.D. Thesis

    Science.gov (United States)

    Lee, Jeh Won

    1990-01-01

    The objective is the theoretical analysis and the experimental verification of dynamics and control of a two link flexible manipulator with a flexible parallel link mechanism. Nonlinear equations of motion of the lightweight manipulator are derived by the Lagrangian method in symbolic form to better understand the structure of the dynamic model. The resulting equation of motion have a structure which is useful to reduce the number of terms calculated, to check correctness, or to extend the model to higher order. A manipulator with a flexible parallel link mechanism is a constrained dynamic system whose equations are sensitive to numerical integration error. This constrained system is solved using singular value decomposition of the constraint Jacobian matrix. Elastic motion is expressed by the assumed mode method. Mode shape functions of each link are chosen using the load interfaced component mode synthesis. The discrepancies between the analytical model and the experiment are explained using a simplified and a detailed finite element model.

  10. Vibration attenuation in two-link flexible mechanical arms with periodic composite materials

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2015-03-01

    Full Text Available We introduce the periodic composite materials, so-called phononic crystals, to the flexible mechanical arms systems. Due to the transfer matrix method and the Bloch theorem, the theoretical solution of band structure of the two-link model is deduced and then verified by the frequency response by the finite element method. The influence of the included angle of arms to vibration characteristics is analyzed. The frequency response of the two-link flexible arms with/without phononic crystals is investigated. The results illustrate that, by using the periodic composite materials, some frequency ranges with strong attenuation can be obtained. This study provides a new way to eliminate vibrations in flexible mechanical arms.

  11. Investigation of mechanical bending instability in flexible low-temperature-processed electrochromic display devices

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chin-Pao; Chou, Chuan-Pu; Hsu, Che-Hsiang; Teng, Tun-Chien; Cheng, Chun-Hu, E-mail: chcheng@ntnu.edu.tw; Syu, Yu-Yang

    2015-06-01

    In this study, polyethylene naphthalate (PEN) was investigated as a flexible substrate because, compared with polyethylene terephthalate, it achieves a lower root mean square roughness and transmittance, which is favorable for reducing leakage from the bottom of flexible substrates. A flexible device structure composed of tungsten oxide/indium-doped tin oxide/PEN was used in an electrochromic (EC) test. The experimental results show that the flexible EC display device achieved a high transmittance difference of > 40% and color efficiency of 70.2 cm{sup 2}/C at 560 nm. The transmittance difference was degraded in the visible range after 200 cycles of continuous bending. Furthermore, compared with flat fresh devices, the WO{sub 3} device exhibited poor retention properties in a colored state after being subjected to longer bending cycles. - Highlights: • Flexible electrochromic device with endurance bending was demonstrated. • Interface defects or vacancies near the flexible substrate affect the self-bleaching behavior. • High color efficiency of 117.2 cm{sup 2}/coul at 700 nm wavelength is reached. • Interface defect centers lower the redox energy barrier which reduces the bleaching time.

  12. Effects of cytosine modifications on DNA flexibility and nucleosome mechanical stability

    Science.gov (United States)

    Ngo, Thuy T. M.; Yoo, Jejoong; Dai, Qing; Zhang, Qiucen; He, Chuan; Aksimentiev, Aleksei; Ha, Taekjip

    2016-02-01

    Cytosine can undergo modifications, forming 5-methylcytosine (5-mC) and its oxidized products 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-fC) and 5-carboxylcytosine (5-caC). Despite their importance as epigenetic markers and as central players in cellular processes, it is not well understood how these modifications influence physical properties of DNA and chromatin. Here we report a comprehensive survey of the effect of cytosine modifications on DNA flexibility. We find that even a single copy of 5-fC increases DNA flexibility markedly. 5-mC reduces and 5-hmC enhances flexibility, and 5-caC does not have a measurable effect. Molecular dynamics simulations show that these modifications promote or dampen structural fluctuations, likely through competing effects of base polarity and steric hindrance, without changing the average structure. The increase in DNA flexibility increases the mechanical stability of the nucleosome and vice versa, suggesting a gene regulation mechanism where cytosine modifications change the accessibility of nucleosomal DNA through their effects on DNA flexibility.

  13. Mechanically robust 39 GHz cut-off frequency graphene field effect transistors on flexible substrates.

    Science.gov (United States)

    Wei, Wei; Pallecchi, Emiliano; Haque, Samiul; Borini, Stefano; Avramovic, Vanessa; Centeno, Alba; Amaia, Zurutuza; Happy, Henri

    2016-08-07

    Graphene has been regarded as a promising candidate channel material for flexible devices operating at radio-frequency (RF). In this work we fabricated and fully characterized double bottom-gate graphene field effect transistors on flexible polymer substrates for high frequency applications. We report a record high as-measured current gain cut-off frequency (ft) of 39 GHz. The corresponding maximum oscillation frequency (fmax) is 13.5 GHz. These state of the art high frequency performances are stable against bending, with a typical variation of around 10%, for a bending radius of up to 12 mm. To demonstrate the reliability of our devices, we performed a fatigue stress test for RF-GFETs which were dynamically bend tested 1000 times at 1 Hz. The devices are mechanically robust, and performances are stable with typical variations of 15%. Finally we investigate thermal dissipation, which is a critical parameter for flexible electronics. We show that at the optimum polarization the normalized power dissipated by the GFETs is about 0.35 mW μm(-2) and that the substrate temperature is around 200 degree centigrade. At a higher power, irreversible degradations of the performances are observed. Our study on state of the art flexible GFETs demonstrates mechanical robustness and stability upon heating, two important elements to assess the potential of GFETs for flexible electronics.

  14. Linearization of dynamic equations of flexible mechanisms - a finite element approach

    NARCIS (Netherlands)

    Jonker, Ben

    1991-01-01

    A finite element based method is presented for evaluation of linearized dynamic equations of flexible mechanisms about a nominal trajectory. The coefficient matrices of the linearized equations of motion are evaluated as explicit analytical expressions involving mixed sets of generalized co-ordinate

  15. A deployment mechanism for the double roll-out flexible solar array on the space telescope

    Science.gov (United States)

    Cawsey, T. R.

    1982-01-01

    A roll-out flexible array which provides more than 4 kW of power for the space telescope was developed. The Array is configured as two wings. The deployment mechanism for each wing is based on flight-proven FRUSA design. Modifications have been incorporated to accommodate an increase in size and mission requirements. The assembly and operation of the deployment mechanism are described together with environmental and functional tests results.

  16. Nonmetallic rigid-flexible outer sheath with pneumatic shapelocking mechanism and double curvature structure.

    Science.gov (United States)

    Zuo, Siyang; Masamune, Ken; Kuwana, Kenta; Tomikawa, Morimasa; Ieiri, Satoshi; Ohdaira, Takeshi; Hashizume, Makoto; Dohi, Takeyoshi

    2011-01-01

    Single port access (SPA) surgery is a laparoscopic procedure using only one transumbilical-placed port. Natural orifice transluminal endoscopic surgery (NOTES) offers the possibility of surgery without visible scars. To address the access and stability problems in SPA and NOTES, we developed a device called rigid-flexible outer sheath. This sheath can be switched between flexible and rigid modes by a novel pneumatic shapelocking mechanism, and it has a double curvature structure that enables it to flex in four directions at the distal end and three directions on the rigid-flexible shaft. The insertion part of the prototype is 300 mm long with a 20 mm outer diameter, and the part is equipped with four working channels. In vivo experiments using a swine show that the outer sheath has high potential for solving access and stability problems. We expect that the outer sheath will be useful for SPA and NOTES.

  17. Tribo-Mechanical Investigation of the Functional Components used in Flexible Energy Harvesting Devices

    Science.gov (United States)

    Morris, Nicholas J.

    During the previous decade, the development of energy harvesting devices based on piezoelectric materials has garnered great interest. The ability to capture ambient mechanical energy and convert it to useable electricity is a potential solution to the ever-growing energy crisis. One of the most attractive functional materials used in these devices is zinc oxide (ZnO). This material's relative low cost and ease of large-area processing has spurred numerous device designs based around it. The ability to grow ZnO nanostructures of various geometries with low-temperature chemical methods makes this material even more attractive for flexible devices. Although numerous device architectures have been developed, the long-term mechanical reliability has not been addressed. This work focuses on the fabrication and mechanical failure analysis of the flexible components typically used in piezoelectric energy harvesting devices. A three-phase iterative design process was used to fabricate prototypical piezoelectric nanogenerators, based on ZnO nanowires. An output of several millivolts was achieved under normal contact and microtensile loading, but device failure occurred after only a few loading cycles, in all cases. Ex situ failure analysis confirmed the primary sources of failure, which became the focus of further, component-level studies. Failure was primarily seen in the flexible electrodes of the nanogenerating devices, but was also observed in the functional piezoelectric layer itself. Flexible electrodes comprised of polyester substrates with transparent conductive oxide (TCO) coatings were extensively investigated under various loading scenarios to mimic tribo-mechanical stresses applied during fabrication and use in flexible contact-based devices. The durability of these films was explored using microtensile testing, spherical nanoindentation, controlled mechanical buckling, stress corrosion cracking, and shear-contact reciprocating wear. The electro-mechanical

  18. Psychological flexibility and catastrophizing as associated change mechanisms during online Acceptance & Commitment Therapy for chronic pain.

    Science.gov (United States)

    Trompetter, Hester R; Bohlmeijer, Ernst T; Fox, Jean-Paul; Schreurs, Karlein M G

    2015-11-01

    The underlying mechanisms of the effectiveness of cognitive behavioural interventions for chronic pain need further clarification. The role of, and associations between, pain-related psychological flexibility (PF) and pain catastrophizing (PC) were examined during a randomized controlled trial on internet-based Acceptance & Commitment Therapy (ACT) for chronic pain. We assessed (1) the unique and combined indirect effects of PF and PC on outcomes, and (2) the causality of relations between PF, PC and the primary outcome pain interference in daily life (MPI) during ACT. A total of 238 pain sufferers were allocated to either ACT, a control condition on Expressive Writing, or a waiting list condition. Non-parametric cross-product of coefficients mediational analyses and cross-lagged panel designs were applied. Compared to control conditions, both baseline to post-intervention changes in PF and PC seemed to uniquely mediate baseline to three-month follow-up changes in pain interference and psychological distress. Only PF mediated changes in pain intensity. Indirect effects were twice as large for PF (κ2 = .09-.19) than for PC (κ² PCS = .05-.10). Further assessment of changes during ACT showed, however, that only PF, and not PC, predicted subsequent changes in MPI, while early and late changes in both PF and PC predicted later changes in each other. In conclusion, only PF functioned as a direct, causal working mechanism during ACT, with larger indirect effects that occurred earlier than changes in PC. Additionally, PC may function as an indirect mechanism of change during ACT for chronic pain via its direct influence on PF.

  19. Comparative costs of flexible package cells and rigid cells for lithium-ionhybrid electric vehicle batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, P. A.; Jansen, A. N.

    2006-11-28

    We conducted a design study to compare the manufacturing costs at a level of 100,000 hybrid vehicle batteries per year for flexible package (Flex) cells and for rigid aluminum container (Rigid) cells. Initially, the Rigid cells were considered to have welded closures and to be deep-drawn containers of about the same shape as the Flex cells. As the study progressed, the method of fabricating and sealing the Rigid cells was expanded to include lower cost options including double seaming and other mechanically fastened closures with polymer sealants. Both types of batteries were designed with positive electrodes containing Li(Ni{sub 1/3}Co{sub 1/3}Mn{sub 1/3})O{sub 2} and graphite negative electrodes. The use of a different combination of lithium-ion electrodes would have little effect on the difference in costs for the two types of cells. We found that 20-Ah cells could be designed with excellent performance and heat rejection capabilities for either type of cell. Many parts in the design of the Flex cells are identical or nearly identical to those of the Rigid Cell, so for these features there would be no difference in the cost of manufacturing the two types of batteries. We judged the performance, size and weight of the batteries to be sufficiently similar that the batteries would have the same value for their application. Some of the design features of the Flex cells were markedly different than those of the deep-drawn and welded Rigid cells and would result in significant cost savings. Fabrication and processing steps for which the Flex cells appear to have a cost advantage over these Rigid cells are (1) container fabrication and sealing, (2) terminal fabrication and sealing, and (3) intercell connections. The costs of providing cooling channels adjacent to the cells and for module and battery hardware appear to favor Rigid cell batteries slightly. Overall, Flex cell batteries appear to have an advantage of about $1.20-$3.70 per cell for a 25-kW Battery of 20

  20. Uncertain dynamic analysis for rigid-flexible mechanisms with random geometry and material properties

    Science.gov (United States)

    Wu, Jinglai; Luo, Zhen; Zhang, Nong; Zhang, Yunqing; Walker, Paul D.

    2017-02-01

    This paper proposes an uncertain modelling and computational method to analyze dynamic responses of rigid-flexible multibody systems (or mechanisms) with random geometry and material properties. Firstly, the deterministic model for the rigid-flexible multibody system is built with the absolute node coordinate formula (ANCF), in which the flexible parts are modeled by using ANCF elements, while the rigid parts are described by ANCF reference nodes (ANCF-RNs). Secondly, uncertainty for the geometry of rigid parts is expressed as uniform random variables, while the uncertainty for the material properties of flexible parts is modeled as a continuous random field, which is further discretized to Gaussian random variables using a series expansion method. Finally, a non-intrusive numerical method is developed to solve the dynamic equations of systems involving both types of random variables, which systematically integrates the deterministic generalized-α solver with Latin Hypercube sampling (LHS) and Polynomial Chaos (PC) expansion. The benchmark slider-crank mechanism is used as a numerical example to demonstrate the characteristics of the proposed method.

  1. Distractor suppression when attention fails: behavioral evidence for a flexible selective attention mechanism.

    Directory of Open Access Journals (Sweden)

    James C Elliott

    Full Text Available Despite consistent evidence showing that attention is a multifaceted mechanism that can operate at multiple levels of processing depending on the structure and demands of the task, investigations of the attentional blink phenomenon have consistently shown that the impairment in reporting the second of two targets typically occurs at a late, or post-perceptual, stage of processing. This suggests that the attentional blink phenomenon may represent the operation of a unique attentional mechanism that is not as flexible as other attentional mechanisms. To test whether the attentional blink is a fixed or flexible phenomenon, we manipulated first target task demands (i.e., difficulty and measured the influence this had on processing a subsequently presented distractor and the second target. If the attentional blink represents a mechanism that is fixed and consistently fails at a single stage of processing, then manipulations of task difficulty should not affect distractor processing. However, if the attentional blink represents a more multifaceted and flexible mechanism, then task difficulty should modulate distractor processing. The results revealed that distractor processing during the AB was attenuated under high task difficulty. In addition, unlike previous studies, we failed to find a correlation between distractor processing and the severity of the attentional blink. Using a simulation, we demonstrate that the previously reported correlations may have been spurious and due to using variables that were not independent. Overall, the present results support the conclusion that the selectivity of attention during the AB is flexible and depends on the structure and demands of the task.

  2. Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies.

    Science.gov (United States)

    Yang, Ya; Zhang, Hulin; Zhu, Guang; Lee, Sangmin; Lin, Zong-Hong; Wang, Zhong Lin

    2013-01-22

    We report the first flexible hybrid energy cell that is capable of simultaneously or individually harvesting thermal, mechanical, and solar energies to power some electronic devices. For having both the pyroelectric and piezoelectric properties, a polarized poly(vinylidene fluoride) (PVDF) film-based nanogenerator (NG) was used to harvest thermal and mechanical energies. Using aligned ZnO nanowire arrays grown on the flexible polyester (PET) substrate, a ZnO-poly(3-hexylthiophene) (P3HT) heterojunction solar cell was designed for harvesting solar energy. By integrating the NGs and the solar cells, a hybrid energy cell was fabricated to simultaneously harvest three different types of energies. With the use of a Li-ion battery as the energy storage, the harvested energy can drive four red light-emitting diodes (LEDs).

  3. From Kyoto to Copenhagen: Rethinking the Place of Flexible Mechanisms in the Kyoto Protocol's post 2012 Commitment Period

    Directory of Open Access Journals (Sweden)

    Damilola S. Olawuyi

    2010-06-01

    Full Text Available Amidst debates between the North and the South, Emission Trading (ET, Clean Development Mechanism (CDM, and Joint Implementation (JI were adopted as flexible mechanisms under the Kyoto Protocol. These mechanisms allow developed countries to meet their emission reduction targets by investing in clean projects in other countries of their choice. The implementation of these mechanisms have however been faced with many problems which cast doubts on their efficacy as viable options for combating climate change. One main criticism of these mechanisms is that they lead to a trade off between sustainability and emission reduction. This paper examines the efficiency of these mechanisms in combating climate change. It reviews the main criticisms of the flexibility mechanisms in an attempt to answer the question whether the flexibility idea should still be retained as part of the post 2012 commitments. While arguing in favor of flexibility, this paper offers ideas on how their effectiveness can be enhanced in the post 2012 commitment period.

  4. Integrated Flight Mechanic and Aeroelastic Modelling and Control of a Flexible Aircraft Considering Multidimensional Gust Input

    Science.gov (United States)

    2000-05-01

    INTEGRATED FLIGHT MECHANIC AND AEROELASTIC MODELLING AND CONTROL OF A FLEXIBLE AIRCRAFT CONSIDERING MULTIDIMENSIONAL GUST INPUT Patrick Teufel, Martin Hanel...the lateral separation distance have been developed by ’ = matrix of two dimensional spectrum function Eichenbaum 4 and are described by Bessel...Journal of Aircraft, Vol. 30, No. 5, Sept.-Oct. 1993 Relations to Risk Sensitivity, System & Control Letters 11, [4] Eichenbaum F.D., Evaluation of 3D

  5. A comparative molecular dynamics study on BACE1 and BACE2 flap flexibility.

    Science.gov (United States)

    Kumalo, H M; Soliman, Mahmoud E

    2016-10-01

    Beta-amyloid precursor protein cleavage enzyme1 (BACE1) and beta-amyloid precursor protein cleavage enzyme2 (BACE2), members of aspartyl protease family, are close homologs and have high similarity in their protein crystal structures. However, their enzymatic properties are different, which leads to different clinical outcomes. In this study, we performed sequence analysis and all-atom molecular dynamic (MD) simulations for both enzymes in their ligand-free states in order to compare their dynamical flap behaviors. This is to enhance our understanding of the relationship between sequence, structure and the dynamics of this protein family. Sequence analysis shows that in BACE1 and BACE2, most of the ligand-binding sites are conserved, indicative of their enzymatic property as aspartyl protease members. The other conserved residues are more or less unsystematically localized throughout the structure. Herein, we proposed and applied different combined parameters to define the asymmetric flap motion; the distance, d1, between the flap tip and the flexible region; the dihedral angle, φ, to account for the twisting motion and the TriCα angle, θ2 and θ1. All four combined parameters were found to appropriately define the observed "twisting" motion during the flaps different conformational states. Additional analysis of the parameters indicated that the flaps can exist in an ensemble of conformations, i.e. closed, semi-open and open conformations for both systems. However, the behavior of the flap tips during simulations is different between BACE1 and BACE2. The BACE1 active site cavity is more spacious as compared to that of BACE2. The analysis of 10S loop and 113S loop showed a similar trend to that of flaps, with the BACE1 loops being more flexible and less stable than those of BACE2. We believe that the results, methods and perspectives highlighted in this report would assist researchers in the discovery of BACE inhibitors as potential Alzheimer's disease therapies.

  6. Lightweight, Superelastic, and Mechanically Flexible Graphene/Polyimide Nanocomposite Foam for Strain Sensor Application.

    Science.gov (United States)

    Qin, Yuyang; Peng, Qingyu; Ding, Yujie; Lin, Zaishan; Wang, Chunhui; Li, Ying; Xu, Fan; Li, Jianjun; Yuan, Ye; He, Xiaodong; Li, Yibin

    2015-09-22

    The creation of superelastic, flexible three-dimensional (3D) graphene-based architectures is still a great challenge due to structure collapse or significant plastic deformation. Herein, we report a facile approach of transforming the mechanically fragile reduced graphene oxide (rGO) aerogel into superflexible 3D architectures by introducing water-soluble polyimide (PI). The rGO/PI nanocomposites are fabricated using strategies of freeze casting and thermal annealing. The resulting monoliths exhibit low density, excellent flexibility, superelasticity with high recovery rate, and extraordinary reversible compressibility. The synergistic effect between rGO and PI endows the elastomer with desirable electrical conductivity, remarkable compression sensitivity, and excellent durable stability. The rGO/PI nanocomposites show potential applications in multifunctional strain sensors under the deformations of compression, bending, stretching, and torsion.

  7. The bond graph model of planar flexible multibody mechanical systems and its dynamic principle

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to increase the efficiency and reliability of the dynamic analysis for flexible planar linkage containing the coupling of multi-energy domains, a method based on bond graph is introduced. From the viewpoint of power conservation, the peculiar property of bond graph multiport element MTF is discussed. The procedure of modeling planar flexible multibody mechanical systems by bond graphs and its dynamic principle are described. To overcome the algebraic difficulty brought by differential causality and nonlinear junction structure, the constraint forces at joints can be considered as unknown effort sources and added to the corresponding O-junctions of system bond graph model. As a result, the automatic modeling on a computer is realized. The validity of the procedure is illustrated by a practical example.

  8. A flexible nanobrush pad for the chemical mechanical planarization of Cu/ultra-low-к materials

    Science.gov (United States)

    Han, Guiquan; Liu, Yuhong; Lu, Xinchun; Luo, Jianbin

    2012-10-01

    A new idea of polishing pad called flexible nanobrush pad (FNP) has been proposed for the low down pressure chemical mechanical planarization (CMP) process of Cu/ultra-low-к materials. The FNP was designed with a surface layer of flexible brush-like nanofibers which can `actively' carry nanoscale abrasives in slurry independent of the down pressure. Better planarization performances including high material removal rate, good planarization, good polishing uniformity, and low defectivity are expected in the CMP process under the low down pressure with such kind of pad. The FNP can be made by template-assisted replication or template-based synthesis methods, which will be driven by the development of the preparation technologies for ordered nanostructure arrays. The present work would potentially provide a new solution for the Cu/ultra-low-к CMP process.

  9. A flexible nanobrush pad for the chemical mechanical planarization of Cu/ultra-low-к materials.

    Science.gov (United States)

    Han, Guiquan; Liu, Yuhong; Lu, Xinchun; Luo, Jianbin

    2012-10-30

    A new idea of polishing pad called flexible nanobrush pad (FNP) has been proposed for the low down pressure chemical mechanical planarization (CMP) process of Cu/ultra-low-к materials. The FNP was designed with a surface layer of flexible brush-like nanofibers which can 'actively' carry nanoscale abrasives in slurry independent of the down pressure. Better planarization performances including high material removal rate, good planarization, good polishing uniformity, and low defectivity are expected in the CMP process under the low down pressure with such kind of pad. The FNP can be made by template-assisted replication or template-based synthesis methods, which will be driven by the development of the preparation technologies for ordered nanostructure arrays. The present work would potentially provide a new solution for the Cu/ultra-low-к CMP process.

  10. [The operative cystoscope with joystick control mechanism of flexible tools inserted into the urinary bladder and the ureter].

    Science.gov (United States)

    Komiakov, B K; Topuzov, M É; Zubarev, V A; Stetsik, O V

    2014-01-01

    The authors developed an operative cystoscope with joystick control mechanism of ureter catheters and other flexible tools. This construction allowed control of flexible tools inserted into the bladder and the ureter in various directions, thus providing a necessary observation of the operative field at endoscopic operations on the bladder and ureter. This was one of the factors, which determined the operation success.

  11. COMPARATIVE EFFECT OF STATIC AND DYNAMIC STRETCHING EXERCISE TO IMPROVE FLEXIBILITY OF HAMSTRING MUSCLES AMONG NON ATHLETES

    Directory of Open Access Journals (Sweden)

    Jibi Paul

    2014-10-01

    Full Text Available Background: Stretching exercises have been routinely used in persons with hamstring tightness and athletes to increase flexibility of muscle and to reduce joint injuries. Many studies have reported effect of static and dynamic stretching on flexibility of this muscle. Finding the best method to improve flexibility of hamstring muscle is important for athletes and individuals to reduce their injuries. Objective of the study was to find out the effect of static stretching exercise and dynamic stretching exercise on flexibility of hamstring muscle and also to compare the effect of static and dynamic stretching exercise on flexibility of hamstring muscle. Methods: This was a comparative experimental study with seventy four female healthy subjects from physiotherapy department of KPJ Healthcare University College, Malaysia. Convenient sampling method used to select the samples. The subjects were selected by inclusion criteria and randomly divided equally in to two with 37 subjects in each group. Static stretching exercise and dynamic stretching exercise were given as intervention program for four weeks respectively for experimental and control group. Pre and post data of restricted range of movement for knee extension was measured using goniometry and documented separately for both group. Result: In experimental and control group, pre-post statistical analysis found significant effect in increase of hamstring flexibility with P<0.0001, for right and left side. Comparative study between experimental and control group found that static stretching exercise have significant effect in increase of hamstring flexibility for right and left side with P<0.04. Conclusion: This study concluded that static stretching exercise is more effective to improve hamstring flexibility compared to dynamic stretching exercise.

  12. The Comparative Study of Vibration Control of Flexible Structure Using Smart Materials

    OpenAIRE

    Juntao Fei; Yunmei Fang; Chunyan Yan

    2010-01-01

    Considerable attention has been devoted to active vibration control using intelligent materials as PZT actuators. This paper presents results on active control schemes for vibration suppression of flexible steel cantilever beam with bonded piezoelectric actuators. The PZT patches are surface bonded near the fixed end of flexible steel cantilever beam. The dynamic model of the flexible steel cantilever beam is derived. Active vibration control methods: optimal PID control, strain rate feedback...

  13. Mechanical Properties of ZTO, ITO, and a-Si:H Multilayer Films for Flexible Thin Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Claudia Hengst

    2017-03-01

    Full Text Available The behavior of bi- and trilayer coating systems for flexible a-Si:H based solar cells consisting of a barrier, an electrode, and an absorption layer is studied under mechanical load. First, the film morphology, stress, Young’s modulus, and crack onset strain (COS were analyzed for single film coatings of various thickness on polyethylene terephthalate (PET substrates. In order to demonstrate the role of the microstructure of a single film on the mechanical behavior of the whole multilayer coating, two sets of InSnOx (indium tin oxide, ITO conductive coatings were prepared. Whereas a characteristic grain–subgrain structure was observed in ITO-1 films, grain growth was suppressed in ITO-2 films. ITO-1 bilayer coatings showed two-step failure under tensile load with cracks propagating along the ITO-1/a-Si:H-interface, whereas channeling cracks in comparable bi- and trilayers based on amorphous ITO-2 run through all constituent layers. A two-step failure is preferable from an application point of view, as it may lead to only a degradation of the performance instead of the ultimate failure of the device. Hence, the results demonstrate the importance of a fine-tuning of film microstructure not only for excellent electrical properties, but also for a high mechanical performance of flexible devices (e.g., a-Si:H based solar cells during fabrication in a roll-to-roll process or under service.

  14. Mechanical Properties of ZTO, ITO, and a-Si:H Multilayer Films for Flexible Thin Film Solar Cells

    Science.gov (United States)

    Hengst, Claudia; Menzel, Siegfried B; Rane, Gayatri K; Smirnov, Vladimir; Wilken, Karen; Leszczynska, Barbara; Fischer, Dustin; Prager, Nicole

    2017-01-01

    The behavior of bi- and trilayer coating systems for flexible a-Si:H based solar cells consisting of a barrier, an electrode, and an absorption layer is studied under mechanical load. First, the film morphology, stress, Young’s modulus, and crack onset strain (COS) were analyzed for single film coatings of various thickness on polyethylene terephthalate (PET) substrates. In order to demonstrate the role of the microstructure of a single film on the mechanical behavior of the whole multilayer coating, two sets of InSnOx (indium tin oxide, ITO) conductive coatings were prepared. Whereas a characteristic grain–subgrain structure was observed in ITO-1 films, grain growth was suppressed in ITO-2 films. ITO-1 bilayer coatings showed two-step failure under tensile load with cracks propagating along the ITO-1/a-Si:H-interface, whereas channeling cracks in comparable bi- and trilayers based on amorphous ITO-2 run through all constituent layers. A two-step failure is preferable from an application point of view, as it may lead to only a degradation of the performance instead of the ultimate failure of the device. Hence, the results demonstrate the importance of a fine-tuning of film microstructure not only for excellent electrical properties, but also for a high mechanical performance of flexible devices (e.g., a-Si:H based solar cells) during fabrication in a roll-to-roll process or under service. PMID:28772609

  15. A Flexible Mechanism of Rule Selection Enables Rapid Feature-Based Reinforcement Learning.

    Science.gov (United States)

    Balcarras, Matthew; Womelsdorf, Thilo

    2016-01-01

    Learning in a new environment is influenced by prior learning and experience. Correctly applying a rule that maps a context to stimuli, actions, and outcomes enables faster learning and better outcomes compared to relying on strategies for learning that are ignorant of task structure. However, it is often difficult to know when and how to apply learned rules in new contexts. In our study we explored how subjects employ different strategies for learning the relationship between stimulus features and positive outcomes in a probabilistic task context. We test the hypothesis that task naive subjects will show enhanced learning of feature specific reward associations by switching to the use of an abstract rule that associates stimuli by feature type and restricts selections to that dimension. To test this hypothesis we designed a decision making task where subjects receive probabilistic feedback following choices between pairs of stimuli. In the task, trials are grouped in two contexts by blocks, where in one type of block there is no unique relationship between a specific feature dimension (stimulus shape or color) and positive outcomes, and following an un-cued transition, alternating blocks have outcomes that are linked to either stimulus shape or color. Two-thirds of subjects (n = 22/32) exhibited behavior that was best fit by a hierarchical feature-rule model. Supporting the prediction of the model mechanism these subjects showed significantly enhanced performance in feature-reward blocks, and rapidly switched their choice strategy to using abstract feature rules when reward contingencies changed. Choice behavior of other subjects (n = 10/32) was fit by a range of alternative reinforcement learning models representing strategies that do not benefit from applying previously learned rules. In summary, these results show that untrained subjects are capable of flexibly shifting between behavioral rules by leveraging simple model-free reinforcement learning and context

  16. A flexible mechanism of rule selection enables rapid feature-based reinforcement learning

    Directory of Open Access Journals (Sweden)

    Matthew eBalcarras

    2016-03-01

    Full Text Available Learning in a new environment is influenced by prior learning and experience. Correctly applying a rule that maps a context to stimuli, actions, and outcomes enables faster learning and better outcomes compared to relying on strategies for learning that are ignorant of task structure. However, it is often difficult to know when and how to apply learned rules in new contexts. In our study we explored how subjects employ different strategies for learning the relationship between stimulus features and positive outcomes in a probabilistic task context. We test the hypothesis that task naive subjects will show enhanced learning of feature specific reward associations by switching to the use of an abstract rule that associates stimuli by feature type and restricts selections to that dimension. To test this hypothesis we designed a decision making task where subjects receive probabilistic feedback following choices between pairs of stimuli. In the task, trials are grouped in two contexts by blocks, where in one type of block there is no unique relationship between a specific feature dimension (stimulus shape or colour and positive outcomes, and following an un-cued transition, alternating blocks have outcomes that are linked to either stimulus shape or colour. Two-thirds of subjects (n=22/32 exhibited behaviour that was best fit by a hierarchical feature-rule model. Supporting the prediction of the model mechanism these subjects showed significantly enhanced performance in feature-reward blocks, and rapidly switched their choice strategy to using abstract feature rules when reward contingencies changed. Choice behaviour of other subjects (n=10/32 was fit by a range of alternative reinforcement learning models representing strategies that do not benefit from applying previously learned rules. In summary, these results show that untrained subjects are capable of flexibly shifting between behavioural rules by leveraging simple model-free reinforcement

  17. Flexible parallel implicit modelling of coupled thermal-hydraulic-mechanical processes in fractured rocks

    Science.gov (United States)

    Cacace, Mauro; Jacquey, Antoine B.

    2017-09-01

    Theory and numerical implementation describing groundwater flow and the transport of heat and solute mass in fully saturated fractured rocks with elasto-plastic mechanical feedbacks are developed. In our formulation, fractures are considered as being of lower dimension than the hosting deformable porous rock and we consider their hydraulic and mechanical apertures as scaling parameters to ensure continuous exchange of fluid mass and energy within the fracture-solid matrix system. The coupled system of equations is implemented in a new simulator code that makes use of a Galerkin finite-element technique. The code builds on a flexible, object-oriented numerical framework (MOOSE, Multiphysics Object Oriented Simulation Environment) which provides an extensive scalable parallel and implicit coupling to solve for the multiphysics problem. The governing equations of groundwater flow, heat and mass transport, and rock deformation are solved in a weak sense (either by classical Newton-Raphson or by free Jacobian inexact Newton-Krylow schemes) on an underlying unstructured mesh. Nonlinear feedbacks among the active processes are enforced by considering evolving fluid and rock properties depending on the thermo-hydro-mechanical state of the system and the local structure, i.e. degree of connectivity, of the fracture system. A suite of applications is presented to illustrate the flexibility and capability of the new simulator to address problems of increasing complexity and occurring at different spatial (from centimetres to tens of kilometres) and temporal scales (from minutes to hundreds of years).

  18. Analysis of actuating mechanics characteristics for a flexible miniature robot system

    Institute of Scientific and Technical Information of China (English)

    Lianzhi YU; Guozheng YAN; Guanying MA; Peng ZAN

    2008-01-01

    Based on the inchworm movement, a minia-ture endoscope inspection robot system with a flexible structure is designed. The system is actuated by a pneumatic rubber actuator with three degrees of free-dom, and it holds its position by air chambers. The actuating mechanics characteristics of the robot are analyzed. An electro-pneumatic pressure system is designed to control the motion of the robot. Results of the calculation and experiments are consistent, and the robot system can move smoothly in a soft tube.

  19. Comparative study of heuristics algorithms in solving flexible job shop scheduling problem with condition based maintenance

    Directory of Open Access Journals (Sweden)

    Yahong Zheng

    2014-05-01

    Full Text Available Purpose: This paper focuses on a classic optimization problem in operations research, the flexible job shop scheduling problem (FJSP, to discuss the method to deal with uncertainty in a manufacturing system.Design/methodology/approach: In this paper, condition based maintenance (CBM, a kind of preventive maintenance, is suggested to reduce unavailability of machines. Different to the simultaneous scheduling algorithm (SSA used in the previous article (Neale & Cameron,1979, an inserting algorithm (IA is applied, in which firstly a pre-schedule is obtained through heuristic algorithm and then maintenance tasks are inserted into the pre-schedule scheme.Findings: It is encouraging that a new better solution for an instance in benchmark of FJSP is obtained in this research. Moreover, factually SSA used in literature for solving normal FJSPPM (FJSP with PM is not suitable for the dynamic FJSPPM. Through application in the benchmark of normal FJSPPM, it is found that although IA obtains inferior results compared to SSA used in literature, it performs much better in executing speed.Originality/value: Different to traditional scheduling of FJSP, uncertainty of machines is taken into account, which increases the complexity of the problem. An inserting algorithm (IA is proposed to solve the dynamic scheduling problem. It is stated that the quality of the final result depends much on the quality of the pre-schedule obtained during the procedure of solving a normal FJSP. In order to find the best solution of FJSP, a comparative study of three heuristics is carried out, the integrated GA, ACO and ABC. In the comparative study, we find that GA performs best in the three heuristic algorithms. Meanwhile, a new better solution for an instance in benchmark of FJSP is obtained in this research.

  20. Flexible designs for phase II comparative clinical trials involving two response variables.

    Science.gov (United States)

    Bersimis, S; Sachlas, A; Papaioannou, T

    2015-01-30

    The aim of phase II clinical trials is to determine whether an experimental treatment is sufficiently promising and safe to justify further testing. The need for reduced sample size arises naturally in phase II clinical trials owing to both technical and ethical reasons, motivating a significant part of research in the field during recent years, while another significant part of the research effort is aimed at more complex therapeutic schemes that demand the consideration of multiple endpoints to make decisions. In this paper, our attention is restricted to phase II clinical trials in which two treatments are compared with respect to two dependent dichotomous responses proposing some flexible designs. These designs permit the researcher to terminate the clinical trial when high rates of favorable or unfavorable outcomes are observed early enough requiring in this way a small number of patients. From the mathematical point of view, the proposed designs are defined on bivariate sequences of multi-state trials, and the corresponding stopping rules are based on various distributions related to the waiting time until a certain number of events appear in these sequences. The exact distributions of interest, under a unified framework, are studied using the Markov chain embedding technique, which appears to be very useful in clinical trials for the sample size determination. Tables of expected sample size and power are presented. The numerical illustration showed a very good performance for these new designs.

  1. Comparative evaluation of impact and flexural strength of four commercially available flexible denture base materials: an in vitro study.

    Science.gov (United States)

    Abhay, Pande Neelam; Karishma, Shori

    2013-12-01

    Poly-methyl methacrylate is a rigid material. It is generally observed that the impact and flexural strength of this material is not satisfactory and that is reflected in the continuous efforts to improve these mechanical properties. Hence there was a serious need to make another material which could overcome the limitations of the existing materials and could have better properties, like thermoplastic materials. The study was aimed to evaluate and compare the impact strength and the flexural strength of four different flexible denture base materials (thermoplastic denture base resins) with the conventional denture base material (high impact polymethyl-methacrylate). Two, machine made master moulds of metal blocks according to the size of sample holder of the equipment were prepared to test the impact and flexural strength. Total 40 samples, 10 for each group of flexible denture base materials namely: De-flex (Deflex, United Kingdom), Lucitone FRS (Densply, Germany), Valplast (Novoblast, USA), and Bre-flex (Bredent, Germany) in specially designed flask by injection molded process. For different flexible materials, the time, temperature and pressure for injecting the materials were followed as per the manufacturer's instructions. Total 20 samples for control (Trevelon denture base materials) were prepared by compression moulded process, for each test. ANOVA test was applied to calculate p value. Unpaired t test was applied to calculate t-value. Tukey-Kramer multiple test was provided for comparison between the groups for flexural and impact strength. From the statistical analysis, it was found that, the impact strength of Group III (Valplast) was found to be the highest than all other groups and nearer to the control group. Whereas Group IV (Bre-flex) had the maximum flexural strength. The flexural strength of Group I (De-flex) was lowest than all other groups and nearer to control group. The values were found to be statistically significant but clinically non

  2. Tendon-Sheath Mechanisms in Flexible Membrane Wing Mini-UAVs: Control and Performance

    Directory of Open Access Journals (Sweden)

    Tegoeh Tjahjowidodo

    2017-01-01

    Full Text Available Flexible membrane wings (FMWs are known for two inherent advantages, that is, adaptability to gusty airflow as the wings can flex according to the gust load to reduce the effective angle of attack and the ability to be folded for compact storage purposes. However, the maneuverability of UAV with FMWs is rather limited as it is impossible to install conventional ailerons. The maneuver relies only on the rudders. Some applications utilize torque rods to warp the wings, but this approach makes the FMW become unfoldable. In this research, we proposed the application of a tendon-sheath mechanism to manipulate the wing shape of UAV. Tendon-sheath mechanism is relatively flexible; thus, it can also be folded together with the wings. However, its severe nonlinearity in its dynamics makes the wing warping difficult to control. To compensate for the nonlinearity, a dedicated adaptive controller is designed and implemented. The proposed approach is validated experimentally in a wind tunnel facility with imitated gusty condition and subsequently tested in a real flight condition. The results demonstrate a stable and robust wing warping actuation, while the adaptive washout capability is also validated. Accurate wing warping is achieved and the UAV is easily controlled in a real flight test.

  3. Ground-based testing of the dynamics of flexible space structures using band mechanisms

    Science.gov (United States)

    Yang, L. F.; Chew, Meng-Sang

    1991-01-01

    A suspension system based on a band mechanism is studied to provide the free-free conditions for ground based validation testing of flexible space structures. The band mechanism consists of a noncircular disk with a convex profile, preloaded by torsional springs at its center of rotation so that static equilibrium of the test structure is maintained at any vertical location; the gravitational force will be directly counteracted during dynamic testing of the space structure. This noncircular disk within the suspension system can be configured to remain unchanged for test articles with the different weights as long as the torsional spring is replaced to maintain the originally designed frequency ratio of W/k sub s. Simulations of test articles which are modeled as lumped parameter as well as continuous parameter systems, are also presented.

  4. STATIC VERSUS PNF STRETCHING IN HAMSTRING FLEXIBILITY-A COMPARATIVE STUDY

    Directory of Open Access Journals (Sweden)

    Venkata Naga Prahalada Karnati

    2015-06-01

    Full Text Available Background: Stretching used as a technique for injury prevention in the clinical settings, the study aimed to determine the early findings of hamstring tightness with both groups in the population, now a days the sedentary activities like prolonged sitting might cause hamstring tightness and change in path kinematics of gait intern lead to postural defects and back pain, understanding of the stretching helps clinician to make decisions for rehabilitation. Methods: Across-sectional study, counterbalanced with repeated-measures , one group with static stretch – (double hamstring stretch and hurdlers stretch for 3 times,30seconds subsequently in another group PNF contract relax(agonist contraction technique for 10 seconds position and 10 seconds stretch repeated for 3 times. Results: The results from data and statistical analysis by using t-test, SPSS obtained by using goniometer are tabulated in terms of mean, standard deviation and p-value in both groups. In experimental group flexion with PNF showed improvement 9.27±1.91(right side, 9.53±2.42(left side and static stretching showed 7.8±2.91(right side, 7.47±1.96(left side this proves that PNF has consistent improvement than static stretching. Conclusions: Static and proprioceptive neuromuscular facilitation stretching both have produced greater improvement but compared with PNF contract relax(agonist stretching showed significant change in hamstring flexibility compared with control group . The effect sizes, however corresponding to these stretching-induced changes were small, which suggests the need for practitioners to consider a risk-to-benefit ratio when incorporating static or proprioceptive neuromuscular facilitation stretching.

  5. Modeling the Insertion Mechanics of Flexible Neural Probes Coated with Sacrificial Polymers for Optimizing Probe Design

    Directory of Open Access Journals (Sweden)

    Sagar Singh

    2016-03-01

    Full Text Available Single-unit recording neural probes have significant advantages towards improving signal-to-noise ratio and specificity for signal acquisition in brain-to-computer interface devices. Long-term effectiveness is unfortunately limited by the chronic injury response, which has been linked to the mechanical mismatch between rigid probes and compliant brain tissue. Small, flexible microelectrodes may overcome this limitation, but insertion of these probes without buckling requires supporting elements such as a stiff coating with a biodegradable polymer. For these coated probes, there is a design trade-off between the potential for successful insertion into brain tissue and the degree of trauma generated by the insertion. The objective of this study was to develop and validate a finite element model (FEM to simulate insertion of coated neural probes of varying dimensions and material properties into brain tissue. Simulations were performed to predict the buckling and insertion forces during insertion of coated probes into a tissue phantom with material properties of brain. The simulations were validated with parallel experimental studies where probes were inserted into agarose tissue phantom, ex vivo chick embryonic brain tissue, and ex vivo rat brain tissue. Experiments were performed with uncoated copper wire and both uncoated and coated SU-8 photoresist and Parylene C probes. Model predictions were found to strongly agree with experimental results (<10% error. The ratio of the predicted buckling force-to-predicted insertion force, where a value greater than one would ideally be expected to result in successful insertion, was plotted against the actual success rate from experiments. A sigmoidal relationship was observed, with a ratio of 1.35 corresponding to equal probability of insertion and failure, and a ratio of 3.5 corresponding to a 100% success rate. This ratio was dubbed the “safety factor”, as it indicated the degree to which the coating

  6. Modeling the Insertion Mechanics of Flexible Neural Probes Coated with Sacrificial Polymers for Optimizing Probe Design.

    Science.gov (United States)

    Singh, Sagar; Lo, Meng-Chen; Damodaran, Vinod B; Kaplan, Hilton M; Kohn, Joachim; Zahn, Jeffrey D; Shreiber, David I

    2016-03-04

    Single-unit recording neural probes have significant advantages towards improving signal-to-noise ratio and specificity for signal acquisition in brain-to-computer interface devices. Long-term effectiveness is unfortunately limited by the chronic injury response, which has been linked to the mechanical mismatch between rigid probes and compliant brain tissue. Small, flexible microelectrodes may overcome this limitation, but insertion of these probes without buckling requires supporting elements such as a stiff coating with a biodegradable polymer. For these coated probes, there is a design trade-off between the potential for successful insertion into brain tissue and the degree of trauma generated by the insertion. The objective of this study was to develop and validate a finite element model (FEM) to simulate insertion of coated neural probes of varying dimensions and material properties into brain tissue. Simulations were performed to predict the buckling and insertion forces during insertion of coated probes into a tissue phantom with material properties of brain. The simulations were validated with parallel experimental studies where probes were inserted into agarose tissue phantom, ex vivo chick embryonic brain tissue, and ex vivo rat brain tissue. Experiments were performed with uncoated copper wire and both uncoated and coated SU-8 photoresist and Parylene C probes. Model predictions were found to strongly agree with experimental results (experiments. A sigmoidal relationship was observed, with a ratio of 1.35 corresponding to equal probability of insertion and failure, and a ratio of 3.5 corresponding to a 100% success rate. This ratio was dubbed the "safety factor", as it indicated the degree to which the coating should be over-designed to ensure successful insertion. Probability color maps were generated to visually compare the influence of design parameters. Statistical metrics derived from the color maps and multi-variable regression analysis confirmed

  7. A fast platform for simulating semi-flexible fiber suspensions applied to cell mechanics

    Science.gov (United States)

    Nazockdast, Ehssan; Rahimian, Abtin; Zorin, Denis; Shelley, Michael

    2017-01-01

    We present a novel platform for the large-scale simulation of three-dimensional fibrous structures immersed in a Stokesian fluid and evolving under confinement or in free-space in three dimensions. One of the main motivations for this work is to study the dynamics of fiber assemblies within biological cells. For this, we also incorporate the key biophysical elements that determine the dynamics of these assemblies, which include the polymerization and depolymerization kinetics of fibers, their interactions with molecular motors and other objects, their flexibility, and hydrodynamic coupling. This work, to our knowledge, is the first technique to include many-body hydrodynamic interactions (HIs), and the resulting fluid flows, in cellular assemblies of flexible fibers. We use non-local slender body theory to compute the fluid-structure interactions of the fibers and a second-kind boundary integral formulation for other rigid bodies and the confining boundary. A kernel-independent implementation of the fast multipole method is utilized for efficient evaluation of HIs. The deformation of the fibers is described by nonlinear Euler-Bernoulli beam theory and their polymerization is modeled by the reparametrization of the dynamic equations in the appropriate non-Lagrangian frame. We use a pseudo-spectral representation of fiber positions and implicit time-stepping to resolve large fiber deformations, and to allow time-steps not excessively constrained by temporal stiffness or fiber-fiber interactions. The entire computational scheme is parallelized, which enables simulating assemblies of thousands of fibers. We use our method to investigate two important questions in the mechanics of cell division: (i) the effect of confinement on the hydrodynamic mobility of microtubule asters; and (ii) the dynamics of the positioning of mitotic spindle in complex cell geometries. Finally to demonstrate the general applicability of the method, we simulate the sedimentation of a cloud of

  8. A fast platform for simulating semi-flexible fiber suspensions applied to cell mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Nazockdast, Ehssan, E-mail: ehssan@cims.nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 (United States); Center for Computational Biology, Simons Foundation, New York, NY 10010 (United States); Rahimian, Abtin, E-mail: arahimian@acm.org [Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 (United States); Zorin, Denis, E-mail: dzorin@cs.nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 (United States); Shelley, Michael, E-mail: shelley@cims.nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 (United States); Center for Computational Biology, Simons Foundation, New York, NY 10010 (United States)

    2017-01-15

    We present a novel platform for the large-scale simulation of three-dimensional fibrous structures immersed in a Stokesian fluid and evolving under confinement or in free-space in three dimensions. One of the main motivations for this work is to study the dynamics of fiber assemblies within biological cells. For this, we also incorporate the key biophysical elements that determine the dynamics of these assemblies, which include the polymerization and depolymerization kinetics of fibers, their interactions with molecular motors and other objects, their flexibility, and hydrodynamic coupling. This work, to our knowledge, is the first technique to include many-body hydrodynamic interactions (HIs), and the resulting fluid flows, in cellular assemblies of flexible fibers. We use non-local slender body theory to compute the fluid–structure interactions of the fibers and a second-kind boundary integral formulation for other rigid bodies and the confining boundary. A kernel-independent implementation of the fast multipole method is utilized for efficient evaluation of HIs. The deformation of the fibers is described by nonlinear Euler–Bernoulli beam theory and their polymerization is modeled by the reparametrization of the dynamic equations in the appropriate non-Lagrangian frame. We use a pseudo-spectral representation of fiber positions and implicit time-stepping to resolve large fiber deformations, and to allow time-steps not excessively constrained by temporal stiffness or fiber–fiber interactions. The entire computational scheme is parallelized, which enables simulating assemblies of thousands of fibers. We use our method to investigate two important questions in the mechanics of cell division: (i) the effect of confinement on the hydrodynamic mobility of microtubule asters; and (ii) the dynamics of the positioning of mitotic spindle in complex cell geometries. Finally to demonstrate the general applicability of the method, we simulate the sedimentation of a

  9. Mechanically flexible optically transparent silicon fabric with high thermal budget devices from bulk silicon (100)

    KAUST Repository

    Hussain, Muhammad Mustafa

    2013-05-30

    Today’s information age is driven by silicon based electronics. For nearly four decades semiconductor industry has perfected the fabrication process of continuingly scaled transistor – heart of modern day electronics. In future, silicon industry will be more pervasive, whose application will range from ultra-mobile computation to bio-integrated medical electronics. Emergence of flexible electronics opens up interesting opportunities to expand the horizon of electronics industry. However, silicon – industry’s darling material is rigid and brittle. Therefore, we report a generic batch fabrication process to convert nearly any silicon electronics into a flexible one without compromising its (i) performance; (ii) ultra-large-scale-integration complexity to integrate billions of transistors within small areas; (iii) state-of-the-art process compatibility, (iv) advanced materials used in modern semiconductor technology; (v) the most widely used and well-studied low-cost substrate mono-crystalline bulk silicon (100). In our process, we make trenches using anisotropic reactive ion etching (RIE) in the inactive areas (in between the devices) of a silicon substrate (after the devices have been fabricated following the regular CMOS process), followed by a dielectric based spacer formation to protect the sidewall of the trench and then performing an isotropic etch to create caves in silicon. When these caves meet with each other the top portion of the silicon with the devices is ready to be peeled off from the bottom silicon substrate. Release process does not need to use any external support. Released silicon fabric (25 μm thick) is mechanically flexible (5 mm bending radius) and the trenches make it semi-transparent (transparency of 7%). © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  10. Rigid-flexible outer sheath model using slider linkage locking mechanism and air pressure for endoscopic surgery.

    Science.gov (United States)

    Yagi, Akihiko; Matsumiya, Kiyoshi; Masamune, Ken; Liao, Hongen; Dohi, Takeyoshi

    2006-01-01

    The objective of this paper is to develop an outer sheath for flexible endoscopic manipulators. This sheath can switch two states including flexible and rigid, and make a rigid curved path for inserting manipulators. The flexible mode can be curved into a required shape. The rigid mode can hold the shape of the sheath, and then keep the path for instruments. Through the managed path, the flexible manipulators become easy to reach the target. We proposed a serial multi joint model to realize the flexible mechanism. This model is composed of a set of frame units which are connected serially. Each unit can be rotated to a given angle around the center of the joint. We developed a slider-link mechanism and a gear stopper controlled by air pressure for rigid mode. We designed and fabricated the prototype with a diameter of 16 mm and length of 290 mm. The experiment showed that the device could be switched from the flexible mode to the rigid mode when the air pressure was over 150 kPa, and each joint could hold its angle against the maximum 400 mNm. The phantom experiment showed that the flexible devices are possible to transmit the wire tension to the endpoint of the manipulator without changing the curving shape with by the developed outer sheath device.

  11. Flexible Graduate is Successful Graduate. Key Factors of Successful Job Interview, Results of a Comparative Analysis

    Directory of Open Access Journals (Sweden)

    Vendolska Iva

    2016-06-01

    Full Text Available The conditions on the labour market have changed dramatically in the last twenty years and the importance of human resources has increased. A company has to find, keep, and educate those workers who are able to adapt quickly to changes in the market. Such a company is then able to innovate constantly, which ensures its long-term competitiveness. Moreover, after finishing their education young people experience problems when seeking suitable employment. University graduates face stronger competition from other graduates when seeking employment. This target risk group of university graduates in particular is included in the primary research, together with the other side of the labour market, employers. The importance of individual criteria that are pivotal for employers during job interviews was examined on the basis of an anonymous questionnaire. 18 criteria were assessed and compared on a scale from 1 to 5. The correlation between the rate of importance of the given criterion and the group of respondents was tested. It was discovered that the criterion employers consider the most important is the flexibility and adaptability of a job candidate. This criterion is followed by willingness to learn, loyalty, and self-reliance. Those considered least important were these criteria: a stay abroad, courses/certificates, and studying at a particular university. On the other hand, the students consider the most important criteria to be foreign language skills, followed by communication skills, and willingness to learn and an internship during their studies. The criteria that were seen as the most important were: self-confidence, experience of a stay abroad, and the particular university that the student graduated from. The most significant difference in the assessment of the criteria between the employers and students was identified as being an internship during one’s studies.

  12. Pavement structure mechanics response of flexible on semi-flexible overlay that based on the old cement concrete pavement damage

    Directory of Open Access Journals (Sweden)

    Jiang Ruinan

    2015-01-01

    Full Text Available The old cement pavement damage status directly affect the design of the paving renovation. Based on the state of the old road investigation, combined with the research data at home and abroad, use the control index that average deflection, deflection value and CBR value to determine the reasonable time to overlay. Draw up the typical pavement structure according to the principle of combination of old cement pavement overlay structure design, and calculated that the tensile stress and shear stress in asphalt layer ,semi-flexible layer and the tensile in the old cement pavement adopting BISA3.0 statics finite element analysis model when modulus in the old road was diminishing. Use the computed result to analyses the influence of old road damage condition the influence of pavement structure.

  13. Molecular mechanism of serotonin transporter inhibition elucidated by a new flexible docking protocol.

    Science.gov (United States)

    Gabrielsen, Mari; Kurczab, Rafał; Ravna, Aina W; Kufareva, Irina; Abagyan, Ruben; Chilmonczyk, Zdzisław; Bojarski, Andrzej J; Sylte, Ingebrigt

    2012-01-01

    The two main groups of antidepressant drugs, the tricyclic antidepressants (TCAs) and the selective serotonin reuptake inhibitors (SSRIs), as well as several other compounds, act by inhibiting the serotonin transporter (SERT). However, the binding mode and molecular mechanism of inhibition in SERT are not fully understood. In this study, five classes of SERT inhibitors were docked into an outward-facing SERT homology model using a new 4D ensemble docking protocol. Unlike other docking protocols, where protein flexibility is not considered or is highly dependent on the ligand structure, flexibility was here obtained by side chain sampling of the amino acids of the binding pocket using biased probability Monte Carlo (BPMC) prior to docking. This resulted in the generation of multiple binding pocket conformations that the ligands were docked into. The docking results showed that the inhibitors were stacked between the aromatic amino acids of the extracellular gate (Y176, F335) presumably preventing its closure. The inhibitors interacted with amino acids in both the putative substrate binding site and more extracellular regions of the protein. A general structure-docking-based pharmacophore model was generated to explain binding of all studied classes of SERT inhibitors. Docking of a test set of actives and decoys furthermore showed that the outward-facing ensemble SERT homology model consistently and selectively scored the majority of active compounds above decoys, which indicates its usefulness in virtual screening.

  14. The mechanical design of a humanoid robot with flexible skin sensor for use in psychiatric therapy

    Science.gov (United States)

    Burns, Alec; Tadesse, Yonas

    2014-03-01

    In this paper, a humanoid robot is presented for ultimate use in the rehabilitation of children with mental disorders, such as autism. Creating affordable and efficient humanoids could assist the therapy in psychiatric disability by offering multimodal communication between the humanoid and humans. Yet, the humanoid development needs a seamless integration of artificial muscles, sensors, controllers and structures. We have designed a human-like robot that has 15 DOF, 580 mm tall and 925 mm arm span using a rapid prototyping system. The robot has a human-like appearance and movement. Flexible sensors around the arm and hands for safe human-robot interactions, and a two-wheel mobile platform for maneuverability are incorporated in the design. The robot has facial features for illustrating human-friendly behavior. The mechanical design of the robot and the characterization of the flexible sensors are presented. Comprehensive study on the upper body design, mobile base, actuators selection, electronics, and performance evaluation are included in this paper.

  15. Experimental Study on Mechanism and Shape Characteristics of Suspended Flexible Dam

    Institute of Scientific and Technical Information of China (English)

    王建中; 范红霞; 朱立俊

    2014-01-01

    Hydraulic structures such as groin, longitudinal dike and seawall are common in water conservancy and water transportation engineering projects at home and abroad, which have long been dominated by solid mass structural form. With brush and stone as building materials, this kind of structure has an obvious engineering effect. However, it not only requires huge capital investments, but also has negative impacts on the ecological environment. The suspended flexible dam is an innovative engineering measure, and few theoretical and experimental researches of this type dam can be found at present. This paper studies the mechanism and shape characteristics of this dam and obtains the dynamic equilibrium equation of flexible dam, the float buoyancy expression, and the condition for transformation among three forms of the underwater shape of the dam. The results are valuable in engineering application and can be used as the reference for the future work due to the distinctive design philosophy, the small negative effects on environment and the consistency for sustainable development.

  16. The Comparative Study of Vibration Control of Flexible Structure Using Smart Materials

    Directory of Open Access Journals (Sweden)

    Juntao Fei

    2010-01-01

    Full Text Available Considerable attention has been devoted to active vibration control using intelligent materials as PZT actuators. This paper presents results on active control schemes for vibration suppression of flexible steel cantilever beam with bonded piezoelectric actuators. The PZT patches are surface bonded near the fixed end of flexible steel cantilever beam. The dynamic model of the flexible steel cantilever beam is derived. Active vibration control methods: optimal PID control, strain rate feedback control (SRF, and positive position feedback control (PPF are investigated and implemented using xPC Target real-time system. Experimental results demonstrate that the SRF and PPF controls have better performance in suppressing the vibration of cantilever steel beam than the optimal PID control.

  17. Shearing mechanics and the influence of a flexible symphysis during oral food processing in Sphenodon (Lepidosauria: Rhynchocephalia).

    Science.gov (United States)

    Jones, Marc E H; O'higgins, Paul; Fagan, Michael J; Evans, Susan E; Curtis, Neil

    2012-07-01

    The New Zealand tuatara, Sphenodon, has a specialized feeding system in which the teeth of the lower jaw close between two upper tooth rows before sliding forward to slice food apart like a draw cut saw. This shearing action is unique amongst living amniotes but has been compared with the chewing power stroke of mammals. We investigated details of the jaw movement using multibody dynamics analysis of an anatomically accurate three-dimensional computer model constructed from computed tomography scans. The model predicts that a flexible symphysis is necessary for changes in the intermandibular angle that permits prooral movement. Models with the greatest symphysial flexibility allow the articulation surface of the articular to follow the quadrate cotyle with the least restriction, and suggest that shearing is accompanied by a long axis rotation of the lower jaws. This promotes precise point loading between the cutting edges of particular teeth, enhancing the effectiveness of the shearing action. Given that Sphenodon is a relatively inactive reptile, we suggest that the link between oral food processing and endothermy has been overstated. Food processing improves feeding efficiency, a consideration of particular importance when food availability is unpredictable. Although this feeding mechanism is today limited to Sphenodon, a survey of fossil rhynchocephalians suggests that it was once more widespread.

  18. Understanding and improving the mechanical stability of semiconducting polymers for flexible and stretchable electronics

    Science.gov (United States)

    Printz, Adam David

    Polymeric semiconductors offer the promise of low-cost, printable, and mechanically robust electronic devices for use in outdoor, portable, and wearable applications such as organic photovoltaics, biosensors, and electronic skins. However, many organic semiconductors are unable to accommodate the mechanical stresses these applications require, and it is therefore important to understand the factors and parameters that govern the mechanical stability of these materials. Chapter 1 provides a gentle introduction to the electronic and mechanical properties relevant to flexible and stretchable organic semiconductor devices. The idea of inherent competition between electronic performance and mechanical robustness is explored. Chapter 2 investigates the inherent competition between good electronic performance and mechanical robustness in poly(3-alkylthiophene)s. A key finding is a critical alkyl side-chain length that allows for good electronic performance and mechanical compliance. Chapter 3 and Appendix A are further studies on the properties of poly(3-alkylthiophene)s with side-chains close to the critical length to gain better understanding of the transition from good electronic properties and poor mechanical properties to poor electronic properties and good mechanical properties. Chapter 4 and Appendix B detail the effects on mechanical and electronic properties of statistical incorporation of unlike monomer into a low-bandgap polymer backbone in an effort to disrupt aggregation and improve mechanical compliance. Chapter 5 explores how the extent of molecular mixing of polythiophenes and fullerenes---materials common in organic photovoltaics---affects their mechanical properties. Chapter 6 describes the invention of a new technique to determine the yield point of thin films. A dependence on the alkyl-side chain length is observed, as well as a critical film thickness below which the yield point increases substantially. In Chapter 7, the weakly interacting H

  19. Comparing CT colonography and flexible sigmoidoscopy: a randomised trial within a population-based screening programme.

    Science.gov (United States)

    Regge, Daniele; Iussich, Gabriella; Segnan, Nereo; Correale, Loredana; Hassan, Cesare; Arrigoni, Arrigo; Asnaghi, Roberto; Bestagini, Piero; Bulighin, Gianmarco; Cassinis, Maria Carla; Ederle, Andrea; Ferraris, Andrea; Galatola, Giovanni; Gallo, Teresa; Gandini, Giovanni; Garretti, Licia; Martina, Maria Cristina; Molinar, Daniela; Montemezzi, Stefania; Morra, Lia; Motton, Massimiliano; Occhipinti, Pietro; Pinali, Lucia; Soardi, Gian Alberto; Senore, Carlo

    2017-08-01

    The role of CT colonography (CTC) as a colorectal cancer (CRC) screening test is uncertain. The aim of our trial was to compare participation and detection rate (DR) with sigmoidoscopy (flexible sigmoidoscopy (FS)) and CTC in a screening setting. We conducted two randomised clinical trials (RCTs). (1) Participation RCT: individuals, aged 58 years, living in Turin (Italy), were randomly assigned to be invited to FS or CTC screening; (2) detection RCT: residents in northern Italy, aged 58-60, giving their consent to recruitment, were randomly allocated to CTC or FS. Polyps ≥6 mm at CTC, or 'high-risk' distal lesions at FS, were referred for colonoscopy (TC). Participation rate (proportion of invitees examined); DR of advanced adenomas or CRC (advanced neoplasia (AN)). Participation was 30.4% (298/980) for CTC and 27.4% (267/976) for FS (relative risk (RR) 1.1; 95% CI 0.98 to 1.29). Among men, participation was higher with CTC than with FS (34.1% vs 26.5%, p=0.011). In the detection RCT, 2673 subjects had FS and 2595 had CTC: the AN DR was 4.8% (127/2673, including 9 CRCs) with FS and 5.1% (133/2595, including 10 CRCs) with CTC (RR 1.08; 95% CI 0.85 to 1.37). Distal AN DR was 3.9% (109/2673) with FS and 2.9% (76/2595) with CTC (RR 0.72; 95% CI 0.54 to 0.96); proximal AN DR was 1.2% (34/2595) for FS vs 2.7% (69/2595) for CTC (RR 2.06; 95% CI 1.37 to 3.10). Participation and DR for FS and CTC were comparable. AN DR was twice as high in the proximal colon and lower in the distal colon with CTC than with FS. Men were more likely to participate in CTC screening. NCT01739608; Pre-results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  20. Reliability-based design optimization for flexible mechanism with particle swarm optimization and advanced extremum response surface method

    Institute of Scientific and Technical Information of China (English)

    张春宜; 宋鲁凯; 费成巍; 郝广平; 刘令君

    2016-01-01

    To improve the computational efficiency of the reliability-based design optimization (RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method (PSO-AERSM) was proposed by integrating particle swarm optimization (PSO) algorithm and advanced extremum response surface method (AERSM). Firstly, the AERSM was developed and its mathematical model was established based on artificial neural network, and the PSO algorithm was investigated. And then the RBDO model of flexible mechanism was presented based on AERSM and PSO. Finally, regarding cross-sectional area as design variable, the reliability optimization of flexible mechanism was implemented subject to reliability degree and uncertainties based on the proposed approach. The optimization results show that the cross-section sizes obviously reduce by 22.96 mm2 while keeping reliability degree. Through the comparison of methods, it is demonstrated that the AERSM holds high computational efficiency while keeping computational precision for the RBDO of flexible mechanism, and PSO algorithm minimizes the response of the objective function. The efforts of this work provide a useful sight for the reliability optimization of flexible mechanism, and enrich and develop the reliability theory as well.

  1. Assessment of excitation mechanisms and structural flexibility influence in excitation propagation in multi-megawatt wind turbine gearboxes: Experiments and flexible multibody model optimization

    Science.gov (United States)

    Helsen, Jan; Marrant, Ben; Vanhollebeke, Frederik; De Coninck, Filip; Berckmans, Dries; Vandepitte, Dirk; Desmet, Wim

    2013-10-01

    Reliable gearbox design calculations require sufficient insight in gearbox dynamics, which is determined by the interaction between the different excitation mechanisms and the gearbox modal behavior. Both external gearbox excitation originating from the wind turbine drive train and internal gearbox excitation are important. Moreover with regard to the modal behavior the different gearbox structural components: planet carrier, shafts and housing are of influence. The main objective of this article is the experimental investigation of the interaction between the different excitation mechanisms and the gearbox modal behavior. The insights gathered are used to prove the need for accurate gear mesh representation and structural flexibility within the corresponding flexible multibody gearbox simulation model. Experiments are conducted on a dynamic 13.2 MW test facility on which two multi-megawatt wind turbine gearboxes are placed back to back and subjected to a speed run-up. Measurement sensors consist of bearing displacement sensors, torque sensors, encoders and accelerometers distributed over the gearbox. Excitation order amplitudes on different locations in the gearbox are determined by means of a Time Varying Discrete Fourier Transform (TVDFT) order tracking on the measured sensor signals. Moreover the propagation of this excitation throughout the gearbox is assessed. Relating the orders to the corresponding excitation source allows the definition of order influence regions within the gearbox. The interaction between the gear mesh order excitation and structural flexibility is shown.

  2. Mechanical design, analysis, and laboratory testing of a dental implant with axial flexibility similar to natural tooth with periodontal ligament.

    Science.gov (United States)

    Pektaş, Ömer; Tönük, Ergin

    2014-11-01

    At the interface between the jawbone and the roots of natural teeth, a thin, elastic, shock-absorbing tissue, called the periodontal ligament, forms a cushion which provides certain flexibility under mechanical loading. The dental restorations supported by implants, however, involve comparatively rigid connections to the jawbone. This causes overloading of the implant while bearing functional loading together with neighboring natural teeth, which leads to high stresses within the implant system and in the jawbone. A dental implant, with resilient components in the upper structure (abutment) in order to mimic the mechanical behavior of the periodontal ligament in the axial direction, was designed, analyzed in silico, and produced for mechanical testing. The aims of the design were avoiding high levels of stress, loosening of the abutment connection screw, and soft tissue irritations. The finite element analysis of the designed implant revealed that the elastic abutment yielded a similar axial mobility with the natural tooth while keeping stress in the implant at safe levels. The in vitro mechanical testing of the prototype resulted in similar axial mobility predicted by the analysis and as that of a typical natural tooth. The abutment screw did not loosen under repeated loading and there was no static or fatigue failure.

  3. Structural mechanism of nuclear transport mediated by importin β and flexible amphiphilic proteins.

    Science.gov (United States)

    Yoshimura, Shige H; Kumeta, Masahiro; Takeyasu, Kunio

    2014-12-02

    Karyopherin β family proteins mediate the nuclear/cytoplasmic transport of various proteins through the nuclear pore complex (NPC), although they are substantially larger than the size limit of the NPC.To elucidate the molecular mechanism underlying this paradoxical function, we focused on the unique structures called HEAT repeats, which consist of repetitive amphiphilic α helices. An in vitro transport assay and FRAP analyses demonstrated that not only karyopherin β family proteins but also other proteins with HEAT repeats could pass through the NPC by themselves, and serve as transport mediators for their binding partners. Biochemical and spectroscopic analyses and molecular dynamics simulations of purified HEAT-rich proteins revealed that they interact with hydrophobic groups, including phenyl and alkyl groups, and undergo reversible conformational changes in tertiary structures, but not in secondary structures. These results show that conformational changes in the flexible amphiphilic motifs play a critical role in translocation through the NPC.

  4. Flexible oligocholate foldamers as membrane transporters and their guest-dependent transport mechanism.

    Science.gov (United States)

    Zhang, Shiyong; Zhao, Yan

    2012-01-14

    Dimeric, trimeric, and tetrameric oligocholates with flexible 4-aminobutyroyl spacers caused the efflux of hydrophilic molecules such as carboxyfluorescein (CF) and glucose from POPC/POPG liposomes. Transport was greatly suppressed across higher-melting DPPC membranes. Lipid-mixing assays and dynamic light scattering (DLS) indicated that the liposomes were intact during the transport. Kinetic analysis supported the involvement of monomeric species in the rate-limiting step of CF transport, consistent with a carrier-based mechanism. Glucose transport, on the other hand, displayed a highly unusual zero-order dependence on the oligocholate concentration at low loading of the transporter. Different selectivity was observed in the oligocholate transporters depending on the guest involved.

  5. Attentional Learning and Flexible Induction: How Mundane Mechanisms Give Rise to Smart Behaviors

    Science.gov (United States)

    Sloutsky, Vladimir M.; Fisher, Anna V.

    2008-01-01

    Young children often exhibit flexible behaviors relying on different kinds of information in different situations. This flexibility has been traditionally attributed to conceptual knowledge. Reported research demonstrates that flexibility can be acquired implicitly and it does not require conceptual knowledge. In Experiment 1, 4- to 5-year-olds…

  6. Learning flexible skills in anesthesiology : comparing list and context learning in a human patient simulator

    NARCIS (Netherlands)

    Cnossen, Fokie; Grapengeter, M.; Feenstra, Laurens; Wierda, Stefan

    2009-01-01

    Traditionally, medical training has focused on step-by-step instructions of new skills. However, this may result in inflexible skills, which students cannot apply to new problems. To test whether instructions focusing on external context produce more flexible skills, we taught seventeen fourth year

  7. Ontology aided modeling of organic reaction mechanisms with flexible and fragment based XML markup procedures.

    Science.gov (United States)

    Sankar, Punnaivanam; Aghila, Gnanasekaran

    2007-01-01

    The mechanism models for primary organic reactions encoding the structural fragments undergoing substitution, addition, elimination, and rearrangements are developed. In the proposed models, each and every structural component of mechanistic pathways is represented with flexible and fragment based markup technique in XML syntax. A significant feature of the system is the encoding of the electron movements along with the other components like charges, partial charges, half bonded species, lone pair electrons, free radicals, reaction arrows, etc. needed for a complete representation of reaction mechanism. The rendering of reaction schemes described with the proposed methodology is achieved with a concise XML extension language interoperating with the structure markup. The reaction scheme is visualized as 2D graphics in a browser by converting them into SVG documents enabling the desired layouts normally perceived by the chemists conventionally. An automatic representation of the complex patterns of the reaction mechanism is achieved by reusing the knowledge in chemical ontologies and developing artificial intelligence components in terms of axioms.

  8. Effect of confinement on the collapsing mechanism of a flexible polymer chain.

    Science.gov (United States)

    Das, Siddhartha; Chakraborty, Suman

    2010-11-07

    In this paper, Brownian dynamics simulation (BDS) studies are executed to demonstrate the distinctive influences of the extent of confinement on the collapsing mechanism and kinetics of a flexible hydrophobic polymer chain in a poor solvent. The collapsing behavior is quantified by the time of collapse, which below a critical dimension of the confinement (h(c)), encounters a drastic reduction with a further strengthening in the degree of confinement. For dimensions greater than this critical one, the collapse occurs through the well-known hydrodynamic interaction (HI) controlled multiple-globule-mediated mechanisms. However, for channel dimensions less than this critical one, the collapse mechanism is drastically altered. Under such circumstances, the collapse gets predominantly controlled by the confinement effects (with negligible contribution of the HIs) and occurs via the formation of a single central globule. This central globule rapidly engulfs the noncondensed polymer segments, and in the process largely hastens up the collapsing event. Under such circumstances, the collapse time is found to decrease linearly with decrements in the channel height. On the contrary, for channel heights greater than h(c), the multiple-globule-mediated collapse is characterized by a collapse time that shows an exponential dependence on the channel height, rapidly attaining a state in which the confinement effect becomes inconsequential and HIs dictate the entire collapsing behavior. We further propose detailed arguments based on physical reasoning as well as free energy estimations to conclusively support the qualitative and quantitative nature of influences of the confinement on the polymer collapse.

  9. PEDOT:PSS Overcoating Layer for Mechanically and Chemically Stable Ag Nanowire Flexible Transparent Electrode

    Directory of Open Access Journals (Sweden)

    Byungil Hwang

    2017-01-01

    Full Text Available We investigated the effect of poly(3,4-ethylenedioxythiophene-poly(styrenesulfonate (PEDOT:PSS deposition on the chemical and mechanical stability of Ag nanowire flexible electrodes. A large number of bending cycles, up to 500,000 cycles, were imposed on the Ag nanowire electrodes with and without PEDOT:PSS overcoating layer. In situ resistance measurement during bending tests revealed that the Ag nanowire electrode with PEDOT:PSS overcoating layer was mechanically reliable, showing a 21.9% increase in resistance after 500,000 cycles of bending. Scanning electron microscope images revealed that the failure of the Ag nanowire network occurred along with cracks initiated in the PEDOT:PSS layer, which resulted in the increase in resistance under bending. Furthermore, the PEDOT:PSS deposition enhanced the chemical stability of Ag nanowire electrode, which showed no significant increase in resistance after exposure in air for 50 days. Our study underscored that PEDOT:PSS is effective in protecting the Ag nanowires, while maintaining the high mechanical stability.

  10. Experimental Study of Active Vibration Control of Planar 3-RRR Flexible Parallel Robots Mechanism

    Directory of Open Access Journals (Sweden)

    Qinghua Zhang

    2016-01-01

    Full Text Available An active vibration control experiment of planar 3-RRR flexible parallel robots is implemented in this paper. Considering the direct and inverse piezoelectric effect of PZT material, a general motion equation is established. A strain rate feedback controller is designed based on the established general motion equation. Four control schemes are designed in this experiment: three passive flexible links are controlled at the same time, only passive flexible link 1 is controlled, only passive flexible link 2 is controlled, and only passive flexible link 3 is controlled. The experimental results show that only one flexible link controlled scheme  suppresses elastic vibration and cannot suppress the elastic vibration of the other flexible links, whereas when three passive flexible links are controlled at the same time, they are able to effectively suppress the elastic vibration of all of the flexible links. In general, the experiment verifies that a strain rate feedback controller is able to effectively suppress the elastic vibration of the flexible links of plane 3-RRR flexible parallel robots.

  11. Comparative life cycle assessment of biogas plant configurations for a demand oriented biogas supply for flexible power generation.

    Science.gov (United States)

    Hahn, Henning; Hartmann, Kilian; Bühle, Lutz; Wachendorf, Michael

    2015-03-01

    The environmental performance of biogas plant configurations for a demand - oriented biogas supply for flexible power generation is comparatively assessed in this study. Those configurations indicate an increased energy demand to operate the operational enhancements compared to conventional biogas plants supplying biogas for baseload power generation. However, findings show that in contrast to an alternative supply of power generators with natural gas, biogas supplied on demand by adapted biogas plant configurations saves greenhouse gas emissions by 54-65 g CO(2-eq) MJ(-1) and primary energy by about 1.17 MJ MJ(-1). In this regard, configurations with flexible biogas production profit from reduced biogas storage requirements and achieve higher savings compared to configurations with continuous biogas production. Using thicker biogas storage sheeting material reduces the methane permeability of up to 6m(3) d(-1) which equals a reduction of 8% of the configuration's total methane emissions.

  12. Flexible Working, Individual Performance and Employee Attitudes: Comparing Formal and Informal Arrangements

    OpenAIRE

    Menezes, L. M.; kelliher, C

    2016-01-01

    In the context of a wider trend to individualize HRM, this paper examines the relationship between flexible working arrangements and individual performance. Drawing on a range of theories, it examines potential indirect effects on employee performance via job satisfaction and organizational commitment and analyses whether these relationships vary according to whether the arrangement was set up through a formal process, or negotiated informally between the employee and their line manager. Exta...

  13. Flexible Working, Individual Performance, and Employee Attitudes: Comparing Formal and Informal Arrangements

    OpenAIRE

    De Menezes, Lilian M.; Kelliher, Clare

    2016-01-01

    In the context of a wider trend to individualize HRM, this paper examines the relationship between flexible working arrangements and individual performance. Drawing on a range of theories, it examines potential indirect effects on employee performance via job satisfaction and organizational commitment and analyses whether these relationships vary according to whether the arrangement was set up through a formal process, or negotiated informally between the employee and their line manager. Exta...

  14. Comparing sound radiation from a loudspeaker with that from a flexible spherical cap on a rigid sphere

    OpenAIRE

    Aarts, R.M.; Janssen, A. J. E. M.

    2011-01-01

    It has been suggested by Morse and Ingard that the sound radiation of a loudspeaker in a box is comparable to that of a spherical cap ona rigid sphere. This has been established recently by the present authors, who developed a computation scheme for the forward and inverse calculation of the pressure due to a harmonically excited, flexible cap on a rigid sphere with an axially symmetric velocity distribution. In this paper the comparison is made for other quantities relevant to audio engineer...

  15. Effect of Continuous Multi-Walled Carbon Nanotubes on Thermal and Mechanical Properties of Flexible Composite Film.

    Science.gov (United States)

    Cha, Ji Eun; Kim, Seong Yun; Lee, Seung Hee

    2016-10-12

    To investigate the effect of continuous multi-walled carbon nanotubes (MWCNTs) on the thermal and mechanical properties of composites, we propose a fabrication method for a buckypaper-filled flexible composite film prepared by a two-step process involving buckypaper fabrication using vacuum filtration of MWCNTs, and composite film fabrication using the dipping method. The thermal conductivity and tensile strength of the composite film filled with the buckypaper exhibited improved results, respectively 76% and 275% greater than those of the individual MWCNT-filled composite film. It was confirmed that forming continuous MWCNT fillers is an important factor which determines the physical characteristics of the composite film. In light of the study findings, composite films using buckypaper as a filler and polydimethylsiloxane (PDMS) as a flexible matrix have sufficient potential to be applied as a heat-dissipating material, and as a flexible film with high thermal conductivity and excellent mechanical properties.

  16. Effect of Continuous Multi-Walled Carbon Nanotubes on Thermal and Mechanical Properties of Flexible Composite Film

    Directory of Open Access Journals (Sweden)

    Ji Eun Cha

    2016-10-01

    Full Text Available To investigate the effect of continuous multi-walled carbon nanotubes (MWCNTs on the thermal and mechanical properties of composites, we propose a fabrication method for a buckypaper-filled flexible composite film prepared by a two-step process involving buckypaper fabrication using vacuum filtration of MWCNTs, and composite film fabrication using the dipping method. The thermal conductivity and tensile strength of the composite film filled with the buckypaper exhibited improved results, respectively 76% and 275% greater than those of the individual MWCNT-filled composite film. It was confirmed that forming continuous MWCNT fillers is an important factor which determines the physical characteristics of the composite film. In light of the study findings, composite films using buckypaper as a filler and polydimethylsiloxane (PDMS as a flexible matrix have sufficient potential to be applied as a heat-dissipating material, and as a flexible film with high thermal conductivity and excellent mechanical properties.

  17. Transmutation technology development; a comparative study on the fuel loading flexibility between critical and subcritical reactors for TRU transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Kyung; Lee, J. K.; Han, C. Y.; Shin, C. H.; Park, S. H.; Kim, K. H. [Hanyang University, Seoul (Korea)

    2001-04-01

    A comparative analysis of the nuclear characteristics between the critical and the subcritical cores was performed, focused on the fuel loading flexibility as a preliminary study to set up the optimal concept for TRU transmutation. This study made efforts to compare the variation tendency of neutron spectrum and dynamics parameters against various recovery factors of uranium and lanthanides such as the fuel temperature coefficient, the coolant temperature coefficient, the effective delayed neutron fraction, and the effective neutron generation time. The intrinsic differences in nuclear characteristics due to the different fuel loading concentration between both cores were analyzed. At the same time, effects of external neutron source on the subcritical core characteristics and the role of neutron absorber in critical reactors were evaluated. From the analyses of results, some useful information were generated, which can be employed to design optimization study aiming at the more flexibility through minimization of the nuclear characteristics sensitivity to fuel composition of TRU transmutation reactor. Finally, comparative conclusions in the fuel loading flexibility were derived from the analysis results performed in this study, based on the difference in the nuclear characteristics sensitivity to the fuel composition between both concepts. 19 refs., 39 figs., 45 tabs. (Author)

  18. Cooperation mechanisms of the EU renewable energy directive and flexible mechanisms of the Kyoto Protocol: comparison and lessons learnt. Working paper

    Energy Technology Data Exchange (ETDEWEB)

    Frieden, Dorian; Tuerk, Andreas; Steiner, Daniel

    2013-07-15

    This working paper discusses similarities and differences between the cooperation mechanisms of the EU renewable energy directive (RES directive) and the flexible mechanisms of the Kyoto Protocol. The cooperation mechanisms allow the (virtual) trade of renewable energy and were introduced with the RES directive to provide Member States (MS) with greater flexibility to achieve their national targets for renewable energy sources (RES). A similar kind of flexibility is known from the flexible mechanisms of the Kyoto Protocol which aim at the cost efficient achievement of emission reduction targets. Lessons learned from the Kyoto mechanisms may allow conclusions to be drawn on the design and implementation of the renewable energy cooperation mechanisms. This paper first gives an overview of the cooperation mechanisms regarding their potential, advantages and disadvantages, barriers and preconditions. This is followed by a brief explanation of and a systematic comparison with the flexible mechanisms of the Kyoto Protocol – Joint Implementation (JI); Clean Development Mechanism (CDM); and International Emissions Trading (IET). A gamut of factors influenced the success of the Kyoto mechanisms in general and in specific national contexts. Therefore, it is not possible to directly transfer past experiences with the Kyoto mechanisms to the capability of specific nations to make use of the renewable energy cooperation mechanisms. A comparison of specific features, such as the mechanism type (transfer, project-based, support scheme), price building and specific barriers can, however, help anticipate the possible dynamics and challenges of the cooperation mechanisms. Experiences with the Kyoto mechanisms show that predictions based on supply-demand analysis were valid only to a limited extent and that specific factors such as institutional capacity constraints or legal uncertainties delayed or prevented the use of the mechanisms in some cases. Similarly, for the cooperation

  19. Prices and risks for flexible mechanisms on the international markets; Priser og risici pae internationale markeder for de fleksible mekanismer

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, J. [Copenhagen Economics Aps, Copenhagen (Denmark)

    2003-07-01

    The aim of this report is to calculate the expected equilibrium prices on flexible mechanisms in the first commitment period of the Kyoto Protocol (2008-2012) and the equilibrium prices on the EU quota trading market in the period 2005-2007. The calculation will combined with additional information be used for evaluating to what extend it is socio-economic recommendable to use flexible mechanisms in the Danish climate strategy. The calculations are made by means of Copenhagen Economics' climate model, CECM, which has been extended with a module performing Monte-Carlo simulations. The report concludes, that before the budget period (2005-2007) the principal element of uncertainty for price fixing will be the individual country's ambition to reduce CO{sub 2}-emissions before the commitment to the Kyoto Protocol. Whether it is socio-economic recommendable to use flexible mechanisms before the budget period is primarily dependent on the expectations to future prices of the flexible mechanisms. (ba)

  20. Prices and risks for flexible mechanisms on the international markets; Priser og risici pae internationale markeder for de fleksible mekanismer

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, J. [Copenhagen Economics Aps, Copenhagen (Denmark)

    2003-07-01

    The aim of this report is to calculate the expected equilibrium prices on flexible mechanisms in the first commitment period of the Kyoto Protocol (2008-2012) and the equilibrium prices on the EU quota trading market in the period 2005-2007. The calculation will combined with additional information be used for evaluating to what extend it is socio-economic recommendable to use flexible mechanisms in the Danish climate strategy. The calculations are made by means of Copenhagen Economics' climate model, CECM, which has been extended with a module performing Monte-Carlo simulations. The report concludes, that before the budget period (2005-2007) the principal element of uncertainty for price fixing will be the individual country's ambition to reduce CO{sub 2}-emissions before the commitment to the Kyoto Protocol. Whether it is socio-economic recommendable to use flexible mechanisms before the budget period is primarily dependent on the expectations to future prices of the flexible mechanisms. (ba)

  1. Manufacturing and testing flexible microfluidic devices with optical and electrical detection mechanisms

    NARCIS (Netherlands)

    Ivan, M.G.; Vivet, F.; Meinders, E.R.

    2010-01-01

    Flexible microfluidic devices made of poly(dimethylsiloxane) (PDMS) were manufactured by soft lithography, and tested in detection of ionic species using optical absorption spectroscopy and electrical measurements. PDMS was chosen due to its flexibility and ease of surface modification by exposure

  2. Mechanical and electrical properties of ultra-thin chips and flexible electronics assemblies during bending

    NARCIS (Netherlands)

    Van Den Ende, D.A.; Van De Wiel, H.J.; Kusters, R.H.L.; Sridhar, A.; Schram, J.F.M.; Cauwe, M.; Van Den Brand, J.

    2014-01-01

    Ultra-thin chips of less than 20 μm become flexible, allowing integration of silicon IC technology with highly flexible electronics such as food packaging sensor systems or healthcare and sport monitoring tags as wearable patches or even directly in clothing textile. The ultra-thin chips in these

  3. Dynamics of flexible multi-body mechanisms and manipulators. Part 1: An overview

    Science.gov (United States)

    Dubowsky, Steven

    1989-01-01

    Flexibility can be a major limitation to the performance of high performance conventional machine systems. The current status of robotic manipulators is limited by the effects of system flexibility. The status of current commercial robots, anticipated development in 5 and 10 years is outlined.

  4. Mechanical and electrical properties of ultra-thin chips and flexible electronics assemblies during bending

    NARCIS (Netherlands)

    Van Den Ende, D.A.; Van De Wiel, H.J.; Kusters, R.H.L.; Sridhar, A.; Schram, J.F.M.; Cauwe, M.; Van Den Brand, J.

    2014-01-01

    Ultra-thin chips of less than 20 μm become flexible, allowing integration of silicon IC technology with highly flexible electronics such as food packaging sensor systems or healthcare and sport monitoring tags as wearable patches or even directly in clothing textile. The ultra-thin chips in these pr

  5. Manufacturing and testing flexible microfluidic devices with optical and electrical detection mechanisms

    NARCIS (Netherlands)

    Ivan, M.G.; Vivet, F.; Meinders, E.R.

    2010-01-01

    Flexible microfluidic devices made of poly(dimethylsiloxane) (PDMS) were manufactured by soft lithography, and tested in detection of ionic species using optical absorption spectroscopy and electrical measurements. PDMS was chosen due to its flexibility and ease of surface modification by exposure t

  6. Integration of mechanism and control for large-angle slew maneuvers of flexible structures

    Science.gov (United States)

    Chew, Meng-Sang

    1991-01-01

    A rolling contact noncircular gear system is applied to assist a desired controller in the slewing of a flexible space structure. The varying gear ratio in cooperation with the controller results in lower feedback gains at the controller, as well as considerably reducing flexural vibrations of the space structure. The noncircular gears consist of a pair of convex noncircular cylinders with specially designed profiles that are synthesized in conjunction with the optimal controller gains for minimizing the flexural vibrations of flexible structure during a slew maneuver. Convexity of the cylindrical profiles for this noncircular gear device must be ensured to maintain rolling contact between the two cylinders. Simulations of slewing control tasks for two kinds of flexible space structures, such as a planar flexible beam and the planar articulated flexible beams, are presented.

  7. Dopamine imbalance in Huntington's Disease: a mechanism for the lack of behavioral flexibility

    Directory of Open Access Journals (Sweden)

    Jane Y Chen

    2013-07-01

    Full Text Available Dopamine (DA plays an essential role in the control of coordinated movements. Alterations in DA balance in the striatum lead to pathological conditions such as Parkinson’s and Huntington’s diseases (HD. HD is a progressive, invariably fatal neurodegenerative disease caused by a genetic mutation producing an expansion of glutamine repeats and is characterized by abnormal dance-like movements (chorea. The principal pathology is the loss of striatal and cortical projection neurons. Changes in brain DA content and receptor number contribute to abnormal movements and cognitive deficits in HD. In particular, during the early hyperkinetic stage of HD, DA levels are increased whereas expression of DA receptors is reduced. In contrast, in the late akinetic stage, DA levels are significantly decreased and resemble those of a Parkinsonian state. Time-dependent changes in DA transmission parallel biphasic changes in glutamate synaptic transmission and may enhance alterations in glutamate receptor-mediated synaptic activity. In this review, we focus on neuronal electrophysiological mechanisms that may lead to some of the motor and cognitive symptoms of HD and how they relate to dysfunction in DA neurotransmission. Based on clinical and experimental findings, we propose that some of the behavioral alterations in HD, including reduced behavioral flexibility, may be caused by altered DA modulatory function. Thus, restoring DA balance alone or in conjunction with glutamate receptor antagonists could be a viable therapeutic approach.

  8. Big and small numbers: Empirical support for a single, flexible mechanism for numerosity perception.

    Science.gov (United States)

    Sengupta, Rakesh; Bapiraju, S; Melcher, David

    2017-01-01

    The existence of perceptually distinct numerosity ranges has been proposed for small (i.e., subitizing range) and larger numbers based on differences in precision, Weber fractions, and reaction times. This raises the question of whether such dissociations reflect distinct mechanisms operating across the two numerosity ranges. In the present work, we explore the predictions of a single-layer recurrent on-center, off-surround network model of attentional priority that has been applied to object individuation and enumeration. Activity from the network can be used to model various phenomena in the domain of visual number perception based on a single parameter: the strength of inhibition between nodes. Specifically, higher inhibition allows for precise representation of small numerosities, while low inhibition is preferred for high numerosities. The model makes novel predictions, including that enumeration of small numerosities following large numerosities should result in longer reaction times than when a small numerosity trial following small numerosities. Moreover, the model predicts underestimation of number when a display containing a large number of items follows a trial with small numerosities. We behaviorally confirmed these predictions in a series of experiments. This pattern of results is consistent with a single, flexible object individuation system, which can be modeled successfully by dynamic on-center, off-surround network model of the attentional priority (saliency) map.

  9. Dopamine imbalance in Huntington's disease: a mechanism for the lack of behavioral flexibility

    Science.gov (United States)

    Chen, Jane Y.; Wang, Elizabeth A.; Cepeda, Carlos; Levine, Michael S.

    2013-01-01

    Dopamine (DA) plays an essential role in the control of coordinated movements. Alterations in DA balance in the striatum lead to pathological conditions such as Parkinson's and Huntington's diseases (HD). HD is a progressive, invariably fatal neurodegenerative disease caused by a genetic mutation producing an expansion of glutamine repeats and is characterized by abnormal dance-like movements (chorea). The principal pathology is the loss of striatal and cortical projection neurons. Changes in brain DA content and receptor number contribute to abnormal movements and cognitive deficits in HD. In particular, during the early hyperkinetic stage of HD, DA levels are increased whereas expression of DA receptors is reduced. In contrast, in the late akinetic stage, DA levels are significantly decreased and resemble those of a Parkinsonian state. Time-dependent changes in DA transmission parallel biphasic changes in glutamate synaptic transmission and may enhance alterations in glutamate receptor-mediated synaptic activity. In this review, we focus on neuronal electrophysiological mechanisms that may lead to some of the motor and cognitive symptoms of HD and how they relate to dysfunction in DA neurotransmission. Based on clinical and experimental findings, we propose that some of the behavioral alterations in HD, including reduced behavioral flexibility, may be caused by altered DA modulatory function. Thus, restoring DA balance alone or in conjunction with glutamate receptor antagonists could be a viable therapeutic approach. PMID:23847463

  10. Designing interlayers to improve the mechanical reliability of transparent conductive oxide coatings on flexible substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Hye; Yang, Chan-Woo; Park, Jin-Woo [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2012-05-01

    In this study, we investigate the effect of interlayers on the mechanical properties of transparent conductive oxide (TCO) on flexible polymer substrates. Indium tin oxide (ITO), which is the most widely used TCO film, and Ti, which is the most widely used adhesive interlayer, are selected as the coating and the interlayer, respectively. These films are deposited on the polymer substrates using dc-magnetron sputtering to achieve varying thicknesses. The changes in the following critical factors for film cracking and delamination are analyzed: the internal stress ({sigma}{sup i}) induced in the coatings during deposition using a white light interferometer, the crystallinity using a transmission electron microscope, and the surface roughness of ITO caused by the interlayer using an atomic force microscope. The resistances to the cracking and delamination of ITO are evaluated using a fragmentation test. Our tests and analyses reveal the important role of the interlayers, which significantly reduce the compressive {sigma}{sup i} that is induced in the ITO and increase the resistance to the buckling delamination of the ITO. However, the relaxation of {sigma}{sup i} is not beneficial to cracking because there is less compensation for the external tension as {sigma}{sup i} further decreases. Based on these results, the microstructural control is revealed as a more influential factor than {sigma}{sup i} for improving crack resistance.

  11. Designing interlayers to improve the mechanical reliability of transparent conductive oxide coatings on flexible substrates

    Science.gov (United States)

    Kim, Eun-Hye; Yang, Chan-Woo; Park, Jin-Woo

    2012-05-01

    In this study, we investigate the effect of interlayers on the mechanical properties of transparent conductive oxide (TCO) on flexible polymer substrates. Indium tin oxide (ITO), which is the most widely used TCO film, and Ti, which is the most widely used adhesive interlayer, are selected as the coating and the interlayer, respectively. These films are deposited on the polymer substrates using dc-magnetron sputtering to achieve varying thicknesses. The changes in the following critical factors for film cracking and delamination are analyzed: the internal stress (σi) induced in the coatings during deposition using a white light interferometer, the crystallinity using a transmission electron microscope, and the surface roughness of ITO caused by the interlayer using an atomic force microscope. The resistances to the cracking and delamination of ITO are evaluated using a fragmentation test. Our tests and analyses reveal the important role of the interlayers, which significantly reduce the compressive σi that is induced in the ITO and increase the resistance to the buckling delamination of the ITO. However, the relaxation of σi is not beneficial to cracking because there is less compensation for the external tension as σi further decreases. Based on these results, the microstructural control is revealed as a more influential factor than σi for improving crack resistance.

  12. The effect of mechanical relaxation on ultra-fast charge pulses in flexible epoxy resin nanocomposites

    Science.gov (United States)

    Montanari, G. C.; Xu, M.; Fabiani, D.; Dissado, L. A.

    2012-06-01

    Previously we have reported the existence of small-amplitude charge pulses in crosslinked Polyethylene (XLPE) and epoxy resin with a mobility several orders of magnitude higher than that found for the incoherent charge transport relevant to the steady state current. Here the relationship of this phenomenon to mechanical relaxation in the material is investigated by using a series of epoxy resin nanocomposites based on a resin that has its flexibility increased above that of the fully cured glassy epoxy network by the addition of a suitable flexibilizing chemical. Differential Scanning Calorimetry (DSC) measurements show that the stiffness of the nanocomposite is progressively increased as the nanoparticle concentration increases. Pulsed Electro-Acoustic (PEA) measurements reveal that both positive and negative fast charge pulses exist in the unfilled epoxy at 45 and 70°C under a field of 10 kV/mm with mobility 5×10-10 to 9×10-10 m2 V-1 s-1, amplitude between 2×10-5 and 3.6×10-5 C m-2 and repetition rates between 8 and 12 s-1. These values are reduced progressively as the nanoparticle concentration is increased from 0% in the unfilled epoxy. A β-mode mechanical relaxation is identified in the loss modulus by Dynamical Mechanical Analysis (DMA), whose activation energy moves to higher values with increasing nanoparticle concentration. It is shown that the repetition rates of both positive and negative pulses have similar values and are correlated with the β-mode activation energy; a similar correlation is found for the activation energy of the mobility of positive pulses. The correlation of the activation energy of the mobility of negative pulses and that of the β-mode is weaker although both show a progressive increase with nanoparticle concentration. The modification of the fast charge pulse properties by the mechanical stiffness of the epoxy nanocomposite is discussed in terms of the theory presented previously for their formation and transport.

  13. Mechanical Response of Steel Wire Wound Reinforced Rubber Flexible Pipe under Internal Pressure

    Institute of Scientific and Technical Information of China (English)

    GU Fan; HUANG Cheng-kui; ZHOU Jing; LI Lin-pu

    2009-01-01

    Steel wire wound reinforced flexible pipe in this study mainly consists of multiple anisotropic steel wire wound reinforcement layers and multiple isotropic rubber layers. Based on 3D anisotropic elastic theory, the analytic solutions of stresses and elastic deformations of steel wire wound reinforced rubber flexible pipe under internal pressure are presented. As the adjacent reinforcement layers with wound angle have different radii, the single reinforcement layer shows the effect of tensile-shear coupling. Moreover, the static loading test results of steel wire wound reinforced rubber flexible pipe under internal pressure are basically coincided with the calculated values by present method.

  14. Numerical Study of Propulsion Mechanism for Oscillating Rigid and Flexible Tuna-Tails

    Institute of Scientific and Technical Information of China (English)

    Liang Yang; Yumin Su; Qing Xiao

    2011-01-01

    Numerical study on the unsteady hydrodynamic characteristics of oscillating rigid and flexible tuna-tails in viscous flow-field is performed.Investigations are conducted using Reynolds-Averaged Navier-Stokes (RANS) equations with a moving adaptive mesh.The effect of swimming speed,flapping amplitude,frequency and flexure amplitude on the propulsion performance of the rigid and flexible tuna-tails are investigated.Computational results reveal that a pair of leading edge vortices develop along the tail surface as it undergoes an oscillating motion.The propulsive efficiency has a strong correlation with various locomotive parameters.Peak propulsive efficiency can be obtained by adjusting these parameters.Particularly,when input power coefficient is less than 2.8,the rigid tail generates larger thrust force and higher propulsive efficiency than flexible tail.However,when input power coefficient is larger than 2.8,flexible tail is superior to rigid tail.

  15. Evolutionary Mechanics: new engineering principles for the emergence of flexibility in a dynamic and uncertain world

    CERN Document Server

    Whitacre, James M; Bender, Axel; Yao, Xin

    2011-01-01

    Engineered systems are designed to deftly operate under predetermined conditions yet are notoriously fragile when unexpected perturbations arise. In contrast, biological systems operate in a highly flexible manner; learn quickly adequate responses to novel conditions, and evolve new routines/traits to remain competitive under persistent environmental change. A recent theory on the origins of biological flexibility has proposed that degeneracy - the existence of multi-functional components with partially overlapping functions - is a primary determinant of the robustness and adaptability found in evolved systems. While degeneracy's contribution to biological flexibility is well documented, there has been little investigation of degeneracy design principles for achieving flexibility in systems engineering. Actually, the conditions that can lead to degeneracy are routinely eliminated in engineering design. With the planning of transportation vehicle fleets taken as a case study, this paper reports evidence that d...

  16. Flexible manufacturing system selection using preference ranking methods : A comparative study

    Directory of Open Access Journals (Sweden)

    Prasenjit Chatterjee

    2014-04-01

    Full Text Available Flexible manufacturing systems (FMSs offer opportunities for the manufacturers to improve their technology, competitiveness and profitability through a highly efficient and focused approach to manufacturing effectiveness. Justification, evaluation and selection of FMSs have now been receiving significant attention in the manufacturing environment. Evaluating alternative FMSs in the presence of multiple conflicting criteria and performance measures is often a difficult task for the decision maker. Preference ranking tools are special types of multi-criteria decision-making methods in which the decision maker’s preferences on criteria are aggregated together to arrive at the final evaluation and selection of the alternatives. This paper deals with the application of six most potential preference ranking methods for selecting the best FMS for a given manufacturing organization. It is observed that although the performances of these six methods are almost similar, ORESTE (Organization, Rangement Et Synthese De Donnes Relationnelles method slightly outperforms the others. These methods use some preference function or utility value or Besson ranking of criteria and alternatives, to indicate how much an alternative is preferred to the others. Most of these methods need quantification of criteria weights or different preference parameters, but ORESTE method, being an ordinal outranking approach, only requires ordinal data and attribute rankings according to their importance. Therefore, it is particularly applicable to those situations where the decision maker is unable to provide crisp evaluation data and attribute weights.

  17. Mechanical properties of amorphous indium–gallium–zinc oxide thin films on compliant substrates for flexible optoelectronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, D.W., E-mail: DWM172@bham.ac.uk [University of Birmingham, School of Metallurgy and Materials, Edgbaston, Birmingham, B15 2TT (United Kingdom); Waddingham, R.; Flewitt, A.J. [University of Cambridge, Electrical Engineering Division, Department of Engineering, J J Thomson Avenue, Cambridge CB3 0FA,United Kingdom (United Kingdom); Sierros, K.A. [West Virginia University, Mechanical & Aerospace Engineering, Morgantown, WV 26506 (United States); Bowen, J. [Open University, Department of Engineering and Innovation, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Kukureka, S.N. [University of Birmingham, School of Metallurgy and Materials, Edgbaston, Birmingham, B15 2TT (United Kingdom)

    2015-11-02

    Amorphous indium–gallium–zinc-oxide (a-IGZO) thin films were deposited using RF magnetron sputtering on polyethylene naphthalate (PEN) and polyethylene terephthalate (PET) flexible substrates and their mechanical flexibility investigated using uniaxial tensile and buckling tests coupled with in situ optical microscopy. The uniaxial fragmentation test demonstrated that the crack onset strain of the IGZO/PEN was ~ 2.9%, which is slightly higher than that of IGZO/PET. Also, uniaxial tensile crack density analysis suggests that the saturated crack spacing of the film is strongly dependent on the mechanical properties of the underlying polymer substrate. Buckling test results suggest that the crack onset strain (equal to ~ 1.2%, of the IGZO/polymer samples flexed in compression to ~ 5.7 mm concave radius of curvature) is higher than that of the samples flexed with the film being in tension (convex bending) regardless whether the substrate is PEN or PET. The saturated crack density of a-IGZO film under the compression buckling mode is smaller than that of the film under the tensile buckling mode. This could be attributed to the fact that the tensile stress encouraged this crack formation originating from surface defects in the coating. It could also be due to the buckling delamination of the thin coating from the substrate at a lower strain than that at which a crack initiates during flexing in compression. These results provide useful information on the mechanical reliability of a-IGZO films for the development of flexible electronics. - Highlights: • Mechanical flexibility of IGZO thin films investigated by uniaxial tensile and buckling tests • Uniaxial fragmentation gives crack onset strain for IGZO/PEN of 2.9% (higher than for IGZO/PET.) • Saturated crack spacing strongly dependent on mechanical properties of polymer substrate • Crack onset strain in concave bending higher than in convex bending for both substrates.

  18. Splitting of the neutral mechanical plane depends on the length of the multi-layer structure of flexible electronics.

    Science.gov (United States)

    Li, Shuang; Su, Yewang; Li, Rui

    2016-06-01

    Multi-layer structures with soft (compliant) interlayers have been widely used in flexible electronics and photonics as an effective design for reducing interactions among the hard (stiff) layers and thus avoiding the premature failure of an entire device. The analytic model for bending of such a structure has not been well established due to its complex mechanical behaviour. Here, we present a rational analytic model, without any parameter fitting, to study the bending of a multi-layer structure on a cylinder, which is often regarded as an important approach to mechanical reliability testing of flexible electronics and photonics. For the first time, our model quantitatively reveals that, as the key for accurate strain control, the splitting of the neutral mechanical plane depends not only on the relative thickness of the middle layer, but also on the length-to-thickness ratio of the multi-layer structure. The model accurately captures the key quantities, including the axial strains in the top and bottom layers, the shear strain in the middle layer and the locations of the neutral mechanical planes of the top and bottom layers. The effects of the length of the multi-layer and the thickness of the middle layer are elaborated. This work is very useful for the design of multi-layer structure-based flexible electronics and photonics.

  19. A novel alignment mechanism employing orthogonal connected multi-layered flexible hinges for both leveling and centering

    Science.gov (United States)

    Zhao, Jian; Wang, Hongxi; Gao, Renjing; Hu, Ping; Yang, Yintang

    2012-06-01

    To eliminate the effects of motion coupling for measuring cylindrical work pieces, a novel alignment mechanism integrating functions of both leveling and centering is designed and fabricated by introducing multi-layered orthogonal connected flexible hinges as the key supporting and joining elements. Different from traditional leveling mechanisms with many separate parts fabricated together, all of the flexible hinges were integrated in one three-dimensioned machining part without assembling process, and thus synchronously simplifying the structure and reducing assembly errors. Based on the screw theory, the mathematic model of the proposed alignment mechanism is established for any resolution requirements depending on screw characteristics. A millimeter-sized device is fabricated with the alignment precision of 1.0 μm for centering within the range of ±1 mm and 1 in. for leveling within ±1°. The experiment results are in very close agreement to those obtained by simulation, which validate the feasibility of introducing multi-layered orthogonal flexible hinges in the centering and leveling mechanisms.

  20. A novel alignment mechanism employing orthogonal connected multi-layered flexible hinges for both leveling and centering.

    Science.gov (United States)

    Zhao, Jian; Wang, Hongxi; Gao, Renjing; Hu, Ping; Yang, Yintang

    2012-06-01

    To eliminate the effects of motion coupling for measuring cylindrical work pieces, a novel alignment mechanism integrating functions of both leveling and centering is designed and fabricated by introducing multi-layered orthogonal connected flexible hinges as the key supporting and joining elements. Different from traditional leveling mechanisms with many separate parts fabricated together, all of the flexible hinges were integrated in one three-dimensioned machining part without assembling process, and thus synchronously simplifying the structure and reducing assembly errors. Based on the screw theory, the mathematic model of the proposed alignment mechanism is established for any resolution requirements depending on screw characteristics. A millimeter-sized device is fabricated with the alignment precision of 1.0 μm for centering within the range of ±1 mm and 1 in. for leveling within ±1°. The experiment results are in very close agreement to those obtained by simulation, which validate the feasibility of introducing multi-layered orthogonal flexible hinges in the centering and leveling mechanisms.

  1. Splitting of the neutral mechanical plane depends on the length of the multi-layer structure of flexible electronics

    Science.gov (United States)

    Li, Shuang; Su, Yewang; Li, Rui

    2016-06-01

    Multi-layer structures with soft (compliant) interlayers have been widely used in flexible electronics and photonics as an effective design for reducing interactions among the hard (stiff) layers and thus avoiding the premature failure of an entire device. The analytic model for bending of such a structure has not been well established due to its complex mechanical behaviour. Here, we present a rational analytic model, without any parameter fitting, to study the bending of a multi-layer structure on a cylinder, which is often regarded as an important approach to mechanical reliability testing of flexible electronics and photonics. For the first time, our model quantitatively reveals that, as the key for accurate strain control, the splitting of the neutral mechanical plane depends not only on the relative thickness of the middle layer, but also on the length-to-thickness ratio of the multi-layer structure. The model accurately captures the key quantities, including the axial strains in the top and bottom layers, the shear strain in the middle layer and the locations of the neutral mechanical planes of the top and bottom layers. The effects of the length of the multi-layer and the thickness of the middle layer are elaborated. This work is very useful for the design of multi-layer structure-based flexible electronics and photonics.

  2. Flexibility and resistance to cyclic fatigue of endodontic instruments made with different nickel-titanium alloys: a comparative test.

    Science.gov (United States)

    Pongione, Giancarlo; Pompa, Giorgio; Milana, Valerio; Di Carlo, Stefano; Giansiracusa, Alessio; Nicolini, Emanuele; De Angelis, Francesca

    2012-07-01

    A new manufacturing method aiming at to producing more flexible and resistant NiTi endodontic instruments has been recently developed (Hyflex, produced with CM wire). The purpose of the study was to determine whether this new manufacturing method produces NiTi instruments (Hyflex) of superior flexibility and/or superior resistance to cyclic fatigue, when compared with instruments produced by a traditional manufacturing process or thermally treated NiTi alloy (M-wire). Twelve .06 size 25 Hyflex instruments (Coltene, Allstatten, Switzerland), and twelve 06.25 Vortex instruments (Dentsply-Tulsa, OK, USA) and twelve 06.25 Endosequence instruments (Brasseler, Savannah, GA, USA) were initially evaluated for stiffness on bending, followed by a cyclic fatigue test. For the stiffness test test procedures strictly followed ISO 3630-1, and bending moment was measured when the instrument attained a 45 degrees bend. The cyclic fatigue test was performed in a customized artificial stainless steel canal (60° degree curvature with 5 mm radius). Instruments were rotated at 300 rpm until fracture. All data obtained were recorded and statistically analyzed using an ANOVA test. Statistical analysis of data showed that bending moments were significantly greater (P < .05) for Vortex and EndoSequence instruments (mean values 59.06 g/cm and 48,98 g/cm respectively), compared to the Hyflex instruments (mean value 35.60 g/cm). For the cyclic fatigue test Hyflex and Vortex were significantly more resistant than EndoSequence instruments (P < .05). Results of the present study demonstrate the ability of the new CM-wire manufacturing process to produce NiTi rotary instruments more flexible and more resistant to cyclic fatigue than instruments produced by a traditional manufacturing process or a thermally treated NiTi alloy (M-wire).

  3. Comparative analysis of deterministic and probabilistic fracture mechanical assessment tools

    Energy Technology Data Exchange (ETDEWEB)

    Heckmann, Klaus [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Koeln (Germany); Saifi, Qais [VTT Technical Research Centre of Finland, Espoo (Finland)

    2016-11-15

    Uncertainties in material properties, manufacturing processes, loading conditions and damage mechanisms complicate the quantification of structural reliability. Probabilistic structure mechanical computing codes serve as tools for assessing leak- and break probabilities of nuclear piping components. Probabilistic fracture mechanical tools were compared in different benchmark activities, usually revealing minor, but systematic discrepancies between results of different codes. In this joint paper, probabilistic fracture mechanical codes are compared. Crack initiation, crack growth and the influence of in-service inspections are analyzed. Example cases for stress corrosion cracking and fatigue in LWR conditions are analyzed. The evolution of annual failure probabilities during simulated operation time is investigated, in order to identify the reasons for differences in the results of different codes. The comparison of the tools is used for further improvements of the codes applied by the partners.

  4. Genetic code flexibility in microorganisms: novel mechanisms and impact on physiology.

    Science.gov (United States)

    Ling, Jiqiang; O'Donoghue, Patrick; Söll, Dieter

    2015-11-01

    The genetic code, initially thought to be universal and immutable, is now known to contain many variations, including biased codon usage, codon reassignment, ambiguous decoding and recoding. As a result of recent advances in the areas of genome sequencing, biochemistry, bioinformatics and structural biology, our understanding of genetic code flexibility has advanced substantially in the past decade. In this Review, we highlight the prevalence, evolution and mechanistic basis of genetic code variations in microorganisms, and we discuss how this flexibility of the genetic code affects microbial physiology.

  5. The Mechanism by Which Interpersonal Coping Flexibility Influences Self-Esteem

    Science.gov (United States)

    Gan, Yiqun; Liu, Jun

    2012-01-01

    The objectives of the present study were to conceptualize interpersonal coping flexibility and to explore how it influences personal adaptation. Two hundred sixty two university students were classified based on their responses to prompts about their degree of prioritizing harmony and the number of coping strategies they employed when dealing with…

  6. Labor Market Policy: A Comparative View on the Costs and Benefits of Labor Market Flexibility

    Science.gov (United States)

    Kahn, Lawrence M.

    2012-01-01

    I review theories and evidence on wage-setting institutions and labor market policies in an international comparative context. These include collective bargaining, minimum wages, employment protection laws, unemployment insurance (UI), mandated parental leave, and active labor market policies (ALMPs). Since it is unlikely that an unregulated…

  7. Theoretical Investigation of Influence of Mechanical Stress on Magnetic Properties of Ferromagnetic/Antiferromagnetic Bilayers Deposited on Flexible Substrates

    Institute of Scientific and Technical Information of China (English)

    Yu-Hao Bai; Xia Wang; Lin-Ping Mu; Xiao-Hong Xu

    2016-01-01

    Effect of mechanical stress on magnetic properties of an exchange-biased ferromagnetic/antiferromagnetic bilayer deposited on a flexible substrate is investigated.The hysteresis loops with different magnitudes and orientations of the stress can be classified into three types.The corresponding physical conditions for each type of the loop are deduced based on the principle of minimal energy.The equation of the critical stress is derived,which can judge whether the loops show hysteresis or not.Numerical calculations suggest that except for the magnitude of the mechanical stress,the relative orientation of the stress is also an important factor to tune the exchange bias effect.

  8. Flexibility and fatigue evaluation of oblique as compared with anterior lumbar interbody cages with integrated endplate fixation.

    Science.gov (United States)

    Freeman, Andrew L; Camisa, William J; Buttermann, Glenn R; Malcolm, James R

    2016-01-01

    This study was undertaken to quantify the in vitro range of motion (ROM) of oblique as compared with anterior lumbar interbody devices, pullout resistance, and subsidence in fatigue. Anterior and oblique cages with integrated plate fixation (IPF) were tested using lumbar motion segments. Flexibility tests were conducted on the intact segments, cage, cage + IPF, and cage + IPF + pedicle screws (6 anterior, 7 oblique). Pullout tests were then performed on the cage + IPF. Fatigue testing was conducted on the cage + IPF specimens for 30,000 cycles. No ROM differences were observed in any test group between anterior and oblique cage constructs. The greatest reduction in ROM was with supplemental pedicle screw fixation. Peak pullout forces were 637 ± 192 N and 651 ± 127 N for the anterior and oblique implants, respectively. The median cage subsidence was 0.8 mm and 1.4 mm for the anterior and oblique cages, respectively. Anterior and oblique cages similarly reduced ROM in flexibility testing, and the integrated fixation prevented device displacement. Subsidence was minimal during fatigue testing, most of which occurred in the first 2500 cycles.

  9. Comparing global coordination mechanisms on energy, environment, and water

    NARCIS (Netherlands)

    Schubert, S.; Gupta, J.

    2013-01-01

    Increasingly, coordination mechanisms are being created at the United Nations (UN) level to enhance system-wide synergies; however, there is relatively little scientific research on these bodies. Against this background, we compare the mandates, structures, and outputs of three UN coordination mecha

  10. Relationship between Pore-size Distribution and Flexibility of Adsorbent Materials: Statistical Mechanics and Future Material Characterization Techniques.

    Science.gov (United States)

    Siderius, Daniel W; Mahynski, Nathan A; Shen, Vincent K

    2017-05-01

    Measurement of the pore-size distribution (PSD) via gas adsorption and the so-called "kernel method" is a widely used characterization technique for rigid adsorbents. Yet, standard techniques and analytical equipment are not appropriate to characterize the emerging class of flexible adsorbents that deform in response to the stress imparted by an adsorbate gas, as the PSD is a characteristic of the material that varies with the gas pressure and any other external stresses. Here, we derive the PSD for a flexible adsorbent using statistical mechanics in the osmotic ensemble to draw analogy to the kernel method for rigid materials. The resultant PSD is a function of the ensemble constraints including all imposed stresses and, most importantly, the deformation free energy of the adsorbent material. Consequently, a pressure-dependent PSD is a descriptor of the deformation characteristics of an adsorbent and may be the basis of future material characterization techniques. We discuss how, given a technique for resolving pressure-dependent PSDs, the present statistical mechanical theory could enable a new generation of analytical tools that measure and characterize certain intrinsic material properties of flexible adsorbents via otherwise simple adsorption experiments.

  11. Active joint mechanism driven by multiple actuators made of flexible bags: a proposal of dual structural actuator.

    Science.gov (United States)

    Kimura, Hitoshi; Matsuzaki, Takuya; Kataoka, Mokutaro; Inou, Norio

    2013-01-01

    An actuator is required to change its speed and force depending on the situation. Using multiple actuators for one driving axis is one of the possible solutions; however, there is an associated problem of output power matching. This study proposes a new active joint mechanism using multiple actuators. Because the actuator is made of a flexible bag, it does not interfere with other actuators when it is depressurized. The proposed joint achieved coordinated motion of multiple actuators. This report also discusses a new actuator which has dual cylindrical structure. The cylinders are composed of flexible bags with different diameters. The joint torque is estimated based on the following factors: empirical formula for the flexible actuator torque, geometric relationship between the joint and the actuator, and the principle of virtual work. The prototype joint mechanism achieves coordinated motion of multiple actuators for one axis. With this motion, small inner actuator contributes high speed motion, whereas large outer actuator generates high torque. The performance of the prototype joint is examined by speed and torque measurements. The joint showed about 30% efficiency at 2.0 Nm load torque under 0.15 MPa air input.

  12. Flexible neutron shielding composite material of EPDM rubber with boron trioxide: Mechanical, thermal investigations and neutron shielding tests

    Science.gov (United States)

    Özdemir, T.; Güngör, A.; Reyhancan, İ. A.

    2017-02-01

    In this study, EPDM and boron trioxide composite was produced and mechanical, thermal and neutron shielding tests were performed. EPDM rubber (Ethylene Propylene Diene Monomer) having a considerably high hydrogen content is an effective neutron shielding material. On the other hand, the materials containing boron components have effective thermal neutron absorption crossection. The composite of EPDM and boron trioxide would be an effective solution for both respects of flexibility and effectiveness for developing a neutron shielding material. Flexible nature of EPDM would be a great asset for the shielding purpose in case of intervention action to a radiation accident. The theoretical calculations and experimental neutron absorption tests have shown that the results were in parallel and an effective neutron shielding has been achieved with the use of the developed composite material.

  13. High-performance, mechanically flexible, and vertically integrated 3D carbon nanotube and InGaZnO complementary circuits with a temperature sensor.

    Science.gov (United States)

    Honda, Wataru; Harada, Shingo; Ishida, Shohei; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2015-08-26

    A vertically integrated inorganic-based flexible complementary metal-oxide-semiconductor (CMOS) inverter with a temperature sensor with a high inverter gain of ≈50 and a low power consumption of process. In addition, the negligible influence of the mechanical flexibility on the performance of the CMOS inverter and the temperature dependence of the CMOS inverter characteristics are discussed.

  14. In Pursuit of Fully Flexible Protein-Ligand Docking: Modeling the Bilateral Mechanism of Binding.

    Science.gov (United States)

    Henzler, Angela M; Rarey, Matthias

    2010-03-15

    Modern structure-based drug design aims at accounting for the intrinsic flexibility of therapeutic relevant targets. Over the last few years a considerable amount of docking approaches that encounter this challenging problem has emerged. Here we provide the readership with an overview of established methods for fully flexible protein-ligand docking and current developments in the field. All methods are based on one of two fundamental models which describe the dynamic behavior of proteins upon ligand binding. Methods for ensemble docking (ED) model the protein conformational change before the ligand is placed, whereas induced-fit docking (IFD) optimizes the protein structure afterwards. A third category of docking approaches is formed by recent approaches that follow both concepts. This categorization allows to comprehensively discover strengths and weaknesses of the individual processes and to extract information for their applicability in real world docking scenarios.

  15. A Flexible Flow Sensor System and Its Characteristics for Fluid Mechanics Measurements

    Directory of Open Access Journals (Sweden)

    Ruiyi Que

    2009-11-01

    Full Text Available In this paper, we present a novel micromachined hot-film flow sensor system realized by a technique using a film depositing processes and incorporating a standard printed circuit. Sensor electrodes and electronic circuits are preprinted on a flexible substrate of polyimide (PI, i.e., a flexible printed circuit board (FPCB. The sensing element, which is made of Cr/Ni/Pt with a temperature coefficient of resistance around 2,000 ppm/K, is fabricated on the FPCB by either magnetron sputtering technology or pulsed laser deposition (PLD. The sensor can be packed efficiently at high-density and integrated with signal processing circuits without additional pads. A simple fabrication process using mature technique and materials selection guarantees that the time and costs are greatly reduced. Both steady-state and transient characteristics of the sensors are experimentally tested, and the results presented to validate the effectiveness of the sensors.

  16. Evolutionary mechanics: new engineering principles for the emergence of flexibility in a dynamic and uncertain world.

    Science.gov (United States)

    Whitacre, James M; Rohlfshagen, Philipp; Bender, Axel; Yao, Xin

    2012-09-01

    Engineered systems are designed to deftly operate under predetermined conditions yet are notoriously fragile when unexpected perturbations arise. In contrast, biological systems operate in a highly flexible manner; learn quickly adequate responses to novel conditions, and evolve new routines and traits to remain competitive under persistent environmental change. A recent theory on the origins of biological flexibility has proposed that degeneracy-the existence of multi-functional components with partially overlapping functions-is a primary determinant of the robustness and adaptability found in evolved systems. While degeneracy's contribution to biological flexibility is well documented, there has been little investigation of degeneracy design principles for achieving flexibility in systems engineering. Actually, the conditions that can lead to degeneracy are routinely eliminated in engineering design. With the planning of transportation vehicle fleets taken as a case study, this article reports evidence that degeneracy improves the robustness and adaptability of a simulated fleet towards unpredicted changes in task requirements without incurring costs to fleet efficiency. We find that degeneracy supports faster rates of design adaptation and ultimately leads to better fleet designs. In investigating the limitations of degeneracy as a design principle, we consider decision-making difficulties that arise from degeneracy's influence on fleet complexity. While global decision-making becomes more challenging, we also find degeneracy accommodates rapid distributed decision-making leading to (near-optimal) robust system performance. Given the range of conditions where favorable short-term and long-term performance outcomes are observed, we propose that degeneracy may fundamentally alter the propensity for adaptation and is useful within different engineering and planning contexts.

  17. Synthesis of mechanisms with flexible centrifugal-inertial connections according to fixed dynamic characteristics

    Science.gov (United States)

    Ragulskis, K. M.; Yaroslavskiy, I. K.

    1973-01-01

    The criteria for the selection of dynamic characteristics of flexible centrifugal-inertial couplings are discussed. The basic properties considered are: (1) vibration isolation, (2) vibration quenching, and (3) transmission properties. It is stated that the most promising couplings are those with a nonlinear relation between the magnitude of the torque transmitted and the magnitude of deformation of the coupling. The efforts of various investigators are briefly analyzed. Mathematical models are developed to show the relationships of the parameters involved.

  18. Comparative Study of Deposit through a Membrane and Spin-Coated MWCNT as a Flexible Anode for Optoelectronic Applications

    Directory of Open Access Journals (Sweden)

    Walid Aloui

    2016-01-01

    Full Text Available We present a comparative study between multiwalled carbon nanotubes (MWCNTs thin films deposited on polyethylene terephthalate (PET substrates using (i spin-coating technique and (ii deposition through a membrane. We deduce from transparence, electrical properties, and AFM image that deposition through membrane presents better properties than spin-coating method. The concentration comparison shows that the optimum result was achieved at a concentration of 1.2 mg·mL−1 corresponding to a resistance (Rs of 180 Ω·cm−2 and an optical transparence of about 81% using a wavelength 550 nm. We will also demonstrate the use of the elaborated electrodes to fabricate the following flexible structure: PET-MWCNTs/MEH-PPV/Al. The series resistance Rs and the ideality factor n were calculated.

  19. Evaluation of the mechanisms of damage to flexible ureteroscopes and suggestions for ureteroscope preservation

    Institute of Scientific and Technical Information of China (English)

    P. Sooriakumaran; R. Kaba; H. O. Andrews; N. P. N. Buchholz

    2005-01-01

    Aim: To investigate the causes and costs of flexible ureteroscope damage, and to develop recommendations to limit damage. Methods: The authors analysed repair figures and possible causes of damage to 35 instruments sent for repair to a leading UK supplier over a 1-year period, and calculated cost figures for maintenance of the instruments as opposed to repair and replacement costs. Results: All damages were handling-induced and therefore did not fall under the manufacturer's warranty: 28 % were damaged by misfiring of the laser inside the instrument; 72 %, mainly crushing and stripping of the ureteroscope shaft tube, were likely to have occurred during out-of-surgery handling, washing and disinfection. Seventeen (4 %) instruments were not repaired and consequently taken out of service due to the extensive costs involved. Eighteen (51%) ureteroscopes were repaired at an average cost of 10 833 USD. Conclusion: Damages to flexible ureteroscopes bear considerable costs. Most damages occur during handling between surgical procedures.Thorough adherence to handling procedures, and courses for theater staff and surgeons on handling flexible instruments may help to reduce these damages and prove a cost-saving investment. The authors provide a list of recommended procedural measures that may help to prevent such damages.

  20. Comparative Evaluation of Tactile Sensation by Electrical and Mechanical Stimulation.

    Science.gov (United States)

    Yem, Vibol; Kajimoto, Hiroyuki

    2017-01-01

    An electrotactile display is a tactile interface that provides tactile perception by passing electrical current through the surface of the skin. It is actively used instead of mechanical tactile displays for tactile feedback because of several advantages such as its small and thin size, light weight, and high responsiveness. However, the similarities and differences between these sensations is still not clear. This study directly compares the intensity sensation of electrotactile stimulation to that of mechanical stimulation, and investigates the characteristic sensation of anodic and cathodic stimulation. In the experiment, participants underwent a 30 pps electrotactile stimulus every one second to their middle finger, and were asked to match this intensity by adjusting the intensity of a mechanical tactile stimulus to an index finger. The results showed that anodic stimulation mainly produced vibration sensation, whereas cathodic sensation produced both vibration and pressure sensations. Relatively low pressure sensation was also observed for anodic stimulation but it remains low, regardless of the increasing of electrical intensity.

  1. Nuclear Technology. Course 27: Metrology. Module 27-3, Gage Blocks, Mechanical Comparators and Electronic Comparators.

    Science.gov (United States)

    Selleck, Ben; Espy, John

    This third in a series of eight modules for a course titled Metrology describes gage blocks and mechanical and electronic comparators. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student, (5) subject matter, (6) materials needed, (7)…

  2. Simultaneously Harvesting Thermal and Mechanical Energies based on Flexible Hybrid Nanogenerator for Self-Powered Cathodic Protection.

    Science.gov (United States)

    Zhang, Hulin; Zhang, Shangjie; Yao, Guang; Huang, Zhenlong; Xie, Yuhang; Su, Yuanjie; Yang, Weiqing; Zheng, Chunhua; Lin, Yuan

    2015-12-30

    Metal corrosion occurs anytime and anywhere in nature and the corrosion prevention has a great significance everywhere in national economic development and daily life. Here, we demonstrate a flexible hybrid nanogenerator (NG) that is capable of simultaneously or individually harvesting ambient thermal and mechanical energies and used for a self-powered cathodic protection (CP) system without using an external power source. Because of its double peculiarities of both pyroelectric and piezoelectric properties, a polarized poly(vinylidene fluoride) (PVDF) film-based NG was constructed to scavenge both thermal and mechanical energies. As a supplementary, a triboelectric NG was constructed below the pyro/piezoelectric NG to grab ambient mechanical energy. The output power of the fabricated hybrid NG can be directly used to protect the metal surface from the chemical corrosion. Our results not only verify the feasibility of self-powered CP-based NGs, but also expand potential self-powered applications.

  3. Size, effect of flexible proof mass on the mechanical behavior of micron-scale cantilevers for energy harvesting appications.

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M.; Hong, S.; Miller, D. J.; Dugundji, J.; Wardle, B. L. (Materials Science Division); (MIT)

    2011-12-15

    Mechanical behavior of micron-scale cantilevers with a distributed, flexible proof mass is investigated to understand proof mass size effects on the performance of microelectromechanical system energy harvesters. Single-crystal silicon beams with proof masses of various lengths were fabricated using focused ion beam milling and tested using atomic force microscopy. Comparison of three different modeling results with measured data reveals that a 'two-beam' method has the most accurate predictive capability in terms of both resonant frequency and strain. Accurate strain prediction is essential because energy harvested scales with strain squared and maximum strain will be a design limit in fatigue.

  4. Identifying the adaptive mechanism in globular proteins: Fluctuations in densely packed regions manipulate flexible parts

    Science.gov (United States)

    Yilmaz, Lutfu Safak; Atilgan, Ali Rana

    2000-09-01

    A low-resolution structural model based on the packing geometry of α-carbons is utilized to establish a connection between the flexible and rigid parts of a folded protein. The former commonly recognizes a complementing molecule for making a complex, while the latter manipulates the necessary conformational change for binding. We attempt analytically to distinguish this control architecture that intrinsically exists in globular proteins. First with two-dimensional simple models, then for a native protein, bovine pancreatic trypsin inhibitor, we explicitly demonstrate that inserting fluctuations in tertiary contacts supported by the stable core, one can regulate the displacement of residues on loop regions. The positional fluctuations of the flexible regions are annihilated by the rest of the protein in conformity with the Le Chatelier-Braun principle. The results indicate that the distortion of the principal nonbonded contacts between highly packed residues is accompanied by that of the slavery fluctuations that are widely distributed over the native structure. These positional arrangements do not appear in a reciprocal relation between a perturbation and the associated response; the effect of a movement of residue i on residue j is not equal to that of the same movement of residue j on residue i.

  5. Mechanical Properties Comparing Composite Fiber Length to Amalgam

    Directory of Open Access Journals (Sweden)

    Richard C. Petersen

    2016-01-01

    Full Text Available Photocure fiber-reinforced composites (FRCs with varying chopped quartz-fiber lengths were incorporated into a dental photocure zirconia-silicate particulate-filled composite (PFC for mechanical test comparisons with a popular commercial spherical-particle amalgam. FRC lengths included 0.5-mm, 1.0 mm, 2.0 mm, and 3.0 mm all at a constant 28.2 volume percent. Four-point fully articulated fixtures were used according to American Standards Test Methods with sample dimensions of 2×2×50 mm3 across a 40 mm span to provide sufficient Euler flexural bending and prevent top-load compressive shear error. Mechanical properties for flexural strength, modulus, yield strength, resilience, work of fracture, critical strain energy release, critical stress intensity factor, and strain were obtained for comparison. Fiber length subsequently correlated with increasing all mechanical properties, p<1.1×10-5. Although the modulus was significantly statistically higher for amalgam than all composites, all FRCs and even the PFC had higher values than amalgam for all other mechanical properties. Because amalgams provide increased longevity during clinical use compared to the standard PFCs, modulus would appear to be a mechanical property that might sufficiently reduce margin interlaminar shear stress and strain-related microcracking that could reduce failure rates. Also, since FRCs were tested with all mechanical properties that statistically significantly increased over the PFC, new avenues for future development could be provided toward surpassing amalgam in clinical longevity.

  6. 45 CFR 148.128 - State flexibility in individual market reforms-alternative mechanisms.

    Science.gov (United States)

    2010-10-01

    ...-alternative mechanisms. 148.128 Section 148.128 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES... reforms—alternative mechanisms. (a) Waiver of requirements. The requirements of § 148.120, which set forth... implements an acceptable alternative mechanism in accordance with the following criteria: (1) The...

  7. Evaluation of transverse piezoelectric coefficient of ZnO thin films deposited on different flexible substrates: a comparative study on the vibration sensing performance.

    Science.gov (United States)

    Joshi, Sudeep; Nayak, Manjunatha M; Rajanna, K

    2014-05-28

    We report on the systematic comparative study of highly c-axis oriented and crystalline piezoelectric ZnO thin films deposited on four different flexible substrates for vibration sensing application. The flexible substrates employed for present experimental study were namely a metal alloy (Phynox), metal (aluminum), polyimide (Kapton), and polyester (Mylar). ZnO thin films were deposited by an RF reactive magnetron sputtering technique. ZnO thin films of similar thicknesses of 700 ± 30 nm were deposited on four different flexible substrates to have proper comparative studies. The crystallinity, surface morphology, chemical composition, and roughness of ZnO thin films were evaluated by respective material characterization techniques. The transverse piezoelectric coefficient (d31) value for assessing the piezoelectric property of ZnO thin films on different flexible substrates was measured by a four-point bending method. ZnO thin films deposited on Phynox alloy substrate showed relatively better material characterization results and a higher piezoelectric d31 coefficient value as compared to ZnO films on metal and polymer substrates. In order to experimentally verify the above observations, vibration sensing studies were performed. As expected, the ZnO thin film deposited on Phynox alloy substrate showed better vibration sensing performance. It has generated the highest peak to peak output voltage amplitude of 256 mV as compared to that of aluminum (224 mV), Kapton (144 mV), and Mylar (46 mV). Therefore, metal alloy flexible substrate proves to be a more suitable, advantageous, and versatile choice for integrating ZnO thin films as compared to metal and polymer flexible substrates for vibration sensing applications. The present experimental study is extremely important and helpful for the selection of a suitable flexible substrate for various applications in the field of sensor and actuator technology.

  8. Comparative study of fracture mechanical test methods for concrete

    DEFF Research Database (Denmark)

    Østergaard, Lennart; Olesen, John Forbes

    2004-01-01

    and the interpretation, i.e. the analysis needed to extract the stress-crack opening relationship, the fracture energy etc. Experiments are carried out with each test configuration using mature, high performance concrete. The results show that the UTT is a highly complicated test, which only under very well controlled......This paper describes and compares three different fracture mechanical test methods; the uniaxial tension test (UTT), the three point bending test (TPBT) and the wedge splitting test (WST). Potentials and problems with the test methods will be described with regard to the experiment...... circumstances will yield the true fracture mechanical properties. It is also shown that both the three point bending test and the WST are well-suited substitutes for the uniaxial tension test....

  9. Ultrasonic and mechanical wind sensors : 6 month comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Pattison, A. [LufftUSA, Santa Barbara, CA (United States)

    2010-07-01

    Many wind power developers are looking to reduce the high cost of mechanical sensors by replacing them with ultrasonic sensors. This PowerPoint presentation presented the results of a study conducted to evaluate and compare ultrasonic and mechanical wind sensors. The aim of the study was to determine is ultrasonic sensor data is reliable and accurate. Participants in the study included 2 sensor manufacturers and a third party engineering firm. Wind resource assessments, turbine pitch and yaw, and power curve tests were conducted on meteorological towers. Ground-based SODAR and LIDAR measurements were conducted for micrositing and resource assessment. An International Electrochemical Council (IEC) compliant methodology was used to test the sensors at various locations throughout the United States. The benefits of each sensor technology were considered, and a cost comparison was conducted. Results of the study showed that ultrasonic sensors are suitable for permanent tower installations and where resistance to ice and turbulence is required. tabs., figs.

  10. A leaky-integrator model as a control mechanism underlying flexible decision making during task switching.

    Science.gov (United States)

    Mitani, Akinori; Sasaki, Ryo; Oizumi, Masafumi; Uka, Takanori

    2013-01-01

    The ability to switch between tasks is critical for animals to behave according to context. Although the association between the prefrontal cortex and task switching has been well documented, the ultimate modulation of sensory-motor associations has yet to be determined. Here, we modeled the results of a previous study showing that task switching can be accomplished by communication from distinct populations of sensory neurons. We proposed a leaky-integrator model where relevant and irrelevant information were stored separately in two integrators and task switching was achieved by leaking information from the irrelevant integrator. The model successfully explained both the behavioral and neuronal data. Additionally, the leaky-integrator model showed better performance than an alternative model, where irrelevant information was discarded by decreasing the weight on irrelevant information, when animals initially failed to commit to a task. Overall, we propose that flexible switching is, in part, achieved by actively controlling the amount of leak of relevant and irrelevant information.

  11. Deconstructing a plant macromolecular assembly: chemical architecture, molecular flexibility, and mechanical performance of natural and engineered potato suberins.

    Science.gov (United States)

    Serra, Olga; Chatterjee, Subhasish; Figueras, Mercè; Molinas, Marisa; Stark, Ruth E

    2014-03-10

    Periderms present in plant barks are essential protective barriers to water diffusion, mechanical breakdown, and pathogenic invasion. They consist of densely packed layers of dead cells with cell walls that are embedded with suberin. Understanding the interplay of molecular structure, dynamics, and biomechanics in these cell wall-associated insoluble amorphous polymeric assemblies presents substantial investigative challenges. We report solid-state NMR coordinated with FT-IR and tensile strength measurements for periderms from native and wound-healing potatoes and from potatoes with genetically modified suberins. The analyses include the intact suberin aromatic-aliphatic polymer and cell-wall polysaccharides, previously reported soluble depolymerized transmethylation products, and undegraded residues including suberan. Wound-healing suberized potato cell walls, which are 2 orders of magnitude more permeable to water than native periderms, display a strikingly enhanced hydrophilic-hydrophobic balance, a degradation-resistant aromatic domain, and flexibility suggestive of an altered supramolecular organization in the periderm. Suppression of ferulate ester formation in suberin and associated wax remodels the periderm with more flexible aliphatic chains and abundant aromatic constituents that can resist transesterification, attenuates cooperative hydroxyfatty acid motions, and produces a mechanically compromised and highly water-permeable periderm.

  12. Sufficient Flexibility and Capacity in Electricity Markets with Renewables: A Review of Innovative Market Mechanisms

    DEFF Research Database (Denmark)

    Sekamane, Jonas Khubute; Katz, Jonas; Skytte, Klaus

    2017-01-01

    This review of the literature collects innovative market mechanisms that tend to get overlooked in the discussion of whether unassisted energy-only markets can ensure sufficient capacity or if capacity remuneration mechanisms are required. The paper complements existing literature reviews and pin...... and pinpoints advantageous research areas relating to the market design of electricity systems with high shares of variable renewable energy......This review of the literature collects innovative market mechanisms that tend to get overlooked in the discussion of whether unassisted energy-only markets can ensure sufficient capacity or if capacity remuneration mechanisms are required. The paper complements existing literature reviews...

  13. Effect of mechanical strain on magnetic properties of flexible exchange biased FeGa/IrMn heterostructures

    Science.gov (United States)

    Zhang, Xiaoshan; Zhan, Qingfeng; Dai, Guohong; Liu, Yiwei; Zuo, Zhenghu; Yang, Huali; Chen, Bin; Li, Run-Wei

    2013-01-01

    We have fabricated flexible exchange biased heterostructures with magnetostrictive Fe81Ga19 alloy as the ferromagnetic layer and Ir20Mn80 as the antiferromagnetic layer on polyethylene terephthalate substrates. The mechanical strain can modify both the strength and the orientation of the uniaxial anisotropy, giving rise to the switching between the easy and hard magnetization directions. Different from the previously reported works on rigid exchange biased systems, a drastic decrease in exchange bias field was observed under a compressive strain with magnetic field parallel to the pinning direction, but only a slightly decrease was shown under a tensile strain. Based on a Stoner-Wohlfarth model calculation, we suggested that the distributions of both ferromagnetic and antiferromagnetic anisotropies be the key to induce the mechanically tunable exchange bias.

  14. Design and fabrication of a flexible MEMS-based electro-mechanical sensor array for breast cancer diagnosis

    Science.gov (United States)

    Pandya, Hardik J.; Park, Kihan; Desai, Jaydev P.

    2015-07-01

    The use of flexible micro-electro-mechanical systems (MEMS)-based devices provides a unique opportunity in bio-medical robotics such as the characterization of normal and malignant tissues. This paper reports on the design and development of a flexible MEMS-based sensor array integrating mechanical and electrical sensors on the same platform to enable the study of the change in electro-mechanical properties of benign and cancerous breast tissues. In this work, we present the analysis of the electrical characterization of the tissue specimens and also demonstrate the feasibility of using the sensor for the mechanical characterization of tissue specimens. Eight strain gauges acting as mechanical sensors were fabricated using poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) conducting polymer on poly(dimethylsiloxane) (PDMS) as the substrate material. Eight electrical sensors were fabricated using SU-8 pillars on gold (Au) pads which were patterned on the strain gauges separated by a thin insulator (SiO2 1.0 μm). These pillars were coated with gold to make them conducting. The electro-mechanical sensors are integrated on the same substrate. The sensor array covers a 180 μm  ×  180 μm area and the size of the complete device is 20 mm in diameter. The diameter of each breast tissue core used in the present study was 1 mm and the thickness was 8 μm. The region of interest was 200 μm  ×  200 μm. A microindentation technique was used to characterize the mechanical properties of the breast tissues. The sensor is integrated with conducting SU-8 pillars to study the electrical property of the tissue. Through electro-mechanical characterization studies using this MEMS-based sensor, we were able to measure the accuracy of the fabricated device and ascertain the difference between benign and cancers breast tissue specimens.

  15. Multisite phosphorylation provides an effective and flexible mechanism for switch-like protein degradation.

    Science.gov (United States)

    Varedi K, S Marjan; Ventura, Alejandra C; Merajver, Sofia D; Lin, Xiaoxia Nina

    2010-12-13

    Phosphorylation-triggered degradation is a common strategy for elimination of regulatory proteins in many important cell signaling processes. Interesting examples include cyclin-dependent kinase inhibitors such as p27 in human and Sic1 in yeast, which play crucial roles during the G1/S transition in the cell cycle. In this work, we have modeled and analyzed the dynamics of multisite-phosphorylation-triggered protein degradation systematically. Inspired by experimental observations on the Sic1 protein and a previous intriguing theoretical conjecture, we develop a model to examine in detail the degradation dynamics of a protein featuring multiple phosphorylation sites and a threshold site number for elimination in response to a kinase signal. Our model explains the role of multiple phosphorylation sites, compared to a single site, in the regulation of protein degradation. A single-site protein cannot convert a graded input of kinase increase to much sharper output, whereas multisite phosphorylation is capable of generating a highly switch-like temporal profile of the substrate protein with two characteristics: a temporal threshold and rapid decrease beyond the threshold. We introduce a measure termed temporal response coefficient to quantify the extent to which a response in the time domain is switch-like and further investigate how this property is determined by various factors including the kinase input, the total number of sites, the threshold site number for elimination, the order of phosphorylation, the kinetic parameters, and site preference. Some interesting and experimentally verifiable predictions include that the non-degradable fraction of the substrate protein exhibits a more switch-like temporal profile; a sequential system is more switch-like, while a random system has the advantage of increased robustness; all the parameters, including the total number of sites, the threshold site number for elimination and the kinetic parameters synergistically

  16. Mechanisms of Hydrogen Transport in Flexible-Wall Narrow Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Bin-Hao Chen

    2015-01-01

    Full Text Available Understanding the interaction between hydrogen and carbon nanotubes is crucial to enhancing the performance of hydrogen storage and nanofluidic carbon-adsorbent systems. Accordingly, this study performs a series of molecular dynamics simulations to investigate the transport properties of hydrogen molecules confined within a flexible narrow carbon nanotube. The tube’s diameter is 10.8 Å at temperatures in the range of 100~800 K. The particle loadings inside carbon nanotubes are ranging from 0.01∼1 No/Å. The results show that the hydrogen molecules exhibit three distinct diffusion regimes, namely, single-file, Fickian, and ballistic, depending on the value of the Knudsen number. In addition, it is shown that with the Knudsen number of less than 1, the tube-wall long wavelength acoustic phonons induced Rayleigh traveling wave prompts a longitudinal wave slip and compression-expansion of the hydrogen molecule crowds within the CNT, which leads to a significant increase in the mean square displacement of the molecules.

  17. Mechanically flexible wireless multisensor platform for human physical activity and vitals monitoring.

    Science.gov (United States)

    Chuo, Y; Marzencki, M; Hung, B; Jaggernauth, C; Tavakolian, K; Lin, P; Kaminska, B

    2010-10-01

    Practical usability of the majority of current wearable body sensor systems for multiple parameter physiological signal acquisition is limited by the multiple physical connections between sensors and the data-acquisition modules. In order to improve the user comfort and enable the use of these types of systems on active mobile subjects, we propose a wireless body sensor system that incorporates multiple sensors on a single node. This multisensor node includes signal acquisition, processing, and wireless data transmission fitted on multiple layers of a thin flexible substrate with a very small footprint. Considerations for design include size, form factor, reliable body attachment, good signal coupling, low power consumption, and user convenience. The prototype device measures 55 15 mm and is 3 mm thick. The unit is attached to the patient's chest, and is capable of performing simultaneous measurements of parameters, such as body motion, activity intensity, tilt, respiration, cardiac vibration, cardiac potential (ECG), heart rate, and body surface temperature. In this paper, we discuss the architecture of this system, including the multisensor hardware, the firmware, a mobile-phone receiver unit, and assembly of the first proof-of-concept prototype. Preliminary performance results on key elements of the system, such as power consumption, wireless range, algorithm efficiency, ECG signal quality for heart-rate calculations, as well as synchronous ECG and body activity signals are also presented.

  18. Distractor Suppression When Attention Fails: Behavioral Evidence for a Flexible Selective Attention Mechanism

    OpenAIRE

    James C. Elliott; Barry Giesbrecht

    2015-01-01

    Despite consistent evidence showing that attention is a multifaceted mechanism that can operate at multiple levels of processing depending on the structure and demands of the task, investigations of the attentional blink phenomenon have consistently shown that the impairment in reporting the second of two targets typically occurs at a late, or post-perceptual, stage of processing. This suggests that the attentional blink phenomenon may represent the operation of a unique attentional mechanism...

  19. Investigation of a robust tendon-sheath mechanism for flexible membrane wing application in mini-UAV

    Science.gov (United States)

    Lee, Shian; Tjahjowidodo, Tegoeh; Lee, Hsuchew; Lai, Benedict

    2017-02-01

    Two inherent issues manifest themselves in flying mini-unmanned aerial vehicles (mini-UAV) in the dense area at tropical climate regions, namely disturbances from gusty winds and limited space for deployment tasks. Flexible membrane wing (FMW) UAVs are seen to be potentials to mitigate these problems. FMWs are adaptable to gusty airflow as the wings are able to flex according to the gust load to reduce the effective angle-of-attack, thus, reducing the aerodynamic loads on the wing. On the other hand, the flexible structure is allowing the UAV to fold in a compact package, and later on, the mini-UAV can be deployed instantly from the storage tube, e.g. through a catapult mechanism. This paper discusses the development of an FMW UAV actuated by a tendon-sheath mechanism (TSM). This approach allows the wing to morph to generate a rolling moment, while still allowing the wing to fold. Dynamic characteristics of the mechanism that exhibits the strong nonlinear phenomenon of friction on TSM are modeled and compensated for. A feed-forward controller was implemented based on the identified nonlinear behavior to control the warping position of the wing. The proposed strategy is validated experimentally in a wind tunnel facility by creating a gusty environment that is imitating a realistic gusty condition based upon the results of computational fluid dynamics (CFD) simulation. The results demonstrate a stable and robust wing-warping actuation, even in gusty conditions. Accurate wing-warping can be achieved via the TSM, while also allowing the wings to fold.

  20. High performance flexible top-emitting warm-white organic light-emitting devices and chromaticity shift mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Hongying; Deng, Lingling; Chen, Shufen, E-mail: iamsfchen@njupt.edu.cn, E-mail: wei-huang@njupt.edu.cn; Xu, Ying; Zhao, Xiaofei; Cheng, Fan [Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 210023 Nanjing (China); Huang, Wei, E-mail: iamsfchen@njupt.edu.cn, E-mail: wei-huang@njupt.edu.cn [Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 210023 Nanjing (China); Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Technology, Nanjing 211816 (China)

    2014-04-15

    Flexible warm-white top-emitting organic light-emitting devices (TEOLEDs) are fabricated onto PET substrates with a simple semi-transparent cathode Sm/Ag and two-color phosphors respectively doped into a single host material TCTA. By adjusting the relative position of the orange-red EML sandwiched between the blue emitting layers, the optimized device exhibits the highest power/current efficiency of 8.07 lm/W and near 13 cd/A, with a correlated color temperature (CCT) of 4105 K and a color rendering index (CRI) of 70. In addition, a moderate chromaticity variation of (-0.025, +0.008) around warm white illumination coordinates (0.45, 0.44) is obtained over a large luminance range of 1000 to 10000 cd/m{sup 2}. The emission mechanism is discussed via delta-doping method and single-carrier device, which is summarized that the carrier trapping, the exciton quenching, the mobility change and the recombination zone alteration are negative to color stability while the energy transfer process and the blue/red/blue sandwiched structure are contributed to the color stability in our flexible white TEOLEDs.

  1. Comparing contractile apparatus-driven cytokinesis mechanisms across kingdoms.

    Science.gov (United States)

    Balasubramanian, Mohan K; Srinivasan, Ramanujam; Huang, Yinyi; Ng, Kian-Hong

    2012-11-01

    Cytokinesis is the final stage of the cell cycle during which a cell physically divides into two daughters through the assembly of new membranes (and cell wall in some cases) between the forming daughters. New membrane assembly can either proceed centripetally behind a contractile apparatus, as in the case of prokaryotes, archaea, fungi, and animals or expand centrifugally, as in the case of higher plants. In this article, we compare the mechanisms of cytokinesis in diverse organisms dividing through the use of a contractile apparatus. While an actomyosin ring participates in cytokinesis in almost all centripetally dividing eukaryotes, the majority of bacteria and archaea (except Crenarchaea) divide using a ring composed of the tubulin-related protein FtsZ. Curiously, despite molecular conservation of the division machinery components, division site placement and its cell cycle regulation occur by a variety of unrelated mechanisms even among organisms from the same kingdom. While molecular motors and cytoskeletal polymer dynamics contribute to force generation during eukaryotic cytokinesis, cytoskeletal polymer dynamics alone appears to be sufficient for force generation during prokaryotic cytokinesis. Intriguingly, there are life forms on this planet that appear to lack molecules currently known to participate in cytokinesis and how these cells perform cytokinesis remains a mystery waiting to be unravelled.

  2. An Improved Genetic-Simulated Annealing Algorithm Based on a Hormone Modulation Mechanism for a Flexible Flow-Shop Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Min Dai

    2013-01-01

    Full Text Available A flexible flow-shop scheduling (FFS with nonidentical parallel machines for minimizing the maximum completion time or makespan is a well-known combinational problem. Since the problem is known to be strongly NP-hard, optimization can either be the subject of optimization approaches or be implemented for some approximated cases. In this paper, an improved genetic-simulated annealing algorithm (IGAA, which combines genetic algorithm (GA based on an encoding matrix with simulated annealing algorithm (SAA based on a hormone modulation mechanism, is proposed to achieve the optimal or near-optimal solution. The novel hybrid algorithm tries to overcome the local optimum and further to explore the solution space. To evaluate the performance of IGAA, computational experiments are conducted and compared with results generated by different algorithms. Experimental results clearly demonstrate that the improved metaheuristic algorithm performs considerably well in terms of solution quality, and it outperforms several other algorithms.

  3. Flexible mechanisms: the diverse roles of biological springs in vertebrate movement.

    Science.gov (United States)

    Roberts, Thomas J; Azizi, Emanuel

    2011-02-01

    The muscles that power vertebrate locomotion are associated with springy tissues, both within muscle and in connective tissue elements such as tendons. These springs share in common the same simple action: they stretch and store elastic strain energy when force is applied to them and recoil to release energy when force decays. Although this elastic action is simple, it serves a diverse set of functions, including metabolic energy conservation, amplification of muscle power output, attenuation of muscle power input, and rapid mechanical feedback that may aid in stability. In recent years, our understanding of the mechanisms and importance of biological springs in locomotion has advanced significantly, and it has been demonstrated that elastic mechanisms are essential for the effective function of the muscle motors that power movement. Here, we review some recent advances in our understanding of elastic mechanisms, with an emphasis on two proposed organizing principles. First, we review the evidence that the various functions of biological springs allow the locomotor system to operate beyond the bounds of intrinsic muscle properties, including metabolic and mechanical characteristics, as well as motor control processes. Second, we propose that an energy-based framework is useful for interpreting the diverse functions of series-elastic springs. In this framework, the direction and timing of the flow of energy between the body, the elastic element and the contracting muscle determine the function served by the elastic mechanism (e.g. energy conservation vs power amplification). We also review recent work demonstrating that structures such as tendons remodel more actively and behave more dynamically than previously assumed.

  4. Novel mechanism for temperature-independent transitions in flexible molecules: role of thermodynamic fluctuations.

    Science.gov (United States)

    Teslenko, V I; Petrov, E G; Verkhratsky, A; Krishtal, O A

    2010-04-30

    A novel physical mechanism is proposed to explain the temperature-independent transition reactions in molecular systems. The mechanism becomes effective in the case of conformation transitions between quasi-isoenergetic molecular states. It is shown that at room temperatures, stochastic broadening of molecular energy levels predominates the energy of low-frequency vibrations accompanying the transition. This leads to a cancellation of temperature dependence in the stochastically averaged rate constants. As an example, a physical interpretation of temperature-independent onset of P2X{3} receptor desensitization in neuronal membranes is provided.

  5. Fabrication of flexible magnetic papers based on bacterial cellulose and barium hexaferrite with improved mechanical properties

    Science.gov (United States)

    Lim, Guh-Hwan; Lee, Jooyoung; Kwon, Nayoung; Bok, Shingyu; Sim, Hwansu; Moon, Kyoung-Seok; Lee, Sang-Eui; Lim, Byungkwon

    2016-09-01

    We report on a simple approach to fabricate mechanically robust magnetic cellulose papers containing M-type barium hexaferrite (BaFe12O19) nanoplates. BaFe12O19 nanoplates were synthesized by a hydrothermal method and then chemically functionalized by using a silane coupling agent. The magnetic cellulose papers prepared with the silane-treated BaFe12O19 nanoplates exhibited improved mechanical properties with tensile strength of 58.5 MPa and Young's modulus of 2.95 GPa.

  6. Oxide Heteroepitaxy for Flexible Optoelectronics.

    Science.gov (United States)

    Bitla, Yugandhar; Chen, Ching; Lee, Hsien-Chang; Do, Thi Hien; Ma, Chun-Hao; Qui, Le Van; Huang, Chun-Wei; Wu, Wen-Wei; Chang, Li; Chiu, Po-Wen; Chu, Ying-Hao

    2016-11-30

    The emerging technological demands for flexible and transparent electronic devices have compelled researchers to look beyond the current silicon-based electronics. However, fabrication of devices on conventional flexible substrates with superior performance are constrained by the trade-off between processing temperature and device performance. Here, we propose an alternative strategy to circumvent this issue via the heteroepitaxial growth of transparent conducting oxides (TCO) on the flexible mica substrate with performance comparable to that of their rigid counterparts. With the examples of ITO and AZO as a case study, a strong emphasis is laid upon the growth of flexible yet epitaxial TCO relying muscovite's superior properties compared to those of conventional flexible substrates and its compatibility with the present fabrication methods. Besides excellent optoelectro-mechanical properties, an additional functionality of high-temperature stability, normally lacking in the current state-of-the-art transparent flexitronics, is provided by these heterostructures. These epitaxial TCO electrodes with good chemical and thermal stabilities as well as mechanical durability can significantly contribute to the field of flexible, light-weight, and portable smart electronics.

  7. An assessment of the EU proposal for ceilings on the use of Kyoto flexibility mechanisms

    NARCIS (Netherlands)

    Zhang, ZX

    2001-01-01

    The Kyoto Protocol is the first international environmental agreement that sets legally binding greenhouse gas emissions targets and timetables for Annex I countries. It incorporates emissions trading, joint implementation and the clean development mechanism. Because each of the articles defining th

  8. Effects of anchored flexible polymers on mechanical properties of model biomembranes

    CERN Document Server

    Wu, Hao; 10.1063/1.4794653

    2013-01-01

    We have studied biomembranes with grafted polymer chains using a coarse-grained membrane simulation, where a meshless membrane model is combined with polymer chains. We focus on the polymer-induced entropic effects on mechanical properties of membranes. The spontaneous curvature and bending rigidity of the membranes increase with increasing polymer density. Our simulation results agree with the previous theoretical predictions.

  9. Model reduction of flexible multibody systems with application to large-stroke compliant precision mechanisms

    NARCIS (Netherlands)

    Boer, S.E.

    2013-01-01

    Numerical simulations are essential to determine the characteristics, performance and structural integrity of mechanisms and robots. With increasingly higher demands on the specifications of such devices, the demands on the accuracy of the numerical models increases as well. Increasing the complexit

  10. Flexible polyacrylamide substrata for the analysis of mechanical interactions at cell-substratum adhesions

    Science.gov (United States)

    Beningo, Karen A.; Lo, Chun-Min; Wang, Yu-Li

    2002-01-01

    We have described a powerful tool for the study of mechanical interactions between cells and their physical environment. Although the approach has already been used in a variety of ways to measure traction forces and to characterize active and passive responses of cultured cells to mechanical stimulation, it can be extended easily and combined with other microscopic approaches, including fluorescent analog imaging (Beningo et al., 2001), photobleaching, calcium imaging, micromanipulation, and electrophysiology. This method will be particularly useful for studying the functions of various components at focal adhesions, and the effects of mechanical forces on focal adhesion-mediated signal transduction. In addition, the method can be extended to a 3D setting, e.g., by sandwiching cultured cells between two layers of polyacrylamide to create an environment mimicking that in the tissue of a multicellular organism. Whereas chemical interactions between cells and the environment have been investigated extensively, many important questions remain as to the role of physical forces in cellular functions and the interplay between chemical and physical mechanisms of communication. The present approach, as well as other approaches capable of probing physical interactions, should fill in this important gap in the near future.

  11. Review of Capabilities of a Linear Micropositioner Based on a Flexible Mechanism

    Directory of Open Access Journals (Sweden)

    Oscar Chaídes

    2013-01-01

    Full Text Available Este artículo presenta el análisis de capacidades de un actuador lineal de resolución micrométrica que puede ser empleado para lograr posicionamiento de la pieza de trabajo en el proceso de micro electroerosión. El actuador fue desarrollado utilizando un elemento flexible accionado por un solenoide, un sistema de control de lazo abierto fue empleado para el posicionamiento. El sistema de control utiliza una computadora personal conectada a un microcontrolador a través del protocolo RS232 y el microcontrolador ejecuta un programa escrito en lenguaje C que interpreta comandos provenientes de la computadora. El sistema varia la fuerza producida por un solenoide utilizando la técnica de modulación de ancho de pulso (PWM por sus siglas en inglés. Las capacidades del actuador fueron evaluadas mediante el desplazamiento de una masa de 1 kg en una distancia de 30μm. La posición del resultante de la masa fue medida utilizando un transformador variable diferencial (LVDT con una resolución de 0.5μm. Datos experimentales fueron recolectados utilizando un sistema de adquisición de datos desarrollado en el lenguaje de instrumentación LabView. Los resultados muestran que el actuador es capaz de alcanzar una precisión de magnitud similar a la del sistema de medición empleado. Un diseño de experimentos fue realizado para evaluar las capacidades del actuador. El comportamiento de desplazamiento del actuador presenta histéresis debido a su constitución basada en elementos electromagnéticos. El impacto de los parámetros de control sobre la histéresis fue evaluado. Una combinación óptima de parámetros de control es propuesta la cual permite rangos de desplazamiento óptimos y reduce la histéresis.

  12. Remote toehold: a mechanism for flexible control of DNA hybridization kinetics.

    Science.gov (United States)

    Genot, Anthony J; Zhang, David Yu; Bath, Jonathan; Turberfield, Andrew J

    2011-02-23

    Hybridization of DNA strands can be used to build molecular devices, and control of the kinetics of DNA hybridization is a crucial element in the design and construction of functional and autonomous devices. Toehold-mediated strand displacement has proved to be a powerful mechanism that allows programmable control of DNA hybridization. So far, attempts to control hybridization kinetics have mainly focused on the length and binding strength of toehold sequences. Here we show that insertion of a spacer between the toehold and displacement domains provides additional control: modulation of the nature and length of the spacer can be used to control strand-displacement rates over at least 3 orders of magnitude. We apply this mechanism to operate displacement reactions in potentially useful kinetic regimes: the kinetic proofreading and concentration-robust regimes.

  13. Analysis of the flexible support mechanisms in the Directive on the promotion of the use of energy from renewable sources. Final report 8th January 2010

    Energy Technology Data Exchange (ETDEWEB)

    Ruokonen, J.; Sinnemaa, M.A.; Magnusson, R.; Gautesen, K.; Seppaenen, S.; Opsal, O.

    2010-07-01

    The Nordic countries have a long history in co-operation and a common electricity market. The long-term objective of Nordic countries is to promote an efficient, competitive, secure and sustainable energy supply. The EU countries have set a binding target to increase the share of renewable energy to 20% by 2020. The European Parliament approved a legislative resolution on December 17th 2008 on the proposal for a Directive on the promotion of the use of energy from renewable source ('The Directive'). This Directive become part of the European Community legislation in 2009. The Directive sets national targets for renewable energy, but it also provides various flexibility mechanisms that enable co-operation between countries in reaching the national targets. It is however still not clear how these flexible mechanisms should be used, nor the consequences on the electricity market and renewable energy sources. The objective of this project is to evaluate the usefulness and consequences of utilising the Flexible Mechanisms described in the Articles 6-11 ('Flex-Mex') of the Directive in Nordic Countries. Moreover, the objective is to provide basis for conclusions and political recommendations on whether and how to cooperate and move forward in this area. In addition to basic principles of the flexible mechanisms, the project concentrates on analysing the arrangements needed between the Nordic Countries to utilise the flexible mechanisms and analysis of benefits and problems of using Mechanisms. The report is divided five sections. Chapter 2 introduced the RES directive and Flexible Mechanisms. In chapter 3, lesson learnt from other markets are used as starting point in drawing possible frameworks for Nordic countries. Chapter 4 summarizes presents outcome of various co-operation scenarios and their benefits. In Chapter 5 some selected topics are discussed from RES Flex-Mex point of view. Chapter 6 provides conclusions and recommendations. (Author)

  14. Raf kinase inhibitory protein function is regulated via a flexible pocket and novel phosphorylation-dependent mechanism.

    Science.gov (United States)

    Granovsky, Alexey E; Clark, Matthew C; McElheny, Dan; Heil, Gary; Hong, Jia; Liu, Xuedong; Kim, Youngchang; Joachimiak, Grazyna; Joachimiak, Andrzej; Koide, Shohei; Rosner, Marsha Rich

    2009-03-01

    Raf kinase inhibitory protein (RKIP/PEBP1), a member of the phosphatidylethanolamine binding protein family that possesses a conserved ligand-binding pocket, negatively regulates the mammalian mitogen-activated protein kinase (MAPK) signaling cascade. Mutation of a conserved site (P74L) within the pocket leads to a loss or switch in the function of yeast or plant RKIP homologues. However, the mechanism by which the pocket influences RKIP function is unknown. Here we show that the pocket integrates two regulatory signals, phosphorylation and ligand binding, to control RKIP inhibition of Raf-1. RKIP association with Raf-1 is prevented by RKIP phosphorylation at S153. The P74L mutation increases kinase interaction and RKIP phosphorylation, enhancing Raf-1/MAPK signaling. Conversely, ligand binding to the RKIP pocket inhibits kinase interaction and RKIP phosphorylation by a noncompetitive mechanism. Additionally, ligand binding blocks RKIP association with Raf-1. Nuclear magnetic resonance studies reveal that the pocket is highly dynamic, rationalizing its capacity to interact with distinct partners and be involved in allosteric regulation. Our results show that RKIP uses a flexible pocket to integrate ligand binding- and phosphorylation-dependent interactions and to modulate the MAPK signaling pathway. This mechanism is an example of an emerging theme involving the regulation of signaling proteins and their interaction with effectors at the level of protein dynamics.

  15. Comparative Study on Mechanical Properties between Pure and Recycled Polypropylenes

    Directory of Open Access Journals (Sweden)

    Ariadne L. Juwono

    2010-04-01

    Full Text Available Polypropylene (PP is one type of thermoplastics that is widely used in our daily activities. A combination of the high demand and the easiness of recycling process, the recycled PP has been generally applied. In this study, the structure and the mechanical properties of the as-received PPs, recycled PPs, and commercial recycled PPs were compared, especially for cloth hanger application. DSC test results showed that recycling process did not cause a significant change to the material's melting point, which stayed in a range of 160-163 oC. Meanwhile, FTIR test results showed that the commercial recycled PPs contained of Polyethylene (PE, which was not found in the as-received and the recycled PPs. Tensile and hardness tests demonstrated that there were no significant differences between the as-received and recycled PPs. In contrast, tensile test results of the commercial recycled PPs showed that the tensile strength, Young modulus and strain-at-break were lower than those of the as-received PPs by 22.1%, 8.1% and 65.7% respectively. The hardness test results of the commercial recycled PPs showed that the recycling process had a little effect on the material's hardness. These facts were supported by SEM observation on the surface that the contour of the commercial recycled PPs was relatively flatter and had smaller grain size than those of the as-received PPs. This indicated that the commercial recycled PPs were more brittle compared to the recycled PPs. To conclude, the recycled PPs have similar properties to the as-received PPs so that recycled PPs are suitable to be applied as cloth hanger application.

  16. Three-dimensional stabilization provided by the external spinal fixator compared to two internal fixation devices: a biomechanical in vitro flexibility study.

    Science.gov (United States)

    Lund, Teija; Nydegger, Thomas; Rathonyi, Gabor; Nolte, Lutz-Peter; Schlenzka, Dietrich; Oxland, Thomas R

    2003-10-01

    We performed an in vitro study to investigate the stabilization (i.e. motion reduction) provided by the external spinal fixator (ESF), and to compare the three configurations of the ESF with two internal fixation techniques. Six human cadaveric lumbar spine specimens (L3-S1) were subjected to multidirectional flexibility testing in six configurations: (1) intact, (2) ESF in neutral, (3) ESF in distraction, (4) ESF in compression, (5) translaminar facet screw fixation, and (6) internal transpedicular fixation. Both the ESF and the internal fixation systems stabilized the specimens from L4 to S1. In each testing configuration, pure bending moments of flexion-extension, bilateral axial rotation, and bilateral lateral bending were applied to the uppermost vertebra stepwise to a maximum of 10 Nm. The rigid body motion between the vertebrae was measured using an optoelectronic camera system, and custom software was used to calculate the intervertebral rotations. For each applied motion in all testing configurations, the total range of motion (ROM) of L4-S1 is reported. All three ESF configurations stabilized the spine significantly when compared to the intact specimen. The ESF in compression provided significantly more stabilization in flexion-extension than the two other ESF configurations, but no other significant differences were found between the three ESF modes. In flexion-extension the ESF stabilized the spine significantly when compared with the two internal fixation devices. Only in bilateral lateral bending was the ESF inferior to internal transpedicular fixation in providing stabilization. The results of the present study suggest that the ESF provides a high degree of stabilization for preoperative assessment of selected low back pain patients. Whether other non-mechanical factors affect the pain relief experienced by the patients remains unknown.

  17. Flexible Low-Mass Devices and Mechanisms Actuated by Electroactive Polymers

    Science.gov (United States)

    Bar-Cohen, Y; Leary, S.; Shahinpoor, M.; Harrison, J. O.; Smith, J.

    1999-01-01

    Miniature, lightweight, miser actuators that operate similar to biological muscles can be used to develop robotic devices with unmatched capabilities to impact many technology areas. Electroactive polymers (EAP) offer the potential to producing such actuators and their main attractive feature is their ability to induce relatively large bending or longitudinal strain. Generally, these materials produce a relatively low force and the applications that can be considered at the current state of the art are relatively limited. This reported study is concentrating on the development of effective EAPs and the resultant enabling mechanisms employing their unique characteristics. Several EAP driven mechanisms, which emulate human hand, were developed including a gripper, manipulator arm and surface wiper. The manipulator arm was made of a composite rod with an EAP actuator consisting of a scrolled rope that is activated longitudinally by an electrostatic field. A gripper was made to serve as an end effector and it consisted of multiple bending EAP fingers for grabbing and holding such objects as rocks. An EAP surface wiper was developed to operate like a human finger and to demonstrate the potential to remove dust from optical and IR windows as well as solar cells. These EAP driven devices are taking advantage of the large actuation displacement of these materials but there is need for a significantly greater actuation force capability.

  18. Investigation on the mechanical properties of palm-based flexible polyurethane foam

    Science.gov (United States)

    On, Ahmad Zuhdi Mohd; Badri, Khairiah Haji

    2015-09-01

    A series of modification polyurethane (PU) system was prepared by introducing palm kernel based polyol (PKO-p) to progressively replaced commercial polyether polyol from petrochemical based material. This paper describes the effect of PKO-p on the physical-mechanical properties of polyurethane foams. Stress-strain analysis in tensile mode was conducted with physicochemical analysis by performing Fourier transform infrared (FTIR). The morphological studies were observed by the optical microscope. The foam showed an increment on the modulus up to 458.3kPa as more incorporation of PKO-p introduced to the system. In contrast, tensile strength of PU foam depicted the highest up to 162 kPa at 60:40. The elongation at break showed decrement as the composition of the renewable polyol increased to a ratio 60/40 of PKO-p to petrochemical based polyol.

  19. Electro-Mechanical Coupling of Indium Tin Oxide Coated Polyethylene Terephthalate ITO/PET for Flexible Solar Cells

    KAUST Repository

    Saleh, Mohamed A.

    2013-05-15

    Indium tin oxide (ITO) is the most widely used transparent electrode in flexible solar cells because of its high transparency and conductivity. But still, cracking of ITO on PET substrates due to tensile loading is not fully understood and it affects the functionality of the solar cell tremendously as ITO loses its conductivity. Here, we investigate the cracking evolution in ITO/PET exposed to two categories of tests. Monotonous tensile testing is done in order to trace the crack propagation in ITO coating as well as determining a loading range to focus on during our study. Five cycles test is also conducted to check the crack closure effect on the resistance variation of ITO. Analytical model for the damage in ITO layer is implemented using the homogenization concept as in laminated composites for transverse cracking. The homogenization technique is done twice on COMSOL to determine the mechanical and electrical degradation of ITO due to applied loading. Finally, this damage evolution is used for a simulation to predict the degradation of ITO as function in the applied load and correlate this degradation with the resistance variation. Experimental results showed that during unloading, crack closure results in recovery of conductivity and decrease in the overall resistance of the cracked ITO. Also, statistics about the crack spacing showed that the cracking pattern is not perfectly periodical however it has a positively skewed distribution. The higher the applied load, the less the discrepancy in the crack spacing data. It was found that the cracking mechanism of ITO starts with transverse cracking with local delamination at the crack tip unlike the mechanism proposed in the literature of having only cracking pattern without any local delamination. This is the actual mechanism that leads to the high increase in ITO resistance. The analytical code simulates the damage evolution in the ITO layer as function in the applied strain. This will be extended further to

  20. Comparative aspects of gait, scaling and mechanics in mammals.

    Science.gov (United States)

    Gasc, J P

    2001-12-01

    In phylogenetically based systematics, Mammalia is the nomenclatural term which designates the clade stemming from the most recent common ancestry of monotremes and theria [, Sys. Biol. 43 (1994) 497]. Considering that locomotor performance is a prevalent function to provide the necessary conditions to survive and transmit genes, it may be questioned if the diverse types of locomotion exhibited by extant mammals could have played a role in their evolution, or have only followed it. We may look after the structural and behavioural features which are involved in mammal locomotion compared to other tetrapods and test if they fit with the proposed phylogeny. Several factors may be checked: scaling effect in relation to gravitational constraints; geometrical distribution of masses in the body, and relative mechanical role of the limbs in the production of the external forces necessary to forward motion. Classically, it was thought that the fastest gaits used by terrestrial mammals were based upon a unique kind of limb motion co-ordination, called asymmetrical gaits, which in turn may be thought to be related to a peculiar neuronal wiring. Kinematic analysis brings an insight to this topic. Is the search for an ancestral mammalian locomotor pattern judicious? Notice the small size of many of the first mammals and their probable locomotor plasticity. (relation between grain size of the elements within the substrate and the organism scale). At a small size, the gravitational constraint is less important, and the distinction between terrestrial and arboreal has probably no sense when the limbs are the principal motor elements. There remains the importance of the geometrical distribution of body elements, the proportions of the limbs and of the head-neck complex, the tail merely as an appendix, a set of factors which may have generated the frame of constraints within which diverse locomotor modes have evolved.

  1. Pneumatic flexible shaft couplings

    OpenAIRE

    2007-01-01

    Main effort of every design engineer is reduction of torsional oscillation in any mechanical system. At present this problem can be solved by means of a suitable modification of dynamic properties of flexible shaft couplings according to dynamics in the given systems. But the dynamic properties of nowadays-applied flexible couplings arenot unchangeable because of aging and fatigue processes occurring in flexible coupling elements. Result of this fact causes detuning of mechanical system. Taki...

  2. On Building Flexible Settlement Mechanism for Administrative Dispute%行政纠纷柔性解决机制构建研究

    Institute of Scientific and Technical Information of China (English)

    苗朝霞

    2013-01-01

    我国行政纠纷解决机制在应对行政纠纷的现状时存在一定的问题,应从以下四个方面解决这些问题:强化行政纠纷柔性解决机制的伦理基础,发挥软法在行政纠纷柔性解决机制中的规制作用,加强行政纠纷的柔性预警机制,完善行政纠纷柔性解决机制的法治化。%China administrative dispute resolution mechanism has some problems in dealing with the current situation of administrative dispute, the problems could be solved from the following four aspects:strengthening the ethics basis of flexible settlement mechanism for administrative dispute, playing soft law in the regulation effect of flexible administrative dispute settlement mechanism, strengthening early warning mechanism of the administrative dispute flexible, improving the flexible administrative dispute settlement mechanism in the rule of law.

  3. Insights into the Mechanical Behaviour of a Layered Flexible Tactile Sensor

    Directory of Open Access Journals (Sweden)

    Julián Castellanos-Ramos

    2015-10-01

    Full Text Available This paper shows realizations of a piezoresistive tactile sensor with a low cost screen-printing technology. A few samples were fabricated for different materials used as insulator between the conductive layers and as top layer or cover. Both can be used to tune the sensitivity of the sensor. However, a large influence is also observed of the roughness at the contact interface on the sensitivity and linearity of the output, as well as on mismatching between the outputs from different taxels. The roughness at the contact interface is behind the transduction principle of the sensor, but it also limits its performance if the wavelength of the roughness is comparable or even longer than the size of the contacts. The paper shows experimental results that confirm this relationship and discusses its consequences in sensor response related to the materials chosen for the insulator and the cover. Moreover, simulations with FEA tools and with simple models are used to support the discussions and conclusions obtained from the experimental data. This provides insights into the sensor behaviour that are shared by other sensors based on the same principle.

  4. Prospective trial comparing intraoperative flexible, rigid, and no cystoscopy after ultrasound-guided transperineal permanent seed prostate brachytherapy

    Directory of Open Access Journals (Sweden)

    John Sylvester

    2016-06-01

    Conclusion: There was no significant difference in dysuria in the first four urinations post-PB between patients in the rigid, flexible, and no cystoscopy groups. Larger blood clots that may have been difficult to void, seeds in the bladder and/or urethra, and other abnormalities were found in 7% of patients who had cystoscopy. This may suggest that cystoscopy may be worthwhile post-PB. The incidence of AUR was not significantly different between the three cohorts.

  5. Flexible Flatfoot

    Science.gov (United States)

    ... this page. Please enable Javascript in your browser. Flexible Flatfoot What Is Flatfoot? Flatfoot is often a ... may develop as a result of a flatfoot. Flexible Flatfoot Flexible flatfoot is one of the most ...

  6. Does corticosterone regulate the onset of breeding in free-living birds?: The CORT-Flexibility Hypothesis and six potential mechanisms for priming corticosteroid function.

    Science.gov (United States)

    Lattin, Christine R; Breuner, Creagh W; Michael Romero, L

    2016-02-01

    For many avian species, the decision to initiate breeding is based on information from a variety of environmental cues, including photoperiod, temperature, food availability, and social interactions. There is evidence that the hormone corticosterone may be involved in delaying the onset of breeding in cases where supplemental cues, such as low food availability and inclement weather, indicate that the environment is not suitable. However, not all studies have found the expected relationships between breeding delays and corticosterone titers. In this review, we present the hypothesis that corticosterone physiology mediates flexibility in breeding initiation (the "CORT-Flexibility Hypothesis"), and propose six possible corticosterone-driven mechanisms in pre-breeding birds that may delay breeding initiation: altering hormone titers, negative feedback regulation, plasma binding globulin concentrations, intracellular receptor concentrations, enzyme activity and interacting hormone systems. Based on the length of the breeding season and species-specific natural history, we also predict variation in corticosterone-regulated pre-breeding flexibility. Although few studies thus far have examined mechanisms beyond plasma hormone titers, the CORT-Flexibility Hypothesis is grounded on a solid foundation of research showing seasonal variation in the physiological stress response and knowledge of physiological mechanisms modulating corticosteroid effects. We propose six possible mechanisms as testable and falsifiable predictions to help clarify the extent of HPA axis regulation of the initiation of breeding.

  7. DDQ-promoted dehydrogenation from natural rigid polycyclic acids or flexible alkyl acids to generate lactones by a radical ion mechanism.

    Science.gov (United States)

    Ding, Ye; Huang, Zhangjian; Yin, Jian; Lai, Yisheng; Zhang, Shibo; Zhang, Zhiguo; Fang, Lei; Peng, Sixun; Zhang, Yihua

    2011-09-07

    A novel and facile DDQ-mediated dehydrogenation from natural rigid polycyclic acids or flexible alkyl acids to generate lactones is described. The formation of lactones proceeds by a radical ion mechanism, which has been established by DPPH˙-mediated chemical identification, ESR spectroscopy and an enol intermediate trapping.

  8. A comparative study on the synthesis mechanism, bioactivity and mechanical properties of three silicate bioceramics.

    Science.gov (United States)

    Najafinezhad, Aliakbar; Abdellahi, Majid; Ghayour, Hamid; Soheily, Ali; Chami, Akbar; Khandan, Amirsalar

    2017-03-01

    In the present study three akermanite (Ca2MgSi2O7), diopside (CaMgSi2O6) and baghdadite (Ca3ZrSi2O9) applicable bioceramics were synthesized via a sol-gel based method. The combination of sol-gel method and the raw materials used in this study presents a new route for the synthesis of the mentioned bioceramics. By the use of thermal analysis, the mechanisms occurred during the synthesis of these bioceramics were investigated. The differences in the structural density and their relation with the degradation rate and mechanical properties of all three ceramics were studied. In vitro bioactivity and apatite formation mechanisms of the samples soaked in the simulated body fluid were considered. The results showed that baghdadite as a Zr-containing material has a more dense structure in comparison with the other ceramics, which leads to a lower degradation rate and also lower bioactivity. There were also main differences between akermanite and diopside as Mg-containing ceramics. Diopside showed a structure with lower porosity content compared to the akermanite samples which resulted in the lower degradation rate and higher compressive strength. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Tuning the mechanical properties of glass fiber-reinforced bismaleimide–triazine resin composites by constructing a flexible bridge at the interface

    Directory of Open Access Journals (Sweden)

    Xiaoliang Zeng, Shuhui Yu, Maobai Lai, Rong Sun and Ching-Ping Wong

    2013-01-01

    Full Text Available We demonstrate a new method that can simultaneously improve the strength and toughness of the glass fiber-reinforced bismaleimide–triazine (BT resin composites by using polyethylene glycol (PEG to construct a flexible bridge at the interface. The mechanical properties, including the elongation, ultimate tensile stress, Young's modulus, toughness and dynamical mechanical properties were studied as a function of the length of PEG molecular chain. It was found that the PEG molecule acts as a bridge to link BT resin and glass fiber through covalent and non-covalent bondings, respectively, resulting in improved interfacial bonding. The incorporation of PEG produces an increase in elongation, ultimate tensile stress and toughness. The Young's modulus and Tg were slightly reduced when the length of the PEG molecular chain was high. The elongation of the PEG-modified glass fiber-reinforced composites containing 5 wt% PEG-8000 increased by 67.1%, the ultimate tensile stress by 17.9% and the toughness by 78.2% compared to the unmodified one. This approach provides an efficient way to develop substrate material with improved strength and toughness for integrated circuit packaging applications.

  10. Investigation of the interfacial adhesion of the transparent conductive oxide films to large-area flexible polymer substrates using laser-induced thermo-mechanical stresses

    Science.gov (United States)

    Park, Jin-Woo; Lee, Seung-Ho; Yang, Chan-Woo

    2013-08-01

    In this study, we investigated the interfacial adhesion strength (σint) of transparent conductive oxide (TCO) coatings on polymer substrates using a nanosecond Nd:YAG pulsed laser. We compared our results with those achieved using conventional testing methods such as bending and fragmentation tests as well as theoretical calculations. In the fragmentation and bending tests, mechanical compressive stress is induced in the film due to mismatches in Poisson's ratio and Young's modulus between the substrate and film. But, the incident laser makes the film under compression due to the mismatch in thermal expansion between the TCO and the polymer substrate. With a pulse incident to the substrate, the TCO rapidly expands by laser-induced instant heating while the transparent polymer does little, which causes the TCO to buckle and delaminate over the critical pulse energy. The critical compressive stress that scales with σint was calculated using simple equations, which agreed well with the results from previous theoretical calculations. Because the films preferentially delaminate at the defects and grain boundaries, this technique also provided useful information regarding the interface microstructures. Moreover, because the laser can scan over large areas, this method is suitable for flexible substrates that are produced by a roll-to-roll process. Nevertheless, the mechanical stress introduced by the bending and fragmentation tests causes the TCO to buckle without interfacial delamination. Hence, the stresses at the buckling disagreed with the results obtained from the laser test and the theoretical calculations.

  11. Tuning the mechanical properties of glass fiber-reinforced bismaleimide-triazine resin composites by constructing a flexible bridge at the interface

    Science.gov (United States)

    Zeng, Xiaoliang; Yu, Shuhui; Lai, Maobai; Sun, Rong; Wong, Ching-Ping

    2013-12-01

    We demonstrate a new method that can simultaneously improve the strength and toughness of the glass fiber-reinforced bismaleimide-triazine (BT) resin composites by using polyethylene glycol (PEG) to construct a flexible bridge at the interface. The mechanical properties, including the elongation, ultimate tensile stress, Young's modulus, toughness and dynamical mechanical properties were studied as a function of the length of PEG molecular chain. It was found that the PEG molecule acts as a bridge to link BT resin and glass fiber through covalent and non-covalent bondings, respectively, resulting in improved interfacial bonding. The incorporation of PEG produces an increase in elongation, ultimate tensile stress and toughness. The Young's modulus and Tg were slightly reduced when the length of the PEG molecular chain was high. The elongation of the PEG-modified glass fiber-reinforced composites containing 5 wt% PEG-8000 increased by 67.1%, the ultimate tensile stress by 17.9% and the toughness by 78.2% compared to the unmodified one. This approach provides an efficient way to develop substrate material with improved strength and toughness for integrated circuit packaging applications.

  12. The Effect of Flexible Pavement Mechanics on the Accuracy of Axle Load Sensors in Vehicle Weigh-in-Motion Systems.

    Science.gov (United States)

    Burnos, Piotr; Rys, Dawid

    2017-09-07

    Weigh-in-Motion systems are tools to prevent road pavements from the adverse phenomena of vehicle overloading. However, the effectiveness of these systems can be significantly increased by improving weighing accuracy, which is now insufficient for direct enforcement of overloaded vehicles. Field tests show that the accuracy of Weigh-in-Motion axle load sensors installed in the flexible (asphalt) pavements depends on pavement temperature and vehicle speeds. Although this is a known phenomenon, it has not been explained yet. The aim of our study is to fill this gap in the knowledge. The explanation of this phenomena which is presented in the paper is based on pavement/sensors mechanics and the application of the multilayer elastic half-space theory. We show that differences in the distribution of vertical and horizontal stresses in the pavement structure are the cause of vehicle weight measurement errors. These studies are important in terms of Weigh-in-Motion systems for direct enforcement and will help to improve the weighing results accuracy.

  13. Bactericidal activity and mechanism of action of copper-sputtered flexible surfaces against multidrug-resistant pathogens.

    Science.gov (United States)

    Ballo, Myriam K S; Rtimi, Sami; Mancini, Stefano; Kiwi, John; Pulgarin, César; Entenza, José M; Bizzini, Alain

    2016-07-01

    Using direct current magnetron sputtering (DCMS), we generated flexible copper polyester surfaces (Cu-PES) and investigated their antimicrobial activity against a range of multidrug-resistant (MDR) pathogens including eight Gram-positive isolates (three methicillin-resistant Staphylococcus aureus [MRSA], four vancomycin-resistant enterococci, one methicillin-resistant Staphylococcus epidermidis) and four Gram-negative strains (one extended-spectrum β-lactamase-producing [ESBL] Escherichia coli, one ESBL Klebsiella pneumoniae, one imipenem-resistant Pseudomonas aeruginosa, and one ciprofloxacin-resistant Acinetobacter baumannii). Bactericidal activity (≥3 log10 CFU reduction of the starting inoculum) was reached within 15-30 min exposure to Cu-PES. Antimicrobial activity of Cu-PES persisted in the absence of oxygen and against both Gram-positive and Gram-negative bacteria containing elevated levels of catalases, indicating that reactive oxygen species (ROS) do not play a primary role in the killing process. The decrease in cell viability of MRSA ATCC 43300 and Enterococcus faecalis V583 correlated with the progressive loss of cytoplasmic membrane integrity both under aerobic and anaerobic conditions, suggesting that Cu-PES mediated killing is primarily induced by disruption of the cytoplasmic membrane function. Overall, we here present novel antimicrobial copper surfaces with improved stability and sustainability and provide further insights into their mechanism of killing.

  14. A Comparative Study on the Mechanical, Thermal and Morphological Characterization of Poly(lactic acid/Epoxidized Palm Oil Blend

    Directory of Open Access Journals (Sweden)

    Chieng Buong Woei

    2012-05-01

    Full Text Available In this work, poly(lactic acid (PLA a fully biodegradable thermoplastic polymer matrix was melt blended with three different epoxidized palm oil (EPO. The aim of this research was to enhance the flexibility, mechanical and thermal properties of PLA. The blends were prepared at various EPO contents of 1, 2, 3, 4 and 5 wt% and characterized. The SEM analysis evidenced successful modification on the neat PLA brittle morphology. Tensile tests indicate that the addition of 1 wt% EPO is sufficient to improve the strength and flexibility compared to neat PLA. Additionally, the flexural and impact properties were also enhanced. Further, DSC analysis showed that the addition of EPO results in a decrease in Tg, which implies an increase in the PLA chain mobility. In the presence of 1 wt% EPO, TGA results revealed significant increase in the thermal stability by 27%. Among the three EPOs used, EPO(3 showed the best mechanical and thermal properties compared to the other EPO’s, with an optimum loading of 1 wt%. Conclusively, EPO showed a promising outcome to overcome the brittleness and improve the overall properties of neat PLA, thus can be considered as a potential plasticizer.

  15. Comparing the effects of 3 weeks of upper-body vibration training, vibration and stretching, and stretching alone on shoulder flexibility in college-aged men.

    Science.gov (United States)

    Ferguson, Steven L; Kim, Eonho; Seo, Dong-Il; Bemben, Michael G

    2013-12-01

    This study compared the effects of 3 weeks of upper-body vibration training, vibration and stretching, and stretching alone on shoulder flexibility in college-aged men. Twenty-one men were randomly assigned to vibration-stretching (VS; n = 8), vibration only (VO; n = 6), or stretching only (SO; n = 7) groups that trained 3 times per week for 3 weeks. All 3 groups performed 9 total sets of 30-second stretches. The VS group performed four 30-second upper-body vibration exercises and five 30-second upper-body stretching exercises. The VO group performed nine 30-second upper-body vibration exercises. The SO group performed nine 30-second upper-body stretching exercises. Shoulder flexion (SF), shoulder extension (SE), and shoulder transverse extension (STE) were assessed by a Leighton Flexometer and back scratch tests bilaterally (BSR, BSL) were measured via tape measure. A 1-way analysis of variance (ANOVA) evaluated groups at baseline and a 2-way repeated-measures ANOVA evaluated the interventions over time. At baseline, there were no group differences in age, height, or weight. There was a significant (p flexibility outcome variable (SF: +6.1%, +3.9%, +3.4%; SE: +8.9%, +13.5%, +26.9%; STE: +12.8%, +8.7%, +24.3%; BSR: +4.4 cm, +3.4 cm, +3.1 cm; BSL: +3.6 cm, +2.3 cm, +6.1 cm) for SO, VO, and VS, respectively. Shoulder extension was the only variable that showed a significant (p training, alone or combined with stretching, is a viable alternative to a standard stretching routine when attempting to increase shoulder flexibility. Adding vibration training to a flexibility regimen may improve the likelihood of regularly performing flexibility sessions because of increased variety.

  16. Comportement comparé de conduites rigides et flexibles ensouillées au voisinage de sols gelés Comparative Behavior of Rigid and Flexible Pipes Buried in the Vicinity of Frozen Ground

    Directory of Open Access Journals (Sweden)

    Putot C.

    2006-11-01

    Full Text Available Au cours des dernières années, les activités pétrolières à terre comme en mer, tant en Alaska qu'au Canada, se sont maintenues à un niveau raisonnable. En octobre 1987, le premier champ pétrolier offshore a été mis en exploitation en mer de Beaufort (Endicott. Bien que l'industrie soit principalement dans une phase d'exploration, des besoins vont progressivement se manifester en matière de lignes de collecte et d'injection. La détermination du tracé de conduites en offshore arctique ainsi que leur dimensionnement nécessite la prise en compte de facteurs très spécifiques : le raclage des glaces dérivantes impose une profondeur minimum d'ensouillage, ce qui accroît, malgré l'isolation des conduites, la proportion de chaleur communiquée au pergélisol (ou permafrost en dégel : les tassements différentiels résultant de la variabilité de composition des sols peuvent provoquer des déformations, voire des instabilités des conduites tout à fait inacceptables. Il est assez intuitif de penser que les conduites flexibles accommoderont plus facilement les mouvements de sol que les rigides. L'objet de cet article est de proposer une méthode d'analyse assez souple permettant de jauger facilement cet avantage. In recent years, onshore and offshore petroleum activities, in both Alaska and Canada, have continued on a reasonable level. In October 1987 the first offshore oil field began production in the Beaufort Sea (Endicott. Although the industry is mainly in an exploration phase, needs will steadily appear with regard to gathering and injection line. . The determination to lay flowlines in offshore arctic areas as well as their sizing require that very specific factors be taken into consideration. Scouring by drifting ice requires a minimum depth of burial. Despite the insulation of pipes, this burial increases the proportion of heat communicated to melting permafrost. The differential compaction resulting from the variability of

  17. Scleral Mechanics: Comparing Whole Globe Inflation and Uniaxial Testing

    Science.gov (United States)

    Lari, David R.; Schultz, David S.; Wang, Aaron S.; Lee, On-Tat; Stewart, Jay M.

    2012-01-01

    The purpose of this study was to assess fundamental differences between the mechanics of the posterior sclera in paired eyes using uniaxial and whole globe inflation testing, with an emphasis on the relationship between testing conditions and observed tissue behavior. Twenty porcine eyes, consisting of matched pairs from 10 pigs, were used in this study. Within pairs, one eye was tested with 10 cycles of globe pressurization to 150 mmHg (~10x normal IOP) while biaxial strains were tracked via an optical system at the posterior sclera. An excised posterior strip from the second eye was subjected to traditional uniaxial testing in which mechanical hysteresis was recorded from 10 cycles to a peak stress of 0.13 MPa (roughly equivalent to the circumferential wall stress produced by an IOP of 150 mmHg under the thin-walled pressure vessel assumption). For approximately equivalent loads, peak strains were more than twice as high in uniaxial tests than in inflation tests. Different trends in the load-deformation plots were seen between the tests, including an extended “toe” region in the uniaxial test, a generally steeper curve in the inflation tests, and reduced variability in the inflation tests. The unique opportunity of being able to mechanically load a whole globe under near physiologic conditions alongside a standard uniaxially tested specimen reveals the effects of testing artifacts relevant to most uniaxially tested soft tissues. Whole globe inflation offers testing conditions that significantly alter load-deformation behavior relative to uniaxial testing; consequently, laboratory studies of interventions or conditions that alter scleral mechanics may greatly benefit from these findings. PMID:22155444

  18. A comparative study of fluorine substituents for enhanced stability of flexible and ITO-free high-performance polymer solar cells

    DEFF Research Database (Denmark)

    Carlé, Jon Eggert; Helgesen, Martin; Zawacka, Natalia Klaudia

    2014-01-01

    lifetime in flexible large area roll-coated bulk heterojunction solar cells. The two polymer series have different side chains on the BDT unit, namely 2-hexyldecyloxy (BDTHDO) (P1-P3) or 2-hexyldecylthiophene (BDT THD) (P4-P6). The photochemical stability clearly shows that the stability enhances along...... with the number of fluorine atoms incorporated on the polymer backbone. Fabrication of the polymer solar cells based on the materials was carried out in ambient atmosphere on a roll coating/printing machine employing flexible and indium-tin-oxide-free plastic substrates. Solar cells based on the P4-P6 series...... showed the best performance, reaching efficiencies up to 3.8% for an active area of 1 cm2, due to an enhanced current compared to P1-P3. Lifetime measurements, carried out according to international summit on OPV stability (ISOS), of encapsulated devices reveals an initial fast decay for P1-P6...

  19. Facile synthesis of Ni(OH)2/graphene/bacterial cellulose paper for large areal mass, mechanically tough and flexible supercapacitor electrodes

    Science.gov (United States)

    Ma, Lina; Liu, Rong; Liu, Li; Wang, Fang; Niu, Haijun; Huang, Yudong

    2016-12-01

    A general approach toward flexible supercapacitor electrode based on metal hydroxide is developed, which offers ultrahigh areal capacitance without compromising their gravimetric capacitance and mechanical properties. As a prototype, bendable freestanding film is fabricated by coating graphene (RGO)-wrapped flowery Ni(OH)2 on bacterial cellulose (BC) with a rational combination of hydrothermal method and filtration technology. This as-assembled hierarchically structured flexible electrode is characterized by remarkable areal capacitance of 10.44 F cm-2 (877.1 F g-1) at a large mass loading of 11.9 mg cm-2, excellent cycling stability with 93.6% capacitance retention after 15,000 cycles, high flexibility including bending to arbitrary angles (even 180°) and prominent tensile strength (48.8 MPa at wet state). Furthermore, it is hoped that the typical method can be applied for realizing other metal oxide/hydroxide flexible electrodes. The simple, high scalable, low-cost, and general strategy could open up new opportunities for flexible energy storage devices.

  20. Carbon acquisition by Cyanobacteria: Mechanisms, Comparative Genomics and Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Aaron; Hagemann, Martin; Bauwe, Hermann; Kahlon, Shira; Ogawa, Teruo

    2008-01-01

    In this chapter we mainly focus on the mechanisms of inorganic carbon uptake, photorespiration, and the regulation between the metabolic fluxes involved in photoautotrophic, photomixotrophic and heterotrophic growth. We identify the genes involved, their regulation and phylogeny. Living in an environment where the CO₂ concentration is considerably lower than required to saturate their carboxylating enzyme, ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), cyanobacteria acquired the CO₂ concentrating mechanism (CCM) that enables them to accumulate CO₂ at the carboxylation site. All the cyanobacteria examined to date are able to fix CO₂ into carbohydrates. However, in addition to variance in the range of physical growth conditions, cyanobacteria also vary substantially in their ability to consume organic carbon from their surroundings. Many strains are obligate photoautotrophs where the sole carbon source is CO₂, while others are able to perform photomixotrophic or even heterotrophic growth using a wide variety of organic substances (c.f. Rippka et al., 1979; Stal and Moezelaar, 1997b). Cyanobacteria constitute a unique case where the anabolic and catabolic carbohydrate metabolisms function in the same cellular compartment. In addition, the photosynthetic and respiratory electron transport pathways share components in the thylakoid membranes. Despite its importance to our understanding of cyanobacterial metabolism, little is known about the mechanisms involved in the shifts between photoautotrophic, heterotrophic and photomixotrophic modes of growth, and their regulation; between the different pathways of carbohydrate breakdown- glycolysis, fermentation, the oxidative pentose phosphate, the Krebs cycle and the photorespiratory pathways. In this chapter we shall briefly focus on recent advances in our understanding of the CCM and carbon metabolism in cyanobacteria.

  1. Carbon Acquisition by Cyanobacteria: Mechanisms, Comparative Genomics, and Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Aaron; Hagemann, Martin; Bauwe, Hermann; Kahlon, Shira; Ogawa, Teruo

    2008-01-01

    In this chapter we mainly focus on the mechanisms of inorganic carbon uptake, photorespiration, and the regulation between the metabolic fluxes involved in photoautotrophic, photomixotrophic and heterotrophic growth. We identify the genes involved, their regulation and phylogeny. Living in an environment where the CO₂ concentration is considerably lower than required to saturate their carboxylating enzyme, ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), cyanobacteria acquired the CO₂ concentrating mechanism (CCM) that enables them to accumulate CO₂ at the carboxylation site. All the cyanobacteria examined to date are able to fix CO₂ into carbohydrates. However, in addition to variance in the range of physical growth conditions, cyanobacteria also vary substantially in their ability to consume organic carbon from their surroundings. Many strains are obligate photoautotrophs where the sole carbon source is CO₂, while others are able to perform photomixotrophic or even heterotrophic growth using a wide variety of organic substances (c.f. Rippka et al., 1979; Stal and Moezelaar, 1997b). Cyanobacteria constitute a unique case where the anabolic and catabolic carbohydrate metabolisms function in the same cellular compartment. In addition, the photosynthetic and respiratory electron transport pathways share components in the thylakoid membranes. Despite its importance to our understanding of cyanobacterial metabolism, little is known about the mechanisms involved in the shifts between photoautotrophic, heterotrophic and photomixotrophic modes of growth, and their regulation; between the different pathways of carbohydrate breakdown- glycolysis, fermentation, the oxidative pentose phosphate, the Krebs cycle and the photorespiratory pathways. In this chapter we shall briefly focus on recent advances in our understanding of the CCM and carbon metabolism in cyanobacteria.

  2. Vocal mechanisms in birds and bats: a comparative view

    Directory of Open Access Journals (Sweden)

    Suthers Roderick A.

    2004-01-01

    Full Text Available Vocal signals play a very important role in the life of both birds and echolocating bats, but these two unrelated groups of flying vertebrates have very different vocal systems. They nevertheless must solve many of the same problems in producing sound. This brief review examines avian and microchiropteran motor mechanisms for: 1 coordinating the timing of phonation with the vocal motor pattern that controls its acoustic properties, and 2 achieving respiratory strategies that provide adequate ventilation for pulmonary gas exchange, while also facilitating longer duration songs or trains of sonar pulses.

  3. Flexible supercapacitors

    Institute of Scientific and Technical Information of China (English)

    Shan Shi; Chengjun Xu; Cheng Yang; Jia Li; Hongda Du; Baohua Li; Feiyu Kang

    2013-01-01

    Flexible supercapacitors show a great potential for applications in wearable,miniaturized,portable,largescale transparent and flexible consumer electronics due to their significant,inherent advantages,such as being flexible,lightweight,low cost and environmentally friendly in comparison with the current energy storage devices.In this report,recent progress on flexible supercapacitors,flexible electrodes and electrolytes is reviewed.In addition,the future challenges and opportunities are discussed.

  4. Sortase activity is controlled by a flexible lid in the pilus biogenesis mechanism of gram-positive pathogens.

    Science.gov (United States)

    Manzano, Clothilde; Izoré, Thierry; Job, Viviana; Di Guilmi, Anne Marie; Dessen, Andréa

    2009-11-10

    Pili are surface-linked virulence factors that play key roles in infection establishment in a variety of pathogenic species. In Gram-positive pathogens, pilus formation requires the action of sortases, dedicated transpeptidases that covalently associate pilus building blocks. In Streptococcus pneumoniae, a major human pathogen, all genes required for pilus formation are harbored in a single pathogenicity islet which encodes three structural proteins (RrgA, RrgB, RrgC) and three sortases (SrtC-1, SrtC-2, SrtC-3). RrgB forms the backbone of the streptococcal pilus, to which minor pilins RrgA and RrgC are covalently associated. SrtC-1 is the main sortase involved in polymerization of the RrgB fiber and displays a lid which encapsulates the active site, a feature present in all pilus-related sortases. In this work, we show that catalysis by SrtC-1 proceeds through a catalytic triad constituted of His, Arg, and Cys and that lid instability affects protein fold and catalysis. In addition, we show by thermal shift analysis that lid flexibility can be stabilized by the addition of substrate-like peptides, a feature shared by other periplasmic transpeptidases. We also report the characterization of a trapped acyl-enzyme intermediate formed between SrtC-1 and RrgB. The presence of lid-encapsulated sortases in the pilus biogenesis systems in many Gram-positive pathogens points to a common mechanism of substrate recognition and catalysis that should be taken into consideration in the development of sortase inhibitors.

  5. Comparing potential copper chelation mechanisms in Parkinson's disease protein

    Science.gov (United States)

    Rose, Frisco; Hodak, Miroslav; Bernholc, Jerry

    2011-03-01

    We have implemented the nudged elastic band (NEB) as a guided dynamics framework for our real-space multigrid method of DFT-based quantum simulations. This highly parallel approach resolves a minimum energy pathway (MEP) on the energy hypersurface by relaxing intermediates in a chain-of-states. As an initial application we present an investigation of chelating agents acting on copper ion bound to α -synuclein, whose misfolding is implicated in Parkinson's disease (PD). Copper ions are known to act as highly effective misfolding agents in a-synuclein and are thus an important target in understanding PD. Furthermore, chelation therapy has shown promise in the treatment of Alzheimer's and other neuro-degenerative diseases with similar metal-correlated pathologies. At present, our candidate chelating agents include nicotine, curcumin and clioquinol. We examine their MEP activation barriers in the context of a PD onset mechanism to assess the viability of various chelators for PD remediation.

  6. Comparative Study on New AQM Mechanisms for Congestion Control

    Directory of Open Access Journals (Sweden)

    Ramakrishna B B

    2013-09-01

    Full Text Available As usage of network goes increasing day by day, managing network traffic becomes a very difficult task. It is important to avoid high packet loss rates in the Internet. Congestion is the one of the major issue in the present networks. Congestion Control is one of the solutions adopted to solve the congestion issue and to control it. Numbers of queue management algorithms are proposed for congestion control and to reduce high packet loss rates. Active Queue Management (AQM is one such mechanism which provides better control over congestion. In this paper a study is made on recent load based AQM techniques that are proposed and its merits and shortfall is presented.

  7. Energy implications of mechanical and mechanical-biological treatment compared to direct waste-to-energy.

    Science.gov (United States)

    Cimpan, Ciprian; Wenzel, Henrik

    2013-07-01

    Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical-biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJprimary/100 MJinput waste, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3-9.5%, 1-18% and 1-8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat recovery, the biodrying MBS-based system achieved the highest savings, on the condition of SRF co-combustion. As a sensitivity scenario, alternative utilisation of SRF in cement kilns was modelled. It supported similar or higher net savings for all pre-treatment systems compared to mass combustion WtE, except when WtE CHP was possible in the first two background energy scenarios. Recovery of plastics for recycling before energy recovery increased net energy savings in most scenario variations, over those of full

  8. Comparative reproduction mechanisms of three species of Ocimum L. (Lamiaceae

    Directory of Open Access Journals (Sweden)

    Matthew Oziegbe

    2016-03-01

    Full Text Available Ocimum species have a combination of reproductive system which varies with the locality and cultivar. We have studied here the reproductive mechanisms of five variants of three Ocimum species in Nigeria, namely: Ocimum canum Sims., O. basilicum L., and O. americanum L. Flowers from each variant were subjected to open and bagged pollination treatments of hand self-pollination, spontaneous self-pollination and emasculation. All open treatments of the five Ocimum variants produced more fruit and seed than the corresponding bagged treatments. The two O. canum variants and O. basilicum ‘b1’ produced high fruit and seed set in the open and bagged treatments of spontaneous self-pollination. Ocimum basilicum ‘b2’ and O. americanum produced higher fruit and seed set in the self-pollination open treatment but significantly lower fruit and seed set in the bagged treatment. Fewer fruit and seeds were produced in the emasculated open treatments but none in the emasculated bagged treatments of the five Ocimum variants. The floral foragers comprising of bees, wasps and butterflies visited the Ocimum species to collect pollen or nectar in the open treatments. The two O. canum variants and O. basilicum ‘b1’ variant reproduced mainly through autogamy but O. basilicum ‘b2’ and O. americanum showed mixed reproduction of autogamy and outcrosssing. Insect visitation to the flowers enhanced pollination resulting in higher fruit and seed set in all the Ocimum species studied.

  9. A comparative study on poly(xylitol sebacate) and poly(glycerol sebacate): mechanical properties, biodegradation and cytocompatibility.

    Science.gov (United States)

    Li, Yuan; Huang, Wenchao; Cook, Wayne D; Chen, Qizhi

    2013-06-01

    In order to develop degradable elastomers with a satisfactory combination of flexibility and enzyme-mediated degradation rate, the mechanical properties, enzymatic degradation kinetics and biocompatibility of poly(xylitol sebcate) (PXS) has been systematically investigated in comparison with poly(glycerol sebacate) (PGS). Under the same level of crosslinked density, the PXS elastomer networks have approximately twice the stretchability (elongation at break) of their PGS counterparts. This observation is attributable to the relatively longer and more orientable xylitol monomers, compared with glycerol molecules. Although xylitol monomers have two more hydroxyl groups, we, surprisingly, found that the hydrophilic side chains did not accelerate the water attack on the ester bonds of the PXS network, compared with their PGS counterpart. This observation was attributed to a steric hindrance effect, i.e. the large-sized hydroxyl groups can shield ester bonds from the attack of water molecules. In conclusion, the use of polyols of more than three -OH groups is an effective approach enhancing flexibility, whilst maintaining the degradation rate of polyester elastomers. Further development could be seen in the copolymerization of PPS with appropriate thermoplastic polyesters, such as poly(lactic acid) and polyhydroxyalkanoate.

  10. A combined stretching-tilting mechanism produces negative, zero and positive linear thermal expansion in a semi-flexible Cd(II)-MOF.

    Science.gov (United States)

    Lama, Prem; Das, Raj Kumar; Smith, Vincent J; Barbour, Leonard J

    2014-06-21

    A novel semi-flexible Cd(II)-MOF has been synthesized and characterized by variable temperature powder and single-crystal X-ray diffraction. The material displays an unusual combination of thermal expansion (TE) i.e. negative, zero and positive, which is an extremely rare finding, especially for metal-organic frameworks as a result of a combined stretching-tilting mechanism.

  11. Design and simulation of three rigid-one flexible forming hole mechanism of film mulch and punch planter%覆膜穴播机三刚一柔成穴机构的设计及仿真

    Institute of Scientific and Technical Information of China (English)

    刘小龙; 石林榕; 孙伟; 赵武云; 张瑞; 李亚丽; 赵志伟; 吴建民

    2015-01-01

    针对我国覆膜玉米穴播机采用的平行四杆成穴机构作业时垂直入土扰动大、撕膜严重的问题,设计了三刚一柔成穴机构,主要将平行四杆机构从动杆换装为弹簧阻尼杆。基于 Adams 建立三刚一柔成穴机构和平行四杆机构仿真模型,并在相同条件下进行仿真,结果表明:三刚一柔成穴机构的成穴杆在 x 轴水平方向较平行四杆机构位移变化较小且平滑,在 y 轴垂直方向趋势一致;三刚一柔成穴机构的成穴杆对前后土型均有扰动,但扰动力均较小,而平行四杆机构只对前边的土壤有扰动,但扰动力是三刚一柔机构的9.4倍。因此,所设计的三刚一柔成穴机构较平行四杆机构对土壤扰动小,有利于种子发芽,成穴杆不受力时又可恢复至垂直入土的状态,对地膜破坏较小。%Pointed at the problem of large disturbance and seriously tearing film when corn film mulch and punch planter perpendicularly inserted the soil by parallel four-bar mechanism in our country,designed out the three rigid-one flexible forming hole mechanism,the parallel four-bar mechanism was replaced by the spring damping pole.Based on the Adams,established the simulation models as three rigid-one flexible mechanism and parallel four-bar mechanism,and which was simulated at the same conditions.The results showed that:The forming hole pole of the three rigid-one flexible mechanism was less change of displacement and smooth in the level direction in x axis than the parallel four-bar mecha-nism,while in y axis,the vertical direction trend was basically consistent.The pole of the three rigid-one flexible form-ing hole mechanism had slight disturbance to the front and back soil model,but the parallel four-bar mechanism only dis-turbed to the front soil,the disturbing force was 9.4 times higher than the three rigid-one flexible mechanism.Therefore, the design of three rigid-one flexible mechanism had less

  12. THE EXPERIMENTAL SETUP FOR RESEARCH OF THE INFLUENCE OF MECHANICAL VIBRATIONS ON THE OUTPUT PARAMETERS OF ELECTRONIC SYSTEMS BASED ON FLEXIBLE MODULES

    Directory of Open Access Journals (Sweden)

    S. P. Novoselov

    2015-01-01

    Full Text Available Periodic vibration in the form of distorted sine wave or other complex shapes are most common in the real moving objects, where the device can be exploited on the basis of flexible modules. This kind of exposure directly affects the reliability of the construction in general. The objective of the work was the creation of an experimental device for the study of mechanical vibrations and the dependencies of their impact on the operated device.Research of mechanical vibrations and the dependencies of their influence on the device will allow finding solutions to the problems of reliability of radio electronic devices. It developed an experimental device and automatic adaptive system for control own resonant frequency of the flexible module. As a result of the experiments has been identified according to mechanical influences on the output parameters of the devices. This will take into account and to apply this experience in the design and manufacture of devices with the use of flexible printed circuit boards. 

  13. Strategic flexibility

    OpenAIRE

    Kim, KiHyung

    2014-01-01

    A flexible system is defined as one that can change the entity's stance, capability or status reacting to a change of the entity's environment. Flexibility has gathered the attention of academic researchers and industry practitioners as an efficient approach to cope with today's volatile environment. As the environments become more unpredictable and volatile, it is imperative for a flexible system to respond quickly to a change in its circumstance. How much flexibility is embedded into the sy...

  14. Flexible Ablators

    Science.gov (United States)

    Stackpoole, Margaret M. (Inventor); Ghandehari, Ehson M. (Inventor); Thornton, Jeremy J. (Inventor); Covington, Melmoth Alan (Inventor)

    2017-01-01

    A low-density article comprising a flexible substrate and a pyrolizable material impregnated therein, methods of preparing, and devices using the article are disclosed. The pyrolizable material pyrolizes above 350 C and does not flow at temperatures below the pyrolysis temperature. The low-density article remains flexible after impregnation and continues to remain flexible when the pyrolizable material is fully pyrolized.

  15. Flexible Software for Flexible Scheduling

    Science.gov (United States)

    Economou, Frossie; Jenness, Tim; Tilanus, Remo P. J.; Hirst, Paul; Adamson, Andy J.; Rippa, Mathew; Delorey, Kynan K.; Isaak, Kate G.

    The JAC Observation Management Project (OMP) provides software for the James Clerk Maxwell (JCMT) and the United Kingdom Infrared (UKIRT) telescopes that manages the life-cycle of flexibly scheduled observations. Its aim is to increase observatory efficiency under flexible (queue) scheduled observing, without depriving the principal investigator (PI) of the flexibility associated with classical scheduling.

  16. Reversibly Bistable Flexible Electronics

    KAUST Repository

    Alfaraj, Nasir

    2015-05-01

    Introducing the notion of transformational silicon electronics has paved the way for integrating various applications with silicon-based, modern, high-performance electronic circuits that are mechanically flexible and optically semitransparent. While maintaining large-scale production and prototyping rapidity, this flexible and translucent scheme demonstrates the potential to transform conventionally stiff electronic devices into thin and foldable ones without compromising long-term performance and reliability. In this work, we report on the fabrication and characterization of reversibly bistable flexible electronic switches that utilize flexible n-channel metal-oxide-semiconductor field-effect transistors. The transistors are fabricated initially on rigid (100) silicon substrates before they are peeled off. They can be used to control flexible batches of light-emitting diodes, demonstrating both the relative ease of scaling at minimum cost and maximum reliability and the feasibility of integration. The peeled-off silicon fabric is about 25 µm thick. The fabricated devices are transferred to a reversibly bistable flexible platform through which, for example, a flexible smartphone can be wrapped around a user’s wrist and can also be set back to its original mechanical position. Buckling and cyclic bending of such host platforms brings a completely new dimension to the development of flexible electronics, especially rollable displays.

  17. Comparing sound radiation from a loudspeaker with that from a flexible spherical cap on a rigid sphere

    NARCIS (Netherlands)

    Aarts, R.M.; Janssen, A.J.E.M.

    2011-01-01

    It has been suggested by Morse and Ingard that the sound radiation of a loudspeaker in a box is comparable to that of a spherical cap ona rigid sphere. This has been established recently by the present authors, who developed a computation scheme for the forward and inverse calculation of the pressur

  18. A flexible loop as a functional element in the catalytic mechanism of nucleoside hydrolase from Trypanosoma vivax.

    Science.gov (United States)

    Vandemeulebroucke, An; De Vos, Stefan; Van Holsbeke, Els; Steyaert, Jan; Versées, Wim

    2008-08-08

    The nucleoside hydrolase of Trypanosoma vivax hydrolyzes the N-glycosidic bond of purine nucleosides. Structural and kinetic studies on this enzyme have suggested a catalytic role for a flexible loop in the vicinity of the active sites. Here we present the analysis of the role of this flexible loop via the combination of a proline scan of the loop, loop deletion mutagenesis, steady state and pre-steady state analysis, and x-ray crystallography. Our analysis reveals that this loop has an important role in leaving group activation and product release. The catalytic role involves the entire loop and could only be perturbed by deletion of the entire loop and not by single site mutagenesis. We present evidence that the loop closes over the active site during catalysis, thereby ordering a water channel that is involved in leaving group activation. Once chemistry has taken place, the loop dynamics determine the rate of product release.

  19. Mathematical Description of a Flexible Connection of Links and its Applications in Modeling the Joints of Spatial Linkage Mechanisms

    OpenAIRE

    Urbaś,Andrzej

    2016-01-01

    Abstract The general mathematical model of a flexible connection of links by means of spring-damping elements is presented in the paper. The formalism of homogeneous transformation matrices is used to derive formulas for the energy of spring deformation and the Rayleigh dissipation function of the spring-damping elements. The formulas have convenient forms to connect them to Lagrange equations of the second order. The replacement models of the spherical and revolute joint are presented as a p...

  20. Flexible intramedullary nails with traction versus plaster cast for treating femoral shaft fractures in children: comparative retrospective study.

    Science.gov (United States)

    Nascimento, Fabiano Prata do; Santili, Cláudio; Akkari, Miguel; Waisberg, Gilberto; Braga, Susana dos Reis; Fucs, Patrícia Maria Moraes de Barros

    2013-01-01

    CONTEXT AND OBJECTIVE Femoral fractures are common in children between 2 and 12 years of age, and 75% of the lesions affect the femoral shaft. Traction followed by a plaster cast is universally accepted as conservative treatment. However, in some situations, a surgical approach is recommended. The objective here was to compare treatments for femoral shaft fractures using intramedullary nails (titanium elastic nails, TEN) versus traction and plaster casts in children. The hypothesis was that TEN might provide better treatment, with good clinical results in comparison with plaster casts. DESIGN AND SETTING This retrospective comparative study was conducted in a public university hospital. METHODS Sixty children with femoral fractures were evaluated; 30 of them underwent surgical treatment with TEN and 30 were treated conservatively using plaster casts. The patients' ages ranged from 5 to 13 years (mean of 9 years). RESULTS The mean duration of hospitalization was nine days for the surgical group and 20 days for the conservative group. The incidence of overgrowth in the patients treated with TEN was 60.0% and, for those treated conservatively, 13.3%. Partial weight-bearing was allowed after 3.5 weeks in the surgical group and after 9.6 weeks in the conservative group. New hospitalization was required for 90.0% in the surgical group and 16.7% in the conservative group. Patients treated with plaster casts presented higher incidence of complications, such as loss of reduction. CONCLUSIONS The surgical method presented better results for children.

  1. Flexible ferroelectric organic crystals

    Science.gov (United States)

    Owczarek, Magdalena; Hujsak, Karl A.; Ferris, Daniel P.; Prokofjevs, Aleksandrs; Majerz, Irena; Szklarz, Przemysław; Zhang, Huacheng; Sarjeant, Amy A.; Stern, Charlotte L.; Jakubas, Ryszard; Hong, Seungbum; Dravid, Vinayak P.; Stoddart, J. Fraser

    2016-10-01

    Flexible organic materials possessing useful electrical properties, such as ferroelectricity, are of crucial importance in the engineering of electronic devices. Up until now, however, only ferroelectric polymers have intrinsically met this flexibility requirement, leaving small-molecule organic ferroelectrics with room for improvement. Since both flexibility and ferroelectricity are rare properties on their own, combining them in one crystalline organic material is challenging. Herein, we report that trisubstituted haloimidazoles not only display ferroelectricity and piezoelectricity--the properties that originate from their non-centrosymmetric crystal lattice--but also lend their crystalline mechanical properties to fine-tuning in a controllable manner by disrupting the weak halogen bonds between the molecules. This element of control makes it possible to deliver another unique and highly desirable property, namely crystal flexibility. Moreover, the electrical properties are maintained in the flexible crystals.

  2. Flexible ferroelectric organic crystals

    Science.gov (United States)

    Owczarek, Magdalena; Hujsak, Karl A.; Ferris, Daniel P.; Prokofjevs, Aleksandrs; Majerz, Irena; Szklarz, Przemysław; Zhang, Huacheng; Sarjeant, Amy A.; Stern, Charlotte L.; Jakubas, Ryszard; Hong, Seungbum; Dravid, Vinayak P.; Stoddart, J. Fraser

    2016-01-01

    Flexible organic materials possessing useful electrical properties, such as ferroelectricity, are of crucial importance in the engineering of electronic devices. Up until now, however, only ferroelectric polymers have intrinsically met this flexibility requirement, leaving small-molecule organic ferroelectrics with room for improvement. Since both flexibility and ferroelectricity are rare properties on their own, combining them in one crystalline organic material is challenging. Herein, we report that trisubstituted haloimidazoles not only display ferroelectricity and piezoelectricity—the properties that originate from their non-centrosymmetric crystal lattice—but also lend their crystalline mechanical properties to fine-tuning in a controllable manner by disrupting the weak halogen bonds between the molecules. This element of control makes it possible to deliver another unique and highly desirable property, namely crystal flexibility. Moreover, the electrical properties are maintained in the flexible crystals. PMID:27734829

  3. Comparative Auditory Mechanics: From Species to Species and From Base to Apex—A Moderated Discussion

    Science.gov (United States)

    Cooper, Nigel P.; Manley, Geoffrey A.

    2011-11-01

    A discussion moderated by the authors on the topics "Comparative Auditory Mechanics" and "Mechanics in the Apex of the Cochlea" was held on 20 July 2011 at the 11th International Mechanics of Hearing Workshop in Williamstown, Massachusetts. The paper provides an edited transcript of the session.

  4. Comparative Molecular Mechanics and Quantum Mechanics Study of Microhydration of Nucleic Acid Bases

    CERN Document Server

    Lino, J; Deriabina, A; Velasco, M; Poltev, V

    2013-01-01

    DNA is the most important biological molecule, and its hydration contributes essentially to the structure and functions of the double helix. We analyze the microhydration of the individual bases of nucleic acids and their methyl derivatives using methods of molecular mechanics (MM) with the Poltev-Malenkov (PM), AMBER and OPLS force fields, as well as ab initio Quantum Mechanics (QM) calculations at MP2/6-31G(d,p) level of theory. A comparison is made between the calculated interaction energies and the experimental enthalpies of microhydration of bases, obtained from mass spectrometry at low temperatures. Each local water-base interaction energy minimum obtained with MM corresponds to the minimum obtained with QM. General qualitative agreement was observed in the geometrical characteristics of the local minima obtained via the two groups of methods. MM minima correspond to slightly more coplanar structures than those obtained via QM methods, and the absolute MM energy values overestimate corresponding values ...

  5. Design and Analysis of Flexible Connecting Mechanism for Large-Scale Wind Turbine with Coning Rotor%大型风力机伞形风轮柔性连接机构设计与分析

    Institute of Scientific and Technical Information of China (English)

    刘旺玉; 罗远强

    2013-01-01

    By comparing the structural characteristics of two traditional flexible hinges,a flexible mechanism con-necting the blades with the hub of the wind turbine is designed based on straight-beam flexible hinges.Then,a 3D model of the whole wind turbine is established with SolidWorks,and a structural static analysis as well as a modal analysis is performed with the finite element software ANSYS Workbench 14.0.The results indicate that the designed flexible wind turbine is more flexible than the conventional rigid one,and that the flexible connection between the blades and the hub remarkably reduces the natural frequency of the whole wind turbine,so that it helps to avoid the sympathetic vibration between the whole turbine and the blades,the tower or the wind rotor,protect the parts,and improve the operation stability and life of the wind turbine.%通过对比两种传统柔性铰链的结构特点,基于直梁型柔性铰链设计了一种可用于风力机叶片与轮毂之间的柔性连接机构,并用SolidWorks进行整机的三维建模,然后导入通用有限元分析软件ANSYS Workbench 14.0中进行结构静力分析和模态分析.分析结果表明,所设计的柔性风力机比传统刚性风力机具有更好的柔性,在叶片与轮毂之间采用柔性连接,大大降低了风力机整机的固有频率,避免与叶片、塔架和风轮等部件发生共振,保护了各个部件,增强了风力机运行的稳定性,大大提高了其工作寿命.

  6. Forgiveness Flexibility

    Directory of Open Access Journals (Sweden)

    Tuğba Seda Çolak

    2016-01-01

    Full Text Available Forgiveness flexibility is the skill to minimize the negative effect of an event by using cognitive, affective and behavioral skills while taking a stand at the end of an injurious process. A number of studies were conducted to test the flexibility of the structure of forgiveness. The theoretical structure, structural validity and the confirmatory factor analysis supported the theoretical structure of forgiveness flexibility. The criterion validity evaluated in similar manners was found high. Forgiveness flexibility designed as a three dimensional structure and its sub-dimensions was confirmed theoretically as the recognition of forgivenessand the internalization of forgiveness through insight and its practice.

  7. The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: how an "inhibitor of an inhibitor" enables flexible response to fluctuating environments.

    Science.gov (United States)

    Harberd, Nicholas P; Belfield, Eric; Yasumura, Yuki

    2009-05-01

    The phytohormone gibberellin (GA) has long been known to regulate the growth, development, and life cycle progression of flowering plants. However, the molecular GA-GID1-DELLA mechanism that enables plants to respond to GA has only recently been discovered. In addition, studies published in the last few years have highlighted previously unsuspected roles for the GA-GID1-DELLA mechanism in regulating growth response to environmental variables. Here, we review these advances within a general plant biology context and speculate on the answers to some remaining questions. We also discuss the hypothesis that the GA-GID1-DELLA mechanism enables flowering plants to maintain transient growth arrest, giving them the flexibility to survive periods of adversity.

  8. Adding flexibility to physician training.

    Science.gov (United States)

    Mahady, Suzanne E

    2011-05-02

    Demographic changes among junior doctors are driving demand for increased flexibility in advanced physician training, but flexible training posts are lacking. Suitable flexible training models include flexible full-time, job-share and part-time positions. Major barriers to establishing flexible training positions include difficulty in finding job-share partners, lack of funding for creating supernumerary positions, and concern over equivalence of educational quality compared with full-time training. Pilot flexible training positions should be introduced across the medical specialties and educational outcomes examined prospectively.

  9. Area-Selective Lift-Off Mechanism Based on Dual-Triggered Interfacial Adhesion Switching: Highly Facile Fabrication of Flexible Nano-Mesh Electrode.

    Science.gov (United States)

    Yu, Seunghee; Han, Hyeuk Jin; Kim, Jong Min; Yim, Soonmin; Sim, Dong Min; Lim, Hunhee; Lee, Jung Hye; Park, Woon Ik; Park, Jae Hong; Kim, Kwang Ho; Jung, Yeon Sik

    2017-02-28

    With the recent emergence of flexible and wearable optoelectronic devices, the achievement of sufficient bendability and stretchability of transparent and conducting electrodes (TCEs) has become an important requirement. Although metal-mesh-based structures have been investigated for TCEs because of their excellent performances, the fabrication of mesh or grid structures with a sub-micron line width is still complex due to the requirements of laborious lithography and pattern transfer steps. Here, we introduce an extremely facile fabrication technique for metal patterns embedded in a flexible substrate based on sub-micron replication and an area-selective delamination (ASD) patterning. The high-yield, area-specific lift-off process is based on the principle of solvent-assisted delamination of deposited metal thin films and a mechanical triggering effect by soft wiping or ultrasonication. Our fabrication process is highly simple, convenient, and cost-effective in that it does not require any lithography/etching steps or sophisticated facilities. Moreover, their outstanding optical and electrical properties (e.g. sheet resistances of 0.43 Ω sq(-1) at 94% transmittance), which are markedly superior to those of other flexible TCEs, are demonstrated. Furthermore, there is no significant change of resistance during over 1,000 repeated bending cycles with a bending radius of 5 mm and for immersing in various solvents such as salt water and organic solvents. Finally, we demonstrate high-performance transparent heaters and flexible touch panels using the fabricated nanomesh electrode, confirming the long-range electrical conduction and reliability of the electrode.

  10. Experimental study of PDMS mechanical properties for the optimization of polymer based flexible pressure micro-sensors

    Science.gov (United States)

    Dinh, T. H. N.; Martincic, E.; Dufour-Gergam, E.; Joubert, P.-Y.

    2016-10-01

    This paper reports on the optimization of flexible PDMS-based normal pressure capacitive micro-sensors dedicated to wearable applications. The deformation under a normal force of PDMS thin films of thicknesses ranging from 40 μm to 10 mm is firstly experimentally studied. This study points out that for capacitive micro-sensors using bulky PDMS thin films as deformable dielectric material, the sensitivity to an applied normal load can be optimized thanks to an adequate choice of the so-called form ratio of the involved PDMS thin film. Indeed, for capacitive micro-sensors exhibiting 9 mm2 electrodes, the capacitance change under a 6 N load can be adjusted from a few percent up to over 35% according to the choice of the load-free thickness of the used PDMS film. These results have been validated thanks to electromechanical characterizations carried out on two flexible PDMS based capacitive normal pressure micro-sensor samples fabricated with two different thicknesses. The obtained results open the way to the enhanced design of PDMS based pressure sensors dedicated to wearable and medical applications. Further works will extend this study to a wider range of sensor dimensions, and using numerical modelling.

  11. Conflicting flexibility

    NARCIS (Netherlands)

    De Jong, P.; Schaap, A.

    2011-01-01

    New buildings are designed for first users. For a sustainable approach there are many advantages in designing in flexibility and adjustability in order to enable and facilitate the other sequential users. For the first investor this flexibility is translated into improved exit values due to

  12. Effect of mechanical loads on stability of nanodomains in ferroelectric ultrathin films: towards flexible erasing of the non-volatile memories.

    Science.gov (United States)

    Chen, W J; Zheng, Yue; Xiong, W M; Feng, Xue; Wang, Biao; Wang, Ying

    2014-06-18

    Intensive investigations have been drawn on nanoscale ferroelectrics for their prospective applications such as developing memory devices. In contrast with the commonly used electrical means to process (i.e., read, write or erase) the information carried by ferroelectric domains, at present, mechanisms of non-electrical processing ferroelectric domains are relatively lacking. Here we make a systematical investigation on the stability of 180° cylindrical domains in ferroelectric nanofilms subjected to macroscopic mechanical loads, and explore the possibility of mechanical erasing. Effects of domain size, film thickness, temperature and different mechanical loads, including uniform strain, cylindrical bending and wavy bending, have been revealed. It is found that the stability of a cylindrical domain depends on its radius, temperature and film thickness. More importantly, mechanical loads have great controllability on the stability of cylindrical domains, with the critical radius nonlinearly sensitive to both strain and strain gradient. This indicates that erasing cylindrical domain can be achieved by changing the strain state of nanofilm. Based on the calculated phase diagrams, we successfully simulate several mechanical erasing processes on 4 × 4 bits memory devices. Our study sheds light on prospective device applications of ferroelectrics involving mechanical loads, such as flexible memory devices and other micro-electromechanical systems.

  13. Peel-and-stick: mechanism study for efficient fabrication of flexible/transparent thin-film electronics.

    Science.gov (United States)

    Lee, Chi Hwan; Kim, Jae-Han; Zou, Chenyu; Cho, In Sun; Weisse, Jeffery M; Nemeth, William; Wang, Qi; van Duin, Adri C T; Kim, Taek-Soo; Zheng, Xiaolin

    2013-10-10

    Peel-and-stick process, or water-assisted transfer printing (WTP), represents an emerging process for transferring fully fabricated thin-film electronic devices with high yield and fidelity from a SiO2/Si wafer to various non-Si based substrates, including papers, plastics and polymers. This study illustrates that the fundamental working principle of the peel-and-stick process is based on the water-assisted subcritical debonding, for which water reduces the critical adhesion energy of metal-SiO2 interface by 70 ~ 80%, leading to clean and high quality transfer of thin-film electronic devices. Water-assisted subcritical debonding is applicable for a range of metal-SiO2 interfaces, enabling the peel-and-stick process as a general and tunable method for fabricating flexible/transparent thin-film electronic devices.

  14. Highly Flexible and Transparent Ag Nanowire Electrode Encapsulated with Ultra-Thin Al2O3: Thermal, Ambient, and Mechanical Stabilities

    Science.gov (United States)

    Hwang, Byungil; An, Youngseo; Lee, Hyangsook; Lee, Eunha; Becker, Stefan; Kim, Yong-Hoon; Kim, Hyoungsub

    2017-01-01

    There is an increasing demand in the flexible electronics industry for highly robust flexible/transparent conductors that can withstand high temperatures and corrosive environments. In this work, outstanding thermal and ambient stability is demonstrated for a highly transparent Ag nanowire electrode with a low electrical resistivity, by encapsulating it with an ultra-thin Al2O3 film (around 5.3 nm) via low-temperature (100 °C) atomic layer deposition. The Al2O3-encapsulated Ag nanowire (Al2O3/Ag) electrodes are stable even after annealing at 380 °C for 100 min and maintain their electrical and optical properties. The Al2O3 encapsulation layer also effectively blocks the permeation of H2O molecules and thereby enhances the ambient stability to greater than 1,080 h in an atmosphere with a relative humidity of 85% at 85 °C. Results from the cyclic bending test of up to 500,000 cycles (under an effective strain of 2.5%) confirm that the Al2O3/Ag nanowire electrode has a superior mechanical reliability to that of the conventional indium tin oxide film electrode. Moreover, the Al2O3 encapsulation significantly improves the mechanical durability of the Ag nanowire electrode, as confirmed by performing wiping tests using isopropyl alcohol. PMID:28128218

  15. Design, manufacture and evaluation of a new flexible constant velocity mechanism for transmission of power between parallel shafts

    Energy Technology Data Exchange (ETDEWEB)

    Yaghoubi, Majid [University of Tehran, Tehran (Iran, Islamic Republic of); Sanaeifar, Alireza [Shiraz University, Shiraz (Iran, Islamic Republic of)

    2015-08-15

    This paper presents a new mechanism (coupling) for power transmission between parallel shafts in more ranges. The mechanism consists of one drive shaft and one driven shaft, 3 S-shape transmitter links and 8 connecting links. The advantage of this mechanism is that the velocity ratio between input and output shafts remains constant at all movements, and its capacity to offset misalignments is greater than that of other couplings. This research also includes a kinematic analysis and simulations using Visual NASTRAN, Autodesk inventor dynamic and COSMOS motion to prove that the mechanism exhibits a constant velocity. Finally, the mechanism was fabricated and evaluated; results showed that the mechanism can practically transmit a constant velocity ratio.

  16. Pneumatic flexible shaft couplings

    Directory of Open Access Journals (Sweden)

    Jaroslav HOMIŠIN

    2007-01-01

    Full Text Available Main effort of every design engineer is reduction of torsional oscillation in any mechanical system. At present this problem can be solved by means of a suitable modification of dynamic properties of flexible shaft couplings according to dynamics in the given systems. But the dynamic properties of nowadays-applied flexible couplings arenot unchangeable because of aging and fatigue processes occurring in flexible coupling elements. Result of this fact causes detuning of mechanical system. Taking into consideration the above-mentioned situation, we suggest for mechanical systems application of a newly developed pneumatic couplings that have constant characteristicfeatures during the whole current operation and thus they have a positive influence on the system running.

  17. Flexible Sigmoidoscopy

    Science.gov (United States)

    ... Task Force (USPSTF). Most doctors recommend colonoscopy to screen for colon cancer because colonoscopy shows the entire colon and can remove colon polyps. However, preparing for and performing a flexible sigmoidoscopy may take less time and you may ...

  18. Electrical and mechanical stability of aluminum-doped ZnO films grown on flexible substrates by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Luka, G., E-mail: gluka@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, Warsaw (Poland); Witkowski, B.S.; Wachnicki, L.; Jakiela, R. [Institute of Physics, Polish Academy of Sciences, Warsaw (Poland); Virt, I.S. [University of Rzeszow, Rzeszow (Poland); Drohobych Ivan Franko State Pedagogical University, Drohobych (Ukraine); Andrzejczuk, M.; Lewandowska, M. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Godlewski, M. [Institute of Physics, Polish Academy of Sciences, Warsaw (Poland); Department of Mathematics and Natural Sciences, College of Science, Cardinal Stefan Wyszynski University, Warsaw (Poland)

    2014-08-01

    Highlights: • Transparent and conductive ZnO:Al films were grown by atomic layer deposition. • The films were grown on flexible substrates at low growth temperatures (110–140 °C). • So-obtained films have low resistivities, of the order of 10{sup −3} Ω cm. • Bending tests indicated a critical bending radius of ≈1.2 cm. • Possible sources of the film resistivity changes upon bending are proposed. - Abstract: Aluminum-doped zinc oxide (AZO) films were grown on polyethylene terephthalate (PET) substrates by atomic layer deposition (ALD) at low deposition temperatures (110–140 °C). The films have low resistivities, ∼10{sup −3} Ω cm, and high transparency (∼90%) in the visible range. Bending tests indicated a critical bending radius of ≈1.2 cm, below which the resistivity changes became irreversible. The films deposited on PET with additional buffer layer are more stable upon bending and temperature changes.

  19. Thermo-mechanical evolution of ternary Bi-Sn-In solder micropowders and nanoparticles reflowed on a flexible PET substrate

    Science.gov (United States)

    Kim, Sang Hoon; Yang, Dong-Yeol; Kim, Yong-Jin; Min, Taesik; Choi, Joonphil; Yun, Jaecheol; Nguyen, Van Luong; Kim, Ki Bong; Kim, Young Ja; Lee, Jun Hong; Kim, Yang Do; Yang, Sangsun

    2017-09-01

    Ternary Bi-Sn-In micropowders and nanoparticles were prepared as a composite solder material via a gas atomization process and a chemical reduction method, respectively. The nanoparticles, with a 71.1 °C melting temperature, entered among the intervals of the higher melting temperature (79.4 °C) micropowders, and then reflowed at 110 °C on a flexible polyethylene terephthalate (PET) substrate. This considerably increased the thermal diffusivity of the nanoparticles to refine the surface morphology of the solder bumps. Their adhesion strength also increased from an average shear force of 0.33-0.43 N by viscosity improvement, afforded to the reinforcement of 5.0 wt.% added nanoparticles. However, the adhesion strength (0.25 N average shear force) of the composite solder bumps deteriorated at 15.0 wt.% added nanoparticles and resulted in a high electrical resistivity (72.53 ± 8.54 μΩ cm) due to the formation of their surface-oxidized phases.

  20. Comparative randomised study of GlideScope® video laryngoscope versus flexible fibre-optic bronchoscope for awake nasal intubation of oropharyngeal cancer patients with anticipated difficult intubation

    Directory of Open Access Journals (Sweden)

    Essam Abd El-Halim Mahran

    2016-01-01

    Full Text Available Background and Aims: Awake flexible fibre-optic bronchoscope (FFS is the standard method of intubation in difficult airway in oral cancer patients. We decided to evaluate GlideScope® video laryngoscope (GL for intubation as compared to the standard FFS for nasal intubation in such patients. Methods: After the ethical committee approval, we included 54 oropharyngeal cancer patients divided randomly into two equal groups: Group G and Group F. After pre-medication and pre-oxygenation, awake nasal intubation was performed using GL in Group G and FFS in Group F. In both groups, we compared intubation time in seconds (mean ± standard deviation (primary outcome, success rate of the first intubation attempt, percentage of Cormack and Lehane glottic score and incidence of complications. We assumed that GL could be a suitable alternative for the standard FFS in nasal intubation of patients with oropharyngeal cancer. Success rate of the first attempt and Cormack and Lehane glottic score were compared using Chi-square test. Results: Intubation time in seconds was significantly shorter in Group G (70.85 ± 8.88 S than in Group F (90.26 ± 9.41 S with (P < 0.001. The success rate of the first attempt intubation was slightly higher in Group G (81.5% than Group F (78.8%. Cormack and Lehane glottic Score I and II showed insignificant difference between both Group G (92.6% and Group F (96.3%. We detected three cases of sore throat in each group. Conclusion: GlideScope® could be a suitable alternative to FFS in nasal intubation of oropharyngeal cancer patients.

  1. Comparative experiments of graphene covalently and physically binding CdSe quantum dots to enhance the electron transport in flexible photovoltaic devices.

    Science.gov (United States)

    Jung, Mi-Hee; Chu, Moo-Jung

    2014-08-07

    In this research, we prepared composite films via covalent coupling of CdSe quantum dots (QDs) to graphene through the direct binding of aryl radicals to the graphene surface. To compare the carrier transport with the CdSe aryl binding graphene film, we prepared CdSe pyridine capping graphene films through the pi-pi interactions of noncovalent bonds between the graphene and pyridine molecules. The photovoltaic devices were fabricated from the two hybrid films using the electrophoretic deposition method on flexible substrates. Even though the two hybrid films have the same amount of QDs and graphene, time-resolved fluorescence emission decay results show that the emission lifetime of the CdSe aryl group binding graphene film is significantly shorter than that of the pyridine capping CdSe-graphene. The quantum efficiency and photocurrent density of the device fabricated from CdSe aryl binding graphene were also higher than those of the device fabricated from pyridine capping CdSe-graphene. These results indicated that the carrier transport of the QD-graphene system is not related to the additive effect from the CdSe and graphene components but rather is a result of the unique interactions between the graphene and QDs. We could expect that these results can be useful in designing QD-graphene composite materials, which are applied in photovoltaic devices.

  2. [Comparative study of 2-piece colostomy systems (ConvaTec Combihesive Flexible, Coloplast 2002 and Hollister Guardian in the Czech Republic)].

    Science.gov (United States)

    Antos, F; Dvorák, J; Hoch, J; Pesková, M; Schmidt, D; Slauf, P; Vseticek, J; Wechsler, J

    1996-02-01

    In three surgical centres in the Czech Republik three modern two-piece colostomic systems where compared which are at present available in the Czech republik, incl. an attempt to assess how they influence the quality of life of the patients. The investigation comprised 117 patients mean age 59 years-93 after colostomy, 13 with ileostomy. The investigated systems were ConvaTec Combihesive Flexible, Coloplast 2002, Hollister Guardian two-piece ostomy systems with a closed sac and inner filter. The main investigated parameters were: tolerance of the products, preference expressed by the patient, the state of the skin beneath the plaster and the index of general health (GWBI). From the investigation ensued that in the Czech Republic the system ConvaTec Combihesive proved very useful and there probably will not be a demand for a change to another system offered by distinguished producers, as such a change would not entail any advantages. It was revealed that when the ConvaTec Combihesive system is used, the skin is maintained in a good condition which has a favourable impact on the feeling of wellbeing and improves the quality of life.

  3. A Flexible Domain-Domain Hinge Promotes an Induced-fit Dominant Mechanism for the Loading of Guide-DNA into Argonaute Protein in Thermus thermophilus

    KAUST Repository

    Zhu, Lizhe

    2016-02-24

    Argonaute proteins (Ago) are core components of the RNA Induced Silencing Complex (RISC) that load and utilize small guide nucleic acids to silence mRNAs or cleave foreign DNAs. Despite the essential role of Ago in gene regulation and defense against virus, the molecular mechanism of guide-strand loading into Ago remains unclear. We explore such a mechanism in the bacterium Thermus thermophilus Ago (TtAgo), via a computational approach combining molecular dynamics, bias-exchange metadynamics, and protein-DNA docking. We show that apo TtAgo adopts multiple closed states that are unable to accommodate guide-DNA. Conformations able to accommodate the guide are beyond the reach of thermal fluctuations from the closed states. These results suggest an induced-fit dominant mechanism for guide-strand loading in TtAgo, drastically different from the two-step mechanism for human Ago 2 (hAgo2) identified in our previous study. Such a difference between TtAgo and hAgo2 is found to mainly originate from the distinct rigidity of their L1-PAZ hinge. Further comparison among known Ago structures from various species indicates that the L1-PAZ hinge may be flexible in general for prokaryotic Agos but rigid for eukaryotic Agos. © 2016 American Chemical Society.

  4. A Flexible Domain-Domain Hinge Promotes an Induced-fit Dominant Mechanism for the Loading of Guide-DNA into Argonaute Protein in Thermus thermophilus.

    Science.gov (United States)

    Zhu, Lizhe; Jiang, Hanlun; Sheong, Fu Kit; Cui, Xuefeng; Gao, Xin; Wang, Yanli; Huang, Xuhui

    2016-03-17

    Argonaute proteins (Ago) are core components of the RNA Induced Silencing Complex (RISC) that load and utilize small guide nucleic acids to silence mRNAs or cleave foreign DNAs. Despite the essential role of Ago in gene regulation and defense against virus, the molecular mechanism of guide-strand loading into Ago remains unclear. We explore such a mechanism in the bacterium Thermus thermophilus Ago (TtAgo), via a computational approach combining molecular dynamics, bias-exchange metadynamics, and protein-DNA docking. We show that apo TtAgo adopts multiple closed states that are unable to accommodate guide-DNA. Conformations able to accommodate the guide are beyond the reach of thermal fluctuations from the closed states. These results suggest an induced-fit dominant mechanism for guide-strand loading in TtAgo, drastically different from the two-step mechanism for human Ago 2 (hAgo2) identified in our previous study. Such a difference between TtAgo and hAgo2 is found to mainly originate from the distinct rigidity of their L1-PAZ hinge. Further comparison among known Ago structures from various species indicates that the L1-PAZ hinge may be flexible in general for prokaryotic Ago's but rigid for eukaryotic Ago's.

  5. Endosymbiotic flexibility associates with environmental sensitivity in scleractinian corals.

    Science.gov (United States)

    Putnam, Hollie M; Stat, Michael; Pochon, Xavier; Gates, Ruth D

    2012-11-07

    Flexibility in biological systems is seen as an important driver of macro-ecosystem function and stability. Spatially constrained endosymbiotic settings, however, are less studied, although environmental thresholds of symbiotic corals are linked to the function of their endosymbiotic dinoflagellate communities. Symbiotic flexibility is a hypothesized mechanism that corals may exploit to adapt to climate change. This study explores the flexibility of the coral-Symbiodinium symbiosis through quantification of Symbiodinium ITS2 sequence assemblages in a range of coral species and genera. Sequence assemblages are expressed as an index of flexibility incorporating phylogenetic divergence and relative abundance of Symbiodinium sequences recovered from the host. This comparative analysis reveals profound differences in the flexibility of corals for Symbiodinium, thereby classifying corals as generalists or specifists. Generalists such as Acropora and Pocillopora exhibit high intra- and inter-species flexibility in their Symbiodinium assemblages and are some of the most environmentally sensitive corals. Conversely, specifists such as massive Porites colonies exhibit low flexibility, harbour taxonomically narrow Symbiodinium assemblages, and are environmentally resistant corals. Collectively, these findings challenge the paradigm that symbiotic flexibility enhances holobiont resilience. This underscores the need for a deeper examination of the extent and duration of the functional benefits associated with endosymbiotic diversity and flexibility under environmental stress.

  6. Introducing Viewpoints of Mechanics into Basic Growth Analysis-(XIII) : Comparing Growth Mechanics between Logistic Functions and Basic Growth Functions-

    OpenAIRE

    Shimojo, Masataka; Shao, Tao; Ishimatsu, Satoshi; Tanoue, Jun; Kakihara, Hidetoshi; Sata, Chiemi; Fukudome, Hayato; Ishiwaka, Reiko; Asano, Yoki; Nakano, Yutaka; Tobisa, Manabu; Masuda, Yasuhisa

    2009-01-01

    This study was conducted to compare growth mechanics between logistic functions and basic growth functions. The results obtained were as follows. Differential equation for basic growth function showed that the square of growth rate was described using the product of weight and growth acceleration. This form was similar to Newton's law of motion where differential of momentum is described using the product of mass of an object and acceleration. However, differential equation for logistic funct...

  7. Melt-compounded composites of ethylene vinyl acetate with magnesium sulfate as flexible EPR dosimeters: Mechanical properties, manufacturing process feasibility and dosimetric characteristics.

    Science.gov (United States)

    Suman, S K; Kadam, R M; Mondal, R K; Murali, S; Dubey, K A; Bhardwaj, Y K; Natarajan, V

    2017-03-01

    Novel polymeric composites for radiation dosimetry were developed. The composites were prepared by solvent-free melt compounding of ethylene vinyl acetate (EVA) (40% vinyl) and magnesium sulfate (MgSO4). Mechanical properties, melt flow characteristics and dosimetric properties were investigated. The composites with up to 50% (wt) of MgSO4 were flexible and capable of flow. The dose response of the EPR signal of the composites was studied in the dose range 3Gy-4kGy and found to be linear between 18Gy and 4kGy. The reproducibility of dose measurements was good. The signal fading rate and the energy dependence of the dose response were found to be acceptable.

  8. Flexibility in insulin prescription

    Directory of Open Access Journals (Sweden)

    Sanjay Kalra

    2016-01-01

    Full Text Available This communication explores the concept of flexibility, a propos insulin preparations and insulin regimes used in the management of type 2 diabetes. The flexibility of an insulin regime or preparation is defined as their ability to be injected at variable times, with variable injection-meal time gaps, in a dose frequency and quantum determined by shared decision making, with a minimal requirement of glucose monitoring and health professional consultation, with no compromise on safety, efficiency and tolerability. The relative flexibility of various basal, prandial and dual action insulins, as well as intensive regimes, is compared. The biopsychosocial model of health is used to assess the utility of different insulins while encouraging a philosophy of flexible insulin usage.

  9. Research on compatibility mechanism of recycled poly(vinyl chloride) materials coming from flexible sheet with styrenic by-product, for application on hydro-sanitary sector

    Science.gov (United States)

    Garcia Sanoguera, David

    The treatment of waste is a topic that has grown in interest, due especially to the problem about location as a result of the fast growth of plastic waste during the last years. The PVC substitution by PET in packing sector has originated the disappearance of a residual source of excellent quality characterized by a good stiffness and used by other industries, like hydro-sanitary sector, main consumer of recycled PVC. The use of PVC coming from flexible sheets arises as alternative; however, in front of the residual coming from the packing industry, the PVC coming from credit cards presents a lower stiffness, since the origin product possesses high flexibility. For this reason, this material is not appropriate for hydro-sanitary sector which has a strict normative. The aim of this work is about the improvement of performance of recycled PVC coming from credit cards by means of mixing with different styrenic materials (SAN and ABS virgin and recycled), characterized by their high thermal stability. Previous degradation has been quantified in the recycled materials used by means of infrared analysis (FTIR), as well as miscibility has been determined in the different blends by means of Differential Scan Calorimetry (DSC). Also, the influence of styrenic materials on thermal stability of recycled PVC has been analyzed. Finally it has been carried out the study of mechanical properties of the different blends. On the other hand, different additives have been introduced in the blends, with the purpose of evaluating their influence in thermal and mechanical properties. It is necessary to take into account the low cost of recycled materials, as a consequence the additives cost will be a restrictive factor to consider for reaching some requirements, and also obtain an industrial application.

  10. Flexible ferroelectric element based on van der Waals heteroepitaxy.

    Science.gov (United States)

    Jiang, Jie; Bitla, Yugandhar; Huang, Chun-Wei; Do, Thi Hien; Liu, Heng-Jui; Hsieh, Ying-Hui; Ma, Chun-Hao; Jang, Chi-Yuan; Lai, Yu-Hong; Chiu, Po-Wen; Wu, Wen-Wei; Chen, Yi-Chun; Zhou, Yi-Chun; Chu, Ying-Hao

    2017-06-01

    We present a promising technology for nonvolatile flexible electronic devices: A direct fabrication of epitaxial lead zirconium titanate (PZT) on flexible mica substrate via van der Waals epitaxy. These single-crystalline flexible ferroelectric PZT films not only retain their performance, reliability, and thermal stability comparable to those on rigid counterparts in tests of nonvolatile memory elements but also exhibit remarkable mechanical properties with robust operation in bent states (bending radii down to 2.5 mm) and cycling tests (1000 times). This study marks the technological advancement toward realizing much-awaited flexible yet single-crystalline nonvolatile electronic devices for the design and development of flexible, lightweight, and next-generation smart devices with potential applications in electronics, robotics, automotive, health care, industrial, and military systems.

  11. Deconstructing a Plant Macromolecular Assembly: Chemical Architecture, Molecular Flexibility, And Mechanical Performance of Natural and Engineered Potato Suberins

    OpenAIRE

    Serra, Olga; Chatterjee, Subhasish; Figueras, Mercè; Molinas, Marisa; Stark, Ruth E.

    2014-01-01

    Periderms present in plant barks are essential protective barriers to water diffusion, mechanical breakdown, and pathogenic invasion. They consist of densely packed layers of dead cells with cell walls that are embedded with suberin. Understanding the interplay of molecular structure, dynamics, and biomechanics in these cell wall-associated insoluble amorphous polymeric assemblies presents substantial investigative challenges. We report solid-state NMR coordinated with FT-IR and tensile stren...

  12. Piping Flexibility

    Science.gov (United States)

    1978-01-01

    A NASA computer program aids Hudson Engineering Corporation, Houston, Texas, in the design and construction of huge petrochemical processing plants like the one shown, which is located at Ju'aymah, Saudi Arabia. The pipes handling the flow of chemicals are subject to a variety of stresses, such as weight and variations in pressure and temperature. Hudson Engineering uses a COSMIC piping flexibility analysis computer program to analyze stresses and unsure the necessary strength and flexibility of the pipes. This program helps the company realize substantial savings in reduced engineering time.

  13. Layered LaSrGa{sub 3}O{sub 7}-based oxide-ion conductors: cooperative transport mechanisms and flexible structures

    Energy Technology Data Exchange (ETDEWEB)

    Tealdi, Cristina; Mustarelli, Piercarlo [Dipartimento di Chimica Fisica, Universita di Pavia, Viale Taramelli 16, 27100 Pavia (Italy); Islam, M. Saiful [Department of Chemistry, University of Bath, Bath, BA2 7AY (United Kingdom)

    2010-11-23

    Novel melilite-type gallium-oxides are attracting attention as promising new oxide-ion conductors with potential use in clean energy devices such as solid oxide fuel cells. Here, an atomic-scale investigation of the LaSrGa{sub 3}O{sub 7}-based system using advanced simulation techniques provides valuable insights into the defect chemistry and oxide ion conduction mechanisms, and includes comparison with the available experimental data. The simulation model reproduces the observed complex structure composed of layers of corner-sharing GaO{sub 4} tetrahedra. A major finding is the first indication that oxide-ion conduction in La{sub 1.54}Sr{sub 0.46}Ga{sub 3}O{sub 7.27} occurs through an interstitialcy or cooperative-type mechanism involving the concerted knock-on motion of interstitial and lattice oxide ions. A key feature for the transport mechanism and high ionic conductivity is the intrinsic flexibility of the structure, which allows considerable local relaxation and changes in Ga coordination. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. An Experimental Study on the Flexibility of Prevention against Thrombosis Following Mechanical Valve Replacement by tPA Gene Transduction

    Institute of Scientific and Technical Information of China (English)

    Shangyi Ji; Jun Ji; Xiaohan Yang; Jiangan Yang; Xiaolei Wang; Wenping Ling; Yuping Zhang

    2008-01-01

    Objectives Use a gene suture immersed recombinant tissue-type plasminogen activator (r-tPA)expression plasmid to transduce myocardia to prevent the thrombosis after mechanical tricuspid valve replacement in pigs. Methods A r-tPA gene plasmid was constructed and conjugated to a novel cationic phosphonolipid and a r-tPA gene suture was made. Eighteen pigs were selected and divided into two groups at randomization. There were 9 pigs in the experimental group and 9 in the control group, all the 18 pigs' tricuspids were replaced with mechanical valves. The gene threads were sutured into the right ventficular walls near mechanical valves and an ultrasound was used on the surfaces of the right ventricular walls for the gene transfer in the experimental group. Coagulative function, D-dimer level of the blood and the thrombosis on the surfaces of the valves were observed. Results r-tPA gene plasmid was successfully con-strutted and r-tPA protein was expressed in the ventricular cells around the gene sutures. D-dimer reached its peak level the experiment in experimental group. The thromboses around the valves were found in all the control group (100%)but only 1 (11.11%) case in experimental group. There were no changes in prothrombin time pre and post operation in two groups. Conclusions Using gene suture immersed r-tPA expression plasmid to transduce myocardia might be a best substitution for life long anti-coagulation therapy for the patients, who underwent operation.

  15. Flexibility conflict?

    NARCIS (Netherlands)

    Delsen, L.W.M.

    2002-01-01

    The chapter deals with the presupposed conflict of interests between employers and employees resulting from a decoupling of operating hours and working times. It starts from the notion that both long operating hours and flexibility are relative concepts. As there is some discretion, the ultimate

  16. Flexible Consumption

    DEFF Research Database (Denmark)

    Holm Jacobsen, Peter; Pallesen, Trine

    This report presents the first findings from our qualitative study of consumer behaviour vis-à-vis flexible consumption. The main of objective of this report is to present our first round of data from Bornholm, and to assist the design of products/services designed in WP6. In the report, we adopt...

  17. Synthesis of Multiwalled Carbon Nanotube-Reinforced Polyborosiloxane Nanocomposites with Mechanically Adaptive and Self-Healing Capabilities for Flexible Conductors.

    Science.gov (United States)

    Wu, Tongfei; Chen, Biqiong

    2016-09-14

    Intrinsic self-healing polyborosiloxane (PBS) and its multiwalled carbon nanotube (MWCNT)-reinforced nanocomposites were synthesized from hydroxyl terminated poly(dimethylsiloxane) (PDMS) and boric acid at room temperature. The formation of Si-O-B moiety in PBS was confirmed by Fourier transform infrared spectroscopy. PBS and its MWCNT-reinforced nanocomposites were found possessing water- or methanol-activated mechanically adaptive behaviors; the compressive modulus decreased substantially when exposed to water or methanol vapor and recovered their high value after the stimulus was removed. The compressive modulus was reduced by 76%, 86%, 90%, and 83% for neat PBS and its nanocomposites containing 3.0, 6.2, and 13.3 wt % MWCNTs, respectively, in water vapor, and the modulus reduction activated by methanol vapor was greater than by water vapor. MWCNTs at higher contents acted as a continuous electrical channel in PBS offering electrical conductivity, which was up to 1.21 S/cm for the nanocomposite containing 13.3 wt % MWCNTs. The MWCNT-reinforced PBS nanocomposites also showed excellent mechanically and electrically self-healing properties, moldability, and adhesion to PDMS elastomer substrate. These properties enabled a straightforward fabrication of self-repairing MWCNT/PBS electronic circuits on PDMS elastomer substrates.

  18. Building Highly Flexible Polyelectrolyte Nanotubes

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ Flexibility of polyelectrolyte nanotubes is necessary if they are to be exploited in applications such as developing photoelectric devices with strong mechanical properties. In a recent attempt, high flexibility has been observed from such nanotubes prepared by a research team headed by Prof. Li Junbai of the CAS Institute of Chemistry (ICCAS).

  19. Computational models for the determination of depth-dependent mechanical properties of skin with a soft, flexible measurement device

    Science.gov (United States)

    Yuan, Jianghong; Dagdeviren, Canan; Shi, Yan; Ma, Yinji; Feng, Xue; Rogers, John A.; Huang, Yonggang

    2016-10-01

    Conformal modulus sensors (CMS) incorporate PZT nanoribbons as mechanical actuators and sensors to achieve reversible conformal contact with the human skin for non-invasive, in vivo measurements of skin modulus. An analytic model presented in this paper yields expressions that connect the sensor output voltage to the Young moduli of the epidermis and dermis, the thickness of the epidermis, as well as the material and geometrical parameters of the CMS device itself and its encapsulation layer. Results from the model agree well with in vitro experiments on bilayer structures of poly(dimethylsiloxane). These results provide a means to determine the skin moduli (epidermis and dermis) and the thickness of the epidermis from in vivo measurements of human skin.

  20. The effects of a technology-enhanced, flexible choice science program on achievement, self-efficacy and the scale learner progression mechanism in science

    Science.gov (United States)

    Grace, Lori

    A mixed methods comparative case study of two DRG I urban high schools was used to determine the effectiveness of the Flexible Choice Science Program (FCSP) at producing equitable learning outcomes in students. FCSP recognized both 'among and within learner' differences, while allowing the teacher the semblance of a single lesson. Program sequencing, a differentiated technology platform and allowances for student control and creativity, allowed learners to progress from novice to master at their own pace. Results showed that holistic participation in FCSP by School A students led to significant positive learning effects, particularly for low ability learners. Results of this study challenge current educational grouping techniques that have resulted in inequity, by demonstrating that when students group themselves, their success increases by more than 100%. Results of this research also challenge common notion that cognition most defines student potential by demonstrating that student affect most influences learning.

  1. Feeding Behavior of Aplysia: A Model System for Comparing Cellular Mechanisms of Classical and Operant Conditioning

    Science.gov (United States)

    Baxter, Douglas A.; Byrne, John H.

    2006-01-01

    Feeding behavior of Aplysia provides an excellent model system for analyzing and comparing mechanisms underlying appetitive classical conditioning and reward operant conditioning. Behavioral protocols have been developed for both forms of associative learning, both of which increase the occurrence of biting following training. Because the neural…

  2. 柔性石墨缠绕垫片机械性能试验研究%Study on Mechanical Properties of Flexible Graphite Wound Gasket

    Institute of Scientific and Technical Information of China (English)

    任建民; 魏永黎; 刘学智

    2001-01-01

    通过调整柔性石墨填料带厚度改变缠绕密度的方法设计了缠绕式垫片的结构,对不同结构的缠绕式垫片进行了常温机械性能的试验研究。找出了柔性石墨厚度变化对缠绕式垫片常温机械性能影响的基本规律,提出了以缠绕密度为参量较好地表征比压、卸载模量、回弹量等压缩回弹特性的公式,并通过对试验数据的回归分析得到了公式中的系数。在确定的结构与制造工艺条件下,获得了符合ASMEB16.20—1993所要求的机械性能。表明在其它结构参数与制造工艺不变的情况下,通过调整柔性石墨填料带厚度改变缠绕密度的方法可以达到调整缠绕式垫片机械性能的目的。%The structure of wound gasket was designed by adjusting thicknessof f lexible graphite gasket band to change winding density. The paper studied mechan ical properties of wound gasket with different structures at room temperature. T he basic law about influence of flexible graphite thickness on mechani cal properties of wound gasket at room temperature was found, A formula with parameter of winding density was been proposed, and it can presen t ratio presure unloading module and resilence very well. The formula coefficien ts were determined by regressive analysis of test data. Under the structure and manufact ure technology given in this paper, the wound gasket can obtain mechanical prope rties required by ASME B16.20-1993. The results show that at the same structur e and manu facture technology it is practical to alter mechanical properties of wou nd gasket by adjusting flexible graphite thickness to change winding density.

  3. 柔性加筋土复合体力学性能试验%Experimental study of mechanical properties of flexible geosynthetic-reinforced soil complex

    Institute of Scientific and Technical Information of China (English)

    胡幼常; 童金田; 刘胜军; 张文明

    2012-01-01

    In order to study the mechanical properties of flexible geosynthetic-reinforced soil complex,a series of unconfined compression tests were conducted in laboratory.The test samples were made up of sand reinforced respectively with nonwoven geotextile,geogrid,both geotextile and fiber,or both geogrid and fiber.Each sample varied in either the number of reinforcement inclusions or the density of sand.Based on the analysis of the test results,some conclusions are drawn as follows.1) There is an appropriate match among the geotextile strength,the reinforcement spacing and the sand density.The samples making according to such match have not only high compressive strengths but also large failure compressive strains.2) Sand reinforced with both geotextile and fiber has a higher compressive strength than that of one reinforced only by geotextile at the same conditions;but only a little difference between them while both the sand has a relatively low density and the reinforcement spacing is small.3) While the compressive strain is larger,the compressive strength of the geogrid-reinforced sand is much lower than that of geotextile-reinforced sand,which is perhaps due to the large difference between the geogrid and the sand in tensile stiffness resulting in sliding at the geogrid-soil interface.4) Compared with the geogrid-reinforced sand,the sample reinforced with both geogrid and fiber has a higher compressive strength at low compressive strain and a larger failure compressive strain due to the fiber inclusions.%为了研究柔性加筋土复合体的基本力学特性,分别对无纺土工布加筋砂、土工格栅加筋砂、"土工布+纤维"综合加筋砂和"土工格栅+纤维"综合加筋砂制作的多组试样完成了一系列组合工况下的无侧限抗压试验.得到以下主要结论:1)土工布的强度和加筋层间距应与砂的密度相匹配,此时,两者协同工作性最好,加筋砂土极限强度高,破坏应变大;2)相同情

  4. A comparative study on dynamic mechanical performance of concrete and rock

    Directory of Open Access Journals (Sweden)

    Xia Zhengbing

    2015-10-01

    Full Text Available of underground cavities and field-leveling excavation. Dynamic mechanical performance of rocks has been gradually attached importance both in China and abroad. Concrete and rock are two kinds of the most frequently used engineering materials and also frequently used as experimental objects currently. To compare dynamic mechanical performance of these two materials, this study performed dynamic compression test with five different strain rates on concrete and rock using Split Hopkinson Pressure Bar (SHPB to obtain basic dynamic mechanical parameters of them and then summarized the relationship of dynamic compressive strength, peak strain and strain rate of two materials. Moreover, specific energy absorption is introduced to confirm dynamic damage mechanisms of concrete and rock materials. This work can not only help to improve working efficiency to the largest extent but also ensure the smooth development of engineering, providing rich theoretical guidance for development of related engineering in the future

  5. The Flexibility Hypothesis of Healing.

    Science.gov (United States)

    Hinton, Devon E; Kirmayer, Laurence J

    2017-03-01

    Theories of healing have attempted to identify general mechanisms that may work across different modalities. These include altering expectations, remoralization, and instilling hope. In this paper, we argue that many forms of healing and psychotherapy may work by inducing positive psychological states marked by flexibility or an enhanced ability to shift cognitive sets. Healing practices may induce these states of cognitive and emotional flexibility through specific symbolic interventions we term "flexibility primers" that can include images, metaphors, music, and other media. The flexibility hypothesis suggests that cognitive and emotional flexibility is represented, elicited, and enacted through multiple modalities in healing rituals. Identifying psychological processes and cultural forms that evoke and support cognitive and emotional flexibility provides a way to understand the cultural specificity and potential efficacy of particular healing practices and can guide the design of interventions that promote resilience and well-being.

  6. Mechanical implications of the domain structure of fiber-forming collagens: comparison of the molecular and fibrillar flexibilities of the alpha1-chains found in types I-III collagen.

    Science.gov (United States)

    Silver, Frederick H; Horvath, Istvan; Foran, David J

    2002-05-21

    Fibrillar collagens store, transmit and dissipate elastic energy during tensile deformation. Results of previous studies suggest that the collagen molecule is made up of alternating rigid and flexible domains, and extension of the flexible domains is associated with elastic energy storage. In this study, we model the flexibility of the alpha1-chains found in types I-III collagen molecules and microfibrils in order to understand the molecular basis of elastic energy storage in collagen fibers by analysing the areas under conformational plots for dipeptide sequences. Results of stereochemical modeling suggest that the collagen triple helix is made up of rigid and flexible domains that alternate with periods that are multiples of three amino acid residues. The relative flexibility of dipeptide sequences found in the flexible regions is about a factor of five higher than that found for the flexibility of the rigid regions, and the flexibility of types II and III collagen molecules appears to be higher than that found for the type I collagen molecule. The different collagen alpha1-chains were compared by correlating the flexibilities. The results suggest that the flexibilities of the alpha1-chains of types I and III collagen are more closely related than the flexibilities of the alpha1-chains in types I and II and II and III collagen. The flexible domains found in the alpha1-chains of types I-III collagen were found to be conserved in the microfibril and had periods of about 15 amino acid residues and multiples thereof. The flexibility profiles of types I and II collagen microfibrils were found to be more highly correlated than those for types I and III and II and III. These results suggest that the domain structure of the alpha1-chains found in types I-III collagen is an efficient means for storage of elastic energy during stretching while preserving the triple helical structure of the overall molecule. It is proposed that all collagens that form fibers are designed to

  7. Flexible isotopy classification of flexible links

    OpenAIRE

    Björklund, Johan

    2012-01-01

    In this paper we define and study flexible links and flexible isotopy in projective space. Flexible links are meant to capture the topological properties of real algebraic links. We classify all flexible links up to flexible isotopy using Ekholms interpretation of Viros encomplexed writhe.

  8. A comparative mechanical analysis of plant and animal cells reveals convergence across kingdoms.

    Science.gov (United States)

    Durand-Smet, Pauline; Chastrette, Nicolas; Guiroy, Axel; Richert, Alain; Berne-Dedieu, Annick; Szecsi, Judit; Boudaoud, Arezki; Frachisse, Jean-Marie; Bendahmane, Mohammed; Bendhamane, Mohammed; Hamant, Oliver; Asnacios, Atef

    2014-11-18

    Plant and animals have evolved different strategies for their development. Whether this is linked to major differences in their cell mechanics remains unclear, mainly because measurements on plant and animal cells relied on independent experiments and setups, thus hindering any direct comparison. In this study we used the same micro-rheometer to compare animal and plant single cell rheology. We found that wall-less plant cells exhibit the same weak power law rheology as animal cells, with comparable values of elastic and loss moduli. Remarkably, microtubules primarily contributed to the rheological behavior of wall-less plant cells whereas rheology of animal cells was mainly dependent on the actin network. Thus, plant and animal cells evolved different molecular strategies to reach a comparable cytoplasmic mechanical core, suggesting that evolutionary convergence could include the internal biophysical properties of cells.

  9. COMPARE: a web accessible tool for investigating mechanisms of cell growth inhibition.

    Science.gov (United States)

    Zaharevitz, Daniel W; Holbeck, Susan L; Bowerman, Christopher; Svetlik, Penny A

    2002-01-01

    For more than 10 years the National Cancer Institute (NCI) has tested compounds for their ability to inhibit the growth of human tumor cell lines in culture (NCI screen). Work of Ken Paull [J. Natl. Cancer Inst. 81 (1989) 1088] demonstrated that compounds with similar mechanism of cell growth inhibition show similar patterns of activity in the NCI screen. This observation was developed into an algorithm called COMPARE and has been successfully used to predict mechanisms for a wide variety of compounds. More recently, this method has been extended to associate patterns of cell growth inhibition by compounds with measurements of molecular entities (such as gene expression) in the cell lines in the NCI screen. The COMPARE method and associated data are freely available on the Developmental Therapeutics Program (DTP) web site (http://dtp.nci.nih.gov/). Examples of the use of COMPARE on these web pages will be explained and demonstrated. Published by Elsevier Science Inc.

  10. A comparative study of via drilling and scribing on PEN and PET substrates for flexible electronic applications using excimer and Nd:YAG laser sources

    NARCIS (Netherlands)

    Mandamparambil, R.; Fledderus, H.; Brand, J. van den; Saalmink, M.; Kusters, R.; Podprocky, T.; Steenberge, G. van; Baets, J. de; Dietzel, A.H.

    2009-01-01

    A study on via drilling and channel scribing on PEN and PET substrates for flexible electronic application is discussed in this paper. For the experiments, both KIF excimer laser (248 nm) and frequency tripled Nd:YAG (355 nm) laser are used. Different measurement techniques like optical microscopy,

  11. Flexible Capitalism

    DEFF Research Database (Denmark)

    Approaching “work” as at heart a practice of exchange, this volume explores sociality in work environments marked by the kind of structural changes that have come to define contemporary “flexible” capitalism. It introduces anthropological exchange theory to a wider readership, and shows how...... the perspective offers new ways to enquire about the flexible capitalism’s social dimensions. The essays contribute to a trans-disciplinary scholarship on contemporary economic practice and change by documenting how, across diverse settings, “gift-like” socialities proliferate, and even sustain the intensified...... flexible commoditization that more commonly is touted as tearing social relations apart. By interrogating a keenly debated contemporary work regime through an approach to sociality rooted in a rich and distinct anthropological legacy, the volume also makes a novel contribution to the anthropological...

  12. A comparative study between axial and radial fluxfocusing magnetic gear topologies and mechanical gearboxes

    Science.gov (United States)

    Calvin, Matthew

    A variety of magnetic gear topologies have been investigated in recent years as alternatives to traditional mechanical gearboxes. In general these magnetic gears offer advantages in the non-contact transmission of torque including inherent overload protection, reduced acoustic emissions, and a reduction in the number of contacting components subject to wear. The earliest magnetic gear designs however suffered from low volumetric torque densities, which limited their utility for industrial applications. Research into flux focusing magnetic gearbox topologies has resulted in increased volumetric torque densities by actively engaging all of the magnets in the transmission of torque throughout the process. This research compared the volumetric torque density of axial and radial flux focusing magnetic gearbox designs and prototypes to planetary, cycloidal, and harmonic mechanical gearboxes. The rare earth scaled up radial and axial flux focusing topologies were found to have consistently higher volumetric torque densities than planetary gearboxes of comparable diameter. The cycloidal and harmonic gearboxes had comparable volumetric torque densities, with greater volumetric torque densities for some models and lesser volumetric torque densities for others. The expectation is that further improvements in volumetric torque density are possible for flux focusing magnetic gears with additional refinement and optimization of the designs. The current study does show that flux focusing magnetic gear topologies are a plausible future alternative to mechanical gearboxes in applications where their unique torque transmission mechanism would be advantageous.

  13. Comparative evaluation of color change between two types of acrylic resin and flexible resin after thermo cycling. An in vitro study.

    Science.gov (United States)

    Hatim, Nadira A; Al-Tahho, Omar Zeno

    2013-09-01

    Evaluation of the effect of different beverages (tea with sugar, coffee with sugar, and Pepsi), and immersion time cycles (2, 4, and 12 weeks) on color change property, and dimensional change of Vertex Dental BV, Netherlands heat cured acrylic resin, recently modified Vertex Dental BV, Netherlands heat cured acrylic resin with additive (20 % banana oil), and Valplast(®) flexible resin (FR) denture base materials by using artificial saliva cycle. The total samples of this study for color, and dimensional changes were 360 samples, divided into three groups according to the type of the material, Vertex Dental BV, Netherlands heat cured acrylic resin, modified heat cured acrylic resin (Vertex with additive 20 % banana oil), and Valplast(®) FR groups, each group contains 120 samples. The thermal cycling used in this study was as follows: The samples were incubated in distilled water at 37 ± 1 °C for 2 days for conditioning. Then, the samples were immersed in beverage solutions for 10 min daily at 50 ± 1 °C temperature for tea, and coffee with sugar, while for Pepsi at 20 ± 1 °C. Then, the samples were immersed in artificial saliva at 37 ± 1 °C for 5 h, and 10 min. This cycle was repeated three times daily, and then the samples were immersed in distilled water at 22 ± 2 °C room temperature for 8 h at night. This cycle was repeated for 2, 4, and 12 weeks. At the end of each time period, the immersed samples were tested to evaluate the color change property. Descriptive statistics, ANOVA, and Duncan's multiple range tests were used to analyze the collected data. The results of this study showed that, in comparison between the materials at different times for colors L*a*b* properties, there were significant differences at P ≤ 0.05 except in color b* at 12 weeks, which showed no significant difference at P > 0.05 between materials. And there was a significant difference in dimensional change at P > 0.05 for different beverages

  14. Comparative study on the mechanical properties of banana and sisal woven rovings polyester composites

    Directory of Open Access Journals (Sweden)

    A. Faizur Rahman

    2014-03-01

    Full Text Available Natural fiber polymer composites are widely used in many applications. Banana and sisal woven rovings reinforced polyester composites were manufactured by hand lay-up technique. The woven rovings were modified chemically by alkali treatment to enhance the mechanical properties. Tensile strength, flexural strength and impact strength were evaluated for 5%, 10%, 15% and 20% volume fractions of both woven rovings. The results of banana and sisal woven rovings composites were compared and it indicated that sisal woven rovings with higher volume fractions reveals better mechanical strength.

  15. Ordered fibrillar morphology of donor-acceptor conjugated copolymers at multiple scales via blending with flexible polymers and solvent vapor annealing: insight into photophysics and mechanism.

    Science.gov (United States)

    Wang, Haiyang; Liu, Jiangang; Xu, Yaozhuo; Yu, Xinhong; Xing, Rubo; Han, Yanchun

    2014-01-28

    The ordered, aligned fibrillar morphology at multiple scales of a donor-acceptor (D-A) conjugated copolymer of 3,6-bis-(thiophen-2-yl)-N,N'-bis(2-octyl-1-dodecyl)-1,4-dioxo-pyrrolo[3,4-c]pyrrole and thieno[3,2-b]thiophene (PDBT-TT) was prepared via blending with flexible polymers (PS13.7k, PDBT-TT/PS = 1/10 w/w) followed by chloroform (CF) solvent vapor annealing (SVA) for 24 h. The aligned fibrillar bundles were of about 500 nm width, consisting of parallel aligned nanofibrils of ab. 10 nm width. It was found that the direction of backbones in nanofibrils was parallel to the long axis of nanofibrils, which implied an intense intra-chain conjugation associated with extended backbones and J-aggregation of PDBT-TT. This ordered morphology corresponded to the characteristic photophysical features of (i) red-shifted absorption arising from J-aggregation, (ii) larger Davydov splitting, (iii) the prevailing absorbance of J-aggregation over H-aggregation in its UV-Vis spectrum and (iv) more red-shifted max photoluminescence emission, compared with the films prepared via the other methods. By investigating the Raman spectra and XRD profiles, it is proposed that the origin of the best morphological and photophysical order is the combination of blending and SVA. The limited and "flexible" space formed due to phase separation between PDBT-TT and PS facilitated the motion of rigid PDBT-TT chains and promoted their stacking order as templates, and CF vapor assisted the conformational transition of chains to more "coil-like" to help them reorganize in a thermodynamic stable way.

  16. 考虑刚柔耦合的机构运动可靠性研究%Research on the Rigid-Flexible Coupling Method for Mechanism Motion Reliability Analysis

    Institute of Scientific and Technical Information of China (English)

    马培良; 刘相秋; 李根成

    2014-01-01

    A rigid-flexible coupling modeling method , considering flexible effect of important compo-nents in mechanism , is proposed based on the traditional simulative modeling for mechanism motion anal-ysis which always using simple rigid body , without considering of the flexible infection .The method is ap-plied to the study of mechanism motion reliability .A mechanism reliability of a simulation example is ana-lyzed by using simple rigid-body and rigid-flexible coupling modeling methods and the difference of the two methods is studied .The research indicates that using rigid-flexible coupling method to analyze mecha-nism motion reliability is feasible .The coupling method is much more suitable for complex mechanism , and can be liable to be applied in engineering application .%基于以往运动机构的研究通常采用刚体建模,不考虑重要结构部件柔性影响的缺点,提出了一种考虑机构中重要零部件柔性影响的刚柔耦合动力学建模方法,并将其应用于机构运动可靠性分析中;针对一算例机构,分别采用刚体和刚柔耦合建模方法进行了机构可靠性仿真计算,分析了两种模型对机构可靠性的影响。研究表明:刚柔耦合机构运动可靠性分析方法可行,使用刚柔耦合建模结果更加适用于复杂精密机构,且更接近工程实际。

  17. Invaded grassland communities have altered stability-maintenance mechanisms but equal stability compared to native communities.

    Science.gov (United States)

    Wilsey, Brian J; Daneshgar, Pedram P; Hofmockel, Kirsten; Polley, H Wayne

    2014-01-01

    Theory predicts that stability should increase with diversity via several mechanisms. We tested predictions in a 5-year experiment that compared low-diversity exotic to high-diversity native plant mixtures under two irrigation treatments. The study included both wet and dry years. Variation in biomass across years (CV) was 50% lower in mixtures than monocultures of both native and exotic species. Growth among species was more asynchronous and overyielding values were greater during and after a drought in native than exotic mixtures. Mean-variance slopes indicated strong portfolio effects in both community types, but the intercept was higher for exotics than for natives, suggesting that exotics were inherently more variable than native species. However, this failed to result in higher CV's in exotic communities because species that heavily dominated plots tended to have lower than expected variance. Results indicate that diversity-stability mechanisms are altered in invaded systems compared to native ones they replaced.

  18. The Fracture Mechanical Markov Chain Fatigue Model Compared with Empirical Data

    DEFF Research Database (Denmark)

    Gansted, L.; Brincker, Rune; Hansen, Lars Pilegaard

    The applicability of the FMF-model (Fracture Mechanical Markov Chain Fatigue Model) introduced in Gansted, L., R. Brincker and L. Pilegaard Hansen (1991) is tested by simulations and compared with empirical data. Two sets of data have been used, the Virkler data (aluminium alloy) and data...... that the FMF-model gives adequate description of the empirical data using model parameters characteristic of the material....

  19. The meridian system and mechanism of acupuncture—A comparative review. Part 1: The meridian system

    Directory of Open Access Journals (Sweden)

    Shyang Chang

    2012-12-01

    Full Text Available In traditional Chinese medicine (TCM, acupuncture has been used to heal various diseases and physiologic malfunctions in clinical practice for more than 2500 years. Due to its efficacy, acupuncture has been recommended by the World Health Organization in 1980 as an effective alternative therapy for 43 different disorders. Over the past few decades, various theories of the meridian system and mechanisms have been proposed to explain how acupuncture might work. Most of these mechanisms, however, cannot yet explain conclusively why acupuncture is efficacious in treating so many different diseases. A plausible mechanism has been unavailable until recently. This is the first of a three-part series that aims to provide a comparative review of the aforementioned topics. Part 1 reviews the current indications for acupuncture, basic concepts of TCM, and the essence of the meridian system. To establish a mathematically rigorous framework of TCM, the chaotic wave theory of fractal continuum is proposed. This theory is then applied to characterize the essence of the meridian system. Parts 2 and 3 will review the possible mechanisms of acupuncture analgesia and acupuncture therapies, respectively, based on biochemical, bioelectromagnetic, chaotic wave, and neurophysiologic approaches. It is sincerely hoped that this series of review articles can promote an understanding of the meridian system and acupuncture mechanisms to help patients in a logical and passionate way.

  20. Mechanical strength of ceramic scaffolds reinforced with biopolymers is comparable to that of human bone.

    Science.gov (United States)

    Henriksen, S S; Ding, M; Juhl, M Vinther; Theilgaard, N; Overgaard, S

    2011-05-01

    Eight groups of calcium-phosphate scaffolds for bone implantation were prepared of which seven were reinforced with biopolymers, poly lactic acid (PLA) or hyaluronic acid in different concentrations in order to increase the mechanical strength, without significantly impairing the microarchitecture. Controls were un-reinforced calcium-phosphate scaffolds. Microarchitectural properties were quantified using micro-CT scanning. Mechanical properties were evaluated by destructive compression testing. Results showed that adding 10 or 15% PLA to the scaffold significantly increased the mechanical strength. The increase in mechanical strength was seen as a result of increased scaffold thickness and changes to plate-like structure. However, the porosity was significantly lowered as a consequence of adding 15% PLA, whereas adding 10% PLA had no significant effect on porosity. Hyaluronic acid had no significant effect on mechanical strength. The novel composite scaffold is comparable to that of human bone which may be suitable for transplantation in specific weight-bearing situations, such as long bone repair.

  1. Comparative Study of Two Flow Control Mechanisms in High Speed Networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiailin; DU Haimng; WU Jieyi; ZHANG Sabing

    2001-01-01

    Considerable protocol development efforts in recent ATM (Asynchronous Transfer Mode) Forum activities have been focused on the traffic management of available bit rate (ABR) service. It has been shown that ABR service enables persistent, greedy data sources to efficiently utilize ATM network resources with the help of a rate-based flow control mechanism. ATM Forum Traffic Management Specification Version 4.0 doctunent gives a complete description of the end system behavior of the flow control mechanism, but it leaves the details of the switch behavior to be vendor-implementation dependent. For the sake of compatibility and interoperation among flow control mechanisms implemented by vendors, two rate-based mechanisms EPRCA (Enhanced Proportional Rate Control Algorithm) and ERICA (Explicit Rate Indication for Congestion Avoidance) have been recommended in the specification. In this paper, the mechanisms are studied and their performance is analyzed and compared with a material network. Simulation shows that ERICA is significantly better than EPRCA in the performance of steady state and instantaneous state of source end system ACR (Allowed Cell Rate) and buffer queue of bottleneck switch.

  2. Flexible Capitalism

    DEFF Research Database (Denmark)

    Approaching “work” as at heart a practice of exchange, this volume explores sociality in work environments marked by the kind of structural changes that have come to define contemporary “flexible” capitalism. It introduces anthropological exchange theory to a wider readership, and shows how...... the perspective offers new ways to enquire about the flexible capitalism’s social dimensions. The essays contribute to a trans-disciplinary scholarship on contemporary economic practice and change by documenting how, across diverse settings, “gift-like” socialities proliferate, and even sustain the intensified...

  3. Flexible training under threat.

    Science.gov (United States)

    Houghton, Anita; Eaton, Jennifer

    2002-10-01

    As the number of women in medicine and the general demand for a better work-life balance rises, flexible training is an increasingly important mechanism for maintaining the medical workforce. The new pay deal, together with entrenched cultural attitudes, are potential threats. Ways forward include more substantive part-time posts, more part-time opportunities at consultant level, and using positive experiences as a way of tackling attitudes in the less accepting specialties.

  4. More flexibility for DESY

    CERN Multimedia

    2003-01-01

    In the future, budgeting at DESY will be more efficient. The 16 associated research centers are to be granted a wider margin in matters of finance and human resources. The Budget Committee of the German Bundestag has agreed to abstain from mandatory staff appointments. The current pre-determined "job pyramid" will be replaced by a more flexible mechanism, so that the conclusion of fixed labor contracts can more closely follow the needs of research (1 page).

  5. PLMA vs. I-gel: A Comparative Evaluation of Respiratory Mechanics in Laparoscopic Cholecystectomy

    Science.gov (United States)

    Sharma, Bimla; Sehgal, Raminder; Sahai, Chand; Sood, Jayashree

    2010-01-01

    Background: Supraglottic airway devices (SADs), such as ProSealTM laryngeal mask airway (PLMA), which produce high oropharyngeal seal pressure (OSP) and have the facility for gastric decompression have been used in laparoscopic procedures. i-gel is a new SAD which shares these features with the PLMA. This study was designed to compare the respiratory mechanics of these two devices during positive pressure ventilation in anaesthetised adult patients undergoing laparoscopic cholecystectomy. Patients & Methods: The study included 60 ASA I-II adult patients scheduled for laparoscopic cholecystectomy. The patients were randomized to two groups of 30 each, with either PLMA or i-gel as their airway device. Anaesthesia and premedication were standardized for both the groups. In addition to routine monitoring, neuromuscular monitoring with TOF ratio, OSP and respiratory mechanics monitoring (dynamic compliance, resistance, work of breathing, measured minute ventilation and peak airway pressures) were employed. Fibreoptic evaluation of positioning of the devices and adverse events related to them were also compared. Results: The OSP (cm H2O) were higher for PLMA (38.9 vs. 35.6, P=0.007). The respiratory mechanics parameters using the two devices were comparable apart from the dynamic compliance, which was significantly higher with i-gel (P < 0.05). Malrotation was higher with i-gel than with PLMA (15 vs. 5, P = 0.006). Conclusion: The PLMA formed a better seal while the dynamic compliance was higher with the i-gel. Both devices provided optimal ventilation and oxygenation and the adverse events were also comparable. PMID:21547168

  6. Mechanical and wear characteristics of epoxy composites filled with industrial wastes: A comparative study

    Science.gov (United States)

    Purohit, A.; Satapathy, A.

    2017-02-01

    Use of industrial wastes, such as slag and sludge particles, as filler in polymers is not very common in the field of composite research. Therefore in this paper, a comparison of mechanical characteristics of epoxy based composites filled with LD sludge, BF slag and LD slag (wastes generated in iron and steel industries) were presented. A comparative study among these composites in regard to their dry sliding wear characteristics under similar test conditions was also included. Composites with different weight proportions (0, 5, 10, 15 and 20 wt.%) of LD sludge were fabricated by solution casting technique. Mechanical properties were evaluated as per ASTM test standards and sliding wear test was performed following a design of experiment approach based on Taguchi’s orthogonal array. The test results for epoxy-LD sludge composites were compared with those of epoxy-BF slag and epoxy-LD slag composites reported by previous investigators. The comparison reveals that epoxy filled with LD sludge exhibits superior mechanical and wear characteristics among the three types of composites considered in this study.

  7. Comparing Erlang Distribution and Schwinger Mechanism on Transverse Momentum Spectra in High Energy Collisions

    Directory of Open Access Journals (Sweden)

    Li-Na Gao

    2016-01-01

    Full Text Available We study the transverse momentum spectra of J/ψ and Υ mesons by using two methods: the two-component Erlang distribution and the two-component Schwinger mechanism. The results obtained by the two methods are compared and found to be in agreement with the experimental data of proton-proton (pp, proton-lead (p-Pb, and lead-lead (Pb-Pb collisions measured by the LHCb and ALICE Collaborations at the large hadron collider (LHC. The related parameters such as the mean transverse momentum contributed by each parton in the first (second component in the two-component Erlang distribution and the string tension between two partons in the first (second component in the two-component Schwinger mechanism are extracted.

  8. Radon as a medicine. Therapeutic effectiveness, biological mechanism and comparative risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Deetjen, Peter; Falkenbach, Albrecht; Harder, Dietrich; Joeckel, Hans; Kaul, Alexander; Philipsborn, Henning von

    2014-07-01

    Proofs of the therapeutic efficiency of balneological radon applications administered to patients suffering from rheumatic diseases, investigations into the biological action mechanism associated with the alpha particles emitted by radon and its radioactive daughter products, and the comparative risk assessment of radon treatment and medicinal pain therapy have been the research projects whose results are summarized in this book. Controlled clinical studies, if possible performed as prospective, randomized and placebo-controlled double blind studies, have given evidence that the therapeutic effects of balneological radon applications - long-lasting pain reduction and reduced consumption of medicines compared with controls - are significantly persisting over many post-treatment months. The molecular and cellular mechanism of action underlying these long-lasting therapeutic effects has been identified as the down-regulation of cellular immune responses, initiated by cellular apoptosis sequential to low alpha particle doses and by the subsequent release of anti-inflammatory cytokines. The unwanted side-effects of non-steroidal anti-rheumatic drug treatments have to be compared with the absence of side effects from the balneological radon applications which merely involve radiation doses well below the mean value and the fluctuation width of the annual doses attributable to everybody's natural radiation exposure.

  9. Smart Material-actuated Flexible Tendon-based Snake Robot

    Directory of Open Access Journals (Sweden)

    Mohiuddin Ahmed

    2016-05-01

    Full Text Available A flexible snake robot has better navigation ability compare with the existing electrical motor-based rigid snake robot, due to its excellent bending capability during navigation inside a narrow maze. This paper discusses the modelling, simulation and experiment of a flexible snake robot. The modelling consists of the kinematic analysis and the dynamic analysis of the snake robot. A platform based on the Incompletely Restrained Positioning Mechanism (IRPM is proposed, which uses the external force provided by a compliant flexible beam in each of the actuators. The compliant central column allows the configuration to achieve three degrees of freedom (3DOFs with three tendons. The proposed flexible snake robot has been built using smart material, such as electroactive polymers (EAPs, which can be activated by applying power to it. Finally, the physical prototype of the snake robot has been built. An experiment has been performed in order to justify the proposed model.

  10. A comparative investigation of bone surface after cutting with mechanical tools and Er:YAG laser.

    Science.gov (United States)

    Baek, Kyung-Won; Deibel, Waldemar; Marinov, Dilyan; Griessen, Mathias; Dard, Michel; Bruno, Alfredo; Zeilhofer, Hans-Florian; Cattin, Philippe; Juergens, Philipp

    2015-07-01

    Despite of the long history of medical application, laser ablation of bone tissue became successful only recently. Laser bone cutting is proven to have higher accuracy and to increase bone healing compared to conventional mechanical bone cutting. But the reason of subsequent better healing is not biologically explained yet. In this study we present our experience with an integrated miniaturized laser system mounted on a surgical lightweight robotic arm. An Erbium-doped Yttrium Aluminium Garnet (Er:YAG) laser and a piezoelectric (PZE) osteotome were used for comparison. In six grown up female Göttingen minipigs, comparative surgical interventions were done on the edentulous mandibular ridge. Our laser system was used to create different shapes of bone defects on the left side of the mandible. On the contralateral side, similar bone defects were created by PZE osteotome. Small bone samples were harvested to compare the immediate post-operative cut surface. The analysis of the cut surface of the laser osteotomy and conventional mechanical osteotomy revealed an essential difference. The scanning electron microscopy (SEM) analysis showed biologically open cut surfaces from the laser osteotomy. The samples from PZE osteotomy showed a flattened tissue structure over the cut surface, resembling the "smear layer" from tooth preparation. We concluded that our new finding with the mechanical osteotomy suggests a biological explanation to the expected difference in subsequent bone healing. Our hypothesis is that the difference of surface characteristic yields to different bleeding pattern and subsequently results in different bone healing. The analyses of bone healing will support our hypothesis. © 2015 Wiley Periodicals, Inc.

  11. COMPARATIVE ANALYSIS OF ACCESS TO PATENTED HIV/AIDS PHARMACEUTICAL MEDICINES THROUGH THE CANADIAN AND EU TRIPS FLEXIBILITIES MEASURES: ARE THEY EFFICACIOUS OR OVERLY BURDENSOME AND INEFFECTIVE MEASURES?

    Directory of Open Access Journals (Sweden)

    Omphemetse S Sibanda

    2012-08-01

    Full Text Available This paper evaluates the Canadian and the European Union's (EU implementation of the World Trade Organisation (WTO General Council Decision of 2003, which resolved that developed nations could export patented pharmaceutical drugs to member states in order to address public health challenges such as Human Immunodeficiency Virus/Acquired Immune Deficiency Syndrome (HIV/AIDS, tuberculosis, malaria and other epidemics, such states including Sub-Saharan Africa (SSA. The author makes a primarily textual appraisal of how and to what extent the Canada Access to Medicine Regime (CAMR and European Union (EU Regulations benefit, for instance, SSA countries in the WTO in their quest to make essential medicine more accessible. The author argues that although there are identifiable complexities inherent in the Canadian and the EU's access to pharmaceutical product regimes, there are far more important incentives and benefits that can be reaped in taking advantage of the respective systems. The author recommends that countries facing public health crises/emergencies, such as SSA countries, and non-governmental organisations (NGOs take advantage of the regulatory flexibilities of Canada and the EU in their efforts to provide their communities with essential HIV/AIDS treatment, and treatment for other diseases such as malaria. The author dismisses the arguments against TRIPS (Trade-Related Aspects of Intellectual Property flexibilities-inspired legislation and similar measures as mostly mere rhetoric and hair-splitting, because they sometimes unwarrantedly dismiss a workable solution to public-health problems.

  12. An evolutionary comparative scan for longevity-related oxidative stress resistance mechanisms in homeotherms.

    Science.gov (United States)

    Pamplona, Reinald; Barja, Gustavo

    2011-10-01

    Key mechanisms relating oxidative stress to longevity from an interespecies comparative approach are reviewed. Long-lived animal species show low rates of reactive oxygen species (ROS) generation and oxidative damage at their mitochondria. Comparative physiology also shows that the specific compositional pattern of tissue macromolecules (proteins, lipids and nucleic acids) in long-lived animal species gives them an intrinsically high resistance to modification that likely contributes to their superior longevity. This is obtained in the case of lipids by decreasing the degree of fatty acid unsaturation, and in the case of proteins by lowering their methionine content. These findings are also substantiated from a phylogenomic approach. Nutritional or/and pharmacological interventions focused to modify some of these molecular traits were translated with modifications in animal longevity. It is proposed that natural selection tends to decrease the mitochondrial ROS generation and to increase the molecular resistance to the oxidative damage in long-lived species.

  13. A Study of Flexible Composites for Expandable Space Structures

    Science.gov (United States)

    Scotti, Stephen J.

    2016-01-01

    Payload volume for launch vehicles is a critical constraint that impacts spacecraft design. Deployment mechanisms, such as those used for solar arrays and antennas, are approaches that have successfully accommodated this constraint, however, providing pressurized volumes that can be packaged compactly at launch and expanded in space is still a challenge. One approach that has been under development for many years is to utilize softgoods - woven fabric for straps, cloth, and with appropriate coatings, bladders - to provide this expandable pressure vessel capability. The mechanics of woven structure is complicated by a response that is nonlinear and often nonrepeatable due to the discrete nature of the woven fiber architecture. This complexity reduces engineering confidence to reliably design and certify these structures, which increases costs due to increased requirements for system testing. The present study explores flexible composite materials systems as an alternative to the heritage softgoods approach. Materials were obtained from vendors who utilize flexible composites for non-aerospace products to determine some initial physical and mechanical properties of the materials. Uniaxial mechanical testing was performed to obtain the stress-strain response of the flexible composites and the failure behavior. A failure criterion was developed from the data, and a space habitat application was used to provide an estimate of the relative performance of flexible composites compared to the heritage softgoods approach. Initial results are promising with a 25% mass savings estimated for the flexible composite solution.

  14. Guideline Implementation: Processing Flexible Endoscopes.

    Science.gov (United States)

    Bashaw, Marie A

    2016-09-01

    The updated AORN "Guideline for processing flexible endoscopes" provides guidance to perioperative, endoscopy, and sterile processing personnel for processing all types of reusable flexible endoscopes and accessories in all procedural settings. This article focuses on key points of the guideline to help perioperative personnel safely and effectively process flexible endoscopes to prevent infection transmission. The key points address verification of manual cleaning, mechanical cleaning and processing, storage in a drying cabinet, determination of maximum storage time before reprocessing is needed, and considerations for implementing a microbiologic surveillance program. Perioperative RNs should review the complete guideline for additional information and for guidance when writing and updating policies and procedures.

  15. A comparative analysis of three self-balancing wheelchair balancing mechanisms.

    Science.gov (United States)

    Olson, Zachery L; Van Moorhem, William K; Roemer, Robert B

    2006-12-01

    In the last 20 years, three different basic, dynamic balancing designs have been proposed for a self-balancing wheelchair (SBW) that allows the wheelchair user to transition from driving on all four wheels to driving while balanced on the two large rear wheels. The dynamic performance of these three SBW designs, the hanging pendulum counterweight (HPC), the single inverted pendulum (SIP), and the double inverted pendulum (DIP), are compared when controlled by a common state space controller. The four dynamic performance considerations of stability, driver dynamic stress, maneuverability and technical requirements were used to compare these designs while performing the following five tests: 1) transition from four-wheel to two-wheel, balancing mode; 2) stationary, self-balancing stability when subjected to an impact disturbance; 3) movement initiation, and stopping while balancing; 4) response to impact disturbances while moving; and 5) stability on low traction surfaces. In addition, the movement initiation and stopping test was repeated with increased chair mass and inertia to investigate the sensitivity of model performance to changes in model parameters. After comparing the three models it was determined that the HPC mechanism is the best choice for further development based on the criteria of stability, driver dynamic stress, maneuverability, and technical requirements. The HPC ranked equal or better compared to the SIP and DIP on 15 of 29 stability and performance factors. It was also the only design that was stable for all normally expected driving conditions.

  16. Comparative proteomic analysis of liver antioxidant mechanisms in Megalobrama amblycephala stimulated with dietary emodin.

    Science.gov (United States)

    Song, Changyou; Liu, Bo; Xie, Jun; Ge, Xianping; Zhao, Zhenxin; Zhang, Yuanyuan; Zhang, Huimin; Ren, Mingchun; Zhou, Qunlan; Miao, Linghong; Xu, Pao; Lin, Yan

    2017-01-13

    Oxidative stress is a toxicological endpoint that correlates with the nutrition status of fish through cellular damage, inflammation, and apoptosis. In order to understand the antioxidant mechanism induced by dietary emodin in Megalobrama amblycephala liver, a comparative proteomic analysis was performed to investigate the proteome alteration under emodin administration. 27 altered protein spots were separated under 30 mg kg(-1) emodin stimulation based on 2-DE, and were all successfully identified using MALDI-TOF/TOF, representing 17 unique proteins. These proteins were functionally classified into antioxidant, metabolism, cytoskeleton, chaperone, signal transduction and cofactor groups. Network interaction and Gene Ontology annotation indicated 10 unique proteins were closely related to antioxidation and directly regulated by each other. Compared with the control group, administration of 30 mg kg(-1) emodin significantly increased the antioxidant-related mRNA expressions of GPx1, GSTm and HSP70, but decreased the mRNA expressions of GAPDH and Sord, which was consistent with the protein expression. Nevertheless, Pgk1 and Aldh8a1 were up- and down-regulated, and ALDOB was down- and up-regulated at the mRNA and protein levels, respectively. These results revealed that the altered proteins enhanced antioxidation via complex regulatory mechanisms, and 30 mg kg(-1) emodin was a suitable immunostimulant for M. amblycephala.

  17. How realistic are flat-ramp-flat fault kinematic models? Comparing mechanical and kinematic models

    Science.gov (United States)

    Cruz, L.; Nevitt, J. M.; Hilley, G. E.; Seixas, G.

    2015-12-01

    Rock within the upper crust appears to deform according to elasto-plastic constitutive rules, but structural geologists often employ kinematic descriptions that prescribe particle motions irrespective of these physical properties. In this contribution, we examine the range of constitutive properties that are approximately implied by kinematic models by comparing predicted deformations between mechanical and kinematic models for identical fault geometric configurations. Specifically, we use the ABAQUS finite-element package to model a fault-bend-fold geometry using an elasto-plastic constitutive rule (the elastic component is linear and the plastic failure occurs according to a Mohr-Coulomb failure criterion). We varied physical properties in the mechanical model (i.e., Young's modulus, Poisson ratio, cohesion yield strength, internal friction angle, sliding friction angle) to determine the impact of each on the observed deformations, which were then compared to predictions of kinematic models parameterized with identical geometries. We found that a limited sub-set of physical properties were required to produce deformations that were similar to those predicted by the kinematic models. Specifically, mechanical models with low cohesion are required to allow the kink at the bottom of the flat-ramp geometry to remain stationary over time. Additionally, deformations produced by steep ramp geometries (30 degrees) are difficult to reconcile between the two types of models, while lower slope gradients better conform to the geometric assumptions. These physical properties may fall within the range of those observed in laboratory experiments, suggesting that particle motions predicted by kinematic models may provide an approximate representation of those produced by a physically consistent model under some circumstances.

  18. Experimental verification of a large flexible manipulator

    Science.gov (United States)

    Lee, Jac Won; Huggins, James D.; Book, Wayne J.

    1988-01-01

    A large experimental lightweight manipulator would be useful for material handling, for welding, or for ultrasonic inspection of a large structure, such as an airframe. The flexible parallel link mechanism is designed for high rigidity without increasing weight. This constrained system is analyzed by singular value decomposition of the constraint Jacobian matrix. A verification of the modeling using the assumed mode method is presented. Eigenvalues and eigenvectors of the linearized model are compared to the measured system natural frequencies and their associated mode shapes. The modeling results for large motions are compared to the time response data from the experiments. The hydraulic actuator is verified.

  19. Verhulst and stochastic models for comparing mechanisms of MAb productivity in six CHO cell lines.

    Science.gov (United States)

    Shirsat, Nishikant; Avesh, Mohd; English, Niall J; Glennon, Brian; Al-Rubeai, Mohamed

    2016-08-01

    The present study validates previously published methodologies-stochastic and Verhulst-for modelling the growth and MAb productivity of six CHO cell lines grown in batch cultures. Cytometric and biochemical data were used to model growth and productivity. The stochastic explanatory models were developed to improve our understanding of the underlying mechanisms of growth and productivity, whereas the Verhulst mechanistic models were developed for their predictability. The parameters of the two sets of models were compared for their biological significance. The stochastic models, based on the cytometric data, indicated that the productivity mechanism is cell specific. However, as shown before, the modelling results indicated that G2 + ER indicate high productivity, while G1 + ER indicate low productivity, where G1 and G2 are the cell cycle phases and ER is Endoplasmic Reticulum. In all cell lines, growth proved to be inversely proportional to the cumulative G1 time (CG1T) for the G1 phase, whereas productivity was directly proportional to ER. Verhulst's rule, "the lower the intrinsic growth factor (r), the higher the growth (K)," did not hold for growth across all cell lines but held good for the cell lines with the same growth mechanism-i.e., r is cell specific. However, the Verhulst productivity rule, that productivity is inversely proportional to the intrinsic productivity factor (r x ), held well across all cell lines in spite of differences in their mechanisms for productivity-that is, r x is not cell specific. The productivity profile, as described by Verhulst's logistic model, is very similar to the Michaelis-Menten enzyme kinetic equation, suggesting that productivity is more likely enzymatic in nature. Comparison of the stochastic and Verhulst models indicated that CG1T in the cytometric data has the same significance as r, the intrinsic growth factor in the Verhulst models. The stochastic explanatory and the Verhulst logistic models can explain the

  20. Towards Measuring Investment in Flexible Foundry Manufacturing

    Directory of Open Access Journals (Sweden)

    Rhythm Suren Wadhwa

    2012-07-01

    Full Text Available Manufacturing flexibility is an important instrument to ensure the success of manufacturing systems in the modern day competitive and uncertain environment. The major hindrance in integrating flexibility into decision making process is that it is difficult to measure and be compared to future indefinable manufacturing scenarios. This paper presents a methodical concept utilizing real options to evaluate flexible foundry manufacturing system.

  1. [Molecular mechanisms of transitions induced by cytosine analogue: comparative quantum-chemical study].

    Science.gov (United States)

    Brovarets', O O; Govorun, D M

    2010-01-01

    Using the simplest molecular models at the MP2/6-311++G(2df,pd)//B3LYP/6-311++G(d,p) level of the theory it has been shown for the first time that in addition to traditional incorporational errors caused by facilitated (compared with the canonical DNA bases cytosine (Cyt)) tautomerization of 6-(2-deoxy-beta-D-ribofuranosyl)-3,4-dihydro-6H,8H-pyrimido[4,5-c][1,2]oxazin-7-one (DCyt), this mutagen causes the replication errors, increasing one million times the population of mispair Gua.DCyt* (asterisk marked mutagenic tautomer) as compared with mispair Gua.Cyt*. It is also proved that DCyt in addition to traditional incorporational errors also induces similar errors by an additional mechanism - due to a facilitated tautomerization of the wobble base pair Ade.DCyt (compared to the same pair Ade.Cyt) to a mispair Ade.DCyt* which is quasirisomorphic Watson-Crick base pair. Moreover, the obtained results allowed interpreting non-inconsistently the existing experimental NMR data.

  2. Comparative hydrogen-deuterium exchange for a mesophilic vs thermophilic dihydrofolate reductase at 25 °C: identification of a single active site region with enhanced flexibility in the mesophilic protein.

    Science.gov (United States)

    Oyeyemi, Olayinka A; Sours, Kevin M; Lee, Thomas; Kohen, Amnon; Resing, Katheryn A; Ahn, Natalie G; Klinman, Judith P

    2011-09-27

    The technique of hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) has been applied to a mesophilic (E. coli) dihydrofolate reductase under conditions that allow direct comparison to a thermophilic (B. stearothermophilus) ortholog, Ec-DHFR and Bs-DHFR, respectively. The analysis of hydrogen-deuterium exchange patterns within proteolytically derived peptides allows spatial resolution, while requiring a series of controls to compare orthologous proteins with only ca. 40% sequence identity. These controls include the determination of primary structure effects on intrinsic rate constants for HDX as well as the use of existing 3-dimensional structures to evaluate the distance of each backbone amide hydrogen to the protein surface. Only a single peptide from the Ec-DHFR is found to be substantially more flexible than the Bs-DHFR at 25 °C in a region located within the protein interior at the intersection of the cofactor and substrate-binding sites. The surrounding regions of the enzyme are either unchanged or more flexible in the thermophilic DHFR from B. stearothermophilus. The region with increased flexibility in Ec-DHFR corresponds to one of two regions previously proposed to control the enthalpic barrier for hydride transfer in Bs-DHFR [Oyeyemi et al. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 10074].

  3. Energy implications of mechanical and mechanical–biological treatment compared to direct waste-to-energy

    DEFF Research Database (Denmark)

    Cimpan, Ciprian; Wenzel, Henrik

    2013-01-01

    Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical–biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials...... for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different...... background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJprimary/100 MJinput waste, in the different...

  4. Comparative transcriptomic analysis reveals phenol tolerance mechanism of evolved Chlorella strain.

    Science.gov (United States)

    Zhou, Lin; Cheng, Dujia; Wang, Liang; Gao, Juan; Zhao, Quanyu; Wei, Wei; Sun, Yuhan

    2017-03-01

    The growth of microalgae is inhibited by high concentration phenol due to reactive oxygen species. An evolved strain tolerated to 500mg/L phenol, Chlorella sp. L5, was obtained in previous study. In this study, comparative transcriptomic analysis was performed for Chlorella sp. L5 and its original strain (Chlorella sp. L3). The tolerance mechanism of Chlorella sp. L5 for high concentration phenol was explored on genome scale. It was identified that the up-regulations of the related genes according to antioxidant enzymes (SOD, APX, CAT and GR) and carotenoids (astaxanthin, lutein and lycopene) biosynthesis had critical roles to tolerate high concentration phenol. In addition, most of genes of PS I, PS II, photosynthetic electron transport chain and starch biosynthesis were also up-regulated. It was consistent to the experimental results of total carbohydrate contents of Chlorella sp. L3 and Chlorella sp. L5 under 0mg/L and 500mg/L phenol.

  5. Intraoral laser welding: ultrastructural and mechanical analysis to compare laboratory laser and dental laser.

    Science.gov (United States)

    Fornaini, Carlo; Passaretti, Francesca; Villa, Elena; Rocca, Jean-Paul; Merigo, Elisabetta; Vescovi, Paolo; Meleti, Marco; Manfredi, Maddalena; Nammour, Samir

    2011-07-01

    The Nd:YAG laser has been used since 1970 in dental laboratories to weld metals on dental prostheses. Recently in several clinical cases, we have suggested that the Nd:YAG laser device commonly utilized in the dental office could be used to repair broken fixed, removable and orthodontic prostheses and to weld metals directly in the mouth. The aim of this work was to evaluate, using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and dynamic mechanical analysis (DMA), the quality of the weld and its mechanical strength, comparing a device normally used in dental laboratory and a device normally used in the dental office for oral surgery, the same as that described for intraoral welding. Metal plates of a Co-Cr-Mo dental alloy and steel orthodontic wires were subjected to four welding procedures: welding without filler metal using the laboratory laser, welding with filler metal using the laboratory laser, welding without filler metal using the office laser, and welding with filler metal using the office laser. The welded materials were then analysed by SEM, EDS and DMA. SEM analysis did not show significant differences between the samples although the plates welded using the office laser without filler metal showed a greater number of fissures than the other samples. EDS microanalysis of the welding zone showed a homogeneous composition of the metals. Mechanical tests showed similar elastic behaviours of the samples, with minimal differences between the samples welded with the two devices. No wire broke even under the maximum force applied by the analyser. This study seems to demonstrate that the welds produced using the office Nd:YAG laser device and the laboratory Nd:YAG laser device, as analysed by SEM, EDS and DMA, showed minimal and nonsignificant differences, although these findings need to be confirmed using a greater number of samples.

  6. A Comparative Study of Fibrillated Fibers from Different Mechanical and Chemical Pulps

    Directory of Open Access Journals (Sweden)

    Panu Lahtinen

    2014-02-01

    Full Text Available Fibrillation of chemical and mechanical pulps with different lignin contents was studied. The pulps were ion exchanged into their sodium form prior to fibrillation and fibrillated with an increasing level of energy using high-shear friction grinding. The fibrillated samples were characterized for their chemical composition, morphology, rheological properties, and water retention capacity. All pulps had a distinct tendency to form fibrillated material under high shear and compression. The lignin-containing kraft pulps fibrillated easily, and the resulting material can be utilized in applications where high viscosity, water retention capacity, and reinforcement are desired. Fibrillation of mechanical pulps resulted in more heterogeneous samples, which included fiber fragments, branched fibrillar structures, and flake-like particles. This material showed relatively low viscosity and water retention capacity when compared to the samples made from kraft pulps. Chemi-thermomechanical pulp (CTMP, when used as the raw material, yielded a more homogeneous organic filler-like material than did thermomechanical pulp (TMP.

  7. Comparative study of mechanical properties of direct core build-up materials

    Directory of Open Access Journals (Sweden)

    Girish Kumar

    2015-01-01

    Full Text Available Background and Objectives: The strength greatly influences the selection of core material because core must withstand forces due to mastication and para-function for many years. This study was conducted to evaluate certain mechanical properties of commonly used materials for direct core build-up, including visible light cured composite, polyacid modified composite, resin modified glass ionomer, high copper amalgam, and silver cermet cement. Materials and Methods: All the materials were manipulated according to the manufacturer′s recommendations and standard test specimens were prepared. A universal testing machine at different cross-head speed was used to determine all the four mechanical properties. Mean compressive strength, diametral tensile strength, flexural strength, and elastic modulus with standard deviations were calculated. Multiple comparisons of the materials were also done. Results: Considerable differences in compressive strength, diametral tensile strength, and flexural strength were observed. Visible light cured composite showed relatively high compressive strength, diametral tensile strength, and flexural strength compared with the other tested materials. Amalgam showed the highest value for elastic modulus. Silver cermet showed less value for all the properties except for elastic modulus. Conclusions: Strength is one of the most important criteria for selection of a core material. Stronger materials better resist deformation and fracture provide more equitable stress distribution, greater stability, and greater probability of clinical success.

  8. Comparative study of mechanical properties of direct core build-up materials.

    Science.gov (United States)

    Kumar, Girish; Shivrayan, Amit

    2015-01-01

    The strength greatly influences the selection of core material because core must withstand forces due to mastication and para-function for many years. This study was conducted to evaluate certain mechanical properties of commonly used materials for direct core build-up, including visible light cured composite, polyacid modified composite, resin modified glass ionomer, high copper amalgam, and silver cermet cement. All the materials were manipulated according to the manufacturer's recommendations and standard test specimens were prepared. A universal testing machine at different cross-head speed was used to determine all the four mechanical properties. Mean compressive strength, diametral tensile strength, flexural strength, and elastic modulus with standard deviations were calculated. Multiple comparisons of the materials were also done. Considerable differences in compressive strength, diametral tensile strength, and flexural strength were observed. Visible light cured composite showed relatively high compressive strength, diametral tensile strength, and flexural strength compared with the other tested materials. Amalgam showed the highest value for elastic modulus. Silver cermet showed less value for all the properties except for elastic modulus. Strength is one of the most important criteria for selection of a core material. Stronger materials better resist deformation and fracture provide more equitable stress distribution, greater stability, and greater probability of clinical success.

  9. Comparative overview of primary sedimentation-based mechanical stage in some Romanian wastewater treatment systems

    Science.gov (United States)

    Zaharia, C.

    2017-08-01

    Nowadays, wastewater (WW) treatment facilities are considered significant exposure pathways for solid particles, and also significant concerns of any quality conscious manufacturer. Most solid particles have some forms of organic coating either used as active material or to suspend and/or stabilize different present solid materials, having increase in toxicity that must be reduced, or sometimes even totally eliminated, especially if effluent is either discharged directly to surface water, or distributed through industrial water supplies. Representatives providing innovative technologies, comprehensive supports and expertise in wastewater and sludge treatment field are known, each one using modern treatment technology and facilities. Mechanical treatment is indispensable in primary treatment steps of both municipal and industrial WW applications, its main goal being separation of floating, settling and suspended materials (especially into a primary sedimentation-based treatment step). The aim of this work is to present comparatively the performance in solids removal of conventional mechanical WW treatment stages, especially those based on primary sedimentation, or sedimentation-like operations applied for Romanian urban WW treatment plants (serving two towns with ca 18,000 inhabitants), industrial WW treatment plants (deserving industries of vegetal food processing and organic chemicals’ manufacturing) and additional information on valorisation of separated solid material and improvement possibilities.

  10. Flexible Laser Metal Cutting

    DEFF Research Database (Denmark)

    Villumsen, Sigurd; Jørgensen, Steffen Nordahl; Kristiansen, Morten

    2014-01-01

    This paper describes a new flexible and fast approach to laser cutting called ROBOCUT. Combined with CAD/CAM technology, laser cutting of metal provides the flexibility to perform one-of-a-kind cutting and hereby realises mass production of customised products. Today’s laser cutting techniques...... possess, despite their wide use in industry, limitations regarding speed and geometry. Research trends point towards remote laser cutting techniques which can improve speed and geometrical freedom and hereby the competitiveness of laser cutting compared to fixed-tool-based cutting technology...... such as punching. This paper presents the concepts and preliminary test results of the ROBOCUT laser cutting technology, a technology which potentially can revolutionise laser cutting....

  11. Flexible Electronics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Flexible Electronics Research Facility designs, synthesizes, tests, and fabricates materials and devices compatible with flexible substrates for Army information...

  12. Flexible Transparent Electronic Gas Sensors.

    Science.gov (United States)

    Wang, Ting; Guo, Yunlong; Wan, Pengbo; Zhang, Han; Chen, Xiaodong; Sun, Xiaoming

    2016-07-01

    Flexible and transparent electronic gas sensors capable of real-time, sensitive, and selective analysis at room-temperature, have gained immense popularity in recent years for their potential to be integrated into various smart wearable electronics and display devices. Here, recent advances in flexible transparent sensors constructed from semiconducting oxides, carbon materials, conducting polymers, and their nanocomposites are presented. The sensing material selection, sensor device construction, and sensing mechanism of flexible transparent sensors are discussed in detail. The critical challenges and future development associated with flexible and transparent electronic gas sensors are presented. Smart wearable gas sensors are believed to have great potential in environmental monitoring and noninvasive health monitoring based on disease biomarkers in exhaled gas.

  13. Flexible sensors based on nanoparticles.

    Science.gov (United States)

    Segev-Bar, Meital; Haick, Hossam

    2013-10-22

    Flexible sensors can be envisioned as promising components for smart sensing applications, including consumer electronics, robotics, prosthetics, health care, safety equipment, environmental monitoring, homeland security and space flight. The current review presents a concise, although admittedly nonexhaustive, didactic review of some of the main concepts and approaches related to the use of nanoparticles (NPs) in flexible sensors. The review attempts to pull together different views and terminologies used in the NP-based sensors, mainly those established via electrical transduction approaches, including, but, not confined to: (i) strain-gauges, (ii) flexible multiparametric sensors, and (iii) sensors that are unaffected by mechanical deformation. For each category, the review presents and discusses the common fabrication approaches and state-of-the-art results. The advantages, weak points, and possible routes for future research, highlighting the challenges for NP-based flexible sensors, are presented and discussed as well.

  14. Comparative Analysis of the Mechanical Properties between the Fiber-Reinforced Composite and Zirconium Posts.

    Science.gov (United States)

    Jurukovska-Shotarovska, Vesna; Kapusevska, Biljana

    2015-01-01

    To make a comparative analysis of the mechanical properties between FRC and zirconium posts Methods: The patients with FRC and zirconium posts were divided in two groups with three subgroups, each of them composed of 10 samples. Subgroup I with 1.2 mm; Subgroup II with 1.35 mm and Subgroup III with 1.5 mm post diameter. The fracture force, bending and tensile strength of each group were measured with Shimadzu Universal Testing Machine. The fracture force for the first group measured in the first, second and third subgroup was 34.80900N; 67.15390N; 46.53100N and for the second group, first, second and third subgroup was 34.80900N; 46.53100N; 67.15390N correspondingly. The bending strength for the first group measured in the first, second and third subgroup was 401.4420N; 444.6425N; 333.6828N and for the second group, first, second and third subgroup was 307.9352N; 289.1030N; 304.1649N correspondingly. The tensile strength for the first group measured in the first, second and third subgroup was 5.442267N; 4.350545N; 2.943465N and for the second group, first, second and third subgroup was 4.224141N; 3.751466N; 3.168756N correspondingly. The longest diameter of the posts significantly increases the resistance to fracture in relation to the two smaller diameters. The larger diameter, the higher values of the bending strength, as well as the lowest values of the tensile strength of the material contribute to improved mechanical properties of the fiber and zirconium posts.

  15. The Development of Emotional Flexible Spine Humanoid Robots

    OpenAIRE

    Or, Jimmy

    2008-01-01

    Based on the work presented above, we believe that with current technologies, it is unrealistic to build a flexible spine humanoid robot that has as many vertebrae as a human. Also, controlling the robots using the tendons or hydraulic power approach might not be ideal. Our research has shown that by carefully designing the spine mechanism, it is possible to build a flexible spine humanoid robot that can use full-body motions to express emotions. Compared with the robots developed by other gr...

  16. Non-anesthesiologist-administered Propofol is not Related to an Increase in Transcutaneous CO2 Pressure During Flexible Bronchoscopy Compared to Guideline-based Sedation: A Randomized Controlled Trial.

    Science.gov (United States)

    Mercado-Longoría, Roberto; Armeaga-Azoños, Carolina; Tapia-Orozco, Jasel; González-Aguirre, Julio E

    2017-09-01

    Evidence for the use of non-anesthesiologist-administered propofol for sedation during flexible bronchoscopy is scarce. The main objective of this study was to determine whether non-anesthesiologist-administered propofol balanced sedation was related to higher transcutaneous CO2 pressure compared with current guideline-based sedation (combination midazolam and opioid). Secondary outcomes were post-procedural recuperation time, patient satisfaction and frequency of adverse events. In this randomized controlled trial we included data from outpatients aged 18 years or older with an indication for flexible bronchoscopy in a university hospital in northern Mexico. Ninety-one patients were included: 42 in the midazolam group and 49 in the propofol group. During 60min of transcutaneous capnometry monitoring, mean transcutaneous CO2 pressure values did not differ significantly between groups (43.6 [7.5] vs. 45.6 [9.6]mmHg, P=.281). Propofol was related with a high Aldrete score at 5, 10, and 15min after flexible bronchoscopy (9 [IQR 6-10] vs. 10 [9,10], P=.006; 9 [8-10] vs. 10 [IQR 10-10], P<.001 and 10 [IQR 9-10] vs. 10 [10], respectively) and with high patient satisfaction on a visual analogue scale of 1 (not satisfied) to 10 (very satisfied) (8.41 [1.25] vs. 8.97 [0.98], P=.03). Frequency of adverse events was similar among groups (30.9% vs. 22.4%, P=.47). Compared with guideline-recommended sedation, non-anesthesiologist-administered propofol balanced sedation is not associated with higher transcutaneous CO2 pressure or with more frequent adverse effects. Propofol use is associated with faster sedation recovery and with high patient satisfaction. NCT02820051. Copyright © 2017 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Erosion of tooth enamel surfaces among battery chargers and automobile mechanics in Ibadan: a comparative study.

    Science.gov (United States)

    Arowojolu, M O

    2001-01-01

    A cross sectional comparative survey was conducted among battery chargers and automobile mechanics in Ibadan to determine the effect of exposure of acid in form of solution or fumes on tooth enamel wear one hundred and five subjects were recruited and examined for erosion. This number comprised 67 automechanics and apprentices and 38 battery chargers and their apprentices. Other groups of automobile workers sharing the workshops were excluded from the study. All respondents aged between 11 and 68 years of age. Verbal informed consent was taken from all the subjects. One thousand and one hundred teeth were examined using the upper and lower central sextants. One hundred and sixty teeth were found to be missing. The teeth examined comprised 712 teeth of automechanics (88.55%) and 388 teeth of battery chargers (85.08%). Out of the 712 teeth of automechanics, only 23 teeth (3.2%) showed evidence of tooth wear whereas in the battery chargers group, 159 teeth out of 388 teeth (41%) had tooth wear. (P charger group also showed a higher percentage of missing teeth, (14.9%) as against 11.44% of the automechanic group (P > 0.05). This study has shown that battery chargers are subjected to occupational hazard of exposure to highly erosive acids and fumes. Prevention through oral health education targeted at this group of subjects and early diagnosis are very important.

  18. Nonradiative Relaxation Mechanisms of UV Excited Phenylalanine Residues: A Comparative Computational Study.

    Science.gov (United States)

    Mališ, Momir; Došlić, Nađa

    2017-03-21

    The present work is directed toward understanding the mechanisms of excited state deactivation in three neutral model peptides containing the phenylalanine residue. The excited state dynamics of theγL(g+)folded form of N-acetylphenylalaninylamide (NAPA B) and its amide-N-methylated derivative (NAPMA B) is reviewed and compared to the dynamics of the monohydrated structure of NAPA (NAPAH). The goal is to unravel how the environment, and in particular solvation, impacts the photodynamics of peptides. The systems are investigated using reaction path calculations and surface hopping nonadiabatic dynamics based on the coupled cluster doubles (CC2) method and time-dependent density functional theory. The work emphasizes the role that excitation transfer from the phenylππ*to amidenπ*state plays in the deactivation of the three systems and shows how the ease of out-of-plane distortions of the amide group determines the rate of population transfer between the two electronic states. The subsequent dynamics on thenπ*state is barrierless along several pathways and leads to fast deactivation to the ground electronic state.

  19. Body image after heart transplantation compared to mechanical aortic valve insertion.

    Science.gov (United States)

    Hartmann, Armin; Heilmann, Claudia; Kaps, Josefine; Beyersdorf, Friedhelm; Zeh, Wolfgang; Albert, Wolfgang; Wirsching, Michael; Fritzsche, Kurt; Joos, Andreas

    2017-11-01

    Heart transplantation (HT) obviously affects body image and integrity. However, there are very few empirical data post-transplant. In a cross-sectional study, 57 HT patients were compared with 47 subjects with mechanical aortic valve replacement (AVR) using the Dresden-Body-Image questionnaire (DKB) and specific questions regarding integration of the organ/device. In addition, affective symptoms and quality of life (QoL) were assessed (12-Item Short-Form Health Survey and Hospital Anxiety and Depression Scale, HADS). DKB-35 scores did not differ. HT patients scored higher than AVR on specific questions regarding integration of the organ/device. AVR patients showed more affective disturbance and lower mental QoL than HT subjects. Affective scores correlated negatively with body image scores. Seventeen percent of all patients showed psychological distress (HADS scores >8). HT patients integrated the new organ well - and even better than AVR subjects did with the device. In general, our data corroborate a good adaptation process, in particular in HT patients. Similar to other reported data, a subgroup of 15-20% of patients shows stronger mental distress, including body image problems. These must be identified and treated by professionals. Patients with AVR deserve more attention in the future.

  20. Nonradiative Relaxation Mechanisms of UV Excited Phenylalanine Residues: A Comparative Computational Study

    Directory of Open Access Journals (Sweden)

    Momir Mališ

    2017-03-01

    Full Text Available The present work is directed toward understanding the mechanisms of excited state deactivation in three neutral model peptides containing the phenylalanine residue. The excited state dynamics of theγL(g+folded form of N-acetylphenylalaninylamide (NAPA B and its amide-N-methylated derivative (NAPMA B is reviewed and compared to the dynamics of the monohydrated structure of NAPA (NAPAH. The goal is to unravel how the environment, and in particular solvation, impacts the photodynamics of peptides. The systems are investigated using reaction path calculations and surface hopping nonadiabatic dynamics based on the coupled cluster doubles (CC2 method and time-dependent density functional theory. The work emphasizes the role that excitation transfer from the phenylππ*to amidenπ*state plays in the deactivation of the three systems and shows how the ease of out-of-plane distortions of the amide group determines the rate of population transfer between the two electronic states. The subsequent dynamics on thenπ*state is barrierless along several pathways and leads to fast deactivation to the ground electronic state.

  1. Comparative study of the mechanical properties of nanostructured thin films on stretchable substrates

    Energy Technology Data Exchange (ETDEWEB)

    Djaziri, S. [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf (Germany); Institut P' (UPR 3346 CNRS), Université de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Renault, P.-O.; Le Bourhis, E.; Goudeau, Ph., E-mail: Philippe.goudeau@univ-poitiers.fr [Institut P' (UPR 3346 CNRS), Université de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Faurie, D. [LSPM, (UPR 3407 CNRS), Université Paris 13, Institut Galilée, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse (France); Geandier, G. [Institut Jean Lamour (UMR 3079 CNRS), Université de Lorraine, Parc de Saurupt, CS 50840, 54011 NANCY Cedex (France); Mocuta, C.; Thiaudière, D. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France)

    2014-09-07

    Comparative studies of the mechanical behavior between copper, tungsten, and W/Cu nanocomposite based on copper dispersoïd thin films were performed under in-situ controlled tensile equi-biaxial loadings using both synchrotron X-ray diffraction and digital image correlation techniques. The films first deform elastically with the lattice strain equal to the true strain given by digital image correlation measurements. The Cu single thin film intrinsic elastic limit of 0.27% is determined below the apparent elastic limit of W and W/Cu nanocomposite thin films, 0.30% and 0.49%, respectively. This difference is found to be driven by the existence of as-deposited residual stresses. Above the elastic limit on the lattice strain-true strain curves, we discriminate two different behaviors presumably footprints of plasticity and fracture. The Cu thin film shows a large transition domain (0.60% true strain range) to a plateau with a smooth evolution of the curve which is associated to peak broadening. In contrast, W and W/Cu nanocomposite thin films show a less smooth and reduced transition domain (0.30% true strain range) to a plateau with no peak broadening. These observations indicate that copper thin film shows some ductility while tungsten/copper nanocomposites thin films are brittle. Fracture resistance of W/Cu nanocomposite thin film is improved thanks to the high compressive residual stress and the elimination of the metastable β-W phase.

  2. Comparative study of the mechanical properties of nanostructured thin films on stretchable substrates

    Science.gov (United States)

    Djaziri, S.; Renault, P.-O.; Le Bourhis, E.; Goudeau, Ph.; Faurie, D.; Geandier, G.; Mocuta, C.; Thiaudière, D.

    2014-09-01

    Comparative studies of the mechanical behavior between copper, tungsten, and W/Cu nanocomposite based on copper dispersoïd thin films were performed under in-situ controlled tensile equi-biaxial loadings using both synchrotron X-ray diffraction and digital image correlation techniques. The films first deform elastically with the lattice strain equal to the true strain given by digital image correlation measurements. The Cu single thin film intrinsic elastic limit of 0.27% is determined below the apparent elastic limit of W and W/Cu nanocomposite thin films, 0.30% and 0.49%, respectively. This difference is found to be driven by the existence of as-deposited residual stresses. Above the elastic limit on the lattice strain-true strain curves, we discriminate two different behaviors presumably footprints of plasticity and fracture. The Cu thin film shows a large transition domain (0.60% true strain range) to a plateau with a smooth evolution of the curve which is associated to peak broadening. In contrast, W and W/Cu nanocomposite thin films show a less smooth and reduced transition domain (0.30% true strain range) to a plateau with no peak broadening. These observations indicate that copper thin film shows some ductility while tungsten/copper nanocomposites thin films are brittle. Fracture resistance of W/Cu nanocomposite thin film is improved thanks to the high compressive residual stress and the elimination of the metastable β-W phase.

  3. Highly flexible, transparent and conducting CuS-nanosheet networks for flexible quantum-dot solar cells.

    Science.gov (United States)

    Xu, Zijie; Li, Teng; Zhang, Fayin; Hong, Xiaodan; Xie, Shuyao; Ye, Meidan; Guo, Wenxi; Liu, Xiangyang

    2017-03-17

    The rapid development of modern electronics has given rise to a higher demand for flexible and wearable energy sources. Flexible transparent conducting electrodes (TCEs) are one of the essential components of flexible/wearable thin-film solar cells (SCs). In this regard, we present highly transparent and conducting CuS-nanosheet (NS) networks with an optimized sheet resistance (Rs) as low as 50 Ω sq(-1) at 85% transmittance as a counter electrode (CE) for flexible quantum-dot solar cells (QDSCs). The CuS NS network electrode exhibits remarkable mechanical flexibility under bending tests compared to traditional ITO/plastic substrates and sputtered CuS films. Herein, CuS NS networks not only served as conducting films for collecting electrons from the external circuit, but also served as superior catalysts for reducing polysulfide (S(2-)/Sx(2-)) electrolytes. A power conversion efficiency (PCE) up to 3.25% was achieved for the QDSCs employing CuS NS networks as CEs, which was much higher than those of the devices based on Pt networks and sputtered CuS films. We believe that such CuS network TCEs with high flexibility, transparency, conductivity and catalytic activity could be widely used in making wearable electronic products.

  4. Energy implications of mechanical and mechanical–biological treatment compared to direct waste-to-energy

    Energy Technology Data Exchange (ETDEWEB)

    Cimpan, Ciprian, E-mail: cic@kbm.sdu.dk; Wenzel, Henrik

    2013-07-15

    Highlights: • Compared systems achieve primary energy savings between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste.} • Savings magnitude is foremost determined by chosen primary energy and materials production. • Energy consumption and process losses can be upset by increased technology efficiency. • Material recovery accounts for significant shares of primary energy savings. • Direct waste-to-energy is highly efficient if cogeneration (CHP) is possible. - Abstract: Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical–biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste}, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3–9.5%, 1–18% and 1–8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat

  5. Synthesis and Characterizations of Novel Ca-Mg-Ti-Fe-Oxides Based Ceramic Nanocrystals and Flexible Film of Polydimethylsiloxane Composite with Improved Mechanical and Dielectric Properties for Sensors

    Science.gov (United States)

    Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Azrin Shah, Nabila Farhana; Shasmin, Hanie Nadia; Radzi, Zamri; Abu Osman, Noor Azuan

    2016-01-01

    Armalcolite, a rare ceramic mineral and normally found in the lunar earth, was synthesized by solid-state step-sintering. The in situ phase-changed novel ceramic nanocrystals of Ca-Mg-Ti-Fe based oxide (CMTFOx), their chemical reactions and bonding with polydimethylsiloxane (PDMS) were determined by X-ray diffraction, infrared spectroscopy, and microscopy. Water absorption of all the CMTFOx was high. The lower dielectric loss tangent value (0.155 at 1 MHz) was obtained for the ceramic sintered at 1050 °C (S1050) and it became lowest for the S1050/PDMS nanocomposite (0.002 at 1 MHz) film, which was made by spin coating at 3000 rpm. The excellent flexibility (static modulus ≈ 0.27 MPa and elongation > 90%), viscoelastic property (tanδ = E″/E′: 0.225) and glass transition temperature (Tg: −58.5 °C) were obtained for S1050/PDMS film. Parallel-plate capacitive and flexible resistive humidity sensors have been developed successfully. The best sensing performance of the present S1050 (3000%) and its flexible S1050/PDMS composite film (306%) based humidity sensors was found to be at 100 Hz, better than conventional materials. PMID:26927116

  6. Synthesis and Characterizations of Novel Ca-Mg-Ti-Fe-Oxides Based Ceramic Nanocrystals and Flexible Film of Polydimethylsiloxane Composite with Improved Mechanical and Dielectric Properties for Sensors

    Directory of Open Access Journals (Sweden)

    Ashis Tripathy

    2016-02-01

    Full Text Available Armalcolite, a rare ceramic mineral and normally found in the lunar earth, was synthesized by solid-state step-sintering. The in situ phase-changed novel ceramic nanocrystals of Ca-Mg-Ti-Fe based oxide (CMTFOx, their chemical reactions and bonding with polydimethylsiloxane (PDMS were determined by X-ray diffraction, infrared spectroscopy, and microscopy. Water absorption of all the CMTFOx was high. The lower dielectric loss tangent value (0.155 at 1 MHz was obtained for the ceramic sintered at 1050 °C (S1050 and it became lowest for the S1050/PDMS nanocomposite (0.002 at 1 MHz film, which was made by spin coating at 3000 rpm. The excellent flexibility (static modulus ≈ 0.27 MPa and elongation > 90%, viscoelastic property (tanδ = E″/E′: 0.225 and glass transition temperature (Tg: −58.5 °C were obtained for S1050/PDMS film. Parallel-plate capacitive and flexible resistive humidity sensors have been developed successfully. The best sensing performance of the present S1050 (3000% and its flexible S1050/PDMS composite film (306% based humidity sensors was found to be at 100 Hz, better than conventional materials.

  7. Cross-level effects of high-performance work practices on burnout: Two counteracting mediating mechanisms compared

    NARCIS (Netherlands)

    Voorde, F.C. van de; Kroon, B.; Veldhoven, M.J.P.M. van

    2009-01-01

    Purpose - The purpose of this paper is to explore the impact of management practices - specifically, high-performance work practices (HPWPs) - on employee burnout. Two potential mediating mechanisms that counterbalance each other in the development of burnout are compared: a critical mechanism that

  8. Introducing Viewpoints of Mechanics into Basic Growth Analysis (1) : Three Aspects of Growth Mechanics compared with Three Law of Motion

    OpenAIRE

    Shimojo, Masataka; Ikeda, Kentaro; Asano, Yoki; Ishiwaka, Reiko; Sato, Hiroyuki; Nakano, Yutaka; Tobisa, Manabu; Oba, Noriko; Eguchi, Minako; Masuda, Yasuhisa

    2006-01-01

    This study was conducted to analyze growth phenomena by introducing mechanical viewpoints into basic growth analysis. Relating weight (W), absolute growth rate (AGR) and growth acceleration (GA) suggested that (AGR)^2, which was described as the product of W and GA, looked like force involved in the growth of an animal or a plant. This might be due to the resemblance to the second law of Newton’s three laws of motion, where the product of mass and acceleration is related with force to an obje...

  9. Balance and flexibility.

    Science.gov (United States)

    2003-12-01

    The 'work-life balance' and flexible working are currently key buzz terms in the NHS. Those looking for more information on these topics should visit Flexibility at www.flexibility.co.uk for a host of resources designed to support new ways of working, including information on flexible workers and flexible rostering, the legal balancing act for work-life balance and home working.

  10. Development of a 6-DOF manipulator driven by flexible shaft for minimally invasive surgical application.

    Science.gov (United States)

    Liu, Quanquan; Kobayashi, Yo; Noguchi, Takahiko; Inko, Elgezua; Sekiguchi, Yuta; Zhang, Bo; Ye, Jing; Toyoda, Kazutaka; Hashizume, Makoto; Fujie, Masakatsu G

    2013-01-01

    This paper presents a 6-DOF manipulator which consists of four parts, 1-DOF translational joint, two 2-DOF bending joints (segment1 and segment2), and 1-DOF rotational gripper. The manipulator with "flexible shaft and Double Screw Drive (DSD) mechanism" structure can obtain omni-directional bending motion through rotation of flexible shafts. In the first prototype, the flexible shafts were connected directly with the actuators in the manipulator. Compared with the first prototype, in the second prototype, flexible shafts for power transmission are connected to the base of the manipulator. Universal joints are used for power transmission to realize distal motion. The improvement done with the design of the second prototype reduced the torque necessary to drive the flexible shafts during motion in surgical interventions. Experiment results show that the manipulator has enough range of movement for surgical intervention.

  11. Flexible packaging for PV modules

    Science.gov (United States)

    Dhere, Neelkanth G.

    2008-08-01

    Economic, flexible packages that provide needed level of protection to organic and some other PV cells over >25-years have not yet been developed. However, flexible packaging is essential in niche large-scale applications. Typical configuration used in flexible photovoltaic (PV) module packaging is transparent frontsheet/encapsulant/PV cells/flexible substrate. Besides flexibility of various components, the solder bonds should also be flexible and resistant to fatigue due to cyclic loading. Flexible front sheets should provide optical transparency, mechanical protection, scratch resistance, dielectric isolation, water resistance, UV stability and adhesion to encapsulant. Examples are Tefzel, Tedlar and Silicone. Dirt can get embedded in soft layers such as silicone and obscure light. Water vapor transmittance rate (WVTR) of polymer films used in the food packaging industry as moisture barriers are ~0.05 g/(m2.day) under ambient conditions. In comparison, light emitting diodes employ packaging components that have WVTR of ~10-6 g/(m2.day). WVTR of polymer sheets can be improved by coating them with dense inorganic/organic multilayers. Ethylene vinyl acetate, an amorphous copolymer used predominantly by the PV industry has very high O2 and H2O diffusivity. Quaternary carbon chains (such as acetate) in a polymer lead to cleavage and loss of adhesional strength at relatively low exposures. Reactivity of PV module components increases in presence of O2 and H2O. Adhesional strength degrades due to the breakdown of structure of polymer by reactive, free radicals formed by high-energy radiation. Free radical formation in polymers is reduced when the aromatic rings are attached at regular intervals. This paper will review flexible packaging for PV modules.

  12. Comparative Mechanisms of Photosynthetic Carbon Acquisitionin Hizikiafusiforme Under Submersed and Emersed Conditions

    Institute of Scientific and Technical Information of China (English)

    ZOUDing-Hui; GAOKun-Shan

    2004-01-01

    The economic seaweed Hizikia fusiforme (Harv.) Okamura (Sargassaceae, Phaeophyta) usually experiences periodical exposures to air at low tide. Photosynthetic carbon acquisition mechanisms were comparatively studied under submersed and emersed conditions in order to establish a general understanding of its photosynthetic characteristics associated with tidal cycles. When submersed in seawater, H.fusiforme was capable of acquiring HCO3- as a source of inorganic carbon (Ci) to drive photosynthesis, while emersed and exposed to air, it used atmospheric 002 for photosynthesis. The pH changes surroundingthe H.fusiforme fronds had less influence on the photosynthetic rates under emersed condition than under submersed condition. When the pH was as high as 10.0, emersed H.fusiforme could photosynthesize efficiently, but the submersed alga exhibited very poor photosynthesis. Extracellular carbonic anhydrase (CA) played an important role in the photosynthetic acquisitions of exogenous Ci in water as well as in air. Both the concentrations of dissolved inorganic carbon in general seawater and CO2 in air were demonstrated to limit the photosynthesis of H.fusiforme, which was sensitive to O2. It appeared that the exogenous carbon acquisition system, being dependent of external CA activity, operates in a way not enough to raise intracellular CO2 level to prevent photorespiration. The inability of H.fusiforme to achieve its maximum photosynthetic rate at the current ambient Ci levels under both submersed and emersed conditions suggested that the yield of aquaculture for this economic species would respond profitably to future increases in CO2 concentration in the sea and air.

  13. Composite Flexible Blanket Insulation

    Science.gov (United States)

    Kourtides, Demetrius A. (Inventor); Pitts, William C. (Inventor); Goldstein, Howard E. (Inventor); Sawko, Paul M. (Inventor)

    1991-01-01

    Composite flexible multilayer insulation systems (MLI) were evaluated for thermal performance and compared with the currently used fibrous silica (baseline) insulation system. The systems described are multilayer insulations consisting of alternating layers of metal foil and scrim ceramic cloth or vacuum metallized polymeric films quilted together using ceramic thread. A silicon carbide thread for use in the quilting and the method of making it are also described. These systems are useful in providing lightweight insulation for a variety of uses, particularly on the surface of aerospace vehicles subject to very high temperatures during flight.

  14. Metallic Fabrics as the Current Collector for High-Performance Graphene-Based Flexible Solid-State Supercapacitor.

    Science.gov (United States)

    Yu, Jianhui; Wu, Jifeng; Wang, Haozong; Zhou, Anan; Huang, Chaoqiang; Bai, Hua; Li, Lei

    2016-02-01

    Flexible solid-state supercapacitors attract more and more attention as the power supply for wearable electronics. To fabricate such devices, the flexible and economical current collectors are needed. In this paper, we report the stainless steel fabrics as the current collector for high-performance graphene-based supercapacitors. The stainless steel fabrics have superior properties compared with the widely used flexible current collectors. The flexible supercapacitors show large specific capacitance of 180.4 mF/cm(2), and capacitance retention of 96.8% after 7500 charge-discharge cycles. Furthermore, 96.4% of the capacitance is retained after 800 repeating stretching-bending cycles. The high performance is related to the excellent conductivity, good mechanical flexibility, and high electrochemical stability of the stainless steel fabrics. The achievement of such high-performance and flexible supercapacitor can open up exciting opportunities for wearable electronics and energy storage applications.

  15. Comparative effect of mechanical beating and nanofibrillation of cellulose on paper properties made from bagasse and softwood pulps.

    Science.gov (United States)

    Afra, Elyas; Yousefi, Hossein; Hadilam, Mohamad Mahdi; Nishino, Takashi

    2013-09-12

    Cellulose fibers were fibrillated using mechanical beating (shearing refiner) and ultra-fine friction grinder, respectively. The fibrillated fibers were then used to make paper. Mechanical beating process created a partial skin fibrillation, while grinding turned fiber from micro to nanoscale through nanofibrillation mechanism. The partially fibrillated and nano fibrillated fibers had significant effects on paper density, tear strength, tensile strength and water drainage time. The effect of nanofibrillation on paper properties was quantitatively higher than that of mechanical beating. Paper sheets from nanofibrillated cellulose have a higher density, higher tensile strength and lower tear strength compared to those subjected to mechanical beating. Mechanical beating and nanofibrillation were both found to be promising fiber structural modifications. Long water drainage time was an important drawback of both fibrillation methods.

  16. Towards automated visual flexible endoscope navigation

    NARCIS (Netherlands)

    Stap, van der N.; Heijden, van der F.; Broeders, I.A.M.J.

    2013-01-01

    Background: The design of flexible endoscopes has not changed significantly in the past 50 years. A trend is observed towards a wider application of flexible endoscopes with an increasing role in complex intraluminal therapeutic procedures. The nonintuitive and nonergonomical steering mechanism now

  17. Flexible electrostatic nanogenerator using graphene oxide film.

    Science.gov (United States)

    Tian, He; Ma, Shuo; Zhao, Hai-Ming; Wu, Can; Ge, Jie; Xie, Dan; Yang, Yi; Ren, Tian-Ling

    2013-10-07

    Recently, graphene oxide (GO) super capacitors with ultra-high energy densities have received significant attention. In addition to their use in energy storage, GO capacitors might also have broad applications in renewable energy engineering, such as energy harvesting. Here, a flexible nanogenerator based on GO film is designed. A multilayer structure Al/PI/GO/PI/ITO is made on a flexible PET substrate. The GO nanogenerator could generate a peak voltage of 2 V with a current of 30 nA upon the repetitive application of a 15 N force with a frequency of 1 Hz. Moreover, the output voltage was increased to 34.4 V upon increasing the frequency of force application to 10 Hz. Compared with control samples, embedding GO film with a release structure into the device could significantly enhance the output voltage from 0.1 V to 2.0 V. The mechanism of our nanogenerator can be explained by an electrostatic effect, which is fundamentally different from that of previously reported piezoelectric and triboelectric generators. In this manuscript, we demonstrate flexible nanogenerators with large-area graphene based materials, which may open up new avenues of research with regard to applications in energy harvesting.

  18. Comparative analysis of the molecular mechanisms of recombination in hepatitis C virus

    DEFF Research Database (Denmark)

    Galli, Andrea; Bukh, Jens

    2014-01-01

    Genetic recombination is an important evolutionary mechanism for RNA viruses. The significance of this phenomenon for hepatitis C virus (HCV) has recently become evident, with the identification of circulating recombinant forms in HCV-infected individuals and by novel data from studies permitted...... by advances in HCV cell culture systems and genotyping protocols. HCV is readily able to produce viable recombinants, using replicative and non-replicative molecular mechanisms. However, our knowledge of the required molecular mechanisms remains limited. Understanding how HCV recombines might be instrumental...... will focus on current data available on HCV recombination, also in relation to more detailed data from other RNA viruses....

  19. Developmental constraints on behavioural flexibility.

    Science.gov (United States)

    Holekamp, Kay E; Swanson, Eli M; Van Meter, Page E

    2013-05-19

    We suggest that variation in mammalian behavioural flexibility not accounted for by current socioecological models may be explained in part by developmental constraints. From our own work, we provide examples of constraints affecting variation in behavioural flexibility, not only among individuals, but also among species and higher taxonomic units. We first implicate organizational maternal effects of androgens in shaping individual differences in aggressive behaviour emitted by female spotted hyaenas throughout the lifespan. We then compare carnivores and primates with respect to their locomotor and craniofacial adaptations. We inquire whether antagonistic selection pressures on the skull might impose differential functional constraints on evolvability of skulls and brains in these two orders, thus ultimately affecting behavioural flexibility in each group. We suggest that, even when carnivores and primates would theoretically benefit from the same adaptations with respect to behavioural flexibility, carnivores may nevertheless exhibit less behavioural flexibility than primates because of constraints imposed by past adaptations in the morphology of the limbs and skull. Phylogenetic analysis consistent with this idea suggests greater evolutionary lability in relative brain size within families of primates than carnivores. Thus, consideration of developmental constraints may help elucidate variation in mammalian behavioural flexibility.

  20. Material challenge for flexible organic devices

    Directory of Open Access Journals (Sweden)

    Jay Lewis

    2006-04-01

    Full Text Available Outside of the active device layers, there are a variety of requisite functional layers in flexible organic electronic devices. Whether the application is in displays, lighting, integrated circuits, or photovoltaics, there are materials challenges in implementing flexible and/or organic devices into practical applications. We highlight two topics that are common to most flexible electronic technologies. First, we describe the difficulty in developing suitable permeation barriers on polymer substrates, the approaches being taken to solve this problem, and their current status. Second, we highlight the limited mechanical ruggedness of brittle inorganic films and present approaches for improving overall device flexibility.

  1. Uso de mascarilla laríngea para fibrobroncoscopía en lactantes durante ventilación mecánica USE OF LARYNGEAL MASK WHILE FLEXIBLE BRONCHOSCOPY IS PERFORMED IN INFANTS UNDER MECHANICAL VENTILATION

    Directory of Open Access Journals (Sweden)

    CECILIA ALVAREZ G.

    2002-04-01

    Full Text Available La mascarilla laríngea (ML se utiliza para el manejo de la vía aérea en adultos y niños bajo anestesia general con el objetivo de evitar la intubación traqueal y su uso se ha extendido para fibrobroncoscopía bajo anestesia general. Durante ventilación mecánica (VM la fibrobroncoscopía (FB se limita a tubos endotraqueales (TET > 4,5 mm de diámetro ya que el fibrobroncoscopio con canal de succión más pequeño es de 3,5 mm. Nuestro objetivo fue evaluar la utilidad de la ML para FB en niños sometidos a VM con TET Laryngeal mask (LM has been used to manage airways during general anesthesia, in both children and adults, to avoid tracheal intubation. Lately its use has been extended to perform flexible bronchoscopy (FB. In an infant under mechanical ventilation (MV, most of FB require an endotracheal tube # 4.5 because the smallest instrument with a suction channel has a 3.5 mm diameter. Our objective was to evaluate the use of LM while performing FB in patients on MV. Patients were sedated (atropine- midazolam and vecuronium, and monitored with transcutaneous oxygen saturation and cardiorespiratory monitor in an Intensive Care Unit setup. LM was introduced, and its position was verified by clinical auscultation. FB Olympus BF C-30, with 3.5 mm diameter was used. From December 1997 to October 1998 eleven procedures were done in 6 patients. Their mean age was 6.2 months (range: 0.5-33, weight 4.9 kg (2.7-10.5. MV parameters were FiO2 0.45 (0.4-1, MIP 28.4 cm H2O (20-60 and PEEP 5,18 cm H2O (3-8. In all patients we used LM # 1.0, with an internal diameter 5.25 mm. Indications for FB were: atelectasis (6, tracheobronchomalacia (2, hemoptisis (2 and subglotic stenosis (1. LM was introduced during the first attempt in 9 procedures, without complications. We maintained positive pressure ventilation without displacements of LM. After the FB, the patients were reintubated, with similar parameters compared to prior procedure. To sum up, we found

  2. Meningococcal genetic variation mechanisms viewed through comparative analysis of serogroup C strain FAM18.

    Directory of Open Access Journals (Sweden)

    Stephen D Bentley

    2007-02-01

    Full Text Available The bacterium Neisseria meningitidis is commonly found harmlessly colonising the mucosal surfaces of the human nasopharynx. Occasionally strains can invade host tissues causing septicaemia and meningitis, making the bacterium a major cause of morbidity and mortality in both the developed and developing world. The species is known to be diverse in many ways, as a product of its natural transformability and of a range of recombination and mutation-based systems. Previous work on pathogenic Neisseria has identified several mechanisms for the generation of diversity of surface structures, including phase variation based on slippage-like mechanisms and sequence conversion of expressed genes using information from silent loci. Comparison of the genome sequences of two N. meningitidis strains, serogroup B MC58 and serogroup A Z2491, suggested further mechanisms of variation, including C-terminal exchange in specific genes and enhanced localised recombination and variation related to repeat arrays. We have sequenced the genome of N. meningitidis strain FAM18, a representative of the ST-11/ET-37 complex, providing the first genome sequence for the disease-causing serogroup C meningococci; it has 1,976 predicted genes, of which 60 do not have orthologues in the previously sequenced serogroup A or B strains. Through genome comparison with Z2491 and MC58 we have further characterised specific mechanisms of genetic variation in N. meningitidis, describing specialised loci for generation of cell surface protein variants and measuring the association between noncoding repeat arrays and sequence variation in flanking genes. Here we provide a detailed view of novel genetic diversification mechanisms in N. meningitidis. Our analysis provides evidence for the hypothesis that the noncoding repeat arrays in neisserial genomes (neisserial intergenic mosaic elements provide a crucial mechanism for the generation of surface antigen variants. Such variation will have an

  3. Meningococcal genetic variation mechanisms viewed through comparative analysis of serogroup C strain FAM18.

    Directory of Open Access Journals (Sweden)

    Stephen D Bentley

    2007-02-01

    Full Text Available The bacterium Neisseria meningitidis is commonly found harmlessly colonising the mucosal surfaces of the human nasopharynx. Occasionally strains can invade host tissues causing septicaemia and meningitis, making the bacterium a major cause of morbidity and mortality in both the developed and developing world. The species is known to be diverse in many ways, as a product of its natural transformability and of a range of recombination and mutation-based systems. Previous work on pathogenic Neisseria has identified several mechanisms for the generation of diversity of surface structures, including phase variation based on slippage-like mechanisms and sequence conversion of expressed genes using information from silent loci. Comparison of the genome sequences of two N. meningitidis strains, serogroup B MC58 and serogroup A Z2491, suggested further mechanisms of variation, including C-terminal exchange in specific genes and enhanced localised recombination and variation related to repeat arrays. We have sequenced the genome of N. meningitidis strain FAM18, a representative of the ST-11/ET-37 complex, providing the first genome sequence for the disease-causing serogroup C meningococci; it has 1,976 predicted genes, of which 60 do not have orthologues in the previously sequenced serogroup A or B strains. Through genome comparison with Z2491 and MC58 we have further characterised specific mechanisms of genetic variation in N. meningitidis, describing specialised loci for generation of cell surface protein variants and measuring the association between noncoding repeat arrays and sequence variation in flanking genes. Here we provide a detailed view of novel genetic diversification mechanisms in N. meningitidis. Our analysis provides evidence for the hypothesis that the noncoding repeat arrays in neisserial genomes (neisserial intergenic mosaic elements provide a crucial mechanism for the generation of surface antigen variants. Such variation will have an

  4. Inorganic semiconductors for flexible electronics.

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.; Rogers, J. A.; Center for Nanoscale Materials; Univ. of Illinois

    2007-08-03

    This article reviews several classes of inorganic semiconductor materials that can be used to form high-performance thin-film transistors (TFTs) for large area, flexible electronics. Examples ranging from thin films of various forms of silicon to nanoparticles and nanowires of compound semiconductors are presented, with an emphasis on methods of depositing and integrating thin films of these materials into devices. Performance characteristics, including both electrical and mechanical behavior, for isolated transistors as well as circuits with various levels of complexity are reviewed. Collectively, the results suggest that flexible or printable inorganic materials may be attractive for a range of applications not only in flexible but also in large-area electronics, from existing devices such as flat-panel displays to more challenging (in terms of both cost and performance requirements) systems such as large area radiofrequency communication devices, structural health monitors, and conformal X-ray imagers.

  5. A comparative analysis of renewable electricity support mechanisms for Southeast Asia

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [National University of Singapore, Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, 469C Bukit Timah Road, Singapore 259772 (Singapore)

    2010-04-15

    This study evaluates the applicability of eight renewable electricity policy mechanisms for Southeast Asian electricity markets. It begins by describing the methodology behind 90 research interviews of stakeholders in the electricity industry. It then outlines four justifications given by respondents for government intervention to support renewables in Southeast Asia: unpriced negative externalities, counteracting subsidies for conventional energy sources, the public goods aspect of renewable energy, and the presence of non-technical barriers. The article develops an analytical framework to evaluate renewable portfolio standards, green power programs, public research and development expenditures, systems benefits charges, investment tax credits, production tax credits, tendering, and feed-in tariffs in Southeast Asia. It assesses each of these mechanisms according to the criteria of efficacy, cost effectiveness, dynamic efficiency, equity, and fiscal responsibility. The study concludes that one mechanism, feed-in tariffs, is both the most preferred by respondents and the only one that meets all criteria. (author)

  6. The comparative analysis of the different mechanisms of toroidal rotation in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Sabot, R. [Association Euratom-CEA, Centre d`Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Parail, V. [Kurchatov Institute, Moscow (Russian Federation)

    1994-07-01

    The toroidal plasma rotation appears as one the possible mechanism for suppression of plasma turbulence. Several mechanisms are believed to contribute to the toroidal plasma rotation. The results of numerical simulation of the toroidal rotation on JET are presented, where are taken into consideration the following effects: the neoclassical viscosity due to banana and ripple trapped particles, the anomalous viscosity due to plasma turbulence, the momentum input by NBI (neutron beam injection) and ion momentum loss near the separatrix due to prompt ion losses. The NBI appeared to be the principal source of toroidal plasma rotation. 6 refs., 2 figs.

  7. VERIFICATION OF TORSIONAL OSCILLATING MECHANICAL SYSTEM DYNAMIC CALCULATION RESULTS

    Directory of Open Access Journals (Sweden)

    Peter KAŠŠAY

    2014-09-01

    Full Text Available On our department we deal with optimization and tuning of torsional oscillating mechanical systems. When solving these problems we often use results of dynamic calculation. The goal of this article is to compare values obtained by computation and experimentally. For this purpose, a mechanical system built in our laboratory was used. At first, classical HARDY type flexible coupling has been applied into the system, then we used a pneumatic flexible shaft coupling developed by us. The main difference of these couplings over conventional flexible couplings is that they can change their dynamic properties during operation, by changing the pressure of the gaseous medium in their flexible elements.

  8. Three-dimensional Aerographite-GaN hybrid networks: Single step fabrication of porous and mechanically flexible materials for multifunctional applications

    Science.gov (United States)

    Schuchardt, Arnim; Braniste, Tudor; Mishra, Yogendra K.; Deng, Mao; Mecklenburg, Matthias; Stevens-Kalceff, Marion A.; Raevschi, Simion; Schulte, Karl; Kienle, Lorenz; Adelung, Rainer; Tiginyanu, Ion

    2015-03-01

    Three dimensional (3D) elastic hybrid networks built from interconnected nano- and microstructure building units, in the form of semiconducting-carbonaceous materials, are potential candidates for advanced technological applications. However, fabrication of these 3D hybrid networks by simple and versatile methods is a challenging task due to the involvement of complex and multiple synthesis processes. In this paper, we demonstrate the growth of Aerographite-GaN 3D hybrid networks using ultralight and extremely porous carbon based Aerographite material as templates by a single step hydride vapor phase epitaxy process. The GaN nano- and microstructures grow on the surface of Aerographite tubes and follow the network architecture of the Aerographite template without agglomeration. The synthesized 3D networks are integrated with the properties from both, i.e., nanoscale GaN structures and Aerographite in the form of flexible and semiconducting composites which could be exploited as next generation materials for electronic, photonic, and sensors applications.

  9. Mechanical strength of ceramic scaffolds reinforced with biopolymers is comparable to that of human bone

    DEFF Research Database (Denmark)

    Henriksen, S S; Ding, M; Vinther Juhl, M

    2011-01-01

    Eight groups of calcium-phosphate scaffolds for bone implantation were prepared of which seven were reinforced with biopolymers, poly lactic acid (PLA) or hyaluronic acid in different concentrations in order to increase the mechanical strength, without significantly impairing the microarchitectur...

  10. A Comparative Analysis of the Mechanical Role of Leaf Sheaths of Poaceae, Juncaceae, and Cyperaceae

    Directory of Open Access Journals (Sweden)

    Andreas Kempe

    2013-01-01

    Full Text Available Similarities in structural organization of the culm in Poaceae, Juncaceae, and Cyperaceae such as leaf sheaths and the presence of intercalary meristems at every node suggest the same mechanical properties and, accordingly, the same functionality. Meristems are zones of tissue formation, which constitute areas of weakness along the entire culm and provide the basis for rapid shoot elongation. Leaf sheaths clasp the culm preventing the shoot from breaking, ensuring the rigidity to grow erectly and to avoid damage of the meristematic tissue. The mechanical influence of leaf sheaths was investigated in members of Poaceae, Juncaceae, and Cyperaceae in the flowering stage. Mechanical properties of Poa araratica, Bromus erectus, Arrhenatherum elatius (Poaceae, Luzula nivea (Juncaceae, and Carex arctata (Cyperaceae were determined in three-point bending before and after the removal of leaf sheaths. The presence of leaf sheaths results in smoothing the distribution of flexural rigidity and therefore avoids stress peaks. The achieved maxima of relative contribution of leaf sheaths to entire flexural rigidity ranged from 55% up to 81% for Poaceae, 72% for C. arctata, and 40% for L. nivea. Across the investigated families, the mechanical role of leaf sheaths could be verified as essential for culm stability during development and beyond.

  11. Resonant Electromagnetic Shunt Damping of Flexible Structures

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker

    2016-01-01

    Electromagnetic transducers convert mechanical energy to electrical energy and vice versa. Effective passive vibration damping of flexible structures can therefore be introduced by shunting with an accurately calibrated resonant electrical network thatcontains a capacitor to create the desired...

  12. Multisensory integration : flexible use of general operations

    NARCIS (Netherlands)

    Van Atteveldt, N.; Murray, Micah M; Thut, Gregor; Schroeder, Charles E

    2014-01-01

    Research into the anatomical substrates and "principles" for integrating inputs from separate sensory surfaces has yielded divergent findings. This suggests that multisensory integration is flexible and context dependent and underlines the need for dynamically adaptive neuronal integration mechanism

  13. Plakilactones G and H from a marine sponge. Stereochemical determination of highly flexible systems by quantitative NMR-derived interproton distances combined with quantum mechanical calculations of 13C chemical shifts

    Directory of Open Access Journals (Sweden)

    Simone Di Micco

    2013-12-01

    Full Text Available In this paper the stereostructural investigation of two new oxygenated polyketides, plakilactones G and H, isolated from the marine sponge Plakinastrella mamillaris collected at Fiji Islands, is reported. The stereostructural studies began on plakilactone H by applying an integrated approach of the NOE-based protocol and quantum mechanical calculations of 13C chemical shifts. In particular, plakilactone H was used as a template to extend the application of NMR-derived interproton distances to a highly flexible molecular system with simultaneous assignment of four non-contiguous stereocenters. Chemical derivatization and quantum mechanical calculations of 13C on plakilactone G along with a plausible biogenetic interconversion between plakilactone G and plakilactone H allowed us to determine the absolute configuration in this two new oxygenated polyketides.

  14. Ageing characterization of exhaust flexible couplings

    OpenAIRE

    2012-01-01

    The aim of this work is to investigate the mechanical strength of automotive exhaust flexible couplings subjected to thermo-mechanical fatigue and corrosion. Five different types of flexible coupling have been considered, realised by four different king of materials: three stainless steels (AISI 309, AISI 321, AISI 321 Ti) and a nickel alloy (Incoloy 825). These components have been tested by a dedicated procedure consisting of different cycles of fatigue, heating and corrosion. Performances ...

  15. Ethics Oversight Mechanisms for Surgical Innovation: A Systematic and Comparative Review of Arguments.

    Science.gov (United States)

    Karpowicz, Lila; Bell, Emily; Racine, Eric

    2016-04-01

    Surgical innovation typically falls under the purview of neither conventional clinical ethics nor research ethics. Due to a lack of oversight for surgical innovation-combined with a potential for significant risk-a wide range of arguments has been advanced in the literature to support or undermine various oversight mechanisms. To scrutinize the argumentation surrounding oversight options, we conducted a systematic review of published arguments. We found that the arguments are typically grounded in common sense and speculation instead of evidence. Presently, the justification or superiority for any single oversight mechanism for surgical innovation cannot be established convincingly. We suggest ways to improve the argument-based literature and discuss the value of systematic reviews of arguments and reasons. © The Author(s) 2016.

  16. Bioactive nanoparticle-gelatin composite scaffold with mechanical performance comparable to cancellous bones.

    Science.gov (United States)

    Wang, Chen; Shen, Hong; Tian, Ye; Xie, Yue; Li, Ailing; Ji, Lijun; Niu, Zhongwei; Wu, Decheng; Qiu, Dong

    2014-08-13

    Mechanical properties are among the most concerned issues for artificial bone grafting materials. The scaffolds used for bone grafts are either too brittle (glass) or too weak (polymer), and therefore composite scaffolds are naturally expected as the solution. However, despite the intensive studies on composite bone grafting materials, there still lacks a material that could be matched to the natural cancellous bones. In this study, nanosized bioactive particles (BP) with controllable size and good colloidal stability were used to composite with gelatin, forming macroporous scaffolds. It was found that the mechanical properties of obtained composite scaffolds, in terms of elastic modulus, compressive strength, and strain at failure, could match to that of natural cancellous bones. This is ascribed to the good distribution of particle in matrix and strong interaction between particle and gelatin. Furthermore, the incorporation of BPs endues the composite scaffolds with bioactivity, forming HA upon reacting with simulated body fluid (SBF) within days, thus stimulating preosteoblasts attachment, growth, and proliferation in these scaffolds. Together with their good mechanical properties, these composite scaffolds are promising artificial bone grating materials.

  17. A comparative study of the effects of constructional elements on the mechanical behaviour of dragonfly wings

    Science.gov (United States)

    Rajabi, H.; Rezasefat, M.; Darvizeh, A.; Dirks, J.-H.; Eshghi, Sh.; Shafiei, A.; Mostofi, T. Mirzababaie; Gorb, S. N.

    2016-01-01

    Although wings of insects show a large variation in morphology, they are all made from a network of irregular veins interconnected through membranous areas. Depending on their shape, size, and position, wing veins are usually divided into three different groups: longitudinal veins, cross-veins and ambient veins. The veins together with the membrane and some other elements such as spines, nodus and pterostigma can be considered as the wing's "constructional elements". In spite of rather extensive literature on dragonfly wing structure, the role of each of these elements in determining the wing's function remains mostly unknown. As this question is difficult to answer in vivo using biomechanical experiments on actual wings, this study was undertaken to reveal the effects of the constructional elements on the mechanical behaviour of dragonfly wings by applying numerical simulations. An image processing technique was used to develop 12 finite element models of the insect wings with different constructional elements. The mechanical behaviour of these models was then simulated under normal and shear stresses due to tension, bending and torsion. A free vibration analysis was also performed to determine the resonant frequencies and the mode shapes of the models. For the first time, a quantitative comparison was carried out between the mechanical effects selectively caused by different elements. Our results suggest that the complex interactions of veins, membranes and corrugations may considerably affect the dynamic deformation of the insect wings during flight.

  18. Strength, flexibility, and maturity in adolescent athletes.

    Science.gov (United States)

    Pratt, M

    1989-05-01

    The relationship between lower-extremity strength and flexibility and maturational status as measured by Tanner staging (TS) was assessed in 84 male high school athletes. The sum of one-repetition maximum lifts for knee extension and flexion was determined and flexibility was measured with the American Alliance of Health, Physical Education, Recreation, and Dance sit-and-reach test. Chronologic age, body weight, and percent fat were also recorded. Strength and flexibility were compared for each maturational and chronologic age category. Maturational age was better correlated with strength and flexibility than was chronologic age. All correlations were significant. Multiple regression analysis demonstrated significant correlations of TS and age with strength and flexibility. Tanner staging had greater predictive value than age for strength and flexibility. After adjusting for age, the relationship between TS and strength remained significant.

  19. Depletion suspends the comparator mechanism in monitoring: The role of chronic self-consciousness in sequential self-regulation.

    Science.gov (United States)

    Jia, Lile; Hirt, Edward R

    2016-08-01

    In 4 studies, we accumulated support for the prediction that depletion suspends the comparator mechanism of self-regulatory monitoring. We adopted an individual difference approach and designated chronic self-consciousness as a signature variable for the comparator mechanism. In the nondepletion condition, we found that self-consciousness predicted self-regulation by itself (Study 1), or by interacting synergistically with other motivational factors such as online goal focus (Study 2) and task motivation (Study 3). In the depletion condition, self-consciousness ceased to predict task performance, which suggested that the self-focused comparator mechanism is suspended by depletion. Instead, depleted participants' self-control was predicted by their implicit goal to rest (Study 3), indicating that depletion does not indiscriminately suspend all self-regulatory processes. In Study 4, we showed that when an effective comparator mechanism is counterproductive to task performance, depletion can actually increase task performance. Implications of our findings for the underlying process of depletion as well as models positing ultimate explanations for sequential self-regulation are discussed. (PsycINFO Database Record

  20. Microstructure and compressive mechanical properties of cortical bone in children with osteogenesis imperfecta treated with bisphosphonates compared with healthy children.

    Science.gov (United States)

    Imbert, Laurianne; Aurégan, Jean-Charles; Pernelle, Kélig; Hoc, Thierry

    2015-06-01

    Osteogenesis imperfecta (OI) is a genetic disorder characterized by a change in bone tissue quality, but little data are available to describe the factors involved at the macroscopic scale. To better understand the effect of microstructure alterations on the mechanical properties at the sample scale, we studied the structural and mechanical properties of six cortical bone samples from children with OI treated with bisphosphonates and compared them to the properties of three controls. Scanning electron microscopy, high resolution computed tomography and compression testing were used to assess these properties. More resorption cavities and a higher osteocyte lacunar density were observed in OI bone compared with controls. Moreover, a higher porosity was measured for OI bones along with lower macroscopic Young's modulus, yield stress and ultimate stress. The microstructure was impaired in OI bones; the higher porosity and osteocyte lacunar density negatively impacted the mechanical properties and made the bone more prone to fracture.

  1. Leaf mechanical resistance in plant trait databases: comparing the results of two common measurement methods.

    Science.gov (United States)

    Enrico, Lucas; Díaz, Sandra; Westoby, Mark; Rice, Barbara L

    2016-01-01

    The influence of leaf mechanical properties on local ecosystem processes, such as trophic transfer, decomposition and nutrient cycling, has resulted in a growing interest in including leaf mechanical resistance in large-scale databases of plant functional traits. 'Specific work to shear' and 'force to tear' are two properties commonly used to describe mechanical resistance (toughness or strength) of leaves. Two methodologies have been widely used to measure them across large datasets. This study aimed to assess correlations and standardization between the two methods, as measured by two widely used apparatuses, in order to inter-convert existing data in those global datasets. Specific work to shear (W(SS)) and force to tear (FT) were measured in leaves of 72 species from south-eastern Australia. The measurements were made including and excluding midribs. Relationships between the variables were tested by Spearman correlations and ordinary least square regressions. A positive and significant correlation was found between the methods, but coefficients varied according to the inclusion or exclusion of the midrib in the measurements. Equations for prediction varied according to leaf venation pattern. A positive and significant (r = 0·90, P resistance data obtained with both methodologies could be pooled together into a single coarser variable, using the equations provided in this paper. However, more detailed datasets of FT cannot be safely filled in with estimations based on W(SS), or vice versa. In addition, W(SS) values of green leaves can be predicted with good accuracy from W(SS) of rehydrated leaves of the same species. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. FLEXIBLE BUDGET OF SPORT COMPETITIONS

    Directory of Open Access Journals (Sweden)

    Dragan Vukasović

    2009-11-01

    Full Text Available Manager of sport competition has right to decide and also to take responsibility for costs, income and financial results. From economic point of wiev flexible budget and planning cost calculations is top management base for analyzing success level of sport competition. Flexible budget is made before sport competition with few output level, where one is always from static plan-master plan. At the end of competition when we have results, we make report of plan executing and we also analyzing plan variances. Results of comparation between achieved and planning level of static budget can be acceptable if achieved level is approximate to budget level or if we analyzing results from gross or net income. Flexible budget become very important in case of world eco- nomic crises

  3. INTEGRATING DISTRIBUTED WORK: COMPARING TASK DESIGN, COMMUNICATION, AND TACIT COORDINATION MECHANISMS

    DEFF Research Database (Denmark)

    Srikanth, K.; Puranam, P.

    2011-01-01

    We investigate coordination strategies in integrating distributed work. In the context of Business Process Offshoring (BPO), we analyze survey data from 126 offshored processes to understand both the sources of difficulty in integrating distributed work as well as how organizations overcome...... on tacit coordination-and theoretically articulate and empirically show that tacit coordination mechanisms are distinct from the well-known duo of coordination strategies: building communication channels or modularizing processes to minimize the need for communication. We discuss implications for the study...

  4. High Performance Electronics on Flexible Silicon

    KAUST Repository

    Sevilla, Galo T.

    2016-09-01

    Over the last few years, flexible electronic systems have gained increased attention from researchers around the world because of their potential to create new applications such as flexible displays, flexible energy harvesters, artificial skin, and health monitoring systems that cannot be integrated with conventional wafer based complementary metal oxide semiconductor processes. Most of the current efforts to create flexible high performance devices are based on the use of organic semiconductors. However, inherent material\\'s limitations make them unsuitable for big data processing and high speed communications. The objective of my doctoral dissertation is to develop integration processes that allow the transformation of rigid high performance electronics into flexible ones while maintaining their performance and cost. In this work, two different techniques to transform inorganic complementary metal-oxide-semiconductor electronics into flexible ones have been developed using industry compatible processes. Furthermore, these techniques were used to realize flexible discrete devices and circuits which include metal-oxide-semiconductor field-effect-transistors, the first demonstration of flexible Fin-field-effect-transistors, and metal-oxide-semiconductors-based circuits. Finally, this thesis presents a new technique to package, integrate, and interconnect flexible high performance electronics using low cost additive manufacturing techniques such as 3D printing and inkjet printing. This thesis contains in depth studies on electrical, mechanical, and thermal properties of the fabricated devices.

  5. Fully printed flexible carbon nanotube photodetectors

    Science.gov (United States)

    Zhang, Suoming; Cai, Le; Wang, Tongyu; Miao, Jinshui; Sepúlveda, Nelson; Wang, Chuan

    2017-03-01

    Here, we report fully printed flexible photodetectors based on single-wall carbon nanotubes and the study of their electrical characteristics under laser illumination. Due to the photothermal effect and the use of high purity semiconducting carbon nanotubes, the devices exhibit gate-voltage-dependent photoresponse with the positive photocurrent or semiconductor-like behavior (conductivity increases at elevated temperatures) under positive gate biases and the negative photocurrent or metal-like behavior (conductivity decreases at elevated temperatures) under negative gate biases. Mechanism for such photoresponse is attributed to the different temperature dependencies of carrier concentration and carrier mobility, which are two competing factors that ultimately determine the photothermal effect-based photoresponse. The photodetectors built on the polyimide substrate also exhibit superior mechanical compliance and stable photoresponse after thousands of bending cycles down to a curvature radius as small as 3 mm. Furthermore, due to the low thermal conductivity of the plastic substrate, the devices show up to 6.5 fold improvement in responsivity compared to the devices built on the silicon substrate. The results presented here provide a viable path to low cost and high performance flexible photodetectors fabricated entirely by the printing process.

  6. Library sequencing strategies for comparative analysis of stress resistance mechanisms in Escherichia coli strains

    DEFF Research Database (Denmark)

    Lennen, Rebecca; Bonde, Ida; Koza, Anna

    2014-01-01

    and subjected to growth selections. Following selection, the locations of all insertions in the population are counted and can be compared between a control and a target condition, enabling the identification of genes that are both conditionally essential and conditionally detrimental. We have exploited Tn...

  7. Comparable mechanisms for action and language: Neural systems behind intentions, goals and means

    NARCIS (Netherlands)

    Schie, H.T. van; Toni, I.; Bekkering, H.

    2006-01-01

    In this position paper we explore correspondence between neural systems for language and action starting from recent electrophysiological findings on the roles of posterior and frontal areas in goal-directed grasping actions. The paper compares the perceptual and motor organization for action and

  8. Comparative analysis of disease pathogenesis and molecular mechanisms of New World and Old World arenavirus infections.

    Science.gov (United States)

    McLay, Lisa; Liang, Yuying; Ly, Hinh

    2014-01-01

    Arenaviruses can cause fatal human haemorrhagic fever (HF) diseases for which vaccines and therapies are extremely limited. Both the New World (NW) and Old World (OW) groups of arenaviruses contain HF-causing pathogens. Although these two groups share many similarities, important differences with regard to pathogenicity and molecular mechanisms of virus infection exist. These closely related pathogens share many characteristics, including genome structure, viral assembly, natural host selection and the ability to interfere with innate immune signalling. However, members of the NW and OW viruses appear to use different receptors for cellular entry, as well as different mechanisms of virus internalization. General differences in disease signs and symptoms and pathological lesions in patients infected with either NW or OW arenaviruses are also noted and discussed herein. Whilst both the OW Lassa virus (LASV) and the NW Junin virus (JUNV) can cause disruption of the vascular endothelium, which is an important pathological feature of HF, the immune responses to these related pathogens seem to be quite distinct. Whereas LASV infection results in an overall generalized immune suppression, patients infected with JUNV seem to develop a cytokine storm. Additionally, the type of immune response required for recovery and clearance of the virus is different between NW and OW infections. These differences may be important to allow the viruses to evade host immune detection. Understanding these differences will aid the development of new vaccines and treatment strategies against deadly HF viral infections.

  9. Microbial iron management mechanisms in extremely acidic environments: comparative genomics evidence for diversity and versatility

    Directory of Open Access Journals (Sweden)

    Nieto Pamela A

    2008-11-01

    Full Text Available Abstract Background Iron is an essential nutrient but can be toxic at high intracellular concentrations and organisms have evolved tightly regulated mechanisms for iron uptake and homeostasis. Information on iron management mechanisms is available for organisms living at circumneutral pH. However, very little is known about how acidophilic bacteria, especially those used for industrial copper bioleaching, cope with environmental iron loads that can be 1018 times the concentration found in pH neutral environments. This study was motivated by the need to fill this lacuna in knowledge. An understanding of how microorganisms thrive in acidic ecosystems with high iron loads requires a comprehensive investigation of the strategies to acquire iron and to coordinate this acquisition with utilization, storage and oxidation of iron through metal responsive regulation. In silico prediction of iron management genes and Fur regulation was carried out for three Acidithiobacilli: Acidithiobacillus ferrooxidans (iron and sulfur oxidizer A. thiooxidans and A. caldus (sulfur oxidizers that can live between pH 1 and pH 5 and for three strict iron oxidizers of the Leptospirillum genus that live at pH 1 or below. Results Acidithiobacilli have predicted FeoB-like Fe(II and Nramp-like Fe(II-Mn(II transporters. They also have 14 different TonB dependent ferri-siderophore transporters of diverse siderophore affinity, although they do not produce classical siderophores. Instead they have predicted novel mechanisms for dicitrate synthesis and possibly also for phosphate-chelation mediated iron uptake. It is hypothesized that the unexpectedly large number and diversity of Fe(III-uptake systems confers versatility to this group of acidophiles, especially in higher pH environments (pH 4–5 where soluble iron may not be abundant. In contrast, Leptospirilla have only a FtrI-Fet3P-like permease and three TonB dependent ferri-dicitrate siderophore systems. This paucity of iron

  10. Prefrontal Dopaminergic Mechanisms of Extinction in Adolescence Compared to Adulthood in Rats

    Science.gov (United States)

    Zbukvic, Isabel C.; Park, Chun Hui J.; Ganella, Despina E.; Lawrence, Andrew J.; Kim, Jee Hyun

    2017-01-01

    Adolescents with anxiety disorders attain poorer outcomes following extinction-based treatment compared to adults. Extinction deficit during adolescence has been identified to involve immaturity in the medial prefrontal cortex (mPFC). Findings from adult rodents suggest extinction involves dopamine signaling in the mPFC. This system changes dramatically during adolescence, but its role in adolescent extinction is unknown. Therefore, we investigated the role of prefrontal dopamine in extinction using Pavlovian fear conditioning in adolescent and adult rats. Using quantitative PCR (qPCR) analyses, we measured changes in dopamine receptor gene expression in the mPFC before and after extinction. We then enhanced dopamine 1 receptor (D1R) or dopamine 2 receptor (D2R) signaling in the infralimbic cortex (IL) of the mPFC using agonists at the time of extinction. Adolescent rats displayed a deficit in extinction retention compared to adults. Extinction induced a reduction in D1R compared to D2R gene expression in adolescent rats, whereas an increase of D1R compared to D2R gene expression was observed in adult rats. Acutely enhancing IL D1R signaling using SKF-81297 had no effect on extinction at either age. In contrast, acutely enhancing IL D2R signaling with quinpirole significantly enhanced long-term extinction in adolescents, and impaired within-session extinction in adults. Our results suggest a dissociated role for prefrontal dopamine in fear extinction during adolescence compared to adulthood. Findings highlight the dopamine system as a potential pharmacological target to improve extinction-based treatments for adolescents. PMID:28275342

  11. Probing the microscopic flexibility of DNA from melting temperatures

    Science.gov (United States)

    Weber, Gerald; Essex, Jonathan W.; Neylon, Cameron

    2009-10-01

    The microscopic flexibility of DNA is a key ingredient for understanding its interaction with proteins and drugs but is still poorly understood and technically challenging to measure. Several experimental methods probe very long DNA samples, but these miss local flexibility details. Others mechanically disturb or modify short molecules and therefore do not obtain flexibility properties of unperturbed and pristine DNA. Here, we show that it is possible to extract very detailed flexibility information about unmodified DNA from melting temperatures with statistical physics models. We were able to retrieve, from published melting temperatures, several established flexibility properties such as the presence of highly flexible TATA regions of genomic DNA and support recent findings that DNA is very flexible at short length scales. New information about the nanoscale Na+ concentration dependence of DNA flexibility was determined and we show the key role of ApT and TpA steps when it comes to ion-dependent flexibility and melting temperatures.

  12. Specifics and Challenges to Flexible Organic Light-Emitting Devices

    Directory of Open Access Journals (Sweden)

    Mariya Aleksandrova

    2016-01-01

    Full Text Available Several recent developments in material science and deposition methods for flexible organic light-emitting devices (OLEDs are surveyed. The commonly used plastic substrates are compared, according to their mechanical, optical, thermal, and chemical properties. Multilayer electrode structures, used as transparent electrodes, replacing conventional indium tin oxide (ITO are presented and data about their conductivity, transparency, and bending ability are provided. Attention is paid to some of the most popular industrial processes for flexible OLEDs manufacturing, such as roll-to-roll printing, inkjet printing, and screen printing. Main specifics and challenges, related to the foils reliability, mechanical stability of the transparent electrodes, and deposition and patterning of organic emissive films, are discussed.

  13. Comparing dynamic connective tissue in echinoderms and sponges: morphological and mechanical aspects and environmental sensitivity.

    Science.gov (United States)

    Sugni, Michela; Fassini, Dario; Barbaglio, Alice; Biressi, Anna; Di Benedetto, Cristiano; Tricarico, Serena; Bonasoro, Francesco; Wilkie, Iain C; Candia Carnevali, Maria Daniela

    2014-02-01

    Echinoderms and sponges share a unique feature that helps them face predators and other environmental pressures. They both possess collagenous tissues with adaptable viscoelastic properties. In terms of morphology these structures are typical connective tissues containing collagen fibrils, fibroblast- and fibroclast-like cells, as well as unusual components such as, in echinoderms, neurosecretory-like cells that receive motor innervation. The mechanisms underpinning the adaptability of these tissues are not completely understood. Biomechanical changes can lead to an abrupt increase in stiffness (increasing protection against predation) or to the detachment of body parts (in response to a predator or to adverse environmental conditions) that are regenerated. Apart from these advantages, the responsiveness of echinoderm and sponge collagenous tissues to ionic composition and temperature makes them potentially vulnerable to global environmental changes.

  14. Flexible Photonic Cellulose Nanocrystal Films

    OpenAIRE

    Guidetti, G.; Atifi, S; Vignolini, S; Hamad, WY

    2016-01-01

    The fabrication of self-assembled cellulose nanocrystal (CNC) films of tunable photonic and mechanical properties using a facile, green approach is demonstrated. The combination of tunable flexibility and iridescence can dramatically expand CNC coating and film barrier capabilities for paints and coating applications, sustainable consumer packaging products, as well as effective templates for photonic and optoelectronic materials and structures. CelluForce Inc., Biotechnology and Biologica...

  15. Comparative transcriptome analyses reveal a special glucosinolate metabolism mechanism in Brassica alboglabra sprouts

    Directory of Open Access Journals (Sweden)

    Rongfang Guo

    2016-10-01

    Full Text Available Brassica sprouts contain abundant phytochemicals, especially glucosinolates (GSs. Various methods have been used to enhance GS content in sprouts. However, the molecular basis of GS metabolism in sprouts remains an open question. Here we employed RNA-seq analysis to compare the transcriptomes of high-GS (JL-08 and low-GS (JL-09 Brassica alboglabra sprouts. Paired-end Illumina RNA-seq reads were generated and mapped to the B. oleracea reference genome. The differentially expressed genes were analyzed between JL-08 and JL-09. Among these, 1,477 genes were up-regulated and 1,239 down-regulated in JL-09 compared with JL-08. Enrichment analysis of these differentially expressed genes showed that the GS biosynthesis had the smallest enrichment factor and the highest Q value of all metabolic pathways in Kyoto Encyclopedia of Genes and Genomes database, indicating the main metabolic difference between JL-08 and JL-09 is the GS biosynthetic pathway. Thirty-seven genes of the sequenced data were annotated as putatively involved in GS biosynthesis, degradation and regulation, of which 11 were differentially expressed in JL-08 and JL-09. The expression level of GS degradation enzyme myrosinase in high-GS JL-08 was lower compared with low-GS JL-09. Surprisingly, in high-GS JL-08, the expression levels of GS biosynthesis genes were also lower than those in low-GS JL-09. As the GS contents in sprouts are determined by dynamic equilibrium of seed stored GS mobilization, de novo synthesis, degradation, and extra transport, the result of this study leads us to suggest that efforts to increase GS content should focus on either raising GS content in seeds or decreasing myrosinase activity, rather than improving the expression level of GS biosynthesis genes in sprouts.

  16. Control of a Lightweight Flexible Robotic Arm Using Sliding Modes

    OpenAIRE

    Ibone Lizarraga; Arantza Sanz; Victor Etxebarria

    2006-01-01

    This paper presents a robust control scheme for flexible link robotic manipulators, which is based on considering the flexible mechanical structure as a system with slow (rigid) and fast (flexible) modes that can be controlled separately. The rigid dynamics is controlled by means of a robust sliding-mode approach with wellestablished stability properties while an LQR optimal design is adopted for the flexible dynamics. Experimental results show that this composite approach achieves good close...

  17. Control of a Lightweight Flexible Robotic Arm Using Sliding Modes

    OpenAIRE

    Victor Etxebarria; Arantza Sanz; Ibone Lizarraga

    2006-01-01

    This paper presents a robust control scheme for flexible link robotic manipulators, which is based on considering the flexible mechanical structure as a system with slow (rigid) and fast (flexible) modes that can be controlled separately. The rigid dynamics is controlled by means of a robust sliding-mode approach with well-established stability properties while an LQR optimal design is adopted for the flexible dynamics. Experimental results show that this composite approach achieves good clos...

  18. Comparative Proteomic Analysis of Anti-Cancer Mechanism by Periplocin Treatment in Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Zejun Lu

    2014-03-01

    Full Text Available Background: Periplocin is used for treatment of rheumatoid arthritis, reinforcement of bones and tendons, palpitations or shortness of breath and lower extremity edema in traditional medicine. Our previous findings suggested that periplocin could inhibit the growth of lung cancer both in vitro and in vivo. But the biological processes and molecular pathways by which periplocin induces these beneficial effects remain largely undefined. Methods: To explore the molecular mechanisms of periplocin involved in anti-cancer activity, in the present study the protein profile changes of human lung cancer cell lines A549 in response to periplocin treatment were investigated using the proteomics approaches (2-DE combined with MS/MS. Western blot was employed to verify the changed proteins. Interactions between changed proteins were analyzed by STRING. Results: 29 down-regulated protein species named GTP-binding nuclear protein Ran (RAN, Rho GDP-dissociation inhibitor 1 (ARHGDIA, eukaryotic translation initiation factor 5A-1 (EIF5A and Profilin-1(PFN1, and 10 up-regulated protein species named Heat shock cognate 71 kDa protein (HSPA8,10 kDa heat shock protein (HSPE1, and Cofilin-1(CFL-1 were identified. Among them, GTP-binding nuclear protein Ran (RAN and Rho GDP-dissociation inhibitor 1 (ARHGDIA were the most significantly changed (over tenfold. The proteasome subunit beta type-6 (PSMB6, ATP synthase ecto-α-subunit (ATP5A1, Aldehyde dehydrogenase 1 (ALDH1 and EIF5A were verified by immunoblot assays to be dramatically down-regulated. By STRING bioinformatics analysis revealing interactions and signaling networks it became apparent that the proteins changed they are primarily involved in transcription and proteolysis. Conclusion: Periplocin inhibited growth of lung cancer by down-regulating proteins, such as ATP5A1, EIF5A, ALDH1 and PSMB6. These findings may improve our understanding of the molecular mechanisms underlying the anti-cancer effects of

  19. Mechanics of dog walking compared with a passive, stiff-limbed, 4-bar linkage model, and their collisional implications.

    Science.gov (United States)

    Usherwood, James R; Williams, Sarah B; Wilson, Alan M

    2007-02-01

    Here, we present a simple stiff-limbed passive model of quadrupedal walking, compare mechanics predicted from the model with those observed from forceplate measurements of walking dogs and consider the implications of deviation from model predictions, especially with reference to collision mechanics. The model is based on the geometry of a 4-bar linkage consisting of a stiff hindleg, back, foreleg and the ground between the hind and front feet. It uses empirical morphological and kinematic inputs to determine the fluctuations in potential and kinetic energy, vertical and horizontal forces and energy losses associated with inelastic collisions at each foot placement. Using forceplate measurements to calculate centre of mass motions of walking dogs, we find that (1) dogs may, but are not required to, spend periods of double support (one hind- and one forefoot) agreeing with the passive model; (2) legs are somewhat compliant, and mechanical energy fluctuates during triple support, with mechanical energy being lost directly after hindfoot placement and replaced following forefoot placement. Footfall timings and timing of mechanical energy fluctuations are consistent with strategies to reduce collisional forces, analogous to the suggested role of ankle extension as an efficient powering mechanism in human walking.

  20. Molecular Mechanisms of Reception and Perireception in Crustacean Chemoreception: A Comparative Review.

    Science.gov (United States)

    Derby, Charles D; Kozma, Mihika T; Senatore, Adriano; Schmidt, Manfred

    2016-06-01

    This review summarizes our present knowledge of chemoreceptor proteins in crustaceans, using a comparative perspective to review these molecules in crustaceans relative to other metazoan models of chemoreception including mammals, insects, nematodes, and molluscs. Evolution has resulted in unique expansions of specific gene families and repurposing of them for chemosensation in various clades, including crustaceans. A major class of chemoreceptor proteins across crustaceans is the Ionotropic Receptors, which diversified from ionotropic glutamate receptors in ancient protostomes but which are not present in deuterostomes. Representatives of another major class of chemoreceptor proteins-the Grl/GR/OR family of ionotropic 7-transmembrane receptors-are diversified in insects but to date have been reported in only one crustacean species, Daphnia pulex So far, canonic 7-transmembrane G-protein coupled receptors, the principal chemoreceptors in vertebrates and reported in a few protostome clades, have not been identified in crustaceans. More types of chemoreceptors are known throughout the metazoans and might well be expected to be discovered in crustaceans. Our review also provides a comparative coverage of perireceptor events in crustacean chemoreception, including molecules involved in stimulus acquisition, stimulus delivery, and stimulus removal, though much less is known about these events in crustaceans, particularly at the molecular level. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Comparative population genetics of two invading ticks: Evidence of the ecological mechanisms underlying tick range expansions.

    Science.gov (United States)

    Nadolny, Robyn; Gaff, Holly; Carlsson, Jens; Gauthier, David

    2015-10-01

    Two species of ixodid tick, Ixodes affinis Neumann and Amblyomma maculatum Koch, are simultaneously expanding their ranges throughout the mid-Atlantic region of the US. Although we have some understanding of the ecology and life history of these species, the ecological mechanisms governing where and how new populations establish and persist are unclear. To assess population connectivity and ancestry, we sequenced a fragment of the 16S mitochondrial rRNA gene from a representative sample of individuals of both species from populations throughout the eastern US. We found that despite overlapping host preferences throughout ontogeny, each species exhibited very different genetic and geographic patterns of population establishment and connectivity. I. affinis was of two distinct mitochondrial clades, with a clear geographic break separating northern and southern populations. Both I. affinis populations showed evidence of recent expansion, although the southern population was more genetically diverse, indicating a longer history of establishment. A. maculatum exhibited diverse haplotypes that showed no significant relationship with geographic patterns and little apparent connectivity between sites. Heteroplasmy was also observed in the 16S mitochondrial rRNA gene in 3.5% of A. maculatum individuals. Genetic evidence suggests that these species rely on different key life stages to successfully disperse into novel environments, and that host vagility, habitat stability and habitat connectivity all play critical roles in the establishment of new tick populations.

  2. Cultural capital or relative risk aversion? Two mechanisms for educational inequality compared.

    Science.gov (United States)

    van de Werfhorst, Herman G; Hofstede, Saskia

    2007-09-01

    In this paper we empirically examined two explanatory mechanisms for educational inequality: cultural reproduction and relative risk aversion, using survey data taken from secondary school pupils in Amsterdam. Cultural reproduction theory seeks to explain class variations in schooling by cultural differences between social classes. Relative risk aversion theory argues that educational inequalities can be understood by between-class variation in the necessity of pursuing education at branching points in order to avoid downward mobility. We showed that class variations in early demonstrated ability are for a substantial part cultural: cultural capital - measured by parental involvement in highbrow culture - affected school performance at the primary and secondary level. However, relative risk aversion - operationalized by being concerned with downward mobility - strongly affects schooling ambitions, whereas cultural capital had no effect. Thus, we conclude that 'primary effects' of social origin on schooling outcomes are manifested through cultural capital and not through relative risk aversion (in addition to other potential sources of class variations such as genetics). Relative risk aversion, and not cultural capital, affects schooling ambitions, which is relevant for our understanding of secondary effects.

  3. Molecular mechanisms in the selective basal activation of pyrabactin receptor 1: Comparative analysis of mutants.

    Science.gov (United States)

    Dorosh, Lyudmyla; Rajagopalan, Nandhakishore; Loewen, Michele C; Stepanova, Maria

    2014-01-01

    Pyrabactin receptors (PYR) play a central role in abscisic acid (ABA) signal transduction; they are ABA receptors that inhibit type 2C protein phosphatases (PP2C). Molecular aspects contributing to increased basal activity of PYR against PP2C are studied by molecular dynamics (MD) simulations. An extensive series of MD simulations of the apo-form of mutagenized PYR1 as a homodimer and in complex with homology to ABA-insensitive 1 (HAB1) phosphatase are reported. In order to investigate the detailed molecular mechanisms mediating PYR1 activity, the MD data was analyzed by essential collective dynamics (ECD), a novel approach that allows the identification, with atomic resolution, of persistent dynamic correlations based on relatively short MD trajectories. Employing the ECD method, the effects of select mutations on the structure and dynamics of the PYR1 complexes were investigated and considered in the context of experimentally determined constitutive activities against HAB1. Approaches to rationally design constitutively active PYR1 constructs to increase PP2C inhibition are discussed.

  4. Molecular mechanisms in the selective basal activation of pyrabactin receptor 1: Comparative analysis of mutants

    Directory of Open Access Journals (Sweden)

    Lyudmyla Dorosh

    2014-01-01

    Full Text Available Pyrabactin receptors (PYR play a central role in abscisic acid (ABA signal transduction; they are ABA receptors that inhibit type 2C protein phosphatases (PP2C. Molecular aspects contributing to increased basal activity of PYR against PP2C are studied by molecular dynamics (MD simulations. An extensive series of MD simulations of the apo-form of mutagenized PYR1 as a homodimer and in complex with homology to ABA-insensitive 1 (HAB1 phosphatase are reported. In order to investigate the detailed molecular mechanisms mediating PYR1 activity, the MD data was analyzed by essential collective dynamics (ECD, a novel approach that allows the identification, with atomic resolution, of persistent dynamic correlations based on relatively short MD trajectories. Employing the ECD method, the effects of select mutations on the structure and dynamics of the PYR1 complexes were investigated and considered in the context of experimentally determined constitutive activities against HAB1. Approaches to rationally design constitutively active PYR1 constructs to increase PP2C inhibition are discussed.

  5. The structural stabilities, mechanical properties and hardness of chromium tetraboride: Compared with low-B borides

    Science.gov (United States)

    Zhong, Ming-Min; Huang, Cheng; Tian, Chun-Ling

    2016-10-01

    Using the first-principles calculations, we provide a systemic understanding of the structural features and phase stability, mechanical and electronic properties, as well as the roles of boron (B) atom arrangement in the hardness for chromium borides. The structural and relative energy searches together with formation enthalpy confirm the most stable Cr2B with an orthorhombic Fddd symmetry, CrB with an orthorhombic Cmcm symmetry, CrB2 with a hexagonal P63/mmc symmetry and chromium tetraboride (CrB4) with an orthorhombic Pnnm symmetry. The shear modulus, Young’s modulus and C44 increase with the boron content, while the Poisson’s ratio and B/G ratio have an opposite tendency. Moreover, due to higher B content, strong three-dimensional (3D) covalent B networks and lower metallic contribution, CrB4 with Pnnm symmetry has the largest hardness value (46.8 GPa), exceeding the superhard limit, indicating its superhard nature.

  6. Inter-vertebral flexibility of the ostrich neck: implications for estimating sauropod neck flexibility.

    Directory of Open Access Journals (Sweden)

    Matthew J Cobley

    Full Text Available The flexibility and posture of the neck in sauropod dinosaurs has long been contentious. Improved constraints on sauropod neck function will have major implications for what we know of their foraging strategies, ecology and overall biology. Several hypotheses have been proposed, based primarily on osteological data, suggesting different degrees of neck flexibility. This study attempts to assess the effects of reconstructed soft tissues on sauropod neck flexibility through systematic removal of muscle groups and measures of flexibility of the neck in a living analogue, the ostrich (Struthio camelus. The possible effect of cartilage on flexibility is also examined, as this was previously overlooked in osteological estimates of sauropod neck function. These comparisons show that soft tissues are likely to have limited the flexibility of the neck beyond the limits suggested by osteology alone. In addition, the inferred presence of cartilage, and varying the inter-vertebral spacing within the synovial capsule, also affect neck flexibility. One hypothesis proposed that flexibility is constrained by requiring a minimum overlap between successive zygapophyses equivalent to 50% of zygapophyseal articular surface length (ONP50. This assumption is tested by comparing the maximum flexibility of the articulated cervical column in ONP50 and the flexibility of the complete neck with all tissues intact. It is found that this model does not adequately convey the pattern of flexibility in the ostrich neck, suggesting that the ONP50 model may not be useful in determining neck function if considered in isolation from myological and other soft tissue data.

  7. Invertible flexible matrices

    Science.gov (United States)

    Justino, Júlia

    2017-06-01

    Matrices with coefficients having uncertainties of type o (.) or O (.), called flexible matrices, are studied from the point of view of nonstandard analysis. The uncertainties of the afore-mentioned kind will be given in the form of the so-called neutrices, for instance the set of all infinitesimals. Since flexible matrices have uncertainties in their coefficients, it is not possible to define the identity matrix in an unique way and so the notion of spectral identity matrix arises. Not all nonsingular flexible matrices can be turned into a spectral identity matrix using Gauss-Jordan elimination method, implying that that not all nonsingular flexible matrices have the inverse matrix. Under certain conditions upon the size of the uncertainties appearing in a nonsingular flexible matrix, a general theorem concerning the boundaries of its minors is presented which guarantees the existence of the inverse matrix of a nonsingular flexible matrix.

  8. Global Sourcing Flexibility

    DEFF Research Database (Denmark)

    Ørberg Jensen, Peter D.; Petersen, Bent

    2013-01-01

    sourcing flexibility. Here we draw on prior research in the fields of organizational flexibility, international business and global sourcing as well as case examples and secondary studies. In the second part of the paper, we discuss the implications of global sourcing flexibility for firm strategy......Recent studies show that flexibility is a key concern for firms that engage in the global sourcing of services. In this conceptual paper, we seek to explore two central aspects of global sourcing flexibility: In the first part of the paper, we provide a definition of the construct of global...... and operations against the backdrop of the theory-based definition of the construct. We discuss in particular the importance of global sourcing flexibility for operational performance stability, and the trade-off between specialization benefits, emerging from location and service provider specialization, versus...

  9. The octopus: a model for a comparative analysis of the evolution of learning and memory mechanisms.

    Science.gov (United States)

    Hochner, Binyamin; Shomrat, Tal; Fiorito, Graziano

    2006-06-01

    Comparative analysis of brain function in invertebrates with sophisticated behaviors, such as the octopus, may advance our understanding of the evolution of the neural processes that mediate complex behaviors. Until the last few years, this approach was infeasible due to the lack of neurophysiological tools for testing the neural circuits mediating learning and memory in the brains of octopus and other cephalopods. Now, for the first time, the adaptation of modern neurophysiological methods to the study of the central nervous system of the octopus allows this avenue of research. The emerging results suggest that a convergent evolutionary process has led to the selection of vertebrate-like neural organization and activity-dependent long-term synaptic plasticity. As octopuses and vertebrates are very remote phylogenetically, this convergence suggests the importance of the shared properties for the mediation of learning and memory.

  10. Comparative study of mechanical, hydrothermal, chemical and enzymatic treatments of digested biofibers to improve biogas production.

    Science.gov (United States)

    Bruni, Emiliano; Jensen, Anders Peter; Angelidaki, Irini

    2010-11-01

    Organic waste such as manure is an important resource for biogas production. The biodegradability of manures is however limited because of the recalcitrant nature of the biofibers it contains. To increase the biogas potential of the biofibers in digested manure, we investigated physical treatment (milling), chemical treatment (CaO), biological treatment (enzymatic and partial aerobic microbial conversion), steam treatment with catalyst (H(3)PO(4) or NaOH) and combination of biological and steam treatments (biofibers steam-treated with catalyst were treated with laccase enzyme). We obtained the highest methane yield increase through the chemical treatment that resulted in 66% higher methane production compared to untreated biofibers. The combination of steam treatment with NaOH and subsequent enzymatic treatment increased the methane yield by 34%. To choose the optimal treatment, the energy requirements relative to the energy gain as extra biogas production have to be taken into account, as well as the costs of chemicals or enzymes.

  11. Comparative study on the mechanisms of rotavirus inactivation by sodium dodecyl sulfate and ethylenediaminetetraacetate

    Energy Technology Data Exchange (ETDEWEB)

    Ward, R.L. (Sandia Labs., Albuquerque, NM); Ashley, C.S.

    1980-06-01

    This report describes a comparative study on the effects of the anionic detergent sodium dodecyl sulfate and the chelating agent ethylenediaminetetraacetate on purified rotavirus SA-11 particles. Both chemicals readily inactivated rotavirus at quite low concentrations and under very mild conditions. In addition, both agents modified the viral capsid and prevented the adsorption of inactivated virions to cells. Capsid damage by ethylenediaminetetraacetate caused a shift in the densities of rotavirions from about l.35 to about 1.37 g/ml and a reduction in their sedimentation coefficients. Sodium dodcyl sulfate, on the other hand, did not detectably alter either of these physical properties of rotavirions. Both agents caused some alteration of the isoelectric points of the virions. Finally, analysis of rotavirus proteins showed that ethylenediaminetetraacetate caused the loss of two protein peaks from the electrophoretic pattern of virions but sodium dodecyl sulfate caused the loss of only one of these same protein peaks.

  12. PROJECTION TRANSFORMATION METHODS APPLIED TO THE REPRESENTATION OF MECHANICAL PARTS. COMPARATIVE GRAPHICAL AND ANALYTICAL STUDY

    Directory of Open Access Journals (Sweden)

    ORBAN Magdalena

    2015-06-01

    Full Text Available The paper presents a comparative graphical and analytical study concerning the possibility of applying methods of transforming the projection – rotation and change of projection planes - for determination of spatial image of some machine parts whose edges or plane faces form imposed angles with the projection planes. An analysis of the existing relation between the two methods respectively with the axonometric representation realized by the coordinate’s method is also performed, highlighting the advantages presented by each of the considered methods. In both cases, the double rotation, respectively the double change of projection planes will be applied, equivalent to an intuitive axonometric representation which will meet, at the same time, some concrete requirements of a project.

  13. A Comparative Study of the Physical and Mechanical Properties of Hydrogen Using Data Mining Research Techniques

    Science.gov (United States)

    Settouti, Nadera; Aourag, Hafid

    2015-09-01

    Hydrogen was the first element to exist in the universe. It is the lightest and simplest element, but chemists do not agree about its placement in the periodic table; its position has given rise to much confusion. Metallization of hydrogen under high pressure influences its properties and its placement in the periodic table. The properties of groups I, IV, and VII are investigated, and are then compared to those of hydrogen. In this study, we present a data mining approach to determine models and discover the similarities included in the datasets. Principal component analysis and partial least squares regression were applied as data analysis techniques in order to explore multivariate data. Our results indicate that hydrogen shares some properties with certain elements and groups in the periodic table, such as carbon group elements, but not entirely, because hydrogen is still considered as an element that is special and apart.

  14. Evolutionary mechanisms of rib loss in anurans: a comparative developmental approach.

    Science.gov (United States)

    Blanco, M J; Sanchiz, B

    2000-04-01

    ABSTRACT The presence of free ribs is presumed to be a primitive morphological character observed only in a few families of Recent anurans, whereas the absence of ribs has been considered to be a derived condition that is widespread within this order. A comparative study of rib development based on representatives of several anuran lineages (Alytes, Bombina, Bufo, Discoglossus, Hyla, Pelobates, Pelodytes, Rana, and Xenopus) reveals a previously undetected diversity of developmental features in the formation and interaction between neural arches and ribs. The absence of free ribs at premetamorphic or later stages is verified in some groups, but we present for the first time evidence of the existence of larval rib rudiments in others, both in the anterior (Rana, Hyla) and posterior (Bufo, Discoglossus, Pelobates) presacral regions. Heterochrony seems to have played a major role in the processes underlying rib reduction. The intracolumnar differences between anterior (V(2)-V(4)) and posterior (V(5)-V(8)) regions are based on perturbations in the timing of early differentiation. Furthermore, a clear shift in the relative timing of ossification among evolutionary lineages was detected. In this respect Xenopus has a highly derived condition. The use of the morphological character of "rib loss" in phylogenetic analyses must be reconsidered due to the different convergent developmental paths described here. The phylogenetic analysis of a "sequence units" matrix of rib development is compared with current anuran phylogenies. Some evolutionary information appears to be clearly present in the ontogenetic data of this "missing morphology," but its value for evolutionary inferences is rather limited.

  15. Call centres: constructing flexibility

    OpenAIRE

    Arzbächer, Sandra; Holtgrewe, Ursula; Kerst, Christian

    2002-01-01

    "The development of call centres as a flexible interface between firms and their environments has been seen as exemplary or even symptomatic of flexible capitalism (Sennett 1998). We are going to point out that they do not just stand for organisational change but also for changes of institutions towards deregulation. Employers and managers hoped for gains of flexibility, decreasing labour costs, and market gains by an expanded 24-hour-service. Surveillance and control by flexib...

  16. Comparing the symptoms and mechanisms of "dissociation" in dissociative identity disorder and borderline personality disorder.

    Science.gov (United States)

    Laddis, Andreas; Dell, Paul F; Korzekwa, Marilyn

    2017-01-01

    A total of 75 patients were diagnosed with the Structured Clinical Interview for DSM-IV Dissociative Disorders-Revised as having dissociative identity disorder (DID), and 100 patients were diagnosed with the Structured Interview for DSM-IV Personality as having borderline personality disorder (BPD). Both groups were administered the Multidimensional Inventory of Dissociation (MID). DID patients had significantly higher MID scores than BPD patients, different distributions of MID scores, and different MID subscale profiles in 3 ranges of MID scores (0-15, 15-30, 30-45). The core MID symptoms-exhibited at all ranges of MID scores-for DID patients (the presence of alters, identity confusion, and memory problems) and BPD patients (flashbacks, identity confusion, and memory problems) were ostensibly similar but were considered to be mostly produced by different underlying processes. Multiple regression analyses showed that the core MID symptoms of DID patients had different predictors than did the core MID symptoms of BPD patients. Alter identities seemed to generate most-but not all-dissociative phenomena in DID patients, whereas only the 24% highest scoring BPD patients (MID ≥45) seemed to manifest alter-driven dissociative experiences. Most BPD dissociative experiences appeared to be due to 5 other mechanisms: (a) BPD-specific, stress-driven, rapid shifts of self-state; (b and c) nondefensive disruptions of the framework of perceptual organization with or without an accompanying BPD-specific, dissociation-like disintegration of affective/neurocognitive functioning; (d) a defensive distancing or detachment from distress (i.e., simple depersonalization); and (e) Allen, Console, and Lewis's (1999) severe absorptive detachment.

  17. Toward an understanding of the molecular mechanisms of barnacle larval settlement: A comparative transcriptomic approach

    KAUST Repository

    Chen, Zhang-Fan

    2011-07-29

    Background: The barnacle Balanus amphitrite is a globally distributed biofouler and a model species in intertidal ecology and larval settlement studies. However, a lack of genomic information has hindered the comprehensive elucidation of the molecular mechanisms coordinating its larval settlement. The pyrosequencing-based transcriptomic approach is thought to be useful to identify key molecular changes during larval settlement. Methodology and Principal Findings: Using 454 pyrosequencing, we collected totally 630,845 reads including 215,308 from the larval stages and 415,537 from the adults; 23,451 contigs were generated while 77,785 remained as singletons. We annotated 31,720 of the 92,322 predicted open reading frames, which matched hits in the NCBI NR database, and identified 7,954 putative genes that were differentially expressed between the larval and adult stages. Of these, several genes were further characterized with quantitative real-time PCR and in situ hybridization, revealing some key findings: 1) vitellogenin was uniquely expressed in late nauplius stage, suggesting it may be an energy source for the subsequent non-feeding cyprid stage; 2) the locations of mannose receptors suggested they may be involved in the sensory system of cyprids; 3) 20 kDa-cement protein homologues were expressed in the cyprid cement gland and probably function during attachment; and 4) receptor tyrosine kinases were expressed higher in cyprid stage and may be involved in signal perception during larval settlement. Conclusions: Our results provide not only the basis of several new hypotheses about gene functions during larval settlement, but also the availability of this large transcriptome dataset in B. amphitrite for further exploration of larval settlement and developmental pathways in this important marine species. © 2011 Chen et al.

  18. Cytotoxicity and comparative binding mechanism of piperine with human serum albumin and α-1-acid glycoprotein.

    Science.gov (United States)

    Yeggoni, Daniel Pushparaju; Rachamallu, Aparna; Kallubai, Monika; Subramanyam, Rajagopal

    2015-01-01

    Human serum albumin (HSA) and α-1-acid glycoprotein (AGP) (acute phase protein) are the plasma proteins in blood system which transports many drugs. To understand the pharmacological importance of piperine molecule, here, we studied the anti-inflammatory activity of piperine on mouse macrophages (RAW 264.7) cell lines, which reveals that piperine caused an increase in inhibition growth of inflammated macrophages. Further, the fluorescence maximum quenching of proteins were observed upon binding of piperine to HSA and AGP through a static quenching mechanism. The binding constants obtained from fluorescence emission were found to be K(piperine) = 5.7 ± .2 × 10(5) M(-1) and K(piperine) = 9.3± .25 × 10(4) M(-1) which correspond to the free energy of -7.8 and -6.71 kcal M(-1)at 25 °C for HSA and AGP, respectively. Further, circular dichrosim studies revealed that there is a marginal change in the secondary structural content of HSA due to partial destabilization of HSA-piperine complexes. Consequently, inference drawn from the site-specific markers (phenylbutazone, site I marker) studies to identify the binding site of HSA noticed that piperine binds at site I (IIA), which was further authenticated by molecular docking and molecular dynamic (MD) studies. The binding constants and free energy corresponding to experimental and computational analysis suggest that there are hydrophobic and hydrophilic interactions when piperine binds to HSA. Additionally, the MD studies have showed that HSA-piperine complex reaches equilibration state at around 3 ns, which prove that the HSA-piperine complex is stable in nature.

  19. Highly-flexible, low-cost, all stainless steel mesh-based dye-sensitized solar cells.

    Science.gov (United States)

    Li, Heng; Zhao, Qing; Dong, Hui; Ma, Qianli; Wang, Wei; Xu, Dongsheng; Yu, Dapeng

    2014-11-07

    Highly-flexible, ITO-free dye-sensitized solar cells (DSSCs) are fabricated in a simple, all-solution-based, facile, and controllable way. A double mesh structure is applied to DSSCs, and the design principles, especially scale parameters, are analyzed delicately to ensure the power conversion efficiency and mechanical flexibility of the device. The good flexibility of mesh-based DSSCs is verified by systematic bending tests compared to conventional flexible DSSCs based on PET/ITO or metal foil substrates. Commercial carbon ink is used as a counter electrode material, and it is proved to be low-cost and efficient. The double mesh structure design provides an attractive strategy toward the development of flexible and wearable electrochemical energy supplies.

  20. Ionic mechanisms limiting cardiac repolarization reserve in humans compared to dogs.

    Science.gov (United States)

    Jost, Norbert; Virág, László; Comtois, Philippe; Ordög, Balázs; Szuts, Viktória; Seprényi, György; Bitay, Miklós; Kohajda, Zsófia; Koncz, István; Nagy, Norbert; Szél, Tamás; Magyar, János; Kovács, Mária; Puskás, László G; Lengyel, Csaba; Wettwer, Erich; Ravens, Ursula; Nánási, Péter P; Papp, Julius Gy; Varró, András; Nattel, Stanley

    2013-09-01

    The species-specific determinants of repolarization are poorly understood. This study compared the contribution of various currents to cardiac repolarization in canine and human ventricle. Conventional microelectrode, whole-cell patch-clamp, molecular biological and mathematical modelling techniques were used. Selective IKr block (50-100 nmol l(-1) dofetilide) lengthened AP duration at 90% of repolarization (APD90) >3-fold more in human than dog, suggesting smaller repolarization reserve in humans. Selective IK1 block (10 μmol l(-1) BaCl2) and IKs block (1 μmol l(-1) HMR-1556) increased APD90 more in canine than human right ventricular papillary muscle. Ion current measurements in isolated cardiomyocytes showed that IK1 and IKs densities were 3- and 4.5-fold larger in dogs than humans, respectively. IKr density and kinetics were similar in human versus dog. ICa and Ito were respectively ~30% larger and ~29% smaller in human, and Na(+)-Ca(2+) exchange current was comparable. Cardiac mRNA levels for the main IK1 ion channel subunit Kir2.1 and the IKs accessory subunit minK were significantly lower, but mRNA expression of ERG and KvLQT1 (IKr and IKs α-subunits) were not significantly different, in human versus dog. Immunostaining suggested lower Kir2.1 and minK, and higher KvLQT1 protein expression in human versus canine cardiomyocytes. IK1 and IKs inhibition increased the APD-prolonging effect of IKr block more in dog (by 56% and 49%, respectively) than human (34 and 16%), indicating that both currents contribute to increased repolarization reserve in the dog. A mathematical model incorporating observed human-canine ion current differences confirmed the role of IK1 and IKs in repolarization reserve differences. Thus, humans show greater repolarization-delaying effects of IKr block than dogs, because of lower repolarization reserve contributions from IK1 and IKs, emphasizing species-specific determinants of repolarization and the limitations of animal models for

  1. Comparative histological studies of mechanically versus manually processed sheep intestines used to make natural sausage casings.

    Science.gov (United States)

    Koolmees, P A; Tersteeg, M H G; Keizer, G; van den Broek, J; Bradley, R

    2004-12-01

    The natural sausage casings industry is large and worldwide, and casings prepared from the small intestine of sheep form a large part of it. Food safety authorities in several countries have been concerned about the risk to consumers from the bovine spongiform encephalopathy (BSE) agent. Although this agent could enter the European small ruminant population via infected feed, there is no evidence that it has. Because the BSE agent introduced experimentally into sheep and goats has a tissue distribution very similar to that found in animals with natural cases of scrapie, the agent would likely be found in the intestine and lymph nodes of some infected sheep from an early age. When natural casings are prepared from the intestine, the ileum (known to be infected in animals with natural cases of scrapie) is removed and the intestine is cleaned such that the inner (tunica mucosa) and outer (tunica serosa and tunica muscularis) layers are removed, leaving only the submucosa. There are two main methods for cleaning the intestine: manual and mechanical. The cleaning efficiency of these two methods was examined in the commercial environment as practiced on healthy sheep considered fit for human consumption in Turkey and Great Britain. The investigation involved a qualitative and quantitative histological approach. There was no significant difference in cleaning efficiency between the two methods, although there was some variation. No Peyer's patches or residues of them were found in any part of the cleaned casings. This finding is important because in sheep infected with transmissible spongiform encephalopathies (TSEs) Peyer's patches are likely to contain a major part of the intestinal infectivity. No serosa was found in any casing, but some residual mucosa and muscularis was retained, with more of the former than the latter. The results indicate that the cleaning efficiency of the two methods was broadly equivalent, that there was significant removal of tissue that could

  2. A comparative mechanical analysis of the pointe shoe toe box. An in vitro study.

    Science.gov (United States)

    Cunningham, B W; DiStefano, A F; Kirjanov, N A; Levine, S E; Schon, L C

    1998-01-01

    Dancing en pointe requires the ballerina to stand on her toes, which are protected only by the pointe shoe toe box. This protection diminishes when the toe box loses its structural integrity. The objectives of this study were 1) to quantify the comparative structural static and fatigue properties of the pointe shoe toe box, and 2) to evaluate the preferred shoe characteristics as determined by a survey of local dancers. Five different pointe shoes (Capezio, Freed, Gaynor Minden, Leo's, and Grishko) were evaluated to quantify the static stiffness, static strength, and fatigue properties (cycles to failure) of the shoes. Under axial loading conditions, the Leo's shoe demonstrated the highest stiffness level, and the Freed shoe exhibited the least strength. Under vertical loading conditions, the Leo's and Freed shoes demonstrated the highest stiffness levels, and the Gaynor Minden and Freed shoes exhibited the highest strength. Fatigue testing highlighted the greatest differences among the five shoes, with the Gaynor Minden demonstrating the highest fatigue life. Dancers rated the top five shoe characteristics, in order of importance, as fit, comfort, box/platform shape, vamp shape, and durability and indicated that the "best" shoe is one that "feels right" and permits artistic maneuvers, not necessarily the strongest or most durable shoe.

  3. Comparative effectiveness and molecular pharmacological mechanisms of antiallergic agents on experimental conjunctivitis in mice.

    Science.gov (United States)

    Hu, S; Merayo-Lloves, J; Zhao, T; Foster, C S

    1998-02-01

    The purpose of this study was to determine the effectiveness of antiallergic agents in the treatment of experimental murine ragweed conjunctivitis. SWR/J mice were divided into eight groups: 1; normal controls (unmanipulated); 2, untreated; 3, lodoxamide; 4, cromolyn; 5, livocarbastine; 6, nedocromil; 7, buffer solution (BS); and 8, tetrandine (TDR). Groups 2-8 were exposed to ragweed pollen through topical application to conjunctival and nasal mucosa, followed by conjunctival challenge with the allergen. Allergic conjunctivitis was evaluated by scoring of the clinical signs and histopathology. mRNA gene expression of interleukin 1beta (IL-1beta), IL-6 and tumor necrosis factor alpha (TNF-alpha) in conjunctiva was analyzed by reverse transcription polymerase chain reaction techniques. Exposed mice developed allergic conjunctivitis clinically and histologically that was modulated by topical lodoxamide, cromolyn, livocarbastine, or nedocromil eye drops or TDR intraperitoneally injected. Histopathologic analysis demonstrated that the drugs and TDR significantly reduced conjunctival eosinophil infiltration and the number of intact and degranulating mast cells. IL-1beta and TNF-alpha mRNA gene expression in conjunctiva of treated mice was inhibited compared with untreated and BS-treated controls. No IL-6 mRNA expression was observed even on the conjunctiva of the untreated mice. The antiallergic drugs and TDR exerted a similar action on the murine model of allergic conjunctivitis and demonstrated pharmacologic effectiveness on the conjunctival mRNA expression of cytokines IL-1beta and TNF-alpha.

  4. In vitro comparative evaluation of mechanical properties of temporary restorative materials used in fixed partial denture.

    Science.gov (United States)

    Saisadan, D; Manimaran, P; Meenapriya, P K

    2016-10-01

    Materials used to fabricate provisional restorations can be classified as acrylics or resin composites. Provisional crows can be either prefabricated or custom made. These materials have been used to fabricate provisional restorations since the 1930s and usually available as powder and liquid. They are the most commonly used materials today for both single-unit and multiple-unit restorations. In general, their popularity is due to their low cost, acceptable esthetics, and versatility. Composite provisional materials use bis-acryl resin, a hydrophobic material that is similar to bis-GMA. Composites are available as auto-polymerized, dualpolymerized and visible light polymerized. Preformed provisional crowns or matrices usually consist of tooth-shaped shells of plastic, cellulose acetate or metal. They are commercially available in various tooth sizes and are usually selected for a particular tooth anatomy. They are commonly relined with acrylic resin to provide a more custom fit before cementation, but the plastic and metal crown shells can also be cemented directly onto prepared teeth. The aim of this study is to choose a material to serve as a better interim prosthesis and to compare three different properties - flexural strength, compressive strength, and color stability. The samples were made with three different provisional materials (Revotek LC, Protemp 4, TemSpan). It was inferred from the study that no one material was superior in all three tested parameters.

  5. Comparative binding mechanism of lupeol compounds with plasma proteins and its pharmacological importance.

    Science.gov (United States)

    Kallubai, Monika; Rachamallu, Aparna; Yeggoni, Daniel Pushparaju; Subramanyam, Rajagopal

    2015-04-01

    Lupeol, a triterpene, possesses beneficial effects like anti-inflammatory and anti-cancer properties. Binding of lupeol and its derivative (phytochemicals) to plasma proteins such as human serum albumin (HSA) and α-1-acid glycoprotein (AGP) is a major determinant in the disposition of drugs. Cytotoxic studies with mouse macrophages (RAW 246.7) and HeLa cell lines revealed anti-inflammatory and anti-cancer properties for both lupeol and lupeol derivative. Both molecules reduced the expression of pro-inflammatory cytokines in LPS induced macrophages. Further, apoptosis was observed in HeLa cell lines when they were incubated with these molecules for 24 h. The fluorescence quenching of HSA was observed upon titration with different concentrations of lupeol and lupeol derivative; their binding constants were found to be 3 ± 0.01 × 10(4) M(-1) and 6.2 ± 0.02 × 10(4) M(-1), with binding free energies of -6.59 kcal M(-1) and -7.2 kcal M(-1). With AGP, however, the lupeol and lupeol derivative showed binding constants of 0.9 ± 0.02 × 10(3) M(-1) and 2.7 ± 0.01 × 10(3) M(-1), with free energies of -4.6 kcal M(-1) and -5.1 kcal M(-1) respectively. Molecular displacement studies based on competition with site I-binding phenylbutazone (which binds site I of HSA) and ibuprofen (which binds site II) suggest that lupeol binds site II and the lupeol derivative site I. Molecular docking studies also confirmed that lupeol binds to the IIIA and the lupeol derivative to the IIA domain of HSA. Secondary structure changes were observed upon formation of HSA-lupeol/lupeol derivative complexes by circular dichroism spectroscopy. Molecular dynamics simulations support greater stability of HSA-lupeol and HSA-lupeol derivative complexes compared to that of HSA alone.

  6. High-Performance Flexible Waveguiding Photovoltaics

    Science.gov (United States)

    Chou, Chun-Hsien; Chuang, Jui-Kang; Chen, Fang-Chung

    2013-07-01

    The use of flat-plane solar concentrators is an effective approach toward collecting sunlight economically and without sun trackers. The optical concentrators are, however, usually made of rigid glass or plastics having limited flexibility, potentially restricting their applicability. In this communication, we describe flexible waveguiding photovoltaics (FWPVs) that exhibit high optical efficiencies and great mechanical flexibility. We constructed these FWPVs by integrating poly-Si solar cells, a soft polydimethylsiloxane (PDMS) waveguide, and a TiO2-doped backside reflector. Optical microstructures that increase the light harvesting ability of the FWPVs can be fabricated readily, through soft lithography, on the top surface of the PDMS waveguide. Our optimized structure displayed an optical efficiency of greater than 42% and a certified power conversion efficiency (PCE) of 5.57%, with a projected PCE as high as approximately 18%. This approach might open new avenues for the harvesting of solar energy at low cost with efficient, mechanically flexible photovoltaics.

  7. Comparing the similarity of responses received from studies in Amazon's Mechanical Turk to studies conducted online and with direct recruitment.

    Directory of Open Access Journals (Sweden)

    Christoph Bartneck

    Full Text Available Computer and internet based questionnaires have become a standard tool in Human-Computer Interaction research and other related fields, such as psychology and sociology. Amazon's Mechanical Turk (AMT service is a new method of recruiting participants and conducting certain types of experiments. This study compares whether participants recruited through AMT give different responses than participants recruited through an online forum or recruited directly on a university campus. Moreover, we compare whether a study conducted within AMT results in different responses compared to a study for which participants are recruited through AMT but which is conducted using an external online questionnaire service. The results of this study show that there is a statistical difference between results obtained from participants recruited through AMT compared to the results from the participant recruited on campus or through online forums. We do, however, argue that this difference is so small that it has no practical consequence. There was no significant difference between running the study within AMT compared to running it with an online questionnaire service. There was no significant difference between results obtained directly from within AMT compared to results obtained in the campus and online forum condition. This may suggest that AMT is a viable and economical option for recruiting participants and for conducting studies as setting up and running a study with AMT generally requires less effort and time compared to other frequently used methods. We discuss our findings as well as limitations of using AMT for empirical studies.

  8. Damping Properties of Flexible Epoxy Resin

    Institute of Scientific and Technical Information of China (English)

    WANG Xiang; LIU Hanxing; OUYANG Shixi

    2008-01-01

    Amino-terminated polyethers and amino-terminated polyurethane were used as curing agent to cure the epoxy resin together and get a series of cured products. The damping properties of the composites were studied by DMA test at different measurement frequencies. Damping mechanical tests show that the flexible epoxy resin has higher loss factor than common epoxy. The highest loss factor reaches 1.57. Also the height and position of loss factor peak of the flexible epoxy resin varies by changing the content of amino-terminated polyethers. Results shows that the flexible epoxy resin can be used as damping polymer materials at room temperature or in common frequency range.

  9. Comparative Ability of Oropsylla montana and Xenopsylla cheopis Fleas to Transmit Yersinia pestis by Two Different Mechanisms.

    Directory of Open Access Journals (Sweden)

    B Joseph Hinnebusch

    2017-01-01

    Full Text Available Transmission of Yersinia pestis by flea bite can occur by two mechanisms. After taking a blood meal from a bacteremic mammal, fleas have the potential to transmit the very next time they feed. This early-phase transmission resembles mechanical transmission in some respects, but the mechanism is unknown. Thereafter, transmission occurs after Yersinia pestis forms a biofilm in the proventricular valve in the flea foregut. The biofilm can impede and sometimes completely block the ingestion of blood, resulting in regurgitative transmission of bacteria into the bite site. In this study, we compared the relative efficiency of the two modes of transmission for Xenopsylla cheopis, a flea known to become completely blocked at a high rate, and Oropsylla montana, a flea that has been considered to rarely develop proventricular blockage.Fleas that took an infectious blood meal containing Y. pestis were maintained and monitored for four weeks for infection and proventricular blockage. The number of Y. pestis transmitted by groups of fleas by the two modes of transmission was also determined. O. montana readily developed complete proventricular blockage, and large numbers of Y. pestis were transmitted by that mechanism both by it and by X. cheopis, a flea known to block at a high rate. In contrast, few bacteria were transmitted in the early phase by either species.A model system incorporating standardized experimental conditions and viability controls was developed to more reliably compare the infection, proventricular blockage and transmission dynamics of different flea vectors, and was used to resolve a long-standing uncertainty concerning the vector competence of O. montana. Both X. cheopis and O. montana are fully capable of transmitting Y. pestis by the proventricular biofilm-dependent mechanism.

  10. Organizational flexibility estimation

    OpenAIRE

    Komarynets, Sofia

    2013-01-01

    By the help of parametric estimation the evaluation scale of organizational flexibility and its parameters was formed. Definite degrees of organizational flexibility and its parameters for the Lviv region enterprises were determined. Grouping of the enterprises under the existing scale was carried out. Special recommendations to correct the enterprises behaviour were given.

  11. Flexible magnetoimpidence sensor

    KAUST Repository

    Kavaldzhiev, Mincho

    2015-05-01

    Recently, flexible electronic devices have attracted increasing interest, due to the opportunities they promise for new applications such as wearable devices, where the components are required to flex during normal use[1]. In this light, different magnetic sensors, like microcoil, spin valve, giant magnetoresistance (GMR), magnetoimpedance (MI), have been studied previously on flexible substrates.

  12. Flexible 'zoning' aids adaptability.

    Science.gov (United States)

    Corben, Simon

    2013-09-01

    Simon Corben, business development director at Capita Symonds' Health team, examines how 'clever use of zoning' when planning new healthcare facilities could improve hospital design, increase inherent flexibility, and reduce lifetime costs, and argues that a 'loose-fit, non-bespoke approach' to space planning will lead to 'more flexible buildings that are suitable for conversion to alternative uses'.

  13. Flexible, highly efficient all-polymer solar cells.

    Science.gov (United States)

    Kim, Taesu; Kim, Jae-Han; Kang, Tae Eui; Lee, Changyeon; Kang, Hyunbum; Shin, Minkwan; Wang, Cheng; Ma, Biwu; Jeong, Unyong; Kim, Taek-Soo; Kim, Bumjoon J

    2015-10-09

    All-polymer solar cells have shown great potential as flexible and portable power generators. These devices should offer good mechanical endurance with high power-conversion efficiency for viability in commercial applications. In this work, we develop highly efficient and mechanically robust all-polymer solar cells that are based on the PBDTTTPD polymer donor and the P(NDI2HD-T) polymer acceptor. These systems exhibit high power-conversion efficiency of 6.64%. Also, the proposed all-polymer solar cells have even better performance than the control polymer-fullerene devices with phenyl-C61-butyric acid methyl ester (PCBM) as the electron acceptor (6.12%). More importantly, our all-polymer solar cells exhibit dramatically enhanced strength and flexibility compared with polymer/PCBM devices, with 60- and 470-fold improvements in elongation at break and toughness, respectively. The superior mechanical properties of all-polymer solar cells afford greater tolerance to severe deformations than conventional polymer-fullerene solar cells, making them much better candidates for applications in flexible and portable devices.

  14. Flexible Carbon Aerogels

    Directory of Open Access Journals (Sweden)

    Marina Schwan

    2016-09-01

    Full Text Available Carbon aerogels are highly porous materials with a large inner surface area. Due to their high electrical conductivity they are excellent electrode materials in supercapacitors. Their brittleness, however, imposes certain limitations in terms of applicability. In that context, novel carbon aerogels with varying degree of flexibility have been developed. These highly porous, light aerogels are characterized by a high surface area and possess pore structures in the micrometer range, allowing for a reversible deformation of the aerogel network. A high ratio of pore size to particle size was found to be crucial for high flexibility. For dynamic microstructural analysis, compression tests were performed in-situ within a scanning electron microscope allowing us to directly visualize the microstructural flexibility of an aerogel. The flexible carbon aerogels were found to withstand between 15% and 30% of uniaxial compression in a reversible fashion. These findings might stimulate further research and new application fields directed towards flexible supercapacitors and batteries.

  15. [Flexible root posts].

    Science.gov (United States)

    Vadachkoriia, N R; Mandzhavidze, N A; Gumberidze, N Sh

    2009-02-01

    The article discusses the current state of restoration techniques of root canal treatment. Nowadays, technical progress allows manufacturers to develop flexible fiberglass posts, aspiring not only to an excellent aesthetics and mechanical properties (first of all, in comparison with metal and cast posts), but also to maintenance of their radio density and a wide range of forms. Growth of fiberglass posts popularity testifies to their clinical efficiency that also is confirmed by results of long-term researches. Introduction of fiberglass posts in a dental practice has rendered huge influence on restoration techniques of root canal treatment. Convincing factors of fiberglass posts superiority provide restoration the appearance similar with the natural dentition; possess close to dentine elasticity; creation of monolithic structure with hard tooth tissues and composite cement, posts, in case of need, can be easily adjusted on length, adhesive linkage of posts gives them additional stability. Modern researches have confirmed that only elastic, namely carbon fiber and the fiberglass posts made of modern technologies possess similar physical properties, as tooth structure. They can create reliable biomimetic design; solve a complex of aesthetic and functional restoration problems.

  16. Flap endonucleases pass 5'-flaps through a flexible arch using a disorder-thread-order mechanism to confer specificity for free 5'-ends.

    Science.gov (United States)

    Patel, Nikesh; Atack, John M; Finger, L David; Exell, Jack C; Thompson, Peter; Tsutakawa, Susan; Tainer, John A; Williams, David M; Grasby, Jane A

    2012-05-01

    Flap endonucleases (FENs), essential for DNA replication and repair, recognize and remove RNA or DNA 5'-flaps. Related to FEN specificity for substrates with free 5'-ends, but controversial, is the role of the helical arch observed in varying conformations in substrate-free FEN structures. Conflicting models suggest either 5'-flaps thread through the arch, which when structured can only accommodate single-stranded (ss) DNA, or the arch acts as a clamp. Here we show that free 5'-termini are selected using a disorder-thread-order mechanism. Adding short duplexes to 5'-flaps or 3'-streptavidin does not markedly impair the FEN reaction. In contrast, reactions of 5'-streptavidin substrates are drastically slowed. However, when added to premixed FEN and 5'-biotinylated substrate, streptavidin is not inhibitory and complexes persist after challenge with unlabelled competitor substrate, regardless of flap length or the presence of a short duplex. Cross-linked flap duplexes that cannot thread through the structured arch react at modestly reduced rate, ruling out mechanisms involving resolution of secondary structure. Combined results explain how FEN avoids cutting template DNA between Okazaki fragments and link local FEN folding to catalysis and specificity: the arch is disordered when flaps are threaded to confer specificity for free 5'-ends, with subsequent ordering of the arch to catalyze hydrolysis.

  17. Probabilistic Quantification of Potentially Flexible Residential Demand

    DEFF Research Database (Denmark)

    Kouzelis, Konstantinos; Mendaza, Iker Diaz de Cerio; Bak-Jensen, Birgitte

    2014-01-01

    of residential consumers. The procedure is based on non-flexible consumer clustering and subsequent statistical analysis. Consequently, the power consumption pattern of a flexible consumer is compared to a 3D probability distribution created by the previously referred methodology. The results show a strong......The balancing of power systems with high penetration of renewable energy is a serious challenge to be faced in the near future. One of the possible solutions, recently capturing a lot of attention, is demand response. Demand response can only be achieved by power consumers holding loads which allow...... them to modify their normal power consumption pattern, namely flexible consumers. However flexibility, despite being constantly mentioned, is usually not properly defined and even rarer quantified. This manuscript introduces a methodology to identify and quantify potentially flexible demand...

  18. Comparative analysis of mutant plants impaired in the main regulatory mechanisms of photosynthetic light reactions - From biophysical measurements to molecular mechanisms.

    Science.gov (United States)

    Tikkanen, Mikko; Rantala, Sanna; Grieco, Michele; Aro, Eva-Mari

    2017-03-01

    Chlorophyll (chl) fluorescence emission by photosystem II (PSII) and light absorption by P700 reaction center chl a of photosystem I (PSI) provide easy means to probe the function of the photosynthetic machinery. The exact relationship between the measured optical variables and the molecular processes have, however, remained elusive. Today, the availability of mutants with distinct molecular characterization of photosynthesis regulatory processes should make it possible to gain further insights into this relationship, yet a systematic comparative analysis of such regulatory mutants has been missing. Here we have systematically compared the behavior of Dual-PAM fluorescence and P700 variables from well-characterized photosynthesis regulation mutants. The analysis revealed a very convincing relationship between the given molecular deficiency in the photosynthetic apparatus and the original fluorescence and P700 signals obtained by using varying intensities of actinic light and by applying a saturating pulse. Importantly, the specific information on the underlying molecular mechanism, present in these authentic signals of a given photosynthesis mutant, was largely nullified when using the commonly accepted parameters that are based on further treatment of the original signals. Understanding the unique relationship between the investigated molecular process of photosynthesis and the measured variable is an absolute prerequisite for comprehensive interpretation of fluorescence and P700 measurements. The data presented here elucidates the relationships between the main regulatory mechanisms controlling the photosynthetic light reactions and the variables obtained by fluorescence and P700 measurements. It is discussed how the full potential of optical photosynthesis measurements can be utilized in investigation of a given molecular mechanism. Copyright © 2017 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  19. Flexible spintronic devices on Kapton

    DEFF Research Database (Denmark)

    Bedoya-Pinto, Amilcar; Donolato, Marco; Gobbi, Marco;

    2014-01-01

    of bending angle (r = 5 mm) have been achieved without degradation of the device performance, reaching room-temperature tunneling magnetoresistance ratios of 12% in bended Co/Al2O3/NiFe junctions. In addition, a suitable route to pattern high-quality nanostructures directly on the polyimide surface......Magnetic tunnel junctions and nano-sized domain-wall conduits have been fabricated on the flexible substrate Kapton. Despite the delicate nature of tunneling barriers and zig-zag shaped nanowires, the devices show an outstanding integrity and robustness upon mechanical bending. High values...... is established. These results demonstrate that Kapton is a promising platform for low-cost, flexible spintronic applications involving tunnel junction elements and nanostructurization. ...

  20. Insoluble and flexible silk films containing glycerol.

    Science.gov (United States)

    Lu, Shenzhou; Wang, Xiaoqin; Lu, Qiang; Zhang, Xiaohui; Kluge, Jonathan A; Uppal, Neha; Omenetto, Fiorenzo; Kaplan, David L

    2010-01-11

    We directly prepared insoluble silk films by blending with glycerol and avoiding the use of organic solvents. The ability to blend a plasticizer like glycerol with a hydrophobic protein like silk and achieve stable material systems above a critical threshold of glycerol is an important new finding with importance for green chemistry approaches to new and more flexible silk-based biomaterials. The aqueous solubility, biocompatibility, and well-documented use of glycerol as a plasticizer with other biopolymers prompted its inclusion in silk fibroin solutions to assess impact on silk film behavior. Processing was performed in water rather than organic solvents to enhance the potential biocompatibility of these biomaterials. The films exhibited modified morphologies that could be controlled on the basis of the blend composition and also exhibited altered mechanical properties, such as improved elongation at break, when compared with pure silk fibroin films. Mechanistically, glycerol appears to replace water in silk fibroin chain hydration, resulting in the initial stabilization of helical structures in the films, as opposed to random coil or beta-sheet structures. The use of glycerol in combination with silk fibroin in materials processing expands the functional features attainable with this fibrous protein, and in particular, in the formation of more flexible films with potential utility in a range of biomaterial and device applications.

  1. A comparative study on the mechanical properties of the healthy and varicose human saphenous vein under uniaxial loading.

    Science.gov (United States)

    Karimi, Alireza; Navidbakhsh, Mahdi; Kudo, Susumu

    2015-01-01

    Saphenous Vein (SV) due to fatness, age, inactiveness, etc. can be afflicted with varicose. The main reason of the varicose vein is believed to be related to the leg muscle pump which is unable to return the blood to the heart in contradiction of the effect of gravity. As a result of the varicose vein, both the structure and mechanical properties of the vein wall would alter. However, so far there is a lack of knowledge on the mechanical properties of the varicose vein. In this study, a comparative study was carried out to measure the elastic and hyperelastic mechanical properties of the healthy and varicose SVs. Healthy and varicose SVs were removed at autopsy and surgery from seven individuals and then axial tensile load was applied to them up to the failure point. In order to investigate the mechanical behaviour of the vein, this study was benefitted from three different stress definitions, such as 2nd Piola-Kichhoff, engineering and true stresses and four different strain definitions, i.e. Almansi-Hamel, Green-St. Venant, engineering and true strains, to determine the linear mechanical properties of the SVs. A Digital Image Correlation (DIC) technique was used to measure the true strain of the vein walls during load bearing. The non-linear mechanical behaviour of the SVs was also computationally evaluated via the Mooney-Rivlin material model. The true/Cauchy stress-strain diagram exhibited the elastic modulus of the varicose SVs as 45.11% lower than that of the healthy ones. Furthermore, by variation of the stress a significant alteration on the maximum stress of the healthy SVs was observed, but then not for the varicose veins. Additionally, the highest stresses of 4.99 and 0.65 MPa were observed for the healthy and varicose SVs, respectively. These results indicate a weakness in the mechanical strength of the SV when it becomes varicose, owing to the degradation of the elastin and collagen content of the SV. The Mooney-Rivlin hyperelastic and the Finite

  2. Flexible thin-film battery based on graphene-oxide embedded in solid polymer electrolyte

    Science.gov (United States)

    Kammoun, M.; Berg, S.; Ardebili, H.

    2015-10-01

    Enhanced safety of flexible batteries is an imperative objective due to the intimate interaction of such devices with human organs such as flexible batteries that are integrated with touch-screens or embedded in clothing or space suits. In this study, the fabrication and testing of a high performance thin-film Li-ion battery (LIB) is reported that is both flexible and relatively safer compared to the conventional electrolyte based batteries. The concept is facilitated by the use of solid polymer nanocomposite electrolyte, specifically, composed of polyethylene oxide (PEO) matrix and 1 wt% graphene oxide (GO) nanosheets. The flexible LIB exhibits a high maximum operating voltage of 4.9 V, high capacity of 0.13 mA h cm-2 and an energy density of 4.8 mW h cm-3. The battery is encapsulated using a simple lamination method that is economical and scalable. The laminated battery shows robust mechanical flexibility over 6000 bending cycles and excellent electrochemical performance in both flat and bent configurations. Finite element analysis (FEA) of the LIB provides critical insights into the evolution of mechanical stresses during lamination and bending.Enhanced safety of flexible batteries is an imperative objective due to the intimate interaction of such devices with human organs such as flexible batteries that are integrated with touch-screens or embedded in clothing or space suits. In this study, the fabrication and testing of a high performance thin-film Li-ion battery (LIB) is reported that is both flexible and relatively safer compared to the conventional electrolyte based batteries. The concept is facilitated by the use of solid polymer nanocomposite electrolyte, specifically, composed of polyethylene oxide (PEO) matrix and 1 wt% graphene oxide (GO) nanosheets. The flexible LIB exhibits a high maximum operating voltage of 4.9 V, high capacity of 0.13 mA h cm-2 and an energy density of 4.8 mW h cm-3. The battery is encapsulated using a simple lamination method

  3. DEM modeling of flexible structures against granular material avalanches

    Science.gov (United States)

    Lambert, Stéphane; Albaba, Adel; Nicot, François; Chareyre, Bruno

    2016-04-01

    This article presents the numerical modeling of flexible structures intended to contain avalanches of granular and coarse material (e.g. rock slide, a debris slide). The numerical model is based on a discrete element method (YADE-Dem). The DEM modeling of both the flowing granular material and the flexible structure are detailed before presenting some results. The flowing material consists of a dry polydisperse granular material accounting for the non-sphericity of real materials. The flexible structure consists in a metallic net hanged on main cables, connected to the ground via anchors, on both sides of the channel, including dissipators. All these components were modeled as flexible beams or wires, with mechanical parameters defined from literature data. The simulation results are presented with the aim of investigating the variability of the structure response depending on different parameters related to the structure (inclination of the fence, with/without brakes, mesh size opening), but also to the channel (inclination). Results are then compared with existing recommendations in similar fields.

  4. Adherence to a flexible extended regimen for oral hormonal contraception provided in blister packaging compared with an adherence-supporting digital tablet dispenser: historical comparison of data from two clinical studies

    Science.gov (United States)

    Elliesen, Jörg; Trummer, Dietmar

    2016-01-01

    Background The Clyk™ digital pill dispenser helps ensure correct and consistent administration of a flexible extended regimen of the combined oral contraceptive, ethinylestradiol (EE) 20 μg/drospirenone 3 mg (EE/drospirenone ; YAZ® Flex Flex), guiding users through the intake cycle and 4-day pill break and providing visible and acoustic daily reminders when pill intake is due. A study showed that the audible alarm function of the dispenser could help reduce the number of missed pills, but it lacked an appropriate “non-dispenser” group for a meaningful assessment of the impact of the dispenser on adherence. This study indirectly assessed the overall effect of the digital dispenser on adherence by comparing data from a treatment with standard blister packaging. Materials and methods One-year adherence data were compared from two similarly designed, Phase III, open-label, randomized trials of EE/drospirenoneFlex. In study 1, women used diary cards to record adherence with EE/drospirenoneFlex dispensed in blister packs (n=640), and in study 2 the dispenser was used with the alarm activated (n=250) or deactivated (n=248) in addition to using diary cards. Results A mean (±SD) of 4.3 (±4.24) missed pills over 1 year were recorded in diary cards among women who dispensed their pills from the blister packages (study 1) compared with 1.0 (±2.4) recorded by the alarm-activated dispenser (study 2). In study 2, a mean of 1.9 (±4.2) missed pills were reported in the diaries over 1 year compared with 4.4 (±9.1) from automatic recording by the dispenser (both arms of study 2), indicating underreporting of missed pills in diary cards vs the digital dispenser. Adjusting for this rate of underreporting, an estimated mean of ten pills were missed over 1 year by women using EE/drospirenoneFlex in blister packs, or ten times more than with the digital dispenser with activated acoustic alarm. Conclusion The digital dispenser helps reduce the number of missed pills and

  5. A Comparative Numerical Study on the Performances and Vortical Patterns of Two Bioinspired Oscillatory Mechanisms: Undulating and Pure Heaving

    Directory of Open Access Journals (Sweden)

    Mohsen Ebrahimi

    2015-01-01

    Full Text Available The hydrodynamics and energetics of bioinspired oscillating mechanisms have received significant attentions by engineers and biologists to develop the underwater and air vehicles. Undulating and pure heaving (or plunging motions are two significant mechanisms which are utilized in nature to provide propulsive, maneuvering, and stabilization forces. This study aims to elucidate and compare the propulsive vortical signature and performance of these two important natural mechanisms through a systematic numerical study. Navier-Stokes equations are solved, by a pressure-based finite volume method solver, in an arbitrary Lagrangian-Eulerian (ALE framework domain containing a 2D NACA0012 foil moving with prescribed kinematics. Some of the important findings are (1 the thrust production of the heaving foil begins at lower St and has a greater growing slope with respect to the St; (2 the undulating mechanism has some limitations to produce high thrust forces; (3 the undulating foil shows a lower power consumption and higher efficiency; (4 changing the Reynolds number (Re in a constant St affects the performance of the oscillations; and (5 there is a distinguishable appearance of leading edge vortices in the wake of the heaving foil without observable ones in the wake of the undulating foil, especially at higher St.

  6. A comparative mechanical and bone remodelling study of all-ceramic posterior inlay and onlay fixed partial dentures.

    Science.gov (United States)

    Field, Clarice; Li, Qing; Li, Wei; Thompson, Mark; Swain, Michael

    2012-01-01

    Comparative studies of bone remodelling and mechanical stresses between inlay and onlay fixed partial dentures (FPD) are rather limited. The purpose of this paper was to evaluate the biological consequence in posterior mandibular bone and the mechanical responses in these two different prosthetic configurations. Three-dimensional (3D) finite element analysis (FEA) models are created to explore the mechanical responses for the inlay and onlay preparations within the same oral environment. Strain induced bone remodelling was simulated under mastication. The remodelling adopted herein relates the strain in the bone to the change of Hounsfield Unit (HU) value in proportion to the surface area density (SAD) of bony morphology, which allows directly correlating to clinical computerised tomography (CT) data. The results show that both FPD designs exhibit a similar resultant change in bone mineral density (BMD) though the onlay configuration leads to a more uniform distribution of bone density. The inlay design results in higher mechanical stresses whilst allowing preservation of healthy tooth structure. This study provides an effective means to further clinical assessment and investigation into biomechanical responses and long-term restorative outcome with different FPD designs. Quantifying in vivo stress distributions associated with inlay/onlay FPDs can further supplement clinical investigations into prosthetic durability, FPD preparation techniques (i.e., taper angles, material development), consequent stress distributions and the ongoing biomechanical responses of mandibular bone. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Comparative acoustic performance and mechanical properties of silk membranes for the repair of chronic tympanic membrane perforations.

    Science.gov (United States)

    Allardyce, Benjamin J; Rajkhowa, Rangam; Dilley, Rodney J; Xie, Zhigang; Campbell, Luke; Keating, Adrian; Atlas, Marcus D; von Unge, Magnus; Wang, Xungai

    2016-12-01

    The acoustic and mechanical properties of silk membranes of different thicknesses were tested to determine their suitability as a repair material for tympanic membrane perforations. Membranes of different thickness (10-100μm) were tested to determine their frequency response and their resistance to pressure loads in a simulated ear canal model. Their mechanical rigidity to pressure loads was confirmed by tensile testing. These membranes were tested alongside animal cartilage, currently the strongest available myringoplasty graft as well as paper, which is commonly used for simpler procedures. Silk membranes showed resonant frequencies within the human hearing range and a higher vibrational amplitude than cartilage, suggesting that silk may offer good acoustic energy transfer characteristics. Silk membranes were also highly resistant to simulated pressure changes in the middle ear, suggesting they can resist retraction, a common cause of graft failure resulting from chronic negative pressures in the middle ear. Part of this strength can be explained by the substantially higher modulus of silk films compared with cartilage. This allows for the production of films that are much thinner than cartilage, with superior acoustic properties, but that still provide the same level of mechanical support as thicker cartilage. Together, these in vitro results suggest that silk membranes may provide good hearing outcomes while offering similar levels of mechanical support to the reconstructed middle ear.

  8. A Comparative Numerical Study on the Performances and Vortical Patterns of Two Bioinspired Oscillatory Mechanisms: Undulating and Pure Heaving.

    Science.gov (United States)

    Ebrahimi, Mohsen; Abbaspour, Madjid

    2015-01-01

    The hydrodynamics and energetics of bioinspired oscillating mechanisms have received significant attentions by engineers and biologists to develop the underwater and air vehicles. Undulating and pure heaving (or plunging) motions are two significant mechanisms which are utilized in nature to provide propulsive, maneuvering, and stabilization forces. This study aims to elucidate and compare the propulsive vortical signature and performance of these two important natural mechanisms through a systematic numerical study. Navier-Stokes equations are solved, by a pressure-based finite volume method solver, in an arbitrary Lagrangian-Eulerian (ALE) framework domain containing a 2D NACA0012 foil moving with prescribed kinematics. Some of the important findings are (1) the thrust production of the heaving foil begins at lower St and has a greater growing slope with respect to the St; (2) the undulating mechanism has some limitations to produce high thrust forces; (3) the undulating foil shows a lower power consumption and higher efficiency; (4) changing the Reynolds number (Re) in a constant St affects the performance of the oscillations; and (5) there is a distinguishable appearance of leading edge vortices in the wake of the heaving foil without observable ones in the wake of the undulating foil, especially at higher St.

  9. Microstructural characterization and comparative evaluation of physical, mechanical and biological properties of three ceramics for metal-ceramic restorations.

    Science.gov (United States)

    Kontonasaki, Eleana; Kantiranis, Nikolaos; Papadopoulou, Lambrini; Chatzistavrou, Xanthippi; Kavouras, Panagiotis; Zorba, Triantafillia; Sivropoulou, Afroditi; Chrissafis, Konstantinos; Paraskevopoulos, Konstantinos M; Koidis, Petros T

    2008-10-01

    A wide variety of dental ceramics compositions have been introduced in dental clinical practice in order to combine desired aesthetics with superior mechanical performance. The aim of the present study was to investigate the microstructural changes in three dental ceramics after their sintering according to manufacturers' instructions and to comparatively evaluate some of their physical, mechanical and biological properties. The analysis of the phases present in each material before and after sintering was performed with scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction analysis (XRD). The thermal properties of ceramic specimens were evaluated with differential thermal and thermogravimetric analysis (TG-DTA). The mechanical properties evaluated were fracture toughness, Young's modulus and microhardness with the Vickers indentation method. MTT assay was used for cell proliferation assessment. One-way analysis of variance (ANOVA) with Bonferroni multiple comparisons tests was used to determine statistically significant differences (significance level of pceramic compositions of leucite content in the starting unheated ceramic powders ranging between 14 and 32 wt.% and in the respective sintered powders ranging between 15 and 41 wt.% The low fusing glass-ceramic and the high fusing leucite-based ceramic presented significantly higher fracture toughness (pceramic. The three ceramics were almost equivalent concerning their in vitro biological behavior. Variations in crystal structure, distribution and composition are related to differences concerning mechanical properties of dental ceramics.

  10. Flexible Photodetectors Based on 1D Inorganic Nanostructures

    Science.gov (United States)

    Lou, Zheng

    2015-01-01

    Flexible photodetectors with excellent flexibility, high mechanical stability and good detectivity, have attracted great research interest in recent years. 1D inorganic nanostructures provide a number of opportunities and capabilities for use in flexible photodetectors as they have unique geometry, good transparency, outstanding mechanical flexibility, and excellent electronic/optoelectronic properties. This article offers a comprehensive review of several types of flexible photodetectors based on 1D nanostructures from the past ten years, including flexible ultraviolet, visible, and infrared photodetectors. High‐performance organic‐inorganic hybrid photodetectors, as well as devices with 1D nanowire (NW) arrays, are also reviewed. Finally, new concepts of flexible photodetectors including piezophototronic, stretchable and self‐powered photodetectors are examined to showcase the future research in this exciting field. PMID:27774404

  11. Framework for Flexible Security in Group Communications

    Science.gov (United States)

    McDaniel, Patrick; Prakash, Atul

    2006-01-01

    The Antigone software system defines a framework for the flexible definition and implementation of security policies in group communication systems. Antigone does not dictate the available security policies, but provides high-level mechanisms for implementing them. A central element of the Antigone architecture is a suite of such mechanisms comprising micro-protocols that provide the basic services needed by secure groups.

  12. Quantitative structure-activity relationships of insecticides and plant growth regulators: comparative studies toward understanding the molecular mechanism of action.

    Science.gov (United States)

    Iwamura, H; Nishimura, K; Fujita, T

    1985-01-01

    Emphasis was put on the comparative quantitative structure-activity approaches to the exploration of action mechanisms of structurally different classes of compounds showing the same type of activity as well as those of the same type of compounds having different actions. Examples were selected from studies performed on insecticides and plant growth regulators, i.e., neurotoxic carbamates, phosphates, pyrethroids and DDT analogs, insect juvenile hormone mimics, and cytokinin agonistic and antagonistic compounds. Similarities and dissimilarities in structures required to elicit activity between compounds classes were revealed in terms of physicochemical parameters, provoking further exploration and evoking insights into the molecular mechanisms of action which may lead to the development of new structures having better qualities. PMID:3905379

  13. Comparative analysis of the mechanical and thermal properties of polyester hybrid composites reinforced by jute and glass fiber.

    Directory of Open Access Journals (Sweden)

    Braga, R. A

    2015-05-01

    Full Text Available This work describes the study to investigate and compare the mechanical and thermal properties of raw jute and glass fiber reinforced polyester hybrid composites. To improve the mechanical properties, jute fiber was hybridized with glass fiber. Polyester resin, jute and glass fibers were laminated in three weight ratios(77/23/0, 68/25/7 and 56/21/23 respectively to form composites. The tensile, flexural, impact, density, thermal and water absorption tests were carried out using hybrid composite samples. This study shows that the addition of jute fiber and glass fiber in polyester, increase the density, the impact energy, the tensile strength and the flexural strength, but decrease the loss mass in function of temperature and the water absorption. Morphological analysis was carried out to observe fracture behavior and fiber pull-out of the samples using scanning electron microscope.

  14. A comparative study of sliding wear of nonmetallic dental restorative materials with emphasis on micromechanical wear mechanisms.

    Science.gov (United States)

    Dupriez, Nataliya Deyneka; von Koeckritz, Ann-Kristin; Kunzelmann, Karl-Heinz

    2015-05-01

    The purpose of this study is to investigate the in vitro tribological behavior of modern nonmetallic restorative materials. Specimen prepared of IPS e.max Press lithium disilicate glass ceramic, IPS Empress Esthetic leucite-reinforced glass ceramic, Everest ZS Blanks yttria-stabilized zirconia and Lava Ultimate composite were subjected to wear using a wear machine designed to simulate occlusal loads. The wear of the investigated materials and antagonists were evaluated by a three-dimensional surface scanner. The quantitative wear test results were used to compare and rank the materials. Specimens were divided into two groups with steatite and alumina antagonists. For each antagonist material an analysis of variance was applied. As a post hoc test of the significant differences, Tukey's honest significant difference test was used. With steatite antagonist: wear of zirconia materials mechanical properties (hardness and fracture toughness) and with materials microstructure. Wear mechanisms are discussed. © 2014 Wiley Periodicals, Inc.

  15. A comparative study of information-based source number estimation methods and experimental validations on mechanical systems.

    Science.gov (United States)

    Cheng, Wei; Zhang, Zhousuo; Cao, Hongrui; He, Zhengjia; Zhu, Guanwen

    2014-04-25

    This paper investigates one eigenvalue decomposition-based source number estimation method, and three information-based source number estimation methods, namely the Akaike Information Criterion (AIC), Minimum Description Length (MDL) and Bayesian Information Criterion (BIC), and improves BIC as Improved BIC (IBIC) to make it more efficient and easier for calculation. The performances of the abovementioned source number estimation methods are studied comparatively with numerical case studies, which contain a linear superposition case and a both linear superposition and nonlinear modulation mixing case. A test bed with three sound sources is constructed to test the performances of these methods on mechanical systems, and source separation is carried out to validate the effectiveness of the experimental studies. This work can benefit model order selection, complexity analysis of a system, and applications of source separation to mechanical systems for condition monitoring and fault diagnosis purposes.

  16. A Comparative Study of Information-Based Source Number Estimation Methods and Experimental Validations on Mechanical Systems

    Directory of Open Access Journals (Sweden)

    Wei Cheng

    2014-04-01

    Full Text Available This paper investigates one eigenvalue decomposition-based source number estimation method, and three information-based source number estimation methods, namely the Akaike Information Criterion (AIC, Minimum Description Length (MDL and Bayesian Information Criterion (BIC, and improves BIC as Improved BIC (IBIC to make it more efficient and easier for calculation. The performances of the abovementioned source number estimation methods are studied comparatively with numerical case studies, which contain a linear superposition case and a both linear superposition and nonlinear modulation mixing case. A test bed with three sound sources is constructed to test the performances of these methods on mechanical systems, and source separation is carried out to validate the effectiveness of the experimental studies. This work can benefit model order selection, complexity analysis of a system, and applications of source separation to mechanical systems for condition monitoring and fault diagnosis purposes.

  17. EFFECTS OF THRESHOLD INSPIRATORY MUSCLE TRAINING VERSUS CONVENTIONAL PHYSIOTHERAPY ON THE WEANING PERIOD OF MECHANICALLY VENTILATED PATIENTS: A COMPARATIVE STUDY

    Directory of Open Access Journals (Sweden)

    Akansha Dixit

    2014-04-01

    Full Text Available Objective: To check the effectiveness of Conventional Physiotherapy and Threshold Inspiratory Muscle Training (TIMT on the weaning period of mechanically ventilated patients. Background: Prolonged Mechanical ventilation (MV of ICU patients is associated with high health care costs and respiratory muscle weakness which also has been suggested as a possible cause of delayed weaning from MV. Hence, TIMT may be seen as a possible accelerator for successful weaning. Study Design: Experimental and comparative design. Methods: Total 30 subjects were selected on the basis of inclusion criteria and divided randomly with 15 subjects in each group. To the Group-A Conventional Physiotherapy was given whereas in the Group-B TIMT was also added. The Maximal Inspiratory Pressure (MIP was measured before commencement of the treatment and post-extubation. Result: The data was analyzed using unpaired ‘t’ test. In Group-B (TIMT, MIP mean increased to -43.87 ± 8.01 cm H2O (post extubation from pre-treatment value of -29.29 ± 3.61 cm H2O, as compared to Group-A’s values of - 35.68 ± 4.49 cm H2O (post extubation from -28.77 ± 2.93 cm H2O (pre-treatment. Also the weaning period was reduced more significantly in Group-B (mean duration of 4.27 ± 1.49 days than the Group-A (mean duration of 6.27±1.71 days. Conclusion: The results of the study indicate that TIMT along with conventional physiotherapy produces more significant changes in MIP and weaning period of patients receiving mechanical ventilation as compared to conventional physiotherapy alone.

  18. Electrophoretic mobility of semi-flexible double-stranded DNA in defect-controlled polymer networks: Mechanism investigation and role of structural parameters.

    Science.gov (United States)

    Khairulina, Kateryna; Li, Xiang; Nishi, Kengo; Shibayama, Mitsuhiro; Chung, Ung-il; Sakai, Takamasa

    2015-06-21

    Our previous studies have reported an empirical model, which explains the electrophoretic mobility (μ) of double-stranded DNA (dsDNA) as a combination of a basic migration term (Rouse-like or reptation) and entropy loss term in polymer gels with ideal network structure. However, this case is of exception, considering a large amount of heterogeneity in the conventional polymer gels. In this study, we systematically tune the heterogeneity in the polymer gels and study the migration of dsDNA in these gels. Our experimental data well agree with the model found for ideal networks. The basic migration mechanism (Rouse-like or reptation) persists perfectly in the conventional heterogeneous polymer gel system, while the entropy loss term continuously changes with increase in the heterogeneity. Furthermore, we found that in the limit where dsDNA is shorter than dsDNA persistence length, the entropy loss term may be related to the collisional motions between DNA fragments and the cross-links.

  19. Development of flexible LEO-resistant PI films for space applications using a self-healing mechanism by surface-directed phase separation of block copolymers.

    Science.gov (United States)

    Fischer, Hartmut R; Tempelaars, Karin; Kerpershoek, Aat; Dingemans, Theo; Iqbal, M; Lonkhuyzen, Henk van; Iwanowsky, Boris; Semprimoschnig, Christopher

    2010-08-01

    Polimide-block-polydimethylsiloxane (PI-b-PDMS) block copolymers have been synthesized from commercially available amino-terminated polysiloxanes with different molecular weights, for use as polymeric materials resistant to the low earth orbit (LEO) space environment. A structural optimization with respect to maximum environmental protection has been performed by varying the PDMS block length as well as the architecture of the block copolymers spanning from multiblock to triblock and star-shaped morphologies. The synthesized polymers and casted films show good mechanical and thermal performance. For block copolymers with a load of 2% PDMS (in the case of the multiblock copolymers), a complete surface coverage of the PDMS has been found. It has been shown that the transfer of the surface enriched PDMS layer into a thin silica layer after atomic oxygen (AO) exposure results in a drastic decrease in AO erosion rate. The silica layer protects the underlying material from oxygen initiated erosion resulting in a drastic decrease of surface roughness. This phenomena is observable for loads as small as 6 wt % PDMS.

  20. Surface Engineering of Polycrystalline Silicon for Long-term Mechanical Stress Endurance Enhancement in Flexible Low Temperature Poly-Si Thin-Film Transistors.

    Science.gov (United States)

    Chen, Bo-Wei; Chang, Ting-Chang; Hung, Yu-Ju; Huang, Shin-Ping; Chen, Hua-Mao; Liao, Po-Yung; Lin, Yu-Ho; Huang, Hui-Chun; Chiang, Hsiao-Cheng; Yang, Chung-I; Zheng, Yu-Zhe; Chu, Ann-Kuo; Li, Hung-Wei; Tsai, Chih-Hung; Lu, Hsueh-Hsing; Wang, Terry Tai-Jui; Chang, Tsu-Chiang

    2017-02-08

    Surface morphology in polycrystalline silicon (poly-Si) film is an issue regardless of whether conventional excimer laser annealing (ELA) or the newer metal-induced lateral crystallization (MILC) process is used. This paper investigates the stress distribution while undergoing long-term mechanical stress and the influence of stress on electrical characteristics. Our simulated results show that the non-uniform stress in the gate insulator is more pronounced near the polysilicon/gate insulator edge and at the two sides of the polysilicon protrusion. This stress results in defects in the gate insulator and leads to a non-uniform degradation phenomenon, which affects both the performance and reliability in thin-film transistors (TFTs). The degree of degradation is similar regardless of bending axis (channel-length axis, channel-width axis) or bending type (compression, tension), which means that the degradation is dominated by the protrusion effects. Furthermore, by utilizing long-term electrical bias stresses after undergoing long-tern bending stress, it is apparent that the carrier injection is severe in the sub-channel region, which confirms that the influence of protrusions is crucial. To eliminate the influence of surface morphology in poly-Si, three kinds of laser energy density were used during crystallization to control the protrusion height. The device with lowest protrusions demonstrates the smallest degradation after undergoing long-term bending.

  1. A flexible and miniaturized hair dye based photodetector via chemiluminescence pathway.

    Science.gov (United States)

    Lin, Ching-Chang; Sun, Da-Shiuan; Lin, Ya-Lin; Tsai, Tsung-Tso; Cheng, Chieh; Sun, Wen-Hsien; Ko, Fu-Hsiang

    2017-04-15

    A flexible and miniaturized metal semiconductor metal (MSM) biomolecular photodetector was developed as the core photocurrent system through chemiluminescence for hydrogen peroxide sensing. The flexible photocurrent sensing system was manufactured on a 30-µm-thick crystalline silicon chip by chemical etching process, which produced a flexible silicon chip. A surface texturization design on the flexible device enhanced the light-trapping effect and minimized reflectivity losses from the incident light. The model protein streptavidin bound to horseradish peroxidase (HRP) was successfully immobilized onto the sensor surface through high-affinity conjugation with biotin. The luminescence reaction occurred with luminol, hydrogen peroxide and HRP enzyme, and the emission of light from the catalytic reaction was detected by underlying flexible photodetector. The chemiluminescence in the miniaturized photocurrent sensing system was successfully used to determine the hydrogen peroxide concentration in real-time analyses. The hydrogen peroxide detection limit of the flexible MSM photodetector was 2.47mM. The performance of the flexible MSM photodetector maintained high stability under bending at various bending radii. Moreover, for concave bending, a significant improvement in detection signal intensity (14.5% enhancement compared with a flat configuration) was observed because of the increased photocurrent, which was attributed to enhancement of light trapping. Additionally, this detector was used to detect hydrogen peroxide concentrations in commercial hair dye products, which is a significant issue in the healthcare field. The development of this novel, flexible and miniaturized MSM biomolecular photodetector with excellent mechanical flexibility and high sensitivity demonstrates the applicability of this approach to future wearable sensor development efforts. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Control of a Lightweight Flexible Robotic Arm Using Sliding Modes

    Directory of Open Access Journals (Sweden)

    Ibone Lizarraga

    2008-11-01

    Full Text Available This paper presents a robust control scheme for flexible link robotic manipulators, which is based on considering the flexible mechanical structure as a system with slow (rigid and fast (flexible modes that can be controlled separately. The rigid dynamics is controlled by means of a robust sliding-mode approach with wellestablished stability properties while an LQR optimal design is adopted for the flexible dynamics. Experimental results show that this composite approach achieves good closed loop tracking properties both for the rigid and the flexible dynamics.

  3. Painful Flexible Flatfoot.

    Science.gov (United States)

    Sheikh Taha, Abdel Majid; Feldman, David S

    2015-12-01

    Flatfoot is commonly encountered by pediatric orthopedic surgeons and pediatricians. A paucity of literature exists on how to define a flatfoot. The absence of the medial arch with a valgus hindfoot is the hallmark of this pathology. Flatfoot can be flexible or rigid. This review focuses on the diagnosis and treatment of the flexible flatfoot. Most flatfeet are flexible and clinically asymptomatic, and warrant little intervention. If feet are symptomatic, treatment is needed. Most patients who require treatment improve with foot orthotics and exercises. Only feet resistant to conservative modalities are deemed surgical candidates. The presence of a tight heel cord is often found in patients who fail conservative management.

  4. Flexible Support Stanchion

    Energy Technology Data Exchange (ETDEWEB)

    Rudland, D.L.; /Fermilab

    1987-05-11

    Figure 1 shows the assembly drawing of the Central Calorimeter Cryostat Flexible Support Stanchion. Figures 2 and 3 show the Flexible Support STanchion in detail. These Stanchions support the cryostat safely, reduce the heat load to the cryostat from the ambient by a factor of more than ten, provide a spring like action that reduce the loads created by thermal contraction of the cryostat and position the cryostate accurately. Table 1 shows all of the details of the Flexible Support system for the C.C. Cryostat.

  5. Effect of flexibility on the growth of concentration fluctuations in a suspension of sedimenting fibers: Particle simulations

    Energy Technology Data Exchange (ETDEWEB)

    Manikantan, Harishankar; Saintillan, David [Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California 92093 (United States)

    2016-01-15

    Three-dimensional numerical simulations are performed to study the stability of a sedimenting suspension of weakly flexible fibers. It is well known that a suspension of rigid rods sedimenting under gravity at low Reynolds number is unstable to concentration fluctuations owing to hydrodynamic interactions. Flexible fibers, however, reorient while settling and even weak flexibility can alter their collective dynamics. In our recent work [Manikantan et al., “The instability of a sedimenting suspension of weakly flexible fibres,” J. Fluid Mech. 756, 935–964 (2014)], we developed a mean-field theory to predict the linear stability of such a system. Here, we verify these predictions using accurate and efficient particle simulations based on a slender-body model. We also demonstrate the mechanisms by which flexibility-induced reorientation alters suspension microstructure, and through it, its stability. Specifically, we first show that the anisotropy of the base state in the case of a suspension of flexible fibers has a destabilizing effect compared to a suspension of rigid rods. Second, a conflicting effect of flexibility is also shown to suppress particle clustering and slow down the growth of the instability. The relative magnitude of filament flexibility and rotational Brownian motion dictates which effect dominates, and our simulations qualitatively follow theoretically predicted trends. The mechanism for either effects is tied to the flexibility-induced reorientation of particles, which we illustrate using velocity and orientation statistics from our simulations. Finally, we also show that, in the case of an initially homogeneous and isotropic suspension, flexibility always acts to suppress the growth of the instability.

  6. The Enzymatic Paradox of Yeast Arginyl-tRNA Synthetase: Exclusive Arginine Transfer Controlled by a Flexible Mechanism of tRNA Recognition.

    Science.gov (United States)

    McShane, Ariel; Hok, Eveline; Tomberlin, Jensen; Eriani, Gilbert; Geslain, Renaud

    2016-01-01

    Identity determinants are essential for the accurate recognition of transfer RNAs by aminoacyl-tRNA synthetases. To date, arginine determinants in the yeast Saccharomyces cerevisiae have been identified exclusively in vitro and only on a limited number of tRNA Arginine isoacceptors. In the current study, we favor a full cellular approach and expand the investigation of arginine determinants to all four tRNA Arg isoacceptors. More precisely, this work scrutinizes the relevance of the tRNA nucleotides at position 20, 35 and 36 in the yeast arginylation reaction. We built 21 mutants by site-directed mutagenesis and tested their functionality in YAL5, a previously engineered yeast knockout deficient for the expression of tRNA Arg CCG. Arginylation levels were also monitored using Northern blot. Our data collected in vivo correlate with previous observations. C35 is the prominent arginine determinant followed by G36 or U36 (G/U36). In addition, although there is no major arginine determinant in the D loop, the recognition of tRNA Arg ICG relies to some extent on the nucleotide at position 20. This work refines the existing model for tRNA Arg recognition. Our observations indicate that yeast Arginyl-tRNA synthetase (yArgRS) relies on distinct mechanisms to aminoacylate the four isoacceptors. Finally, according to our refined model, yArgRS is able to accommodate tRNA Arg scaffolds presenting N34, C/G35 and G/A/U36 anticodons while maintaining specificity. We discuss the mechanistic and potential physiological implications of these findings.

  7. VERIFICATION OF TORSIONAL OSCILLATING MECHANICAL SYSTEM DYNAMIC CALCULATION RESULTS

    OpenAIRE

    2014-01-01

    On our department we deal with optimization and tuning of torsional oscillating mechanical systems. When solving these problems we often use results of dynamic calculation. The goal of this article is to compare values obtained by computation and experimentally. For this purpose, a mechanical system built in our laboratory was used. At first, classical HARDY type flexible coupling has been applied into the system, then we used a pneumatic flexible shaft coupling developed by us...

  8. Graphene-cellulose paper flexible supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Zhe; Su, Yang; Li, Feng; Du, Jinhong; Cheng, Hui-Ming [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Wang, Da-Wei [ARC Centre of Excellence for Functional Nanomaterials, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Qld 4072 (Australia)

    2011-10-15

    A simple and scalable method to fabricate graphene-cellulose paper (GCP) membranes is reported; these membranes exhibit great advantages as freestanding and binder-free electrodes for flexible supercapacitors. The GCP electrode consists of a unique three-dimensional interwoven structure of graphene nanosheets and cellulose fibers and has excellent mechanical flexibility, good specific capacitance and power performance, and excellent cyclic stability. The electrical conductivity of the GCP membrane shows high stability with a decrease of only 6% after being bent 1000 times. This flexible GCP electrode has a high capacitance per geometric area of 81 mF cm{sup -2}, which is equivalent to a gravimetric capacitance of 120 F g{sup -1} of graphene, and retains >99% capacitance over 5000 cycles. Several types of flexible GCP-based polymer supercapacitors with various architectures are assembled to meet the power-energy requirements of typical flexible or printable electronics. Under highly flexible conditions, the supercapacitors show a high capacitance per geometric area of 46 mF cm{sup -2} for the complete devices. All the results demonstrate that polymer supercapacitors made using GCP membranes are versatile and may be used for flexible and portable micropower devices. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. A cluster randomised trial, cost-effectiveness analysis and psychosocial evaluation of insulin pump therapy compared with multiple injections during flexible intensive insulin therapy for type 1 diabetes: the REPOSE Trial.

    Science.gov (United States)

    Heller, Simon; White, David; Lee, Ellen; Lawton, Julia; Pollard, Daniel; Waugh, Norman; Amiel, Stephanie; Barnard, Katharine; Beckwith, Anita; Brennan, Alan; Campbell, Michael; Cooper, Cindy; Dimairo, Munyaradzi; Dixon, Simon; Elliott, Jackie; Evans, Mark; Green, Fiona; Hackney, Gemma; Hammond, Peter; Hallowell, Nina; Jaap, Alan; Kennon, Brian; Kirkham, Jackie; Lindsay, Robert; Mansell, Peter; Papaioannou, Diana; Rankin, David; Royle, Pamela; Smithson, W Henry; Taylor, Carolin

    2017-04-01

    Insulin is generally administered to people with type 1 diabetes mellitus (T1DM) using multiple daily injections (MDIs), but can also be delivered using infusion pumps. In the UK, pumps are recommended for patients with the greatest need and adult use is less than in comparable countries. Previous trials have been small, of short duration and have failed to control for training in insulin adjustment. To assess the clinical effectiveness and cost-effectiveness of pump therapy compared with MDI for adults with T1DM, with both groups receiving equivalent structured training in flexible insulin therapy. Pragmatic, multicentre, open-label, parallel-group cluster randomised controlled trial, including economic and psychosocial evaluations. After participants were assigned a group training course, courses were randomly allocated in pairs to either pump or MDI. Eight secondary care diabetes centres in the UK. Adults with T1DM for > 12 months, willing to undertake intensive insulin therapy, with no preference for pump or MDI, or a clinical indication for pumps. Pump or MDI structured training in flexible insulin therapy, followed up for 2 years. MDI participants used insulin analogues. Pump participants used a Medtronic Paradigm(®) Veo(TM) (Medtronic, Watford, UK) with insulin aspart (NovoRapid, Novo Nordisk, Gatwick, UK). Primary outcome - change in glycated haemoglobin (HbA1c) at 2 years in participants whose baseline HbA1c was ≥ 7.5% (58 mmol/mol). Key secondary outcome - proportion of participants with HbA1c ≤ 7.5% at 2 years. Other outcomes at 6, 12 and 24 months - moderate and severe hypoglycaemia; insulin dose; body weight; proteinuria; diabetic ketoacidosis; quality of life (QoL); fear of hypoglycaemia; treatment satisfaction; emotional well-being; qualitative interviews with participants and staff (2 weeks), and participants (6 months); and ICERs in trial and modelled estimates of cost-effectiveness. We randomised 46 courses comprising 317 participants

  10. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics.

    Science.gov (United States)

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-12-22

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains.

  11. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics

    Science.gov (United States)

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-12-01

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains.

  12. Comparative characteristics of pharmacological properties of novocaine and trimecaine in different periods after thermal, mechanical, radiation and combined injury

    Energy Technology Data Exchange (ETDEWEB)

    Il' yuchenok, T.Yu.; Britun, A.I.; Spadurskij, K.S.; Rasulev, B.K.; Matveeva, I.A. (Volgogradskij Meditsinskij Inst. (USSR))

    1983-05-01

    The study of effectiveness of trimecaine hydrochloride as compared with novocaine after mechanical injury, thermal injury, radiation effect and the combination of these factors included the determination of sensitivity of animals to preparations investigated according to toxicity tests and anesthetic activity (anesthesia duration and depth) in dfferent periods after injury. Breedless male mice and rabbits are used for experiments. Sensitivity of mice to novocaine and trimecaine in the toxicity test turned out to be close to xilocaine (lidocaine) 1.4 times higher; this regularity is preserved against the back-ground of thermal injury, radiation injury and the combination of these two factors. The anesthetic effect of novacaine and trimecaine in the case of infiltration anesthesia in depth and duration is retained through all periods of investigation (after 1, 3, 7, and 30 days) after mechanic injury and combined radiation-mechanic injury. Trimecaine produced more pronounced anesthetic effect in duration and depth in intact animals and animals with combined radiation injury (2). Trimecaine along with novocaine is recommended as an optional preparation for local anesthesia in cases of combined radiation injury.

  13. Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes

    KAUST Repository

    Hu, Liangbing

    2010-05-25

    We report a comprehensive study of transparent and conductive silver nanowire (Ag NW) electrodes, including a scalable fabrication process, morphologies, and optical, mechanical adhesion, and flexibility properties, and various routes to improve the performance. We utilized a synthesis specifically designed for long and thin wires for improved performance in terms of sheet resistance and optical transmittance. Twenty Ω/sq and ∼ 80% specular transmittance, and 8 ohms/sq and 80% diffusive transmittance in the visible range are achieved, which fall in the same range as the best indium tin oxide (ITO) samples on plastic substrates for flexible electronics and solar cells. The Ag NW electrodes show optical transparencies superior to ITO for near-infrared wavelengths (2-fold higher transmission). Owing to light scattering effects, the Ag NW network has the largest difference between diffusive transmittance and specular transmittance when compared with ITO and carbon nanotube electrodes, a property which could greatly enhance solar cell performance. A mechanical study shows that Ag NW electrodes on flexible substrates show excellent robustness when subjected to bending. We also study the electrical conductance of Ag nanowires and their junctions and report a facile electrochemical method for a Au coating to reduce the wire-to-wire junction resistance for better overall film conductance. Simple mechanical pressing was also found to increase the NW film conductance due to the reduction of junction resistance. The overall properties of transparent Ag NW electrodes meet the requirements of transparent electrodes for many applications and could be an immediate ITO replacement for flexible electronics and solar cells. © 2010 American Chemical Society.

  14. Comparative genomics analysis of the companion mechanisms of Bacillus thuringiensis Bc601 and Bacillus endophyticus Hbe603 in bacterial consortium.

    Science.gov (United States)

    Jia, Nan; Ding, Ming-Zhu; Gao, Feng; Yuan, Ying-Jin

    2016-06-29

    Bacillus thuringiensis and Bacillus endophyticus both act as the companion bacteria, which cooperate with Ketogulonigenium vulgare in vitamin C two-step fermentation. Two Bacillus species have different morphologies, swarming motility and 2-keto-L-gulonic acid productivities when they co-culture with K. vulgare. Here, we report the complete genome sequencing of B. thuringiensis Bc601 and eight plasmids of B. endophyticus Hbe603, and carry out the comparative genomics analysis. Consequently, B. thuringiensis Bc601, with greater ability of response to the external environment, has been found more two-component system, sporulation coat and peptidoglycan biosynthesis related proteins than B. endophyticus Hbe603, and B. endophyticus Hbe603, with greater ability of nutrients biosynthesis, has been found more alpha-galactosidase, propanoate, glutathione and inositol phosphate metabolism, and amino acid degradation related proteins than B. thuringiensis Bc601. Different ability of swarming motility, response to the external environment and nutrients biosynthesis may reflect different companion mechanisms of two Bacillus species. Comparative genomic analysis of B. endophyticus and B. thuringiensis enables us to further understand the cooperative mechanism with K. vulgare, and facilitate the optimization of bacterial consortium.

  15. Herbivore defense responses and associated herbivore defense mechanism as revealed by comparing a resistant wild soybean with a susceptible cultivar

    Directory of Open Access Journals (Sweden)

    Xiaoyi Wang

    2015-12-01

    Full Text Available Plants have evolved sophisticated defense mechanisms against herbivores to help them adapt to the environment. Understanding the defense mechanisms in plants can help us control insects in a more effective manner. In this study, we found that compared with Tianlong 2 (a cultivated soybean with insect susceptibility, ED059 (a wild soybean line with insect resistance contains sharper pubescence tips, as well as lower transcript levels of wound-induced protein kinase (WIPK and salicylic acid-induced protein kinase (SIPK, which are important mitogen-activated protein kinases involved in early defense response to herbivores. The observed lower transcript levels of WIPK and SIPK induced higher levels of jasmonic acid (JA, JA biosynthesis enzymes (AOC3 and some secondary metabolites in ED059. Functional analysis of the KTI1 gene via Agrobacterium-mediated transformation in Arabidopsis thaliana indicated that it plays an important role in herbivore defense in ED059. We further investigated the molecular response of third-instar Helicoverpa armigera (Hübner larvae to Tianlong 2 and ED059. We found apoptotic cells only in the midguts of larvae that fed on ED059. Compared with larvae reared on the susceptible cultivar Tianlong 2, transcript levels of catalase (CAT and glutathione S-transferase (GST were up-regulated, whereas those of CAR, CHSB, and TRY were down-regulated in larvae that fed on the highly resistant variety ED059. We propose that these differences underlie the different herbivore defense responses of ED059 and Tianlong 2.

  16. Flexible Word Classes

    DEFF Research Database (Denmark)

    2013-01-01

    • First major publication on the phenomenon • Offers cross-linguistic, descriptive, and diverse theoretical approaches • Includes analysis of data from different language families and from lesser studied languages This book is the first major cross-linguistic study of 'flexible words', i.e. words...... that cannot be classified in terms of the traditional lexical categories Verb, Noun, Adjective or Adverb. Flexible words can - without special morphosyntactic marking - serve in functions for which other languages must employ members of two or more of the four traditional, 'specialised' word classes. Thus......, flexible words are underspecified for communicative functions like 'predicating' (verbal function), 'referring' (nominal function) or 'modifying' (a function typically associated with adjectives and e.g. manner adverbs). Even though linguists have been aware of flexible world classes for more than...

  17. Flexible displays, rigid designs?

    DEFF Research Database (Denmark)

    Hornbæk, Kasper

    2015-01-01

    Rapid technological progress has enabled a wide range of flexible displays for computing devices, but the user experience--which we're only beginning to understand--will be the key driver for successful designs....

  18. Graphene-Based Flexible and Stretchable Electronics.

    Science.gov (United States)

    Jang, Houk; Park, Yong Ju; Chen, Xiang; Das, Tanmoy; Kim, Min-Seok; Ahn, Jong-Hyun

    2016-06-01

    Graphene provides outstanding properties that can be integrated into various flexible and stretchable electronic devices in a conventional, scalable fashion. The mechanical, electrical, and optical properties of graphene make it an attractive candidate for applications in electronics, energy-harvesting devices, sensors, and other systems. Recent research progress on graphene-based flexible and stretchable electronics is reviewed here. The production and fabrication methods used for target device applications are first briefly discussed. Then, the various types of flexible and stretchable electronic devices that are enabled by graphene are discussed, including logic devices, energy-harvesting devices, sensors, and bioinspired devices. The results represent important steps in the development of graphene-based electronics that could find applications in the area of flexible and stretchable electronics.

  19. Mechanical CPR devices compared to manual CPR during out-of-hospital cardiac arrest and ambulance transport: a systematic review

    Directory of Open Access Journals (Sweden)

    Ong Marcus

    2012-06-01

    Full Text Available Abstract Aims The aim of this paper was to conduct a systematic review of the published literature to address the question: “In pre-hospital adult cardiac arrest (asystole, pulseless electrical activity, pulseless Ventricular Tachycardia and Ventricular Fibrillation, does the use of mechanical Cardio-Pulmonary Resuscitation (CPR devices compared to manual CPR during Out-of-Hospital Cardiac Arrest and ambulance transport, improve outcomes (e.g. Quality of CPR, Return Of Spontaneous Circulation, Survival”. Methods Databases including PubMed, Cochrane Library (including Cochrane database for systematic reviews and Cochrane Central Register of Controlled Trials, Embase, and AHA EndNote Master Library were systematically searched. Further references were gathered from cross-references from articles and reviews as well as forward search using SCOPUS and Google scholar. The inclusion criteria for this review included manikin and human studies of adult cardiac arrest and anti-arrhythmic agents, peer-review. Excluded were review articles, case series and case reports. Results Out of 88 articles identified, only 10 studies met the inclusion criteria for further review. Of these 10 articles, 1 was Level of Evidence (LOE 1, 4 LOE 2, 3 LOE 3, 0 LOE 4, 2 LOE 5. 4 studies evaluated the quality of CPR in terms of compression adequacy while the remaining six studies evaluated on clinical outcomes in terms of return of spontaneous circulation (ROSC, survival to hospital admission, survival to discharge and Cerebral Performance Categories (CPC. 7 studies were supporting the clinical question, 1 neutral and 2 opposing. Conclusion In this review, we found insufficient evidence to support or refute the use of mechanical CPR devices in settings of out-of-hospital cardiac arrest and during ambulance transport. While there is some low quality evidence suggesting that mechanical CPR can improve consistency and reduce interruptions in chest compressions, there is no

  20. Swarming: flexible roaming plans.

    Science.gov (United States)

    Partridge, Jonathan D; Harshey, Rasika M

    2013-03-01

    Movement over an agar surface via swarming motility is subject to formidable challenges not encountered during swimming. Bacteria display a great deal of flexibility in coping with these challenges, which include attracting water to the surface, overcoming frictional forces, and reducing surface tension. Bacteria that swarm on "hard" agar surfaces (robust swarmers) display a hyperflagellated and hyperelongated morphology. Bacteria requiring a "softer" agar surface (temperate swarmers) do not exhibit such a dramatic morphology. For polarly flagellated robust swarmers, there is good evidence that restriction of flagellar rotation somehow signals the induction of a large number of lateral flagella, but this scenario is apparently not relevant to temperate swarmers. Swarming bacteria can be further subdivided by their requirement for multiple stators (Mot proteins) or a stator-associated protein (FliL), secretion of essential polysaccharides, cell density-dependent gene regulation including surfactant synthesis, a functional chemotaxis signaling pathway, appropriate cyclic (c)-di-GMP levels, induction of virulence determinants, and various nutritional requirements such as iron limitation or nitrate availability. Swarming strategies are as diverse as the bacteria that utilize them. The strength of these numerous designs stems from the vantage point they offer for understanding mechanisms for effective colonization of surface niches, acquisition of pathogenic potential, and identification of environmental signals that regulate swarming. The signature swirling and streaming motion within a swarm is an interesting phenomenon in and of itself, an emergent behavior with properties similar to flocking behavior in diverse systems, including birds and fish, providing a convenient new avenue for modeling such behavior.