WorldWideScience

Sample records for company power plant

  1. 75 FR 16524 - FirstEnergy Nuclear Operating Company, Perry Nuclear Power Plant; Exemption

    Science.gov (United States)

    2010-04-01

    ... Company, Perry Nuclear Power Plant; Exemption 1.0 Background FirstEnergy Nuclear Operating Company (FENOC... the Perry Nuclear Power Plant, Unit 1 (PNPP). The license provides, among other things, that the... date for all operating nuclear power plants, but noted that the Commission's regulations provide...

  2. Nitrogen oxide control at power plants of the ENEL company (Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R. (Vserossiiskii Teplotekhnicheskii Institut (Russian Federation))

    1993-03-01

    Analyzes experiences of the ENEL electricity company in Italy in controlling pollutant emission from fossil-fuel power plants. In 1990, the company produced 87% of the country's electricity. Until the year 2000, ENEL plans to increase coal use for power generation by 23.5% and install 9,300 MW of new coal-fired power plant capacity. New European and Italian emission standards require ENEL to reduce NO[sub x] emissions by 30% from 1986 to 1998. NO[sub x] emission values from various fuel-oil and pulverized-coal fired steam generators operated by the company are given. Modifications to existing combustion technologies and equipment installed to lower NO[sub x] content in flue gases at various ENEL power plants are considered. The most promising coal combustion technologies and ongoing research programs are pointed out. 4 refs.

  3. 75 FR 80547 - Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit No. 1; Exemption

    Science.gov (United States)

    2010-12-22

    ..., Shearon Harris Nuclear Power Plant, Unit No. 1; Exemption 1.0 Background Carolina Power & Light Company... operation of the Shearon Harris Nuclear Power Plant (HNP), Unit 1. The license provides, among other things... request to generically extend the rule's compliance date for all operating nuclear power plants, but noted...

  4. Development of management systems for nuclear power plant of Hokuriku Electric Power Company

    International Nuclear Information System (INIS)

    Nakamura, Tatsuaki; Hasunuma, Junichi; Suzuki, Shintaro

    2009-01-01

    Hokuriku Electric Power Company has been operating the Shika Nuclear Power Station that it constructed in Shika city, Ishikawa prefecture, for over 15 years since bringing Unit 1 of this plant online in July 1993. In addition to electricity generation, maintenance and inspection tasks constitute a big part of operating a large-scale nuclear power plant, and in recent years, problems at power stations in the nuclear power industry have led to several revisions of nationally regulated maintenance and inspection systems. This paper describes the background, objectives, development method, and features of the Maintenance Management System and Maintenance History Management System that make effective use of information technology to promote safer and more efficient maintenance work at large-scale nuclear power plants. (author)

  5. Owners of nuclear power plants: Percentage ownership of commercial nuclear power plants by utility companies

    International Nuclear Information System (INIS)

    Wood, R.S.

    1987-08-01

    The following list indicates percentage ownership of commercial nuclear power plants by utility companies as of June 1, 1987. The list includes all plants licensed to operate, under construction, docked for NRC safety and environmental reviews, or under NRC antitrust review. It does not include those plants announced but not yet under review or those plants formally canceled. In many cases, ownership may be in the process of changing as a result of altered financial conditions, changed power needs, and other reasons. However, this list reflects only those ownership percentages of which the NRC has been formally notified. Part I lists plants alphabetically with their associated applicants/licensees and percentage ownership. Part II lists applicants/licensees alphabetically with their associated plants and percentage ownership. Part I also indicates which plants have received operating licenses (OL's). Footnotes for both parts appear at the end of this document

  6. Less power plants

    International Nuclear Information System (INIS)

    TASR

    2003-01-01

    In the Slovak Republic the number of company power plants decreased as against 2001 by two sources. In present time only 35 companies have their own power plants. The companies Slovnaft, Kappa Sturovo, Slovensky hodvab Senica, Matador Puchov, Maytex Liptovsky MikuIas, Kovohuty Krompachy, Chemko Strazske and some Slovak sugar factories belong to the largest company power plants in force of distributing companies. Installed output of present 35 company sources is 531 MW. The largest of separate power plants as Paroplynovy cyklus Bratislava (218 MW) and VD Zilina (72 MW) belong to independent sources. Total installed output of Slovak sources was 8306 MW in the end of last year

  7. A proposal for human factors education in a power plant company

    International Nuclear Information System (INIS)

    Hikono, Masaru

    2004-01-01

    The author was asked by a power plant company to investigate how to change the actual education system concerning human factor education for the plant staff. First, the problems faced by actual education system were investigated based on the results of a large number of surveys conducted in educational fields, and various documents. In the present paper, the author describes the newly proposed educational program., using as illustration a case study. The findings of the present study suggests that, concerning the content of the educational program, it is indispensable for each company to develop a curriculum based on its specific needs. (author)

  8. 76 FR 66333 - Carolina Power & Light Company, H.B. Robinson Steam Electric Plant, Unit No. 2; Environmental...

    Science.gov (United States)

    2011-10-26

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-261; NRC-2011-0247] Carolina Power & Light Company, H.B. Robinson Steam Electric Plant, Unit No. 2; Environmental Assessment and Finding of No Significant... Facility Operating License No. DPR-23, issued to Carolina Power & Light Company (the licensee), for...

  9. 76 FR 77022 - In the Matter of Carolina Power & Light Company, H.B. Robinson Steam Electric Plant, Unit No. 2...

    Science.gov (United States)

    2011-12-09

    ... and 72-3] In the Matter of Carolina Power & Light Company, H.B. Robinson Steam Electric Plant, Unit No. 2, H. B. Robinson Steam Electric Plant, Unit 2, Independent Spent Fuel Storage Installation; Order Approving Indirect Transfer of Control of Licenses I. Carolina Power & Light Company (CP&L, the licensee) is...

  10. 75 FR 82414 - Carolina Power & Light Company; H. B. Robinson Steam Electric Plant, Unit No. 2; Exemption

    Science.gov (United States)

    2010-12-30

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-261; NRC-2010-0062] Carolina Power & Light Company; H. B. Robinson Steam Electric Plant, Unit No. 2; Exemption 1.0 Background Carolina Power & Light... authorizes operation of the H.B. Robinson Steam Electric Plant, Unit 2 (HBRSEP). The license provides, among...

  11. 75 FR 11579 - Carolina Power & Light Company H. B. Robinson Steam Electric Plant, Unit No. 2; Exemption

    Science.gov (United States)

    2010-03-11

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-261; NRC-2010-0062] Carolina Power & Light Company H. B. Robinson Steam Electric Plant, Unit No. 2; Exemption 1.0 Background Carolina Power & Light... of the H. B. Robinson Steam Electric Plant, Unit 2 (HBRSEP). The license provides, among other things...

  12. Cost structure analysis of commercial nuclear power plants in Japan based on corporate financial statements of electric utility companies

    International Nuclear Information System (INIS)

    Kunitake, Norifumi; Nagano, Koji; Suzuki, Tatsujiro

    1998-01-01

    In this paper, we analyze past and current cost structure of commercial nuclear power plants in Japan based on annual corporate financial statements published by the Japanese electric utility companies, instead of employing the conventional methodology of evaluating the generation cost for a newly constructed model plant. The result of our study on existing commercial nuclear plants reveals the increasing significance of O and M and fuel cycle costs in total generation cost. Thus, it is suggested that electric power companies should take more efforts to reduce these costs in order to maintain the competitiveness of nuclear power in Japan. (author)

  13. 78 FR 26401 - Connecticut Yankee Atomic Power Company, Haddam Neck Plant, Environmental Assessment and Finding...

    Science.gov (United States)

    2013-05-06

    ... Atomic Power Company, Haddam Neck Plant, Environmental Assessment and Finding of No Significant Impact... Neck Plant (HNP) Independent Spent Fuel Storage Installation (ISFSI). CYAPCO stated that the exemption...-rm/adams.html . From this site, you can access the NRC's ADAMS, which provides text and image files...

  14. 78 FR 49305 - Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2013-08-13

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-445 and 50-446; NRC-2013-0182] Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Unit Nos. 1 and 2; Application for Amendment to Facility... Operating License Nos. NPF-87 and NPF-89 for the Comanche Peak Nuclear Power Plant, Unit Nos. 1 and 2...

  15. Practical PRA applications at Consumers Power Company

    International Nuclear Information System (INIS)

    Blanchard, D.P.

    1985-01-01

    Consumers Power Company has completed two probabilistic risk assessments (PRAs), one each at its Big Rock Point and Midland plants and is in the process of performing a third study at its Palisades Plant. Each PRA is summarized briefly in this paper. Each PRA has been used to evaluate specific plant design features and make operating and design recommendations to plant and Company management as well as to the regulator. This paper is a sumary of those issues on which Consumers Power Company has applied PRAs to date. The technique used in applying PRA to these issues has varied as more was learned about the plants from the PRA and about PRA itself. Some issue resolutions involved deriving technical arguments from small parts of the PRA only, such as the logic models or consequence analysis. Still others required use of the entire PRA including sequence quantification, plant and containment response, consequence analysis and eventually cost-benefit evaluation of proposed resolutions. The benefits derived from these analyses have also varied and include not only a perceived reduction in the risks associated with plant operation but also economic benefit to the Company in that cost-effective alternatives to resolving safety issues have been permitted

  16. New maintenance strategy of Tokyo Electric Power Company and Fukushima Dai-ichi Nuclear Power Plant for effective ageing management and safe long-term operation

    International Nuclear Information System (INIS)

    Inagaki, Takeyuki; Yamashita, Norimichi

    2009-01-01

    Fukushima Dai-ichi Nuclear Power Plant is the oldest among three nuclear power plants owned and operated by Tokyo Electric Power Company, which consists of six boiling water reactor units. The commercial operation of Unit 1 was commenced in 1971 (37 years old) and Unit 6 in 1978 (29 years old). Currently ageing degradations of systems, structures and components are managed through maintenance programs, component replacement/refurbishment programs and long-term maintenance plans. The long-term maintenance plans are established through ageing management component replacement/refurbishment programs reviews performed before the 30th year of operation and they are for safe and reliable operation after 30 years (long-term operation). However the past maintenance actions and past component replacement/refurbishment programs were not always proactive and past operational experience and maintenance practices suggest that effective/proactive ageing management programs be introduced in earlier stage of the plant operation. In this circumstance, Tokyo Electric Power Company and Fukushima Dai-ichi Nuclear Power Plant are setting up a new maintenance strategy that includes 1) improving the normal maintenance programs by using ageing degradation data, 2) effective use of information on internal/external operational experience and maintenance practices related to ageing, and 3) proactive component/equipment refurbishment programs during a refreshment outage for safe and reliable long-term operation. To accomplish the goal of this strategy, strengthening engineering capability of plant staff members is a crucial required for the plant. The objective of this paper is to briefly explain main results ageing management reviews, past and current significant ageing issues and management programs against them, and the new maintenance strategy established by Tokyo Electric Power Company and Fukushima Dai-ichi Nuclear Power Plant. (author)

  17. Countermeasure to plant life management of the nuclear power plants out of Japan

    International Nuclear Information System (INIS)

    1999-01-01

    Some investigations on countermeasure to plant life management of the nuclear power plants were begun since beginning of 1990s under cooperation with Ministry of International Trade and Industry and all electric power companies under consideration of recent state on abroad and at concept of preventive conservation implementation against the plant life management. As a result, the Tokyo Electric Power Company, the Kansai Electric Power Company and the Japan Atomic Power Company settled each program on countermeasure to plant life management of the Fukushima-1 Power Plant, the Mihama-1 Power Plant and the Tsuruga-1 Power Plant, respectively, which were reported to the Atomic Energy Safety Commission to issue on February, 1999, after deliberation in the Adviser Group of Ministry of International Trade and Industry. Such investigations on countermeasure to the plant life management are also conducted out of Japan in parallel to those in Japan, which contain programs reflecting states of operation and maintenance of nuclear power plants and atmosphere around atomic energy in each country. Here were described on some present states of the countermeasures to plant life management in U.S.A., France, Germany, Sweden, England and so forth. (G.K.)

  18. 78 FR 14361 - In the Matter of Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Units 1 and...

    Science.gov (United States)

    2013-03-05

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0310; Docket Nos. 50-445 and 50-446; License Nos. NPF-87 and NPF-89] In the Matter of Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Units... Nuclear Power Plant, Units 1 and 2 (CPNPP), and its Independent Spent Fuel Storage Installation Facility...

  19. Environmental impact assessment. Ajka Mining and Power Company

    International Nuclear Information System (INIS)

    Sipkema, Arjan; De Visser, Petra

    1994-01-01

    An Environmental Impact Assessment (EIA) is a public document which evaluates the impact of a new company or a new project on the environment and it also lays out the possible alternatives. The present EIA was worked out to get an insight into the polluting effects of the Ajka Mining and Power Company in Ajka, Hungary and to understand what hinders the abatement of the pollution. The Ajka coal has a high sulphur content and is slightly radioactive. The Power Plant is situated in the neighborhood of the town Ajka and the wind usually blows the releases in the direction of the town. The radioactive sludge is also stored at the border of the town and its radioactivity exceeds the limit set for the Paks Power Plant (in Hungary). Alternatives for the present technology are explored. Nil-condensation and/or energy conservation seem to be the best alternatives. Theoretically, the Regional Environmental Inspectorate is responsible for all survey of pollution, which they monitor with their own equipment, with data obtained from the company or from other monitoring companies. However, the pollution of the Ajka Mining and Power Company is not completely monitored. (authors)

  20. The French Electricity Company (EDF) and GEC ALSTHOM have signed the agreement for Chinese Laibin B electric power plant

    International Nuclear Information System (INIS)

    1997-01-01

    EDF and GEC ALSTHOM together with the government of Chinese Province Guangxi have organized in Pekin on 3 september 1997 a ceremony for signing a BOOT (Build, Own, Operate, Transfer) contract for the Coal Power Plant (2 x 360 MW) at Laibin B. This is the first Chinese BOOT contract in the power domain entirely financed by foreign capital. The two western companies which were retained for this project, following an international call for offers, invest USD 150 million of its own founds in this USD 600 million project. They will hold 60% and 40% of the capital of the company created for this project, respectively. The construction power plant is planned to be completed at the end of 1999 - beginning of 2000. After 15 years of industrial operation the power plant will be transferred to the autonomous government of the Province Guangxi. The communique contains the following 8 files: 1. The Laibin B power plant; 2. Build, Own, Operate, Transfer; 3. The autonomous Guangxi Province; 4. An outline of EDF in China; 5. Profile/activities of GEC ALSTHOM in China; 6. The 'Credit Agricole Indosuez' in China; 7. BZW Barclays PLC; 8. HSBC Investment Banking in China

  1. Attitudes of the general public and electric power company employees toward nuclear power generation

    International Nuclear Information System (INIS)

    Komiyama, Hisashi

    1997-01-01

    We conducted an awareness survey targeted at members of the general public residing in urban areas and in areas scheduled for construction of nuclear power plants as well as employees of electric power company in order to determine the awareness and attitude structures of people residing near scheduled construction sites of nuclear power plants with respect to nuclear power generation, and to examine ways of making improvements in terms of promoting nuclear power plant construction sites. Analysis of those results revealed that there are no significant differences in the awareness and attitudes of people residing in urban areas and in areas near scheduled construction sites. On the contrary, a general sense of apprehension regarding the construction of nuclear power plants was observed common to both groups. In addition, significant differences in awareness and attitudes with respect to various factors were determined to exist between members of the general public residing in urban areas and scheduled construction sites and employees of electric power company. (author)

  2. The recent activities of nuclear power globalization. Our provision against global warming by global deployment of our own technologies as integrated nuclear power plant supply company'

    International Nuclear Information System (INIS)

    Yamauchi, Kiyoshi; Suzuki, Shigemitsu

    2008-01-01

    Mitsubishi Heavy Industries, Ltd. (MHI) is striving to expand and spread nuclear power plants as an 'Integrated Nuclear Power Plant Supply Company' based on its engineering, manufacturing, and technological support capabilities. The company also has ample experience in the export of major components. MHI is accelerating its global deployment through the market introduction of large-sized strategic reactor US-APWR, the joint development of a mid-sized strategic reactor ATMEA1 with AREVA, and a small strategic reactor PBMR. The company also plans to internationally deploy technologies for the nuclear fuel cycle. We present here the leading-edge trends in the global deployment of these nuclear businesses, all of which help to solve the energy and environmental issues in the world. (author)

  3. Westinghouse Electric Company experiences in chemistry on-line monitoring in Eastern European nuclear power plants

    International Nuclear Information System (INIS)

    Balavage, J.

    2001-01-01

    Westinghouse Electric Company has provided a number of Chemistry On-Line Monitoring (OLM) Systems to Nuclear Power Plants in Eastern Europe. Eleven systems were provided to the Temelin Nuclear Power Plant in the south of the Czech Republic. Four systems were provided to the Russian NPP at Novovoronezh. In addition, a system design was developed for primary side chemistry monitoring for units 5 and 6 of another eastern European VVER. The status of the Temelin OLM systems is discussed including updates to the Temelin designs, and the other Eastern European installations and designs are also described briefly. Some of the problems encountered and lessons learned from these projects are also discussed. (R.P.)

  4. Organizing nuclear power plant operation

    International Nuclear Information System (INIS)

    Adams, H.W.; Rekittke, K.

    1987-01-01

    With the preliminary culmination in the convoy plants of the high standard of engineered safeguards in German nuclear power plants developed over the past twenty years, the interest of operators has now increasingly turned to problems which had not been in the focus of attention before. One of these problems is the organization of nuclear power plant operation. In order to enlarge the basis of knowledge, which is documented also in the rules published by the Kerntechnischer Ausschuss (Nuclear Technology Committee), the German Federal Minister of the Interior has commissioned a study of the organizational structures of nuclear power plants. The findings of that study are covered in the article. Two representative nuclear power plants in the Federal Republic of Germany were selected for the study, one of them a single-unit plant run by an independent operating company in the form of a private company under German law (GmbH), the other a dual-unit plant operated as a dependent unit of a utility. The two enterprises have different structures of organization. (orig.) [de

  5. Hydroelectric power plants may influence profit of company

    International Nuclear Information System (INIS)

    Regula, E.

    2006-01-01

    In this interview with divisional manager of the Division of control of operation of hydroelectric power plants of the Slovenske elektrarne, a.s. Mr. Milan Chudy is published. The effectiveness and its optimisation in hydroelectric power plants of the Slovenske elektrarne, a.s. are discussed

  6. Modification of reactor installation in the Genkai nuclear power plant No. 1 of Kyushu Electric Power Company, Inc

    International Nuclear Information System (INIS)

    1979-01-01

    The Nuclear Safety Commission recognized the adequacy concerning the inquiry which was offered from the Minister of International Trade and Industry on July 25, 1979, following the safety evaluation in the Ministry of International Trade and Industry, and decided to submit a report to the Minister of International Trade and Industry on July 26, 1979, about the modification of reactor installation in the Genkai nuclear power plant No. 1 of the Kyushu Electric Power Company, Inc. This is concerned to the application which was made from the president of the Kyushu Electric Power Company, Inc., to the Minister of International Trade and Industry on July 24, 1979. The content of the modification is to add a control circuit which is actuated by the signal of abnormal low pressure in a reactor to the circuit of actuating the emergency core cooling system of the plant. The influences on the safety protection system by the addition of the circuit transmitting safety injection signal and by the additions of an interlock circuit preventing the misoperation of pressurizer spray and of a block circuit of safety injection signal in case of the abnormal low pressure in a reactor were evaluated. The effects on the function and characteristics of the emergency core cooling system due to the addition of the control circuit were investigated, and it was recognized by the analysis that there is no effect in the pipe ruptures of both small and large scales. (Nakai, Y.)

  7. Integrated plant safety assessment: systematic evaluation program. Haddam Neck Plant, Connecticut Yankee Atomic Power Company. Docket No. 50-213

    International Nuclear Information System (INIS)

    1983-03-01

    The Systematic Evaluation Program was initiated in February 1977 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to confirm and document their safety. The review provides: (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. This report documents the review of Haddam Neck Plant, operated by Connecticut Yankee Atomic Power Company. The Haddam Neck Plant is one of 10 plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review

  8. Georgia Power Company's college degree program

    International Nuclear Information System (INIS)

    Coggin, C.L.

    1988-01-01

    The purpose of this paper is to describe Georgia Power Company's on-site college degree program for nuclear power plant personnel. In February 1986, the US Nuclear Regulatory Commission issued a policy statement concerning engineering expertise on shift (Generic Letter 86-04), which appeared in Volume 50, Number 208 of the October 28, 1985 Federal Register. One of the options available to nuclear power plant personnel to meet the requirement was the combined senior reactor operator/shift technical adviser position. One of the methods for meeting the option included a bachelor's degree in engineering technology for an accredited institution, including course work in the physical, mathematical, or engineering sciences

  9. Report on countermeasure to plant life management of the nuclear power plants at three electric power companies

    International Nuclear Information System (INIS)

    1999-01-01

    Three nuclear power reactors of the Fukushima-1 nuclear power plant, the Mihama-1 power plant and the Tsuruga-1 power plant were investigated according to the estimation plan shown in the Fundamental Concept on Plant Life Management of Agency of Natural Resources and Energy, Ministry of International Trade and Industry on April, 1996. Their reports contained the technical evaluation against, the responsive items to and the future examinations of the plant life management. In special, in the responsive items, some items to be added to the present maintenance process and some technical developmental problems are described in details and concretely. (G.K.)

  10. Value of solar thermal and photovoltaic power plants to Arizona Public Service Company

    International Nuclear Information System (INIS)

    Smith, P.A.

    1994-01-01

    Arizona Public Service Company has performed a study using historical solar radiation and system load data to (1) estimate the effects of six types of solar generation on system reliability, (2) estimate the central station value of each to its system, (3) and to assess the potential of each of those technologies to provide bulk power to its system in the 2000 time frame. Technologies included three solar thermal (central receiver, dish Stirling, and parabolic trough) and three flat plate photovoltaic plants (fixed position, one axis, and two axis tracking)

  11. Perspectives at the East European engineering companies in the field of power industry in the power-plant construction globalization conditions

    International Nuclear Information System (INIS)

    Ganchev, R.

    2001-01-01

    A large group of companies, institutes, boiler and power engineering work ect. from East European countries, currently in process of reorganization or already transformed into new-established private companies and corporations possess significant intellectual property in the field of thermal power technologies and equipment and broad experience in the design and the erection of thermal power plants. In many cases this know-how is not only competitive to that of the large companies of the West and of the Far East, but frequently it also proves to have a number of advantages. However, in the years of transition in these countries and simultaneous globalization, the owners of this potentials meet with difficulties and restrictions to realize it fully. Large investment projects - for new or replacement capacities or comprehensive rehabilitation or refurbishment of TPPs - are accessible only for the financially powerful EPC-contractors and key equipment suppliers, for which large bank credits are accessible. The near future perspective, for the scientists and experts that have accumulated this capital, is in the opportunity to employ the extensive experience and know-how of this firms in the forthcoming large-scale rehabilitation projects in these countries, and primarily, in the solution of specific problems, that have not been solved so far, provided that the projects are awarded not on the basis of the financial power of the contractors but on the basis of the efficiency of the proposed original solutions

  12. 75 FR 44292 - Northern States Power Company; Prairie Island Nuclear Generating Plant, Units 1 and 2; Notice of...

    Science.gov (United States)

    2010-07-28

    ... and DPR-60] Northern States Power Company; Prairie Island Nuclear Generating Plant, Units 1 and 2... assessment, and behavioral observation) of the unescorted access authorization program when making the... under consideration to determine whether it met the criteria established in NRC Management Directive (MD...

  13. Inquiry relating to modifications of reactor installation in Ikata No. 1 and 2 nuclear power plants of Shikoku Electric Power Company, Inc

    International Nuclear Information System (INIS)

    1979-01-01

    Application was made to the Minister of International Trade and Industry for the license relating to the modifications of reactor installation in the Ikata No. 1 and 2 nuclear power plants of the Shikoku Electric Power Company, Inc., on February 13, 1979, from the president of the company. After the safety evaluation was finished by the Ministry of International Trade and Industry, inquiry was conducted to the Atomic Energy Safety Commission (AESC) on June 15, 1979, from the Minister of International Trade and Industry. The investigation and discussion were commenced by the AESC on June 19, 1979. The modifications of the reactor installation are the increase of new fuel storage capacity from about 1/3 to about 2/3 of in-core fuel for No. 1 plant and the modification of driving mechanism from the roller nut type to the magnetic jack type for the control rod cluster for adjusting power distribution in the No. 2 plant. The contents of the safety examination for each item written above are presented. The prevention of criticality is carefully practiced for the new fuel storage by putting fuel assemblies in stainless steel can type racks and locating the fuel assemblies at the proper distance. Relating to the driving mechanism for the control rod cluster adjusting power distribution, the driving speed is not modified and the reliability is kept by carrying out the continuous operation test and the electric power black out test as the demonstration test. The magnetic jack type mechanism has the locking device to prevent reactor tripping at the time of electric power black out, and the cluster is held at the location where the cluster existed at the time of black out. (Nakai, Y.)

  14. Electric power plant international. 1976--1977 edition

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-01

    ''Electric Power Plant International'' is intended to provide a comprehensive commercial and technical information source for use by suppliers, operators, and potential purchasers of power plant, and also by suppliers of materials and services to such organizations. It contains information that will help those considering the purchase of power plant to gain a reasonable understanding of the factors that should be taken into account when making a purchasing decision. Consideration is given to the operation, maintenance, and modification of power systems that will be of relevance to those currently operating plant. The publication is designed to act as an interface between suppliers and users of power plant. As part of this function, reference sections contain listings of all the companies that have been located throughout the world, supplying prime movers, generators, generator sets, and fixed-frequency inverter systems. Details of products currently available from these companies are included wherever possible and this is being continuously up-dated and extended to give increased coverage in future editions. The Electrical Research Association Ltd. does not manufacture or supply power plant (apart from some special-purpose static inverter systems), but would be pleased to receive requirement details from any company wishing to inquire about plant purchase. These will be forwarded to appropriate suppliers throughout the world who will be able to submit tenders for suitable products. Inquiry forms are included in Chapter 6 for this purpose.

  15. Plant life management study of Japanese nuclear power plants

    International Nuclear Information System (INIS)

    Fukuda, Toshihiko

    1999-01-01

    Already more than twenty-five years have passed since the first commercial LWR plant went into operation in Japan. In this situation, MITI and 3 electric utilities (Tokyo Electric Power Company, Kansai Electric Power Co., Inc, Japan Atomic Power Company) have started a plant life management (PLM) study from 1994 to evaluate the long-term integrity of major systems, structures and components of aged LWR plants and ensure the safe, steady and highly reliable long-term operation. It consists of two phases: part 1 study and part 2 study. The part 1 study started in 1994 and focused on seven typical safety-related components. The part 1 study reports were made public in 1996. The part 2 study started in 1997. In this study we reviewed not only safety-related components but also plant reliability related components. The part 2 study reports were opened to the public in February 1999. This paper shows a summary of the part 2 study and our future PLM program. (author)

  16. Management quality in spanish nuclear power plant operation

    International Nuclear Information System (INIS)

    Perez de Zabalza Ramos, F.

    1995-01-01

    This paper analyzes the reasons that lead nuclear power plants to require engineering support that is not usual in other types of industrial installations, namely the complexity of the plant and the economic consequences of a possible shutdown. At the time of unit startup, the need to use the services of experienced engineers for the technical support of nuclear power plants induced plant owners to turn to the engineering companies which had participated in the design of the plants. The paper lists the wide range of plant support services which these engineering companies can provide, both from their central offices and on site, especially in the field of change orders and documentation update. The paper also describes the satisfactory development of management parameters in Spanish nuclear power plants both in terms of load factor and comparison of operating and maintenance costs, and how engineering companies have contributed to this achievement, by reducing costs with no loss in the technical quality of their services. Finally, the paper describes how the engineering companies have had to adapt to a shrinking market without losing quality and how they achieved this by diversifying their services. In this context there are two areas of concern. the first area of concern is the competition from certain companies with oversized staff, who attempt to employ them in operation support for nuclear power stations, a field which does not correspond to the training and background of said staff. This could lead to a loss of quality or economic efficiency of nuclear power plants, whose operation up to now has proven satisfactory. The second area of concern is the operator's tendency to use their own resources for engineering support, making more difficult the renewal of human resources and thus leading to a decrease in productivity, and in the transfer of practical and theoretical experience from one plant to another, as well as in the transmission of the latest know

  17. Integrated Plant Safety Assessment: Systematic Evaluation Program. Haddam Neck Plant, Connecticut Yankee Atomic Power Company, Docket No. 50-213. Final report

    International Nuclear Information System (INIS)

    1983-01-01

    The Systematic Evaluation Progam was initiated in February 1977 by the US Nuclear Regulatory Commission review the designs of older operating nuclear reactor plants to confirm and document their safety. The review provides: (1) an assessment of how these plants compare with curent licensing safety requirements relating to selected issues, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. This report documents the review of Haddam Neck Plant, operated by Connecticut Yankee Atomic Power Company. The Haddam Neck Plant is one of 10 plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review

  18. Intergrated plant safety assessment. Systematic evaluation program. Palisades plant, Consumers Power Company, Docket No. 50-255. Final report

    International Nuclear Information System (INIS)

    1982-10-01

    The Nuclear Regulatory Commission (NRC) has published its Final Integrated Plant Safety Assessment Report (IPSAR) (NUREG-0820), under the scope of the Systematic Evaluation Program (SEP), for Consumers Power Company's Palisades Plant located in Covert, Van Buren County, Michigan. The SEP was initiated by the NRC to review the design of older operating nuclear reactor plants to reconfirm and document their safety. This report documents the review completed under the SEP for the Palisades Plant. The review has provided for (1) as assessment of the significance of differences between current technical positions on selected safety issues and those that existed when the Palisades Plant was licensed, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety when all supplements to the Final IPSAR and the Safety Evaluation Report for converting the license from a provisional to a full-term license have been issued. The report also addresses the comments and recommendations made by the Advisory Committee on Reactor Safeguards in connection with its review of the Draft Report, issued in April 1982

  19. Hydroelectric Power Plants Dobsina

    International Nuclear Information System (INIS)

    Majercak, V.; Srenkelova, Z.; Kristak, J.G.

    1997-01-01

    In this brochure the Hydroelectric Power Plants Dobsina, (VED), subsidiary of the utility Slovenske Elektrarne, a.s. (Slovak Electric, plc. Bratislava) are presented. VED is mainly aimed at generating peak-load electrical energy and maintenance of operational equipment. Reaching its goals, company is first of all focused on reliability of production, economy and effectiveness, keeping principles of work safety and industry safety standards and also ecology. VED operates eight hydroelectric power plants, from which PVE Ruzin I and PVE Dobsina I are pump storage ones and they are controlled directly by the Slovak Energy Dispatch Centre located in Zilina thought the system LS 3200. Those power plants participate in secondary regulation of electrical network of Slovakia. They are used to compensate balance in reference to foreign electrical networks and they are put into operation independently from VED. Activity of the branch is focused mainly on support of fulfilment of such an important aim as electric network regulation. Beginnings of the subsidiary Hydroelectric Power Plants Dobsina are related to the year of 1948. After commissioning of the pump storage Hydroelectric Power Plants Dobsina in 1953, the plant started to carry out its mission. Since that time the subsidiary has been enlarged by other seven power plants, through which it is fulfilling its missions nowadays. The characteristics of these hydroelectric power plants (The pump-storage power plant Dobsina, Small hydroelectric power plant Dobsina II, Small hydroelectric power plant Rakovec, Small hydroelectric power plant Svedlar, Hydroelectric power plant Domasa, The pump-storage power plant Ruzin, and Small hydroelectric power plant Krompachy) are described in detail. Employees welfare and public relations are presented

  20. Power plant perspectives for sugarcane mills

    International Nuclear Information System (INIS)

    Bocci, E.; Di Carlo, A.; Marcelo, D.

    2009-01-01

    Biomass, integral to life, is one of the main energy sources that modern technologies could widely develop, overcoming inefficient and pollutant uses. The sugarcane bagasse is one of the more abundant biomass. Moreover, the fluctuating sugar and energy prices force the sugarcane companies to implement improved power plants. Thanks to a multiyear collaboration between University of Rome and University of Piura and Chiclayo, this paper investigates, starting from the real data of an old sugarcane plant, the energy efficiency of the plant. Furthermore, it explores possible improvements as higher temperature and pressure Rankine cycles and innovative configurations based on gasifier plus hot gas conditioning and gas turbine or molten carbonate fuel cells. Even if the process of sugar extraction from sugarcane and the relative Rankine cycles power plants are well documented in literature, this paper shows that innovative power plant configurations can increase the bagasse-based cogeneration potential. Sugarcane companies can become electricity producers, having convenience in the use of sugarcane leaves and trash (when it is feasible). The worldwide implementation of advanced power plants, answering to a market competition, will improve significantly the renewable electricity produced, reducing CO 2 emissions, and increasing economic and social benefits.

  1. Construction permit of nuclear power plants in case of leasing

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Guiding lines (unofficial): 1. A leasing company can be founded to finance and to operate a nuclear power plant. 2. The leasing company does not require a license according to section 7 of the Atomic Energy Act, for it neither constructs nor posesses the nuclear power plant. 3. This also applies if the proprietor, and later on operator, of the nuclear power plant holds an interest in this leasing company as a shareholder. Section 7, and 19 subsection 3 of the Atomic Energy Act. Higher Administrative Court of Rhineland Palatinate, Decision of July 20sup(th), 1982. (orig.) [de

  2. Small-scale power plant potential in Finland

    International Nuclear Information System (INIS)

    Helynen, S.

    1993-01-01

    The presentation discusses the small-scale power plant potential in Finland. The study of the potential is limited to W-scale power plants producing both electric power and heat using solid fuels. The basic power plant dimensioning and electric power load determination is based on traditional boiler and gas turbine technology. The possible sites for power plants are communities using district heating, and industrialized sites needing process steam or heat. In 1990 70 % (17 TWh) of district heat was produced by gas turbines. Ten communities have an own back-pressure power plant, and 40 communities buy heat from industrial plants, owing back-pressure power generation. Additionally about 40 communes buy district heat from companies, owned by power companies and industry. Estimates of small-scale power plant potential has been made plant wise on the basis of district heat loads and industrial heat needs. The scale of the plants has been limited to scale 3 MWe or more. The choosing of the fuel depends on the local conditions. The cheapest indigenous fuels in many communes are industrial wood wastes, and both milled and sod peat. The potential of steam technology based small-scale power plants has been estimated to be about 50 plants in 1992/1993, the total power of which is 220-260 MW. The largest estimate is base situation, in which there would be energy cooperation between the communes and industry. The fuel used by the power plants would be about 5.4-6.6 TWh/a corresponding to 270-330 million FIM/a. The total investment costs of the plants would be about 2.0 billion FIM. The plants would employ about 250 persons, and the fuel supply (wood or peat) about 100 persons

  3. 75 FR 75704 - Pacific Gas and Electric Company (Diablo Canyon Nuclear Power Plant, Units 1 And 2); Notice of...

    Science.gov (United States)

    2010-12-06

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-275-LR; 50-323-LR] Pacific Gas and Electric Company (Diablo Canyon Nuclear Power Plant, Units 1 And 2); Notice of Appointment of Adjudicatory Employee... Seismologist, Office of Nuclear Material Safety and Safeguards, has been appointed as a Commission adjudicatory...

  4. Modification of reactor installation in the Takahama nuclear power plants No.1 and No.2 of Kansai Electric Power Company, Inc

    International Nuclear Information System (INIS)

    1979-01-01

    The Nuclear Safety Commission recognized the adequacy concerning the inquiry which was offered from the Minister of International Trade and Industry on July 24, 1979, following the safety evaluation in the Ministry of International Trade and Industry, and decided to submit a report to the Minister of International Trade and Industry on July 26, 1979, about the modification of reactor installation in the Takahama nuclear power plants No. 1 and No. 2 of the Kansai Electric Power Company, Inc. This is concerned to the application which was made from the president of the Kansai Electric Power Company, Inc., to the Minister of International Trade and Industry on July 23, 1979. The content of the modification is to add a control circuit which is actuated by the signal of abnormal low pressure in a reactor to the circuit of actuating the emergency core cooling system of the plant. The influences on the safety protection system by the addition of the circuit for transmitting safety injection signal and by the additions of an interlock circuit preventing the misoperation of pressurizer spray and of a block circuit of safety injection signal in case of the abnormal low pressure in a reactor were evaluated. The effects on the function and characteristics of the emergency core cooling system due to the addition of the control circuit were investigated, and it was recognized by the analysis that there is no effect in the pipe ruptures of both small and large scales. (Nakai, Y.)

  5. Nuclear power plant diagnostic system

    International Nuclear Information System (INIS)

    Prokop, K.; Volavy, J.

    1982-01-01

    Basic information is presented on diagnostic systems used at nuclear power plants with PWR reactors. They include systems used at the Novovoronezh nuclear power plant in the USSR, at the Nord power plant in the GDR, the system developed at the Hungarian VEIKI institute, the system used at the V-1 nuclear power plant at Jaslovske Bohunice in Czechoslovakia and systems of the Rockwell International company used in US nuclear power plants. These diagnostic systems are basically founded on monitoring vibrations and noise, loose parts, pressure pulsations, neutron noise, coolant leaks and acoustic emissions. The Rockwell International system represents a complex unit whose advantage is the on-line evaluation of signals which gives certain instructions for the given situation directly to the operator. The other described systems process signals using similar methods. Digitized signals only serve off-line computer analyses. (Z.M.)

  6. Hurricane Andrew causes major oil spill at Florida Power ampersand Light Company's Turkey Point Power Plant, Homestead, Florida

    International Nuclear Information System (INIS)

    Jones, M.A.; Butts, R.L.; Lindsay, J.R.; McCully, B.S.; Pickering, T.H.

    1993-01-01

    On August 24, 1992, Hurricane Andrew slammed into South Florida with wind gusts in excess of 160 mph. At 4:00 a.m. that day, the eye of this category four storm passed over Florida Power ampersand Light Company's Turkey Point power plant, south of Miami. Although the plant's two nuclear units escaped any significant damage, the storm caused extensive destruction to buildings and transmission facilities, and damaged two 400 foot tall emission stacks associated with the site's two fossil fuel generating units. In addition, a 90,000 to 110,000 gallon spill of No. 6 fuel oil resulted when a piece of wind-blown debris punctured the steel of the unit One 12,000 barrel fuel oil metering tank approximately 30 feet up from the tank bottom. Despite the presence of a secondary containment structure around the tank, the intense wind blew oil throughout the plant site. The damage to the metering tank apparently occurred during the first half hour of the hurricane. As the tank's oil level fell due to the puncture, transfer pumps from the bulk oil storage tanks received a low level alarm which automatically began transferring oil to the damaged metering tank. To prevent the further discharge of oil, plant personnel entered the power block and secured the pumps during the passage of the hurricane eye. Immediately following the storm, facility personnel deployed booms across the barge canal and the Units 1 and 2 intake canal to contain the oil which had entered the water. The response strategy and implementation is described in detail. The remediation costs were approximately $14/gallon spilled, including 54,000 gallons recovered for electricity generation

  7. Power plants 2010. Lectures

    International Nuclear Information System (INIS)

    2010-01-01

    The proceedings include the following lectures: Facing the challenges - new structures for electricity production. Renewable energies in Europe - chances and challenges. Nuclear outlook in the UK. Sustainable energy for Europe. Requirements of the market and the grid operator at the electricity production companies. Perspectives for the future energy production. Pumped storage plants - status and perspectives. Nuclear power/renewable energies -partners or opponents? New fossil fired power stations in Europe - status and perspectives. Nuclear energy: outlook for new build and lifetime extension in Europe. Biomass in the future European energy market - experiences for dong energy. Meeting the EU 20:20 renewable energy targets: the offshore challenges. DESERTEC: sustainable electricity for Europe, Middle East and North Africa. New power plants in Europe - a challenge for project and quality management. Consideration of safely in new build activities of power plants. Challenges to an integrated development in Maasvlakte, Netherlands. Power enhancement in EnBW power plants. Operational experiences of CCS pilot plants worldwide. Two years of operational experiences with Vattenfall's oxyfuel pilot plant. Pre-conditions for CCS. Storage technologies for a volatile generation. Overview: new generation of gas turbines.

  8. Owners of nuclear power plants

    International Nuclear Information System (INIS)

    Wood, R.S.

    1979-12-01

    The following list indicates percentage ownership of commercial nuclear power plants by utility companies as of December 1, 1979. The list includes all plants licensed to operate, under construction, docketed for NRC safety and envionmental reviews, or under NRC antitrust review. It does not include those plants announced but not yet under review or those plants formally cancelled. In many cases, ownership may be in the process of changing as a result of antitrust license conditions and hearings, altered financial conditions, changed power needs, and other reasons. However, this list reflects only those ownership percentages of which the NRC has been formally notified

  9. Teollisuuden Voima Oy - Industrial Power Company Ltd. Local information activity

    Energy Technology Data Exchange (ETDEWEB)

    Engros, Taina [Department of Information, TVO, Olkiluoto FIN-27160 (Finland)

    1989-07-01

    There are two nuclear power producers in Finland - the state-owned power company Imatran Voima Oy which operates two 440 MW Soviet-made PWR units in southern Finland, east of Helsinki and the Teollisuuden Voima Oy - Industrial Power Company Ltd, or TVO, owned by Finnish industrial companies. TVO operates two 710 MW ABB ATOM BWR units producing about one fifth of the country's electricity consumption. Operating experiences are extremely good from all Finnish nuclear power plants. The Finns' attitude towards nuclear power has changed into a positive direction in recent times. This can probably be noted as an international trend now that the Chernobyl accident is becoming an incident of the past. The Finnish citizens and politicians are facing two questions; first, what is their attitude towards nuclear power as a source of energy, in other words, do they approve of the plants currently in operation. The second question is how they stand on the building of new plants. It is probably another universal phenomenon that the attitudes of people living in the vicinity of nuclear power plants are less critical than the attitudes of those living farther away. This does not, by any means, result in local information activity being easier or less important than nationwide information activity. On the contrary, local decision-makers, local media and inhabitants are those who can, and through whom we can, influence also wider circles. The Nuclear Energy Act, which became effective in Finland last year, defines that the final decision on whether nuclear power plants can be built inside a municipality, is made at local level. As far as TVO is concerned one factor making local information activity easier is the small size of the locality. The difficulty TVO has to face is the people's suspicion of information activity. All information is considered propaganda, regardless of its form, and only negative news are considered information. Also, a large proportion of people are passive

  10. Teollisuuden Voima Oy - Industrial Power Company Ltd. Local information activity

    International Nuclear Information System (INIS)

    Engros, Taina

    1989-01-01

    There are two nuclear power producers in Finland - the state-owned power company Imatran Voima Oy which operates two 440 MW Soviet-made PWR units in southern Finland, east of Helsinki and the Teollisuuden Voima Oy - Industrial Power Company Ltd, or TVO, owned by Finnish industrial companies. TVO operates two 710 MW ABB ATOM BWR units producing about one fifth of the country's electricity consumption. Operating experiences are extremely good from all Finnish nuclear power plants. The Finns' attitude towards nuclear power has changed into a positive direction in recent times. This can probably be noted as an international trend now that the Chernobyl accident is becoming an incident of the past. The Finnish citizens and politicians are facing two questions; first, what is their attitude towards nuclear power as a source of energy, in other words, do they approve of the plants currently in operation. The second question is how they stand on the building of new plants. It is probably another universal phenomenon that the attitudes of people living in the vicinity of nuclear power plants are less critical than the attitudes of those living farther away. This does not, by any means, result in local information activity being easier or less important than nationwide information activity. On the contrary, local decision-makers, local media and inhabitants are those who can, and through whom we can, influence also wider circles. The Nuclear Energy Act, which became effective in Finland last year, defines that the final decision on whether nuclear power plants can be built inside a municipality, is made at local level. As far as TVO is concerned one factor making local information activity easier is the small size of the locality. The difficulty TVO has to face is the people's suspicion of information activity. All information is considered propaganda, regardless of its form, and only negative news are considered information. Also, a large proportion of people are passive

  11. Elecnuc. Nuclear power plants worldwide

    International Nuclear Information System (INIS)

    1998-01-01

    This small folder presents a digest of some useful information concerning the nuclear power plants worldwide and the situation of nuclear industry at the end of 1997: power production of nuclear origin, distribution of reactor types, number of installed units, evolution and prediction of reactor orders, connections to the grid and decommissioning, worldwide development of nuclear power, evolution of power production of nuclear origin, the installed power per reactor type, market shares and exports of the main nuclear engineering companies, power plants constructions and orders situation, evolution of reactors performances during the last 10 years, know-how and development of nuclear safety, the remarkable facts of 1997, the future of nuclear power and the energy policy trends. (J.S.)

  12. Carolina Power and Light Company's computerized Radiological Information Management System

    International Nuclear Information System (INIS)

    Meyer, B.A.

    1987-01-01

    Carolina Power and Lignt Company has recently implement a new version of their computerized Radiological Information management System. The new version was programmed in-house and is run on the Company's mainframe computers. In addition to providing radiation worker dose histories and current dose updates, the system provides real-time access control for all three of the Company's nuclear plants such as respirator and survey equipment control and inventory, TLD QC records, and many other functions

  13. Human factors in atomic power plant

    International Nuclear Information System (INIS)

    Kawano, Ryutaro

    1997-01-01

    To ensure safety should have priority over all other things in atomic power plants. In Chernobyl accident, however, various human factors including the systems for bulb check after inspection and communication, troubles in the interface between hardwares such as warning speakers and instruments, and their operators, those in education and training for operators and those in the general management of the plant have been pointed out. Therefore, the principles and the practical measures from the aspect of human factors in atomic power plants were discussed here. The word, ''human factor'' was given a definition in terms of the direct cause and the intellectual system. An explanatory model for human factors, model SHEL constructed by The Tokyo Electric Power Co., Ltd., Inc. was presented; the four letter mean software(S), hardware(H), environment(E) and liveware(L). In the plants of the company, systemic measures for human error factors are taken now in all steps not only for design, operation and repairing but also the step for safety culture. Further, the level required for the safety against atomic power is higher in the company than those in other fields. Thus, the central principle in atomic power plants is changing from the previous views that technology is paid greater importance to a view regarding human as most importance. (M.N.)

  14. Determination of compliance with PL 92-500 Section 316(b) for the Donald C. Cook Nuclear Power Plant of the Indiana and Michigan Power Company

    International Nuclear Information System (INIS)

    Sharma, R.K.; Freeman, R.F. III.

    1980-04-01

    Region III of the US Fish and Wildlife Service contracted with the Division of Environmental Impact Studies, Argonne National Laboratory, to make the 316(b) determination for the Donald C. Cook Nuclear Power Plant of the Indiana and Michigan Power Company and to make recommendations for improvement in intake design to facilitate compliance. To conduct this assessment, appropriate literature on screening systems and reports furnished by the applicant on intake design and operation and on ecological studies at the site were reviewed. Modifications of the location and design of the existing intake and possibilities of retrofitting with fine-mesh screening to screen larval forms of fishes were examined. It was determined that currently there is no dictated need for fine-mesh screening of intake flow at the D.C. Cook Nuclear Power Plant

  15. Owners of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, C.R.; White, V.S.

    1996-11-01

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

  16. Nuclear Power Plants in the World

    International Nuclear Information System (INIS)

    2000-01-01

    The Japan Atomic Industrial Forum (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Developmental trends on nuclear power plants in the world'. In this report, some data at the end of 1999 was made up on bases of answers on questionnaires from 72 electric companies in 31 nations and regions in the world by JAIF. This report is comprised of 19 items, and contains generating capacity of the plants; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; location of the plants; the plants in the world; and so forth. And, it also has some survey results on the 'Liberalization of electric power markets and nuclear power generation' such as some 70% of respondents in nuclear power for future option, gas-thermal power seen as power source with most to gain from liberalization, merits on nuclear power generation (environmental considerations and supply stability), most commonly voiced concern about new plant orders in poor economy, and so forth. (G.K.)

  17. Safety evaluation report: related to the operation of Perry Nuclear Power Plant, Units 1 and 2, Docket Nos. 50-440 and 50-441, Cleveland Electric Illuminating Company

    International Nuclear Information System (INIS)

    1982-08-01

    Supplement No. 1 to the Safety Evaluation Report on the application filed by the Cleveland Electric Illuminating Company on behalf of itself and as agent for the Duquesne Light Company, the Ohio Edison Company, the Pennsylvania Power Company, and the Toledo Edison Company (the Central Area Power Coordination Group, CAPCO), as applicants and owners, for a license to operate the Perry Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-440 and 441). The facility is located near Lake Erie in Lake County, Ohio. This supplement has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission and reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report

  18. How to deal with financial risk under the life circles of nuclear power plant

    International Nuclear Information System (INIS)

    Chen Shilong

    2010-01-01

    Nuclear power plants don't necessarily form enterprise boundary, in the background of nuclear power booming, what characteristics of financial risk exist in nuclear power plant, how to deal with such financial risk and how to sustain a stable development of nuclear power ? Based on the enterprise boundary theory of transaction fees, the separate of the nuclear power plant owner, engineering company and operating company comply with the cost-efficient principle. The financial risk of the plant owner come from the cash flow characteristics under different life circles of its nuclear power plants, due to the passivation of the asset structure in the construction and early operation periods, considering the effects of asset structure on financial risk is meaningless. Based on the owners with single reactor or constructing reactors, big-scale investment holding company is needed to conduct professional asset management, and to diversify the financial risk, on the other hand, professional engineering and operation companies can realize the scale and the multi-reactor advantages. (author)

  19. The economic security of power plants

    Directory of Open Access Journals (Sweden)

    Niedziółka Dorota

    2017-01-01

    Full Text Available Currently, power plants in Poland have to work in a very uncomfortable situation. Unstable market conditions and frequent changes in the law may have serious adverse consequences for their economic security. Power plants play a very important role in the economy. The effectiveness of their performance affects the activity of all other businesses. Therefore, it is very important to provide a definition of economic security for the power plants’ sector and the factors determining its level. Maintaining economic security will allow energy generation companies to grow in a sustainable way as well as limit operational risk. A precise definition can also be used to create analytical tools for economic security measurement and monitoring. Proper usage of such tools can help energy generation companies sustain their economic security and properly plan their capital expenditures. The article focuses on the definition of economic security in the “micro” context of a separate business unit (enterprise. We also present an analytical model that measures economic security of a company engaged in the production of energy - a company of strategic importance for the national economy. The model uses macroeconomic variables, variables describing prices of raw material and legal / political stability in the country, as well as selected financial indicators. The appliance of conclusions resulting from the model’s implementation will help provide economic security for companies generating energy.

  20. Owners of nuclear power plants

    International Nuclear Information System (INIS)

    Wood, R.S.

    1991-07-01

    This report indicates percentage ownership of commercial nuclear power plants by utility companies. The report includes all plants operating, under construction, docketed for NRC safety and environmental reviews, or under NRC antitrust review, but does not include those plants announced but not yet under review or those plants formally cancelled. Part 1 of the report lists plants alphabetically with their associated applicants or licensees and percentage ownership. Part 2 lists applicants or licensees alphabetically with their associated plants and percentage ownership. Part 1 also indicates which plants have received operating licenses (OLS)

  1. Nuclear Power Plants in the World

    International Nuclear Information System (INIS)

    2003-01-01

    The Japan Atomic Industrial Forum (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Nuclear power plants in the world'. In this report, some data at the end of 2002 was made up on bases of answers on questionnaires from 65 electric power companies and other nuclear organizations in 28 countries and regions around the world by JAIF. This report is comprised of 19 items, and contains generating capacity of the plants; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; status of MOX use in the world; location of the plants; the plants in the world; directory of the plants; nuclear fuel cycle facilities; and so forth. (J.P.N.)

  2. Inquiry relating to modifications of reactor installation in Genkai No. 1 and 2 nuclear power plants of Kyushu Electric Power Company, Inc

    International Nuclear Information System (INIS)

    1979-01-01

    Application was made to the Minister of International Trade and Industry for the license relating to the modifications of reactor installation in the Genkai No. 1 and 2 nuclear power plants, Kyushu Electric Power Company, Inc., on February 27, 1979, from the president of the company. After the safety evaluation was finished by the Ministry of International Trade and Industry, inquiry was conducted to the head of the Atomic Energy Safety Commission (AESC) on June 15, 1979 from the Minister of International Trade and Industry. The investigation and discussion were commenced by the AESC on June 19, 1979. The modifications of the reactor installation are the increase of new fuel storage capacity from about 1/3 to about 2/3 of in-core fuel for each plant, the new establishment of a miscellaneous solid waste incinerator which is common to both plants, and the enlargement of a solid waste storage which is also common to both plants. The contents of the safety examination for each item written above are presented. The prevention of criticality is carefully practiced for the new fuel storage by putting fuel assemblies in stainless steel can type racks and locating the fuel assemblies at the proper distance. The miscellaneous solid waste incinerator building is designed as the B class aseismatic structure and also as the controlled area with adequate shielding and ventilating facilities. The decontamination factor of the incinerator facility is more than 10 5 , and the necessary monitoring system is provided in the building. Concerning the solid waste storage, the additional storage area is about 1600 m 2 , and the storage capacity is about ten years quantity. This building is designed as the B class aseismatic structure. (Nakai, Y.)

  3. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2008-01-01

    The Japan Atomic Industrial Forum, Inc. (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Nuclear power plants in the world'. In this report, some data at the end of 2007/2008 was made up on bases of answers on questionnaires from electric power companies and other nuclear organizations around the world by JAIF. This report is comprised of 18 items, and contains generating capacity of the plants; effect of the Niigata-ken chuetsu-oki earthquake; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; status of MOX use in the world; location of the plants; the plants in the world; directory of the plants; nuclear fuel cycle facilities, and so forth. (J.P.N.)

  4. Nuclear Power Plants in the World

    International Nuclear Information System (INIS)

    2004-01-01

    The Japan Atomic Industrial Forum, Inc. (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Nuclear power plants in the world'. In this report, some data at the end of 2003 was made up on bases of answers on questionnaires from 81 electric power companies and other nuclear organizations in 33 countries and regions around the world by JAIF. This report is comprised of 19 items, and contains generating capacity of the plants; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; status of MOX use in the world; location of the plants; the plants in the world; directory of the plants; nuclear fuel cycle facilities; and so forth. (J.P.N.)

  5. Transmission and distribution of information in power plants

    International Nuclear Information System (INIS)

    Pinkernell, H.

    1978-01-01

    Operation of modern large-site power plants is no longer imaginable without facilities for automatic control. Brown-Boveri Company has developed a promising control system for power plants called Procontrol k. An essential piece of the system is DATRAS k, a digital bus-oriented data transport system for transmitting and distributing signals in power plants. DATRAS will save a large amount of cables and reduce the constructional effect. It offers opportunities for diagnosis and service and by means of continuous monitoring of all system components it will essentially improve plant availability. (orig.) [de

  6. Power from waste. [Power plant at landfill site

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1991-01-01

    Base Load Systems Ltd, a company in the United Kingdom, has just commissioned a power plant in Leicestershire which uses waste gases from a landfill site. The gases power two specially modified turbo charged engine and generator packages. The plant will use approximately 100 cu meters of landfill gas per hour and is expected to feed 1.5MW of electrical power into the supply network of East Midlands Electricity. Once the landfill site has been completely filled and capped with clay, it is estimated that the electrical power output will be 4 MW. At present, since their are no customers for heat in the vicinity, 100 KW of the electricity produced are used to run fans to dissipate the 2.5 MW of waste heat. Base load is also involved elsewhere in combined heat and power projects. (UK).

  7. Operator training simulator for BWR nuclear power plant

    International Nuclear Information System (INIS)

    Watanabe, Tadasu

    1988-01-01

    For the operation management of nuclear power stations with high reliability and safety, the role played by operators is very important. The effort of improving the man-machine interface in the central control rooms of nuclear power stations is energetically advanced, but the importance of the role of operators does not change. For the training of the operators of nuclear power stations, simulators have been used from the early stage. As the simulator facilities for operator training, there are the full scope simulator simulating faithfully the central control room of an actual plant and the small simulator mainly aiming at learning the plant functions. For BWR nuclear power stations, two full scope simulators are installed in the BWR Operator Training Center, and the training has been carried out since 1974. The plant function learning simulators have been installed in respective electric power companies as the education and training facilities in the companies. The role of simulators in operator training, the BTC No.1 simulator of a BWR-4 of 780 MWe and the BTC No.2 simulator of a BWR-5 of 1,100 MWe, plant function learning simulators, and the design of the BTC No.2 simulator and plant function learning simulators are reported. (K.I.)

  8. Power companies international year book 1997

    International Nuclear Information System (INIS)

    Anon.

    1996-12-01

    The Power Companies International Yearbook covers around 250 major international power generating and distributing companies worldwide, giving a comprehensive overview of this dynamic global industry. Both publicly and privately owned companies are features. It details financial performance, ownership status, affiliated businesses, activities, operations, key personnel, type/capacity of generation, subsidiary activities and plans for diversification within and outside the global power sector. (Author)

  9. Quality assurance program manual for nuclear power plants. Volume I. Policies

    International Nuclear Information System (INIS)

    1976-01-01

    The Consumers Power Company Quality Assurance Program Manual for Nuclear Power Plants consists of policies and procedures which comply with current NRC regulatory requirements and industry codes and standards in effect during the design, procurement, construction, testing, operation, refueling, maintenance, repair and modification activities associated with nuclear power plants. Specific NRC and industry documents that contain the requirements, including the issue dates in effect, are identified in each nuclear power plant's Safety Analysis Report. The requirements established by these documents form the basis for the Consumer Power Quality Assurance Program, which is implemented to control those structures, systems, components and operational safety actions listed in each nuclear power plant's Quality List (Q-List). As additional and revised requirements are issued by the NRC and professional organizations involved in nuclear activities, they will be reviewed for their impact on this manual, and changes will be made where considered necessary. CP Co 1--Consumers Power Company QA Program Topical Report is Volume I of this manual and contains Quality Assurance Program Policies applicable during all phases of nuclear power plant design, construction and operation

  10. Plant life extensions for German nuclear power plants? Controversial discussion profit taking of nuclear power plant operators

    International Nuclear Information System (INIS)

    Matthes, Felix C.

    2009-10-01

    The discussion on the plant life extensions for German nuclear power plants beyond the residual quantity of electricity particularly focus on three aspects: Effects for the emission of carbon dioxide as a greenhouse gas; Development of the electricity price for which a reduction or attenuation is postulated due to a plant life extension; Skimming of additional profits at operating companies and their use in the safeguarding of the future (development of renewable energies, support of energy efficiency, promotion of the research, consolidation of the public budget, and so on). Under this aspect, the author of the contribution under consideration reports on the profit taking of nuclear power plant operators. The presented analysis considers three aspects: (a) Specification of the quantity structures for the investigated model of plant life extension; (b) The decisive parameter is the revenue situation and thus the price development for electricity at wholesale markets; (c) Determination and evaluation of the course in time of the profit taking.

  11. OUT Success Stories: Solar Trough Power Plants

    Science.gov (United States)

    Jones, J.

    2000-08-01

    The Solar Electric Generating System (SEGS) plants use parabolic-trough solar collectors to capture the sun's energy and convert it to heat. The SEGS plants range in capacity from 13.8 to 80 MW, and they were constructed to meet Southern California Edison Company's periods of peak power demand.

  12. Insurance risk of nuclear power plant concentrations

    International Nuclear Information System (INIS)

    Feldmann, J.

    1976-01-01

    The limited number of sites available in the Federal Republic of Germany for the erection of nuclear power plants has resulted in the construction of multiple nuclear generating units on a few sites, such as Biblis, Gundremmingen and Neckarwestheim. At a value invested of approximately DM 1,200/kW this corresponds to a property concentration on one site worth DM 2 - 3 billion and more. This raises the question whether a concentration of value of this magnitude does not already exceed the limits of bearable economic risks. The property risk of a nuclear power plant, as that of any other industrial plant, is a function of the property that can be destroyed in a maximum probable loss. Insurance companies subdivide plants into so-called complex areas in which fire damage or nuclear damage could spread. While in some foreign countries twin nuclear power plants are built, where the technical systems of both units are installed in one building without any physical separation, dual unit plants are built in the Federal Republic in which the complexes with a high concentration of valuable property are physically separate building units. As a result of this separation, property insurance companies have no grounds for assessing the risk and hence, the premium different from those of single unit plants. (orig.) [de

  13. Simulation of power plant construction in competitive Korean electricity market

    International Nuclear Information System (INIS)

    Ahn, Nam Sung; Huh, Sung Chul

    2001-01-01

    This paper describes the forecast of power plant construction in competitive Korean electricity market. In Korea, KEPCO (Korean Electric Power Corporation, fully controlled by government) was responsible for from the production of the electricity to the sale of electricity to customer. However, the generation part is separated from KEPCO and six generation companies were established for whole sale competition from April 1st, 2001. The generation companies consist of five fossil power companies and one nuclear power company. Fossil power companies are schedule to be sold to private companies including foreign investors. Nuclear power company is owned by government. The competition in generation market will start from 2003. ISO (Independence System Operator) will purchase the electricity from the power exchange market. The market price is determined by the SMP (System Marginal Price) which is decided by the balance between demand and supply of electricity in power exchange market. Under this uncertain circumstance, the energy policy planners are interested to the construction of the power plant in the future. These interests are accelerated due to the recent shortage of electricity supply in California. In the competitive market, investors are no longer interested in the investment for the capital intensive, long lead time generating technologies. Large nuclear and coal plants were no longer the top choices. Instead, investors in the competitive market are interested in smaller, more efficient, cheaper, cleaner technologies such as CCGT (Combined Cycle Gas Turbine). Electricity is treated as commodity in the competitive market. The investor's behavior in the commodity market shows that the new investment decision is made when the market price exceeds the sum of capital cost and variable cost of the new facility and the existing facility utilization depends on the marginal cost of the facility. This investor's behavior can be applied to the new investments for the

  14. Docommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Essmann, J.

    1981-01-01

    The German utilities operating nuclear power plants have long concerned themselves with aspects of decommissioning and for this purpose an engineering company was given a contract to study the entire spectrum of decommissioning. The results of this study have been available in autumn 1980 and it is possible to discuss all the aspects of decommissioning on a new basis. Following these results no change in the design concept of LWR nuclear power plants in operation or under construction is necessary because the techniques, necessary for decommissioning, are fully available today. The technical feasibility of decommissioning for power plants of Biblis A and KRB type has been shown in detail. The calculations of the quantity of waste produced during removal of a nuclear power plant could be confirmed and it could be determined with high procedure. The radiation dose to the decommissioning personnel is in the range of the radiation protection regulations and is in the same range as the radiation dose to the personnel within a yearly inservice inspection. (AF)

  15. 76 FR 51065 - Florida Power & Light Company; Establishment of Atomic Safety and Licensing Board

    Science.gov (United States)

    2011-08-17

    ... & Light Company; Establishment of Atomic Safety and Licensing Board Pursuant to delegation by the... hereby given that an Atomic Safety and Licensing Board (Board) is being established to preside over the following proceeding: Florida Power & Light Company (St. Lucie Plant, Unit 1) This proceeding involves a...

  16. Framatome advanced nuclear power-benefits for our clients from the new company

    International Nuclear Information System (INIS)

    Weber, P.

    2001-01-01

    Framatome ANP (Advanced Nuclear Power) merges the complementary strengths of two global nuclear industry leaders Framatome and Siemens - offering clients the best technological solutions for safe, reliable and economical plant performance. With a combined workforce of 13,300 skilled individuals, Framatome ANP is now the nuclear industry's leading supplier. Serving as Original Equipment Manufacturer (OEM) for more than 90 reactors that provide about 30% of the world's total installed nuclear power capacity, our experienced resources remain focused on the local needs of individual clients, wherever in the world they may be. The Company main business used to be turnkey construction of complete Nuclear Power plants, BWR and PWR capabilities, heavy equipment manufacturing, comprehensive I and C capabilities, and also expertise and knowledge of VVER. Framatome ANP will benefit in all of its fields of activity of the experience gained through Framatome and Siemens' collaboration on the next generation reactor, the EPR, as well as on steam generators replacements and or modernization of VVER. Framatome ANP nuclear fuel designs for both PWR and BWR plants provide innovative features and world-leading performance. Framatome ANP is organized according a matrix organization with: - 4 Business Groups (Project and Engineering, Service, Nuclear Fuel, Mechanical Equipment) - 3 Regional Divisions (Framatome Advanced Nuclear Power S.A.S., France; Framatome Advanced Nuclear Power GmbH, Germany; Framatome Advanced Nuclear Power Inc., USA). By 30th January 2001 Siemens Nuclear Power GmbH, founded in 2000 as successor of the Nuclear Division of Siemens Power Generation Group (KWU), was renamed to Framatome Advanced Nuclear Power GmbH forming the German part of the world wide acting company. Over the past 40 years 23 nuclear power plants all around the world - not only pressurized and boiling water reactors, but also two heavy-watermoderated reactors have been designed, constructed and

  17. Ways to Improve Russian Coal-Fired Power Plants

    International Nuclear Information System (INIS)

    Tumanovskii, A. G.; Olkhovsky, G. G.

    2015-01-01

    Coal is an important fuel for the electric power industry of Russia, especially in Ural and the eastern part of the country. It is fired in boilers of large (200 – 800 MW) condensing power units and in many cogeneration power plants with units rated at 50 – 180 MW. Many coal-fired power plants have been operated for more than 40 – 50 years. Though serviceable, their equipment is obsolete and does not comply with the current efficiency, environmental, staffing, and availability standards. It is urgent to retrofit and upgrade such power plants using advanced equipment, engineering and business ideas. Russian power-plant engineering companies have designed such advanced power units and their equipment such as boilers, turbines, auxiliaries, process and environmental control systems similar to those produced by the world’s leading manufacturers. Their performance and ways of implementation are discussed

  18. Ways to Improve Russian Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Tumanovskii, A. G., E-mail: vti@vti.ru; Olkhovsky, G. G. [JSC “All-Russia Thermal Engineering Institute,” (Russian Federation)

    2015-07-15

    Coal is an important fuel for the electric power industry of Russia, especially in Ural and the eastern part of the country. It is fired in boilers of large (200 – 800 MW) condensing power units and in many cogeneration power plants with units rated at 50 – 180 MW. Many coal-fired power plants have been operated for more than 40 – 50 years. Though serviceable, their equipment is obsolete and does not comply with the current efficiency, environmental, staffing, and availability standards. It is urgent to retrofit and upgrade such power plants using advanced equipment, engineering and business ideas. Russian power-plant engineering companies have designed such advanced power units and their equipment such as boilers, turbines, auxiliaries, process and environmental control systems similar to those produced by the world’s leading manufacturers. Their performance and ways of implementation are discussed.

  19. Experience of Minas Gerais Energetic Company (CEMIG) in feasibility studies from hydroelectric power plants: energetic-economic studies

    International Nuclear Information System (INIS)

    Ramos, O.C.; Bras, A.J.F.; Batista Neto, R.P.; Salles Filho, M.P.

    1989-01-01

    The experience of Minas Gerais Energetic Company (CEMIG) - Brazil, on the use of dimensioning methodology for hydroelectric power plant from the Coordinated Group of Planning System was described, showing the problems with its use and the solutions, mainly the reservoir and the dimension of installed potential. It was concluded that the calculation procedures of the marginal costs for dimensioning, so as to become these costs more representative in future structure of the Brazilian generator park and less dependent to the oscillation due to conjuncture problems, must be re-evaluated. (C.G.C.). 7 refs, 3 figs, 1 tab

  20. Ethics on the TEPCO bankruptcy, nuclear power plants and regulatory reform in the electric power industry

    International Nuclear Information System (INIS)

    Koga, Shigeaki

    2013-01-01

    Although regulatory reform in the electric power industry had been considered as part of social system reform like in the finance and communications to liberalize the market, there still continued to exist regional monopoly, integrated system for power generation, transmission and distribution, and lack of competition. The Fukushima accident showed such electric power system was unethical as social system compared to ordinary industries, because electric power company getting profit could not be prepared for nuclear damage liability and would burden third unrelated parties with risk. Electric power company should be forced to insure nuclear power plants for nuclear accidents. Otherwise restart of nuclear power plant operation should not be allowed. Nuclear power had been justified to be entitled grant or subsidy from the government for public good, which would be unfair to people. This article presented speeding-up scheme of Fukushima accident treatment leading to TEPCO bankruptcy and discussed measures against concerns or comments about bankruptcy procedures, major part of which might be mitigation of fund-raising fear by government support. At the proceeding of bankruptcy procedure including spinning off of separate companies, regulatory reform in the electric power industry could be taken in advanced. (T. Tanaka)

  1. Integrated-plant-safety assessment Systematic Evaluation program. Millstone Nuclear Power Station, Unit 1, Northeast Nuclear Energy Company, Docket No. 50-245

    International Nuclear Information System (INIS)

    1982-11-01

    The Systematic Evaluation Program was initiated in February 1977 to review the designs of older operating nuclear reactor plants to reconfirm and document their safety. The review provides: (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. This report documents the review of the Millstone Nuclear Power Station, Unit 1, operated by Northeast Nuclear Energy Company (located in Waterford, Connecticut). Millstone Nuclear Power Station, Unit 1, is one of ten plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review. It is expected that this report will be one of the bases in considering the issuance of a full-term operating license in place of the existing provisional operating license

  2. Management of external support services for Almaraz Nuclear Power Plant

    International Nuclear Information System (INIS)

    Rayo Medina, A.; Lozano, J.M.

    1994-01-01

    Operation support services for a nuclear power plant have become increasingly important and voluminous during the power operation of the plant as well as during the shutdown and refuelling outage periods. Optimization of organization and management of these services entails a series of advantages and improvements aimed at the common objective of increasing plant availability and safety and eventually improving general operation results. This paper describes the existing operation support services at Almaraz nuclear power plant, with emphasis on site services, analysing the different possible options, their advantages and disadvantage with regard to plant organization and characteristics and describing, among others, the following aspects of these services: - Areas and specialities of required services - Scope of activities performed - Selection of candidate companies - Definition of technical and human resources - Supervision, coordination and control - Contracting and economic approach An evaluation is also made of the repercussions on the volume of workfromoperation support services rendered at Almaraz NPP by contracted companies, grouping them into three homogeneous areas (Full-Power Operation, Refuelling, and Design and Modifications) whose approach and execution are subject to different. (Author)

  3. Plant life management and maintenance technologies for nuclear power plants

    International Nuclear Information System (INIS)

    Ikegami, Tsukasa; Aoki, Masataka; Shimura, Takao; Kaimori, Kimihiro; Koike, Masahiro

    2001-01-01

    Nuclear power generation occupying an important position for energy source in Japan and supplying about one third of total electric power usage is now required for further upgrading of its economics under regulation relaxation of electric power business. And, under execution retardation of its new planning plant, it becomes important to operate the already established plants for longer term and to secure their stability. Therefore, technical development in response to the plant life elongation is promoted under cooperation of the Ministry of Economics and Industries, electric power companies, literate, and plant manufacturers. Under such conditions, the Hitachi, Ltd. has progressed some technical developments on check inspection, repairs and maintenance for succession of the already established nuclear power plants for longer term under securing of their safety and reliability. And in future, by proposing the check inspection and maintenance program combined with these technologies, it is planned to exert promotion of maintenance program with minimum total cost from a viewpoint of its plant life. Here were described on technologies exerted in the Hitachi, Ltd. such as construction of plant maintenance program in response to plant life elongation agreeing with actual condition of each plant, yearly change mechanism grasping, life evaluation on instruments and materials necessary for maintenance, adequate check inspection, repairs and exchange, and so forth. (G.K.)

  4. The world behind electricity from coal. The dubious origin of coal for Dutch coal-fired power plants

    International Nuclear Information System (INIS)

    2008-01-01

    Five energy companies in the Netherlands want to build additional coal-fired power plants: Essent and Nuon, the German company RWE and E.ON and the Belgian company Electrabel. Coal-fired power plants emit 70 percent more CO2 than gas-fired power plants. Especially because of the threat to the climate Greenpeace believes that no more coal-fired power plants should be built. In this publication Greenpeace explores the pollution, the working conditions and human rights with regard to the exploitation of coal. That has been elaborated for the three countries from which Dutch energy companies import coal: South Africa, Colombia and Indonesia. In addition to information about the origin of coal also insight is given into the coal market (stocks and use), the enormous coal transport and the world trade [nl

  5. Development and optimization of power plant concepts for local wet fuels

    Energy Technology Data Exchange (ETDEWEB)

    Raiko, M.O.; Gronfors, T.H.A. [Fortum Energy Solutions, Fortum (Finland); Haukka, P. [Tampere University of Technology (Finland)

    2003-01-01

    Many changes in business drivers are now affecting power-producing companies. The power market has been opened up and the number of locally operating companies has increased. At the same time the need to utilize locally produced biofuels is increasing because of environmental benefits and regulations. In this situation, power-producing companies have on focus their in-house skills for generating a competitive edge over their rivals, such as the skills needed for developing the most economical energy investments for the best-paying customer for the local biomass producers. This paper explores the role of optimization in the development of small-sized energy investments. The paper provides an overview on a new design process for power companies for improved use of in-house technical and business expertise. As an example, illustrative design and optimization of local wet peat-based power investment is presented. Three concept alternatives are generated. Only power plant production capacity and peat moisture content are optimized for all alternatives. Long commercial experience of using peat as a power plant fuel in Finland can be transferred to bioenergy investments. In this paper, it is shown that conventional technology can be feasible for bioenergy production even in quite small size (below 10 MW). It is important to optimize simultaneously both the technology and the two businesses, power production and fuel production. Further, such high moisture content biomass as sludge, seaweed, grass, etc. can be economical fuels, if advanced drying systems are adopted in a power plant. (author)

  6. Design and construction of solidification and dewatering facility at Alabama Power Company's Farley Nuclear Plant

    International Nuclear Information System (INIS)

    Farnsworth, P.

    1988-01-01

    The approximate total cost of the structure and supporting piping systems is estimated to be 4.1 million dollars. Total dose savings per year could be as high as 70 man Rem for resin processing alone. The ability to store refueling equipment, process contaminated oils, load and unload trucks and containers regardless of weather conditions and support repair work on equipment greatly enhances the cost effectiveness of the project. It will take at least one year of operation of the facility to accurately assess the true cost savings to Alabama Power Company. The morale factor for the Waste and Decon Group has escalated measurably due to the dose reduction to our personnel. Plant and company management are well pleased due to the possibility of a spill or release to the environment has been eliminated which was on intangible cost. Facility construction has been completed as of this date and resin transfer anticipated within the next few days. Some of the problems encountered in planning and constructing this solidification and dewatering facility are presented. A safety evaluation for the facility is included in the appendix

  7. Integrated Plant Safety Assessment: Systematic Evaluation Program. Yankee Nuclear Power Station, Yankee Atomic Electric Company, Docket No. 50-29. Final report

    International Nuclear Information System (INIS)

    1983-06-01

    The Systematic Evaluation program was initiated in February 1977 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to confirm and document their safety. The review provides: (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. This report documents the review of Yankee Nuclear Power Station, operated by Yankee Atomic Electric Company. The Yankee plant is one of 10 plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review

  8. Integrated Plant Safety Assessment, Systematic Evaluation Program. Yankee Nuclear Power Station, Yankee Atomic Electric Company, Docket No. 50-29. Draft report

    International Nuclear Information System (INIS)

    1983-02-01

    The Systematic Evaluation Program was initiated in February 1977 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to confirm and document their safety. The review provides (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. This report documents the review of Yankee Nuclear Power Station, operated by Yankee Atomic Electric Company. The Yankee plant is one of 10 plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review

  9. Human Factors Engineering Incorporated into the Carolina Power and Light company's nuclear power plant control panel modifications

    International Nuclear Information System (INIS)

    Beith, D.M.; Shoemaker, E.M.; Horn, K.; Boush, D.

    1988-01-01

    Maintaining human factors conventions/practices that were established during the Detailed Control Design Review (DCRDR), is difficult if Human Factors Engineering (HFE) is not incorporated into the plant modification process. This paper presents the approach used at Carolina Power and Light's nuclear power plants that has successfully incorporated human factors engineering into their plant modification process. An HFE Design Guide or HFE Specification was developed which is used by the design engineers or plant engineering support groups in the preparation of plant modifications

  10. The Canadian Niagara Power Company story

    International Nuclear Information System (INIS)

    Ball, N.R.

    2005-01-01

    This book chronicles the history and contributions of the Canadian Niagara Power Company and its employees toward the establishment of electricity generation and distribution in Niagara Falls and Fort Erie, Ontario, dating back to its founding in 1892. Through historical photographs, maps and drawings, the book demonstrates the impact of electricity on the Niagara region. It emphasizes the many skills and jobs required to run the company that generated electricity and maintained a complete system to deliver power, metering, and billing services through the depression, wars, and postwar booms, even during lightning, snow and ice storms. The company began producing power in 1905 with what had been the world's largest-capacity turbines and generators that supplied power to both sides of the Niagara River. Initially, most of the electricity was exported to New York State. The company eventually expanded its Canadian customer service area from Niagara Falls, Ontario, to Fort Erie, Bridgeburg, Amigari, Ridgeway, Stevensville, Crystal Beach and Point Abino. Throughout its history, the Canadian Niagara Power Company provided power at a lower cost than its neighbouring competitors. The William Birch Rankine Generating Station became an important tourist attraction, showcasing the latest electrical appliances of the time in an effort to promote the use of electricity in homes and offices. Today, the station remains a tribute to the fact that natural beauty can coincide with industry. The book also chronicles the difficult business challenges caused by restructuring in the electric power industry in the 1990s, repairing aging equipment and applying the latest in automation and remote sensing technology. Today, the company as FortisOntario is expanding to other communities around Ontario. refs., tabs., figs

  11. Performance of Power System Stabilizer (UNITROL D) in Benghazi North Power Plant

    OpenAIRE

    T. Hussein

    2011-01-01

    The use of power system stabilizers (PSSs) to damp power system swing mode of oscillations is practical important. Our purpose is to retune the power system stabilizer (PSS1A) parameters in Unitrol D produced by ABB– was installed in 1995in Benghazi North Power Plants (BNPPs) at General Electricity Company of Libya (GECOL). The optimal values of the power system stabilizer (PSS1A) parameters are determined off-line by a particle swarm optimization technique (PSO). The obj...

  12. Preconstruction of the Honey Lake Hybrid Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    1988-04-30

    The work undertaken under this Contract is the prosecution of the preconstruction activities, including preliminary engineering design, well field development, completion of environmental review and prosecution of permits, and the economic and financial analysis of the facility. The proposed power plant is located in northeastern California in Lassen County, approximately 25 miles east of the town of Susanville. The power plant will use a combination of wood residue and geothermal fluids for power generation. The plant, when fully constructed, will generate a combined net output of approximately 33 megawatts which will be sold to Pacific Gas and Electric Company (PG E) under existing long-term power sales contracts. Transfer of electricity to the PG E grid will require construction of a 22-mile transmission line from the power plant to Susanville. 11 refs., 12 figs., 7 tabs.

  13. Legal advocacy and nuclear power: the impact of litigation on the Midland nuclear plant

    International Nuclear Information System (INIS)

    Cook, C.E.

    1979-01-01

    The use of litigation as an interest-group strategy is analyzed in relation to the controversy over the development of nuclear power. An assessment is made of the impact of the judicial process, with the litigation involving the Midland, Michigan, nuclear plant serving as a representative case study. In the construction permit hearings for the Midland nuclear plant, which began in 1970, the interest groups were Consumers Power Company, a Michigan utility, and the Saginaw and Mapleton Intervernors, environmentalists dwelling near the proposed plant site. The Nuclear Regulatory Commission issued a construction permit for the plant after a two-year licensing process, but the environmental groups appealed the permit to the United States Court of Appeals for the District of Columbia Circuit. In 1976, the permit was remanded by the court to the Commission for reconsideration, and Consumers Power Company appealed that decision. In 1978, the Supreme Court handed down a unanimous and definitive opinion, Consumers Power Company vs Aeschliman, that upheld the Commission's original issuance of the construction plant. The Midland case well illustrates the detrimental impact that legal advocacy has had on atomic energy by prolonging the regulatory process. The positive consequences of the Court ruling favoring the utility's position were outweighed by the expense involved in the initial ten years of thelicensing and subsequent lawsuits concerning the Midland plant. Consequently, Consumers Power Company is representative of most other American electric companies in its determination that it cannot build additional nuclear plants without mitigation of the uncertainty and duration of the regulatory process. Thus, it may be concluded that the environmental groups' use of legal advocacy at Midland and elsewhere has proven to be an effective strategy for undermining the nuclear industry and for deterring the future development of nuclear power

  14. Intervention in independent spent fuel storage facility license application proceedings for storage on the power plant site

    International Nuclear Information System (INIS)

    Jordan, J.

    1992-01-01

    This presentation summarizes the intervention in the Nuclear Regulatory Commission (NRC) licensing process for currently operating Independent Spent fuel Storage Installation (ISFSI) projects at Carolina Power and Light's Company's H.B. Robinson, Duke Power Company's Oconee, and Virginia Power Company's Surry. In addition, intervention at dry storage facilities that are currently under development are also described. The utilities and reactors include Baltimore Gas and Electric Company's Calvert Cliffs, Public Service Company of Colorado's Fort St. Vrain plant, Northern States Power Company's Prairie Island, Wisconsin Electric Power Company's Point Beach, and Consumers Power Company's Palisades

  15. Exchange of current BPA surplus power for future power from certain companies' share of WNP-3 to settle a dispute over construction delay. Record of decision. Volume II. Exhibits

    International Nuclear Information System (INIS)

    1985-01-01

    This exchange is between BPA and Portland General Electric Company, Puget Sound Power and Light Company, and the Washington Water Power Company. Pacific Power and Light Company (Pacific) is not initially a party to the exchange. Pacific may at any time prior to January 1, 1994 elect on at least 12 months notice to enter the exchange provided that if BPA determines to resume full plant construction Pacific must elect or forego the option within 6 months after construction is resumed. If the plant is terminated at a time when the option has not been exercised, the option may not thereafter be exercised. If Pacific elects to make the exchange effective and the plant is later terminated prior to the effective data of the exchange, the exchange will become effective on the specified data, unless, prior to such data. Pacific notifies BPA that is rescinds such prior election

  16. Evaluation of efficiency in Japan electric power companies

    International Nuclear Information System (INIS)

    Ghaderi, F.; Muyajima, M.

    2001-01-01

    Achieving energy efficiency also must consider supply efficiency, how much energy it takes to generate electricity and transmit it to the end user. system efficiency reflects the loss of energy during the processes of generation, transmission and distribution of electricity. Of the millions of tons of coal that are burned to produce heat in generation of electricity every year, only one third is converted into electricity.The electric power plant immediately uses 5 to 10 percent of that energy for use in the plant. Around another 10 percent of this energy is consumed in the transmission and distribution of electric energy to end users. Overall,more that 70 percent of the energy used to produce and deliver electricity never gets to the end user. The costs of this wasted energy are reflected in the customer's electricity bill. Furthermore, once delivered, users of electricity are subjected to more h idden c osts the demand charge which reflects the rate at which consumers draw energy from the power plant during a particular time of day, are also affected by the time of year. This additional charge c n be dramatic. For example, the cost for using electric air conditioning at the w rong t ime of the day , are also affected by the time of year. This additional charge can be dramatic. For example, the cost for using electric air conditioning at the wrong time of the day could be as much as 25 to 40 percent higher than what a facility normally pays for electricity during off-peak times. Minimizing the costs of operations, therefor, is a must for all electric companies. In the other hand utility rates, such as the cost of electricity, are a necessary element of operating in all enterprises.In some industries the payment over electricity make a large percentage of their total expenses, but that doesn't mean that every effort should not be made to reduce their impact on the bottom line, it should be considered that a very small change in operating procedure can change

  17. Siemens's spectrum of deliveries and services for nuclear power plants

    International Nuclear Information System (INIS)

    2011-01-01

    In 2001, Siemens and Framatome merged their nuclear activities in the present Areva NP joint venture. Siemens has since focused on the construction and further development of conventional power plants and on the so-called conventional island (CI), the non-nuclear part of a nuclear power plant, i.e. the steam turbine, generator, and plant I and C systems, and also on service for the conventional part of nuclear power plants. Its role as a minority shareholder in Areva NP constrained Siemens. For this reason, the company in January 2009 decided to terminate its interest in Areva NP effective January 30, 2012. By January 2012 at the latest, Siemens will transfer to the majority shareholder Areva, holding 66 percent of the shares, its interest in the joint venture. For the time being, the joint venture still entails certain limitations to Siemens's activities in the nuclear field. Its delivery of the conventional island for the Olkiluoto 3 (OL3) nuclear power plant in Finland confirms the company's know-how in power plant construction. When commissioned, its 1,720 MW power will make OL3 the world's largest nuclear generating unit. The turbo-generator of the CI comprises a double-flow HP turbine and a 6-flow LP turbine. The driven 4-pole generator with a power of up to 2,200 MVA consists of a water-cooled stator and a hydrogen-cooled rotor. (orig.)

  18. Power plants investment decision-making in consideration of investment risk

    International Nuclear Information System (INIS)

    Oda, Junichiro; Matsuhashi, Ryuji; Yoshida, Yoshikuni; Takashima, Ryuta

    2005-01-01

    In this paper, we consider the investment risk of nuclear power plants using the real options approach. It is essential that the Japanese society evaluate the investment risk, because nuclear power plants are facing definite uncertainty and Japanese governments intend to promote and assist nuclear power plants through subsidies and policy actions. We assumed that the wholesale market prices of electricity constitute the definite uncertainty and that the wholesale market prices follow the geometric Brownian motion with drift. Using the Bellman equation and a lattice framework, we evaluated the value of investment opportunity, the value of equipment, and the critical prices that are optimal prices to invest in a nuclear power plant in the finite time horizon. This analysis shows that higher volatility of the wholesale market prices would give power companies lower incentive to construct electric power plants, particularly capital-intensive power plants. In order to deliberate and hold the Japanese governments accountable for the economics of nuclear power plants, multifaceted evaluation is needed. (author)

  19. Current approaches to nuclear power plant life management in Japan

    International Nuclear Information System (INIS)

    Noda, T.; Tajima, K.; Ishikawa, M.; Koyama, M.

    2002-01-01

    Full text: Some of Japan's commercial light water reactors (LWRs) have been operating for more than 30 years. The more progress in ageing, the more increasing concerns of the public will grow about such nuclear power plants. In order to develop basic policies regarding countermeasures against ageing on nuclear power plants, in 1996, the Ministry of International Trade and Industry (MITI) summarized a report entitled 'Basic Policy on Aged Nuclear Power Plants'. The MITI also indicated that following 30 years' commercial operation of these plants, the electric utility companies should conduct technical evaluations for the ageing of all the components in the plants and to prepare detailed maintenance plans for the future. The Nuclear Safety Commission (NSC) accepted the MITI's report as appropriate in November 1998. The Commission also recommended the addition of effective countermeasures against ageing to the Periodical Safety Review and the evaluation of activities in response to ageing in order to implement such activities regularly and systematically in the future. The MITI reviewed the ageing countermeasures conducted by the electric utility companies and issued the second report entitled 'Evaluation of Countermeasures for ageing Conducted by Electric Utility Companies and Future Plans to cope with ageing'. The evaluation was made for Tsuruga Power Station Unit 1, Mihama Power Station Unit 1, and Fukushima Daiichi Nuclear Power Station Unit 1. At the same time, the MITI determined to incorporate the technical evaluations of ageing and the preparation of long-term maintenance plans into the periodical safety review in the future. The Kansai Electric Power Co., Inc., and Tokyo Electric Power Co. conducted the technical evaluations in their periodical safety reviews concerning the ageing phenomena of all their safety-related components/structures of Mihama Power Station Unit 2 and Fukushima Daiichi Nuclear Power Station Unit 2. Also, concerning ageing, they

  20. 'Nuclearelectrica' Company messages for a broadly acceptable nuclear power program

    International Nuclear Information System (INIS)

    Stiopol, Mihaela; Bilegan, C. Iosif

    2001-01-01

    Romania started the nuclear power program about 20 years ago, by a high level Government decision. After 1989 the former Ministry of Electrical Power was transformed into a state owned company, RENEL, in which nuclear activities were also included. RENEL was a monopoly system responsible for production, transport and distribution of electricity in Romania. The deregulation process in the power sector was many times asked by the World Bank and International Monetary Fund, to split this monopoly system in separately activities: Production, Transport and Distribution. The first step occurred in July 1998, when the nuclear activities were externalized from RENEL. In nuclear sector two new entities were created: SN 'Nuclearelectrica' SA, a state own company that includes three branches: - Nuclear Power Production - Cernavoda NPP Unit 1; - Nuclear Fuel Plant-Pitesti; - Project Development Branch - Cernavoda Units 2-5. The second entity is the so-called Romanian Authority (Autonomous Reggie) for Nuclear Activities (RAAN), including as branches the heavy water fabrication plant 'ROMAG PROD', the Nuclear Research Institute (ICN) Pitesti and the Nuclear Engineering and Design Institute (CITON) Bucharest. The rest of conventional power sector was renamed, namely, CONEL. The organization process continued and in August 2000, by a Government Ordinance the CONEL was split into the following companies: - one for hydropower production 'HIDROELECTRICA'; - one for thermal power production 'TERMOELECTRICA'; - one for transport 'TRANSELECTRICA'; - one for distribution 'ELECTRICA'. The goal of a third step of restructuring process is the privatization in the power field. The steps of Romanian Power Sector Restructuring are presented. Since 1991 a Public Information program has been established. Depending on the evolution of the construction of the first Romanian nuclear power station, during the years, the messages changed. Everybody working in the nuclear field knows how difficult is

  1. New technologies deployment for advanced power plants

    International Nuclear Information System (INIS)

    Kiyoshi, Yamauchi

    2007-01-01

    Mitsubishi Heavy Industries, Ltd. (MHI) has been the total engineering and manufacturing company of pressurized water reactors (PWRs) in Japan since the commencement of commercial operations of Mihama Unit 1 of the Kansai Electric Power Company in 1970. Over these decades, MHI has endeavored to develop a broad spread of nuclear technology, from design, manufacturing, and construction, to plant maintenance services. More recently, with the ever rising need for nuclear power generation around the world to prevent global warming and to cope with surging oil prices, MHI is striving to expand its nuclear power business in the world market, such as US-APWR (Advanced Pressurized Water Reactor) in the U.S., as well as to develop technology for advanced reactors and nuclear fuel cycles to ensure energy security in the future. This paper introduces these approaches, especially focused on new technologies deployment for the global needs, and clarifies the current status and future prospects of MHI as the world's leading nuclear company. (author)

  2. Support services for new nuclear power plant projects

    International Nuclear Information System (INIS)

    Manrique, Alberto B.; Cazorla, Francisco

    2009-01-01

    TECNATOM is a spanish engineering company with more than 50 years of experience working for the nuclear industry all over the world. TECNATOM has worked in over 30 countries in activities related to the Operation and Maintenance of Nuclear Power Plants. It started to work in the design of new Nuclear Power Plants in the early 90s and since then has continued collaborating with different suppliers in the design and licensing of new reactors specially in the areas of plant systems design, Man-Machine Interface design, Main Control Room simulators building, training, qualification of equipment and PSI/ISI engineering services. (author)

  3. Multinational Companies, Technology Spillovers, and Plant Survival

    OpenAIRE

    Holger Görg; Eric Strobl

    2003-01-01

    This paper examines the effect of the presence of multinational companies on plant survival in the host country. We postulate that multinational companies can impact positively on plant survival through technology spillovers. We study the nature of the effect of multinationals using a Cox proportional hazard model which we estimate using plant level data for Irish manufacturing industries. Our results show that the presence of multinationals has a life enhancing effect only on indigenous plan...

  4. Taiwan Power Company's power distribution analysis and fuel thermal margin verification methods for pressurized water reactors

    International Nuclear Information System (INIS)

    Huang, P.H.

    1995-01-01

    Taiwan Power Company's (TPC's) power distribution analysis and fuel thermal margin verification methods for pressurized water reactors (PWRs) are examined. The TPC and the Institute of Nuclear Energy Research started a joint 5-yr project in 1989 to establish independent capabilities to perform reload design and transient analysis utilizing state-of-the-art computer programs. As part of the effort, these methods were developed to allow TPC to independently perform verifications of the local power density and departure from nucleate boiling design bases, which are required by the reload safety evaluation for the Maanshan PWR plant. The computer codes utilized were extensively validated for the intended applications. Sample calculations were performed for up to six reload cycles of the Maanshan plant, and the results were found to be quite consistent with the vendor's calculational results

  5. Applications of MAAP at Duke Power Company

    International Nuclear Information System (INIS)

    Barrett, M.

    1991-01-01

    The Modular Accident Analysis Program (MAAP) is a fast running, easy to use code for modeling accidents at nuclear power plants. These attributes make MAAP ideal for a number of applications. At Duke Power Company, MAAP has been used extensively in the performance of probabilistic risk assessment (PRA). Applications have also been found in the areas of emergency preparedness, training, and severe accident management. Specific applications of MAAP are presented in this paper with special attention to examples in the area of PRA success criteria development and severe accident management strategies selection. The application of MAAP to developing success criteria for ECCS performance during a large LOCA is presented. Additionally, an example of how MAAP has been used in the assessment of an alternative feed and bleed strategy is provided

  6. A study on people's awareness about the restarting and decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Goto, Manabu; Sakai, Yukimi

    2015-01-01

    In this study, we conducted two questionnaire surveys targeting a total of 918 respondents living in the cities of Kyoto, Osaka and Kobe, in order to elucidate people's awareness of three things: 1) restart of nuclear power plants; 2) extension of the operation period of aging plants; and 3) decommissioning. The results are as follows: 1) People who think that electrical power companies voluntarily take higher safety measures trust the power companies and do not oppose the restart of the nuclear power plants, as compared to people who think that power companies only meet the requirements set by the nuclear regulatory agency. 2) When people were given information about aging measures and conforming to new regulatory standards, their anxiety toward the operation of aging plants was reduced. 3) People thought that decommissioning work was important for society. However, a small number of people thought it was a job worthwhile doing. (author)

  7. Power up your plant - An introduction to integrated process and power automation

    Energy Technology Data Exchange (ETDEWEB)

    Vasel, Jeffrey

    2010-09-15

    This paper discusses how a single integrated system can increase energy efficiency, improve plant uptime, and lower life cycle costs. Integrated Process and Power Automation is a new system integration architecture and power strategy that addresses the needs of the process and power generation industries. The architecture is based on Industrial Ethernet standards such as IEC 61850 and Profinet as well as Fieldbus technologies. The energy efficiency gains from integration are discussed in a power generation use case. A power management system success story from a major oil and gas company, Petrobras, is also discussed.

  8. Topics for application of expert systems for nuclear power plants

    International Nuclear Information System (INIS)

    Trovato, S.A.; Aydin, F.

    1992-01-01

    Expert systems are an innovative form of computer software which offer to enhance productivity and improve operations of nuclear power plants. A survey and assessment of opportunities for application of this technology at Consolidated Edison Company of New York, Inc.'s (Con Edison) Indian Point 2 nuclear power plant was conducted. Eleven topics for expert systems are discussed in this paper. 1 ref., 2 figs., 2 tabs

  9. Modernization of Henry Borden hydroelectric power plant: The ELETROPAULO`s, The Electric Power Company of Sao Paulo State, experience in no.1 generator power improvement; Modernizacao da Usina Henry Borden (a experiencia da ELETROPAULO na repotenciacao do gerador nr. 1)

    Energy Technology Data Exchange (ETDEWEB)

    Delbone, Edval; Matos, Jose Alberto da S.; Grassi, Marco A; Oliveira, Robinson C; Sertori, Sergio R [Eletricidade de Sao Paulo SA, SP (Brazil); Duarte, F I; Pires, Nilo Ramos; Yamagushi, Luiz Massao [Asea Brown Boveri (ABB) (Brazil)

    1996-12-31

    The need for the substitution of several the generating equipment of Henry Borden hydroelectric power plant due to the end of their service life, in addition to the difficult economic situation and specific characteristics of the unit, leaded ELETROPAULO company to decide for the power improvement of some equipment. This work presents this experience giving special emphasis to the procedure adopted and results obtained 2 tabs.

  10. Optimizing the Utility Power of a Geothermal Power Plant using Variable Frequency Drive (VFD) (Case Study: Sibayak Geothermal Power Plant)

    Science.gov (United States)

    Sinaga, R. H. M.; Manik, Y.

    2018-03-01

    Sibayak Geothermal Power Plant (SGPP) is one of the plants being developed by Pertamina Geothermal Energy (PGE) at the upstream phase. At the downstream phase, State - owned Electricity Company (PLN) through PT. Dizamatra Powerindo is the developer. The gross capacity of the power plant is 13.3 MW, consisting 1 unit of Monoblock (2 MW) developed by PGE and 2 units (2×5.65 MW) operated through Energy Sales Contract by PLN. During the development phase of a geothermal power plant, there is a chance to reduce the utility power in order to increase the overall plant efficiency. Reducing the utility power can be attempted by utilizing the wet bulb temperature fluctuation. In this study, a modeling process is developed by using Engineering Equation Solver (EES) software version 9.430. The possibility of energy saving is indicated by condenser pressure changes as a result of wet bulb temperature fluctuation. The result of this study indicates that the change of condenser pressure is about 50.8% on the constant liquid/gas (L/G) condition of the wet bulb temperature of 15°C to 25°C. Further result indicates that in this power plant, Cooling Tower Fan (CTF) is the facility that has the greatest utility load, followed by Hot Well Pump (HWP). The saving of the greatest utility load is applied trough Variable Frequency Drive (VFD) instrumentation. The result of this modeling has been validated by actual operations data (log sheet). The developed model has also been reviewed trough Specific Steam Consumption (SSC), resulting that constant L/G condition allows the optimum condition on of the wet bulb temperature of 15°C to 25°C.

  11. Description of the power plant model BWR-plasim outlined for the Barsebaeck 2 plant

    International Nuclear Information System (INIS)

    Christensen, P. la Cour.

    1979-08-01

    A description is given of a BWR power plant model outlined for the Barsebaeck 2 plant with data placed at our disposal by the Swedish Power Company Sydkraft A/B. The basic operations are derived and simplifications discussed. The model is implemented with a simulation system DYSYS which assures reliable solutions and easy programming. Emphasis has been placed on the models versatility and flexibility so new features are easy to incorporate. The model may be used for transient calculations for both normal plant conditions and for abnormal occurences as well as for control system studies. (author)

  12. From the idea to the power plant. First steps of Czech(oslovak) nuclear power

    International Nuclear Information System (INIS)

    Stolár, Jan; Pavlis, David; Říha, Josef

    2016-01-01

    The 60 years' history of the Czechoslovak nuclear machinery company SKODA JS is described with stress on its key role in the construction of the first Czechoslovak nuclear power plant, A-1 at Jaslovske Bohunice.

  13. Developing a computerized aging management system for concrete structures in finnish nuclear power plants

    International Nuclear Information System (INIS)

    Al-Neshawy, F.; Piironen, J.; Sistonen, E.; Vesikari, E.; Tuomisto, M.; Hradil, P.; Ferreira, M.

    2013-01-01

    Finland has four nuclear reactors units in two power plants. The first unit started operation in 1977 and in the early 1980's all four units were in use. During the last few years the aging management of the Nuclear Power Plant's (NPP) concrete structures has grown an important issue because the existing structures are reaching the end of their licensed operating lifetime (about 40 years). Therefore the nuclear power companies are developing aging management systems to avoid premature degradation of NPP facilities and to be able to extend their operating lifetime. This paper is about the development of a computerized ageing management system for the nuclear power plants concrete structures. The computerized ageing management system is built upon central database and implementation applications. It will assist the personnel of power companies to implement the aging management activities at different phases of the lifetime of a power plant. It will provide systematic methods for planning, surveillance, inspection, monitoring, condition assessment, maintenance and repair of structures. (authors)

  14. Changes in control room at Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Kecklund, Lena

    2005-09-01

    The Swedish nuclear power plants were commissioned during a period between 1972 and 1985 and the instrumentation and control equipment are basically from that period. For several years there have been plans made for changes in all the nuclear power plants and to a certain extent the changes in control equipment and monitoring rooms have also been implemented. The object of this project was to make a comprehensive review of the changes in control room design implemented in the Swedish nuclear power plants and to describe how the MTO- (Man-Technology-Organisation) and (Man-Machine-Interface) -issues have been integrated in the process. The survey is intended to give an overall picture of the changes in control room design and man-machine-interface made in the Swedish control rooms, in order to get a deeper knowledge of the change management process and its results as well as of the management of MTO-issues in these projects. The units included in this survey are: Oskarhamn reactor 2 and 3; Ringhals reactor 2, 3 and 4; Forsmark reactor 1, 2 and 3. The Oskarshamn 1 unit has not been included in this report as it has recently undergone an extensive modernisation program as well as a detailed inspection by the SKI (Swedish Nuclear Power Inspectorate). At Ringhals 2 the modernisation work is carried out at present and the unit is also subjected to extensive inspection activities carried out by SKI and is therefore not part of this survey. This report also includes a short description of relevant standards and requirements. Then follows a presentation of the results of the plant survey, presented as case studies for three companies OKG, Ringhals and FKA. Control room changes are summarized as well as the results on specific MTO issues which has been surveyed. In all the power companies there is a joint way of working with projects concerning plant modifications. This process is described for each company separately. In the concluding of the report the strengths and

  15. Availability improvement factors at Taipower's nuclear power plant system

    International Nuclear Information System (INIS)

    Chen, J.H.

    1985-01-01

    Sufficient electricity to meet the needs of a growing industrial economy, is one of the most important factors in the total economic development of a nation. Currently, nuclear power is considered one of the most economical and available sources of energy. To keep pace with Taiwan's rapid economic development, while also observing our government's policy of diversifying the requirements for imported forms of energy, Taiwan Power Company has embarked upon an ambitious of nuclear power plant construction. This paper discusses the improvement of Taiwan's nuclear power plants. At the present time, Taipower has completed three nuclear power plants. Two of these are located in northern Taiwan, along the East China Sea, while the third is on the southern tip of Taiwan, bordering the South China Sea. These three plants, each with two nuclear generating units, comprise a total nuclear generating capacity of 5144 MWe

  16. The current status of Korea's Nuclear Power Plant Industry and the Need for International Cooperation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Woo [Doosan Heavy Industries and Construction, Changwon (Korea, Republic of)

    2008-04-15

    As an executive in charge of the nuclear power plant sector at Doosan Heavy Industries and Construction ('Doosan'), which is the nation's only major supplier of nuclear power plant equipment and materials, I would like to tell you about how the nation's nuclear power plant industry has developed and in what direction it is currently expected to advance, with the focus on my company's nuclear business activities. In 1980, Doosan built a large factory in Chang won with the aim of engaging in the industrial plant business, including production of power plant equipment and materials. This factory is now capable of producing equipment and materials for large-capacity power plants, ranging from the production of casting and forging to the final assembly of power plant equipment. The Korean government took the dramatic step of integrating power plant facilities of several companies into one entity, and have Doosan take over it. The nation continued to build nuclear power plants while making efforts to achieve self-reliance in the relevant technology.

  17. Tampa Electric Company Polk Power Station IGCC project: Project status

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, J.E.; Carlson, M.R.; Hurd, R.; Pless, D.E.; Grant, M.D. [Tampa Electric Co., FL (United States)

    1997-12-31

    The Tampa Electric Company Polk Power Station is a nominal 250 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located to the southeast of Tampa, Florida in Polk County, Florida. This project is being partially funded under the Department of Energy`s Clean Coal Technology Program pursuant to a Round II award. The Polk Power Station uses oxygen-blown, entrained-flow IGCC technology licensed from Texaco Development Corporation to demonstrate significant reductions of SO{sub 2} and NO{sub x} emissions when compared to existing and future conventional coal-fired power plants. In addition, this project demonstrates the technical feasibility of commercial scale IGCC and Hot Gas Clean Up (HGCU) technology. The Polk Power Station achieved ``first fire`` of the gasification system on schedule in mid-July, 1996. Since that time, significant advances have occurred in the operation of the entire IGCC train. This paper addresses the operating experiences which occurred in the start-up and shakedown phase of the plant. Also, with the plant being declared in commercial operation as of September 30, 1996, the paper discusses the challenges encountered in the early phases of commercial operation. Finally, the future plans for improving the reliability and efficiency of the Unit in the first quarter of 1997 and beyond, as well as plans for future alternate fuel test burns, are detailed. The presentation features an up-to-the-minute update on actual performance parameters achieved by the Polk Power Station. These parameters include overall Unit capacity, heat rate, and availability. In addition, the current status of the start-up activities for the HGCU portion of the plant is discussed.

  18. Power plant project success through total productive generation

    Energy Technology Data Exchange (ETDEWEB)

    Kaivola, R.; Tamminen, L.

    1996-11-01

    The Total Productive Generation concept (TPG) defines the lines of action adopted by IVO Generation Services Ltd (IGS) for the operation and maintenance of power plants. The TPG concept is based on procedures tested in practice. The main idea of TPG is continuous development of quality, which is a joint effort of the entire staff. Its objective is to benefit IGS`s own staff and, in particular, the company`s customers. (orig.)

  19. Nuclear Power Plant Control and Instrumentation activities in Finland

    International Nuclear Information System (INIS)

    Haapanen, P.; Wahlstroem, B.

    1990-01-01

    Finland has achieved some remarkable achievements in nuclear power production. Existing four plants have some of the best operating records in the world - high capacity factors, low occupational doses and short refuelling outages. Although public opinion was strongly turned against nuclear power after Chernobyl accident, and no decisions for new nuclear plants can be made before next elections in 1991, the nuclear option is still open. Utility companies are maintaining readiness to start new construction immediately after a positive political decision is made. One important component of the good operation history of the Finnish nuclear power plants is connected to the continuous research, development, modification and upgrading work, which is proceeding in Finland. In the following a short description is given on recent activities related to the I and C-systems of the nuclear power plants. (author). 2 tabs

  20. Nuclear power company activity based costing management analysis

    International Nuclear Information System (INIS)

    Xu Dan

    2012-01-01

    With Nuclear Energy Industry development, Nuclear Power Company has the continual promoting stress of inner management to the sustainable marketing operation development. In view of this, it is very imminence that Nuclear Power Company should promote the cost management levels and built the nuclear safety based lower cost competitive advantage. Activity based costing management (ABCM) transfer the cost management emphases from the 'product' to the 'activity' using the value chain analysis methods, cost driver analysis methods and so on. According to the analysis of the detail activities and the value chains, cancel the unnecessary activity, low down the resource consuming of the necessary activity, and manage the cost from the source, achieve the purpose of reducing cost, boosting efficiency and realizing the management value. It gets the conclusion from the detail analysis with the nuclear power company procedure and activity, and also with the selection to 'pieces analysis' of the important cost related project in the nuclear power company. The conclusion is that the activities of the nuclear power company has the obviously performance. It can use the management of ABC method. And with the management of the procedure and activity, it is helpful to realize the nuclear safety based low cost competitive advantage in the nuclear power company. (author)

  1. Study on information dissemination regarding trouble at a nuclear power plant

    International Nuclear Information System (INIS)

    Ueda, Yoshitaka

    2007-01-01

    We conducted a survey concerning how the general public perceived information regarding trouble that occurred at a nuclear power plant, and what kind of information people wished to obtain regarding such trouble. We then identified the points to be aware of in the future when disseminating such information. The results showed that people preferred such information to be disseminated not only via mass media, but also by governments and nuclear power plant companies. The results also revealed that terms used in explaining nuclear power plant troubles were not well known to the general public. Even some terms used to demonstrate safety to the public might only cause concern. We also learned that some information issued directly to the general public by electric power companies was difficult to understand, and that such information can give people a more serious image than the actual trouble. We therefore conducted interviews with the general public to collect opinions directly regarding points to be improved to ensure that information on nuclear power plant troubles is easy to understand and not misleading. We then actually prepared several patterns of trouble information by adding improvements on the basis of the collected opinions, and conducted a comparative review of these patterns. The results showed that ease of understanding of such information can be improved by providing a headline, simplifying the information and inserting illustrations, adding information supporting the fact that there is no effect of radiation, as well as information indicating the scale of trouble, and adding information on the effect of radiation within the power plant, on the safety impact of the trouble and on the state of trouble reporting to national and local governments. We also recognized that, to ensure that information is not misleading, we should include specific data on the effect of radiation within the nuclear power station. Moreover, we learned that making the above

  2. Risk perception among nuclear power plant personnel: A survey

    International Nuclear Information System (INIS)

    Kivimaeki, M.; Kalimo, R.

    1993-01-01

    This study investigated risk perception, well-being, and organizational commitment among nuclear power plant personnel. The study group, 428 employees from a nuclear power plant, completed a questionnaire which included the same questions as those in previous surveys on risk perception of lay persons and industrial workers. Hazards at work were not seen as a sizable problem by nuclear power plant personnel. The study group estimated the safety of nuclear power plants better and the possibility of a serious nuclear accident as more unlikely than the general public. Compared to employees in other industrial companies, the overall perceived risks at work among plant personnel did not exceed the respective perceptions of the reference groups. Risk-related attitudes did not explain well-being among plant personnel, but the relationship between the perceived probability of a serious nuclear accident at work and organizational commitment yielded to a significant correlation: Those plant workers who estimated the likelihood of an accident higher were less committed to the organization. 21 refs., 2 tabs

  3. Emergency response facility technical data system of Taiwan Power Company

    International Nuclear Information System (INIS)

    Lin, E.; Liang, T.M.

    1987-01-01

    Taiwan Power Company (Taipower) has developed its emergency response facility program since 1981. This program is integrated with the following activities to enhance the emergency response capability of nuclear power plants: (1) survey of the plant instrumentation based on the requirements of R.G. 1.97; (2) improvement of plant specific emergency operating procedures based on the emergency response guidelines developed by the Owners group; (3) implementation of the detailed control room design review with the consideration of human engineering and task analysis; and (4) organization, staff and communication of emergency planning of nuclear power plant. The emergency response facility programs of Taipower are implemented in Chinshan (GE BWR4/MARK I), Kuosheng (GE BWR6/MARK III) and Maanshan (W PWR). The major items included in each program are: (1) to establish new buildings for On-Site Technical Support Center, Near-Site Emergency Operation Facility; (2) to establish an Emergency Executive Center at Taipower headquarters; (3) to establish the communication network between control room and emergency response facilities; and (4) to install a dedicated Emergency Response Facility Technical Data System (ERFTDS) for each plant. The ERFTDS provides the functions of data acquisition, data processing, data storage and display in meeting with the requirements of NUREG 0696. The ERFTDS is designed with plant specific requirements. These specific requirements are expected to be useful not only for the emergency condition but also for normal operation conditions

  4. Preconstruction of the Honey Lake Hybrid Power Plant: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1988-04-30

    The work undertaken under this Contract is the prosecution of the preconstruction activities, including preliminary engineering design, well field development, completion of environmental review and prosecution of permits, and the economic and financial analysis of the facility. The proposed power plant is located in northeastern California in Lassen County, approximately 25 miles east of the town of Susanville. The power plant will use a combination of wood residue and geothermal fluids for power generation. The plant, when fully constructed, will generate a combined net output of approximately 33 megawatts which will be sold to Pacific Gas and Electric Company (PGandE) under existing long-term power sales contracts. Transfer of electricity to the PGandE grid will require construction of a 22-mile transmission line from the power plant to Susanville. 11 refs., 12 figs., 4 tabs.

  5. 77 FR 2972 - Thunder Bay Power Company, Thunder Bay Power, LLC, et al.

    Science.gov (United States)

    2012-01-20

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Thunder Bay Power Company, Thunder Bay Power, LLC, et al.; Notice of Application for Transfer of Licenses, and Soliciting Comments and Motions To Intervene Thunder Bay Power Company Project No. 2404-095 Thunder Bay Power, LLC Midwest Hydro, Inc...

  6. Maintenance of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Quintana, J. M.; Sanchez, J. T.

    2002-01-01

    With this article about the Maintenance in nuclear power plants we will try to give to see the importance of this kind of installations but the problems found by the clients and contractors to face it, and some possible solutions to improve it. It is necessary to understand this problem like something inner to the installation and must be considerate like a benefit for the same. Of course, there must be adequate Sevices Companies in direct relation with the installation that take the responsibility of assuming and understanding the correct fulfillment of the fixed milestones to get the optimal working of the whole plant systems. (Author)

  7. Inquiry relating to modification of reactor installation of Hamaoka No. 2 nuclear power plant of Chubu Electric Power Company, Inc

    International Nuclear Information System (INIS)

    1979-01-01

    Application was made to the Minister of International Trade and Industry for the license relating to the modification of reactor installation of the Hamaoka No. 2 nuclear power plant, Chubu Electric Power Company, Inc., on February 8, 1979, from the president of the company. After the safety evaluation in the Ministry of International Trade and Industry was finished, inquiry was conducted to the head of the Atomic Energy Safety Commission (AESC) on May 25, 1979, from the Minister of International Trade and Industry. The investigation and discussion were commenced by the AESC on May 28, 1979. The modification of the reactor installation is the increase of spent fuel storage capacity from about 220% of in-core fuel at present to about 325%. The fundamental philosophy of the safety evaluation includes the following items; 1) the storage capacity of spent fuel is adequate, 2) the design is such that the criticality is prevented under any assumed condition, 3) the sufficient cooling capacity is kept for decay heat removal, 4) and others required for the safety. The contents of the safety examination for each philosophical item written above are presented. The increased spent fuel storage capacity is equivalent to the quantity produced in about eight years. The prevention of criticality in the spent fuel storage is carefully practiced by putting fuel assemblies in the stainless steel racks with large neutron absorption cross section and locating spent fuel assemblies at the proper distances. The effective multiplication factor is less than 0.95 at the most severe arrangement in the fuel pool. The water temperature in the pool is less than 65 deg C at about 325% core storage by operating the spent fuel pool water cooling system. The spent fuel storage racks are designed as the A class aseismatic structure. (Nakai, Y.)

  8. Emergency control centers for nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Guidance is provided for the development and implementation of emergency control centers for nuclear power plants, including nuclear plant control room, nuclear plant company headquarters, emergency control center, and nuclear plant alternate emergency control center. Requirements and recommendations are presented for the mission, communications, instrumentation and equipment associated with each type of control center. Decisional aids, manning requirements and resources are also given; the decision aids cover both the accident assessment and protective action areas. Both normal and alternate means of communications are considered. Off-site emergency control centers, although not covered in the strict sense by this standard, are considered in an appendix

  9. Component design considerations for gas turbine HTGR waste-heat power plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; Vrable, D.L.

    1976-01-01

    Component design considerations are described for the ammonia waste-heat power conversion system of a large helium gas-turbine nuclear power plant under development by General Atomic Company. Initial component design work was done for a reference plant with a 3000-MW(t) High-Temperature Gas-Cooled Reactor (HTGR), and this is discussed. Advanced designs now being evaluated include higher core outlet temperature, higher peak system pressures, improved loop configurations, and twin 4000-MW(t) reactor units. Presented are the design considerations of the major components (turbine, condenser, heat input exchanger, and pump) for a supercritical ammonia Rankine waste heat power plant. The combined cycle (nuclear gas turbine and waste-heated plant) has a projected net plant efficiency of over 50 percent. While specifically directed towards a nuclear closed-cycle helium gas-turbine power plant (GT-HTGR), it is postulated that the bottoming waste-heat cycle component design considerations presented could apply to other low-grade-temperature power conversion systems such as geothermal plants

  10. Development of nuclear power plant management system for Kyushu Electric Power Co., Inc

    International Nuclear Information System (INIS)

    Nakamura, Kenichi; Akiyoshi, Tatsuo; Tanimoto, Kazuo; Ogura, Kazuhito; Ibi, Yuji; Kawasaki, Michiyuki

    2002-01-01

    The Kyushu Electric Power Co., Ltd. progresses development of the nuclear power plant management system using IT under aims at upgrading of efficiency, level, and reliability on maintenance and administration business under five years planning since 1999 fiscal year. The outline of the system are explained in this paper. As a result of preparation on power station net work and personal computers set in all of company, an environment capable of using these infrastructures and introducing large scale systems on transverse business over every groups of each power station could be established. (G.K.)

  11. FGD Franchising Pilot Project of Thermal Power Plants

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    According to the national policy on enhancing environmental protection,the five major power generation companies are required to carry out flue gas desulphurization(FGD) franchising pilot project in thermal power plants.This paper introduces the development of this pilot project,including the foundation,purpose,objects,demands and procedures.It also discusses some main problems encountered during implementation,involving the understanding,legislation,financing,taxation,pricing and management of franchise.At...

  12. Permanent cessation of Tokai power plant's operation

    International Nuclear Information System (INIS)

    Satoh, T.

    1998-01-01

    Tokai power plant (166MWe, Magnox type: GCR) is the first commercial reactor in Japan and has been kept operating stable since its commissioning in July 1996. During this period it has produced electricity of approximately 27.7 billion KWh (as of March 1997) and its stable operation has contributed greatly to the stable supply of electricity in Japan. Furthermore, technologies in various fields have been developed, demonstrated and accumulated through the construction and operation of Tokai power plant. It also contributes to training for many nuclear engineers, and constructions and operations of nuclear power stations by other Japanese power companies. As a pioneer, it has been achieved to develop and popularize Japanese nuclear power generation. On the other hand, Tokai power plant has small capacity in its electric power output, even though the size of the reactor and heat exchangers are rather bigger than those of LWR due to the characteristics of GCR. Therefore, the generation cost is higher than the LWR. Since there is no plant whose reactor type is the same as that of Tokai power plant, the costs for maintenance and fuel cycle are relatively higher than that of LWR. Finally we concluded that the longer we operate it, the less we can take advantage of it economically. As a result of the evaluation for the future operation of Tokai power plant including the current status for supply of electricity by the Japanese utilities and study of decommissioning by Japanese government, we decided to have a plan of stopping its commercial operation of Tokai power plant in the end of March, 1998, when we completely consume its fuel that we possess. From now on, we set about performing necessary studies and researches on the field of plant characterization, remote-cutting, waste disposal for carrying out the decommissioning of Tokai power plant safely and economically. We are going to prepare the decommissioning planning for Tokai power plant in a few years based on the

  13. Country Report Summary: Japan [Project Management in Nuclear Power Plant Construction: Guidelines and Experience

    International Nuclear Information System (INIS)

    2012-01-01

    The Hokkaido Electric Power Company (HEPCO) is the owner of the Tomari NPP comprising three operating PWR units. The latest unit to be connected to the grid, Tomari Unit 3, is a 3-loop PWR power plant with an electric output of 912 MW(e) supplied by Mitsubishi Heavy Industries (MHI). This is the newest unit in HEPCO and it is the newest PWR unit in Japan as well. The first concrete at Tomari Unit 3 was poured at the end of summer in 2004. The unit entered into commercial operation in December 2009. The Tomari site is located on a northern Japanese island. It is battered by strong winds and receives much snow in the winter. Therefore, civil works and building construction were temporarily suspended every year from the beginning of December until the end of March. This increased construction duration by one year compared to other sites. Consequently from first concrete to the start of commercial operation construction at Tomari lasted 64 months. There are specific factors in the approach to construction of nuclear power plants in Japan. (1) Japanese legislation defines that the sole licensee must be the electric power company. This implies that the electric power company is responsible for the safety of the plant and in that capacity it must submit for approval the Safety Analysis Report (SAR) but it is also responsible for the design and reliability of the plant; hence it must also submit for approval the Construction Plan (CP), containing all necessary detailed design information. Consequently, the electric power company becomes the sole counterpart to the regulatory body on all aspects of the project. (2) All Japanese electric power companies are considerably large and have the tradition to do the engineering of their power plant themselves, and this not only for nuclear but also for conventional power plant. Therefore, the owner/utilities in Japan carry themselves the burden of major portions of the engineering, procurement and construction (EPC) of their NPPs

  14. Power Company No 2. Activity Report 1992 - 1994

    International Nuclear Information System (INIS)

    1995-01-01

    The Power Company No.2 is in charge of power generation and distribution for the southern area of Vietnam. Status and development plans of the Company is presented in the report. (NHA). 10 figs, 2 tabs, 17 photos, 2 maps

  15. CALCULATING WATER CONSUMPTION AND WITHDRAWAL FROM POWER PLANTS GLOBALLYUsing machine learning, remote sensing and power plant data from the Power Watch platform

    Science.gov (United States)

    Kressig, A.

    2017-12-01

    BACKGROUND The Greenhouse Gas Protocol (GHGP), Scope 2 Guidance standardizes how companies measure greenhouse gas emissions from purchased or independently generated electricity (called "scope 2 emissions"). Additionally, the interlinkages between industrial or commercial (nonresidential) energy requirements and water demands have been studied extensively, mostly at the national or provincial scale, focused on industries involved in power generation. However there is little guidance available for companies to systematically and effectively quantify water withdrawals and consumption (herein referred to as "water demand") associated with purchased or acquired electricity(what we call "Scope 2 Water"). This lack of guidance on measuring a company's water demand from electricity use is due to a lack of data on average consumption and withdrawal rates of water associated with purchased electricity. OBJECTIVE There is growing demand from companies in the food, beverage, manufacturing, information communication and technology, and other sectors for a methodology to quantify Scope 2 water demands. By understanding Scope 2 water demands, companies could evaluate their exposure to water-related risks associated with purchased or acquired electricity, and quantify the water benefits of changing to less water-intensive sources of electricity and energy generation such as wind and solar. However, there has never been a way of quantifying Scope 2 Water consumption and withdrawals for a company across its international supply chain. Even with interest in understanding exposure to water related risk and measuring water use reductions, there has been no quantitative way of measuring this information. But WRI's Power Watch provides the necessary data to allow for the Scope 2 Water accounting, because it will provide water withdrawal and consumption rates associated with purchased electricity at the power plant level. By calculating the average consumption and withdrawal rates per

  16. Potentials for heat accumulators in thermal power plants; Potenziale fuer Waermespeicher in Heiz(kraft)werken

    Energy Technology Data Exchange (ETDEWEB)

    Dengel, Andreas [STEAG New Energies GmbH, Saarbruecken (Germany)

    2012-07-01

    STEAG New Energies GmbH (Saarbruecken, Federal Republic of Germany) is contractor and operator of a variety of decentralized plants for heat production and power generation. The customers consist of communities, cooperation associations, business enterprises as well as industrial enterprises. Beside merely heat generators, so-called heat and power cogeneration plants often are used. The power generation is of minor importance due to the heat-controlled energy supply of the customers. Biomass power plants being operated in line with the Renewable Energy Law are an exemption. The demand for regulating energy increased clearly due to the enhanced volatile feeding of regenerative produced electric power. If the operation of heat and power cogeneration plants becomes more independent from the actual energy demand by using energy storages, then the energy transducer can be implemented in the lucrative market of regulation energy supply. Thus, the potential of such storages at the sites within a company shall be determined. Additionally, the development and testing of a latent heat accumulator for a thermal power plant of the company supplying process vapour with a temperature of 300 Celsius to a foil manufacturing facility is envisaged.

  17. Service hall in Number 1 Fukushima Nuclear Power Station, Tokyo Electric Power Company, Inc

    International Nuclear Information System (INIS)

    Tawara, Shigesuke

    1979-01-01

    There are six BWR type nuclear power plants in the Number 1 Fukushima Nuclear Power Station, Tokyo Electric Power Company, Inc. The service hall of the station is located near the entrance of the station. In the center of this service hall, there is the model of a nuclear reactor of full scale. This mock-up shows the core region in the reactor pressure vessel for the number one plant. The diameter and the thickness of the pressure vessel are about 5 m and 16 cm, respectively. The fuel assemblies and control rods are set just like the actual reactor, and the start-up operation of the reactor is shown colorfully and dynamically by pushing a button. When the control rods are pulled out, the boiling of water is demonstrated. The 1/50 scale model of the sixth plant with the power generating capacity of 1100 MWe is set, and this model is linked to the mock-up of reactor written above. The operations of a recirculating loop, a turbine and a condenser are shown by switching on and off lamps. The other exhibitions are shielding concrete wall, ECCS model, and many kinds of panels and models. This service hall is incorporated in the course of study and observation of civics. The good environmental effects to fishes and shells are explained in this service hall. Official buildings and schools are built near the service hall utilizing the tax and grant concerning power generation. This service hall contributes to give much freedom from anxiety to the public by the tour. (Nakai, Y.)

  18. Survey on maintenance skills required for nuclear power plant periodic inspections

    International Nuclear Information System (INIS)

    Hamasaki, Kenichi

    2008-01-01

    In this study, we conducted a trend survey regarding the problem of passing on senior workers' skills and knowledge to young employees in industries in general, and an interview survey of skilled workers engaged in maintenance work during periodic inspections at a nuclear power plant. These surveys aimed to obtain useful information for maintaining and improving the quality of future maintenance work during nuclear power plant periodic inspections. The trend survey of industries found that the 'Year 2007 Problem (difficulties associated with the start of mass retirements of baby-boomers)' was often takenup in various fields and that many companies were concerned about losing their accumulated skills and know-how. To ensure that skills are smoothly passed on to the younger generation, companies have taken various measures, such as development of plans for passing on skills and knowledge, introduction of the Meister system and implementation of workshops by skilled workers. The interview survey of skilled workers engaged in maintenance work of mechanical equipment during periodic inspections at Nuclear Power Plant A found that various skills were required in maintenance work. Regarding perceived differences between skilled and unskilled maintenance workers, many respondents believed that the largest difference was in terms of time taken to carry out specific procedures. Some maintenance companies have increasingly fewer skilled workers than before or face aging of skilled personnel. As future concerns, respondents cited the loss of skills that have been acquired through experience in construction and in handling of troubles and failures. Differences were observed among companies in the degree to which skills have been passed on to the younger generation. As a reason why skills are not successfully passed on, respondents cited communication problems due to age differences between senior and young workers and other problems that were also observed in other industries

  19. Elk and plants thrive near power lines

    Energy Technology Data Exchange (ETDEWEB)

    Lustre, L.

    1997-11-01

    Butterflies and elk gather in clearings near power line right-of-ways and on the edges of such clearings, where the wild flowers and plants that have widely disappeared as a result of intensive farming and subsurface drainage of fields have found a good habitat. Ornamental coniferous trees, various herbs and assorted berries do well and can be harvested near power lines from woodland clearings once thought unfit for cultivation. IVS, the nationwide network company, takes part in many projects aiming both to increase productive utilization of land areas under power lines and to promote biodiversity

  20. Total quality control: the deming management philosophy applied to nuclear power plants

    International Nuclear Information System (INIS)

    Heising, C.D.; Wetherell, D.L.; Melhem, S.A.; Sato, M.

    1987-01-01

    In recent years, a call has come for the development of inherently safe nuclear reactor systems that cannot have large-scale accidents. In the search for the perfect inherently safe reactor system, some are calling for the institution of computerized automated control of reactors eliminating most human operators from the control room. A different approach to the problem of the control of inherently safe reactors is that both future and present nuclear power plants need to institute total quality control (TQC) to plant operations and management. The Deming management philosophy of TQC has been implemented in a wide range of industries - particularly in Japan and the US. Specific attention is given, however, to TQC implementation in the electric power industry as applied to nuclear plants. The Kansai Electric Power Company and Florida Power and Light Company have recently implemented TQC. Statistical quality control methods have been applied to monitor and control reactor variables (for example, to the steam generator water level important to start-up operations of pressurized water reactors)

  1. Directory of nuclear power plants in the world, 1985

    International Nuclear Information System (INIS)

    Fujii, Haruo

    1985-01-01

    This book presents technical information and estimates trends of load factors and construction costs of nuclear power plants. Particularly road maps indicating plants are drawn in, which would be practical in visiting them. The data used here are directly confirmed by operators in every part of the world. Therefore, they reflect up-to-date nuclear power developments and its future. This allows wide and exact understanding of world's nuclear power. Chapter 1 presents nuclear power growth around the world and estimates forecasts based on information from electric power companies: nuclear power growths and the growths in the number of reactors around the world, in WOCA (World outside the Centrally Planned Economies Area), in CPEA (Centrally Planned Economies Area) are analyzed in detail. Chapter 2 presents nuclear power plants on maps by country. The maps show exact locations of nuclear power plants with local cities around them, rivers and lakes. For convenience, symbols are given to aid in identifying the types of reactors. Chapter 3 presents general information of nuclear power plants. Also the addresses of operators, all segments of nuclear power supply industries and nuclear organizations are included. For convenience, the index of nuclear power plants is added. Chapter 4 presents technical information, road maps in large scales and photographs of nuclear power plants in the world. The road maps show exact locations of plants. Chapter 5 presents operating experiences, load factors, refuelling and maintenance outages. The trends of data are analyzed both regionally (WOCA, CPEA) and world-widely. Chapter 6 presents trends of construction costs, component costs as percent of total construction costs and direct costs, and construction durations. (J.P.N.)

  2. Dynamic simulation of a direct carbonate fuel cell power plant

    Energy Technology Data Exchange (ETDEWEB)

    Ernest, J.B. [Fluor Daniel, Inc., Irvine, CA (United States); Ghezel-Ayagh, H.; Kush, A.K. [Fuel Cell Engineering, Danbury, CT (United States)

    1996-12-31

    Fuel Cell Engineering Corporation (FCE) is commercializing a 2.85 MW Direct carbonate Fuel Cell (DFC) power plant. The commercialization sequence has already progressed through construction and operation of the first commercial-scale DFC power plant on a U.S. electric utility, the 2 MW Santa Clara Demonstration Project (SCDP), and the completion of the early phases of a Commercial Plant design. A 400 kW fuel cell stack Test Facility is being built at Energy Research Corporation (ERC), FCE`s parent company, which will be capable of testing commercial-sized fuel cell stacks in an integrated plant configuration. Fluor Daniel, Inc. provided engineering, procurement, and construction services for SCDP and has jointly developed the Commercial Plant design with FCE, focusing on the balance-of-plant (BOP) equipment outside of the fuel cell modules. This paper provides a brief orientation to the dynamic simulation of a fuel cell power plant and the benefits offered.

  3. Plant life management for long term operation of nuclear power plants

    International Nuclear Information System (INIS)

    2005-01-01

    The world's fleet of Nuclear Power Plants (NPPs) is approximately 20 years old on average, and most plants are believed to be able to operate for 60 years or more. The design life of a NPP is typically 30 to 40 years. This may be extended by 10 to 20 years, or more, provided that the plant can demonstrate by analysis, trending, equipment and system upgrades, increased vigilance, testing, ageing management, and other means that license renewal presents no threat to public health and safety. The basic goal of Plant Life Management (PLiM) is to satisfy requirements for safe long-term supplies of electricity in an economically competitive way. The basic goal of the operating company and the owners to operate as long as economically reasonable and possible from safety point of view. PLiM is a management tool for doing that. PLiM is a system of programmes and procedures to satisfy safety requirements for safe operation and for power production in a competitive way and for time which is rational from technical and economical point of view. PLiM is not only a technical system, it is also an attitude of the operational company to keep the plant in operation as long as possible from safety and business point of view. The common objectives of PLiM assessment is to help and review the pre-conditions for PLiM and long-term operation approaches. PLiM should not be associated with extension of operational life-time of the NPP only. It is an owner's attitude and rational approach of the operating company to run the business economically and safely. The effectiveness of PLiM Programme can be assessed by three complementary kinds of assessment: self-assessment, peer review and comprehensive programme review by the plant owner/ operator. IAEA will provide the assessment service for peer review of PLiM. Preparation for a PLiM Assessment service will be initiated only after the IAEA has been formally approached by a MS and funding (e.g. an existing Technical cooperation project) has

  4. Comparison between Different Power Sources for Emergency Power Supply at Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lenasson, Magnus

    2015-01-01

    report is financed by Elforsk - Swedish Electrical Utilities' R and D Company. The background of the report is that the Fukushima accident showed how redundant but not diversified power sources can be destroyed by external events. This might lead to increased focus on diversification, from the industry and/or the regulating authorities. A number of essential parameters for a power source to work as emergency power supply at a nuclear power plant have been identified; ten different power sources have then been evaluated with respect to these parameters. The report is supposed to work as a knowledge base and decision support when new nuclear power plants or reinvestments in old ones are considered. The studied power sources are: Diesel generators, Gas turbines, Internal steam turbines, Externals steam turbines, Hydro power plant, Batteries, Fuel cells, Stirling engines, Thermoelectric elements, Flywheels. The power sources are evaluated for five different applications, each application with its own acceptance criteria for each of the essential parameters. The five applications are: Onsite emergency AC source, Onsite emergency DC source, Alternate AC source, small, Alternate AC source, large, Alternate AC source, mobile. Mainly Swedish preconditions are considered in the report, but most of the results are applicable in any other country. (author)

  5. Vibrations measurement at the Embalse nuclear power plant's electrical generator

    International Nuclear Information System (INIS)

    Salomoni, R.C.; Belinco, C.G.; Pastorini, A.J.; Sacchi, M.A.

    1987-01-01

    After the modifications made at the Embalse nuclear power plant's electrical generator to reduce its vibration level produced by electromagnetic phenomena, it was necessary to perform measurements at the new levels, under different areas and power conditions. To this purpose, a work was performed jointly with the 'Vibrations Team' of the ANSALDO Company (the generator constructor) and the Hydrodynamic Assays Division under the coordination and supervision of the plant's electrical maintenance responsible. This paper includes the main results obtained and the instrumentation criteria and analysis performed. (Author)

  6. Application of diagnostic system for diesel engines in nuclear power plant

    International Nuclear Information System (INIS)

    Yoshinaga, Takeshi

    2004-01-01

    The diagnostic system for diesel engines makes a diagnosis of secular change and abnormal indications of diesel engines (DG) by combination of characteristic analysis of engine, lubricating oil, fuel oil, and cooling water. The principles of diagnostic system for DG, results of confirmation of the efficiency and the maintenance plan for DG in the Japan Atomic Power Company are described. DG in the company is classified to a safety device in order to supply the power source to the Emergency Core Cooling System etc., when the power source in the plant is lost, for example, at lightning struck. Characteristics of DG, outline of the diagnostic system for DG, diagnostic technologies such as engine signature analysis, chemical analysis of samples, temperature measurement, degradation mode of DG, and training in the company are stated. (S.Y.)

  7. Nuclear versus fossil power plants: evolution of economic evaluation techniques

    International Nuclear Information System (INIS)

    Thuesen, G.J.

    1975-01-01

    The purpose of this presentation is to document the evolution of methods used by an electric utility for comparing the economic attractiveness of nuclear versus fossil electric power generation. This process of change is examined as it took place within the Georgia Power Company (GPC), a company spending in the neighborhood of half a billion dollars annually for capital improvements. This study provides a look at the variety of richness of information that can be made available through the application of different methods of economic analysis. In addition, the varied presentations used to disclose relationships between alternatives furnish evidence as to the effectiveness of providing pertinent information in a simple, meaningful manner. It had been generally accepted throughout GPC that nuclear power was economically desirable as an alternative for the production of base-load power. With inflation increasing, its advantage over fossil power appeared to be significantly increasing as the large operating costs of fossil generation seemed to be more vulnerable to inflation than the costs of operating a nuclear facility. An early indication that the company should reevaluate this position was the experience gained with the installation of their first nuclear plant. Here, actual total costs were exceeding their original construction estimates by a factor of two. Thus the question arose ''Does the high capital cost of nuclear generation offset its operating advantages when compared to similar-sized coal-burning plants.'' To answer this question, additional analyses were undertaken

  8. Annual report 2003 of Furnas - Electrical Power Plants and Co., RJ, Brazil

    International Nuclear Information System (INIS)

    2003-01-01

    This document presents the annual report of Furnas Power Plants and Co, highlighting the main enterprise achievements during the year of 2003, describing the company economic and financial important aspects and reporting the energy buying and sales, the infrastructure modernization, the activities of research and development, the social, cultural and environmental actions, the relationships with the company human resources. The report uses performance indexes for managerial description of the company activities

  9. Permitting a biomass-fired power plant in California -- A case study

    International Nuclear Information System (INIS)

    Reisman, J.I.; Needham, G.A.

    1995-01-01

    This paper describes the process of preparing an air permit application for a proposed biomass-fired power plant. The plant is designed to produce a net electric power output of 16 megawatts (MW) for sale to Pacific Gas and Electric Company. The biomass fuel will consist of urban wood waste, construction wood waste, and waste from agricultural products, such as tree prunings and fruit pits. The site is located in an industrial park in Soledad, California

  10. NOKIA - nuclear power plant monitoring system

    International Nuclear Information System (INIS)

    Anon.

    The monitoring system is described developed specially for the LOVIISA-1 and -2 nuclear power plants with two WWER-440 units. The multiprocessor system of the WWER-440 contains 3 identical main computers. The in core instrumentation is based on stationary self-powered neutron detectors and on thermocouples for measuring the coolant temperature. The system has equipment for the automatic control of the insulation resistance of the self-powered detectors. It is also equipped with a wide range of standard and special programmes. The standard programmes permit the recording of analog and digital data at different frequencies depending on the pre-set requirements. These data are processed and form data files which are accessible from all programmes. The heart of the special programme is a code for the determination of the power distribution in the core of the WWER-440 reactor. The main part of the programme is the algorithm for computing measured neutron fluxes derived from the signals of the self-powered detectors and the algorithm for deriving the global distribution of the neutron flux in the core. The computed power distribution is used for the determination of instantaneous thermal loads and the distribution of burnup in the core. The production programme of the FINNATOM company for nuclear power plants is listed. (B.S.)

  11. Refueling outage services in Spanish Nuclear Power Plants

    International Nuclear Information System (INIS)

    Landete, J. L.; Soto, M.; Nunuez, A.

    2007-01-01

    DOMINGUIS Group, through its 75 years of business development, has positioned as the Spanish leader Group in Services for the Nuclear Energy and Petrochemical Sectors. In this article, we present the most significant services summary that, through the companies that constitute DOMINGUIS Group, we have developed in Refueling Outage in Spanish Nuclear Power Plants. (Author)

  12. Power plant instrumentation and control. Innovations shown at the Interkama '99 trade fair

    International Nuclear Information System (INIS)

    Ullemeyer, M.; Fritz, P.

    2000-01-01

    At the Interkama '99 trade fair, innovative software and hardware solutions for the power industry 'from power plant to the plug' were shown. The report mentions the companies and explains their new developments and systems. (orig./CB) [de

  13. Nuclear power plants

    International Nuclear Information System (INIS)

    1985-01-01

    Data concerning the existing nuclear power plants in the world are presented. The data was retrieved from the SIEN (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: nuclear plants, its status and type; installed nuclear power plants by country; nuclear power plants under construction by country; planned nuclear power plants by country; cancelled nuclear power plants by country; shut-down nuclear power plants by country. (E.G.) [pt

  14. Environmental management systems implemented in the Spanish nuclear power plants

    International Nuclear Information System (INIS)

    Redondo, R.; Fernandez Guisado, M. B.; Hortiguela, R.; Bustamante, L. F.; Esparza, J. L.; Villareal, M.; Yague, F.

    2013-01-01

    The companies that own the Spanish Nuclear Power Plants, aware of social concern and in the context of a growing demanding environmental legislation, have a permanent commitment to the electricity production based on the principles of a maximum respect for the environment, safety, quality, professionalism and continuous improvement. In order to minimize the environmental impact of their plants they have implemented and Environmental Management System based on the ISO 14001 Standard. They minimize the environmental impact by identifying the significant environmental aspects and defining the corresponding objectives. This article describes the referred environmental management systems and their environmental objectives, as applied and defined by the Spanish Nuclear Power Plants. (Author)

  15. Tecnatom support to new nuclear power plant projects

    International Nuclear Information System (INIS)

    Manrique, A. B.

    2009-10-01

    Tecnatom is a Spanish engineering company with more than 50 years of experience working for the nuclear industry all over the world. It has worked in over 30 countries in activities related to the operation and maintenance of nuclear power plants. Along this half century of history. Tecnatom has been providing its services to nuclear utilities, regulators, NPP vendors, NPP owners / operators and nuclear fuel manufacturers not only in Spain but also abroad. It started to work in the design of new nuclear power plants in the early 90 s and since then has continued collaborating with different suppliers in the design and licensing of new reactors especially in the areas of plant systems design, man-machine interface design, main control room simulators building, training, qualification of equipment and PSI/ISI engineering services. Some challenges to the reactivation of nuclear power plants construction are common worldwide, including: regulatory processes, workforce availability, construction project management, etc. Being some keys to success the following: apply qualified resources, enough resources for early planning, project leadership, organization and integration, establish a strong integrated management team. The goal of this paper is to inform regarding the capabilities of Tecnatom in the construction of new power plants. (Author)

  16. The future of nuclear energy. Safety and nuclear power plants. Contribution of engineering companies

    International Nuclear Information System (INIS)

    Garcia Rodriguez, A.

    1995-01-01

    Risk, its consideration and its acceptance or rejection, are parameters which to a large extent are independent and sometimes difficult to interrelate. Nuclear energy, unlike motoring or civil aviation, has not gained sufficient public acceptance, this despite the fact that the risk to population is by far the least of the three. It is therefore necessary to continue with its improvement is an attempt to create the same confidence in the nuclear industry, as society has placed in civil aviation. Improvement in future nuclear power plants must be a combination of improved safety and a reduction in capital investment. This objective can only be reached through standardization and international cooperation. Engineering has a very important part to play in the standardization process. An increase in engineering input during the design, construction, operation and maintenance phases of future nuclear power plants, and the application of increasingly sophisticated analysis and management tools are anticipated. Nevertheless, the financial impact on the cost of each plant will fall as a result of increased input spread throughout the range of standard plants. Our current Advanced Reactor Power Plant Programme enables the Spanish industry to participate actively in the creation of future standards nuclear power plants. Having a presence in selected engineering activities, which guarantees access to the state of the art in this area, is one of our priorities, since it will facilitate the presence of the rest of the industry in future projects. If the objectives described above are to be reached, the present involvement of the spanish industry in this programme must be maintained in the medium and long term. (Author)

  17. Seismic qualification method of equipment for nuclear power plant

    International Nuclear Information System (INIS)

    Kim, J.S.; Choi, T.H.; Sulaimana, R.A.

    1995-01-01

    Safety related equipment installed in Korean Nuclear Power Plants are required to perform a safety function during and after a seismic event. To accomplish this safety function, they must be seismically qualified in accordance with the intent and requirements of the USNRC Reg. Guide 1.100 Rev. 02 and IEEE Std. 344-1987. This paper defines and summarizes acceptable criteria and procedures, based on the Korean experience, for seismic qualification of purchased equipment to be installed in a nuclear power plant. As such the paper is intended to be a concise reference by equipment designers, architectural engineering company and plant owners in uniform implementation of commitments to nuclear regulatory agencies such as the USNRC or Korea Institute of Nuclear Safety (KINS) relating to adequacy of seismic Category 1 equipment. Thus, the paper provides the methodologies which can be used for qualifying equipment for safely related service in Nuclear Power Plants in a cost effective manner

  18. 75 FR 8753 - Carolina Power & Light Company, Brunswick Steam Electric Plant, Units 1 and 2; Environmental...

    Science.gov (United States)

    2010-02-25

    ... Dusenbury of the North Carolina Department of Environment and Natural Resources regarding the environmental... & Light Company, Brunswick Steam Electric Plant, Units 1 and 2; Environmental Assessment and Finding of No... identification of licensing and regulatory actions requiring environmental assessments,'' the NRC prepared an...

  19. Load follow operation in nuclear power plants and its influence on PWR fuel behaviour

    International Nuclear Information System (INIS)

    Nagino, Y.; Miyazaki, Y.

    1980-01-01

    The contribution of nuclear power generation to our company's grid system is becoming greater each year, which makes it necessary to operate nuclear power plants with load follow mode in the near future. (author)

  20. LNG plant combined with power plant

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, I; Kikkawa, Y [Chiyoda Chemical Engineering and Construction Co. Ltd., Tokyo (Japan)

    1997-06-01

    The LNG plant consumers a lot of power of natural gas cooling and liquefaction. In some LNG plant location, a rapid growth of electric power demand is expected due to the modernization of area and/or the country. The electric power demand will have a peak in day time and low consumption in night time, while the power demand of the LNG plant is almost constant due to its nature. Combining the LNG plant with power plant will contribute an improvement the thermal efficiency of the power plant by keeping higher average load of the power plant, which will lead to a reduction of electrical power generation cost. The sweet fuel gas to the power plant can be extracted from the LNG plant, which will be favorable from view point of clean air of the area. (Author). 5 figs.

  1. LNG plant combined with power plant

    International Nuclear Information System (INIS)

    Aoki, I.; Kikkawa, Y.

    1997-01-01

    The LNG plant consumers a lot of power of natural gas cooling and liquefaction. In some LNG plant location, a rapid growth of electric power demand is expected due to the modernization of area and/or the country. The electric power demand will have a peak in day time and low consumption in night time, while the power demand of the LNG plant is almost constant due to its nature. Combining the LNG plant with power plant will contribute an improvement the thermal efficiency of the power plant by keeping higher average load of the power plant, which will lead to a reduction of electrical power generation cost. The sweet fuel gas to the power plant can be extracted from the LNG plant, which will be favorable from view point of clean air of the area. (Author). 5 figs

  2. Experience gained in the training of nuclear power plant operating personnel with nuclear power plant simulators

    International Nuclear Information System (INIS)

    Buettner, J.; Fueg, J.; Schlegel, G.

    1980-01-01

    The simulator of a PWR-type reactor with 1.200 MW was accomplished in September 1977. In January 1978, the simulator of a BWR-type reactor with 800 MW started operation. The American company Singer/Link supplied computer hardware and software; Kraftwerk Union AG supplied control room equipment, power plant data and acted as consulting engineers for the construction and acceptance of the simulators. This way it is ensured that the simulated process reflects the state of German nuclear engineering. (orig./DG) [de

  3. Operation and maintenance support expert systems for BWR nuclear power plants

    International Nuclear Information System (INIS)

    Miyazawa, Tatsuo; Hayakawa, Hiroyasu; Fukutomi, Shigeki

    1990-01-01

    Toshiba has been developing expert systems for operation and maintenance support in BWRs. These expert systems are designed to be integrated with conventional plant monitoring systems, and maintenance management systems to provide both comprehensive and powerful support capabilities. Some of these expert systems are already being used on a trial basis both within Toshiba and in electric power utility companies. This paper describes expert systems for the support of plant and equipment monitoring, maintenance scheduling, and maintenance work procedure planning. (author)

  4. Nuclear power plant status diagnostics using a neural network with dynamic node architecture

    International Nuclear Information System (INIS)

    Basu, A.

    1992-01-01

    This thesis is part of an ongoing project at Iowa State University to develop ANN based fault diagnostic systems to detect and classify operational transients at nuclear power plants. The project envisages the deployment of such an advisor at Iowa Electric Light and Power Company's Duane Arnold Energy Center nuclear power plant located at Palo, IA. This advisor is expected to make status diagnosis in real time, thus providing the operators with more time for corrective measures

  5. Virtual power plant feasibility study and funding proposal / the virtual power plant objectives, concept, components, context, business plan / objectives, activities and timelines for the VPP feasibility study

    International Nuclear Information System (INIS)

    MacDonald, A.

    2004-01-01

    This paper presents a proposal for funding a virtual power plant feasibility study. The goals of the virtual power plant are to increase the efficiency of electricity use by creating a market-driven, subsidy-free, financially sustainable mechanism to finance economic Demand Side Management (DSM) by providing a fully liquid market for saved electricity, provide a new revenue opportunity for the Local Distributing Company (LDC) and increase the use of renewable and low environmental impact, high efficiency technologies within the service area

  6. Nuclear power plant control and instrumentation activities in Finland

    International Nuclear Information System (INIS)

    Haapanen, P.; Wahlstroem, B.

    1992-01-01

    Finland has remarkable achievements in nuclear power. The existing four plants have some of the best operating records in the world - high capacity factors, low occupational doses and short refuelling outages. Public opinion was strongly turned against nuclear power after Chernobyl accident, and the previous government decided not to allow for the construction of a fifth nuclear unit during its period of reign. The opposition has however slowly been diminishing. According to the latest polls the opinion is almost balanced. Finnish power companies are going to file an application for a decision-in-principle to build a new plant to the new government appointed in April 1991. A readiness to start new construction project immediately after a positive political decision is made has been maintained during the intermediate period. Continuous research, development, modification and upgrading work provide important components of the good operational history of the Finnish nuclear power plants. Efforts have also been devoted to identifying possible new problems arising from the use of distributed digital C and I technology. The following a short description is summarizing recent activities related to the C and I-systems of the nuclear power plants. (author). 3 tab

  7. Effort to grapple with improvement of security and reliability of nuclear power plant. Actions of the Japan Atomic Power Company

    International Nuclear Information System (INIS)

    Ishiguma, Kazuo

    2012-01-01

    Following the Great Tohoku Earthquake in 2011, Tokai No.2 reactor was shut down automatically. Three of emergency diesel generators worked automatically at loss-of-offsite-power and began to work the cooling system of reactor. The reactor could be kept stable and safe in cold state by management of power from the gas turbine electric generator and power source car. Actions of Japan Atomic Power Company (JAPC) for cold shutdown and Tsunami were stated. Inspection results after the earthquake and testimony of staff was described. Countermeasure of improvement of safety of nuclear power station is explained by ensuring of power source and water supply, crisis management system, countermeasure of accident, ensuring, and training of workers, and action for better understanding of reliance. (S.Y.)

  8. New power plants in Europe? A challenge for project and quality management

    Energy Technology Data Exchange (ETDEWEB)

    Hartung, M. [RWE Technology GmbH, Essen (Germany)

    2010-07-01

    Against the backdrop of the age structure of the European power plant fleet and the EU's climate protection targets, a significant need for new-build and replacement power plant capacity is becoming apparent. RWE has thus founded RWE Technology in order to achieve its growth targets, but also to implement its ongoing power plant new-build programme in the order of no fewer than 12,000 MW in capacity. This company combines the project management and engineering capacity of the Group in order to meet the challenges posed by the fast-changing energy market. The following article explains the specific steps taken to achieve these objectives. (orig.)

  9. Safety culture in nuclear power plants. Proceedings

    International Nuclear Information System (INIS)

    1994-12-01

    As a consequence of the INSAG-4 report on 'safety culture', published by the IAEA in 1991, the Federal Commission for the Safety of Nuclear Power Plants (KSA) decided to hold a one-day seminar as a first step in this field. The KSA is an advisory body of the Federal Government and the Federal Department of Transport and Energy (EVED). It comments on applications for licenses, observes the operation of nuclear power plants, assists with the preparation of regulations, monitors the progress of research in the field of nuclear safety, and makes proposals for research tasks. The objective of this seminar was to familiarise the participants with the principles of 'safety culture', with the experiences made in Switzerland and abroad with existing concepts, as well as to eliminate existing prejudices. The main points dealt with at this seminar were: - safety culture from the point of view of operators, - safety culture from the point of view of the authorities, - safety culture: collaboration between power plants, the authorities and research organisations, - trends and developments in the field of safety culture. Invitations to attend this seminar were extended to the management boards of companies operating Swiss nuclear power plants, and to representatives of the Swiss authorities responsible for the safety of nuclear power plants. All these organisations were represented by a large number of executive and specialist staff. We would like to express our sincerest thanks to the Head of the Federal Department of Transport and Energy for his kind patronage of this seminar. (author) figs., tabs., refs

  10. Technical notes for the conceptual design for an atmospheric fluidized-bed direct combustion power generating plant. [570 MWe plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    The design, arrangement, thermodynamics, and economics of a 592 MW(e) (nominal gross) electric power generating plant equipped with a Babcock and Wilcox Company (B and W) atmospheric fluidized bed (AFB) boiler are described. Information is included on capital and operating costs, process systems, electrical systems, control and instrumentation, and environmental systems. This document represents a portion of an overall report describing the conceptual designs of two atmospheric fluidized bed boilers and balance of plants for the generation of electric power and the analysis and comparison of these conceptual designs to a conventional pulverized coal-fired electric power generation plant equipped with a wet limestone flue gas desulfurization system.

  11. Safety evaluation report related to the operation of Midland Plant, Units 1 and 2. Docket Nos. 50-329 and 50-330, Consumers Power Company

    International Nuclear Information System (INIS)

    1982-10-01

    This report supplements the Safety Evaluation Report related to the Operation of Midland Plant, Units 1 and 2 (SER) (NUREG-0793) issued in May 1982 by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by Consumers Power Company, as applicant and owner, for licenses to operate the Midland Plant, Units 1 and 2 (Docket Nos. 50-329 and 50-330). The facility is located in the city of Midland in Midland County, Michigan. This supplement provides recent information regarding resolution of the soils settlement issue, one of the open items identified in the SER. Certain confirmatory issues identified in the SER also are addressed

  12. Elecnuc. Nuclear power plants worldwide; Elecnuc. Les centrales nucleaires dans le monde

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    This small folder presents a digest of some useful information concerning the nuclear power plants worldwide and the situation of nuclear industry at the end of 1997: power production of nuclear origin, distribution of reactor types, number of installed units, evolution and prediction of reactor orders, connections to the grid and decommissioning, worldwide development of nuclear power, evolution of power production of nuclear origin, the installed power per reactor type, market shares and exports of the main nuclear engineering companies, power plants constructions and orders situation, evolution of reactors performances during the last 10 years, know-how and development of nuclear safety, the remarkable facts of 1997, the future of nuclear power and the energy policy trends. (J.S.)

  13. Quality assurance activities by the companies in the Mitsubishi group for nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Fujiwara, K.; Moriyama, A.; Okabe, K.

    1982-01-01

    The paper summarizes the quality assurance (QA) activities of the Mitsubishi group regarding PWR plant construction. 1. To ensure a uniform approach to QA activities in the group, the Nuclear System Quality Assurance Administration Centre was established at the headquarters of Mitsubishi Heavy Industries. This Centre is engaged in establishing and promoting comprehensive QA plans, in supervising the interface control between the companies concerned, and in auditing each company's QA programme. 2. In parallel with endeavours to complete QA systems, a great effort has been made to instill consciousness of QA in everyone concerned with the work. It is emphasized that quality control (QC) circle activities play an important role in maintaining a high level of quality. An innovative system of design computerization coupled with model engineering is now being developed to improve design reliability and to prevent human error. Reliability improvement and preventive maintenance systems using computers are being introduced with the object of performing systematic corrective actions based on analyses of plant operation. (author)

  14. Cross-connected onsite emergency A.C. power supplies for multi-unit nuclear power plant sites

    International Nuclear Information System (INIS)

    Martore, J.A.; Voss, J.D.; Duncil, B.

    1987-01-01

    Recently, utility management, both at the corporate and plant operations levels, have reinforced their commitment to assuring increased plant reliability and availability. One means of achieving this objective involves an effective preventive maintenance program with technical specifications which allow implementation of certain preventive maintenance without plant shutdown. To accomplish this, Southern California Edison Company (SCE) has proposed a design change for San Onofre nuclear generating station (SONGS) units 2 and 3 to permit on emergency diesel generator for one unit to perform as an available AC power source for both units. Technical specifications for SCE's SONGS units 2 and 3, as at most nuclear power plants, currently require plant shutdown should one of the two dedicated onsite emergency AC power sources (diesel generators) become inoperable for more than 72 hours. This duration hinders root cause failure analysis, tends to limit the flexibility of preventive maintenance and precludes plant operation in the event of component failure. Therefore, this proposed diesel generator cross-connect design change offers an innovative means for averting plant shutdown should a single diesel generator become inoperable for longer than 72 hours. (orig./GL)

  15. The civil design of the Angra Nuclear power plant, units 2 and 3

    International Nuclear Information System (INIS)

    Zuegel, L.C.; Diaz, B.E.; Cunha, M.T.

    1988-01-01

    The civil design of the Angra Nuclear Power Plant, Units 2 and 3 represents an important step in the technological development of Brazil, correlated to high technology enterprises. This design was developed in Brazil, by Brazilian technicians, in a comprehensive way. In all individual and global phases of the design, a full participation of the Brazilian state and private companies has been observed. In order to proceed with the design in this way, a group of Nuclen engineers has stayed for a while in Germany, in KWU's office, for a proper training. The Brazilian design companies, on the other hand, have received a special consulting support given by engineers of German construction companies, especialized in nuclear power plant construction. For the nuclear civil design, as well as for the dynamic analyses and structural design of reinforced concrete and steel structures, the design job assumes an important position in the Brazilian technical experience. The structural design of the reinforced concrete structures of the nuclear power plant, for instance, is the largest one ever performed in Brazil in terms of difficulty, complexity and amount of man-hours expediture. A summary of the civil design steps will be described in this paper. (author) [pt

  16. Development, Dedication and Application of an Automatic Seismic Trip System for Nuclear Power Plants of Taiwan Power Company

    International Nuclear Information System (INIS)

    Liao, Hsin-kai; Lee, Chung-lin; Chen, Chang-kuo; Hsu, Yao-tung; Shyu, Shian-shing

    2011-01-01

    This paper describes the setups of Automatic Seismic Trip System (ASTS), including development, dedication and implementation, for Nuclear Power Plants (NPPs) of Taiwan Power Company (TPC). The purposed ASTS was designed to trip the reactor when big earthquake occurs. These ASTS were classified as class 1E equipment. They were developed and dedicated for safety applications in accordance with IEEE 323-1983, IEEE 344-1987, IEEE 383-1974 and Reg. Guide 1.180 R1. In order to meet the technical specification required by TPC, three sub-units in the ASTS were developed: Earthquake sensors: Kinemetrices FBA-23 triaxial accelerometers are selected since they were successfully used in Taiwan for seismic monitoring for more than 10 years. Signal conditioning module: It is designed to reduce noise from motion accelerometer (FBA-23) and then transmit seismic signal to the set-point and trip unit via instrument amplify circuit, 0.1 to 10Hz band pass filter circuit, absolute-value converter and voltage to current converter. Trip control module: after comparing the seismic signal level and set-point, the result will decide whether to drive the output relay or not. The output relay is used as the interface between ASTS and the reactor protection system in NPP. For the commercial grade item dedication for safety application, five processes were conducted. Those processes are Seismic test: to use plant specific required response spectrum (RRS), the test required spectrum should envelop RRS: Seismic auto-trip accuracy test: must not trip when filtered PA below set point minus 0.05g, and must trip when filtered PA exceeds set point over 0.05g. Trip signals occurred within 10 second interval are considered as same events: NEMA4 water proof test for sensor box: Anti-radiation test: 8.76x100 rads over 40 years: EMI/EMC test: follow RG 1.180 requirement. The ASTS were installed in three NPPs, six units in total, without connection to RPS in 2006. After one year reliable operation, the

  17. Preoperational ALARA walk-down at the Shearon Harris Nuclear Power Plant

    International Nuclear Information System (INIS)

    Greene, D.W.

    1987-01-01

    Carolina Power and Light Company's Shearon Harris Nuclear Power Plant will enter commercial operation in 19987. During its design and construction a number of reviews were performed to ensure that personnel exposures in the completed plant would be ALARA. The final review in this process consisted of a comprehensive walk-down of plant radiation controlled areas by health physics, operations, maintenance, and engineering personnel. The walk-down project was conducted over a 12-month period using detailed criteria and checklists. This article describes the project, presents examples of the criteria that were used, and list the problems that were identified for resolution as well as the good ALARA design features that were incorporated into the plant

  18. Stainless steel pool constructing technology and management of Fangjiashan Nuclear Power Company

    International Nuclear Information System (INIS)

    Wei Lianfeng; Wang Qun

    2013-01-01

    The construction of Fangjiashan nuclear power plant stainless steel cladding has been taken much attention. Based on the careful analysis of stainless steel cladding welding and construction main issues; Many measures have been taken such as welding technology, construction process, the stress control of welding deformation, the cleanliness control of construction process, install precision control, improvements of Non-destructive testing, product protection, etc. And installation methods and techniques have been improved and innovative, the installation quality of stainless steel cladding has been enhanced. At the same time, as owners of the plants, we explored the methods of quality supervision and control, together with the relevant units; and sense of quality management has been unified effectively, made stainless steel cladding quality getting better and better. Fangjiashan nuclear power stainless steel cladding construction quality and management experience has been highly recognized by every company. (authors)

  19. Localization of nuclear power plant technology

    International Nuclear Information System (INIS)

    Stiteler, F.Z.; Rudek, T.G.

    1998-01-01

    Asia, and particularly China, has an enormous need for power and must deal with the practicalities of building large base load units. In China, as in other countries, there are limitations on the use of large quantities of fossil fuel. This raises the possibility of turning to nuclear power to satisfy their energy needs. Other issues tend to point to the nuclear option for these growing economies, including economic considerations, environmental concerns, energy independence and raising the technological capabilities of the country. When a country embarks on a nuclear power program with the intention of localizing the technology, a long-term commitment is necessary to achieve this objective. Localization of nuclear technology is not a new phenomenon. The nature of the industry from the early beginnings has always involved transfer of technology when a new country initiated a nuclear power construction program. In fact, most previous experiences with this localization process involved heavy governmental, political and financial support to drive the success of the program. Because of this strong governmental support, only the receiving nation's companies were generally allowed to participate in the local business operations of the technology recipient. What is new and different today is the retreat from heavy financial support by the receiving country's government. This change has created a strong emphasis on cost-effectiveness in the technology transfer process and opportunities for foreign companies to participate in local business activities. ABB is a world-wide company with two parent companies that have been very active over many years in establishing cost-justified local operations throughout the world. Today, ABB has become the largest electrical engineering company in the world with respected local operations in nearly every country. Lessons learned by ABB in their world-wide localization initiatives are being applied to the challenge of cost

  20. The German simulator center for the training of nuclear power plant operators

    International Nuclear Information System (INIS)

    Hoffmann, E.

    1996-01-01

    Simulator training for nuclear power plant operators in Germany is conducted in The Simulator Center in Essen. The companies operating The Center are KSG/GfS. KSG provides simulators, GfS performs the training. The German Simulator Center is equipped with five simulators in training, nine simulators are under construction and will be ready for training until the beginning of 1997. This institution serves 22 nuclear power plants units in Germany, Switzerland (NPP Goesgen-Daeniken) and the Netherlands (NPP Borssele) and trains 1,800 persons every year. As a common enterprise the company is owned by 12 utilities, which leads to the necessity to prepare common rules and guidelines for simulator specification, training of instructors, assessment of trainees, training material and preparation and methodical running of simulator courses

  1. Are atomic power plants saver than nuclear power plants

    International Nuclear Information System (INIS)

    Roeglin, H.C.

    1977-01-01

    It is rather impossible to establish nuclear power plants against the resistance of the population. To prevail over this resistance, a clarification of the citizens-initiatives motives which led to it will be necessary. This is to say: It is quite impossible for our population to understand what really heappens in nuclear power plants. They cannot identify themselves with nuclear power plants and thus feel very uncomfortable. As the total population feels the same way it is prepared for solidarity with the citizens-initiatives even if they believe in the necessity of nuclear power plants. Only an information-policy making transparent the social-psychological reasons of the population for being against nuclear power plants could be able to prevail over the resistance. More information about the technical procedures is not sufficient at all. (orig.) [de

  2. Dismantling and decommissioning of Jose Cabrera nuclear power plant

    International Nuclear Information System (INIS)

    Rodriguez, A.

    2009-01-01

    With the start of the dismantling works at the Jose Cabrera nuclear power plant now in sight, this is an appropriate moment to look back and consider recent history. The first time that the issue of nuclear power plant dismantling was dealt with was in 1975, at a conference in Paris entitled Nuclear Energy Maturity. Up until then the entire question had been one of design, construction and operation, but since that moment and it has been quite a while since that conference dismantling has begun to be seen as just another activity in the nuclear cycle, a final activity that will sooner or later affect all the facilities, an activity different from its predecessors and with the ultimate objective of restoring the sites for whatever use might be determined. During the 1960s and 1970s, the construction of nuclear power plants was widespread across the entire world. It was the baby boom of nuclear energy and now, forty or fifty years later, we are seeing the arrival of the end of the service lifetime of these plants and are faced with the corresponding general process of dismantling these installations. The dismantling of nuclear power plants has ceased to be an emerging issue and is now consolidated as a regular activity in the nuclear industry, albeit an activity that lacks adequate financing or specific regulation in certain countries. Fortunately this is not the case in Spain, since economic provisions have been planned and the regulatory framework developed. In view of the above, the dismantling of the nuclear power plants is an industrial activity involving specific technologies that implies new professional and business opportunities that should be absorbed and seized by society. In Spain the path followed in this direction has been a long one, as is underlined by the experiences of dismantling the Argos (Barcelona, 1998- 2004) and Arbi (Bilbao, 2002-2005) research reactors, the Andujar Uranium Mill (Jaen, 1991-1995), the Vandellos I nuclear power plant

  3. Plant life extensions for German nuclear power plants? Controversial discussion profit taking of nuclear power plant operators; Laufzeitverlaengerungen fuer die deutschen Kernkaftwerke? Kurzanalyse zu den Gewinnmitnahmen der KKW-Betreiber

    Energy Technology Data Exchange (ETDEWEB)

    Matthes, Felix C.

    2009-10-15

    The discussion on the plant life extensions for German nuclear power plants beyond the residual quantity of electricity particularly focus on three aspects: Effects for the emission of carbon dioxide as a greenhouse gas; Development of the electricity price for which a reduction or attenuation is postulated due to a plant life extension; Skimming of additional profits at operating companies and their use in the safeguarding of the future (development of renewable energies, support of energy efficiency, promotion of the research, consolidation of the public budget, and so on). Under this aspect, the author of the contribution under consideration reports on the profit taking of nuclear power plant operators. The presented analysis considers three aspects: (a) Specification of the quantity structures for the investigated model of plant life extension; (b) The decisive parameter is the revenue situation and thus the price development for electricity at wholesale markets; (c) Determination and evaluation of the course in time of the profit taking.

  4. A company-wide activity to grow safety culture in a maintenance department of nuclear power plant

    International Nuclear Information System (INIS)

    Fukui, Hirokazu; Sugiman, Toshio

    2008-01-01

    This study aims to conduct a field survey to collect specific instances of 'learning activity' that would help develop a safety culture in a maintenance department of nuclear power plant, with 'activity theory' as a theoretical base, and to derive a conceptual model that portrays these instances as part of comprehensive organizational activities. First, the field survey found instances where an accident that occurred a few years ago provided momentum; a company-wide activity is being implemented in order to fulfill the requests of field workers so that their requests for improvements are positively honored and budgets are allocated to measures designed to accommodate these requests. This paper calls this company-wide activity 'an activity to materialize the requests for improvements in the workplace' and considers it to be a typical instance of learning activity. Second, the field survey found that, in the workplace under discussion, a daily meeting was held in a unique way and a study session was conducted frequently and regularly. Last, we came up with a conceptual model for the entire aspect of organizational activities in which we could position the above instances as well as the results of our past field surveys. This model conceptualizes organizational activities from the two aspects of 'learning activity (primary learning activity)' and 'management activity) and characterizes an activity that would transform the existing organizational activities into ones that could not be even predicted as 'secondary learning activity'. 'An activity to materialize the requests for improvement in the workplace' was taken as falling under the category of secondary learning activity. (author)

  5. Preparation of environmental reports and impact statements for nuclear power plants

    International Nuclear Information System (INIS)

    Tsai, Y.H.

    1986-01-01

    Considerable first-hand experience has accumulated during the past decade in the United States regarding the preparation of environmental reports (ER) and environmental impact statements (EIS) for nuclear power plants. The US Nuclear Regulatory Commission (USNRC), which is responsible for regulating the construction and operation of nuclear power plants, is required under the National Environmental Policy Act to prepare an EIS for each plant. To obtain information essential to the EIS, the USNRC requires that each power company submit an ER. This paper focuses on the interrelationships of the two environmental documents and discusses the environmental review process and the environmental laws and regulations related to the licensing of nuclear power plants. It also describes the format and content, environmental issues, data requirements, and impact assessment methodologies for preparation of the ER and EIS. Problems associated with preparing the EIS are presented, with particular emphasis on the problems and methodologies associated with evaluating environmental costs and benefits

  6. Engineering for new-built nuclear power plant projects

    International Nuclear Information System (INIS)

    Gonzalez Lopez, A.

    2012-01-01

    This article reviews the opportunities existing in the market (electrical utilities and reactor vendors) for an engineering company with the profile of Empresarios Agrupados (EA) in new-built nuclear power plant projects. To do this, reference is made to some representative examples of projects in which EA has been participating recently. the article concludes sharing with the reader some lessons learned from this participation. (Author)

  7. Chapter 3. The economical power of the company

    International Nuclear Information System (INIS)

    1998-01-01

    In the third chapter of this CD ROM the economic power of the Slovak Electric, Plc. (Slovenske elektrarne, a.s.), is presented. It consist of next paragraphs (1) Property of Slovak Electric, Plc, the company; (2) Position of the Company; (3) Business performance of the Company (Economic results, Installed capacity, Generation of electricity and heat; Electricity trade, Distribution of electricity and heat trade are reviewed); (4) Shareholdings in other companies and international co-operation

  8. Employing modern power plant simulators in nuclear power plants

    International Nuclear Information System (INIS)

    Niedorf, V.; Storm, J.

    2005-01-01

    At the present state of the art, modern power plant simulators are characterized by new qualitative features, thus enabling operators to use them far beyond the traditional field of training. In its first part, this contribution presents an overview of the requirements to be met by simulators for multivalent uses. In part two, a survey of the uses and perspectives of simulation technology in power plants is presented on the basis of experience accumulated by Rheinmetall Defence Electronics (RDE).Modern simulators are shown to have applications by far exceeding traditional training areas. Modular client - sever systems on standard computers allow inexpensive uses to be designed at several levels, thus minimizing maintenance cost. Complex development and running time environments, like the SEMS developed by RDE, have made power plant simulators the workhorses of power plant engineers in all power plant areas. (orig.)

  9. Exergoeconomic evaluation of a KRW-based IGCC power plant

    International Nuclear Information System (INIS)

    Tsatsavonis, G.; Lin, L.; TawFik, T.; Gallaspy, D.T.

    1991-01-01

    This paper reports on a study supported by the US Department of Energy, in which several design configurations of Kellogg-Rust-Westinghouse (KRW)-based Integrated Gasification-Combined-Cycle (IGCC) power plants were developed. One of these configurations was analyzed from the exergoeconomic (thermoeconomic) viewpoint. The detailed exergoeconomic evaluation identified several changes for improving the cost effectiveness of this IGCC design configuration. Based on the cost information supplied by the M.W. Kellogg Company, an attempt was made to calculate the economically optimal exergetic efficiency for some of the most important plant components. This information is currently used in plant optimization studies

  10. Cost determination of the electro-mechanical equipment of a small hydro-power plant

    Energy Technology Data Exchange (ETDEWEB)

    Ogayar, B.; Vidal, P.G. [Grupo de Investigacion IDEA, Escuela Politecnica Superior, University of Jaen, Campus de Las Lagunillas, s/n. 23071-Jaen (Spain)

    2009-01-15

    One of the most important elements on the recovery of a small hydro-power plant is the electro-mechanical equipment (turbine-alternator), since the cost of the equipment means a high percentage of the total budget of the plant. The present paper intends to develop a series of equations which determine its cost from basic parameters such as power and net head. These calculations are focused at a level of previous study, so it will be necessary to carry out the engineering project and request a budget to companies specialized on the construction of electro-mechanical equipment to know its cost more accurately. Although there is a great diversity in the typology of turbines and alternators, data from manufacturers which cover all the considered range have been used. The above equations have been developed for the most common of turbines: Pelton, Francis, Kaplan and semiKaplan for a power range below 2 MW. The obtained equations have been validated with data from real installations which have been subject to analysis by engineering companies working on the assembly and design of small plants. (author)

  11. Die Energiewerke Nord GmbH. From operator of a decommissioned Russian nuclear power plant to one of Europe's leading decommissioning companies

    International Nuclear Information System (INIS)

    Philipp, Marlies

    2011-01-01

    EWN GmbH is a state-owned company with these duties: - decommissioning and demolition of the Greifswald and Rheinsberg nuclear power stations; - safe operation of the Zwischenlager Nord interim store; - development of the 'Lubminer Heide' industrial and commercial estate. Other projects for which EWN GmbH uses its know-how: - disposal of 120 decommissioned Russian nuclear submarines in Murmansk; - decommissioning and dismantling of the Juelich, NRW, AVR experimental reactor; - demolition of nuclear plants; running the Central Decontamination Operations Department at Karlsruhe, BW. Since 2008, EWN GmbH has held 25% of the shares of Deutsche Gesellschaft zum Bau- und Betrieb von Endlagern fuer Abfallstoffe mbH (DBE), a firm building and operating nuclear repositories. (orig.)

  12. Installation modification of the reactor No.2 of Ikata nuclear power plant of Shikoku Electric Power Company, Inc

    International Nuclear Information System (INIS)

    1980-01-01

    The application was made on August 25, 1979, from the president of the Shikoku Electric Power Company, Inc., to the Minister of International Trade and Industry, relating to the installation modification of the reactor No. 2 in the Ikata nuclear power plant. The inquiry was submitted on September 28, 1979, from the Minister of International Trade and Industry to the Nuclear Safety Commission, after the safety evaluation in the Ministry of International Trade and Industry, and the investigation and deliberation were started on October 1, 1979, in the Nuclear Safety Commission. The content of the modification is to add the circuit actuated by the abnormal low pressure signal of the reactor to the actuating circuit of the emergency core cooling system (ECCS) and to increase the new fuel storage capacity from about 1/3 core to about 2/3 core. The additional signal circuit is composed of the logic circuit of ''2 out of 4'' and is multichannel design. The circuit is independent from the reactor control system and the conventional signal circuit of the concurrence of low pressure in the reactor and low level in the pressurizer. With the addition of the circuit of abnormal low pressure signal of the reactor, the countermeasures for preventing ECCS start by mistake are also added. These modifications give no influence to the functions of the reactor control system and reactor protection system. The function and the performance of ECCS were analyzed and evaluated accompanying these modifications assuming the loss of coolant accident. Concerning the new fuel storage capacity, the type of racks is modified from angle type to can type, and the subcriticality is kept even at the time of water flood. (Nakai, Y.)

  13. Analysis of color environment in nuclear power plants

    International Nuclear Information System (INIS)

    Natori, Kazuyuki; Akagi, Ichiro; Souma, Ichiro; Hiraki, Tadao; Sakurai, Yukihiro.

    1996-01-01

    This article reports the results of color and psychological analysis of the outlook of nuclear power plants and the visual environments inside of the plants. Study one was the color measurements of the outlook of nuclear plants and the visual environment inside of the plants. Study two was a survey of the impressions on the visual environments of nuclear plants obtained from observers and interviews of the workers. Through these analysis, we have identified the present state of, and the problems of the color environments of the nuclear plants. In the next step, we have designed the color environments of inside and outside of the nuclear plants which we would recommend (inside designs were about fuel handling room, operation floor of turbine building, observers' pathways, central control room, rest room for the operators). Study three was the survey about impressions on our design inside and outside of the nuclear plants. Nuclear plant observers, residents in Osaka city, residents near the nuclear plants, the operators, employees of subsidiary company and the PR center guides rated their impressions on the designs. Study four was the survey about the design of the rest room for the operators controlling the plants. From the results of four studies, we have proposed some guidelines and problems about the future planning about the visual environments of nuclear power plants. (author)

  14. Integrated Plant Safety Assessment: Systematic Evaluation Program. Millstone Nuclear Power Station, Unit 1, Northeast Nuclear Energy Company, Docket No. 50-245. Final report

    International Nuclear Information System (INIS)

    1983-02-01

    This report documents the review of the Millstone Nuclear Power Station, Unit 1, operated by Northeast Nuclear Energy Company (located in Waterford, Connecticut). Millstone Nuclear Power Station, Unit 1, is one of ten plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review. It is expected that this report will be one of the bases in considering the issuance of a full-term operating license in place of the existing provisional operating license. This report also addresses the comments and recommendations made by the Advisory Committee on Reactor Safeguards in connection with its review of the Draft Report, issued in November 1982

  15. The French Electricity Company (EDF) and GEC ALSTHOM have signed the agreement for Chinese Laibin B electric power plant; Electricite de France (EDF) et GEC ALSTHOM signent l'accord de la centrale electrique de Laibin B en Chine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-03

    EDF and GEC ALSTHOM together with the government of Chinese Province Guangxi have organized in Pekin on 3 september 1997 a ceremony for signing a BOOT (Build, Own, Operate, Transfer) contract for the Coal Power Plant (2 x 360 MW) at Laibin B. This is the first Chinese BOOT contract in the power domain entirely financed by foreign capital. The two western companies which were retained for this project, following an international call for offers, invest USD 150 million of its own founds in this USD 600 million project. They will hold 60% and 40% of the capital of the company created for this project, respectively. The construction power plant is planned to be completed at the end of 1999 - beginning of 2000. After 15 years of industrial operation the power plant will be transferred to the autonomous government of the Province Guangxi. The communique contains the following 8 files: 1. The Laibin B power plant; 2. Build, Own, Operate, Transfer; 3. The autonomous Guangxi Province; 4. An outline of EDF in China; 5. Profile/activities of GEC ALSTHOM in China; 6. The 'Credit Agricole Indosuez' in China; 7. BZW Barclays PLC; 8. HSBC Investment Banking in China.

  16. Modifications to nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Guide was prepared under the IAEA's programme for safety standards for nuclear power plants. It supplements Section 7 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation, which establishes the safety requirements for the modification of nuclear power plants. Reasons for carrying out modifications to nuclear power plants may include: (1) maintaining or strengthening existing safety provisions and thus maintaining consistency with or improving on the current design. (2) recovering from plant faults. (3) improving the thermal performance or increasing the power rating of the plant. (4) increasing the maintainability of the plant, reducing the radiation exposure of personnel or reducing the costs of plant maintenance. And (5) extending the design life of the plant. Most modifications, made on the basis of operating experience, are intended to improve on the design or to improve operational performance and flexibility. Some are rendered necessary by new regulatory requirements, ageing of the plant or obsolescence of equipment. However, the benefits of regularly updating the plant design can be jeopardized if modifications are not kept under rigorous control throughout the lifetime of the plant. The need to reduce costs and improve efficiency, in combination with changes to the structure of the electricity generation sector of the economy in many countries, has led many companies to make changes in the structure of the operating organization for nuclear power plants. Whatever the reason for such organizational changes, consideration should be given to the effects of those changes with the aim of ensuring that they would have no impacts that would compromise the safety of the plant. The objective of this Safety Guide is to provide guidance and recommendations on controlling activities relating to modifications at nuclear power plants in order to reduce risk and to ensure that the configuration of the plant is at all times under

  17. Modifications to nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2007-01-01

    This Safety Guide was prepared under the IAEA's programme for safety standards for nuclear power plants. It supplements Section 7 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation, which establishes the safety requirements for the modification of nuclear power plants. Reasons for carrying out modifications to nuclear power plants may include: (1) maintaining or strengthening existing safety provisions and thus maintaining consistency with or improving on the current design. (2) recovering from plant faults. (3) improving the thermal performance or increasing the power rating of the plant. (4) increasing the maintainability of the plant, reducing the radiation exposure of personnel or reducing the costs of plant maintenance. And (5) extending the design life of the plant. Most modifications, made on the basis of operating experience, are intended to improve on the design or to improve operational performance and flexibility. Some are rendered necessary by new regulatory requirements, ageing of the plant or obsolescence of equipment. However, the benefits of regularly updating the plant design can be jeopardized if modifications are not kept under rigorous control throughout the lifetime of the plant. The need to reduce costs and improve efficiency, in combination with changes to the structure of the electricity generation sector of the economy in many countries, has led many companies to make changes in the structure of the operating organization for nuclear power plants. Whatever the reason for such organizational changes, consideration should be given to the effects of those changes with the aim of ensuring that they would have no impacts that would compromise the safety of the plant. The objective of this Safety Guide is to provide guidance and recommendations on controlling activities relating to modifications at nuclear power plants in order to reduce risk and to ensure that the configuration of the plant is at all times under

  18. Kansas Power Plants

    Data.gov (United States)

    Kansas Data Access and Support Center — The Kansas Power Plants database depicts, as point features, the locations of the various types of power plant locations in Kansas. The locations of the power plants...

  19. Nordel - Availability statistics for thermal power plants 1995. (Denmark, Finland, Sweden)

    International Nuclear Information System (INIS)

    1996-01-01

    The power companies of Denmark, Finland and Sweden have agreed on almost identical procedures for the recording and analysing of data describing the availability of power producing units over a certain capacity. Since 1975 the data for all three countries have been summarized and published in a joint report. The purpose of this report is to present some basic information about the operation of power producing units in the three countries. Referring to the report, companies or bodies will be able to exchange more detailed information with other companies or bodies in any of the countries. The report includes power producing units using fossil fuels, nuclear power plants and gas turbines. The information is presented separately for each country with a joint NORDEL statistics for units using fossil fuels, arranged in separate groups according to the type of fossil fuel which is used. The grouping of power producing units into classes of capacity has been made in accordance with the classification adopted by UNIPEDE/WEC. The definitions in NORDEL's 'Tillgaenglighetsbegrepp foer vaermekraft' ('The Concept of Availability for Thermal Power'), September 1977, are used in this report. The basic data for the availability are in accordance with the recommendations of UNIPEDE/WEC. (author)

  20. Techno-economic evaluation of commercial cogeneration plants for small and medium size companies in the Italian industrial and service sector

    International Nuclear Information System (INIS)

    Armanasco, Fabio; Colombo, Luigi Pietro Maria; Lucchini, Andrea; Rossetti, Andrea

    2012-01-01

    The liberalization of the electricity market and the concern for energy efficiency have resulted in a surge of interest in cogeneration and distributed power generation. In this regard, companies are encouraged to evaluate the opportunity to build their own cogeneration plant. In Italy, the majority of such companies belong to the industrial or service sector; it is small or medium in size and the electric power ranges between 1 ÷ 10 MW. Commercially available gas turbines are the less expensive option for cogeneration. Particular attention has been given to the possibility of combining an organic Rankine cycle (ORC) with gas turbine, to improve the conversion efficiency. Companies have to account for both technical and economical aspects to assess viability of cogeneration. A techno-economic analysis was performed to identify, in the Italian energy market, which users can take advantage of a cogeneration plant aimed to cover at least part of their energy demand. Since electricity and thermal needs change considerably in the same sector, single product categories have been considered in the analysis. Our work shows that in the industrial sector, independent of the product category, cogeneration is a viable option form a techno-economic perspective. - Highlights: ► The best technologies for 1 ÷ 10 MW distributed generation plant are gas turbine and ORC. ► A variety of commercial cogeneration plants is available to meet user needs. ► Cogeneration is a technical and economical advantage for industrial sector companies.

  1. Infrastructure development assistance modeling for nuclear power plant

    International Nuclear Information System (INIS)

    Park, J. H.; Hwang, K.; Park, K. M.; Kim, S. W.; Lee, S. M.

    2012-01-01

    The purpose of this paper is to develop a model, a general frame to be utilized in assisting newcomer countries to start a nuclear power program. A nuclear power plant project involves technical complexity and high level of investment with long duration. Considering newcomers are mostly developing countries that lack the national infrastructure, key infrastructure issues may constitute the principal constraints to the development of a nuclear power program. In this regard, it is important to provide guidance and support to set up an appropriate infrastructure when we help them with the first launch of nuclear power plant project. To date, as a sole nuclear power generation company, KHNP has been invited many times to mentor or assist newcomer countries for their successful start of a nuclear power program since Republic of Korea is an exemplary case of a developing country which began nuclear power program from scratch and became a major world nuclear energy country in a short period of time. Through hosting events organized to aid newcomer countries' initiation of nuclear power projects, difficulties have been recognized. Each event had different contents according to circumstances because they were held as an unstructured and one-off thing. By developing a general model, we can give more adequate and effective aid in an efficient way. In this paper, we created a model to identify necessary infrastructures at the right stage, which was mainly based on a case of Korea. Taking into account the assistance we received from foreign companies and our own efforts for technological self-reliance, we have developed a general time table and specified activities required to do at each stage. From a donor's perspective, we explored various ways to help nuclear infrastructure development including technical support programs, training courses, and participating in IAEA technical cooperation programs on a regular basis. If we further develop the model, the next task would be to

  2. Infrastructure development assistance modeling for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. H.; Hwang, K.; Park, K. M.; Kim, S. W.; Lee, S. M. [Korea Hydro and Nuclear Power Co., LTD, 23, 106 gil, Yeongdong-daero, Gangnam-gu, 153-791 (Korea, Republic of)

    2012-07-01

    The purpose of this paper is to develop a model, a general frame to be utilized in assisting newcomer countries to start a nuclear power program. A nuclear power plant project involves technical complexity and high level of investment with long duration. Considering newcomers are mostly developing countries that lack the national infrastructure, key infrastructure issues may constitute the principal constraints to the development of a nuclear power program. In this regard, it is important to provide guidance and support to set up an appropriate infrastructure when we help them with the first launch of nuclear power plant project. To date, as a sole nuclear power generation company, KHNP has been invited many times to mentor or assist newcomer countries for their successful start of a nuclear power program since Republic of Korea is an exemplary case of a developing country which began nuclear power program from scratch and became a major world nuclear energy country in a short period of time. Through hosting events organized to aid newcomer countries' initiation of nuclear power projects, difficulties have been recognized. Each event had different contents according to circumstances because they were held as an unstructured and one-off thing. By developing a general model, we can give more adequate and effective aid in an efficient way. In this paper, we created a model to identify necessary infrastructures at the right stage, which was mainly based on a case of Korea. Taking into account the assistance we received from foreign companies and our own efforts for technological self-reliance, we have developed a general time table and specified activities required to do at each stage. From a donor's perspective, we explored various ways to help nuclear infrastructure development including technical support programs, training courses, and participating in IAEA technical cooperation programs on a regular basis. If we further develop the model, the next task

  3. Summary of wind data from nuclear power plant sites. [USA

    Energy Technology Data Exchange (ETDEWEB)

    Verholek, M. G.

    1977-03-01

    A summary of wind data from nuclear power plant sites is presented. National Weather Service archives are an immediately obvious source of wind data, but additional data sources are also available. Utility companies proposing to build nuclear power plants are required to establish on-site meteorological monitoring programs that include towers for collecting wind and temperature data for use in environmental impact assessments. These data are available for more than one hundred planned or operating nuclear power plant sites. A list of the sites, by state, is provided in Appendix A, while Appendix B contains an alphabetical list of the sites. This site wind data provides a valuable addition to the existing NWS data sets, and significantly enlarges the multilevel data presently available. The wind data published through the NRC is assembled and assessed here in order to provide a supplement to existing data sets.

  4. Backpropagation architecture optimization and an application in nuclear power plant diagnostics

    International Nuclear Information System (INIS)

    Basu, A.; Bartlett, E.B.

    1993-01-01

    This paper presents a Dynamic Node Architecture (DNA) scheme to optimize the architecture of backpropagation Artificial Neural Networks (ANNs). This network scheme is used to develop an ANN based diagnostic adviser capable of identifying the operating status of a nuclear power plant. Specifically, a root network is trained to diagnose if the plant is in a normal operating condition or not. In the event of an abnormal condition, another classifier network is trained to recognize the particular transient taking place. These networks are trained using plant instrumentation data gathered during simulations of the various transients and normal operating conditions at, the Iowa Electric Light and Power Company's Duane Arnold Energy Center (DAEC) operator training simulator

  5. Backpropagation architecture optimization and an application in nuclear power plant diagnostics

    International Nuclear Information System (INIS)

    Basu, A.; Bartlett, E.B.

    1993-01-01

    This paper presents a Dynamic Node Architecture (DNA) scheme to optimize the architecture of backpropagation Artificial Neural Networks (ANNs). This network scheme is used to develop an ANN based diagnostic adviser capable of identifying the operating status of a nuclear power plant. Specifically, a ''root'' network is trained to diagnose if the plant is in a normal operating condition or not. In the event of an abnormal condition, and other ''classifier'' network is trained to recognize the particular transient taking place. these networks are trained using plant instrumentation data gathered during simulations of the various transients and normal operating conditions at the Iowa Electric Light and Power Company's Duane Arnold Energy Center (DAEC) operator training simulator

  6. Changes in control room at Swedish nuclear power plants; Kontrollrumsfoeraendringar vid svenska kaernkraftverk

    Energy Technology Data Exchange (ETDEWEB)

    Kecklund, Lena [MTO Psykologi, Huddinge (Sweden)

    2005-09-15

    The Swedish nuclear power plants were commissioned during a period between 1972 and 1985 and the instrumentation and control equipment are basically from that period. For several years there have been plans made for changes in all the nuclear power plants and to a certain extent the changes in control equipment and monitoring rooms have also been implemented. The object of this project was to make a comprehensive review of the changes in control room design implemented in the Swedish nuclear power plants and to describe how the MTO- (Man-Technology-Organisation) and (Man-Machine-Interface) -issues have been integrated in the process. The survey is intended to give an overall picture of the changes in control room design and man-machine-interface made in the Swedish control rooms, in order to get a deeper knowledge of the change management process and its results as well as of the management of MTO-issues in these projects. The units included in this survey are: Oskarhamn reactor 2 and 3; Ringhals reactor 2, 3 and 4; Forsmark reactor 1, 2 and 3. The Oskarshamn 1 unit has not been included in this report as it has recently undergone an extensive modernisation program as well as a detailed inspection by the SKI (Swedish Nuclear Power Inspectorate). At Ringhals 2 the modernisation work is carried out at present and the unit is also subjected to extensive inspection activities carried out by SKI and is therefore not part of this survey. This report also includes a short description of relevant standards and requirements. Then follows a presentation of the results of the plant survey, presented as case studies for three companies OKG, Ringhals and FKA. Control room changes are summarized as well as the results on specific MTO issues which has been surveyed. In all the power companies there is a joint way of working with projects concerning plant modifications. This process is described for each company separately. In the concluding of the report the strengths and

  7. Comparative studies between nuclear power plants and hydroelectric power plants

    International Nuclear Information System (INIS)

    Menegassi, J.

    1984-01-01

    This paper shows the quantitative evolution of the power plants in the main countries of the world. The Brazilian situation is analysed, with emphasys in the technical and economical aspects related to power production by hidroelectric or nuclear power plants. The conclusion is that the electricity produced by hidro power plants becomes not economics when is intended to be produced at large distances from the demand centers. (Author) [pt

  8. Study on application of operating experience to new nuclear power plant

    International Nuclear Information System (INIS)

    Hong, Nam Pyo

    1991-01-01

    From the standpoint of designing the nuclear power plant, nine operating units have been designed and constructed as turn-key base by foreign Nuclear Steam Supply System (NSSS) Suppliers or as component base by foreign Architect/Engineer companies. In case of the component base project, the owner of electric company generally has merits that owner's operational experiences can be effectively incorporated from the beginning stage of design by A/E. Even though six nuclear units, Kori Units 3 and 4, Yonggwang Units 1 and 2, and Ulchin Units 1 and 2, were designed as component base by foreign A/E's, operational experience feedback from Kori Unit 1, such as design improvement and system upgrade, could not be reflected, because the design process of the following units started well ahead before Kori Unit 1 operating experience is obtained enough to reflect on future nuclear power plant design. It can be stated that foreign A/E's used their experience in designing nuclear projects on very limited basis

  9. MSR redesign and reconstruction at Indiana Michigan Power Company's Donald C. Cook Nuclear Power Plant, Unit 1

    International Nuclear Information System (INIS)

    Yarden, A.L.; Tam, C.W.; Benes, J.D.; Arnold, W.E.

    1993-01-01

    When Indiana Michigan Power Company's (I and M) 1089- MWe, PWR, Donald C. Cook Nuclear Plant, Unit 1, (Cook 1) in Bridgeman, Michigan went into commercial operation in late 1975, its turbine generator included two Moisture Separator Reheater (MSR) vessels. Each of these original MSRs contained, in addition to the moisture separation section, a single stage 2-pass reheater consisting of 5/8 inch O.D., finned CuNi tubes with main heating steam as an energy source. The enormous size of the tube bank, with a vertical orientation of its tubes' U-bends, led the designer to choose two separate headers for the inlet side and outlet side of the tube bank. Over the years, these 2-pass reheaters had deteriorated mechanically such that maintenance costs had increased considerably. Also, the MSR performance in terms of MWe gain, had fallen off as a result of a gradual reduction of both superheat and moisture separation efficiency. In 1990, these MSRs were totally reconstructed with inherently different 4-pass reheaters and upgraded moisture separation systems. The performance and other direct parameters of these newly retrofitted and improved MSRs have exceeded original design specifications, and their operational stability has improved markedly. This MSR reconstruction at Cook 1 is the first of its kind to include a 4-pass reheater in association with a nuclear turbine generator of this design. This paper highlights the problems and solutions associated respectively with the original reheaters in the Cook 1 MSRs and their recent redesign, reconstruction, and performance

  10. The effect of size-control policy on unified energy and carbon efficiency for Chinese fossil fuel power plants

    International Nuclear Information System (INIS)

    Zhang, Ning; Kong, Fanbin; Choi, Yongrok; Zhou, P.

    2014-01-01

    This paper examines the effect of size control policy on the energy and carbon efficiency for Chinese fossil fuel power industry. For this purpose, we propose two non-radial directional distance functions for energy/carbon efficiency analysis of fossil fuel electricity generation. One is named a total-factor directional distance function that incorporates the inefficiency of all input and output factors to measure the unified (operational and environmental) efficiency of fossil fuel power plants, and the other is called an energy–environmental directional distance function that can be used to measure the energy–environmental performance of fossil fuel electric power plants. Several standardized indicators for measuring unified efficiency and energy–environmental performance are derived from the two directional distance functions. An empirical study of 252 fossil fuel power plants in China is conducted by using the proposed approach. Our empirical results show that there exists a significant positive relationship between the plant size and unified efficiency, the five state-owned companies show lower unified efficiency and energy–environmental performance than other companies. It is suggested that Chinese government might need to consider private incentives and deregulation for its state-owned enterprises to improve their performance proactively. - Highlights: • Two non-radial directional distance functions are presented for energy/carbon efficiency analysis. • An empirical study of 252 fossil fuel power plants in China is conducted. • The five state-owned companies show lower unified efficiency and energy–environmental performance

  11. The computerized radiation control system for the nuclear power plant

    International Nuclear Information System (INIS)

    Hunamoto, H.; Sato, T.; Taniguchi, K.

    1993-01-01

    Major works of Radiation control in nuclear power plant consist of occupational exposure control, radiation monitoring of working areas and surveillance of monitoring equipment, environmental monitoring and so on. Since a large amount of data will be generated from these works, therefore use of high performance computers will be indispensable. The systematization is presently being advanced in The Japan Atomic Power Company from this viewpoint and the project is being realized smoothly. The actual state is introduced

  12. Sea water pumping-up power plant system combined with nuclear power plant

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu; Tanaka, Masayuki.

    1991-01-01

    It is difficult to find a site suitable to construction for a sea water pumping-up power plant at a place relatively near the electric power consumption area. Then, a nuclear power plant is set at the sea bottom or the land portion of a sea shore near the power consumption area. A cavity is excavated underground or at the bottom of the sea in the vicinity of the power plant to form a lower pond, and the bottom of the sea, as an upper pond and the lower pond are connected by a water pressure pipe and a water discharge pipe. A pump water turbine is disposed therebetween, to which electric power generator is connected. In addition, an ordinary or emergency cooling facility in the nuclear power plant is constituted such that sea water in the cavity is supplied by a sea water pump. Accordingly, the sea water pumping-up plant system in combination with the nuclear power plant is constituted with no injuring from salts to animals and plants on land in the suburbs of a large city. The cost for facilities for supplying power from a remote power plant to large city areas and power loss are decreased and stable electric power can be supplied. (N.H.)

  13. Power plant allocation in East Kalimantan considering total cost and emissions

    Science.gov (United States)

    Muslimin; Utomo, D. S.

    2018-04-01

    The fulfillment of electricity need in East Kalimantan is the responsibility of State Electricity Company/Perusahaan Listrik Negara (PLN). But PLN faces constraints in the lack of generating capacity it has. So the allocation of power loads in East Kalimantan has its own challenges. Additional power supplies from other parties are required. In this study, there are four scenarios tested to meet the electricity needs in East Kalimantan with the goal of minimizing costs and emissions. The first scenario is only by using PLN power plant. The second scenario is by combining PLN + Independent Power Producer (IPP) power plants. The third scenario is by using PLN + Rented power plants. The fourth scenario is by using PLN + Excess capacity generation. Numerical experiment using nonlinear programming is conducted with the help of the solver. The result shows that in the peak load condition, the best combination is scenario 2 (PLN + IPP). While at the lowest load condition, the cheapest scenario is PLN + IPP while the lowest emission is PLN + Rent.

  14. Model for optimization of plant investments in combined power and heat production systems

    Energy Technology Data Exchange (ETDEWEB)

    Jantunen, E.; Sinisalo, A.; Koskelainen, L.

    1980-01-01

    A mathematical model is developed for optimal dimensioning and timing the investments of power and heat production system in a community. The required electric power may be purchased by different production systems, such as: thermal power plants, gas turbines, diesel plants, etc. or by delivering all or part of it from a national power company. Also the required heat may be produced in many different ways in single-purpose or combined plants. The model assumes the extent of the heating system fixed, and it is not optimized. It is assumed that the same company is responsible for supplying both the power and heat for the community. It's aim is to allocate the existing capital in an optimal way, and the model may be used for facilitating the decision in such questions as: what kind of production capacity should be purchased in future; how high should the heat and power capacities be; and when should this additional capacity be available. The report also reviews the methods for forecasting the demand of power and heat and their fluctuation during the planning period. The solution of this large-scale non-linear optimization problem is searched via successive linearizations by using the Method of Approximate Programming (MAP). It was found that the solution method is very suitable for this kind of multivariable problems. The computing times with the Functional Mathematical Programmin System (FMPS) in Univac 1108 computer were quite reasonable.

  15. An Investigation of Health and Safety Measures in a Hydroelectric Power Plant.

    Science.gov (United States)

    Acakpovi, Amevi; Dzamikumah, Lucky

    2016-12-01

    Occupational risk management is known as a catalyst in generating superior returns for all stakeholders on a sustainable basis. A number of companies in Ghana implemented health and safety measures adopted from international companies to ensure the safety of their employees. However, there exist great threats to employees' safety in these companies. The purpose of this paper is to investigate the level of compliance of Occupational Health and Safety management systems and standards set by international and local legislation in power producing companies in Ghana. The methodology is conducted by administering questionnaires and in-depth interviews as measuring instruments. A random sampling technique was applied to 60 respondents; only 50 respondents returned their responses. The questionnaire was developed from a literature review and contained questions and items relevant to the initial research problem. A factor analysis was also carried out to investigate the influence of some variables on safety in general. Results showed that the significant factors that influence the safety of employees at the hydroelectric power plant stations are: lack of training and supervision, non-observance of safe work procedures, lack of management commitment, and lack of periodical check on machine operations. The study pointed out the safety loopholes and therefore helped improve the health and safety measures of employees in the selected company by providing effective recommendations. The implementation of the proposed recommendations in this paper, would lead to the prevention of work-related injuries and illnesses of employees as well as property damage and incidents in hydroelectric power plants. The recommendations may equally be considered as benchmark for the Safety and Health Management System with international standards.

  16. Safety evaluation report related to the operation of Midland Plant, Units 1 and 2. Docket Nos. 50-329 and 50-330, Consumers Power Company

    International Nuclear Information System (INIS)

    1982-05-01

    The Safety Evaluation Report for the application filed by the Consumers Power Company, as applicant and owner, for a license to operate the Midland Plant Units 1 and 2 (Docket Nos. 50-329 and 50-330), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located near the city of Midland in Midland County, Michigan. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  17. Power improvement and modernization of small scale hydroelectric power plants in Brazil; Recapacitacao e modernizacao de PCH`s no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Jose Guilherme Antioga do [Departamento Nacional de Aguas e Energia Eletrica (DNAEE), Brasilia, DF (Brazil); Amaral, Cristiano Abijaode [Companhia Energetica de Minas Gerais (CEMIG), Belo Horizonte, MG (Brazil)

    1995-12-31

    Several small scale hydroelectric power plants existing in Brazil have been abandoned due to recent projects of large scale units, however, some of than still present workable conditions. Due to that fact, several Brazilian electric power companies have been considering the possibility of modernizing such old units as an alternative for regional electric power generation. This work discusses the above mentioned issues 3 refs., 5 figs., 9 tabs.

  18. Application of the international guidelines for machinery breakdown prevention at nuclear power plants

    International Nuclear Information System (INIS)

    Wendland, W.G.

    2001-01-01

    For more than forty years as a specialized branch of the worldwide insurance industry, the nuclear insurance pools have underwritten property damage protection for nuclear facilities throughout the world. At power plants insured by the pools, an enviable record of operational safety has been attained. Nevertheless, electrical and mechanical equipment does break down occasionally. Although these failures do not necessarily compromise nuclear safety, they can cause significant damage to equipment, leading to a considerable loss of generating revenue and causing sizeable insurance losses. Since insurance companies have a large financial stake in nuclear power plants, their goal is to minimize insurance losses, including the failure of systems and equipment and ensuing consequential damages. To ensure that the insurance risk is properly underwritten, insurance companies analyze loss information, develop loss prevention guidelines and focus loss control activities on those areas where insurance risk is most significant. This paper provides a chronology of the development of the ''International Guidelines for Machinery Breakdown Prevention at Nuclear Power Plants'' and describes the results of insurance inspections conducted using these guidelines. Included is a summary of guideline content and of insurance loss experience between 1962 and 1999. (author)

  19. A common high standard for nuclear power plant exports: overview and analysis of the Nuclear Power Plant Exporters' Principles of Conduct

    International Nuclear Information System (INIS)

    Perkovich, George; Radzinsky, Brian

    2012-01-01

    At this time, there is no overarching global framework to regulate the development of the nuclear power industry. Laws concerning the export of nuclear technology vary across jurisdictions, and politically-binding arrangements such as the Nuclear Suppliers Group (NSG) help ensure that weapons-usable or dual-use technologies are not exported, but no single international regime or agreement manages the gamut of potential risks that may arise from the export of civilian nuclear power plants. Accordingly in 2008, the Carnegie Endowment for International Peace convened internationally-recognised experts in nuclear energy to begin a dialogue with nuclear power plant vendors about defining common criteria for the socially responsible export of nuclear power plants. The goal was to articulate a comprehensive set of principles and best practices that would raise the overall standard of practice for exports of nuclear power plants while enjoying widespread support and adherence. The outcome of this process is the Nuclear Power Plant Exporters' Principles of Conduct - an export-oriented code of conduct for nuclear power plant vendors. The Principles of Conduct help ensure that the participating companies will proceed with the sale of a new nuclear power plant only after a careful assessment of the legal, political, and technical contexts surrounding potential customers. It comprises six 'principles' that each address a major area of concern involved in the export of a nuclear power plant: safety, physical security, environmental protection and spent fuel management, systems of compensation for nuclear damage, non-proliferation and safeguards, and business ethics. The Principles of Conduct entail vendor responsibilities to apply specific standards or engage in certain practices before signing contracts and during the marketing and construction phases of a nuclear power plant export project. Conformity with the Principles of Conduct is voluntary and not-legally binding, but the

  20. 76 FR 36910 - Astoria Generating Company, L.P., NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas...

    Science.gov (United States)

    2011-06-23

    ... Generating Company, L.P., NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas Turbine Power LLC... Generating Company, L.P., NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas Turbine Power [[Page... subscribed docket(s). For assistance with any FERC Online service, please e-mail [email protected

  1. IR-360 nuclear power plant safety functions and component classification

    International Nuclear Information System (INIS)

    Yousefpour, F.; Shokri, F.; Soltani, H.

    2010-01-01

    The IR-360 nuclear power plant as a 2-loop PWR of 360 MWe power generation capacity is under design in MASNA Company. For design of the IR-360 structures, systems and components (SSCs), the codes and standards and their design requirements must be determined. It is a prerequisite to classify the IR-360 safety functions and safety grade of structures, systems and components correctly for selecting and adopting the suitable design codes and standards. This paper refers to the IAEA nuclear safety codes and standards as well as USNRC standard system to determine the IR-360 safety functions and to formulate the principles of the IR-360 component classification in accordance with the safety philosophy and feature of the IR-360. By implementation of defined classification procedures for the IR-360 SSCs, the appropriate design codes and standards are specified. The requirements of specific codes and standards are used in design process of IR-360 SSCs by design engineers of MASNA Company. In this paper, individual determination of the IR-360 safety functions and definition of the classification procedures and roles are presented. Implementation of this work which is described with example ensures the safety and reliability of the IR-360 nuclear power plant.

  2. IR-360 nuclear power plant safety functions and component classification

    Energy Technology Data Exchange (ETDEWEB)

    Yousefpour, F., E-mail: fyousefpour@snira.co [Management of Nuclear Power Plant Construction Company (MASNA) (Iran, Islamic Republic of); Shokri, F.; Soltani, H. [Management of Nuclear Power Plant Construction Company (MASNA) (Iran, Islamic Republic of)

    2010-10-15

    The IR-360 nuclear power plant as a 2-loop PWR of 360 MWe power generation capacity is under design in MASNA Company. For design of the IR-360 structures, systems and components (SSCs), the codes and standards and their design requirements must be determined. It is a prerequisite to classify the IR-360 safety functions and safety grade of structures, systems and components correctly for selecting and adopting the suitable design codes and standards. This paper refers to the IAEA nuclear safety codes and standards as well as USNRC standard system to determine the IR-360 safety functions and to formulate the principles of the IR-360 component classification in accordance with the safety philosophy and feature of the IR-360. By implementation of defined classification procedures for the IR-360 SSCs, the appropriate design codes and standards are specified. The requirements of specific codes and standards are used in design process of IR-360 SSCs by design engineers of MASNA Company. In this paper, individual determination of the IR-360 safety functions and definition of the classification procedures and roles are presented. Implementation of this work which is described with example ensures the safety and reliability of the IR-360 nuclear power plant.

  3. Probabilistic safety assessment support for the maintenance rule at Duke Power Company

    International Nuclear Information System (INIS)

    Brewer, H. Duncan; Canady, Ken S.

    1999-01-01

    The Nuclear Regulatory Commission (NRC) published the Maintenance Rule on July 10, 1991 with an implementation date of July 10, 1996 . Maintenance rule implementation at the Duke Power Company has used probabilistic safety assessment (PSA) insights to help focus the monitoring of structures, systems and components (SSC) performance and to ensure that maintenance is effectively performed. This paper describes how the probabilistic risk assessment (PRA) group at the Duke Power Company provides support for the maintenance rule by performing the following tasks: (1) providing a member of the expert panel; (2) determining the risk-significant SSCs; (3) establishing SSC performance criteria for availability and reliability; (4) evaluating past performance and its impact on core damage risk as part of the periodic assessment; (5) providing input to the PRA matrix; (6) providing risk analyses of combinations of SSCs out of service; (7) providing support for the SENTINEL program; and (8) providing support for PSA training. These tasks are not simply tied to the initial implementation of the rule. The maintenance rule must be kept consistent with the current design and operation of the plant. This will require that the PRA models and the many PSA calculations performed to support the maintenance rule are kept up-to-date. Therefore, support of the maintenance rule will be one of the primary roles of the PSA group for the remainder of the life of the plant

  4. Progress of innovation of electrical power technology in FY2013

    International Nuclear Information System (INIS)

    Mayumi, Akihiko; Tanaka, Masanori; Yamaguchi, Hiroshi

    2014-01-01

    The following is the description of technical innovations at 12 companies including Tokyo Electric Power Company, Chubu Electric Power Company, and Japan Atomic Power Company. Tokyo Electric Power Company presented (1) the developments of a wet-type air decontaminating apparatus for inside/outside of power plant, (2) a robot to be used for field investigation at the Fukushima Daiichi nuclear power plant, (3) a visualization technology using laser for detection, and (4) removal of debris at the power plant. Chubu Electric Power Company presented application of a flap gate to the opening on exterior wall of building as a countermeasure against tsunami at the Hamaoka nuclear power plant. Hokuriku Electric Power Company presented a nuclear reactor operation training simulator for full-scope operation training for the Shika nuclear power station. Chugoku Electric Power Company presented their efforts in implementing a predictive monitoring system at the Shimane Nuclear Power Station. Shikoku Electric Power Company presented the installation of a weir with a flap gate to the interior of seawater pit as a countermeasure against tsunami. Japan Atomic Power Company presented an impact assessment method of fallout during transportation of materials caused by nuclear reactor accident, design and development of a square-type shielding container for radioactive wastes, a strength test on concrete materials for the safety design of Tsuruga Power Station Units 3 and 4, decommissioning of nuclear power plant, and research and development of the fast breeder reactor. (S.Y.)

  5. 76 FR 34692 - Astoria Generating Company, L.P., NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas...

    Science.gov (United States)

    2011-06-14

    ... Generating Company, L.P., NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas Turbine Power LLC... Generating Company, L.P., NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas Turbine Power LLC... notification when a document is added to a subscribed docket(s). For assistance with any FERC Online service...

  6. Tunisia- British gas intends to participate to the building of a combined cycle electric power plant

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Here is described the project to build a combined-cycle power plant in Tunisia, project in which the British Gas is interested. The transport, distribution, import and export of electricity should be controlled by the Tunisian society of electricity and gas. In the context of an agreement with Gec-Alsthom, the british company hopes to offer to build, and exploit the future power plant. (N.C.)

  7. Power of Companies in Supply Chains and Their Effect on Network Development

    Directory of Open Access Journals (Sweden)

    Tamás Brányi

    2015-01-01

    Full Text Available A general supply chain functions as a closed cluster and consists of at least three companies: supplier, producer and buyer. In an optimal case the companies within a supply chain are well integrated, partnership rests on trust which results in common strategic decisions. Business practices show that there is a stronger company within the chain that uses its power position to influence network development. The objective of the research is to measure how and what kind of power position is needed to influence the supply chain. The hypothesis states, that power and network development are opposite effects in a supply chain. Statistical examination of data gained from 221 companies state that the company with power position has advantages if the supply chain extends. SPSS analysis proves that the hypothesis is false and opens a new direction of research. Companies within the supply chain have to cope with power structures while cooperating with each other. They tend to look for solutions to ease dependency. Using or misusing power has several factors; mainly they are inherited from the strongest link of the supply chain. This is usually a problem but the results of the statistical analysis show that still a win-win situation is needed for the companies in order to deepen the cooperation. To conclude this research the data shows that the goal is to be more competitive as a chain, not just as a company.

  8. Tender in power-plants back to starting point

    International Nuclear Information System (INIS)

    TREND

    2003-01-01

    Even though there was no progress in privatisation of a 40-percent stake in Slovenske elektrarne (SE), a.s., Bratislava a government decree on re-opening of the tender issued in July will allow more prospects to participate. New prospects that are expected to submit their offers are Czech CEZ and American AES. At the same time the original eight prospects that submitted their offers earlier will have the opportunity to withdraw from the tender or review their offers. The new prospects can show their interest in requesting a information memorandum that will be published shortly and then PricewaterhouseCoopers (PwC) will state a date when the offers have to be submitted. After the original offers are updated and the new ones submitted, the offers will be evaluated. Representative of PwC, Peter Mitka refused to discuss the evaluation deadlines and the consecutive due diligence in SE to be conducted by selected investors. The company to have restarted the whole process was the Czech CEZ that had announces its intention to privatise not only the conventional part of SE but the nuclear part as well. The remaining prospects only show interest in hydraulic power plants or conventional power plants but none of them is interested in nuclear power plants. Even though the process is still open and theoretically other prospects could show their interest in the future, Minister of Economy, Robert Nemcsics does not expect that this step would be repeated. And so the number of prospects is ten. In the past the Minister expressed his view that the most suitable solution would be so sell the SE as a whole and during the first press conference given together with privatisation advisor the Minister explained that there was no time-pressure in regards to the privatisation process as an internal restructuring of the company had to be completed first

  9. Application of integrated computer-aided engineering for design, construction and operation of nuclear power plant

    International Nuclear Information System (INIS)

    Kyung-shick Min; Byung-hun Lee

    1987-01-01

    Computer-aided-engineering (CAE) is an essential tool for modern nuclear power plant engineering. It greatly varies in definition, application, and technology from project to project and company to company. Despite the fast growing technologies and applications of CAE, its complexty and variety have thrown aonther puzzle to management of a nuclear project. Without due consideration of an integrated CAE system in early planning stage, the overall efficiency of a nuclear project would slow down due to the inefficiency in data flow. In this paper, practices and perspectives of CAE appliation are discussed under the Korea Power Engineering Company (KOPEC) philosophy in CAE approach. (author)

  10. Advanced targeted monitoring of high temperature components in power plants

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E; Maile, K; Jovanovic, A [MPA Stuttgart (Germany)

    1999-12-31

    The article presents the idea of targeted monitoring of high-temperature pressurized components in fossil-fueled power plants, implemented within a modular software system and using, in addition to pressure and temperature data, also displacement and strain measurement data. The concept has been implemented as a part of a more complex company-oriented Internet/Intranet system of MPA Stuttgart (ALIAS). ALIAS enables to combine smoothly the monitoring results with those of the off-line analysis, e. g. sensitivity analyses, comparison with preceding experience (case studies), literature search, search in material databases -(experimental and standard data), nonlinear FE-analysis, etc. The concept and the system have been implemented in real plant conditions several power plants in Germany and Europe: one of these applications and its results are described more in detail in the presentation. (orig.) 9 refs.

  11. Advanced targeted monitoring of high temperature components in power plants

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E.; Maile, K.; Jovanovic, A. [MPA Stuttgart (Germany)

    1998-12-31

    The article presents the idea of targeted monitoring of high-temperature pressurized components in fossil-fueled power plants, implemented within a modular software system and using, in addition to pressure and temperature data, also displacement and strain measurement data. The concept has been implemented as a part of a more complex company-oriented Internet/Intranet system of MPA Stuttgart (ALIAS). ALIAS enables to combine smoothly the monitoring results with those of the off-line analysis, e. g. sensitivity analyses, comparison with preceding experience (case studies), literature search, search in material databases -(experimental and standard data), nonlinear FE-analysis, etc. The concept and the system have been implemented in real plant conditions several power plants in Germany and Europe: one of these applications and its results are described more in detail in the presentation. (orig.) 9 refs.

  12. Final Environmental Statement related to the operation of Perry Nuclear Power Plant, Units 1 and 2 Docket Nos. 50-440 and 50-441, Cleveland Electric Illuminating Company

    International Nuclear Information System (INIS)

    1982-08-01

    The information in this Final Environmental Statement is the second assessment of the environmental impact associated with the construction and operation of the Perry Nuclear Power Plant, Units 1 and 2, located on Lake Erie in Lake County, about 11 km (7 mi) northeast of Painesville, Ohio. The first assessment was the Final Environmental Statement related to the construction of the plant issued in April 1974, prior to issuance of the construction permits (CPRR-148 and CPPR-149). Plant construction for Unit 1 is currently about 83% complete, and Unit 2 about 43% complete. Fuel loading for Units 1 and 2 currently estimated by the licensee (Cleveland Electric Illuminating Company) for November 1983, with Unit 2 fuel load scheduled for May 1987. The present assessment is the result of the NRC staff review of the activities associated with the proposed operation of the plant

  13. Present situation of floating nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, A [Central Research Inst. of Electric Power industry, Tokyo (Japan)

    1975-08-01

    The present situation of investigation and the future problems of floating nuclear power plants in Japan are examined, referring to those in USA. The committee report on a new power generation system in 1970 is quoted. In this report, the site conditions are supposed to be 5 km offshore, 100m water depth, 60 m/sec wind velocity, 10 m wave height, 200 m wave length, 12 seconds wave period 0.2 g earthquake acceleration, and 2.5 knots tide current. The semisubmersible hull of double construction 15 m under water is employed. A pair of 1,000,000 kW BWR reactors are utilized. A sea water desalting unit using bleed steam from turbines is installed. The solid radioactive wastes packed in drums are disposed in the sea. The design and cost estimation were made. The names of the organizations who have made investigation in this field, namely the Civil Engineering Society, the Sience and Technology Agency and other several centers, are reported. The Chubu Electric Power Company is forwarding its project. Referring to the investigations in USA, the project of Atlantic nuclear power station unit is described. A report of plant design has been submitted by O.P.S. to United States Atomic Energy Commission in 1973. The Coastal Area Facilities Act was instituted in New Jersey in 1973. Although the Atlantic nuclear power station has been postponed, it is the most feasible project. For the realization of a floating nuclear power plant in Japan, investigation must be started on the ground construction that can endure the construction of breakwater in water depth of 14 to 30 meter.

  14. Genesis of the Brazilian nuclear power plants program

    International Nuclear Information System (INIS)

    Syllus, G.; Lepecki, W.

    1996-01-01

    The genesis of the Brazilian Nuclear Power Program is described by the authors - who participated in the events - from the beginning of the sixties, until the definition and the start of the implementation in 1975 of the Reference Nuclear Power Program. A description is made of the main events, studies and decisions that contributed to the evolution of the Program: the GTRP (Nuclear Power Plant Working Group); the Thorium Group; the Lane Group; the decision about Angra 1; CNEN's analyses about the reactor line and, finally, the creation of CBTN (Nuclear Technology Brazilian Company), which elaborated the studies that resulted in the final definition of the Program and led to the Brazilian German Agreement and the establishment of NUCLEBRAS. (author)

  15. Aging management and preventive maintenance for nuclear power plants

    International Nuclear Information System (INIS)

    Bessho, Toichi; Sagawa, Wataru; Oyamada, Osamu; Uchida, Shunsuke

    1995-01-01

    It is expected that nuclear power generation will bear main electric power supply for long term. For this purpose, by applying proper preventive maintenance to the nuclear power plants in operation, the maintenance of high reliability and the rate of plant operation is extremely important. Especially it has been strongly demanded to execute efficiently the periodic inspection which is carried out every year to shorten its period and increase the rate of operation, and to maintain the reliability by the proper maintenance for the aged plants with long operation years. As to efficient and short periodic inspection, the preparation is advanced by the guidance of electric power companies aiming at realizing it in nearest fiscal year, and further, effort is exerted for the development of technology in long term to optimize periodic inspection. For securing the reliability of aged plants, it is important to do proper inspection and diagnosis and to take the countermeasures by repair and replacement, based on the grasp of secular change mechanism and the evaluation of life of machinery, equipment and materials. In particular, effort is exerted for the development of maintenance technology for reactor pressure vessels and in-core equipment which are hard to access. The confirmation of the function of remote operation equipment and the establishment of execution condition are carried out by uisng the full scale mock-up of BWR plant. The problems in maintenance service and the activities and results of reliability improvement are reported. (K.I.)

  16. Nuclear utility structure. Use of nuclear service companies

    International Nuclear Information System (INIS)

    Ring, L.E.

    1980-01-01

    The feasibility of utilities incorporating service companies to construct and maintain nuclear power plants is analyzed. Responsibilities of the service companies and the public opinion of the concept are discussed

  17. Development of Information Processing and the Network System for the Control and Management of Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Hee; Park, Doo Young; Woo, Joo Hee [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Kwon, Wook Hyun; Park, Jeong Woo; Moon, Hong Joo; Moon, Sang Yong [Seoul National University, Seoul (Korea, Republic of)

    1997-12-31

    It is needed to supervise, control and manage the inter operation of the system that is connected together to achieve good operation and high performance of the power plant. Moreover, the interconnection of the power plant is indispensable and they must be managed together. At present the control management systems that are on operation at power plants are composed of various systems from different companies, and the power plants have their own structure, we have much difficulty in managing communication of the systems. So, this study suggests the standard specification of the communication network for power plants. We have developed the network hardware, the 7 layers UCA, the network application software, the gateway between 3 layers UCA and the 7 layers UCA. Finally, we have developed the interface to Infi`90 which is one of the most popularly used system for power plant control, so that PC can be used for the operation of Infi`90. (author). 82 refs., figs.

  18. Development of Information Processing and the Network System for the Control and Management of Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Hee; Park, Doo Young; Woo, Joo Hee [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Kwon, Wook Hyun; Park, Jeong Woo; Moon, Hong Joo; Moon, Sang Yong [Seoul National University, Seoul (Korea, Republic of)

    1996-12-31

    It is needed to supervise, control and manage the inter operation of the system that is connected together to achieve good operation and high performance of the power plant. Moreover, the interconnection of the power plant is indispensable and they must be managed together. At present the control management systems that are on operation at power plants are composed of various systems from different companies, and the power plants have their own structure, we have much difficulty in managing communication of the systems. So, this study suggests the standard specification of the communication network for power plants. We have developed the network hardware, the 7 layers UCA, the network application software, the gateway between 3 layers UCA and the 7 layers UCA. Finally, we have developed the interface to Infi`90 which is one of the most popularly used system for power plant control, so that PC can be used for the operation of Infi`90. (author). 82 refs., figs.

  19. The power of PV: one US company shows the potential of solar energy

    International Nuclear Information System (INIS)

    Wood, L.

    2005-01-01

    A California-based company, PowerLight, has grown from a one-man shop in 1991 to a company with 100 employees, an annual turnover of $100 million and an impressive client list. The company is one of the USA's fastest growing companies and a leader in large-scale, grid-connected solar systems. Its patented PowerGuard offers a lightweight solar rooftop assembly, while its PowerTracker product is a ground-mounted PV system. Details of some of the company's large projects are given and its plans for new markets highlighted

  20. Sabotage at Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Purvis, James W.

    1999-07-21

    Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented.

  1. Sabotage at Nuclear Power Plants

    International Nuclear Information System (INIS)

    Purvis, James W.

    1999-01-01

    Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented

  2. Design of investment management optimization system for power grid companies under new electricity reform

    Science.gov (United States)

    Yang, Chunhui; Su, Zhixiong; Wang, Xin; Liu, Yang; Qi, Yongwei

    2017-03-01

    The new normalization of the economic situation and the implementation of a new round of electric power system reform put forward higher requirements to the daily operation of power grid companies. As an important day-to-day operation of power grid companies, investment management is directly related to the promotion of the company's operating efficiency and management level. In this context, the establishment of power grid company investment management optimization system will help to improve the level of investment management and control the company, which is of great significance for power gird companies to adapt to market environment changing as soon as possible and meet the policy environment requirements. Therefore, the purpose of this paper is to construct the investment management optimization system of power grid companies, which includes investment management system, investment process control system, investment structure optimization system, and investment project evaluation system and investment management information platform support system.

  3. Influence of communication systems to support the services in nuclear power plants

    International Nuclear Information System (INIS)

    Moron, P.; Ruiz, J. C.; Guerra, F. J.

    2005-01-01

    The continuous technological advances related to communications infrastructures and mobility solutions, increasingly within reach of the companies, are leading to upgrade most of the associated processes within a service company. Tecnatom is not irrelevant to it and is carrying out a technological development for the intercommunication between its facilities, and the spanish nuclear power plants. Consequently is carrying out and adjustment and optimization of their services. All the performances are included in a corporate project to three years named ARCOM. Along 2004 the first results have been obtained, remote analysis of data has been made and the access to the management information systems from the nuclear power stations has been facilitated. (Author)

  4. New nuclear power plants and the electricity market competition

    International Nuclear Information System (INIS)

    Ruska, M.; Koreneff, G.

    2009-11-01

    The study assesses the effects the different nuclear power plant projects would have on crossownership, market concentration and market power in electricity market. The analyses are given both for Finnish and Nordic power markets. The authors feel that the electricity market should primarily be viewed as a common Nordic market in the future. During 2000 to 2008 the hours when Finland was an own price area ranged from 1 % to 29 % as annual averages. In the future it will be more and more seldom that Finland will become an own deficit price area, because the cross-border transmission capacity to Sweden will increase as will Finnish electricity production capacity. In addition, the extension of Nord Pool to the Baltic will increase the size of the market. The ownership of power plants is typically organized through power share companies in Finland. Two of the three nuclear power plant projects are joint ventures with several electricity producers and consumers. The current ownership relations and what effects the new projects might have on them were analyzed in this study. The competitiveness of different electricity production forms in the future was assessed using different market scenarios based on varying demand expectations. The capacity structure was assumed to stay quite unchanged, where the biggest change is expected to come from new renewable power capacity due to EU targets. Conventional condensing power production will decrease and Nordic electricity exports will increase in the future. The market concentration would increase in Finland with new nuclear plants, the most if Fortum were the builder. Vattenfall has a decidedly larger electricity production in the Nordic countries than Fortum, and Vattenfall's capacity would be unchanged by the new planned nuclear plants. The nuclear power plant projects do not therefore increase market concentration significantly on a Nordic level. Nuclear power is not used for day or hour regulation in Finland, which means

  5. Sale of electric energy: the case of Electric Power Company of Santa Catarina State (CELESC)

    International Nuclear Information System (INIS)

    Aurich, D.S.

    1990-01-01

    An electric power system assuring the electric supply to the investor client was developed by CELESC, linking the sale resources to one generation construction. It was related the cost of enlargement work from Pery plant, with the participation of Manville Forest Products in the investments. The economic aspects of this contract are presented, including the supply assure, the costs and the advantage each company will receive. (C.G.C.)

  6. Preventive maintenance at the Forsmark Nuclear Power Plant

    International Nuclear Information System (INIS)

    Danielsson, H.

    1985-01-01

    The maintenance system at the Forsmark Nuclear Power Plant began in 1975, and was drawn up in co-operation with other power stations within the control of the Swedish State Power Board. Preventive maintenance (PM) is part of the system and has been in operation since 1978. Great efforts have been made to build up the system and to gather input data. Since 1981, the system has been in continuous use; follow-ups and system and quality improvements in database contents have been carried out. Great effort has also been devoted to maintaining a high quality of database contents and to the interplay between the different PM measures. We believe that PM plays an important role in the safety and economic operation of the power station and that it is essential that interest in PM should exist at all levels of the power company. (author)

  7. Report from investigation committee on the accident at the Fukushima Nuclear Power Stations of Tokyo Electric Power Company

    International Nuclear Information System (INIS)

    Koshizuka, Seiichi

    2012-01-01

    Government's Investigation Committee on the Accident at Fukushima Nuclear Power Stations of Tokyo Electric Power Company published its final report on July 23, 2012. Results of investigation combined final report and interim report published on December 26, 2011. The author was head of accident accuse investigation team mostly in charge of site response, prior measure and plant behavior. This article reported author related technical investigation results focusing on site response and prior measures against tsunamis of units 1-3 of Fukushima Nuclear Power Stations. Misunderstanding of working state of isolation condenser of unit 1, unsuitability of alternative water injection at manual stop of high-pressure coolant injection (HPCI) system of unit 3 and improper prior measure against tsunami and severe accident were pointed out in interim report. Improper monitoring of suppression chamber of unit 2 and again unsuitable work for HPCI system of unit 3 were reported in final report. Thorough technical investigation was more encouraged to update safety measures of nuclear power stations. (T. Tanaka)

  8. Effects of the accident at Mihama Nuclear Power Plant Unit 3 on the public's attitude to nuclear power generation

    International Nuclear Information System (INIS)

    Kitada, Atsuko

    2005-01-01

    As part of an ongoing public opinion survey regarding nuclear power generation, which started in 1993, a survey was carried out in the Kansai and Kanto regions two months after the accident at Unit 3 of the Mihama Nuclear Power Plant. In addition to analyzing the statistically significant changes that have taken place since the previous survey (taken in 2003), increase and decrease of the ratio of answers to all the questions related to nuclear power before and after the two accidents were compared in the case of the accidents which occurred in the Mihama Unit 3 and the JCO company's nuclear-fuel plant. In the Kansai region, a feeling of uneasiness about the risky character of nuclear power generation increased to some extent, while the public's trust in the safety of nuclear power plants decreased somewhat. After a safety-related explanation on ''Early detection of troubles'' and Accident prevention'' was given from a managerial standpoint, people felt a little less at ease than they had before. Uneasiness, however, did not increase in relation to the overall safety explanation given about the engineering and technical functioning of the plant. There was no significant negative effect on the respondents' evaluation of or attitude toward nuclear power generation. It was found that the people's awareness about the Mihama Unit 3 accident was lower and the effect of the accident on their awareness of nuclear power generation was more limited and smaller when compared with the case of the JCO accident. In the Kanto region, people knew less about the Mihama Unit 3 accident than those living in the Kansai region, and they remembered the JCO accident, the subsequent cover-up by Tokyo Electric Power Company, and the resulting power shortage better than those living in Kansai. This suggested that there was a little difference in terms of psychological distance in relation to the accidents an incidents depending on the place where the events occurred and the company which

  9. Health physics practices and experience at Duke Power Company

    International Nuclear Information System (INIS)

    Lewis, L.

    1986-01-01

    The history and development of the health physics and as-low-as-reasonably-achievable (ALARA) program at Duke Power Company's Oconee Nuclear Station is described as are the fundamental elements of the program and how the program works. The benefits of this health physics/ALARA program have been determined to be (a) improved quality of manpower planning and scheduling, (b) increased efficiency of shutdown activities, (c) reduced cost of shutdown, (d) immediate awareness of adverse job exposure trends, (e) better management information on exposure-related problems, (f) improved accuracy of personnel and job dose records, and (g) in general, improved outage performance and subsequent plant operation. Experience with the health physics/ALARA program is discussed in terms of (a) savings of critical path time, (b) maintaining ALARA personnel doses, and (c) record capacity factors

  10. 78 FR 43197 - Duke Energy Florida, Inc.; Florida Power & Light Company; Tampa Electric Company; Orlando...

    Science.gov (United States)

    2013-07-19

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [ER13-1922-000; ER13-1929-000; ER13-1932-000; NJ13-11-000] Duke Energy Florida, Inc.; Florida Power & Light Company; Tampa Electric Company; Orlando Utilities Commission; Notice of Compliance Filings Take notice that on July 10, 2013, Duke Energy...

  11. Guideline for the erection of wind power plants

    International Nuclear Information System (INIS)

    Behnke, R.; Kampet, T.

    1990-01-01

    This guideline for the erection of a proper wind power plant is to give hints on some important stations on the way from the idea up to perfect operation of the plant. This guideline, however, does not substitute the professional knowledge of a consulting company or firm neutral to manufacturing. Such firms are listed in an attached list of addresses at the end. When establishing this guideline possible problems which occur in the utilization of wind energy have been considered. These items which in some cases seem to be very problematic should not prevent anybody to trust in the application of wind energy wherever it is economically justified or ecologically useful. (orig./BWI) [de

  12. Japan's policy on the nuclear power plant life management, life management for nuclear power plants and measures to cope with aging

    International Nuclear Information System (INIS)

    Takuma, Masao

    2002-01-01

    Full text: Nuclear Plant is born after a lengthy, multi-year construction period, and ends its life decades later, having generated a vast amount of electricity. Its period of operation is, far longer than its period of construction. 'Construction' is the process of 'creating something of value', a new nuclear plant, using technology. 'Operation' is the process of 'raising the child with care' so that its potential can be realized to the fullest over the course of its life. From the view point of plant life management, it is appropriate to divide the life of a power plant into three stages, 'fostering, mature and aging', from the start of operation to the end of its operation. It is important to manage a plant accordingly. It is recently become important to the Utility companies under the competitive power market to manage aging plants effectively, in order to extend its life with sustained high level of performances, with plant safety in the first place. Whether this is, in fact, possible or not, depends upon how the plant was operated in the prior stages, that means, depends upon how it was 'brought up'. This report briefly shows what are important points of management in these 3 stages, and also describes general significances of plant maintenance and inspection, with the practices applied to the plants in Japan. Currently 52 plants Light Water Reactor Nuclear Plants are in operation in Japan, and 13 plants within next 5 years and 23 plants within 10 years are regarded as aged plants. So the contents of periodic inspections by the government and maintenance requirements on the Utilities will be modified to keep and enhance safe and stable operations of the aged plants. In the year 1994, Japanese Government released the report 'Basic Concepts on the Nuclear Power Plant Aging', the objectives of which was the evaluation of the soundness of major equipment and to establish the concepts of aging measures, assuming the plant to be operated 60 years. Utilities, in

  13. Performance of the Electric power companies of Burkina Faso, the Ivory Coast, Mali and Senegal, and their organizational models

    International Nuclear Information System (INIS)

    Girod, J.

    1993-01-01

    The history of the technical, economic, and financial performances of these four countries' power companies over the past two decades is recounted, and then interpreted as the result of the existing organizational models. The changes that have occurred can be understood in long-term perspective by comparing the performance of these companies to the characteristics, rules, and objectives used to define the models, which also helps explain the history of performance indicator variations. Two models are defined: one for the physical plant and one for the management. These correspond to two successive phases in the organization and operation of the electrical sector. Rural electrification and regional interconnection will be important factors in any new model or models developed for the future, because the forms they take is likely to modify the characteristics of these national power companies. 26 refs., 1 fig., 3 tabs

  14. Development of technologies on innovative-simplified nuclear power plant using high-efficiency steam injectors. (2) Analysis of heat balance of innovative-simplified nuclear power plant

    International Nuclear Information System (INIS)

    Goto, Shoji; Ohmori, Shuichi; Mori, Mitchitsugu

    2004-01-01

    It is possible to established simplified systems and reduced space and equipments using high-efficiency Steam Injector (SI) instead of low-pressure feed water heaters in Nuclear Power Plant (NPP). The SI works as a heat exchanger through direct contact between feedwater from condenser and extracted steam from turbine. It can get a higher pressure than supplied steam pressure, so it can reduce the feedwater pumps. The maintenance and reliability are still higher because SI has no movable parts. This paper describes the analysis of the heat balance and plant efficiency of this Innovative-Simplified NPP with high-efficiency SI. The plant efficiency is compared with the electric power of 1100MWe class original BWR system and the Innovative-Simplified BWR system with SI. The SI model is adapted into the heat balance simulator with a simplified model. The results show plant efficiencies of the Innovated-Simplified BWR system are almost equal to the original BWR one. The present research is one of the projects that are carried out by Tokyo Electric Power Company, Toshiba Corporation, and six Universities in Japan, funded from the Institute of Applied Energy (IAE) of Japan as the national public research-funded program. (author)

  15. Financing strategies for nuclear power plant decommissioning. Report for July 1979-July 1980

    International Nuclear Information System (INIS)

    1980-07-01

    The report analyzes several alternatives for financing the decommissioning of nuclear power plants from the point of view of assurance, cost, equity, and other criteria. Sensitivity analyses are performed on several important variables and possible impacts on representative companies' rates are discussed and illustrated

  16. Optimal Operation and Value Evaluation of Pumped Storage Power Plants Considering Spot Market Trading and Uncertainty of Bilateral Demand

    Science.gov (United States)

    Takahashi, Kenta; Hara, Ryoichi; Kita, Hiroyuki; Hasegawa, Jun

    In recent years, as the deregulation in electric power industry has advanced in many countries, a spot market trading of electricity has been done. Generation companies are allowed to purchase the electricity through the electric power market and supply electric power for their bilateral customers. Under this circumstance, it is important for the generation companies to procure the required electricity with cheaper cost to increase their profit. The market price is volatile since it is determined by bidding between buyer and seller. The pumped storage power plant, one of the storage facilities is promising against such volatile market price since it can produce a profit by purchasing electricity with lower-price and selling it with higher-price. This paper discusses the optimal operation of the pumped storage power plants considering bidding strategy to an uncertain spot market. The volatilities in market price and demand are represented by the Vasicek model in our estimation. This paper also discusses the allocation of operational reserve to the pumped storage power plant.

  17. Nuclear power plants

    International Nuclear Information System (INIS)

    Margulova, T.Ch.

    1976-01-01

    The textbook focuses on the technology and the operating characteristics of nuclear power plants equiped with pressurized water or boiling water reactors, which are in operation all over the world at present. The following topics are dealt with in relation to the complete plant and to economics: distribution and consumption of electric and thermal energy, types and equipment of nuclear power plants, chemical processes and material balance, economical characteristics concerning heat and energy, regenerative preheating of feed water, degassing and condenser systems, water supply, evaporators, district heating systems, steam generating systems and turbines, coolant loops and pipes, plant siting, ventilation and decontamination systems, reactor operation and management, heat transfer including its calculation, design of reactor buildings, and nuclear power plants with gas or sodium cooled reactors. Numerous technical data of modern Soviet nuclear power plants are included. The book is of interest to graduate and post-graduate students in the field of nuclear engineering as well as to nuclear engineers

  18. The knowledge-based off-site emergency response system for a nuclear power plant

    International Nuclear Information System (INIS)

    Ho, L.W.; Loa, W.W.; Wang, C.L.

    1987-01-01

    A knowledge-based expert system for a nuclear power plant off-site emergency response system is described. The system incorporates the knowledge about the nuclear power plant behaviours, site environment and site geographic factors, etc. The system is developed using Chinshan nuclear power station of Taipower Company, Taiwan, ROC as a representative model. The objectives of developing this system are to provide an automated intelligent system with functions of accident simulation, prediction and with learning capabilities to supplement the actions of the emergency planners and accident managers in order to protect the plant personnel and the surrounding population, and prevent or mitigate property damages resulting from the plant accident. The system is capable of providing local and national authorities with rapid retrieval data from the site characteristics and accident progression. The system can also provide the framework for allocation of available resources and can handle the uncertainties in data and models

  19. Accident prevention in power plants

    International Nuclear Information System (INIS)

    Steyrer, H.

    Large thermal power plants are insured to a great extent at the Industrial Injuries Insurance Institute of Instrument and Electric Engineering. Approximately 4800 employees are registered. The accident frequency according to an evaluation over 12 months lies around 79.8 per year and 1000 employees in fossil-fired power plants, around 34.1 per year and 1000 employees in nuclear power plants, as in nuclear power plants coal handling and ash removal are excluded. Injuries due to radiation were not registered. The crucial points of accidents are mechanical injuries received on solid, sharp-edged and pointed objects (fossil-fired power plants 28.6%, nuclear power plants 41.5%), stumbling, twisting or slipping (fossil-fired power plants 21.8%, nuclear power plants 19.5%) and injuries due to moving machine parts (only nuclear power plants 12.2%). However, accidents due to burns or scalds obtain with 4.2% and less a lower portion than expected. The accident statistics can explain this fact in a way that the typical power plant accident does not exist. (orig./GL) [de

  20. Technology success: Integration of power plant reliability and effective maintenance

    International Nuclear Information System (INIS)

    Ferguson, K.

    2008-01-01

    The nuclear power generation sector has a tradition of utilizing technology as a key attribute for advancement. Companies that own, manage, and operate nuclear power plants can be expected to continue to rely on technology as a vital element of success. Inherent with the operations of the nuclear power industry in many parts of the world is the close connection between efficiency of power plant operations and successful business survival. The relationship among power plant availability, reliability of systems and components, and viability of the enterprise is more evident than ever. Technology decisions need to be accomplished that reflect business strategies, work processes, as well as needs of stakeholders and authorities. Such rigor is needed to address overarching concerns such as power plant life extension and license renewal, new plant orders, outage management, plant safety, inventory management etc. Particular to power plant reliability, the prudent leveraging of technology as a key to future success is vital. A dominant concern is effective asset management as physical plant assets age. Many plants are in, or are entering in, a situation in which systems and component design life and margins are converging such that failure threats can come into play with increasing frequency. Wisely selected technologies can be vital to the identification of emerging threats to reliable performance of key plant features and initiating effective maintenance actions and investments that can sustain or enhance current reliability in a cost effective manner. This attention to detail is vital to investment in new plants as well This paper and presentation will address (1) specific technology success in place at power plants, including nuclear, that integrates attention to attaining high plant reliability and effective maintenance actions as well as (2) complimentary actions that maximize technology success. In addition, the range of benefits that accrue as a result of

  1. Backfitting of Nuclear Power Plant Bohunice V1 in Slovakia

    International Nuclear Information System (INIS)

    Ferenc, M.

    1999-01-01

    Nuclear power plants in the Slovak Republic generate almost 55 % of electricity. The operating organization and the Nuclear Regulatory Authority of the Slovak Republic pay a great attention to safe and reliable operation of four units with VVER 440 reactors at Bohunices site and one in Mochovce side. Engineering and design organizations in cooperation with well known international companies prepare evaluation of safety conditions, safety analyses and projects for the implementation of modifications to upgrade the nuclear safety of the units in operation. A gradual safety upgrading (reconstruction) of the V-1 Bohunice plant has been in progress, a modernization of the V-2 Bohunice plant is being prepared. Simultaneously the commissioning of Unit 2 at the Mochovce plant is being implemented.(author)

  2. Differences in the patent management in Brazilian companies with and without plants abroad

    Directory of Open Access Journals (Sweden)

    Hilda Maria Salomé Pereira

    2014-12-01

    Full Text Available This paper compares the procedures of local Brazilian companies (those which have plants in Brazil only with those of international Brazilian companies (which have plants in at least two countries regarding the patent management. Although there are a lot more variables to consider when examining the issue of patents in companies, this study presents and analyzes the results of a qualitative research on the decision to patent innovations, the choice of countries where to patent and the strategic significance of patents to the company.

  3. The positioning of Iberdrola Ingenieria y Construccion in the market for new electric power plants

    International Nuclear Information System (INIS)

    Garnica, E.; Cubain, B.; Chimeno, M. A.; Ortego, A.

    2009-01-01

    IBERDROLA Ingeneria y Contruccion carrying out a wide plant of activities oriented to position the company in the emerging marketplace of new nuclear power plants whose expectation for the next years is highly promising. Obviously, the plan is focused in their technicians, which include people that are very knowledgeable and others younger, both strongly committed with the managerial project. During the las years, the gained experience in nuclear projects, together with other successfully generation projects (combined cycles gas turbine and renewable) allow warranty the success in the challenge of building new nuclear power plants for the next years. (Author)

  4. The Sydvaerme project: District heating from the Barsebeck nuclear power plant

    International Nuclear Information System (INIS)

    Josefsson, L.

    1977-01-01

    The paper presents a summary report of a study on district heating from Barsebeck Nuclear Power Plant in Sweden, prepared cooperatively by the cities of Malmoe, Lund, Helsingborg, Landskrona and the electric power company Sydkraft. A future number 3 generating set at the Barsebeck nuclear power station could be designed for combined production of heat and electric power. The generating set could be completed after 1983, and could then supply about 65% of total district heating requirements. The first stage of the investigation includes a proposal for a technically feasible solution, sufficiently detailed to permit both technical and economic evaluation of the project. (author)

  5. Methods for the computerized control of nuclear power plants for improved safety, quality, and productivity

    International Nuclear Information System (INIS)

    Heising, C.D.

    1988-12-01

    The purpose of this research project was to translate the Total Quality Control (TQC) management system to the operation of nuclear power plants. This work began on September 30, 1986 and continued through December 30, 1988 at an original funding level of $251,000. Four graduate research assistants were employed during the two year project period, with all four completing master's level degree theses or projects. In addition, several papers were presented at technical conferences regarding this work. Currently, one paper has been accepted for publication in the journal of Operations Research, and two more papers are currently being written for submission in the near future. The project also received favorable publicity at the university and elsewhere. The major findings of this work was that, indeed, the Japanese management system of Total Quality Control (TQC) may be applied to nuclear power plant operation to achieve enhanced safety and increased efficiency. Two utilities are already heavily engaged in implementing TQC at their nuclear power plants: the Kansai Electric Company of Osaka, Japan and the Florida Power and Light Company of Miami, Florida. We have documented in detail the progress of these utilities in their attempts to implement TQC, as well as highlighting ''success stories'' of TQC implementation in other industries

  6. Sharing product data of nuclear power plants across their lifecycles by utilizing a neutral model

    International Nuclear Information System (INIS)

    Mun, Duhwan; Hwang, Jinsang; Han, Soonhung; Seki, Hiroshi; Yang, Jeongsam

    2008-01-01

    Many public and private Korean organizations are involved during the lifecycle of a domestic nuclear power plant. Korea Plant Engineering Co. (KOPEC) participates in the design stage, Korea Hydraulic and Nuclear Power (KHNP) operates and manages all nuclear power plants in Korea, Doosan Heavy Industry and Construction Co. manufactures the main equipment, and a construction company constructs the plant. Even though each organization has its own digital data management system and obtains a certain level of automation, data sharing among organizations is poor. KHNP obtains drawings and technical specifications from KOPEC in the form of paper. This results in manual re-work of definitions, and errors can potentially occur in the process. In order to establish an information bridge between design and operation and maintenance (O and M) phases, a generic product model (GPM), a data model from Hitachi, is extended for constructing a neutral data warehouse and the Korean Nuclear Power Plant Information Sharing System (KNPISS) is implemented

  7. Sharing product data of nuclear power plants across their lifecycles by utilizing a neutral model

    Energy Technology Data Exchange (ETDEWEB)

    Mun, Duhwan [WIG Craft Research Division, Maritime and Ocean Engineering Research Institute, KORDI, 171 Jang-dong, Yuseong-gu, Daejeon 305-343 (Korea, Republic of)], E-mail: dhmun@moeri.re.kr; Hwang, Jinsang [Department of Mechanical Engineering, KAIST (Korea, Republic of)], E-mail: mars@icad.kaist.ac.kr; Han, Soonhung [Department of Mechanical Engineering, KAIST (Korea, Republic of)], E-mail: shhan@kaist.ac.kr; Seki, Hiroshi [Hitachi Research Laboratory, Hitachi, Ltd. (Japan)], E-mail: hiroshi.seki.mf@hitachi.com; Yang, Jeongsam [Industrial and Information Systems Engineering, Ajou University (Korea, Republic of)], E-mail: jyang@ajou.ac.kr

    2008-02-15

    Many public and private Korean organizations are involved during the lifecycle of a domestic nuclear power plant. Korea Plant Engineering Co. (KOPEC) participates in the design stage, Korea Hydraulic and Nuclear Power (KHNP) operates and manages all nuclear power plants in Korea, Doosan Heavy Industry and Construction Co. manufactures the main equipment, and a construction company constructs the plant. Even though each organization has its own digital data management system and obtains a certain level of automation, data sharing among organizations is poor. KHNP obtains drawings and technical specifications from KOPEC in the form of paper. This results in manual re-work of definitions, and errors can potentially occur in the process. In order to establish an information bridge between design and operation and maintenance (O and M) phases, a generic product model (GPM), a data model from Hitachi, is extended for constructing a neutral data warehouse and the Korean Nuclear Power Plant Information Sharing System (KNPISS) is implemented.

  8. Special considerations on operating a fuel cell power plant using natural gas with marginal heating value

    Energy Technology Data Exchange (ETDEWEB)

    Moses, L. Ng; Chien-Liang Lin [Industrial Technology Research Institute, Taiwan (China); Ya-Tang Cheng [Power Research Institute, Taiwan (China)

    1996-12-31

    In realizing new power generation technologies in Taiwan, a phosphoric acid fuel cell power plant (model PC2513, ONSI Corporation) has been installed in the premises of the Power Research Institute of the Taiwan Power Company in Taipei County of Taiwan. The pipeline gas supplying to the site of this power plant has a high percentage of carbon dioxide and thus a slightly lower heating value than that specified by the manufacturer. Because of the lowering of heating value of input gas, the highest Output power from the power plant is understandably less than the rated power of 200 kW designed. Further, the transient response of the power plant as interrupted from the Grid is also affected. Since this gas is also the pipeline gas supplying to the heavily populated Taipei Municipal area, it is conceivable that the success of the operations of fuel cells using this fuel is of vital importance to the promotion of the use of this power generation technology in Taiwan. Hence, experiments were set up to assess the feasibility of this fuel cell power plant using the existing pipeline gas in this part of Taiwan where fuel cells would most likely find useful.

  9. Introduction to Nuclear Power Plant Environment Supervisory Committee

    International Nuclear Information System (INIS)

    Lee, Byung Il

    2008-01-01

    In Korea, there are five nuclear power plant sites, located at Yongkwang, Kori, Shin Kori, Uljin, and Wolsong. Each administrative district has its own NESC (Nuclear plant Environment Public Supervisory Committee) which consists of a steering committee and a center. The purpose of NESC is to let the public survey and inspect nuclear plant environment and then improve a clarity and confidence in plant construction and operation by themselves. In order to understand the situation of NESC and explore ways toward a better role of NESC, in this paper we try to enumerate a few major facts related to a current status of NESC. As a summary, there must be a great role of NESC in the relationship between the residents, a nuclear industry company and the related government division. Furthermore, NESC would certainly do its role for all sides provided that more strong definition of NESC in law, more financial supporting and more philosophical speculation for the being of NESC

  10. Nuclear power plant diagnostics study at the Midland training simulator

    International Nuclear Information System (INIS)

    Reifman, J.; Rank, P.; Lee, J.C.

    1991-01-01

    Training simulators provide a real world environment for testing advanced diagnostic and control systems as an aid to nuclear power plant operators. The simulators not only duplicate the hardware din the actual control room, allowing for analysis of man-machine interface, but also represent the dynamic behavior of the reference plant in real-time, in a realistic manner. Training simulators provide the means to representing the reference plant operations in a wide range of operation conditions including off-normal and emergency conditions. Transient events with very low probability of occurrence can then be represented and used to test the capabilities of advanced diagnostic and control systems. For these reasons, full-scope operator training simulators have been used as a test bed for a number of advanced diagnostic concepts. The University of Michigan and Consumers Power Company have been collaborating in a program devoted to the development and study of advanced concepts for automatic diagnostics and control of nuclear power plants. The program has been focused on the use of the full-scope operator training Midland Nuclear Power Plant Unit 2 (MNP-2) Simulator for development, testing, and verification of advanced diagnostics concepts. In their current efforts, the authors have developed two artificial intelligent (AI) diagnostic concepts that have been applied to the MNP-2 Simulator: the systematic generation and updating of a rule-based knowledge system for nuclear power plant diagnostics and a nonlinear parameter estimation algorithm called the simulation filter. The simulation filter algorithm is used with the MNP-2 Simulator to improve the simulation of the Three Mile Island Unit 2 (TMI-2) accident. 11 refs., 4 figs

  11. Statistical annual report 2003 of Furnas - Electrical Power plants and Co., RJ, Brazil. Calendar year 2003

    International Nuclear Information System (INIS)

    2003-01-01

    This document presents the statistical annual report of Furnas Power Plants and Co, reporting the results obtained during the calendar year of 2003 and the evolution in the last five years, allowing a general and comparative views of the company performance focusing the power generation and transmission, economic and financial results

  12. Basic Study on Data-Centric design information integration system framework development for adapting Nuclear Power Plant construction in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Byung Ki [KHNP, Gyeongju (Korea, Republic of)

    2016-05-15

    This study established the concept of data-centric design, which is the latest design technique, by analyzing the existing literature so that the data-centric design would be applied to the nuclear power plant projects in Korea and analyzed the status of data-centric design application by the advanced companies and the domestic design companies participating in the nuclear power plant projects. By analyzing the function of the 3D CAD commercial system and all design drawings used in the nuclear power plant projects in Korea, a data-centric design integrated system model has been developed. This study established the concept of data-centric design technology, analyzed the functions of the plant architect engineering (A/E) software being globally used in the plant field and the design process status of nuclear power plant projects in Korea. A design information integration system building model, which is capable of data-centric design, in the place of the existing document-centric system design such as P and ID and SLD, has been suggested through the investigation on the data-centric design cases of the advanced companies. The major functions of the suggested model required for the application to the domestic industry were drawn. The suggested framework builds the field design, which was performed in the 3D system of the constructor, as an owner's field design system, which can manage all design drawings generated from the field design and the related information in integrated way. An as-built full model integrated of plant architect engineering, supplier design and field design is built. It is handed over to the operation team at the O and M stage and utilized in the maintenance and repair. As a power plant full model of future construction project has been enabled, an improved design process has been suggested, in which only the design change information during the plant architect engineering (A/E) and the design change information during the field design

  13. Trend of collective dose and dose reduction measures of Mitsubishi Electric Corporation workers in nuclear power plants

    International Nuclear Information System (INIS)

    Yamato, I.; Nakayama, T.; Shimokawa, F.; Yamamoto, T.

    1996-01-01

    MELCO has supplied the reactor instrumentation control system, reactor coolant pump motors, turbine generator and central control system for the pressurized water type nuclear power plant. For the legal periodical inspection and repair work, MELCO has also received orders for the periodical inspection for 23 power plants (including 4 plants under construction) of 5 electric power companies, and executed the inspection work from the view point of preventive maintenance. The annual dose for MELCO's workers is liable to be decreased in spite of increased number of plants. The dose for new plant in particular is 50, or less as compared with that for conventional plant. This is because the measures taken for the conventional plant against the dose reduction is reflected upon the new plant. The dose reduction measures are taken for each system for which order was received. Such measures are mainly intended to improve the work procedures and equipment for reduction of work time in the radioactive area and to arrange the working process, so as to perform the work in such period when the dose level at the working environment is low. To enhance the workers' consciousness for reduction of dose, MELCO provided the workers with dose predictive training, and let them aware of such items known at the tool box briefing (TBX), which could realize the dose reduction for workers. MELCO has been positively promoting the activity to arrange the desirable work environment for extermination of 3Ks (giken, gitsui, titanai) or 3Ds (dangerous, difficult, dirty) including protection against radiation in corporation with electric power companies. (author)

  14. Off-shore nuclear power plant

    International Nuclear Information System (INIS)

    Nakanishi, T.

    1980-01-01

    In order to avoid losses of energy and seawater pollution an off-shore nuclear power plant is coupled with a power plant which utilizes the temperature difference between seawater and hot reactor cooling water. According to the invention the power plant has a working media loop which is separated from the nuclear power plant. The apparative equipment and the operational characteristics of the power plant are the subject of the patent. (UWI) [de

  15. Combined heat and power unit using renewable raw materials. A cogeneration power plant with wood chips and pellets; BHKW auf Basis nachwachsender Rohstoffe. KWK mit Holzhackschnitzeln und Pellets

    Energy Technology Data Exchange (ETDEWEB)

    Lennartz, Marc Wilhelm

    2013-07-15

    The combined heat and power units of the next generation operate with renewable resources. The plants working with wood chips or pellets now are ready for mass production. So, farmers and foresters, trade and municipalities may pile in the decentralized, energetic self-sufficiency. Two companies have developed procedures with which combined heat and power plants based can be operated on wood chips or pellets.

  16. Application of integrated computer-aided engineering for design, construction and operation of nuclear power plant: practice and prospects

    International Nuclear Information System (INIS)

    Min, K.S.; Lee, B.H.

    1988-01-01

    Computer-aided-engineering (CAE) is an essential tool for modern nuclear power plant engineering. It greatly varies in definition, application, and technology from project to project and company to company. Despite the fast growing technologies and applications of CAE, its complexity and variety have thrown another puzzle to management of a nuclear project. Without due consideration of an integrated CAE system in early planning stage, the overall efficiency of a nuclear project would slow down due to the inefficiency in data flow. In this application are discussed under the Korea Power engineering Company philosophy in CAE approach

  17. Solar thermal power plants

    International Nuclear Information System (INIS)

    Schnatbaum, L.

    2009-01-01

    The solar thermal power plant technology, the opportunities it presents and the developments in the market are outlined. The focus is on the technology of parabolic trough power plants, a proven technology for solar power generation on a large scale. In a parabolic trough power plant, trough-shaped mirrors concentrate the solar irradiation onto a pipe in the focal line of the collector. The thermal energy thus generated is used for electricity generation in a steam turbine. Parabolic trough plants can be combined with thermal storage and fossil or biomass fired heat exchangers to generate electricity even when the sun is not shining. Solar Millennium AG in Erlangen has developed the first power plant of this kind in Europe. After two years of construction the plant started operation in Southern Spain in 2008. This one and its sister projects are important steps leading the way for the whole market. The paper also covers the technological challenges, the key components used and the research and development activities concerning this technology. Solar thermal power plants are ideal for covering peak and medium loads in power grids. In hybrid operation they can also cover base-load. The Solar Chimney power plant, another striking technology for the conversion of solar into electric energy, is described briefly. The paper concludes with a look at the future - the import of solar energy from the deserts of North Africa to central Europe. (author)

  18. Safety Evaluation Report related to the operation of Perry Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-440 and 50-441). Supplement No. 9

    International Nuclear Information System (INIS)

    1986-03-01

    Supplement No. 9 to the Safety Evaluation Report (NUREG-0887) on the application filed by the Cleveland Electric Illuminating Company on behalf of itself and as agent for the Duquesne Light Company, the Ohio Edison Company, the Pennsylvania Power Company, and the Toledo Edison Company (the Central Area Power Coordination Group or CAPCO) for a license to operate the Perry Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-440 and 50-441), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Lake County, Ohio, approximately 35 miles northeast of Cleveland, Ohio. This supplement reports the staff's evaluation findings pertaining to the earthquake event that occurred in the vicinity of the Perry Nuclear Power Plant site on January 31, 1986, and is limited to that evaluation. Future supplemental reports will continue reporting on the status of new or unresolved issues since Supplement No. 8 was issued in January 1986

  19. Power plant cycle chemistry - a currently neglected power plant chemistry discipline

    International Nuclear Information System (INIS)

    Bursik, A.

    2005-01-01

    Power plant cycle chemistry seems to be a stepchild at both utilities and universities and research organizations. It is felt that other power plant chemistry disciplines are more important. The last International Power Cycle Chemistry Conference in Prague may be cited as an example. A critical review of the papers presented at this conference seems to confirm the above-mentioned statements. This situation is very unsatisfactory and has led to an increasing number of component failures and instances of damage to major cycle components. Optimization of cycle chemistry in fossil power plants undoubtedly results in clear benefits and savings with respect to operating costs. It should be kept in mind that many seemingly important chemistry-related issues lose their importance during forced outages of units practicing faulty plant cycle chemistry. (orig.)

  20. 76 FR 27669 - Automotive Components Holdings, LLC, a Subsidiary of Ford Motor Company, Saline Plant Division...

    Science.gov (United States)

    2011-05-12

    ... Holdings, LLC, a Subsidiary of Ford Motor Company, Saline Plant Division, Including Workers Whose Wages Were Reported Under Ford Company, Visteon, MSX International, W.J. O'Neil Company, and Unibar, Saline... workers of Automotive Components Holdings, LLC, a Subsidiary of Ford Motor Company, Saline Plant Division...

  1. Alternative off-site power supply improves nuclear power plant safety

    International Nuclear Information System (INIS)

    Gjorgiev, Blaže; Volkanovski, Andrija; Kančev, Duško; Čepin, Marko

    2014-01-01

    Highlights: • Additional power supply for mitigation of the station blackout event in NPP is used. • A hydro power plant is considered as an off-site alternative power supply. • An upgrade of the probabilistic safety assessment from its traditional use is made. • The obtained results show improvement of nuclear power plant safety. - Abstract: A reliable power system is important for safe operation of the nuclear power plants. The station blackout event is of great importance for nuclear power plant safety. This event is caused by the loss of all alternating current power supply to the safety and non-safety buses of the nuclear power plant. In this study an independent electrical connection between a pumped-storage hydro power plant and a nuclear power plant is assumed as a standpoint for safety and reliability analysis. The pumped-storage hydro power plant is considered as an alternative power supply. The connection with conventional accumulation type of hydro power plant is analysed in addition. The objective of this paper is to investigate the improvement of nuclear power plant safety resulting from the consideration of the alternative power supplies. The safety of the nuclear power plant is analysed through the core damage frequency, a risk measure assess by the probabilistic safety assessment. The presented method upgrades the probabilistic safety assessment from its common traditional use in sense that it considers non-plant sited systems. The obtained results show significant decrease of the core damage frequency, indicating improvement of nuclear safety if hydro power plant is introduced as an alternative off-site power source

  2. Control of power plants and power systems. Proceedings

    International Nuclear Information System (INIS)

    Canales-Ruiz, R.

    1996-01-01

    The 88 papers in this volume constitute the proceedings of the International Federation of Automatic Control Symposium held in Mexico in 1995. The broad areas which they cover are: self tuning control; power plant operations; dynamic stability; fuzzy logic applications; power plants modelling; artificial intelligence applications; power plants simulation; voltage control; control of hydro electric units; state estimation; fault diagnosis and monitoring systems; system expansion and operation planning; security assessment; economic dispatch and optimal load flow; adaptive control; distribution; transient stability and preventive control; modelling and control of nuclear plant; knowledge data bases for automatic learning methods applied to power system dynamic security assessment; control of combined cycle units; power control centres. Separate abstracts have been prepared for the three papers relating to nuclear power plants. (UK)

  3. Development of technologies on innovative-simplified nuclear power plant using high-efficiency steam injectors (2) analysis of heat balance of innovative-simplified nuclear power plant

    International Nuclear Information System (INIS)

    Goto, S.; Ohmori, S.; Mori, M.

    2005-01-01

    It is possible to establish simplified system with reduced space and total equipment weight using high-efficiency Steam Injector (SI) instead of low-pressure feedwater heaters in Nuclear Power Plant (NPP)(1)-(6). The SI works as a heat exchanger through direct contact between feedwater from the condensers and extracted steam from the turbines. It can get a higher pressure than supplied steam pressure, so it can reduce the feedwater pumps. The maintenance and reliability are still higher because SI has no movable parts. This paper describes the analysis of the heat balance and plant efficiency of this Innovative- Simplified NPP with high-efficiency SI. The plant efficiency is compared with the electric power of 1100MWe-class BWR system and the Innovative- Simplified BWR system with SI. The SI model is adapted into the heat balance simulator with a simplified model. The results show plant efficiencies of the Innovated-Simplified BWR system are almost equal to the original BWR one. The present research is one of the projects that are carried out by Tokyo Electric Power Company, Toshiba Corporation, and six Universities in Japan, funded from the Institute of Applied Energy (IAE) of Japan as the national public research-funded program. (authors)

  4. Application condition of optical communication technique in the nuclear power plants

    International Nuclear Information System (INIS)

    Sakurai, Jun

    1999-01-01

    As the optical communication technique can process rapidly a lot of information and exclude perfectly error action due to noise, it is adopted gradually to commercial and company communications (containing operational managements in large scale facilities) in worldwide scale in stead of conventional communication technique (containing operational controls and measurements). In application to the nuclear power plants, as forming not only change in properties but also deterioration due to radiation damage in many cases of exposure to various types of radiations such as neutron, gamma-ray, and so forth in difference with conventional using environment, its using range is limited at present. In future, development of optical fibers or elements with excellent high temperature and radiation resistances usable stably at reactor core for a long time is essential. The regular application of the optical communication technique at the nuclear power plants begins just now, which is an expected field for future large development. And, for the old nuclear power plant in present operation, substitution to the optical communication technique in accompany with replace of appliances at periodical inspections will also be conducted. Its response is already required rapidly in the Tokyo Electric Power Co., Ltd.. (G.K.)

  5. Demonstration test of electron beam flue gas treatment pilot plant of a coal fired thermal power station

    International Nuclear Information System (INIS)

    Doi, Yoshitaka; Hayashi, Kazuaki; Izutsu, Masahiro; Watanabe, Shigeharu; Namba, Hideki; Tokunaga, Okihiro; Hashimoto, Shoji; Tanaka, Tadashi; Ogura, Yoshimi.

    1995-01-01

    The Japan Atomic Energy Research Institute, Chubu Electric Power Company and Ebara Corporation jointly constructed a pilot plant for electron beam flue gas treatment (dry process) capable of treating 12,000 m 3 /h (NTP) of flue gas from a coal fired boiler, at Shin-Nagoya Thermal Power Station, Chubu Electric Power Company. Various tests carried out at the plant over a period extending one year verified the followings. By appropriately controlling parameters such as electron beam dosage, flue gas temperature, and ammonia stoichiometric amount, highly efficient simultaneous SO 2 and NOx removal from flue gas was achieved under all gas conditions, equal to or more efficient than that by the highest level conventional treatment. The operation of the pilot plant was stable and trouble-free over a long term, and the operation and the process was easy to operate and control. By-products (ammonium sulfate and ammonium nitrate) produced by the flue gas treatment were proven to have superior quality, equivalent to that of market-available nitrogen fertilizers. These by-products had been registered as by-product nitrogen fertilizers. (author)

  6. Open Source Power Plant Simulator Development Under Matlab Environment

    International Nuclear Information System (INIS)

    Ratemi, W.M.; Fadilah, S.M.; Abonoor, N

    2008-01-01

    In this paper an open source programming approach is targeted for the development of power plant simulator under Matlab environment. With this approach many individuals can contribute to the development of the simulator by developing different orders of complexities of the power plant components. Such modules can be modeled based on physical principles, or using neural networks or other methods. All of these modules are categorized in Matlab library, of which the user can select and build up his simulator. Many international companies developed its own authoring tool for the development of its simulators, and hence it became its own property available for high costs. Matlab is a general software developed by mathworks that can be used with its toolkits as the authoring tool for the development of components by different individuals, and through the appropriate coordination, different plant simulators, nuclear, traditional , or even research reactors can be computerly assembled. In this paper, power plant components such as a pressurizer, a reactor, a steam generator, a turbine, a condenser, a feedwater heater, a valve, a pump are modeled based on physical principles. Also a prototype modeling of a reactor ( a scram case) based on neural networks is developed. These modules are inserted in two different Matlab libraries one called physical and the other is called neural. Furthermore, during the simulation one can pause and shuffle the modules selected from the two libraries and then proceed the simulation. Also, under the Matlab environment a PID controller is developed for multi-loop plant which can be integrated for the control of the appropriate developed simulator. This paper is an attempt to base the open source approach for the development of power plant simulators or even research reactor simulators. It then requires the coordination among interested individuals or institutions to set it to professionalism. (author)

  7. Piercing of corporate veil of nuclear companies

    International Nuclear Information System (INIS)

    Frenz, Walter

    2015-01-01

    The Federal Ministry of Economics plans that the nuclear companies with all their assets to cover disposal costs can be used where a power plant operator is governed by its parent company, hence the latter Capital or voting majority of the operators holding or these passes; To date, the parent company is liable only limited and not more than five years after the end of the domination of one Subsidiary, oparating a power plant. In this way, prevents ultimately the public sector and thus the Taxpayers have to pay for the long-term consequences of the use of nuclear energy. Until now ensured paragraph 303 AktG a group law Secondary liability the parent companies of the operating company in the case of of termination of the control and profit transfer agreements is very limited for the nuclear liabilities, namely in two ways: The claim is only focused on the backup performance and not at the expense of acquisition and Moreover, according to the case law limited of five years after its foundation; for the area of transformation law comparable rules are valid. thereby the dismantling of a nuclear power station takes just already for 20 years and a final repository is expected before 2050 not be available. [de

  8. A performance improvement program applied to the Perry Nuclear Power Plant instrumentation and control section

    International Nuclear Information System (INIS)

    Anderson, G.R.

    1987-01-01

    The management at Cleveland Electric Illuminating Company sought to avoid problems typically encountered in the start-up of new nuclear generating units. In response to early indications that such problems may have been developing at their Perry Nuclear Power Plant, several performance improvement initiatives were undertaken. One of these initiatives was a performance improvement evaluation (PIE) for the instrumentation and control (IandC) section at Perry. The IandC PIE, which used a method designed to be adaptable to other disciplines as well, had important results that are applicable to other nuclear power plants

  9. The relaxation of the operation restrictions at typhoon period for Taipower's nuclear power plant

    International Nuclear Information System (INIS)

    Wang, L.C.; Chou, L.Y.

    2004-01-01

    This paper analyzes the station blackout event for Taipower's nuclear power plant and proposes a plan whereby the availability of the plant at typhoon period can be increased through a systematic approach to improvements in the old operating restrictions. The conclusions have shown that the old operating restrictions were too strict and can be relaxed without increasing the likelihood of core damage or core melt for the accident sequence. After a detailed review of this analysis report, Republic of China Atomic Energy Commission (ROCAEC) has approved the relaxation of the operating restrictions as proposed by Taiwan Power Company. (author)

  10. Industrial safety in power plants

    International Nuclear Information System (INIS)

    1987-01-01

    The proceedings of the VGB conference 'Industrial safety in power plants' held in the Gruga-Halle, Essen on January 21 and 22, 1987, contain the papers reporting on: Management responsibility for and legal consequences of industrial safety; VBG 2.0 Industrial Accident Prevention Regulation and the power plant operator; Operational experience gained with wet-type flue gas desulphurization systems; Flue gas desulphurization systems: Industrial-safety-related requirements to be met in planning and operation; the effects of the Hazardous Substances Ordinance on power plant operation; Occupational health aspects of heat-exposed jobs in power plants; Regulations of the Industrial Accident Insurance Associations concerning heat-exposed jobs and industrial medical practice; The new VBG 30 Accident Prevention Regulation 'Nuclear power plants'; Industrial safety in nuclear power plants; safe working on and within containers and confined spaces; Application of respiratory protection equipment in power plants. (HAG) [de

  11. Spent-fuel management strategies at Carolina Power ampersand Light Company

    International Nuclear Information System (INIS)

    Thompson, M.F. Jr.; Kunita, R.K.

    1990-01-01

    Carolina Power ampersand Light (CP ampersand L) Company serves customers in portions of both North and South Carolina, and operates the Robinson 2, Brunswick 1 and 2, and Harris nuclear units. Due first to licensing delays in the Allied General Nuclear Service reprocessing plant and then to actions and inactions by the federal government, CP ampersand L like other utilities, is concerned with the storage of spent fuel. Despite pool reracking to the maximum practical, further actions have been necessary; hence, CP ampersand L undertook efforts to make both dry storage and transshipment viable alternatives. Based on experience, it is found that while both dry storage and transshipment are viable options, transshipment is the better strategy for CP ampersand L. Dry storage will be maintained as an alternative strategy

  12. Memorial 1997 - ENDESA (Chilean Electricity Company)

    International Nuclear Information System (INIS)

    1998-01-01

    This report provides a comprehensive survey, in depth assessment of the activities overview of ENDESA, Chilean Electricity Company, highlighting economical information and including historical and technical aspects. Economics is its focal point, but other relevant data are shown, like technical data on hydroelectric and thermoelectric power plants. Main activities developed by ENDESA are described, such in Chile as in the foreign. Data on power generation, transmission and transport are also presented and an economical balance of each colligated company are done and analysed

  13. Update on the modernization of 200 MW hard coal power plants in Poland

    International Nuclear Information System (INIS)

    Szabo, T.E.; Kopec, M.

    1993-01-01

    In June 1990, the Coalition of 200 MW, Hard Coal, Polish Power Plants representing an installed base of 10,240 MW, including 45 units of 200 MW, signed an agreement with the Westinghouse Electric Corporation, Power Generation Business Unit, based in Orlando, Florida, to cooperate on developing a modernization program for the 200 MW units. Program funding was obtained with The United States Trade Development Program (TDP) providing approximately 2/3 of the cost, and the balance provided by Westinghouse. On March 5, 1992, the Polish-American (51% Westinghouse, 49% Seven (7) Hard Coal Power Plants), Joint Venture Company, MODELPOL, Ltd. (Polish acronym for 'MODernizacja ELektrowni POLskich' or Modernization of Polish Power Plants) was established with the goal to implement not only technically but financially the recommendations of the Modernization Study. The mission given MODELPOL, Ltd. by their Polish-American Shareholders was to: develop the specific modernization programs for each hard coal power plant; assist in identifying and obtaining the financial resources required for implementation; and provide technological preventative maintenance services to improve unit availability. Within these aims was the target to reduce SO 2 , and particulate emissions. The first program is taking place at the Laziska Power Plant, followed by Rybnik. Further projects are in the planning stages. Finance is a constant problem, this should be eased by the restructuring of the power industry. Future programmes include connection to the European Community Power Grid. 5 figs

  14. NUCLEAR POWER PLANT

    Science.gov (United States)

    Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

    1963-05-14

    A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

  15. Integrated approach to optimize operation and maintenance costs for operating nuclear power plants

    International Nuclear Information System (INIS)

    2006-06-01

    In the context of increasingly open electricity markets and the 'unbundling' of generating companies from former utility monopolies, an area of major concern is the economic performance of the existing fleet of nuclear power plants. Nuclear power, inevitably, must compete directly with other electricity generation sources. Coping with this competitive pressure is a challenge that the nuclear industry should meet if the nuclear option is to remain a viable one. This competitive environment has significant implications for nuclear plant operations, including, among others, the need for the more cost effective management of plant activities, and the greater use of analytical tools to balance the costs and benefits of proposed activities, in order to optimize operation and maintenance costs, and thus insure the economic competitiveness of existing nuclear power plants. In the framework of the activities on Nuclear Economic Performance Information System (NEPIS), the IAEA embarked in developing guidance on optimization of operation and maintenance costs for nuclear power plants. The report was prepared building on the fundamental that optimization of operation and maintenance costs of a nuclear power plant is a key component of a broader integrated business strategic planning process, having as overall result achievement of organization's business objectives. It provides advice on optimization of O and M costs in the framework of strategic business planning, with additional details on operational planning and controlling. This TECDOC was elaborated in 2004-2005 in the framework of the IAEA's programme on Nuclear Power Plant Operating Performance and Life Cycle Management, with the support of two consultants meetings and one technical meeting and based on contributions provided by participants. It can serve as a useful reference for the management and operation staff within utilities, nuclear power plant operators and regulators and other organizations involved in

  16. Feasibility improvement project for the gas turbine power plant in Iran

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Investigations and discussions have been given on measures to improve energy conservation and efficiency at a power plant of Kish Water and Power Company (KWPC) in Iran. The site has high ambient temperature throughout a year, making the gas turbine power plant capable of generating power only at about 70% of the rated output, with the power generation efficiency decreasing. The project has analyzed the current situation at the plant, and evaluated different means that appear effective in improving the efficiency, including the gas turbine absorbed air cooling system, the steam injection system, and the combined cycle. As a result of the discussions, it was revealed that energy saving effect can be obtained at 145 TJ with the gas turbine absorbed air cooling system, 224 TJ with the steam injection system, and 1017 TJ with the combined cycle. The annual reduction of greenhouse gas emission due to the above energy conservation would be about 11 thousand tons, 16.5 thousand tons, and 75 thousand tons, respectively. However, the investment payback period would be about 2.45 years, 8.31 years, and 14.21 years, respectively. Therefore, the profitability does not appear very attractive because of low fuel unit cost. (NEDO)

  17. Preliminary development of an integrated approach to the evaluation of pressurized thermal shock as applied to the Oconee Unit 1 Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Burns, T J; Cheverton, R D; Flanagan, G F; White, J D; Ball, D G; Lamonica, L B; Olson, R

    1986-05-01

    An evaluation of the risk to the Oconee-1 nuclear plant due to pressurized thermal shock (PTS) has been Completed by Oak Ridge National Laboratory (ORNL). This evaluaion was part of a Nuclear Regulatory Commission (NRC) program designed to study the PTS risk to three nuclear plants: Oconee-1, a Babcock and Wilco reactor plant owned and operated by Duke Power Company; Calvert Cliffs-1, a Combustion Engineering reactor plant owned and operated by Baltimore Gas and Electric company; and H.B. Robinson-2, a Westinghouse reactor plant owned and operated by Carolina Power and Light Company. Studies of Calvert Cliffs-1 and H.B. Robinson-2 are still underway. The specific objectives of the Oconee-1 study were to: (1) provide a best estimate of the probability of a through-the-wall crack (TWC) occurring in the reactor pressure vessel as a result of PTS; (2) determine dominant accident sequences, plant features, operator and control actions and uncertainty in the PTS risk; and (3) evaluate effectiveness of potential corrective measures.

  18. Diagnosis of Thermal Efficiency of Nuclear Power Plants Using Optical Torque Sensors

    International Nuclear Information System (INIS)

    Shuichi Umezawa; Jun Adachi

    2006-01-01

    A new optical torque measuring method was applied to diagnosis of thermal efficiency of nuclear power plants. The sensor allows torque deformation of the rotor caused by power transmission to be measured without contact. Semiconductor laser beams and small pieces of stainless reflector that have bar-code patterns are employed. The intensity of the reflected laser beam is measured and then input into a computer through an APD and an A/D converter having high frequency sampling rates. The correlation analysis technique can translate these data into the torque deformation angle. This angle allows us to obtain the turbine output along with the torsional rigidity and the rotating speed of the rotor. The sensor was applied to a nuclear plant of Tokyo Electric Power Company, TEPCO, following its application success to the early combined cycle plants and the advanced combined cycle plants of TEPCO. As the turbine rotor of the nuclear power plant is less exposed than that of the combined cycle plants, the measurement position is confined to a narrow gap. In order to overcome the difficulty in installation, the shape of the sensor is modified to be long and thin. Sensor performance of the nuclear power plant was inspected over a year. The value of the torsional rigidity was analyzed by the finite element method at first. Accuracy was improved by correcting the torsional rigidity so that the value was consistent with the generator output. As a result, it is considered that the sensor performance has reached a practical use level. (authors)

  19. Nuclear power. Volume 1. Nuclear power plant design

    International Nuclear Information System (INIS)

    Pedersen, E.S.

    1978-01-01

    NUCLEAR POWER PLANT DESIGN is intended to be used as a working reference book for management, engineers and designers, and as a graduate-level text for engineering students. The book is designed to combine theory with practical nuclear power engineering and design experience, and to give the reader an up-to-date view of the status of nuclear power and a basic understanding of how nuclear power plants function. Volume 1 contains the following chapters; (1) nuclear reactor theory; (2) nuclear reactor design; (3) types of nuclear power plants; (4) licensing requirements; (5) shielding and personnel exposure; (6) containment and structural design; (7) main steam and turbine cycles; (8) plant electrical system; (9) plant instrumentation and control systems; (10) radioactive waste disposal (waste management) and (11) conclusion

  20. Regulatory issues for nuclear power plant life management

    International Nuclear Information System (INIS)

    Roe, J.

    2000-01-01

    The workshop of 26-27 june 2000, on nuclear power Plant LIfe Management (PLIM), also included working groups in which major issues facing PLIM activities for nuclear power plants were identified and discussed. The second group was on Regulation. The Regulatory Working Group will attempt to identify some of the more pertinent issues affecting nuclear plant regulation in a changing PLIM environment, to identify some possible actions to be taken to address these issues, and to identify some of the parties responsible for taking these actions. Some preliminary regulatory issues are noted below. This is not intended to be a comprehensive list of such issues but rather is intended to stimulate discussion among the experts attending this Workshop. One of the concerns in the regulatory arena is how the structural integrity of the plants can be assured for an extended lifetime. Technological advances directed toward the following are likely to be important factors in the regulatory process of life extension. - Preventive and corrective maintenance (e.g., water chemistry control, pressure vessel annealing, and replacement of core internals). - Ageing and degradation mechanisms and evaluation (e.g., embrittlement, wear, corrosion/erosion, fatigue, and stress corrosion). - Monitoring, surveillance, and inspection (e.g., fatigue monitoring and non-destructive testing). - Optimisation of maintenance (e.g., using risk-based analysis). On the business side, there is concern about technical support by manufacturers, fuel companies, and construction companies. Maintaining a strong technical base and skilled workers in a potentially declining environment is another concern in the regulatory community. Waste management and decommissioning remain significant issue regarding PLIM. These issues affect all three areas of concern - technology, business, and regulation. It is against this background, that the issues put forth in this paper are presented. The objective of presenting these

  1. The year 2000 power plant

    International Nuclear Information System (INIS)

    Roman, H.T.

    1989-01-01

    Every utility seeks extended service life from its existing power plants before building new ones. It is not easy to justify a new power plant. The licensing and cost of new plants have become uncertain. In response to these conditions, electric utilities are undertaking plant life-extension studies and, in some cases, reconditioning/upgrading old power plants to significantly increase useful service life. Other technologies like robotics and artificial intelligence/expert systems are also being developed to reduce operating and maintenance (O and M) expenses, to remove workers from potentially hazardous environments, and to reduce plant downtime. Together, these steps represent an interim solution, perhaps providing some relief for the next few decades. However, there are serious physical and economic limits to retrofitting new technology into existing power plants. Some old plants will simply be beyond their useful life and require retirement. In nuclear plants, for instance, retrofit may raise important and time-consuming licensing/safety issues. Based on their robotics and artificial intelligence experience, the authors of this article speculate bout the design of the year 2000 power plant - a power plant they feel will naturally incorporate liberal amounts of robotic and artificial intelligence technologies

  2. Economic performance of small scale hydroelectric power plants: `Results center`; Desempenho economico de PCH`s: centro de resultados

    Energy Technology Data Exchange (ETDEWEB)

    Cipoli, Jose Adolfo; Silva, Jose Paulo Mendes [Companhia Paulista de Forca e Luz (CPFL), Campinas, SP (Brazil)

    1995-12-31

    This work presents the experience concerning the creation of an imaginary company named `CPFL Generator`, composed by 20 small scale hydroelectric power plants. The main idea of the project is to analyse the economic performance of each unit individually and the group as a company, enabling to a better quality management 3 refs., 1 fig., 7 tabs.

  3. Resolution 519/012. It is allowed to R DEL SUR S.A company to generate a wind electricity source by a generating power plant placed in Maldonado province 2nd and 4th Catastral section, as well as the connection to the Interconnected National System

    International Nuclear Information System (INIS)

    2012-01-01

    The Resolution 519 is according to the Electric Wholesale Market regulation and it authorizes the power generation using the wind as the primary source. The company who presented this project was R DEL SUR S.A with the aim to instal a wind power plant in Maldonado province.

  4. Role of Dividend of Power to Buy Shares in Companies in Indonesia Stock Exchange

    Directory of Open Access Journals (Sweden)

    Iskandar Muda

    2017-06-01

    Full Text Available This study aims to determine the role of the Purchasing Power Shares on manufacturing companies in Indonesia Stock Exchange Period 2014-2015. The variables used in this study as an Independent Variable Dividend and Purchasing Power Shares as Dependent Variables. Power Buy Stocks in this study was measured by the volume of stock sales every year. This research was conducted in Manufacturing company listed on the Indonesia Stock Exchange. The population of this study were 144 companies with purposive sampling as many as 19 of the Company's Manufacturing Company listed on the Indonesia Stock Exchange with the study of the 2014-2015 period in order to obtain 38 units of analysis. Data of this research are secondary data from the financial statements of 19 companies published in the Indonesia Stock Exchange. This research data processing method using the Test Statistics Deskribtif, Classical Assumption Test, Test Linear Regression using SPSS. The results of this study demonstrate that the role of the Dividend has significant influence on the Purchasing Power Shares in Manufacturing Company in Indonesia Stock Exchange (BEI.

  5. Least cost planning within the service concept of power supply companies

    International Nuclear Information System (INIS)

    Lueschen, H.; Sonntag, J.; Werner, R.

    1995-01-01

    In discussing the implementation of energy service concepts, German power supply companies are gradually adopting categories originating from the USA, namely integrated resources planning (IRP), least cost planning (LCP), and demand-side management (DSM). While the activities of German power supply companies are more encompassing than those of their US counterparts in the traditional features of DSM such as load management, information, and consulting, further-going measures such as direct investment and financial incentive programmes for exploiting energy-saving potentials play a less important role and are controversial in the energy-political debate. The article presents the concept of power supply companies for implementing IRP/LCP and makes a concrete assessment of the worth and efficiency of consulting compared with the newer type of financial incentive programmes. (orig.) [de

  6. Actual status and future outlook of Fukushima prefecture for accepting power plants

    International Nuclear Information System (INIS)

    Origasa, Yoshiro

    1976-01-01

    The fundamental attitude of Fukushima prefecture to wrestle with nuclear power generation is explained after having described the details of inviting nuclear power plants. The prefecture intends to promote the nuclear power development in cooperation with the government, related cities, towns and villages, and electric power companies, and to develop the Futaba area, the coastal region of Pacific Ocean belonging to the low-developed area, by turning it to the base of nuclear power generation. The prefecture has improved its organization to strengthen to nuclear power administration. The prefecture also has concluded the convention on the security for nuclear power plants with Tokyo Electric Power Co. It takes care of the propagation of knowledge concerning nuclear energy and is endeavoring to provide the accurate and impartial information. The problem in promoting nuclear power generation is nothing but to obtain the consensus of inhabitants for the location of nuclear power plants. Problems on warm water discharge, employment, and of enterprises in the area inroad are to be considered on the basis of the coexistence and coprosperity of local community and power stations. The prefecture needs more powerful public relations on nuclear power, security, and fulfillment of the policy for environmental preservation, and enforcement of environmental assessment, by the government. It also demands that the enterprises complete the system that they can have their own function of the environment control. The abundant related reference are added at the end. (Wakatsuki, Y.)

  7. Decision no. 2011-DC-0222 of the French nuclear safety authority from May 5, 2011, ordering the Comurhex company to proceed to a complementary safety evaluation of some of its basic nuclear facilities in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to Comurhex company, operator of the Tricastin uranium conversion plant (France). (J.S.)

  8. Occupational exposures during routine activities in coal-fueled power plants

    Energy Technology Data Exchange (ETDEWEB)

    Mona J. Bird; David L. MacIntosh; Phillip L. Williams [University of Georgia, Athens, GA (United States). Dept. of Environmental Health Science

    2004-06-15

    Limited information is available on occupational exposures during routine, nonoutage work activities in coal-fueled power plants. This study evaluated occupational exposures to the principal contaminants in the facilities, including respirable dust (coal dust), arsenic, noise, asbestos, and heat stress. The data were collected over a 3-month period, during the summer of 2001, in 5 representative power plants of a large southeastern power-generating company. From 4 of the 5 facilities, 392 air samples and 302 noise samples were collected with approximately 50 respirable coal dust, 32 arsenic, 15 asbestos, and 70 noise samples from each of the 4 plants. One of the previously surveyed facilities was also evaluated for heat stress, and 1 additional coal-fueled power plant was surveyed for a total of 20 personal heat stress samples. Of the nearly 400 air samples collected, only 1 exceeded the allowable occupational exposure value. For the noise samples, 55 were equal to or greater than the Occupational Safety and Health Administration (OSHA) 8-hour hearing conservation program level of 85 dBA, and 12 were equal to or greater than the OSHA 8-hour permissible exposure level of 90 dBA. The data concluded that some work sites were above the heat stress ceiling values recommended by the National Institute for Occupational Safety and Health (NIOSH). Four of the 20 employees personally monitored exceeded the recommended limits for heart rate or body core temperature.

  9. Radwaste minimization successes at Duke Power Company

    International Nuclear Information System (INIS)

    Lan, C.D.; Johnson, G.T.; Groves, D.C.; Smith, T.A.

    1996-01-01

    At Duke Power Company, open-quotes Culture Changeclose quotes is a common term that we have used to describe the incredible transformation. We are becoming a cost conscious, customer driven, highly competitive business. Nowhere has this change been more evident then in the way we process and dispose of our solid radioactive waste. With top-down management support, we have used team-based, formalized problem solving methods and have implemented many successful waste minimization programs. Through these programs, we have dramatically increased employees' awareness of the importance of waste minimization. As a result, we have been able to reduce both our burial volumes and our waste processing and disposal costs. In June, 1994, we invited EPRI to conduct assessments of our waste minimization programs at Oconee and Catawba nuclear stations. Included in the assessments were in-depth looks at contamination control, an inventory of items in the plant, the volume of waste generated in the plant and how it was processed, laundry reject data, site waste-handling operations, and plant open-quotes housekeepingclose quotes routines and process. One of the most important aspects of the assessment is the open-quotes dumpster dive,close quotes which is an evaluation of site dry active waste composition by sorting through approximately fifteen bags of radioactive waste. Finally, there was an evaluation of consumable used at each site in order to gain knowledge of items that could be standardized at all stations. With EPRI recommendations, we made several changes and standardized the items used. We have made significant progress in waste reduction. We realize, however, that we are aiming at a moving target and we still have room for improvement. As the price of processing and disposal (or storage) increases, we will continue to evaluate our waste minimization programs

  10. Final Report on the Operation and Maintenance Improvement Program for Concentrating Solar Power Plants

    International Nuclear Information System (INIS)

    Cohen, Gilbert E.; Kearney, David W.; Kolb, Gregory J.

    1999-01-01

    This report describes the results of a six-year, $6.3 million project to reduce operation and maintenance (O ampersand M) costs at power plants employing concentrating solar power (CSP) technology. Sandia National Laboratories teamed with KJC Operating Company to implement the O ampersand M Improvement Program. O ampersand M technologies developed during the course of the program were demonstrated at the 150-MW Kramer Junction solar power park located in Boron, California. Improvements were made in the following areas: (a) efficiency of solar energy collection, (b) O ampersand M information management, (c) reliability of solar field flow loop hardware, (d) plant operating strategy, and (e) cost reduction associated with environmental issues. A 37% reduction in annual O ampersand M costs was achieved. Based on the lessons learned, an optimum solar- field O ampersand M plan for future CSP plants is presented. Parabolic trough solar technology is employed at Kramer Junction. However, many of the O ampersand M improvements described in the report are also applicable to CSP plants based on solar power tower or dish/engine concepts

  11. Final Report on the Operation and Maintenance Improvement Program for Concentrating Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Cohen Gilbert E.; Kearney, David W.; Kolb, Gregory J.

    1999-06-01

    This report describes the results of a six-year, $6.3 million project to reduce operation and maintenance (O&M) costs at power plants employing concentrating solar power (CSP) technology. Sandia National Laboratories teamed with KJC Operating Company to implement the O&M Improvement Program. O&M technologies developed during the course of the program were demonstrated at the 150-MW Kramer Junction solar power park located in Boron, California. Improvements were made in the following areas: (a) efficiency of solar energy collection, (b) O&M information management, (c) reliability of solar field flow loop hardware, (d) plant operating strategy, and (e) cost reduction associated with environmental issues. A 37% reduction in annual O&M costs was achieved. Based on the lessons learned, an optimum solar- field O&M plan for future CSP plants is presented. Parabolic trough solar technology is employed at Kramer Junction. However, many of the O&M improvements described in the report are also applicable to CSP plants based on solar power tower or dish/engine concepts.

  12. Company of the month: French EDF opts for nuclear power

    International Nuclear Information System (INIS)

    Jansen, Siw Linnea

    2006-01-01

    EDF is Europe's largest power company with 640 TWh produced in 2005 and 36,7 million customers in Europe. On a global scale the company has more than 40 million customers. EDF has significant positions in the four big energy markets in Europe: Germany, France, Great Britain and Italy. EDF has an ambitious investment program in the area of nuclear power, and holds that increased investments in this sector is the best and most beneficial way of keeping up with Europe's increasing energy demand (ml)

  13. Power of Companies in Supply Chains and Their Effect on Network Development

    OpenAIRE

    Tamás Brányi; László Józsa

    2015-01-01

    A general supply chain functions as a closed cluster and consists of at least three companies: supplier, producer and buyer. In an optimal case the companies within a supply chain are well integrated, partnership rests on trust which results in common strategic decisions. Business practices show that there is a stronger company within the chain that uses its power position to influence network development. The objective of the research is to measure how and what kind of power position is need...

  14. Estimation of environmental external costs between coal fired power plant and nuclear power plant

    International Nuclear Information System (INIS)

    Moon, G. H.; Kim, S. S.

    2000-01-01

    First of all, this study evaluated the impacts on the health and the environment of air pollutants emitted from coal power plant and nuclear power pant, two major electric power generating options in Korea. Then, the environmental external costs of those two options were estimated by transforming the health and environment impact into monetary values. To do this, AIRPACTS and Impacts of Atmospheric Release model developed by IAEA were used. The environmental external cost of Samcheonpo coal power plant was estimated about 25 times as much as that of Younggwang nuclear power plant. This result implies that nuclear power plant is a clean technology compared with coal power plant. This study suggests that the external cost should be reflected in the electric system expansion plan in order to allocate energy resources efficiently and to reduce economic impact stemming from the environmental regulation emerged recently on a global level

  15. Organization patterns of PWR power plants

    International Nuclear Information System (INIS)

    Leicman, J.

    1980-01-01

    Organization patterns are shown for the St. Lucia 1, North Anna, Sequoyah, and Beaver Valley nuclear power plants, for a typical PWR power plant in the USA, for the Biblis/RWE-KWU nuclear power plants and for a four-unit nuclear power plant operated by Electricite de France as well as for the Loviisa power plant. Organization patterns are also shown for relatively independent and non-independent nuclear power plants according to IAEA recommendations. (J.P.)

  16. Safety culture in nuclear power plants. Proceedings; Sicherheitskultur im Kernkraftwerk. Seminarbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    As a consequence of the INSAG-4 report on `safety culture`, published by the IAEA in 1991, the Federal Commission for the Safety of Nuclear Power Plants (KSA) decided to hold a one-day seminar as a first step in this field. The KSA is an advisory body of the Federal Government and the Federal Department of Transport and Energy (EVED). It comments on applications for licenses, observes the operation of nuclear power plants, assists with the preparation of regulations, monitors the progress of research in the field of nuclear safety, and makes proposals for research tasks. The objective of this seminar was to familiarise the participants with the principles of `safety culture`, with the experiences made in Switzerland and abroad with existing concepts, as well as to eliminate existing prejudices. The main points dealt with at this seminar were: - safety culture from the point of view of operators, - safety culture from the point of view of the authorities, - safety culture: collaboration between power plants, the authorities and research organisations, - trends and developments in the field of safety culture. Invitations to attend this seminar were extended to the management boards of companies operating Swiss nuclear power plants, and to representatives of the Swiss authorities responsible for the safety of nuclear power plants. All these organisations were represented by a large number of executive and specialist staff. We would like to express our sincerest thanks to the Head of the Federal Department of Transport and Energy for his kind patronage of this seminar. (author) figs., tabs., refs.

  17. Nuclear power plant siting

    International Nuclear Information System (INIS)

    Sulkiewicz, M.; Navratil, J.

    The construction of a nuclear power plant is conditioned on territorial requirements and is accompanied by the disturbance of the environment, land occupation, population migration, the emission of radioactive wastes, thermal pollution, etc. On the other hand, a nuclear power plant makes possible the introduction of district heating and increases the economic and civilization activity of the population. Due to the construction of a nuclear power plant the set limits of negative impacts must not be exceeded. The locality should be selected such as to reduce the unfavourable effects of the plant and to fully use its benefits. The decision on the siting of the nuclear power plant is preceded by the processing of a number of surveys and a wide range of documentation to which the given criteria are strictly applied. (B.H.)

  18. Maintenance of EDF nuclear power plants and servicing companies. Progress report

    International Nuclear Information System (INIS)

    Baize, Jean-Marc; Reveillon, Sylvie

    1997-01-01

    French Electricity Company (EDF - Electricite de France) and the associated servicing companies, engaged in maintenance partnership from 1991, reinforce and expand their policy by undersigning a progress charter, to cope with the safety and nuclear sector competition issues. This charter stipulates the mutual engagements in the following sectors: 1. Transparency in calling for servicing; 2. Development of the intervenors' professionalism; 3. Improvement in forecasting activity tasks; 4. Radioprotection; 5. Safety and working conditions. The 55 reactors of the EDF nuclear stock are stopped annually for around 6 weeks for refueling. On this occasion the essential maintenance works necessary to ensure the optimal safety of the installations are carried out. The maintenance requires the intervention of 30,000 employees, 10,000 EDF agents and 20,000 external intervenors and represents an amount of 14 million working hours. The full maintenance expenses amounts up to 11 billion FF in 1996, 6 billion of which are assigned to external companies

  19. Wind power plant system services

    DEFF Research Database (Denmark)

    Basit, Abdul; Altin, Müfit

    Traditionally, conventional power plants have the task to support the power system, by supplying power balancing services. These services are required by the power system operators in order to secure a safe and reliable operation of the power system. However, as in the future the wind power...... is going more and more to replace conventional power plants, the sources of conventional reserve available to the system will be reduced and fewer conventional plants will be available on-line to share the regulation burden. The reliable operation of highly wind power integrated power system might...... then beat risk unless the wind power plants (WPPs) are able to support and participate in power balancing services. The objective of this PhD project is to develop and analyse control strategies which can increase the WPPs capability to provide system services, such as active power balancing control...

  20. DETERMINANTS AFFECTING THE SUCCESS OF DISTRIBUTION GRID PROJECTS IN BINH THUAN POWER COMPANY, VIETNAM

    OpenAIRE

    Pham Van Tai* & Le Duc Thu

    2017-01-01

    The research identified the critical factors affecting the success of the distribution grid project in Binh Thuan Power Company, clarify the mutual relationship between the critical factors affecting the success of the distribution grid project in Binh Thuan Power Company and recommended and rated the solution to enhance the success of the distribution grid project in Binh Thuan Power Company. The research had found fours critical factors: External factors of project, Controlling and coordina...

  1. Properties of bituminization product from Olkiluoto power plant

    International Nuclear Information System (INIS)

    Valkiainen, M.; Vuorinen, U.

    1985-09-01

    In Finland, disposal into repositories excavated into bedrock on the present power plant sites is considered to be the most feasible alternative for the low- and intermediate level wastes. The Nuclear Waste Commission of the Finnish power companies has sponsored mainly experimental research work on long-term properties of bituminized ion exchange resin performed in the Reactor Laboratory of the Technical Research Centre of Finland since 1981. This report presents results on follow-up measurements of the leach tests started in 1981 and results on new leach tests with cement equilibrated water. Swelling of the bituminization product caused by water uptake is considered important. Both unrestricted and restricted swelling measurements were performed and are reported here. In addition to leaching and swelling also radiolytic gas generation and pH-changes of the leachant are discussed

  2. Waste from nuclear power plants

    International Nuclear Information System (INIS)

    1980-01-01

    The report presents proposals for organizing and financing of the treatment and deposition of spent fuel and radioactive waste. Decommissioning of plants is taken into consideration. The proposals refer to a program of twelve reactors. A relatively complete model for the handling of radioactive waste in Sweden is at hand. The cost for the years 1980 to 2000 is estimated at approx 1040 million SKr. Also the expense to dispose of the rest of the waste is calculated up to the year 2060, when the waste is planned to be put into final deposit. The state must have substantial influence over the organization which should be closely connected to the nuclear industry. Three different types of organization are discussed, namely (i) a company along with a newly created authority, (ii) a company along with the existing Nuclear Power Inspectorate or (iii) a company along with a board of experts. The proposals for financing the cost of handling nuclear waste are given in chief outlines. The nuclear industry should reserve means to special funds. The allocations are calculated to 1.4 oere per delivered kWh up to and including the year 1980. The accumulated allocations for 1979 should thus amount to 1310 million SKr. The charge for supervision and for certain research and development is recommended to be 0.1 oere per kWh which corresponds to approx 23 million SKr for 1980. The funds should be assured by binding agreements which must be approved by the state. The amounts are given in the monetary value of the year 1979. (G.B.)

  3. Power programmes review: Nuclear power in Italy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-07-15

    Several concrete measures have been initiated in Italy for the generation of nuclear power on a substantial scale. Two plants are already under construction and work will start soon on a third. Plans have also been announced for more stations. If the work already initiated is completed on schedule the installed capacity of nuclear power in Italy is likely to exceed 500 mw (electric) in the course of the next four years. This will constitute a sizeable proportion of the total electrical capacity in the country. After the Italian National Committee for Nuclear Research (Comitato Nazionale per le Ricerche Nucleari) was reorganized late in 1956, it prepared what can be described as a nuclear five-year plan for Italy. The plan, designed to cover the period 1957-1962, includes detailed schemes for a comprehensive development of the peaceful uses of nuclear energy, including a programme for the generation of power. The Comitato Nazionale per le Ricerche Nucleari (CNRN) promotes and co-ordinates the various activities in the field, and within the framework of its general programme certain industrial groups in Italy have formulated specific projects for nuclear power. At a Geneva conference (1958) it was disclosed that several companies were planning to build nuclear power stations in Italy. (1) SELNI (Societa Elettronucleare Italiana), pertaining to the Edison-Volta group, which plans to build a pressurized water reactor. (2) So.R.I.N. (Societa Ricerche Impianti Nucleari), a company founded by the Fiat and Montecatini groups, which is constructing a research centre, with a swimming pool reactor, and various laboratories for chemistry, physics and metallurgy. This centre will also be used for the training of specialized personnel, in view of the company's programme which envisages two 150 mw (e) plants: one operating with enriched uranium, the other with natural uranium. Such a programme will become effective only when the cost of power produced by these plants may actually

  4. Images of nuclear power plants

    International Nuclear Information System (INIS)

    Hashiguchi, Katsuhisa; Misumi, Jyuji; Yamada, Akira; Sakurai, Yukihiro; Seki, Fumiyasu; Shinohara, Hirofumi; Misumi, Emiko; Kinjou, Akira; Kubo, Tomonori.

    1995-01-01

    This study was conducted to check and see, using Hayashi's quantification method III, whether or not the respondents differed in their images of a nuclear power plant, depending on their demographic variables particularly occupations. In our simple tabulation, we compared subject groups of nuclear power plant employees with general citizens, nurses and students in terms of their images of a nuclear power plant. The results were that while the nuclear power plant employees were high in their evaluations of facts about a nuclear power plant and in their positive images of a nuclear power plant, general citizens, nurses and students were overwhelmingly high in their negative images of a nuclear power plant. In our analysis on category score by means of the quantification method III, the first correlation axis was the dimension of 'safety'-'danger' and the second correlation axis was the dimension of 'subjectivity'-'objectivity', and that the first quadrant was the area of 'safety-subjectivity', the second quadrant was the area of 'danger-subjectivity', the third quadrant as the area of 'danger-objectivity', and the forth quadrant was the area of 'safety-objectivity'. In our analysis of sample score, 16 occupation groups was compared. As a result, it was found that the 16 occupation groups' images of a nuclear power plant were, in the order of favorableness, (1) section chiefs in charge, maintenance subsection chiefs, maintenance foremen, (2) field leaders from subcontractors, (3) maintenance section members, operation section members, (4) employees of those subcontractors, (5) general citizens, nurses and students. On the 'safety-danger' dimension, nuclear power plant workers on the one hand and general citizens, nurses and students on the other were clearly divided in terms of their images of a nuclear power plant. Nuclear power plant workers were concentrated in the area of 'safety' and general citizens, nurses and students in the area of 'danger'. (J.P.N.)

  5. Draft environmental statement: Related to operation of the Edwin I. Hatch Nuclear Plant Unit No. 2, Georgia Power Company: Docket No. 50-366

    International Nuclear Information System (INIS)

    1977-04-01

    The proposed action is the issuance of an operation license to the Georgia Power Company for the startup and operation of the Edwin I. Hatch Nuclear Plant, Unit No. 2 (Docket No. 50-366), located on the Altamaha River in Appling County, approximately 11 miles north from Baxley, Georgia. The information in this Statement represents the second, assessment of the environmental impact associated with the Edwin I. Hatch Nuclear Plant, Unit No. 2, pursuant to the guidelines of the National Environmental Policy Act of 1969 (NEPA) and 10 CFR Part 51 of the Commission's Regulations. After receipt of an application, in 1970, to construct this plant, the staff carried out a review of impact that would occur during the construction and operation of this plant. That evaluation was issued as a Final Environmental Statement in October 1972. As the result of that environmental review, a safety review, an evaluation by the Advisory Committee on Reactor Safeguards, and a public hearing in Baxley, Georgia and Washington, D.C., the AEC (now NRC) issued a permit in December 1972, for the construction of Unit No. 2 of the Edwin I. Hatch Nuclear Plant. As of February 1977, the construction of Unit No. 2 was 70% complete. With a proposed fuel-loading date of April 1978 for Unit No. 2, the applicant has petitioned for license to operate Unit No. 2 and has submitted (July 1975) the required safety and environmental reports to substantiate this petition. 97 refs., 18 figs., 37 tabs

  6. On nuclear power plant uprating

    International Nuclear Information System (INIS)

    Ho, S. Allen; Bailey, James V.; Maginnis, Stephen T.

    2004-01-01

    Power uprating for commercial nuclear power plants has become increasingly attractive because of pragmatic reasons. It provides quick return on investment and competitive financial benefits, while involving low risks regarding plant safety and public objection. This paper briefly discussed nuclear plant uprating guidelines, scope for design basis analysis and engineering evaluation, and presented the Salem nuclear power plant uprating study for illustration purposes. A cost and benefit evaluation of the Salem power uprating was also included. (author)

  7. Small hydroelectric power plants

    International Nuclear Information System (INIS)

    Helgesen, Boerre

    2002-01-01

    Small hydroelectric power plants are power plants of 1 - 10 MW. For a supplier, this is an unnatural limit. A more natural limit involves compact engine design and simplified control system. The article discusses most of the engine and electrotechnical aspects in the development, construction and operation of such a plant

  8. The Kuroshio power plant

    CERN Document Server

    Chen, Falin

    2013-01-01

    By outlining a new design or the Kuroshio power plant, new approaches to turbine design, anchorage system planning, deep sea marine engineering and power plant operations and maintenance are explored and suggested. The impact on the local environment, particularly in the face of natural disasters, is also considered to provide a well rounded introduction to plan and build a 30MW pilot power plant. Following a literature review, the six chapters of this book propose a conceptual design by focusing on the plant's core technologies and establish the separate analysis logics for turbine design and

  9. The UK nuclear power industry

    International Nuclear Information System (INIS)

    Collier, J. G.

    1995-01-01

    In the United Kingdom, nuclear power plants are operated by three companies: Nuclear Electric (NE), Scottish Nuclear (SN), and British Nuclear Fuels plc (BNFL). The state-operated power industry was privatized in 1989 with the exception of nuclear power generation activities, which were made part of the newly founded (state-owned) NE and SN. At the same time, a moratorium on the construction of new nuclear power plants was agreed. Only Sizewell B, the first plant in the UK to be equipped with a pressurized water reactor, was to be completed. That unit was first synchronized with the power grid on February 14, 1995. Another decision in 1989 provided for a review to be conducted in 1994 of the future of the peaceful uses of nuclear power in the country. The results of the review were presented by the government in a white paper on May 9, 1995. Accordingly, NE and SN will be merged and privatized in 1996; the headquarters of the new holding company will be in Scotland. The review does not foresee the construction of more nuclear power plants. However, NE hopes to gain a competitive edge over other sources of primary energy as a result of this privatization, and advocates construction of a dual-unit plant identical with Sizewell B so as to avoid recurrent design and development costs. Outside the UK, the company plans to act jointly with the reactor vendor, Westinghouse, especially in the Pacific region; a bid submitted by the consortium has been shortisted by the future operator of the Lungmen nuclear power plant project in Taiwan. In upgrading the safety of nuclear power plants in Eastern Europe, the new company will be able to work through existing contacts of SN. (orig.) [de

  10. Automation and mechanization of in-service inspection of selected equipment in FRG's nuclear power plants

    International Nuclear Information System (INIS)

    Metke, E.

    1988-01-01

    The procedures and equipment are described for the automation and mechanization of in-service inspection in nuclear power plants in the FRG, used by the KWU company. Checks of the pressure vessel are done by visual means using a colour tv camera, the method of eddy currents and the ultrasonic method. An analysis is made of the time schedule of ultrasonic inspections, and the central column manipulator is described which allows to check all internal regions of the pressure vessel. Attention is also devoted to other devices, e.g., those for prestressing shanks, cleaning shanks, cleaning thread apertures, etc. A combined probe using the ultrasonic method and the eddy current method serves the inspection of heat exchange tubes in the steam generator. For inspecting the primary circuit the KWU company uses devices for checking and working the inner surface of pipes. Briefly described are examples of using KWU equipment in nuclear power plants in CMEA countries. (Z.M.). 11 figs., 6 refs

  11. Survey of consolidation for gas turbine re-powering combined WPP (waste power plant) project; Gas turbine repowering haikibutsu fukugo hatsuden system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This report describes the survey of gas turbine re-powering combined WPP (or super WPP), which was commercialized by Gunma Prefecture for the first time as an electric power wholesaler in Japan. An outline of the survey is introduced. The system optimization for the commercialization of WPP was studied by considering waste as un-utilized energy. A successful condition and preparation method of the commercialization of a public power plant was also studied, which is a combination of the garbage collection business of a local government and an electric power generation business of a municipal company. For the introduction of the aforementioned system, the problems and supporting methods were studied by making allowance for the profitability of the WPP introduction, because they also need to deliberate it from the economical point of view as electric power companies. Based on the results of foregoing items, commercialization plans, problems encountered from the construction phase through the maintenance and service phase, and the supporting method were arranged. 30 figs., 18 tabs.

  12. The social and economic impact created by construction of a nuclear power station: the part played by local companies

    International Nuclear Information System (INIS)

    Rongere, H.

    1983-01-01

    The president of the Sedan Chamber of Commerce and Industry and managing director of a public works company indicates how local and regional firms involved in the construction of the Chooz B power plant in the Ardennes organized themselves to cater for the requirements of the EDF. The measures taken by these firms to adapt themselves to the demanding and complex nuclear power market are indicated and further the repercussions of the on site work on employment levels and business activity are indicated [fr

  13. Economics of hybrid photovoltaic power plants

    Energy Technology Data Exchange (ETDEWEB)

    Breyer, Christian

    2012-08-16

    The global power supply stability is faced to several severe and fundamental threats, in particular steadily increasing power demand, diminishing and degrading fossil and nuclear energy resources, very harmful greenhouse gas emissions, significant energy injustice and a structurally misbalanced ecological footprint. Photovoltaic (PV) power systems are analysed in various aspects focusing on economic and technical considerations of supplemental and substitutional power supply to the constraint conventional power system. To infer the most relevant system approach for PV power plants several solar resources available for PV systems are compared. By combining the different solar resources and respective economics, two major PV systems are identified to be very competitive in almost all regions in the world. The experience curve concept is used as a key technique for the development of scenario assumptions on economic projections for the decade of the 2010s. Main drivers for cost reductions in PV systems are learning and production growth rate, thus several relevant aspects are discussed such as research and development investments, technical PV market potential, different PV technologies and the energetic sustainability of PV. Three major market segments for PV systems are identified: off-grid PV solutions, decentralised small scale on-grid PV systems (several kWp) and large scale PV power plants (tens of MWp). Mainly by application of 'grid-parity' and 'fuel-parity' concepts per country, local market and conventional power plant basis, the global economic market potential for all major PV system segments is derived. PV power plant hybridization potential of all relevant power technologies and the global power plant structure are analyzed regarding technical, economical and geographical feasibility. Key success criteria for hybrid PV power plants are discussed and comprehensively analysed for all adequate power plant technologies, i.e. oil, gas and coal fired power

  14. Economics of hybrid photovoltaic power plants

    Energy Technology Data Exchange (ETDEWEB)

    Breyer, Christian

    2012-08-16

    The global power supply stability is faced to several severe and fundamental threats, in particular steadily increasing power demand, diminishing and degrading fossil and nuclear energy resources, very harmful greenhouse gas emissions, significant energy injustice and a structurally misbalanced ecological footprint. Photovoltaic (PV) power systems are analysed in various aspects focusing on economic and technical considerations of supplemental and substitutional power supply to the constraint conventional power system. To infer the most relevant system approach for PV power plants several solar resources available for PV systems are compared. By combining the different solar resources and respective economics, two major PV systems are identified to be very competitive in almost all regions in the world. The experience curve concept is used as a key technique for the development of scenario assumptions on economic projections for the decade of the 2010s. Main drivers for cost reductions in PV systems are learning and production growth rate, thus several relevant aspects are discussed such as research and development investments, technical PV market potential, different PV technologies and the energetic sustainability of PV. Three major market segments for PV systems are identified: off-grid PV solutions, decentralised small scale on-grid PV systems (several kWp) and large scale PV power plants (tens of MWp). Mainly by application of 'grid-parity' and 'fuel-parity' concepts per country, local market and conventional power plant basis, the global economic market potential for all major PV system segments is derived. PV power plant hybridization potential of all relevant power technologies and the global power plant structure are analyzed regarding technical, economical and geographical feasibility. Key success criteria for hybrid PV power plants are discussed and comprehensively analysed for all adequate power plant technologies, i.e. oil, gas and

  15. 76 FR 54259 - Virginia Electric and Power Company, Docket Nos. 50-338 and 50-339, North Anna Power Station...

    Science.gov (United States)

    2011-08-31

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0185] Virginia Electric and Power Company, Docket Nos. 50.... NPF-4 and NPF-7, issued to Virginia Electric Power Company (the licensee), for operation of the North...) and (d) during declarations of severe weather conditions involving tropical storm or hurricane force...

  16. Aspects of consolidation of engineering capability related to nuclear power plants

    International Nuclear Information System (INIS)

    Mueller, A.E.F.; Gasparian, A.E.; Calvet Filho, H.J.

    1980-01-01

    A major interest of countries launching nuclear program is to consolidate an engineering capability for Nuclear Power Plants design by performing part of the engineering services locally. A decade of nuclear power plant engineering and construction has exposed Brazilian architect-engineers to this new challenge. To cope with it, technology sources were identified, agreements were made and transfer is going on between foreign and local companies. Services performed by Brazilian architect-engineers are summarized. Foreign technology must be judiciously examined before implementation in a different environment. The receiver has to be prepared to develop his own capabilities and absorb the know-how being offered, taking into consideration the local engineering experience and construction practices. Some of the problems faced are outlined herein. The performed efforts brought Brazilian architect-engineers to a consolidated level of experience. (Author) [pt

  17. Plant operator selection system for evaluating employment candidates' potential for success in electric power plant operations positions

    International Nuclear Information System (INIS)

    Dunnette, M.D.

    1982-01-01

    The Plant Operator Selection System is a battery of tests and questionnaires that can be administered to job candidates in less than three hours. Various components of the battery measure what a job candidate has accomplished in previous educational and work situations, how well a candidate compares with others on a number of important aptitudes or abilities, and whether or not a candidate possesses the kind of personal stability required in power plant operations positions. A job candidate's answers to the tests and questionnaires of the Plant Operator Selection System are scored and converted to an OVERALL POTENTIAL INDEX. Values of the OVERALL POTENTIAL INDEX [OPI] range between 0 and 15. Candidates with high OPI values are much more likely to become effective and successful plant operators than candidates with low OPI values. It is possible to estimate the financial advantages to a company of using the Plant Operator Selection System in evaluating candidates for plant operations jobs

  18. Plant life management optimized utilization of existing nuclear power plants

    International Nuclear Information System (INIS)

    Watzinger, H.; Erve, M.

    1999-01-01

    For safe, reliable and economical nuclear power generation it is of central importance to understand, analyze and manage aging-related phenomena and to apply this information in the systematic utilization and as-necessary extension of the service life of components and systems. An operator's overall approach to aging and plant life management which also improves performance characteristics can help to optimize plant operating economy. In view of the deregulation of the power generation industry with its increased competition, nuclear power plants must today also increasingly provide for or maintain a high level of plant availability and low power generating costs. This is a difficult challenge even for the newest, most modern plants, and as plants age they can only remain competitive if a plant operator adopts a strategic approach which takes into account the various aging-related effects on a plant-wide basis. The significance of aging and plant life management for nuclear power plants becomes apparent when looking at their age: By the year 2000 roughly fifty of the world's 434 commercial nuclear power plants will have been in operation for thirty years or more. According to the International Atomic Energy Agency, as many as 110 plants will have reached the thirty-year service mark by the year 2005. In many countries human society does not push the construction of new nuclear power plants and presumably will not change mind within the next ten years. New construction licenses cannot be expected so that for economical and ecological reasons existing plants have to be operated unchallengeably. On the other hand the deregulation of the power production market is asking just now for analysis of plant life time to operate the plants at a high technical and economical level until new nuclear power plants can be licensed and constructed. (author)

  19. Concept licensing procedure for an HTR-module nuclear power plant

    International Nuclear Information System (INIS)

    Brinkmann, G.; Will, M.

    1990-01-01

    In April 1987 the companies Siemens and Interatom applied in the West German state of Lower Saxony for a concept licensing procedure to be initiated for an HTR-Module nuclear power plant. In addition to a safety analysis report, numerous additional papers were submitted to the authorized experts. In April 1989 proceedings were suspended for political and legal reasons. By this time both the fire protection report and the plant security concept report had been completed. The safety concept review was continued by order of the Federal Minister for Research and Technology. The draft safety concept report was completed in July 1989. The final version was completed at the end of 1989. (orig.)

  20. Decision no. 2011-DC-0223 of the French nuclear safety authority from May 5, 2011, ordering the MELOX SA company to proceed to a complementary safety evaluation of some of its basic nuclear facilities in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to MELOX SA company, operator of the Melox MOX fuel fabrication plant of Marcoule (France). (J.S.)

  1. Decision no. 2011-DC-0218 of the French nuclear safety authority from May 5, 2011, ordering the EURODIF SA company to proceed to a complementary safety evaluation of some of its basic nuclear facilities in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to the EURODIF SA company, operator of the George Besse I uranium enrichment plant of the Tricastin site (France). (J.S.)

  2. Decision no. 2011-DC-0219 of the French nuclear safety authority from May 5, 2011, ordering the SOCATRI company to proceed to a complementary safety evaluation of some of its basic nuclear facilities in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to the SOCATRI company, operator of the nuclear dismantling and waste processing plants of the Tricastin site (France). (J.S.)

  3. Innovation in electric power technologies in 2009

    International Nuclear Information System (INIS)

    Ohfusa, Takahiro; Hayasaka, Eiji; Ino, Hiroyuki

    2010-01-01

    This is a report of the title by Tokyo Electric Power Company, Kansai Electric Power Co., Inc, Tohoku Electric Power and other nine enterprises in Japan. The outline is as follows. Tokyo Electric Power Company stated pipe thinning by the hot water based two-phase flow testing device, development of technologies for corrosion protection of nuclear reactor using titanium oxide, evaluation of fatigue damage by EBSD, and study of duty on the nuclear power plant. Japan Atomic Power Company (JAPC) stated the mechanism of decrease in exposure dose of the primary coolant system by zinc infusion, outline of Air Operated Valve Intelligent Diagnostic Analysis System (AVIDAS) and the grand packing system, development of SAPLS, the automatic search program of fuel position for design of PWR related core, development of compact containment water reactor (CCR) and FBR cycle system, investigation of the chain destruction of active fault under consideration of dynamic interaction of active faults and decommissioning of Tokai Nuclear Power Plant. Electric Power Development Company reported construction of the Oma Nuclear Power Plant, a future nuclear plant in Oma, Aomori. The reactor will be capable of using 100% MOX fuel core (MOX-ABWR). The operation will start November 2014. (S.Y.)

  4. Some power uprate issues in nuclear power plants

    International Nuclear Information System (INIS)

    Tipping, Philip

    2008-01-01

    Issues and themes concerned with nuclear power plant uprating are examined. Attention is brought to the fact that many candidate nuclear power plants for uprating have anyway been operated below their rated power for a significant part of their operating life. The key issues remain safety and reliability in operation at all times, irrespective of the nuclear power plant's chronological or design age or power rating. The effects of power uprates are discussed in terms of material aspects and expected demands on the systems, structures and components. The impact on operation and maintenance methods is indicated in terms of changes to the ageing surveillance programmes. Attention is brought to the necessity checking or revising operator actions after power up-rating has been implemented

  5. Issues behind Radiation management of workers at Fukushima Nuclear Power Plant of Tokyo Electric Power Company. From the viewpoint of radiation exposure of the ocular lens and the biological effects to the lens

    International Nuclear Information System (INIS)

    Hayashida, Toshiyuki; Sasaki, Hiroshi; Hatsusaka, Natsuko; Hamada, Nobuyuki; Tatsuzaki, Hideo; Akahane, Keiichi; Yokoyama, Sumi

    2017-01-01

    In March 2011, the accident occurred at the Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Company. During recovery from critical situations, the radiation dose for some emergency workers exceeded the effective dose limit recommended for an emergency situation. A month after the accident, the International Commission on Radiological Protection issued a statement on tissue reactions recommending significant reduction of the equivalent dose limit to the lens of the eye. Many radiation workers will need to be involved in treatment of water contaminated with radionuclides, fuel debris retrieval, and decommissioning of reactors for a long period of time. Thus, the optimized radiation control in the fields, exposure reduction, prevention of tissue reactions, and reduction of stochastic risks for workers becomes necessary. This paper discusses issues in relation to radiation protection of the ocular lens in such recovery workers, from the viewpoint of radiation exposure of workers, its management, manifestations and mechanisms of the lens effects. (author)

  6. Results of small break LOCA analysis for Kuosheng nuclear power plant using the RELAP5YA computer code

    International Nuclear Information System (INIS)

    Wang, L.C.; Jeng, S.C.; Chung, N.M.

    2004-01-01

    One lesson learned from the Three Mile Island (TMI) accident was the analysis methods used by Nuclear Steam Supply System (NSSS) vendors and/or nuclear fuel suppliers for small break Loss Of Coolant Accident (LOCA) analysis for compliance with appendix K to 10CFR50 should be revised, documented and submitted for USNRC approval and the plant-specific calculations using NRC-approved models for small-break LOCA to show compliance with 10CFR50.46 should be submitted for NRC approval. A study by Taiwan Power Company (TPC) under the guidance of Yankee Atomic Electric Company (YAEC) has been undertaken to perform this analysis for Kuosheng nuclear power plant. This paper presents the results of the analysis that are useful in satisfying the same requirements of the Republic Of China Atomic Energy Commission (ROCAEC). (author)

  7. Offshore atomic power plants

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Various merits of offshore atomic power plants are illustrated, and their systems are assessed. The planning of the offshore atomic power plants in USA is reviewed, and the construction costs of the offshore plant in Japan were estimated. Air pollution problem may be solved by the offshore atomic power plants remarkably. Deep water at low temperature may be advantageously used as cooling water for condensers. Marine resources may be bred by building artificial habitats and by providing spring-up equipments. In the case of floating plants, the plant design can be standardized so that the construction costs may be reduced. The offshore plants can be classified into three systems, namely artificial island system, floating system and sea bottom-based system. The island system may be realized with the present level of civil engineering, but requires the development of technology for the resistance of base against earthquake and its calculation means. The floating system may be constructed with conventional power plant engineering and shipbuilding engineering, but the aseismatic stability of breakwater may be a problem to be solved. Deep water floating system and deep water submerging system are conceivable, but its realization may be difficult. The sea bottom-based system with large caissons can be realized by the present civil engineering, but the construction of the caissons, stability against earthquake and resistance to waves may be problems to be solved. The technical prediction and assessment of new plant sites for nuclear power plants have been reported by Science and Technology Agency in 1974. The construction costs of an offshore plant has been estimated by the Ministry of International Trade and Industry to be yen71,026/kW as of 1985. (Iwakiri, K.)

  8. Benchmarking Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jakic, I.

    2016-01-01

    One of the main tasks an owner have is to keep its business competitive on the market while delivering its product. Being owner of nuclear power plant bear the same (or even more complex and stern) responsibility due to safety risks and costs. In the past, nuclear power plant managements could (partly) ignore profit or it was simply expected and to some degree assured through the various regulatory processes governing electricity rate design. It is obvious now that, with the deregulation, utility privatization and competitive electricity market, key measure of success used at nuclear power plants must include traditional metrics of successful business (return on investment, earnings and revenue generation) as well as those of plant performance, safety and reliability. In order to analyze business performance of (specific) nuclear power plant, benchmarking, as one of the well-established concept and usual method was used. Domain was conservatively designed, with well-adjusted framework, but results have still limited application due to many differences, gaps and uncertainties. (author).

  9. Power plants in competition 2011. Perspectives of future generation portfolio. Technology-system, stability-market, conditions, with technical exhibition; Kraftwerke im Wettbewerb 2011. Perspektiven des kuenftigen Erzeugungs-Portfolios. Technologie, Systemstabilitaet, Marktbedingungen, mit Fachausstellung

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The proceedings on the VGB conference ''power plants in competition 2011'' includes the following contributions: status of European energy policy; market and climate protection; setting up new conventional capacity in Europe and EU regulation; perspectives of power generation in Germany and Europe; market for power generation - challenges and chances for suppliers; development of a European ''network code'' for integration of power plants; impact of ''EU network code'' for design and operation of power plants; outcome of investigation of grid/generation; impact of intermitting generation on power system stability; consequences of low-load operation for coal fired power plants; pro quality - an approach for project management; Sumitomos R and D activities for advanced USC boilers; V and M innovative contribution to the challenges of present and future conventional power plants; steam side oxidation at austenitic boiler tubes; OL3 project - a multicultural challenge; knowledge management - preservation and maintenance of implicit knowledge within a company; competition about green investments - the European targets for renewables; retrofitting of CEZ power plants (coal and gas); power sector skill - addressing the challenges; requirements on structural maintenance in power plants; usage of corrugated tubes in heat exchangers; technical plant documentation; technologies for off-shore wind turbines; solar thermal plants; renewable energy from biomass and integration into the grid; environmentally friendly future power generation with fossil fuels; storage technologies; large-scale underground energy storage; assessment of risk - an insurance company view; human resources as multiplier for a company's value; post-combustion capture pilot plant experiences; CCS strategy of Vattenfall; optimizing plant process management; Enel activities on carbon capture and sequestration; bachelor studies on power plant

  10. Hybrid combined cycle power plant

    International Nuclear Information System (INIS)

    Veszely, K.

    2002-01-01

    In case of re-powering the existing pressurised water nuclear power plants by the proposed HCCPP solution, we can increase the electricity output and efficiency significantly. If we convert a traditional nuclear power plant unit to a HCCPP solution, we can achieve a 3.2-5.5 times increase in electricity output and the achievable gross efficiency falls between 46.8-52% and above, depending on the applied solution. These figures emphasise that we should rethink our power plant technologies and we have to explore a great variety of HCCPP solutions. This may give a new direction in the development of nuclear reactors and power plants as well.(author)

  11. A study on emergency preparedness for nuclear power plant/ Establishment of emergency communication network system

    International Nuclear Information System (INIS)

    Yang, Y. K.; Jung, Y. D.; Kim, S. Y.

    1991-12-01

    The objective of this study was to develop an emergency database search system for nuclear power plants during nuclear incidents / accidents. Image data reported from nuclear power plants to the regulatory body and other related data will be stored systematically in the computer. The data will be utilized during nuclear emergency to prevent the accident from spreading out and to minimize its effect. It will also be used in exchanging information on accident or incidents with the foreign countries. The operational documents in the Kori-4 nuclear power plant are used as the major source for the categorization and analysis in performing this research. It was not easy to access the detailed operational data due to its unique characteric for the security. Therefore, we strongly suggest to increase manpower for this project in Korea Institute of Nuclear Safety (KINS) and archive involvement from Korea Electric Power Company to establish better database retrieval system

  12. A study on emergency preparedness for nuclear power plant/ Establishment of emergency communication network system

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y K; Jung, Y D; Kim, S Y [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    1991-12-15

    The objective of this study was to develop an emergency database search system for nuclear power plants during nuclear incidents / accidents. Image data reported from nuclear power plants to the regulatory body and other related data will be stored systematically in the computer. The data will be utilized during nuclear emergency to prevent the accident from spreading out and to minimize its effect. It will also be used in exchanging information on accident or incidents with the foreign countries. The operational documents in the Kori-4 nuclear power plant are used as the major source for the categorization and analysis in performing this research. It was not easy to access the detailed operational data due to its unique characteric for the security. Therefore, we strongly suggest to increase manpower for this project in Korea Institute of Nuclear Safety (KINS) and archive involvement from Korea Electric Power Company to establish better database retrieval system.

  13. Safety Evaluation Report related to the operation of Perry Nuclear Power Plant, Units 1 and 2, (Docket Nos. 50-440 and 50-441)

    International Nuclear Information System (INIS)

    1984-02-01

    Supplement No. 4 to the Safety Evaluation Report on the application filed by the Cleveland Electric Illuminating Company on behalf of itself and as agent for the Duquesne Light Company, the Ohio Edison Company, the Pennsylvania Power Company, and the Toledo Edison Company (the Central Area Power Coordination Group or CAPCO), as applicants and owners, for a license to operate the Perry Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-440 and 50-441), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Lake County, Ohio. This supplement reports the status of certain issues that had not been resolved at the time of publication of the Safety Evaluation Report and Supplement Nos. 1, 2 and 3 to that report

  14. Safety evaluation report related to the operation of Perry Nuclear Power Plant, Units 1 and 2: Docket Nos. 50-440 and 50-441

    International Nuclear Information System (INIS)

    1983-01-01

    Supplement No. 2 to the Safety Evaluation Report on the application filed by the Cleveland Electric Illuminating Company on behalf of itself and as agent for the Duquesne Light Company, the Ohio Edison Company, the Pennsylvania Power Company, and the Toledo Edison Company (the Central Area Power Coordination Group (CAPCO)), as applicants and owners, for a license to operate the Perry Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-440 and 50-441), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Lake County, Ohio. This supplement reports the status of certain issues that had not been resolved at the time of publication of the Safety Evaluation Report and Supplement No. 1 to that report

  15. Safety evaluation report related to the operation of Perry Nuclear Power Plant, Units 1 and 2. Docket Nos. 50-440 and 50-441

    International Nuclear Information System (INIS)

    1983-04-01

    Supplement No. 3 to the Safety Evaluation Report on the application filed by the Cleveland Electric Illuminating Company on behalf of itself and as agent for the Duquesne Light Company, the Ohio Edison Company, the Pennsylvania Power Company, and the Toledo Edison Company (the Central Area Power Coordination Group or CAPCO), as applicants and owners, for a license to operate the Perry Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-440/441), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Lake County, Ohio. This supplement reports the status of certain issues that had not been resolved at the time of publication of the Safety Evaluation Report and Supplement Nos. 1 and 2 to that report

  16. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2003-01-01

    This 2003 version of Elecnuc contents information, data and charts on the nuclear power plants in the world and general information on the national perspectives concerning the electric power industry. The following topics are presented: 2002 highlights; characteristics of main reactor types and on order; map of the French nuclear power plants; the worldwide status of nuclear power plants on 2002/12/3; units distributed by countries; nuclear power plants connected to the Grid by reactor type groups; nuclear power plants under construction; capacity of the nuclear power plants on the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear plants by country at the end 2002; performance indicator of french PWR units; trends of the generation indicator worldwide from 1960 to 2002; 2002 cumulative Load Factor by owners; nuclear power plants connected to the grid by countries; status of license renewal applications in Usa; nuclear power plants under construction; Shutdown nuclear power plants; exported nuclear power plants by type; exported nuclear power plants by countries; nuclear power plants under construction or order; steam generator replacements; recycling of Plutonium in LWR; projects of MOX fuel use in reactors; electricity needs of Germany, Belgium, Spain, Finland, United Kingdom; electricity indicators of the five countries. (A.L.B.)

  17. Power generation by nuclear power plants

    International Nuclear Information System (INIS)

    Bacher, P.

    2004-01-01

    Nuclear power plays an important role in the world, European (33%) and French (75%) power generation. This article aims at presenting in a synthetic way the main reactor types with their respective advantages with respect to the objectives foreseen (power generation, resources valorization, waste management). It makes a fast review of 50 years of nuclear development, thanks to which the nuclear industry has become one of the safest and less environmentally harmful industry which allows to produce low cost electricity: 1 - simplified description of a nuclear power generation plant: nuclear reactor, heat transfer system, power generation system, interface with the power distribution grid; 2 - first historical developments of nuclear power; 3 - industrial development and experience feedback (1965-1995): water reactors (PWR, BWR, Candu), RBMK, fast neutron reactors, high temperature demonstration reactors, costs of industrial reactors; 4 - service life of nuclear power plants and replacement: technical, regulatory and economical lifetime, problems linked with the replacement; 5 - conclusion. (J.S.)

  18. Aging management of nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Maeda, Noriyoshi

    2003-01-01

    The Resource and Energy Agency of the Ministry of Trade and Industry (at present, the Nuclear and Industrial Safety Agency of the Ministry of Economy and Industry) carried out technical and present state conservation evaluations on soundness on a case of supposing operation of main apparatuses important for safety for sixty years, on three nuclear power plants constructed at initial period, on April, 1996, to open her basic concept on their aging management. The electricity companies also carried out their technical evaluation to investigate aging management measures for apparatuses important for safety and succession of operation, to summarize some essential measures for its long-term conservation plan. And, long-term and steady efforts such as technical development, preparation on national technical codes and private standards, data accumulation on materials and apparatuses are also required, to successively act them under adequate role-sharing and cooperation among government, universities and industries. Here were described periodical safety review, containing aging management technical evaluation, preparations of standards on apparatus maintenance standard, and so on, promotion of technical development, and Nuclear Power Plant Life Engineering Center (PLEC). (G.K.)

  19. Experience of electric power conservation in COELBA (Bahia Electric Company)

    International Nuclear Information System (INIS)

    Bastos, A.C.F.

    1990-01-01

    The electric power crisis of Brazilian north-east in 1987 imposes the Bahia Electric Company-COELBA to management a electric power conservation. The institutional, organizational and operational aspects are presented, including the tariff system, the market, the consumption and the relation with public. (author)

  20. The KWS training power plant Zwentendorf. Optimal conditions for practical training in the sectors of maintenance and dismantling of nuclear power plants; Das KWS-Schulungskraftwerk Zwentendorf. Die ideale Voraussetzung fuer praktische Schulungen in den Bereichen Instandhaltung und Rueckbau von kerntechnischen Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Maassen, Herbert [KRAFTWERKSSCHULE E.V., Essen (Germany). Weiterbildung Instandhaltung fuer konventionelle-/kerntechnische Anlagen und erneuerbare Energien

    2014-06-15

    In consequence of several years of interbranch staff reduction, started middle of the 1990th, at producers of power plant installation engineering, at plant service companies as well as at the operators of power plants and nuclear power plants themselves, an area-wide decline in know-how took place, which put the safe performance of maintenance activities in nuclear power plants more and more into question. The search for adequate training possibilities to cover these deficits lead to the reorganization of the nuclear power plant Zwentendorf at the year 2002, which was changed into a training facility for maintenance trainings, particularly for the sectors of reactor service, decommissioning and dismantling of nuclear power plants and other types of power plant specific training measures. For this purpose Zwentendorf was upgraded and transformed within a long-time process, and its combination may be considered as unique throughout the world. The Kraftwerksschule e.V. (KWS) owns the exclusive rights for the performance of training measures at Zwentendorf. During the last 10 years the KWS has made almost all sectors of this nuclear power plant accessible for trainings and inspections and offers a large training program. It is the aim of the training measures to ensure the operational reliability of the mechanical and installation engineering of nuclear power plants as well as fossil fired power plants in the long term through optimized maintenance planning and performance and therefore to operate the plants safely. Because of the direct practical reference to the original mechanical and installation engineering in the real atmosphere of a power plant, the nuclear power plant of Zwentendorf is highly suitable as a training centre for staff training in theory and practice. (orig.)

  1. Effect of wood fuels on power plant operability

    International Nuclear Information System (INIS)

    Orjala, M.; Ingalsuo, R.

    2001-01-01

    The objective of the research is to determine the critical properties of wood fuels on the basis of power plant operability, to determine the optimal conditions for reduction of harmful detriments, and to study how the storage and processing of wood fuels effect on the operability. Both the CFB and BFB technologies are studied. The project started in December 2000 and it will be ended by the end of 2002. Experts of the Fuels and Combustion research field of VTT Energy carry out the main parts of the research. Experts of the research field of Mineral Processing of VTT Chemical Technology, located in Outokumpu, and Kemian tutkimuspalvelut Oy/Oulu University, located in Outokumpu, participate in the analytics, and the research field of Materials and Manufacturing Technology of VTT Manufacturing Technology in Otaniemi participates in the research on material effects. System Technology Laboratory of Oulu University carries out the power plant automation and boiler control technology research under supervision of Professor Urpo Kortela. Co-operation with the materials research unit of EU's JRC, located in Petten, which started in the research 'Combustion of Forest Chips', will be continues in this research. Co-operation will be made with Swedish Vaermeforsk in the field of information exchange on experiences in utilisation of wood fuels in Swedish power plants and possibilities to join in the projects of Vaermeforsk in this research field. Following companies participate in the project: Etelae-Savon Energia Oy, Foster Wheeler Energia Oy, Kvaerner Pulping Oy, Simpele pasteboard factory of M-Real Oyj and Vaermeforsk AB (Sweden). (orig.)

  2. Service life monitoring of the main components at the Temelin nuclear power plant

    International Nuclear Information System (INIS)

    Hahn, J.; Vincour, D.

    2007-01-01

    Knowledge and experience gained from the introduction and periodical implementation of life assessment of the major components of the Temelin nuclear power plant is summarized. The initial Soviet technical design of the plant did not incorporate lifetime monitoring and evaluation, therefore it was completed with demonstrative strength and lifetime calculations from Czech companies. Moreover, a Westinghouse primary circuit diagnosis and monitoring system, including the monitoring of temperature and pressure cycles for low-cycle fatigue evaluation, was installed at the plant. The DIALIFE code for the calculation of mainly the low-cycle fatigue of the key pressure components, was developed and installed subsequently as a superstructure to the monitoring system. (author)

  3. Analyses of operating license renewal for nuclear power plants in USA

    International Nuclear Information System (INIS)

    Chiba, Goro

    2007-01-01

    Although the originally-approved operating period for nuclear power plants in the U.S. is 40 years, the operating periods of many plants have been extended by license renewal for another 20 years. On the other hand, in Japan, plant life management is carried out assuming long-term operation of the plant, and the electric power company submits reports, such as aging technology assessment, and receives evaluation by the authorities. In this paper, the situation regarding plant life management was investigated and a Japan-U.S. comparison was made. As a result, differences were found in the procedure, the background, the manpower, the review period, etc. in Japan and the U.S. but there is no difference between Japan and the U.S. in aiming for a check of the integrity of components, assuming long-term operation for 60 years. Moreover, trend analysis using the overseas fault database of INSS examined the effect on the preservation activities of a license renewal. As a result, there is a tendency for license renewal not to be applied for in units in which the number of aging faults increases with the increase in elapsed years. The U.S. license renewal system was considered to be effective in plant life management, and suggested the validity of plant life management in Japan which is employing the equivalent system to the U.S. (author)

  4. Perspectives of nuclear power plants

    International Nuclear Information System (INIS)

    Vajda, Gy.

    2001-01-01

    In several countries the construction of nuclear power plants has been stopped, and in some counties several plants have been decommissioned or are planned to. Therefore, the question arises: have nuclear power plants any future? According to the author, the question should be reformulated: can mankind survive without nuclear power? To examine this challenge, the global power demand and its trends are analyzed. According to the results, traditional energy sources cannot be adequate to supply power. Therefore, a reconsideration of nuclear power should be imminent. The economic, environmental attractions are discussed as opposite to the lack of social support. (R.P.)

  5. The financing of nuclear power plants

    International Nuclear Information System (INIS)

    Taylor, M.

    2009-01-01

    Existing nuclear generating capacity plays an important role in providing secure, economic and low-carbon electricity supplies in many OECD countries. At the same time, there is increasing recognition that an expansion of nuclear power could play a valuable role in reducing future carbon dioxide emissions. However, in recent years only a handful of new nuclear power plants (NPPs) have been built in just a few OECD countries. An important reason for this is the challenges associated with financing the construction of new NPPs. The just-published NEA report entitled The Financing of Nuclear Power Plants examines these challenges. In addition, recognizing that any expansion of nuclear power programmes will require strong and sustained government support, the report highlights the role of governments in facilitating and encouraging investment in new nuclear capacity. Key actions that should be considered by governments that wish to see investment in new NPPs include: - Provide clear and sustained policy support for the development of nuclear power, by setting out the case for a nuclear component in energy supply as part of a long-term national energy strategy. - Work with electricity utilities, financial companies and other potential investors, and the nuclear industry from an early stage to address concerns that may prevent nuclear investment and to avoid mistakes in establishing the parameters for new NPPs. - Establish an efficient and effective regulatory system which provides adequate opportunities for public involvement in the decision-making process, while also providing potential investors with the certainty they require to plan such a major investment. - Put arrangements in place for the management of radioactive waste and spent fuel, and show progress towards a solution for final disposal of waste. For investors in NPPs, the financial arrangements for paying their fair share of the costs must be clearly defined. - Ensure that electricity market regulation does

  6. Problems of power plant capital demands

    International Nuclear Information System (INIS)

    Slechta, V.; Bohal, L.

    1986-01-01

    The problems are discussed of requirements for investment for power plants in Czechoslovakia. Since the construction was finished of coal-burning 110 MW power plants with six power units, specific capital cost has steadily been growing. The growth amounts to 6 to 8% per year while the principle has been observed that specific capital cost decreases with increased unit power. Attention is paid to the cost of the subcontractors of the building and technological parts of a power plant and to the development of productivity of labour. A comparison is tabulated of cost for coal-burning power plants with 100 MW and 200 MW units and for nuclear power plants with WWER-440 reactors. Steps are suggested leading to a reduction of the capital cost of nuclear power plants. It is stated that should not these steps be taken, the envisaged development of nuclear power would be unbearable for the Czechoslovak national economy. (Z.M.). 8 tabs., 3 refs

  7. Scottish Nuclear, the company

    International Nuclear Information System (INIS)

    Yeomans, R.M.

    1991-01-01

    A former chief executive of Scottish Nuclear, formed when United Kingdom electricity generation was privatized, describes the financial viability of the company and considers the future of nuclear power. Scottish Nuclear owns and operates the Advanced Gas Cooled (AGR) and Magnox reactors at Hunterston and the AGR reactor at Torness and is a separate company from those dealing with hydro-electric and non-nuclear generation of electricity. Costs of running the reactors is identified as a proportion of the whole for certain key issues such as station costs, depreciation, decommissioning and insurance. While nuclear power generation using outmoded Magnox reactors is costly, the ecological cost of global warming is seen as more of a problem. Future policy for nuclear power in Scotland must include new plant, probably pressurized water reactors and a clear policy of safety enhancement. (UK)

  8. Innovative-Simplified Nuclear Power Plant Efficiency Evaluation with High-Efficiency Steam Injector System

    International Nuclear Information System (INIS)

    Shoji, Goto; Shuichi, Ohmori; Michitsugu, Mori

    2006-01-01

    It is possible to establish simplified system with reduced space and total equipment weight using high-efficiency Steam Injectors (SI) instead of low-pressure feedwater heaters in Nuclear Power Plant (NPP). The SI works as a heat exchanger through direct contact between feedwater from condensers and extracted steam from turbines. It can get higher pressure than supplied steam pressure. The maintenance and reliability are still higher than the feedwater ones because SI has no movable parts. This paper describes the analysis of the heat balance, plant efficiency and the operation of this Innovative-Simplified NPP with high-efficiency SI. The plant efficiency and operation are compared with the electric power of 1100 MWe-class BWR system and the Innovative-Simplified BWR system with SI. The SI model is adapted into the heat balance simulator with a simplified model. The results show that plant efficiencies of the Innovated-Simplified BWR system are almost equal to original BWR ones. The present research is one of the projects that are carried out by Tokyo Electric Power Company, Toshiba Corporation, and six Universities in Japan, funded from the Institute of Applied Energy (IAE) of Japan as the national public research-funded program. (authors)

  9. Next Generation Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine

  10. Power plant chemical technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    17 contributions covering topies of fossil fuel combustion, flue gas cleaning, power plant materials, corrosion, water/steam cycle chemistry, monitoring and control were presented at the annual meeting devoted to Power Plant Chemical Technology 1996 at Kolding (Denmark) 4-6 September 1996. (EG)

  11. Nuclear power plants in populated areas

    International Nuclear Information System (INIS)

    Wachsmann, F.

    1973-01-01

    The article first deals with the permanently increasing demand for electical power. Considering the ever growing energy demand which can no longer be covered by conventional power plants, it has become necessary to set up nuclear power plants of larger range. The author presents in a survey the basic function of nuclear power plants as well as the resulting risks and safety measures. The author concludes that according to present knowledge there is no more need to erect nuclear power plants outside densely populated urban areas but there is now the possibility of erecting nuclear power plants in densely populated areas. (orig./LH) [de

  12. Establishment of professional nuclear power architectural engineering company

    International Nuclear Information System (INIS)

    Guo Dongli; Chen Hua

    2006-01-01

    The rapid development of nuclear power industry in China requires specialized management for the nuclear power engineering projects. It is necessary to establish the nuclear power architectural engineering company to meet the increasing market needs by providing the owner with specialized nuclear engineering project management and overall contracting services. It is imperative that the purpose of establishing the corporation and enterprise core competitiveness should be clearly identified when it is established. Its organizational structure should be geared to the enterprise operation management and development to facilitate the intensified project management and control, and improve its risk-proof ability. (authors)

  13. Nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Yaziz Yunus

    1986-01-01

    A number of issues have to be taken into account before the introduction of any nuclear power plant in any country. These issues include reactor safety (site and operational), waste disposal and, lastly, the decommissioning of the reactor inself. Because of the radioactive nature of the components, nuclear power plants require a different approach to decommission compared to other plants. Until recently, issues on reactor safety and waste disposal were the main topics discussed. As for reactor decommissioning, the debates have been academic until now. Although reactors have operated for 25 years, decommissioning of retired reactors has simply not been fully planned. But the Shippingport Atomic Power Plant in Pennysylvania, the first large scale power reactor to be retired, is now being decommissioned. The work has rekindled the debate in the light of reality. Outside the United States, decommissioning is also being confronted on a new plane. (author)

  14. Safstor decommissioning of the Humboldt Bay Power Plant Unit No. 3

    International Nuclear Information System (INIS)

    Nelson, R.T.

    1985-01-01

    The Humboldt Bay Power Plant is located near Eureka, California, about 265 miles north of San Francisco. The plant consists of two fossil fueled units, two mobil gas turbine peaking units, and a nuclear unit - Unit No. 3. Unit No. 3, which utilized a boiling water reactor, was constructed between 1960 and 1963. The unit began commercial operation in August 1963 and operated until July 2, 1976 when it was shutdown for refueling, seismic modifications, and additional seismic and geologic studies. During the years Unit 3 operated it had one of the best operating records of any nuclear power plant in the United States. For its operating lifetime Unit 3 had an overall capacity factor of 63.0% and an availability factor of 85.9%. The unit included certain design features which made it unique among nuclear power plants of its era. Some of these unique features included natural circulation recirculation flow which eliminated the need for costly recirculation pumps, utilization of a pressure suppression containment system which had been developed jointly by PG and E and the General Electric Company, and the fact that the reactor vessel and the containment system were constructed in a caisson below ground level. These design features reduced the overall construction cost of the unit and improved its inherent safety

  15. The end of cheap electric power from nuclear power plants. 2. ed.

    International Nuclear Information System (INIS)

    Franke, J.; Viefhues, D.

    1984-04-01

    The economic efficiency of a nuclear power plant is compared with that of a coal-fired power plant of the same size. A technical and economic computer model was developed which took account of the power plant and all its units as well as the fuel cycle (including intermediate storage and reprocessing). It was found that future nuclear power plants will be inferior to coal-fired power plants in all economic respects. Further, there was no load range in which the cost of electric power generation was more favourable in nuclear power plants than in coal-fired power plants. (orig./HSCH) [de

  16. Design issues concerning Iran's Bushehr nuclear power plant VVER-1000 conversion

    International Nuclear Information System (INIS)

    Carson, C.F.

    1996-01-01

    On January 8, 1995, the Atomic Energy Organization of Iran (AEOI) signed a contract for $800 million with the Russian Federation Ministry for Atomic Energy (Minatom) to complete Bushehr nuclear power plant (BNPP) unit 1. The agreement called for a Russian VVER-1000/320 pressurized water reactor (PWR) to be successfully installed into the existing German-built BNPP facilities in 5 yr. System design differences, bomb damage, and environmental exposure are key issues with which Minatom must contend in order to fulfill the contract. The AEOI under the Shah of Iran envisioned Bushehr as the first of many nuclear power plants, with Iran achieving 24 GW(electric) by 1993 and 34 GW(electric) by 2000. Kraftwerk Union AG (KWU) began construction of the two-unit plant near the Persian Gulf town of Halileh in 1975. Unit 1 was ∼80% complete and unit 2 was ∼50% complete when construction was interrupted by the 1979 Iranian Islamic revolution. Despite repeated AEOI attempts to lure KWU and other companies back to Iran to complete the plant, Western concerns about nuclear proliferation in Iran and repeated bombings of the plant during the 1980-1988 Iran-Iraq war dissuaded Germany from resuming construction

  17. The Impact of the Bituminous Coal Combustion from the Thermoelectric Power Plant from Paroseni on the Environment of Jiu Valley

    Directory of Open Access Journals (Sweden)

    Mircea Rebrisoreanu

    2002-04-01

    Full Text Available The Jiu Valley Basin is one of the most important coal mining areas in Romania. Other industries, including a power plant, are also well developed in this area. Therefore, pollution is very high. One of the most polluted environmental compounds is the air. High mountains surround the Jiu Valley, which makes difficult the air refreshing. For this reason, it is very important to discuss the air pollution and especially that produced by dust. Since the industrial companies are concentrated in a small area, it is very difficult to identify and prosecute the polluting one. The present paper aims to identify the sources of air pollution, especially among the mining companies, because the power plant is considered the most important polluting agent in this area.

  18. Measures associated with the dose limitation system at the TVO Power Company

    International Nuclear Information System (INIS)

    Ruuskanen, A.T.; Sundell, R.O.

    1982-01-01

    The paper discusses radiation protection practices at the TVO Power Company, which owns and operates two BWR units of Asea-Atom design at Olkiluoto, Finland. The installed electric power of each unit is 660MW. The full power operation of TVO I and TVO II began in 1979 and 1980, respectively. The dose limitation system calls for an organization which is responsible for radiation protection. This organization at the plant site is described. To limit doses a good knowledge of the work activities which cause doses is needed. There is a very up-to-date microprocessor-based work dosimetry system at the TVO power plant. The system provides a practicable means of measuring personal doses from various work activities. It also makes the allocation of radiation protection measures possible. The system and experience in applying it are discussed. The dose limitation system presupposes the realization of the optimization principle. The practice applied at TVO in order to limit internal contamination is presented. Owing to this practice, workers' internal doses have remained at a considerably low level. The paper discusses the ALARA values of different kinds of respiratory equipment. These values, which vary from 2x10 4 to 1x10 6 FIM/man.Sv (1 FIM=approx. US$ 0.22), can be used in the evaluation of different measures in avoiding internal doses. The operating policy of movable lead shields is presented. The ALARA value of this activity is evaluated to be about 5x10 4 FIM/man.Sv and on that basis it can be concluded that the use of movable lead shields is very efficient. The dose statistics for TVO's plant are presented. The doses have been less than 0.001 man.Sv/MW.a. Although the dose statistics for TVO are very good it is not realistic to consider solely the optimization aspect of radiation protection. The costs must also be kept in mind; these are presented in the paper. Problems in assessing the level of radiation protection practices on an annual basis are briefly discussed

  19. 75 FR 52523 - Bowersock Mills and Power Company; Notice of Availability of Environmental Assessment

    Science.gov (United States)

    2010-08-26

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13526-002-KS] Bowersock Mills and Power Company; Notice of Availability of Environmental Assessment August 19, 2010. In... reviewed the application for an original license for the Bowersock Mills and Power Company's Expanded...

  20. Financing of nuclear power plant using resources of power generation

    International Nuclear Information System (INIS)

    Slechta, V.; Milackova, H.

    1987-01-01

    It is proved that during the lifetime of a power plant, financial resources are produced from depreciation and from the profit for the delivered electrical power in an amount allowing to meet the cost of construction, interests of credits, the corporation taxes, and the means usable by the utility for simple reproduction of the power plant, additional investment, or for the ultimate decommissioning of the nuclear power plant. The considerations are simplified to 1 MW of installed capacity of a WWER-440 nuclear power plant. The breakdown is shown of the profit and the depreciation over the power plant lifetime, the resources of regular payments of credit instalments for the construction and the method of its calculation, and the income for the state budget and for the utility during the plant liofetime. (J.B.). 5 tabs., 5 refs

  1. Human-Machine interface for off normal and emergency situations in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kee Choon [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-01-01

    Many nuclear power plants (NPPs) have reported that a high percentage of all major failures in the plants are caused by human errors. Therefore, there has been much focus on elimination of human errors, enhancement of human performance, and general improvement of human machine interface (HMI). Both the utility management and the regulators are demanding improvement in this area. The International Atomic Energy Agency (IAEA) Specialists' Meeting on 'Human-Machine Interface for Off Normal and Emergency Situations in Nuclear Power Plants' was co-organized by the Korea Atomic Energy Research Institute (KAERI) and the Korea Power Engineering Company, INC (KOPEC), and took place in Taejeon, Republic of Korea, 1999 October 26-28. Fifty eight participants, representing nine member countries reviewed recent developments and discussed directions for future efforts in the Human-Machine Interface for Off Normal and Emergency Situations in NPPs. Twenty papers were presented, covering a wide spectrum of technical and scientific subjects including recent experience and benefits from Operational Experience with HMI, Development of HMI System, Licensing Issues for HMI and Future Development and Trends. (Author)

  2. Human-Machine interface for off normal and emergency situations in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kee Choon [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-01-01

    Many nuclear power plants (NPPs) have reported that a high percentage of all major failures in the plants are caused by human errors. Therefore, there has been much focus on elimination of human errors, enhancement of human performance, and general improvement of human machine interface (HMI). Both the utility management and the regulators are demanding improvement in this area. The International Atomic Energy Agency (IAEA) Specialists' Meeting on 'Human-Machine Interface for Off Normal and Emergency Situations in Nuclear Power Plants' was co-organized by the Korea Atomic Energy Research Institute (KAERI) and the Korea Power Engineering Company, INC (KOPEC), and took place in Taejeon, Republic of Korea, 1999 October 26-28. Fifty eight participants, representing nine member countries reviewed recent developments and discussed directions for future efforts in the Human-Machine Interface for Off Normal and Emergency Situations in NPPs. Twenty papers were presented, covering a wide spectrum of technical and scientific subjects including recent experience and benefits from Operational Experience with HMI, Development of HMI System, Licensing Issues for HMI and Future Development and Trends. (Author)

  3. Nuclear Power Plants (Rev.)

    Energy Technology Data Exchange (ETDEWEB)

    Lyerly, Ray L.; Mitchell III, Walter [Southern Nuclear Engineering, Inc.

    1973-01-01

    Projected energy requirements for the future suggest that we must employ atomic energy to generate electric power or face depletion of our fossil-fuel resources—coal, oil, and gas. In short, both conservation and economic considerations will require us to use nuclear energy to generate the electricity that supports our civilization. Until we reach the time when nuclear power plants are as common as fossil-fueled or hydroelectric plants, many people will wonder how the nuclear plants work, how much they cost, where they are located, and what kinds of reactors they use. The purpose of this booklet is to answer these questions. In doing so, it will consider only central station plants, which are those that provide electric power for established utility systems.

  4. 76 FR 36914 - Astoria Generating Company, L.P., NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas...

    Science.gov (United States)

    2011-06-23

    ... Generating Company, L.P., NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas Turbine Power LLC... Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas Turbine Power LLC, Dunkirk Power LLC, Huntley... when a document is added to a subscribed docket(s). For assistance with any FERC Online service, please...

  5. 76 FR 1469 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2011-01-10

    ... Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2 Environmental Assessment... Plant, LLC, the licensee, for operation of the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2... Impact Statement for License Renewal of Nuclear Plants, Calvert Cliffs Nuclear Power Plant (NUREG-1437...

  6. 75 FR 11149 - Bowersock Mills and Power Company; Notice of Application Tendered for Filing With the Commission...

    Science.gov (United States)

    2010-03-10

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13526-001] Bowersock Mills...: Bowersock Mills Power Company (Bowersock). e. Name of Project: Bowersock Mills and Power Company Expanded....S.C. 791(a)-825(r). h. Applicant Contact: Sarah Hill-Nelson, The Bowersock Mills and Power Company...

  7. The adaptation of the electric power companies to the power market

    International Nuclear Information System (INIS)

    Otterstad, B.; Ottosen, R.

    1993-02-01

    This report describes the challenges met by the Norwegian electric power companies in adapting to a more market oriented business and their possibilities and strategies when facing the uncertainties on the market side. The main principles of adaptation to the market are described and various strategies are illustrated by means of simple calculations and figures. The theoretical basis for analyses of adaptation to the market and for pricing period contracts and options are discussed. The report concludes with a discussion of the de-regulation of the North American gas market and draws parallels to the Norwegian power market. 17 figs

  8. Development of management system for nuclear power plant maintenance and information

    International Nuclear Information System (INIS)

    Nomoto, Toshihiro

    1997-01-01

    In Chubu Electric Power Co., Inc., in order to make maintenance works efficient and improve the management, 'Management system for nuclear power plant maintenance and information' was developed, and its operation on full scale was begun in Hamaoka Nuclear Power Station in October, 1996. This system is composed of equipment management system, maintenance and repair management system and work management system. As the features of the system, the dispersion of functions by client/server method, the installation of the server machines for exclusive use in power stations, the adoption of optical communication network and the ensuring of reliability by the doubled system are mentioned. This system is the function dispersion system by client/server method utilizing the in-plant LAN, and has two server computers with double hot standby constitution. The main functions of three subsystems are described. These three subsystems and piping and instrumentation chart management system and whole company work budget system are connected so as to make dealing works quick and efficient. Hereafter, by reflecting the opinions of the users through the operation, further efficient works are to be aimed at. (K.I.)

  9. Future carbon regulations and current investments in alternative coal-fired power plant technologies

    International Nuclear Information System (INIS)

    Sekar, Ram C.; Parsons, John E.; Herzog, Howard J.; Jacoby, Henry D.

    2007-01-01

    We analyze how uncertain future US carbon regulations shape the current choice of the type of power plant to build. Our focus is on two coal-fired technologies, pulverized coal (PC) and integrated coal gasification combined cycle technology (IGCC). The PC technology is cheapest-assuming there is no need to control carbon emissions. The IGCC technology may be cheaper if carbon must be captured. Since power plants last many years and future regulations are uncertain, a US electric utility faces a standard decision under uncertainty. A company will confront the range of possible outcomes, assigning its best estimate of the probability of each scenario, averaging the results and determining the power plant technology with the lowest possible cost inclusive of expected future carbon related costs, whether those costs be in the form of emissions charges paid or capital expenditures for retrofitting to capture carbon. If the company assigns high probability to no regulation or to less stringent regulation of carbon, then it makes sense for it to build the PC plant. But if it assigns sufficient probability to scenarios with more stringent regulation, then the IGCC technology is warranted. We provide some useful benchmarks for possible future regulation and show how these relate back to the relative costs of the two technologies and the optimal technology choice. Few of the policy proposals widely referenced in the public discussion warrant the choice of the IGCC technology. Instead, the PC technology remains the least costly. However, recent carbon prices in the European Emissions Trading System are higher than these benchmarks. If it is any guide to possible future penalties for emissions in the US, then current investment in the IGCC technology is warranted. Of course, other factors need to be factored into the decision as well

  10. Decision no. 2011-DC-0214 of the French nuclear safety authority from May 5, 2011, ordering CIS bio international company to proceed to a complementary safety evaluation of its basic nuclear facility in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to CIS bio international company, operator of the radiopharmaceuticals fabrication facility (INB 29) of Saclay (France). (J.S.)

  11. A decision support system for maintenance management of a boiling-water reactor power plant

    International Nuclear Information System (INIS)

    Shen, J.H.; Ray, A.; Levin, S.

    1996-01-01

    This article reports the concept and development of a prototype expert system to serve as a decision support tool for maintenance of boiling-water reactor (BWR) nuclear power plants. The code of the expert system makes use of the database derived from the two BWR units operated by the Pennsylvania Power and Light Company in Berwick, Pennsylvania. The operations and maintenance information from a large number of plant equipment and sub-systems that must be available for emergency conditions and in the event of an accident is stored in the database of the expert system. The ultimate goal of this decision support tool is to identify the relevant Technical Specifications and management rules for shutting down any one of the plant sub-systems or removing a component from service to support maintenance. 6 refs., 7 figs

  12. 77 FR 77073 - York Haven Power Company, LLC; Notice of Meeting

    Science.gov (United States)

    2012-12-31

    ... Company, LLC; Notice of Meeting On Wednesday, January 9, 2013, Commission staff will meet with York Haven Power Company, LLC (applicant) in Washington, DC. The purpose of the meeting is to discuss the required... begin at 10 a.m. at the Federal Energy Regulatory Commission headquarters building located at 888 First...

  13. Expert report of ENSI on the request of EKKB AG for a general license - Project 'New nuclear power plant to replace the Beznau plant'

    International Nuclear Information System (INIS)

    2010-09-01

    The 'Ersatz Kernkraftwerk Beznau AG' (EKKB) Company submitted to the Swiss Federal Inspectorate of Nuclear Safety (ENSI) a request for a general license for a new power plant to be built near to the Beznau power plants. According to the law, all damage risks with a probability higher than 10 -4 /a must be taken into account through protection measures. The considered risks concern the power plant itself as well as the population in the neighbourhood and the environment. The purpose of the general license is to demonstrate that the site chosen for the foreseen power plant is acceptable and that the risks can be counteracted through adequate measures. The buildings of the power plant and their partition on the Beznau Island in the Aare River are briefly described. The reactor is a Light Water Reactor of third generation with a maximum electrical power of 1450 MW el ±20%. The main cooling is provided by a hybrid system of water evaporation and air heating, what reduces the plume at the exit of the cooling tower. First, it is demonstrated that, in the case of a very unlikely severe accident in the power plant, the people in the neighbourhood can be evacuated quickly. Then, numerous types of possible accidents in the neighbourhood of the power plant are analyzed in order to settle their possible negative influence on the operation of the power plant: bursting of gas containers on the neighbouring roads and railways, fires of all types of hydrocarbons, air pollution through chloride gas, etc. The check by ENSI of the EKKB studies on the potential danger for the power plant through neighbouring industrial plants, roads or railways demonstrated that none of the considered accidents presents an unacceptable risk for the power plant: on the one hand, these plants are located too far from the power plant, so that a sensible injury to the power plant safety can be excluded; on the other, the protection of the power plant can be guaranteed through appropriate technical

  14. Application of ABWR construction database to nuclear power plant project

    International Nuclear Information System (INIS)

    Takashima, Atsushi; Katsube, Yasuhiko

    1999-01-01

    Tokyo Electric Power Company (TEPCO) completed the construction of Kashiwazaki-Kariwa Nuclear Power Station Unit No. 6 and No. 7 (K-6/7) as the first advanced boiling water reactors (ABWR) in the world successfully. K-6 and K-7 started their commercial operations in November, 1996 and in July, 1997 respectively. We consider ABWR as a standard BWR in the world as well as in Japan because ABWR is highly reputed. However, because the interval of our nuclear power plant construction is going to be longer, our engineering level on plant construction will be declining. Hence it is necessary for us to maintain our engineering level. In addition to this circumstance, we are planning to wide application of separated purchase orders for further cost reduction. Also there is an expectation for our contribution to ABWR plant constructions overseas. As facing these circumstances, we have developed a construction database based on our experience for ABWR construction. As the first step of developing the database for these use, we analyzed our own activities in the previous ABWR construction. Through this analysis, we could define activity units of which the project consists. As the second step, we clarified the data which are treated in each activity unit and the interface among them. By taking these steps, we could develop our database efficiently. (author)

  15. Data base on nuclear power plant dose reduction research projects

    Energy Technology Data Exchange (ETDEWEB)

    Khan, T.A.; Baum, J.W.

    1986-10-01

    Staff at the ALARA Center of Brookhaven National Laboratory have established a data base of information about current research that is likely to result in lower radiation doses to workers. The data base, concerned primarily with nuclear power generation, is part of a project that the ALARA Center is carrying out for the Nuclear Regulatory Commission. This report describes its current status. A substantial amount of research on reducing occupational exposure is being done in the US and abroad. This research is beginning to have an impact on the collective dose expenditures at nuclear power plants. The collective radiation doses in Europe, Japan, and North America all show downward trends. A large part of the research in the US is either sponsored by the nuclear industry through joint industry organizations such as EPRI and ESEERCO or is done by individual corporations. There is also significant participation by smaller companies. The main emphasis of the research on dose reduction is on engineering approaches aimed at reducing radiation fields or keeping people out of high-exposure areas by using robotics. Effective ALARA programs are also underway at a large number of nuclear plants. Additional attention should be given to non-engineering approaches to dose reduction, which are potentially very useful and cost effective but require quantitative study and analysis based on data from nuclear power plants. 9 refs., 1 fig.

  16. Radiation risk perception by radiation professionals. Survey results just before the radiological accident at the Tokyo Electric Power Company Fukushima Daiichi nuclear power plant

    International Nuclear Information System (INIS)

    Miura, Miwa; Hayashida, Rika; Takao, Hideaki; Matsuda, Naoki; Ono, Koji

    2013-01-01

    From October to December 2010, just before the radiological accident at the Tokyo Electric Power Company Fukushima Daiichi nuclear power plant, 71 radiation professionals belonging to the radiation facilities in Japan were asked what they consider as a 'safe' dose of radiation for themselves, their spouse, parents, children, brothers and friends. Although the 'safe' dose varied widely from less than 1 mSv/y to higher than 100 mSv/y, the average dose was 35.6 mSv/y that was around the middle point between the exposure dose limits for annual average (20 mSv/y) and for any single year (50 mSv/y). Similar results were obtained from another surveys for the members of Japan Radioisotope Association (36.9 mSv/y) and for the Oita Prefectural Hospital (36.8 mSv/y). Among the family members and friends, the minimum average 'safe' dose was 8.5 mSv/y for children, to whom 50% of responders claimed the 'safe' dose less than 1 mSv. Gender, age and specialty of the responder also affected the 'safe' dose. These findings suggest that the perception of radiation risk varies widely and that the legal exposure dose limit derived from the regulatory science may act as an anchor of safety even in radiation professionals. The different level of risk perception for different target groups in radiation professionals appears similar to those in non-professional whole population. The gap between these characteristics of real radiation professionals and the generally accepted picture of radiation professionals might take a part in a state of confusion after the radiological accident. (author)

  17. 1985 seminar on power plant digital control and fault-tolerant microcomputers: proceedings

    International Nuclear Information System (INIS)

    Divakaruni, S.M.

    1986-09-01

    An EPRI Seminar to address Power Plant Digital Controls and Fault-Tolerant Microcomputers Technology was hosted by Arizona Public Service Company in Phoenix, Arizona on April 9-12, 1986. The attendees represented a broad spectrum of US and foreign utilities, architect and consulting firms, and NSSS and computer system hardware vendors. These proceedings contain the text of the formal presentations as well as the papers and slides used during the short courses offered

  18. Nuclear power plants in post-war thought

    International Nuclear Information System (INIS)

    Toya, Hiroshi

    2015-01-01

    This paper overviews how nuclear power plants have been talked about in the post-war thought. Science and technology sometimes significantly change the thinking way of humans, and nuclear power generation is an extreme technology. This paper overviews how nuclear power plants and humans are correlated. The following three points are discussed as the major issues of contemporary thought over nuclear power plants. First, on the danger of nuclear power plants, the risk of destructive power that nuclear energy has, and the danger of unreasoning development in science and technology civilization are discussed. Second, on the ethics issues surrounding nuclear power plants, the ethics that are based on unbalanced power relations, and democratic responsibility ethics based on discussion ethics are discussed. Third, on the issues of nuclear power plants and imagination, the limitations of democratic discussion surrounding nuclear power plants, the formation of imagination commensurate with the destructive power of nuclear power plants, and the formation of imagination that can represent the distant future are discussed. (A.O.)

  19. Interaction among competitive producers in the electricity market: An iterative market model for the strategic management of thermal power plants

    International Nuclear Information System (INIS)

    Carraretto, Cristian; Zigante, Andrea

    2006-01-01

    The liberalization of the electricity sector requires utilities to develop sound operation strategies for their power plants. In this paper, attention is focused on the problem of optimizing the management of the thermal power plants belonging to a strategic producer that competes with other strategic companies and a set of smaller non-strategic ones in the day-ahead market. The market model suggested here determines an equilibrium condition over the selected period of analysis, in which no producer can increase profits by changing its supply offers given all rivals' bids. Power plants technical and operating constraints are considered. An iterative procedure, based on the dynamic programming, is used to find the optimum production plans of each producer. Some combinations of power plants and number of producers are analyzed, to simulate for instance the decommissioning of old expensive power plants, the installation of new more efficient capacity, the severance of large dominant producers into smaller utilities, the access of new producers to the market. Their effect on power plants management, market equilibrium, electricity quantities traded and prices is discussed. (author)

  20. Hybrid wind-power-distillation plant

    Directory of Open Access Journals (Sweden)

    Ninić Neven

    2012-01-01

    Full Text Available This paper reports and elaborates on the idea of a solar distiller and an offshore wind power plant operating together. The subject under discussion is a single-stage solar distillation plant with vaporization, using adiabatic expansion in the gravitational field inside a wind power plant supporting column. This scheme divides investment costs for electric power and distillate production. In the region of the Adriatic Sea, all electric power produced could be “converted” to hydrogen using less than 10% of the distillate produced.

  1. Power plants 2009. Lectures

    International Nuclear Information System (INIS)

    2009-01-01

    Within the Annual Conference 2009 of the VGB PowerTech e.V. (Essen, Federal Republic of Germany) from 23rd to 25th May, 2009, in Lyon (France) the following lectures were held: (1) Electricity demand, consequences of the financial and economic crisis - Current overview 2020 for the EU-27 (Hans ten Berge); (2) Status and perspectives of the electricity generation mix in France (Bernard Dupraz); (3) European electricity grid - status and perspective (Dominique Maillard); (4) Technologies and acceptance in the European energy market (Gordon MacKerran); (5) EPR construction in Finland, China, France, (Claude Jaouen); (6) EPR Flamanville 3: A project on the path towards nuclear revival (Jacques Alary); (7) Worldwide nuclear Revival and acceptance (Luc Geraets); (8) An overview on the status of final disposal of radioactive wastes worldwide (Piet Zuidema); (9) Who needs pumped storage plants? PSP are partner to grid stability and renewable energies (Hans-Christoph Funke); (10) Sustainable use of water resources to generate electricity safely and efficiently (Patrick Tourasse); (11) The growth strategy of RWE Innogy - Role of RES in RWE strategy (Fritz Vahrenholt); (12) Solar technologies towards grid parity - key factors and timeframe (G. Gigliucci); (13) Overview on CCS technologies and results of Vattenfalls oxyfuel pilot plant (Philippe Paelinck); (14) Development perspectives of lignite-based IGCC-plants with CCS (Dietmar Keller); (15) Post combustion capture plants - concept and plant integration (Wolfgang Schreier); (16) CCS fossil power generation in a carbon constraint world (Daniel Hofmann); (17) CEZ group strategy in Central and South Eastern Europe (Jan Zizka); (18) Strategy and projects of DONG Energy (Jens Erik Pedersen); (19) E.ON coal-based power generation of the future - The highly efficient power plant and downstream separation of carbon dioxide (Gerhard Seibel); (20) Final sage of first supercritical 460 MW e l. CFB Boiler construction - firs

  2. Chemistry in power plants 2011

    International Nuclear Information System (INIS)

    2011-01-01

    Within the VGB Powertech conference from 25th to 27th October, 2011, in Munich (Federal Republic of Germany), the following lectures and poster contributions were presented: (1) The revised VGB standard for water-steam-cycle Chemistry; (2) Switchover from neutral operation to oxygen treatment at the power station Stuttgart-Muenster of EnBW Kraftwerke AG; (3) Steam contamination with degradation products of organic matters present in the feedwater of the Lanxess-Rubber cogeneration plant; (4) Laboratory scale on-line noble metal deposition experiments simulating BWR plant conditions; (5) Building a new demin installation for the power plant EPZ in Borssele; (6) Replacement of the cooling tower installations in the nuclear power plant Goesgen-Daenien AG; (7) Aging of IEX resins in demin plants - Cost optimisation by adaptation of regenerants; (8) The largest DOW trademark EDI System at a combined cycled plant in Europe; (9) Upgrading river Main water to boiler feed water - Experiences with ultrafiltration; (10) Experiences with treatment of the water-steam-cycle in the RDF power plant Nehlsen Stavenhagen with film-forming amines; (11) Comparative modelling of the bubbles thermal collapse and cavitations for estimation of bubbles collapse influence; (12) Overcoming the steam quality - issues from an HRSG for the production of process steam; (13) Legionella - new requirements for power plant operation; (14) How the right chemistry in the FGD helps to improve the removal in the waste water treatment plant; (15) High efficiency filtration in dry/semi-dry FGD plants; (16) Expanding the variety of renewable fuels in the biomass power plant Timelkam using the chemical input control; (17) Corrosion, operating experiences and process improvements to increase the availability and operating time of the biomass power plant Timelkam; (18) The influence of temperature on the measurement of the conductivity of highly diluted solutions; (19) A multiparameter instrumentation approach

  3. Integrated Plant Safety Assessment, Systematic Evaluation Program: Yankee Nuclear Power Station (Docket No. 50-29)

    International Nuclear Information System (INIS)

    1987-10-01

    The US Nuclear Regulatory Commission (NRC) has prepared Supplement 1 to the final Integrated Plant Safety Assessment Report (IPSAR) (NUREG-0825), under the scope of the Systematic Evaluation Program (SEP), for Yankee Atomic Electric Company's Yankee Nuclear Power Station located in Rowe, Massachusetts. The SEP was initiated by the NRC to review the design of older operating nuclear power plants to reconfirm and document their safety. This report documents the review completed under the SEP for those issues that required refined engineering evaluations or the continuation of ongoing evaluations after the Final IPSAR for the Yankee plant was issued. The review has provided for (1) an assessment of the significance of differences between current technical positions on selected safety issues and those that existed when Yankee was licensed, (2) a basis for deciding how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. 2 tabs

  4. 77 FR 108 - Lockhart Power Company, Inc.; Notice Soliciting Scoping Comments

    Science.gov (United States)

    2012-01-03

    ... affect any federal lands. g. Filed Pursuant to: Federal Power Act 16 U.S.C. 791 (a)-825(r). h. Applicant Contacts: Bryan D. Stone, Chief Operating Officer, Lockhart Power Company, Inc., 420 River Street, P.O. Box...

  5. Thermal power plant design and operation

    CERN Document Server

    Sarkar, Dipak

    2015-01-01

    Thermal Power Plant: Design and Operation deals with various aspects of a thermal power plant, providing a new dimension to the subject, with focus on operating practices and troubleshooting, as well as technology and design. Its author has a 40-long association with thermal power plants in design as well as field engineering, sharing his experience with professional engineers under various training capacities, such as training programs for graduate engineers and operating personnel. Thermal Power Plant presents practical content on coal-, gas-, oil-, peat- and biomass-fueled thermal power

  6. Experience of Minas Gerais Energetic Company (CEMIG) in feasibility studies from hydroelectric power plants: energetic-economic studies; Experiencia da CEMIG em estudos de viabilidade de usinas hidreletricas: estudos energetico-economicos

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, O C; Bras, A J.F.; Batista Neto, R P; Salles Filho, M P [Companhia Energetica de Minas Gerais (CEMIG), Belo Horizonte, MG (Brazil)

    1990-12-31

    The experience of Minas Gerais Energetic Company (CEMIG) - Brazil, on the use of dimensioning methodology for hydroelectric power plant from the Coordinated Group of Planning System was described, showing the problems with its use and the solutions, mainly the reservoir and the dimension of installed potential. It was concluded that the calculation procedures of the marginal costs for dimensioning, so as to become these costs more representative in future structure of the Brazilian generator park and less dependent to the oscillation due to conjuncture problems, must be re-evaluated. (C.G.C.). 7 refs, 3 figs, 1 tab.

  7. Thermal Power Plant Performance Analysis

    CERN Document Server

    2012-01-01

    The analysis of the reliability and availability of power plants is frequently based on simple indexes that do not take into account the criticality of some failures used for availability analysis. This criticality should be evaluated based on concepts of reliability which consider the effect of a component failure on the performance of the entire plant. System reliability analysis tools provide a root-cause analysis leading to the improvement of the plant maintenance plan.   Taking in view that the power plant performance can be evaluated not only based on  thermodynamic related indexes, such as heat-rate, Thermal Power Plant Performance Analysis focuses on the presentation of reliability-based tools used to define performance of complex systems and introduces the basic concepts of reliability, maintainability and risk analysis aiming at their application as tools for power plant performance improvement, including: ·         selection of critical equipment and components, ·         defini...

  8. Reactor pressure vessel life cycle management at the Calvert Cliffs Nuclear Power Plant

    International Nuclear Information System (INIS)

    Doroshuk, B.W.; Bowman, M.E.; Henry, S.A.; Pavinich, W.A.; Lapides, M.E.

    1993-01-01

    Life Cycle Management (LCM) seeks to manage the aging process of important systems, structures, and components during licensed operation. The goal of Baltimore Gas and Electric Company's (BG and E) Life Cycle Management Program is to assure attainment of 40 years of operation and to preserve the option of an additional 20 years of operation for the Calvert Cliffs Nuclear Power Plant (CCNPP). Since the reactor pressure vessel (RPV) has been identified as one of the most critical components with regard to long-term operation of a nuclear power plant, BG and E initiated actions to manage life limiting or aging issues for the CCNPP RPVs. To achieve long-term operation, technical RPV issues must be effectively managed. This paper describes methods BG and E uses for managing RPV age-related degradation. (author)

  9. Power control of the Angra-2 Nuclear Power Plant

    International Nuclear Information System (INIS)

    Souza Mendes, J.E. de

    1986-01-01

    The systems for the power control of the Nuclear Power Plant Angra 2 have a high degree of automation so that few operator actions are required during power operation. The power control strategy and the operation principles of the control systems, here presented, make possible a great flexibility of the Plant operation. (Author) [pt

  10. What next steps in nuclear power?

    International Nuclear Information System (INIS)

    Novak, J.

    1991-01-01

    Following the political changes in Czechoslovakia in the late 1989, preparation of a new energy policy began in the second half of 1990. The principles of this new policy include an increase in the share of electricity in the energy balance, based on an increase in the contribution of nuclear power plants. This new nuclear policy should be oriented to the use of state-of-the-art technologies from world's foremost manufacturers such as Framatome, Siemens-KWU, ABB - Combustion Engineering, Mitsubishi and Westinghouse. In February 1991, companies associated in a consortium, viz. the Czech Power Company, the Slovak Power Company, the Czechoslovak Uranium Industry and Energoprojekt, sent the world manufacturers a preliminary invitation of tenders. The bids are now being evaluated by the Belgian company Belgatom and by the Czechoslovak company Energoprojekt. The completion of the feasibility study is conditional on the decision concerning the siting of a new nuclear power plant. (Z.S.). 1 tab

  11. Construction of a new hydro power plant at Albbruck-Dogern; Neubau des Wehrkraftwerkes Albbruck-Dogern

    Energy Technology Data Exchange (ETDEWEB)

    Schlageter, G. [Rheinkraftwerk Albbruck-Dogern AG, Albbruck (Germany)

    2006-07-01

    After expiration of the authorization in 2003 the German and the Swiss authorities issued a new operating licence for another 70 years. This new licence first of all allows RADAG to continue operation of the existing power plant. At the same time, however, it requires the company to commission a new plant by the end of 2009 (latest by 2012), which will increase the present day output for more than 15%. The new licence provides an increase of turbine water flow from currently 1100 m{sup 3}/s up to 1400 m{sup 3}/s. The additional power plant will have one large Kaplan turbine (bulb-type), with an installed total power of 24 MW, having a runner diameter of about 6 meters. Using to days head at the existing weir, which is about 8,75 meters, the turbine will discharge up to 300 m{sup 3}/s. The total project costs of the additional plant amount to about 55 Mio. Euro (price level 2002). The civil works will start at the end of 2006. (orig.)

  12. Advanced power plant materials, design and technology

    Energy Technology Data Exchange (ETDEWEB)

    Roddy, D. (ed.) [Newcastle University (United Kingdom). Sir Joseph Swan Institute

    2010-07-01

    The book is a comprehensive reference on the state of the art of gas-fired and coal-fired power plants, their major components and performance improvement options. Selected chapters are: Integrated gasification combined cycle (IGCC) power plant design and technology by Y. Zhu, and H. C. Frey; Improving thermal cycle efficiency in advanced power plants: water and steam chemistry and materials performance by B. Dooley; Advanced carbon dioxide (CO{sub 2}) gas separation membrane development for power plants by A. Basile, F. Gallucci, and P. Morrone; Advanced flue gas cleaning systems for sulphur oxides (SOx), nitrogen oxides (NOx) and mercury emissions control in power plants by S. Miller and B.G. Miller; Advanced flue gas dedusting systems and filters for ash and particulate emissions control in power plants by B.G. Miller; Advanced sensors for combustion monitoring in power plants: towards smart high-density sensor networks by M. Yu and A.K. Gupta; Advanced monitoring and process control technology for coal-fired power plants by Y. Yan; Low-rank coal properties, upgrading and utilisation for improving the fuel flexibility of advanced power plants by T. Dlouhy; Development and integration of underground coal gasification (UCG) for improving the environmental impact of advanced power plants by M. Green; Development and application of carbon dioxide (CO{sub 2}) storage for improving the environmental impact of advanced power plants by B. McPherson; and Advanced technologies for syngas and hydrogen (H{sub 2}) production from fossil-fuel feedstocks in power plants by P. Chiesa.

  13. Own power: Motives of having electricity without the energy company

    International Nuclear Information System (INIS)

    Leenheer, Jorna; Nooij, Michiel de; Sheikh, Omer

    2011-01-01

    New technologies will enable households to generate an increasing amount of their own electricity. Intentions to generate own power are a preliminary step towards actual behavior. Because own generation is still very limited and the behavior of early adopters may not be representative for the complete population, our study focuses on intentions rather than actual behavior. A consumer survey among 2047 Dutch households reveals that environmental concerns are the most important driver of a household's intention to generate its own power. Affinity with technology and energy and the reputation of electricity companies are also significant drivers, but financial factors and power outages are not. About 40% of Dutch households have an intention to generate their own power, with an overrepresentation of young households. This group falls apart in two sub segments; for the 'generating savers' (21%) a high intention to generate own power coincides with a high intention to save energy, whereas generating users (18%) combine a high intention to generate own power with a low intention to save energy. - Highlights: → A consumer survey studies household intentions to generate own power. → Environmental concerns are the most important motive for generating own power. → Other drivers are affinity with technology and reputation of electricity companies. → About 40% of Dutch households feel a need to generate their own electricity.

  14. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    1998-01-01

    This small booklet summarizes in tables all the numerical data relative to the nuclear power plants worldwide. These data come from the French CEA/DSE/SEE Elecnuc database. The following aspects are reviewed: 1997 highlights; main characteristics of the reactor types in operation, under construction or on order; map of the French nuclear power plants; worldwide status of nuclear power plants at the end of 1997; nuclear power plants in operation, under construction and on order; capacity of nuclear power plants in operation; net and gross capacity of nuclear power plants on the grid and in commercial operation; forecasts; first power generation of nuclear origin per country, achieved or expected; performance indicator of PWR units in France; worldwide trend of the power generation indicator; nuclear power plants in operation, under construction, on order, planned, cancelled, shutdown, and exported; planning of steam generators replacement; MOX fuel program for plutonium recycling. (J.S.)

  15. Technical evaluation of the proposed deletion of a reactor trip on a turbine trip below 50-percent power for the Beaver Valley nuclear power plant, Unit 1

    International Nuclear Information System (INIS)

    Reeves, W.E.

    1979-12-01

    This report documents the technical evaluation of the Duquesne Light Company's proposed license amendment for the deletion of a reactor trip on a turbine trip below 50% power for the Beaver Valley nuclear power plant, Unit 1. This report is supplied as part of the Selected Electrical, Instrumentation, and Control Systems Issues Program being conducted for the US Nuclear Regulatory Commission by Lawrence Livermore Laboratory

  16. Study on mutual perception between the people living in the area around a nuclear power plant and in a power-consuming area

    International Nuclear Information System (INIS)

    Ueda, Yoshitaka; Sakai, Yukimi; Kita, Hiroyuki

    2009-01-01

    At first we conducted an interview survey of the urban residents, in order to gather various opinions about the area around a nuclear power plant. Then we conducted a questionnaires survey of the urban area to investigate how many people had the same opinions as we had extracted from the interview survey. We also compared these results with the site residents opinion which had been reported in other research. These results show that the urban residents tend to overestimate the risk perception of the local area and the local residents' anxiety about the nuclear power plant, and to underestimate the relationship between the electric company operating nuclear power plant and the local residents. These results also show that the local residents tend to underestimate the urban residents' knowledge of a nuclear power plant, and to take a pessimistic view of the urban residents' perception about the local residents. In order to reduce the sense of unfairness and dissatisfaction and to promote public acceptance of nuclear energy, it is desirable to reduce these misunderstanding and misconception. To this end, this study suggests that it is necessary to make them notice the misconception and grow mutual understanding by exchanging information of the opinions and the situations in each area. (author)

  17. Cooling towers of nuclear power plants

    International Nuclear Information System (INIS)

    Mikyska, L.

    1986-01-01

    The specifications are given of cooling towers of foreign nuclear power plants and a comparison is made with specifications of cooling towers with natural draught in Czechoslovak nuclear power plants. Shortcomings are pointed out in the design of cooling towers of Czechoslovak nuclear power plants which have been derived from conventional power plant design. The main differences are in the adjustment of the towers for winter operation and in the designed spray intensity. The comparison of selected parameters is expressed graphically. (J.B.)

  18. Research plan on programmable automation systems in nuclear power plants (OHA) in 1995-1998

    International Nuclear Information System (INIS)

    Haapanen, P.; Pulkkinen, U.; Korhonen, J.

    1995-05-01

    The main purpose of nuclear energy research is to ensure the safety and continued development of Finnish nuclear power plants - a task which places high demands on expertise needed to support the work of public authorities and power companies. A factor necessarily influencing the orientation of the research is the Parliament's decision of late 1993 against further nuclear capacity in the country. Therefore the main emphasis of research shall be directed towards the ensuring the safety of existing plants and the continuous development of their safety along the progress of the science and technology. Anyhow, the preparedness for constructing new plants shall also be preserved. The utilization of programmable digital automation technology for the safety critical functions is the most significant change in the new plants, but also in existing plants this technology will be used for replacing and complementing the ageing automation systems. The safety evaluation of programmable digital systems can not be based on methods applied to conventional analog systems but new evaluation methods and tools must be developed for the assessing of their acceptability. (5 refs., 1 fig., 2 tabs.)

  19. Nuclear Power Plants. Revised.

    Science.gov (United States)

    Lyerly, Ray L.; Mitchell, Walter, III

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: Why Use Nuclear Power?; From Atoms to Electricity; Reactor Types; Typical Plant Design Features; The Cost of Nuclear Power; Plants in the United States; Developments in Foreign…

  20. Nuclear power plants and the environment

    Energy Technology Data Exchange (ETDEWEB)

    Barabas, K [Ceskoslovenska Komise pro Atomovou Energii, Prague

    1978-05-01

    The environmental impacts are compared of conventional coal-fired and oil-fired power plants and of nuclear power plants. The values are compared of SO/sub 2/, NO/sub 2/, ash and soot emissions with /sup 133/Xe and /sup 85/Kr fission products release and the requirement for air for diluting these emissions in the atmosphere is assessed. Also compared are thermal pollution from an oil-fired power plant and from PWR and fast reactor power plants. The conclusion is arrived at that nuclear energy can solve the problem of increasing demand for electric and heat power while reducing negative environmental impacts.

  1. Nuclear power plants and the environment

    International Nuclear Information System (INIS)

    Barabas, K.

    1978-01-01

    The environmental impacts are compared of conventional coal-fired and oil-fired power plants and of nuclear power plants. The values are compared of SO 2 , NO 2 , ash and soot emmisions with 133 Xe and 85 Kr fission products release and the requirement for air for diluting these emissions in the atmosphere is assessed. Also compared are thermal pollution from an oil-fired power plant and from PWR and fast reactor power plants. The conclusion is arrived at that nuclear energy can solve the problem of increasing demand for electric and heat power while reducing negative environmental impacts. (O.K.)

  2. HVDC transmission from nuclear power plant

    International Nuclear Information System (INIS)

    Yoshida, Yukio; Takenaka, Kiyoshi; Taniguchi, Haruto; Ueda, Kiyotaka

    1980-01-01

    HVDC transmission directly from a nuclear power plant is expected as one of the bulk power transmission systems from distant power generating area. Successively from the analysis of HVDC transmission from BWR-type nuclear power plant, this report discusses dynamic response characteristics of HVDC transmission (double poles, two circuits) from PWR type nuclear power plant due to dc-line faults (DC-1LG, 2LG) and ac-line faults (3LG) near inverter station. (author)

  3. Application of NASA Kennedy Space Center System Assurance Analysis methodology to nuclear power plant systems designs

    International Nuclear Information System (INIS)

    Page, D.W.

    1985-01-01

    In May of 1982, the Kennedy Space Center (KSC) entered into an agreement with the NRC to conduct a study to demonstrate the feasibility and practicality of applying the KSC System Assurance Analysis (SAA) methodology to nuclear power plant systems designs. North Carolina's Duke Power Company expressed an interest in the study and proposed the nuclear power facility at CATAWBA for the basis of the study. In joint meetings of KSC and Duke Power personnel, an agreement was made to select two CATAWBA systems, the Containment Spray System and the Residual Heat Removal System, for the analyses. Duke Power provided KSC with a full set of Final Safety Analysis Reports (FSAR) as well as schematics for the two systems. During Phase I of the study the reliability analyses of the SAA were performed. During Phase II the hazard analyses were performed. The final product of Phase II is a handbook for implementing the SAA methodology into nuclear power plant systems designs. The purpose of this paper is to describe the SAA methodology as it applies to nuclear power plant systems designs and to discuss the feasibility of its application. (orig./HP)

  4. Integrated-plant-safety assessment Systematic Evaluation Program. Dresden Nuclear Power Station, Unit 2, Commonwealth Edison Company, Docket No. 50-237

    International Nuclear Information System (INIS)

    1982-10-01

    The Systematic Evaluation Program was initiated in February 1977 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to reconfirm and document their safety. The review provides: (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues; (2) a basis for deciding on how these differences should be resolved in an integrated plant review; and (3) a documented evaluation of plant safety. This report documents the review of Dresden Nuclear Generating Station, Unit 2 owned and operated by the Commonwealth Edison Company and located in Grundy County, Illinois. Dresden Unit 2 is one of ten plants reviewed under Phase II of this program, which indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review. It is expected that this report will be one of the bases in considering the issuance of a full-term operating license in place of the existing provisional operating license

  5. Efficiency of Finish power transmission network companies

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    The Finnish Energy Market Authority has investigated the efficiency of power transmissions network companies. The results show that the intensification potential of the branch is 402 million FIM, corresponding to about 15% of the total costs of the branch and 7.3 % of the turnout. Energy Market Authority supervises the reasonableness of the power transmission prices, and it will use the results of the research in supervision. The research was carried out by the Quantitative Methods Research Group of Helsinki School of Economics. The main objective of the research was to create an efficiency estimation method for electric power distribution network business used for Finnish conditions. Data of the year 1998 was used as basic material in the research. Twenty-one of the 102 power distribution network operators was estimated to be totally efficient. Highest possible efficiency rate was 100, and the average of the efficiency rates of all the operators was 76.9, the minimum being 42.6

  6. Localization of Manufacturing Capabilities in Setting Up Nuclear Power Plants

    International Nuclear Information System (INIS)

    Chadda, Sushil Kumar

    2011-01-01

    Nuclear renaissance is now imminent and is inevitable in view of rapidly increasing global warming concerns. A steep shift towards environmentally benign sources of energy remains an unavoidable choice as continents are warming up pushing seas into human habitation and disturbing global ecology. Accordingly, Indian government in its integrated energy policy document has planned for raising nuclear power capacity to generate 63 GWe by 2030. This envisages estimated investments of US$22 billion in the next 15 to 20 years. Setting up of nuclear energy generation capacity, however, remains a painstakingly slow process primarily due to complex, multidisciplinary efforts required to crank up a reactor. A robust supply chain remains key to expediting this process. In the light of this, it is critically important to ensure supply-chain for materials and components and putting in place cost effective project management to complete the projects on time and within the budgets. In this context, the participation of industries and their preparedness to meet the challenges are necessary. This would also require investments towards up gradation of manufacturing technology, training of manpower and mobilization of resources at the construction site. The industry would also need to enhance detailing and design engineering capabilities for the plants. It is only when such capabilities have been brought up that the possibilities of time-bound setting up of nuclear plants can be realized. In this paper, various issues with regard to project cost, regulatory and licensing, technology and gestation period etc for new build plants relevant to manufacturing industry are discussed. The plans for enhancing manufacturing capabilities for the critical path items of the project schedule with viable business, ensuring returns to stakeholders and financing and investment cycle are brought out. The various steps and initiatives being taken by Bharat Forge Ltd, the flagship company of Kalyani

  7. World-class outage performance of the Olkiluoto nuclear power plant

    International Nuclear Information System (INIS)

    Paavola, M.

    1998-01-01

    The production of the Olkiluoto power plant units covered 17% of the electricity consumption in Finland in 1997; the total share of nuclear energy was 27% of the electricity consumed in the country. Based on Finnish experience, nuclear energy is a safe, environmentally friendly and economic way to produce electricity provided that the plants and their personnel are well taken care of. TVO's policy is to keep the plant units in good condition and technically modern. This requires continuous investments in the plant. In maintenance, attention is paid to monitoring the condition of the plant and to preventive maintenance aiming at avoiding disturbances in production. TVO has chosen continuous development as the operational line develops the plant by annual investments and performs the necessary modifications during planned annual outages trying to avoid long production interruptions. The load factors of the Olkiluoto nuclear power plant have been high. The average load factor during the last decade was over 93%. The most significant single factor in the production deficits is the amount or electricity, which has not been produced because of the annual outages. Due to this, special attention has been paid to the performance of the annual outages. TVO aims at continuous development of the annual outage procedure. A centralized task management system makes it possible to perform simultaneously more tasks than before. The company has also invested in equipment and systems, which ease and speed up servicing. Normal outage length varies between 10 and 16 days. By keeping the plant units as modern as possible and in good condition we facilitate reaching TVO's target, which is also stated in TVO's slogan 'always 40 years lifetime'. (author)

  8. Operating experience feedback on lose of offsite power supply for nuclear power plant

    International Nuclear Information System (INIS)

    Jiao Feng; Hou Qinmai; Che Shuwei

    2013-01-01

    The function of the service power system of a nuclear power plant is to provide safe and reliable power supply for the nuclear power plant facilities. The safety of nuclear power plant power supply is essential for nuclear safety. The serious accident of Fukushima Daiichi nuclear power plant occurred due to loss of service power and the ultimate heat sink. The service power system has two independent offsite power supplies as working power and auxiliary power. This article collected events of loss of offsite power supply in operating nuclear power plants at home and abroad, and analyzed the plant status and cause of loss of offsite power supply events, and proposed improvement measures for dealing with loss of offsite power supply. (authors)

  9. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2005-01-01

    This 2005 edition of the Elecnuc booklet summarizes in tables all numerical data relative to the nuclear power plants worldwide. These data come from the PRIS database managed by the IAEA. The following aspects are reviewed: 2004 highlights; main characteristics of reactor types; map of the French nuclear power plants on 2005/01/01; worldwide status of nuclear power plants at the end of 2004; units distributed by countries; nuclear power plants connected to the grid by reactor-type group; nuclear power plants under construction on 2004; evolution of nuclear power plant capacities connected to the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear power plants by country at the end 2004; performance indicator of PWR units in France; trend of the generation indicator worldwide; 2004 load factor by owners; units connected to the grid by countries at 12/31/2004; status of licence renewal applications in USA; nuclear power plants under construction at 12/31/2004; shutdown reactors; exported nuclear capacity in net MWe; exported and national nuclear capacity connected to the grid; exported nuclear power plants under construction or order; exported and national nuclear capacity under construction or order; recycling of plutonium in LWR; Mox licence plant projects; Appendix - historical development; acronyms, glossary

  10. Nuclear and energy. Special issue on the Fukushima power plant

    International Nuclear Information System (INIS)

    2011-01-01

    This issue analyses the first consequences of the Fukushima accident at the world level, i.e. impacts which are either already noticeable or predictable. A first article proposes a portrait of Japan (its historical relationship with nature, the cultural education, the role of its bureaucracy, the Japanese business and political worlds) and evokes the nuclear safety organization at the institutional level. It also evokes the different companies involved in nuclear energy production. The second article discusses and comments the environmental and radiological impact of the accident (protection of the inhabitants, environment monitoring, comparison with Chernobyl, main steps of degradation of the reactors, releases in the sea, total release assessment, soil contamination, food contamination, radiation protection). A third article discusses the international impact, notably for the existing or projected power plants in different countries, in terms of public opinion, and with respect to negotiations on climate. The fourth article discusses the reactions of different countries possessing nuclear reactors. The last article questions the replacement of the lost production (that of Fukushima and maybe another power plant) by renewable energies

  11. Direction of Technology Development for Nuclear Power Plants at the O and M Phase

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Insu; Park, Hwanpyo; Kim, Younghyun [Korea Institute of Construction Technology, Goyang (Korea, Republic of)

    2014-05-15

    Recently, Korea has attempted to advance overseas markets by securing competitive power in nuclear power technology. In order to develop and operate overall construction management systems with Korea's own brand equipped with sufficient applicability and competitive power in the market abroad and to ensure equal competitive power with other foreign advanced companies of nuclear power plants, Korea has launched a project called 'Data Centric Integration/Automation Technology for NP Project Management System' since July 2011. This project is divided into two phases: the first phase from 2012 to 2016 realizes EPCS stage, and the second phase from 2017 to 2020 extends to O and M stage. Appropriate technology development planning must be established if 'Data Centric Integration/Automation Technology for NP Project Management System' conducted at the first phase would extend to O and M stage at the second phase. Therefore, this study aimed at drawing out the direction of technology development based on present analysis of process at the operational phase of nuclear power plants in Korea conducted as previous study. This study analyzed current operation and maintenance systems first, analyzing the results of differences between the operation process of nuclear plants in Korea which was suggested at the previous study and the process of the Korea Hydro and Nuclear Power Co., Ltd. (hereafter referred to as 'KHNP') and drawing out the direction of technology development for nuclear power plants at the operational phase from the viewpoint of life cycle.

  12. Direction of Technology Development for Nuclear Power Plants at the O and M Phase

    International Nuclear Information System (INIS)

    Jung, Insu; Park, Hwanpyo; Kim, Younghyun

    2014-01-01

    Recently, Korea has attempted to advance overseas markets by securing competitive power in nuclear power technology. In order to develop and operate overall construction management systems with Korea's own brand equipped with sufficient applicability and competitive power in the market abroad and to ensure equal competitive power with other foreign advanced companies of nuclear power plants, Korea has launched a project called 'Data Centric Integration/Automation Technology for NP Project Management System' since July 2011. This project is divided into two phases: the first phase from 2012 to 2016 realizes EPCS stage, and the second phase from 2017 to 2020 extends to O and M stage. Appropriate technology development planning must be established if 'Data Centric Integration/Automation Technology for NP Project Management System' conducted at the first phase would extend to O and M stage at the second phase. Therefore, this study aimed at drawing out the direction of technology development based on present analysis of process at the operational phase of nuclear power plants in Korea conducted as previous study. This study analyzed current operation and maintenance systems first, analyzing the results of differences between the operation process of nuclear plants in Korea which was suggested at the previous study and the process of the Korea Hydro and Nuclear Power Co., Ltd. (hereafter referred to as 'KHNP') and drawing out the direction of technology development for nuclear power plants at the operational phase from the viewpoint of life cycle

  13. Analysis of Human Errors in Japanese Nuclear Power Plants using JHPES/JAESS

    International Nuclear Information System (INIS)

    Kojima, Mitsuhiro; Mimura, Masahiro; Yamaguchi, Osamu

    1998-01-01

    CRIEPI (Central Research Institute for Electric Power Industries) / HFC (Human Factors research Center) developed J-HPES (Japanese version of Human Performance Enhancement System) based on the HPES which was originally developed by INPO to analyze events resulted from human errors. J-HPES was systematized into a computer program named JAESS (J-HPES Analysis and Evaluation Support System) and both systems were distributed to all Japanese electric power companies to analyze events by themselves. CRIEPI / HFC also analyzed the incidents in Japanese nuclear power plants (NPPs) which were officially reported and identified as human error related with J-HPES / JAESS. These incidents have numbered up to 188 cases over the last 30 years. An outline of this analysis is given, and some preliminary findings are shown. (authors)

  14. Data logger system of Tokai (I) Nuclear Power Station, the Japan Atomic Power Company

    International Nuclear Information System (INIS)

    Machida, Akira; Chikahata, Kiyomitsu; Nakamura, Mamoru; Nanbu, Taketoshi; Kawakami, Hiroshi

    1977-01-01

    The Tokai(I) nuclear power station, the Japan Atomic Power Company, was commissioned in July, 1966. In this station, temperatures of about 700 points are monitored and recorded with a data logger. However, the logger was manufactured some 15 years ago, therefore it is now old-fashioned, and has caused frequent failures these 2 or 3 years. So it was decided to replace it with a new one, and the process control computer, U-300 system including CRT display, has been adopted considering the latest trend in U.K. The control and monitoring system in this station is not a centralized control system, but a distributed control system divided into three control rooms, namely main control room, turbine generator control room and fuel exchanger (cask machine) control room. Therefore for grasping the complete plant conditions at the main control room, the system has not been convenient, and the centralization of data processing has been desired from the viewpoint of operation. The new logger system is composed so as to facilitate the centralized monitoring in the main control room, considering the above requirement. It has been improved so as to have seven important functions in addition to the existing functions. Hardware and software of this system are briefly explained. The new system was started up in February 1977, and is now operating well, though some early failures were experienced. (Wakatsuki, Y.)

  15. Wood pellets in a power plant - mixed combustion of coal and wood pellets

    International Nuclear Information System (INIS)

    Nupponen, M.

    2001-01-01

    The author reviews in his presentation the development of Turku Energia, the organization of the company, the key figures of the company in 2000, as well as the purchase of energy in 2000. He also presents the purchase of basic heat load, the energy production plants of the company, the sales of heat in 2000, the emissions of the plants, and the fuel consumption of the plants in 2000. The operating experiences of the plants are also presented. The experiences gained in Turku Energia on mixed combustion of coal and wood pellets show that the mixing ratios, used at the plants, have no effect on the burning properties of the boiler, and the use of wood pellets with coal reduce the SO 2 and NO x emissions slightly. Simultaneously the CO 2 share of the wood pellets is removed from the emissions calculations. Several positive effects were observed, including the disappearance of the coal smell of the bunker, positive publicity of the utilization of wood pellets, and the subsidies for utilization of indigenous fuels in power generation. The problems seen include the tendency of wood pellets to arc the silos, especially when the pellets include high quantities of dust, and the loading of the trucks and the pneumatic unloading of the trucks break the pellets. Additionally the wood pellets bounce on the conveyor so they drop easily from the conveyor, the screw conveyors designed for conveying grain are too weak and they get stuck easily, and static electricity is easily generated in the plastic pipe used as the discharge pipe for wood pellet (sparkling tendency). This disadvantage has been overcome by using metal net and grounding

  16. Reliability data of fire protection equipment and features in German nuclear power plants

    International Nuclear Information System (INIS)

    Roewekamp, M.; Riekert, T.; Sehrbrock, W.

    1997-01-01

    In order to perform probabilistic fire safety analyses, a comprehensive data base is needed including physical characteristics of fire compartments and their inventory, fire occurrence frequencies, technical reliability data for all fire-related equipment, human actions and human error probabilities, etc. In order to provide updated and realistic reliability data, the operational behaviour of different fire protection features in two German nuclear power plants was analysed in the framework of the study presented here. The analyses are based on the examination of reported results of the regular inspection and maintenance programs for nuclear power plants. Besides a plant specific assessment of the reliability data a generic assessment for an application as input data for fault tree analyses in the framework of probabilistic risk studies for other German plants was carried out. The analyses of failures and unavailabilities gave the impression that most of them are single failures without relevance for the plant safety. The data gained from NPPs were compared to reliability data of the German insurance companies for the same protection features installed in non-nuclear installations and to older nuclear specific reliability data. This comparison showed up a higher reliability. (orig.) [de

  17. Valuation of marginal CO2 abatement options for electric power plants in Korea

    International Nuclear Information System (INIS)

    Park, Hojeong; Lim, Jaekyu

    2009-01-01

    The electricity generation sector in Korea is under pressure to mitigate greenhouse gases as directed by the Kyoto Protocol. The principal compliance options for power companies under the cap-and-trade include the application of direct CO 2 emission abatement and the procurement of emission allowances. The objective of this paper is to provide an analytical framework for assessing the cost-effectiveness of these options. We attempt to derive the marginal abatement cost for CO 2 using the output distance function and analyze the relative advantages of emission allowance procurement option as compared to direct abatement option. Real-option approach is adopted to incorporate emission allowance price uncertainty. Empirical result shows the marginal abatement cost with an average of Euro 14.04/ton CO 2 for fossil-fueled power plants and confirms the existence of substantial cost heterogeneity among plants which is sufficient to achieve trading gains in allowance market. The comparison of two options enables us to identify the optimal position of the compliance for each plant. Sensitivity analyses are also presented with regard to several key parameters including the initial allowance prices and interest rate. The result of this paper may help Korean power plants to prepare for upcoming regulations targeted toward the reduction of domestic greenhouse gases.

  18. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2000-01-01

    This small booklet summarizes in tables all the numerical data relative to the nuclear power plants worldwide. These data come from the French CEA/DSE/SEE Elecnuc database. The following aspects are reviewed: 1999 highlights; main characteristics of the reactor types in operation, under construction or on order; map of the French nuclear power plants; worldwide status of nuclear power plants at the end of 1999; nuclear power plants in operation, under construction and on order; capacity of nuclear power plants in operation; net and gross capacity of nuclear power plants on the grid and in commercial operation; grid connection forecasts; world electric power market; electronuclear owners and share holders in EU, capacity and load factor; first power generation of nuclear origin per country, achieved or expected; performance indicator of PWR units in France; worldwide trend of the power generation indicator; 1999 gross load factor by operator; nuclear power plants in operation, under construction, on order, planned, cancelled, shutdown, and exported; planning of steam generators replacement; MOX fuel program for plutonium recycling. (J.S.)

  19. Automation technology in power plants

    International Nuclear Information System (INIS)

    Essen, E.R.

    1995-01-01

    In this article a summery of the current architecture of modern process control systems in power plants and future trends have been explained. The further development of process control systems for power plants is influenced both by the developments in component and software technologies as well as the increased requirements of the power plants. The convenient and low cost configuration facilities of new process control systems have now reached a significance which makes it easy for customers to decide to purchase. (A.B.)

  20. Pilot plant development of a new catalytic process for improved electrostatic separation of fly ash in coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Olivares del Valle, J.; Martinez, L.S.; Baum, B.M.; Galeano, V.C. [Universidad de Sevilla (Spain)

    1995-12-31

    The design and operation of pulverized-coal-fired power plants (PCFPP) are usually regarded as fuel range in terms of sulphur and ash contents. These units may give severe environmental problems of fly ash emissions as a result of lower SO{sub 3} contents in the flue gas (FG) because the electrical resistivity of the solid particles is correspondingly lower, with consequent adverse effects on electrostatic precipitator (ESP) efficiency. More stringent air pollution laws cause many power companies to burn lower sulphur coal under boilers in plants that formerly burned higher S coal or ran with abnormal operational conditions (only remediable by shutdown and repairs). This presentation of the GASOX process is a contribution to the improvement of existing technology for flue gas conditioning (FGC), which is defined as a control system for (ESP) efficiency in PCFPP.

  1. 15 years of information and educational programme of Czech Power Company CEZ

    International Nuclear Information System (INIS)

    Dufkova, M.

    2007-01-01

    The education program is the most important long-term communication programme of CEZ. It was established in 1992 shortly after an establishment of Czech Power Company. The support of education and talented students is doubtless a positive activity bringing a benefit to the company, especially in the field of nuclear energy. Students, who have been currently addressed with this program, are future consumers of electricity and as voters and politicians they shall decide on further development of power industry and nuclear installations. We care for them to make qualified decisions. CEZ has so far been the only Czech industrial company, which offers such program to schools. Education is the most important activity in the gaining support for nuclear energy. (author)

  2. Perryman Nuclear Power Plant. Site suitability--site safety report, volume I: chapters-sections 1.1, 1.2, 1.4, 1.6; 2.1, 2.2

    International Nuclear Information System (INIS)

    1977-01-01

    A site suitability report is submitted in support of the Baltimore Gas and Electric Company application for a limited early site review of a potential nuclear power plant. The Perryman Nuclear Power Plant site is located in northeastern Maryland on an arm of the Chesapeake Bay estuary approximately 17 miles east--northeast of Baltimore. The proposed plant is a two-unit light water reactor with a 3800 MW(t) power level for each unit. General descriptions of the site geography, demography, nearby facilities, and meteorology are presented

  3. Power control strategy of a photovoltaic power plant for microgrid applications

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peng [Ecole Centrale de Lille, Cite Scientifique, Villeneuve d' Ascq (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP); Ecole Nationale Superieure d' Arts et Metiers, Lille (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP); Francois, Bruno [Ecole Centrale de Lille, Cite Scientifique, Villeneuve d' Ascq (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP); Degobert, Philippe [Ecole Nationale Superieure d' Arts et Metiers, Lille (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP); Robyns, Benoit [Hautes Etudes d' Ingenieur, Lille (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP)

    2008-07-01

    Photovoltaic power plants operates currently maximal power point tracking (MPPT). For microgrid applications, however, a PV power plant can not operate in the MPPT mode in all conditions. When a microgrid is islanded from the grid with few loads, a limitation of the produced power by PV plants is required and prescribed by the Distribution System Operator. This paper proposes a power control technique integrated into a dynamic model of a PV power plant by using equivalent continuous models of power electronic converters. The power limitation mode of the PV is performed by applying the correct PV terminal voltage, which corresponds to the prescribed power reference. The proposed global model is validated by simulations with the help of Matlab-Simulink trademark. (orig.)

  4. A nuclear power plant status monitor

    International Nuclear Information System (INIS)

    Chu, B.B.; Conradi, L.L.; Weinzimmer, F.

    1986-01-01

    Power plant operation requires decisions that can affect both the availability of the plant and its compliance with operating guidelines. Taking equipment out of service may affect the ability of the plant to produce power at a certain power level and may also affect the status of the plant with regard to technical specifications. Keeping the plant at a high as possible production level and remaining in compliance with the limiting conditions for operation (LCOs) can dictate a variety of plant operation and maintenance actions and responses. Required actions and responses depend on the actual operational status of a nuclear plant and its attendant systems, trains, and components which is a dynamic situation. This paper discusses an Electric Power Research Institute (EPRI) Research Project, RP 2508, the objective of which is to combine the key features of plant information management systems with systems reliability analysis techniques in order to assist nuclear power plant personnel to perform their functions more efficiently and effectively. An overview of the EPRI Research Project is provided along with a detailed discussion of the design and operation of the PSM portion of the project

  5. Cooperation of nuclear, thermal and hydroelectric power plants in the power system

    International Nuclear Information System (INIS)

    1984-01-01

    The conference heard 36 papers of which 23 were incorporated in INIS. The subjects discussed were: the development of power industry in Czechoslovakia, methods of statistical analysis of data regarding nuclear power plant operation, the incorporation of WWER nuclear power plants in the power supply system, the standardization of nuclear power plants, the service life of components, use of nuclear energy sources, performance of the reactor accident protection system, the use of nuclear power and heating plants in Hungary, risk analysis, optimization of nuclear power plants, accidents caused by leakage of the primary and secondary circuit. (J.P.)

  6. Upgrading of seismic design of nuclear power plant building

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Hiroshi [Tokyo Univ. (Japan). Faculty of Engineering; Kitada, Yoshio

    1997-03-01

    In Japan seismic design methodology of nuclear power plant (NPP) structures has been established as introduced in the previous session. And yet efforts have been continued to date to upgrade the methodology, because of conservative nature given to the methodology in regard to unknown phenomena and technically-limited modeling involved in design analyses. The conservative nature tends to produce excessive safety margins, and inevitably send NPP construction cost up. Moreover, excessive seismic design can increase the burden on normal plant operation, though not necessarily contributing to overall plant safety. Therefore, seismic engineering has put to many tests and simulation analyses in hopes to rationalize seismic design and enhance reliability of seismic safety of NPPs. In this paper, we describe some studies on structural seismic design of NPP underway as part of Japan`s effort to upgrade existing seismic design methodology. Most studies described here are carried out by NUPEC (Nuclear Power Engineering Company) funded by MITI (the Ministry of International Trade and Industry Japan), though, similar studies with the same motive are also carrying out by nuclear industries such as utilities, NPP equipment and system manufacturers and building constructors. This paper consists of three sections, each introducing studies relating to NPP structural seismic design, new siting technology, and upgrading of the methodology of structural design analyses. (J.P.N.)

  7. Upgrading of seismic design of nuclear power plant building

    International Nuclear Information System (INIS)

    Akiyama, Hiroshi; Kitada, Yoshio.

    1997-01-01

    In Japan seismic design methodology of nuclear power plant (NPP) structures has been established as introduced in the previous session. And yet efforts have been continued to date to upgrade the methodology, because of conservative nature given to the methodology in regard to unknown phenomena and technically-limited modeling involved in design analyses. The conservative nature tends to produce excessive safety margins, and inevitably send NPP construction cost up. Moreover, excessive seismic design can increase the burden on normal plant operation, though not necessarily contributing to overall plant safety. Therefore, seismic engineering has put to many tests and simulation analyses in hopes to rationalize seismic design and enhance reliability of seismic safety of NPPs. In this paper, we describe some studies on structural seismic design of NPP underway as part of Japan's effort to upgrade existing seismic design methodology. Most studies described here are carried out by NUPEC (Nuclear Power Engineering Company) funded by MITI (the Ministry of International Trade and Industry Japan), though, similar studies with the same motive are also carrying out by nuclear industries such as utilities, NPP equipment and system manufacturers and building constructors. This paper consists of three sections, each introducing studies relating to NPP structural seismic design, new siting technology, and upgrading of the methodology of structural design analyses. (J.P.N.)

  8. Summary of nuclear power plant construction

    International Nuclear Information System (INIS)

    Tamura, Saburo

    1973-01-01

    Various conditions for the construction of nuclear power plants in Japan without natural resources were investigated. Expansion of the sites of plants, change of reactor vessels, standardization of nuclear power plants, possiblity of the reduction of construction period, approaching of nuclear power plants to consuming cities, and group construction were studied. Evaluation points were safety and economy. Previous sites of nuclear power plants were mostly on plane ground or cut and enlarge sites. Proposals for underground or offshore plants have been made. The underground plants were made at several places in Europe, and the ocean plant is now approved in U.S.A. as a plant on a man-made island. Vessels for containing nuclear reactors are the last barriers to the leakage of radioactive substance. At the initial period, the vessels were made of steel, which were surrounded by shielding material. Those were dry well type containers. Then, vessel type changed to pressure-suppression type wet containers. Now, it tends to concrete (PC or RC) type containers. There is the policy on the standardization of nuclear power plants by U.S.A.E.C. in recent remarkable activity. The merit and effect of the standardization were studied, and are presented in this paper. Cost of the construction of nuclear power plants is expensive, and interest of money is large. Then, the reduction of construction period is an important problem. The situations of plants approaching to consuming cities in various countries were studied. Idea of group construction is described. (Kato, T.)

  9. Nuclear power plant

    International Nuclear Information System (INIS)

    Orlov, V.V.; Rineisky, A.A.

    1975-01-01

    The invention is aimed at designing a nuclear power plant with a heat transfer system which permits an accelerated fuel regeneration maintaining relatively high initial steam values and efficiency of the steam power circuit. In case of a plant with three circuits the secondary cooling circuit includes a steam generator with preheater, evaporator, steam superheater and intermediate steam superheater. At the heat supply side the latter is connected with its inlet to the outlet of the evaporator and with its outlet to the low-temperature side of the secondary circuit

  10. Biomass utilization at Northern States Power Company

    International Nuclear Information System (INIS)

    Ellis, R.P.

    1994-01-01

    Northern States Power Company (open-quotes NSPclose quotes) generates, transmits and distributes electricity and distributes natural gas to customers in Minnesota, Wisconsin, North Dakota, South Dakota and Michigan. An important and growing component of the fuel needed to generate steam for electrical production is biomass. This paper describes NSP's historical use of biomass, current biomass resources and an overview of how NSP plans to expand its use of biomass in the future

  11. A contribution to the methods of determining the optimal exploitation of hydraulically related hydroelectric power plants of different owners

    International Nuclear Information System (INIS)

    Gievski, Igor

    2013-01-01

    For the purpose of solving the water-supply and energy-related problems of the city of Skopje, the need has arisen to construct the 'Skopsko Pole' hydro system. The 'Skopsko Pole' hydro system consists of the power plants 'Kozjak', 'SvetaPetka' and 'Matka'. It is envisioned to use the watercourse of the Treska River and has been envisaged as a multipurpose system, that is, as an anti-flood system, system for irrigation of agricultural land and an electricity producer. Certainly, the meeting of the aforementioned needs will depend on the hydrological potential of the Treska River, which is why an exact and detailed review of the hydrological potential of the Treska River is of vital importance. It is a complex task to determine the optimal work of the hydroelectric power plants built along the same river, even if this is about the so-called run-of-the-water hydroelectric power plants, given the different interests of the water consumers of the same watercourse. This problem will become more complicated if one or more (that is, all) hydroelectric power plants have their own accumulative pools. In this case, the question arises of how the waters of each of the accumulations should be used. During this, we need to bear in mind the fact that every release of water from each of the accumulations alters the elevation points of all the hydroelectric power plants on the same watercourse and thus affects their production and eventually the benefit of their work. With the restructuring of the electric energy systems in different countries over the past 20 years, the vertically integrated power plants have been converted into horizontally integrated ones. In many cases, it is different companies that are the electricity producers, the high-voltage electricity transmitters, and the medium- and low-voltage electricity distributors. Some of these companies are private companies, whereas others are state-owned. Such diverse ownership of the power plants, which are by default

  12. 75 FR 66802 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2010-10-29

    ... Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2; Notice of Withdrawal of...) has granted the request of Calvert Cliffs Nuclear Power Plant, LLC, the licensee, to withdraw its... for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2, located in Calvert County, MD. The...

  13. Prospects of Foreign Capital Raising for Russian Power Grid Companies

    Directory of Open Access Journals (Sweden)

    N. N. Shvets

    2015-01-01

    Full Text Available The power sector reform in Russia saw capital raising as one of the key objectives. Additional investments are necessary, in particular, for renovation of fixed assets which are ca. 70% worn out. The official Strategy for the development of the Russian power grid also provides for privatization of certain companies and foreign investors are considered among others as the target audience. Upon prospective privatization the sector is expected not only to experience a certain increase in capital expenditures, but also to benefit from foreign expertise and efficiency enhancement. At the moment, however, the privatization plans are hard to implement due to a number of obstacles. Prospective investors are mostly concerned about the lack of transparent regulation and clear development strategy of the industry. This is particularly relevant to the tariff system, which has been continuously altered in recent years. This might be explained by the need of the state support by other sectors, which is often provided at the expense of the power industry. Furthermore, the prospects of foreign capital raising are negatively influenced by the conflict in Ukraine and the corresponding negative perception of potential investors. The above factors result in the decrease in value of power grid companies as well as in the lack of visibility regarding the prospects of the sector development. Privatization thus becomes unreasonable both for the state and prospective investors. At the same time, despite the sector specifics, there are precedents of successful sale of power grid assets to private investors by international peers. Particularly, Vatenfall and Forum have recently closed relevant transactions, nothing to say about the power grid sector of Brazil, majorly controlled by private owners. Transparent regulation, clear pricing rules and well-balanced economic policy are, indeed, indispensable prerequisites for successful privatization. Those might back up a

  14. VGB Congress 'Power Plants 2006'

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    The VGB Congress 'Power Plants' took place in Dresden, 27 th to 29 th September 2006 under the auspices of the Federal Minister for Economics and Technology, Michael Glos. The motto of this year's Congress was 'Future becomes Reality - Investments in New Power Plants'. More than 1,200 participants from Germany and abroad attended the plenary and technical lectures on the topics 'Market and Competition' as well as 'Technology, Operation and Environment' for information and discussion. Special papers were dealing with further issues like 'Generation Market in Europe', 'Clean Power Technology Platform', French policy for new power plants as well as potentials and technology of renewables. (orig.)

  15. Nuclear power plant V-1

    International Nuclear Information System (INIS)

    1998-01-01

    The nuclear power plant Bohunice V -1 is briefly described. This NPP consists from two reactor units. Their main time characteristics are (Reactor Unit 1, Reactor Unit 2): beginning of construction - 24 April 1972; first controlled reactor power - 27 November 1978, 15 March 1980; connection to the grid - 17 December 1978, 26 March 1980; commercial operation - 1 April 1980, 7 January 1981. This leaflet contains: NPP V-1 construction; Major technological equipment (Primary circuit: Nuclear reactor [WWER 440 V230 type reactor];Steam generator; Reactor Coolant Pumps; Primary Circuit Auxiliary Systems. Secondary circuit: Turbine generators, Nuclear power plant electrical equipment; power plant control) and technical data

  16. Virtual power plant mid-term dispatch optimization

    International Nuclear Information System (INIS)

    Pandžić, Hrvoje; Kuzle, Igor; Capuder, Tomislav

    2013-01-01

    Highlights: ► Mid-term virtual power plant dispatching. ► Linear modeling. ► Mixed-integer linear programming applied to mid-term dispatch scheduling. ► Operation profit maximization combining bilateral contracts and the day-ahead market. -- Abstract: Wind power plants incur practically zero marginal costs during their operation. However, variable and uncertain nature of wind results in significant problems when trying to satisfy the contracted quantities of delivered electricity. For this reason, wind power plants and other non-dispatchable power sources are combined with dispatchable power sources forming a virtual power plant. This paper considers a weekly self-scheduling of a virtual power plant composed of intermittent renewable sources, storage system and a conventional power plant. On the one hand, the virtual power plant needs to fulfill its long-term bilateral contracts, while, on the other hand, it acts in the market trying to maximize its overall profit. The optimal dispatch problem is formulated as a mixed-integer linear programming model which maximizes the weekly virtual power plant profit subject to the long-term bilateral contracts and technical constraints. The self-scheduling procedure is based on stochastic programming. The uncertainty of the wind power and solar power generation is settled by using pumped hydro storage in order to provide flexible operation, as well as by having a conventional power plant as a backup. The efficiency of the proposed model is rendered through a realistic case study and analysis of the results is provided. Additionally, the impact of different storage capacities and turbine/pump capacities of pumped storage are analyzed.

  17. Results of evaluation of periodic safety review for No. 1 plant in Mihama Power Station, Kansai Electric Power Co., Inc

    International Nuclear Information System (INIS)

    1994-01-01

    No. 1 plant in Mihama Power Station started the commercial power generation in November, 1970, and has continued the operation for more than 23 years. During this period, the counter measures to troubles, periodic inspections and the maintenance by the electric power company have been carried out. These states of No. 1 plant in Mihama Power Station for more than 23 years are to be recollected from the view-points of the comprehensive evaluation of operation experiences and the reflection of latest technological knowledge, and the safety and reliability are to be further improved in the periodic safety review. Agency of Natural Resources and Energy evaluated the report of the periodic safety review for No. 1 plant in Mihama Power Station made by Kansai Electric Power Co., and summarized the results. The course of the evaluation of the report is shown. The facility utilization factor is 43.3% on the average of about 23 years, but in the last 10 years, it was improved to 69.4%. In the last five years, the rate of occurrence of unexpected shutoff was 0.6 times/year. These are the results of preventive maintenance and the improvement of the facilities and operation management. Operation management, maintenance management, fuel management, radiation control, and radioactive waste management have been carried out properly. The work plan for preventing disasters was established, and the experience of troubles and the latest technological knowledge were well reflected to improve the safety. (K.I.)

  18. Nuclear power plants maintenance

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Nuclear power plants maintenance now appears as an important factor contributing to the competitivity of nuclea energy. The articles published in this issue describe the way maintenance has been organized in France and how it led to an actual industrial activity developing and providing products and services. An information note about Georges Besse uranium enrichment plant (Eurodif) recalls that maintenance has become a main data not only for power plants but for all nuclear industry installations. (The second part of this dossier will be published in the next issue: vol. 1 January-February 1989) [fr

  19. Nuclear power plant outages

    International Nuclear Information System (INIS)

    1998-01-01

    The Finnish Radiation and Nuclear Safety Authority (STUK) controls nuclear power plant safety in Finland. In addition to controlling the design, construction and operation of nuclear power plants, STUK also controls refuelling and repair outages at the plants. According to section 9 of the Nuclear Energy Act (990/87), it shall be the licence-holder's obligation to ensure the safety of the use of nuclear energy. Requirements applicable to the licence-holder as regards the assurance of outage safety are presented in this guide. STUK's regulatory control activities pertaining to outages are also described

  20. The correlation between management power and risk in the Italian companies

    Directory of Open Access Journals (Sweden)

    Raffaella Scarabino

    2013-03-01

    Full Text Available The shareholders can not directly manage the business but they have powers of pulse and control by voting right that is essential for the correct functioning of the company. In 1942 the Italian legislature, although with some exceptions, adopted One share – One vote rule. The legal framework changed significantly after the enactment of corporate law reform in 2003. The objective of this research is to examine the status of the principle of correlation between management power and risk in the context of the regulatory framework of Italian public companies, as it emerged after the enactment of above mentioned corporate law reform in 2003.

  1. Physical and financial virtual power plants

    International Nuclear Information System (INIS)

    Willems, Bert

    2005-01-01

    Regulators in Belgium and the Netherlands use different mechanisms to mitigate generation market power. In Belgium, antitrust authorities oblige the incumbent to sell financial Virtual Power Plants, while in the Netherlands regulators have been discussing the use of physical Virtual Power Plants. This paper uses a numerical game theoretic model to simulate the behavior of the generation firms and to compare the effects of both systems on the market power of the generators. It shows that financial Virtual Power Plants are better for society. (Author)

  2. Experimental coal dust suppression system installed at the Nikola Tesla thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Guzijan, D [Rudarski Institut, Belgrade (Yugoslavia). Zavod za Ventilaciju i Tehnicku Zastitu

    1988-01-01

    Describes a project conducted at the Nikola Tesla thermal power plant by the Mining Institute of Belgrade to reduce the high levels of dust concentrations in overloading stations on coal conveyors and hoppers. A mathematical model was developed to determine the ventilation capacity required at each of the 18 overloading stations with the hoppers considered successively: empty, 1/3 full, 2/3 full and completely full. Shows how this model enabled an efficient dust suppression system to be developed and subsequently installed by the Termovent company in Belgrade using 4 axial ventilators supplied by the Ventilator Company in Zagreb. The ventilators were powered by means of 5.5 kW electric motors and provided 440 Pa pressure at 950 rpm. Gives the result of dust concentration measurements indicating that the installed system achieved the results predicted by the mathematical model and that the levels were well below the statutory limit. A description of the complete installation is included. 3 refs.

  3. Role and Place of the Joint-Stock Company -ECOMET-S- in the System of Solid Radioactive Waste Treatment Generated at the Nuclear Power Plants of the Russian Federation

    International Nuclear Information System (INIS)

    Gelbutovski, A.B.; Troshev, A.V.; Cheremisin, P.I.

    2009-01-01

    In this work the existing situation and ways of solving the problem of solid radioactive waste (SRW) management, resulting from the nuclear power industry are considered. It is shown, that one of the ways to manage SRW is transferring the task to a specialized enterprise. Such an enterprise in Russia is the Joint-Stock Company (JSC) 'ECOMET-S', whose main activity is providing services for processing and disposal of radioactive metal waste. They reduce the volume of SRW, ship it for burial and return metal return to industry for unlimited use. The basic provisions of the system of radioactive metal waste (hereinafter RMW) management developed by JSC 'ECOMET-S' are given. Information referring to technology and enterprise industrial capacity is represented. The results of the JSC 'ECOMET-S' activity for processing and disposal of low-activity radioactive metal waste from the Nuclear Power Plant (hereinafter NPP) of the Russian Federation are shown. (authors)

  4. 75 FR 54400 - Florida Power and Light Company; Establishment of Atomic Safety and Licensing Board

    Science.gov (United States)

    2010-09-07

    ...] Florida Power and Light Company; Establishment of Atomic Safety and Licensing Board Pursuant to delegation..., notice is hereby given that an Atomic Safety and Licensing Board (Board) is being established to preside over the following proceeding: Florida Power & Light Company (Turkey Point Units 6 and 7) This...

  5. Training of power plant operating personnel

    International Nuclear Information System (INIS)

    Kraftwerksschule, E.V.

    1986-01-01

    In Germany, professional training of power plant operating personnel became an important issue in the fifties, when power plant parameters as well as complexity of instrumentation and control increased considerably. Working Groups of VGB Technische Vereiningung der Grosskraftwerketreiber e.v. (Association of Large Power Plant Operators) developed a professional career for power plant operating personnel and defined pre-requisites, scope and objectives of training. In 1957 the German utilities founded KRAFTWERKSSCHULE E.V. (kws) as a school for theoretical training and for guidance of practical training in the power plants. KWS is a non-profit organisation and independent of authorities. Today KWS has 127 members in Germany and in 6 other countries. The objectives of KWS include the training of: -Kraftwerker (control room operators; - Kraftwerksmesiter (shift supervisors); and - shift engineers; according the guidelines of the VGB

  6. Human factors in nuclear power plants

    International Nuclear Information System (INIS)

    Pack, R.W.

    1978-01-01

    The Electric Power Research Institute has started research in human factors in nuclear power plants. One project, completed in March 1977, reviewed human factors problems in operating power plants and produced a report evaluating those problems. A second project developed computer programs for evaluating operator performance on training simulators. A third project is developing and evaluating control-room design approaches. A fourth project is reviewing human factors problems associated with power-plant maintainability and instrumentation and control technician activities. Human factors engineering is an interdisciplinary specialty concerned with influencing the design of equipment systems, facilities, and operational environments to promote safe, efficient, and reliable operator performance. The Electric Power Research Institute (EPRI) has undertaken four projects studying the application of human factors engineering principles to nuclear power plants. (author)

  7. TOSHIBA CAE system for nuclear power plant

    International Nuclear Information System (INIS)

    Machiba, Hiroshi; Sasaki, Norio

    1990-01-01

    TOSHIBA aims to secure safety, increase reliability and improve efficiency through the engineering for nuclear power plant using Computer Aided Engineering (CAE). TOSHIBA CAE system for nuclear power plant consists of numbers of sub-systems which had been integrated centering around the Nuclear Power Plant Engineering Data Base (PDBMS) and covers all stage of engineering for nuclear power plant from project management, design, manufacturing, construction to operating plant service and preventive maintenance as it were 'Plant Life-Cycle CAE System'. In recent years, TOSHIBA has been devoting to extend the system for integrated intelligent CAE system with state-of-the-art computer technologies such as computer graphics and artificial intelligence. This paper shows the outline of CAE system for nuclear power plant in TOSHIBA. (author)

  8. Memorial 1997 - ENDESA (Chilean Electricity Company); ENDESA - Memoria 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-31

    This report provides a comprehensive survey, in depth assessment of the activities overview of ENDESA, Chilean Electricity Company, highlighting economical information and including historical and technical aspects. Economics is its focal point, but other relevant data are shown, like technical data on hydroelectric and thermoelectric power plants. Main activities developed by ENDESA are described, such in Chile as in the foreign. Data on power generation, transmission and transport are also presented and an economical balance of each colligated company are done and analysed 35 figs., 115 tabs.

  9. Birecik: a role model for private companies

    Energy Technology Data Exchange (ETDEWEB)

    Holzmann, P. [Corporate Communications, Frankfurt am Main (Germany)

    2001-04-01

    The Birecik hydroelectric power project in Turkey is highlighted as a good example of the effectiveness of a private sector company in planning, financing and constructing a hydro power plant on a build, operate and transfer (BOT) basis. Birecik AS has built the 672 MW plant and dam on the River Euphrates near the border with Syria as part of a Turkish government plan to develop southeast Anatolia. The dam, which was built on schedule and within budget, has embankments on the left and right hand sides and a gravity dam in the centre containing the power house, intake and spillway. The power house contains six Francis turbines, three of which are already operational. The plant's specifications and other vital statistics are summarised in a table. Its location is shown in a map of Turkey.

  10. Effect of nuclear power on CO₂ emission from power plant sector in Iran.

    Science.gov (United States)

    Kargari, Nargess; Mastouri, Reza

    2011-01-01

    It is predicted that demand for electricity in Islamic Republic of Iran will continue to increase dramatically in the future due to the rapid pace of economic development leading to construction of new power plants. At the present time, most of electricity is generated by burning fossil fuels which result in emission of great deal of pollutants and greenhouse gases (GHG) such as SO₂, NOx, and CO₂. The power industry is the largest contributor to these emissions. Due to minimal emission of GHG by renewable and nuclear power plants, they are most suitable replacements for the fossil-fueled power plants. However, the nuclear power plants are more suitable than renewable power plants in providing baseload electricity. The Bushehr Nuclear Power Plant, the only nuclear power plant of Iran, is expected to start operation in 2010. This paper attempts to interpret the role of Bushehr nuclear power plant (BNPP) in CO₂ emission trend of power plant sector in Iran. In order to calculate CO₂ emissions from power plants, National CO₂ coefficients have been used. The National CO₂ emission coefficients are according to different fuels (natural gas, fuels gas, fuel oil). By operating Bushehr Nuclear Power Plant in 2010, nominal capacity of electricity generation in Iran will increase by about 1,000 MW, which increases the electricity generation by almost 7,000 MWh/year (it is calculated according to availability factor and nominal capacity of BNPP). Bushehr Nuclear Power Plant will decrease the CO₂ emission in Iran power sector, by about 3% in 2010.

  11. The European power plant infrastructure-Presentation of the Chalmers energy infrastructure database with applications

    International Nuclear Information System (INIS)

    Kjaerstad, Jan; Johnsson, Filip

    2007-01-01

    This paper presents a newly established database of the European power plant infrastructure (power plants, fuel infrastructure, fuel resources and CO 2 storage options) for the EU25 member states (MS) and applies the database in a general discussion of the European power plant and natural gas infrastructure as well as in a simple simulation analysis of British and German power generation up to the year 2050 with respect to phase-out of existing generation capacity, fuel mix and fuel dependency. The results are discussed with respect to age structure of the current production plants, CO 2 emissions, natural gas dependency and CO 2 capture and storage (CCS) under stringent CO 2 emission constraints. The analysis of the information from the power plant database, which includes planned projects, shows large variations in power plant infrastructure between the MS and a clear shift to natural gas-fuelled power plants during the last decade. The data indicates that this shift may continue in the short-term up to 2010 since the majority of planned plants are natural gas fired. The gas plants are, however, geographically concentrated to southern and northwest Europe. The data also shows large activities in the upstream gas sector to accommodate the ongoing shift to gas with pipelines, liquefaction plants and regasification terminals being built and gas fields being prepared for production. At the same time, utilities are integrating upwards in the fuel chain in order to secure supply while oil and gas companies are moving downwards the fuel chain to secure access to markets. However, it is not yet possible to state whether the ongoing shift to natural gas will continue in the medium term, i.e. after 2010, since this will depend on a number of factors as specified below. Recently there have also been announcements for construction of a number of new coal plants. The results of the simulations for the German and British power sector show that combination of a relatively low

  12. TAPCHAN Wave Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    1983-10-01

    The Tapered Channel Wave Power Plant (TAPCHAN) is based on a new method for wave energy conversion. The principle of operation can be explained by dividing the system into the following four sub-systems: Firstly, a collector which is designed to concentrate the water energy and optimize collection efficiency for a range of frequencies and directions. Secondly, the energy converter, in which the energy of the collected waves is transformed into potential energy in an on-shore water reservoir. This is the unique part of the power plant. It consists of a gradually narrowing channel with wall heights equal to the filling level of the reservoir (typical heights 3-7 m). The waves enter the wide end of the channel and as they propagate down the narrowing channel, the wave height is amplified until the wavecrests spill over the walls. Thirdly, a reservoir which provides a stable water supply for the turbines. Finally, the hydroelectric power plant, where well established techniques are used for the generation of electric power. The water turbine driving the electric generator is of a low head type, such as a Kaplan or a tubular turbine. It must be designed for salt water operation and should have good regulation capabilities. Power plants based on the principle described, are now offered on a commercial basis.

  13. Taking the reins of power

    International Nuclear Information System (INIS)

    Cavenagh, Andrew.

    1997-01-01

    The growing contract energy management business in the United Kingdom is examined. At the top end, established electricity generators are supplying combined heat and power plants of over 20MW or so to meet the steam, power and heating requirements of large industrial sites on contracts of, typically, 15-20 years. These are very much the province of companies such as National Power and PowerGen familiar with linking into the high voltage transmission system and hence able to sell surplus power from these projects into the National Grid. A much wider range of services is on offer by other more specialised companies. These range from the supply and operation of combined heat and power plants to smaller companies, to fuel purchasing contracts and the monitoring of energy consumption of existing facilities in public buildings. Cost cutting is the driving attraction of contract energy management for the purchasers, but there are other advantages. The view of one company, for example, is that it enables them to focus on their core business while leaving energy production and management to a third party whose core business that is. Energy costs become totally forecastable and expertise is always at hand. (UK)

  14. Committed emissions from existing and planned power plants and asset stranding required to meet the Paris Agreement

    Science.gov (United States)

    Pfeiffer, Alexander; Hepburn, Cameron; Vogt-Schilb, Adrien; Caldecott, Ben

    2018-05-01

    Over the coming decade, the power sector is expected to invest ~7.2 trillion USD in power plants and grids globally, much of it into CO2-emitting coal and gas plants. These assets typically have long lifetimes and commit large amounts of (future) CO2 emissions. Here, we analyze the historic development of emission commitments from power plants and compare the emissions committed by current and planned plants with remaining carbon budgets. Based on this comparison we derive the likely amount of stranded assets that would be required to meet the 1.5 °C–2 °C global warming goal. We find that even though the growth of emission commitments has slowed down in recent years, currently operating generators still commit us to emissions (~300 GtCO2) above the levels compatible with the average 1.5 °C–2 °C scenario (~240 GtCO2). Furthermore, the current pipeline of power plants would add almost the same amount of additional commitments (~270 GtCO2). Even if the entire pipeline was cancelled, therefore, ~20% of global capacity would need to be stranded to meet the climate goals set out in the Paris Agreement. Our results can help companies and investors re-assess their investments in fossil-fuel power plants, and policymakers strengthen their policies to avoid further carbon lock-in.

  15. Training of system engineers for Salem and Hope Creek nuclear power plant personnel

    International Nuclear Information System (INIS)

    Ketcham, S.

    1988-01-01

    To establish and maintain a high level of plant reliability at a nuclear power station, a conscientious, integrated, day-to-day effort is required from operations and maintenance personnel, as well as the engineering support groups. The catalyst and focus to ensure that this occurs within the Public Service Electric and Gas Company system is the station system engineer. These engineers have total responsibility for their designated systems. For these individuals to communicate with the operations and maintenance departments effectively, they must have an understanding of the design and operation of each and every system and the effect they may have on the overall plant. (author)

  16. Wind power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kling, A

    1977-01-13

    The wind power plant described has at least one rotor which is coupled to an electricity generator. The systems are fixed to a suspended body so that it is possible to set up the wind power plant at greater height where one can expect stronger and more uniform winds. The anchoring on the ground or on a floating body is done by mooring cables which can simultaneously have the function of an electric cable. The whole system can be steered by fins. The rotor system itself consists of at least one pair of contrarotating, momentum balanced rotors.

  17. Reliability of emergency ac power systems at nuclear power plants

    International Nuclear Information System (INIS)

    Battle, R.E.; Campbell, D.J.

    1983-07-01

    Reliability of emergency onsite ac power systems at nuclear power plants has been questioned within the Nuclear Regulatory Commission (NRC) because of the number of diesel generator failures reported by nuclear plant licensees and the reactor core damage that could result from diesel failure during an emergency. This report contains the results of a reliability analysis of the onsite ac power system, and it uses the results of a separate analysis of offsite power systems to calculate the expected frequency of station blackout. Included is a design and operating experience review. Eighteen plants representative of typical onsite ac power systems and ten generic designs were selected to be modeled by fault trees. Operating experience data were collected from the NRC files and from nuclear plant licensee responses to a questionnaire sent out for this project

  18. Nuclear power plant operator licensing

    International Nuclear Information System (INIS)

    1997-01-01

    The guide applies to the nuclear power plant operator licensing procedure referred to the section 128 of the Finnish Nuclear Energy Degree. The licensing procedure applies to shift supervisors and those operators of the shift teams of nuclear power plant units who manipulate the controls of nuclear power plants systems in the main control room. The qualification requirements presented in the guide also apply to nuclear safety engineers who work in the main control room and provide support to the shift supervisors, operation engineers who are the immediate superiors of shift supervisors, heads of the operational planning units and simulator instructors. The operator licensing procedure for other nuclear facilities are decided case by case. The requirements for the basic education, work experience and the initial, refresher and complementary training of nuclear power plant operating personnel are presented in the YVL guide 1.7. (2 refs.)

  19. Wireless microwave acoustic sensor system for condition monitoring in power plant environments

    Energy Technology Data Exchange (ETDEWEB)

    Pereira da Cunha, Mauricio [Univ. of Maine, Orno, ME (United States)

    2017-03-30

    This project successfully demonstrated novel wireless microwave acoustic temperature and pressure sensors that can be embedded into equipment and structures located in fossil fuel power plant environments to monitor the condition of components such as steam headers, re-heat lines, water walls, burner tubes, and power turbines. The wireless microwave acoustic sensor technology researched and developed through a collaborative partnership between the University of Maine and Environetix Technologies Corporation can provide a revolutionary impact in the power industry since it is anticipated that the wireless sensors will deliver reliable real-time sensing information in harsh power plant conditions that involve temperatures up to 1100oC and pressures up to 750 psi. The work involved the research and development of novel high temperature harsh environment thin film electrodes, piezoelectric smart microwave acoustic sensing elements, sensor encapsulation materials that were engineered to function over long times up to 1100oC, and a radio-frequency (RF) wireless interrogation electronics unit that are located both inside and outside the high temperature harsh environment. The UMaine / Environetix team have interacted with diverse power plant facilities, and identified as a testbed a local power generation facility, which burns municipal solid waste (MSW), the Penobscot Energy Recovery Company (PERC), Orrington, Maine. In this facility Environetix / UMaine successfully implemented and tested multiple wireless temperature sensor systems within the harsh-environment of the economizer chamber and at the boiler tubes, transferring the developed technology to the power plant environment to perform real-time sensor monitoring experiments under typical operating conditions, as initially targeted in the project. The wireless microwave acoustic sensor technology developed under this project for power plant applications offers several significant advantages including wireless

  20. Risks in the operation of hydroelectric power plants and nuclear power in Brazil

    International Nuclear Information System (INIS)

    Goldemberg, J.

    1986-01-01

    A comparison between the utilization of electrical energy generated by hydroelectric power plant and nuclear power plant is made. The risks from nuclear installations and the environmental effects of hydroelectric power plants and nuclear power plants are presented. (E.G.) [pt

  1. Big five general contractors dominate civil construction market of nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The Japanese construction industry is a key industry accounting for about 20 % of the GNP, and the investment in construction amounted to 51,200 billion yen in fiscal 1984. 515,000 firms employing about 5.5 million workers belong to the industry. 99.4 % of these firms is the enterprises capitalized at less than 100 million yen, and most of them are small self-employment enterprises. The Construction Business Law provides that those who wish to engage in construction are required to obtain a permit from the Construction Ministry or from a local prefectural governor. There are big five and seven sub-major construction companies in Japan. The big five formed the tie-up relations with three nuclear reactor manufacturers. 76 civil engineering and construction companies recorded the sales related to nuclear power in 1983 amounting to 330.9 billion yen, equivalent to 21 % of the total nuclear-related sales. The construction of nuclear power plants and the characteristics of the construction, and the activities of the big five in the field of nuclear industry are reported. (Kako, I.)

  2. Chiyoda Thoroughbred CT-121 clean coal project at Georgia Power`s Plant Yates

    Energy Technology Data Exchange (ETDEWEB)

    Burford, D.P. [Southern Company Services, Inc., Birmingham, AL (United States)

    1997-12-31

    The Chiyoda Thoroughbred CT-121 flue gas desulfurization (FGD) process at Georgia Power`s Plant Yates completed a two year demonstration of its capabilities in late 1994 under both high- and low-particulate loading conditions. This $43 million demonstration was co-funded by Southern Company, the Electric Power Research Institute and the DOE under the auspices of the US Department of Energy`s Round II Innovative Clean Coal Technology (ICCT) program. The focus of the Yates Project was to demonstrate several cost-saving modifications to Chiyoda`s already efficient CT-121 process. These modifications included: the extensive use of fiberglass reinforced plastics (FRP) in the construction of the scrubber vessel and other associated vessels, the elimination of flue gas reheat through the use of an FRP wet chimney, and reliable operation without a spare absorber module. This paper focuses on the testing results from the last trimester of the second phase of testing (high-ash loading). Specifically, operation under elevated ash loading conditions, the effects of low- and high-sulfur coal, air toxics verification testing results and unexpected improvements in byproduct gypsum quality are discussed.

  3. Nuclear power plant operating experience, 1976

    International Nuclear Information System (INIS)

    1977-11-01

    This report is the third in a series of reports issued annually that summarize the operating experience of U.S. nuclear power plants in commercial operation. Power generation statistics, plant outages, reportable occurrences, fuel element performance, occupational radiation exposure and radioactive effluents for each plant are presented. Summary highlights of these areas are discussed. The report includes 1976 data from 55 plants--23 boiling water reactor plants and 32 pressurized water reactor plants

  4. The operation of nuclear power plants

    International Nuclear Information System (INIS)

    Brosche, D.

    1992-01-01

    The duties to be performed in managing the operation of a nuclear power plant are highly diverse, as will be explained in this contribution by the examples of the Grafenrheinfeld Nuclear Power Station. The excellent safety record and the high availabilities of German nuclear power plants demonstrate that their operators have adopted the right approaches. Systematic evaluation of the operating experience accumulated inhouse and in other plants is of great significance in removing weak spots and improving operation. The manifold and complex activities in the structure of organization and of activities in a nuclear power plant require a high degree of division of labor. (orig.) [de

  5. Safety Evaluation Report related to the operation of Perry Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-440 and 50-441). Supplement No. 7

    International Nuclear Information System (INIS)

    1985-11-01

    Supplement No. 7 to the Safety Evaluation Report (NUREG-0887) on the application filed by the Cleveland Electric Illuminating Company on behalf of itself and as agent for the Duquesne Light Company, the Ohio Edison Company, the Pennsylvania Power Company, and the Toledo Edison Company (the Central Area Power Coordination Group or CAPCO), as applicants and owners, for a license to operate the Perry Nuclear Power Plant, Units 1 and 2 (Docket No. 50-440 and 50-441) has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Lake County, Ohio, approximately 35 miles northeast of Cleveland, Ohio. This supplement reports the status of certain issues that had not been resolved at the time of publication of the Safety Evaluation Report and Supplement Nos. 1 through 6 to that report

  6. Safety Evaluation Report related to the operation of Perry Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-440 and 50-441). Supplement No. 6

    International Nuclear Information System (INIS)

    1985-04-01

    Supplement No. 6 to the Safety Evaluation Report (NUREG-0887) on the application filed by the Cleveland Electric Illuminating Company on behalf of itself and as agent for the Duquesne Light Company, the Ohio Edison Company, the Pennsylvania Power Company, and the Toledo Edison Company (the Central Area Power Coordination Group or CAPCO), as applicants and owners, for a license to operate the Perry Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-540 and 50-441), has been prepared by the Office of the Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Lake County, Ohio, approximately 35 miles northeast of Cleveland, Ohio. This supplement reports the status of certain issues that had not been resolved at the time of publication of the Safety Evaluation Report and Supplement Nos. 1 through 5 to that report

  7. Safety Evaluation Report related to the operation of Perry Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-440 and 50-441). Supplement No. 8

    International Nuclear Information System (INIS)

    1986-01-01

    Supplement No. 8 to the Safety Evaluation Report (NUREG-0887) on the application filed by the Cleveland Electric Illuminating Company on behalf of itself and as agent for the Duquesne Light Company, the Ohio Edison Company, the Pennsylvania Power Company, and the Toledo Edison Company (the Central Area Power Coordination Group or CAPCO), as applicants and owners, for a license to operate the Perry Nuclear Power Plant, Units and 1 and 2 (Docket Nos. 50-440 and 50-441), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Lake County, Ohio, approximately 35 miles northeast of Cleveland, Ohio. This supplement reports the status of certain issues that has not been resolved at the time of publication of the Safety Evaluation Report and Supplement Nos. 1 through 7 to that report

  8. Safety Evaluation Report related to the operation of Perry Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-440 and 50-441). Supplement No. 5

    International Nuclear Information System (INIS)

    1985-02-01

    Supplement No. 5 to the Safety Evaluation Report (NUREG-0887) on the application filed by the Cleveland Electric Illuminating Company on behalf of itself and as agent for the Duquesne Light Company, the Ohio Edison Company, The Pennsylvania Power Company, and the Toledo Edison Company (the Central Area Power Coordination Group or CAPCO), as applicants and owners, for a license to operate the Perry Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-440 and 50-441), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Lake County, Ohio, approximately 35 miles northeast of Cleveland, Ohio. This supplement reports the status of certain issues that had not been resolved at the time of publication of the Safety Evaluation Report and Supplement Nos. 1 through 4 to that report

  9. A Review on the Development of Gravitational Water Vortex Power Plant as Alternative Renewable Energy Resources

    Science.gov (United States)

    Rahman, M. M.; Tan, J. H.; Fadzlita, M. T.; Khairul Muzammil, A. R. Wan

    2017-07-01

    Gravitational water vortex power plant is a green technology that generates electricity from alternative or renewable energy source. In the vortex power plant, water is introduced into a circular basin tangentially that creates a free vortex and energy is extracted from the free vortex by using a turbine. The main advantages of this type of power plant is the generation of electricity from ultra-low hydraulic pressure and it is also environmental friendly. Since the hydraulic head requirement is as low as 1m, this type of power plant can be installed at a river or a stream to generate electricity for few houses. It is a new and not well-developed technology to harvest electricity from low pressure water energy sources. There are limited literatures available on the design, fabrication and physical geometry of the vortex turbine and generator. Past researches focus on the optimization of turbine design, inlets, outlets and basin geometry. However, there are still insufficient literatures available for the technology to proceed beyond prototyping stage. The maximum efficiency obtained by the researchers are approximately 30% while the commercial companies claimed about 50% of efficiency with 500W to 20kW of power generated. Hence, the aim of this paper is to determine the gap in the vortex power plant technology development through past works and a set of research recommendations will be developed as efforts to accelerate the development of GWVPP.

  10. Direct FuelCell/Turbine Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hossein Ghezel-Ayagh

    2008-09-30

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply

  11. Power plant asset market evaluations: Forecasting the costs of power production

    Energy Technology Data Exchange (ETDEWEB)

    Lefton, S A; Grunsrud, G P [Aptech Engineering Services, Inc., Sunnyvale, CA (United States)

    1999-12-31

    This presentation discusses the process of evaluating and valuing power plants for sale. It describes a method to forecast the future costs at a power plant using a portion of the past fixed costs, variable energy costs, and most importantly the variable cycling-related wear-and-tear costs. The presentation then discusses how to best determine market share, expected revenues, and then to forecast plant future costs based on future expected unit cycling operations. The presentation concludes with a section on recommendations to power plant buyers or sellers on how to manage the power plant asset and how to increase its market value. (orig.) 4 refs.

  12. Power plant asset market evaluations: Forecasting the costs of power production

    Energy Technology Data Exchange (ETDEWEB)

    Lefton, S.A.; Grunsrud, G.P. [Aptech Engineering Services, Inc., Sunnyvale, CA (United States)

    1998-12-31

    This presentation discusses the process of evaluating and valuing power plants for sale. It describes a method to forecast the future costs at a power plant using a portion of the past fixed costs, variable energy costs, and most importantly the variable cycling-related wear-and-tear costs. The presentation then discusses how to best determine market share, expected revenues, and then to forecast plant future costs based on future expected unit cycling operations. The presentation concludes with a section on recommendations to power plant buyers or sellers on how to manage the power plant asset and how to increase its market value. (orig.) 4 refs.

  13. Power plant asset market evaluations: Forecasting the costs of power production

    International Nuclear Information System (INIS)

    Lefton, S.A.; Grunsrud, G.P.

    1998-01-01

    This presentation discusses the process of evaluating and valuing power plants for sale. It describes a method to forecast the future costs at a power plant using a portion of the past fixed costs, variable energy costs, and most importantly the variable cycling-related wear-and-tear costs. The presentation then discusses how to best determine market share, expected revenues, and then to forecast plant future costs based on future expected unit cycling operations. The presentation concludes with a section on recommendations to power plant buyers or sellers on how to manage the power plant asset and how to increase its market value. (orig.) 4 refs

  14. Damping of Low Frequency Power System Oscillations with Wind Power Plants

    DEFF Research Database (Denmark)

    Adamczyk, Andrzej Grzegorz

    of wind power plants on power system low frequency oscillations and identify methods and limitations for potential contribution to the damping of such oscillations. Consequently, the first part of the studies focuses on how the increased penetration of wind power into power systems affects their natural...... oscillatory performance. To do so, at first a generic test grid displaying a complex inter-area oscillation pattern is introduced. After the evaluation of the test grid oscillatory profile for various wind power penetration scenarios, it is concluded that full-converter based wind power plant dynamics do......-synchronous power source. The main body of the work is devoted to the damping control design for wind power plants with focus on the impact of such control on the plant operation. It can be expected that the referred impact is directly proportional to the control effort, which for power processing devices should...