WorldWideScience

Sample records for compaction energy concrete

  1. Attenuation coefficients for fibrous self-compacting concrete in the energy range of 50-3000 keV

    Energy Technology Data Exchange (ETDEWEB)

    Bento, W.V.; Magalhaes, L.A.M.; Conti, C.C., E-mail: ccconti@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-04-01

    The fibrous self-compacting concrete is a high performance concrete with uniformly distributed iron fibers. Transmission measurements, with {sup 137}Cs and {sup 60}Co sources were performed for the attenuation coefficients determination for both ordinary and fibrous self-compacting concretes. The results were compared to each other and to the values found in the literature for ordinary concrete. The mass attenuation coefficient for the fibrous self-compacting concrete showed to be higher than those for ordinary concrete of about 5%, depending on the gamma energy. However, it should be noted that the density of fibrous self-compacting concrete is higher than ordinary concrete, 2.4 g/cm{sup 3} and 1.9 g/cm{sup 3} respectively, increasing still further the difference in mass attenuation coefficient. In addition to that, by using Monte Carlo simulations, with MCNP5 Monte Carlo computer code, the data was extended to the 50-3000 keV gamma energy range. (author)

  2. Attenuation coefficients for fibrous self-compacting concrete in the energy range of 50-3000 keV

    International Nuclear Information System (INIS)

    Bento, W.V.; Magalhaes, L.A.M.; Conti, C.C.

    2017-01-01

    The fibrous self-compacting concrete is a high performance concrete with uniformly distributed iron fibers. Transmission measurements, with "1"3"7Cs and "6"0Co sources were performed for the attenuation coefficients determination for both ordinary and fibrous self-compacting concretes. The results were compared to each other and to the values found in the literature for ordinary concrete. The mass attenuation coefficient for the fibrous self-compacting concrete showed to be higher than those for ordinary concrete of about 5%, depending on the gamma energy. However, it should be noted that the density of fibrous self-compacting concrete is higher than ordinary concrete, 2.4 g/cm"3 and 1.9 g/cm"3 respectively, increasing still further the difference in mass attenuation coefficient. In addition to that, by using Monte Carlo simulations, with MCNP5 Monte Carlo computer code, the data was extended to the 50-3000 keV gamma energy range. (author)

  3. Self-Compacting Concrete

    OpenAIRE

    Okamura, Hajime; Ouchi, Masahiro

    2003-01-01

    Self-compacting concrete was first developed in 1988 to achieve durable concrete structures. Since then, various investigations have been carried out and this type of concrete has been used in practical structures in Japan, mainly by large construction companies. Investigations for establishing a rational mix-design method and self-compactability testing methods have been carried out from the viewpoint of making self-compacting concrete a standard concrete.

  4. The Future Concrete: Self-Compacting Concrete

    OpenAIRE

    Iureş, Liana; Bob, Corneliu

    2010-01-01

    The paper presents the characteristics of the self-compacting concretes, their advantages and disadvantages when they are used in buildings. Due to its properties and composition, the self-compacting concrete is described here as being one of the future friendly enviromental material for buildings. Tests concerning to obtaining a self-compacting concrete, together with the specific fresh concrete properties tests, are described.

  5. The Future Concrete: Self-Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Liana Iureş

    2010-01-01

    Full Text Available The paper presents the characteristics of the self-compacting concretes, their advantages and disadvantages when they are used in buildings. Due to its properties and composition, the self-compacting concrete is described here as being one of the future friendly enviromental material for buildings. Tests concerning to obtaining a self-compacting concrete, together with the specific fresh concrete properties tests, are described.

  6. Effect of mix design on the size-independent fracture energy of normal- and high-strength self-compacting concrete

    Directory of Open Access Journals (Sweden)

    H. Cifuentes

    2018-02-01

    Full Text Available Self-compacting concrete has a characteristic microstructure inherent to its specific composition. The higher content of fine particles in self-compacting concrete relative to the equivalent vibrated concrete produces a different fracture behavior that affects the main fracture parameters. In this work, a comprehensive experimental investigation of the fracture behavior of self-compacting concrete has been carried out. Twelve different self-compacting concrete mixes with compressive strength ranging from 39 to 124 MPa (wider range than in other studies have been subjected to three-point bending tests in order to determine the specific fracture energy. The influence of the mix design and its composition (coarse aggregate fraction, the water to binder ratio and the paste to solids ratio on its fracture behavior has been analyzed. Moreover, further evidence of the objectivity of the size-independent fracture energy results, obtained by the two most commonly used methods, has been provided on the self-compacting concrete mixes.

  7. Determining fracture energy parameters of concrete from the modified compact tension test

    Czech Academy of Sciences Publication Activity Database

    Canteli, A.; Castañón, L.; Nieto, B.; Lozano, M.; Holušová, Táňa; Seitl, Stanislav

    2014-01-01

    Roč. 30, OCT (2014), s. 383-393 ISSN 1971-8993 R&D Projects: GA MŠk(CZ) EE2.3.20.0214 Grant - others:interní podpora AV ČR(CZ) M100411204 Institutional support: RVO:68081723 Keywords : Concrete fracture energy * Modified compact tension test * Concrete * Numerical simulation Subject RIV: JL - Materials Fatigue, Friction Mechanics

  8. Effect of mix design on the size-independent fracture energy of normal- and high-strength self-compacting concrete

    International Nuclear Information System (INIS)

    Cifuentes, H.; Ríos, J.D.; Gómez, E.J.

    2018-01-01

    Self-compacting concrete has a characteristic microstructure inherent to its specific composition. The higher content of fine particles in self-compacting concrete relative to the equivalent vibrated concrete produces a different fracture behavior that affects the main fracture parameters. In this work, a comprehensive experimental investigation of the fracture behavior of self-compacting concrete has been carried out. Twelve different self-compacting concrete mixes with compressive strength ranging from 39 to 124 MPa (wider range than in other studies) have been subjected to three-point bending tests in order to determine the specific fracture energy. The influence of the mix design and its composition (coarse aggregate fraction, the water to binder ratio and the paste to solids ratio) on its fracture behavior has been analyzed. Moreover, further evidence of the objectivity of the size-independent fracture energy results, obtained by the two most commonly used methods, has been p [es

  9. Summary of Self-compacting Concrete Workability

    OpenAIRE

    GUO Gui-xiang; Duan Hong-jun

    2015-01-01

    On the basis of a large number of domestic and foreign literature, situation and development of self-compacting concrete is introduced. Summary of the compacting theory of self-compacting concrete. And some of the factors affecting the workability of self-compacting concrete were discussed and summarized to a certain extent. Aims to further promote the application and research of self-compacting concrete

  10. Determining fracture energy parameters of concrete from the modified compact tension test

    Directory of Open Access Journals (Sweden)

    A. Fernández-Canteli

    2014-10-01

    Full Text Available The modified compact tension (MCT test, though not yet recognized as a valid test for determining fracture energy of concrete, is believed to represent a plausible and suitable alternative versus other well established procedures, such as the wedge-splitting test (WST and the three point (3PB or four point bending (4PB tests, due to its simplicity and low cost. The aim of the paper is twofold: Firstly, to demonstrate the necessary correspondence between the experimental MCT test setup and finite element simulations and secondly, to initiate the way of establishing the desirable conversion between the fracture energy parameter values resulting from the MCT test and the standard conventional procedures. MCT tests are carried out and compared with the numerical results from 2-D and 3-D finite element calculations using the commercial codes ABAQUS and ATENA, the latter being specifically developed for applications on concrete structures and elements. In this way, the usability of the modified compact tension test for practical purposes is confirmed.

  11. Physical and mechanical properties of self-compacting concrete containing superplasticizer and metakaolin

    Science.gov (United States)

    Shahidan, Shahiron; Tayeh, Bassam A.; Jamaludin, A. A.; Bahari, N. A. A. S.; Mohd, S. S.; Zuki Ali, N.; Khalid, F. S.

    2017-11-01

    The development of concrete technology shows a variety of admixtures in concrete to produce special concrete. This includes the production of self-compacting concrete which is able to fill up all spaces, take formwork shapes and pass through congested reinforcement bars without vibrating or needing any external energy. In this study, the main objective is to compare the physical and mechanical properties of self-compacting concrete containing metakaolin with normal concrete. Four types of samples were produced to study the effect of metakaolin towards the physical and mechanical properties of self-compacting concrete where 0%, 5%, 10% and 15% of metakaolin were used as cement replacement. The physical properties were investigated using slump test for normal concrete and slump flow test for self-compacting concrete. The mechanical properties were tested for compressive strength and tensile strength. The findings of this study show that the inclusion of metakaolin as cement replacement can increase both compressive and tensile strength compared to normal concrete. The highest compressive strength was found in self-compacting concrete with 15% metakaolin replacement at 53.3 MPa while self-compacting concrete with 10% metakaolin replacement showed the highest tensile strength at 3.6 MPa. On top of that, the finishing or concrete surface of both cube and cylinder samples made of self-compacting concrete produced a smooth surface with the appearance of less honeycombs compared to normal concrete.

  12. Application of nanotechnology in self-compacting concrete design

    International Nuclear Information System (INIS)

    Maghsoudi, A. A.; Arabpour Dahooei, F.

    2009-01-01

    In this study, first, different mix design of four types of Self-Compacting Concrete, 1. Self-Compacting Concrete consisted of only nano silica, 2. Self-Compacting Concrete included only micro silica, 3. Self-Compacting Concrete consisted of both micro silica and nano silica and 4. Self-Compacting Concrete without micro silica and nano silica called as control mix, were casted and tested to find out the values of the Slump Flow, L-Box and 7 and 28 days compressive strength. Then, based on the results obtained and as yet there is no universally accepted standard for characterizing of Self-Compacting Concrete, the most suitable four concrete mixes were selected for further investigation of fresh and hardened concrete. For selected mixes, the fresh concrete properties such as values of the Slump Flow, L-Box, V-Funnel, J-Ring and hardened engineering properties such as compressive and flexural strength, shrinkage and swelling values were investigated for three curing conditions at short and long term. The results showed that the engineering properties of Self-Compacting Concrete mixes could not be improved by adding only nano silica. However, a satisfactory behavior can be achieved using micro silica in the Self-Compacting Concrete mixes. However, by adding both micro silica and nano silica to the Self-Compacting Concrete mixtures, the best effect on the engineering properties was reported while comparing to the control mixes.

  13. Durability of Self Compacting Concrete

    International Nuclear Information System (INIS)

    Benmarce, A.; Boudjehem, H.; Bendjhaiche, R.

    2011-01-01

    Self compacting concrete (SCC) seem to be a very promising materials for construction thanks to their properties in a fresh state. Studying of the influence of the parameters of specific designed mixes to their mechanical, physical and chemical characteristics in a state hardened is an important stage so that it can be useful for new-to-the-field researchers and designers (worldwide) beginning studies and work involving self compacting concrete. The objective of this research is to study the durability of self compacting concrete. The durability of concrete depends very much on the porosity; the latter determines the intensity of interactions with aggressive agents. The pores inside of concrete facilitate the process of damage, which began generally on the surface. We are interested to measure the porosity of concrete on five SCC with different compositions (w/c, additives) and vibrated concrete to highlight the influence of the latter on the porosity, thereafter on the compressive strength and the transfer properties (oxygen permeability, chloride ion diffusion, capillary absorption). (author)

  14. EXPERIMENTAL STUDY ON HYBRID FIBER SELF COMPACTING CONCRETE

    OpenAIRE

    S. M. Leela Bharathi

    2017-01-01

    Self-Compacting Concrete is a recently developed concept in which the ingredients of the concrete mix are proportioned in such a way that it can flow under its own weight to completely fill the formwork and passes through the congested reinforcement without segregation and self-consolidate without any mechanical vibration. Several studies in the past have revealed the usefulness of fibres to improve the structural properties of concrete like ductility, post crack resistance, energy absorption...

  15. Self-compacting geopolymer concrete-a review

    Science.gov (United States)

    Ukesh Praveen, P.; Srinivasan, K.

    2017-11-01

    In this construction world, Geopolymer concrete is a special concrete which doesn’t requires the Ordinary Portland Cement and also reduces the emission of carbon-dioxide. The Geopolymer Concrete is made up of industrial by-products (which contains more Silica and Alumina) and activated with the help of Alkaline solution (combination of sodium hydroxide & sodium silicate or potassium hydroxide & potassium silicate). The high viscosity nature of Geopolymer Concrete had the ability to fail due to lack of compaction. In improvising the issue, Self Compacting Geopolymer Concrete has been introduced. The SCGC doesn’t require any additional compaction it will flow and compacted by its own weight. This concrete is made up of industrial by-products like Fly ash, GGBFS and Silica Fume and activated with alkaline solution. The earlier research was mostly on Fly ash based SCGC. In few research works Fly ash was partially replaced with GGBS and Silica Fume. They evaluated the compressive strength of concrete with varying molarities of NaOH; curing time and curing temperature. The flexural behaviour of the concrete also examined. The Fly ash based SCGC was got high compressive strength in heat curing as well as low compressive strength in ambient curing. The presence of GGBS improves the strength in ambient curing. For aiming the high strength in ambient curing Fly ash will be completely replace and examine with different mineral admixtures.

  16. Bond behavior of self compacting concrete

    Directory of Open Access Journals (Sweden)

    Ponmalar S.

    2018-03-01

    Full Text Available The success of an optimum design lies in the effective load transfer done by the bond forces at the steel-concrete interface. Self Compacting Concrete, is a new innovative concrete capable of filling intrinsic reinforcement and gets compacted by itself, without the need of external mechanical vibration. For this reason, it is replacing the conventional vibrated concrete in the construction industry. The present paper outlays the materials and methods adopted for attaining the self compacting concrete and describes about the bond behavior of this concrete. The bond stress-slip curve is similar in the bottom bars for both SCC and normal concrete whereas a higher bond stress and stiffness is experienced in the top and middle bars, for SCC compared to normal concrete. Also the interfacial properties revealed that the elastic modulus and micro-strength of interfacial transition zone [ITZ] were better on the both top and bottom side of horizontal steel bar in the SCC mixes than in normal vibrated concrete. The local bond strength of top bars for SCC is about 20% less than that for NC. For the bottom bars, however, the results were almost the same.

  17. Bond behavior of self compacting concrete

    Science.gov (United States)

    Ponmalar, S.

    2018-03-01

    The success of an optimum design lies in the effective load transfer done by the bond forces at the steel-concrete interface. Self Compacting Concrete, is a new innovative concrete capable of filling intrinsic reinforcement and gets compacted by itself, without the need of external mechanical vibration. For this reason, it is replacing the conventional vibrated concrete in the construction industry. The present paper outlays the materials and methods adopted for attaining the self compacting concrete and describes about the bond behavior of this concrete. The bond stress-slip curve is similar in the bottom bars for both SCC and normal concrete whereas a higher bond stress and stiffness is experienced in the top and middle bars, for SCC compared to normal concrete. Also the interfacial properties revealed that the elastic modulus and micro-strength of interfacial transition zone [ITZ] were better on the both top and bottom side of horizontal steel bar in the SCC mixes than in normal vibrated concrete. The local bond strength of top bars for SCC is about 20% less than that for NC. For the bottom bars, however, the results were almost the same.

  18. Self-compacting concrete (SCC)

    DEFF Research Database (Denmark)

    Geiker, Mette Rica

    2008-01-01

    In many aspects Self-Compacting Concrete (SCC, “Self-Consolidating Concrete” in North America) can be considered the concrete of the future. SCC is a family of tailored concretes with special engineered properties in the fresh state. SCC flows into the formwork and around even complicated...... reinforcement arrangements under its own weight. Thus, SCC is not vibrated like conventional concrete. This drastically improves the working environment during construction, the productivity, and potentially improves the homogeneity and quality of the concrete. In addition SCC provides larger architectural...

  19. Roller-compacted concrete pavements.

    Science.gov (United States)

    2010-09-01

    Roller-compacted concrete (RCC) gets its name from the heavy vibratory steel drum and rubber-tired rollers used to help compact it into its final form. RCC has similar strength properties and consists of the same basic ingredients as conventional con...

  20. Influence of Recycled Concrete Dust on the Properties of Self– Compacting Concrete (SCC)

    OpenAIRE

    Ivanauskas, Ernestas; Lazauskas, Mantas; Grigaliūnas, Paulius

    2017-01-01

    Concrete – composite material which economical effect mostly depends on the amount of binder material (usually cement), its type and fineness. Cement manufacturing generates great employment of energy resources. The demand for all kind of manufacturing natural resources are aimed to be reduced as much as possible. Alternative raw material resources are being introduced and tested together with increasing self-compacting concrete (SCC) popularity in Lithuania. Considering environmental require...

  1. Self-Compacting Concrete in Precast Elements Industry

    Directory of Open Access Journals (Sweden)

    Corneliu Bob

    2005-01-01

    Full Text Available In this paper the authors present information about the Self-Compacting Concrete and experimental results regarding the use of them into precast element industry. This type of concrete does not require vibration for placing and compaction; it is able to flow under its own weight, completely filling formwork and achieving full compaction, even in the presence of congested reinforcement. The experimental programme has take into account two prestressed beams which were prefabricated and tested on a special stands. The beams of Self-Compacting Concrete with the length of 24 m were prepared at „Beton-Star” Kft, Kecsekenet, Hungary, and used at the CASCO, Satu-Mare.

  2. Research on working property and early age mechanical property of self-compacting concrete used in steel-concrete structure

    International Nuclear Information System (INIS)

    Zhao Yongguang

    2013-01-01

    Background: Self-compacting concrete that has good working property is the prerequisite of steel-concrete structure. The early age mechanical property of self-compacting concrete is the important parameter when design steel-concrete structure. Purpose: This paper attempts to research the working property and early age mechanical property of self-compacting concrete. Methods: Test is used to research the working property and early age mechanical property of self-compacting concrete. Results: Self-compacting concrete that could meet the requirement of steel-concrete structure has been mixed and parameters of early age mechanical property of self-compacting concrete which is necessary for design of steel-concrete structure have been presented. Conclusions: Base on the results, this paper can guide the construction of self-compacting concrete in steel-concrete structure and the design and construction of steel-concrete structure. (author)

  3. Self-compacting concrete mixtures for road BUILDING

    Directory of Open Access Journals (Sweden)

    Tran Tuan My

    2012-10-01

    Therefore, effective concrete road pavements require self-compacting though non-segregating concrete mixtures to comply with the pre-set values of their properties, namely, bending and compressive strength, corrosion resistance, freeze resistance, etc. Acting in cooperation with Department of Technology of Binders and Concretes of MSUCE, NIIMosstroy developed and examined a self-compacting cast concrete mixture designated for durable monolithic road pavements. The composition in question was generated by adding a multi-component modifier into the mix. The modifier was composed of a hyperplasticiser, active (structureless fine and crystalline silica, and a concrete hardening control agent.

  4. Analysis of laboratory compaction methods of roller compacted concrete

    Science.gov (United States)

    Trtík, Tomáš; Chylík, Roman; Bílý, Petr; Fládr, Josef

    2017-09-01

    Roller-Compacted Concrete (RCC) is an ordinary concrete poured and compacted with machines typically used for laying of asphalt road layers. One of the problems connected with this technology is preparation of representative samples in the laboratory. The aim of this work was to analyse two methods of preparation of RCC laboratory samples with bulk density as the comparative parameter. The first method used dynamic compaction by pneumatic hammer. The second method of compaction had a static character. The specimens were loaded by precisely defined force in laboratory loading machine to create the same conditions as during static rolling (in the Czech Republic, only static rolling is commonly used). Bulk densities obtained by the two compaction methods were compared with core drills extracted from real RCC structure. The results have shown that the samples produced by pneumatic hammer tend to overestimate the bulk density of the material. For both compaction methods, immediate bearing index test was performed to verify the quality of compaction. A fundamental difference between static and dynamic compaction was identified. In static compaction, initial resistance to penetration of the mandrel was higher, after exceeding certain limit the resistance was constant. This means that the samples were well compacted just on the surface. Specimens made by pneumatic hammer actively resisted throughout the test, the whole volume was uniformly compacted.

  5. Self-compacting fibre-reinforced concrete

    NARCIS (Netherlands)

    Grunewald, S.; Walraven, J.C.

    2001-01-01

    The project 'self-compacting fibre-reinforced concrete (SCFRC)' is part of the Dutch STW/PPM program - 'cement-bonded materials' - DCT.4010. Subproject III to which the project ,SCFRC' belongs deals with the development of new high performance concretes. The project 'SCFRC' aims at investigating the

  6. Plastometry for the Self-Compacting Concrete Mixes

    Science.gov (United States)

    Lapsa, V. Ā.; Krasnikovs, A.; Lusis, V.; Lukasenoks, A.

    2015-11-01

    Operative determination of consistence of self-compacting concrete mixes at plant or in construction conditions is an important problem in building practice. The Abram's cone, the Vebe's device, the U-box siphon, L-box or funnel tests are used in solving this problem. However, these field methods are targeted at determination of some indirect parameters of such very complicated paste-like material like concrete mix. They are not physical characteristics suitable for the rheological calculations of the coherence between the stress and strains, flow characteristics and the reaction of the concrete mix in different technological processes. A conical plastometer having higher precision and less sensitive to the inaccuracy of the tests in construction condition has been elaborated at the Concrete Mechanics Laboratory of RTU. In addition, a new method was elaborated for the calculation of plasticity limit τ0 taking into account the buoyancy force of the liquid or non-liquid concrete mix. In the present investigation rheological test of the concrete mix by use the plastometer and the method mentioned earlier was conducted for different self-compacting and not self-compacting concrete mixes.

  7. An integral design concept for ecological self-compacting concrete

    NARCIS (Netherlands)

    Hunger, M.

    2010-01-01

    This Thesis addresses an alternative design concept for Self-Compacting Concrete (SCC). SCC is a special type of concrete with superior workability, which flows and compacts in all corners of a formwork just by the influence of gravity. Introduced to the concrete world in the late 1980s, SCC has

  8. Form Filling with Self-Compacting Concrete

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm

    2002-01-01

    This paper describes a newly started Ph.D. project with the aim of simulating the form filling ability of Self-Compacting Concrete (SCC) taking into account the form geometry, reinforcement configuration, casting technique, and the rheological properties of the concrete. Comparative studies...

  9. Wider application of additions in self-compacting concrete

    OpenAIRE

    Liu, M.

    2009-01-01

    Compared to normally vibrated concrete (NVC), self-compacting concrete (SCC) possesses enhanced qualities and improves productivity and working conditions due to the elimination of compaction. SCC generally has a higher powder content than NVC and thus it is necessary to replace some of the cement by additions to achieve an economical and durable concrete. The established benefits of using low volumes of fly ash in SCC, high volumes of fly ash in NVC and the search for uses ...

  10. Durability Properties of Palm Oil Fuel Ash Self Compacting Concrete

    Directory of Open Access Journals (Sweden)

    T. Ofuyatan

    2015-02-01

    Full Text Available Self Compacting Concrete (SCC is a new innovation in technology that can flow readily into place under its own self weight and fill corner areas of reinforcement structures without the need to vibrate and without segregation of its constitute. The problem of durability of concrete structures due to inadequate compaction by skilled workers has become a source of concern globally. The shortage of skilled manpower, noise and vibration of equipment on construction sites has led to the development of self compacting concrete. This paper presents an experimental study on the durability properties of Self Compacting Concrete with partial placement of Palm Oil Fuel Ash (POFA. Twelve POFA self-compacting concretes of various strength grades were designed at varying percentages of 0, 5, 10, 15, 20, 25 and 30%. The concrete with no placement of ash served as control. Conplast SP432MS was used as superplasticiser in the mix. The experiments are carried out by adopting a water-powder ratio of 0.36. Workability of the fresh concrete is determined by using tests such as: slump flow, T50, V-funnel and L-Box tests. The durability of concrete is tested by acid resistance, sulphate attack and saturated water absorption at the age of 14, 28, 56 and 90 days.

  11. HIGH-QUALITY SELF-COMPACTING CONCRETE WITH COAL BURNING WASTE

    Directory of Open Access Journals (Sweden)

    Voronin Viktor Valerianovich

    2018-01-01

    Full Text Available Subject: nowadays self-compacting concretes (SCC, the use of which requires no additional compaction, have become widespread for use in densely-reinforced structures and hard-to-reach places. In self-compacting concretes, finely-ground admixtures-microfillers are widely used for controlling technological properties. Their introduction into the concrete mix allows us to obtain more dense structure of concrete. The influence of micro-fillers on water consumption and plasticity of concrete mix, on kinetics of strength gain rate, heat release and corrosion resistance is also noticeable. Research objectives: the work focuses on the development of composition of self-compacting concrete with assigned properties with the use of fly ash based on coal burning waste, optimized with the help of experimental design method in order to clarify the influence of ash and cement quantity, sand size on strength properties. Materials and methods: pure Portland cement CEM I 42.5 N was used as a binder. Crushed granite of fraction 5…20 mm was used as coarse aggregate, coarse quartz sand with the fineness modulus of 2.6 and fine sand with the fineness modulus of 1.4 were used as fillers. A superplasticizer BASF-Master Glenium 115 was used as a plasticizing admixture. The fly ash from Cherepetskaya thermal power plant was used as a filler. The study of strength and technological properties of self-compacting concrete was performed by using standard methods. Results: we obtained three-factor quadratic dependence of strength properties on the content of ash, cement and fraction of fine filler in the mix of fine fillers. Conclusions: introduction of micro-filler admixture based on the fly ash allowed us to obtain a concrete mix with high mobility, fluidity and self-compaction property. The obtained concrete has high strength characteristics, delayed strength gain rate due to replacement of part of the binder with ash. Introduction of the fly ash increases degree of

  12. PZT-Based Detection of Compactness of Concrete in Concrete Filled Steel Tube Using Time Reversal Method

    Directory of Open Access Journals (Sweden)

    Shi Yan

    2014-01-01

    Full Text Available A smart aggregate-based approach is proposed for the concrete compactness detection of concrete filled steel tube (CFST columns. The piezoceramic-based smart aggregates (SAs were embedded in the predetermined locations prior to the casting of concrete columns to establish a wave-based smart sensing system for the concrete compactness detection purpose. To evaluate the efficiency of the developed approach, six specimens of the CFST columns with the rectangular cross-section were produced by placing some artificial defects during casting of concrete for simulating various uncompacted voids such as cavities, cracks, and debond. During the test, the time reversal technology was applied to rebuild the received signals and launch the reversed signals again by SAs, to overcome the issue of the lack of the prototype. Based on the proposed nonprototype, two indices of time reversibility (TR and symmetry (SYM were applied to relatively evaluate the level of concrete compactness in the range of the two SAs. The experimental results show that the developed method can effectively detect the compactness of concrete in CFST columns.

  13. Research on Durability of Big Recycled Aggregate Self-Compacting Concrete Beam

    Science.gov (United States)

    Gao, Shuai; Liu, Xuliang; Li, Jing; Li, Juan; Wang, Chang; Zheng, Jinkai

    2018-03-01

    Deflection and crack width are the most important durability indexes, which play a pivotal role in the popularization and application of the Big Recycled Aggregate Self-Compacting Concrete technology. In this research, comparative study on the Big Recycled Aggregate Self-Compacting Concrete Beam and ordinary concrete beam were conducted by measuring the deflection and crack width index. The results show that both kind of concrete beams have almost equal mid-span deflection value and are slightly different in the maximum crack width. It indicates that the Big Recycled Aggregate Self-Compacting Concrete Beam will be a good substitute for ordinary concrete beam in some less critical structure projects.

  14. Transporting fibres as reinforcement in self-compacting concrete

    NARCIS (Netherlands)

    Grünewald, S.; Walraven, J.C.

    2009-01-01

    The development of self-compacting concrete (SCC) was an important step towards efficiency at building sites, rationally producing prefabricated concrete elements, better working conditions and improved quality and appearance of concrete structures. By adding fibres to SCC bar reinforcement can be

  15. APPLICATION OF FLOW SIMULATION FOR EVALUATION OF FILLING-ABILITY OF SELF-COMPACTING CONCRETE

    Science.gov (United States)

    Urano, Shinji; Nemoto, Hiroshi; Sakihara, Kohei

    In this paper, MPS method was applied to fluid an alysis of self-compacting concrete. MPS method is one of the particle method, and it is suitable for the simulation of moving boundary or free surface problems and large deformation problems. The constitutive equation of self-compacting concrete is assumed as bingham model. In order to investigate flow Stoppage and flow speed of self-compacting concrete, numerical analysis examples of slump flow and L-flow test were performed. In addition, to evaluate verification of compactability of self-compacting concrete, numerical analys is examples of compaction at the part of CFT diaphragm were performed. As a result, it was found that the MPS method was suitable for the simulation of compaction of self-compacting concrete, and a just appraisal was obtained by setting shear strain rate of flow-limit πc and limitation point of segregation.

  16. Self-Compacting Concrete Incorporating Micro-SiO2 and Acrylic Polymer

    Directory of Open Access Journals (Sweden)

    Ali Heidari

    2014-01-01

    Full Text Available This study examined the effects of using acrylic polymer and micro-SiO2 in self-compacting concrete (SCC. Using these materials in SCC improves the characteristics of the concrete. Self-compacting samples with 1-2% of a polymer and 10% micro-SiO2 were made. In all cases, compressive strength, water absorption, and self-compacting tests were done. The results show that adding acrylic polymer and micro-SiO2 does not have a significant negative effect on the mechanical properties of self-compacting concrete. In addition using these materials leads to improving them.

  17. Durable fiber reinforced self-compacting concrete

    International Nuclear Information System (INIS)

    Corinaldesi, V.; Moriconi, G.

    2004-01-01

    In order to produce thin precast elements, a self-compacting concrete was prepared. When manufacturing these elements, homogenously dispersed steel fibers instead of ordinary steel-reinforcing mesh were added to the concrete mixture at a dosage of 10% by mass of cement. An adequate concrete strength class was achieved with a water to cement ratio of 0.40. Compression and flexure tests were carried out to assess the safety of these thin concrete elements. Moreover, serviceability aspects were taken into consideration. Firstly, drying shrinkage tests were carried out in order to evaluate the contribution of steel fibers in counteracting the high concrete strains due to a low aggregate-cement ratio. Secondly, the resistance to freezing and thawing cycles was investigated on concrete specimens in some cases superficially treated with a hydrophobic agent. Lastly, both carbonation and chloride penetration tests were carried out to assess durability behavior of this concrete mixture

  18. A Blocking Criterion for Self-Compacting Concrete

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm; Stang, Henrik; Geiker, Mette Rica

    2005-01-01

    To benefit from the full potential of Self-Compacting Concrete (SCC) prediction tools for the form filling ability of SCC are needed. This paper presents a theoretical concept for assessment of the blocking resistance of SCC. A critical concrete flow rate above which no blocking occurs...... is introduced. The critical flow rate takes into account the mix design, the rheological properties of the matrix and concrete, and the geometry of the flow domain....

  19. Self-compacting fibre reinforced concrete applied in thin plates

    NARCIS (Netherlands)

    Grunewald, S.; Shionaga, R.; Walraven, J.C.

    2013-01-01

    Floor panels produced with traditionally vibrated concrete are relatively thick due to the need to reinforce concrete and consequently, heavy. Without the need to place rebars in panels and by applying self-compacting fibre reinforced concrete (SCFRC) the production process becomes more efficient.

  20. DETERMINATION OF ADHESIVE STRENGTH LAYER’S ROLLER COMPACTED CONCRETE THE METHOD AXIAL EXTENSION

    Directory of Open Access Journals (Sweden)

    Tang Van Lam

    2017-07-01

    Full Text Available Roller compacted concrete for the construction of hydraulic and hydroelectric buildings is a composite material, which consists of a binder, fine aggregate (sand, coarse aggregate (gravel or crushed stone, water and special additives that provide the desired concrete workability and impart the required concrete performance properties. Concrete mixture is prepared at from concrete mixing plants strictly metered quantities of cement, water, additives and graded aggregates, whereupon they are delivered to the site laying Mixer Truck and sealing layers with each stack layer. The advantages of roller compaction technology should include the reduction of construction time, which allows fast commissioning construction projects, as well as reduce the amount of investment required. One of the main problems encountered in the process of roller compaction of the concrete mix is the need to provide the required adhesion strength between layers of concrete. This paper presents a method for determining the strength of adhesion between the concrete layers of different ages roller compacted concrete using axial tension. This method makes it possible to obtain objective and accurate results with a total thickness of layers of compacted concrete of up to 300…400 mm. Results from this method, studies have shown that the value of strength between the concrete layers in addition to the composition of the concrete and adhesion depends on the quality and the parallel end surfaces of the cylinder-models, which are mounted steel plates for axial tension, as well as the state of the contact surfaces of the concrete layer. The method can be used to determine the strength of interlayer adhesion in roller compacted concrete, which are used in the construction of dams and other hydraulic structures.

  1. DEFORMATION PROPERTIES OF LIGHT SELF – COMPACTING CONCRETE

    Directory of Open Access Journals (Sweden)

    V. M. Bychkov

    2013-01-01

    Full Text Available Аn article deformation properties of a light self – compacting concrete (LSCC are considered. Its comparison with characteristics of light concrete on porous fillers is given. Creep and LSCC shrinkage are in detail analyzed. Conclusions on work are drawn.

  2. Mechanical properties of self-compacted fiber concrete mixes

    Directory of Open Access Journals (Sweden)

    Mounir M. Kamal

    2014-04-01

    Full Text Available Increased productivity and improved working environment have had high priority in the development of concrete construction over the last decade. The major impact of the introduction of self-compacting concrete (SCC is connected to the production process. The productivity is drastically improved through the elimination of vibration compaction and process reorganization. The working environment is significantly enhanced through avoidance of vibration induced damages, reduced noise and improved safety. Additionally, SCC technology has improved the performance in terms of hardened concrete properties like surface quality, strength and durability. The main objective of this research was to determine the optimum content of fibers (steel and polypropylene fibers used in SCC. The effect of different fibers on the fresh and hardened properties was studied. An experimental investigation on the mechanical properties, including compressive strength, flexural strength and impact strength of fiber reinforced self-compacting concrete was performed. The results of the investigation showed that: the optimum dosage of steel and polypropylene fiber was 0.75% and 1.0% of the cement content, respectively. The impact performance was also improved due to the use of fibers. The control mix specimen failed suddenly in flexure and impact, the counterpart specimens contain fibers failed in a ductile manner, and failure was accompanied by several cracks.

  3. Flow modelling of steel fibre reinforced self-compacting concrete

    DEFF Research Database (Denmark)

    Svec, Oldrich

    was done by means of the Immersed boundary method with direct forcing. Evolution of the immersed particles was described by Newton's differential equations of motion. The Newton's equations were solved by means of Runge-Kutta-Fehlberg iterative scheme. Several challenges had to be overcome during...... in concrete can efficiently substitute or supplement conventional steel reinforcement, such as reinforcement bars. Ordinary concrete composition further makes the material stiff and non-flowable. Self-compacting concrete is an alternative material of low yield stress and plastic viscosity that does flow...... of the fluid near formwork surface. A method to incorporate the apparent slip into the Lattice Boltzmann fluid dynamics solver was suggested. The proposed numerical framework was observed to correctly predict flow of fibre reinforced self-compacting concrete. The proposed numerical framework can therefore...

  4. Flexural strength of self compacting fiber reinforced concrete beams using polypropylene fiber: An experimental study

    Science.gov (United States)

    Lisantono, Ade; Praja, Baskoro Abdi; Hermawan, Billy Nouwen

    2017-11-01

    One of the methods to increase the tensile strength of concrete is adding a fiber material into the concrete. While to reduce a noise in a construction project, a self compacting concrete was a good choices in the project. This paper presents an experimental study of flexural behavior and strength of self compacting fiber reinforced concrete (RC) beams using polypropylene fiber. The micro monofilament polypropylene fibers with the proportion 0.9 kg/m3 of concrete weight were used in this study. Four beam specimens were cast and tested in this study. Two beams were cast of self compacting reinforced concrete without fiber, and two beams were cast of self compacting fiber reinforced concrete using polypropylene. The beams specimen had the section of (180×260) mm and the length was 2000 mm. The beams had simple supported with the span of 1800 mm. The longitudinal reinforcements were using diameter of 10 mm. Two reinforcements of Ø10 mm were put for compressive reinforcement and three reinforcements of Ø10 mm were put for tensile reinforcement. The shear reinforcement was using diameter of 8 mm. The shear reinforcements with spacing of 100 mm were put in the one fourth near to the support and the spacing of 150 mm were put in the middle span. Two points loading were used in the testing. The result shows that the load-carrying capacity of the self compacting reinforced concrete beam using polypropylene was a little bit higher than the self compacting reinforced concrete beam without polypropylene. The increment of load-carrying capacity of self compacting polypropylene fiber reinforced concrete was not so significant because the increment was only 2.80 % compare to self compacting non fiber reinforced concrete. And from the load-carrying capacity-deflection relationship curves show that both the self compacting polypropylene fiber reinforced concrete beam and the self compacting non fiber reinforced concrete beam were ductile beams.

  5. Advantage of using high strength self compacting concrete for precast product

    Science.gov (United States)

    Murdono, Ferryandy; Agustin, Winda; Soeprapto, Gambiro; Sunarso, Mukhlis

    2017-11-01

    According to the development in the world of construction, the need for precast concrete also increases. Now the day there are many products with narrow range reinforcement and difficult dimensions. The ordinary concrete is difficult to pour in a mold with narrow range reinforcement inside without vibrator because the concrete can't fill in the gaps between the bars. SCC (Self Compacting Concrete) is a concrete that precast concrete industry needs to. The using of SCC also supports the green construction through the cement reducing and reducing the use of vibrator that requires not less energy. This research is using EFNARC standard as a condition of admission SCC (filling ability, passing ability, segregation resistance), and performed well against the application of the product by the production of Railway Sleeper without using a vibrator. The results of this study, the LB-2 and LB-3 qualified as SCC and compressive strength is expected that greater than 70 MPa, as well as products quality, is equal to standard and can be mass produced with the efficiency of the price of concrete up to 11%.

  6. Development of Self-Compacting Eco-Concrete

    NARCIS (Netherlands)

    Hunger, Martin; Brouwers, Jos

    2006-01-01

    Ever since its introduction and increasingly widespread use since the early nineties, new mix design methods of Self-Compacting Concrete (SCC) can hardly be recognized. Despite intensive research and a substantial number of publications in this new technology the design concept still mainly follows

  7. Durability properties of high volume fly ash self compacting concretes

    Energy Technology Data Exchange (ETDEWEB)

    P. Dinakar; K.G. Babu; Manu Santhanam [Indian Institute of Technology, Chennai (India). Building Technology Division

    2008-11-15

    This paper presents an experimental study on the durability properties of self compacting concretes (SCCs) with high volume replacements of fly ash. Eight fly ash self compacting concretes of various strength grades were designed at desired fly ash percentages of 0, 10, 30, 50, 70 and 85%, in comparison with five different mixtures of normal vibrated concretes (NCs) at equivalent strength grades. The durability properties were studied through the measurement of permeable voids, water absorption, acid attack and chloride permeation. The results indicated that the SCCs showed higher permeable voids and water absorption than the vibrated normal concretes of the same strength grades. However, in acid attack and chloride diffusion studies the high volume fly ash SCCs had significantly lower weight losses and chloride ion diffusion.

  8. Self Compacting Concrete with Chalk Filler

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.

    2007-01-01

    Utilisation of Danish chalk filler has been investigated as a means to produce self compacting concrete (SCC) at lower strength levels for service in non aggressive environments. Stable SCC mixtures were prepared at chalk filler contents up to 60% by volume of binder to yield compressive strengths...

  9. Assessment of hardened characteristics of raw fly ash blended self-compacting concrete

    Directory of Open Access Journals (Sweden)

    B. Mahalingam

    2016-09-01

    Full Text Available Fly ash is widely used as a supplementary cementitious material in concrete. Due to the implementation of new thermal power plants as a consequence of electricity demand, generation of fly ash is noticeably increased. In addition to pozzolana blended cement production, it is very imperative to use raw fly ash in concrete. Earlier research studies investigated the performance of processed fly ash in blended cement production as well as in concrete. In general, ground fly ash is used in blended cement production. A comprehensive study on the performance evaluation of raw fly ash in self-compacting concrete is not available in the existing literature. Moreover, utilization of raw fly ash in special concrete such as self-compacting concrete is essential to comprehend the performance of raw fly ash blended concrete compared to ordinary Portland concrete. Additionally, it will help to achieve maximum utilization of raw fly ash as a supplementary cementitious material rather than disposal as a waste, which eventually leads to several environmental issues. In the study, raw fly ash was collected and is directly used in development of self-compacting concrete. Two mixes were cast and hardened characteristics of blended concrete were investigated. Results from the study showed comparable performance with control concrete. Furthermore, significant reduction in chloride permeability was observed for raw fly ash blended concrete.

  10. Micro and macrolevel properties of fly ash blended self compacting concrete

    International Nuclear Information System (INIS)

    Guru Jawahar, J.; Sashidhar, C.; Ramana Reddy, I.V.; Annie Peter, J.

    2013-01-01

    Highlights: ► Effect of class F fly ash on micro and macrolevel properties of self compacting concrete is studied. ► Decrease in microcracking width and Ca/Si ratio was observed in SCC with the age. ► Micro and macrolevels properties of SCC were compared to those of conventional concrete. ► Micro and macrolevel properties of SCC are reasonably correlated. ► Recommendation of SCC mix with medium compressive strength of 32 MPa for the building constructions. - Abstract: This investigation is mainly focused on the effect of class F fly ash on the micro and macrolevel properties of self compacting concrete (SCC) after 28, 56 and 112 days of curing. The microlevel properties studied were the microcrack widths between aggregate and paste and atomic Calcium–Silica (Ca/Si) ratio. The macrolevel properties studied were compressive strength, modulus of elasticity and splitting tensile strength. A conventional concrete (CC) having an equivalent 28-day SCC compressive strength has also been examined at different ages. Scanning electron microscope (SEM) analysis was carried to examine the width of microcracks and energy dispersive X-ray analysis (EDAX) was carried out to determine the chemical elements of both SCC and CC. Studies revealed that pozzolanic action of class F fly ash improved the microlevel properties of SCC with age by reducing the microcracking width and Ca/Si ratio and thus enhanced the macrolevel properties

  11. Self compacting concrete incorporating high-volumes of fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Bouzoubaa, N. [Natural Resources Canada, Ottawa, ON (Canada). International Centre for Sustainable Development of Cement and Concrete; Lachemi, M. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Civil Engineering

    2004-07-01

    Self-compacting concrete (SCC) is now widely used in reinforced concrete structures. Fine materials such as fly ash ensure that the concrete has the necessary properties of high fluidity and cohesiveness. An experimental study was conducted in which 9 SCC mixtures and one control concrete were produced in order to evaluate SCC made with high-volumes of fly ash. The content of the cementitious materials remained constant at 400 kg/cubic metre, but the ratio of water to cementitious material ranged from 0.35 to 0.45. The viscosity and stability of the fresh concrete was determined for self-compacting mixtures of 40, 50 and 60 per cent Class F fly ash. The compressive strength and drying shrinkage were also determined for the hardened concretes. Results showed that the SCCs developed a 28-day compressive strength ranging from 26 to 48 MPa. It was concluded that high-volumes of Class F fly ash could offer the following advantages to an SCC: reduced construction time and labour cost; eliminate the need for vibration; reduce noise pollution; improve the filling capacity of highly congested structural members; and, ensure good structural performance. 19 refs., 8 tabs., 2 figs.

  12. Permeability, porosity and compressive strength of self-compacting concrete

    Directory of Open Access Journals (Sweden)

    Valcuende, M.O.

    2005-12-01

    Full Text Available Most deterioration affecting the durability of self-compacting concrete structures is mediated by water penetration in the concrete, a condition related to its porous structure. The present study analyzes these two factors. To this end, two types of concrete were prepared, a self-compacting and a traditional vibrated concrete, with different W/C ratios and different types of cement. The results of low-pressure water testing to evaluate permeability and analyses to determine compressive strength and pore size distribution showed that self-compacting concrete has lower capillary porosity than traditional concrete, which would explain its greater resistance to water penetration. Such concrete likewise reached higher strength values, except where large proportions of lime powder with low sand equivalents were used in its manufacture, when lower strength was recorded. Lastly, the depth of water penetration and compressive strength were found to be linearly correlated. That correlation was seen to depend, in turn, on the type of concrete, since for any given strength level, self-compacting concrete was less permeable than the traditional material.

    En este trabajo experimental se estudia la penetración de agua en hormigones autocompactables, analizando al mismo tiempo su estructura porosa, pues gran parte de los procesos de deterioro que afectan a la durabilidad de las estructuras están condicionados por estos dos aspectos. Para ello se han fabricado dos tipos de hormigones, uno autocompactable y otro tradicional vibrado, con diferentes relaciones A/C y distintos tipos de cemento. Tras determinar la permeabilidad al agua bajo presión, la resistencia a compresión y las distribuciones de tamaño de poro, los resultados obtenidos ponen de manifiesto que los hormigones autocompactables presentan menor porosidad capilar que los tradicionales, lo que les confiere mejores prestaciones frente a la penetración de agua. Asimismo, dichos hormigones

  13. Post-cracking tensile behaviour of steel-fibre-reinforced roller-compacted-concrete for FE modelling and design purposes

    International Nuclear Information System (INIS)

    Jafarifar, N.; Pilakoutas, K.; Angelakopoulos, H.; Bennett, T.

    2017-01-01

    Fracture of steel-fibre-reinforced-concrete occurs mostly in the form of a smeared crack band undergoing progressive microcracking. For FE modelling and design purposes, this crack band could be characterised by a stress-strain (σ-ε) relationship. For industrially-produced steel fibres, existing methodologies such as RILEM TC 162-TDF (2003) propose empirical equations to predict a trilinear σ-ε relationship directly from bending test results. This paper evaluates the accuracy of these methodologies and their applicability for roller-compacted-concrete and concrete incorporating steel fibres recycled from post-consumer tyres. It is shown that the energy absorption capacity is generally overestimated by these methodologies, sometimes up to 60%, for both conventional and roller-compacted concrete. Tensile behaviour of fibre-reinforced-concrete is estimated in this paper by inverse analysis of bending test results, examining a variety of concrete mixes and steel fibres. A multilinear relationship is proposed which largely eliminates the overestimation problem and can lead to safer designs. [es

  14. Self-Compacting Concrete Incorporating Micro-SiO2 and Acrylic Polymer

    OpenAIRE

    Heidari, Ali; Zabihi, Marzieh

    2014-01-01

    This study examined the effects of using acrylic polymer and micro-SiO2 in self-compacting concrete (SCC). Using these materials in SCC improves the characteristics of the concrete. Self-compacting samples with 1-2% of a polymer and 10% micro-SiO2 were made. In all cases, compressive strength, water absorption, and self-compacting tests were done. The results show that adding acrylic polymer and micro-SiO2 does not have a significant negative effect on the mechanical properties of self-compa...

  15. Vibrated and self-compacting fibre reinforced concrete: experimental investigation on the fibre orientation

    Science.gov (United States)

    Conforti, A.; Plizzari, G. A.; Zerbino, R.

    2017-09-01

    In addition to the fibre type and content, the residual properties of fibre reinforced concrete are influenced by fibre orientation. Consequently, the performance fibre reinforced concrete can be affected by its fresh properties (workability, flowing capacity) and by casting and compaction processes adopted. This paper focuses on the study of the orientation of steel or macro-synthetic fibres in two materials characterized by very different fresh properties: vibrated and self-compacting concrete. Four rectangular slabs 1800 mm long, 925 mm wide and 100 mm high were produced changing concrete and fibre type. From each slab, eighteen small prisms (550 mm long) were firstly cut either orthogonal or parallel to casting direction and, secondly, notched and tested in bending according to EN 14651. Experimental results showed that the toughness properties of a thin slab significantly varies both in vibrated and self-compacting concrete, even if in case of self-compacting concrete this variation resulted higher. Steel fibres led to greater variability of results compared to polymer one, underlining a different fibre orientation. A discussion on the relative residual capacity measured on the prisms sawn from the slabs and the parameters obtained from standard specimens is performed.

  16. Rotation capacity of self-compacting steel fiber reinforced concrete

    NARCIS (Netherlands)

    Schumacher, P.

    2006-01-01

    Steel fiber reinforced concrete (SFRC) has been used in segmental tunnel linings in the past years. In order to investigate the effect of steel fibers on the rotation capacity of plastic hinges in self-compacting concrete (SCC) the effect of the addition of fibers to SCC in compression, tension and

  17. Self-compacting concrete and its application in contemporary architectural practice

    Directory of Open Access Journals (Sweden)

    Okrajnov-Bajić Ruža

    2009-01-01

    Full Text Available In majority of the most modern architectural designs realized in the past 10-20 years, concrete having features in fresh and hardened state as well as making, placing and curing techniques that are defined in detail was used. Quite frequently concrete which was self-compacting in fresh state was used. In order to get acquainted with this material and with possibilities of its application this paper presents various buildings in which it was used. The definition of self-compacting concrete is given and advantages of its application are underlined. Next, features of fresh SCC, test methods are described in detail and classifications especially defined for this material are proposed.

  18. Evaluation of the Strength Variation of Normal and Lightweight Self-Compacting Concrete in Full Scale Walls

    DEFF Research Database (Denmark)

    Hosseinali, M.; Ranjbar, M. M.; Rezvani, S. M.

    2011-01-01

    -destructive testing. Self-compacting concrete (SCC) and lightweight self-compacting concrete (LWSCC) with different admixtures were tested and compared with normal concrete (NC). The results were also compared with results for standard cubic samples. The results demonstrate the effect of concrete type on the in situ......The strength of cast concrete along the height and length of large structural members might vary due to inadequate compaction, segregation, bleeding, head pressure, and material type. The distribution of strength within a series of full scale reinforced concrete walls was examined using non...

  19. Rheological behaviour of self-compacting micro-concrete

    Indian Academy of Sciences (India)

    Workability; viscosity; cement paste; high range water reducing admixture. Abstract. The rheological behaviour of Self-Compacting Micro-Concrete (SCMC) mixtures has been investigated within the scope of this paper. Rheological measurements have been performed using a novel rheometer equipped with a ball ...

  20. Evaluation of the shrinkage and creep of medium strength self compacting concrete

    Science.gov (United States)

    De La Cruz, C. J.; Ramos, G.; Hurtado, W. A.

    2017-02-01

    The difference between self compacting concrete (SCC) and conventional concrete (CC) is in fresh state, is the high fluidity at first and the need for vibration at second, but in hardened state, both concretes must comply with the resistance specified, in addition to securing the safety and functionality for which it was designed. This article describes the tests and results for shrinkage and creep at some medium strength Self Compacting Concrete with added sand (SCC-MSs) and two types of cement. The research was conducted at the Laboratorio de Tecnología de Estructuras (LTE) of the Universitat Politécnica de Catalunya (UPC), in dosages of 200 liters; with the idea of evaluating the effectiveness of implementation of these new concretes at elements designed with conventional concrete (CCs).

  1. Design considerations and sustainability of self-compacting concrete

    OpenAIRE

    Grünewald, Steffen; De Schutter, Geert

    2016-01-01

    Self-compacting concrete (SCC) differs from conventional vibrated concrete (CVC) in the rheological behaviour, which is achieved by adequate mix design. The application and production requirements also pose demands on the mix design and workability. Effective production requires adequate strength control. The use of Portland Cement promotes a rapid early age strength development, but it comes with a relative high impact on the environment since decarbonation and a high energ...

  2. Application of a Reinforced Self-Compacting Concrete Jacket in Damaged Reinforced Concrete Beams under Monotonic and Repeated Loading

    Directory of Open Access Journals (Sweden)

    Constantin E. Chalioris

    2013-01-01

    Full Text Available This paper presents the findings of an experimental study on the application of a reinforced self-compacting concrete jacketing technique in damaged reinforced concrete beams. Test results of 12 specimens subjected to monotonic loading up to failure or under repeated loading steps prior to total failure are included. First, 6 beams were designed to be shear dominated, constructed by commonly used concrete, were initially tested, damaged, and failed in a brittle manner. Afterwards, the shear-damaged beams were retrofitted using a self-compacting concrete U-formed jacket that consisted of small diameter steel bars and U-formed stirrups in order to increase their shear resistance and potentially to alter their initially observed shear response to a more ductile one. The jacketed beams were retested under the same loading. Test results indicated that the application of reinforced self-compacting concrete jacketing in damaged reinforced concrete beams is a promising rehabilitation technique. All the jacketed beams showed enhanced overall structural response and 35% to 50% increased load bearing capacities. The ultimate shear load of the jacketed beams varied from 39.7 to 42.0 kN, whereas the capacity of the original beams was approximately 30% lower. Further, all the retrofitted specimens exhibited typical flexural response with high values of deflection ductility.

  3. Mini Seminar on Form Filling Ability of Self-Compacting Concrete

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm

    2005-01-01

    The Nordic mini-seminar “Form Filling Ability of Self-Compacting Concrete” took place on 3-4 November 2003 at the Danish Technological Institute in Taastrup, Denmark. The mini-seminar gathered 12 participants from Finland, Sweden, Norway and Denmark. The objective was to present and discuss recent...... developments of Self-Compacting Concrete in the Nordic countries. In general, the seminar included results and observations on the effect of fresh concrete behaviour, casting technique, and organisation on site on the filling ability, passing ability, and surface quality. The seminar had participants from...

  4. Numerical approach of the bond stress behavior of steel bars embedded in self-compacting concrete and in ordinary concrete using beam models

    Directory of Open Access Journals (Sweden)

    F.M. Almeida Filho

    Full Text Available The present study evaluates the bond behavior between steel bars and concrete by means of a numerical analysis based on Finite Element Method. Results of a previously conducted experimental program on reinforced concrete beams subjected to monotonic loading are also presented. Two concrete types, self-compacting concrete and ordinary concrete, were considered in the study. Non-linear constitutive relations were used to represent concrete and steel in the proposed numerical model, aiming to reproduce the bond behavior observed in the tests. Experimental analysis showed similar results for the bond resistances of self-compacting and ordinary concrete, with self-compacting concrete presenting a better performance in some cases. The results given by the numerical modeling showed a good agreement with the tests for both types of concrete, especially in the pre-peak branch of the load vs. slip and load vs. displacement curves. As a consequence, the proposed numerical model could be used to estimate a reliable development length, allowing a possible reduction of the structure costs.

  5. Lightweight self-compacting concrete with light expanded clay aggregate (LECA

    Directory of Open Access Journals (Sweden)

    Heiza Khaled

    2018-01-01

    Full Text Available Lightweight concretes have been successfully applied in building constructions for many years due to their favorable material properties, particularly their low specific weight in connection with a high strength, a high capability of thermal insulation and a high durability. The development leading to lightweight self-compacting concrete (LWSCC represents an important advanced step within the recent years. This concrete combines the favorable properties of a lightweight concrete with those of a self-compacting concrete. Research work is aimed on development of (LWSCC with the use of light aggregates “Light expanded clay aggregate (LECA”. In this research, first by specific gravity factor method, twenty different mix designs of (LWSCC were cast and tested to find out the values of slump flow, J-ring , V-funnel and 28 day compressive strength. Based on the results obtained, the best mix design was selected for further investigation. This paper also focuses on studying the effect of changing the reinforcement ratio on reinforced two way slabs when the dimensions were kept constant.

  6. Flow simulation of fiber reinforced self compacting concrete using Lattice Boltzmann method

    DEFF Research Database (Denmark)

    Svec, Oldrich; Skocek, Jan; Stang, Henrik

    2011-01-01

    Self compacting concrete (SCC) is a promising material in the civil engineering industry. One of the benefits of the SCC is a fast and simplified casting followed by decreased labor costs. The SCC as any other type of concrete has a significantly lower tensile and shear strength in comparison to ....... A relatively new group of models - Lattice Boltzmann Modeling (LBM) - is presented in this paper. The conventional LBM is modified to include fiber and particle suspensions and non-Newtonian rheology and is used to model the fiber reinforced self compacting concrete flow....

  7. Comparative studies of self-compacting concrete made with different generations of superplasticizers

    International Nuclear Information System (INIS)

    Harkouss, R.; Hamad, B.

    2016-01-01

    Self-compacting concrete was created as an effective solution to problems associated to low quality consolidation. Successful self-compacting concrete (SCC) mixes are designed to flow freely and cohesively without the intervention of mechanical compaction. The research presented in this paper has as objective to findthe effect of different types of superplasticizers on the performance of concrete mixes. The understanding of this technology was acquired through a comparative study of mixes made with second generation sulphonated naphthalene formaldehyde based superplasticizerand third generation polycarboxylate-based superplasticizer. To meet the pre-defined objectives, the research program was subdivided into two interdependent phases. Phase I studies the effect of second and third generation superplasticizeron the fresh and hardened properties of mortar mixes. Phase II studies the effect of second and third generation superplasticizer on the fresh and hardened properties of concrete mixes.The experimental outcomes revealed that third generation superplasticizers induce more efficient dispersion defined by superior consistency levels and increased hardened strengths. (author)

  8. Grout compactness monitoring of concrete-filled fiber-reinforced polymer tube using electromechanical impedance

    Science.gov (United States)

    Shi, Yaokun; Luo, Mingzhang; Li, Weijie; Song, Gangbing

    2018-05-01

    The concrete-filled fiber-reinforced polymer tube (CFFT) is a type of structural element widely used in corrosive environments. Poor grout compactness results in incomplete contact or even no contact between the fiber-reinforced polymer (FRP) tube and the concrete grout, which reduces the load bearing capacity of a CFFT. The monitoring of grout compactness for CFFTs is important. The piezoceramic-based electromechanical impedance (EMI) method has emerged as an efficient and low-cost structural health monitoring technique. This paper presents a feasibility study using the EMI method to monitor grout compactness of CFFTs. In this research, CFFT specimens with different levels of compactness (empty, 1/5, 1/3, 1/2, 2/3, and full compactness) were prepared and subjected to EMI measurement by using four piezoceramic patches that were bonded circumferentially along the outer surface of the CFFT. To analyze the correlation between grout compactness and EMI signatures, a compactness index (CI) was proposed based on the root-mean-square deviation (RMSD). The experimental results show that the changes in admittance signatures are able to determine the grout compactness qualitatively. The proposed CI is able to effectively identify the compactness of the CFFT, and provides location information of the incomplete concrete infill.

  9. Study on Effects of Different Replacement Rate on Bending Behavior of Big Recycled Aggregate Self Compacting Concrete

    Science.gov (United States)

    Li, Jing; Guo, Tiantian; Gao, Shuai; Jiang, Lin; Zhao, Zhijun; Wang, Yalin

    2018-03-01

    Big recycled aggregate self compacting concrete is a new type of recycled concrete, which has the advantages of low hydration heat and green environmental protection, but its bending behavior can be affected by different replacement rate. Therefor, in this paper, the research status of big Recycled aggregate self compacting concrete was systematically introduced, and the effect of different replacement rate of big recycled aggregate on failure mode, crack distribution and bending strength of the beam were studied through the bending behavior test of 4 big recycled aggregate self compacting concrete beams. The results show that: The crack distribution of the beam can be affected by the replacement rate; The failure modes of big recycled aggregate beams are the same as those of ordinary concrete; The plane section assumption is applicable to the big recycled aggregate self compacting concrete beam; The higher the replacement rate, the lower the bending strength of big recycled aggregate self compacting concrete beams.

  10. Self-compacting concrete: the role of the particle size distribution

    NARCIS (Netherlands)

    Brouwers, J.J.H.; Radix, H.J.

    2005-01-01

    This paper addresses experiments and theories on Self-Compacting Concrete. The “Chinese Method”, as developed by Su et al. [1] and Su and Miao [2] and adapted to European circumstances, serves as a basis for the development of new concrete mixes. Mixes, consisting of slag blended cement, gravel

  11. Effect of hot-dry environment on fiber-reinforced self-compacting concrete

    Science.gov (United States)

    Tioua, Tahar; Kriker, Abdelouahed; Salhi, Aimad; Barluenga, Gonzalo

    2016-07-01

    Drying shrinkage can be a major reason for the deterioration of concrete structures. Variation in ambient temperature and relative humidity cause changes in the properties of hardened concrete which can affect their mechanical and drying shrinkage characteristics. The present study investigated mechanical strength and particularly drying shrinkage properties of self-compacting concretes (SCC) reinforced with date palm fiber exposed to hot and dry environment. In this study a total of nine different fibers reinforced self compacting concrete (FRSCC) mixtures and one mixture without fiber were prepared. The volume fraction and the length of fibers reinforcement were 0.1-0.2-0.3% and 10-20-30 mm. It was observed that drying shrinkage lessened with adding low volumetric fraction and short length of fibers in curing condition (T = 20 °C and RH = 50 ± 5 %), but increased in hot and dry environment.

  12. Low pH self compacting concrete for deposition tunnel plugs

    International Nuclear Information System (INIS)

    Vogt, Carsten; Lagerblad, Bjoern; Wallin, Kjell; Baldy, Franziska; Jonasson, Jan-Erik

    2009-04-01

    The temporary plugs in the entrance of the deposition tunnel have three purposes, i.e. to bring about a water pressure in the deposition holes as quickly as possible in order to facilitate the wetting of the buffer, to reduce the groundwater's pressure gradient in the backfill so that piping is prevented, and to keep the backfill in place during the operating phase until the main tunnel has been backfilled. In the repository concept, low-pH-concrete shall be used instead of conventional concrete. A low-pH concrete is a concrete with a leachate pH below 11, which is lower than in normal concrete (pH > 12.5). The low-pH concrete developed is achieved by replacing 40% by weight of the cement with silica fume. According to the current understanding, low-pH concrete should not disturb the function of the bentonite. This is accomplished by avoiding the development of a high-pH leachate by replacing leachable calcium compounds with silica in the low-pH-concrete. There are different demands on the concrete in fresh and hardened state in order to fulfil its purpose. The geometry of the plug requires the fresh concrete to be self-compacting. The method of placement requires that the fresh concrete keeps its self-compacting properties for at least two hours. All components of the mix design must be commercially available and it must be possible to produce the concrete in a normal concrete factory. The concrete shall release low exothermic heat during curing. The volume changes of the young and mature concrete shall be minimised. The properties of the young and mature concrete need to be quantified in order to design and construct the plugs so that they fulfil the intended purpose. Low-pH concrete with self-compacting properties has been developed and is presented in the report. The low-pH SCC (Self-Compacting Concrete) contains ordinary Portland cement, densified silica fume, limestone filler, super plasticizer, high quality natural fine aggregates and average quality crushed

  13. Low pH self compacting concrete for deposition tunnel plugs

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Carsten; Lagerblad, Bjoern; Wallin, Kjell; Baldy, Franziska (Swedish Cement and Concrete Research Institute, Stockholm (Sweden)); Jonasson, Jan-Erik (Luleaa Univ. of Technology, Luleaa (Sweden))

    2009-04-15

    The temporary plugs in the entrance of the deposition tunnel have three purposes, i.e. to bring about a water pressure in the deposition holes as quickly as possible in order to facilitate the wetting of the buffer, to reduce the groundwater's pressure gradient in the backfill so that piping is prevented, and to keep the backfill in place during the operating phase until the main tunnel has been backfilled. In the repository concept, low-pH-concrete shall be used instead of conventional concrete. A low-pH concrete is a concrete with a leachate pH below 11, which is lower than in normal concrete (pH > 12.5). The low-pH concrete developed is achieved by replacing 40% by weight of the cement with silica fume. According to the current understanding, low-pH concrete should not disturb the function of the bentonite. This is accomplished by avoiding the development of a high-pH leachate by replacing leachable calcium compounds with silica in the low-pH-concrete. There are different demands on the concrete in fresh and hardened state in order to fulfil its purpose. The geometry of the plug requires the fresh concrete to be self-compacting. The method of placement requires that the fresh concrete keeps its self-compacting properties for at least two hours. All components of the mix design must be commercially available and it must be possible to produce the concrete in a normal concrete factory. The concrete shall release low exothermic heat during curing. The volume changes of the young and mature concrete shall be minimised. The properties of the young and mature concrete need to be quantified in order to design and construct the plugs so that they fulfil the intended purpose. Low-pH concrete with self-compacting properties has been developed and is presented in the report. The low-pH SCC (Self-Compacting Concrete) contains ordinary Portland cement, densified silica fume, limestone filler, super plasticizer, high quality natural fine aggregates and average quality

  14. Steel hollow columns with an internal profile filled with self-compacting concrete under fire conditions

    OpenAIRE

    Chu, Thi Binh; Gernay, Thomas; Dotreppe, Jean-Claude; Franssen, Jean-Marc

    2016-01-01

    A detailed experimental and numerical investigation has been performed on the behavior under fire conditions of concrete filled steel hollow section (CFSHS) columns. In this study the internal reinforcement consists of another profile (tube or H section) being embedded with the concrete, and filling is realized by self-compacting concrete (SCC). Ten columns filled with self-compacting concrete embedding another steel profile have been tested in the Fire Testing Laboratory of the University of...

  15. Effect of Using Porcelanite as Partial Replacement of Fine Aggregate on Roller Compacted Concrete with Different Curing Methods

    Directory of Open Access Journals (Sweden)

    Abeer Abdulqader Salih

    2016-09-01

    Full Text Available Roller-Compacted Concrete is a no-slump concrete, with no reinforcing steel, no forms, no finishing and wet enough to support compaction by vibratory rollers. Due to the effect of curing on properties and durability of concrete, the main purpose of this research is to study the effect of various curing methods (air curing, 7 days water curing, and permanent water curing and porcelanite (local material used as an Internal Curing agent with different replacement percentages of fine aggregate (volumetric replacement on some properties of Roller-Compacted Concrete and to explore the possibility of introducing practical Roller-Compacted Concrete for road pavement with minimum requirement of curing. Specimens were sawed from slabs of (380*380*100 mm for determination of Ultrasonic Pulse Velocity (UPV and Voids volume. Results show that using (5 % porcelanite improved the results of UPV and Voids volume of Roller-Compacted Concrete (with air curing as compared with reference Roller-Compacted Concrete (with permanent water curing by percentages ranging from(3.6 to 28.9% and (-8 to -15.5% respectively.

  16. Statistical and Detailed Analysis on Fiber Reinforced Self-Compacting Concrete Containing Admixtures- A State of Art of Review

    Science.gov (United States)

    Athiyamaan, V.; Mohan Ganesh, G.

    2017-11-01

    Self-Compacting Concrete is one of the special concretes that have ability to flow and consolidate on its own weight, completely fill the formwork even in the presence of dense reinforcement; whilst maintaining its homogeneity throughout the formwork without any requirement for vibration. Researchers all over the world are developing high performance concrete by adding various Fibers, admixtures in different proportions. Various different kinds Fibers like glass, steel, carbon, Poly propylene and aramid Fibers provide improvement in concrete properties like tensile strength, fatigue characteristic, durability, shrinkage, impact, erosion resistance and serviceability of concrete[6]. It includes fundamental study on fiber reinforced self-compacting concrete with admixtures; its rheological properties, mechanical properties and overview study on design methodology statistical approaches regarding optimizing the concrete performances. The study has been classified into seven basic chapters: introduction, phenomenal study on material properties review on self-compacting concrete, overview on fiber reinforced self-compacting concrete containing admixtures, review on design and analysis of experiment; a statistical approach, summary of existing works on FRSCC and statistical modeling, literature review and, conclusion. It is so eminent to know the resent studies that had been done on polymer based binder materials (fly ash, metakaolin, GGBS, etc.), fiber reinforced concrete and SCC; to do an effective research on fiber reinforced self-compacting concrete containing admixtures. The key aim of the study is to sort-out the research gap and to gain a complete knowledge on polymer based Self compacting fiber reinforced concrete.

  17. The effect of measuring procedure on the apparent rheological properties of self-compacting concrete

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; Bradl, M.; Thrane, L.N.

    2002-01-01

    Torque versus time during testing of the rheological properties of fresh concrete has been investigated. The testing was performed in a BML viscometer and on a self-compacting concrete (w/c = 0.45, 70% rapid hardening Portland cement, 3% silica fume, 27% fly ash, third generation superplasticizer......, lack of steady state may explain the apparent shear-thickening behaviour of self-compacting concrete reported elsewhere. (C) 2002 Elsevier Science Ltd. All rights reserved....

  18. MacDonald Dam reconstruction : using roller-compacted concrete

    Energy Technology Data Exchange (ETDEWEB)

    O' Neil, E. [AMEC Earth and Environmental Ltd., Sydney, NS (Canada)

    2007-04-01

    Located in Nova Scotia, the MacDonald Dam was commissioned in 1928. The dam consists of a 122 metre-long, 16 metre-high concrete structure comprised of an intake structure, stoplog openings, and a 34 metre-long free-overflow spillway. A 488 metre-long power canal was added as an upgrade in the 1950s. This paper provided details of the roller-compact concrete (RCC) used in the dam's recent rehabilitation following a dam failure analysis in 2003 by Nova Scotia Power Inc. RCC was chosen to help keep the dam's construction project on schedule. The layout and cross-section of the spillway was selected with consideration given to the RCC placing operation. A lift thickness of 0.20 m was selected. A formed ogee crest consisting of conventional reinforced concrete was constructed on top of the RCC. The downstream steps of the spillway were also covered with cast-in-place concrete. A low level sluice was designed to resist the weight of the wet RCC. The design compressive strength of the RCC was 20 MPa. The forms used to support the cast-in-place facing concrete on the upstream face of the dam were constructed full height and were braced back to the downstream face of the existing concrete structure prior to the start of RCC placement. Formwork inserts were placed in the facing concrete as construction progressed. Crack inducers were pre-placed on the forms. Aggregates from a local source were transported to a pug mill as the RCC construction progressed. The RCC was spread into 0.20 m lifts using a small bull-dozer, and the facing concrete was vibrated into the lift below. RCC lifts were compacted using a 9 tonne vibratory drum roller. The RCC placing operation was completed over a period of 10 days. Following the completion of the RCC portion of the dam, the remainder of the cast-in-place concrete was completed. It was concluded that the RCC provided a durable, low-maintenance structure that was completed at a lower price and in a shorter time-frame than

  19. Investigation of the existence of self compacting properties in high performance concrete through experimental tests

    Directory of Open Access Journals (Sweden)

    Heitor H. Yoshida

    2007-03-01

    Full Text Available The self compacting concrete is characterized by its capacity to flow inside the formwork filling it exclusively by the force of the gravity with adequate cohesion and viscosity in such a way that segregation does not occur. One of its characteristic is the presence of fines which provide the necessary cohesion,and grains with maximum diameter of 20 mm. This work presents some procedures and experimental methods that make it possible to evaluate self compacting properties of high performance concrete. First, a bibliographical review on the subject was carried out, and later, the equipment used for the accomplishment of the assays were manufactured, in order to verify the properties related to the self compacting concrete: cohesion, viscosity and segregation. As for the work, two concretes were produced with Portland ARI Cement, thick sand, stone powder, sand 0, superplasticizer made of ether-carboxilate chains that differentiate from each other for the presence of active silica in one of them and fly ash in the other. Based on the results, it was verified whether the high performance concrete had self compacting characteristics. In this case, both were considered positive. It was also analyzed the behavior of these concretes in their hardened state by means of the compressive strength test. The Self Compacting Concrete has many advantages such as: reduction in the number of employees, shorter construction period, the non-use of the vibrator and the filling of formworks with high density of… or of complex geometry.

  20. Lake Robertson hydroelectric project. Construction of a roller compacted concrete dam

    Energy Technology Data Exchange (ETDEWEB)

    Labelle, M.; Robitaille, F. [Hydro-Quebec, Montreal, PQ (Canada)

    1995-12-31

    Construction of the Lake Robertson hydroelectric project on Quebec`s Lower North Shore was discussed in detail. The dam and powerhouse, located on the HaHa River, consists of a 134 m long concrete gravity dam, and a 21 MW powerhouse with two 69 kV transmission lines and four substations. The climate, terrain, and geography of the region, all of them characterized as severe, and the logistics of construction of the dam and power lines, aggravated by the isolation and severe conditions at the site, were described. The roller compacted concrete design and construction were noted, and justification for a concrete dam over an earth-fill dam was provided. Economics, properties, and composition of the roller compacted concrete (RCC) were examined, and control test results for the RCC concrete were provided. The use of RCC for the Lake Robertson development was described as successful in terms of the quality, watertightness, and completion time. The experience gained by the participants will make it possible to offer RCC as an alternative on various other projects. 2 figs.

  1. Impact of Pigments on Self-Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Ernestas Ivanauskas

    2011-04-01

    Full Text Available We describe an impact of using iron oxide pigment on self-compacting concrete (SCC properties. We have experimented with adding portions of iron oxide pigment from 3 % to 6 % into cement paste. A few alternative pigments (chromic oxide and iron oxide hydroxide were used for performing the same experiments. The impact of these pigments on a normal cement paste is described in this paper. We demonstrate that iron oxide pigment reduces the need for water in a normal cement paste. However, adding the pigment also reduces the compressive strength of concrete up to 20 %. The concrete specimens were tested in various time spans, i.e. 1 day to 28 days, by keeping them in 20 ± 2 ºC water – normal consolidation regimen. Some of the specimens were processed in steam chamber, at 60 ºC in order to make the process of the cement hydration faster, as well as to estimate an impact of active SiO2 proportion in ash on SCC properties. We show that using iron oxide pigment for SCC mixture increases the slump-flow property of concrete mix up to 5 %. Experiments with solidified concrete have demonstrated that iron oxide diminishes water absorption up to 6 % and decreases open concrete porosity that makes concrete resistant against freezing. Article in Lithuanian

  2. ESEARCH OF THE PROPERTIES OF THE SELF-COMPACTED CONCRETE OVER TIME

    Directory of Open Access Journals (Sweden)

    S. Bugayevskiy

    2017-12-01

    Full Text Available Concrete mixture is examined as a complex multicomponent system that becomes a single unit and can be studied as a physical unity with certain rheological, physical and mechanical properties. Studying the change of properties of self-compacted concrete over time, as well as the effect of two-phasic introduction of super-plasticizer on properties of concrete mixture are presented in this article.

  3. Properties of Fresh and Hardened High Strength Steel Fibres Reinforced Self-Compacted Concrete

    Directory of Open Access Journals (Sweden)

    Saad Ali Al-Ta'an

    2016-10-01

    Full Text Available Fresh and hardened properties of high strength steel fibrous self-compacted concrete were studied in this investigation. One reference high strength self-compacted concrete mix is used, with five percent (by weight of cement silica fume and eight percent of the cement replaced by limestone powder. Three steel fibres percentages by volume of concrete are used (0.4, 0.8, and 1.2. The used steel fibres were a shelled Harex type with irregular cross-section, equivalent diameter of 0.9278 mm, and 32 mm long. Super plasticizer was used to improve the workability and flow ability of the mixes. The test results showed that the presence of steel fibres decrease the flow ability, and increase the time of spreading, segregation, and passing ability of the fresh concrete. For the fibres percentages used, the fresh properties were within the recommended specifications for the self-compacted concrete. The test results showed an early strength development rate more than that for plain normal concrete due to the presence of the fine materials. As for normal concrete, the test results showed also that the increase in the splitting strength is more than the increase in the compressive strength due to the presence of the steel fibres. The brittle mode of failure of the plain unreinforced specimens changed to a ductile one due to the presence of the steel fibres.

  4. Application of the fluid dynamics model to the field of fibre reinforced self-compacting concrete

    DEFF Research Database (Denmark)

    Svec, Oldrich; Skocek, Jan; Stang, Henrik

    Ability to properly simulate a form filling process with steel fibre reinforced self-compacting concrete is a challenging task. Such simulations may clarify the evolution of fibre orientation and distribution which in turn significantly influences final mechanical properties of the cast body. We...... have developed such a computational model and briefly introduce it in this paper. The main focus of the paper is towards validation of the ability of the model to properly mimic the flow of the fibre reinforced self-compacting concrete. An experiment was conducted where a square slab was filled...... behaviour of the self-compacting fibre reinforced concrete....

  5. Quality evaluation of concrete under compacting by vibration using resistance of electro current

    International Nuclear Information System (INIS)

    Nozaki, Yoshisugu

    2006-01-01

    Quality of concrete in structures is affected not only quality of materials; i.e. fresh concrete delivered to site but also placing and compaction works. Factors related to the latter are not studied minutely, and the works in site are judged and controlled by skilled person under his experience, and these process are said to the neck in QC and rationalization in construction site. The study to develop the evaluation system of fresh concrete quality is described in the paper, In the experiment, electrode was attached to formwork and resistance of electro current was recorded while vibrating. It can recognized that resistance is closely related to internal quality of concrete, so the resistance may be the effective index to know optimum compaction time in placing work.

  6. Investigations on Fresh and Hardened Properties of Recycled Aggregate Self Compacting Concrete

    Science.gov (United States)

    Revathi, P.; Selvi, R. S.; Velin, S. S.

    2013-09-01

    In the recent years, construction and demolition waste management issues have attracted the attention from researchers around the world. In the present study, the potential usage of recycled aggregate obtained from crushed demolition waste for making self compacting concrete (SCC) was researched. The barriers in promoting the use of recycled material in new construction are also discussed. In addition, the results of an experimental study involving the use of recycled concrete aggregate as coarse aggregates for producing self-compacting concrete to study their flow and strength characteristics are also presented. Five series of mixture were prepared with 0, 25, 50, 75, and 100 % coarse recycled aggregate adopting Nan Su's mix proportioning method. The fresh concrete properties were evaluated through the slump flow, J-ring and V-funnel tests. Compressive and tensile strengths were also determined. The results obtained showed that SCC could be successfully developed by incorporating recycled aggregates.

  7. Precast self-compacting concrete (PSCC) panel with added coir fiber: An overview

    Science.gov (United States)

    Afif Iman, Muhamad; Mohamad, Noridah; Samad, Abdul Aziz Abdul; Goh, W. I.; Othuman Mydin, M. A.; Afiq Tambichik, Muhamad; Bosro, Mohamad Zulhairi Mohd; Wirdawati, A.; Jamaluddin, N.

    2018-04-01

    Self-compacting concrete (SCC) is the alternative way to reduce construction time and improve the quality and strength of concrete. The panel system fabricated from SCC contribute to the IBS system that is sustainable and environmental friendly. The precast self-compacting concrete (PSCC) panel with added coir fiber will be overview in this paper. The properties of SCC and coir fiber are studied and reviewed from the previous researches. Finite element analysis is used to support the experimental results by conduction parametric simulation study on PSCC under flexure load. In general, it was found that coir fiber has a significant influence on the flexural load and crack propagation. Higher fiber incorporated in SCC resulted with higher ultimate load of PSCC.

  8. Study some mechanical properties of self-compacting concrete with nano silica under severe saline environment conditions

    Directory of Open Access Journals (Sweden)

    Habeeb Ghalib

    2018-01-01

    Full Text Available The main aim of this research is to evaluate the performance of Nano silica self-compacting concrete which is subjected to severe saline conditions that contain sulfates and chlorides at concentrations similar to those existing in the soils and ground water of the middle and southern parts of Iraq. For this purpose, ordinary and sulfate resistant Portland cement without and with 3% Nano silica addition by weight of cementitious materials were used. Splitting tensile strength, flexural strength, static modulus of elasticity and ultrasonic pulse velocity were investigated for all exposure conditions and all types of mixes of self-compacting concrete at ages of 28, 60, 90, 120 and 180 days. Test results revealed that the inclusion of Nano Silica in concrete mixes improved clearly the mechanical properties of self-compacting concrete compared with reference concrete.

  9. Performance of super-absorbent polymer as an internal curing agent for self-compacting concrete

    Directory of Open Access Journals (Sweden)

    Al-Hubboubi Suhair

    2018-01-01

    Full Text Available Internal curing agent by using super-absorbent polymer was present in this study, its effect on the properties of self-compacting concrete was evaluated .The SAP content in the concrete mix was 0.5 % by weight of cement. Three procedures for curing were adopted; curing in water, curing in water and air and curing in polyethylene sealed bags. Fresh concrete tests conducted to assess the self-compactability of the produced concrete. Moreover, compressive and splitting strength tests were carried out. The testing program had been extended to the age of 90 days.The use of super-absorbent polymer did not affect the fresh state characteristics of the studied SCC and achieved an increase in both compressive and tensile strengths as compared to the reference concrete mix.

  10. Experimental Study on Thermal Conductivity of Self-Compacting Concrete with Recycled Aggregate.

    Science.gov (United States)

    Fenollera, María; Míguez, José Luis; Goicoechea, Itziar; Lorenzo, Jaime

    2015-07-20

    The research focuses on the use of recycled aggregate (RA), from waste pieces generated during production in precast plants for self-compacting concrete (SCC) manufactured with a double sustainable goal: recycle manufacturing waste (consumption) and improvement of the thermal properties of the manufactured product (energy efficiency). For this purpose, a mechanical study to ensure technical feasibility of the concrete obtained has been conducted, as well as a thermal analysis of recycled SCC specimens of 50 N/mm² resistance, with different RA doses (0%, 20%, 50% and 100%). The main parameters that characterize a SCC in both states, fresh (slump-flow) and hard (compressive strength), have been tested; also, a qualitative analysis of the thermal conductivity using infrared thermography (IRT) and quantitative analysis with heat flow meter at three temperatures 20 °C, 25 °C and 30 °C have been performed. The results suggest the existence of two different thermal behaviors: concretes with 0% and 20% of RA, and on the other hand concretes with 50% and 100% of RA. It has also demonstrated the validity of the IRT as sampling technique in estimating the thermal behavior of materials having reduced range of variation in parameters.

  11. Study on Identification of Material Model Parameters from Compact Tension Test on Concrete Specimens

    Science.gov (United States)

    Hokes, Filip; Kral, Petr; Husek, Martin; Kala, Jiri

    2017-10-01

    Identification of a concrete material model parameters using optimization is based on a calculation of a difference between experimentally measured and numerically obtained data. Measure of the difference can be formulated via root mean squared error that is often used for determination of accuracy of a mathematical model in the field of meteorology or demography. The quality of the identified parameters is, however, determined not only by right choice of an objective function but also by the source experimental data. One of the possible way is to use load-displacement curves from three-point bending tests that were performed on concrete specimens. This option shows the significance of modulus of elasticity, tensile strength and specific fracture energy. Another possible option is to use experimental data from compact tension test. It is clear that the response in the second type of test is also dependent on the above mentioned material parameters. The question is whether the parameters identified within three-point bending test and within compact tension test will reach the same values. The presented article brings the numerical study of inverse identification of material model parameters from experimental data measured during compact tension tests. The article also presents utilization of the modified sensitivity analysis that calculates the sensitivity of the material model parameters for different parts of loading curve. The main goal of the article is to describe the process of inverse identification of parameters for plasticity-based material model of concrete and prepare data for future comparison with identified values of the material model parameters from different type of fracture tests.

  12. The uniform design experimental research of a large amount of fly ash self-compaction concrete

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, M.; Ji, C.; Xiao, J. [Liaoning Technical University, Fuxin (China)

    2005-08-15

    The paper studied the effect of quantity of cementing material and fly ash, W/B (water-binder) ratio, admixture and sand percentage to the performance of super fly-ash self-compaction concrete. It also utilized the step-by-step regression analysis method in SPSS software to found regression equation, which uses the flow rate of concrete mixture and strength of concrete as objective function, and obtained the optimum mix proportion of super fly ash self-compaction by the optimization technology in the Matlab software.

  13. Prediction of flow induced inhomogeneities in self compacting concrete

    DEFF Research Database (Denmark)

    Skocek, Jan; Švec, Oldřich; Geiker, Mette Rica

    2011-01-01

    A model for simulation of flow of suspension of a non-Newtonian fluid and particles of arbitrary shape is briefly introduced and demonstrated on examples of flow of self compacting concrete. The model is based on the lattice Boltzmann method for flow, the immersed boundary method with direct...

  14. Experimental Study on Thermal Conductivity of Self-Compacting Concrete with Recycled Aggregate

    Directory of Open Access Journals (Sweden)

    María Fenollera

    2015-07-01

    Full Text Available The research focuses on the use of recycled aggregate (RA, from waste pieces generated during production in precast plants for self-compacting concrete (SCC manufactured with a double sustainable goal: recycle manufacturing waste (consumption and improvement of the thermal properties of the manufactured product (energy efficiency. For this purpose, a mechanical study to ensure technical feasibility of the concrete obtained has been conducted, as well as a thermal analysis of recycled SCC specimens of 50 N/mm2 resistance, with different RA doses (0%, 20%, 50% and 100%. The main parameters that characterize a SCC in both states, fresh (slump-flow and hard (compressive strength, have been tested; also, a qualitative analysis of the thermal conductivity using infrared thermography (IRT and quantitative analysis with heat flow meter at three temperatures 20 °C, 25 °C and 30 °C have been performed. The results suggest the existence of two different thermal behaviors: concretes with 0% and 20% of RA, and on the other hand concretes with 50% and 100% of RA. It has also demonstrated the validity of the IRT as sampling technique in estimating the thermal behavior of materials having reduced range of variation in parameters.

  15. Experimental Study on Thermal Conductivity of Self-Compacting Concrete with Recycled Aggregate

    Science.gov (United States)

    Fenollera, María; Míguez, José Luis; Goicoechea, Itziar; Lorenzo, Jaime

    2015-01-01

    The research focuses on the use of recycled aggregate (RA), from waste pieces generated during production in precast plants for self-compacting concrete (SCC) manufactured with a double sustainable goal: recycle manufacturing waste (consumption) and improvement of the thermal properties of the manufactured product (energy efficiency). For this purpose, a mechanical study to ensure technical feasibility of the concrete obtained has been conducted, as well as a thermal analysis of recycled SCC specimens of 50 N/mm2 resistance, with different RA doses (0%, 20%, 50% and 100%). The main parameters that characterize a SCC in both states, fresh (slump-flow) and hard (compressive strength), have been tested; also, a qualitative analysis of the thermal conductivity using infrared thermography (IRT) and quantitative analysis with heat flow meter at three temperatures 20 °C, 25 °C and 30 °C have been performed. The results suggest the existence of two different thermal behaviors: concretes with 0% and 20% of RA, and on the other hand concretes with 50% and 100% of RA. It has also demonstrated the validity of the IRT as sampling technique in estimating the thermal behavior of materials having reduced range of variation in parameters. PMID:28793449

  16. Influence of compaction on the interfacial transition zone and the permeability of concrete

    International Nuclear Information System (INIS)

    Leemann, Andreas; Muench, Beat; Gasser, Philippe; Holzer, Lorenz

    2006-01-01

    The interfacial transition zone (ITZ) is regarded as a key feature for the transport properties and the durability of concrete. In this study one self-compacting concrete (SCC) mixture and two conventionally vibrated concrete (CVC) mixtures are studied in order to determine the influence of compaction on the porosity of the ITZ. Additionally oxygen permeability and water conductivity were measured in vertical and horizontal direction. The quantitative analysis of images made with an optical microscope and an environmental scanning electron microscope shows a significantly increased porosity and width of the ITZ in CVC compared to SCC. At the same time oxygen permeability and water conductivity of CVC are increased in comparison to SCC. Moreover, considerable differences in the porosity of the lower, lateral and upper ITZ are observed in both types of concrete. The anisotropic distribution of pores in the ITZ does not necessarily cause anisotropy in oxygen permeability and water conductivity though

  17. EAF Slag Aggregate in Roller-Compacted Concrete Pavement: Effects of Delay in Compaction

    Directory of Open Access Journals (Sweden)

    My Ngoc-Tra Lam

    2018-04-01

    Full Text Available This study investigates the effect of delay in compaction on the optimum moisture content and the mechanical propertie s (i.e., compressive strength, ultrasonic pulse velocity, splitting tensile strength, and modulus of elasticity of roller-compacted concrete pavement (RCCP made of electric arc furnace (EAF slag aggregate. EAF slag with size in the range of 4.75–19 mm was used to replace natural coarse aggregate in RCCP mixtures. A new mixing method was proposed for RCCP using EAF slag aggregate. The optimum moisture content of RCCP mixtures in this study was determined by a soil compaction method. The Proctor test assessed the optimum moisture content of mixtures at various time after mixing completion (i.e., 0, 15, 30, 60, and 90 min. Then, the effect of delay in compaction on the mechanical properties of RCCP mixtures at 28 days of age containing EAF slag aggregate was studied. The results presented that the negative effect on water content in the mixture caused by the higher water absorption characteristic of EAF slag was mitigated by the new mixing method. The optimum water content and maximum dry density of RCCP experience almost no effect from the delay in compaction. The compressive strength and splitting tensile strength of RCCP using EAF slag aggregate fulfilled the strength requirements for pavement with 90 min of delay in compaction.

  18. The positive and negative influences of VMA's on the robustness of fresh self-compacting concrete

    NARCIS (Netherlands)

    Van der Vurst, F.; Grunewald, S.; De Schutter, G.

    2015-01-01

    Over time, several mix design metliods liave been developed to obtain a selfcompacting concrete (SCC) with suitable fresh and hardened concrete properties. The very fluid concrete with no need for external compaction is achieved by using a higher powder content and the use of chemical admixtures.

  19. Performance of Retrofitted Self-Compacting Concrete-Filled Steel Tube Beams Using External Steel Plates

    Directory of Open Access Journals (Sweden)

    Ahmed A. M. AL-Shaar

    2018-01-01

    Full Text Available Self-compacting concrete-filled steel tube (SCCFST beams, similar to other structural members, necessitate retrofitting for many causes. However, research on SCCFST beams externally retrofitted by bolted steel plates has seldom been explored in the literature. This paper aims at experimentally investigating the retrofitting performance of square self-compacting concrete-filled steel tube (SCCFST beams using bolted steel plates with three different retrofitting schemes including varied configurations and two different steel plate lengths under flexure. A total of 18 specimens which consist of 12 retrofitted SCCFST beams, three unretrofitted (control SCCFST beams, and three hollow steel tubes were used. The flexural behaviour of the retrofitted SCCFST beams was examined regarding flexural strength, failure modes, and moment versus deflection curves, energy absorption, and ductility. Experimental results revealed that the implemented retrofitting schemes efficiently improve the moment carrying capacity and stiffness of the retrofitted SCCFST beams compared to the control beams. The increment in flexural strength ranged from 1% to 46%. Furthermore, the adopted retrofitting schemes were able to restore the energy absorption and ductility of the damaged beams in the range of 35% to 75% of the original beam ductility. Furthermore, a theoretical model was suggested to predict the moment capacity of the retrofitted SCCFST beams. The theoretical model results were in good agreement with the test results.

  20. 3D Simulation of Self-Compacting Concrete Flow Based on MRT-LBM

    Directory of Open Access Journals (Sweden)

    Liu-Chao Qiu

    2018-01-01

    Full Text Available A three-dimensional multiple-relaxation-time lattice Boltzmann method (MRT-LBM with a D3Q27 discrete velocity model is applied for simulation of self-compacting concrete (SCC flows. In the present study, the SCC is assumed as a non-Newtonian fluid, and a modified Herschel–Bulkley model is used as constitutive mode. The mass tracking algorithm was used for modeling the liquid-gas interface. Two numerical examples of the slump test and enhanced L-box test were performed, and the calculated results are compared with available experiments in literatures. The numerical results demonstrate the capability of the proposed MRT-LBM in modeling of self-compacting concrete flows.

  1. PENGGUNAAN FLY ASH DAN VISCOCRETE PADA SELF COMPACTING CONCRETE

    Directory of Open Access Journals (Sweden)

    Handoko Sugiharto

    2001-01-01

    Full Text Available Self Compacting Concrete (SCC gives a new solution in concrete technology, since SCC does not need vibrator for compacting. SCC has been used and developed abroad, however in Indonesia SCC is not used because there is no research about SCC yet. In this preliminary research, trial mix is performed to understand the characteristics and to calculate the materials composition to be used in SCC. From this trial mix, some variables are fixed and others are varied. This variable is examined further in the next trial mix. The workability is examined using slump cone method and flowability using L-shaped box. From this test, it is found out that to get the condition of self compactibility, viscocrete must be used. The binder (cement-fly ash composition, is examined using 10:0, 8:2, 7:3, 6:4 cement to fly ash ratio, until the maximum of flowability and workability, which is 5:5. Viscocrete dose 1.5 % and 2 % did not show a significant difference for all binder composition. From the workability, flowability and strength point of view, binder composition 6:4 and viscocrete dose 1.5 % gives the optimal condition. Abstract in Bahasa Indonesia : Self Compacting Concrete (SCC memberikan solusi baru dalam dunia teknologi beton karena tidak memerlukan vibrator untuk pemadatannya. SCC telah digunakan dan dikembangkan di luar negeri, tetapi di Indonesia belum begitu dikenal, dikarenakan belum adanya penelitian tentang SCC di Indonesia. Pada penelitian awal ini dilakukan trial mix untuk mengetahui karakteristik dan memperkirakan komposisi bahan yang dibutuhkan untuk SCC. Kemudian dari trial mix tersebut ditetapkan variabel-variabel berubah dan variabel-variabel tetap yang akan diuji pada trial mix selanjutnya. Pengujian workability dilakukan dengan alat slump cone sedangkan pengujian flowability dilakukan dengan alat L-shaped box. Dari hasil pengujian yang telah dilakukan, ternyata harus digunakan viscocrete untuk mendapatkan kondisi self compactibility. Untuk

  2. Quantitative evaluation of compactness of concrete-filled fiber-reinforced polymer tubes using piezoceramic transducers and time difference of arrival

    Science.gov (United States)

    Xu, Yang; Luo, Mingzhang; Hei, Chuang; Song, Gangbing

    2018-03-01

    Owing to its light weight and corrosion resistance, the concrete-filled fiber-reinforced polymer tube (CFFT) structure has a broad application prospect; the concrete compactness is key to the strength of CFFTs. To meet the urgent requirement of compactness monitoring of CFFTs, a quantitative method, which uses an array of four equally spaced piezoceramic patches and an ultrasonic time difference of arrival (TDOA) algorithm, is developed. Since the velocity of the ultrasonic wave propagation in fiber-reinforced polymer (FRP) material is about half of that in concrete material, the compactness condition of CFFT impacts the piezoceramic-induced wave propagation in the CFFT, and differentiates the TDOA for different receivers. An important condition is the half compactness, which can be judged by the Half Compactness Indicator (HCI) based on the TDOAs. To characterize the difference of stress wave propagation durations from the emitter to different receivers, which can be utilized to calculate the concrete infill compactness, the TDOA ratio (TDOAR) is introduced. An innovative algorithm is developed in this paper to estimate the compactness of the CFFT using HCI and TDOAR values. Analytical, numerical, and experimental studies based on a CFFT with seven different states of compactness (empty, 1/10, 1/3, 1/2, 2/3, 9/10, and full) are carried out in this research. Analyses demonstrate that there is a good agreement among the analytical, numerical, and experimental results of the proposed method, which employs a piezoceramic transducer array and the TDOAR for quantitative estimating the compactness of concrete infill in a CFFT.

  3. Physical and mechanical behaviour of a roller compacted concrete ...

    African Journals Online (AJOL)

    In order to study the behaviour of a roller compacted concrete (RCC) reinforced with polypropylene fiber, six types of RCC were made with different content of fibers (0, 0.5, 1, 1.5, 2 and 2.5 Kg/m3). The physical parameters are the density, the workability, the shrinkage and the water absorption. For the mechanical ...

  4. Experimental analysis of reinforced concrete columns strengthened with Self-Compacting concrete

    Directory of Open Access Journals (Sweden)

    M. Y. M. Omar

    Full Text Available This paper presents the results of reinforced concrete columns strengthened by addition of a self-compacting concrete overlay at the compressed and at the tensioned face of the member, with and without addition of longitudinal steel bars. Eight columns were submit- ted to loading with an initial eccentricity of 60 mm . These columns had 120 mm x 250 mm of rectangular cross section, 2000 mm in length and four longitudinal reinforcement steel bars with 10 mm in diameter. Reference columns P1 and P2 were tested to failure without any type of rehabilitation. Columns P3 to P8 were loaded to a predefined load (close to the initial yield point of tension reinforce- ment, then unloaded and strengthened for a subsequent test until failure. Results showed that the method of rehabilitation used was effective, increasing the loading capacity of the strengthened pieces by 2 to 5 times the ultimate load of the reference column.

  5. The Influence of Phase Change Materials on the Properties of Self-Compacting Concrete

    OpenAIRE

    Miguel Ángel Álvarez; Jaime Lorenzo; Itziar Goicoechea; María Fenollera; José Luis Míguez

    2013-01-01

    The aim of this paper is to research new thermally-efficient concrete walls, analyzing the mechanical behavior of a self-compacting concrete to manufacture an uncoated solid structural panel, with the incorporation of a micro-encapsulated phase change material as additive. Different dosages are tested and mechanical properties of the product obtained from the molding of concrete specimens are evaluated, testing mechanical compressive strength, slump flow, and density. The results reveal the o...

  6. Advance study of fiber-reinforced self-compacting concrete

    International Nuclear Information System (INIS)

    Mironova, M.; Ivanova, M.; Naidenov, V.; Georgiev, I.; Stary, J.

    2015-01-01

    Incorporation in concrete composition of steel macro- and micro – fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete

  7. Advance study of fiber-reinforced self-compacting concrete

    Science.gov (United States)

    Mironova, M.; Ivanova, M.; Naidenov, V.; Georgiev, I.; Stary, J.

    2015-10-01

    Incorporation in concrete composition of steel macro- and micro - fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete.

  8. Advance study of fiber-reinforced self-compacting concrete

    Energy Technology Data Exchange (ETDEWEB)

    Mironova, M., E-mail: mirona@imbm.bas.bg; Ivanova, M., E-mail: magdalena.ivanova@imbm.bas.bg; Naidenov, V., E-mail: valna53@mail.bg [Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 4, Sofia 1113 (Bulgaria); Georgiev, I., E-mail: ivan.georgiev@parallel.bas.bg [Institute of Information and Communication Technologies & Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., Sofia 1113 (Bulgaria); Stary, J., E-mail: stary@ugn.cas.cz [Institute of Geonics Czech Academy of Sciences, Studentska str., Ostrava 1768 (Czech Republic)

    2015-10-28

    Incorporation in concrete composition of steel macro- and micro – fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete.

  9. Microstructural, thermal, physical and mechanical behavior of the self compacting concrete containing SiO2 nanoparticles

    International Nuclear Information System (INIS)

    Nazari, Ali; Riahi, Shadi

    2010-01-01

    Research highlights: → TiO 2 nanoparticles effects on flexural strength of self compacting concrete. → Physical and microstructural consideration. → Mechanical tests. → Thermal analysis. → Porosimetry. - Abstract: In the present study, flexural strength, thermal properties and microstructure of self compacting concrete with different amount of SiO 2 nanoparticles has been investigated. SiO 2 nanoparticles with the average particle size of 15 nm were partially added to self compacting concrete and various behaviors of the specimens have been measured. The results indicate that SiO 2 nanoparticles are able to improve the flexural strength of self compacting concrete and recover the negative effects of superplasticizer on flexural strength of the specimens. SiO 2 nanoparticle as a partial replacement of cement up to 4 wt% could accelerate C-S-H gel formation as a result of the increased crystalline Ca(OH) 2 amount at the early ages of hydration. The increased the SiO 2 nanoparticles' content more than 4 wt%, causes the reduced the flexural strength because of unsuitable dispersion of nanoparticles in the concrete matrix. Accelerated peak appearance in conduction calorimetry tests, more weight loss in thermogravimetric analysis and more rapid appearance of peaks related to hydrated products in X-ray diffraction results, all also indicate that SiO 2 nanoparticles up to 4 wt% could improve the mechanical and physical properties of the specimens. Finally, SiO 2 nanoparticles could improve the pore structure of concrete and shift the distributed pores to harmless and few-harm pores.

  10. Effect of mineral admixtures on kinetic property and compressive strength of self Compacting Concrete

    Science.gov (United States)

    Jagalur Mahalingasharma, Srishaila; Prakash, Parasivamurthy; Vishwanath, K. N.; Jawali, Veena

    2017-06-01

    This paper presents experimental investigations made on the influence of chemical, physical, morphological and mineralogical properties of mineral admixtures such as fly ash, ground granulate blast furnace slag, metakaoline and micro silica used as a replacement of cement in self compacting concrete on workability and compressive strength. Nineteen concrete mixes were cast by replacing with cement by fly ash or ground granulated blast furnace slag as binary blend at 30%, 40%, 50% and with addition of micro silica and metakaoline at 10% as a ternary blend with fly ash, ground granulated blast furnace slag and obtained results were compare with control mix. Water powder ratio 0.3 and super plasticizer dosage 1% of cementitious material was kept constant for all the mixes. The self compacting concrete tested for slump flow, V-funnel, L-Box, J-Ring, T50, and compressive strength on concrete cube were determined at age of 3, 7, 28, 56, 90 days.

  11. The effects of adding waste plastic fibers on some properties of roller compacted concrete

    Directory of Open Access Journals (Sweden)

    Abed Adil

    2018-01-01

    Full Text Available An attempt to produce of roller compacted concrete (RCC improved by adding waste plastic fibers (WPFs resulting from cutting the PET beverage bottles was recorded in this study. The method which is used for production of RCC is an approved design method for ACI committee (5R-207,1980[1]. WPF was added by volumetric percentages ranging between (0.5 to 2 % and reference concrete mix was produced for comparison reason. Many tests were conducted on the models produced by rolling compacted concrete like compressive strength, flexural strength, modulus of elasticity, dry density, water absorption and ultrasonic pulse velocity. The analysis of the results showed that the use of plastic waste fibers (1% had led to improvement in the properties of each of the compressive strength and flexural strength compared with reference concrete. Results also showed that the addition of these, fibers increase water absorption and reduce the speed of Ultrasonic pulse velocity.

  12. Properties and Leachability of Self-Compacting Concrete Incorporated with Fly Ash and Bottom Ash

    Science.gov (United States)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Jamaluddin, Norwati; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    The process of combustion in coal-fired power plant generates ashes, namely fly ash and bottom ash. Besides, coal ash produced from coal combustion contains heavy metals within their compositions. These metals are toxic to the environment as well as to human health. Fortunately, treatment methods are available for these ashes, and the use of fly ash and bottom ash in the concrete mix is one of the few. Therefore, an experimental program was carried out to study the properties and determine the leachability of selfcompacting concrete incorporated with fly ash and bottom ash. For experimental study, self-compacting concrete was produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a replacement for sand with the ratios of 10%, 20%, and 30% respectively. The fresh properties tests conducted were slump flow, t500, sieve segregation and J-ring. Meanwhile for the hardened properties, density, compressive strength and water absorption test were performed. The samples were then crushed to be extracted using Toxicity Characteristic Leaching Procedure and heavy metals content within the samples were identified accordingly using Atomic Absorption Spectrometry. The results demonstrated that both fresh and hardened properties were qualified to categorize as self-compacting concrete. Improvements in compressive strength were observed, and densities for all the samples were identified as a normal weight concrete with ranges between 2000 kg/m3 to 2600 kg/m3. Other than that, it was found that incorporation up to 30% of the ashes was safe as the leached heavy metals concentration did not exceed the regulatory levels, except for arsenic. In conclusion, this study will serve as a reference which suggests that fly ash and bottom ash are widely applicable in concrete technology, and its incorporation in self-compacting concrete constitutes a potential means of adding value to appropriate mix and design.

  13. Impact Resistance of Rubberized Self-Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Eehab Khalil

    2015-04-01

    Full Text Available Impact loads due to ship collision on irrigation structures is significantly decreasing their durability. Loss of material and degradation are quite common problems facing lock walls and piers. In the current research, rubberized self-compacting concrete (SCC was used to investigate problems associated with impact. SCC with cement kiln dust cement replacement was used for that purpose. Concrete specimens were prepared with different crumb rubber ratios of 10% (RSCC-10, 20% (RSCC-20, 30% (RSCC-30, and 40% (RSCC-40 sand replacement by volume. Standard compressive, flexure, and splitting strength tests were conducted to monitor the effect of the added rubber on concrete behavior. Moreover, impact testing program was applied to specific specimens, cylinder of diameter 200 mm and thickness 50 mm, according to ACI committee 544 procedures. The number of blows to first and ultimate cracks was determined. The relationship between the mechanical properties and impact resilience is also presented. With the increase in rubber percentage the resistance to impact increased, but there was a decrease in specimen strength and modulus of elasticity. The variation in results was discussed and mix RSCC-30 exhibited the best impact resistance, 3 times over control mix with 40% reduction of compressive strength.

  14. Influence of curing conditions on the sorptivity and weight change characteristics of self-compacting concrete

    International Nuclear Information System (INIS)

    Caliskan, S.

    2006-01-01

    This paper reports on a study carried out to investigate the influence of curing conditions on the capillary water absorption and weight change characteristics of self compacting concrete (SCC). Specimens were prepared using three types of concrete (SCC, Portland cement (PC), Fly ash (FA) concretes) and were cured under three different curing conditions (20C water and 20C and 40C air cure) for 28 days. Weight gain (water intake) in water curing and weight loss (water loss) in 20C and 40C air curing were recorded throughout the curing period. Compressive strength, water absorption and capillary water absorption tests were carried out at 28 days. The results indicated that FA concrete gained about 0.5% whilst PC and self-compacting concretes gained about 1.0% of the initial weight. This indicates that due to the slower reaction process more free water remains within FA concrete avoiding further water intake. In the weight loss study, FA concrete lost about 4.0% and 6.0% of the initial weight at 20C and 40C air curing, respectively; whereas SCC and PC concretes (both had almost identical values) lost about 3.2 and 5.2% at 20C and 40C, respectively. The absorption test results indicated that SCC gave the lowest captivity coefficient values followed by PC and FA concretes in all curing conditions. (author)

  15. Effect of filler types on physical, mechanical and microstructure of self compacting concrete and Flow-able concrete

    Directory of Open Access Journals (Sweden)

    Hafez E. Elyamany

    2014-06-01

    Full Text Available The objective of this study is to evaluate the effect of various filler types on the fresh and hardened properties of self-compacting concrete (SCC and Flow-able concrete. For this purpose, two groups of fillers were selected. The first group was pozzolanic fillers (silica fume and metakaolin while the second group was non-pozzolanic fillers (limestone powder, granite dust and marble dust. Cement contents of 400 kg/m3 and 500 kg/m3 were considered while the used filler material was 7.5%, 10% and 15%. Slump and slump flow, T50, sieve stability and bleeding tests were performed on fresh concrete. The studied hardened properties included unit weight, voids ratio, porosity, and water absorption and cube compressive strength. In addition, thermo-gravimetric analysis, X-ray diffraction analysis and scanning electronic microscope were performed. The test results showed that filler type and content have significant effect on fresh concrete properties where non-pozzolanic fillers improve segregation and bleeding resistance. Generally, filler type and content have significant effect on unit weight, water absorption and voids ratio. In addition, non-pozzolanic fillers have insignificant negative effect on concrete compressive strength. Finally, there was a good correlation between fresh concrete properties and hardened concrete properties for SCC and Flow-able concrete.

  16. Simulation of the Test Method "L-Box" for Self-Compacting Concrete

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm; Szabo, Peter; Geiker, Mette Rica

    2004-01-01

    Both filling and passing ability are important properties to be considered for self-compacting concrete. This paper presents simulations of the L-box test and corresponding experiments. The assumption of a continuum mechanical approach, where the fluid rheology is described by the Bingham model...

  17. High-performance self-compacting concrete with the use of coal burning waste

    Science.gov (United States)

    Bakhrakh, Anton; Solodov, Artyom; Naruts, Vitaly; Larsen, Oksana; Alimov, Lev; Voronin, Victor

    2017-10-01

    Today, thermal power plants are the main producers of energy in Russia. Most of thermal power plants use coal as fuel. The remaining waste of coal burning is ash, In Russia ash is usually kept at dumps. The amount of utilized ash is quite small, less than 13%. Meanwhile, each ash dump is a local ecological disaster. Ash dumps take a lot of place and destroy natural landscape. The use of fly ash in building materials can solve the problem of fly ash dumps in Russia. A lot of papers of scientists are devoted to the use of fly ash as filler in concrete. The main advantage of admixing fly ash in concrete is decrease of amount of used cement. This investigation was held to find out if it is possible to utilize fly ash by its use in high amounts in self-compacting concrete. During experiments three mixtures of SCC with different properties were obtained. The first one is experimental and shows the possibility of obtaining SCC with high compressive strength with 60% of fly ash from the mass of cement. Two other mixtures were optimized with the help of the math planning method to obtain high 7-day and 28-day high compressive strength.

  18. Design of cost-effective M 25 grade of self compacting concrete

    International Nuclear Information System (INIS)

    Guru Jawahar, J.; Sashidhar, C.; Ramana Reddy, I.V.; Annie Peter, J.

    2013-01-01

    Highlights: ► Design of cost-effective M 25 grade of self compacting concrete is done. ► Mechanical properties of SCC compared with M 25 grade of conventional concrete. ► Effect of class F fly ash is studied on the SCC mechanical properties. ► Cost analysis is done between M 25 grade of CC and SCC. ► Recommendation of M 25 grade of SCC for normal building constructions. - Abstract: This investigation is mainly focused on the development of cost-effective normal strength M 25 grade of self compacting concrete (SCC) for the use of normal building constructions. Keeping in view of the normal strength, cost, quality and durability of SCC and greenhouse gas emissions, a combination type of SCC was developed with 35% replacement of cement with class F fly ash. This study recommended a SCC mix with moderate fines to obtain a cost-effective normal strength SCC for the normal building constructions. Studies also revealed that further reduction in fines content in SCC with the same replacement level of fly ash decreased the SCC strength and its performance. Cost analysis has been done between M 25 grade of SCC and conventional concrete (CC). Results shown that the SCC material cost is slightly higher than that of CC of the same strength class, but the savings in labour cost and construction time and quality of SCC would offset the SCC material cost and reduce the total life cycle cost of SCC

  19. Microstructural, thermal, physical and mechanical behavior of the self compacting concrete containing SiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nazari, Ali, E-mail: alinazari84@aut.ac.ir [Department of Technical and Engineering Sciences, Islamic Azad University (Saveh Branch), Saveh (Iran, Islamic Republic of); Riahi, Shadi [Department of Technical and Engineering Sciences, Islamic Azad University (Saveh Branch), Saveh (Iran, Islamic Republic of)

    2010-11-15

    Research highlights: {yields} TiO{sub 2} nanoparticles effects on flexural strength of self compacting concrete. {yields} Physical and microstructural consideration. {yields} Mechanical tests. {yields} Thermal analysis. {yields} Porosimetry. - Abstract: In the present study, flexural strength, thermal properties and microstructure of self compacting concrete with different amount of SiO{sub 2} nanoparticles has been investigated. SiO{sub 2} nanoparticles with the average particle size of 15 nm were partially added to self compacting concrete and various behaviors of the specimens have been measured. The results indicate that SiO{sub 2} nanoparticles are able to improve the flexural strength of self compacting concrete and recover the negative effects of superplasticizer on flexural strength of the specimens. SiO{sub 2} nanoparticle as a partial replacement of cement up to 4 wt% could accelerate C-S-H gel formation as a result of the increased crystalline Ca(OH){sub 2} amount at the early ages of hydration. The increased the SiO{sub 2} nanoparticles' content more than 4 wt%, causes the reduced the flexural strength because of unsuitable dispersion of nanoparticles in the concrete matrix. Accelerated peak appearance in conduction calorimetry tests, more weight loss in thermogravimetric analysis and more rapid appearance of peaks related to hydrated products in X-ray diffraction results, all also indicate that SiO{sub 2} nanoparticles up to 4 wt% could improve the mechanical and physical properties of the specimens. Finally, SiO{sub 2} nanoparticles could improve the pore structure of concrete and shift the distributed pores to harmless and few-harm pores.

  20. Permeability and pore size distribution in medium strength self-compacting concrete

    Directory of Open Access Journals (Sweden)

    Fernández Cánovas, M.

    2010-09-01

    Full Text Available The use of self-compacting concrete (SCC has been on the rise in recent years. Research on this type of concrete has focused primarily on determining optimal dosage, while durability, particularly for medium strength SCC, has received much less attention. The present study explored the permeability of a number of medium strength (characteristic strength, 30 MPa self-compacting concretes, including SCCs made with common cement, in pursuit of a balance between performance and cost. Pressurised water and mercury intrusion porosimetry tests were conducted to determine concrete behaviour when exposed to aggressive agents. The findings showed that the capillary networks of these concretes are essentially impermeable to aggressive agents.

    El hormigón autocompactante ha experimentado un amplio desarrollo en los últimos años. Los estudios sobre este hormigón se han centrado en obtener dosificaciones óptimas, mientras los relativos a su durabilidad son escasos, especialmente en el caso de hormigones de resistencia moderada. Este trabajo se centra en el estudio de la permeabilidad de distintos hormigones autocompactantes de resistencia moderada (resistencia característica 30 MPa. El estudio incluye hormigones fabricados con cementos comunes, en los que se ha buscado un equilibrio entre prestaciones y precio. Con el fin de estudiar su comportamiento frente a la penetración de agentes agresivos, se han realizado los ensayos de permeabilidad al agua bajo presión y estudio de la porosimetría por intrusión de mercurio. Los resultados de los ensayos ponen de manifiesto el buen comportamiento de estos hormigones frente a la posible penetración de agentes agresivos por la red capilar.

  1. Experimental analysis of compaction of concrete and mortar

    Science.gov (United States)

    Burlion, Nicolas; Pijaudier-Cabot, Gilles; Dahan, Noël

    2001-12-01

    Compaction of concrete is physically a collapse of the material porous microstructure. It produces plastic strains in the material and, at the same time, an increase of its bulk modulus. This paper presents two experimental techniques aimed at obtaining the hydrostatic response of concrete and mortar. The first one is a uniaxial confined compression test which is quite simple to implement and allows to reach hydrostatic pressures of about 600 MPa. The specimen size is large enough so that concrete with aggregate sizes up to 16 mm can be tested. The second one is a true hydrostatic test performed on smaller (mortar) specimens. Test results show that the hydrostatic response of the material is elasto-plastic with a stiffening effect on both the tangent and unloading bulk moduli. The magnitude of the irreversible volumetric strains depends on the initial porosity of the material. This porosity can be related in a first approximation to the water/cement ratio. A comparison of the hydrostatic responses obtained from the two testing techniques on the same material show that the hydrostatic response of cementitious materials cannot be uncoupled from the deviatoric response, as opposed to the standard assumption in constitutive relations for metal alloys. This feature should be taken into account in the development of constitutive relations for concrete subjected to high confinement pressures which are needed in the modelling of impact problems.

  2. Influence of high volumes of ultra-fine additions on self-compacting concrete[ACI SP-239

    Energy Technology Data Exchange (ETDEWEB)

    Cioffi, R. [Naples Univ., Naples (Italy). Faculty of Engineering; Colangelo, F. [Naples Univ., Naples (Italy). Dept. of Technologies; Caputo, D.; Liguori, B. [Naples Univ., Naples (Italy). Dept. of Materials and Production Engineering

    2006-07-01

    The addition of fine minerals can reduce water demand and increase the slump characteristics of concrete. This paper examined the influence of high volumes of ultra-fine fly ash, raw fly ash, silica fume and natural zeolites on the properties of self-compacting concrete (SCC). Three samples of SCC were prepared using various mineral additions to determine normal slump and J-ring slump flows of fresh concrete as well as the compressive strength and elastic modulus properties of hardened concrete. Cement and crushed limestone natural aggregates were used. The fly ash, silica fume and natural zeolites were subjected to wet high energy milling. The rotating speed, milling time, water-to-solid ratio, and size of milling media were optimized to obtain powders with varying qualities. Results of the study showed that values for the normal slump flow ranged between 604 and 785 mm, while the differences with the J-ring slump flow were less than 30 mm. The samples were then tested to evaluate the mechanical properties of the hardened concrete after 7 and 28 curing days. The modulus of elasticity and compressive strength showed improvements in the concretes containing the ultra-fine fly ash. No segregation phenomena were observed in the case of the cylindrical column specimens. It was concluded that all the specimens provided environmentally sustainable, high workability concretes which can be successfully prepared with the addition of high volumes of minerals. 17 refs., 5 tabs., 6 figs.

  3. Neutron radiation shielding properties of polymer incorporated self compacting concrete mixes.

    Science.gov (United States)

    Malkapur, Santhosh M; Divakar, L; Narasimhan, Mattur C; Karkera, Narayana B; Goverdhan, P; Sathian, V; Prasad, N K

    2017-07-01

    In this work, the neutron radiation shielding characteristics of a class of novel polymer-incorporated self-compacting concrete (PISCC) mixes are evaluated. Pulverized high density polyethylene (HDPE) material was used, at three different reference volumes, as a partial replacement to river sand in conventional concrete mixes. By such partial replacement of sand with polymer, additional hydrogen contents are incorporated in these concrete mixes and their effect on the neutron radiation shielding properties are studied. It has been observed from the initial set of experiments that there is a definite trend of reductions in the neutron flux and dose transmission factor values in these PISCC mixes vis-à-vis ordinary concrete mix. Also, the fact that quite similar enhanced shielding results are recorded even when reprocessed HDPE material is used in lieu of the virgin HDPE attracts further attention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Self-compacting concretes (SCC: comparison of methods of dosage

    Directory of Open Access Journals (Sweden)

    B. F. Tutikian

    Full Text Available The composition of a self-compacting concrete (SCC should be defined to fulfills a number of requirements, such as self-compactibility, strength and durability. This study aims to compare three methods of dosage for SCC with local materials, so as to determine which one is the most economical and rational, thus assisting the executor in making a decision and enabling economic and technical feasibility for its application. The methods used in the experimental program were: Nan Su et al., which was developed in 2001 [1]; Repette-Melo, which was proposed in 2005 [2]; and Tutikian & Dal Molin, which was developed in 2007 [3]. From the results obtained in the experimental program, it was observed that the method which presented the lowest cost and highest compressive strength at the ages of 7, 28 and 91 days was Tutikian & Dal Molin, while the one which reached the lowest chloride ion penetration, best compactness and highest elasticity modulus was Repette-Melo. In tests carried out in the fresh state, all tested methods yielded mixtures which comply with the self-compactibility levels required by ABNT NBR 15823:2010 [4].

  5. Performance of self-compacting rubberized concrete

    Directory of Open Access Journals (Sweden)

    Hamza Bensaci

    2018-01-01

    Full Text Available Used tyre rubber wastes present a serious environmental problem of pollution and storage. The recycling of this waste in the industry of construction could be an appropriate solution to produce an eco-concrete and could contribute to the improvement of some of its properties. This paper aims to study the possibility of using tyre rubber waste as fine aggregate replacement in self-compacting concrete (SCC. Fines rubber particles of 0-2 mm of waste tyres were added SCC mixtures as a partial substitution of the total volume of sand at different percentages (5, 10, 15, 20 and 30%. The influence of fines rubber of used tyres on fresh and hardened properties of the SCC was investigated. The fresh properties of SCC were performed by using slump-flow, T50 flow time, L-box, V-funnel and segregation resistance tests. Characteristics of the hardened state were obtained by compressive strength and thermal conductivity. The experimental results showed that the inclusion of fines rubber in SCC decreases the workability, reduced its passing capacity and increases the possibility of blocking. A decrease in compressive strength is observed with the increase in rubber content. On the other hand, the incorporation of the rubber fines aggregates enhances in a remarkably way the thermal conductivity.

  6. Experimental studies in Ultrasonic Pulse Velocity of roller compacted concrete pavement containing fly ash and M-sand

    Directory of Open Access Journals (Sweden)

    S. Krishna Rao

    2016-07-01

    Full Text Available This paper presents the experimental investigation results of Ultrasonic Pulse Velocity (UPV tests conducted on roller compacted concrete pavement (RCCP material containing Class F fly ash of as mineral admixture. River sand, M-sand and combination of M-sand and River sand are used as fine aggregate in this experimental work. Three types of fly ash roller compacted concrete mixes are prepared using above three types of fine aggregates and they are designated as Series A (River sand, Series B (manufactured sand and Series C (combination of River sand and M-sand. In each series the fly ash content in place of cement is varied from 0% to 60%. In each series and for different ages of curing (i.e 3, 7, 28 and 90 days forty two cube specimens are cast and tested for compressive strength and UPV. The UPV results of fly ash containing roller compacted concrete pavement (FRCCP show lower values at all ages from 3 days to 90 days in comparison with control mix concrete (0% fly ash in all mixes. However, it is also observed that Series B and C mixes containing fly ash show better results in UPV values, compressive strength and Dynamic Elastic Modulus in comparison to Series A mixes with fly ash. Relationships between compressive strength of FRCCP and UPV and Dynamic Elastic Modulus are proposed for all series mixes. A new empirical equation is proposed to determine the Dynamic Elastic Modulus of FRCCP. Keywords: Compressive strength, Dynamic Elastic Modulus, Fly ash, Roller compacted concrete pavement, Ultrasonic Pulse Velocity

  7. Sea Dredged Gravel versus Crushed Granite as Coarse Aggregate for Self Compacting Concrete in Aggressive Environment

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.; Kristensen, Lasse Frølich

    2007-01-01

    Properties of self compacting concrete (SCC) with two types of coarse aggregate - sea dredged gravel with smooth and rounded particles and crushed granite with rough and angular particles - have been studied. Sea gravel allowed a higher aggregate proportion in the concrete leading to a higher...

  8. Lightweight self-compacting concrete reinforced with fibres for slab rehabilitation

    International Nuclear Information System (INIS)

    Klein, N. S.; Fuente, A. de la; Aguado, A.; Maso, D.

    2011-01-01

    The slabs of some buildings in Barcelona are formed by unidirectional beams, with a ceramic arch in between, which are filled with broken pottery or construction waste. These structures often present problems such as displacement of the tiles arranged over it due to the lack of stiffness of the filling material. This supposes a risk to the user and could also cause durability problems. In order to rehabilitate it, a lightweight self-compacting concrete reinforced with fibres (HLACF) has been designed to be used as a filling material, improving the stiffness of the structure. This paper presents a structural analysis of a standard case and the results of an experimental campaign. The concrete showed a density of 1665 kg/m3, a slump flow of 605 mm and a compressive strength of 22.3 MPa, at 28 days. These results are in agreement with the requirements, overcoming common lightweight concrete segregation problems. (Author) 24 refs.

  9. An experimental survey on combined effects of fibers and nanosilica on the mechanical, rheological, and durability properties of self-compacting concrete

    International Nuclear Information System (INIS)

    Beigi, Morteza H.; Berenjian, Javad; Lotfi Omran, Omid; Sadeghi Nik, Aref; Nikbin, Iman M.

    2013-01-01

    Highlights: • We investigate combine effects of fibers and nanosilica on SCC. • The mechanical, rheological, and durability properties were tested and compared. • Microstructural properties of concrete were assessed using AFM and XRD techniques. • Nanosilica and fibers can improve the mechanical properties and durability of SCC. - Graphical abstract: - Abstract: Previous studies have shown that application of fibers in concrete enhances scratching, flexural and tensile strength. Self-Compacting Concrete (SCC) is a highly flowable and coherent concrete able to self-compact under its own weight. On the other hand, nanosilica particles and artificial pozzolans possessing high efficiency in concrete technology can improve structural properties of cement-based materials. Previous studies have suggested self-compacting and fiber-reinforced concretes for more stable and efficient buildings. Therefore, the present study aimed to evaluate the effects of nanosilica and different concrete reinforcing fibers including steel, polypropylene and glass on the performance of concrete. In this study mechanical (compressive, splitting tensile and flexural strength, toughness and modulus of elasticity), rheological (L-Box, slump flow, T50) and durability (resist chloride ion penetration (RCPT) and water absorption) properties are assessed. In addition, microstructural properties of concrete were assessed using Atomic Force Microscopy (AFM) and X-Ray Diffraction (XRD) techniques. Totally, 40 concrete mixes , labeled as A, B, C and D, with nanosilica contents of 0, 2, 4 and 6 weight percent (wt.%) of cement, respectively and three types of reinforcing fibers (steel: 0.2, 0.3 and 0.5 volume percent (v%) and polypropylene: 0.1, 0.15 and 0.2 v% and glass: 0.15, 0.2 and 0.3 v%) were evaluated. The results of the study showed that the presence of both nanosilica and reinforcing fibers in optimal percentages, can improve the mechanical properties and durability of self-compacting

  10. Influence of Glass Fiber on Fresh and Hardened Properties of Self Compacting Concrete

    Science.gov (United States)

    Bharathi Murugan, R.; Haridharan, M. K.; Natarajan, C.; Jayasankar, R.

    2017-07-01

    The practical need of self-compacting concrete (SCC) is increasing due to increase in the infrastructure competence all over the world. The effective way of increasing the strength of concrete and enhance the behaviour under extreme loading (fire) is the keen interest. Glass fibers were added for five different of volume fractions (0%, 0.1%, 0.3%, 0.5% and 0.6%) to determine the optimum percentage of glass fiber without compensating the fresh properties and enhanced hardened properties of SCC concrete. The fresh state of concrete is characterized by slump flow, T-50cm slump flow, and V-funnel and L- box tests. The results obtained in fresh state are compared with the acceptance criteria of EFNARC specification. Concrete specimens were casted to evaluate the hardened properties such as compressive strength, split tensile strength, flexural strength and modulus of elasticity. Incorporation the glass fiber into SCC reduces the workability but within the standard specification. The hardened properties of SCC glass fiber reinforced concrete were enhanced, due to bridging the pre-existing micro cracks in concrete by glass fiber addition.

  11. Some Properties of Polymer Modified Self-Compacting Concrete Exposed to Kerosene and Gas Oil

    Directory of Open Access Journals (Sweden)

    Nada Mahdi Fawzi

    2017-01-01

    Full Text Available This thesis aims to study the effect of addition polymer materials on mechanical properties of self-compacting concrete, and also to assess the influence of petroleum products (kerosene and gas oil on mechanical properties of polymer modified self-compacting concrete (PMSCC after different exposure periods of (30 ,60 ,90 ,and 180 days. Two type of curing are used; 28 days in water for SCC and 2 days in water followed 26 days in air for PMSCC. The test results show that the PMSCC (15% P/C ratio which is exposed to oil products recorded a lower deterioration in compressive strength's values than reference concrete. The percentages of reduction in compressive strength values of PMSCC (15% P/C ratio was (6.03% and (9.61% up to 180 days of exposure to kerosene and gas oil respectively, relative to the same mix immersed in water, while the percentages of reduction in compressive strength values of SCC (reference concrete was (21.18% and (25.19% up to 180 days of exposure to kerosene and gas oil respectively, relative to the same mix immersed in water. Flexural strength results present improvement for all ages and for all concrete mixes with all percentages of polymer content The total water absorption values of PMSCC (15% P/C ratio showed a better performance than reference concrete mix when exposed to oil products. It was (1.34, 2.21, 2.17 % up to 180 days with samples immersed in water, kerosene, and gas oil respectively, with percentages of reduction of (23.86%, (33.83%, and (31.33% relative to the SCC (reference concrete.

  12. Dynamic Fracture Behavior of Steel Fiber Reinforced Self-Compacting Concretes (SFRSCCs

    Directory of Open Access Journals (Sweden)

    Xiaoxin Zhang

    2017-11-01

    Full Text Available Three-point bending tests on notched beams of three types of steel fiber-reinforced self-compacting concrete (SFRSCC have been performed by using both a servo-hydraulic machine and a drop-weight impact instrument. The lo ading rates had a range of six orders of magnitude from 2.20 × 10−3 mm/s (quasi-static to 2.66 × 103 mm/s. These SFRSCCs had the same matrix, but various types of steel fiber (straight and hooked-end and contents (volume ratios, 0.51%, 0.77% and 1.23%, respectively. The results demonstrate that the fracture energy and the flexural strength increase as the loading rate increases. Moreover, such tendency is relatively moderate at low rates. However, at high rates it is accentuated. For the 0.51% fiber content, the dynamic increase factors of the flexural strength and the fracture energy are approximately 6 and 3, while for the 1.23% fiber content, they are around 4 and 2, respectively. Thus, the higher the fiber content the less rate sensitivity there is.

  13. Fresh and hardened properties of binary blend high strength self compacting concrete

    Directory of Open Access Journals (Sweden)

    S.S. Vivek

    2017-06-01

    Full Text Available Self compacting concrete (SCC made a remarkable impact on the concrete construction industry because of its innovative nature. Assessment of optimal ratio between chemical and mineral admixtures plays a vital role in developing SCC. In the present work three different mineral admixtures were used as partial substitute in different proportions to cement to produce SCC with a characteristic compressive strength of 60 MPa. All the three types of SCC were investigated for its fresh and hardened properties. From the results, 50% GGBFS, 10% SF and 20% MK were found to the optimum values as partial substitute to cement.

  14. The Influence of Phase Change Materials on the Properties of Self-Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Álvarez

    2013-08-01

    Full Text Available The aim of this paper is to research new thermally-efficient concrete walls, analyzing the mechanical behavior of a self-compacting concrete to manufacture an uncoated solid structural panel, with the incorporation of a micro-encapsulated phase change material as additive. Different dosages are tested and mechanical properties of the product obtained from the molding of concrete specimens are evaluated, testing mechanical compressive strength, slump flow, and density. The results reveal the optimum percentage of additive in the mixture that enables compliance with the technical specifications required by the product to be manufactured. A test is also performed for measuring the thermal conductivity for the optimal sample obtained and it evidences the reduction thereof.

  15. The Influence of Phase Change Materials on the Properties of Self-Compacting Concrete.

    Science.gov (United States)

    Fenollera, María; Míguez, José Luis; Goicoechea, Itziar; Lorenzo, Jaime; Ángel Álvarez, Miguel

    2013-08-15

    The aim of this paper is to research new thermally-efficient concrete walls, analyzing the mechanical behavior of a self-compacting concrete to manufacture an uncoated solid structural panel, with the incorporation of a micro-encapsulated phase change material as additive. Different dosages are tested and mechanical properties of the product obtained from the molding of concrete specimens are evaluated, testing mechanical compressive strength, slump flow, and density. The results reveal the optimum percentage of additive in the mixture that enables compliance with the technical specifications required by the product to be manufactured. A test is also performed for measuring the thermal conductivity for the optimal sample obtained and it evidences the reduction thereof.

  16. Abrasion Resistance and Mechanical Properties of Waste-Glass-Fiber-Reinforced Roller-compacted Concrete

    Science.gov (United States)

    Yildizel, S. A.; Timur, O.; Ozturk, A. U.

    2018-05-01

    The potential use of waste glass fibers in roller-compacted concrete (RCC) was investigated with the aim to improve its performance and reduce environmental effects. The research was focused on the abrasion resistance and compressive and flexural strengths of the reinforced concrete relative to those of reference mixes without fibers. The freeze-thaw resistance of RCC mixes was also examined. It was found that the use of waste glass fibers at a rate of 2 % increased the abrasion resistance of the RCC mixes considerably.

  17. Measurement of properties and of the resistance to segregation in heavyweight, self-compacting barite concrete

    Directory of Open Access Journals (Sweden)

    Navarro, D.

    2009-07-01

    Full Text Available Heavyweight concrete is used for shielding in structures requiring protection against radiation. The addition of superplasticizers to mixes yields workable, high density materials with low water/cement ratios. This paper discusses the results of adding a polycarboxylate-based superplasticizer to heavyweight barite concrete to obtain a self-compacting mix. The fresh properties were characterized with trials suitable for self-compacting concrete. Since the large differences in constituent densities make segregation a key issue in this type of concrete, a specific trial was designed to check for homogeneity. The flowability, passing ability and resistance to segregation findings showed that the product obtained was a self-compacting concrete.El hormigón de alta densidad se emplea en estructuras en las que se necesita protección frente a radiaciones. El empleo de superplastificantes permite obtener mezclas trabajables con bajas relaciones agua/cemento y alta densidad. Este trabajo muestra los resultados obtenidos con el empleo de un superplastificante basado en policarboxilatos en un hormigón pesado de barita, que condujo a la obtención de un hormigón autocompactante. Las propiedades en el estado fresco se caracterizaron mediante ensayos adecuados para el hormigón autocompactante. Puesto que la segregación puede ser un aspecto clave en este tipo de hormigón, por las grandes diferencias entre las densidades de los componentes, se diseñó un ensayo específico para comprobar la homogeneidad del mismo. Los resultados permitieron comprobar que el hormigón fabricado poseía propiedades de autocompactabilidad, puesto que poseía la fluidez, la capacidad de paso a través de armaduras y la resistencia a la segregación adecuadas.

  18. Mechanical behavior of confined self-compacting reinforced concrete circular columns under concentric axial loading

    Directory of Open Access Journals (Sweden)

    Fouad Khairallah

    2013-12-01

    Full Text Available While there is abundant research information on ordinary confined concrete, there are little data on the behavior of Self-Compacting Concrete (SCC under such condition. Due to higher shrinkage and lower coarse aggregate content of SCC compared to that of Normal Concrete (NC, its composite performance under confined conditions needs more investigation. This paper has been devoted to investigate and compare the mechanical behavior of confined concrete circular columns cast with SCC and NC under concentric axial loading. The parameters affecting are including concrete compressive strength and confinement configuration. Twenty column specimens were casted and confined using four confinement techniques, CFRP wrap, FRP tube, GFRP wrap, and spiral steel hoops. The performance of the tested column specimens is evaluated based on mode of failure, load–displacement curve, stress–strain characteristics, ultimate strength, ductility, and degree of confinement.

  19. High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Traian Oneţ

    2009-01-01

    Full Text Available The paper presents the last studies and researches accomplished in Cluj-Napoca related to high performance concrete, high strength concrete and self compacting concrete. The purpose of this paper is to raid upon the advantages and inconveniences when a particular concrete type is used. Two concrete recipes are presented, namely for the concrete used in rigid pavement for roads and another one for self-compacting concrete.

  20. Porosity of Self-Compacting Concrete (SCC) incorporating high volume fly ash

    Science.gov (United States)

    Kristiawan, S. A.; Sunarmasto; Murti, G. Y.

    2017-02-01

    Degradation of concrete could be triggered by the presence of aggressive agents from the environment into the body of concrete. The penetration of these agents is influenced by the pore characteristics of the concrete. Incorporating a pozzolanic material such as fly ash could modify the pore characteristic of the concrete. This research aims to investigate the influence of incorporating fly ash at high volume level on the porosity of Self-Compacting Concrete (SCC). Laboratory investigations were carried out following the ASTM C642 for measuring density and volume of permeable pores (voids) of the SCC with varying fly ash contents (50-70% by weight of total binder). In addition, a measurement of permeable voids by saturation method was carried out to obtain an additional volume of voids that could not be measured by the immersion and boiling method of ASTM C642. The results show that the influence of fly ash content on the porosity appears to be dependent on age of SCC. At age less than 56 d, fly ash tends to cause an increase of voids but at 90 d of age it reduces the pores. The additional pores that can be penetrated by vacuum saturation method counts about 50% of the total voids.

  1. Mechanical properties of self-compacting concrete state-of-the-art report of the RILEM technical committee 228-MPS on mechanical properties of self-compacting concrete

    CERN Document Server

    Schutter, Geert

    2014-01-01

    The State-of-the-Art Report of RILEM Technical Committee 228-MPS on Mechanical properties of Self-Compacting Concrete (SCC) summarizes an extensive body of information related to mechanical properties and mechanical behaviour of SCC. Due attention is given to the fact that the composition of SCC varies significantly. A wide range of  mechanical properties are considered, including compressive strength, stress-strain relationship, tensile and flexural strengths, modulus of elasticity, shear strength, effect of elevated temperature, such as fire spalling and residual properties after fire, in-situ properties, creep, shrinkage, bond properties, and structural behaviour. A chapter on fibre-reinforced SCC is included, as well as a chapter on specialty SCC, such as light-weight SCC, heavy-weight SCC, preplaced aggregate SCC, special fibre reinforced SCC, and underwater concrete.

  2. Effect of mix design on the size-independent fracture energy of normal- and high-strength self-compacting concrete; Influencia de la composición de la mezcla sobre la energía de fractura de hormigones autocompactantes de resistencias media y alta.

    Energy Technology Data Exchange (ETDEWEB)

    Cifuentes, H.; Ríos, J.D.; Gómez, E.J.

    2018-04-01

    Self-compacting concrete has a characteristic microstructure inherent to its specific composition. The higher content of fine particles in self-compacting concrete relative to the equivalent vibrated concrete produces a different fracture behavior that affects the main fracture parameters. In this work, a comprehensive experimental investigation of the fracture behavior of self-compacting concrete has been carried out. Twelve different self-compacting concrete mixes with compressive strength ranging from 39 to 124 MPa (wider range than in other studies) have been subjected to three-point bending tests in order to determine the specific fracture energy. The influence of the mix design and its composition (coarse aggregate fraction, the water to binder ratio and the paste to solids ratio) on its fracture behavior has been analyzed. Moreover, further evidence of the objectivity of the size-independent fracture energy results, obtained by the two most commonly used methods, has been p [Spanish] Los hormigones autocompactantes tienen una microestructura interna inherente a su composición específica. Su mayor contenido de partículas finas, en comparación con hormigones vibrados equivalentes, provoca un comportamiento diferente en fractura que afecta a los principales parámetros de fractura. En este trabajo, se ha realizado una amplia investigación experimental del comportamiento en fractura de hormigones autocompactantes. Así, se han realizado ensayos de flexión en tres puntos para determinar sus propiedades de fractura sobre 12 hormigones autocompactantes de diferente composición, con resistencias a compresión que van desde 39 hasta 124 MPa (mayor que en otros estudios). De esta forma, se ha analizado la influencia de la dosificación del hormigón y su composición (contenido en árido grueso, relación agua-cemento y pasta-sólidos) sobre su comportamiento en fractura. Además, se ha validado, para hormigones autocompactantes, la objetividad de los

  3. Use of Rice Husk-Bark Ash in Producing Self-Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Sumrerng Rukzon

    2014-01-01

    Full Text Available This paper presents the use of blend of Portland cement with rice husk-bark ash in producing self-compacting concrete (SCC. CT was partially replaced with ground rice husk-bark ash (GRHBA at the dosage levels of 0%–40% by weight of binder. Compressive strength, porosity, chloride penetration, and corrosion of SCC were determined. Test results reveal that the resistance to chloride penetration of concrete improves substantially with partial replacement of CT with a blend of GRHBA and the improvement increases with an increase in the replacement level. The corrosion resistances of SCC were better than the CT concrete. In addition, test results indicated that the reduction in porosity was associated with the increase in compressive strength. The porosity is a significant factor as it affects directly the durability of the SCC. This work is suggested that the GHRBA is effective for producing SCC with 30% of GHRBA replacement level.

  4. Thermal and strength performance of reinforced self-compacting concrete slabs mixed with basalt and PVA fibers in high intensity fire

    Directory of Open Access Journals (Sweden)

    Mohd Jani Noraniza

    2017-01-01

    Full Text Available Fibers addition to concrete and the innovation of self-compacting concrete technology lead to the development of high-performance concrete. However, high intensity fire may adversely affect the performance of this type of concrete. A series of fire resistance test experiments to evaluate the performance of fiber reinforced self-compacting concrete (FR-SCC slabs consisting of various mix of basalt and PVA fibers were carried out by subjecting the concrete slabs as an element of construction to high intensity Hydrocarbon fire heating condition. The fire testing condition was in accordance with the standard time-temperature fire curve for 120 minutes up to 1100°C heating temperature. The temperatures on the surface and within the concrete slabs were recorded and the performance of each type of FRSCC slabs were evaluated. The performance of Basalt FR-SCC was found to be more resistant to fire in comparison to PVA FRSCC. There residual compressive strength of core samples were tested and SEM analysis were carried out to determine the effect of high intensity fire on the basalt and PVA FR-SCC slabs.

  5. Bond characteristics of steel fiber and deformed reinforcing steel bar embedded in steel fiber reinforced self-compacting concrete (SFRSCC)

    Science.gov (United States)

    Aslani, Farhad; Nejadi, Shami

    2012-09-01

    Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of the self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, ductility, toughness, energy absorption capacity, fracture toughness and cracking. Although the available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates the bond characteristics between steel fiber and SCC firstly. Based on the available experimental results, the current analytical steel fiber pullout model (Dubey 1999) is modified by considering the different SCC properties and different fiber types (smooth, hooked) and inclination. In order to take into account the effect of fiber inclination in the pullout model, apparent shear strengths ( τ ( app)) and slip coefficient ( β) are incorporated to express the variation of pullout peak load and the augmentation of peak slip as the inclined angle increases. These variables are expressed as functions of the inclined angle ( ϕ). Furthurmore, steel-concrete composite floors, reinforced concrete floors supported by columns or walls and floors on an elastic foundations belong to the category of structural elements in which the conventional steel reinforcement can be partially replaced by the use of steel fibers. When discussing deformation capacity of structural elements or civil engineering structures manufactured using SFRSCC, one must be able to describe thoroughly both the behavior of the concrete matrix reinforced with steel fibers and the interaction between this composite matrix and discrete steel reinforcement of the conventional type. However, even though the knowledge on bond behavior is essential for evaluating the overall behavior of structural components containing reinforcement and steel fibers

  6. Experimental analysis of reinforced concrete columns strengthened with self-compacting concrete and connectors

    Directory of Open Access Journals (Sweden)

    P. P. Nascimento

    Full Text Available There are many problems involving cases of destruction of buildings and other structures. The columns can deteriorate for several reasons such as the evolution and changing habits of the loads. The experimental phase of this work was based on a test involving nine reinforced concrete columns under combined bending and axial compression, at an initial eccentricity of 60 mm. Two columns were used as reference, one having the original dimensions of the column and the other, monolithic, had been cast along the thickness of the strengthened piece. The remaining columns received a 35 mm thick layer of self-compacting concrete on their compressed face. For the preparation of the interface between the two materials, this surface was scarified and furrowed and connectors were inserted onto the columns' shear reinforcement in various positions and amounts.As connectors, 5 mm diameter steel bars were used (the same as for stirrups, bent in the shape of a "C" with 25 mm coatings. >As a conclusion, not only the quantity, but mainly, the location of the connectors used in the link between substrate and reinforcement is crucial to increase strength and to change failure mode.

  7. Transfer and anchorage bond behaviour in self-compacting concrete

    Directory of Open Access Journals (Sweden)

    Rigueira-Víctor, J. W.

    2006-12-01

    Full Text Available Self-compacting concretes (SCC provide solutions to the problems facing precast concrete construction, enhancing competitiveness, reducing turnaround times and improving final product quality. SCC is fast becoming a key product for the future development of the precast pre-stressed concrete industry.The present paper compares the bond performance of SCC and traditional concrete (TC. The bond performance results confirm the viability of SCC in precast pre-stressed concrete manufacture, despite a slightly higher loss of pre-stressing force and slightly greater anchorage lengths in SCC with a low water/cement ratio. No differences in transfer or anchorage length were detected,however, when high strength TC and SCC were compared. The ECADA test method proved to be well suited to detecting the differences between the concretes analyzed.El desarrollo de los hormigones autocompactantes (SCCofrece muchas posibilidades a las construcciones con hormigón prefabricado, aumentando su competitividad, reduciéndolos plazos de fabricación y ofreciendo mejoras en la calidad del producto final. El SCC se está convirtiendo en un producto clave para el futuro desarrollo de la industria de prefabricados de hormigón pretensado.En este estudio se compara el comportamiento adherente de los SCC con el de los hormigones tradicionales (TC actuales. Los resultados obtenidos confirman la viabilidad del uso de los SCC para la fabricación de elementos prefabricados con hormigón pretensado, en lo relativo a su comportamiento adherente, aunque con la necesidad de considerar unas pérdidas de pretensado ligeramente mayores. Asimismo,debe esperarse un ligero aumento de las longitudes de anclaje cuando se trabaje con SCC de baja relación agua/cemento. Sin embargo, no se han detectado diferencias de comportamiento entre ambos tipos de hormigón cuando la resistencia a compresión es alta en lo relativo a las longitudes de transmisión y anclaje. El método de ensayo ECADA

  8. Modeling of fiber orientation in viscous fluid flow with application to self-compacting concrete

    Science.gov (United States)

    Kolařík, Filip; Patzák, Bořek

    2013-10-01

    In recent years, unconventional concrete reinforcement is of growing popularity. Especially fiber reinforcement has very wide usage in high performance concretes like "Self Compacting Concrete" (SCC). The design of advanced tailor-made structures made of SCC can take advantage of anisotropic orientation of fibers. Tools for fiber orientation predictions can contribute to design of tailor made structure and allow to develop casting procedures that enable to achieve the desired fiber distribution and orientation. This paper deals with development and implementation of suitable tool for prediction of fiber orientation in a fluid based on the knowledge of the velocity field. Statistical approach to the topic is employed. Fiber orientation is described by a probability distribution of the fiber angle.

  9. Sulphuric Acid Resistant of Self Compacted Geopolymer Concrete Containing Slag and Ceramic Waste

    Directory of Open Access Journals (Sweden)

    Shafiq I.

    2017-01-01

    Full Text Available Malaysia is a one of the developing countries where the constructions of infrastructure is still ongoing, resulting in a high demand for concrete. In order to gain sustainability factors in the innovations for producing concrete, geopolymer concrete containing granulated blast-furnace slag and ceramics was selected as a cement replacement in concrete for this study. Since Malaysia had many ceramic productions and uses, the increment of the ceramic waste will also be high. Thus, a new idea to reuse this waste in construction materials have been tested by doing research on this waste. Furthermore, a previous research stated that Ordinary Portland Cement concrete has a lower durability compared to the geopolymer concrete. Geopolymer binders have been reported as being acid resistant and thus are a promising and alternative binder for sewer pipe manufacture. Lack of study regarding the durability of the geopolymer self-compacting concrete was also one of the problems. The waste will be undergoing a few processes in the laboratory in order to get it in the best form before undergoing the next process as a binder in geopolymer concrete. This research is very significant in order to apply the concept of sustainability in the construction field. In addition, the impact of this geopolymer binder is that it emits up to nine times less CO2 than Portland Cement.

  10. Ultimate stress increase in unbonded tendons in post-tensioned indeterminate I-beams cast with high strength normal and self compacting concrete

    Directory of Open Access Journals (Sweden)

    Yousef Askari Dolatabad

    2018-06-01

    Full Text Available The use of un-bonded tendons is prevalent in post-tensioned concrete structures. Equations for prediction of stress in un-bonded tendons of post-tensioned normal (vibrating concrete flexural members have been given in various codes. They are based on experience and don’t account all of important parameters such as concrete strength (normal and high strength and its type (vibrating and non-vibrating concrete. Since self-compacting concrete (SCC is nearly a new innovation therefore, understanding the implementation of this type of non-vibrating concrete on the ultimate unbonded tendon stress is critical. For this aim, in this paper there are presented experimental results of six continuous un-bonded post-tensioned I-beams in two groups were casted and monitored by different electrical strain gauges. In the first tested group, the beams (UPN1-12, UPN1-18, UPN1-22 were consisting of high strength normal concrete (HSNC where as in the second group (UPS1-12, UPS1-18, UPS1-22 high strength self-compacting concrete (HSSCC were tested. The variables included the type of concrete and percentage of bounded non-prestressed steel. Experimental monitored results of ultimate stress increase in unbonded tendons are compared with predicted equations of different researchers and standards. It was found that, the proposed equation is in better agreement with the test results. The results of standard error of estimate Sy/x, indicates that for two types of HSCs, the ACI 318-2011 provides better estimates than AASHTO-2010 model whereas this model provides better estimates than BS 8110-97. Keywords: Post-tensioned, Unbonded tendons, Stress increase, High strength normal and self-compacting concrete, Continuous beams

  11. Synthesis of zinc oxide nanoparticles and their effect on the compressive strength and setting time of self-compacted concrete paste as cementitious composites.

    Science.gov (United States)

    Arefi, Mohammad Reza; Rezaei-Zarchi, Saeed

    2012-01-01

    In the present study, the mechanical properties of self-compacting concrete were investigated after the addition of different amounts of ZnO nanoparticles. The zinc oxide nanoparticles, with an average particle size of about 30 nm, were synthesized and their properties studied with the help of a scanning electron microscope (SEM) and X-ray diffraction. The prepared nanoparticles were partially added to self-compacting concrete at different concentrations (0.05, 0.1, 0.2, 0.5 and 1.0%), and the mechanical (flexural and split tensile) strength of the specimens measured after 7, 14, 21 and 28 days, respectively. The present results have shown that the ZnO nanoparticles were able to improve the flexural strength of self-compacting concrete. The increased ZnO content of more than 0.2% could increase the flexural strength, and the maximum flexural and split tensile strength was observed after the addition of 0.5% nanoparticles. Finally, ZnO nanoparticles could improve the pore structure of the self-compacted concrete and shift the distributed pores to harmless and less-harmful pores, while increasing mechanical strength.

  12. X-Ray Investigation and Strength Measurement of Steel Fibre Reinforced Self-Compacting Concrete Beams

    Directory of Open Access Journals (Sweden)

    Ponikiewski Tomasz

    2016-12-01

    Full Text Available The paper presents a study on self-compacting concrete with two types of steel fibres. Under consideration was the effect the method of forming of beam elements has on the distribution of steel fibres. Formed we beams of dimensions 120×15×15 cm3 and 180×15×15 cm3. The self-compacting mixture contained steel fibres of varying lengths (35 and 50 mm and varying levels of their volume ratio in the mix (0.5% - 1.0% - 1.5%.

  13. Recycling ground granulated blast furnace slag as cold bonded artificial aggregate partially used in self-compacting concrete.

    Science.gov (United States)

    Gesoğlu, Mehmet; Güneyisi, Erhan; Mahmood, Swara Fuad; Öz, Hatice Öznur; Mermerdaş, Kasım

    2012-10-15

    Ground granulated blast furnace slag (GGBFS), a by-product from iron industry, was recycled as artificial coarse aggregate through cold bonding pelletization process. The artificial slag aggregates (ASA) replaced partially the natural coarse aggregates in production of self-compacting concrete (SCC). Moreover, as being one of the most widely used mineral admixtures in concrete industry, fly ash (FA) was incorporated as a part of total binder content to impart desired fluidity to SCCs. A total of six concrete mixtures having various ASA replacement levels (0%, 20%, 40%, 60%, and 100%) were designed with a water-to-binder (w/b) ratio of 0.32. Fresh properties of self-compacting concretes (SCC) were observed through slump flow time, flow diameter, V-funnel flow time, and L-box filling height ratio. Compressive strength of hardened SCCs was also determined at 28 days of curing. It was observed that increasing the replacement level of ASA resulted in decrease in the amount of superplasticizer to achieve a constant slump flow diameter. Moreover, passing ability and viscosity of SCC's enhanced with increasing the amount of ASA in the concrete. The maximum compressive strength was achieved for the SCC having 60% ASA replacement. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Investigation on the Mechanisms Governing the Robustness of Self-Compacting Concrete at Paste Level

    NARCIS (Netherlands)

    van der Vurst, F; Lesage, Karel; Grunewald, S.; Vandewalle, Lucie; Vantomme, John; Schutter, G; Khayat, Kamal H.

    2016-01-01

    In spite of the many advantages, the use of self-compacting concrete
    (SCC) is currently widely limited to application in precast factories and sihiations
    in which external vibration would cause large difficulties. One of the main
    limitations is the higher sensitivity to small variations

  15. Analysis of crack propagation in concrete structures with structural information entropy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The propagation of cracks in concrete structures causes energy dissipation and release, and also causes energy redistribution in the structures. Entropy can characterize the energy redistribution. To investigate the relation between the propagation of cracks and the entropy in concrete structures, cracked concrete structures are treated as dissipative structures. Structural information entropy is defined for concrete structures. A compact tension test is conducted. Meanwhile, numerical simulations are also carried out. Both the test and numerical simulation results show that the structural information entropy in the structures can characterize the propagation of cracks in concrete structures.

  16. The combined influence of paste volume and volumetric water-to- powder ratio on robustness of fresh self-compacting concrete

    NARCIS (Netherlands)

    Van der Vurst, F.; Grunewald, S.; Feys, D.; De Schutter, G.

    2015-01-01

    In order to avoid durability problems caused by an inadequate consolidation of concrete, self-compacting concrete (SCC) has been developed. The mix design of SCC aims at balancing a minimum flowability allowing air bubbles to escape and a maximum flowability in order to avoid segregation. Because of

  17. A method for calculating equivalent diameter of fiber in self-compacting fiber reinforced concrete

    NARCIS (Netherlands)

    Yu, R.; Spiesz, P.R.; Brouwers, H.J.H.; Fischer, H.-B.; Bode, K.-A.; Beuthan, C.

    2012-01-01

    This paper presents a method for calculating the equivalent diameter of fiber in self-compacting fiber reinforced concrete (SCFRC). The key idea is to utilize a small amount of particles with a narrow particle size distribution to replace the fibers by the same volume, without causing any obvious

  18. Compact Embedded Wireless Sensor-Based Monitoring of Concrete Curing.

    Science.gov (United States)

    Cabezas, Joaquín; Sánchez-Rodríguez, Trinidad; Gómez-Galán, Juan Antonio; Cifuentes, Héctor; González Carvajal, Ramón

    2018-03-15

    This work presents the design, construction and testing of a new embedded sensor system for monitoring concrete curing. A specific mote has been implemented to withstand the aggressive environment without affecting the measured variables. The system also includes a real-time monitoring application operating from a remote computer placed in a central location. The testing was done in two phases: the first in the laboratory, to validate the functional requirements of the developed devices; and the second on civil works to evaluate the functional features of the devices, such as range, robustness and flexibility. The devices were successfully implemented resulting in a low cost, highly reliable, compact and non-destructive solution.

  19. The effect of w/c ratio on microstructure of self-compacting concrete (SCC) with sugarcane bagasse ash (SCBA)

    Science.gov (United States)

    Hanafiah, Saloma, Victor, Amalina, Khoirunnisa Nur

    2017-11-01

    Self-Compacting Concrete (SCC) is a concrete that can flow and compact by itself without vibrator. The ability of SCC to flow by itself makes this concrete very suitable for construction that has very small reinforcement gaps. In this study, SCC was designed to get a compressive strength above 60 MPa at the age of 28 days. Sugarcane bagasse ash was used as substitution material for cement replacement. Percentages of sugarcane bagasse ash used were 10%, 15%, and 20%. There were three w/c values that vary from 0.275, 0.300, and 0.325. Testing standards referred to ASTM, EFNARC and ACI. The fresh concrete test was slump flow, L-box and V-funnel. The maximum compressive strength was in the mixture with the sugarcane bagasse ash composition of 15% and w/c=0.275 which was 67.24 MPa. The result of SEM test analysis found that the mixture composition with 15% sugarcane bagasse ash has solid CSH structure, small amount of pores, and smaller pore diameter than other mixtures.

  20. Structural Design and Economic Evaluation of Roller Compacted Concrete Pavement with Recycled Aggregates

    Science.gov (United States)

    Abut, Yavuz; Taner Yildirim, Salih

    2017-10-01

    Using recycled aggregates in the concrete offers advantages in many areas such as waste management, energy save and natural resources, conservation of ecological balance, low CO2 emissions, and users are encouraged in this regard to use these materials. In this study, the profit / loss account arising in the structural design phase was investigated when Reclaimed Asphalt Pavement (RAP), which is limited to use in Roller Compacted Concrete (RCC) pavements, was used as coarse aggregate. RAP materials were used as coarse aggregates by the levels of 0%, 15% and 20% and mechanical properties such as compressive strength, flexural strength, splitting tensile strength and modulus of elasticity were investigated. In the last stage, the mechanical properties obtained from these experimental studies were entered into KENSLABS software as input, and the slab layer thicknesses were determined according to three different subgrade conditions and a certain fatigue criterion. According to the results, it has been determined that the use of RAP at a level of 20% is a serious reducing effect on mechanical properties and and the use of RAP at a level of 15% does not bring a great economic benefit but it is reasonable to use it as coarse aggregate in RCC mixes in consideration of environmental effects.

  1. Evaluating the Carbonation Resistance of Self Compacting Concrete made with Recycled Concrete Aggregates

    Directory of Open Access Journals (Sweden)

    S P Singh

    2016-07-01

    Full Text Available The paper presents the results of an investigation conducted to examine carbonation resistance of Self Compacting Concrete (SCC made with coarse Recycled Concrete Aggregates (RCA. In total, five SCC mixes were prepared by systematically replacing coarse Natural Aggregates (NA by RCA at 0, 25, 50, 75 and 100%. In order to measure the carbonation resistance of SCC made with RCA, accelerated carbonation tests were performed for 4 and 12 weeks of exposure to carbon dioxide. The carbonation resistance has been evaluated after curing periods of 28 and 90 days. In addition to this, the compressive strength of all the mixes was also obtained after 7, 28 and 90 days of curing and ultra-sonic pulse velocity tests (UPV were also conducted. The results indicate that with the increase in the content of RCA as replacement of NA, decrease in the carbonation resistance, compressive strength and UPV was observed for all SCC mixes. It has been observed that the SCC mixes containing low percentages of RCA (i.e. 25% as replacement of NA do not impart detrimental behaviour in the overall performance but higher replacement levels (>50% have been found to deteriorate the performance in terms of carbonation resistance, compressive strength and UPV.

  2. Effect of Fibers and Filler Types on Fresh and Hardened Properties of Self-Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Saeed K. Rejeb* , Majid Kh . N. Ayad A. M.

    2014-04-01

    Full Text Available This paper deals with studying the fresh and hardened properties of self-compacting concrete, by using three types of filler (silica fume, clinker powder & lime stone powder, and two types of fibers (steel & glass fibers with volume fractions of (0.5% and (0.1% respectively. For each type of fillers, the fresh properties are measured by using Slump test, J- ring and V- funnel, while hardened properties include the compressive strength, splitting tensile strength and flexural strength. The results show that adding fibers to the self-compacting concrete (SCC well reduces the workability and improves the hardened properties. Also, the study concluded that better workability is obtained by using (lime stone, silica fume and clinker powder as fillers, respectively. While the higher hardened properties are gained by using silica fume were rather than those of other types of fillers 

  3. Synthesis of Zinc Oxide Nanoparticles and Their Effect on the Compressive Strength and Setting Time of Self-Compacted Concrete Paste as Cementitious Composites

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Arefi

    2012-04-01

    Full Text Available In the present study, the mechanical properties of self-compacting concrete were investigated after the addition of different amounts of ZnO nanoparticles. The zinc oxide nanoparticles, with an average particle size of about 30 nm, were synthesized and their properties studied with the help of a scanning electron microscope (SEM and X-ray diffraction. The prepared nanoparticles were partially added to self-compacting concrete at different concentrations (0.05, 0.1, 0.2, 0.5 and 1.0%, and the mechanical (flexural and split tensile strength of the specimens measured after 7, 14, 21 and 28 days, respectively. The present results have shown that the ZnO nanoparticles were able to improve the flexural strength of self-compacting concrete. The increased ZnO content of more than 0.2% could increase the flexural strength, and the maximum flexural and split tensile strength was observed after the addition of 0.5% nanoparticles. Finally, ZnO nanoparticles could improve the pore structure of the self-compacted concrete and shift the distributed pores to harmless and less-harmful pores, while increasing mechanical strength.

  4. The effects of coarse aggregate cleanliness and moisture content on asphalt concrete compactability and moisture susceptibility.

    Science.gov (United States)

    2011-12-31

    Twelve field projects were studied where forty-four locations were evaluated to assess the cause or : causes of asphalt concrete that exhibits tender zone characteristics (i.e. instability during compaction) and to : investigate the tendency of...

  5. Analysis of Mechanical Properties of Self Compacted Concrete by Partial Replacement of Cement with Industrial Wastes under Elevated Temperature

    Directory of Open Access Journals (Sweden)

    Junaid Mansoor

    2018-03-01

    Full Text Available Self-Compacting Concrete (SCC differs from the normal concrete as it has the basic capacity to consolidate under its own weight. The increased awareness regarding environmental disturbances and its hazardous effects caused by blasting and crushing procedures of stone, it becomes a delicate and obvious issue for construction industry to develop an alternative remedy as material which can reduce the environmental hazards and enable high-performance strength to the concrete, which would make it durable and efficient for work. A growing trend is being established all over the world to use industrial byproducts and domestic wastes as a useful raw material in construction, as it provides an eco-friendly edge to the construction process and especially for concrete. This study aims to enlighten the use and comparative analysis for the performance of concrete with added industrial byproducts such as Ground Granulated Blast Furnace Slag (GGBFS, Silica fumes (SF and Marble Powder (MP in the preparation of SCC. This paper deals with the prediction of mechanical properties (i.e., compressive, tensile and flexural Strength of self-compacting concrete by considering four major factors such as type of additive, percentage additive replaced, curing days and temperature using Artificial Neural Networks (ANNs.

  6. Fibre reinforced self-compacting concrete flow simulations in comparison with l-box experiments using carbopol

    DEFF Research Database (Denmark)

    Svec, Oldrich; Skocek, Jan; Olesen, John Forbes

    An evolution of distribution and orientation of fibres in the fibre reinforced self-compacting concrete during the casting process is an important matter as the final orientation and distribution of fibres can significantly influence mechanical properties of the structural elements. A two-way cou...

  7. ZrO2 nanoparticles' effects on split tensile strength of self compacting concrete

    Directory of Open Access Journals (Sweden)

    Ali Nazari

    2010-12-01

    Full Text Available In the present study, split tensile strength of self compacting concrete with different amount of ZrO2 nanoparticles has been investigated. ZrO2 nanoparticles with the average particle size of 15 nm were added partially to cement paste (Portland cement together with polycarboxylate superplasticizer and split tensile strength of the specimens has been measured. The results indicate that ZrO2 nanoparticles are able to improve split tensile strength of concrete and recover the negative effects of polycarboxylate superplasticizer. ZrO2 nanoparticle as a partial replacement of cement up to 4 wt. (% could accelerate C-S-H gel formation as a result of increased crystalline Ca(OH2 amount at the early age of hydration. The increased the ZrO2 nanoparticles' content more than 4 wt. (%, causes the reduced the split tensile strength because of unsuitable dispersion of nanoparticles in the concrete matrix.

  8. The behavior of self-compacting concrete (SCC) with bagasse ash

    Science.gov (United States)

    Hanafiah, Saloma, Whardani, Putri Nurul Kusuma

    2017-11-01

    Self-Compacting Concrete (SCC) has the ability to flow and self-compacting. One of the benefit of SCC can reduced the construction time and labor cost. The materials to be used for see slightly different with the conventional concrete. Less coarse aggregate to be used up to 50%. The maximum size of coarse aggregate was also limited e.g. 10 mm. Other material was quartz sand with grain size of 50-650 µm. For reducing the around of cement, bagasse ash was used as partial replacement of cement. In this research, the variations of w/c to be used, e.g. 0.275, 0.300, 0.325 and the percentage of bagasse ash substitution were 10%, 15%, and 20%. EFNARC standard was conducted for slump flow test following the V-funnel test and L-box shape test. The maximum value of slump flow test was 75.75 cm, V-funnel test was 4.95 second, and L-box test was 1.000 yielded by mixture with w/c = 0.325 and 0% of bagasse ash. The minimum value of slump flow test was 61.50 cm, V-funnel test is 21.05 second, and L-box test was 0.743 yielded by mixture with w/c = 0.275 and 20% of bagasse ash. The maximum value of compressive strength was 67.239 MPa yielded by mixture with w/c = 0.275 and 15% of bagasse ash. And the minimum value of compressive strength was 41.813 MPa yielded by mixture with w/c = 0.325 and 20% bagasse ash.

  9. Ductility and performance assessment of high strength self compacting concrete (HSSCC) deep beams: An experimental investigation

    International Nuclear Information System (INIS)

    Mohammadhassani, Mohammad; Jumaat, Mohd Zamin; Jameel, Mohammed; Badiee, Hamid; Arumugam, Arul M.S.

    2012-01-01

    Highlights: ► Ductility decreased with increase in tensile reinforcement ratio. ► The width of the load point and the support point influences premature failure. ► Load–deflection relationship is linear till 85% of the ultimate load. ► The absorbed energy increases with the increase of tensile reinforcement ratios. - Abstract: The behavior of deep beams is significantly different from that of normal beams. Because of their proportions, deep beams are likely to have strength controlled by shear. This paper discusses the results of eight simply supported high strength self compacting concrete (HSSCC) deep beams having variation in ratio of web reinforcement and tensile reinforcement. The deflection at two points along the beam length, web strains, tensile bars strains and the strain at concrete surface are recorded. The results show that the strain distribution at the section height of mid span is nonlinear. Ductility decreased with increase in tensile reinforcement ratio. The effect of width of load point and the support point is more important than the effect of tensile reinforcement ratio in preventing premature failure. Load–deflection graphs confirm linear relationship up to 85% of the ultimate load for HSSCC over-reinforcement web sections. The absorbed energy index increases with the increase in tensile reinforcement ratios.

  10. Study on the effect of Shahin-Dezh green Tuff on the mechanical characteristics of roller compact concrete

    Directory of Open Access Journals (Sweden)

    Sadegh Dardaei

    2016-12-01

    Full Text Available Due to the growing popularity of concrete structure and increasing use of them, especially Roller compacted concrete, applying Pozzolan and replacing cement with Pozzolan is very important. Nowadays, the use of the additive for cement replacement is common in RCC mix design due to its technical advantages and economic benefits as there is large quantity of Pozzolan mineral resources in Iran. In this paper the impact of produced concrete has been fully considered as well as the effect of this Pozzolan on the compressive strength, tensile strength and permeability by using green Tuff obtained from available Pozzolan in western Azarbaijan. The due results prove that Shahin-Dezh green Tuff improves concretes quality.

  11. Compact Embedded Wireless Sensor-Based Monitoring of Concrete Curing

    Science.gov (United States)

    Cabezas, Joaquín; Sánchez-Rodríguez, Trinidad; González Carvajal, Ramón

    2018-01-01

    This work presents the design, construction and testing of a new embedded sensor system for monitoring concrete curing. A specific mote has been implemented to withstand the aggressive environment without affecting the measured variables. The system also includes a real-time monitoring application operating from a remote computer placed in a central location. The testing was done in two phases: the first in the laboratory, to validate the functional requirements of the developed devices; and the second on civil works to evaluate the functional features of the devices, such as range, robustness and flexibility. The devices were successfully implemented resulting in a low cost, highly reliable, compact and non-destructive solution. PMID:29543765

  12. Optimization of Casting Process Parameters for Homogeneous Aggregate Distribution in Self-Compacting Concrete: A Feasibility Study

    DEFF Research Database (Denmark)

    Spangenberg, Jon; Tutum, Cem Celal; Hattel, Jesper Henri

    2011-01-01

    The use of self-compacting concrete (SCC) as a construction material has been getting more attention from the industry. Its application area varies from standard structural elements in bridges and skyscrapers to modern architecture having geometrical challenges. However, heterogeneities induced...

  13. Copolymer natural latex in concrete: Dynamic evaluation through energy dissipation of polymer modified concrete

    Science.gov (United States)

    Andayani, Sih Wuri; Suratman, Rochim; Imran, Iswandi; Mardiyati

    2018-05-01

    Portland cement concrete have been used in construction due to its strength and ecomical value. But it has some limitations, such low flexural strength, low tensile strength, low chemical resistant and etc. Due to its limitations in flexural and tensile strength, Portland cement concrete more susceptible by seismic force. There are some methods for improving its limitations. Polymer addition into concrete mixture could be one of solution for improving the flexural and tensile strength, in aiming to get erthquake resistant properties. Also, the eartquake resistant could be achieved by improving energy dissipation capacity. In this research, the earthquake resistant evalution was approached from dynamic evaluation through energy dissipation capacity, after polymer addition as concrete additives. The polymers were natural latex (Indonesian naural resource) grafted with styrene and methacrylate, forming copolymer - natural latex methacrylate (KOLAM) and copolymer - natural latex styrene (KOLAS). They were added into concrete mixture resulting polymer modified concrete. The composition of polymer are 1%, 5% and 10% weight/weight of cement. The higher capacity of energy dissipation will give more capability in either absorbing or dissipating energy, and it was predicted would give better earthquake resistant.. The use of KOLAM gave better performance than KOLAS in energy dissipation capacity. It gave about 46% for addition of 1% w/w compared to Portland cement concrete. But for addition 5% w/w and 10% w/w, they gave about 7% and 5% higher energy dissipation capacity. The KOLAM addition into concrete mixture would reduce the maximum impact load with maximumabout 35% impact load reducing after 1% w/w addition. The higher concentration of KOLAM in concrete mixture, lower reducing of impact load, they were about 4% and 3% for KOLAM 5% and 10%. For KOLAS addition in any compositions, there were no positive trend either in energy dissipation capacity or impact load properties

  14. The effect of aging on the fracture characteristics and ductility of self-compacting concrete

    International Nuclear Information System (INIS)

    Beygi, Morteza H.A.; Kazemi, Mohammad T.; Nikbin, Iman M.; Vaseghi Amiri, Javad

    2014-01-01

    Highlights: • Fracture properties of SCC were obtained using two different methods. • Results showed with increase of age the fracture toughness increases. • As SCC becomes older, brittleness number is almost doubled. • The Size effect curve showed SCC brittleness increases with increase of age. - Abstract: Good knowledge of fracture parameters and cracking behavior of self-compacting concrete (SCC) from early ages until the SCC becomes mature plays an important role in design of SCC structure and also in evaluation of durability and consequently prevention of damage. In this paper, variation of fracture parameters and corresponding ductility behavior of SCC at different ages (e.g. 3 days, 7 days, 28 days and 90 days) for SCC mixes with w/c ratios of 0.45 and 0.65 have been experimentally studied. To do so, three-point bending tests were carried out on 120 notched beams. Then, size effect method (SEM) and work of fracture method (WFM) were applied to interpret the results. The results of analyses indicated that as the concrete is aging from 3 days to 90 days: (a) fracture energies from SEM (G f ) and WFM (G F ) are increased: (b) effective size of the process zone (C f ) in SEM and characteristic length (L ch ) in WFM are considerably decreased indicating increase of concrete brittleness: (c) fracture surface of concrete passing through the aggregate is increased which is attributed to strength improvement of hardened cement paste and aggregate–paste transition zone: (d) fracture toughness is significantly increased: (e) brittleness number is almost doubled. Also, the ratio of G F /G f , which is applied for calibration of numerical models of cracking at different ages, is equal to 2.70

  15. Study of technological features of tubular compressed concrete members in concreting

    Directory of Open Access Journals (Sweden)

    Voskobiinyk Olena

    2017-01-01

    Full Text Available The technological features of core concreting were analyzed as the main factor in ensuring of strength and reliability of compressed concrete-filled steel tubular (CFST members. We have conducted the analysis of existing concreting methods of CFST members. In this respect, the most dangerous types of possible technological defects of concrete core of CFST members are inhomogeneity along the height, voids, caverns, and concrete “weak spots”. The authors considered the influence of such technological factors of concreting: placeability, time, concrete mixture compaction method, concreting height on the concrete core strength of CFST members. Based on the experimental studies conducted we suggested the regression correlations for determining the concrete strength of CFST members of different length depending on the movability of concrete mixture and a time for its compaction. The authors performed the correlation analysis of technological factors of concreting on the strength of the concrete core. We carried out the comparison of data on the concrete core strength of CFST members, that were determined by non-destructive methods (sclerometer test results, ultrasonic method and direct compression strength tests. We experimentally proved that using movable mixtures with the slump of about 4 – 9 cm the overall variation coefficient of concrete core strength of CFST members along the height reaches nearly 13%. Based on the experimental studies conducted we suggested the guidelines on optimal regimes of concrete compaction during manufacturing CFST members at a construction site environment.

  16. Mechanical Behavior of Self-Compacting Concrete Containing Nano-Metakaolin

    Directory of Open Access Journals (Sweden)

    Mohammed Kareem Abed

    2017-08-01

    Full Text Available This paper presents the influence of nano- metakaolin addition for production self-compacting concrete (SCC. Nano-metakaolin material was used at four percentages (0, 1, 3 and 5 % as partial replacement by weight of cement [Reference mix (PC, (1%, 3%, 5% nano-metakaolin(1, 3, 5 NMK]. This research studied the influence of nano-metakaolin material on the fresh and mechanical properties which represented by the different tests were slump flow, T50cm, L-Box, V-funnel, compressive and flexural strength. From the results of this study, found that the SCC with 5% of nano-metakaolin material as partial replacement by weight of cement give the best results of fresh and mechanical properties of SCC mixes.

  17. Distribution of residual long-lived radioactivity in the inner concrete walls of a compact medical cyclotron vault room.

    Science.gov (United States)

    Fujibuchi, Toshioh; Nohtomi, Akihiro; Baba, Shingo; Sasaki, Masayuki; Komiya, Isao; Umedzu, Yoshiyuki; Honda, Hiroshi

    2015-01-01

    Compact medical cyclotrons have been set up to generate the nuclides necessary for positron emission tomography. In accelerator facilities, neutrons activate the concrete used to construct the vault room; this activation increases with the use of an accelerator. The activation causes a substantial radioactive waste management problem when facilities are decommissioned. In the present study, several concrete cores from the walls, ceiling and floor of a compact medical cyclotron vault room were samples 2 years after the termination of operations, and the radioactivity concentrations of radionuclides were estimated. Cylindrical concrete cores 5 cm in diameter and 10 cm in length were bored from the concrete wall, ceiling and floor. Core boring was performed at 18 points. The gamma-ray spectrum of each sample was measured using a high-purity germanium detector. The degree of activation of the concrete in the cyclotron vault room was analyzed, and the range and tendency toward activation in the vault room were examined. (60)Co and (152)Eu were identified by gamma-ray spectrometry of the concrete samples. (152)Eu and (60)Co are produced principally from the stable isotopes of europium and cobalt by neutron capture reactions. The radioactivity concentration did not vary much between the surface of the concrete and at a depth of 10 cm. Although the radioactivity concentration near the target was higher than the clearance level for radioactive waste indicated in IAEA RS-G-1.7, the mean radioactivity concentration in the walls and floor was lower than the clearance level. The radioactivity concentration of the inner concrete wall of the medical cyclotron vault room was not uniform. The areas exceeding the clearance level were in the vicinity of the target, but most of the building did not exceed the clearance levels.

  18. Strengths and Failure Characteristics of Self-Compacting Concrete Containing Recycled Waste Glass Aggregate

    Directory of Open Access Journals (Sweden)

    Rahman Khaleel AL-Bawi

    2017-01-01

    Full Text Available The effects of different proportions of green-colored waste glass (WG cullet on the mechanical and fracture properties of self-compacting concrete (SCC were experimentally investigated. Waste bottles were collected, washed, crushed, and sieved to prepare the cullet used in this study. Cullet was incorporated at different percentages (0%, 20%, 40%, 60%, 80%, and 100% by weight instead of natural fine aggregate (NFA and/or natural coarse aggregate (NCA. Three SCC series were designed with a constant slump flow of 700±30 mm, total binder content of 570 kg/m3 and at water-to-binder (w/b ratio of 0.35. Moreover, fly ash (FA was used in concrete mixtures at 20% of total binder content. Mechanical aspects such as compressive, splitting tensile, and net flexural strengths and modulus of elasticity of SCC were investigated and experimentally computed at 28 days of age. Moreover, failure characteristics of the concretes were also monitored via three-point bending test on the notched beams. The findings revealed that the mechanical properties as well as fracture parameters were adversely influenced by incorporating of WG cullet. However, highest reduction of compressive strength did not exceed 43% recorded at 100% WG replacement level. Concretes containing WG showed less brittle behavior than reference concrete at any content.

  19. Three-dimensional earthquake analysis of roller-compacted concrete dams

    Directory of Open Access Journals (Sweden)

    M. E. Kartal

    2012-07-01

    Full Text Available Ground motion effect on a roller-compacted concrete (RCC dams in the earthquake zone should be taken into account for the most critical conditions. This study presents three-dimensional earthquake response of a RCC dam considering geometrical non-linearity. Besides, material and connection non-linearity are also taken into consideration in the time-history analyses. Bilinear and multilinear kinematic hardening material models are utilized in the materially non-linear analyses for concrete and foundation rock respectively. The contraction joints inside the dam blocks and dam–foundation–reservoir interaction are modeled by the contact elements. The hydrostatic and hydrodynamic pressures of the reservoir water are modeled with the fluid finite elements based on the Lagrangian approach. The gravity and hydrostatic pressure effects are employed as initial condition before the strong ground motion. In the earthquake analyses, viscous dampers are defined in the finite element model to represent infinite boundary conditions. According to numerical solutions, horizontal displacements increase under hydrodynamic pressure. Besides, those also increase in the materially non-linear analyses of the dam. In addition, while the principle stress components by the hydrodynamic pressure effect the reservoir water, those decrease in the materially non-linear time-history analyses.

  20. Ductility and performance assessment of high strength self compacting concrete (HSSCC) deep beams: An experimental investigation

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadhassani, Mohammad, E-mail: mmh356@yahoo.com [Department of Civil Engineering, University of Malaya, Kuala Lumpur (Malaysia); Jumaat, Mohd Zamin; Jameel, Mohammed [Department of Civil Engineering, University of Malaya, Kuala Lumpur (Malaysia); Badiee, Hamid [Department of Civil Engineering, University of Kerman (Iran, Islamic Republic of); Arumugam, Arul M.S. [Department of Civil Engineering, University of Malaya, Kuala Lumpur (Malaysia)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Ductility decreased with increase in tensile reinforcement ratio. Black-Right-Pointing-Pointer The width of the load point and the support point influences premature failure. Black-Right-Pointing-Pointer Load-deflection relationship is linear till 85% of the ultimate load. Black-Right-Pointing-Pointer The absorbed energy increases with the increase of tensile reinforcement ratios. - Abstract: The behavior of deep beams is significantly different from that of normal beams. Because of their proportions, deep beams are likely to have strength controlled by shear. This paper discusses the results of eight simply supported high strength self compacting concrete (HSSCC) deep beams having variation in ratio of web reinforcement and tensile reinforcement. The deflection at two points along the beam length, web strains, tensile bars strains and the strain at concrete surface are recorded. The results show that the strain distribution at the section height of mid span is nonlinear. Ductility decreased with increase in tensile reinforcement ratio. The effect of width of load point and the support point is more important than the effect of tensile reinforcement ratio in preventing premature failure. Load-deflection graphs confirm linear relationship up to 85% of the ultimate load for HSSCC over-reinforcement web sections. The absorbed energy index increases with the increase in tensile reinforcement ratios.

  1. Potential of utilizing asphalt dust waste as filler material in the production of sustainable self compacting concrete (SCC)

    Science.gov (United States)

    Ismail, Isham; Shahidan, Shahiron; Bahari, Nur Amira Afiza Saiful

    2017-12-01

    Waste materials from many industries are widely used in the production of sustainable green concrete. Utilizing asphalt dust waste (ADW) as a filler material in the development of self-compacting concrete (SCC) is one of the alternative solutions for reducing environmental waste. SCC is an innovative concrete that does not require vibration for placing and compaction. However, there is limited information on the effects of utilizing ADW in the development of SCC. Therefore, this research study examines the effects of various w/b ratios (0.2, 0.3 and 0.4) and differing amounts of ADW (0% to 50%) on the rheological properties of fresh state concrete. The compressive strength of the SCC was tested only for 7 and 28 days as preliminary studies. The results revealed that mixtures MD730, MD740 and MD750 showed satisfactory results for the slump flow, J-Ring, L-Box and V-Funnel test during the fresh state. The compressive strength values obtained after 28 days for MD730, MD740 and MD750 were 35.1 MPa, 36.8 MPa and 29.4 MPa respectively. In conclusion, the distribution of materials in mixtures has significant effect in achieving rheological properties and compressive strength of SCC.

  2. A COST-REDUCTION OF SELF-COMPACTING CONCRETE INCORPORATING RAW RICE HUSK ASH

    Directory of Open Access Journals (Sweden)

    H. AWANG

    2016-01-01

    Full Text Available The higher material cost of self-compacting concrete (SCC as compared to normal vibrated concrete is mainly due to its higher cement content. In order to produce economical SCC, a significant amount of cement should be replaced with cheaper material options, which are commonly found in byproduct materials such as limestone powder (LP, fly ash (FA and raw rice husk ash (RRHA. However, the use of these byproduct materials to replace the high volumes of cement in an SCC mixture will produce deleterious effects such as strength reduction. Thus, the objective of this paper is to investigate the optimum SCC mixture proportioning capable of minimizing SCC’s material cost. A total of fifteen mixes were prepared. This study showed that raw rice husk ash exhibited positive correlations with fly ash and fine limestone powder and were able to produce high compressive and comparable to normal concrete. The SCC-mix made with quaternary cement-blend comprising OPC/LP/FA/RRHA at 55/15/15/15 weight percentage ratio is found to be capable of maximizing SCC’s material-cost reduction to almost 19% as compared with the control mix

  3. Fresh Properties and Flexural Strength of Self-Compacting Concrete Integrating Coal Bottom Ash

    Directory of Open Access Journals (Sweden)

    Jamaluddin Norwati

    2016-01-01

    Full Text Available This paper presents the effect of using coal bottom ash as a partial replacement of fine aggregates in self-compacting concrete (SCC on its fresh properties and flexural strength. A comparison between SCC with various replacements of fine aggregates with coal bottom ash showed that SCC obtained flexural strength decrease on increase of water cement ratio from 0.35 to 0.45. The natural sand was replaced with coal bottom ash up to 30% volumetrically. The fresh properties were investigated by slump flow, T500 spread time, L-box test and sieve segregation resistance in order to evaluate its self-compatibility by compared to control samples embed with natural sand. The results revealed that the flowability and passing ability of SCC mixtures are decreased with higher content of coal bottom ash replacement. The results also showed that the flexural strength is affected by the presence of coal bottom ash in the concrete. In addition, the water cement ratios are influence significantly with higher binder content in concrete.

  4. THE COMPRESSIVE AND FLEXURAL STRENGTHS OF SELF-COMPACTING CONCRETE USING RAW RICE HUSK ASH

    Directory of Open Access Journals (Sweden)

    MD NOR ATAN

    2011-12-01

    Full Text Available This study investigates the compressive and flexural strengths of self-compacting concrete incorporating raw rice husk ash, individually and in combination with other types of mineral additives, as partial cement replacement. The additives paired with raw rice husk ash were fine limestone powder, pulverized fuel ash and silica fumes. The mix design was based on the rational method where solid constituents were fixed while water and superplasticizer contents were adjusted to produce optimum viscosity and flowability. All mixes were designed to achieve SF1 class slump-flow with conformity criteria ≥ 520 mm and ≤ 700 mm. Test results show that 15% replacement of cement using raw rice husk ash produced grade 40 concrete. It was also revealed that 30% and 45% cement replacements using raw rice husk ash combined with limestone powder and raw rice husk ash combined with limestone powder and silica fume respectively, produced comparable compressive strength to normal concrete and improved flexural strengths.

  5. Technical viability of self-compacting concretes with by-products from crushed coarse aggregate production

    Directory of Open Access Journals (Sweden)

    Edgar Bacarji

    Full Text Available Abstract The main objective of this work is to present the technical viability of Self Compacting Concretes (SCC containing by-products from crushed coarse aggregate production. For this purpose, a vast characterization of these by-products was made; six mixtures of SCC were produced using two different aggregates: granite and mica schist. The binder/dry aggregate (b/agg ratio by mass was 1:3. The following properties were analyzed: compressive strength, direct tensile strength, flexural tensile strength and splitting tensile strength. Granite presented the best mechanical performance. The replacement of natural sand by granite sand generated concretes with the same level of compressive strength and caused an increase in tensile strength values. The incorporation of silica fume into concrete with granite produced an increase of 17% in compressive strength. So, the use of these by-product materials can provide a technically feasible solution that is also consistent with the aims of sustainable development and preservation of the environment.

  6. Self-Placing Concrete

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Certain concrete pours have areas where the congestion of reinforcing bars make placement of concrete almost impossible. Using conventional placing and vibration techniques, the resulting concrete can have considerable honeycombing due to the development of voids. Self-placing concrete is a possible solution to the problem. Also known as self-compactable concrete, self-consolidating concrete, flowable concrete, and non-vibration concrete. These concretes eliminate the need for vibration in a ...

  7. Analysis of Flexural Fatigue Strength of Self Compacting Fibre Reinforced Concrete Beams

    Science.gov (United States)

    Murali, G.; Sudar Celestina, J. P. Arul; Subhashini, N.; Vigneshwari, M.

    2017-07-01

    This study presents the extensive statistical investigation ofvariations in flexural fatigue life of self-compacting Fibrous Concrete (FC) beams. For this purpose, the experimental data of earlier researchers were examined by two parameter Weibull distribution.Two methods namely Graphical and moment wereused to analyse the variations in experimental data and the results have been presented in the form of probability of survival. The Weibull parameters values obtained from graphical and method of moments are precise. At 0.7 stress level, the fatigue life shows 59861 cyclesfor areliability of 90%.

  8. The influence of coarse aggregate size and volume on the fracture behavior and brittleness of self-compacting concrete

    International Nuclear Information System (INIS)

    Beygi, Morteza H.A.; Kazemi, Mohammad Taghi; Nikbin, Iman M.; Vaseghi Amiri, Javad; Rabbanifar, Saeed; Rahmani, Ebrahim

    2014-01-01

    This paper presents the results of an experimental investigation on fracture characteristics and brittleness of self-compacting concrete (SCC), involving the tests of 185 three point bending beams with different coarse aggregate size and content. Generally, the parameters were analyzed by the work of fracture method (WFM) and the size effect method (SEM). The results showed that with increase of size and content of coarse aggregate, (a) the fracture energy increases which is due to the change in fractal dimensions, (b) behavior of SCC beams approaches strength criterion, (c) characteristic length, which is deemed as an index of brittleness, increases linearly. It was found with decrease of w/c ratio that fracture energy increases which may be explained by the improvement in structure of aggregate-paste transition zone. Also, the results showed that there is a correlation between the fracture energy measured by WFM (G F ) and the value measured through SEM (G f ) (G F = 3.11G f )

  9. The influence of coarse aggregate size and volume on the fracture behavior and brittleness of self-compacting concrete

    Energy Technology Data Exchange (ETDEWEB)

    Beygi, Morteza H.A., E-mail: M.beygi@nit.ac.ir [Department of Civil Engineering, Babol University of Technology (Iran, Islamic Republic of); Kazemi, Mohammad Taghi, E-mail: Kazemi@sharif.edu [Department of Civil Engineering, Sharif University of Technology, P.O. Box 11155-9313 (Iran, Islamic Republic of); Nikbin, Iman M., E-mail: nikbin@iaurasht.ac.ir [Faculty of Civil Engineering, Islamic Azad University, Rasht Branch, Rasht (Iran, Islamic Republic of); Vaseghi Amiri, Javad, E-mail: Vaseghi@nit.ac.ir [Department of Civil Engineering, Babol University of Technology (Iran, Islamic Republic of); Rabbanifar, Saeed, E-mail: Saeed.rabbanifar@yahoo.com [Department of Civil Engineering, Babol University of Technology (Iran, Islamic Republic of); Rahmani, Ebrahim, E-mail: Ebrahim.rahmani84@gmail.com [Department of Civil Engineering, Babol University of Technology (Iran, Islamic Republic of)

    2014-12-15

    This paper presents the results of an experimental investigation on fracture characteristics and brittleness of self-compacting concrete (SCC), involving the tests of 185 three point bending beams with different coarse aggregate size and content. Generally, the parameters were analyzed by the work of fracture method (WFM) and the size effect method (SEM). The results showed that with increase of size and content of coarse aggregate, (a) the fracture energy increases which is due to the change in fractal dimensions, (b) behavior of SCC beams approaches strength criterion, (c) characteristic length, which is deemed as an index of brittleness, increases linearly. It was found with decrease of w/c ratio that fracture energy increases which may be explained by the improvement in structure of aggregate-paste transition zone. Also, the results showed that there is a correlation between the fracture energy measured by WFM (G{sub F}) and the value measured through SEM (G{sub f}) (G{sub F} = 3.11G{sub f})

  10. The Effect of Type and Volume Fraction (Vf) of Steel Fiber on the Mechanical Properties of Self-Compacting Concrete

    DEFF Research Database (Denmark)

    Ghanbarpour, S.; Mazaheripour, H.; Mirmoradi, S. H.

    2010-01-01

    is to investigate the effects of type and volume fraction of steel fiber on the compressive strength, split tensile strength, flexural strength and modulus of elasticity of steel fiber reinforced self-compacting concrete (SFRSCC). Design/methodology/approach – For this purpose, Micro wire and Wave type steel fibers......Purpose – Self-compacting concrete (SCC) offers several economic and technical benefits; the use of steel fibers extends its possibilities. Steel fibers bridge cracks, retard their propagation, and improve several characteristics and properties of the SCC. The purpose of this paper...... – It was found that, inclusion of steel fibers significantly affect the split tensile and flexural strength of SCC accordance with type and vf. Besides, mathematical expressions were developed to estimate the flexural, modulus of elasticity and split tensile strength of SFRSCCs regarding of compressive strength...

  11. Test of workability of concrete for PCCV

    International Nuclear Information System (INIS)

    Fujii, Tadayoshi; Nagase, Tetsuo; Yoshimori, Yoshinari

    1987-01-01

    The construction of the prestressed concrete containment vessel (PCCV) for Tsuruga No.2 plant of Japan Atomic Power Co. is the first case in Japan, and since the concrete having high strength and low slump is placed, the test of concrete placing by taking out a part of a full size test wall and the test of workability regarding the vibration compacting of concrete using a vibrator were carried out beforehand, and the results were reflected to the actual construction works. In this report, the workability test on the concrete is described. As difficulty is expected in the actual placing of the concrete having high strength and low slump, for the purpose of confirming the property of placing of the concrete in the cylindrical wall, and obtaining the basic data for the management of the actual concrete works and the quality control, the concrete placing test was carried out. At the time of concrete placing, the compacting of concrete is important, therefore, the basic data on the effect that the type, diameter, vibrating time and vibration propagation range of vibrators exert on the compacting of concrete were obtained, and reflected to the actual compacting. The purpose, testing method, results and the reflection to the actual works of these tests are reported. (Kako, I.)

  12. Study on Flexural Behaviour of Ternary Blended Reinforced Self Compacting Concrete Beam with Conventional RCC Beam

    Science.gov (United States)

    Marshaline Seles, M.; Suryanarayanan, R.; Vivek, S. S.; Dhinakaran, G.

    2017-07-01

    The conventional concrete when used for structures having dense congested reinforcement, the problems such as external compaction and vibration needs special attention. In such case, the self compacting concrete (SCC) which has the properties like flow ability, passing and filling ability would be an obvious answer. All those SCC flow behavior was governed by EFNARC specifications. In present study, the combination type of SCC was prepared by replacing cement with silica fume (SF) and metakaolin (MK) along with optimum dosages of chemical admixtures. From the fresh property test, cube compressive strength and cylinder split tensile strength, optimum ternary mix was obtained. In order to study the flexural behavior, the optimum ternary mix was taken in which beam specimens of size 1200 mm x 100 mm x 200 mm was designed as singly reinforced section according to IS: 456-2000, Limit state method. Finally the comparative experimental analysis was made between conventional RCC and SCC beams of same grade in terms of flexural strength namely yield load & ultimate load, load- deflection curve, crack size and pattern respectively.

  13. Evaluation of density, moisture content and percentage compaction of concrete using direct transmission and backscatter methods

    International Nuclear Information System (INIS)

    Attobrah, A. T

    2012-01-01

    The nuclear method widely used in determining the density and moisture content of soil - aggregates, asphalt concretes, roller compacted concretes and Portland cement concretes, is the radiometry technique. Generally, all radiometry systems consist of a source of radiation, the sample being examined and a radiation detector. In operation, a radioactive source and a detector are placed on the same or opposite sides of a concrete sample. A portion of radiation from the source which passes through the concrete sample and reaches the detector produces a series of electrical pulses which when counted gives a measure of the dimensions or physical characteristics of the concrete sample. In this research work, concrete beams were fabricated using a 500 x 225 x 200mm wooden mould whiles a table vibrator was used to consolidate the concrete after placement in the mould. The mass of the beam was determined and the actual density calculated and inputted in the gauge. Measurements were performed on the unhardened and hardened concrete using the backscatter method and the direct transmission method at depths of 50mm, 100mm and 150mm. The measuring times of 15, 60 and 240 second were use to take the measurements. The study provided information on the variation of density with depth and this was observed to be within the range of 0 kg/m 3 to 1 kg/m 3 and 13 kg/m 3 to 23 kg/m 3 for the unhardened concrete samples in which density increased with depth and those in which density decreased with depth respectively. For the hardened concrete sample, the average change in density with depth was between 4 - 11 kg/m 3 for the samples in which density increased with depth and between 11 - 21 kg/m 3 for the samples in which density decreased with depth. The study also provided information about the degree of consolidation of Portland cement concrete which on the average was between 95% - 97% for the unhardened concrete samples and increased to between 97% - 99% for the hardened concrete

  14. 3D modelling of the flow of self-compacting concrete with or without steel fibres. Part I: slump flow test

    Science.gov (United States)

    Deeb, R.; Kulasegaram, S.; Karihaloo, B. L.

    2014-12-01

    In part I of this two-part paper, a three-dimensional Lagrangian smooth particle hydrodynamics method has been used to model the flow of self-compacting concrete (SCC) with or without short steel fibres in the slump cone test. The constitutive behaviour of this non-Newtonian viscous fluid is described by a Bingham-type model. The 3D simulation of SCC without fibres is focused on the distribution of large aggregates (larger than or equal to 8 mm) during the flow. The simulation of self-compacting high- and ultra-high- performance concrete containing short steel fibres is focused on the distribution of fibres and their orientation during the flow. The simulation results show that the fibres and/or heavier aggregates do not precipitate but remain homogeneously distributed in the mix throughout the flow.

  15. Analysis of production factors in high performance concrete

    Directory of Open Access Journals (Sweden)

    Gilberto Carbonari

    2003-01-01

    Full Text Available The incorporation of silica fume and superplasticizers in high strength and high performance concrete, along with a low water-cement ratio, leads to significant changes in the workability and the energy needed to homogenize and compact the concrete. Moreover, several aspects of concrete production that are not critical for conventional concrete are important for high strength concrete. This paper will discuss the need for controlling the humidity of the aggregates, optimizing the mixing sequence used in the fabrication, and the slump loss. The application of a silica fume concrete in typical building columns will be analyzed considering the required consolidation, the variability of the material strength within the structural element and the relation between core and molded specimen strength. Comparisons will also be made with conventional concrete.

  16. Effect of surface energy on powder compactibility.

    Science.gov (United States)

    Fichtner, Frauke; Mahlin, Denny; Welch, Ken; Gaisford, Simon; Alderborn, Göran

    2008-12-01

    The influence of surface energy on the compactibility of lactose particles has been investigated. Three powders were prepared by spray drying lactose solutions without or with low proportions of the surfactant polysorbate 80. Various powder and tablet characterisation procedures were applied. The surface energy of the powders was characterized by Inverse Gas Chromatography and the compressibility of the powders was described by the relationship between tablet porosity and compression pressure. The compactibility of the powders was analyzed by studying the evolution of tablet tensile strength with increasing compaction pressure and porosity. All powders were amorphous and similar in particle size, shape, and surface area. The compressibility of the powders and the microstructure of the formed tablets were equal. However, the compactibility and dispersive surface energy was dependent of the composition of the powders. The decrease in tablet strength correlated to the decrease in powder surface energy at constant tablet porosities. This supports the idea that tablet strength is controlled by formation of intermolecular forces over the areas of contact between the particles and that the strength of these bonding forces is controlled by surface energy which, in turn, can be altered by the presence of surfactants.

  17. Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kermeli, Katerina; Worrell, Ernst; Masanet, Eric

    2011-12-01

    The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for more than 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accounting for more than 50% of total concrete production costs - cement only accounts for nearly 24%. In 2009, energy costs of the U.S. concrete industry were over $610 million. Hence, energy efficiency improvements along with efficient use of materials without negatively affecting product quality and yield, especially in times of increased fuel and material costs, can significantly reduce production costs and increase competitiveness. The Energy Guide starts with an overview of the U.S. concrete industry’s structure and energy use, a description of the various manufacturing processes, and identification of the major energy consuming areas in the different industry segments. This is followed by a description of general and process related energy- and cost-efficiency measures applicable to the concrete industry. Specific energy and cost savings and a typical payback period are included based on literature and case studies, when available. The Energy Guide intends to provide information on cost reduction opportunities to energy and plant managers in the U.S. concrete industry. Every cost saving opportunity should be assessed carefully prior to implementation in individual plants, as the economics and the potential energy and material savings may differ.

  18. Use of flyash in roller compacted concrete for Ghatghar pumped storage scheme in Maharashtra

    Energy Technology Data Exchange (ETDEWEB)

    Damani, R.L.; Kshirsagar, S.L.; Narkhede, C.L. [MERI, Nashik (India)

    2003-07-01

    The paper described the use of 'Roller Compacted Concrete' (RCE) in which about 60% of the cement will be replaced by fly ash for construction of two storage dams - Upper dam and Lower dam in the Thane district of India. These are part of the Ghatghar Pumped Storage Scheme to generate hydropower. Fly ash from Eklahare and Dahav thermal power plant and processed fly ash, Pozzocrete 63 and 83b grade, all proved suitable for the RCC mix. 1 tab.

  19. The effectiveness of stone ash and volcanic ash of mount Sinabung as a filler on the initial strength of self-compacting concrete

    Science.gov (United States)

    Karolina, R.; Muhammad, W.; Saragih, M. D. S. M.; Mustaqa, T.

    2018-02-01

    Self Compacting Concrete is a concrete variant that has a high degree of workability and also has great initial strength, but low water cement factor. It is also self-flowable that can be molded on formwork with a very little or no compacted use of compactors. This concrete, using a variety of aggregate sizes, aggregate portions and superplasticizer admixture to achieve a special viscosity that allows it to flow on its own without the aid of a compactor. Lightweight concrete brick is a type of brick made from cement, sand, water, and developers. Lightweight concrete bricks are divided into 2 based on the developed materials used are AAC (Autoclave Aerated Concrete) using aluminum paste and CLC (Cellular Lightweight Concrete) that use Foaming Agent from BASF as a developer material. In this experiment, the lightweight bricks that will be made are CLC type which uses Foaming Agent as the developer material by mixing the Ash Stone produced by Stone Crusher machine which has the density of 2666 kg / m3 as Partial Pair Substitution. In this study the variation of Ash Stone used is 10%, 15%, and 20% of the planned amount of sand. After doing the tasting the result is obtained for 10% variation. Compressive Strength and Absorption Increase will decrease by 25.07% and 39.005% and Variation of 15% compressive strength will decrease by 65,8% and decrease of absorbtion equal to 17,441% and variation of 20% compressive strength will decreased by 67,4 and absorption increase equal to 17,956%.

  20. Self-compacting fine-grained concretes with compensated shrinkage

    Directory of Open Access Journals (Sweden)

    Alimov Lev

    2017-01-01

    Full Text Available This paper substantiates the efficiency of application of fine-grained concrete for erection of cast-in-place concrete and reinforced concrete structures of different purpose. On the basis of analysis of experimental research results it was established that the introduction of microfillers with expansion effect to composite binder allows not only improving the rheological properties of fine-grained concrete, but also decreasing of value of shrinkage strain and improving of concrete crack resistance and durability. The analysis of the results of industrial use of fine-grained concretes with compensated shrinkage is given.

  1. Influence of DAD-TA temperature-reducing additive on physical and mechanical properties of bitumen and compaction of asphalt concrete.

    Science.gov (United States)

    Yadykina, V. V.; Akimov, A. E.; Trautvain, A. I.; Kholopov, V. S.

    2018-03-01

    The paper is devoted to the use of DAD-TA temperature-reducing additive for the preparation and pouring of asphalt concrete mixes at reduced temperatures. It also shows positive influence of the modified bitumen on the efficiency of organo-mineral composite compaction at reduced temperatures. Physical and mechanical properties of asphalt concrete with the use of bitumen modified by DAD-TA additive including indicators characterizing road surfacing life are presented. Arguments to use this material from the point of view of its production technology and environmental impact are given.

  2. Estudio experimental del comportamiento a compresión de hormigones autocompactantes reforzados con fibras de acero = Experimental study of performance self-compacting concrete reinforced with steel fibers

    Directory of Open Access Journals (Sweden)

    J. L. Sánchez

    2015-09-01

    Full Text Available El hormigón autocompactante reforzado con fibras de acero presenta simultáneamente las ventajas de los hormigones autocompactantes y de los reforzados con fibras. Se consigue un material de altas prestaciones en cuanto a su colocación en obra, tenacidad y ductilidad. En este trabajo se ha estudiado el comportamiento mecánico de un hormigón autocompactante reforzado con fibras de acero. Se han realizado ensayos a compresión a distintas edades, así como ensayos no destructivos (medida de la velocidad de ultrasonidos e índice esclerométrico. Los resultados muestran la variación de la respuesta del hormigón con el tiempo, la diferencia existente con los hormigones tradicionales y la viabilidad del empleo de técnicas no destructivas para el control de este tipo de hormigones.Abstract Self-compacting steel fibers reinforced concrete simultaneously has the advantages of self-compacting concrete and reinforced with fibers. A material of high performance in their laying on site, toughness and ductility is achieved. This paper has studied the mechanical behavior of a self-compacting concrete reinforced with steel fibers. Have been made compression tests, as well as non-destructive testing (measuring the speed of ultrasound and sclerometer test. The results show the variation of the response of concrete with time, the difference with the traditional concrete and the feasibility of using non-destructive techniques for controlling this type of concrete.

  3. Modeling compaction-induced energy dissipation of granular HMX

    Energy Technology Data Exchange (ETDEWEB)

    Gonthier, K.A. [Lamar Univ., Beaumont, TX (US). Dept. of Mechanical Engineering; Menikoff, R.; Son, S.F.; Asay, B.W. [Los Alamos National Lab., NM (US)

    1998-12-31

    A thermodynamically consistent model is developed for the compaction of granular solids. The model is an extension of the single phase limit of two-phase continuum models used to describe Deflagration-to-Detonation Transition (DDT) experiments. The focus is on the energetics and dissipation of the compaction process. Changes in volume fraction are partitioned into reversible and irreversible components. Unlike conventional DDT models, the model is applicable from the quasi-static to dynamic compaction regimes for elastic, plastic, or brittle materials. When applied to the compaction of granular HMX (a brittle material), the model predicts results commensurate with experiments including stress relaxation, hysteresis, and energy dissipation. The model provides a suitable starting point for the development of thermal energy localization sub-scale models based on compaction-induced dissipation.

  4. Study on Seismic Behavior of Recycled Concrete Energy-efficient Homes Structure Wall

    Directory of Open Access Journals (Sweden)

    Dong Lan

    2016-01-01

    Full Text Available The main point is to study the seismic behavior of the lattice type recycled concrete energy saving wall under low-cyclic loading,to provide the basis for the seismic performance of application of recycled concrete lattice wall in energy-saving residential structure. Design two walls with the same structure measures, include Lattice type recycled concrete wall and natural concrete wall, they are tested under low-cycle repetitive loading, compared failure mode and seismic performance in different reinforcement conditions of side column. The bearing capacity and ductility of recycled aggregate concrete are better than natural aggregate concrete, The stiffness degradation curves and the skeleton curves of the walls are basically the same, both of them have better seismic energy dissipation capacity. Lattice type concrete wall is good at seismic performance, recycled aggregate concrete is good at plastic deformation ability, it is advantageous to seismic energy dissipation of wall, it can be applied in energy efficient residential structure wall.

  5. Effect of temperature and moisture on the fracture energy and the thermal properties of concrete

    International Nuclear Information System (INIS)

    Kallel, H.; Carre, H.; Laborderie, C.; Masson, B.; Tran, N.C.

    2015-01-01

    In nuclear power plants, during a severe accident the containment building undergoes an increase of pressure, temperature and relative humidity that can reach respectively 5 bars, 140 C. degrees and the saturation of water vapor. Beyond the regulatory calculations, a suitable knowledge of the thermal and mechanical behaviour of the materials and more specifically of the concrete is required to carry out accurate numerical simulations. An experimental apparatus has been designed to assess the fracture energy (G f ) evolutions for concrete under various experimental conditions in terms of temperature and relative humidity of the concrete. Mechanical tests have been performed under different controlled conditions in terms of temperature (T=30 C. degrees ) and liquid water degree of saturation S w (four target values of 50, 70, 90 and 100%). These values of liquid water degree of saturation have been obtained by conditioning the relative humidity of the sealed environment where specimens have been left for the equalisation process by using potassium salt solutions. DCT (Disk-shape Compact Tension) test has been chosen for determining G f . In comparison with three points bending test, the typology of the test, the equipment and all test devices have been validated. Test results show clearly the decreasing of the fracture energy as saturation degree increases. This evolution has a linear trend for S w ranging from 36 % to 97 %

  6. The use of non-destructive tests to estimate Self-compacting concrete compressive strength

    Directory of Open Access Journals (Sweden)

    Djamila Boukhelkhal

    2018-01-01

    Full Text Available Until now, there are few studies on the effect of mineral admixtures on correlation between compressive strength and ultrasonic pulse velocity for concrete. The aim of this work is to study the effect of mineral admixture available in Algeria such as limestone powder, granulated slag and natural pozzolana on the correlation between compressive strength and corresponding ultrasonic pulse velocity for self-compacting concrete (SCC. Compressive strength and ultrasonic pulse velocity (UPV were determined for four different SCC (with and without mineral admixture at the 3, 7, 28 and 90 day curing period. The results of this study showed that it is possible to develop a good correlation relationship between the compressive strength and the corresponding ultrasonic pulse velocity for all SCC studied in this research and all the relationships had exponential form. However, constants were different for each mineral admixture type; where, the best correlation was found in the case of SCC with granulated slag (R2 = 0.85. Unlike the SCC with pozzolana, which have the lowest correlation coefficient (R2 = 0.69.

  7. Prediction of Mean and Design Fatigue Lives of Self Compacting Concrete Beams in Flexure

    Science.gov (United States)

    Goel, S.; Singh, S. P.; Singh, P.; Kaushik, S. K.

    2012-02-01

    In this paper, result of an investigation conducted to study the flexural fatigue characteristics of self compacting concrete (SCC) beams in flexure are presented. An experimental programme was planned in which approximately 60 SCC beam specimens of size 100 × 100 × 500 mm were tested under flexural fatigue loading. Approximately 45 static flexural tests were also conducted to facilitate fatigue testing. The flexural fatigue and static flexural strength tests were conducted on a 100 kN servo-controlled actuator. The fatigue life data thus obtained have been used to establish the probability distributions of fatigue life of SCC using two-parameter Weibull distribution. The parameters of the Weibull distribution have been obtained by different methods of analysis. Using the distribution parameters, the mean and design fatigue lives of SCC have been estimated and compared with Normally vibrated concrete (NVC), the data for which have been taken from literature. It has been observed that SCC exhibits higher mean and design fatigue lives compared to NVC.

  8. The effects of CuO nanoparticles on properties of self compacting concrete with GGBFS as binder

    Directory of Open Access Journals (Sweden)

    Ali Nazari

    2011-09-01

    Full Text Available In this work, strength assessments and percentage of water absorption of high performance self compacting concrete containing different amounts of ground granulated blast furnace slag and CuO nanoparticles as binder have been investigated. Portland cement was replaced by different amounts of ground granulated blast furnace slag and the properties of concrete specimens were investigated. Although it negatively impacts the physical and mechanical properties of concrete at early age of curing, ground granulated blast furnace slag was found to improve the physical and mechanical properties of concrete up to 45 wt. (% at later ages. CuO nanoparticles with the average particle size of 15 nm were partially added to concrete with the optimum content of ground granulated blast furnace slag and physical and mechanical properties of the specimens were measured. CuO nanoparticle as a partial replacement of cement up to 3.0 wt. (% could accelerate C-S-H gel formation as a result of increased crystalline Ca(OH2 amount at the early age of hydration and hence increase strength and improve the resistance to water permeability of concrete specimens. The increased the CuO nanoparticles' content more than 3.0 wt. (%, causes the reduced the split tensile strength because of the decreased crystalline Ca(OH2 content required for C-S-H gel formation. Several empirical relationships have been presented to predict flexural and split tensile strength of the specimens by means of the corresponding compressive strength at a certain age of curing. More rapid appearance of the peaks related to hydrated products in X-ray diffraction results, all indicate that CuO nanoparticles could improve mechanical and physical properties of the concrete specimens.

  9. The effect of TiO2 nanoparticles on water permeability and thermal and mechanical properties of high strength self-compacting concrete

    International Nuclear Information System (INIS)

    Nazari, Ali; Riahi, Shadi

    2010-01-01

    Research highlights: → TiO 2 nanoparticles effects on self-compacting concrete. → Strength assessments. → Water permeability. → Thermal properties. → Pore structure. → Microstructure evaluations. - Abstract: In this work, strength assessments and coefficient of water absorption of high performance self-compacting concrete containing different amounts of TiO 2 nanoparticles have been investigated. The results indicate that the strength and the resistance to water permeability of the specimens are improved by adding TiO 2 nanoparticles in the cement paste up to 4.0 wt%. TiO 2 nanoparticles, as a result of increased crystalline Ca(OH) 2 amount especially at the early age of hydration, could accelerate C-S-H gel formation and hence increase the strength of the concrete specimens. In addition, TiO 2 nanoparticles are able to act as nanofillers and recover the pore structure of the specimens by decreasing harmful pores. Several empirical relationships have been presented to predict flexural and split tensile strength of the specimens by means of the corresponding compressive strength at a certain age of curing. Accelerated peak appearance in conduction calorimetry tests, more weight loss in thermogravimetric analysis and more rapid appearance of the peaks related to hydrated products in X-ray diffraction results, all indicate that TiO 2 nanoparticles could improve mechanical and physical properties of the concrete specimens.

  10. Influence of calcined mud on the mechanical properties and shrinkage of self-compacting concrete

    Directory of Open Access Journals (Sweden)

    Fatima Taieb

    2018-01-01

    Full Text Available The use of SCC has a particular interest in terms of sustainable development. Indeed, their specific formulation leads to a greater volume of dough than for common concretes, thus, a larger quantity of cement. However, for economical, ecological and technical reasons, it is sought to limit their cement content [1]. It is therefore necessary to almost always use mineral additions as a partial replacement for cement because the technology of self-compacting concretes can consume large quantities of fines, in this case calcinated mud issued from dams dredging sediments that can give and/or ameliorate characteristics and performances of this type of concretes. Four SCCs had been formulated from the same composition where the only percentage of calcinated mud of Chorfa (west of Algeria dam changed (0%, 10%, 20% and 30%. The effect of calcinated mud on characteristics at fresh state of SCC according to AFGC was quantified. Mechanical strengths and shrinkage deformation (total, autogenous, drying were evaluated. The results show the possibility to make SCCs with different dosages of calcinated mud having strengths that can defy those of the control SCC. The analysis of free deformations indicates the beneficial impact of the mud by contributing to decrease the amplitudes of the shrinkage compared to those of the control SCC.

  11. Medium strength self-compacting concrete containing fly ash: Modelling using factorial experimental plans

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed Sonebi [University of Paisley, Paisley (United Kingdom). Advanced Concrete and Masonry Centre

    2004-07-01

    This investigation aims to develop medium strength self-compacting concrete (MS-SCC). The cost of materials will be decreased by reducing the cement content and by using pulverised fuel ash (PFA) with a minimum amount of superplasticizer (SP). A factorial design was carried out to mathematically model the influence of five key parameters on filling and passing abilities, segregation and compressive strength, which are important for the successful development of medium strength self-compacting concrete incorporating PFA. The parameters considered in the study were the contents of cement and PFA, water-to-powder (cement+PFA) ratio (W/P) and dosage of SP. The responses of the derived statistical models are slump flow, fluidity loss, Orimet time, V-funnel time, L-box, JRing combined to the Orimet, JRing combined to cone, rheological parameters, segregation and compressive strength at 7, 28 and 90 days. Twenty-one mixes were prepared to derive the statistical models, and five were used for the verification and the accuracy of the developed models. The models are valid for mixes made with 0.38 to 0.72 W/P, 60 to 216 kg/m{sup 3} of cement content, 183 to 317 kg/m{sup 3} of PFA and 0% to 1% of SP, by mass of powder. The influences of W/P, cement and PFA contents, and the dosage of SP were characterised and analysed using polynomial regression, which can identify the primary factors and their interactions on the measured properties. The results show tha MS-SCC can be achieved with a 28-day compressive strength of 30 to 35 MPa by using up to 210 kg/m{sup 3} of PFA.

  12. THE EFFECT OF SINGLE AND HYBRID FIBRES ON FIBRE REINFORCED SELF COMPACTING CONCRETE PRODUCED WITH HIGH LEVEL OF FLY ASH USAGE

    OpenAIRE

    BOZKURT, Nusret; YAZICIOĞLU, Salih; GÖNEN, Tahir

    2013-01-01

    The aim of this paper is to present results of investigation carried out on fresh and mechanical properties of Fibre Reinforced Self Compacting Concrete (FRSCC) produced with fly ash which is an industrial waste material. Concrete industry is an important one between the industry branches for sustainability. In this study, high level of fly ash was used to reduce Portland Cement (PC) consumption as well as CO2 emission through the use of that waste material. For this purpose, a control Self C...

  13. Durability and Shrinkage Characteristics of Self-Compacting Concretes Containing Recycled Coarse and/or Fine Aggregates

    Directory of Open Access Journals (Sweden)

    Mehmet Gesoglu

    2015-01-01

    Full Text Available This paper addresses durability and shrinkage performance of the self-compacting concretes (SCCs in which natural coarse aggregate (NCA and/or natural fine aggregate (NFA were replaced by recycled coarse aggregate (RCA and/or recycled fine aggregate (RFA, respectively. A total of 16 SCCs were produced and classified into four series, each of which included four mixes designed with two water to binder (w/b ratios of 0.3 and 0.43 and two silica fume replacement levels of 0 and 10%. Durability properties of SCCs were tested for rapid chloride penetration, water sorptivity, gas permeability, and water permeability at 56 days. Also, drying shrinkage accompanied by the water loss and restrained shrinkage of SCCs were monitored over 56 days of drying period. Test results revealed that incorporating recycled coarse and/or fine aggregates aggravated the durability properties of SCCs tested in this study. The drying shrinkage and restrained shrinkage cracking of recycled aggregate (RA concretes had significantly poorer performance than natural aggregate (NA concretes. The time of cracking greatly prolonged as the RAs were used along with the increase in water/binder ratio.

  14. EFFECT OF SODIUM HYDROXIDE CONCENTRATION ON FRESH PROPERTIES AND COMPRESSIVE STRENGTH OF SELF-COMPACTING GEOPOLYMER CONCRETE

    Directory of Open Access Journals (Sweden)

    FAREED AHMED MEMON

    2013-02-01

    Full Text Available This paper reports the results of the laboratory tests conducted to investigate the effect of sodium hydroxide concentration on the fresh properties and compressive strength of self-compacting geopolymer concrete (SCGC. The experiments were conducted by varying the concentration of sodium hydroxide from 8 M to 14 M. Test methods such as Slump flow, V-Funnel, L-box and J-Ring were used to assess the workability characteristics of SCGC. The test specimens were cured at 70°C for a period of 48 hours and then kept in room temperature until the day of testing. Compressive strength test was carried out at the ages of 1, 3, 7 and 28 days. Test results indicate that concentration variation of sodium hydroxide had least effect on the fresh properties of SCGC. With the increase in sodium hydroxide concentration, the workability of fresh concrete was slightly reduced; however, the corresponding compressive strength was increased. Concrete samples with sodium hydroxide concentration of 12 M produced maximum compressive strength.

  15. Properties and mesostructural characteristics of linen fiber reinforced self-compacting concrete in slender columns

    Directory of Open Access Journals (Sweden)

    Sabry A. Ahmed

    2013-06-01

    Full Text Available In this study the linen fibers were used to reinforce self-compacting concrete (SCC with 2 and 4 kg/m3 contents; then their effects on the fresh and hardened properties of SCC were investigated. Furthermore, three circular slender columns were cast using both plain and linen fiber reinforced (LFR SCC in order to study the variations of hardened properties and mesostructural characteristics along the columns height. The addition of linen fibers to SCC reduced its workability and affected its self-compacting characteristics in a manner depending on the fiber content. Also, noticeable improvement in mechanical properties and slight reduction in unit weight and UPV were recorded. The hardened properties did not vary significantly along the height of columns, however, lower values were observed at the upper end of columns. The aggregate distribution was slightly more homogenous in case of LFRSCC, and the variation of fiber density along the height of columns was relatively high.

  16. Mechanical Performance Evaluation of Self-Compacting Concrete with Fine and Coarse Recycled Aggregates from the Precast Industry.

    Science.gov (United States)

    Santos, Sara A; da Silva, Pedro R; de Brito, Jorge

    2017-08-04

    This paper intends to evaluate the feasibility of reintroducing recycled concrete aggregates in the precast industry. The mechanical properties of self-compacting concrete (SCC) with incorporation of recycled aggregates (RA) (coarse recycled aggregates (CRA) and fine recycled aggregates (FRA)) from crushed precast elements were evaluated. The goal was to evaluate the ability of producing SCC with a minimum pre-established performance in terms of mechanical strength, incorporating variable ratios of RA (FRA/CRA%: 0/0%, 25/25%, 50/50%, 0/100% and 100/0%) produced from precast source concretes with similar target performances. This replication in SCC was made for two strength classes (45 MPa and 65 MPa), with the intention of obtaining as final result concrete with recycled aggregates whose characteristics are compatible with those of a SCC with natural aggregates in terms of workability and mechanical strength. The results enabled conclusions to be established regarding the SCC's produced with fine and coarse recycled aggregates from the precast industry, based on its mechanical properties. The properties studied are strongly affected by the type and content of recycled aggregates. The potential demonstrated, mainly in the hardened state, by the joint use of fine and coarse recycled aggregate is emphasized.

  17. Rheological behaviour of self-compacting micro-concrete

    Indian Academy of Sciences (India)

    viscosity of micro-concretes improves the solid holding capacity of this composite. According to flow ...... J. Env. Management 78(3): 232–239 ... Felekoglu B 2007 Utilisation of high volumes of limestone quarry wastes in concrete industry (self-.

  18. Lightweight self-compacting concrete reinforced with fibres for slab rehabilitation

    Directory of Open Access Journals (Sweden)

    Klein, N. S.

    2011-06-01

    Full Text Available The slabs of some buildings in Barcelona are formed by unidirectional beams, with a ceramic arch in between, which are filled with broken pottery or construction waste. These structures often present problems such as displacement of the tiles arranged over it due to the lack of stiffness of the filling material. This supposes a risk to the user and could also cause durability problems. In order to rehabilitate it, a lightweight self-compacting concrete reinforced with fibres (HLACF has been designed to be used as a filling material, improving the stiffness of the structure. This paper presents a structural analysis of a standard case and the results of an experimental campaign. The concrete showed a density of 1665 kg/m3, a slump flow of 605 mm and a compressive strength of 22.3 MPa, at 28 days. These results are in agreement with the requirements, overcoming common lightweight concrete segregation problems.

    Los forjados de ciertos edificios del ensanche de Barcelona, formados por viguetas unidireccionales con un revoltón de cerámica entre ellas y un relleno posterior (material cerámico y residuos de construcción, suelen presentar problemas de movimientos y despegues de las baldosas situadas en la parte superior, con el consiguiente riesgo para el usuario, aparte de los problemas de durabilidad asociados. Para rehabilitar esas estructuras se ha diseñado un hormigón ligero autocompactante con fibras (HLACF, como relleno de modo que mejore la rigidez a la estructura. El artículo presenta el análisis estructural de una solución tipo así como los resultados de una campaña experimental realizada. Como resultado se obtiene un hormigón de densidad de 1.665 kg/m3, escurrimiento de 605 mm y resistencia a compresión de 22,3 MPa, a los 28 días, que cumple con los requisitos y significa superar problemas de segregación previsibles para este tipo de hormigones.

  19. Dynamic compaction with high energy of sandy hydraulic fills

    Directory of Open Access Journals (Sweden)

    Khelalfa Houssam

    2017-09-01

    Full Text Available A case study about the adoption of the dynamic compaction technique with high energy in a sandy hydraulic fill is presented. The feasibility of this technique to ensure the stability of the caisson workshop and to minimize the risk of liquefaction during manufacture. This Article is interested to establish diagnostic of dynamic compaction test, basing on the results of SPT tests and quality control as well as the details of work of compaction and the properties of filling materials. A theory of soil response to a high-energy impact during dynamic compaction is proposed.

  20. The influence of using accelerator addition on High strength self-compacting concrete (HSSCC) in case of enhancement early compressive strength and filling ability parameters

    Science.gov (United States)

    Wibowo; Fadillah, Y.

    2018-03-01

    Efficiency in a construction works is a very important thing. Concrete with ease of workmanship and rapid achievement of service strength will to determine the level of efficiency. In this research, we studied the optimization of accelerator usage in achieving performance on compressive strength of concrete in function of time. The addition of variation of 0.3% - 2.3% to the weight of cement gives a positive impact of the rapid achievement of hardened concrete, however the speed of increasing of concrete strength achievement in term of time influence present increasing value of filling ability parameter of self-compacting concrete. The right composition of accelerator aligned with range of the values standard of filling ability parameters of HSSCC will be an advantage guidance for producers in the ready-mix concrete industry.

  1. Placement of pre-compacted and in situ compacted dense backfill materials in shaft seals

    International Nuclear Information System (INIS)

    Martino, J.; Dixon, D.; Kim, C.S.

    2010-01-01

    Document available in extended abstract form only. In 2003, a decision was made to discontinue operation of Atomic Energy of Canada Limited's (AECL's) Underground Research Laboratory (URL) and ultimately to decommission and permanently close the underground portion of this facility. As part of the Nuclear Legacy Liability Program (NLLP) being funded by Natural Resources Canada (NRCan), an ongoing program of work is being undertaken to decommission and deal with facilities that are no longer part of AECL's mandate or operations. The URL is included in these facilities. Part of this work is the installation of seals at the intersection of the access and ventilation shafts and an ancient thrust fault, Fracture Zone 2 (FZ2), approximately 275 m below surface. These seals are being installed in order to limit the potential for mixing of deeper saline and shallower, less saline groundwater. The seal design in each shaft is similar with a heavily reinforced lower concrete component, a central bentonite clay-sand component and an upper un-reinforced concrete component. The main shaft at the URL at the location of the seal is circular (∼5-m diameter), and was excavated using careful drill and blast techniques. The seal itself consists of two keyed, conical sectioned, 3-m-thick by 5 to 6-m diameter concrete segments that confine a 6-m-thick swelling clay section. The ventilation shaft at the URL is 1.8 m in diameter and was excavated using raise-boring. The ventilation shaft will consist of two keyed, conical sectioned, 2-m-thick concrete by 1.8 to 2.8 m diameter concrete segments confining a 5-m-thick assembly of pre-compacted clay-sand blocks. The concrete is a low pH concrete designed for repository use, which can develop a 70 MPa unconfined compressive strength after 28 days. It has a pH of less than 11 achieved by substitution of 75% of the cement powder with silica fume and ground silica so the likelihood of free calcium and an alkaline plume is

  2. Influence of superplasticizer on microstructure of a 40 MPa strength concrete

    International Nuclear Information System (INIS)

    Teixeira, Sandra M.F.; Menezes, Raquel Maria R.O.; Figueiredo, Roberto B.; Aguilar, Maria Teresa P.; Franca, Fabricio Carlos; Bezerra, Augusto Cesar da S.

    2016-01-01

    The self compacting concrete has high fluidity and deformability. Studies analyze its performance through compressive strength, mortar content and / or water cement factor, which does not allow the evaluation of superplasticante influence the microstructure of these concretes. In this work, we evaluated the influence of superplasticizer comparing the phases present in a self-compacting concrete 40 MPa and at a same conventional compressive strength, same water / cement and mortar content. Therefore, scanning techniques were employed by electron microscope low vacuum using backscattered electrons and thermal analysis. The observed results show no significant differences in the microstructure of the two composites, ie the superplasticizer does not alter the microstructure of the self-compacting concrete. However, thermal analysis indicates that the present self-compacting concrete greater calcium hydroxide content which may suggest a lower content of such dry cement concrete. (author)

  3. The effect of TiO{sub 2} nanoparticles on water permeability and thermal and mechanical properties of high strength self-compacting concrete

    Energy Technology Data Exchange (ETDEWEB)

    Nazari, Ali, E-mail: alinazari84@aut.ac.ir [Department of Technical and Engineering Sciences, Islamic Azad University (Saveh Branch), Saveh (Iran, Islamic Republic of); Riahi, Shadi [Department of Technical and Engineering Sciences, Islamic Azad University (Saveh Branch), Saveh (Iran, Islamic Republic of)

    2010-12-15

    Research highlights: {yields} TiO{sub 2} nanoparticles effects on self-compacting concrete. {yields} Strength assessments. {yields} Water permeability. {yields} Thermal properties. {yields} Pore structure. {yields} Microstructure evaluations. - Abstract: In this work, strength assessments and coefficient of water absorption of high performance self-compacting concrete containing different amounts of TiO{sub 2} nanoparticles have been investigated. The results indicate that the strength and the resistance to water permeability of the specimens are improved by adding TiO{sub 2} nanoparticles in the cement paste up to 4.0 wt%. TiO{sub 2} nanoparticles, as a result of increased crystalline Ca(OH){sub 2} amount especially at the early age of hydration, could accelerate C-S-H gel formation and hence increase the strength of the concrete specimens. In addition, TiO{sub 2} nanoparticles are able to act as nanofillers and recover the pore structure of the specimens by decreasing harmful pores. Several empirical relationships have been presented to predict flexural and split tensile strength of the specimens by means of the corresponding compressive strength at a certain age of curing. Accelerated peak appearance in conduction calorimetry tests, more weight loss in thermogravimetric analysis and more rapid appearance of the peaks related to hydrated products in X-ray diffraction results, all indicate that TiO{sub 2} nanoparticles could improve mechanical and physical properties of the concrete specimens.

  4. The influence of using volcanic ash and lime ash as filler on compressive strength in self compacting concrete

    Science.gov (United States)

    Karolina, Rahmi; Panatap Simanjuntak, Murydrischy

    2018-03-01

    Self Compacting Concrete (SCC) is a technology which is developing today in which concrete solidifies by itself without using vibrator. Casting conventional concrete which has a lot of reinforcement bars sometimes finds difficulty in achieving optimal solidity. The method used to solve this problem is by using SCC technology. SCC was made by using filler, volcanic ash, and lime ash as the filling materials so that the concrete became more solid and hollow space could be filled up. The variation of using these two materials was 10%, 15%, 20%, and 25% of the cementitious mass and using 1% of superplasticizer from cementitious material. The supporting testing was done by using the test when the concrete was still fluid and when it was solid. Malleable concrete was tested by using EFNARC 2002 standard in slump flow test, v-funnel test, l-shaped box test, and j-ring test to obtain filling ability and passing ability. In this malleable lime concrete test, there was the decrease, compared with normal SCC concrete without adding volcanic ash and lime ash. Testing was also done in solid concrete in compressive strength, tensile strength, and concrete absorption. The result of the testing showed that the optimum tensile strength in Variation 1, without volcanic ash and lime ash – with 1% of superplasticizer was 39.556 MPa, the optimum tensile strength in Variation 1, without volcanic ash and lime ash- with 1% of super-plasticizer was 3.563 MPa, while the value of optimum absorption which occurred in Variation 5 (25% of volcanic ash + 25% of lime ash + 50% of cement + 1% of superplasticizer) was 1.313%. This was caused by the addition of volcanic ash and lime ash which had high water absorption.

  5. Fresh and mechanical properties of self-compacting concrete with coarse aggregate replacement using Waste of Oil Palm Shell

    Science.gov (United States)

    Prayuda, Hakas; Saleh, Fadillawaty; Ilham Maulana, Taufiq; Monika, Fanny

    2018-05-01

    Self-compacting Concrete (SCC) is a real innovation that can solidify itself without the help of tools to ease field practice. In its implementation, SCC can use alternative materials to reduce waste, such as Oil Palm Shell (OPS). In this research, OPS used as a replacement of crushed stone as the main coarse aggregate. The concrete mixture used consists of cement, sand, crushed stone, OPS as a variation of aggregate substitutes, palm oil fuel ash, and superplasticizer. OPS used were variated with 0%, 5%, 10%, 25% and 50% of crushed stone aggregate weight with age up to 28 days. Tests were conducted on fresh and mechanical properties. From the results, it is known that replacement of aggregate using OPS meets fresh properties criteria and although the compressive strength of OPS concrete mixture is lower than normal SCC, OPS still can be an alternative in making SCC and reducing palm oil industrial waste.

  6. Conditioning and storage of spent fuel cladding hulls by rolling and embedding in concrete

    International Nuclear Information System (INIS)

    Spenk, G.; Frotscher, H.; Graebner, H.; Kapulla, H.

    1981-01-01

    Under a contract with the European Atomic Energy Community the Kernforschungszentrum Karlsruhe, KfK, developed a conditioning process for LWR cladding waste. After compaction of the hulls by rolling they are embedded in a concrete matrix. In addition to basic data of the cladding waste, the compaction process, consisting of a dosage system and a rolling mill, is described. Several embedding techniques are possible, but a final selection has still to be made. Best results will probably be achieved by a vacuum technique. To characterize the waste product, leach tests have been started. The compression strength of compacted hulls embedded in concrete was determined to 2300 N.cm -2 . Hydrogen release due to radiolyses lies around 3 μl.g -1 sub(concrete).Mrad -1 which corresponds to the values expected on account of the water content of the samples. Less hydrogen was determined in samples with Zircaloy added. The tritium release of tritiated Zircaloy hulls embedded in concrete is greatly dependent on temperature and irradiation. At 100 0 C and with γ-irradiation the tritium release is about two orders of magnitude higher compared with experiments without irradiation. The thermal conductivity of samples of Zircaloy hulls embedded in concrete was determined to be 1.4W.m -1 .K -1 . (author)

  7. Use of limestone powder during incorporation of Pb-containing cathode ray tube waste in self-compacting concrete.

    Science.gov (United States)

    Sua-iam, Gritsada; Makul, Natt

    2013-10-15

    For several decades, cathode ray tubes (CRTs) were the primary display component of televisions and computers. The CRT glass envelope contains sufficient levels of lead oxide (PbO) to be considered hazardous, and there is a need for effective methods of permanently encapsulating this material during waste disposal. We examined the effect of adding limestone powder (LS) on the fresh and cured properties of self-compacting concrete (SCC) mixtures containing waste CRT glass. The SCC mixtures were prepared using Type 1 Portland cement at a constant cement content of 600 kg/m(3) and a water-to-cement ratio (w/c) of 0.38. CRT glass waste cullet was blended with river sand in proportions of 20 or 40% by weight. To suppress potential viscosity effects limestone powder was added at levels of 5, 10, or 15% by weight. The slump flow time, slump flow diameter, V-funnel flow time, Marsh cone flow time, and setting time of the fresh concrete were tested, as well as the compressive strength and ultrasonic pulse velocity of the hardened concrete. Addition of limestone powder improved the fresh and hardened properties. Pb leaching levels from the cured concrete were within US EPA allowable limits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Compact energy conversion module, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This STTR project delivers a compact vibration-based Energy Conversion Module (ECM) that powers sensors for purposes like structural health monitoring (SHM). NASA...

  9. Compact Energy Conversion Module, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This STTR project delivers a compact vibration-based Energy Conversion Module (ECM) that powers sensors for purposes such as structural health monitoring (SHM). NASA...

  10. Investigation on Leaching Behaviour of Fly Ash and Bottom Ash Replacement in Self-Compacting Concrete

    Science.gov (United States)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    Fly ash and bottom ash are some of the waste generated by coal-fired power plants, which contains large quantities of toxic and heavy metals. In recent years, many researchers have been interested in studying on the properties of self-compacting concrete incorporated with fly ash and bottom ash but there was very limited research from the combination of fly ash and bottom ash towards the environmental needs. Therefore, this research was focused on investigating the leachability of heavy metals of SCC incorporated with fly ash and bottom ash by using Toxicity Characteristic Leaching Procedure, Synthetic Precipitation Leaching Procedure and Static Leaching Test. The samples obtained from the coal-fired power plant located at Peninsula, Malaysia. In this study, the potential heavy metals leached out from SCC that is produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a substitute for sand with the ratios from 10% to 30% respectively were designated and cast. There are eight heavy metals of concern such as As, Cr, Pb, Zn, Cu, Ni, Mn and Fe. The results indicated that most of the heavy metals leached below the permissible limits from the United States Environmental Protection Agency and World Health Organization limit for drinking water. As a conclusion, the minimum leaching of the heavy metals from the incorporation of fly ash and bottom ash in self-compacting concrete was found in 20% of fly ash and 20% of bottom ash replacement. The results also indicate that this incorporation could minimize the potential of environmental problems.

  11. The effect of water to cement ratio on fracture parameters and brittleness of self-compacting concrete

    International Nuclear Information System (INIS)

    Beygi, Morteza H.A.; Kazemi, Mohammad T.; Nikbin, Iman M.; Amiri, Javad. Vaseghi

    2013-01-01

    Highlights: ► Fracture properties of SCC were obtained using two different methods. ► Results showed with decrease of w/c ratio the fracture toughness increases. ► Size effect method can predict the peak load with a good precision for SCC beams. ► The size effect curve showed SCC ductility increases with increase of w/c ratio. - Abstract: The paper describes an experimental research on fracture characteristics of self-compacting concrete (SCC). Three point bending tests conducted on 154 notched beams with different water to cement (w/c) ratios. The specimens were made from mixes with various w/c ratios from 0.7 to 0.35. For all mixes, common fracture parameters were determined using two different methods, the work-of-fracture method (WFM) and the size effect method (SEM). Test results showed that with decrease of w/c ratio from 0.7 to 0.35 in SCC: (a) the fracture toughness increases linearly: (b) the brittleness number is approximately doubled: (c) the effective size of the process zone c f in SEM and the characteristic length (l ch ) in WFM decrease which may be explained by the change in structural porosity of the aggregate–paste transition zone; and (d) the fracture surface of concrete is roughly smoother, which can be attributed to the improved bond strength between the aggregates and the paste. Also, the results showed that there is a correlation between the fracture energy measured by WFM (G F ) and the value measured through SEM (G f ) (G F ≅ 2.92G f )

  12. Concrete thermal energy storage for steam generation

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim

    2017-01-01

    Establishing enhancement methods to develop cost-effective thermal energy storage technology requires a detailed analysis. In this paper, a numerical investigation of the concrete based thermal energy storage system is carried out. The storage system consists of a heat transfer fluid flowing inside...

  13. Durability Properties of Self Compacting Concrete containing Fly ash, Lime powder and Metakaolin

    Directory of Open Access Journals (Sweden)

    Rizwan Ahmad Khan

    2016-01-01

    Full Text Available This paper investigates the durability properties of Self-compacting concrete (SCC, with different amounts of fly ash (FA, lime powder (LP and metakaolin (MK. A total of 6 mixes were prepared that have a constant water-binder ratio (w/b of 0.41 and superplasticizer dosage of 1% by weight of cement. In addition to compressive strength, the durability properties of SCC mixes were determined by means of Initial surface absorption test (ISAT and Capillary suction test. The test results indicated that the durability properties of the mixes appeared to be very dependent on the type and amount of the mineral admixture used; the mixes containing MK were found to have considerably higher permeability resistance. Good co-relation between strength and absorption were achieved.

  14. Lightweight self-compacting concrete reinforced with fibres for slab rehabilitation; Hormigon ligero autocompactante con fibras para rehabilitacion de forjados

    Energy Technology Data Exchange (ETDEWEB)

    Klein, N. S.; Fuente, A. de la; Aguado, A.; Maso, D.

    2011-07-01

    The slabs of some buildings in Barcelona are formed by unidirectional beams, with a ceramic arch in between, which are filled with broken pottery or construction waste. These structures often present problems such as displacement of the tiles arranged over it due to the lack of stiffness of the filling material. This supposes a risk to the user and could also cause durability problems. In order to rehabilitate it, a lightweight self-compacting concrete reinforced with fibres (HLACF) has been designed to be used as a filling material, improving the stiffness of the structure. This paper presents a structural analysis of a standard case and the results of an experimental campaign. The concrete showed a density of 1665 kg/m3, a slump flow of 605 mm and a compressive strength of 22.3 MPa, at 28 days. These results are in agreement with the requirements, overcoming common lightweight concrete segregation problems. (Author) 24 refs.

  15. Fracture Energy of High-Strength Concrete in Compression

    DEFF Research Database (Denmark)

    Dahl, Henrik; Brincker, Rune

    is essential for understanding the fracture mechanism of concrete in compression. In this paper a series of tests is reported, carried out for the purpose of studying the fracture mechanical properties of concrete in compression. Including the measurement and study of the descending branch, a new experimental...... method has been used to investigate the influence of boundary conditions, loading rate, size effects and the influence of the strength on the fracture energy of high-strength concrete over the range 70 MPa to 150 MPa, expressed in nominal values....

  16. Degradation of self-compacting concrete (SCC) due to sulfuric acid attack: Experiment investigation on the effect of high volume fly ash content

    Science.gov (United States)

    Kristiawan, S. A.; Sunarmasto; Tyas, G. P.

    2016-02-01

    Concrete is susceptible to a variety of chemical attacks. In the sulfuric acid environment, concrete is subjected to a combination of sulfuric and acid attack. This research is aimed to investigate the degradation of self-compacting concrete (SCC) due to sulfuric acid attack based on measurement of compressive strength loss and diameter change. Since the proportion of SCC contains higher cement than that of normal concrete, the vulnerability of this concrete to sulfuric acid attack could be reduced by partial replacement of cement with fly ash at high volume level. The effect of high volume fly ash at 50-70% cement replacement levels on the extent of degradation owing to sulfuric acid will be assessed in this study. It can be shown that an increase in the utilization of fly ash to partially replace cement tends to reduce the degradation as confirmed by less compressive strength loss and diameter change. The effect of fly ash to reduce the degradation of SCC is more pronounced at a later age.

  17. Factorial Design Approach in Proportioning Prestressed Self-Compacting Concrete.

    Science.gov (United States)

    Long, Wu-Jian; Khayat, Kamal Henri; Lemieux, Guillaume; Xing, Feng; Wang, Wei-Lun

    2015-03-13

    In order to model the effect of mixture parameters and material properties on the hardened properties of, prestressed self-compacting concrete (SCC), and also to investigate the extensions of the statistical models, a factorial design was employed to identify the relative significance of these primary parameters and their interactions in terms of the mechanical and visco-elastic properties of SCC. In addition to the 16 fractional factorial mixtures evaluated in the modeled region of -1 to +1, eight axial mixtures were prepared at extreme values of -2 and +2 with the other variables maintained at the central points. Four replicate central mixtures were also evaluated. The effects of five mixture parameters, including binder type, binder content, dosage of viscosity-modifying admixture (VMA), water-cementitious material ratio (w/cm), and sand-to-total aggregate ratio (S/A) on compressive strength, modulus of elasticity, as well as autogenous and drying shrinkage are discussed. The applications of the models to better understand trade-offs between mixture parameters and carry out comparisons among various responses are also highlighted. A logical design approach would be to use the existing model to predict the optimal design, and then run selected tests to quantify the influence of the new binder on the model.

  18. A numerical model for self-compacting concrete flow through reinforced sections. A porous medium analogy

    International Nuclear Information System (INIS)

    Vasilic, Ksenija

    2016-01-01

    This thesis addresses numerical simulations of self-compacting concrete (SCC) castings and suggests a novel modelling approach that treats reinforcement zones in a formwork as porous media. As a relatively new field in concrete technology, numerical simulations of fresh concrete flow can be a promising aid to optimise casting processes and to avoid on-site casting incidents by predicting the flow behaviour of concrete during the casting process. The simulations of fresh concrete flow generally involve complex mathematical modelling and time-consuming computations. In case of a casting prediction, the simulation time is additionally significantly increased because each reinforcement bar occurring in succession has to be considered one by one. This is particularly problematic when simulating SCC casting, since this type of concrete is typically used for heavily reinforced structural members. However, the wide use of numerical tools for casting prediction in practice is possible only if the tools are user-friendly and simulations are time-saving. In order to shorten simulation time and to come closer to a practical tool for casting prediction, instead to model steel bars one by one, this thesis suggests to model zones with arrays of steel bars as porous media. Consequently, one models the flow of SCC through a reinforcement zone as a free-surface flow of a non-Newtonian fluid, propagating through the medium. By defining characteristic parameters of the porous medium, the influence on the flow and the changed (apparent) behaviour of concrete in the porous matrix can be predicted. This enables modelling of any reinforcement network as a porous zone and thus significantly simplifies and fastens simulations of reinforced components' castings. Within the thesis, a computational model for SCC flow through reinforced sections was developed. This model couples a fluid dynamics model for fresh concrete and the macroscopic approach for the influence of the porous medium

  19. A numerical model for self-compacting concrete flow through reinforced sections. A porous medium analogy

    Energy Technology Data Exchange (ETDEWEB)

    Vasilic, Ksenija

    2016-05-01

    This thesis addresses numerical simulations of self-compacting concrete (SCC) castings and suggests a novel modelling approach that treats reinforcement zones in a formwork as porous media. As a relatively new field in concrete technology, numerical simulations of fresh concrete flow can be a promising aid to optimise casting processes and to avoid on-site casting incidents by predicting the flow behaviour of concrete during the casting process. The simulations of fresh concrete flow generally involve complex mathematical modelling and time-consuming computations. In case of a casting prediction, the simulation time is additionally significantly increased because each reinforcement bar occurring in succession has to be considered one by one. This is particularly problematic when simulating SCC casting, since this type of concrete is typically used for heavily reinforced structural members. However, the wide use of numerical tools for casting prediction in practice is possible only if the tools are user-friendly and simulations are time-saving. In order to shorten simulation time and to come closer to a practical tool for casting prediction, instead to model steel bars one by one, this thesis suggests to model zones with arrays of steel bars as porous media. Consequently, one models the flow of SCC through a reinforcement zone as a free-surface flow of a non-Newtonian fluid, propagating through the medium. By defining characteristic parameters of the porous medium, the influence on the flow and the changed (apparent) behaviour of concrete in the porous matrix can be predicted. This enables modelling of any reinforcement network as a porous zone and thus significantly simplifies and fastens simulations of reinforced components' castings. Within the thesis, a computational model for SCC flow through reinforced sections was developed. This model couples a fluid dynamics model for fresh concrete and the macroscopic approach for the influence of the porous medium

  20. High-volume natural volcanic pozzolan and limestone powder as partial replacements for portland cement in self-compacting and sustainable concrete

    KAUST Repository

    Celik, Kemal; Jackson, Marie D.; Mancio, Mauricio; Meral, Cagla; Emwas, Abdul-Hamid M.; Mehta, P. Kumar; Monteiro, Paulo José Meleragno

    2014-01-01

    A laboratory study demonstrates that high volume, 45% by mass replacement of portland cement (OPC) with 30% finely-ground basaltic ash from Saudi Arabia (NP) and 15% limestone powder (LS) produces concrete with good workability, high 28-day compressive strength (39 MPa), excellent one year strength (57 MPa), and very high resistance to chloride penetration. Conventional OPC is produced by intergrinding 95% portland clinker and 5% gypsum, and its clinker factor (CF) thus equals 0.95. With 30% NP and 15% LS portland clinker replacement, the CF of the blended ternary PC equals 0.52 so that 48% CO2 emissions could be avoided, while enhancing strength development and durability in the resulting self-compacting concrete (SCC). Petrographic and scanning electron microscopy (SEM) investigations of the crushed NP and finely-ground NP in the concretes provide new insights into the heterogeneous fine-scale cementitious hydration products associated with basaltic ash-portland cement reactions. © 2013 Published by Elsevier Ltd.

  1. New concrete materials technology for competitive house building

    OpenAIRE

    Peterson, Markus

    2003-01-01

    The research project aims at investigating the potential of new concrete materials technology (high performance concrete, HPC and self-compacting concete, SCC) for competitive design, production and function of structural frames of cast in-situ concrete in house building.

  2. Concrete conditioners for low-intermediate level nuclear wastes

    International Nuclear Information System (INIS)

    Roehl, J.L.; Lorentz, R.G.; Franzen, H.R.

    1986-01-01

    The conditioning of low-intermediate level radioactive waste disposal, in Brazil, with concrete packages designed in such way that, in spite of being destined to receive compacted materials in long term sub-surface disposal, they may also be able to attend other storage or disposal necessities, is analysed. A design of a reinforced concrete package with a net volume of 360 l and, with compatible diameter to contain compacted 200 l drums, was developed. A study on compactation of 200 l steel packages is done. A pressure of 30.000 KN for compacting these 200 l drums was adapted, and two series of tests to verify the pressure volume reduction ratio and, the final dimensions and density of the compacted elements, was executed. (Author) [pt

  3. Modeling and assessment of concrete and the energy infrastructure

    International Nuclear Information System (INIS)

    Guthrie, G.; Carey, J.

    1998-01-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Concrete is an essential component of the energy infrastructure. The characteristics of concrete that determine its effectiveness in any application--be it construction (e.g., roads, bridges, dams) or waste isolation--result from the chemical and structural evolution of the particular concrete structure. Geochemical and mineralogical factors are among the most important, yet most overlooked, controls of this evolutionary process. This project is geared at using a combination of advanced geochemical and mineralogical experimentation, characterization, and modeling (much of which was developed to understand geological systems such as Yucca Mountain) to understand the evolution of concrete in a mechanistic way. The goal was to develop a systematic approach to problems ranging from premature degradation of concrete to the design of next-generation concretes

  4. The effects of ZrO2 nanoparticles on physical and mechanical properties of high strength self compacting concrete

    Directory of Open Access Journals (Sweden)

    Ali Nazari

    2010-12-01

    Full Text Available In this work, strength assessments and coefficient of water absorption of high performance self compacting concrete containing different amounts of ZrO2 nanoparticles have been investigated. The results indicate that the strength and the resistance to water permeability of the specimens are improved by adding ZrO2 nanoparticles in the cement paste up to 4.0 wt. (%. ZrO2 nanoparticles, as a result of increased crystalline Ca(OH2 amount especially at the early age of hydration, could accelerate C-S-H gel formation and hence increase the strength of the concrete specimens. In addition, ZrO2 nanoparticles are able to act as nanofillers and recover the pore structure of the specimens by decreasing harmful pores. Several empirical relationships have been presented to predict flexural and split tensile strength of the specimens by means of the corresponding compressive strength at a certain age of curing. Accelerated peak appearance in conduction calorimetry tests, more weight loss in thermogravimetric analysis and more rapid appearance of the peaks related to hydrated products in X-ray diffraction results, all indicate that ZrO2 nanoparticles could improve mechanical and physical properties of the concrete specimens.

  5. Energy Optimized Configuration of Concrete Element with PCM

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew

    fulfillment of the new requirements regarding the new energy frames. The concept presented and developed in the thesis focuses on the energy optimization and potential of the new product that could utilize the high thermal energy storage (TES) and thermally activated building system (TABS). The work...... investigates the potential of combining the microencapsulated phase change material (PCM) in the hollow core concrete deck element in order to increase the dynamic heat storage capacity of the internal envelope of the multi-storey buildings. Moreover, the study investigates the cooling capacity and performance...... of the concrete deck with PCM and integrated TABS and highlights limitations and challenges of the new technology. The presented work utilizes numerical methods to study the dynamic performance of the new product developed. Consequently, the experimental set-ups and methodologies are developed firstly...

  6. Blocking Mechanism Study of Self-Compacting Concrete Based on Discrete Element Method

    Science.gov (United States)

    Zhang, Xuan; Li, Zhida; Zhang, Zhihua

    2017-11-01

    In order to study the influence factors of blocking mechanism of Self-Compaction Concrete (SCC), Roussel’s granular blocking model was verified and extended by establishing the discrete element model of SCC. The influence of different parameters on the filling capacity and blocking mechanism of SCC were also investigated. The results showed that: it was feasible to simulate the blocking mechanism of SCC by using Discrete Element Method (DEM). The passing ability of pebble aggregate was superior to the gravel aggregate and the passing ability of hexahedron particles was bigger than tetrahedron particles, while the tetrahedron particle simulation results were closer to the actual situation. The flow of SCC as another significant factor affected the passing ability that with the flow increased, the passing ability increased. The correction coefficient λ of the steel arrangement (channel section shape) and flow rate γ in the block model were introduced that the value of λ was 0.90-0.95 and the maximum casting rate was 7.8 L/min.

  7. Asphalt dust waste material as a paste volume in developing sustainable self compacting concrete (SCC)

    Science.gov (United States)

    Ismail, Isham; Shahidan, Shahiron; Bahari, Nur Amira Afiza Saiful

    2017-12-01

    Self-compacting concrete (SCC) mixtures are usually designed to have high workability during the fresh state through the influence of higher volumes of paste in concrete mixtures. Asphalt dust waste (ADW) is one of disposed materials obtained during the production of asphalt premix. These fine powder wastes contribute to environmental problems today. However, these waste materials can be utilized in the development of sustainable and economical SCC. This paper focuses on the preliminary evaluations of the fresh properties and compressive strength of developed SCC for 7 and 28 days only. 144 cube samples from 24 mixtures with varying water binder ratios (0.2, 0.3 and 0.4) and ADW volume (0% to 100%) were prepared. MD940 and MD950 showed a satisfactory performance for the slump flow, J-Ring, L-Box and V-Funnel tests at fresh state. The compressive strength after 28 days for MD940 and MD950 was 36.9 MPa and 28.0 MPa respectively. In conclusion, the use of ADW as paste volume should be limited and a higher water binder ratio will significantly reduce the compressive strength.

  8. Materials development and field demonstration of high-recycled-content concrete for energy-efficient building construction; FINAL

    International Nuclear Information System (INIS)

    Ostowari, Ken; Nosson, Ali

    2000-01-01

    The project developed high-recycled-content concrete material with balanced structural and thermal attributes for use in energy-efficient building construction. Recycled plastics, tire, wool, steel and concrete were used as replacement for coarse aggregates in concrete and masonry production. With recycled materials the specific heat and thermal conductivity of concrete could be tailored to enhance the energy-efficiency of concrete buildings. A comprehensive field project was implemented which confirmed the benefits of high-recycled-content concrete for energy-efficient building construction

  9. A comparative study of physical and chemical properties of different pozzolanic materials used for roller compacted concrete RCC dams

    OpenAIRE

    Husein Malkawi Abdallah I.; Shatnawi Ehab; Husein Malkawi Dima A.

    2017-01-01

    This paper addresses the feasibility and the efficiency of using Natural Pozzolan and/or Rock flour in Roller Compacted Concrete (RCC) gravity dams. For this purpose, five identical mortar trial mixes were prepared using five different supplementary materials, i.e., fly ash produced in South Africa (proven to be effective in RCC construction), fly ash produced in Turkey, Jordanian natural pozzolan, Saudi natural pozzolan, and rock flour from Mujib Dam basalt quarry. The physical and chemical ...

  10. DURABILITY OF ASPHALT CONCRETE MIXTURES USING DOLOMITE AGGREGATES

    Directory of Open Access Journals (Sweden)

    Imad Al-Shalout

    2015-12-01

    Full Text Available This study deals with the durability of asphalt concrete, including the effects of different gradations, compaction temperatures and immersion time on the durability potential of mixtures. The specific objectives of this study are: to investigate the effect of compaction temperature on the mechanical properties of asphalt concrete mixtures; investigate the effect of bitumen content and different aggregate gradations on the durability potential of bituminous mixtures.

  11. Determination of gamma ray shielding parameters of rocks and concrete

    Science.gov (United States)

    Obaid, Shamsan S.; Gaikwad, Dhammajyot K.; Pawar, Pravina P.

    2018-03-01

    Gamma shielding parameters such as mass attenuation coefficient (μ/ρ), effective atomic number (Zeff) and electron density (Neff) have been measured and calculated for rocks and concrete in the energy range 122-1330 keV. The measurements have been carried out at 122, 356, 511, 662, 1170, 1275, 1330 keV gamma ray energies using a gamma spectrometer includes a NaI(Tl) scintillation detector and MCA card. The atomic and electronic cross sections have also been investigated. Experimental and calculated (WinXCom) values were compared, and good agreement has been observed within the experimental error. The obtained results showed that feldspathic basalt, compact basalt, volcanic rock, dolerite and pink granite are more efficient than the sandstone and concrete for gamma ray shielding applications.

  12. Aspects of clay/concrete interactions

    International Nuclear Information System (INIS)

    Oscarson, D.W.; Dixon, D.A.; Onofrei, M.

    1997-01-01

    In the Canadian concept for nuclear fuel waste management, both clay-based materials and concrete are proposed for use as barriers, seals or supporting structures. The main concern when clays and concrete are in proximity is the generation of a high-pH environment by concrete since clay minerals are relatively unstable at high pH. Here we examine the OH - -generating capacity of two high-performance concretes when in contact with several solutions. We also investigate various aspects of claylconcrete interactions. They are: (1) the alkalimetric titration of clay suspensions, (2) the effect of Ca(OH) 2 (portlandite) on the swelling and hydraulic properties of compacted bentonite, and (3) the influence of cement grout on a backfill clay retrieved from the 900-d Buffer/Container Experiment at the Underground Research Laboratory of AECL. The results indicate that although high-performance concretes establish significantly lower poresolution pH (9 to 10) than does ordinary portland cement, the pH is still somewhat higher than that of clay/groundwater systems of about pH 8. Hence, even if high-performance concrete is used in a disposal vault, the potential still exists for clay minerals to alter over long periods of time if in contact with this concrete. The data show, however, that clays have a substantial buffering capacity, and clay-based barriers can thus neutralize much of the OH - potentially released from concrete in a vault. Moreover, even after reacting for 120 d at 85 o C with up to 5 wt.% Ca(OH) 2 , compacted bentonite (dry density = 1.2 Mg/m 3 ) retains much of its swelling capacity and has a permeability low enough (hydraulic conductivity ≤ 10 -11 m/s) to ensure that molecular diffusion will be the main transport mechanism through compacted clay-based barriers. Furthermore, according to X-ray diffractometry, the clay mineral component of backfill was not altered by contact with a cement grout for 900 d in the Buffer/Container Experiment

  13. Post-cracking Behaviour and Fracture Energy of Synthetic Fibre Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Marta KOSIOR-KAZBERUK

    2016-11-01

    Full Text Available The paper reports the results of experimental programme focused on the effect of various synthetic fibres on fracture properties and ductility of concrete. The fracture energy was assessed on beams with initial notches in three-point bend test. The incorporation of synthetic fibres had a slight effect on mechanical properties of concrete but, at the same time, it had a significant influence on the fracture energy by modification of post-cracking behaviour of concrete. It was found that the modern synthetic fibres might be able to impart significant toughness and ductility to concrete. However, the beneficial effect of fibres depends on their length and flexibility. The analysis of load-deflection curves obtained made it possible to fit the simple function, describing the post-peak behaviour of fibre reinforced concrete, which can be useful for the calculation of GF value.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.13246

  14. Energy Optimized Configuration of Concrete Element with PCM

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew

    fulfillment of the new requirements regarding the new energy frames. The concept presented and developed in the thesis focuses on the energy optimization and potential of the new product that could utilize the high thermal energy storage (TES) and thermally activated building system (TABS). The work...... investigates the potential of combining the microencapsulated phase change material (PCM) in the hollow core concrete deck element in order to increase the dynamic heat storage capacity of the internal envelope of the multi-storey buildings. Moreover, the study investigates the cooling capacity and performance...... of the concrete deck with PCM and integrated TABS and highlights limitations and challenges of the new technology. Results from the full-scale investigation of dynamic heat storage capacity of decks indicated that there is no substantial difference between decks with extended heat transfer surface and one...

  15. Rotation capacity of self-compacting steel fibre reinforced concrete beams

    NARCIS (Netherlands)

    Schumacher, P.; Walraven, J.C.; Den Uijl, J.A.; Bigaj-van Vliet, A.

    2009-01-01

    Steel fibres are known to enhance the toughness of concrete in compression and in tension. Steel fibres also improve the bond properties between concrete matrix and reinforcing steel bars. In order to investigate the effect of steel fibres on the rotation capacity of reinforced concrete members,

  16. Determination of the Fracture Energy of Concrete

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Stang, Henrik

    1998-01-01

    In a NORDTEST project two methods for determination of the fracture energy of concrete are compared; the Three-Point Bend Test (TPBT) and the Wedge Splitting Test (WST). The methods involve notched beams and notched, grooved cubes, respectively. The two methods are compared in relation to handling...... and precision (repeatability, reproducibility). Concrete with a water/cement ratio of 0.43 including fly ash as well as silica fume is investigated. The results show that WST is significantly faster to work with compared to TPBT, although the sawing procedure is more time consuming. Only when using laboratory...

  17. An eco-friendly self-compacting concrete with recycled coarse aggregates

    Directory of Open Access Journals (Sweden)

    Pereira-de Oliveira, L. A.

    2013-09-01

    Full Text Available The potential uses of coarse recycled aggregates in the composition of SCC increases the ecological value and partly solve the issues of waste disposal sites generated by construction and demolition of structures. Thus, this paper present an experimental study of SCC properties where the normal coarse aggregates were replaced by different percentages of recycled aggregates, i.e., 0% (SCC, 10% (SCCR10, 20% (SCCR20, 30% (SCCR30 and 40% (SCCR40. The results from fresh concrete (rheological properties and self-compactability as the hardened concrete properties (compressive strength, density and dynamic modulus of elasticity, show only minor discrepancies. From the standpoint of mechanical behaviour, the results confirm the viability to incorporate coarse recycled aggregates in the SCC demonstrating the conservative character of the currently recommended limits.Los usos potenciales de áridos gruesos reciclados en la composición del hormigón autocompactante (SCC aumenta el valor ecológico y en parte resuelve los problemas de los sitios de disposición de residuos generados por la construcción y la demolición de las estructuras. Por lo tanto, este trabajo presenta un estudio experimental de las propiedades de SCC en el cual los áridos gruesos naturales fueron reemplazados por distintos porcentajes de áridos reciclados, es decir, 0% (SCC, el 10% (SCCR10, el 20% (SCCR20, el 30% (SCCR30 y el 40% (SCCR40. Los resultados del hormigón fresco (propiedades reológicas y la auto-compactación, como las propiedades de hormigón endurecido (resistencia a la compresión, densidad y módulo de elasticidad dinámico, muestran sólo pequeñas discrepancias. Desde el punto de vista del comportamiento mecánico, los resultados confirman la viabilidad de incorporar áridos gruesos reciclados en los SCC demostrando el carácter conservador de los límites actualmente recomendados.

  18. Special protective concretes

    International Nuclear Information System (INIS)

    Bouniol, P.

    2001-01-01

    Concrete is the most convenient material when large-scale radiation protection is needed. Thus, special concretes for nuclear purposes are used in various facilities like reactors, reprocessing centers, storage sites, accelerators, hospitals with nuclear medicine equipment, food ionization centers etc.. The recent advances made in civil engineering for the improvement of concrete durability and compactness are for a large part transposable to protection concretes. This article presents the basic knowledge about protection concretes with the associated typological and technological aspects. A large part is devoted to the intrinsic properties of concretes and to their behaviour in irradiation and temperature conditions: 1 - definition and field of application of special protective concretes; 2 - evolution of concepts and technologies (durability of structures, techniques of formulation, new additives, market evolution); 3 - design of protective structures (preliminary study, radiation characteristics, thermal constraints, damping and dimensioning, mechanical criteria); 4 - formulation of special concretes (general principles, granulates, hydraulic binders, pulverulent additives, water/cement ratio, reference composition of some special concretes); 5 - properties of special concretes (damping and thermo-mechanical properties); 6 - induced-irradiation and temperature phenomena (activation, radiolysis, mineralogical transformations, drying, shrinking, creep, corrosion of reinforcement). (J.S.)

  19. Strengthening of self-compacting reinforced concrete deep beams containing circular openings with CFRP

    Directory of Open Access Journals (Sweden)

    Al-Bayati Nabeel

    2018-01-01

    Full Text Available This paper shows the behavior of reinforced self-compacting concrete deep beams with circular openings strengthened in shear with various arrangements of externally bonded Carbon Fibre Reinforced Polymer (CFRP. Six simply supported deep beams were constructed and tested under two points load up to the failure for this purpose. All tested beams had same geometry, compressive strength, shear span to depth ratio, main flexural and web reinforcement. The variables considered in this study include the influence of fiber orientation, utilizing longitudinal CFRP strips with vertical strips and area of CFRP. The test results indicated that the presence of the circular openings in center of load path reduce stiffness and ultimate strength by about 50% when compared with solid one, also it was found that the externally bonded CFRP can significantly increase the ultimate load and enhance the stiffness of deep beam with openings.

  20. Comparison of fracture toughness values of normal and high strength concrete determined by three point bend and modified disk-shaped compact tension specimens

    Czech Academy of Sciences Publication Activity Database

    Seitl, Stanislav; Ríjos, J. D.; Cifuentes, H.

    2017-01-01

    Roč. 11, č. 42 (2017), s. 56-65 ISSN 1971-8993 R&D Projects: GA ČR(CZ) GA16-18702S; GA MŠk LM2015069 Institutional support: RVO:68081723 Keywords : Concrete * Stress intensity factors * T-stress * Compact tension test * Fracture behavior * Fracture toughness Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis

  1. Influence of compaction and surface roughness on low-energy ion scattering signals

    NARCIS (Netherlands)

    Jansen, W.P.A.; Knoester, A.; Maas, A.J.H.; Schmit, P.; Kytökivi, A.; Denier van der Gon, A.W.; Brongersma, H.H.

    2004-01-01

    Investigation of the surface composition of powders often requires compaction. To study the effect of compaction on surface analysis, samples have been compacted at various pressures ranging from 0 Pa (i.e. no compaction) up to 2000 MPa (2 × 104 kg cm-2) Low-energy ion scattering (LEIS) was used to

  2. Mechanical Properties of Fiber Reinforced Lightweight Concrete Containing Surfactant

    Directory of Open Access Journals (Sweden)

    Yoo-Jae Kim

    2010-01-01

    Full Text Available Fiber reinforced aerated lightweight concrete (FALC was developed to reduce concrete's density and to improve its fire resistance, thermal conductivity, and energy absorption. Compression tests were performed to determine basic properties of FALC. The primary independent variables were the types and volume fraction of fibers, and the amount of air in the concrete. Polypropylene and carbon fibers were investigated at 0, 1, 2, 3, and 4% volume ratios. The lightweight aggregate used was made of expanded clay. A self-compaction agent was used to reduce the water-cement ratio and keep good workability. A surfactant was also added to introduce air into the concrete. This study provides basic information regarding the mechanical properties of FALC and compares FALC with fiber reinforced lightweight concrete. The properties investigated include the unit weight, uniaxial compressive strength, modulus of elasticity, and toughness index. Based on the properties, a stress-strain prediction model was proposed. It was demonstrated that the proposed model accurately predicts the stress-strain behavior of FALC.

  3. Reduced labor and condensed schedules with cellular concrete solutions

    Energy Technology Data Exchange (ETDEWEB)

    Lavis, D. [CEMATRIX Inc., Calgary, AB (Canada)

    2008-07-01

    This paper discussed the use of cellular concrete materials in oil sands tank base foundation systems, shallow buried utility insulation systems, roadways, slabs, and buried modules. The concrete is formed from Portland cement, water, specialized pre-formed foaming agents, and air mixed in controlled proportions. Fly ash and polypropylene or glass fibers can also be used as additions. Cellular concrete can often be used to speed up construction and minimize labour requirements. Cellular concrete can be cast-in-place, and has soil-stabilizing and self-compacting features. The concrete can be produced and placed on-site at rates exceeding 120 cubic meters per hour. Cellular concrete can be pumped into place over long distances through flexible hoses. A case study comparing the cellular concrete to traditional plastic foam insulation was used to demonstrate the equivalency and adequacy of insulation, structural properties and installation costs. The study showed that although the cellular concrete had a high installation cost, greater compressive strength was gained. The concrete was self-levelling and did not require compaction or vibration. The use of the cellular concrete resulted in an accelerated construction schedule. 6 refs., 2 tabs., 6 figs.

  4. Effect of silica fume on the fresh and hardened properties of fly ash-based self-compacting geopolymer concrete

    Science.gov (United States)

    Memon, Fareed Ahmed; Nuruddin, Muhd Fadhil; Shafiq, Nasir

    2013-02-01

    The effect of silica fume on the fresh and hardened properties of fly ash-based self-compacting geopolymer concrete (SCGC) was investigated in this paper. The work focused on the concrete mixes with a fixed water-to-geopolymer solid (W/Gs) ratio of 0.33 by mass and a constant total binder content of 400 kg/m3. The mass fractions of silica fume that replaced fly ash in this research were 0wt%, 5wt%, 10wt%, and 15wt%. The workability-related fresh properties of SCGC were assessed through slump flow, V-funnel, and L-box test methods. Hardened concrete tests were limited to compressive, splitting tensile and flexural strengths, all of which were measured at the age of 1, 7, and 28 d after 48-h oven curing. The results indicate that the addition of silica fume as a partial replacement of fly ash results in the loss of workability; nevertheless, the mechanical properties of hardened SCGC are significantly improved by incorporating silica fume, especially up to 10wt%. Applying this percentage of silica fume results in 4.3% reduction in the slump flow; however, it increases the compressive strength by 6.9%, tensile strength by 12.8% and flexural strength by 11.5%.

  5. Fresh and mechanical properties of self compacting concrete containing copper slag as fine aggregates

    Directory of Open Access Journals (Sweden)

    Rahul Sharma

    2017-03-01

    Full Text Available An investigation is carried out on the development of Self Compacting Concrete (SCC using copper slag (CS as fine aggregates with partial and full replacement of sand. Six different SCC mixes (60% OPC and 40% Fly Ash with 0% as control mix, 20%, 40%, 60%, 80% and 100% of copper slag substituting sand with constant w/b ratio of 0.45 were cast and tested for fresh properties of SCC. Compressive strength and splitting tensile strength were evaluated at different ages and microstructural analysis was observed at 120 days. It has been observed that the fluidity of SCC mixes was significantly enhanced with the increment of copper slag. The test results showed that the compressive strength increases up to 60% copper slag as replacement of sand, beyond which decrease in strength was observed. The highest compressive strength was obtained at 20% copper slag substitution at different curing ages among all the mixes, except for 7 days curing. The splitting tensile strength of the CS substituted mixes in comparison to control concrete was found to increase at all the curing ages but the remarkable achievement of strength was detected at 60% copper slag replacement. The microscopic view from Scanning electron microscopy (SEM demonstrated more voids, capillary channels, and micro cracks with the increment of copper slag as substitution of sand as compared to the control mix.

  6. Improved technology for spun-cast concrete poles

    Energy Technology Data Exchange (ETDEWEB)

    Dilger, W H; Ghali, A

    1984-07-01

    Different types of concrete were investigated with the goal of developing concrete suitable for the production of spun-cast concrete poles. A total of 65 different concrete mixes were investigated, with the suitability criteria defined as: compactability, no segregation of the mix components during the spinning operation, no shrinkage cracking, high strength, and durability. High strength normal weight concretes and semi-lightweight concretes, both with and without fly ash and/or silica fume and with different types of admixtures were used to produce spun-cast concrete pole segments. Of the 35 lightweight concretes only 3 were considered successful, as in all other specimens the inner layer of coarse aggregate was not well embedded in the mortar, and many mixes could not be compacted properly because they were too stiff, too wet, or started to set before spinning commenced. The three successful specimens contained fly ash and one contained silica fume, and had low water/cement ratios (0.26 to 0.29). Of the 23 normal weight concretes tested, only 5 were considered suitable, and all these had a sand/coarse aggregate ratio of 0.25 or smaller and a cement content between 350 and 400 kg/m{sup 3}. A theoretical study of the stresses in the end zones of pretensioned poles is presented. 10 refs., 53 figs., 14 tabs.

  7. Applicability of recycled aggregates in concrete piles for soft soil improvement.

    Science.gov (United States)

    Medeiros-Junior, Ronaldo A; Balestra, Carlos Et; Lima, Maryangela G

    2017-01-01

    The expressive generation of construction and demolition waste is stimulating several studies for reusing this material. The improvement of soft soils by concrete compaction piles has been widely applied for 40 years in some Brazilian cities. This technique is used to improve the bearing capacity of soft soils, allowing executing shallow foundations instead of deep foundations. The compaction piles use a high volume of material. This article explored the possibility of using recycled aggregates from construction waste to replace the natural aggregates in order to improve the bearing capacity of the soft soil, regarding its compressive strength. Construction wastes from different stages of a construction were used in order to make samples of concrete with recycled aggregates. The strength of concretes with natural aggregates was compared with the strength of concretes with recycled (fine and coarse) aggregates. Results show that all samples met the minimum compressive strength specified for compaction piles used to improve the bearing capacity of soft soils. The concrete with recycled aggregate from the structural stage had even higher resistances than the concrete with natural aggregates. This behaviour was attributed to the large amount of cementitious materials in the composition of this type of concrete. It was also observed that concrete with recycled fine aggregate has a superior resistance to concrete with recycled coarse aggregate.

  8. Phase distribution and microstructural changes of self-compacting cement paste at elevated temperature

    International Nuclear Information System (INIS)

    Ye, G.; Liu, X.; De Schutter, G.; Taerwe, L.; Vandevelde, P.

    2007-01-01

    Self-compacting concrete, as a new smart building material with various advanced properties, has been used for a wide range of structures and infrastructures. However little investigation have been reported on the properties of Self-compacting when it is exposed to elevated temperatures. Previous experiments on fire test have shown the differences between high performance concrete and traditional concrete at elevated temperature. This difference is largely depending on the microstructural properties of concrete matrix, i.e. the cement paste, especially on the porosity, pore size distribution and the connectivity of pores in cement pastes. In this contribution, the investigations are focused on the cement paste. The phase distribution and microstructural changes of self-compacting cement paste at elevated temperatures are examined by mercury intrusion porosimetry and scanning electron microscopy. The chemical decomposition of self-compacting cement paste at different temperatures is determined by thermogravimetric analysis. The experimental results of self-compacting cement paste are compared with those of high performance cement paste and traditional cement paste. It was found that self-compacting cement paste shows a higher change of the total porosity in comparison with high performance cement paste. When the temperature is higher than 700 deg. C, a dramatic loss of mass was observed in the self-compacting cement paste samples with addition of limestone filler. This implies that the SCC made by this type of self-compacting cement paste will probably show larger damage once exposed to fire. Investigation has shown that 0.5 kg/m 3 of Polypropylene fibers in the self-compacting cement paste can avoid the damage efficiently

  9. Self-compacting concrete with sugarcane bagasse ash – ground blast furnace slag blended cement: fresh properties

    Science.gov (United States)

    Le, Duc-Hien; Sheen, Yeong-Nain; Ngoc-Tra Lam, My

    2018-04-01

    In this investigation, major properties in fresh state of self-compacting concrete (SCC) developed from sugarcane bagasse ash and granulated blast furnace slag as supplementary cementitious materials were examined through an experimental work. There were four mix groups (S0, BA10, BA20, and BA30) containing different cement replacing levels; and totally, 12 SCC mixtures and one control mixture were provided for the test. Fresh properties of the proposed SCC were evaluated through measurement of the density, slump, slump-flow, V-funnel test, T500 slump, Box-test, and setting time. The testing results indicated that replacing either SBA and/or BFS to OPC in SCC mixtures led to lower density, lesser flowability, and longer hardening times.

  10. Development of Flat Roof Construction with Waterproofing from Modified Self-Compacting Concrete

    Science.gov (United States)

    Bogdanov, R. R.; Ibragimov, R. A.

    2017-11-01

    The given article considers the issues of increase of building flat roof durability by application of the modified self-compacting concrete (SSC). When SSC was modified, a complex modifier was developed and the optimization of the complex modifier composition was carried out using a three-factor experiment. The physico-mechanical properties of the obtained SSC are determined. The microstructure and phase composition of the modified cement stone were studied. On the basis of the studies carried out, namely, X-ray phase analysis and electron microscopy, it was concluded that the reduced content of calcium hydroxide in the samples with a complex modifier is due to the adsorption of calcium hydroxide on highly dispersed particles and the reaction of interaction with metakaolin also contributing to reduction in the content of calcium hydroxide in cement stone. The received data allow one to speak about SSC high operational characteristics. With the mark for the spreading of cone P5, the modified SSC has a class of compressive strength B50, high frost resistance (F600) and water resistance (W16).

  11. Compact multi-energy electron linear accelerators

    International Nuclear Information System (INIS)

    Tanabe, E.; Hamm, R.W.

    1985-01-01

    Two distinctly different concepts that have been developed for compact multi-energy, single-section, standing-wave electron linear accelerator structures are presented. These new concepts, which utilize (a) variable nearest neighbor couplings and (b) accelerating field phase switching, provide the capability of continuously varying the electron output energy from the accelerator without degrading the energy spectrum. These techniques also provide the means for continuously varying the energy spectrum while maintaining a given average electron energy, and have been tested successfully with several accelerators of length from 0.1 m to 1.9 m. Theoretical amd experimental results from these accelerators, and demonstrated applications of these techniques to medical and industrial linear accelerator technology will be described. In addition, possible new applications available to research and industry from these techniques are presented. (orig.)

  12. An energy approach study of the penetration of concrete by rigid missiles

    International Nuclear Information System (INIS)

    Guirgis, Sameh; Guirguis, Ehab

    2009-01-01

    This paper presents an energy approach for investigating the penetration of concrete by rigid missiles and the associated phenomena. However, the principal assumptions made here must be validated experimentally before giving the proposed subject further considerations. In the following, a new measure for concrete resistance to penetration by hard missiles is presented. The suggested term for this measure is 'the Volumetric Crushing Energy Density' of concrete which can be described as the energy required for converting a unit volume of concrete to separate particles under compressive loading so that the particles of the crushed volume meet certain gradation criteria. Using this quantity, an explanation of the scale effect is postulated. Moreover, a dimensionless semi-analytical formula for the penetration depth of a rigid missile in a concrete target is proposed which includes a large number of the variables of the problem. The formula assumes that the penetration incident may include several successive phases where the set of variables that governs the impact is different during each phase, and the variables that characterize the impact during each phase correlate in a different manner as well. Furthermore, many of the penetration depth formulae available in the literature are rewritten according to the formula proposed here where the concrete penetration resistance of any incident is estimated by modifying the resistance of 'reference impact incidents.' The rewritten formulae show the wide variation of the values of concrete resistance which are implicitly included in the original formulae. Finally, the proposed formula is applied using data of penetration experiments presented by Forrestal et al. [Forrestal, M.J., Altman, B.S., Cargile, J.D., Hanchak, S.J., 1994. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets. Int. J. Impact Eng. 15(4), 395-405; Forrestal, M.J., Frew, D.J., Hickerson, J.P., Rohwer, T.A., 2003

  13. Analysis of Within-Test Variability of Non-Destructive Test Methods to Evaluate Compressive Strength of Normal Vibrated and Self-Compacting Concretes

    Science.gov (United States)

    Nepomuceno, Miguel C. S.; Lopes, Sérgio M. R.

    2017-10-01

    Non-destructive tests (NDT) have been used in the last decades for the assessment of in-situ quality and integrity of concrete elements. An important step in the application of NDT methods concerns to the interpretation and validation of the test results. In general, interpretation of NDT results should involve three distinct phases leading to the development of conclusions: processing of collected data, analysis of within-test variability and quantitative evaluation of property under investigation. The analysis of within-test variability can provide valuable information, since this can be compared with that of within-test variability associated with the NDT method in use, either to provide a measure of the quality control or to detect the presence of abnormal circumstances during the in-situ application. This paper reports the analysis of the experimental results of within-test variability of NDT obtained for normal vibrated concrete and self-compacting concrete. The NDT reported includes the surface hardness test, ultrasonic pulse velocity test, penetration resistance test, pull-off test, pull-out test and maturity test. The obtained results are discussed and conclusions are presented.

  14. Revisión del empleo de fibras de acero en hormigones autocompactantes = Review of the steel fibers use in concrete self-compacting

    Directory of Open Access Journals (Sweden)

    Gabriela Vega

    2016-12-01

    Full Text Available En la actualidad el hormigón es un material indispensable en la construcción. Tiene muchas ventajas, entre las que destaca su alta resistencia a compresión, pero a su vez presenta algunas deficiencias sobre las que se va a centrar este documento. Entre las deficiencias más destacables están la baja resistencia a tracción del material y su comportamiento frágil. Por ello desde sus orígenes se ha intentado cubrir esas deficiencias utilizando diferentes tipos de materiales para reforzar y complementar las capacidades estructurales del hormigón. La incorporación de fibras en este material ha ido implantándose en el mercado ya que gracias a sus características ayudan a abaratar los costos de ejecución y a una sustitución parcial o total de la armadura. En este trabajo se hará un repaso a al uso de los hormigones autocompactantes en la construcción y a las diferentes tipos de fibras que pueden aplicarse al hormigón convencional para la mejora de la tenacidad, control de fisuración y resistencia a flexotracción, con el fin de elaborar un hormigón autocompactante con fibras de acero que reúna las características propias del hormigón y que optimice algunos aspectos del mismos. Abstract Concrete is now an indispensable material in construction. It has many advantages, including its high resistance to compression, but in turn presents some deficiencies on which this document will be focused. Among the most notable deficiencies are the low tensile strength of the material and its brittle behavior. Therefore, from the outset, attempts have been made to cover these deficiencies by using different types of materials to reinforce and complement the structural capacities of concrete. The incorporation of fibers in this material has been implanted in the market since, thanks to their characteristics, they help to reduce the execution costs and to a partial or total replacement of the armature. This work will review the use of self-compacting

  15. Transport of accelerator produced high energy neutrons though concrete

    International Nuclear Information System (INIS)

    Prabhakar Rao, G.; Sarkar, P.K.

    1996-01-01

    Development of a computational system for estimating the production and transport of high energy neutrons in particle accelerators is reported. The energy-angle distribution of neutrons from accelerated ions bombarding thick targets is calculated by a hybrid nuclear reaction model code, ALICE-91, modified to suit the purpose. Subsequent transmission of these neutrons through concrete slabs is treated using the anisotropic source-flux iteration technique (ASFIT) in the framework of a coupled neutron-gamma transport. Several parameters of both the codes have been optimized to obtain the transmitted dose through concrete. The calculations are found to be accurate and at the same time faster compared to the detailed Monte Carlo calculations. (author). 8 refs., 2 figs

  16. Mathematical model of consolidation of fine concrete mixtures with different mobility, casted by vacuumizing and axial pressing in layers

    Directory of Open Access Journals (Sweden)

    Dedeneva Elena

    2017-01-01

    Full Text Available A mathematical model allowing establishing regularities in the consolidation processes of fine-grained concrete mixtures with different mobility and compaction methods has been worked out. This study is based on two-phase systems and nonlinear character of their consolidation. It resolves the question of the choice of vacuumizing optimal parameters and axial pressing in layers for molding of thin-walled products such as concrete roof tiles and concrete pipe products. Finally, we can get products without heat treatment by the materials and energy-saving technologies.

  17. Influence of interface properties on fracture behaviour of concrete

    Indian Academy of Sciences (India)

    Interface; concrete; bond strength; fracture toughness; stiffness; ductility. 1. Introduction .... behaviour of concrete using sandwich, and direct rock-mortar compact specimens under mode I and mode II ... pulse velocity technique. 4.2 Geometry of ...

  18. Development of space heating and domestic hot water systems with compact thermal energy storage. Compact thermal energy storage: Material development for System Integration

    NARCIS (Netherlands)

    Davidson, J.H.; Quinnell, J.; Burch, J.; Zondag, H.A.; Boer, R. de; Finck, C.J.; Cuypers, R.; Cabeza, L.F.; Heinz, A.; Jahnig, D.; Furbo, S.; Bertsch, F.

    2013-01-01

    Long-term, compact thermal energy storage (TES) is essential to the development of cost-effective solar and passive building-integrated space heating systems and may enhance the annual technical and economic performance of solar domestic hot water (DHW) systems. Systems should provide high energy

  19. Experimental Study on Modification of Concrete with Asphalt Admixture

    Science.gov (United States)

    Bołtryk, Michał; Małaszkiewicz, Dorota; Pawluczuk, Edyta

    2017-10-01

    Durability of engineering structures made of cement concrete with high compressive strength is a very vital issue, especially when they are exposed to different aggressive environments and dynamic loads. Concrete resistance to weathering actions and chemical attack can be improved by combined chemical and mechanical modification of concrete microstructure. Asphalt admixture in the form of asphalt paste (AP) was used for chemical modification of cement composite microstructure. Concrete structure was formed using special technology of compaction. A stand for vibro-vibropressing with regulated vibrator force and pressing force was developed. The following properties of the modified concrete were tested: compressive strength, water absorption, freeze-thaw resistance, scaling resistance in the presence of de-icing agents, chloride migration, resistance to CO2 and corrosion in aggressive solutions. Corrosion resistance was tested alternately in 1.8% solutions of NH4Cl, MgSO4, (NH2)2CO and CaCl2, which were altered every 7 days; the experiment lasted 9.5 months. Optimum compaction parameters in semi-industrial conditions were determined: ratio between piston stress (Qp ) and external top vibrator force (Po ) in the range 0.4÷-0.5 external top vibrator force 4 kN. High strength concretes with compressive strength fcm = 60÷70 MPa, very low water absorption (barrier formed in pores of cement hydrates against dioxide and chloride ions. Concrete specimens containing AP 4% c.m. and consolidated by vibro-vibropressing method proved to be practically resistant to highly corrosive environment. Vibro-vibropressing compaction technology of concrete modified with AP can be applied in prefabrication plants to produce elements for road, bridge and hydraulic engineering constructions.

  20. Influence of processing factors over concrete strength.

    Science.gov (United States)

    Kara, K. A.; Dolzhenko, A. V.; Zharikov, I. S.

    2018-03-01

    Construction of facilities of cast in-situ reinforced concrete poses additional requirements to quality of material, peculiarities of the construction process may sometimes lead to appearance of lamination planes and inhomogeneity of concrete, which reduce strength of the material and structure as a whole. Technology compliance while working with cast in-situ concrete has a significant impact onto the concrete strength. Such process factors as concrete curing, vibration and compaction of the concrete mixture, temperature treatment, etc., when they are countered or inadequately followed lead to a significant reduction in concrete strength. Here, the authors experimentally quantitatively determine the loss of strength in in-situ cast concrete structures due to inadequate following of process requirements, in comparison with full compliance.

  1. Monitoring of Grouting Compactness in a Post-Tensioning Tendon Duct Using Piezoceramic Transducers

    Directory of Open Access Journals (Sweden)

    Tianyong Jiang

    2016-08-01

    Full Text Available A post-tensioning tendon duct filled with grout can effectively prevent corrosion of the reinforcement, maintain bonding behavior between the reinforcement and concrete, and enhance the load bearing capacity of concrete structures. In practice, grouting of the post-tensioning tendon ducts always causes quality problems, which may reduce structural integrity and service life, and even cause accidents. However, monitoring of the grouting compactness is still a challenge due to the invisibility of the grout in the duct during the grouting process. This paper presents a stress wave-based active sensing approach using piezoceramic transducers to monitor the grouting compactness in real time. A segment of a commercial tendon duct was used as research object in this study. One lead zirconate titanate (PZT piezoceramic transducer with marble protection, called a smart aggregate (SA, was bonded on the tendon and installed in the tendon duct. Two PZT patch sensors were mounted on the top outside surface of the duct, and one PZT patch sensor was bonded on the bottom outside surface of the tendon duct. In the active sensing approach, the SA was used as an actuator to generate a stress wave and the PZT sensors were utilized to detect the wave response. Cement or grout in the duct functions as a wave conduit, which can propagate the stress wave. If the cement or grout is not fully filled in the tendon duct, the top PZT sensors cannot receive much stress wave energy. The experimental procedures simulated four stages during the grout pouring process, which includes empty status, half grouting, 90% grouting, and full grouting of the duct. Experimental results show that the bottom PZT sensor can detect the signal when the grout level increases towards 50%, when a conduit between the SA and PZT sensor is formed. The top PZT sensors cannot receive any signal until the grout process is completely finished. The wavelet packet-based energy analysis was adopted in this

  2. Long-term thermal two- and three-dimensional analysis of roller compacted concrete dams supported by monitoring verification

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmanovic, V.; Savic, L. [Belgrade Univ. (Serbia). Faculty of Civil Engineering; Stefanakos, J. [National Technical Univ. of Athens (Greece). Dept. of Water Resources and Environmental Engineering

    2010-04-15

    This study investigated the long-term thermal-field evolution of roller compacted concrete (RCC) dams. Thermal computational analyses of the dams are needed as a result of the layer-based construction technologies used to build the dams. Two-dimensional (2-D) and 3-D unsteady phased models of the RCC dams were used to determine the time evolution of thermal field in a dam based on the Platanovryssi dam in Greece. The finite element method (FEM) was used to account for the dam geometry, different types of concrete used; actual initial and boundary conditions; the thermal and mechanical properties of the dam as a function of aging and temperature; and the RCC construction technology. The influence of all the parameters on the thermal behaviour of the RCC gravity dam was analyzed. Results of the study showed that the 2-D model accurately described the RCC dam thermal field. The thermal behaviour of the dam was influenced primarily by the thermal properties of the mixture and the boundary conditions. Variations of layer thickness did not significantly influence the temperature field. 18 refs., 3 tabs., 10 figs.

  3. Behavior of reinforced concrete columns strenghtened by partial jacketing

    Directory of Open Access Journals (Sweden)

    D. B. FERREIRA

    Full Text Available This article presents the study of reinforced concrete columns strengthened using a partial jacket consisting of a 35mm self-compacting concrete layer added to its most compressed face and tested in combined compression and uniaxial bending until rupture. Wedge bolt connectors were used to increase bond at the interface between the two concrete layers of different ages. Seven 2000 mm long columns were tested. Two columns were cast monolithically and named PO (original column e PR (reference column. The other five columns were strengthened using a new 35 mm thick self-compacting concrete layer attached to the column face subjected to highest compressive stresses. Column PO had a 120mm by 250 mm rectangular cross section and other columns had a 155 mm by 250mm cross section after the strengthening procedure. Results show that the ultimate resistance of the strengthened columns was more than three times the ultimate resistance of the original column PO, indicating the effectiveness of the strengthening procedure. Detachment of the new concrete layer with concrete crushing and steel yielding occurred in the strengthened columns.

  4. Rheological behaviour of self-compacting micro-concrete

    Indian Academy of Sciences (India)

    phase composition to link fresh concrete workability and mixing intensity. In this paper, rheological measurements have been performed using a novel rheometer equipped with a ball measuring system. SCMC mixtures with various HRWRA contents and conventional cement paste mixtures with varying water/cement ratios ...

  5. Use of waste from the marble industry as filler for the production of self-compacting concretes

    Directory of Open Access Journals (Sweden)

    Valdez, P.

    2011-03-01

    Full Text Available This study evaluates the possibilities of using residual slurry from the cutting and superficial treatment of marble for the production of self-compacting concrete (SCC. The study considers the replacement of 30% of cement by the waste material, and assessed the effects on SCC properties in fresh and hardened states. Rheological characteristics were evaluated at the paste and concrete levels. Physical-mechanical characterization considers the rate of shrinkage and compressive strength gain. Pastes and concrete properties using waste marble as filler are compared with mixtures that include limestone filler, either added to the concrete or the cement. For the same dosage, an improvement in the flowability was observed in SCC with waste marble filler. The mechanical properties of the SCC adopting marble waste are equivalent to the SCC with limestone filler. The study shows that residual slurry from the processing of marble can represents an appropriate filler to be used in SCC.

    El presente estudio evalúa las posibilidades de utilización de lodos residuo de la industria del corte y tratamiento superficial del mármol para la producción de hormigón autocompactante (HAC. Se estudia el efecto del remplazo de un 30% del cemento por el residuo. Se valoran las características reológicas a nivel pasta y hormigón. La caracterización físico-mecánica contempla la evolución de la retracción y de la resistencia a compresión. Se comparan las prestaciones de pastas y hormigones empleando el residuo con mezclas que incorporan filler calizo, ya sea adicionado al hormigón o presente en el cemento. Se observa una mejora de la fluidez en el caso de los HAC que contienen el residuo estudiado; las propiedades mecánicas de éstos resultan equivalentes a las de los HAC con filler calizo. Se concluye que los lodos residuo del procesamiento del mármol pueden representan un filler adecuado para su uso en HAC.

  6. The role of SiO2 nanoparticles and ground granulated blast furnace slag admixtures on physical, thermal and mechanical properties of self compacting concrete

    International Nuclear Information System (INIS)

    Nazari, Ali; Riahi, Shadi

    2011-01-01

    Research highlights: → Nanoparticles in concrete. → Ground granulated blast furnace slag as concrete's binder. → Mechanical properties of concrete specimens by non-traditional admixtures. - Abstract: In this work, strength assessments and percentage of water absorption of self compacting concrete containing ground granulated blast furnace slag and SiO 2 nanoparticles as binder have been investigated. Portland cement was replaced by different amounts of ground granulated blast furnace slag and the properties of concrete specimens were investigated. Although it negatively impacts the physical and mechanical properties of concrete at early ages of curing, ground granulated blast furnace slag was found to improve the physical and mechanical properties of concrete up to 45 wt% at later ages. SiO 2 nanoparticles with the average particle size of 15 nm were added partially to concrete with the optimum content of ground granulated blast furnace slag and physical and mechanical properties of the specimens were measured. SiO 2 nanoparticle as a partial replacement of cement up to 3.0 wt% could accelerate C-S-H gel formation as a result of increased crystalline Ca(OH) 2 amount at the early ages and hence increase strength and improve the resistance to water permeability of concrete specimens. The increased SiO 2 nanoparticles' content by more than 3.0 wt%, causes the reduced strength because of the decreased crystalline Ca(OH) 2 content required for C-S-H gel formation. Several empirical relationships have been presented to predict flexural and split tensile strength of the specimens by means of the corresponding compressive strength at a certain age of curing. Accelerated peak appearance in conduction calorimetry tests, more weight loss in thermogravimetric analysis and more rapid appearance of the peaks related to hydrated products in X-ray diffraction results, all indicate that SiO 2 nanoparticles could improve mechanical and physical properties of the concrete

  7. Optimization of flowable concrete for structural design : Progress report of fib task group 8.8

    NARCIS (Netherlands)

    Grunewald, S.; Ferrara, L.; Dehn, F.

    2014-01-01

    With the tendency to apply concrete with a higher workability and the use of new concrete components more options are available to design concrete. New concrete types like self-compacting concrete (SCC), ultra-high performance fibre reinforced concrete (UHPFRC) and high performance fibre reinforced

  8. Embodied Energy Optimization of Prestressed Concrete Slab Bridge Decks

    Directory of Open Access Journals (Sweden)

    Julián Alcalá

    2018-04-01

    Full Text Available This paper presents one approach to the analysis and design of post-tensioned cast-in-place concrete slab bridge decks. A Simulated Annealing algorithm is applied to two objective functions: (i the economic cost; and (ii the embodied energy at different stages of production materials, transport, and construction. The problem involved 33 discrete design variables: five geometrical ones dealing with the thickness of the slab, the inner and exterior web width, and two flange thicknesses; concrete type; prestressing cables, and 26 variables for the reinforcement set-up. The comparison of the results obtained shows two different optimum families, which indicates that the traditional criteria of economic optimization leads to inefficient designs considering the embodied energy. The results indicate that the objectives are not competing functions, and that optimum energy designs are close to the optimum cost designs. The analysis also showed that the savings of each kW h of energy consumed carries an extra cost of 0.49€. The best cost solution presents 5.3% more embodied energy. The best energy solution is 9.7% more expensive than that of minor cost. In addition, the results have showed that the best cost solutions are not the best energy solutions.

  9. Time-dependent crack growth and fracture in concrete

    International Nuclear Information System (INIS)

    Zhou Fan Ping.

    1992-02-01

    The objectives of this thesis are to study time-dependent fracture behaviour in concrete. The thesis consists of an experimental study, costitutive modelling and numerical analysis. The experimental study was undertaken to investigate the influences of time on material properties for the fracture process zone and on crack growth and fracture in plain concrete structures. The experiments include tensile relaxation tests, bending tests on notched beams to determine fracture energy at varying deflection rates, and sustained bending and compact tensile tests. From the tensile relaxation tests, the envelope of the σ-w relation does not seem to be influenced by holding periods, though some local detrimental effect does occur. Fracture energy seems to decrease as rates become slower. In the sustained loading tests, deformation (deflection or CMOD) growth curves display three stages, as usually observed in a creep rupture test. The secondary stage dominates the whole failure lifetime, and the secondary deformation rate appears to have good correlation with the failure lifetime. A crack model for time-dependent fracture is proposed, by applying the idea of the Fictitious Crack Model. In this model, a modified Maxwell model is introduced for the fracture process zone incorporated with the static σ-w curve as a failure criterion, based on the observation of the tensile relaxation tests. The time-dependent σ-w curve is expressed in an incremental law. The proposed model has been implemented in a finite element program and applied to simulating sustained flexural and compact tensile tests. Numerical analysis includes simulations of crack growth, load-CMOD curves, stress-failure lifetime curves, size effects on failure life etc. The numerical results indicate that the model seems to be able to properly predict the main features of time-dependent fracture behaviour in concrete, as compared with the experimental results. 97 refs

  10. The assessment of bond strength between heat damaged concrete and high strength fibre reinforced concrete

    Science.gov (United States)

    Zahid, M. Z. A. Mohd; Muhamad, K.

    2017-09-01

    The aim of this study is to assess the bond strength between heat damaged concrete and high strength fibre reinforced concrete (HPFRC). Firstly, this paper presents the various steps taken to prepare the HPFRC with self-compacting property. The minimum targeted slump flow is 600 mm and minimum targeted compressive strength is 80 MPa. The key mix variables considered are such as type of superplasticizer, water cement ratio and silica fume content. Then, the bond strength between the heat damaged concrete with HPFRC was examined. The experimental parameters are heating temperature, surface treatment technique and curing method and the results show that, all experimental parameters are significantly affected the bond strength between heat damaged concrete and HPFRC.

  11. Self-compacting concrete containing different powders at elevated temperatures - Mechanical properties and changes in the phase composition of the paste

    International Nuclear Information System (INIS)

    Bakhtiyari, S.; Allahverdi, A.; Rais-Ghasemi, M.; Zarrabi, B.A.; Parhizkar, T.

    2011-01-01

    Fire resistance of self-compacting concretes (SCC) containing limestone and quartz powders, with two different compressive strengths, were evaluated and compared with normal concretes (NC). The residual mechanical strengths of the mixes at different temperatures were measured. The changes in the phase composition of the cement pastes at high temperatures were examined with thermal analysis and X-ray diffractometry methods. The SCC mixes showed a higher susceptibility to spalling at high temperatures but the NC mixes suffered much more from loss of the mechanical strengths. Both the powder types and the compressive strength notably influenced the fire behavior of the SCC. The quartz powder accelerated the hydration of the SCC cement paste at high temperatures, up to 500 o C. However, the quartz-contained SCC showed the highest risk of spalling among all the mixes. The results showed that the thermal analysis could be a useful device for evaluating the fire behavior of building materials.

  12. Self-compacting concrete containing different powders at elevated temperatures - Mechanical properties and changes in the phase composition of the paste

    Energy Technology Data Exchange (ETDEWEB)

    Bakhtiyari, S., E-mail: bakhtiyari@bhrc.ac.ir [School of Chemical Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Allahverdi, A., E-mail: ali.allahverdi@iust.ac.ir [Cement Research Center, School of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114 (Iran, Islamic Republic of); Rais-Ghasemi, M., E-mail: raissghasemi@bhrc.ac.ir [Dep. of Concrete Technology, Building and Housing Research Center (BHRC), Tehran (Iran, Islamic Republic of); Zarrabi, B.A., E-mail: zarrabi@chalmers.se [Fire Technology Dep., SP Technical Research Institute of Sweden (Sweden); Parhizkar, T., E-mail: parhizkar@bhrc.ac.ir [Dep. of Concrete Technology, Building and Housing Research Center (BHRC), Tehran (Iran, Islamic Republic of)

    2011-02-20

    Fire resistance of self-compacting concretes (SCC) containing limestone and quartz powders, with two different compressive strengths, were evaluated and compared with normal concretes (NC). The residual mechanical strengths of the mixes at different temperatures were measured. The changes in the phase composition of the cement pastes at high temperatures were examined with thermal analysis and X-ray diffractometry methods. The SCC mixes showed a higher susceptibility to spalling at high temperatures but the NC mixes suffered much more from loss of the mechanical strengths. Both the powder types and the compressive strength notably influenced the fire behavior of the SCC. The quartz powder accelerated the hydration of the SCC cement paste at high temperatures, up to 500 {sup o}C. However, the quartz-contained SCC showed the highest risk of spalling among all the mixes. The results showed that the thermal analysis could be a useful device for evaluating the fire behavior of building materials.

  13. Region-based Image Segmentation by Watershed Partition and DCT Energy Compaction

    Directory of Open Access Journals (Sweden)

    Chi-Man Pun

    2012-02-01

    Full Text Available An image segmentation approach by improved watershed partition and DCT energy compaction has been proposed in this paper. The proposed energy compaction, which expresses the local texture of an image area, is derived by exploiting the discrete cosine transform. The algorithm is a hybrid segmentation technique which is composed of three stages. First, the watershed transform is utilized by preprocessing techniques: edge detection and marker in order to partition the image in to several small disjoint patches, while the region size, mean and variance features are used to calculate region cost for combination. Then in the second merging stage the DCT transform is used for energy compaction which is a criterion for texture comparison and region merging. Finally the image can be segmented into several partitions. The experimental results show that the proposed approach achieved very good segmentation robustness and efficiency, when compared to other state of the art image segmentation algorithms and human segmentation results.

  14. Effect of concrete strength gradation to the compressive strength of graded concrete, a numerical approach

    Science.gov (United States)

    Pratama, M. Mirza Abdillah; Aylie, Han; Gan, Buntara Sthenly; Umniati, B. Sri; Risdanareni, Puput; Fauziyah, Shifa

    2017-09-01

    Concrete casting, compacting method, and characteristic of the concrete material determine the performance of concrete as building element due to the material uniformity issue. Previous studies show that gradation in strength exists on building member by nature and negatively influence the load carrying capacity of the member. A pilot research had modeled the concrete gradation in strength with controllable variable and observed that the weakest material determines the strength of graded concrete through uniaxial compressive loading test. This research intends to confirm the recent finding by a numerical approach with extensive variables of strength disparity. The finite element analysis was conducted using the Strand7 nonlinear program. The results displayed that the increase of strength disparity in graded concrete models leads to the slight reduction of models strength. A substantial difference in displacement response is encountered on the models for the small disparity of concrete strength. However, the higher strength of concrete mix in the graded concrete models contributes to the rise of material stiffness that provides a beneficial purpose for serviceability of building members.

  15. Reviewing the Carbonation Resistance of Concrete

    Directory of Open Access Journals (Sweden)

    S P Singh

    2016-07-01

    Full Text Available The paper reviews the studies on one of the important durability properties of concrete i.e. Carbonation. One of the main causes of deterioration of concrete is carbonation, which occurs when carbon dioxide (CO2 penetrates the concrete’s porous system to create an environment with lower pH around the reinforcement in which corrosion can proceed. Carbonation is a major cause of degradation of concrete structures leading to expensive maintenance and conservation operations. Herein, the importance, process and effect of various parameters such as water/cement ratio, water/binder ratio, curing conditions, concrete cover, super plasticizers, type of aggregates, grade of concrete, porosity, contaminants, compaction, gas permeability, supplementary cementitious materials (SCMs/ admixtures on the carbonation of concrete has been reviewed. Various methods for estimating the carbonation depth are also reported briefly

  16. Binding Energy and Equilibrium of Compact Objects

    Directory of Open Access Journals (Sweden)

    Germano M.

    2014-04-01

    Full Text Available The theoretical analysis of the existence of a limit mass for compact astronomic ob- jects requires the solution of the Einstein’s equations of g eneral relativity together with an appropriate equation of state. Analytical solutions exi st in some special cases like the spherically symmetric static object without energy sou rces that is here considered. Solutions, i.e. the spacetime metrics, can have a singular m athematical form (the so called Schwarzschild metric due to Hilbert or a nonsingula r form (original work of Schwarzschild. The former predicts a limit mass and, conse quently, the existence of black holes above this limit. Here it is shown that, the origi nal Schwarzschild met- ric permits compact objects, without mass limit, having rea sonable values for central density and pressure. The lack of a limit mass is also demonst rated analytically just imposing reasonable conditions on the energy-matter densi ty, of positivity and decreas- ing with radius. Finally the ratio between proper mass and to tal mass tends to 2 for high values of mass so that the binding energy reaches the lim it m (total mass seen by a distant observer. As it is known the negative binding energ y reduces the gravitational mass of the object; the limit of m for the binding energy provides a mechanism for stable equilibrium of any amount of mass to contrast the gravitatio nal collapse.

  17. Concrete longevity overview

    International Nuclear Information System (INIS)

    Chang, W.; Morreale, B.

    1991-01-01

    A number of compact host states and unaffiliated states are currently selecting appropriate disposal technology and construction materials for their planned low-level radioactive waste (LLW) disposal facilities. Concrete is one of the candidate materials under consideration for the construction of LLW disposal facilities because of its strength, durability, abundant availability, and relatively low cost. The LLW disposal facilities must maintain intruder barrier integrity for up to 500 years, without active maintenance after the first 100 years. The ability of concrete to survive for such a long time as a construction material is a critical issue. This report provides a basic understanding of the composition and workings of concrete as a structural material in LLW disposal facilities and a description of degradation factors and state-of-the-art mitigative measures available to preserve the durability and longevity of concrete. Neither the paper nor the report is intended to be a design guidance document, and neither addresses using cement as a waste solidification agent. 5 refs., 1 tab

  18. High energy density fusing using the Compact Torus

    International Nuclear Information System (INIS)

    Hartman, C.W.

    1989-01-01

    My remarks are concerned with employing the Compact Torus magnetic field configuration to produce fusion energy. In particular, I would like to consider high energy density regimes where the pressures generated extend well beyond the strength of materials. Under such conditions, where nearby walls are vaporized and pushed aside each shot, the technological constraints are very different from usual magnetic fusion and may admit opportunities for an improved fusion reactor design. 5 refs., 3 figs

  19. Non-destructive evaluation of the water content of concretes by low energy gamma backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Raghunath, V M; Bhatnagar, P K; Meenakshisundaram, V [Reactor Research Centre, Kalpakkam (India). Safety Research Lab.

    1983-02-15

    A method of estimating the water content of various concretes mixed with neutron absorbers like boron or rare earths is described. This makes use of the fact that a large buildup of low energy photons in the 20 - 100 keV range is observed in the backscattered spectrum from water when compared to concrete. A 4.36 mCi /sup 137/Cs (662 keV) source is used with a 1 mm thick NaI scintillator as the detector to measure the backscattered radiation in the energy range. Calibration curves for evaluating the water content in borated concretes, ordinary concretes of different thickness, and a mortar brick are reported. It has been possible to estimate the water content to within 0.25% (by weight) by this method.

  20. Variability in energy and carbon dioxide balances of wood and concrete building materials

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Leif; Sathre, Roger [Ecotechnology, Mid Sweden University, SE-831 25 OEstersund (Sweden)

    2006-07-15

    A variety of factors affect the energy and CO{sub 2} balances of building materials over their lifecycle. Previous studies have shown that the use of wood for construction generally results in lower energy use and CO{sub 2} emission than does the use of concrete. To determine the uncertainties of this generality, we studied the changes in energy and CO{sub 2} balances caused by variation of key parameters in the manufacture and use of the materials comprising a wood- and a concrete-framed building. Parameters considered were clinker production efficiency, blending of cement, crushing of aggregate, recycling of steel, lumber drying efficiency, material transportation distance, carbon intensity of fossil fuel, recovery of logging, sawmill, construction and demolition residues for biofuel, and growth and exploitation of surplus forest not needed for wood material production. We found the materials of the wood-framed building had lower energy and CO{sub 2} balances than those of the concrete-framed building in all cases but one. Recovery of demolition and wood processing residues for use in place of fossil fuels contributed most significantly to the lower energy and CO{sub 2} balances of wood-framed building materials. We conclude that the use of wood building material instead of concrete, coupled with greater integration of wood by-products into energy systems, would be an effective means of reducing fossil fuel use and net CO{sub 2} emission to the atmosphere. (author)

  1. Variability in energy and carbon dioxide balances of wood and concrete building materials

    International Nuclear Information System (INIS)

    Gustavsson, Leif; Sathre, Roger

    2006-01-01

    A variety of factors affect the energy and CO 2 balances of building materials over their lifecycle. Previous studies have shown that the use of wood for construction generally results in lower energy use and CO 2 emission than does the use of concrete. To determine the uncertainties of this generality, we studied the changes in energy and CO 2 balances caused by variation of key parameters in the manufacture and use of the materials comprising a wood- and a concrete-framed building. Parameters considered were clinker production efficiency, blending of cement, crushing of aggregate, recycling of steel, lumber drying efficiency, material transportation distance, carbon intensity of fossil fuel, recovery of logging, sawmill, construction and demolition residues for biofuel, and growth and exploitation of surplus forest not needed for wood material production. We found the materials of the wood-framed building had lower energy and CO 2 balances than those of the concrete-framed building in all cases but one. Recovery of demolition and wood processing residues for use in place of fossil fuels contributed most significantly to the lower energy and CO 2 balances of wood-framed building materials. We conclude that the use of wood building material instead of concrete, coupled with greater integration of wood by-products into energy systems, would be an effective means of reducing fossil fuel use and net CO 2 emission to the atmosphere. (author)

  2. Effect of thermal mass on life cycle primary energy balances of a concrete- and a wood-frame building

    International Nuclear Information System (INIS)

    Dodoo, Ambrose; Gustavsson, Leif; Sathre, Roger

    2012-01-01

    Highlights: ► The effect of thermal mass on life cycle primary energy balance of concrete and wood building is analyzed. ► A concrete building has slightly lower space heating demand than a wood alternative. ► Still, a wood building has a lower life cycle primary energy use than a concrete alternative. ► The influence of thermal mass on space heating energy use for buildings in Nordic climate is small. -- Abstract: In this study we analyze the effect of thermal mass on space heating energy use and life cycle primary energy balances of a concrete- and a wood-frame building. The analysis includes primary energy use during the production, operation, and end-of-life phases. Based on hour-by-hour dynamic modeling of heat flows in building mass configurations we calculate the energy saving benefits of thermal mass during the operation phase of the buildings. Our results indicate that the energy savings due to thermal mass is small and varies with the climatic location and energy efficiency levels of the buildings. A concrete-frame building has slightly lower space heating demand than a wood-frame alternative, due to the higher thermal mass of concrete-based materials. Still, a wood-frame building has a lower life cycle primary energy balance than a concrete-frame alternative. This is due primarily to the lower production primary energy use and greater bioenergy recovery benefits of the wood-frame buildings. These advantages outweigh the energy saving benefits of thermal mass. We conclude that the influence of thermal mass on space heating energy use for buildings located in Nordic climate is small and that wood-frame buildings with cogeneration based district heating would be an effective means of reducing primary energy use in the built environment.

  3. Effect of Lime Powder and Metakaolin on Fresh and Hardened Properties of Self Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Rizwan Ahmad Khan

    2016-12-01

    Full Text Available This study investigated the fresh and hardened properties of Self-Compacting Concrete (SCC with different types and amounts of admixtures. Six mixes were prepared by replacing 30% of cement with different percentages of fly ash (FA, lime powder (LP and metakaolin (MK. Water- Cement ratio was kept constant at 0.41 and superplasticizer dosage of 1% by weight of cement. The filling and passing ability were investigated through Slump Flow, J-Ring, V-funnel and L-box test before filling the moulds. The compressive strength of hardened SCC cubes was also measured after specified days of curing (7, 14, 28, 60 & 90 days. The workability test results showed that as FA was replaced by increasing percentages of LP and MK, the mixes became dense and hence less workable. It was observed that the compressive strength showed an increase with increasing percentage replacement of FA with LP and MK. This increase was higher for mixes with MK than that of mixes with LP.

  4. Axi-Symmetric Simulation of the Slump Flow Test for Self-Compacting

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm; Szabo, Peter; Geiker, Mette Rica

    2004-01-01

    One of the main obstacles for further development of Self-Compacting Concrete (SCC)is to relate the fresh concrete properties, form geometry, reinforcement configuration, and casting technique to the form filling ability. Simulation of the filling ability might provide a tool in obtaining this goal...

  5. Use of SCC in Prefabricated Concrete Elements

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm; Lauritsen, Ib

    2004-01-01

    This paper presents observations made on the use of self-compacting concrete for pre-cast elements at Byggebjerg Beton A/S during the last 3 years. The elements include L- and sandwich elements and are mainly produced for agriculture purposes. In general, the flow properties and air content...... of the concrete to achieve a good surface quality with a limited number of blowholes. For horizontal castings it is important to keep the concrete flowing to avoid casting joints. Blocking is avoided by using the right type of spacers and a maximum size aggregate of 8mm. However, if the concrete has to flow over...

  6. Compact fusion energy based on the spherical tokamak

    Science.gov (United States)

    Sykes, A.; Costley, A. E.; Windsor, C. G.; Asunta, O.; Brittles, G.; Buxton, P.; Chuyanov, V.; Connor, J. W.; Gryaznevich, M. P.; Huang, B.; Hugill, J.; Kukushkin, A.; Kingham, D.; Langtry, A. V.; McNamara, S.; Morgan, J. G.; Noonan, P.; Ross, J. S. H.; Shevchenko, V.; Slade, R.; Smith, G.

    2018-01-01

    Tokamak Energy Ltd, UK, is developing spherical tokamaks using high temperature superconductor magnets as a possible route to fusion power using relatively small devices. We present an overview of the development programme including details of the enabling technologies, the key modelling methods and results, and the remaining challenges on the path to compact fusion.

  7. Sustainable Concrete Technology

    Directory of Open Access Journals (Sweden)

    Sim J.

    2015-12-01

    Full Text Available The growing concern over global warming and significant ecological changes requires sustainable development in all fields of science and technology. Concrete not only consumes huge amount of energy and natural sources, but also emits large amount of CO2, mainly due to the production of cement. It is evident that such large amount of concrete production has put significant impact on the energy, resource, environment, and ecology of the society. Hence, how to develop the concrete technology in a sustainable way has become a significant issue. In this paper, some of Korean researches for sustainable development of concrete are presented. These are sustainable strengthening for deteriorated concrete structure, sustainable reinforcement of new concrete structure, sustainable concrete using recycled aggregate and supplementary cementing materials and finally application of each technique to precast concrete.

  8. Application of Optimum Compaction Energy in the Development of Bricks Made with Construction Trash Soils

    Directory of Open Access Journals (Sweden)

    T. Lopez-Lara

    2014-01-01

    Full Text Available In general, bricks frequently show different densities and therefore different resistances because the compaction energy is not considered in their production. Expansive soils represent a problem for light buildings over them because of volumetric instability. A generalized solution has been to extract them and substitute them by inert soil; thus they become construction trash. So, in this work the compaction energy aspect and the use of construction trash soils in the elaboration of resistant masonry bricks of homogeneous and controlled density are a new contribution in the production of bricks of better quality. First, the soil was stabilized with CaOH which leads to a decrease in its volumetric changes. Then, they were compacted with a specific energy for obtaining an optimal and maximum controlled density to ensure an increase in strength. Our results show that two optimal compaction energies can be considered with respect to the variation of optimum moisture in masonry bricks of expansive soil stabilized with lime. The first is when the optimal humidity reaches its smallest value (integrated soil lumps and the second is when humidity increases (disintegrated soil lumps, after reaching its lowest value. We also conclude that high compaction energy does not improve density values.

  9. The role of SiO{sub 2} nanoparticles and ground granulated blast furnace slag admixtures on physical, thermal and mechanical properties of self compacting concrete

    Energy Technology Data Exchange (ETDEWEB)

    Nazari, Ali, E-mail: alinazari84@aut.ac.ir [Department of Technical and Engineering Sciences, Islamic Azad University (Saveh Branch), Felestin Sq., Saveh (Iran, Islamic Republic of); Riahi, Shadi [Department of Technical and Engineering Sciences, Islamic Azad University (Saveh Branch), Felestin Sq., Saveh (Iran, Islamic Republic of)

    2011-02-25

    Research highlights: {yields} Nanoparticles in concrete. {yields} Ground granulated blast furnace slag as concrete's binder. {yields} Mechanical properties of concrete specimens by non-traditional admixtures. - Abstract: In this work, strength assessments and percentage of water absorption of self compacting concrete containing ground granulated blast furnace slag and SiO{sub 2} nanoparticles as binder have been investigated. Portland cement was replaced by different amounts of ground granulated blast furnace slag and the properties of concrete specimens were investigated. Although it negatively impacts the physical and mechanical properties of concrete at early ages of curing, ground granulated blast furnace slag was found to improve the physical and mechanical properties of concrete up to 45 wt% at later ages. SiO{sub 2} nanoparticles with the average particle size of 15 nm were added partially to concrete with the optimum content of ground granulated blast furnace slag and physical and mechanical properties of the specimens were measured. SiO{sub 2} nanoparticle as a partial replacement of cement up to 3.0 wt% could accelerate C-S-H gel formation as a result of increased crystalline Ca(OH){sub 2} amount at the early ages and hence increase strength and improve the resistance to water permeability of concrete specimens. The increased SiO{sub 2} nanoparticles' content by more than 3.0 wt%, causes the reduced strength because of the decreased crystalline Ca(OH){sub 2} content required for C-S-H gel formation. Several empirical relationships have been presented to predict flexural and split tensile strength of the specimens by means of the corresponding compressive strength at a certain age of curing. Accelerated peak appearance in conduction calorimetry tests, more weight loss in thermogravimetric analysis and more rapid appearance of the peaks related to hydrated products in X-ray diffraction results, all indicate that SiO{sub 2} nanoparticles could

  10. Fatigue behaviour of high performance concretes for wind turbines; Ermuedungsverhalten von Hochleistungsbetonen in Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Lohaus, Ludger; Oneschkow, Nadja; Elsmeier, Kerstin; Huemme, Julian [Hannover Univ. (Germany). Inst. fuer Baustoffe

    2012-08-15

    New developments in the wind energy sector will lead to wind turbines with enormous capacities. As a result, the loads of the supporting structures are also increasing. For some time now, high performance concretes with self-compacting properties have been used in wind turbines for structural connections. Furthermore, slender foundations and prestressed concrete supporting structures made out of high-strength concrete are under development. In future, fatigue design of these high performance concretes is to be done according to the new fib-Model Code 2010. This code includes a new fatigue design model which enables a safe and economic fatigue design, even for high strength concrete. Extensive research with regard to the fatigue behaviour of different types of high performance concrete has been carried out at the Institute of Building Materials Science, Leibniz Universitaet Hannover. As part of these research activities, the influences of steel fibre reinforcement on the fatigue behaviour of high performance concretes are being investigated. In this paper, interim results of these investigations are presented and the potential for the practical applications of high performance concrete is discussed. The results of the conducted investigations are presented in comparison with the new fatigue design model of the fib-Model Code 2010. (orig.)

  11. Influence of formwork surface on the orientation of steel fibres within self-compacting concrete and on the mechanical properties of cast structural elements

    DEFF Research Database (Denmark)

    Svec, Oldrich; Zirgulis, Giedrius; Bolander, John E.

    2014-01-01

    The influences of formwork surface on the final orientation of steel fibres immersed in self-compacting concrete and on the resulting mechanical response of the cast structural elements are investigated. Experimental observations of fibre orientation within cast slabs, obtained via computed...... as input to the lattice model. Through comparisons with the experimental data, it is shown that these simulations correctly predict the phenomena of interest. We conclude the paper by highlighting a relationship between the number and orientation of the immersed steel fibres crossing the fracture plane...

  12. Influence of superplasticizer on microstructure of a 40 MPa strength concrete; Influencia do aditivo superplastificante na microestrutura de um concreto de resistencia mecanica de 40 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Sandra M.F.; Menezes, Raquel Maria R.O.; Figueiredo, Roberto B.; Aguilar, Maria Teresa P. [Universidade Federal de Minas Gerais (UFMG), MG (Brazil); Franca, Fabricio Carlos [LafargeHolcim, Rio de Janeiro, RJ (Brazil); Bezerra, Augusto Cesar da S. [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET-MG), MG (Brazil)

    2016-07-01

    The self compacting concrete has high fluidity and deformability. Studies analyze its performance through compressive strength, mortar content and / or water cement factor, which does not allow the evaluation of superplasticante influence the microstructure of these concretes. In this work, we evaluated the influence of superplasticizer comparing the phases present in a self-compacting concrete 40 MPa and at a same conventional compressive strength, same water / cement and mortar content. Therefore, scanning techniques were employed by electron microscope low vacuum using backscattered electrons and thermal analysis. The observed results show no significant differences in the microstructure of the two composites, ie the superplasticizer does not alter the microstructure of the self-compacting concrete. However, thermal analysis indicates that the present self-compacting concrete greater calcium hydroxide content which may suggest a lower content of such dry cement concrete. (author)

  13. Influence of Crumb-Rubber in the Mechanical Response of Modified Portland Cement Concrete

    Directory of Open Access Journals (Sweden)

    J. Retama

    2017-01-01

    Full Text Available The influence of crumb-rubber on the mechanical properties of Portland cement concrete (PCC is studied by experimental tests and numerical simulations. The main hypothesis of the study is that replacing part of the stone aggregate with crumb-rubber in the mix modifies the energy dissipation during the cracking process and affects the concrete behaviour under monotonically increasing loads. The experimental research program characterizes the mechanical properties of PCC for three different types of concrete with a variable content of crumb-rubber. The experimental results showed that fracture energy and other properties are directly related to the rubber fineness used in the mixture. The material properties derived for these laboratory tests are used to study, by numerical models, its response through its damage evolution. The numerical model used to simulate the damage evolution of the concrete is the Embedded Discontinuity Method (EDM. One characteristic of the EDM is that it does not need to modify the mesh topology to propagate the damage through the continuum solid. For this study, the Disk-Shaped Compact Tension specimen geometry, normed by the D7313-13 of the ASTM, is used. Results showed that the numerical methods provide good approximation of the experimental curve in the elastic and softening branches.

  14. Effect of mixing methods and aggregate type on strength of hardened concrete

    International Nuclear Information System (INIS)

    Elhadi, S.

    2006-01-01

    The objective of the research contained in this paper is to study the effect on strength of concrete which can be caused by changing method of concrete mix with or without changing aggregate crushing value under hand or mechanical compaction, and to compare results obtained when nondestructive testing techniques are used. It has been found that all methods of mix design are nearly identical in predicting the strength under a known value of w/c ratio. Up to strength of about 30 N/mm 2 , hand and mechanical compaction seems to be identical in all methods of concrete mixing. Important results regarding destructive and non-destructive testing has been drawn from the study.(Author)

  15. Differential dose albedo for high-energy X-rays on concrete slab

    International Nuclear Information System (INIS)

    Kato, Hideki

    2006-01-01

    We computed the differential dose albedo (α D ) for high-energy X-rays on a concrete slab when the incident angle, reflection angle, and azimuth angle were changed, by means of Monte Carlo simulation. We found that α D changed with incident, reflection, and azimuth angles to the concrete slab. On the whole, the larger the incident angle, the larger α D tended to become. If the incident angle and reflection angle were the same, the larger the azimuth angle, the smaller α D tended to become. When the incident, reflection, and azimuth angles were the same, the smaller the X-ray energy was, the larger α D became, in the order of 10 MV, 6 MV, and 4 MV X-rays. (author)

  16. Energy-efficiency increase of reinforced concrete columns with recessed working fittings

    Science.gov (United States)

    Muradyan, Viktor; Mailyan, Dmitry; Lyapin, Alexander; Chubarov, Valery

    2017-10-01

    One of the most important ways of increasing the energy-efficiency of the construction industry is the reduction of the material capacity of structures and labour intensity of their manufacturing. Since manufacturing of reinforced concrete structures requires considerable financial and energy expenses, then reduction of technological cycle operations is sure to be the urgent task today. It is well known, that in the recessed reinforced concrete elements the transverse reinforcement is fixed for the purpose of ensuring the longitudinal rods fixity. Besides, the thickness of the protective layer, as a rule, is taken the minimum. The authors proposed to increase the protective layer, and that will reduce the amount of transverse reinforcement rods significantly and will make the technological process of structures manufacturing easier.

  17. On the number of light rings in curved spacetimes of ultra-compact objects

    Science.gov (United States)

    Hod, Shahar

    2018-01-01

    In a very interesting paper, Cunha, Berti, and Herdeiro have recently claimed that ultra-compact objects, self-gravitating horizonless solutions of the Einstein field equations which have a light ring, must possess at least two (and, in general, an even number of) light rings, of which the inner one is stable. In the present compact paper we explicitly prove that, while this intriguing theorem is generally true, there is an important exception in the presence of degenerate light rings which, in the spherically symmetric static case, are characterized by the simple dimensionless relation 8 πrγ2 (ρ +pT) = 1 [here rγ is the radius of the light ring and { ρ ,pT } are respectively the energy density and tangential pressure of the matter fields]. Ultra-compact objects which belong to this unique family can have an odd number of light rings. As a concrete example, we show that spherically symmetric constant density stars with dimensionless compactness M / R = 1 / 3 possess only one light ring which, interestingly, is shown to be unstable.

  18. Efficiency of steel-concrete compositions in a side shielding of high-energy proton accelerators

    International Nuclear Information System (INIS)

    Getmanov, V.B.; Kryuchkov, V.P.; Lebedev, V.N.

    1983-01-01

    Aiming at the study of efficiency of application of heavy concretes with the density up to 6.3 g/cm -3 with iron-ore aggregate and steel scrap with shot the calculational study on high-energy radiation attenuation in the accelerator side shield has been carried out. The calculation is made for five concretes with the density 2.38; 3.66; 4.68; 5.34; 6.30 g x cm -3 and for pure iron. The real chemical composition of each concrete, including hydrogen, is taken into account. The real spectrum of hadron generated in the materiai of evacuated ionguide wall under the effect of the 70 GeV proton beam incident on the wall at a narrow angle THETA -3 ensuring the same ratio of the dose or hadron fluence with the energy > 20 MeV attenuation is accepted as a relative shield efficiency of the material. It is shown, that for steel-concrete compositions with the density > 5.6 gxcm -3 the relative shield efficiency decreases sharply. It is also shown, that aplication of concretes with the density 3.6-3.7 gxcm -3 is expedient and economically profitable

  19. Finite-Element Investigation of the Structural Behavior of Basalt Fiber Reinforced Polymer (BFRP- Reinforced Self-Compacting Concrete (SCC Decks Slabs in Thompson Bridge

    Directory of Open Access Journals (Sweden)

    Lingzhu Zhou

    2018-06-01

    Full Text Available The need for a sustainable development and improved whole life performance of concrete infrastructure has led to the requirement of more durable and sustainable concrete bridges alongside accurate predictive analysis tools. Using the combination of Self-Compacting Concrete (SCC with industrial by-products and fiber-reinforced polymer (FRP, reinforcement is anticipated to address the concerns of high carbon footprint and corrosion in traditional steel-reinforced concrete structures. This paper presents a numerical investigation of the structural behavior of basalt fiber-reinforced polymer (BFRP-reinforced SCC deck slabs in a real bridge, named Thompson Bridge, constructed in Northern Ireland, U.K. A non-linear finite element (FE model is proposed by using ABAQUS 6.10 in this study, which is aimed at extending the previous investigation of the field test in Thompson Bridge. The results of this field test were used to validate the accuracy of the proposed finite element model. The results showed good agreement between the test results and the numerical results; more importantly, the compressive membrane action (CMA inside the slabs could be well demonstrated by this FE model. Subsequently, a series of parametric studies was conducted to investigate the influence of different parameters on the structural performance of the deck slabs in Thompson Bridge. The results of the analyses are discussed, and conclusions on the behavior of the SCC deck slabs reinforced by BFRP bars are presented.

  20. An Investigation on Self-Compacting Concrete Using Ultrafine Natural Steatite Powder as Replacement to Cement

    Directory of Open Access Journals (Sweden)

    P. Kumar

    2017-01-01

    Full Text Available An experimental investigation was made on flow properties and compressive strength of self-compacting concrete (SCC with ultrafine natural steatite powder (UFNSP as replacement to cement. The tests were conducted on specimens with 5%, 10%, 15%, 20%, and 25% of replacement of UFNSP to the weight of cement and compared to the control specimens. The flow properties of all specimens were tested and checked for their limit with the existing guidelines. The compressive strength test was done on all specimens for strength of 7 days, 14 days, 28 days, and 56 days. The hardened samples were tested for their microstructural behavior and the elements Mg, Ca, and Si were mapped. Through mapping, the formations of M-S-H along with C-S-H are observed. The results show that the addition of UFNSP influences the flow property, by reducing the flow, and increases the compressive strength till 20% replacement. Further the addition of UFNSP increases the denseness of microstructure of the specimens thus resulting in the strength increment.

  1. Chloride ingress in cracked concrete : A laser induced breakdown spectroscopy (LIBS) study

    NARCIS (Netherlands)

    Savija, B.; Schlangen, E.; Pacheco Farias, J.; Millar, S.; Eichler, T.; Wilsch, G.

    2014-01-01

    racks are always present in reinforced concrete structures. In the presented research, influence of mechanical cracks on chloride ingress is studied. A compact reinforced concrete specimen was designed, mimicking the cracking behaviour of beam elements. Cracks of different widths were induced by

  2. IEA SHC Task 42 / ECES Annex 29 - Working Group B: Applications of Compact Thermal Energy Storage

    NARCIS (Netherlands)

    Helden, W. van; Yamaha, M.; Rathgeber, C.; Hauer, A.; Huaylla, F.; Le Pierrès, N.; Stutz, B.; Mette, B.; Dolado, P.; Lazaro, A.; Mazo, J.; Dannemand, M.; Furbo, S.; Campos-Celador, A.; Diarce, G.; Cuypers, R.; König-Haagen, A.; Höhlein, S.; Brüggemann, D.; Fumey, B.; Weber, R.; Köll, R.; Wagner, W.; Daguenet-Frick, X.; Gantenbein, P.; Kuznik, F.

    2016-01-01

    The IEA joint Task 42 / Annex 29 is aimed at developing compact thermal energy storage materials and systems. In Working Group B, experts are working on the development of compact thermal energy storage applications, in the areas cooling, domestic heating and hot water and industry. The majority of

  3. Energy use in repairs by cover concrete replacement or silane treatment for extending service life of chloride-exposed concrete structures

    Science.gov (United States)

    Petcherdchoo, A.

    2018-05-01

    In this study, the service life of repaired concrete structures under chloride environment is predicted. This prediction is performed by considering the mechanism of chloride ion diffusion using the partial differential equation (PDE) of the Fick’s second law. The one-dimensional PDE cannot simply be solved, when concrete structures are cyclically repaired with cover concrete replacement or silane treatment. The difficulty is encountered in solving position-dependent chloride profile and diffusion coefficient after repairs. In order to remedy the difficulty, the finite difference method is used. By virtue of numerical computation, the position-dependent chloride profile can be treated position by position. And, based on the Crank-Nicolson scheme, a proper formulation embedded with position-dependent diffusion coefficient can be derived. By using the aforementioned idea, position- and time-dependent chloride ion concentration profiles for concrete structures with repairs can be calculated and shown, and their service life can be predicted. Moreover, the use of energy in different repair actions is also considered for comparison. From the study, it is found that repairs can control rebar corrosion and/or concrete cracking depending on repair actions.

  4. The use of a volcanic material as filler in self-compacting concrete production for lower strength applications

    Directory of Open Access Journals (Sweden)

    D. Burgos

    2017-01-01

    Full Text Available This study evaluates the use of large amounts of fine powders (fillers derived from a Colombian volcanic material into the production of self-compacting concrete (SCC for lower strength applications. The effects on SCC properties were studied with the incorporation of up to 50% of volcanic material of Tolima (MVT as a partial substitute of the total weight of Portland cement. The workability was determined through slump flow, V-funnel, and L-box test. The compressive strength results were analyzed statistically by MINITAB. These demonstrated that 30% (by total weight of cementitious material was the maximum allowable percentage of MVT to be used in the production of SCCs. Based on this, mechanical and permeability properties of SCC MVT 30% were evaluated at 28, 90 y 360 curing days. SCC MVT 30% exhibited compressive strength of 21 and 27 MPa after 28 and 360 days of curing, respectively.

  5. The use of a volcanic material as filler in self-compacting concrete production for lower strength applications

    International Nuclear Information System (INIS)

    Burgos, D.; Guzmán, A.; Hossain, K.M.A.; Delvasto, S.

    2017-01-01

    This study evaluates the use of large amounts of fine powders (fillers) derived from a Colombian volcanic material into the production of self-compacting concrete (SCC) for lower strength applications. The effects on SCC properties were studied with the incorporation of up to 50% of volcanic material of Tolima (MVT) as a partial substitute of the total weight of Portland cement. The workability was determined through slump flow, V-funnel, and L-box test. The compressive strength results were analyzed statistically by MINITAB. These demonstrated that 30% (by total weight of cementitious material) was the maximum allowable percentage of MVT to be used in the production of SCCs. Based on this, mechanical and permeability properties of SCC MVT 30% were evaluated at 28, 90 y 360 curing days. SCC MVT 30% exhibited compressive strength of 21 and 27 MPa after 28 and 360 days of curing, respectively. [es

  6. The effect of pulse current on energy saving during Electrochemical Chloride Extraction (ECE) in concrete

    DEFF Research Database (Denmark)

    Sun, Tian R.; Geiker, Mette R.; Ottosen, Lisbeth M.

    2012-01-01

    Energy consumption is a factor influencing the cost of Electrochemical Chloride Extraction (ECE) in concrete. The aims of this work were to investigate the possibility for energy saving when using a pulsed electric field during ECE and the effect of the pulsed current on removal of chloride. Four...... experiments with artificially polluted concrete under same charge transfer were conducted. Results showed that the energy consumption was decreased 15% by pulse current in experiments with 0.2 mA/cm2 current density, which was higher than that of 0.1 mA/cm2 experiments with a decrease of 9.6%. When comparing...... the voltage drop at different parts of the experimental cells, it was found that the voltage drop of the area across the concrete was the major contributor to energy consumption, and results indicated that the pulse current could decrease the voltage drop of this part by re-distribution of ions in pore fluid...

  7. Case study of the gradient features of in situ concrete

    Directory of Open Access Journals (Sweden)

    Pengkun Hou

    2014-01-01

    Full Text Available The recognition of gradient features of the properties of in situ concrete is important for the interpretation/prediction of service life. In this work, the gradient features: water absorption, porosity, mineralogy, morphology and micromechanical properties were studied on two in situ road concretes (15 and 5 years old, respectively by weighing, MIP, XRD, IR, SEM/EDS and micro-indentation techniques. Results showed that a coarsening trend of the pores of the concrete leads to a gradual increase of liquid transport property from inside to outside. Although the carbonation of the exposed surface results in a compact microstructure of the paste, its combined action with calcium-leaching leads to a comparable porosity of different concrete layers. Moreover, the combining factors result in three morphological features, i.e. a porous and granular exposed-layer, a fibrous and porous subexposed-layer and a compact inner-layer. Micro-indentation test results showed that a hard layer that moves inward with aging exists due to the alterations of the mineralogy, the pore and the gel structure.

  8. Spatial fluxes and energy distributions of reactor fast neutrons in two types of heat resistant concretes

    International Nuclear Information System (INIS)

    Akki, T.S.; Benayad, S.A.; Megahid, R.M.

    1992-01-01

    Measurements have been carried out to study the spatial fluxes and energy distributions of reactor fast neutrons transmitted through two types of heat resistant concretes, serpentine concrete and magnetic lemonite concrete. The physical, chemical and mechanical properties of these concretes were checked by well known techniques. In addition, the effect of heating at temperatures up to 500deg C on the crystaline water content was checked by the method of differential thermal analysis. Measurements were performed using a collimated beam of reactor neutrons emitted from a 10 MW research reactor. The neutron spectra transmitted through concrete barriers of different thickness were measured by a scintillation spectrometer with NE-213 liquid organic scintillator. Discrimination against undesired pulses due to gamma-rays was achieved by a method based on pulse shape discrimination technique. The operating principle of this technique is based on the comparison of two weighted time integrals of the detector signal. The measured pulse amplitude distribution was converted to neutron energy distribution by a computational code based on double differentiation technique. The spectrometer workability and the accuracy of the unfolding technique were checked by measuring the neutron spectra of neutrons from Pu-α-Be and 252 Cf neutron sources. The obtained neutron spectra for the two concretes were used to derive the total cross sections for neutrons of different energies. (orig.)

  9. Compact hybrid cell based on a convoluted nanowire structure for harvesting solar and mechanical energy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Chen; Wang, Zhong Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2011-02-15

    A fully integrated, solid-state, compact hybrid cell (CHC) that comprises ''convoluted'' ZnO nanowire structures for concurrent harvesting of both solar and mechanical energy is demonstrated. The compact hybrid cell is based on a conjunction design of an organic solid-state dye-sensitized solar cell (DSSC) and piezoelectric nanogenerator in one compact structure. The CHC shows a significant increase in output power, clearly demonstrating its potential for simultaneously harvesting multiple types of energy for powering small electronic devices for independent, sustainable, and mobile operation. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Fracture energy evolution of two concretes resistant to the action of freeze-thaw cycles

    Directory of Open Access Journals (Sweden)

    Enfedaque, A.

    2014-03-01

    Full Text Available The current standards that regulate use of structural concrete have highlighted the durability of concrete. However, how the fracture energy of concrete evolves under the action of freeze-thaw cycles is not well known. The fracture energy of two types of concrete, one with an air-entraining additive and the other with silica fume addition, is studied after four, 14 and 28 freeze-thaw cycles. The results obtained show that the concrete with an air-entraining additive was undamaged and that fracture energy grew slightly. In addition to this, they also showed that the concrete with silica fume addition suffered severe surface scaling and its fracture energy changed due to the greater fracture areas generated.La actual normativa que rige el empleo de hormigón estructural ha puesto enfásis en la durabilidad del hormigón. Sin embargo, no se conoce cómo evoluciona la energía de fractura del hormigón sometido a ciclos hielo- deshielo, lo cual es de vital importancia para asegurar la durabilidad y el correcto comportamiento mecánico de las estructuras de hormigón en entornos con heladas durante su vida útil. Se ha estudiado la evolución de la energía de fractura de un hormigón con aireante y de un hormigón con humo de sílice después de 4, 14 y 28 ciclos hielo-deshielo realizando ensayos de fractura. Los resultados muestran cómo el hormigón con aireante no sufre daño por los ciclos hielo-deshielo y cómo la energía de fractura del mismo aumenta ligeramente. El hormigón con humo de sílice se daña por los ciclos hielo-deshielo y reduce su energía de fractura al aumentar el area fracturada.

  11. Conceptual development as rising from the abstract to the concrete: from thought energy to experienced energy

    Directory of Open Access Journals (Sweden)

    Rodrigo dos Santos Crepalde

    2013-08-01

    Full Text Available The development of scientific concepts is usually described as a pathway from the realm of concrete life to the abstract principles of science, in a higher level of generalisation. In this paper, we argue that the appropriation of scientific concepts occurs in the return to concrete in a higher level of conceptual development, which means a transition from the given concrete to a thoughtful and recreated concrete. In the first part of the paper we ground this point of view based on the intellectual routes of Lev Vigotski and on the Philosophy of Language of Michail Bakhtin. From Vigotski, we discuss the dialectic method of research, the concept of semiotic mediation and its implications to conceptual development, the relationship between everyday and scientific concepts and the role of concrete and abstract realms in conceptual development. From Bakhtin, we understand conceptual development as sense making in the dialogue between voices in different spheres of social life. In the second part of this paper we present empirical evidence to support this thesis. This will be done by analysing the meanings evoked by rural teacher students to the concept of energy in narratives produced by them at the end of a module of study on this subject. We seek to examine how the subjects of this experience populate with new meanings, dialectically and dialogically, the concept of energy. The main result of this study is the presence of a hybridisation of scientific and everyday life discourses in the efforts of subjects to confer relevant meanings (in both personal and social aspects to the abstract statements of science. We conclude with some implications of this thesis to science education research and practice.

  12. Physical and mechanical behaviour of a roller compacted concrete ...

    African Journals Online (AJOL)

    Benouadah A

    2017-05-01

    May 1, 2017 ... Rigid pavements are made with Portland cement ... The use of concrete for the construction of coverings; is now very widespread in the ... resistance [11,12], the plastic shrinkage [13] and the propagation of the cracks [14].

  13. Radiometric and ultrasonic testing of vibrating roller compacting effects

    International Nuclear Information System (INIS)

    Prikryl, F.; Habarta, J.; Kovarikova, E.

    1977-01-01

    A hole was filled with two layers of concrete mixture. Each layer was compacted using a Dynapac CA 25 vibrating roller 10,000 kg in weight, operating with a frequency of 30 Hz. A concrete block thus produced had dimensions of 11.0x2.5 m and a height of 1.6 m. After the concrete block hardening (roughly 120 days) drill cores were bored and bulk density was determined using nondestructive methods. Bulk density determination of the concrete between the drill cores was conducted using a 137 Cs emitter of an activity of 89 GBq, a FHZ-88b Geiger-Mueller counter was used as the detector. The emitter and detector were placed to touch the bore wall and were lowered to different depths in 10 cm increments. 10 count rate values were measured in each depth. The measurement time was chosen such that the decay statistical error did not exceed 1;. Bulk density of the individual segments of the drill cores was determined using 60 Co of an activitBy of 55 Mq as the radiation source and a TESLA 20/100 GWl GM counter as the detector. The detector operating voltage was 1240 V. Ultrasonic measurements were conducted using the USME-5 instrument. The measured bulk density values show that the compacting of a concrete layer 80 cm in thickness using a vibrating roller is sufficiently efficient. Both nondestructive methods were well proven, the results show that bulk density values in different depths differ due to concrete moisture content. (J.P.)

  14. OPTIMIZATION OF THE TEMPERATURE CONTROL SCHEME FOR ROLLER COMPACTED CONCRETE DAMS BASED ON FINITE ELEMENT AND SENSITIVITY ANALYSIS METHODS

    Directory of Open Access Journals (Sweden)

    Huawei Zhou

    2016-10-01

    Full Text Available Achieving an effective combination of various temperature control measures is critical for temperature control and crack prevention of concrete dams. This paper presents a procedure for optimizing the temperature control scheme of roller compacted concrete (RCC dams that couples the finite element method (FEM with a sensitivity analysis method. In this study, seven temperature control schemes are defined according to variations in three temperature control measures: concrete placement temperature, water-pipe cooling time, and thermal insulation layer thickness. FEM is employed to simulate the equivalent temperature field and temperature stress field obtained under each of the seven designed temperature control schemes for a typical overflow dam monolith based on the actual characteristics of a RCC dam located in southwestern China. A sensitivity analysis is subsequently conducted to investigate the degree of influence each of the three temperature control measures has on the temperature field and temperature tensile stress field of the dam. Results show that the placement temperature has a substantial influence on the maximum temperature and tensile stress of the dam, and that the placement temperature cannot exceed 15 °C. The water-pipe cooling time and thermal insulation layer thickness have little influence on the maximum temperature, but both demonstrate a substantial influence on the maximum tensile stress of the dam. The thermal insulation thickness is significant for reducing the probability of cracking as a result of high thermal stress, and the maximum tensile stress can be controlled under the specification limit with a thermal insulation layer thickness of 10 cm. Finally, an optimized temperature control scheme for crack prevention is obtained based on the analysis results.

  15. Final Report: Self-Consolidating Concrete Construction for Modular Units

    International Nuclear Information System (INIS)

    Gentry, Russell; Kahn, Lawrence; Kurtis, Kimberly; Petrovic, Bojan; Loreto, Giovanni; Van Wyk, Jurie; Canterero-Leal, Carlos

    2016-01-01

    This report focuses on work completed on DE-NE0000667, Self-Consolidating Concrete for Modular Units, in connection with the Department of Energy Nuclear Energy Enabling Technologies (DOE-NEET) program. This project was completed in the School of Civil and Environmental Engineering at the Georgia Institute of Technology, with Westinghouse Corporation as the industrial partner. The primary objective of this project was to develop self-consolidating concrete (also termed ''self-compacting concrete'' or SCC) mixtures so that concrete placement can be made into steel plate composite (SC) modular structures without the need for continuous concrete placement. As part of the research, SCC mixtures were developed and validated to ensure sufficient shear capacity across cold-joints, while minimizing shrinkage and temperature increase during curing to enhance concrete bonding with the steel plate construction found in modular units. The SCC mixtures developed were able to carry shearing forces across the cold-joint boundaries. This ''self-roughening'' was achieved by adding a tailored fraction of lightweight aggregate (LWA) to the concrete mix, some of which raised to the surface during curing, forming a rough surface on which subsequent concrete placements were made. The self-roughening behavior was validated through three sets of structural tests. Shear friction on small-scale specimens with cold joints was assessed using varying fractions of LWA and with varying amounts of external steel plate reinforcement. The results show that the shear friction coefficient, to be used with the provisions of ACI 318-14, Section 22.9, can be taken as 1.35. Mid-scale beam tests were completed to assess the cold-joint capacity in both in-plane and out-of-plane bending. The results showed that the self-roughened joints performed as well as monolithic joints. The final assessment was a full-scale test using a steel composite module supplied by

  16. 3D modelling of the flow of self-compacting concrete with or without steel fibres. Part II: L-box test and the assessment of fibre reorientation during the flow

    Science.gov (United States)

    Deeb, R.; Kulasegaram, S.; Karihaloo, B. L.

    2014-12-01

    The three-dimensional Lagrangian particle-based smooth particle hydrodynamics method described in Part I of this two-part paper is used to simulate the flow of self-compacting concrete (SCC) with and without steel fibres in the L-box configuration. As in Part I, the simulation of the SCC mixes without fibres emphasises the distribution of large aggregate particles of different sizes throughout the flow, whereas the simulation of high strength SCC mixes which contain steel fibres is focused on the distribution of fibres and their orientation during the flow. The capabilities of this methodology are validated by comparing the simulation results with the L-box test carried out in the laboratory. A simple method is developed to assess the reorientation and distribution of short steel fibres in self-compacting concrete mixes during the flow. The reorientation of the fibres during the flow is used to estimate the fibre orientation factor (FOF) in a cross section perpendicular to the principal direction of flow. This estimation procedure involves the number of fibres cut by the section and their inclination to the cutting plane. This is useful to determine the FOF in practical image analysis on cut sections.

  17. Effect of insulating concrete forms in concrete compresive strength

    Science.gov (United States)

    Martinez Jerez, Silvio R.

    The subject presented in this thesis is the effect of Insulating Concrete Forms (ICF's) on concrete compressive strength. This work seeks to identify if concrete cured in ICF's has an effect in compressive strength due to the thermal insulation provided by the forms. Modern construction is moving to energy efficient buildings and ICF's is becoming more popular in new developments. The thesis used a concrete mixture and a mortar mixture to investigate the effects of ICF's on concrete compressive strength. After the experimentations were performed, it was concluded that the ICF's do affect concrete strength. It was found that the forms increase concrete strength without the need for additional curing water. An increase of 50% in strength at 56 days was obtained. It was concluded that the longer concrete cures inside ICF's, the higher strength it reaches, and that ICF's effect on concrete strength is proportional to volume of concrete.

  18. Selecting the recommended waste management system for the midwest compact

    International Nuclear Information System (INIS)

    Sutherland, A.A.; Robertson, B.C.; Drobny, N.L.

    1987-01-01

    One of the early important steps in the evolution of a low-level waste Compact is the development of a Regional Management Plan. Part of the Regional Management Plan is a description of the waste management system that indicates what kinds of facilities that will be available within the compact's region. The facilities in the waste management system can include those for storage, treatment and disposal of low-level radioactive waste. The Regional Management Plan also describes the number of facilities that will be operated simultaneously. This paper outlines the development of the recommended waste management system for the Midwest Compact. It describes the way a data base on low-level radioactive waste from the Compact was collected and placed into a computerized data base management system, and how that data base was subsequently used to analyze various options for treatment and disposal of low-level radioactive waste within the Midwest Compact. The paper indicates the thought process that led to the definition of four recommended waste management systems. Six methods for reducing the volume of waste to be disposed of in the Midwest Compact were considered. Major attention was focused on the use of regional compaction or incineration facilities. Seven disposal technologies, all different from the shallow land burial currently practiced, were also considered for the waste management system. After evaluating the options available, the Compact Commissioners recommended four waste disposal technologies--above-ground vaults, below-ground vaults, concrete canisters placed above ground, and concrete canisters placed below ground--to the host state that will be chosen in 1987. The Commissioners did not recommend use of a regional waste treatment facility

  19. The Use of Heat-Resistant Concrete Made with Ceramic Sanitary Ware Waste for a Thermal Energy Storage

    Directory of Open Access Journals (Sweden)

    Paweł Ogrodnik

    2017-12-01

    Full Text Available The paper presents the results obtained in the course of a study on the concrete made of aggregate obtained from wastes of sanitary ceramics. Previous examinations proved high in strength and durability of concrete of this type, and it showed a resistance to high temperatures. The material was classified as a fireproof concrete. While searching for the optimal applications of such concrete, a series of examinations and analyses on its thermal energy storage (TES properties were performed. This paper describes the two-stage experiment on the thermal behavior of the concrete made with sanitary ceramic wastes during cooling processes in comparison to different building materials subjected to the same thermal conditions. On the basis of the thermal, infrared analysis, and suitable calculations, the thermal power and the ability of the composite to store thermal energy was estimated. Finally, it was stated that the concrete made of sanitary ceramic waste aggregate and alumina cement can be recommended as a heat-accumulating material, and in combination with high durability can be used, e.g., for the construction of fireplace bodies.

  20. Experimental investigations into the shear behavior of self-compacting RC beams with and without shear reinforcement

    Directory of Open Access Journals (Sweden)

    Ammar N. HANOON

    2014-12-01

    Full Text Available Self-compacting concrete (SCC is a new generation of high-performance concrete, known for its excellent deformability and high resistance to segregation and bleeding. Nonetheless, SCC may be incapable of resisting shear because the shear resistance mechanisms of this concrete are uncertain, especially the aggregate interlock mechanism. This uncertainty is attributed to the fact that SCC contains a smaller amount of coarse aggregates than normal concrete (NC does. This study focuses on the shear strength of self-compacting reinforced concrete (RC beams with and without shear reinforcement. A total of 16 RC beam specimens was manufactured and tested in terms of shear span-to-depth ratio and flexural and shear reinforcement ratio. The test results were compared with those of the shear design equations developed by ACI, BS, CAN and NZ codes. Results show that an increase in web reinforcement enhanced cracking strength and ultimate load. Shear-tension failure was the control failure in all tested beams.

  1. Concrete Infill Monitoring in Concrete-Filled FRP Tubes Using a PZT-Based Ultrasonic Time-of-Flight Method.

    Science.gov (United States)

    Luo, Mingzhang; Li, Weijie; Hei, Chuang; Song, Gangbing

    2016-12-07

    Concrete-filled fiber-reinforced polymer tubes (CFFTs) have attracted interest for their structural applications in corrosive environments. However, a weak interfacial strength between the fiber-reinforced polymer (FRP) tube and the concrete infill may develop due to concrete shrinkage and inadequate concrete compaction during concrete casting, which will destroy the confinement effect and thereby reduce the load bearing capacity of a CFFT. In this paper, the lead zirconate titanate (PZT)-based ultrasonic time-of-flight (TOF) method was adopted to assess the concrete infill condition of CFFTs. The basic idea of this method is that the velocity of the ultrasonic wave propagation in the FRP material is about half of that in concrete material. Any voids or debonding created along the interface between the FRP tube and the concrete will delay the arrival time between the pairs of PZT transducers. A comparison of the arrival times of the PZT pairs between the intact and the defected CFFT was made to assess the severity of the voids or the debonding. The feasibility of the methodology was analyzed using a finite-difference time-domain-based numerical simulation. Experiments were setup to validate the numerical results, which showed good agreement with the numerical findings. The results showed that the ultrasonic time-of-flight method is able to detect the concrete infill condition of CFFTs.

  2. Concrete Infill Monitoring in Concrete-Filled FRP Tubes Using a PZT-Based Ultrasonic Time-of-Flight Method

    Science.gov (United States)

    Luo, Mingzhang; Li, Weijie; Hei, Chuang; Song, Gangbing

    2016-01-01

    Concrete-filled fiber-reinforced polymer tubes (CFFTs) have attracted interest for their structural applications in corrosive environments. However, a weak interfacial strength between the fiber-reinforced polymer (FRP) tube and the concrete infill may develop due to concrete shrinkage and inadequate concrete compaction during concrete casting, which will destroy the confinement effect and thereby reduce the load bearing capacity of a CFFT. In this paper, the lead zirconate titanate (PZT)-based ultrasonic time-of-flight (TOF) method was adopted to assess the concrete infill condition of CFFTs. The basic idea of this method is that the velocity of the ultrasonic wave propagation in the FRP material is about half of that in concrete material. Any voids or debonding created along the interface between the FRP tube and the concrete will delay the arrival time between the pairs of PZT transducers. A comparison of the arrival times of the PZT pairs between the intact and the defected CFFT was made to assess the severity of the voids or the debonding. The feasibility of the methodology was analyzed using a finite-difference time-domain-based numerical simulation. Experiments were setup to validate the numerical results, which showed good agreement with the numerical findings. The results showed that the ultrasonic time-of-flight method is able to detect the concrete infill condition of CFFTs. PMID:27941617

  3. Application of Optimum Compaction Energy in the Development of Bricks Made with Construction Trash Soils

    OpenAIRE

    Lopez-Lara, T.; Gonzalez-Vega, C. L.; Hernandez-Zaragoza, J. B.; Rojas-Gonzalez, E.; Carreón-Freyre, D.; Salgado-Delgado, R.; Garcia-Hernandez, E.; Cerca, M.

    2014-01-01

    In general, bricks frequently show different densities and therefore different resistances because the compaction energy is not considered in their production. Expansive soils represent a problem for light buildings over them because of volumetric instability. A generalized solution has been to extract them and substitute them by inert soil; thus they become construction trash. So, in this work the compaction energy aspect and the use of construction trash soils in the elaboration of resistan...

  4. Experimental research on the use of micro-encapsulated Phase Change Materials to store solar energy in concrete floors and to save energy in Dutch houses

    NARCIS (Netherlands)

    Entrop, Alexis Gerardus; Brouwers, Jos; Reinders, Angelina H.M.E.

    2011-01-01

    In this paper an experimental research is presented on a new use of Phase Change Materials (PCMs) in concrete floors, in which thermal energy provided by the sun is stored in a mix of concrete and PCMs. When this thermal energy is being released – in moderate sea climates during the evening and

  5. The Effect of Adding PET (Polyethylen Terephthalate) Plastic Waste on SCC (Self-Compacting Concrete) to Fresh Concrete Behavior and Mechanical Characteristics

    Science.gov (United States)

    Aswatama W, K.; Suyoso, H.; Meyfa U, N.; Tedy, P.

    2018-01-01

    To study the effect PET waste plastics on SCC then PET plastic waste content for SCC is made into 2.5%; 5%; 7.5%; and 10%. As reference concrete is made SCC with 0% PET level. The results on all fresh concrete test items indicate that for all PET waste levels made are meeting the criteria as SCC. The effect of adding PET to fresh concrete behavior on all test items shows that the filling ability and passing ability of concrete work increases with increasing of PET. However, the increase in PET will decrease its mechanical properties. The result of heat test shows that the mechanical properties of concrete (compressive strength, splitting, and elastic modulus) after heating at 250°C temperature has not changed, while at 600°C has significant capacity decline. To clarify the differences between SCC before and after heating, microstructure analysis was done in the form of photo magnification of specimen using SEM (Scanning Electron Microscope).

  6. Study of measurement method of tritium induced in concrete of high-energy proton accelerator facilities

    International Nuclear Information System (INIS)

    Ohtsuka, N.; Ishihama, S.; Kunifuda, T.; Hayasaka, N.; Miura, T.

    2001-01-01

    Various long-loved radionuclides, 3 H, 7 Be, 22 Na, 51 Cr, 54 Mn, 56 Co, 57 Co, 60 Co, 134 Cs, 152 Eu and 154 Eu, have been produced in the shielding concrete of high energy proton accelerator facility through both nuclear spallation reactions and thermal neutron capture reactions of concrete elements, during machine operation. Tritium is the most important nuclide from the radiation protection. There were, however, few measurements of tritium concentration induced in the shielding concrete. In this study, the conditions of measurement method of tritium concentration induced in shielding concrete have been investigated using the activated shielding concrete of the 12 GeV proton beam-line tunnel at KEK and the standard rock (JG-1) irradiated of thermal neutron at the reactor. And the depth profiles of tritium induced in the shielding concrete of slow extracted proton beam line at KEK were determined using this method. (author)

  7. Self-healing of polymer modified concrete

    Directory of Open Access Journals (Sweden)

    Abd_Elmoaty M. Abd_Elmoaty

    2011-06-01

    Full Text Available Self healing phenomenon of concrete has been observed in traditional, fibrous, self compacting concrete. This phenomenon occurred mainly due to the presence of unhydrated cement particles in the presence of water. Mechanism of polymer in concrete depends on creating a layer and net of polymer around cement particles which enhances the properties of polymer modified concrete. This mechanism may affect the self healing of this type of concrete. This work aims to study the presence of the self healing phenomenon in polymer modified concrete and the related parameters. An experimental investigation on self healing of polymer modified concrete was undertaken. In this research work, effect of polymer type, polymer dose, cement content, cement type, w/cm ratio and age of damage were studied. The healing process extended up to 60 days. Ultrasonic pulse velocity measurements were used to evaluate the healing process. Results indicated that, the self healing phenomenon existed in polymer modified concrete as in traditional concrete. The increase of polymer dose increases the healing degree at the same healing time. This increase depends on polymer type. Also, the decrease of w/cm ratio reduces the self healing degree while the use of Type V Portland cement improves the self healing process compared with Type I Portland cement. Cement content has an insignificant effect on healing process for both concrete with and without polymer. In addition, the increase of damage age decreases the efficiency of self healing process.

  8. Ultrafine particles in concrete: Influence of ultrafine particles on concrete properties and application to concrete mix design

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Carsten

    2010-07-01

    In this work, the influence of ultrafine particles on concrete properties was investigated. In the context of this work, ultrafine particles (reactive and inert materials) are particles finer than cement. Due to the development of effective superplasticizers, the incorporation of ultrafine particles in concrete is nowadays possible. Different minerals, usually considered inert, were tested. These minerals were also used in combination with reactive silica fume. The modified Andreassen model was used to optimise the particle size distribution and thus the packing density of the complete mix composition. Heat of hydration, compressive strength, shrinkage, frost resistance and the microstructure were investigated.The influence of different ultrafine inert materials on the cement hydration was investigated. The results show that most of the minerals have an accelerating effect. They provide nucleation sites for hydration products and contribute in that way to a faster dissolution of cement grains. Minerals containing calcium were found to influence the early stage of hydration as well. These minerals shortened the dormant period of the cement hydration, the effect is known from limestone filler in self-compacting concrete. In a first test series on concrete, different ultrafine inert particles were used to replace cement. That was done in several ways; with constant water content or constant w/c. The results from this test series show that the best effect is achieved when cement is replaced by suitable ultrafines while the w/c is kept constant. In doing so, the compressive strength can be increased and shrinkage can be reduced. The microstructure is improved and becomes denser with improved packing at microlevel. Efficiency factors (k values) for the ultrafine inert materials were calculated from the compressive strength results. The k values are strongly dependent on the mode of cement replacement, fineness and type of the replacement material and curing time. Drying

  9. SU-E-T-264: New Concrete Designed and Evaluation for Megavoltage X Radiotherapy Facilities (CONTEK-RFH2).

    Science.gov (United States)

    Mera, M; Pereira, L; Mera, M; Pereira, L; Meilán, E; Moral, F Del; Teijeiro, A; Salgado, M; Andrade, B; Gomez, F; Fuentes-Vázquez, V; Caruncho, J; Medina, A

    2012-06-01

    The most common material for shielding is concrete, which can be made using various materials of different densities as aggregates. New techniques in radiotherapy, as IMRT and VMAT, require more monitor units and it is important to develop specifically designed shielding materials. Arraela S.L. has developed new concrete (CONTEK®-RFH2), which is made from an arid with a high percentage in iron (> 60%), and using the suitable sieve size, enables optimum compaction of the material and a high mass density, about 4.1-4.2 g/cm 3 . Moreover, aluminate cement, used as base, gives high resistance to high temperatures what makes this product be structurally resistant to temperatures up to 1200 ° C. The measurements were made in a LINAC Elekta SL18 to energies 6MV and 15 MV with a field size of 10×10 cm 2 for concrete samples in the form of tile 25cm×25cm with variable thickness. The linear attenuation coefficient, μm, was determined for each energy by fitting the data to Eq. 1, where Xxm is the exposure in air behind a thickness xm of the material, and X0 is the exposure in the absence of shielding. These results are compared with the ordinary concrete (2.35 g cm-3) for 6MV and 15MV energies (Ref. NCRP Report No.151). Results are tabulated in Table1. Results of attenuation are compared with ordinary concrete in Fig. 1. The new concrete CONTEK®-RFH2 increases photon attenuation and reduces the size of a shielded wall. A very high percentage in iron and a suitablesieve size approximately double the density of ordinary concrete. High mass attenuation coefficient makes this concrete an extremely desirable material for use in radiation facilities as shielding material for photon beam, and for upgrading facilities designed for less energy or less workload. © 2012 American Association of Physicists in Medicine.

  10. Prestressed-concrete pressure vessels and their applicability to advanced-energy-system concepts

    International Nuclear Information System (INIS)

    Naus, D.J.

    1983-01-01

    Prestressed concrete pressure vessels (PCPVs) are, in essence, spaced steel structures since their strength is derived from a multitude of steel elements made up of deformed reinforcing bars and prestressing tendons which are present in sufficient quantities to carry tension loads imposed on the vessel. Other major components of a PCPV include the concrete, liner and cooling system, and insulation. PCPVs exhibit a number of advantages which make them ideally suited for application to advanced energy concepts: fabricability in virtually any size and shape using available technology, improved safety, reduced capital costs, and a history of proven performance. PCPVs have many applications to both nuclear- and non-nuclear-based energy systems concepts. Several of these concepts will be discussed as well as the research and development activities conducted at ORNL in support of PCPV development

  11. Experimental study of properties of heavy concrete with bottom ash from power stations

    Directory of Open Access Journals (Sweden)

    Bondar Victor

    2017-01-01

    Full Text Available This article deals with the influence of cement quantity, plasticizing additives and compaction time on the strength and water consumption of concrete during its manufacturing using bottom ash from a thermal power station. The study was carried out using three factorial experiments. Variables varied on three levels. The obtained pattern functions characterize a relationship between strength, water consumption and variable factors. These factors include cement quantity, plasticize additives and compaction time. Compilation of Pareto effect charts allowed estimation of the significance of function indexes. Analysis of surface pattern function has revealed the optimal correlation between additive quantity and compaction time, cement quantity and additive quantity, cement quantity and compaction time. Compression strength of concrete was taken as the pattern in the pattern function. When analyzing the pattern function with water consumption as a pattern, optimal correlations between additive quantity and compaction time, cement quantity and additive quantity, cement quantity and compaction time were revealed. Application of STATISTICA 12 software has specified values of factors when the maximum strength is achieved. Correlations of components which have an impact on water consumption have been determined. The conclusions contain the quantitative findings of the study.

  12. Properties, sustainability and elevated temperature behavior of concrete containing Portland limestone cement

    Science.gov (United States)

    El-Hawary, Moetaz; Ahmed, Mahmoud

    2017-09-01

    The utilization of some type of cheap filler as partial cement replacement is an effective way of improving concrete sustainability. With the recent trends to reduce water to cement ratio and improve compaction, there is no enough space or water for complete hydration of cement. This means that actually, a portion of mixed cement acts as expensive filler. Replacing this portion with cheaper filler that requires less energy to produce is, therefore, beneficial. Crushed limestone is the most promising filler. This work is to investigate the effect of the amount of limestone fillers on the sustainability and the fresh and mechanical properties of the resulting concrete. A rich mix is designed with a low water/cement ratio of 0.4. Lime is introduced as a replacement percentage of cement. Ratios of 0, 10, 20 and 30% were used. Slump, compressive strength, specific gravity and water absorption are evaluated for every mix. In addition, the effect of the amount of lime on the residual strength of concrete subjected to elevated temperatures is also investigated. Samples are subjected to six different temperature stations of 20, 100, 200, 300, 500 and 700°C for six hours before being cooled and subsequently tested for compressive strength and specific gravity. Sustainability of the tested mixes is evaluated through reductions in the emitted carbon dioxide, energy and reduction in cost. Based on the annual use of concrete in Kuwait, the sustainability benefits resulting from the use of limestone filler in Kuwait are evaluated and assessed. The paper is concluded with the recommendation of the use of 15% limestone filler as partial cement replacement where the properties and the behavior under high temperature of the resulting concrete are almost the same as those of conventional concrete with considerable cost and sustainability benefits.

  13. Corrosion protection of the reinforcing steels in chloride-laden concrete environment through epoxy/polyaniline–camphorsulfonate nanocomposite coating

    International Nuclear Information System (INIS)

    Pour-Ali, Sadegh; Dehghanian, Changiz; Kosari, Ali

    2015-01-01

    Highlights: • Epoxy/polyaniline–camphorsulfonate nanocomposite coating well protects steel rebar. • Coating performance is evaluated by impedance measurements up to 1 year. • Ultimate bond strength between the coated rebars and concrete is measured. • Self-compacting concrete shows better anticorrosive property compared to normal one. - Abstract: In this study, an epoxy/polyaniline–camphorsulfonate nanocomposite (epoxy/PANI–CSA) is employed to protect reinforcing steels in chloride-laden concrete environment. The synthesized nanocomposite was characterized using Fourier transform infrared spectroscopy and transmission electron microscopy. Bare, epoxy-coated and epoxy/PANI–CSA nanocomposite-coated steel rebars were embedded in normal and self-compacting concretes. To evaluate their corrosion behaviors, open circuit potential and impedance measurements were performed for the duration of 1 year. Ultimate bond strength of concrete with the reinforcement bars were measured in corroded and uncorroded conditions. It was found that epoxy/PANI–CSA coating provides good corrosion resistance and durable bond strength with concrete for steel rebars

  14. STRESS-STRAIN STATE OF ROCKFILL DAM DOUBLE-LAYER FACE MADE OF REINFORCED CONCRETE AND SOIL-CEMENT CONCRETE

    Directory of Open Access Journals (Sweden)

    Sainov Mikhail Petrovich

    2017-05-01

    Full Text Available There was studied the stress-strain state of 215 m high rockfill dam where the seepage-control element is presented by a reinforced concrete face of soil-cement concrete placed on the under-face zone. Calculations were carried out for two possible variants of deformability of rock outline taking into account the non-linearity of its deformative properties. It was obtained that the reinforced concrete face and the soil-cement concrete under-face zone work jointly as a single construction - a double-layer face. As the face assembly resting on rock is made with a sliding joint the scheme of its static operation is similar to the that of the beam operation on the elastic foundation. At that, the upstream surface of the double-layer face is in the compressed zone and lower one is in the tensile zone. This protects the face against cracking on the upstream surface but threatens with structural failure of soil-cement concrete. In order to avoid appearance of cracks in soil-cement concrete part due to tension it is necessary to achieve proper compaction of rockfill and arrange transverse joints in the double-layer face.

  15. Final Report: Self-Consolidating Concrete Construction for Modular Units

    Energy Technology Data Exchange (ETDEWEB)

    Gentry, Russell [Georgia Inst. of Technology, Atlanta, GA (United States); Kahn, Lawrence [Georgia Inst. of Technology, Atlanta, GA (United States); Kurtis, Kimberly [Georgia Inst. of Technology, Atlanta, GA (United States); Petrovic, Bojan [Georgia Inst. of Technology, Atlanta, GA (United States); Loreto, Giovanni [Georgia Inst. of Technology, Atlanta, GA (United States); Van Wyk, Jurie [Westinghouse Inc., Cranberry Township, PA (United States); Canterero-Leal, Carlos [Westinghouse Inc., Cranberry Township, PA (United States)

    2016-07-29

    This report focuses on work completed on DE-NE0000667, Self-Consolidating Concrete for Modular Units, in connection with the Department of Energy Nuclear Energy Enabling Technologies (DOE-NEET) program. This project was completed in the School of Civil and Environmental Engineering at the Georgia Institute of Technology, with Westinghouse Corporation as the industrial partner. The primary objective of this project was to develop self-consolidating concrete (also termed “self-compacting concrete” or SCC) mixtures so that concrete placement can be made into steel plate composite (SC) modular structures without the need for continuous concrete placement. As part of the research, SCC mixtures were developed and validated to ensure sufficient shear capacity across cold-joints, while minimizing shrinkage and temperature increase during curing to enhance concrete bonding with the steel plate construction found in modular units. The SCC mixtures developed were able to carry shearing forces across the cold-joint boundaries. This “self-roughening” was achieved by adding a tailored fraction of lightweight aggregate (LWA) to the concrete mix, some of which raised to the surface during curing, forming a rough surface on which subsequent concrete placements were made. The self-roughening behavior was validated through three sets of structural tests. Shear friction on small-scale specimens with cold joints was assessed using varying fractions of LWA and with varying amounts of external steel plate reinforcement. The results show that the shear friction coefficient, to be used with the provisions of ACI 318-14, Section 22.9, can be taken as 1.35. Mid-scale beam tests were completed to assess the cold-joint capacity in both in-plane and out-of-plane bending. The results showed that the self-roughened joints performed as well as monolithic joints. The final assessment was a full-scale test using a steel composite module supplied by Westinghouse and similar in construction to

  16. Development of Hollow Steel Ball Macro-Encapsulated PCM for Thermal Energy Storage Concrete

    Directory of Open Access Journals (Sweden)

    Zhijun Dong

    2016-01-01

    Full Text Available The application of thermal energy storage with phase change materials (PCMs for energy efficiency of buildings grew rapidly in the last few years. In this research, octadecane paraffin was served as a PCM, and a structural concrete with the function of indoor temperature control was developed by using a macro-encapsulated PCM hollow steel ball (HSB. The macro-encapsulated PCM-HSB was prepared by incorporation of octadecane into HSBs through vacuum impregnation. Test results showed that the maximum percentage of octadecane carried by HSBs was 80.3% by mass. The macro-encapsulated PCM-HSB has a latent heat storage capacity as high as 200.5 J/g. The compressive strength of concrete with macro-encapsulated PCM-HSB at 28 days ranged from 22 to 40 MPa. The indoor thermal performance test revealed that concrete with macro-encapsulated octadecane-HSB was capable of reducing the peak indoor air temperature and the fluctuation of indoor temperature. It can be very effective in transferring the heating and cooling loads away from the peak demand times.

  17. Development of Hollow Steel Ball Macro-Encapsulated PCM for Thermal Energy Storage Concrete.

    Science.gov (United States)

    Dong, Zhijun; Cui, Hongzhi; Tang, Waiching; Chen, Dazhu; Wen, Haibo

    2016-01-19

    The application of thermal energy storage with phase change materials (PCMs) for energy efficiency of buildings grew rapidly in the last few years. In this research, octadecane paraffin was served as a PCM, and a structural concrete with the function of indoor temperature control was developed by using a macro-encapsulated PCM hollow steel ball (HSB). The macro-encapsulated PCM-HSB was prepared by incorporation of octadecane into HSBs through vacuum impregnation. Test results showed that the maximum percentage of octadecane carried by HSBs was 80.3% by mass. The macro-encapsulated PCM-HSB has a latent heat storage capacity as high as 200.5 J/g. The compressive strength of concrete with macro-encapsulated PCM-HSB at 28 days ranged from 22 to 40 MPa. The indoor thermal performance test revealed that concrete with macro-encapsulated octadecane-HSB was capable of reducing the peak indoor air temperature and the fluctuation of indoor temperature. It can be very effective in transferring the heating and cooling loads away from the peak demand times.

  18. Development of Hollow Steel Ball Macro-Encapsulated PCM for Thermal Energy Storage Concrete

    Science.gov (United States)

    Dong, Zhijun; Cui, Hongzhi; Tang, Waiching; Chen, Dazhu; Wen, Haibo

    2016-01-01

    The application of thermal energy storage with phase change materials (PCMs) for energy efficiency of buildings grew rapidly in the last few years. In this research, octadecane paraffin was served as a PCM, and a structural concrete with the function of indoor temperature control was developed by using a macro-encapsulated PCM hollow steel ball (HSB). The macro-encapsulated PCM-HSB was prepared by incorporation of octadecane into HSBs through vacuum impregnation. Test results showed that the maximum percentage of octadecane carried by HSBs was 80.3% by mass. The macro-encapsulated PCM-HSB has a latent heat storage capacity as high as 200.5 J/g. The compressive strength of concrete with macro-encapsulated PCM-HSB at 28 days ranged from 22 to 40 MPa. The indoor thermal performance test revealed that concrete with macro-encapsulated octadecane-HSB was capable of reducing the peak indoor air temperature and the fluctuation of indoor temperature. It can be very effective in transferring the heating and cooling loads away from the peak demand times. PMID:28787859

  19. The Effect of a Plasticizing Admixture on the Properties of Hardened Concrete

    Directory of Open Access Journals (Sweden)

    Anastasija Abasova

    2012-11-01

    Full Text Available Concrete is material obtained mixing matrix material, coarse and small aggregates and water along with additives acquiring necessary properties of hardening. The quality and properties of raw material used for manufacturing concrete, V/C ratio and the uniformity of the compaction of the mixture lead to the fundamental properties of concrete. The compressive strength of concrete is one of the most important properties of concrete. The article deals with the impact of plasticizers on the structural properties of concrete choosing an optimal content of additives. Concrete plasticizers increasing the content of additive increase the strength of samples, the density and ultrasonic pulse of velocity and decrease absorption. Test results have revealed that a plasticizing admixture under dosing or overdosing can reduce the properties of concrete.

  20. Optical absorption and energy transport in compact dendrimers with unsymmetrical branching

    International Nuclear Information System (INIS)

    Supritz, C.; Gounaris, V.; Reineker, P.

    2008-01-01

    We investigate the linear optical absorption and the energy transport in compact dendrimers with unsymmetrical branching, using the Frenkel exciton concept. The electron-phonon interaction is taken into account by introducing a heat bath that interacts with the exciton in a stochastic manner

  1. Strength and fracture energy of foamed concrete incorporating rice husk ash and polypropylene mega-mesh 55

    Science.gov (United States)

    Jaini, Z. M.; Rum, R. H. M.; Boon, K. H.

    2017-10-01

    This paper presents the utilization of rice husk ash (RHA) as sand replacement and polypropylene mega-mesh 55 (PMM) as fiber reinforcement in foamed concrete. High pozzolanic reaction and the ability to become filler make RHA as a strategic material to enhance the strength and durability of foamed concrete. Furthermore, the presence of PMM optimizes the toughness of foamed concrete in resisting shrinkage and cracking. In this experimental study, cube and cylinder specimens were prepared for the compression and splitting-tensile tests. Meanwhile, notched beam specimens were cast for the three-point bending test. It was found that 40% RHA and 9kg/m3 PMM contribute to the highest strength and fracture energy. The compressive, tensile and flexural strengths are 32MPa, 2.88MPa and 6.68MPa respectively, while the fracture energy achieves 42.19N/m. The results indicate high potential of RHA and PMM in enhancing the mechanical properties of foamed concrete.

  2. Effect of Gamma Ray Energies and Steel Fiber addition by Weight on some Shielding Properties of Limestone Concrete

    International Nuclear Information System (INIS)

    Abd El-Latifa, A.A.; Ikraiam, F.A.; Abd El-Latifa, A.A.; Abd Elazziz, A.; Abd Elazziz, A.

    2010-01-01

    The mass attenuation coefficient , the build up factor , the half value thickness X 1/2 , and tenth value thickness X 1/10 of fiber concrete , 0% , 1% , 2%, 3%, and 4% by weight fiber content were measured at different gamma ray energies in MeV, 0.511,1.274 from Na-22 ,1.17 ,1.33 from Co-60 and 0.662 from Cs-137 . Appreciable variations were noted in the former nuclear parameters, due to the changes in the fiber content and gamma ray energies .A comparison of shielding properties of concrete with fiber content and reference sample(concrete without fiber ) have proven that the addition of steel fibers by weight to concrete have a potential application as a radiation shielding

  3. Experimental research on the use of micro-encapsulated Phase Change Materials to store solar energy in concrete floors in order to save energy in Dutch houses

    NARCIS (Netherlands)

    Entrop, A.G.; Brouwers, H.J.H.; Reinders, A.H.M.E.

    2011-01-01

    In this paper an experimental research is presented on a new use of Phase Change Materials (PCMs) in concrete floors, in which thermal energy provided by the sun is stored in a mix of concrete and PCMs. When this thermal energy is being released – in moderate sea climates during the evening and

  4. High temperature behaviour of self-consolidating concrete

    International Nuclear Information System (INIS)

    Fares, Hanaa; Remond, Sebastien; Noumowe, Albert; Cousture, Annelise

    2010-01-01

    This paper presents an experimental study on the properties of self-compacting concrete (SCC) subjected to high temperature. Two SCC mixtures and one vibrated concrete mixture were tested. These concrete mixtures come from the French National Project B-P. The specimens of each concrete mixture were heated at a rate of 1 deg. C/min up to different temperatures (150, 300, 450 and 600 deg. C). In order to ensure a uniform temperature throughout the specimens, the temperature was held constant at the maximum temperature for 1 h before cooling. Mechanical properties at ambient temperature and residual mechanical properties after heating have already been determined. In this paper, the physicochemical properties and the microstuctural characteristics are presented. Thermogravimetric analysis, thermodifferential analysis, X-ray diffraction and SEM observations were used. The aim of these studies was in particular to explain the observed residual compressive strength increase between 150 and 300 deg. C.

  5. Comparative Embodied Energy Analysis of a Steel and Concrete Structural System in Ireland

    OpenAIRE

    Acquaye, Adolf; Duffy, Aidan; Basu, Biswajit

    2007-01-01

    Engineering building design focuses on optimising operational energy use and ignores the energy required to procure and construct a building. This energy, termed ‘embodied energy’, can be very significant when compared to operational energy. Therefore, it is important to minimise the embodied in buildings; this must be done at the design stage. This paper presents a comparative embodied energy analysis of two structural design solutions for a modern office building: one in concrete and one in...

  6. Evaluating the effect of crumb rubber and nano silica on the properties of high volume fly ash roller compacted concrete pavement using non-destructive techniques

    Directory of Open Access Journals (Sweden)

    Bashar S. Mohammed

    2018-06-01

    Full Text Available The major problems related to roller compacted concrete (RCC pavement are high rigidity, lower tensile strength which causes a tendency of cracking due to thermal or plastic shrinkage, flexural and fatigue loads. Furthermore, RCC pavement does not support the use of dowel bars or reinforcement due to the way it is placed and compacted, these also aided in cracking and consequently increased maintenance cost. To address these issues, high volume fly ash (HVFA RCC pavement was developed by partially replacing 50% cement by volume with fly ash. Crumb rubber was used as a partial replacement to fine aggregate in HVFA RCC pavement at 0%, 10%, 20%, and 30% replacement by volume. Nano silica was added at 0%, 1%, 2% and 3% by weight of cementitious materials to improve early strength development in HVFA RCC pavement and mitigate the loss of strength due to the incorporation of crumb rubber. The nondestructive technique using the rebound hammer test (RHT and ultrasonic pulse velocity (UPV were used to evaluate the effect of crumb rubber and nano silica on the performance of HVFA RCC pavement. The results showed that the use of HVFA as cement replacement decreases both the unit weight, compressive strength, rebound number (RN. Furthermore, the unit weight, compressive strength, RN, UPV and dynamic modulus of elasticity of HVFA RCC pavement all decreases with increase in crumb rubber content and increases with the addition of nano-silica. Combined UPV-RN (SonReb models for predicting the 28 days strength of HVFA RCC pavement based on combining UPV and RN were developed using multivariable regression (double power, bilinear, and double exponential models. The exponential combined SonReb model is the most suitable for predicting the compressive strength of HVFA RCC pavement using UPV and RN as the independent variable with better predicting ability, higher correlation compared to the single variable models. Keywords: Crumb rubber, High volume fly ash, Nano

  7. Compact and energy saving magnet technology for particle accelerators

    International Nuclear Information System (INIS)

    Baurichter, A.

    2013-01-01

    Despite the fact that funding agencies and industrial users of particle accelerators get more and more alerted about costs of civil engineering, installation and operation, only little effort has been put into development of sustainable, energy and cost saving accelerator technology. In order to reduce the total-cost-of ownership of accelerator magnets, operating at high electrical power for twenty years or more, permanent magnet based Green Magnet technology has been developed at a consortium around Danfysik's R and D team. Together with our partners from ISA, Aarhus University, the Aarhus School of Engineering, the company Sintex and Aalborg University all obstacles in applying permanent magnet technology as e.g. thermal drift and inhomogeneities of magnetic fields have been overcome. The first Green Magnet has now been operated for more than half a year in an Accelerator Mass Spectrometry facility at the ETH in Zurich. The performance of this B=0.43T 90 deg. H-type bending magnet and the most recently builtB=1T, 30 deg. C-type Green Magnet for the synchrotron light source ASTRID2 at ISA in Aarhus will be presented. Danfysik also is designing, manufacturing and testing 60 compact magnet systems, developed at MAX-Lab for the new MAXIV 3.0 GeV synchrotron light source. In addition, 12 for the 1.5 GeV light source and another 12 for the new SOLARIS light source in Krakow, Poland are buying built. Up to a dozen or more magnet functions have been integrated into one yoke of these compact magnet systems, which makes the new MAXIV light sources compact, energy saving and at the same time very bright. Test results and design concepts of the new MAXIV and SOLARIS magnets will be presented. (author)

  8. Modification of cement concrete by multilayer carbon nano-tubes

    International Nuclear Information System (INIS)

    Yakovlev, G.I.; Pervushin, G.N.; Pudov, I.A.; Korzhenko, A.

    2012-01-01

    The compact structure of protective concrete-conservative on the basis of Portland cement modified by carbon nano-dispersed systems has been studied. Multilayer carbon nano-tubes Graphistrength TM by 'Arkema' dispersed in hydrodynamic plant in the solution of surfactant Polyplast SP-1 have been used as modifying additives. The bending strength of fine grain concrete has been observed to increase by 45.1% and compression strength - by 96.8%. The concrete strength increase is related to morphological changes of crystalline hydrate new formations providing the formation of less defective structure of cement matrix of high density, preventing the migration of radionuclides into the environment in the process of radioactive waste conservation

  9. Evaluation Standard for Safety Coefficient of Roller Compacted Concrete Dam Based on Finite Element Method

    Directory of Open Access Journals (Sweden)

    Bo Li

    2014-01-01

    Full Text Available The lack of evaluation standard for safety coefficient based on finite element method (FEM limits the wide application of FEM in roller compacted concrete dam (RCCD. In this paper, the strength reserve factor (SRF method is adopted to simulate gradual failure and possible unstable modes of RCCD system. The entropy theory and catastrophe theory are used to obtain the ultimate bearing resistance and failure criterion of the RCCD. The most dangerous sliding plane for RCCD failure is found using the Latin hypercube sampling (LHS and auxiliary analysis of partial least squares regression (PLSR. Finally a method for determining the evaluation standard of RCCD safety coefficient based on FEM is put forward using least squares support vector machines (LSSVM and particle swarm optimization (PSO. The proposed method is applied to safety coefficient analysis of the Longtan RCCD in China. The calculation shows that RCCD failure is closely related to RCCD interface strength, and the Longtan RCCD is safe in the design condition. Considering RCCD failure characteristic and combining the advantages of several excellent algorithms, the proposed method determines the evaluation standard for safety coefficient of RCCD based on FEM for the first time and can be popularized to any RCCD.

  10. Influence Of The Gripping Fixture On The Modified Compact Tension Test Results: Evaluation Of The Experiments On Cylindrical Concrete Specimens

    Directory of Open Access Journals (Sweden)

    Holušová Táňa

    2015-12-01

    Full Text Available The modified compact tension test (MCT might become in the future a stable test configuration for the evaluation of fracture-mechanics parameters or also for description of fatigue behavior of composites materials such as concrete. Core drilling is used for sampling of existing structures. These samples have cylindrical shape with the selected thickness to avoid the stress concentration. This contribution focuses on the evaluation of the fracture behavior during static and quasi static tests. Static tests are performed on standard specimen with diameter 150 mm and length 300 mm. The quasi-static tests are performed using two different gripping fixtures. The results for quasi-static tests are represented as L-COD diagrams (i.e. load vs. crack opening displacement measured on the loading axis. The comparison of results and discussion of advantages and disadvantages are introduced.

  11. Innovative Materials and Techniques in Concrete Construction : ACES Workshop

    CERN Document Server

    2012-01-01

    Recent years have seen enormous advances in the technology of concrete as a material, through which its strength, compactness and ductility can reach levels never dreamed of before. Thanks to these improved material properties, the strength and durability of concrete structures is greatly improved, their weight and dimensions reduced, the scope of concrete as a structural material is widened and – despite the higher material costs – overall economy is possible, with positive impacts on sustainability as well. Similar advances are underway in reinforcing materials, notably high strength steel and fibre-reinforced polymers, and in the way they are combined with concrete into high performance structures. Developments in materials and equipment, as well as new concepts, have lead to innovative construction techniques, reducing cost and construction time and making possible the application of concrete under extreme conditions of construction or environment. All these advances will be highlighted in the book by...

  12. Rigid missiles impact on reinforced concrete structures: analysis by discrete element method

    International Nuclear Information System (INIS)

    Shiu, W.J.

    2008-10-01

    The constructions likely to be subjected to some extreme loadings like reactor containment buildings have to be dimensioned accordingly. As a part of study of concrete structures, this thesis focuses on numerical modelling of rigid missile impacts against a rigid reinforced concrete slab. Based on some experiment tests data, an elasto-plastic-damaged constitutive law has been implanted into a discrete element numerical code. To calibrate certain parameters of the numerical model, some quasi static tests have been first simulated. Once the model calibration was done, some missile impact simulation tests have then been carried out. The numerical results are well agree with these provided by French Atomic Energy Agency (Cea) and the French Electrical power Company (EDF) in terms of the trajectory of the missile. We were able to show the need of a constitutive law taking into account the compaction behaviour of the concrete when the predictions of penetration and perforation of a thick slab was demanded. Finally, a parametric study confirmed that the numerical model can be used the way predictive as well as the empirical prediction law, while the first can provide additional significant mechanical description. (author)

  13. Compact and energy-saving trickle film ice storage unit; Rieselfilm-Eisspeicheranlage baut kompakt und spart Energie

    Energy Technology Data Exchange (ETDEWEB)

    Pompetzki, F. [Zimmer Edelstahl GmbH, Nuernberg (Germany)

    1998-12-31

    Ice storages are well established in industrial refrigeration systems. The contribution describes new, compact trickle film ice storages with plate heat exchangers. These systems need less refrigerant and consume up to 30% less energy. (orig.) [Deutsch] Eisspeicher haben sich in der industriellen Kaeltetechnik seit langem bewaehrt. Neue Impulse erhaelt diese Technik jetzt durch kompakt aufgebaute Rieselfilm-Eisspeicher mit Plattenwaermeaustauscher. Aufgrund ihrer Konzeption benoetigen sie bei gleicher Leistung deutlich weniger Kaeltemittel und verbrauchen bis zu 30% weniger Energie. (orig.)

  14. Consumer preferences and willingness to pay for compact fluorescent lighting: Policy implications for energy efficiency promotion in Saint Lucia

    International Nuclear Information System (INIS)

    Reynolds, Travis; Kolodinsky, Jane; Murray, Byron

    2012-01-01

    This article examines consumer willingness to pay for energy-saving compact fluorescent light bulbs using the results of a stated preferences study conducted in the Caribbean island nation of Saint Lucia. Geographic location, low income status, and age are found to affect willingness-to-pay for compact fluorescent lighting, while higher income status and other demographic variables appear to have minimal or no significant impacts. Energy efficiency knowledge is associated with increased willingness-to-pay for energy-efficient bulbs and with increased use of compact fluorescent lighting. Contrary to theoretical expectations, past purchase of compact fluorescent bulbs is found to have no impact on self-reported willingness to pay. We hypothesize that this null result is due to the recent emergence of low-cost, low-quality compact fluorescent bulbs in the Saint Lucian lighting market, which may be negatively influencing consumers' preferences and expectations regarding energy-efficient lighting. Findings support the argument that government-sponsored education and subsidy programs will likely result in increased use of energy-saving technologies in Saint Lucia. But such behavioral changes may not be sustained in the long run unless low quality bulbs – the “lemons” of the compact fluorescent lighting market – can be clearly identified by consumers. - Highlights: ▶ We model how knowledge, attitudes, and past purchase affect CFL adoption. ▶ Saint Lucian consumers have some knowledge of and favorable attitudes toward CFLs. ▶ Energy efficiency knowledge increases stated willingness-to-pay (WTP) for CFLs. ▶ Past purchase does not increase WTP; low-quality ‘lemons’ may influence consumers. ▶ Policy can lower consumer risks in lighting markets where low quality bulbs exist.

  15. A study on the fracture energy of Steel Fiber Reinforced Concrete structures with initial cracks

    International Nuclear Information System (INIS)

    Chang, Dong-Il; Sim Jongsung; Chai, Won-Kyu; Lee, Myeong-Gu

    1991-01-01

    Fracture test is performed in order to investigate the fracture behavior of SFRC (Steel Fiber Reinforced Concrete) structures. Thirty six SFRC beams are used in this test. The relationships between loading, strain, and mid-span deflection of the beams are observed under the three point loading system. From the test results, the effects of the fiber content, the fiber aspect ratio and the initial crack ratio on the concrete fracture behavior were studied, and the flexural strength and the fracture energy of SFRC beams were also calculated. According to the regression technique, some empirical formulae for predicting the flexural strength and the fracture energy of SFRC beams are also suggested. (author)

  16. NEW TECHNOLOGY OF ASH AND SLAG CONCRETES

    Directory of Open Access Journals (Sweden)

    PAVLENKO T. M.

    2017-03-01

    Full Text Available Summary. Purpose. Development of scientific-technical bases of manufacture and application of concrete on the basis of ash and slag mixes of thermal power plants. Methods. It is proposed a new technology of preparation of ash and slag concrete mixes. First the ash and slag mix is dispersed through the sieve with meshes 5 mm in a fine-grained fraction and slag. Then, in accordance with the composition of the concrete, obtained fine-grained fraction, slag, cement and tempering water are separately dosed into the mixer. Results. It is proven the high efficiency of the proposed technology of manufacture of ash and slag concretes. It is established that this technological solution allows to increase the strength of concrete by 20...30%, and in the preparation of full-strength concrete to reduce the cement consumption by 15...20%. Scientific novelty. It is developed the new technology of ash and slag mixes application. The concrete mix on the basis of ash and slag mix has an optimal particle size distribution, which ensures the best compaction and, accordingly, the greatest strength of ash and slag concrete with the given cement consumption. Practical significance. The research results promote the mass application of ash and slag mixes of thermal power plants in construction, obtaining of products from the proposed concretes of low cost with high physical-mechanical properties. Conclusion. It is proven the high efficiency of the proposed technology of production of ash and slag concretes. It is established that this technological solution allows increasing concrete strength, and obtaining full-strength concrete to reduce cement consumption. The extensive application of such concrete in construction makes it possible to solve the problem of aggregates for concrete, promotes recycling of TPP waste and consequently the protection of the environment.

  17. Hydrothermal alkaline stability of bentonite barrier by concrete interstitial wastes

    International Nuclear Information System (INIS)

    Leguey Jimenez, S.; Cuevas Rodriguez, J.; Ramirez Martin, S.; Vigil de la villa Mencia, R.; Martin Barca, M.

    2002-01-01

    At present, the main source of High Level radioactive Waste (HLW) is the electrical energy production during all the steps of developing. In almost all the countries with nuclear programs, the option for the final management of HLW is the Deep Geological Repository (DGR) based on the concept of multi barrier. According to this concept, the waste is isolated from biosphere by the interposition of confinement barriers. Two of the engineering barriers in the Spanish design of DGR in granitic rock are compacted bentonite and concrete. The bentonite barrier is the backfilling and sealing material for the repository gallery, because of its mechanical and physico-chemical properties. The main qualities of concrete as a component of a multi barrier system are its low permeability, mechanical resistance and chemical properties. With regard to chemical composition of concrete, the alkaline nature of cement pore water lowers the solubility of many radioactive elements. However, structural transformation in smectite, dissolution or precipitation of minerals and, consequently, changes in the bentonite properties could occurs in the alkaline conditions generated by the cement degradation. The main objective of the present work is to evaluate the effect of concrete in the stability of Spanish reference bentonite (La Serrata of Nijar, Almeria, Spain) in conditions similar to those estimated in a DGR in granitic rock. Because of the main role of bentonite barrier in the global performance of the repository, the present study is essential to guarantee its security. (Author)

  18. Application of waste glass in translucent and photocatalytic concrete

    NARCIS (Netherlands)

    Lieshout, van B.; Spiesz, P.R.; Brouwers, H.J.H.

    2012-01-01

    Container glass aggregates and glass powder are waste products of the glass recycling industry. In this research, these products are incorporated in self-compacting concrete (SCC) mixtures, replacing conventional aggregates and fine powders. The SCC mixtures were designed using a particle packing

  19. Application of Crushed Concrete in Geotechnical Engineering - Selected Issues

    Science.gov (United States)

    Kawalec, Jacek; Kwiecien, Slawomir; Pilipenko, Anton; Rybak, Jarosław

    2017-12-01

    The reuse of building materials becomes an important issue in sustainable engineering. As the technical requirements for civil engineering structures changes with time and the life time is limited, the need of building new objects meets the necessity of recycling of the existing ones. In the case of steel structures, the possibility of recycling is obvious, also in the case of wooden constructions, the possibility of “burning” solves the problem. The concrete waste is generated mainly as a result of the demolition and reconstruction of residential and industrial buildings. These types of waste are basically made from crushed rocks and cement minerals and contain non-hydrated cement particles in its composition. Concrete poses a lot of problems mainly for two reasons. It is difficult to crush, heavy and hard to transport and demanding in reuse. Different fractions (particle sizes) may be used for different purposes. Starting from very fine particles which can be used in concrete production, through regular 16-300 mm fractions used to form new fills and fill the mats, up to very irregular mixtures used to form stone columns by means of Impulse Compaction or in Dynamic Replacement. The presented study juxtaposes authors experience with crushed concrete used in civil engineering, mainly in geotechnical projects. Authors’ experiences comprise the application of crushed concrete in the new concrete production in Russia, changing pulverized bridge into the fill of mesh sacks, or mattresses used as an effective way to protect the shoreline and the New Orleans East land bridge after Katrina storm (forming a new shoreline better able to withstand wave actions), and finally the use of very irregular concrete fractions to form stone columns in week soils on the example of railway and road projects in Poland. Selected case studies are presented and summarized with regard to social, technical and economic issues including energy consumption needed for proposed technologies

  20. Preliminary analytical study on the feasibility of using reinforced concrete pile foundations for renewable energy storage by compressed air energy storage technology

    Science.gov (United States)

    Tulebekova, S.; Saliyev, D.; Zhang, D.; Kim, J. R.; Karabay, A.; Turlybek, A.; Kazybayeva, L.

    2017-11-01

    Compressed air energy storage technology is one of the promising methods that have high reliability, economic feasibility and low environmental impact. Current applications of the technology are mainly limited to energy storage for power plants using large scale underground caverns. This paper explores the possibility of making use of reinforced concrete pile foundations to store renewable energy generated from solar panels or windmills attached to building structures. The energy will be stored inside the pile foundation with hollow sections via compressed air. Given the relatively small volume of storage provided by the foundation, the required storage pressure is expected to be higher than that in the large-scale underground cavern. The high air pressure typically associated with large temperature increase, combined with structural loads, will make the pile foundation in a complicated loading condition, which might cause issues in the structural and geotechnical safety. This paper presents a preliminary analytical study on the performance of the pile foundation subjected to high pressure, large temperature increase and structural loads. Finite element analyses on pile foundation models, which are built from selected prototype structures, have been conducted. The analytical study identifies maximum stresses in the concrete of the pile foundation under combined pressure, temperature change and structural loads. Recommendations have been made for the use of reinforced concrete pile foundations for renewable energy storage.

  1. A comparative study of physical and chemical properties of different pozzolanic materials used for roller compacted concrete RCC dams

    Directory of Open Access Journals (Sweden)

    Husein Malkawi Abdallah I.

    2017-01-01

    Full Text Available This paper addresses the feasibility and the efficiency of using Natural Pozzolan and/or Rock flour in Roller Compacted Concrete (RCC gravity dams. For this purpose, five identical mortar trial mixes were prepared using five different supplementary materials, i.e., fly ash produced in South Africa (proven to be effective in RCC construction, fly ash produced in Turkey, Jordanian natural pozzolan, Saudi natural pozzolan, and rock flour from Mujib Dam basalt quarry. The physical and chemical properties of these pozzolanic materials were determined. The effectiveness of each one of these mineral admixtures used as a cement replacement material in controlling alkali silica reaction are studied and analyzed. Correlations were made between the mechanical properties for the five proposed mixes and a control mix using the Jordanian Portland Cement. The results demonstrate that the performance of Natural Pozzolana and/or rock flour as compared with that of fly ash and other pozzolanic material is very satisfactory and can be effectively used in RCC construction.

  2. Utilization of recycled concrete aggregates in structural concrete by applying a fraction partitioning model

    NARCIS (Netherlands)

    Wouw, van de P.M.F.; Doudart de la Grée, G.C.H.; Florea, M.V.A.; Brouwers, H.J.H.; Bilek, V.; Kersner, Z.

    2014-01-01

    The recycling of concrete waste into new structural concrete reduces the utilization of raw materials, decreases transport and production energy cost, and saves the use of limited landfill space. Currently, recycling involves the use of recycled concrete aggregates (RCA) as road base material or in

  3. Non-destructive evaluation of the water content of concretes by low energy gamma backscattering

    International Nuclear Information System (INIS)

    Raghunath, V.M.; Bhatnagar, P.K.; Meenakshisundaram, V.

    1983-01-01

    A method of estimating the water content of various concretes mixed with neutron absorbers like boron or rare earths is described. This makes use of the fact that a large buildup of low energy photons in the 20 - 100 keV range is observed in the backscattered spectrum from water when compared to conrete. A 4.36 mCi 137 Cs (662 keV) source is used with a 1 mm thick NaI scintillator as the detector to measure the backscattered radiation in the energy range. Calibration curves for evaluating the water content in borated concretes, ordinary conretes of different thickness, and a mortar brick are reported. It has been possible to estimate the water content to within 0.25% (by weight) by this method. (orig.)

  4. Effect of Post-Fire Curing on the Residual Mechanical Properties of Fire-Damaged Self-Compacting Concrete

    NARCIS (Netherlands)

    Mirmomeni, M.; Heidarpour, A.; Schlangen, H.E.J.G.; Smith, S; Saouma, V.; Bolander, J.; Landis, E.

    2016-01-01

    Concrete is recognized for being a fire-resistant construction material. At elevated temperatures concrete can, however, undergo considerable damage such as strength degradation, cracking, and explosive spalling. In recent decades, reuse of fire-damaged concrete structures by means of developing

  5. A high energy photon detector system in compact form

    International Nuclear Information System (INIS)

    Kato, Sadayuki; Sugano, Katsuhito; Yoshioka, Masakazu.

    1975-01-01

    The development of a high energy photon detector system in compact form for use in experiments of high energy physics is described, and the results of its characteristics calibrated using converted electron beams and a pair spectrometer are reported. This system consists of a total absorption lead glass Cerenkov counter, twenty hodoscope arrays for the vertical and the horizontal directions respectively, a lead plate for the conversion of γ-rays into electron-positron pairs, veto counters, photon hardener, and lead blocks for shieldings and collimation. The spatial resolution of the hodoscope is 15 mm for each direction, covering 301 x 301 mm 2 area. The energy resolution of the total absorption lead glass Cerenkov counter, whose volume is 30 x 30 x 30 cm 3 , is typically 18 % (FWHM) for the incident electron energy of 500 MeV, and it can be expressed with a relation of ΔE/E = 3.94 Esup(-1/2). (E in MeV). (auth.)

  6. Microencapsulated phase change materials for enhancing the thermal performance of Portland cement concrete and geopolymer concrete for passive building applications

    International Nuclear Information System (INIS)

    Cao, Vinh Duy; Pilehvar, Shima; Salas-Bringas, Carlos; Szczotok, Anna M.; Rodriguez, Juan F.; Carmona, Manuel; Al-Manasir, Nodar; Kjøniksen, Anna-Lena

    2017-01-01

    Highlights: • Microencapsulated phase change materials give high energy storage capacity concrete. • Microcapsule addition increases the porosity of concrete. • Thermal and mechanical properties are linked to the enhanced concrete porosity. • Agglomerated microcapsules have strong impact on the concrete properties. • Microcapsules caused geopolymer to become more energy efficient than Portland cement. - Abstract: Concretes with a high thermal energy storage capacity were fabricated by mixing microencapsulated phase change materials (MPCM) into Portland cement concrete (PCC) and geopolymer concrete (GPC). The effect of MPCM on thermal performance and compressive strength of PCC and GPC were investigated. It was found that the replacement of sand by MPCM resulted in lower thermal conductivity and higher thermal energy storage, while the specific heat capacity of concrete remained practically stable when the phase change material (PCM) was in the liquid or solid phase. Furthermore, the thermal conductivity of GPC as function of MPCM concentration was reduced at a higher rate than that of PCC. The power consumption needed to stabilize a simulated indoor temperature of 23 °C was reduced after the addition of MPCM. GPC exhibited better energy saving properties than PCC at the same conditions. A significant loss in compressive strength was observed due to the addition of MPCM to concrete. However, the compressive strength still satisfies the mechanical European regulation (EN 206-1, compressive strength class C20/25) for concrete applications. Finally, MPCM-concrete provided a good thermal stability after subjecting the samples to 100 thermal cycles at high heating/cooling rates.

  7. Constitutive model for reinforced concrete

    NARCIS (Netherlands)

    Feenstra, P.H.; Borst, de R.

    1995-01-01

    A numerical model is proposed for reinforced-concrete behavior that combines the commonly accepted ideas from modeling plain concrete, reinforcement, and interaction behavior in a consistent manner. The behavior of plain concrete is govern by fracture-energy-level-based formulation both in tension

  8. Effect of Silica Fume on two-stage Concrete Strength

    Science.gov (United States)

    Abdelgader, H. S.; El-Baden, A. S.

    2015-11-01

    Two-stage concrete (TSC) is an innovative concrete that does not require vibration for placing and compaction. TSC is a simple concept; it is made using the same basic constituents as traditional concrete: cement, coarse aggregate, sand and water as well as mineral and chemical admixtures. As its name suggests, it is produced through a two-stage process. Firstly washed coarse aggregate is placed into the formwork in-situ. Later a specifically designed self compacting grout is introduced into the form from the lowest point under gravity pressure to fill the voids, cementing the aggregate into a monolith. The hardened concrete is dense, homogeneous and has in general improved engineering properties and durability. This paper presents the results from a research work attempt to study the effect of silica fume (SF) and superplasticizers admixtures (SP) on compressive and tensile strength of TSC using various combinations of water to cement ratio (w/c) and cement to sand ratio (c/s). Thirty six concrete mixes with different grout constituents were tested. From each mix twenty four standard cylinder samples of size (150mm×300mm) of concrete containing crushed aggregate were produced. The tested samples were made from combinations of w/c equal to: 0.45, 0.55 and 0.85, and three c/s of values: 0.5, 1 and 1.5. Silica fume was added at a dosage of 6% of weight of cement, while superplasticizer was added at a dosage of 2% of cement weight. Results indicated that both tensile and compressive strength of TSC can be statistically derived as a function of w/c and c/s with good correlation coefficients. The basic principle of traditional concrete, which says that an increase in water/cement ratio will lead to a reduction in compressive strength, was shown to hold true for TSC specimens tested. Using a combination of both silica fume and superplasticisers caused a significant increase in strength relative to control mixes.

  9. A Variable Energy CW Compact Accelerator for Ion Cancer Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, Carol J. [Fermilab; Taylor, J. [Huddersfield U.; Edgecock, R. [Huddersfield U.; Schulte, R. [Loma Linda U.

    2016-03-10

    Cancer is the second-largest cause of death in the U.S. and approximately two-thirds of all cancer patients will receive radiation therapy with the majority of the radiation treatments performed using x-rays produced by electron linacs. Charged particle beam radiation therapy, both protons and light ions, however, offers advantageous physical-dose distributions over conventional photon radiotherapy, and, for particles heavier than protons, a significant biological advantage. Despite recognition of potential advantages, there is almost no research activity in this field in the U.S. due to the lack of clinical accelerator facilities offering light ion therapy in the States. In January, 2013, a joint DOE/NCI workshop was convened to address the challenges of light ion therapy [1], inviting more than 60 experts from diverse fields related to radiation therapy. This paper reports on the conclusions of the workshop, then translates the clinical requirements into accelerat or and beam-delivery technical specifications. A comparison of available or feasible accelerator technologies is compared, including a new concept for a compact, CW, and variable energy light ion accelerator currently under development. This new light ion accelerator is based on advances in nonscaling Fixed-Field Alternating gradient (FFAG) accelerator design. The new design concepts combine isochronous orbits with long (up to 4m) straight sections in a compact racetrack format allowing inner circulating orbits to be energy selected for low-loss, CW extraction, effectively eliminating the high-loss energy degrader in conventional CW cyclotron designs.

  10. Development and Performance Evaluation of High Temperature Concrete for Thermal Energy Storage for Solar Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Selvam, R. Panneer; Hale, Micah; Strasser, Matt

    2013-03-31

    Thermal energy can be stored by the mechanism of sensible or latent heat or heat from chemical reactions. Sensible heat is the means of storing energy by increasing the temperature of the solid or liquid. Since the concrete as media cost per kWhthermal is $1, this seems to be a very economical material to be used as a TES. This research is focused on extending the concrete TES system for higher temperatures (500 °C to 600 °C) and increasing the heat transfer performance using novel construction techniques. To store heat at high temperature special concretes are developed and tested for its performance. The storage capacity costs of the developed concrete is in the range of $0.91-$3.02/kWhthermal. Two different storage methods are investigated. In the first one heat is transported using molten slat through a stainless steel tube and heat is transported into concrete block through diffusion. The cost of the system is higher than the targeted DOE goal of $15/kWhthermal. The increase in cost of the system is due to stainless steel tube to transfer the heat from molten salt to the concrete blocks.The other method is a one-tank thermocline system in which both the hot and cold fluid occupy the same tank resulting in reduced storage tank volume. In this model, heated molten salt enters the top of the tank which contains a packed bed of quartzite rock and silica sand as the thermal energy storage (TES) medium. The single-tank storage system uses about half the salt that is required by the two-tank system for a required storage capacity. This amounts to a significant reduction in the cost of the storage system. The single tank alternative has also been proven to be cheaper than the option which uses large concrete modules with embedded heat exchangers. Using computer models optimum dimensions are determined to have an round trip efficiency of 84%. Additionally, the cost of the structured concrete thermocline configuration provides the TES

  11. Experimental analysis of energy absorption behaviour of Al-tube filled with pumice lightweight concrete under axial loading condition

    Science.gov (United States)

    Rajak, D. K.; Deshpande, P. G.; Kumaraswamidhas, L. A.

    2017-08-01

    This Paper aimed at experimental investigation of compressive behaviour of square tube filled with pumice lightweight concrete (PLC). Square section of 20×20×30 mm is investigated, which is the backbone structure. The compression deformation result shows the better folding mechanism, displacement value, and energy absorption. PLC concrete filled with aluminium thin-wall tubes has been revealed superior energy absorption capacity (EAC) under low strain rate at room temperature. Superior EAC resulted as a result of mutual deformation benefit between aluminium section and PLC is also analysed. PLC was characterised by Fourier Transform Infrared (FTIR) and Field Emission Scanning Electron Microscopy (FESEM), and Energy Dispersive X-ray Spectrometry (EDX) analysis for better understanding of material behaviour. Individual and comparative load bearing graphs is logged for better prospective of analysing. Novel approach aimed at validation of porous lightweight concrete for better lightweight EA filler material.

  12. Application of "The Water Layer Model" to self-compacting mortar with different size distributions of fine aggregate

    NARCIS (Netherlands)

    Midorikawa, T.; Pelova, G.I.; Walraven, J.C.

    2009-01-01

    Self-Compacting Concrete is a relatively new type of concrete. Up to now only a few models have been developed to explain its physical behaviour, like the Water Layer Model and the Excess Paste Model. In this paper, the difference between the Water Layer Model and the Excess Paste Model is

  13. Eco-friendly GGBS Concrete: A State-of-The-Art Review

    Science.gov (United States)

    Saranya, P.; Nagarajan, Praveen; Shashikala, A. P.

    2018-03-01

    Concrete is the most commonly used material in the construction industry in which cement is its vital ingredient. Although the advantages of concrete are many, there are side effects leading to environmental issues. The manufacturing process of cement emits considerable amount of carbon dioxide (CO2). Therefore is an urgent need to reduce the usage of cement. Ground Granulated Blast furnace Slag (GGBS) is a by-product from steel industry. It has good structural and durable properties with less environmental effects. This paper critically reviews the literatures available on GGBS used in cement concrete. In this paper, the literature available on GGBS are grouped into engineering properties of GGBS concrete, hydraulic action of GGBS in concrete, durability properties of GGBS concrete, self- compacting GGBS concrete and ultrafine GGBS are highlighted. From the review of literature, it was found that the use of GGBS in concrete construction will be eco-friendly and economical. The optimum percentage of replacement of cement by GGBS lies between 40 - 45 % by weight. New materials that can be added in addition to GGBS for getting better strength and durability also highlighted.

  14. The effect of fly ash to self-compactability of pumice aggregate ...

    Indian Academy of Sciences (India)

    This paper presents the results of an experimental study on the effects .... There has been an increase in using self-compacting concrete (SCC) in recent years and a .... of SCLC and the ability for SCLC to change its path and to pass through.

  15. Design of a compact high-energy setup for x-ray phase-contrast imaging

    Science.gov (United States)

    Schüttler, Markus; Yaroshenko, Andre; Bech, Martin; Potdevin, Guillaume; Malecki, Andreas; Chabior, Michael; Wolf, Johannes; Tapfer, Arne; Meiser, Jan; Kunka, Danays; Amberger, Maximilian; Mohr, Jürgen; Pfeiffer, Franz

    2014-03-01

    The main shortcoming of conventional biomedical x-ray imaging is the weak soft-tissue contrast caused by the small differences in the absorption coefficients between different materials. This issue can be addressed by x-ray phasesensitive imaging approaches, e.g. x-ray Talbot-Lau grating interferometry. The advantage of the three-grating Talbot-Lau approach is that it allows to acquire x-ray phase-contrast and dark-field images with a conventional lab source. However, through the introduction of the grating interferometer some constraints are imposed on the setup geometry. In general, the grating pitch and the mean x-ray energy determine the setup dimensions. The minimal length of the setup increases linearly with energy and is proportional to p2, where p is the grating pitch. Thus, a high-energy (100 keV) compact grating-based setup for x-ray imaging can be realized only if gratings with aspect-ratio of approximately 300 and a pitch of 1-2 μm were available. However, production challenges limit the availability of such gratings. In this study we consider the use of non-binary phase-gratings as means of designing a more compact grating interferometer for phase-contrast imaging. We present simulation and experimental data for both monochromatic and polychromatic case. The results reveal that phase-gratings with triangular-shaped structures yield visibilities that can be used for imaging purposes at significantly shorter distances than binary gratings. This opens the possibility to design a high-energy compact setup for x-ray phase-contrast imaging. Furthermore, we discuss different techniques to achieve triangular-shaped phase-shifting structures.

  16. Rotating shield ceiling for the compact ignition tokamak test cell

    International Nuclear Information System (INIS)

    Commander, J.C.

    1986-01-01

    For the next phase of the United States fusion program, a compact, high-field, toroidal ignition machine with liquid nitrogen cooled copper coils, designated the Compact Ignition Tokamak (CIT), is proposed. The CIT machine will be housed in a test cell with design features developed during preconceptual design. Configured as a right cylinder, the selected test cell design features: a test cell and basement with thick concrete shielding walls, and floor; leak tight tritium seals; and operational characteristics well suited to the circular CIT machine configuration and radially oriented ancillary equipment and systems

  17. Static properties and impact resistance of a green Ultra-High Performance Hybrid Fibre Reinforced Concrete (UHPHFRC) : experiments and modeling

    NARCIS (Netherlands)

    Yu, R.; Spiesz, P.R.; Brouwers, H.J.H.

    2014-01-01

    This paper addresses the static properties and impact resistance of a "green" Ultra-High Performance Hybrid Fibre Reinforced Concrete (UHPHFRC). The design of concrete mixtures aims to achieve a densely compacted cementitious matrix, employing the modified Andreasen & Andersen particle packing

  18. Study and application of high-density concrete in radiation-shielding experiment

    International Nuclear Information System (INIS)

    Wu Chongming; Ding Dexin; Xiao Xuefu; Wang Shaolin; Lin Xingjun; Shen Yuanyuan

    2008-01-01

    According to the demand for research and construction project, a series of systematic experiments and studies on shielding γ-ray radiation concrete with the density of 4.60 t/m 3 were made in such aspects as mix ratio design, construction technology, uniformly shielding etc. Such issues as uniformity in the construction and compactness were solved. The ray test method for uniformly shielding concrete was presented and some technical steps for this high-density concrete used in the process of test design or construction were summed up. A series of tests and practical applications show that this technology of mix ratio design and construction is feasible. (authors)

  19. Vibration behaviour of foamed concrete floor with polypropylene and rise husk ash fibre

    Science.gov (United States)

    Azaman, N. A. Mohd; Ghafar, N. H. Abd; Ayub, N.; Ibrahim, M. Z.

    2017-11-01

    In the history of the construction industry, lightweight concrete or foamed concrete is a special concrete which can very useful in the construction sector because it is very lightweight and it can compact by itself at each angle of foamwork. Foamed concrete is one of lightweight concrete which widely used for floor construction due to its light weight and economic. The significant challenges in the floor design process are considering the vibration that needs improvements for the poor dynamic behaviour insulation. An alternative material to replace sand with certain amount of rice husk ash (RHA) and polypropylene was introduced. Research was determine the dynamic behavior of foam-polypropylene and foam-RHA concrete by using impact hammer test. The natural frequency for normal foamed concrete, 0.5 % of Polypropylene and 15% of RHA is 29.8 Hz, 29.3 Hz and 29.5 Hz respectively.

  20. Phase 2 microwave concrete decontamination results

    International Nuclear Information System (INIS)

    White, T.L.; Foster, D. Jr.; Wilson, C.T.; Schaich, C.R.

    1995-01-01

    The authors report on the results of the second phase of a four-phase program at Oak Ridge National Laboratory to develop a system to decontaminate concrete using microwave energy. The microwave energy is directed at the concrete surface through the use of an optimized wave guide antenna, or applicator, and this energy rapidly heats the free water present in the interstitial spaces of the concrete matrix. The resulting steam pressure causes the surface to burst in much the same way popcorn pops in a home microwave oven. Each steam explosion removes several square centimeters of concrete surface that are collected by a highly integrated wave guide and vacuum system. The authors call this process the microwave concrete decontamination, or MCD, process. In the first phase of the program the principle of microwaves concrete removal concrete surfaces was demonstrated. In these experiments, concrete slabs were placed on a translator and moved beneath a stationary microwave system. The second phase demonstrated the ability to mobilize the technology to remove the surfaces from concrete floors. Area and volume concrete removal rates of 10.4 cm 2 /s and 4.9 cm 3 /S, respectively, at 18 GHz were demonstrated. These rates are more than double those obtained in Phase 1 of the program. Deeper contamination can be removed by using a longer residence time under the applicator to create multiple explosions in the same area or by taking multiple passes over previously removed areas. Both techniques have been successfully demonstrated. Small test sections of painted and oil-soaked concrete have also been removed in a single pass. Concrete with embedded metal anchors on the surface has also been removed, although with some increased variability of removal depth. Microwave leakage should not pose any operational hazard to personnel, since the observed leakage was much less than the regulatory standard

  1. The improvement of thermal characteristics of autoclave aerated concrete for energy efficient high-rise buildings application

    Science.gov (United States)

    Khavanov, Pavel; Fomina, Ekaterina; Kozhukhova, Natalia

    2018-03-01

    Nowadays, the problem of energy saving is very relevant. One of the ways to reduction energy consumption in construction materials production and construction of civil and industrial high-rise buildings is the application of claddings with heat-insulating performance. The concept of energy efficiency of high-rise buildings is closely related to environmental aspect and sustainability of applied construction materials; reducing service costs; energy saving and microclimate comfortability. A complexity of architectural and structural design as well as aesthetic characteristics of construction materials are also should be considered. The high interest focused on materials with combined properties. This work is oriented on the study of energy efficiency of buildings by improving heat-insulation and strength performance of autoclave aerated concrete. The applied method of sulfate activation of lime allows monitoring phase and structure formation in aerated concrete. The optimal mix design of aerated concrete with the compressive strength up to 8.5 MPa and decreased density up to 760 kg/m3 was proposed. Analysis of structure at macro-and microscale was performed as well as the criteria of an optimal porosity formation was considered a number, size, shape of pore and density of interior partition. SEM analysis and BET method were performed in this research work. The research results demonstrated the correlation between structure and vapor permeability resistance, also it was found that the increase of strength can lead to reduction of thermal conductivity.

  2. Sustainable monitoring of concrete structures : strength and durability performance of polymer-modified self-sensing concrete

    OpenAIRE

    Torgal, Fernando Pacheco; Gonzalez, J.; Jalali, Said

    2012-01-01

    Concrete structures all over the world are reaching the end of their service life sooner than expected. This is due to the fact that ordinary Portland cement-based concrete deteriorates under environmental actions and also that structural inspections and conservation actions are expensive. Besides, as they consume energy and non-renewable resources, they have negative environmental impacts. Self-sensing concrete provides an alternative way of monitoring concrete-reinforced structures...

  3. Bond of reinforcing bars in self-compacting steel fiber reinforced concrete

    NARCIS (Netherlands)

    Schumacher, P.; Bigaj-van Vliet, A.J.; Braam, C.R.; Walraven, J.C.

    2002-01-01

    Plain concrete demonstrates a rather brittle behavior both under compression and tension. By adding steel fibers, the post-cracking behavior becomes more ductile and an increase of the strain capacity under tension and compression is found. The research project currently being carried out aims at

  4. Post-cracking tensile behaviour of steel-fibre-reinforced roller-compacted-concrete for FE modelling and design purposes; Comportamiento a tracción posterior a la fisuración del hormigón reforzado con fibras de acero compactado con rodillo para el diseño y modelado EF.

    Energy Technology Data Exchange (ETDEWEB)

    Jafarifar, N.; Pilakoutas, K.; Angelakopoulos, H.; Bennett, T.

    2017-07-01

    Fracture of steel-fibre-reinforced-concrete occurs mostly in the form of a smeared crack band undergoing progressive microcracking. For FE modelling and design purposes, this crack band could be characterised by a stress-strain (σ-ε) relationship. For industrially-produced steel fibres, existing methodologies such as RILEM TC 162-TDF (2003) propose empirical equations to predict a trilinear σ-ε relationship directly from bending test results. This paper evaluates the accuracy of these methodologies and their applicability for roller-compacted-concrete and concrete incorporating steel fibres recycled from post-consumer tyres. It is shown that the energy absorption capacity is generally overestimated by these methodologies, sometimes up to 60%, for both conventional and roller-compacted concrete. Tensile behaviour of fibre-reinforced-concrete is estimated in this paper by inverse analysis of bending test results, examining a variety of concrete mixes and steel fibres. A multilinear relationship is proposed which largely eliminates the overestimation problem and can lead to safer designs. [Spanish] La rotura del hormigón reforzado con fibra de acero se produce principalmente en forma de una banda de fisuración que sufre progresiva microfracturación. Para el diseño y modelado EF, esta banda se puede caracterizar por una relación tensión-deformación (σ-ε). Para fibras de acero industriales, existen metodologías (RILEM TC 162-TDF 2003) que proponen ecuaciones empíricas para predecir una relación σ-ε trilinear a partir de resultados de pruebas de flexión. En este artículo se evalúa la precisión de estas metodologías y su aplicación para hormigón compactado con rodillo y hormigón reforzado con fibras de acero recicladas provenientes de neumáticos usados. Se demuestra que estas metodologías generalmente sobreestiman la capacidad de absorción de (hasta un 60%) tanto para el hormigón convencional como para el compactado con rodillo. En este art

  5. Mud concrete paving block for pedestrian pavements

    Directory of Open Access Journals (Sweden)

    Chameera Udawattha

    2017-12-01

    This is an attempt to search for alternative eco-friendly earth paving material for public walkways with both the strength and durable properties of concrete while ensuring pedestrian comfort. Approaches were made to change the fine particle percentage while keeping the sand and gravel constant, once the optimum most practical mixture was known, the standard tests were done. The results obtained revealed that the proposed self-compacting block can be produced by using soil with less than 5% fine particles, 55% of 65% sand particles and 18% of 22% cement by weight together with the moisture content between 14% and 15%The tested mud concrete paving blocks were already used in practical application in Sri Lankan urban context.

  6. Mechanical Model for Dynamic Behavior of Concrete Under Impact Loading

    Science.gov (United States)

    Sun, Yuanxiang

    Concrete is a geo-material which is used substantively in the civil building and military safeguard. One coupled model of damage and plasticity to describe the complex behavior of concrete subjected to impact loading is proposed in this research work. The concrete is assumed as homogeneous continuum with pre-existing micro-cracks and micro-voids. Damage to concrete is caused due to micro-crack nucleation, growth and coalescence, and defined as the probability of fracture at a given crack density. It induces a decrease of strength and stiffness of concrete. Compaction of concrete is physically a collapse of the material voids. It produces the plastic strain in the concrete and, at the same time, an increase of the bulk modulus. In terms of crack growth model, micro-cracks are activated, and begin to propagate gradually. When crack density reaches a critical value, concrete takes place the smashing destroy. The model parameters for mortar are determined using plate impact experiment with uni-axial strain state. Comparison with the test results shows that the proposed model can give consistent prediction of the impact behavior of concrete. The proposed model may be used to design and analysis of concrete structures under impact and shock loading. This work is supported by State Key Laboratory of Explosion science and Technology, Beijing Institute of Technology (YBKT14-02).

  7. Final Report: Self Consolidating Concrete Construction for Modular Units

    Energy Technology Data Exchange (ETDEWEB)

    Gentry, Russell [Georgia Inst. of Technology, Atlanta, GA (United States); Kahn, Lawrence [Georgia Inst. of Technology, Atlanta, GA (United States); Kurtis, Kimberly [Georgia Inst. of Technology, Atlanta, GA (United States); Petrovic, Bojan [Georgia Inst. of Technology, Atlanta, GA (United States); Loreto, Giovanni [Georgia Inst. of Technology, Atlanta, GA (United States); Van Wyk, Jurie [Westinghouse Electric Company, Cranberry Township, PA (United States); Canterero-Leal, Carlos [Westinghouse Electric Company, Cranberry Township, PA (United States)

    2016-07-29

    This report outlines the development of a self-consolidating concrete (also termed “self-compacting concrete” or SCC) so that concrete placement can be made into steel plate composite (SC) modular structures without the need for continuous concrete placement. As part of the research, SCC mixtures were developed and validated to ensure sufficient shear capacity across cold-joints, while minimizing shrinkage and temperature increase during curing to enhance concrete bonding with the steel plate construction found in modular units. The self-roughening concrete produced as part of this research was assessed in SC structures at three scales: small-scale shear-friction specimens, mid-scale beams tested in in-plane and out-of-plane bending, and a full-scale validation test using an SC module produced by Westinghouse as part of the Plant Vogtle expansion. The experiments show that the self-roughening concrete can produce a cold-joint surface of 0.25 inches (6 mm) without external vibration during concrete placement. The experiments and subsequent analysis show that the shear friction provisions of ACI 318-14, Section 22.9 can be used to assess the shear capacity of the cold-joints in SC modular construction, and that friction coefficient of 1.35 is appropriate for use with these provisions.

  8. Influence of length-to-diameter ratio on shrinkage of basalt fiber concrete

    Science.gov (United States)

    Ruijie, MA; Yang, Jiansen; Liu, Yuan; Zheng, Xiaojun

    2017-09-01

    In order to study the shrinkage performance of basalt concrete, using the shrinkage rate as index, the work not only studied the influence of different length-to-diameter ratio (LDR) on plastic shrinkage and drying shrinkage of basalt fiber concrete, but also analyzed the action mechanism. The results show that when the fiber content is 0.1%, the LDR of 800 and 1200 take better effects on reducing plastic shrinkage, however the fiber content is 0.3%, that of LDR 600 is better. To improve drying shrinkage, the fiber of LDR 800 takes best effect. In the concrete structure, the adding basalt fibers form a uniform and chaotic supporting system, optimize the pore and the void structure of concrete, make the material further compacted, reduce the water loss, so as to decrease the shrinkage of concrete effectively.

  9. Compact Wake-Up Module Design Based on an Energy-Harvesting Rectenna for Wireless Sensor Receivers

    Directory of Open Access Journals (Sweden)

    Sang-Min Han

    2015-01-01

    Full Text Available A new compact energy-harvesting module is proposed with compact design techniques. The rectifying circuit eliminates the band-pass filter and matching circuit, based on an active antenna concept and a direct matching technique. For exact circuit impedance, via holes are processed with precise fabrication techniques. The implemented circuit has achieved a circuit size reduction of 76.7%. The proposed system has been applied to a wireless wake-up receiver system with excellent operating performance.

  10. Concrete/Febex Bentonite Interaction: Results On Short-Term Column Experiments

    International Nuclear Information System (INIS)

    Escribano, A.; Turrero, M.J.; Torres, E.; Martin, P.L.

    2008-01-01

    Interaction between the alkaline pore fluids from the concrete engineered barriers and the bentonite at the repository conditions may generate products that can diffuse through the porous structure of the bentonite affecting their properties. A comprehensive study based on series of short term experiments is being performed to provide experimental evidences on the physical, chemical and mineralogical changes during the concrete-compacted bentonite interaction. Samples were analyzed by XRD, SEM-EDS and FTIR. Measurements of swelling capacity, specific surface area and chemical analysis for cation exchange capacity and soluble salts analyses were also performed. (authors)

  11. Concrete/Febex Bentonite Interaction: Results On Short-Term Column Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Escribano, A.; Turrero, M.J.; Torres, E.; Martin, P.L. [CIEMAT, Environmental Department, Avda. Complutense, 22, 28040 Madrid (Spain)

    2008-07-01

    Interaction between the alkaline pore fluids from the concrete engineered barriers and the bentonite at the repository conditions may generate products that can diffuse through the porous structure of the bentonite affecting their properties. A comprehensive study based on series of short term experiments is being performed to provide experimental evidences on the physical, chemical and mineralogical changes during the concrete-compacted bentonite interaction. Samples were analyzed by XRD, SEM-EDS and FTIR. Measurements of swelling capacity, specific surface area and chemical analysis for cation exchange capacity and soluble salts analyses were also performed. (authors)

  12. Quality of concrete in Temelin nuclear power plant construction

    International Nuclear Information System (INIS)

    Truhlar, K.

    1983-01-01

    The determination is described of cement strength prior to use and two methods are suggested: ultrasonic and point microscopic integration. The ultrasonic method uses test vessels of cement mortar on which measurements are made 24 hours after production. The second method was developed and is reckoned for independent use or in combination with ultrasonic. The said methods have been used in the cement works for cement quality control. They will also be used for controlling the quality of concrete mixes. Concrete compactness will be measured using a lysimetric densimeter or a tensimetric or dual-value probe. (E.S.)

  13. Cohesive fracture model for functionally graded fiber reinforced concrete

    International Nuclear Information System (INIS)

    Park, Kyoungsoo; Paulino, Glaucio H.; Roesler, Jeffery

    2010-01-01

    A simple, effective, and practical constitutive model for cohesive fracture of fiber reinforced concrete is proposed by differentiating the aggregate bridging zone and the fiber bridging zone. The aggregate bridging zone is related to the total fracture energy of plain concrete, while the fiber bridging zone is associated with the difference between the total fracture energy of fiber reinforced concrete and the total fracture energy of plain concrete. The cohesive fracture model is defined by experimental fracture parameters, which are obtained through three-point bending and split tensile tests. As expected, the model describes fracture behavior of plain concrete beams. In addition, it predicts the fracture behavior of either fiber reinforced concrete beams or a combination of plain and fiber reinforced concrete functionally layered in a single beam specimen. The validated model is also applied to investigate continuously, functionally graded fiber reinforced concrete composites.

  14. Fracture Energy of High-Strength Concrete in Compression

    DEFF Research Database (Denmark)

    Dahl, H.; Brincker, Rune

    1989-01-01

    is essential for understanding the fracture mechanism of concrete in compression. In this paper a series of tests is reported, carried out for the purpose of studying the fracture mechanical properties of concrete in compression. Including the measurement and study of the descending branch, a new experimental...

  15. PCM Concrete. [Phase Change Materials

    Energy Technology Data Exchange (ETDEWEB)

    Juul Andersen, T. [Danish Technological Institute, Taastrup (Denmark); Poulsen, H.-H. [BASF A/S, Roedekro (Denmark); Passov, F. [Spaencom A/S, Hedehusene (Denmark); Heiselberg, P. [Aalborg Univ..Aalborg (Denmark)

    2013-04-01

    PCM-Concrete was a research and development project launched in 2009 and finished in 2012. The project, which was funded by The Danish National Advanced Technology Foundation, had a total budget of 1.7 million Euros and included 4 partners: Danish Technological Institute (project manager), Aalborg University, BASF A/S and Spaencom A/S. The overall vision of the project was to reduce energy consumption for heating and cooling in buildings by developing high-performance concrete structures microencapsulated Phase Change Materials (PCM). The PCM used in the project was Micronal produced by BASF A/S. Micronal is small capsules with an acrylic shell and inside a wax with a melting point at approx. 23 deg. C equal to a comfortable indoor temperature. During the melting process thermal energy is transferred to chemical reaction (melting/solidification) depending on PCM being heated up or cooled down. Adding Micronal to concrete would theoretically increase the thermal mass of the concrete and improve the diurnal heat capacity which is the amount of energy that can be stored and released during 24 hours. Nevertheless, it is a relatively new technology that has not received much attention, yet. In the PCM-Concrete project 5 main investigations were carried out: 1) Development of concrete mix design with PCM. 2) Investigation of thermal properties of the PCM concrete: thermal conductivity, specific heat capacity, density. 3) Up-scaling the research to industrial production of PCM-concrete structures. 4) Testing energy efficiency in full scale. 5) Confronting aesthetic and acoustic barriers to full exploitation of the potential of PCM-concrete structures. The results from the test program showed: 1) That the diurnal heat storage capacity is higher for all 4 hollow core decks with tiles attached compared to the reference hollow core deck. 2) The hollow core decks with concrete tiles without PCM performs slightly better than the tiles with PCM. 3) That is was impossible to

  16. Testing of High Thermal Cycling Stability of Low Strength Concrete as a Thermal Energy Storage Material

    Directory of Open Access Journals (Sweden)

    Chao Wu

    2016-09-01

    Full Text Available Concrete has the potential to become a solution for thermal energy storage (TES integrated in concentrating solar power (CSP systems due to its good thermal and mechanical properties and low cost of material. In this study, a low strength concrete (C20 is tested at high temperatures up to 600 °C. Specimens are thermally cycled at temperatures in the range of 400–300 °C, 500–300 °C, and 600–300 °C, which TES can reach in operation. For comparison, specimens also cycled at temperature in the range of 400–25 °C (room temperature, 500–25 °C, and 600–25 °C. It is found from the test results that cracks are not observed on the surfaces of concrete specimens until the temperature is elevated up to 500 °C. There is mechanical deterioration of concrete after exposure to high temperature, especially to high thermal cycles. The residual compressive strength of concrete after 10 thermal cycles between 600 °C and 300 °C is about 58.3%, but the specimens remain stable without spalling, indicating possible use of low strength concrete as a TES material.

  17. Sulfate and Chloride Resistance of High Fluidity Concrete including Fly Ash and GGBS for NPP

    International Nuclear Information System (INIS)

    Noh, Jea Myoung; Cho, Myung Sug

    2010-01-01

    Fly ash mixed concrete has been used for NPP concrete structures in Korea in order to prevent aging and improve durability since the Shin.Kori no.1,2 in 2005. Concentrated efforts to develop technology for the streamlining of construction work and to affect labor savings have been conducted in construction. The application of high fluidity concrete for nuclear power plants has been the research subject with the aim of further rationalization of construction works. Since high fluidity concrete can have the characteristics of high density and high strength without compaction. However, high fluidity concrete can cause thermal cracking by heat of hydration. For this reason, the amount of pozzolan binder should be increased in high fluidity concrete for nuclear power plants. In this study, the resistance of high fluidity concrete on sulfate and chloride was compared with that of the concrete currently using for nuclear power plants

  18. Characterization of ceramic powder compacts

    International Nuclear Information System (INIS)

    Yanai, K.; Ishimoto, S.; Kubo, T.; Ito, K.; Ishikawa, T.; Hayashi, H.

    1995-01-01

    UO 2 and Al 2 O 3 powder packing structures in cylindrical powder compacts are observed by scanning electron microscopy using polished cross sections of compacts fixed by low viscosity epoxy resin. Hard aggregates which are not destroyed during powder compaction are observed in some of the UO 2 powder compacts. A technique to measure local density in powder compacts is developed based on counting characteristic X-ray intensity by energy dispersive X-ray analysis (EDX). The local density of the corner portion of the powder compact fabricated by double-acting dry press is higher than that of the inner portion. ((orig.))

  19. Modified Disk-Shaped Compact Tension Test for Measuring Concrete Fracture Properties

    Czech Academy of Sciences Publication Activity Database

    Cifuentes, H.; Lozano, M.; Holušová, Táňa; Medina, F.; Seitl, Stanislav; Fernández-Canteli, A.

    2017-01-01

    Roč. 11, č. 2 (2017), s. 215-228 ISSN 1976-0485 R&D Projects: GA ČR(CZ) GA16-18702S Institutional support: RVO:68081723 Keywords : Concrete * Fracture behaviour * Experimental techniques Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis Impact factor: 2.031, year: 2016

  20. Diffusion of radionuclides in concrete/bentonite systems

    International Nuclear Information System (INIS)

    Albinsson, Y.; Boerjesson, S.; Andersson, K.; Allard, B.

    1993-02-01

    In a repository for nuclear waste, different construction materials will be used. Two important materials among these are concrete and bentonite clay. These will act as mechanical barriers, preventing convective water flow and also retard transport due to diffusion of dissolved radionuclides by a combination of mechanical constraints and chemical interactions with the solid. An important issue is the possible change of the initial sodium bentonite into the calcium form due to ion exchange with calcium from the cement. The initial leaching of the concrete has been studied using radioactive spiked concrete in contact with compacted bentonite. The diffusion of Cs, Am and Pu into 5 different types of concrete in contact with porewater have been measured. The measured diffusivity for Cs agrees reasonable well with data found in literature. For Am and Pu no movement could be measured (less than 0.2 mm) even though the contact times were extremely long (2.5 y and 5 y, respectively). This report gives also a summary of the previously published results about sorption and diffusion of radionuclides in cement performed in Prav/KBS/SKB projects 1980-1990. 25 refs

  1. Fast neutron relaxation length in concretes in the range of neutron energies En=0.5 - 17.5 MeV

    International Nuclear Information System (INIS)

    Desdin, L.F.; Garcia, L.; Perez, G.; Hernandez, A.; Herrera, E.; Tellez, E.

    1998-01-01

    In the present research were determined the fast neutron relaxation length y in different type of concretes, having special interest for biological shielding as well as for ordinary construction purposes, in the energy interval of 0.5-17.5 MeV. The values of Y concrete are reported with an accuracy of 6 %

  2. Porous Network Concrete : A bio-inspired building component to make concrete structures self-healing

    NARCIS (Netherlands)

    Sangadji, S.

    2015-01-01

    The high energy consumption, its corresponding emission of CO2 and financial losses due to premature failure are the pressing sustainability issues which must be tackled by the concrete infrastructure industry. Enhancement of concrete materials and durability of structures (designing new

  3. Thermal properties of light-weight concrete with waste polypropylene aggregate

    Science.gov (United States)

    Záleská, Martina; Pokorný, Jaroslav; Pavlíková, Milena; Pavlík, Zbyšek

    2017-07-01

    Thermal properties of a sustainable light-weight concrete incorporating high volume of waste polypropylene as partial substitution of natural aggregate were studied in the paper. Glass fiber reinforced polypropylene (GFPP), a by-product of PP tubes production, partially substituted fine natural silica aggregate in 10, 20, 30, 40, and 50 mass%. In order to quantify the effect of GFPP use on concrete properties, a reference concrete mix without plastic waste was studied as well. For the applied GFPP, bulk density, matrix density, and particle size distribution were measured. Specific attention was paid to thermal transport and storage properties of GFPP that were examined in dependence on compaction time. For the developed light-weight concrete, thermal properties were accessed using transient impulse technique, whereas the measurement was done in dependence on moisture content, from the dry state to fully water saturated state. Additionally, the investigated thermal properties were plotted as function of porosity. The tested light-weight concrete was found to be prospective construction material possessing improved thermal insulation function. Moreover, the reuse of waste plastics in concrete composition was beneficial both from the environmental and financial point of view considering plastics low biodegradability and safe disposal.

  4. Energy Efficiency Improvement and Cost Saving Opportunities for the Concrete Industry

    NARCIS (Netherlands)

    Kermeli, Katerina; Worrell, E.; Masanet, Eric

    2011-01-01

    The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for about 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials

  5. Bond of reinforcing bars in self-compacting steel fiber reinforced concrete

    NARCIS (Netherlands)

    Schumacher, P.; Bigaj-van Vliet, A.J.; Braam, C.R.; Uijl, J.A. den; Walraven, J.C.

    2002-01-01

    Pull-out tests were performed on 10 mm diameter ribbed bars embedded along three times the bar diameter in 200 mm cubes made of plain and steel fiber reinforced concrete (SFRC) of normal strength (B45). The fiber content was 60 and 120 kg/m3, respectively, the aspect ratio of the fibers was 45 and

  6. Flexural Behavior of Self-Compacting RC Continuous Beams Strengthened by CFRP Sheets

    Directory of Open Access Journals (Sweden)

    Sabih Z. Al-Sarraf

    2018-01-01

    Full Text Available This search presented an experimental study of the flexural behavior of self-compacting reinforced concrete continuous beams externally strengthened by carbon fiber reinforced polymer (CFRP Sheets. The practical study contained eight self-compacting reinforced concrete continuous beams (with two span, each span had (1500 mm length and (150x250 mm cross sectional dimensions. Seven of these beams strengthened externally by CFRP sheets with and without external anchorage. The experimental variables included location of CFRP sheets and anchor type and location. The results, shows that the beams strengthened externally by CFRP sheets provided improvement in ultimate loads reached (60.71%. The usage of CFRP in the anchorage zone indicated an effective method in comparison to increasing the CFRP sheets lengths or extending them up to the support or under the loading points. Test results also showed that side strengthening provided an effective tool for increasing the load at the cracking stage and also the load capacity and reducing flexural crack widths.

  7. Modeling of Comparative Performance of Asphalt Concrete under Hammer, Gyratory, and Roller Compaction

    Directory of Open Access Journals (Sweden)

    Saad I. Sarsam

    2016-11-01

    Full Text Available The main objective of this study is to develop predictive models using SPSS software (version 18 for Marshall Test results of asphalt mixtures compacted by Hammer, Gyratory, and Roller compaction. Bulk density of (2.351 gm/cc, at OAC of (4.7 % was obtained as a benchmark after using Marshall Compactor as laboratory compactive effort with 75-blows. Same density was achieved by Roller and Gyratory Compactors using its mix designed methods. A total of (75 specimens, for Marshall, Gyratory, and Roller Compactors have been prepared, based on OAC of (4.7 % with an additional asphalt contents of more and less than (0.5 % from the optimum value. All specimens have been subjected to Marshall Test. Mathematical models obtained indicated that variation of Marshall Stiffness is based on the variation of air voids. All of these models depend on asphalt cement content too.

  8. Utilization of black liquor as concrete admixture and set retarder aid

    Directory of Open Access Journals (Sweden)

    Samar A. El-Mekkawi

    2011-04-01

    Full Text Available The utilization of black liquor, produced by the pulp and paper industry in Egypt, as a workability aid and set retarder admixture has been investigated. This approach may help eliminate the environmentally polluting black liquor waste. It also provides a low cost by-product, which can be widely used in the construction industry. The properties of black liquor and its performance on concrete at two different ratios of water to cement have been studied. The results revealed that black liquor from rice straw pulp increases concrete workability, improves compaction, and reduces honeycombing. Moreover, it retards the initial and final set time and enhances uniform compaction. The effect of incorporating small portions of silica fume has been investigated. The ageing effect of this material over a period of one year, to determine its safe storage period, has been studied. Finally, this admixture was found to comply with the relevant Egyptian standards.

  9. Effects of specimen size and crack depth ratio on calibration curves for modified compact tension specimens

    Czech Academy of Sciences Publication Activity Database

    Seitl, Stanislav; Viszlay, V.; Cifuentes, H.; Canteli, A.

    2015-01-01

    Roč. 15, č. 2 (2015) ISSN 1804-4824 Institutional support: RVO:68081723 Keywords : Modified compact tension test * fracture * concrete * core drill * stress intensity factor Subject RIV: JL - Materials Fatigue, Friction Mechanics

  10. Transforming the food-water-energy-land-economic nexus of plasticulture production through compact bed geometries

    Science.gov (United States)

    Holt, Nathan; Shukla, Sanjay; Hochmuth, George; Muñoz-Carpena, Rafael; Ozores-Hampton, Monica

    2017-12-01

    Raised-bed plasticulture, an intensive production system used around the world for growing high-value crops (e.g., fresh market vegetables), faces a water-food nexus that is actually a food-water-energy-land-economic nexus. Plasticulture represents a multibillion dollar facet of the United States crop production value annually and must become more efficient to be able to produce more on less land, reduce water demands, decrease impacts on surrounding environments, and be economically-competitive. Taller and narrower futuristic beds were designed with the goal of making plasticulture more sustainable by reducing input requirements and associated wastes (e.g., water, nutrients, pesticides, costs, plastics, energy), facilitating usage of modern technologies (e.g., drip-based fumigation), improving adaptability to a changing climate (e.g., flood protection), and increasing yield per unit area. Compact low-input beds were analyzed against conventional beds for the plasticulture production of tomato (Solanum lycopersicum), an economically-important crop, using a systems approach involving field measurements, vadose-zone modeling (HYDRUS), and production analysis. Three compact bed geometries, 61 cm (width) × 25 cm (height), 45 cm × 30 cm, 41 cm × 30 cm, were designed and evaluated against a conventional 76 cm × 20 cm bed. A two-season field study was conducted for tomato in the ecologically-sensitive and productive Everglades region of Florida. Compact beds did not statistically impact yield and were found to reduce: 1) production costs by 150-450/ha; 2) leaching losses by up to 5% (1 cm/ha water, 0.33 kg/ha total nitrogen, 0.05 kg/ha total phosphorus); 3) fumigant by up to 47% (48 kg/ha); 4) plasticulture's carbon footprint by up to 10% (1711 kg CO2-eq/ha) and plastic waste stream by up to 13% (27 kg/ha); 5) flood risks and disease pressure by increasing field's soil water storage capacity by up to 33% (≈1 cm); and 6) field runoff by 0.48-1.40 cm (51-76%) based on

  11. Damage Analysis and Evaluation of High Strength Concrete Frame Based on Deformation-Energy Damage Model

    Directory of Open Access Journals (Sweden)

    Huang-bin Lin

    2015-01-01

    Full Text Available A new method of characterizing the damage of high strength concrete structures is presented, which is based on the deformation energy double parameters damage model and incorporates both of the main forms of damage by earthquakes: first time damage beyond destruction and energy consumption. Firstly, test data of high strength reinforced concrete (RC columns were evaluated. Then, the relationship between stiffness degradation, strength degradation, and ductility performance was obtained. And an expression for damage in terms of model parameters was determined, as well as the critical input data for the restoring force model to be used in analytical damage evaluation. Experimentally, the unloading stiffness was found to be related to the cycle number. Then, a correction for this changing was applied to better describe the unloading phenomenon and compensate for the shortcomings of structure elastic-plastic time history analysis. The above algorithm was embedded into an IDARC program. Finally, a case study of high strength RC multistory frames was presented. Under various seismic wave inputs, the structural damages were predicted. The damage model and correction algorithm of stiffness unloading were proved to be suitable and applicable in engineering design and damage evaluation of a high strength concrete structure.

  12. Use of combined destructive and non-destructive test methods to assess the strength of concrete

    Energy Technology Data Exchange (ETDEWEB)

    Arioz, O. [Optimizing Consultancy, Izmir (Turkey); Kilinc, K. [Kirklareli University, Department of Civil Engineering, Kirklareli (Turkey); Ramyar, K. [Ege University, Department of Civil Engineering, Ismir (Turkey); Tuncan, M.; Tuncan, A. [Anadolu University, Department of Civil Engineering, Eskişehir (Turkey)

    2013-07-01

    The compressive strength test applied on standard samples is one of the most important tests indicating the quality of concrete in structures. The results of the standard tests are compared with the values used in design calculations and the quality of concrete is controlled. Although the standard tests are well accepted by the construction industry, they may not represent the in-situ strength of concrete due to the differences between the degree of compaction and curing conditions of concrete and those of standard samples. In-situ strength is also important for the efficient planning of the construction works in huge projects. In the present study, the results obtained from standard tests, core tests, ultrasonic pulse velocity tests, and rebound hammer tests were extensively analysed for the assessment of concrete strength. Key words: Concrete strength, standard tests, core test, ultrasonic pulse velocity, rebound number.

  13. Proceedings of the third symposium on the physics and technology of compact toroids in the magnetic fusion energy program

    International Nuclear Information System (INIS)

    Siemon, R.E.

    1981-03-01

    This document contains papers contributed by the participants of the Third Symposium on Physics and Technology of Compact Toroids in the Magnetic Fusion Energy Program. Subjects include reactor aspects of compact toroids, energetic particle rings, spheromak configurations (a mixture of toroidal and poloidal fields), and field-reversed configurations

  14. A novel kind of concrete superplasticizer based on aryl isocyanate polycondensates

    Science.gov (United States)

    Ding, Bei; Qian, Shanshan; Qiu, Ying; Wang, Yi; Zheng, Chunyang; Wang, Gaoming

    2017-03-01

    A novel superplasticizer was synthesized by polycondensation of Alkyl phenol phosphate and toluene diisocyanate grafting with methoxy polyoxyethylene ether (MPEG). The chemical structure and molecular weight of polycondensates molecules were determined by 1H nuclear magnetic resonance (NMR) and gel permeation chromatography respectively. The experimental results indicated that the polycondensates of Alkyl phenol phosphate and toluene diisocyanate grafting with MPEG not only exhibited good water-reducing properties but also demonstrated effective anti-clay abilities alone. Furthermore, the polycondensates showed good fluidity maintaining abilities within 1-3 h and good workability of concrete. The results of T500 Time experiments show that lower plastic viscosity of the polycondensates leads to fresh concrete much “looser” than conventional PCEs in self-compacting concrete.

  15. Investigation of in-plane moment connections of I-beams to square concrete-filled steel tube columns under gravity loads

    Directory of Open Access Journals (Sweden)

    Abdelrahim K. Dessouki

    2015-04-01

    Full Text Available This paper focuses on experimental and analytical behavior of the ultimate moment of the connections of steel I-beams to square concrete-filled steel tube columns. External stiffeners around the columns are used at the beam flange levels. Five specimens are tested monotonically. The test parameters are the column stiffener dimensions and filling the steel tube column with concrete. Two types of failure modes are observed; beam flange failure and stiffener failure. The experimental results show that the ultimate moment of the connection is increased by increasing stiffener’s dimensions and filling the steel tube column with concrete. ANSYS finite element program is used to simulate the behavior, taking into account both geometric and material nonlinearities. Analytical results that are in fair agreement with the experimental ones are then used to discuss the influence of the main geometric parameters on the connection behavior. The parameters are the stiffener and column dimensions as well as filling the steel tube column with concrete. Different square column cross sections are chosen to cover the three classes of section classifications according to Egyptian code of practice, which are: compact, non compact or slender. The increase in the ultimate moment of the connections is based upon both column cross sections’ compactness and stiffener dimensions while the maximum advantages occur with slender columns.

  16. Public acceptance of renewable energy technologies from an abstract versus concrete perspective and the positive imagery of solar power

    International Nuclear Information System (INIS)

    Sütterlin, Bernadette; Siegrist, Michael

    2017-01-01

    Public acceptance and perception of renewable energy sources are key factors for successfully accomplishing an energy transition. In this light, developing effective policy and communication measures necessitates understanding how people perceive energy systems. Accordingly, the present study aimed to shed light on people's imagery of solar power, one of the renewable energy sources with the highest potential. Results revealed that almost unanimously people associate solar power with highly positive imagery and that visual characteristics are especially prevalent. The successful realization of renewable energy projects requires policymakers to draw on reliable data about public acceptance of renewables. In response to this need, the present study examined whether assessing public acceptance of renewables on a more concrete level (i.e., by addressing drawbacks) can result in a different, more reliable acceptance rating than assessment on an abstract level, as done at present in opinion polls. Results showed that people do not think about drawbacks related to renewables when they consider it from a general, more abstract, perspective. However, when downsides are specifically addressed, people integrate these into their evaluation, thus diminishing acceptance. Even the highly positive imagery of solar power is relativized and acceptance decreases. These findings have several important implications for policymakers. - Highlights: • Evaluating renewables on a concrete rather than abstract level decreases acceptance. • People are less likely to consider drawbacks when assessing renewables on an abstract level. • On a concrete level, people consider drawbacks, even if not personally affected. • Public acceptance assessed on a concrete level provides a more valid base for policy decisions. • People almost unanimously hold a strongly positive imagery of solar power.

  17. Fracture behaviour of heat cured fly ash based geopolymer concrete

    International Nuclear Information System (INIS)

    Sarker, Prabir K.; Haque, Rashedul; Ramgolam, Karamchand V.

    2013-01-01

    Highlights: ► Fly ash geopolymer (GPC) can help reduce carbon footprint of concrete. ► Fracture behaviour of GPC as compared to OPC concrete was studied. ► Fracture energy of GPC was similar to that of OPC concrete. ► GPC showed higher fracture toughness than OPC concrete. ► Higher bond strength resulted in higher crack resistance of GPC. -- Abstract: Use of fly ash based geopolymer as an alternative binder can help reduce CO 2 emission of concrete. The binder of geopolymer concrete (GPC) is different from that of ordinary Portland cement (OPC) concrete. Thus, it is necessary to study the effects of the geopolymer binder on the behaviour of concrete. In this study, the effect of the geopolymer binder on fracture characteristics of concrete has been investigated by three point bending test of RILEM TC 50 – FMC type notched beam specimens. The peak load was generally higher in the GPC specimens than the OPC concrete specimens of similar compressive strength. The failure modes of the GPC specimens were found to be more brittle with relatively smooth fracture planes as compared to the OPC concrete specimens. The post-peak parts of the load–deflection curves of GPC specimens were steeper than that of OPC concrete specimens. Fracture energy calculated by the work of fracture method was found to be similar in both types of concrete. Available equations for fracture energy of OPC concrete yielded conservative estimations of fracture energy of GPC. The critical stress intensity factor of GPC was found to be higher than that of OPC concrete. The different fracture behaviour of GPC is mainly because of its higher tensile strength and bond strength than OPC concrete of the same compressive strength.

  18. Compact vortices

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Losano, L.; Marques, M.A.; Zafalan, I. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Menezes, R. [Universidade Federal da Paraiba, Departamento de Ciencias Exatas, Rio Tinto, PB (Brazil); Universidade Federal de Campina Grande, Departamento de Fisica, Campina Grande, PB (Brazil)

    2017-02-15

    We study a family of Maxwell-Higgs models, described by the inclusion of a function of the scalar field that represent generalized magnetic permeability. We search for vortex configurations which obey first-order differential equations that solve the equations of motion. We first deal with the asymptotic behavior of the field configurations, and then implement a numerical study of the solutions, the energy density and the magnetic field. We work with the generalized permeability having distinct profiles, giving rise to new models, and we investigate how the vortices behave, compared with the solutions of the corresponding standard models. In particular, we show how to build compact vortices, that is, vortex solutions with the energy density and magnetic field vanishing outside a compact region of the plane. (orig.)

  19. Annual energy analysis of concrete containing phase change materials for building envelopes

    International Nuclear Information System (INIS)

    Thiele, Alexander M.; Jamet, Astrid; Sant, Gaurav; Pilon, Laurent

    2015-01-01

    Highlights: • Adding PCM to concrete walls can significantly reduce the cooling needs of buildings. • Climate, season, and wall orientation strongly affect energy and cost savings. • The PCM melting temperature should be near the desired indoor temperature. • Benefits are maximum for outdoor temperature oscillating around set indoor temperature. • Adding PCM had little effect on heating energy needs and associated cost savings. - Abstract: This paper examines the annual energy and cost savings potential of adding microencapsulated phase change material to the exterior concrete walls of an average-sized single family home in California climate zones 3 (San Francisco, CA) and 9 (Los Angeles, CA). The annual energy and cost savings were larger for South- and West-facing walls than for other walls. They were also the largest when the phase change temperature was near the desired indoor temperature. The addition of microencapsulated phase change material to the building walls reduced the cooling load in summer substantially more than the heating load in winter. This was attributed to the cold winter temperatures resulting in nearly unidirectional heat flux on many days. The annual cooling load reduction in an average-sized single family home in San Francisco and in Los Angeles ranged from 85% to 100% and from 53% to 82%, respectively, for phase change material volume fraction ranging from 0.1 to 0.3. The corresponding annual electricity cost savings ranged from $36 to $42 in San Francisco and from $94 to $143 in Los Angeles. From an energy standpoint, the best climate for using building materials containing uniformly distributed microencapsulated phase change material would have outdoor temperature oscillations centered around the desired indoor temperature for the entire year

  20. ENERGY DEMANDS OF THE EXISTING COLLECTIVE BUILDINGS WITH BEARING STRUCTURE OF LARGE PRECAST CONCRETE PANELS FROM TIMISOARA

    Directory of Open Access Journals (Sweden)

    Pescari S.

    2015-05-01

    Full Text Available One of the targets of EU Directives on the energy performance of buildings is to reduce the energy consumption of the existing buildings by finding efficient solutions for thermal rehabilitation. In order to find the adequate solutions, the first step is to establish the current state of the buildings and to determine their actual energy consumption. The current paper aims to present the energy demands of the existing buildings with bearing structure of large precast concrete panels in the city of Timisoara. Timisoara is one of the most important cities in the west side of Romania, being on the third place in terms of size and economic development. The Census of Population and Housing of 2011 states that Timisoara has about 127841 private dwellings and 60 percent of them are collective buildings. Energy demand values of the existing buildings with bearing structure of large precast concrete panels in Timisoara, in their current condition, are higher than the accepted values provided in the Romanian normative, C107. The difference between these two values can reach up to 300 percent.

  1. ASSESSMENT OF RELEASE RATES FOR RADIONUCLIDES IN ACTIVATED CONCRETE.

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN,T.M.

    2003-08-23

    The Maine Yankee (MY) nuclear power plant is undergoing the process of decontamination and decommissioning (D&D). Part of the process requires analyses that demonstrate that any radioactivity that remains after D&D will not cause exposure to radioactive contaminants to exceed acceptable limits. This requires knowledge of the distribution of radionuclides in the remaining material and their potential release mechanisms from the material to the contacting groundwater. In this study the concern involves radionuclide contamination in activated concrete in the ICI Sump below the containment building. Figures 1-3 are schematic representations of the ICI Sump. Figure 2 and 3 contain the relevant dimensions needed for the analysis. The key features of Figures 2 and 3 are the 3/8-inch carbon steel liner that isolates the activated concrete from the pit and the concrete wall, which is between 7 feet and 7 feet 2 inches thick. During operations, a small neutron flux from the reactor activated the carbon steel liner and the concrete outside the liner. Current MY plans call for filling the ICI sump with compacted sand.

  2. Concrete radiation shielding

    International Nuclear Information System (INIS)

    Kaplan, M.F.

    1989-01-01

    The increased use of nuclear energy has given rise to a growth in the amount of artificially produced radiation and radioactive materials. The design and construction of shielding to protect people, equipment and structures from the effects of radiation has never been more important. Experience has shown that concrete is an effective, versatile and economical material for the construction of radiation shielding. This book provides information on the principles governing the interaction of radiation with matter and on relevant nuclear physics to give the engineer an understanding of the design and construction of concrete shielding. It covers the physical, mechanical and nuclear properties of concrete; the effects of elevated temperatures and possible damage to concrete due to radiation; basic procedures for the design of concrete radiation shields and finally the special problems associated with their construction and cost. Although written primarily for engineers concerned with the design and construction of concrete shielding, the book also reviews the widely scattered data and information available on this subject and should therefore be of interest to students and those wishing to research further in this field. (author)

  3. Comparison between instrumented precracked Charpy and compact specimen tests of carbon steels

    International Nuclear Information System (INIS)

    Nanstad, R.K.

    1980-01-01

    The General Atomic Company High Temperature Gas-Cooled Reactor (HTGR) is housed within a prestressed concrete reactor vessel (PCRV). Various carbon steel structural members serve as closures at penetrations in the vessel. A program of testing and evaluation is underway to determine the need for reference fracture toughness (K/sub IR/) and indexing procedures for these materials as described in Appendix G to Section III, ASME Code for light water reactor steels. The materials of interest are carbon steel forgings (SA508, Class 1) and plates (SA537, Classes 1 and 2) as well as weldments of these steels. The fracture toughness behavior is characterized with instrumented precracked Charpy V-votch specimens (PCVN) - slow-bend and dynamic - and compact specimens (10-mm and 25-mm thicknesses) using both linear elastic (ASTM E399) and elastic-plastic (equivalent Energy and J-Integral) analytical procedures. For the dynamic PCVN tests, force-time traces are analyzed according to the procedures of the Pressure Vessel Research Council (PVRC)/Metal Properties Council (MPC). Testing and analytical procedures are discussed and PCVN results are compared to those obtained with compact specimens

  4. Effect of Dolomite as Expansive Agent and Shrinkage Reducing Admixture in Self-Compacting Shrinkage – Compensating Concrete

    OpenAIRE

    Qosai Sahib Radi Marshdi; Ahlam Hamid Jasim; Haider Abass Obeed

    2018-01-01

    The principle of using expansive agents has been recommended to manufacture shrinkage compensating concrete provided that an adequate wet curing is carried out. On the other hand, shrinkage-reducing admixture (SRA) in the concrete mixes, has been more recently suggested to reduce the risk of cracking in concrete structures caused by drying shrinkage. This paper is devoted to the study of the influence of complex modifier in the form of superplasticizer, shrinkage reducing admixture and e...

  5. Early-age behaviour of concrete in massive structures, experimentation and modelling

    International Nuclear Information System (INIS)

    Zreiki, J.; Bouchelaghem, F.; Chaouche, M.

    2010-01-01

    This study is focused on the behaviour of concrete at early-age in massive structures, in relation with the prediction of both cracking risk and residual stresses, which is still a challenging task. In this paper, a 3D thermo-chemo-mechanical model has been developed, on the basis of complete material characterization experiments, in order to predict the early-age development of strains and residual stresses, and in order to assess the risk of cracking in massive concrete structures. The parameters of the proposed model were identified on two different concretes, High Performance Concrete and Fibrous Self-Compacted Concrete - from simple experiments in the laboratory: uniaxial tension and compression tests, dynamic Young's modulus measurements, free and autogenous shrinkages, semi-adiabatic calorimetry. The proposed model has been implemented in a Finite Element code, and the numerical simulations of the laboratory tests have proved the model consistency. Furthermore, early-age experiments conducted on massive structures have also been simulated, in order to investigate the predictive capability of the model, and to assess the model performance in practical situations where varying temperatures are involved.

  6. FLEXURAL TOUGHNESS OF STEEL FIBER REINFORCED CONCRETE

    Directory of Open Access Journals (Sweden)

    Fehmi ÇİVİCİ

    2006-02-01

    Full Text Available Fiber concrete is a composite material which has mechanical and physical characteristics unlike plain concrete. One of the important mechanical characteristics of fiber concrete is its energy absorbing capability. This characteristics which is also called toughness, is defined as the total area under the load-deflection curve. A number of composite characteristics such as crack resistance, ductility and impact resistance are related to the energy absorbtion capacity. According to ASTM C 1018 and JSCE SF-4 the calculation of toughness is determined by uniaxial flexural testing. Fiber concrete is often used in plates such as bridge decks, airport pavements, parking areas, subjected to cavitation and erosion. In this paper, toughness has been determined according to ASTM C 1018 and JSCE SF-4 methods by testing beam specimens. Energy absorbing capacities of plain and steel fiber reinforced concrete has been compared by evaluating the results of two methods. Also plain and steel fiber reinforced plate specimens behaviors subjected to biaxial flexure are compared by the loaddeflection curves of each specimen.

  7. Concrete structures vulnerability under impact: characterization, modeling, and validation - Concrete slabs vulnerability under impact: characterization, modeling, and validation

    International Nuclear Information System (INIS)

    Xuan Dung Vu

    2013-01-01

    Concrete is a material whose behavior is complex, especially in cases of extreme loads. The objective of this thesis is to carry out an experimental characterization of the behavior of concrete under impact-generated stresses (confined compression and dynamic traction) and to develop a robust numerical tool to reliably model this behavior. In the experimental part, we have studied concrete samples from the VTT center (Technical Research Center of Finland). At first, quasi-static triaxial compressions with the confinement varies from 0 MPa (unconfined compression test) to 600 MPa were realized. The stiffness of the concrete increases with confinement pressure because of the reduction of porosity. Therefore, the maximum shear strength of the concrete is increased. The presence of water plays an important role when the degree of saturation is high and the concrete is subjected to high confinement pressure. Beyond a certain level of confinement pressure, the maximum shear strength of concrete decreases with increasing water content. The effect of water also influences the volumetric behavior of concrete. When all free pores are closed as a result of compaction, the low compressibility of the water prevents the deformation of the concrete, whereby the wet concrete is less deformed than the dry concrete for the same mean stress. The second part of the experimental program concerns dynamic tensile tests at different loading velocities, and different moisture conditions of concrete. The results show that the tensile strength of concrete C50 may increase up to 5 times compared to its static strength for a strain rate of about 100 s -1 . In the numerical part, we are interested in improving an existing constitutive coupled model of concrete behavior called PRM (Pontiroli-Rouquand-Mazars) to predict the concrete behavior under impact. This model is based on a coupling between a damage model which is able to describe the degradation mechanisms and cracking of the concrete at

  8. Nuclear Statistical Equilibrium for compact stars: modelling the nuclear energy functional

    International Nuclear Information System (INIS)

    Aymard, Francois

    2015-01-01

    The core collapse supernova is one of the most powerful known phenomena in the universe. It results from the explosion of very massive stars after they have burnt all their fuel. The hot compact remnant, the so-called proto-neutron star, cools down to become an inert catalyzed neutron star. The dynamics and structure of compact stars, that is core collapse supernovae, proto-neutron stars and neutron stars, are still not fully understood and are currently under active research, in association with astrophysical observations and nuclear experiments. One of the key components for modelling compact stars concerns the Equation of State. The task of computing a complete realistic consistent Equation of State for all such stars is challenging because a wide range of densities, proton fractions and temperatures is spanned. This thesis deals with the microscopic modelling of the structure and internal composition of baryonic matter with nucleonic degrees of freedom in compact stars, in order to obtain a realistic unified Equation of State. In particular, we are interested in a formalism which can be applied both at sub-saturation and super-saturation densities, and which gives in the zero temperature limit results compatible with the microscopic Hartree-Fock-Bogoliubov theory with modern realistic effective interactions constrained on experimental nuclear data. For this purpose, we present, for sub-saturated matter, a Nuclear Statistical Equilibrium model which corresponds to a statistical superposition of finite configurations, the so-called Wigner-Seitz cells. Each cell contains a nucleus, or cluster, embedded in a homogeneous electron gas as well as a homogeneous neutron and proton gas. Within each cell, we investigate the different components of the nuclear energy of clusters in interaction with gases. The use of the nuclear mean-field theory for the description of both the clusters and the nucleon gas allows a theoretical consistency with the treatment at saturation

  9. Compact fusion reactors

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lawrenceville Plasma Physics and Lockheed Martin. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given.

  10. The Effect of Using Sewage Sludge Ash with and without Nano Silica Particles on Properties of Self-compacting Cement Based Materials

    Directory of Open Access Journals (Sweden)

    Amin Khoshravesh

    2014-10-01

    Full Text Available Nowadays using pozzolanic materials is crucial as a replacement of needed cement, improving properties of cement based materials and saving costs. On the other hand sewage sludge is harmful to the environment and human health. So in this research the sewage sludge ash has been used as an artificial pozzolan to produce self compacting cement based materials which could be evaluated as a revolution in the concrete industry. The objective of this research was to accelerate the performance of sewage sludge ash by utilizing nano silica particles. This research includes 10 mix designs for self compacting mortar and concrete made up of binary and ternary cementitious blends of sewage sludge ash (0%,5%,10%,15%,20% and nano silica (0%,1%. The results showed that by adding the sewage sludge ash, rheological and mechanical properties of the samples were reduced and for small percentages of sewage sludge ash, the durability characteristics were improved. The results also showed that adding nano silica improved the mechanical and durability properties of self compacting mortar and concrete. Finally in presence of nano silica, the reactivity of the sewage sludge ash was increased and its performance was improved.

  11. Constitutive relation of concrete containing meso-structural characteristics

    Directory of Open Access Journals (Sweden)

    Li Guo

    Full Text Available A constitutive model of concrete is proposed based on the mixture theory of porous media within thermodynamic framework. By treating concrete as a multi-phase multi-component mixture, we constructed the constitutive functions for elastic, interfacial, and plastic strain energy respectively. A constitutive law of concrete accommodating internal micro-cracks and interfacial boundaries was established. The peak stress predicted with the developed model depends primarily on the volume ratio of aggregate, and the results explain very well reported experimental phenomena. The strain-stress curve under uniaxial loading was found in a good agreement with experimental data for concrete with three different mixing proportions. Keywords: Constitutive model of concrete, Mixture theory of porous media, Meso-structure, Interfacial energy

  12. Solar grounds for the production of foamed concrete items

    Directory of Open Access Journals (Sweden)

    Dauzhanov Nabi Tokmurzaevich

    2014-04-01

    Full Text Available The method and low-energy intensive technology of manufacturing products of foamed concrete are developed providing bringing-in a solar energy in technological conversion for reducing the energy consumption for heat treating, allowing to obtain high quality products at low cost with a diurnal cycle of production. Thereby, the use of a minimal amount of additional electrical energy is stipulated for providing a consistence of temperature fields in the cross section of helio heated products in landfills in combination with solar energy. Until now, many scientists have investigated the issues of using the renewable energy resources in the construction industry including solar ones, for replacement of conventional fuels applied in the thermal treatment of concrete products and structures. However, pursuant to the analysis of the scientific literature, all known research studies and developments in this area are devoted to heliothermal treatment of conventional concrete, and at the same time the traditional methods for acceleration of hardening requiring significant energy consumption are still in use in production of such an effective building material as foam concrete. There are various methods of heliothermal treatment including combined ones, but they are not applicable in their production due to the specific characteristics (unlike conventional concrete of manufacturing technology, the used components, the particular rheological properties, as well as a porous structure of foam concrete. Both the examining the use of solar energy in acceleration of foam concrete hardening according to the literature data and the pre-studies have revealed a problem under unilateral heliothermal treatment of foam concrete. It is found out that the temperature field of across thickness of the massif, especially during the first 7-8 hours, is irregular, that significantly affects the process of heating moisture transfer occurring within the massif. According to the

  13. Durability of conventional concretes containing black rice husk ash.

    Science.gov (United States)

    Chatveera, B; Lertwattanaruk, P

    2011-01-01

    In this study, black rice husk ash (BRHA) from a rice mill in Thailand was ground and used as a partial cement replacement. The durability of conventional concretes with high water-binder ratios was investigated including drying shrinkage, autogenous shrinkage, depth of carbonation, and weight loss of concretes exposed to hydrochloric (HCl) and sulfuric (H(2)SO(4)) acid attacks. Two different replacement percentages of cement by BRHA, 20% and 40%, and three different water-binder ratios (0.6, 0.7 and 0.8) were used. The ratios of paste volume to void content of the compacted aggregate (γ) were 1.2, 1.4, and 1.6. As a result, when increasing the percentage replacement of BRHA, the drying shrinkage and depth of carbonation reaction of concretes increased. However, the BRHA provides a positive effect on the autogenous shrinkage and weight loss of concretes exposed to hydrochloric and sulfuric acid attacks. In addition, the resistance to acid attack was directly varied with the (SiO(2) + Al(2)O(3) + Fe(2)O(3))/CaO ratio. Results show that ground BRHA can be applied as a pozzolanic material and also improve the durability of concrete. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. The influence of main bar corrosion on bond strength in selfcompacting concrete

    Science.gov (United States)

    Ayop, S. S.; Emhemed, A. N. K.; Jamaluddin, N.; Sadikin, A.

    2017-11-01

    The experimental study was conducted to determine the influence of main bar corrosion on bond strength in self-compacting concrete (SCC). A total 16 tension pullout tests specimens reinforced with 10 mm and 14 mm diameter bar were used for the bond strength test. The properties of SCC were determined from the slump flow, T50cm, V-funnel and L box test. Reinforcing bars in the concrete were submitted to impressed current to accelerate the corrosion of the bar. It was found that the relationship between bond strength and concrete strength in un-corroded specimens differed from that of corroded specimens set in high-strength concrete because of brittleness in the corroded specimens, which caused a sudden loss of bond strength. The results revealed that specimens of un-corroded and corroded showed a higher percentage of bond strength degradation during the pullout tests.

  15. Application of Glass Fiber Waste Polypropylene Aggregate in Lightweight Concrete – thermal properties

    Science.gov (United States)

    Citek, D.; Rehacek, S.; Pavlik, Z.; Kolisko, J.; Dobias, D.; Pavlikova, M.

    2018-03-01

    Actual paper focus on thermal properties of a sustainable lightweight concrete incorporating high volume of waste polypropylene aggregate as partial substitution of natural aggregate. In presented experiments a glass fiber reinforced polypropylene (GFPP) which is a by-product of PP tubes production, partially substituted fine natural silica aggregate in 10, 20, 30, 40 and 50 mass %. Results were compared with a reference concrete mix without plastic waste in order to quantify the effect of GFPP use on concrete properties. Main material physical parameters were studied (bulk density, matrix density without air content, and particle size distribution). Especially a thermal transport and storage properties of GFPP were examined in dependence on compaction time. For the developed lightweight concrete, thermal properties were accessed using transient impulse technique, where the measurement was done in dependence on moisture content (from the fully water saturated state to dry state). It was found that the tested lightweight concrete should be prospective construction material possessing improved thermal insulation function and the reuse of waste plastics in concrete composition was beneficial both from the environmental and financial point of view.

  16. May compact storage facilities be licensed

    International Nuclear Information System (INIS)

    Gleim, A.; Winter, G.

    1980-01-01

    The authors examine as potential statements fo fact for licensing so-called compact storage facilities for spent fuel elements Sec. 6 to 9c of the German Atomic Energy Act and Sec. 4 of the German Radiation Protection Ordinance. They find that none of these provisions were applicable to compact stroage facilities. In particular, the storage of spent fuel elements was no storage of nuclear fuels licensable under Sec. 6 of the Atomic Energy Act, because Sec. 6 did not cover spent fuel elements. Also in the other wording of the Atomic Energy Act there was no provision, which could be used as a statement of fact for licensing compact storage facilities. Such facilities could not be licensed and, for that reason, were not permitted. (IVR) [de

  17. Damping characteristics of reinforced concrete structures

    International Nuclear Information System (INIS)

    Hisano, M.; Nagashima, I.; Kawamura, S.

    1987-01-01

    Reinforced concrete structures in a nuclear power plant are not permitted to go far into the inelasticity generally, even when subjected to strong ground motion. Therefore it is important to evaluate the damping appropriately in linear and after cracking stage before yielding in the dynamic response analysis. Next three dampings are considered of reinforced concrete structures. 1) Internal damping in linear range material damping of concrete without cracks;2) Hysteretic damping in inelastic range material hysteretic damping of concrete due to cracking and yielding;3) Damping due to the energy dissipation into the ground. Among these damping material damping affects dynamic response of a nuclear power plant on hard rock site where damping due to energy dissipation into the ground is scarcely expected. However material damping in linear and slightly nonlinear range have only been assumed without enough experimental data. In this paper such damping is investigated experimentally by the shaking table tests of reinforced concrete box-walls which modeled roughly the outer wall structure of a P.W.R. type nuclear power plant

  18. Historic Concrete : From Concrete Repair to Concrete Conservation

    NARCIS (Netherlands)

    Heinemann, H.A.

    2013-01-01

    Concrete like materials were already applied during the Roman Empire. After the decline of the Roman Empire, a wide scale application of concrete only reappeared in the 19th century. Here lies also the origin of modern (reinforced) concrete. Since then, both concrete application and composition have

  19. Steady state compact toroidal plasma production

    Science.gov (United States)

    Turner, William C.

    1986-01-01

    Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.

  20. Importance of using roller compacted concrete in techno-economic investigation and design of small dams

    Science.gov (United States)

    Rouissat, Bouchrit; Smail, N.; Zenagui, S.

    2017-12-01

    In recent years, and under constraints caused by persistent drought, Algeria has launched a new mobilization strategy for surface water resources from small and medium dams. However, by making a review of the studies and achievements of twenty small dams in the west of Algeria, some deficiencies appeared. In addition to reservoir siltation assessment, operation spillways have been the major constraint on the reliability of these types of dams. The objective of this paper is to use the roller compacted concrete (RCC) for small dams' design for the benefit it offers and its ability to incorporate spillways. The development of this reflection was applied to the Khneg Azir earth dam situated in southwest of Algeria. Its uncontrolled lateral spillway has registered significant damage following the flood of October 2005, amounted, at that time, to more than 100 million Algerian dinars (1 million US Dollars). The present research encompasses a technical and economical comparative analysis concerning multiple criteria dam design types coupled with the conjugation of the spillways. Thus, on the basis of financial estimates calculated for all design types, the variant RCC remains competitive with that of the earth dam's spillway isolated (Less than 40% of the cost). To assess the mechanical behavior of the foundations for both types of dams, (earth and RCC dams), numerical modeling has been undertaken, according to the comparative analysis of deformations in the foundations. Analysis of deformations showed that the average foundation deformations was between (0.052-0.85) m for earth dam and (0.023-0.373) m for RCC dam. These economical and technical considerations open up important prospects for the use of RCC in the design of small dams.

  1. Estimation of fracture energy of plain and reinforced concrete members

    International Nuclear Information System (INIS)

    Singh, Rajesh K.; Singh, R.K.; Kant, T.

    2012-01-01

    Modeling the complex behaviour of Reinforced concrete (RC), which is both non-homogenous and anisotropic, is a difficult task in finite element analysis of civil engineering structures. The application of fracture mechanics to plain and reinforced concrete has opened up a new field for modelling of phenomena that have often been treated empirically in the past. Cohesive crack model proposed by Hillerborg and crack band model Bazant et al with localization limiters are frequently used to study of tension failure of concrete. (author)

  2. Fe-Ca-phosphate, Fe-silicate, and Mn-oxide minerals in concretions from the Monterey Formation

    Science.gov (United States)

    Medrano, M.D.; Piper, D.Z.

    1997-01-01

    Concentrically zoned phosphatic-enriched concretions were collected at three sites from the Monterey Formation. The following minerals were identified: vivianite, lipscombite, rockbridgeite, leucophosphite, mitridatite, carbonate fluorapatite, nontronite, todorokite, and barite. The mineralogy of the concretions was slightly different at each of the three collection sites. None of the concretions contains all of the minerals, but the spatial distribution of minerals in individual concretions, overlapping mineralogies between different concretions, and the geochemical properties of the separate minerals suggest a paragenesis represented by the above order. Eh increased from the precipitation of vivianite to that of rockbridgeite/lipscombite. The precipitation of leucophosphite, then mitridatite, carbonate fluorapatite and todorokite/Fe-oxide indicates increasing pH. Concretion growth culminated with the precipitation of todorokite, a Mn oxide, and minor amounts of barite along microfractures. Conspicuously absent are Fe-sulfide and Mn-phosphate minerals. The concretions are hosted by finely laminated diatomite. The laminations exhibit little to no deformation around the concretions, requiring that the concretions formed after compaction. We interpret this sediment feature and the paragenesis as recording the evolving pore-water chemistry as the formation was uplifted into the fresh-ground-water zone.

  3. Study of the high energy emission of accreting compact objects with SPI/INTEGRAL

    International Nuclear Information System (INIS)

    Droulans, R.

    2011-01-01

    The study of the high energy emission is essential for understanding the radiative processes inherent to accretion flows onto compact objects (black holes and neutron stars). The X/γ-ray continuum of these systems is successfully interpreted in terms of two components. The first component corresponds to blackbody emission from a geometrically thin optically thick accretion disk while the second component is generally associated to Compton scattering of the thermal disk flux off hot electrons. Despite considerable advances throughout the years, the heating mechanisms as well as the structure of the hot Comptonizing plasma remain poorly understood. In order to shed light on the physical processes that govern the innermost regions of the accretion flow, we take advantage of the data archive accumulated by the SPI instrument, a high energy spectrometer (20 keV - 8 MeV) developed at the CESR (now IRAP, Toulouse, France) for the INTEGRAL mission. Above 150 keV, SPI combines a unique spectral resolution with unequalled sensitivity, being thus an ideal tool to study the high energy emission of accreting compact objects. The thesis manuscript reports on the results of timing and spectral studies of three particular systems. First, I address the high energy emission of the enigmatic micro-quasar GRS 1915+105, a source characterized by colossal luminosity and strong chaotic variability in X-rays. On a timescale of about one day, the photon index of the 20 - 200 keV spectrum varies between 2.7 and 3.5; at higher energies (≥150 keV), SPI unveils the systematic presence of an additional emission component, extending without folding energy up to ∼ 500 keV. Second, I study the high energy emission of GX 339-4, a source whose spectral properties are representative of black hole transients. The spectrum of the luminous hard state of this system shows a variable high energy tail (≥150 keV), with significant flux changes on a short timescale (several hours). I explain the

  4. Towards an integrated simulation of casting and structural performance of flowable fibre-reinforced concrete

    NARCIS (Netherlands)

    Vidal Sarmiento, E.; Hendriks, M.A.N.; Geiker, M. R.; Kanstad, T.

    2016-01-01

    Most recent studies on fibre-reinforced self-compacting concrete agree on the impact of the casting conditions on the fibre orientation and distribution, and its consequence thereof on the structural performance. A substantial number of investigations are continuously contributing to gain experience

  5. A multivariate analysis of the energy intensity of sprawl versus compact living in the U.S. for 2003

    Energy Technology Data Exchange (ETDEWEB)

    Shammin, Md. R.; Herendeen, Robert A.; Hanson, Michelle J.; Wilson, Eric J.H.

    2010-10-15

    We explore the energy intensity of sprawl versus compact living by analyzing the total energy requirements of U.S. households for the year 2003. The methods used are based on previous studies on energy cost of living. Total energy requirement is calculated as a function of individual energy intensities of goods and services derived from economic input-output analysis and expenditures for those goods and services. We use multivariate regression analysis to estimate patterns in household energy intensities. We define sprawl in terms of location in rural areas or in areas with low population size. We find that even though sprawl-related factors account for about 83% of the average household energy consumption, sprawl is only 17-19% more energy intensive than compact living based on how people actually lived. We observe that some of the advantages of reduced direct energy use by people living in high density urban centers are offset by their consumption of other non-energy products. A more detailed analysis reveals that lifestyle choices (household type, number of vehicles, and family size) that could be independent of location play a significant role in determining household energy intensity. We develop two models that offer opportunities for further analysis. (author)

  6. Strategy Guideline. Compact Air Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Burdick, Arlan [IBACOS, Inc., Pittsburgh, PA (United States)

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  7. Analysis of the spectrum distribution of oscillation amplitudes of the concrete mix at shock vibration molding

    Directory of Open Access Journals (Sweden)

    Sharapov Rashid

    2017-01-01

    Full Text Available In the production of concrete structures widespread shaking tables of various designs. The effectiveness of vibroforming concrete items largely depends on the choice of rational modes of vibroeffect to the compacting mixture. The article discusses the propagation of a wave packet in the concrete mixture under shock and vibration molding. Studies have shown that the spectrum of a wave packet contains a large number of harmonics. The main parameter influencing the amplitude-frequency spectrum is the stiffness of elastic gaskets between mold and forming machine vibrating table. By varying the stiffness of the elastic gaskets can widely change the spectrum of the oscillations propagating in the concrete mix. Thus, it is possible to adjust the intensity of the process of vibroforming.

  8. Early-age behaviour of concrete in massive structures, experimentation and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Zreiki, J., E-mail: zreiki@lmt.ens-cachan.f [ENS Cachan/CNRS UMR8535/UPMC/PRES UniverSud Paris, Cachan (France); Bouchelaghem, F. [ENS Cachan/CNRS UMR8535/UPMC/PRES UniverSud Paris, Cachan (France); UPMC Univ Paris 06 (France); Chaouche, M. [ENS Cachan/CNRS UMR8535/UPMC/PRES UniverSud Paris, Cachan (France)

    2010-10-15

    This study is focused on the behaviour of concrete at early-age in massive structures, in relation with the prediction of both cracking risk and residual stresses, which is still a challenging task. In this paper, a 3D thermo-chemo-mechanical model has been developed, on the basis of complete material characterization experiments, in order to predict the early-age development of strains and residual stresses, and in order to assess the risk of cracking in massive concrete structures. The parameters of the proposed model were identified on two different concretes, High Performance Concrete and Fibrous Self-Compacted Concrete - from simple experiments in the laboratory: uniaxial tension and compression tests, dynamic Young's modulus measurements, free and autogenous shrinkages, semi-adiabatic calorimetry. The proposed model has been implemented in a Finite Element code, and the numerical simulations of the laboratory tests have proved the model consistency. Furthermore, early-age experiments conducted on massive structures have also been simulated, in order to investigate the predictive capability of the model, and to assess the model performance in practical situations where varying temperatures are involved.

  9. Gamma-Rays from Galactic Compact Sources

    Science.gov (United States)

    Kaaret, Philip

    2007-04-01

    Recent discoveries have revealed many sources of TeV photons in our Mikly Way galaxy powered by compact objects, either neutron stars or black holes. These objects must be powerful particle accelerators, some with peak energies of at least 100 TeV, and may be neutrino, as well as photon, sources. Future TeV observations will enable us to address key questions concerning particle acceleration by compact objects including the fraction of energy which accreting black holes channel into relativstic jet production, whether the compact object jets are leptonic or hadronic, and the mechanism by which pulsar winds accelerate relativistic particles. We report on work done related to compact Galactic objects in preparation of a White Paper on the status and future of ground-based gamma-ray astronomy requested by the Division of Astrophysics of the American Physical Society.

  10. Mono-energy coronary angiography with a compact light source

    Science.gov (United States)

    Eggl, Elena; Mechlem, Korbinian; Braig, Eva; Kulpe, Stephanie; Dierolf, Martin; Günther, Benedikt; Achterhold, Klaus; Herzen, Julia; Gleich, Bernhard; Rummeny, Ernst; Noël, Peter B.; Pfeiffer, Franz; Muenzel, Daniela

    2017-03-01

    While conventional x-ray tube sources reliably provide high-power x-ray beams for everyday clinical practice, the broad spectra that are inherent to these sources compromise the diagnostic image quality. For a monochromatic x-ray source on the other hand, the x-ray energy can be adjusted to optimal conditions with respect to contrast and dose. However, large-scale synchrotron sources impose high spatial and financial demands, making them unsuitable for clinical practice. During the last decades, research has brought up compact synchrotron sources based on inverse Compton scattering, which deliver a highly brilliant, quasi-monochromatic, tunable x-ray beam, yet fitting into a standard laboratory. One application that could benefit from the invention of these sources in clinical practice is coronary angiography. Being an important and frequently applied diagnostic tool, a high number of complications in angiography, such as renal failure, allergic reaction, or hyperthyroidism, are caused by the large amount of iodine-based contrast agent that is required for achieving sufficient image contrast. Here we demonstrate monochromatic angiography of a porcine heart acquired at the MuCLS, the first compact synchrotron source. By means of a simulation, the CNR in a coronary angiography image achieved with the quasi-mono-energetic MuCLS spectrum is analyzed and compared to a conventional x-ray-tube spectrum. The results imply that the improved CNR achieved with a quasi-monochromatic spectrum can allow for a significant reduction of iodine contrast material.

  11. Vacuum system of the compact Energy Recovery Linac

    Energy Technology Data Exchange (ETDEWEB)

    Honda, T., E-mail: tohru.honda@kek.jp; Tanimoto, Y.; Nogami, T.; Takai, R.; Obina, T.; Asaoka, S.; Uchiyama, T.; Nakamura, N. [High Energy Accelerator Research Organization (KEK) (1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan) (Japan)

    2016-07-27

    The compact Energy Recovery Linac (cERL), a test accelerator to establish important technologies demanded for future ERL-based light sources, was constructed in late 2013 at KEK. The accelerator was successfully commissioned in early 2014, and demonstrated beam circulation with energy recovery. In the cERL vacuum system, low-impedance vacuum components are required to circulate high-intensity, low-emittance and short-bunch electron beams. We therefore developed ultra-high-vacuum (UHV)-compatible flanges that can connect beam tubes seamlessly, and employed retractable beam monitors, namely, a movable Faraday cup and screen monitors. In most parts of the accelerator, pressures below 1×10{sup −7} Pa are required to mitigate beam-gas interactions. Particularly, near the photocathode electron gun and the superconducting (SC) cavities, pressures below 1×10{sup −8} Pa are required. The beam tubes in the sections adjoining the SC cavities were coated with non-evaporable getter (NEG) materials, to reduce gas condensation on the cryo-surfaces. During the accelerator commissioning, stray magnetic fields from the permanent magnets of some cold cathode gauges (CCGs) were identified as a source of the disturbance to the beam orbit. Magnetic shielding was specially designed as a remedy for this issue.

  12. The direct incorporation of micro-encapsulated phase change materials in the concrete mixing process

    NARCIS (Netherlands)

    Hunger, M.; Entrop, A.G.; Mandilaras, I.; Brouwers, H.J.H.; Founti, M.; Durmisevic, E.

    2009-01-01

    The present study refers to a set of tests using different amounts of microencapsulated PCM directly mixed into self-compacting concrete. This SCC is investigated regarding its fresh and hardened properties. It will be shown that increasing PCM amounts lead to lower thermal conductivity and

  13. Protocol for development of authorized release limits for concrete at U.S. Department of Energy sites

    International Nuclear Information System (INIS)

    Arnish, J.; Kamboj, S.; Chen, S.-Y.; Parker, F. L.; Smith, A. M.; Meservey, R. H.; Tripp, J. L.

    2000-01-01

    The purpose of this protocol is to assist US Department of Energy (DOE) sites in releasing concrete for reuse. Current regulations allow the sites to release surface-contaminated materials if their radioactivity falls below certain levels and to possibly release materials with volumetric contamination or higher levels of surface contamination on a case-by-case basis. In all cases, an ALARA (as low as reasonably achievable) analysis that evaluates the risks of releasing volumetrically contaminated concrete or concrete with higher levels of surface contamination is required as a basis for proposing and setting new release limits that allow for reuse of the concrete material. To evaluate the dose impacts of reusing radioactively contaminated material, the measured radiation levels (pCi/g or disintegrations per minute [dpm]/100 cm 2 ) must be converted to the estimated dose (mrem/yr) that would be received by affected individuals. The dose depends on the amounts and types of isotopes present and the time, distance, and method of exposure (e.g., inhalation or external exposure). For each disposition alternative, the protocol provides a systematic method to evaluate the impact of the dose on the affected individuals. The cost impacts of reusing concrete also need to be evaluated. They too depend on the disposition alternative and the extent and type of contamination. The protocol provides a method to perform a detailed analysis of these factors and evaluate the dose and cost impacts for various disposition alternatives. Once the dose and cost impacts of the various alternatives have been estimated, the protocol outlines the steps required to propose new release standards that allow release and reuse of the concrete material

  14. Potential for the application of compact ionization chambers in AMS at energies below 1 MeV/amu

    International Nuclear Information System (INIS)

    Forstner, O.; Golser, R.; Kutschera, W.; Michlmayr, L.; Priller, A.; Steier, P.; Wallner, A.

    2007-01-01

    Full text: The increasing demand for measuring long-lived radionuclides with small AMS machines at energies below 1 MeV per nucleon raises the need for compact detectors which still have a decent energy resolution and allow for a clear identification of the incident particles. Based on a design by the AMS group at the ETH Zurich a compact gas ionization chamber was built and installed at the VERA 3 MV AMS facility. The main challenge in AMS is the detection of rare isotope species in the presence of strong isotopic and isobaric interferences. The task of the ionization chamber is the suppression of the unwanted isobar by separating the ions via their different stopping powers. Results of 3 6C l exposure dating measurements at VERA showed an achieved suppression of the unwanted stable isobar 36 S of 3 x 10 -4 . Due to its compact design, the detector easily fits into a DN100 cross-piece and can be inserted and retracted without breaking the vacuum. The anode is split into two active regions which allows the simultaneous measurement of Δ E and E res . An identification of the incident particles is therefore possible via their different energy loss in the two regions of the chamber. For the entrance window silicon nitride foils are used. These foils are remarkably homogeneous and can be obtained pinhole-free with thicknesses down to 50 nm. The development of such thin foils with their small energy loss allows the use of gas ionization chambers at energies below 1 MeV per nucleon. To minimize the electronic noise the preamplifiers are mounted directly next to the anodes inside the active detector volume. In this work the setup of the detector will be presented. The performance of the ionization chamber in comparison to other previously used techniques for measuring long-lived AMS-relevant radionuclides including 10 Be, 36 Cl and 41 Ca as well as the use of the detector in the search for the live supernova remnant 244 Pu at VERA will be shown. By the example of

  15. The Effect Of Water/powder Material Ratio And Fiber Strength On The Mechanical Properties Of Fiber Reinforced Self-compacting Concrete

    OpenAIRE

    Dinç, Alihan

    2007-01-01

    Apart from the normal concrete to fulfill the necessities, specially designed high performance concrete has started to find a place for use towards special application purposes. Performance does not only mean increase in strength rather it also encompasses the quality of preserving the strength and other functions under external effects during the service life of the structure. High performance concrete can be defined as a concrete with high workability, durability and strength along with pre...

  16. Toxicity and environmental and economic performance of fly ash and recycled concrete aggregates use in concrete: A review.

    Science.gov (United States)

    Kurda, Rawaz; Silvestre, José D; de Brito, Jorge

    2018-04-01

    This paper presents an overview of previous studies on the environmental impact (EI) and toxicity of producing recycled concrete aggregates (RCA), fly ash (FA), cement, superplasticizer, and water as raw materials, and also on the effect of replacing cement and natural aggregates (NA) with FA and RCA, respectively, on the mentioned aspects. EI and toxicity were analysed simultaneously because considering concrete with alternative materials as sustainable depends on whether their risk assessment is high. Therefore, this study mainly focuses on the cradle-to-gate EI of one cubic meter of concrete, namely abiotic depletion potential (ADP), global warming potential (GWP), ozone depletion potential (ODP), photochemical ozone creation (POCP), acidification potential (AP), eutrophication potential (EP), non-renewable energy (PE-NRe) and renewable energy (PE-Re). In terms of toxicity, leachability (chemical and ecotoxicological characterization) was considered. The results also include the economic performance of these materials, and show that the incorporation of FA in concrete significantly decreases the EI and cost of concrete. Thus, the simultaneous incorporation of FA and RCA decrease the EI, cost, use of landfill space and natural resources extraction. Nonetheless, the leaching metals of FA decrease when they are incorporated in concrete. Relative to FA, the incorporation of RCA does not significantly affect the EI and cost of concrete, but it significantly reduces the use of landfill space and the need of virgin materials.

  17. Design of a compact Faraday cup for low energy, low intensity ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Cantero, E.D., E-mail: esteban.cantero@cern.ch [CERN, 1211 Geneva 23 (Switzerland); Sosa, A. [CERN, 1211 Geneva 23 (Switzerland); The University of Liverpool, Liverpool (United Kingdom); Andreazza, W.; Bravin, E.; Lanaia, D.; Voulot, D. [CERN, 1211 Geneva 23 (Switzerland); Welsch, C.P. [The University of Liverpool, Liverpool (United Kingdom); The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom)

    2016-01-21

    Beam intensity is one of the key parameters in particle accelerators, in particular during machine commissioning, but also during operation for experiments. At low beam energies and low intensities a number of challenges arise in its measurement as commonly used non-invasive devices are no longer sensitive enough. It then becomes necessary to stop the beam in order to measure its absolute intensity. A very compact Faraday cup for determining ion beam currents from a few nanoamperes down to picoamperes for the HIE-ISOLDE post-accelerator at CERN has been designed, built and tested with beam. It has a large aperture diameter of 30 mm and a total length of only 16 mm, making it one of the most compact designs ever used. In this paper we present the different steps that were involved in the design and optimization of this device, including beam tests with two early prototypes and the final monitor. We also present an analysis of the losses caused by secondary particle emission for different repelling electrode voltages and beam energies. Finally, we show that results obtained from an analytical model for electron loss probability combined with Monte Carlo simulations of particles trajectories provide a very good agreement with experimental data.

  18. Study on Energy Absorption Capacity of Steel-Polyester Hybrid Fiber Reinforced Concrete Under Uni-axial Compression

    Science.gov (United States)

    Chella Gifta, C.; Prabavathy, S.

    2018-05-01

    This work presents the energy absorption capacity of hybrid fiber reinforced concrete made with hooked end steel fibers (0.5 and 0.75%) and straight polyester fibers (0.5, 0.8, 1.0 and 2.0%). Compressive toughness (energy absorption capacity) under uni-axial compression was evaluated on 100 × 200 mm size cylindrical specimens with varying steel and polyester fiber content. Efficiency of the hybrid fiber reinforcement is studied with respect to fiber type, size and volume fractions in this investigation. The vertical displacement under uni-axial compression was measured under the applied loads and the load-deformation curves were plotted. From these curves the toughness values were calculated and the results were compared with steel and polyester as individual fibers. The hybridization of 0.5% steel + 0.5% polyester performed well in post peak region due to the addition of polyester fibers with steel fibers and the energy absorption value was 23% greater than 0.5% steel FRC. Peak stress values were also higher in hybrid series than single fiber and based on the results it is concluded that hybrid fiber reinforcement improves the toughness characteristics of concrete without affecting workability.

  19. Precooling of concrete with flake ice

    International Nuclear Information System (INIS)

    Inoue, Katsuhiro; Shigenobu, Manabu; Soejima, Kenji; Noguchi, Hiroshi; Noda, Youichi; Sakaguchi, Tohru.

    1989-01-01

    The buildings in nuclear power stations are the reinforced concrete structures which are constructed with the massive members having much rein forcing bar quantity and relatively high strength due to the requirement of aseismatic capability, shielding and others. Also their scale is large, and in the case of a power station of one million kW class, concrete as much as 300,000 m 3 is used for one plant. Accordingly, at the time of construction, the case of stably supplying the concrete of high quality in large quantity by installing the facilities of manufacturing ready mixed concrete at construction sites is frequent. Moreover, electric power companies carry out thorough quality control to undergo the inspection before use by the Agency of Natural Resources and Energy from the aspects of materials, structures and strength. Since prestressed concrete containment vessels were adopted for No.3 and No.4 plants, the quality of concrete and the facilities for manufacturing ready mixed concrete were examined in detail. The precooling facilities for concrete and the effect of precooling are reported. (Kako, I.)

  20. LIGHTWEIGHT CONCRETE BASED GRANSHLAK

    Directory of Open Access Journals (Sweden)

    NETESA M. I.

    2016-02-01

    Full Text Available Raising of problem. Concrete advisable to obtain a low strength with local secondary resources for recycling and reduce the environmental burden on the environment. But it is important to design such concrete compositions with a reduced flow of cement. It is known that the coefficient of efficiency of use of cement in the concrete of the heavy and B10 is less than about 0.5, which is almost two times smaller than in class B15 concrete and above. Even lower coefficient of efficiency in light concrete cement low strength. Therefore, it is important to find patterns determining the composition of lightweight concrete based on local-products industry with more efficient use of cement in them. Purpose.. Based on the analysis of earlier research results, including with the use of methods of mathematical planning of experiments to determine the concrete contents, which can provide the requirements for the underlying layers of the floor, the compressive strength of which should correspond to the class B5. It is important to provide the required strength at minimum flow of the cement, which is the most expensive and energy-intensive part of concrete. Conclusion. Analysis of the test results of control samples of concrete in 28-day-old, the following laws. The required tensile strength of concrete compressive strength of 7.0 MPa can be obtained in the test range when used in formulations as a filler as the Dnieper hydroelectric power station fly ash and tailings Krivoy Rog iron ore YuGOK. To ensure providing the required characteristic strength of the concrete in the underlying layers of the floor is advisable to use a nominal composition per cubic meter of concrete: cement 160 kg granshlaka Plant named after Petrovsky, 675 kg of fly ash Dnieper HPP 390 kg, 400 kg of sand, 230 liters of water. Thus, while ensuring rational grain composition components can obtain the desired strength lightweight concrete based granshlaka plant Petrovsky, using as fillers

  1. Understanding the scabbling of concrete using microwave energy

    International Nuclear Information System (INIS)

    Buttress, A.J.; Jones, D.A.; Dodds, C.; Dimitrakis, G.; Campbell, C.J.; Dawson, A.; Kingman, S.W.

    2015-01-01

    Concrete blocks supplied by the UK Sellafield nuclear site were treated with microwave energy using a 15 kW system operating at 2.45 GHz. The effect of aggregate type (Whinstone, Gravel and Limestone); standoff distance; and effect of surface coating were studied to determine their influence on the systems performance in terms of mass and area removal rates and evaluate the controllability of the process. All blocks were scabbled successfully, with mass and area removal rates averaging 11.3 g s − 1 and 3 cm s − 1 respectively on treating large areas to a depth of 25 mm. The use of a Kevlar barrier between the block and applicator was found to significantly reduce the generation of dust as only 1.6% of the scabbled mass was in the < 106 μm — that generally considered to be airborne. Importantly Brazilian disc testing of the scabbled block showed that the process did not adversely affect structural properties of the test blocks after treatment

  2. Comminution circuits for compact itabirites

    Directory of Open Access Journals (Sweden)

    Pedro Ferreira Pinto

    Full Text Available Abstract In the beneficiation of compact Itabirites, crushing and grinding account for major operational and capital costs. As such, the study and development of comminution circuits have a fundamental importance for feasibility and optimization of compact Itabirite beneficiation. This work makes a comparison between comminution circuits for compact Itabirites from the Iron Quadrangle. The circuits developed are: a crushing and ball mill circuit (CB, a SAG mill and ball mill circuit (SAB and a single stage SAG mill circuit (SSSAG. For the SAB circuit, the use of pebble crushing is analyzed (SABC. An industrial circuit for 25 million tons of run of mine was developed for each route from tests on a pilot scale (grinding and industrial scale. The energy consumption obtained for grinding in the pilot tests was compared with that reported by Donda and Bond. The SSSAG route had the lowest energy consumption, 11.8kWh/t and the SAB route had the highest energy consumption, 15.8kWh/t. The CB and SABC routes had a similar energy consumption of 14.4 kWh/t and 14.5 kWh/t respectively.

  3. Selected Aspects of Computer Modeling of Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Szczecina M.

    2016-03-01

    Full Text Available The paper presents some important aspects concerning material constants of concrete and stages of modeling of reinforced concrete structures. The problems taken into account are: a choice of proper material model for concrete, establishing of compressive and tensile behavior of concrete and establishing the values of dilation angle, fracture energy and relaxation time for concrete. Proper values of material constants are fixed in simple compression and tension tests. The effectiveness and correctness of applied model is checked on the example of reinforced concrete frame corners under opening bending moment. Calculations are performed in Abaqus software using Concrete Damaged Plasticity model of concrete.

  4. Mesoscale simulation of concrete spall failure

    Science.gov (United States)

    Knell, S.; Sauer, M.; Millon, O.; Riedel, W.

    2012-05-01

    Although intensively studied, it is still being debated which physical mechanisms are responsible for the increase of dynamic strength and fracture energy of concrete observed at high loading rates, and to what extent structural inertia forces on different scales contribute to the observation. We present a new approach for the three dimensional mesoscale modelling of dynamic damage and cracking in concrete. Concrete is approximated as a composite of spherical elastic aggregates of mm to cm size embedded in an elastic cement stone matrix. Cracking within the matrix and at aggregate interfaces in the μm range are modelled with adaptively inserted—initially rigid—cohesive interface elements. The model is applied to analyse the dynamic tensile failure observed in Hopkinson-Bar spallation experiments with strain rates up to 100/s. The influence of the key mesoscale failure parameters of strength, fracture energy and relative weakening of the ITZ on macromechanic strength, momentum and energy conservation is numerically investigated.

  5. New Computational Model Based on Finite Element Method to Quantify Damage Evolution Due to External Sulfate Attack on Self-Compacting Concretes

    KAUST Repository

    Khelifa, Mohammed Rissel

    2012-12-27

    Abstract: This work combines experimental and numerical investigations to study the mechanical degradation of self-compacting concrete under accelerated aging conditions. Four different experimental treatments are tested among them constant immersion and immersion-drying protocols allow an efficient external sulfate attack of the material. Significant damage is observed due to interfacial ettringite. A predictive analysis is then adopted to quantify the relationship between ettringite growth and mechanical damage evolution during aging. Typical 3D microstructures representing the cement paste-aggregate structures are generated using Monte Carlo scheme. These images are converted into a finite element model to predict the mechanical performance under different criteria of damage kinetics. The effect of ettringite is then associated to the development of an interphase of lower mechanical properties. Our results show that the observed time evolution of Young\\'s modulus is best described by a linear increase of the interphase content. Our model results indicate also that the interphase regions grow at maximum stress regions rather than exclusively at interfaces. Finally, constant immersion predicts a rate of damage growth five times lower than that of immersion-drying protocol. © 2012 Computer-Aided Civil and Infrastructure Engineering.

  6. New Computational Model Based on Finite Element Method to Quantify Damage Evolution Due to External Sulfate Attack on Self-Compacting Concretes

    KAUST Repository

    Khelifa, Mohammed Rissel; Guessasma, Sofiane

    2012-01-01

    Abstract: This work combines experimental and numerical investigations to study the mechanical degradation of self-compacting concrete under accelerated aging conditions. Four different experimental treatments are tested among them constant immersion and immersion-drying protocols allow an efficient external sulfate attack of the material. Significant damage is observed due to interfacial ettringite. A predictive analysis is then adopted to quantify the relationship between ettringite growth and mechanical damage evolution during aging. Typical 3D microstructures representing the cement paste-aggregate structures are generated using Monte Carlo scheme. These images are converted into a finite element model to predict the mechanical performance under different criteria of damage kinetics. The effect of ettringite is then associated to the development of an interphase of lower mechanical properties. Our results show that the observed time evolution of Young's modulus is best described by a linear increase of the interphase content. Our model results indicate also that the interphase regions grow at maximum stress regions rather than exclusively at interfaces. Finally, constant immersion predicts a rate of damage growth five times lower than that of immersion-drying protocol. © 2012 Computer-Aided Civil and Infrastructure Engineering.

  7. Influence of interface properties on fracture behaviour of concrete

    Indian Academy of Sciences (India)

    Hardened concrete is a three-phase composite consisting of cement paste, aggregate and interface between cement paste and aggregate. The interface in concrete plays a key role on the overall performance of concrete. The interface properties such as deformation, strength, fracture energy, stress intensity and its ...

  8. Large-scale dynamic compaction of natural salt

    International Nuclear Information System (INIS)

    Hansen, F.D.; Ahrens, E.H.

    1996-01-01

    A large-scale dynamic compaction demonstration of natural salt was successfully completed. About 40 m 3 of salt were compacted in three, 2-m lifts by dropping a 9,000-kg weight from a height of 15 m in a systematic pattern to achieve desired compaction energy. To enhance compaction, 1 wt% water was added to the relatively dry mine-run salt. The average compacted mass fractional density was 0.90 of natural intact salt, and in situ nitrogen permeabilities averaged 9X10 -14 m 2 . This established viability of dynamic compacting for placing salt shaft seal components. The demonstration also provided compacted salt parameters needed for shaft seal system design and performance assessments of the Waste Isolation Pilot Plant

  9. Compact, Energy-Efficient High-Frequency Switched Capacitor Neural Stimulator With Active Charge Balancing.

    Science.gov (United States)

    Hsu, Wen-Yang; Schmid, Alexandre

    2017-08-01

    Safety and energy efficiency are two major concerns for implantable neural stimulators. This paper presents a novel high-frequency, switched capacitor (HFSC) stimulation and active charge balancing scheme, which achieves high energy efficiency and well-controlled stimulation charge in the presence of large electrode impedance variations. Furthermore, the HFSC can be implemented in a compact size without any external component to simultaneously enable multichannel stimulation by deploying multiple stimulators. The theoretical analysis shows significant benefits over the constant-current and voltage-mode stimulation methods. The proposed solution was fabricated using a 0.18 μm high-voltage technology, and occupies only 0.035 mm 2 for a single stimulator. The measurement result shows 50% peak energy efficiency and confirms the effectiveness of active charge balancing to prevent the electrode dissolution.

  10. Dataset on predictive compressive strength model for self-compacting concrete.

    Science.gov (United States)

    Ofuyatan, O M; Edeki, S O

    2018-04-01

    The determination of compressive strength is affected by many variables such as the water cement (WC) ratio, the superplasticizer (SP), the aggregate combination, and the binder combination. In this dataset article, 7, 28, and 90-day compressive strength models are derived using statistical analysis. The response surface methodology is used toinvestigate the effect of the parameters: Varying percentages of ash, cement, WC, and SP on hardened properties-compressive strengthat 7,28 and 90 days. Thelevels of independent parameters are determinedbased on preliminary experiments. The experimental values for compressive strengthat 7, 28 and 90 days and modulus of elasticity underdifferent treatment conditions are also discussed and presented.These dataset can effectively be used for modelling and prediction in concrete production settings.

  11. Cement and concrete options paper

    International Nuclear Information System (INIS)

    1999-10-01

    Greenhouse gas emissions associated with the production of concrete are projected to increase from 10.5 million tonnes in 1990 to almost 14 million tonnes in 2010. Over half of this amount will be non-energy related emissions of carbon dioxide resulting from the conversion of limestone to lime. According to this report by industry experts, the industry has an excellent record of improving energy efficiency and there are few easy gains remaining. Nevertheless, improvements in energy efficiency and fuel use, increased use of concrete where it can be shown to result in net reduction of GHG emissions, and partial replacement of cement by supplementary cementitious materials that involve no additional generation of GHGs, could yield an approximate reduction in carbon dioxide emissions of nearly seven million tons in 2010. The industry proposes three measures to realise these benefits: (1) encouraging replacement of fossil fuels by otherwise waste material, (2) encouraging increased use of concrete in constructing houses and roads, and (3) encouraging increased use of supplementary cementing materials. The industry is opposed to carbon or energy taxes that increase the cost of doing business, on the grounds that such taxes would adversely affect the industry's competitive position internationally. tabs

  12. Experimental research on the microstructure and compressive and tensile properties of nano-SiO2 concrete containing basalt fibers

    Directory of Open Access Journals (Sweden)

    Qinyong Ma

    2017-09-01

    Full Text Available Urban underground space resources are gaining increasing attention for the sustainable development of cities. Traditional concrete cannot meet the needs of underground construction. High-performance concrete was prepared using varying dosages of nano-SiO2 and basalt fiber, and its compressive and tensile strength was measured. The concrete microstructure was analyzed and used to assess the mechanisms through which the nano-SiO2 and basalt fibers affect the strength of concrete. The cement hydration productions in concrete produced varied with the dosage of nano-SiO2. When the nano-SiO2 dosage was between 0 and 1.8%, the mass of the C-S-H gel and AFt crystals increased gradually with the nano-SiO2 dosage. When the nano-SiO2 dosage was 1.2%, optimum amounts of C-S-H gel and AFt crystals existed, and the compactness of concrete was well, which agreed with the results of the compressive strength tests. When the basalt-fiber dosage was between 3 and 4 kg/m3, the basalt fibers and the cement matrix were closely bonded, and the splitting tensile strength of the concrete markedly improved. When the basalt-fiber dosage exceeded 5 kg/m3, the basalt fibers clustered together, resulting in weak bonding between the basalt fibers and the cement matrix, consequently, the basalt fibers were easily pulled apart from the cement. When the nano-SiO2 and basalt fiber dosages were 1.2% and 3 kg/m3, respectively, the compactness of the concrete microstructure was well and the strength enhancement was the greatest; additionally, the compressive strength and splitting tensile strength were 9.04% and 17.42%, respectively, greater than those of plain concrete. The macroscopic tests on the mechanical properties of the nano-SiO2 concrete containing basalt fibers agreed well with the results of microstructure analysis.

  13. The environmental impacts of foamed concrete production and exploitation

    Science.gov (United States)

    Namsone, E.; Korjakins, A.; Sahmenko, G.; Sinka, M.

    2017-10-01

    This paper presents a study focusing on the environmental impacts of foamed concrete production and exploitation. CO2 emissions are very important factor for describing durability and sustainability of any building material and its life cycle. The building sector is one of the largest energy-consuming sectors in the world. In this study CO2 emissions are evaluated with regard to three types of energy resources (gas, coal and eco-friendly fuel). The related savings on raw materials are up to 120 t of water per 1000 t of traditionally mixed foamed concrete and up to 350 t of sand per 1000 t of foamed concrete produced with intensive mixing technology. In addition, total reduction of CO2 emissions (up to 60 t per 1000 m3 of material) and total energy saving from introduction of foamed concrete production (depending on the type of fuel) were calculated. In order to analyze the conditions of exploitation, both thermal conductivity and thickness of wall was determined. All obtained and calculated results were compared to those of the commercially produced autoclaved aerated concrete.

  14. Fast Lamb wave energy shift approach using fully contactless ultrasonic system to characterize concrete structures

    Science.gov (United States)

    Ham, Suyun; Popovics, John S.

    2015-03-01

    Ultrasonic techniques provide an effective non-destructive evaluation (NDE) method to monitor concrete structures, but the need to perform rapid and accurate structural assessment requires evaluation of hundreds, or even thousands, of measurement datasets. Use of a fully contactless ultrasonic system can save time and labor through rapid implementation, and can enable automated and controlled data acquisition, for example through robotic scanning. Here we present results using a fully contactless ultrasonic system. This paper describes our efforts to develop a contactless ultrasonic guided wave NDE approach to detect and characterize delamination defects in concrete structures. The developed contactless sensors, controlled scanning system, and employed Multi-channel Analysis of Surface Waves (MASW) signal processing scheme are reviewed. Then a guided wave interpretation approach for MASW data is described. The presence of delamination is interpreted by guided plate wave (Lamb wave) behavior, where a shift in excited Lamb mode phase velocity, is monitored. Numerically simulated and experimental ultrasonic data collected from a concrete sample with simulated delamination defects are presented, where the occurrence of delamination is shown to be associated with a mode shift in Lamb wave energy.

  15. Toxicity and environmental and economic performance of fly ash and recycled concrete aggregates use in concrete: A review

    Directory of Open Access Journals (Sweden)

    Rawaz Kurda

    2018-04-01

    Full Text Available This paper presents an overview of previous studies on the environmental impact (EI and toxicity of producing recycled concrete aggregates (RCA, fly ash (FA, cement, superplasticizer, and water as raw materials, and also on the effect of replacing cement and natural aggregates (NA with FA and RCA, respectively, on the mentioned aspects. EI and toxicity were analysed simultaneously because considering concrete with alternative materials as sustainable depends on whether their risk assessment is high. Therefore, this study mainly focuses on the cradle-to-gate EI of one cubic meter of concrete, namely abiotic depletion potential (ADP, global warming potential (GWP, ozone depletion potential (ODP, photochemical ozone creation (POCP, acidification potential (AP, eutrophication potential (EP, non-renewable energy (PE-NRe and renewable energy (PE-Re. In terms of toxicity, leachability (chemical and ecotoxicological characterization was considered. The results also include the economic performance of these materials, and show that the incorporation of FA in concrete significantly decreases the EI and cost of concrete. Thus, the simultaneous incorporation of FA and RCA decrease the EI, cost, use of landfill space and natural resources extraction. Nonetheless, the leaching metals of FA decrease when they are incorporated in concrete. Relative to FA, the incorporation of RCA does not significantly affect the EI and cost of concrete, but it significantly reduces the use of landfill space and the need of virgin materials. Keywords: Materials science, Environmental science, Industry, Economics, Safety engineering

  16. High-energy gamma-ray emission in compact binaries

    International Nuclear Information System (INIS)

    Cerutti, Benoit

    2010-01-01

    Four gamma-ray sources have been associated with binary systems in our Galaxy: the micro-quasar Cygnus X-3 and the gamma-ray binaries LS I +61 degrees 303, LS 5039 and PSR B1259-63. These systems are composed of a massive companion star and a compact object of unknown nature, except in PSR B1259-63 where there is a young pulsar. I propose a comprehensive theoretical model for the high-energy gamma-ray emission and variability in gamma-ray emitting binaries. In this model, the high-energy radiation is produced by inverse Compton scattering of stellar photons on ultra-relativistic electron-positron pairs injected by a young pulsar in gamma-ray binaries and in a relativistic jet in micro-quasars. Considering anisotropic inverse Compton scattering, pair production and pair cascade emission, the TeV gamma-ray emission is well explained in LS 5039. Nevertheless, this model cannot account for the gamma-ray emission in LS I +61 degrees 303 and PSR B1259-63. Other processes should dominate in these complex systems. In Cygnus X-3, the gamma-ray radiation is convincingly reproduced by Doppler-boosted Compton emission of pairs in a relativistic jet. Gamma-ray binaries and micro-quasars provide a novel environment for the study of pulsar winds and relativistic jets at very small spatial scales. (author)

  17. Energy Consumption Analysis for Concrete Residences—A Baseline Study in Taiwan

    Directory of Open Access Journals (Sweden)

    Kuo-Liang Lin

    2017-02-01

    Full Text Available Estimating building energy consumption is difficult because it deals with complex interactions among uncertain weather conditions, occupant behaviors, and building characteristics. To facilitate estimation, this study employs a benchmarking methodology to obtain energy baseline for sample buildings. Utilizing a scientific simulation tool, this study attempts to develop energy consumption baselines of two typical concrete residences in Taiwan, and subsequently allows a simplified energy consumption prediction process at an early design stage of building development. Using weather data of three metropolitan cities as testbeds, annual energy consumption of two types of modern residences are determined through a series of simulation sessions with different building settings. The impacts of key building characteristics, including building insulation, air tightness, orientation, location, and residence type, are carefully investigated. Sample utility bills are then collected to validate the simulated results, resulting in three adjustment parameters for normalization, including ‘number of residents’, ‘total floor area’, and ‘air conditioning comfort level’, for justification of occupant behaviors in different living conditions. Study results not only provide valuable benchmarking data serving as references for performance evaluation of different energy-saving strategies, but also show how effective extended building insulation, enhanced air tightness, and prudent selection of residence location and orientation can be for successful implementation of building sustainability in tropical and subtropical regions.

  18. Toughness increase of self compacting concrete reinforced with polypropylene short fibers

    Directory of Open Access Journals (Sweden)

    Melián, G.

    2010-12-01

    Full Text Available Increases in bending tests by the addition of low volume fractions of Polypropylene (PP Short Fibers PP. These toughness increases are similar to those attained by Fiber Reinforced Concrete (FRC referred elsewhere as Engineered Cementitious Composites (ECC, having some ductility and strain hardening in direct tensile and flexural tests. Concretes mixtures were manufactured using natural pozzolanic blended Portland cement, volcanic crushed coarse aggregates and fine sand from Sahara desert dunes (0-1 mm from Canary Islands quarries and sand reservoirs, respectively, besides ordinary siliceous sand (0-4 mm and fly ash from an anthracite-coal heat generator.

    Se presentan en este artículo hormigones autocompactables que, mediante la adición de pequeñas fracciones volumétricas de fibras cortas de polipropileno, consiguen incrementos importantes de tenacidad en su comportamiento mecánico a flexión. Estos aumentos de tenacidad son semejantes a los que presentan un grupo de hormigones reforzados con fibras, denominados ECC (Engineered Cementitious Composites, que muestran también alguna ductilidad y endurecimiento por deformación en ensayos de tracción directa y flexión. Los hormigones se dosificaron empleando cemento Pórtland con Puzolana natural, áridos volcánicos de machaqueo y arena fina procedente de dunas del desierto del Sáhara (0-1 mm, de canteras y depósitos de Las Palmas de Gran Canaria (Islas Canarias, respectivamente, además de arena silícea ordinaria (0-4 mm y cenizas volantes de una central térmica de combustible antracita.

  19. Experimental study of optimal self compacting concrete with spent foundry sand as partial replacement for M-sand using Taguchi approach

    Directory of Open Access Journals (Sweden)

    Nirmala D.B.

    2016-06-01

    Full Text Available This paper presents the application of Taguchi approach to obtain optimal mix proportion for Self Compacting Concrete (SCC containing spent foundry sand and M-sand. Spent foundry sand is used as a partial replacement for M-sand. The SCC mix has seven control factors namely, Coarse aggregate, M-sand with Spent Foundry sand, Cement, Fly ash, Water, Super plasticizer and Viscosity modifying agent. Modified Nan Su method is used to proportion the initial SCC mix. L18 (21×37 Orthogonal Arrays (OA with the seven control factors having 3 levels is used in Taguchi approach which resulted in 18 SCC mix proportions. All mixtures are extensively tested both in fresh and hardened states to verify whether they meet the practical and technical requirements of SCC. The quality characteristics considering “Nominal the better” situation is applied to the test results to arrive at the optimal SCC mix proportion. Test results indicate that the optimal mix satisfies the requirements of fresh and hardened properties of SCC. The study reveals the feasibility of using spent foundry sand as a partial replacement of M-sand in SCC and also that Taguchi method is a reliable tool to arrive at optimal mix proportion of SCC.

  20. Experimental study of optimal self compacting concrete with spent foundry sand as partial replacement for M-sand using Taguchi approach

    Science.gov (United States)

    Nirmala, D. B.; Raviraj, S.

    2016-06-01

    This paper presents the application of Taguchi approach to obtain optimal mix proportion for Self Compacting Concrete (SCC) containing spent foundry sand and M-sand. Spent foundry sand is used as a partial replacement for M-sand. The SCC mix has seven control factors namely, Coarse aggregate, M-sand with Spent Foundry sand, Cement, Fly ash, Water, Super plasticizer and Viscosity modifying agent. Modified Nan Su method is used to proportion the initial SCC mix. L18 (21×37) Orthogonal Arrays (OA) with the seven control factors having 3 levels is used in Taguchi approach which resulted in 18 SCC mix proportions. All mixtures are extensively tested both in fresh and hardened states to verify whether they meet the practical and technical requirements of SCC. The quality characteristics considering "Nominal the better" situation is applied to the test results to arrive at the optimal SCC mix proportion. Test results indicate that the optimal mix satisfies the requirements of fresh and hardened properties of SCC. The study reveals the feasibility of using spent foundry sand as a partial replacement of M-sand in SCC and also that Taguchi method is a reliable tool to arrive at optimal mix proportion of SCC.