WorldWideScience

Sample records for compacted bentonite tests

  1. The coupled process laboratory test of highly compacted bentonite

    Shen Zhenyao; Li Guoding; Li Shushen; Wang Chengzu

    2004-01-01

    Highly compacted bentonite blocks have been heated and hydrated in the laboratory in order to simulate the thermo-hydro-mechanical (THM) coupled processes of buffer material in a high-level radioactive waste (HLW) repository. The experiment facility, which is composed of experiment barrel, heated system, high pressure water input system, temperature measure system, water content measure system and swelling stress system, is introduced in this paper. The steps of the THM coupled experiment are also given out in detail. There are total 10 highly compacted bentonite blocks used in this test. Experimental number 1-4 are the tests with the heater and the hydrated process, which temperature distribution vs. time and final moisture distribution are measured. Experimental number 5-8 are the tests with the heater and without the hydrated process, which temperature distribution vs. time and final moisture distribution are measured. Experimental number 9-10 are the tests with the heater and the hydrated process, which temperature distribution vs. time, final moisture distribution and the swelling stress distribution at some typical points vs. time are measured. The maximum test time is nearly 20 days and the minimum test time is only 8 hours. The results show that the temperature field is little affected by hydration process and stress condition, but moisture transport and stress distribution are a little affected by the thermal gradient. The results also show that the water head difference is the mainly driving force of hydration process and the swelling stress is mainly from hydration process. It will great help to understand better about heat and mass transfer in porous media and the THM coupled process in actual HLW disposal. (author)

  2. Prediction for swelling characteristics of compacted bentonite

    Komine, H.; Ogata, N.

    1996-01-01

    Compacted bentonites are attracting greater attention as back-filling (buffer) materials for high-level nuclear waste repositories. For this purpose, it is very important to quantitatively evaluate the swelling characteristics of compacted bentonite. New equations for evaluating the relationship between the swelling deformation of compacted bentonite and the distance between two montmorillonite layers are derived. New equations for evaluating the ion concentration of pore water and the specific surface of bentonite, which significantly influence the swelling characteristics of compacted bentonite, are proposed. Furthermore, a prediction method for the swelling characteristics of compacted bentonite is presented by combining the new equations with the well-known theoretical equations of repulsive and attractive forces between two montmorillonite layers. The applicability of this method was investigated by comparing the predicted results with laboratory test results on the swelling deformation and swelling pressure of compacted bentonites. (author) 31 refs., 8 tabs., 12 figs

  3. Compaction of full size blocks of bentonite for the KBS-3 concept. Initial tests for evaluating the technique

    Johanesson, Lars-Erik

    1999-12-01

    Besides the test with the compaction device several other pieces of equipment were tested for the mixing of the bentonite with water, filling of the form with bentonite and lifting of the blocks. The tests of the equipment turned out well. Furthermore the density of the compacted bentonite was in parity with the expected. The compacted blocks had grooves and flanges in order to facilitate the emplacement of the blocks. Unacceptable damages and cracks close to the flanges were observed on the blocks with low water ratio. As a consequence of these damages it is recommended that the form is modified so that blocks with plane surfaces can be made

  4. Porewater chemistry in compacted bentonite

    Muurinen, A.; Lehikoinen, J. [VTT Chemical Technology, Espoo (Finland)

    1999-03-01

    In this study, the porewater chemistry in compacted bentonite, considered as an engineered barrier in the repository of spent fuel, has been studied in interaction experiments. Many parameters, like the composition and density of bentonite, composition of the solution, bentonite-to-water ratio (B/W), surrounding conditions and experimental time have been varied in the experiments. At the end of the interaction the equilibrating solution, the porewaters squeezed out of the bentonite samples, and bentonites themselves were analyzed to give information for the interpretation and modelling of the interaction. Equilibrium modelling was performed with the HYDRAQL/CE computer code 33 refs.

  5. Effect of Heating/Hydratation on Compacted Bentonite: Tests in 60-cm Long Cells

    Villar, M. V.; Fernandez, A. M.; Martin, P. L.; Barcala, J. M.; Gomez-Espina, R.; Rivas, P.

    2008-07-01

    The conditions of the bentonite in an engineered barrier for high-level radioactive waste disposal have been simulated in a series of tests. Cylindrical cells with an inner length of 60 cm and a diameter of 7 cm were constructed. Inside the cells, blocks of compacted FEBEX bentonite were put one on top of the other. the bottom surface of the material was heated at 100 degree centigree and the top surface was injected with granitic water. the duration of the tests was 0.5, 1,2 and 7,6 years. The temperatures and water intake were measured during the tests and, at the end, the cells were dismounted and the dry density, water content, mineralogy, geochemistry and some hydro-mechanical properties of the clay (permeability, swelling) were measured at different positions. the values obtained are compared among them and to those of the untreated FEBEX bentonite. The study has run over for 10 years in the context of the projects FEBEX I and II and NF-PRO. (Author) 50 refs.

  6. Effect of Heating/Hydratation on Compacted Bentonite: Tests in 60-cm Long Cells

    Villar, M. V.; Fernandez, A. M.; Martin, P. L.; Barcala, J. M.; Gomez-Espina, R.; Rivas, P.

    2008-01-01

    The conditions of the bentonite in an engineered barrier for high-level radioactive waste disposal have been simulated in a series of tests. Cylindrical cells with an inner length of 60 cm and a diameter of 7 cm were constructed. Inside the cells, blocks of compacted FEBEX bentonite were put one on top of the other. the bottom surface of the material was heated at 100 degree centigree and the top surface was injected with granitic water. the duration of the tests was 0.5, 1,2 and 7,6 years. The temperatures and water intake were measured during the tests and, at the end, the cells were dismounted and the dry density, water content, mineralogy, geochemistry and some hydro-mechanical properties of the clay (permeability, swelling) were measured at different positions. the values obtained are compared among them and to those of the untreated FEBEX bentonite. The study has run over for 10 years in the context of the projects FEBEX I and II and NF-PRO. (Author) 50 refs

  7. Filtration behavior of organic substance through a compacted bentonite

    Kanaji, Mariko; Kuno, Yoshio; Yui, Mikazu

    1999-07-01

    Filtration behavior of organic substance through a compacted bentonite was investigated. Na-type bentonite containing 30wt% of quartz sand was compacted in a column and the dry density was adjusted to be 1.6 g/cm 3 . Polyacrylic acid solution (including three types of polyacrylic acid, average molecular weight 2,100, 15,000 and 450,000) was prepared and was passed through the compacted bentonite. Molecular weight distributions of polyacrylic acid in the effluent solution were analysed by GPC (Gel Permeation Chromatography). A batch type experiment was also carried out in order to examine a sorption behavior of these organic substances onto the surfaces of grains of the bentonite. The results indicated that the smaller size polyacrylic acid (molecular weight < 100,000) was passed through the compacted bentonite. On the other hand, the larger size polyacrylic acid (molecular weight ≥100,000) was mostly filtrated by the compacted bentonite. The batch type sorption tests clarified that the polyacrylic acid did not sorb onto the surfaces of minerals constituting the bentonite. Therefore it was suggested that the larger size molecules (≥100,000) of organic substances could be predominantly filtrated by the microstructure of the compacted bentonite. (author)

  8. Modeling erosion of unsaturated compacted bentonite by groundwater flow; pinhole erosion test case

    Laurila, T.; Sane, P.; Olin, M.; Koskinen, K.

    2012-01-01

    Document available in extended abstract form only. Erosion of compacted clay material by water flow is a critical factor affecting the performance of radioactive waste confinement. Our emphasis in this work is the buffer of KBS-3V concept, proposed to be compacted MX-80 bentonite. Unsaturated erosion occurs during the saturation phase of the EBS, and the main quantity of interest is the total buffer mass carried away by a groundwater flow that induces erosion by forming piping channels near the buffer/rock interface. The purpose of this work is to provide modeling tools to support erosion experiments. Role of modeling is first to interpret experimental observations in terms of processes, and to estimate robustness of experimental results. Secondly, we seek to scale up results from the laboratory scale, particularly to time scales longer than those experimentally accessible. We have performed modeling and data analysis pertaining to tests of unsaturated clay erosion. Pinhole experiments were used to study this erosion case. The main differences to well-understood pinhole erosion tests are that the material is strongly swelling and that the water flow is not determined by the pressure head but by the total flux. Groundwater flow in the buffer is determined by the flux because pressure losses occur overwhelmingly in the surrounding rock, not in the piping channel. We formulate a simple model that links an effective solid diffusivity -based swelling model to erosion by flow on the solid/liquid interface. The swelling model is similar in concept to that developed at KTH, but simpler. Erosion in the model is caused by laminar flow in the pinhole, and happens in a narrow region at the solid/liquid interface where velocity and solid volume fraction overlap. The erosion model can be mapped to erosion by wall shear, and can thus be considered as extension of that classic erosion model. The main quantity defining the behavior of clay erosion in the model is the ratio of

  9. Gas migration characteristics of highly compacted bentonite ore

    Tanaka, Yukihisa; Hironaga, Michihiko

    2010-01-01

    In the current concept of repository for radioactive waste disposal, compacted bentonite will be used as an engineered barrier mainly for inhibiting migration of radioactive nuclides. Hydrogen gas can be generated inside the engineered barrier by anaerobic corrosion of metals used for containers, etc. If the gas generation rate exceeds the diffusion rate of dissolved gas inside of the engineered barrier, gas will accumulate in the void space inside of the engineered barrier until its pressure becomes large enough for it to enter the bentonite as a discrete gaseous phase. It is expected to be not easy for gas to entering into the bentonite as a discrete gaseous phase because the pore of compacted bentonite is so minute. Gas migration characteristics of highly compacted powdered bentonite are already reported by CRIEPI. In this report, gas migration characteristics of bentonite ore, which is a candidate for construction material of repository for radioactive waste, is investigated. The following conclusions are obtained through the results of the gas migration tests which are conducted in this study: 1) When the total gas pressure exceeds the initial total axial stress, the total axial stress is always equal to the total gas pressure because specimens shrink in the axial direction with causing the clearance between the end of the specimen and porous metal. By increasing the gas pressure more, gas breakthrough, which defined as a sudden and sharp increase in gas flow rate out of the specimen, occurs. Therefore gas migration mechanism of compacted bentonite ore is basically identical to that of compacted powdered bentonite. 2) Hydraulic conductivity measured after the gas breakthrough is somewhat smaller than that measured before the gas migration test. This fact means that it might be possible to neglect decline of the function of bentonite as engineered barrier caused by the gas breakthrough. These characteristics of compacted bentonite ore are identical to those of

  10. Diffusion of uranium in compacted sodium bentonite

    Muurinen, A.; Lehikoinen, J.

    1992-09-01

    In the study the diffusion of uranium dissolved from uranium oxide fuel was studied experimentally in compacted sodium bentonite (Wyoming bentonite MX-80). The experiments were carried out by the through-diffusion method. The parameters varied in the study were the density of bentonite, salt content of the solution and redox conditions. Uranium was dissolved under aerobic conditions in order to simulate oxic conditions possibly caused by radiolysis in the repository

  11. Evaluation of gas migration characteristics of compacted bentonite and Ca-bentonite mixture

    Tanaka, Yukihisa; Hironaga, Michihiko

    2014-01-01

    In the current concept of subsurface disposal and near-surface pit disposal for low level radioactive waste, compacted bentonite and Ca-bentonite mixture will be used as an engineered barrier mainly for inhibiting migration of radioactive nuclides, respectively. Hydrogen gas can be generated inside the engineered barrier of subsurface disposal facilities mainly by anaerobic corrosion of metals used for containers, etc. Hydrogen gas can be also generated inside the engineered barrier of near-surface pit disposal facilities mainly by the chemical interaction between aluminum and the alkaline component of cement, or water. If the gas generation rate exceeds the diffusion rate of gas molecules inside of the compacted bentonite and Ca-bentonite mixture, gas will accumulate in the void space inside of the compacted bentonite and Ca-bentonite mixture until breakthrough occurs. It is expected to be not easy for gas to entering into the compacted bentonite mixture as a discrete gaseous phase because the pore of the compacted bentonite and Ca-bentonite mixture is so minute. Therefore in this study, the gas migration characteristics and the effect of gas migration on the hydraulic conductivity of the compacted bentonite and Ca-bentonite mixture are investigated by the gas migration tests. The applicability of the two phase flow model without considering deformability of the specimen is investigated. The applicability of the model of two phase flow through deformable porous media, which was originally developed by CRIEPI, is also investigated. Results of this study imply that : (1) Gas migration mechanism of the compacted bentonite and Ca-bentonite mixture is revealed through gas migration test. (2) Hydraulic conductivity measured after the large gas breakthrough is substantially the same that measured before the gas migration test. (3) Stress change, pore-water pressure change and volume change of the specimen during the gas migration test can be reproduced by the numerical

  12. Permeability of highly compacted bentonite

    Pusch, R.

    1980-12-01

    The object of the study was the water flow through the bentonite which is caused by hydraulic gradients. The study comprised laboratory tests and theoretical considerations. It was found that high bulk densities reduced the permeability to very low values. It was concluded that practically impervious conditions prevail when the gradients are low. Thus with a regional gradient of 10 -2 and a premeability of 10 -13 m/s the flow rate will not be higher than approximately 1 mm in 30 000 years. (G.B.)

  13. Ion diffusion in compacted bentonite

    Lehikoinen, J. [VTT Chemical Technology, Espoo (Finland)

    1999-03-01

    In the study, a two-dimensional molecular-level diffusion model, based on a modified form of the Gouy-Chapman (GC) theory of the electrical double layers, for hydrated ionic species in compacted bentonite was developed. The modifications to the GC theory, which forms the very kernel of the diffusion model, stem from various non-conventional features: ionic hydration, dielectric saturation, finite ion-sizes and specific adsorption. The principal objectives of the study were met. With the aid of the consistent diffusion model, it is a relatively simple matter to explain the experimentally observed macroscopic exclusion for anions as well as the postulated, but greatly controversial, surface diffusion for cations. From purely theoretical grounds, it was possible to show that the apparent diffusivities of cations, anions and neutral molecules (i) do not exhibit order-or-magnitude differences, and (ii) are practically independent of the solution ionic strength used and, consequently, of the distribution coefficient, K{sub d}, unless they experience specific binding onto the substrate surface. It was also of interest to investigate the equilibrium anionic concentration distribution in the pore geometry of the GMM model as a function of the solution ionic strength, and to briefly speculate its consequences to diffusion. An explicit account of the filter-plate effect was taken by developing a computerised macroscopic diffusion model, which is based upon the very robust and efficient Laplace Transform Finite-Difference technique. Finally, the inherent limitations as well as the potential fields of applications of the models were addressed. (orig.) 45 refs.

  14. Ion diffusion in compacted bentonite

    Lehikoinen, J.

    1999-03-01

    In the study, a two-dimensional molecular-level diffusion model, based on a modified form of the Gouy-Chapman (GC) theory of the electrical double layers, for hydrated ionic species in compacted bentonite was developed. The modifications to the GC theory, which forms the very kernel of the diffusion model, stem from various non-conventional features: ionic hydration, dielectric saturation, finite ion-sizes and specific adsorption. The principal objectives of the study were met. With the aid of the consistent diffusion model, it is a relatively simple matter to explain the experimentally observed macroscopic exclusion for anions as well as the postulated, but greatly controversial, surface diffusion for cations. From purely theoretical grounds, it was possible to show that the apparent diffusivities of cations, anions and neutral molecules (i) do not exhibit order-or-magnitude differences, and (ii) are practically independent of the solution ionic strength used and, consequently, of the distribution coefficient, K d , unless they experience specific binding onto the substrate surface. It was also of interest to investigate the equilibrium anionic concentration distribution in the pore geometry of the GMM model as a function of the solution ionic strength, and to briefly speculate its consequences to diffusion. An explicit account of the filter-plate effect was taken by developing a computerised macroscopic diffusion model, which is based upon the very robust and efficient Laplace Transform Finite-Difference technique. Finally, the inherent limitations as well as the potential fields of applications of the models were addressed. (orig.)

  15. Comparison between uniaxially and isostatically compacted bentonite

    Kalbantner, P.; Sjoeblom, R.; Boergesson, Lennart

    2001-12-01

    The purpose of the present report is to provide the Swedish Nuclear Fuel and Waste Management Company (SKB) with the knowledge base needed for their selection of reference method for manufacturing of bentonite blocks. The purpose is also to provide support for the direction of the further development work. Three types of blocks are compared in the present report: uniaxially compacted medium high blocks, isostatically compacted medium high blocks, isostatically compacted high blocks. The analyses is based on three process systems relating to the sequence of excavation of bentonite-transport-powder preparation-compaction-handling and emplacement of bentonite blocks. The need for further knowledge has been identified and documented in conjunction with these analyses. The comparison is primarily made with regard to the criteria safety/risk, quality/ technique and economy. It is carried out through identification of issues of significance and subsequent analysis and evaluation as well as more formally in a simplified AHP (AHP = Analytical Hierarchic Process). The result of the analyses is that the isostatic technique is applicable for the production of high as well as medium size blocks. The pressed blocks are assessed to fulfil the basic requirements with a very large margin. The result of the analyses is also that the uniaxial technique is applicable for the preparation of medium size blocks, which are assessed to fulfil the basic requirements with a large margin. The need for development and process control is assessed to be somewhat higher for the uniaxial technique. One example is the friction against the walls of the die during the compaction, including the significance of this friction for the development of stresses and discontinuities in the block. These results support a selection of the isostatic technique as the reference technique as it provides flexibility in the choice of block height. The uniaxial technique can form a second alternative if medium high

  16. Effect of Heating/hydration on Compacted Bentonite: tests in 60-cm Long Cells

    Villar, M. V.; Fernandez, A. M.; Martin, P. L.; Barcala, J. M.; Gomez-Espina, R.; Rivas, P.

    2008-01-01

    The design of high-level radioactive waste (HLW) repositories in deep geological media includes the construction of a barrier around the waste containers constituted by a sealing material. Bentonite has been chosen as sealing material in most disposal concepts because of its low permeability, swelling capacity and retention properties, among other features. The behaviour of a HLW repository is determined, to a large extent, by the characteristics of the design and construction of the engineered barriers and especially by the changes that may occur in their mechanical, hydraulic, and geochemical properties as a results of the combined effects of the heat generated by the radioactive decay and of water and solutes supplied by the surrounding rock. Therefore, it is considered of fundamental importance for the evaluation of the long-term behaviour of the repository that the processes taking place in the near-field be understood and quantified. (Author)

  17. Evaluation of permeability and swelling pressure of compacted bentonite using a calcium hydroxide solution

    Aoyagi, Takayoshi; Maeda, Munehiro; Mihara, Morihiro; Tanaka, Masuhiro

    1998-12-01

    Tests to determine the swelling pressure, permeability, compressive strength and elastic modulus of Ca-Na exchanged bentonite, Na-bentonite and Ca-bentonite at the Power Reactor and Nuclear Fuel Development Corporation have mainly used distilled water. However, disposal facilities for TRU waste will use cementateous material for packaging, backfill as well as structural support. In this case, a large amount of calcium will dissolve in groundwater flowing through the cementateous material. Therefore, it is important to investigate the mechanical properties of bentonite in calcium-rich water as part of the disposal research program for TRU waste. In order to understand the effect of the chemical composition of water on the basic mechanical properties of bentonite - part of evaluating the disposal concepts for TRU waste disposal - we tested the permeability of compacted bentonite under saturated conditions using a calcium hydroxide solution. The aqueous solution represents water dominated by the calcium component. Na-bentonite, Ca-Na exchanged bentonite and Ca-bentonite were used for swelling pressure measurement tests and permeability testing. Measures of the maximum and equilibrium swelling pressure as well as permeability we obtained. The dry density of bentonite was varied between tests. Results show that swelling pressure and permeability are dependent on dry density. In separate tests using Ca-bentonite, the bentonite-mixing rate was varied as an independent parameter. Results show that there is little change in the swelling pressure and permeability between tests using calcium hydroxide solution and distilled water for all bentonite types. (author)

  18. Strength and Compaction Analysis of Sand-Bentonite-Coal Ash Mixes

    Sobti, Jaskiran; Singh, Sanjay Kumar

    2017-08-01

    This paper deals with the strength and compaction characteristics of sand-bentonite-coal ash mixes prepared by varying percentages of sand, bentonite and coal ash to be used in cutoff walls and as a liner or cover material in landfills. The maximum dry density (MDD) and optimum moisture content (OMC) of sand-bentonite mixes and sand-bentonite-coal ash mixes were determined by conducting the standard proctor test. Also, the strength and stiffness characteristics of soil mixes were furnished using unconfined compressive strength test. The results of the study reveal influence of varying percentages of coal ash and bentonite on the compaction characteristics of the sand-bentonite-coal ash mixes. Also, validation of a statistical analysis of the correlations between maximum dry density (MDD), optimum moisture content (OMC) and Specific Gravity (G) was done using the experimental results. The experimental results obtained for sand-bentonite, sand-bentonite-ash and coal ash-bentonite mixes very well satisfied the statistical relations between MDD, OMC and G with a maximum error in the estimate of MDD being within ±1 kN/m3. The coefficient of determination (R2) ranged from 0.95 to 0.967 in case of sand-bentonite-ash mixes. However, for sand-bentonite mixes, the R2 values are low and varied from 0.48 to 0.56.

  19. Chemical interaction of fresh and saline waters with compacted bentonite

    Muurinen, A.; Lehikoinen, J.; Melamed, A.; Pitkaenen, P.

    1996-01-01

    The interaction of compacted sodium bentonite with fresh and saline ground-water simulant was studied. The parameters varied in the experiments were the compositions of the solutions and oxygen and carbon dioxide content in the surroundings. The main interests of the study were the chemical changes in the experimental solution, bentonite porewater and bentonite together with the microstructural properties of bentonite. The major processes with fresh water were the diffusion of sodium, potassium, sulphate, bicarbonate and chloride from bentonite to the solution, and the diffusion of calcium and magnesium from the solution into bentonite. The major processes in the experiments with saline water were the diffusion of the sodium, magnesium, sulphate and bicarbonate from bentonite into the solution, and the diffusion of calcium from the solution into bentonite

  20. Ageing effects on swelling behaviour of compacted GMZ01 bentonite

    Ye, W.M., E-mail: ye_tju@tongji.edu.cn [Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092 (China); United Research Center for Urban Environment and Sustainable Development, the Ministry of Education, China, Shanghai 200092 (China); Lai, X.L.; Liu, Y. [Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092 (China); Chen, Y.G. [Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092 (China); United Research Center for Urban Environment and Sustainable Development, the Ministry of Education, China, Shanghai 200092 (China); Cui, Y.J. [Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092 (China); Ecole des Ponts Paris Tech, UR Navier/CERMES (France)

    2013-12-15

    Highlights: • Ageing effects on compacted GMZ01 bentonite are investigated. • Swelling property decreases with ageing and influenced by initial conditions. • Ageing effects are mainly attributed to the bonding effects and the hydration of smectites. - Abstract: Ageing effects on the swelling properties of compacted GMZ01 bentonite are investigated in this paper. Samples were compacted to prescribed dry densities and water contents and kept for ageing under constant volume and K{sub 0} confined conditions for target days of 0, 1, 7, 15, 30 and 90. Then, swelling deformation and swelling pressure tests were performed on the aged samples. Results indicate that both the swelling deformation and swelling pressure decrease with ageing time, with a more significant decrease at the first few days of ageing. Ageing effects are more pronounced for samples with large dry density and high water content. At the same initial dry density and water content, samples aged under constant volume conditions show much smaller decrease of swelling pressure compared to that of samples aged under K{sub 0} confined conditions. The decrease of swelling potential of samples with ageing days is mainly attributed to the bonding effects and the internal redistribution of water within the bentonite, which was confirmed by the changes of microstructure of samples with ageing.

  1. Selfinjection of highly compacted bentonite into rock joints

    Pusch, R.

    1978-02-01

    When radioactive waste is disposed in bore holes in rocks there will be some space between rock and canister. Other investigations have suggested that the space could be filled with highly compacted bentonite. In this report it is discussed if open joints formed or widened in the surrounding rock after the deposition will be sealed by self-injecting bentonite. Bentonite in contact with water will swell. The flow pattern and properties of the swelling bentonite, the permeability of the extruded bentonite and the viscosity of the extruded bentonite have been investigated. The following statements are done. In the narrow joints that can possibly be opened by various processes, the rate of bentonite extrusion will be very slow except for the first few centimeter move, which may take place in a few mounths. The swelling pressure of the extruded bentonite will decrease rapidly with the distance from the deposition hole. The loss of bentonite extruded through the narrow joints will be negligible. In the outer part of the bentonite zone there will be a successive transition to a very soft, dilute bentonite suspension. It will consist of fairly large particle aggregates which will be stuck where the joint width decreases

  2. Diffusion of 99TcO4- in compacted bentonite: Effect of pH, concentration, density and contact time

    Xiangke Wang; Forschungszentrum Karlsruhe; Zuyi Tao

    2004-01-01

    In order to assess radionuclide diffusion and transport properties in compacted bentonite, the 'in-diffusion' method based on bentonite filled capillaries is used. The effect of 99 TcO 4 - concentration and pH value of the solution, the contact time and the dry density of compacted bentonite on the apparent diffusion coefficient (D a ) and on the distribution coefficient (K d ) values obtained from the capillary test was studied. The D a and K d values decrease with increasing of the bulk dry density of compacted bentonite. Ion exclusion influences the diffusion of 99 TcO 4 - 4 in the same substance. As compared to literature data, the K d values obtained from capillary tests are in most cases lower than those from batch tests, the difference between the two K d values is a strong function of dry density of the compacted bentonite. (author)

  3. Swelling pressure in compacted bentonite below 0°C

    Birgersson, Martin; Karnland, Ola; Nilsson, Ulf

    2010-01-01

    Document available in extended abstract form only. Bentonite is a common component in many concepts for underground storage of high level radioactive waste. During its lifetime, an underground repository will be subject to various ambient temperatures. Backfilled tunnels, shafts and investigation bore holes closest to ground level will experience periods of temperature below 0 deg. C. From a safety assessment perspective, it is therefore essential to investigate and understand the behavior of bentonite below 0 deg. C. A large set of laboratory tests have been performed where fully water saturated samples of bentonites have been exposed to temperatures in the range -10 deg. C - +25 deg. C. The swelling pressure response has been recorded continuously. The samples have been varied with respect to bentonite type (e.g. calcium or sodium dominated), smectite content and density. The general observation is that the pressure of the bentonite lowers in a temperature range between 0 deg. C and a specific (negative) temperature T c , which is strongly correlated to the swelling pressure measured above 0 deg. C. Consequently, Tc decreases (i.e. becomes more negative) with increased density or smectite content. At T c , swelling pressure is completely lost. Furthermore, a very weak pressure dependence is observed at temperatures above 0 deg. C. This dependence is however strictly dependent on sample density. For any type of bentonite at high enough densities above 0 deg. C, the slope of the P-T curve is negative and becomes more negative with increasing density. For Na-dominated bentonites at lower densities, on the other hand, the slope is positive. An important observation is that no pressure increase was observed for any of the tested bentonite samples as the transition to temperatures below 0 deg. C was made. Since water expands as it freezes, this observation indicates that no ice is formed in compacted bentonite as the 0 deg. C level is passed. The observed swelling

  4. Modified swelling pressure apparatus using vapor pressure technique for compacted bentonite

    Nishimura, Tomoyoshi

    2012-01-01

    Document available in extended abstract form only. bentonite. The compacted bentonite is found in unsaturated conditions before applying of swelling due to absorption. The behaviour of compacted bentonite is not consistent with the principle and concepts of classical, saturated soil mechanics. An unsaturated soil theoretical framework using soil water characteristic curve has been fairly established over the past several decades. The soil-water characteristic curve is a relationship between soil moisture and soil suction obtained by the axis translation technique, vapor pressure technique or osmotic suction control which is a key feature in unsaturated soil mechanics. The soil-water characteristic curve can be used for prediction of the shear strength, volume change and hydraulic conductivity. Cui et al. 2002 indicated soil-water characteristic curve of expansive clay soil in high soil suction ranges using osmotic suction technique. Tripathy et al. 2010 described the soil-water characteristic curve both using the axis translation technique and vapor pressure technique in the entire soil suction ranges. Nishimura and Koseki 2011 measured suction of bentonite applied high soil suction due vapor pressure using a chilled mirror dew point potentiometer (WP4-T of DECAGON Device). The bentonite with gravimetric water content of 18 % indicated soil suction of 2.8 MPa at least. It is predicted that suction efforts to swelling pressure and shear strength of unsaturated compacted bentonite. This study focuses on the influence of suction on both swelling pressure and shear strength of compacted bentonite. The soil-water characteristic curve (SWCC) tests were conducted for compacted bentonite using both axis-translation technique and vapor pressure technique. The SWCC had a range from 0 kPa to 296 MPa in suction. The compacted bentonite having two different soil suctions were prepared for swelling pressure tests. Newly swelling pressure testing apparatus was developed in order

  5. Swelling pressure and water absorption property of compacted granular bentonite during water absorption

    Oyamada, T.; Komine, H.; Murakami, S.; Sekiguchi, T.; Sekine, I.

    2012-01-01

    Document available in extended abstract form only. Bentonite is currently planned to be used as buffer materials in engineered barrier of radioactive waste disposal. Granular bentonites are expected as the materials used in constructions as buffer materials by in-situ compaction methods. After applying these buffer materials, it is expected that the condition of the buffer area changes in long-term by the seepage of groundwater into buffer area. Therefore, it is important to understand water movement and swelling behavior of the buffer materials for evaluating the performance of engineered barrier. In this study, we investigated water absorption property and swelling pressure of compacted granular bentonite. Specifically, the process of swelling pressure and amount of water absorption of granular bentonite-GX (Kunigel-GX, produced at the Tsukinuno mine in Japan) were observed by laboratory tests. To discuss the influence of maximum grain size of bentonite particle on swelling pressure and water absorption property, two types of samples were used. One is granular sample which is Bentonite-GX controlled under 2 mm the maximum grain size, the other is milled sample which is Bentonite-GX with the maximum grain size under 0.18 mm by milling with the agate mortar. In addition, the mechanism on the swelling pressure of compacted granular bentonite was considered and discussed. In the cases of granular sample, swelling pressure increases rapidly, then gradually continues to increase up to maximum value. In the cases of milled sample, swelling pressure also increases rapidly at first. However, then its value decreases before progressing of gradual increase continues. Especially, this trend was clearly observed at a relatively low dry density. At the peaks of these curves, the swelling pressure of granular samples is lower than that of milled samples. In addition, the increasing of swelling pressure by the time the peak observed during the process of swelling pressure from

  6. Diffusion of Fission Product Elements in Compacted Bentonite

    Pratomo-Budiman-Sastrowardoyo; Dewi-Susilowati; Dadang-Suganda

    2000-01-01

    Study on diffusion of fission product in compacted bentonite has been conducted. The information about mobilities of these elements have been obtained from the studies resulted in many countries. It is presented that the diffusion coefficient was varied by the function of solution phase condition as well as the nature of bentonite. It is also showed that the diffusion coefficient decreased by the increasing of density, as well as the increasing of montmorillonite content in bentonite. The ratio of bentonite/silica-sand used, was related to the increasing of elements mobility. In many case variation of diffusion coefficient was related to the variation of pH, redox condition, and the presence of complex ant in solution phase. The lower diffusion coefficient could give the higher retardation factor, which is a favorable factor to retard the radionuclides release from a disposal facility to geosphere. (author)

  7. Migration study of actinides and lanthanides in compacted bentonite

    Sastrowardoyo, P.B.; Susilowati, D.; Suganda, D.

    1998-01-01

    Migration study of actinide and lanthanide elements in compacted bentonite has been conducted. Data of these elements mobilities have been shown, and it is showed that the diffusion coefficient was varied as the function of solution phase condition as well as the origin/composition of bentonite. It is showed that the diffusion coefficient decreased by the increasing of density, as well as the increasing of montmorillonite content in bentonite. The ratio of bentonite/silica-sand used was related to the increasing of elements mobility. In many case the difference of diffusion coefficient was related to the variation of pH and redox condition, as well as the presence of complexant in solution phase. The Lower diffusion coefficient could give the higher retardation factor, which is a favourable factor to retard the radionuclides release from a disposal facility to geosphere. (author)

  8. Tracer diffusion in compacted, water-saturated bentonite

    Bourg, Ian C.; Sposito, Garrison; Bourg, Alain C.M.

    2005-01-01

    Compacted Na-bentonite clay barriers, widely used in the isolation of solid-waste landfills and other contaminated sites, have been proposed for a similar use in the disposal of high-level radioactive waste. Molecular diffusion through the pore space in these barriers plays a key role in their performance, thus motivating recent measurements of the apparent diffusion coefficient tensor of water tracers in compacted, water-saturated Na-bentonites. In the present study, we introduce a conceptual model in which the pore space of water-saturated bentonite is divided into 'macropore' and 'interlayer nanopore' compartments. With this model we determine quantitatively the relative contributions of pore-network geometry (expressed as a geometric factor) and of the diffusive behavior of water molecules near montmorillonite basal surfaces(expressed as a contrastivity factor) to the apparent diffusion coefficient tensor. Our model predicts, in agreement with experiment, that the mean principal value of the apparent diffusion coefficient tensor follows a single relationship when plotted against the partial montmorillonite dry density (mass of montmorillonite per combined volume of montmorillonite and pore space). Using a single fitted parameter, the mean principal geometric factor, our model successfully describes this relationship for a broad range of bentonite-water system, from dilute gel to highly-compacted bentonite with 80 percent of its pore water in interlayer nanopores

  9. Investigation on compression behaviour of highly compacted GMZ01 bentonite with suction and temperature control

    Ye, W.M., E-mail: ye_tju@tongji.edu.cn [Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092 (China); United Research Center for Urban Environment and Sustainable Development, The Ministry of Education, Shanghai 200092 (China); Zhang, Y.W.; Chen, B.; Zheng, Z.J.; Chen, Y.G. [Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092 (China); Cui, Y.J. [Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092 (China); Ecole des Ponts ParisTech, UR Navier/CERMES 77455 (France)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Heating induced volumetric change of GMZ01 bentonite depends on suction. Black-Right-Pointing-Pointer Suction has significant influence on compressibility. Black-Right-Pointing-Pointer Temperature has slight influence on compressibility. - Abstract: In this paper, an oedometer with suction and temperature control was developed. Mechanical compaction tests have been performed on the highly compacted GMZ01 bentonite, which has been recognized as potential buffer/backfill material for construction of Chinese high-level radioactive waste (HLW) geological repository, under conditions of suction ranging from 0 to 110 MPa, temperature from 20 to 80 Degree-Sign C and vertical pressure from 0.1 to 80 MPa. Based on the test results, suction and temperature effects on compressibility parameters are investigated. Results reveal that: (1) at high suctions, heating induced an expansion, while contraction is induced by heating at low suctions. The thermal expansion coefficient of GMZ01 bentonite measured is 1 Multiplication-Sign 10{sup -4} Degree-Sign C{sup -1}; (2) with increasing suction, the elastic compressibility {kappa} and the plastic compressibility {lambda}(s) of the highly compacted GMZ01 bentonite decrease, while the pre-consolidation pressure increases markedly; (3) with increasing temperature, the elastic compressibility of compacted GMZ01 bentonite changes insignificantly, while the plastic compressibility {lambda}(s) slightly decreases and the yield surface tends to shrink.

  10. Investigation on compression behaviour of highly compacted GMZ01 bentonite with suction and temperature control

    Ye, W.M.; Zhang, Y.W.; Chen, B.; Zheng, Z.J.; Chen, Y.G.; Cui, Y.J.

    2012-01-01

    Highlights: ► Heating induced volumetric change of GMZ01 bentonite depends on suction. ► Suction has significant influence on compressibility. ► Temperature has slight influence on compressibility. - Abstract: In this paper, an oedometer with suction and temperature control was developed. Mechanical compaction tests have been performed on the highly compacted GMZ01 bentonite, which has been recognized as potential buffer/backfill material for construction of Chinese high-level radioactive waste (HLW) geological repository, under conditions of suction ranging from 0 to 110 MPa, temperature from 20 to 80 °C and vertical pressure from 0.1 to 80 MPa. Based on the test results, suction and temperature effects on compressibility parameters are investigated. Results reveal that: (1) at high suctions, heating induced an expansion, while contraction is induced by heating at low suctions. The thermal expansion coefficient of GMZ01 bentonite measured is 1 × 10 −4 °C −1 ; (2) with increasing suction, the elastic compressibility κ and the plastic compressibility λ(s) of the highly compacted GMZ01 bentonite decrease, while the pre-consolidation pressure increases markedly; (3) with increasing temperature, the elastic compressibility of compacted GMZ01 bentonite changes insignificantly, while the plastic compressibility λ(s) slightly decreases and the yield surface tends to shrink.

  11. Alteration behavior of bentonite barrier of radioactive waste disposal by alkaline solutions. Part 2. Effect of type of alkaline solution on permeability of compacted bentonite-sand mixture

    Yokoyama, Shingo; Nakamura, Kunihiko; Tanaka, Yukihisa; Hironaga, Michihiko

    2011-01-01

    Permeability tests were carried out using compacted bentonite-sand mixture with initial dry density of 1.55 Mg/m 3 and alkaline solutions at 50degC for about two years to estimate the alteration behavior and the change in the permeability. Bentonite-sand mixtures which contain bentonites of 15wt% were made using Na-bentonite or Ca-exchanged bentonite. 0.3M-NaOH solution with pH 13.3 and 5mM-Ca(OH) 2 solution with pH 12.0 were used to the permeability tests of Na-bentonite-sand mixture and of Ca-exchanged bentonite-sand mixture, respectively. In the case of the permeability test conducted using NaOH solution, montmorillonite and other associated minerals were dissolved, and consequently, the dry density and effective montmorillonite density of Na-bentonite-sand mixture were decreased. Furthermore, the mineralogical feature of montmorillonite was changed (i.e. beidellitization and an increase in the layer charge). The permeability of Na-bentonite-sand mixture was increased 5.6 times by the end of permeability test as a result of above alteration. In the case of the permeability test conducted using Ca(OH) 2 solution, montmorillonite and other associated minerals were dissolved, and calcium silicate hydrate (C-S-H) was precipitated. Consequently, the dry density of Ca-exchanged bentonite-sand mixture was increased, while the effective montmorillonite density was decreased. The mineralogical feature of montmorillonite was changed (i.e. beidellitization and an increase in the layer charge). The permeability of Ca-exchange bentonite-sand mixture was decreased by more than two orders of magnitude due to fill the pore of Ca-exchange bentonite-sand mixture by the precipitation of C-S-H. From above results, the type of alkaline solution affects the mineralogical alteration behavior of the compacted bentonite-sand mixture, and consequently, affects the changing trend of permeability. In conclusion, it is important not only to consider the dissolution of montmorillonite, but

  12. Evaluation of gas migration characteristics of compacted and saturated Ca-bentonite mixture

    Tanaka, Yukihisa; Hironaga, Michihiko

    2014-01-01

    In the current concept of near-surface pit disposal for low level radioactive waste, compacted bentonite mixture will be used as an engineered barrier mainly for inhibiting migration of radioactive nuclides. Hydrogen gas can be generated inside the engineered barrier mainly by the chemical interaction between aluminum and the alkaline component of cement, or water. If the gas generation rate exceeds the diffusion rate of gas molecules inside of the compacted bentonite mixture, gas will accumulate in the void space inside of the compacted bentonite mixture until its pressure becomes large enough for it to enter the compacted bentonite mixture as a discrete gaseous phase. It is expected to be not easy for gas to entering into the compacted bentonite mixture as a discrete gaseous phase because the pore of the compacted bentonite mixture is so minute. Therefore in this study, the gas migration characteristics and the effect of gas migration on the hydraulic conductivity of the compacted Ca-bentonite mixture are investigated by the gas migration tests. The effect of stress state on the migration characteristics is also investigated by the gas migration tests and by parametric study using the model of two phase flow through deformable porous media, which was originally developed by CRIEPI. Results of this study imply that : (1) Large gas breakthrough pressure, which is defined as a rapid increase of amount of discharged gas, is affected by initial stress conditions as well as Ca-bentonite content of the mixture. (2) Hydraulic conductivity measured after the large gas breakthrough is substantially the same that measured before the gas migration test. (3) Axial stress change and volume change of the specimen during the gas migration test can be reproduced by the numerical simulation using the model of two-phase flow through deformable porous media, which was originally developed by CRIEPI. (4) Gas migration of a small scale model is numerically simulated to investigate the

  13. Evaluation of phenomena affecting diffusion of cations in compacted bentonite

    Muurinen, A.; Lehikoinen, J.

    1995-04-01

    In a number of diffusion studies, contradictions between the apparent diffusivities of cations and their distribution coefficients in bentonite have been found. Two principal reasons have been offered as explanations for this discrepancy; diffusion of the sorbed cations, often called surface diffusion, and the decrease of sorption in compacted clay compared to a sorption value obtained from a batch experiment. In the study the information available from the literature on sorption-diffusion mechanisms of cations in bentonite has been compiled and re-interpreted in order to improve the understanding of the diffusion process. (103 refs., 23 figs., 8 tabs.)

  14. Diffusion of anions and cations in compacted sodium bentonite

    Muurinen, A.

    1994-02-01

    The thesis presents the results of studies on the diffusion mechanisms of anions and cations in compacted sodium bentonite, which is planned to be used as a buffer material in nuclear waste disposal in Finland. The diffusivities and sorption factors were determined by tracer experiments. The pore volume accessible to chloride, here defined as effective porosity, was determined as a function of bentonite density and electrolyte concentration in water, and the Stern-Gouy double-layer model was used to explain the observed anion exclusion. The sorption of Cs + and Sr 2+ was studied in loose and compacted bentonite samples as a function of the electrolyte concentration in solution. In order to obtain evidence of the diffusion of exchangeable cations, defined as surface diffusion, the diffusivities of Cs + and Sr 2+ in compacted bentonite were studied as a function of the sorption factor, which was varied by electrolyte concentration in solution. The measurements were performed both by a non-steady state method and by a through-diffusion method. (89 refs., 35 fig., 4 tab.)

  15. Evaluation of gas migration characteristics of compacted bentonite considering in-situ conditions of disposal facility

    Tanaka, Yukihisa; Hironaga, Michihiko

    2012-01-01

    In the current concept of repository for radioactive waste disposal, compacted bentonite will be used as an engineered barrier mainly for inhibiting migration of radioactive nuclides. Hydrogen gas can be generated inside the engineered barrier by anaerobic corrosion of metals used for containers, etc. If the gas generation rate exceeds the diffusion rate of gas molecules inside of the engineered barrier, gas will accumulate in the void space inside of the engineered barrier until its pressure becomes large enough for it to enter the bentonite as a discrete gaseous phase. It is expected to be not easy for gas to entering into the bentonite as a discrete gaseous phase because the pore of compacted bentonite is so minute. Therefore it is necessary to investigate the effect of gas pressure generation and gas migration on the engineered barrier, peripheral facilities and ground. CRIEPI already proposed an analytical method for simulating gas migration through the compacted bentonite using the model of two phase flow through deformable porous media. Though validity of the analytical code of CRIEPI was examined by comparing existing gas migration test results with the calculated results, further validation is needed because in situ conditions, such as stress conditions and boundary condition, are different from conventional laboratory gas migration tent. In this study, gas migration tests whose initial axial stress is larger than initial radial stress and gas migration tests whose gas inlet is small. Simulation of the test results is also conducted. Comparing the test results with the calculated results, it is revealed that the analytical code of CRIEPI can simulate gas migration behavior through compacted bentonite with accuracy. (author)

  16. Dustiness behaviour of loose and compacted Bentonite and organoclay powders: What is the difference in exposure risk?

    Jensen, Keld Alstrup; Koponen, Ismo Kalevi; Clausen, Per Axel; Schneider, Thomas

    2009-01-01

    Single-drop and rotating drum dustiness testing was used to investigate the dustiness of loose and compacted montmorillonite (Bentonite) and an organoclay (Nanofil 5), which had been modified from montmorillonite-rich Bentonite. The dustiness was analysed based on filter measurements as well as particle size distributions, the particle generation rate, and the total number of generated particles. Particle monitoring was completed using a TSI Fast Mobility Particle Sizer (FMPS) and a TSI Aerosol Particle Sizer (APS) at 1 s resolution. Low-pressure uniaxial powder compaction of the starting materials showed a logarithmic compaction curve and samples subjected to 3.5 kg/cm 2 were used for dustiness testing to evaluate the role of powder compaction, which could occur in powders from large shipments or high-volume storage facilities. The dustiness tests showed intermediate dustiness indices (1,077-2,077 mg/kg powder) in tests of Nanofil 5, Bentonite, and compacted Bentonite, while a high-level dustiness index was found for compacted Nanofil 5 (3,487 mg/kg powder). All powders produced multimodal particle size-distributions in the dust cloud with one mode around 300 nm (Bentonite) or 400 nm (Nanofil 5) as well as one (Nanofil 5) or two modes (Bentonite) with peaks between 1 and 2.5 μm. The dust release was found to occur either as a burst (loose Bentonite and Nanofil 5), constant rate (compacted Nanofil 5), or slowly increasing rate (compacted Bentonite). In rotating drum experiments, the number of particles generated in the FMPS and APS size-ranges were in general agreement with the mass-based dustiness index, but the same order was not observed in the single-drop tests. Compaction of Bentonite reduced the number of generated particles with app. 70 and 40% during single-drop and rotating drum dustiness tests, respectively. Compaction of Nanofil 5 reduced the dustiness in the single-drop test, but it was more than doubled in the rotating drum test. Physically relevant

  17. Advances on study of temperature effects on hydro-mechanical behaviour of densely compacted bentonite

    Ye Weimin; Wan Min; Chen Bao; Liu Yuemiao; Cui Yujun

    2008-01-01

    During the operation of a multiple-barrier geological repository, bentonite that works as a buffer/fill material of an artificial barrier will suffer complex coupling effects of thermal (T), hydrological (H), mechanical (M) process, which comes from heat of the nuclear waste radiation, mechanical stress from parent rock mass and seepage action of groundwater. The scientific results show that temperature has influence on the water retention, saturated permeability, swelling pressure, swelling strain and thermal strain of compacted bentonite. As a whole, the research about GMZ (Gao Miaozi) bentonite, which may potentially be chose as Chinese buffer/backfill material for high radioactive nuclear waste disposal, has a long way to go compare to developed contraries. Based on comprehensive laboratory tests and advanced theoretical framework, both of the study on behaviour of compacted GMZ bentonite under HTM coupling conditions, and the establishment of a constitutive relation for prediction of behaviour of compacted bentonite under multi-field coupling conditions are important in theoretic and practical way. (authors)

  18. Response of Compacted Bentonites to Thermal and Thermo-Hydraulic Loadings at High Temperatures

    Snehasis Tripathy

    2017-07-01

    Full Text Available The final disposal of high-level nuclear waste in many countries is preferred to be in deep geological repositories. Compacted bentonites are proposed for use as the buffer surrounding the waste canisters which may be subjected to both thermal and hydraulic loadings. A significant increase in the temperature is anticipated within the buffer, particularly during the early phase of the repository lifetime. In this study, several non-isothermal and non-isothermal hydraulic tests were carried on compacted MX80 bentonite. Compacted bentonite specimens (water content = 15.2%, dry density = 1.65 Mg/m3 were subjected to a temperature of either 85 or 150 °C at one end, whereas the temperature at the opposite end was maintained at 25 °C. During the non-isothermal hydraulic tests, water was supplied from the opposite end of the heat source. The temperature and relative humidity were monitored along predetermined depths of the specimens. The profiles of water content, dry density, and degree of saturation were established after termination of the tests. The test results showed that thermal gradients caused redistribution of the water content, whereas thermo-hydraulic gradients caused both redistribution and an increase in the water content within compacted bentonites, both leading to development of axial stress of various magnitudes. The applied water injection pressures (5 and 600 kPa and temperature gradients appeared to have very minimal impact on the magnitude of axial stress developed. The thickness of thermal insulation layer surrounding the testing devices was found to influence the temperature and relative humidity profiles thereby impacting the redistribution of water content within compacted bentonites. Under the influence of both the applied thermal and thermo-hydraulic gradients, the dry density of the bentonite specimens increased near the heat source, whereas it decreased at the opposite end. The test results emphasized the influence of

  19. Diffusion and sorption properties of radionuclides in compacted bentonite

    Yu Ji-Wei; Neretnieks, I. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    1997-07-01

    In this report, recent studies on sorption and diffusion of radionuclides in compacted bentonite have been reviewed. The sorption distribution coefficient and diffusion coefficient data obtained from experiments in the literature have been compiled. Based on these experimental data and the report SKB-TR--91-16 (Brandberg and Skagius, 1991), this report proposes a set of sorption distribution coefficient and diffusion coefficient values for modelling purpose for safety analysis of nuclear waste repositories. The variability and uncertainty of the diffusivity data span somewhat more than an order or magnitude up and down. Most of the nuclides have an effective diffusivity in around 10{sup -10} m{sup 2}/s. Ion exclusion effects are observed for C, Cl and for Tc in oxidizing waters. Effective diffusivities are nearly tow orders of magnitude lower for these elements and of the order of 10{sup -12} m{sup 2}/s. Surface diffusion effects are found for Cs, Ni, Pa, Pb, Ra, Sn, Sr and Zr. Effective diffusivities for these elements are of the order of 10{sup -8} m{sup 2}/s. The surface diffusion effect should decrease in saline waters which is seen for Cs and Sr where there are data available. It is also deemed that Ra will have this effect because of its similarity with Sr. The other nuclides should also show this decrease but no data is available. Sorption and diffusion mechanisms in compacted bentonite are discussed in the report. In highly compacted bentonite, sorption and hence its distribution coefficient is not well defined, and a pore diffusion coefficient or a surface diffusion coefficient is not well defined either. Therefore, an apparent diffusion coefficient and a total concentration gradient should be more relevant in describing the diffusion process in compacted bentonite. 99 refs.

  20. Modelling gas migration in compacted bentonite. A report produced for the GAMBIT club

    Nash, P.J.; Swift, B.T.; Goodfield, M.; Rodwell, W.R.

    1998-08-01

    This report describes the first phase of a programme of work that has as its overall objective the development of a computational model that can simulate the results of experiments on gas migration through highly compacted bentonite, and will provide the basis of a model suitable to assess the effects of bentonite barriers on the build-up of pressure and the escape of hydrogen gas from disposal canisters in a radioactive waste repository. In this first phase of the project, the possible mechanisms and controlling features of gas migration through compacted bentonite have been reviewed, and a preliminary computational model of the process has been implemented and evaluated. In the model it is assumed that gas invasion of the clay occurs by induced microfissuring, and that the permeability of the pathways thus created depends on the gas pressure (or the effective stress). Experimental data on gas migration in compacted bentonite that was collected under well controlled conditions by Horseman and Harrington was used in a preliminary evaluation of the new model. The model was able to reproduce qualitatively all the features seen in the subset of the experimental data used in the evaluation, and to provide quantitative agreement to substantial sections of the results of test sequences, but quantitative agreement between simulation and experimental results over a whole test sequence was not obtained. As part of the model evaluation, the dependence of the results obtained on key model parameters is reported. Outline plans for a further phase of work are suggested. (orig.)

  1. Modelling gas migration in compacted bentonite. A report produced for the GAMBIT club

    Nash, P.J.; Swift, B.T.; Goodfield, M.; Rodwell, W.R. [AEA Technology plc, Dorchester (United Kingdom)

    1998-08-01

    This report describes the first phase of a programme of work that has as its overall objective the development of a computational model that can simulate the results of experiments on gas migration through highly compacted bentonite, and will provide the basis of a model suitable to assess the effects of bentonite barriers on the build-up of pressure and the escape of hydrogen gas from disposal canisters in a radioactive waste repository. In this first phase of the project, the possible mechanisms and controlling features of gas migration through compacted bentonite have been reviewed, and a preliminary computational model of the process has been implemented and evaluated. In the model it is assumed that gas invasion of the clay occurs by induced microfissuring, and that the permeability of the pathways thus created depends on the gas pressure (or the effective stress). Experimental data on gas migration in compacted bentonite that was collected under well controlled conditions by Horseman and Harrington was used in a preliminary evaluation of the new model. The model was able to reproduce qualitatively all the features seen in the subset of the experimental data used in the evaluation, and to provide quantitative agreement to substantial sections of the results of test sequences, but quantitative agreement between simulation and experimental results over a whole test sequence was not obtained. As part of the model evaluation, the dependence of the results obtained on key model parameters is reported. Outline plans for a further phase of work are suggested. (orig.) 32 refs.

  2. Compaction of bentonite blocks. Development of technique for industrial production of blocks which are manageable by man

    Johannesson, L E; Boergesson, L; Sanden, T [Clay Technology AB, Lund (Sweden)

    1995-04-01

    In this report a useful technique for producing compacted blocks of bentonite is described. The report only deals with the technique to produce uniaxially compacted blocks (weight of the blocks: 10-15 kg) which are manageable by man. Tests for producing blocks with a weight of approximately 10 kg were carried out at Hoeganaes Bjuf AB in Bjuf. This industry is normally producing refractory bricks and other refractory products. The plant has facilities for handling large volumes of clay. Furthermore there are machines suitable for producing uniaxially compacted blocks. Performed tests at the plant show that it is possible to compact blocks with good quality. Best quality was reached with a coarsely ground bentonite at a water ratio of 20 %. The compaction was performed with lubricated form and stepwise loading. The tests at Hoeganaes Bjuf AB were preceded by tests in the laboratory. In these tests smaller samples were compacted for studying how different factors affect the quality of the samples (density, water ratio, homogeneity et cetera). The influence of following factors was studied: water ratio of bentonite; bentonite type and granulometry; compaction pressure; compaction rate; form geometry; form lubrication; form heating. The results from these tests were used to modify and optimize the technique in the factory.

  3. Saturation of compacted bentonite under repository conditions: long-term experimental evidences

    Villar, M.V.; Martin, P.L.; Gomez-Espina, R.; Garcia-Sineriz, J.L.; Barcena, I.; Lloret, A.

    2010-01-01

    Document available in extended abstract form only. A current design for engineered barriers in the context of high-level radioactive waste disposal includes bentonite compacted blocks initially unsaturated. The heat released by the waste will induce high temperatures in the bentonite barrier. It is expected that full saturation of the buffer be reached before the dissipation of the thermal gradient. However, it still remains unclear whether the high temperatures around the canister would hinder the full saturation of the inner part of the barrier or just delay it. This paper summarises the information gathered in the last 15 years on the saturation of compacted FEBEX bentonite by means of different scale laboratory tests, a big-scale mock-up test and a real-scale in situ test, that were performed in order to simulate the conditions of the clay barrier in the repository and better understand the hydration/heating processes and their consequences on bentonite performance. FEBEX is a Spanish bentonite composed mainly of montmorillonite (about 92%). In the tests it has been used compacted with its hygroscopic water content (14%) at dry densities between 1.6 and 1.7 g/cm 3 , which is the range expected in the repository. For these densities the saturated permeability of the bentonite is about 3.10 -14 m/s and its swelling pressure 8 MPa. The FEBEX in situ test is being performed under natural conditions and at full scale within a drift excavated in the underground laboratory managed by NAGRA at the Grimsel Test Site (Switzerland). The thickness of the bentonite barrier is of 65 cm, and the surface heater temperature is 100 C. After five years of heating, and according to the sensors measurements, the bentonite closer to the heater had water contents below the initial ones, although they were recovering after the intense initial drying. On the contrary, for the same period of time, the sensors located at the same distance from the gallery wall, but in an area not

  4. Migration behaviour of Pu released from Pu-doped glass in compacted bentonite

    Ashida, T.; Kohara, Y.; Yui, M.

    1994-01-01

    In order to investigate the coupled behavior of Pu release from the waste glass and transport in bentonite, a migration experiment with compacted sodium-type bentonite saturated with distilled water was carried out at room temperature, in which Pu-doped borosilicate glass was sandwiched. Under these conditions, leaching of Pu from the glass, diffusion and sorption of Pu in the compacted bentonite occur simultaneously. (orig.)

  5. Multi-scale Study of Pollutant Transport and Uptake in Compacted Bentonite

    Bouchelaghem , Fatiha; Pusch , R.

    2018-01-01

    International audience; In a previous work, a multiscale model was developed in order to investigate the impact of cation exchange and surface complexation on the hydraulic conductivity of compacted bentonite. Simulation of lead nitrate percolation tests has displayed the strong connection between hydraulic conductivity increase and textural and structural evolutions at different scales. The present developments deal with the modeling of pollutant transport by advection, molecular diffusion w...

  6. Investigation of alteration behaviour of compacted bentonite contracted with carbon steel for 10 years

    Suyama, Tadahiro; Ueno, Kenichi; Sasamoto, Hiroshi

    2008-03-01

    To evaluate long term behavior of corrosion for carbon steel in compacted bentonite, and to evaluate long term stability of bentonite, corrosion experiments were conducted using synthetic sea water and synthetic groundwater at 50 and 80degC for 10 years under anaerobic atmosphere. In the present study, the samples of compacted bentonite after experiments were investigated to understand the alteration behavior of bentonite by iron-bentonite interactions. Results were summarized below. Iron generated by corrosion of carbon steel was migrated into compacted bentonite further in the synthetic seawater case than in the synthetic groundwater case. Result of TEM observation for the sample of synthetic sea water case at 80degC showed that the original layer structure for clay minerals was maintained and the layer distance was about 12[A] which was similar to the layer distance of normal 2:1 smectite. Thus, it was suggested that there was no change in smectite before and after experiments. Iron generated by corrosion of carbon steel was migrated into compacted bentonite in anaerobic condition case but scarcely migrated in aerobic condition case. Results of EPMA analysis indicated that the maximum migration depth of iron in compacted bentonite was about 0.2 mm for sample in synthetic sea water at 80degC under anaerobic condition. Results of XRD analysis for the sample in which iron migration in compacted bentonite was observed showed that there was no corrosion product in compacted bentonite and the structure of clay mineral in bentonite was di-octahedral. Furthermore, the result of XRD analysis under relative humidity controlled condition suggested that the swelling property of sample after experiment was similar to that of initial Na-type smectite. Therefore, it was supposed that the initial Na-type smectite did not change during the experiment. Batch type experiments with different temperature, solutions and duration have been conducted to understand the alteration

  7. Isostatic compaction of beaker shaped bentonite blocks on the scale 1:4

    Johannesson, Lars-Erik [Clay Technology AB, Lund (Sweden); Nord, Sven [Ifoe Ceramics AB, Bromoella (Sweden ); Pusch, Roland [Geodevelopment AB, Lund (Sweden); Sjoeblom, Rolf [AaF-Energikonsult AB, Stockholm (Sweden)

    2000-09-01

    The purpose of the present work is to test, on a scale of 1:4, the feasibility of manufacturing bentonite blocks by isostatic compaction for application as a buffer material in a repository for spent nuclear fuel. In order for the tests to be sensitive to any weaknesses of the method, the blocks were shaped as beakers. The scope included the following: 1. Preparation of powder: a. mixing of the bentonite and addition of water in predetermined amounts, b. sieving to remove any lumps generated; 2. Isostatic compaction: a. establishment of a separate laboratory for the handling of bentonite powder (weighing, mixing, filling, sampling and machining), b. development and design of equipment and procedures for compaction of bentonite to beaker-shaped specimens, c. compaction process operation, d. visual inspection; 3. Sampling and characterisation: a. extraction of samples from the blocks made, b. determination of water content, c. determination of density, d. determination of strain at maximum stress by means of bending tests, e. determination of tensile strength by means of bending tests, f. determination of geometries of the blocks prepared; 4. Post-treatment by means of machining: a. machining of blocks made, b. visual inspection; 5. Evaluation. The work went very smoothly. No significant obstacles or unexpected events were encountered. The conclusions are as follows: The conclusions drawn in this report from work on the (linear)scale of one to four are very relevant to the full scale. Mixing of bentonite powder as well as moistening can be carried out on a pilot scale with a good homogeneity and with maintained good quality of the press powder. The compaction of bentonite can be carried out in a similar manner to the present operation at Ifoe Ceramics AB. This implies a very efficient handling as well as a very efficient use of the time in the press which may account for a large proportion of the total cost. The blocks could readily be produced to reproducible

  8. Experimental evaluation of the hydraulic resistance of compacted bentonite/boom clay interface

    Tang, Anh-Minh; Cui, Yu-Jun; Delage, Pierre; Munoz, Juan Jorge; Li, Xiang-Ling

    2008-01-01

    In the framework of the in-situ PRACLAY Heater experiment to be performed in the HADES URF in Mol (Belgium), the feasibility of a hydraulic cut-off of the Excavation Damaged Zone (EDZ) and the Repository Components (RC) of the disposal galleries by using a horizontal seal will be examined. It has been planned to install an annular seal composed of compacted bentonite between the heated zone and the access gallery (PRACLAY seal test), so that to avoid any hydraulic shortcut towards the access gallery. According to numerical scoping calculations, heating until 80 deg C will induce a pore pressure of the order of 3.0 MPa. In order to verify the effects of this water pressure on the performance of the annular seal system and more specifically on the hydraulic resistance of the interface between the compacted bentonite and the host rock (Boom clay), laboratory percolation tests at 20 and 80 deg C were performed. The results confirm the performance of the compacted bentonite seal to avoid the hydraulic shortcut to the access gallery under the foreseen hydraulic and thermal conditions. (author)

  9. LABORATORY TESTING OF BENTONITE CLAYS FOR LANDFILL DESIGN AND CONSTRUCTION

    Biljana Kovačević Zelić

    2007-12-01

    Full Text Available Top and bottom liners are one of the key construction elements in every landfill. They are usually made as compacted clay liners (CCLs composed of several layers of compacted clay with strictly defined properties or by the use of alternative materials such as: GCL – geosynthetic clay liner, BES – bentonite enhanced soils or bentonite/polymer mixtures. Following the state of the art experiences in the world, GCLs are used in Croatian landfills for several years, as well. Depending upon the location and the obeying function, GCLs have to fulfill certain conditions. A legislated compatibility criterion has to be proven by various laboratory tests. In the paper are presented the results of direct shear and chemical compatibility tests of GCLs as well as the results of permeability measurement of kaolin clay (the paper is published in Croatian .

  10. Experimental study on swelling character of statics-compacted bentonite-sand mixture

    Cui Suli; Zhang Huyuan; Liu Jisheng; Liang Jian

    2010-01-01

    In the high-level radioactive waste (HLW) geological disposal projects barrier system, there are two types for constructing buffer/backfill material in preconceived: locale field-pressed and locale-build by prefab lock. Statics-Compacted is needed for both footrill padding in the locale field-pressed and locale-build by prefab lock. Laboratory tests were conducted on statics-compacted mixture of GMZ001 bentonite and quartz sand in different addition. The results obtained indicated that in the semi-log coordinates, the form of the P-time and e-time curves were sigmoid,the same as dynamic-compacted specime. The swelling character of statics-compacted specime were also as well as dynamic-compacted specime, that is with the increase of initial dry density, the maximum swelling pressure were exponential increase and maximum swelling strain increase linearly. These made it clear that the methods of making specime have no effect on the swelling character of bentonite-sand mixture, so methods for constructing buffer/backfill material can be selected free as needed in the construction site. The validity of regression relationship received by dynamic-compacted specime test was verified, and the coefficients for the regression equation were revised in a greater range of initial dry density. Based on the comprehensive analysis of experimental results, it is concluded that addition of 10-30% quartz sand and 1.60-1.80 g/cm 3 for initial dry density to GMZ001 bentonite-sand mixture is suitable for the swelling quality. (authors)

  11. Compaction of bentonite blocks. Development of techniques for production of blocks with different shapes and sizes

    Johannesson, Lars-Erik; Boergesson, Lennart

    1998-09-01

    In this report useful techniques for producing both smaller blocks manageable by man (10-15 kg) and larger blocks which need special equipment for handling (weight up to 600 kg) are described. Tests for producing blocks with a weight of approximately 10 kg were carried out at Hoeganaes Bjuf AB in Bjuv. This industry is normally producing refractory bricks and other refractory products. The plant has facilities for handling large volumes of clay. It also has machines suitable for producing uniaxially compacted blocks. Tests performed at the plant show that it is possible to compact blocks with good quality. The best quality was reached with a coarsely ground bentonite at a water ratio of 17 %. The compaction rate was high and performed with lubricated form and stepwise loading. Tests, in order to find a technique for producing larger blocks with a diameter of the same size as a deposition hole (about 1.65 m), were also made. The technique was developed in a smaller scale (250 mm). Ring-shaped blocks with the same outer diameter and with an inner diameter of about 156 mm were also compacted. The compaction was made with vacuum in the form. The outer surface of the form was conical and most of the tests were performed with a lubricated form. Tests were performed with different water ratios of the bentonite. All the blocks had a good quality. In consequence of the good test results a form with a 1000 mm diameter was constructed and a number of compaction tests were performed. The same technique was used as for the smaller blocks. The compaction pressure in most tests was 100 MPa (maximum compaction load 80.000 kN). The tests were performed at HYDROWELD in Ystad in a press with a maximum capacity of 300.000 kN. All tests were performed with MX-80. Most of the blocks had a good quality. A small damage close to the upper surface of all blocks was observed but is considered to be of no importance for the possibility to handle the blocks and is not affecting the properties

  12. Compaction of bentonite blocks. Development of techniques for production of blocks with different shapes and sizes

    Johannesson, Lars-Erik; Boergesson, Lennart [Clay Technology AB, Lund (Sweden)

    1998-09-01

    In this report useful techniques for producing both smaller blocks manageable by man (10-15 kg) and larger blocks which need special equipment for handling (weight up to 600 kg) are described. Tests for producing blocks with a weight of approximately 10 kg were carried out at Hoeganaes Bjuf AB in Bjuv. This industry is normally producing refractory bricks and other refractory products. The plant has facilities for handling large volumes of clay. It also has machines suitable for producing uniaxially compacted blocks. Tests performed at the plant show that it is possible to compact blocks with good quality. The best quality was reached with a coarsely ground bentonite at a water ratio of 17 %. The compaction rate was high and performed with lubricated form and stepwise loading. Tests, in order to find a technique for producing larger blocks with a diameter of the same size as a deposition hole (about 1.65 m), were also made. The technique was developed in a smaller scale (250 mm). Ring-shaped blocks with the same outer diameter and with an inner diameter of about 156 mm were also compacted. The compaction was made with vacuum in the form. The outer surface of the form was conical and most of the tests were performed with a lubricated form. Tests were performed with different water ratios of the bentonite. All the blocks had a good quality. In consequence of the good test results a form with a 1000 mm diameter was constructed and a number of compaction tests were performed. The same technique was used as for the smaller blocks. The compaction pressure in most tests was 100 MPa (maximum compaction load 80.000 kN). The tests were performed at HYDROWELD in Ystad in a press with a maximum capacity of 300.000 kN. All tests were performed with MX-80. Most of the blocks had a good quality. A small damage close to the upper surface of all blocks was observed but is considered to be of no importance for the possibility to handle the blocks and is not affecting the properties

  13. Changes in the microstructure of compacted bentonite caused by heating and hydration

    Villar M.V.

    2016-01-01

    Full Text Available Two twin 40-cm long columns of compacted FEBEX bentonite were tested in Teflon cells; water was supplied through the top surface of the columns and in one of them a heater was placed at the base and set to 100°C. The purpose of these tests was to simulate the behaviour of an engineered barrier in a radioactive waste repository and investigate the effect of the thermal gradient on saturation. In particular, changes in the pore size distribution and interlayer size have been investigated in this work. The thermal gradient had a strong influence on the water intake and distribution. Water content and dry density gradients persisted in the two columns after 12 years of testing. These changes gave place to the modification of the bentonite microstructure, overall increasing the microstructural void ratio and the proportion of adsorbed, interlayer water.

  14. Stress/strain/time properties of highly compacted bentonite

    Pusch, R.

    1983-05-01

    In this paper, a recently developed creep theory based on statistical mechanics has been used to analyze a number of experimental creep curves, the conclusion being that the creep behavior of dense MX-80 bentonite is in agreement with the physical model, and that the average bond strength is within the hydrogen bond region. The latter conclusion thus indicates that interparticle displacements leading to macroscopic creep takes place in interparticle and intraparticle water lattices. These findings were taken as a justification to apply the creep theory to a prediction of the settlement over a one million year period. It gave an estimated settlement of 1 cm at maximum, which is of no practical significance. The thixotropic and viscous properties of highly compacted bentonite present certain difficulties in the determination and evaluation of the stress/strain/time parameters that are required for ordinary elastic and elasto-plastic analyses. Still, these parameters could be sufficiently well identified to allow for a preliminary estimation of the stresses induced in the metal canisters by slight rock displacements. The analysis, suggests that a 1 cm rapid shear perpendicular to the axes of the canisters can take place without harming them. (author)

  15. Retention of redox sensitive waste elements in compacted bentonite

    Torstenfelt, B.; Allard, B.

    1984-01-01

    The diffusion of technetium, iodine, uranium and neptunium in compacted bentonite has been studied. The possible reduction of the transport rate of these elements (i.e. redoxsensitive elements) by mixing the clay with metallic iron (for technetium, uranium and neptunium) or by adding a chemisorbent (for iodine) to the clay is reported. Technetium has an apparent diffusivity about 5 times higher in the heptavalent state (TcO 4 - ) than in the tetravalent state (TcO(OH) 2 or TcO 2 ), uranium and neptunium in their higher oxidation state (VI and V) have apparent diffusivities about 6 and 50 times higher, respectively, than in the tetravalent state. Iodine, as I - (or IO 3 - ), has a transport rate more than one order of magnitude lower than TcO 4 - . 10 references, 5 figures, 3 tables

  16. Alteration behavior of bentonite barrier of radioactive waste disposal by alkaline solutions. Part 1. Permeability change of compacted bentonite immersed in alkaline solutions

    Yokoyama, Shingo; Nakamura, Kunihiko

    2010-01-01

    Permeability tests using the compacted bentonites and alkaline solutions were carried out to estimate of alteration behavior and the change of permeability during the alteration reaction. The permeability tests of the compacted bentonites were carried out at 23degC for one week after they were immersed in alkaline solution at 60degC for four weeks (immersing test). After permeability tests, the compacted bentonites were repeatedly tested as the same procedure (i.e. repetition of permeability test and immersing test) at 11 cycles. The compacted bentonites with initial dry density of 1.6 Mg/m 3 were reacted with the different type of the alkaline solutions (deionized water, NaOH (pH=12 and 14), KOH (pH=12 and 14) and Ca(OH) 2 (pH=12)) in each experiments. In the case of deionized water and alkaline solutions of pH12, the mineral compositions of altered bentonite were similar to original bentonite while the exchangeable cations of altered bentonites were changed. No changes of the mineralogical features of montmorillonite in altered bentonites (i.e. illitization, baideritization and increasing of layer charge) were observed in the case of deionized water, pH12-NaOH and pH12-Ca(OH) 2 . The montmorillonite was changed to the illite/smectite interstratified mineral containing about 40% illite like component during the reaction with pH12-KOH. In the case of alkaline solutions with pH14, the component minerals of bentonite (e.g. montmorillonite, quartz and clinoptilolite) were dissolved, consequently secondly minerals (e.g. analcime and phillipsite) were crystallized during experiments. Furthermore, the mineralogical features of montmorillonite were changed as illitization (pH14-KOH), beidellitization (pH14-NaOH and pH14-KOH) and increasing of layer charge (pH14-NaOH and pH14-KOH). No increasing of permeability were observed during the experiment using pH12-NaOH and pH12-Ca(OH) 2 as well as the case of deionized water. In the case of pH12-KOH, the permeability continually

  17. Geochemical and Mineralogical Changes in Compacted MX-80 Bentonite Submitted to Heat and Water Gradients

    Gomez-Espina, R.; Villar, M. V.

    2010-01-01

    A 20-cm high column of MX80 bentonite compacted at dry density 1.70 g/cm 3 with an initial water content of 16 percent was submitted to heating and hydration by opposite ends for 496 days (TH test). The temperature at the bottom of the column was set at 140 degree centigrade and on top at 30 degree centigrade, and deionised water was injected on top at a pressure of 0.01 MPa. Upon dismantling water content, dry density, mineralogy, specific surface area, cation exchange capacity, content of exchangeable cations, and concentration of soluble salts and pH of aqueous extracts were determined in different positions along the bentonite column. The pore water composition was modelled with a geochemical software. The test tried to simulate the conditions of an engineered barrier in a deep geological repository for high-level radioactive waste. The water intake and distribution of water content and dry density along the bentonite were conditioned by the thermal gradient. Liquid water did not penetrate into the column beyond the area in which the temperature was higher than 100 degree centigrade. A convection cell was formed above this area, and liquid water loaded with ions evaporated towards cooler bentonite as it reached the area where the temperature was too high. In this area precipitation of mineral phases took place, Advection, interlayer exchange and dissolution/precipitation processes conditioned the composition of the pore water along the column. In most of the column the pore water was Na-SO 4 2 - type, and changed to Na-Cl near the heater. TH treatment did not cause significant changes in the smectite content or the other mineral phases of the bentonite. (Author) 41 refs.

  18. Geochemical and Mineralogical Changes in Compacted MX-80 Bentonite Submitted to Heat and Water Gradients

    Gomez-Espina, R.; Villar, M. V.

    2010-05-01

    A 20-cm high column of MX80 bentonite compacted at dry density 1.70 g/cm{sup 3} with an initial water content of 16 percent was submitted to heating and hydration by opposite ends for 496 days (TH test). The temperature at the bottom of the column was set at 140 degree centigrade and on top at 30 degree centigrade, and deionised water was injected on top at a pressure of 0.01 MPa. Upon dismantling water content, dry density, mineralogy, specific surface area, cation exchange capacity, content of exchangeable cations, and concentration of soluble salts and pH of aqueous extracts were determined in different positions along the bentonite column. The pore water composition was modelled with a geochemical software. The test tried to simulate the conditions of an engineered barrier in a deep geological repository for high-level radioactive waste. The water intake and distribution of water content and dry density along the bentonite were conditioned by the thermal gradient. Liquid water did not penetrate into the column beyond the area in which the temperature was higher than 100 degree centigrade. A convection cell was formed above this area, and liquid water loaded with ions evaporated towards cooler bentonite as it reached the area where the temperature was too high. In this area precipitation of mineral phases took place, Advection, interlayer exchange and dissolution/precipitation processes conditioned the composition of the pore water along the column. In most of the column the pore water was Na-SO{sub 4} {sup 2}- type, and changed to Na-Cl near the heater. TH treatment did not cause significant changes in the smectite content or the other mineral phases of the bentonite. (Author) 41 refs.

  19. Water uptake, migration and swelling characteristics of unsaturated and saturated, highly compacted bentonite

    Pusch, R.

    1980-09-01

    The report presents the results of a number of laboratory tests and field observations to form the basis of a physical and mathematical model that can be used for predicting water uptake and swelling in highly compacted bentonite components of an actual deposition plant. The clay buffer masses have been suggested as barriers in the Swedish KBS concepts. Two commercially available bentonites were used for the production of samples. The rate of water uptake suggests a mathematical model based on a simple diffusion equation. The rate is determined by the access of water and thousands of years may pass before saturation is obtained. The rate of swelling is governed by the negative pore pressure and the permeability. There is reasonable agreement with field observations. The observed swelling potential of old smectite-rich clays has offered the evidence. (G.B.)

  20. Evaluation of permeability of compacted bentonite ground considering heterogeneity by geostatistics

    Tanaka, Yukihisa; Nakamura, Kunihiko; Kudo, Kohji; Hironaga, Michihiko; Nakagami, Motonori; Niwase, Kazuhito; Komatsu, Shin-ichi

    2007-01-01

    The permeability of the bentonite ground as an engineered barrier is possibly designed to the value which is lower than that determined in terms of required performance because of heterogeneous distribution of permeability in the ground, which might be considerable when the ground is created by the compaction method. The effect of heterogeneity in the ground on the permeability of the bentonite ground should be evaluated by overall permeability of the ground, whereas in practice, the effect is evaluated by the distribution of permeability in the ground. Thus, in this study, overall permeability of the bentonite ground is evaluated from the permeability of the bentonite ground is evaluated from the permeability distribution determined using the geostatistical method with the dry density data as well as permeability data of the undisturbed sample recovered from the bentonite ground. Consequently, it was proved through this study that possibility of overestimation of permeability of the bentonite ground can be reduced if the overall permeability is used. (author)

  1. Diffusion of strongly sorbing cations (60Co and 152Eu) in compacted FEBEX bentonite

    Garcia-Gutierrez, M.; Cormenzana, J. L.; Missana, T.; Alonso, U.; Mingarro, M.

    2011-01-01

    Diffusion experiments in compacted FEBEX bentonite were performed with strongly sorbing radionuclides, 60 Co and 152 Eu. Diffusion experiments with these radionuclides present several difficulties: first of all these tests are very time consuming because of the high sorption on the clays, secondly these elements not only present high sorption onto clays but also on diffusion cells, tubing, filters and reservoirs, typically used in the classical through-diffusion or in-diffusion methods, which makes difficult the interpretation of the results. In this study, the experiments were performed using the instantaneous planar source method, where a paper filter tagged with a tracer is placed between two tablets of compacted bentonite. The apparent diffusion coefficient (D a ) is obtained analysing the tracer concentration profile in the samples at the end of the experiment, both with an analytical and a numerical approach. The ranges of D a values obtained from these experiments in the FEBEX clay compacted at 1.65 g/cm 3 are (0.5-2.3) x 10 -13 m 2 /s for Co and (0.8-2.5) x 10 -14 m 2 /s for Eu. Results showed that the analytical solution is able to fit reasonably well the Eu concentration profiles, whereas Co concentration profiles show a different behavior, not straightforward to explain, which was also analyzed by numerical methods. (authors)

  2. Practical and theoretical basis for performing redox-measurements in compacted bentonite. A literature survey

    Carlsson, T.; Muurinen, A.

    2008-12-01

    This report reviews the state-of-the-art with regard to redox measurements, especially in compacted water saturated bentonite, but also in natural systems like sediments and ground waters. Both theoretical and practical aspects of redox measurements are discussed, as well as some basic concepts like terminal electron-accepting processes (TEAPs) and oxidative capacity (OXC). The problems associated with the interpretation of measured electrode potentials are treated. Despite many practical and theoretical difficulties, redox measurements continue to be carried out by researchers all over the world. The over-all conclusion from the literature survey is that fruitful redox-measurements can be performed in compacted bentonite. Irrespective of whether the measured redox potentials are absolute or not, the use of electrodes provide a valuable tool for studying, e.g., long-term changes in the pore water of compacted bentonite and/or the diffusion of oxygen into a bentonite. (orig.)

  3. Geochemical processes and compacted bentonite FEBEX with a thermohydraulic gradient with a thermohydraulic gradient

    Leguey Jimenez, S.; Cuevas Rodriguez, J.; Martin Barca, M.; Vigil de la Villa Mencia, R.; Ramirez Martin, S.; Garcia Gimenez, R.

    2002-01-01

    At present, the main source of High Level radioactive Waste (HLW) is the electrical energy production during all sep of developing. In almost all the countries with nuclear programs, the option for the final management of HLW is the Deep Geological Repository (DGR), based on the concept of multi barrier. According to this concept, the wastes is isolated from biosphere by the interposition of confinement barrier. In the context of an investigation of the near field for a repository of HLW, the FEBEX Project, a set of laboratory test has been designed to give a better understanding of the thermo-hydro-mechanical and geochemical behaviour of the compacted bentonite as a confinement barrier. The object of these work is to analyse the properties of the bentonite and its behaviour under conditions that will be found in a repository. The precipitation of mineral phases, due to local changes in the chemical equilibrium and the hydration itself, can produce changes in the salinity of the interstitial water and in the microstructural organisation of the clay particles. the hydraulic and mechanical properties of the bentonite can be modified by the special conditions of the barrier. (Author)

  4. Microstructure and anisotropic swelling behaviour of compacted bentonite/sand mixture

    Simona Saba

    2014-04-01

    Full Text Available Pre-compacted elements (disks, torus of bentonite/sand mixture are candidate materials for sealing plugs of radioactive waste disposal. Choice of this material is mainly based on its swelling capacity allowing all gaps in the system to be sealed, and on its low permeability. When emplaced in the gallery, these elements will start to absorb water from the host rock and swell. Thereby, a swelling pressure will develop in the radial direction against the host rock and in the axial direction against the support structure. In this work, the swelling pressure of a small scale compacted disk of bentonite and sand was experimentally studied in both radial and axial directions. Different swelling kinetics were identified for different dry densities and along different directions. As a rule, the swelling pressure starts increasing quickly, reaches a peak value, decreases a little and finally stabilises. For some dry densities, higher peaks were observed in the radial direction than in the axial direction. The presence of peaks is related to the microstructure change and to the collapse of macro-pores. In parallel to the mechanical tests, microstructure investigation at the sample scale was conducted using microfocus X-ray computed tomography (μCT. Image observation showed a denser structure in the centre and a looser one in the border, which was also confirmed by image analysis. This structure heterogeneity in the radial direction and the occurrence of macro-pores close to the radial boundary of the sample can explain the large peaks observed in the radial swelling pressure evolution. Another interesting result is the higher anisotropy found at lower bentonite dry densities, which was also analysed by means of μCT observation of a sample at low bentonite dry density after the end of test. It was found that the macro-pores, especially those between sand grains, were not filled by swelled bentonite, which preserved the anisotropic microstructure caused by

  5. Study on the saturating and swelling behavior of an engineering bentonite barrier using a test model

    Nakajima, Makoto; Kobayashi, Ichizo; Toida, Masaru; Fujisaki, Katsutoshi

    2007-01-01

    The conceptual design of a disposal facility with additional buffer depth for radioactive waste is mainly constituted from the multi-barrier system that is constructed around the waste form so that it prevents radionuclide transfer to the biosphere. The engineered bentonite barrier is one of the elements of the multi-barrier system and is constructed with homogeneous bentonite-containing material compacted to a high density so that there are no voids. Due to the swelling characteristics of the bentonite material, the self-sealing function which is an important function of the bentonite barrier can work, but at the same time it mechanically affects the neighboring structures. Therefore, an experimental study was implemented in order to evaluate the mechanical effect of the bentonite swelling behavior throughout the construction, emplacement operations and closure re-saturation phase. In this article, the results of swelling tests to obtain the mechanical properties of the bentonite and three types of test model experiments performed for the event observations in the different saturation processes are described. As a result, the effects of a seepage pattern of ground water and a variation in the density produced by construction on the swelling pressure distribution of the bentonite barrier could be reproduced and validated. It is thought that they will be important events when ground water permeates the bentonite layer of a multiple barrier system. (author)

  6. Uncertainties in pore water chemistry of compacted bentonite from Rokle deposit

    Cervinka, R.; Vejsadu, J.; Vokal, A.

    2012-01-01

    Document available in extended abstract form only. The composition of compacted bentonite pore water influences a number of important processes occurring in a deep geological repository (DGR), e.g. corrosion of waste package materials, solubility of radionuclides, or diffusion and sorption of radionuclides. Its determination is not straightforward, because it is difficult to obtain (e.g. squeeze) the pore water from compacted bentonite without changing its properties. It is therefore necessary to combine experimentally obtained parameters and geochemical modelling to approach it compositions. This article describes the results achieved in investigation the composition of pore water of compacted Ca-Mg bentonite from Czech deposits, proposed in Czech DGR concept. Ca-Mg bentonite from the largest operating deposit Rokle (Tertiary neo-volcanic area, NW Bohemia) represents complex mixture of (Ca,Mg)-Fe-rich montmorillonite, micas, kaolinite and other mineral admixtures (mainly Ca, Mg, Fe carbonates, feldspars and iron oxides). For experimental investigations the homogenized and grind raw bentonite material obtained directly from the deposit and commercial product (partly Na-activated) from supplier were used. Geochemical characterization of Rokle bentonite included mineralogical composition analyzed by Xray diffraction, cation exchange capacity determined using Cu-trien method, surface complexation parameters determined by acid-base titrations and 'geochemical' porosity derived from diffusion experiments with tracers ( 3 H and 36 Cl). Soluble salts inventory was calculated on the base of results from aqueous extracts of bentonite in deionized water at different solid to liquid ratios (from 18.6 to 125 g/l) and high pressure squeezing of water saturated bentonite at different solid to liquid ratios (from 1:1 to 4:1 w/w). The geochemical model contained cation exchange in the interlayer space and protonization and de-protonization of surface hydroxyl groups on clay

  7. Changes on the mineralogical and physico-chemical properties of a compacted bentonite in contact with hyperalkaline pore fluids

    Fernandez, A.M.; Melon, A.; Sanchez, D.M.

    2010-01-01

    Document available in extended abstract form only. In high-level radioactive waste disposal (HLW) concepts, compacted bentonites are being considered in many countries as a sealing material because of their low permeability, high swelling capacity and high plasticity. In the case of the geological disposal of nuclear wastes in argillaceous host formations, concrete will be also used as support of tunnels and galleries and as waste containment material. Therefore, the bentonite barrier will become saturated with the water resulting from the host-rock/concrete interaction. An understanding of the rate and nature of the bentonite alteration, as well as the evolution of the bentonite pore water in the long-term is important for performance assessment. In this work the behaviour of the bentonite has been simulated in a laboratory test. A concrete-bentonite interaction experiment has been performed at a high solid to liquid ratio with FEBEX bentonite. The aim of the experiment was to analyse the buffering capacity of the bentonite and the clay mineral stability in a high-pH environment over a long contact period. The rate of pH buffering capacity of the bentonite is related to its surface hydroxyl sites (≡SOH) located along the edges of the clay platelets (fast reaction), and the montmorillonite crystal lattice itself (governed by reaction kinetics). Two infiltration tests with hyper-alkaline water were performed with FEBEX bentonite compacted at a dry density of 1.65 g/cm 3 with a hygroscopic water content (w.c.) of 13.4% in small-scale hermetic cells (50- mm diameter and 25-mm high). The experiments were running for 1.65 years under anoxic conditions inside an anoxic glove (< 1 ppm O 2 ) box and at temperature of 30-35 deg. C. The type of alkaline solution was a Na-K-OH water in equilibrium with portlandite, Ca(OH) 2 , at pH 13.5. This water is representative of an average pore water of a mortar made with CEM-I-SR type Portland cement (sulphate-resistant) at a 0

  8. Bentonite engineered barrier building method for radioactive waste on sub-surface disposal test project

    Mori, Takuo; Takahashi, Shinichi; Takeuchi, Kunifumi; Namiki, Kazuto

    2008-01-01

    The engineering barriers such as clay and concrete materials are planned to use for covering radioactive waste in cavern-type disposal facility. The requirement to clay barrier is very low permeability, which could be satisfied by high density Bentonite, and such a compaction method will be needed. Two methods, compaction and air shot, were tested in engineering scale for constructing a high-density clay barrier. Two types of compaction equipments, 'Teasel plate' and 'Plate compacter', were developed and engineering scale experiments were performed for compacting Bentonite only and Bentonite-sand-aggregate mixture. As a result, the Teasel plate can reach higher density Bentonite in relatively short time in comparison to other equipments. While, regarding air shot method, an air-shot machine in a tunnel construction site was tested by different water adding methods (wet, dry, and half wet). It is concluded that the dry and half wet constructing methods will achieve reasonable workability. As a result, the best construction option can be chosen according to the locations of radioactive waste facility. (author)

  9. A validation study for the gas migration modelling of the compacted bentonite using existing experiment data

    Tawara, Y.; Mori, K.; Tada, K.; Shimura, T.; Sato, S.; Yamamoto, S.; Hayashi, H.

    2010-01-01

    Document available in extended abstract form only. After the field-scaled Gas Migration Test (GMT) was carried out at Grimsel Test Site (GTS) in Switzerland from 1997 through 2005, a study on advanced gas migration modelling has been conducted as a part of R and D programs of the RWMC (Radioactive Waste Management funding and Research Center) to evaluate long-term behaviour of the Engineered Barrier System (EBS) for the TRU waste disposal system in Japan. One of main objectives of this modelling study is to provide the qualified models and parameters in order to predict long-term gas migration behaviour in compacted bentonite. In addition, from a perspective of coupled THMC (Thermal, Hydrological, Mechanical and Chemical) processes, the specific processes which may have considerable impact to the gas migration behaviour are discussed by means of scoping calculations. Literature survey was conducted to collect experimental data related to gas migration in compacted bentonite in order to discuss an applicability of the existing gas migration models in the bentonite. The well-known flow rate controlled-gas injection experiment by Horseman, et al. and the pressure-controlled-gas injection test using several data with wide range of clay density and water content by Graham, et al, were selected. These literatures show the following characteristic behaviour of gas migration in high compacted and water-saturated bentonite. The observed gas flow rate from the outlet in the experiment by Horseman et al. was numerically reproduced by using the different conceptual models and computer codes, and then an applicability of the models and the identified key parameters such as relative permeability and capillary pressure were discussed. Helium gas was repeatedly injected into fully water-saturated and isotropically consolidated MX-80 bentonite (dry density: 1.6 Mg/m 3 ) in the experiment. One of the most important conclusions from this experiment is that it's impossible for

  10. Water retention behaviour of compacted bentonites: experimental observations and constitutive model

    Dieudonne Anne-Catherine

    2016-01-01

    Full Text Available Bentonite-based materials are studied as potential barriers for the geological disposal of radioactive waste. In this context, the hydro-mechanical behaviour of the engineered barrier is first characterized by free swelling conditions followed by constant volume conditions. This paper presents an experimental study conducted in order to characterize the water retention behaviour of a compacted MX-80 bentonite/sand mixture. Then, based on observations of the material double structure and the water retention mechanisms in compacted bentonites, a new water retention model is proposed. The model considers adsorbed water in the microstructure and capillary water in the aggregate-porosity. The model is calibrated and validated against the experimental data. It is used for better understanding competing effects between volume change and water uptake observed during hydration under free swelling conditions.

  11. Development of numerical simulation method for gas migration through highly-compacted bentonite using model of two-phase flow through deformable porous media

    Tanaka, Yukihisa

    2011-01-01

    In the current concept of repository for radioactive waste disposal, compacted bentonite will be used as an engineered barrier mainly for inhibiting migration of radioactive nuclides. Hydrogen gas can be generated inside of the engineered barrier by anaerobic corrosion of metals used for containers, etc. It is expected to be not easy for gas to entering into the bentonite as a discrete gaseous phase because the pore of compacted bentonite is so minute. Therefore it is necessary to investigate the effect of gas pressure generation and gas migration on the engineered barrier, peripheral facilities and ground. In this study, a method for simulating gas migration through the compacted bentonite is proposed. The proposed method can analyze coupled hydrological-mechanical processes using the model of two-phase flow through deformable porous media. Validity of the proposed analytical method is examined by comparing gas migration test results with the calculated results, which revealed that the proposed method can simulate gas migration behavior through compacted bentonite with accuracy. (author)

  12. Microbial incidence on copper and titanium embedded in compacted bentonite clay

    Persson, Joergen; Lydmark, Sara; Edlund, Johanna; Paeaejaervi, Anna; Pedersen, Karsten (Microbial Analytics Sweden AB (Sweden))

    2011-10-15

    The incidence of bacteria on metal surfaces was examined in an experimental setting simulating conditions of the proposed Swedish concept for disposal of spent nuclear fuel. Titanium and copper rods were embedded in compacted bentonite clay saturated with groundwater collected at a depth of 450 m. Bentonite blocks were exposed to an external flux of groundwater with or without added lactate or H{sub 2} for up to 203 days. Bacterial accumulation on metal rods and in the surrounding bentonite was analyzed using real-time quantitative PCR (qPCR), with genetic markers for overall bacterial presence (16S rDNA) as well as specific for sulfate-reducing bacteria (apsA). Clay species composition was analyzed by cloning and sequencing 16S rDNA extracted from the clay. Results suggest limited bacterial accumulation on metal surfaces, amounting to a maximum of approximately 106 apsA copies cm-2, corresponding to a 3.7% coverage of metal surfaces. Bacterial species composition appeared to be a mix of species originating from the bentonite clay and from the added groundwater, including an apparently high proportion of sulfate-reducing bacteria. While titanium surfaces exhibited higher bacterial presence than did copper surfaces, neither the degree of bentonite compaction nor the addition of lactate or H{sub 2} appeared to have any effect on the bacterial incidence on metal surfaces

  13. Microbial incidence on copper and titanium embedded in compacted bentonite clay

    Persson, Joergen; Lydmark, Sara; Edlund, Johanna; Paeaejaervi, Anna; Pedersen, Karsten

    2011-10-01

    The incidence of bacteria on metal surfaces was examined in an experimental setting simulating conditions of the proposed Swedish concept for disposal of spent nuclear fuel. Titanium and copper rods were embedded in compacted bentonite clay saturated with groundwater collected at a depth of 450 m. Bentonite blocks were exposed to an external flux of groundwater with or without added lactate or H 2 for up to 203 days. Bacterial accumulation on metal rods and in the surrounding bentonite was analyzed using real-time quantitative PCR (qPCR), with genetic markers for overall bacterial presence (16S rDNA) as well as specific for sulfate-reducing bacteria (apsA). Clay species composition was analyzed by cloning and sequencing 16S rDNA extracted from the clay. Results suggest limited bacterial accumulation on metal surfaces, amounting to a maximum of approximately 10 6 apsA copies cm -2 , corresponding to a 3.7% coverage of metal surfaces. Bacterial species composition appeared to be a mix of species originating from the bentonite clay and from the added groundwater, including an apparently high proportion of sulfate-reducing bacteria. While titanium surfaces exhibited higher bacterial presence than did copper surfaces, neither the degree of bentonite compaction nor the addition of lactate or H 2 appeared to have any effect on the bacterial incidence on metal surfaces

  14. Functioning of blocks of compacted bentonite in a repository for spent nuclear fuels

    Boergesson, Lennart; Kalbantner, P.; Sjoeblom, R.

    2001-12-01

    The main purpose of the presented work is to provide The Swedish Nuclear Fuel and Waste Management Company (SKB) with a proposed set of requirements regarding the functioning of the blocks of compacted bentonite. These blocks are intended to constitute the bentonite envelope which after uptake of water will form the buffer between the canister and the rock. The purpose is also to provide a basis for SKB for their direction of the continued development work for the selection of a reference technology and for creating a quality system for the buffer material. No attempts are made in the report to derive the functional requirements. Instead, such requirements are postulated based on realistic scenarios regarding the chain of processes from excavation - transport - preparation of press powder - compaction - handling and emplacement in the deposition hole. It is the strategy of SKB to use a natural material which after the above-mentioned processes forms a buffer with properties which closely resemble those of the original material. This implies that all process steps must be designed in such a way that the properties of the bentonite do not change to any significant degree with respect to the disposal function. The main results in the report are as follows: A set of functional requirements are compiled and presented. These concord with the different descriptions given on the process steps. The requirements are generic and are assessed to be relatively invariant for various operational requirements and process controls. The process chain comprising excavation of bentonite - transport - preparation of press powder - compaction - handling and emplacement are explained. The presentations of functional requirements and processes are foreseen to constitute a basis for a comparison between uniaxial and isostatic compaction and can be an important basis for SKB's quality work. The development of cracks in the bentonite blocks has been identified as an important aspect for the

  15. Modelling the evolution of compacted bentonite clays in engineered barrier systems: process model development of the bentonite-water-air system

    Bond, A.E.; Wilson, J.C.; Maul, P.R.; Robinson, P.C.; Savage, D.

    2010-01-01

    Document available in extended abstract form only. An adequate understanding of the short- and long-term evolution of compacted bentonite clays in engineered barrier systems (EBS) for radioactive waste based on the KBS-3 disposal concept is an essential requirement for demonstrating the safe performance of the system. Uncertainties in the way that the re-saturation process occurs are intrinsically tied to the thermal and mechanical evolution of the bentonite buffer and its interaction with the disposal canister and host-rock. Furthermore, the evolution of bentonite in the presence of changing ambient saturation states, groundwater chemistry and stress states could cause the bentonite re-saturation and long-term stability (including the so-called 'buffer erosion scenario') to deviate from the behaviour required by the safety case; this has emphasised the need to consider adequately coupled thermal (T), hydraulic(H), mechanical (M) and chemical (C) processes. Historically, there have been fundamental differences in the representation of porosity and water disposition between geochemical modelling and coupled THM modelling studies. In this paper, a model for the porosity and water disposition in bentonite is presented that is more detailed than models used to date in most THM modelling studies under variably saturated conditions. The new model moves away from the conventional THM soils approach which treats bentonite as an elasto-plastic porous medium with water or air occupying a notional porosity with the inclusion of additional process models to take into account the very high observed water suctions, intrinsic permeability variation and macroscopic swelling of partially saturated compacted bentonite. It replaces the empirical parameterisation usually employed in THM models with a direct representation of the water disposition, pore structure and relevant processes, albeit at an abstracted level. The new model differentiates between water which can be

  16. Limits to the use of highly compacted bentonite as a deterrent for microbially influenced corrosion in a nuclear fuel waste repository

    Stroes-Gascoyne, Simcha; Hamon, Connie J.; Maak, Peter

    2010-01-01

    Highly compacted bentonite-based sealing materials are being developed for use in future geological repositories for nuclear fuel waste. Such materials would ensure a diffusion-controlled hydrology and additionally form a sorption barrier against radionuclide migration after container breach. Due to some inherent physical characteristics, such as low water activity (a w ), small pores and high swelling pressure, an additional role of highly compacted bentonite may be the elimination of significant microbial activity near used fuel containers, which would reduce the occurrence of microbially influenced corrosion (MIC) to insignificant levels. Several recent studies have examined the indigenous microbial populations in compacted bentonite and the factors that control microbial activity in such environments. Laboratory experiments with Wyoming MX-80 bentonite plugs, compacted to dry densities (DD's) of 0.8 to 2.0 g/cm 3 , and infiltrated with sterile distilled deionised water were carried out. At DD's of 0.8 and 1.3 g/cm 3 , culturability of heterotrophic aerobic bacteria increased by up to four orders of magnitude above back-ground levels. Anaerobic heterotrophic bacteria and SRB did not increase significantly above background levels in any of the tests. At higher DD's all culturability remained at, or fell below, the background levels. However, even at the highest DD tested, some culturability remained and viability was only mildly affected by high DD's. Therefore, the potential for increased microbial activity exist if a substantial reduction in DD of bentonite were to occur in a repository. The microbes that survive in dry as-purchased or highly compacted bentonite appear to be largely spore-forming organisms. Chi Fru and Athar (2008) studied the bacterial colonization of compacted MX-80 bentonite from the surrounding granitic groundwater population, at various temperature ranges. Results suggested that high temperature rather than high DD

  17. Small-scale bentonite injection test on rock

    Pusch, R.

    1978-03-01

    When radiactive waste is disposed a sealing of the rock is very valuable since it reduces the rate of water percolation and diffusion. In an earlier report injection of bentonite gels by means of over-pressure and subsequent electrophoresis has been suggested. The present report describes a rock test series where bentonite injection was applied. For the test an approximately cubical block of about 1 m 3 was selected. The rock type was diorite with a fairly high frequency of quartz denses. The block was kept in a basin during the test in order to maintain the water saturation. Holes were bored in the block. A bentonite slurry with 1000 percent water content was injected. It was shown that the bentonite had a sealing effect but the depth of extrusion into rock joints was not large because of gelation. Electro-Kinetic injection of montmorillonite was found to be a more promising technique for rock lightening

  18. Report on Thermo-Hydro-Mechanical Laboratory Tests Performed by CIEMAT on Febex Bentonite 2004-2008

    Villar, M. V.; Gomez-Espina, R.

    2009-11-25

    The results of the laboratory studies performed by CIEMAT with the FEBEX bentonite in the context of WP3.2 of the NF-PRO Project and of the Agreement ENRESA-CIEMAT Anexo V are presented and analysed in this report. They refer to the effect of the hydraulic gradient on the permeability of bentonite, the effect of the thermal gradient on the hydration kinetics of bentonite, and the repercussion of temperature on the hydro-mechanical properties of bentonite (swelling, permeability and water retention capacity). In all the cases the bentonite has been used compacted to densities expected in the engineered barrier of a high-level radioactive waste repository. The existence of threshold and critical hydraulic gradients has been observed, both of them dependent on bentonite density and water pressures. After more than seven years of hydration, the 40-cm high bentonite columns are far from full saturation, the thermal gradient additionally delaying the process, which is very slow. Temperatures below 100 degree centigrade slightly decrease the swelling and the water retention capacity of the bentonite and increase its permeability. The information obtained improves the knowledge on the behaviour of expansive clay and will help the development of constitutive models and the interpretation of the results obtained in the mock-up and the in situ tests. (Author) 35 refs.

  19. Report on Thermo-Hydro-Mechanical Laboratory Tests Performed by CIEMAT on Febex Bentonite 2004-2008

    Villar, M. V.; Gomez-Espina, R.

    2009-01-01

    The results of the laboratory studies performed by CIEMAT with the FEBEX bentonite in the context of WP3.2 of the NF-PRO Project and of the Agreement ENRESA-CIEMAT Anexo V are presented and analysed in this report. They refer to the effect of the hydraulic gradient on the permeability of bentonite, the effect of the thermal gradient on the hydration kinetics of bentonite, and the repercussion of temperature on the hydro-mechanical properties of bentonite (swelling, permeability and water retention capacity). In all the cases the bentonite has been used compacted to densities expected in the engineered barrier of a high-level radioactive waste repository. The existence of threshold and critical hydraulic gradients has been observed, both of them dependent on bentonite density and water pressures. After more than seven years of hydration, the 40-cm high bentonite columns are far from full saturation, the thermal gradient additionally delaying the process, which is very slow. Temperatures below 100 degree centigrade slightly decrease the swelling and the water retention capacity of the bentonite and increase its permeability. The information obtained improves the knowledge on the behaviour of expansive clay and will help the development of constitutive models and the interpretation of the results obtained in the mock-up and the in situ tests. (Author) 35 refs

  20. The effects of bacteria on the corrosion behavior of carbon steel in compacted bentonite

    Nishimura, T.; Wada, R.; Nishimoto, H.; Fujiwara, K.; Taniguchi, N.; Honda, A.

    1999-10-01

    As a part of evaluation of corrosion life of carbon steel overpack, the experimental studies have been performed on the effects of bacteria on the corrosion behavior of carbon steel in compacted bentonite using iron bacteria (IB) as a representative oxidizing bacteria and sulphur reducing bacteria (SRB) as a representative reducing bacteria. The results of the experimental studies showed that; The activity of SRB was low in compacted bentonite in spite of applying suitable condition for the action of bacteria such as temperature and nutritious solution. Although the corrosion behavior of carbon steel was affected by the existence of bacteria in simple solution, the corrosion rates of carbon steel in compacted bentonite were several μ m/year -10 μ m/year irrespective of coexistence of bacteria and that the corrosion behavior was not affected by the existence of bacteria. According to these results, it was concluded that the bacteria would not affect the corrosion behavior of carbon steel overpack under repository condition. (author)

  1. A coupled THMC model of a heating and hydration laboratory experiment in unsaturated compacted FEBEX bentonite

    Zheng, L.; Samper, J.; Montenegro, L.; Fernandez, A.M.

    2010-05-01

    Unsaturated compacted bentonite is foreseen by several countries as a backfill and sealing material in high-level radioactive waste repositories. The strong interplays between thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes during the hydration stage of a repository call for fully coupled THMC models. Validation of such THMC models is prevented by the lack of comprehensive THMC experiments and the difficulties of experimental methods to measure accurately the chemical composition of bentonite porewater. We present here a non-isothermal multiphase flow and multicomponent reactive solute transport model for a deformable medium of a heating and hydration experiment performed on a sample of compacted FEBEX bentonite. Besides standard solute transport and geochemical processes, the model accounts for solute cross diffusion and thermal and chemical osmosis. Bentonite swelling is solved with a state-surface approach. The THM model is calibrated with transient temperature, water content and porosity data measured at the end of the experiment. The reactive transport model is calibrated with porewater chemical data derived from aqueous extract data. Model results confirm that thermal osmosis is relevant for the hydration of FEBEX bentonite while chemical osmosis can be safely neglected. Dilution and evaporation are the main processes controlling the concentration of conservative species. Dissolved cations are mostly affected by calcite dissolution-precipitation and cation exchange reactions. Dissolved sulphate is controlled by gypsum/anhydrite dissolution-precipitation. pH is mostly buffered by protonation/deprotonation via surface complexation. Computed concentrations agree well with inferred aqueous extract data at all sections except near the hydration boundary where cation data are affected by a sampling artifact. The fit of Cl{sup -} data is excellent except for the data near the heater. The largest deviations of the model from inferred aqueous

  2. Transport and leaching of technetium and uranium from spent UO2 fuel in compacted bentonite clay

    Ramebaeck, H.; Albinsson, Y.; Skaalberg, M.; Eklund, U.B.; Kjellberg, L.; Werme, L.

    2000-01-01

    The transport properties of Tc and U in compacted bentonite clay and the leaching behaviour of these elements from spent nuclear fuel in the same system were investigated. Pieces of spent UO 2 fuel were embedded in bentonite clay (ρ d =2100 kg/m 3 ). A low saline synthetic groundwater was used as the aqueous phase. After certain experimental times, the bentonite clay was cut into 0.1 mm thick slices, which were analysed for their content of Tc and U. Measurements were made using inductively coupled plasma mass spectrometry. Tc analysis comprised chemical separation. The analysis of U was done by means of detecting 236 U, since the natural content of U in bentonite clay made it impossible to distinguish between U originating from the fuel and the clay. The influence of different additives mixed into the clay was studied. The results showed an influence on both transport and leaching behaviour when metallic Fe was mixed into the clay. This indicates that Tc and U are reduced to their lower oxidation states as a result of this additive

  3. Modelling gas migration in compacted bentonite: GAMBIT Club Phase 2. Final report

    Swift, B.T.; Hoch, A.R.; Rodwell, W.R. [AEA Technology (United Kingdom)

    2001-01-01

    This report describes the second phase of a programme of work to develop a computational model of gas migration through highly compacted bentonite. Experimental data that have appeared since the earlier report are reviewed for the additional information they might provide on the mechanism of gas migration in bentonite. Experiments carried out by Horseman and Harrigton (British Geological Survey) continued to provide the main data sets used in model evaluation. The earlier work (POSIVA Report 98-08) had resulted in a preliminary model of gas migration whose main features are gas invasion by microcrack propagation, and dilation of the pathways formed with increasing gas pressure. New work was carried out to further explore the capabilities of this model. In addition, a feature was added to the model to simulate gas pathway creation by water displacement rather than crack propagation. The development of a new alternative gas migration model is described. This is based on a volume-averaged representation of gas migration rather than on a description of flow in discrete pathways. Evaluation of this alternative model showed that it can produce similar agreement with experimental results to the other models examined. The implications of flow geometry, confining conditions and flow boundary conditions on gas migration behaviour in bentonite are reviewed. Proposals are made for the development of the new model into a tool for simulating gas migration through a bentonite buffer around a waste canister, and for possible enhancements to the model that might remove some of its currently perceived deficiencies. (orig.)

  4. Modelling gas migration in compacted bentonite: gambit club phase 3. Final report

    Hoch, A.R.; Cliffe, K.A.; Swift, B.T.; Rodwell, W.R.

    2004-04-01

    This report describes the third phase of a programme of work to develop a computational model of gas migration through highly compacted water-saturated bentonite. One difficulty with this endeavour is the definitive determination of the mechanism of the gas migration from the available experimental data. The report contains a brief review of the experimental data and their interpretation. The model development work reported involves the investigation of two ways of enhancing a model proposed in the previous phase of the programme. This model was based on the concept that gas migration pathways were created by consolidating the clay fabric by application of gas pressure to create porosity through which the gas could flow. The two developments of this model that are separately explored in this work are: (a) The incorporation of a proper treatment of the stress-strain behaviour of the clay in (b) response to gas migration. The previous model had only considered stress effects through simple volume changes to the clay fabric. The inclusion of a dual-porosity feature into the model in an attempt to address the role that the clay fabric might play in gas migration through the clay, in particular the role that pre-existing interstack voids might have in gas migration. The consideration of hysteresis effects was also included in this study. As in previous GAMBIT Club work, the models are tested against the results of laboratory experiments. (orig.)

  5. Consistency in the description of diffusion in compacted bentonite

    Lehikoinen, J.; Muurinen, A.

    2009-01-01

    A macro-level diffusion model, which aims to provide a unifying framework for explaining the experimentally observed co-ion exclusion and greatly controversial counter-ion surface diffusion in a consistent fashion, is presented. It is explained in detail why a term accounting for the non-zero mobility of the counter-ion surface excess is required in the mathematical form of the macroscopic diffusion flux. The prerequisites for the consistency of the model and the problems associated with the interpretation of diffusion in such complex pore geometries as in compacted smectite clays are discussed. (author)

  6. Study on GMZ bentonite-sand mixture by undrained triaxial tests

    Sun Wen-jing

    2016-01-01

    Full Text Available It is particularly necessary to study the deformation, strength and the changes of pore water pressure of bentonite-based buffer/backfill materials under the undrained condition. A series of isotropic compression tests and triaxial shear tests under undrained conditions were conducted on the compacted saturated/unsaturated GMZ bentonite-sand mixtures with dry mass ratio of bentonite/sand of 30:70. During the tests, the images of the sample were collected by photographic equipment and subsequently were cropped, binarized and centroids marked by image processing technique. Based on identification of the variation of the position of marked centroids, the deformation of the sample can be determined automatically in real-time. Finally, the hydro-mechanical behaviour of saturated and unsaturated bentonite-sand mixtures under the undrained condition can be obtained. From results of triaxial shear tests on unsaturated samples under constant water content, inflated volumetric deformation transforms to contractive volumetric deformation due to the increase of the confining pressure and lateral expansion deformation are observed due to the increase in the shearing stress. Moreover, the net mean stress affects the initial stiffness, undrained shear strength and deformation of the sample during the undrained shear tests.

  7. Two-phase water movement in unsaturated compacted bentonite under isothermal condition

    Takeuchi, Shinji

    1994-01-01

    Bentonite is considered as one of the most promising buffer materials of engineered barrier system (EBS) for the geological isolation of high level radioactive waste (HLW) in Japan. The EBS may be composed of vitrified waste, overpack and buffer material. In the early stage of setting and backfilling of HLW, a coupled thermal-hydro-mechanical phenomenon may occur in buffer material due to various causes, but water movement may be the most important phenomenon for the coupled process. It is necessary to verify the two-phase movement for the precise modeling of the water movement in unsaturated bentonite. In this study, in order to analyze water movement, the water retention curves and water diffusivity of compacted bentonite were obtained as the functions of water content, dry density and temperature. Also water movement behavior was examined by applying the Philip and de Vries' and Darcy's equations to the obtained water diffusivity. Water potential was measured with a thermocouple psychrometer. The equation for water diffusivity is shown. The measurement of water potential and water diffusivity and the results are reported. (K.I.)

  8. Thermal conductivity tests on buffermasses of bentonite/silt

    Knutsson, S.

    1977-09-01

    The investigation concerns the thermal conductivity of the bentonite/quartz buffer mass suggested as embedding substance for radioactive canisters. The first part presents the theoretical relationships associated with the various heat transfer mechanisms in moist granular materials. Chapter 3 describes the author's experimental determination of the thermal conductivity of the buffer mass. The tested mass consisted of 10 percent (by weight) bentonite and 90 percent natural silt. Four tests were made with different water content values and degree of water saturation. A comparison between the measured and calculated thermal conductivities is given. It is shown that the conductivity can be calculated with an accuracy of +-20 percent. (author)

  9. Database on gas migration tests through bentonite buffer material

    Tanai, Kenji

    2009-02-01

    Carbon steel is a candidate material for an overpack for geological disposal of high-level radioactive waste in Japan. The corrosion of the carbon steel overpack in aqueous solution under anoxic conditions will cause the generation of hydrogen gas, which may affect hydrological and mechanical properties of the bentonite buffer. To evaluate such an effect of gas generation, it is necessary to develop a model of gas migration through bentonite buffer material taking account of data obtained from experiments. The gas migration experiments under both unsaturated and saturated conditions have been carried out to clarify the fundamental characteristics of bentonite for gas migration. This report compiles the experimental data obtained from gas migration tests for buffer material which has been conducted by JAEA until December, 2007. A CD-ROM is attached as an appendix. (author)

  10. Cement/bentonite interaction. Results from 16 month laboratory tests

    Karnland, O. [Clay Technology AB, Lund (Sweden)

    1997-12-01

    The work concerns possible bentonite clay mineral alteration in constructions with bentonite in close contact with cement, and the effect of such changes on bentonite buffer properties. The investigation comprises a 16 months laboratory test series with hydrothermal cell tests, percolation tests and diffusion tests. MX-80 Wyoming bentonite was used in all tests. Two types of artificial cement pore water solutions were used in the percolation and diffusion tests. The swelling pressure and the hydraulic conductivity were measured continuously in the percolation tests. After termination, the clay was analyzed with respect to changes in element distribution, mineralogy and shear strength. The water solutions were analyzed with respect to pH, cations and major anions. The results concerning chemical and mineralogical changes are in summary: Ion exchange in the montmorillonite until equilibrium with cement pore-water ions was reached; Increase in cation exchange capacity; Dissolution of original cristobalite; Increase in quartz content; Minor increase in illite content; Minor formation of chlorite; Formation of CSH(I); Wash away of CSH-gel into surrounding water. A large decrease in swelling pressure and a moderate increase in hydraulic conductivity were recorded in the samples percolated by SULFACEM pore-water solution. The mineralogical alterations only concerned a minor part of the total bentonite mass and the changes in physical properties were therefore most likely due to the replacement of the original charge balancing cation by cement pore-water cations. Comparisons between the current test result and results from 4 month tests indicate that the rates of illite and chlorite formation were reduced during the tests. The presence of zeolites in the clay could not be ensured. However, the discovery of CSH material is important since CSH is expected to precede the formation of zeolites 5 refs, 48 figs, 11 tabs

  11. Modifications in Compacted MX-80 Bentonite Due to Thermo-Hydraulic Treatment

    Gomez-Espina, R.; Villar, M. V.

    2013-01-01

    The thermo-hydraulic tests reproduce the thermal and hydraulic conditions to which bentonite is subjected in the engineered barrier of a deep geological repository of radioactive waste. The results of thermo-hydraulic test TBT1500, which was running for approximately 1500 days, are presented. This is a continuation to the Technical Report Ciemat 1199, which presented results of test TBT500, performed under similar conditions but with duration of 500 days. In both tests the MX-80 bentonite was used with initial density and water content similar to those of the large-scale test TBT. The bentonite column was heated at the bottom at 140 degree centigrade and hydrated on top with deionized water. At the end of the test a sharp water content gradient was observed along the column, as well as an inverse dry density gradient. Hydration modified also the bentonite microstructure. Besides, an overall decrease of the smectite content with respect to the initial value took place, especially in the most hydrated areas where the percentage of interest ratified illite increased and in the longer test. On the other hand, the content of cristobalite, feldspars and calcite increased. Smectite dissolution processes (probably colloidal) occurred, particularly in the more hydrated areas and in the longer test. Due to the dissolution of low-solubility species and to the loss of exchangeable positions in the smectite, the content of soluble salts in the pore water increased with respect to the original one, especially in the longer test. The solubilized ions were transported; sodium, calcium, magnesium and sulphate having a similar mobility, which was in turn lower than that of potassium and chloride. The cationic exchange complex was also modified. (Author)

  12. Advanced diffusion model in compacted bentonite based on modified Poisson-Boltzmann equations

    Yotsuji, K.; Tachi, Y.; Nishimaki, Y.

    2012-01-01

    Document available in extended abstract form only. Diffusion and sorption of radionuclides in compacted bentonite are the key processes in the safe geological disposal of radioactive waste. JAEA has developed the integrated sorption and diffusion (ISD) model for compacted bentonite by coupling the pore water chemistry, sorption and diffusion processes in consistent way. The diffusion model accounts consistently for cation excess and anion exclusion in narrow pores in compacted bentonite by the electric double layer (EDL) theory. The firstly developed ISD model could predict the diffusivity of the monovalent cation/anion in compacted bentonite as a function of dry density. This ISD model was modified by considering the visco-electric effect, and applied for diffusion data for various radionuclides measured under wide range of conditions (salinity, density, etc.). This modified ISD model can give better quantitative agreement with diffusion data for monovalent cation/anion, however, the model predictions still disagree with experimental data for multivalent cation and complex species. In this study we extract the additional key factors influencing diffusion model in narrow charged pores, and the effects of these factors were investigated to reach a better understanding of diffusion processes in compacted bentonite. We investigated here the dielectric saturation effect and the excluded volume effect into the present ISD model and numerically solved these modified Poisson-Boltzmann equations. In the vicinity of the negatively charged clay surfaces, it is necessary to evaluate concentration distribution of electrolytes considering the dielectric saturation effects. The Poisson-Boltzmann (P-B) equation coupled with the dielectric saturation effects was solved numerically by using Runge-Kutta and Shooting methods. Figure 1(a) shows the concentration distributions of Na + as numerical solutions of the modified and original P-B equations for 0.01 M pore water, 800 kg m -3

  13. Thermal conductivity of compacted bentonite as a buffer material for a high-level radioactive waste repository

    Lee, Jae Owan; Choi, Heuijoo; Lee, Jong Youl

    2016-01-01

    Highlights: • The thermal conductivities were measured under various disposal conditions. • They were significantly influenced by the water content and dry density. • They were not sensitive to the temperature and the anisotropic structure. • A new model of thermal conductivity was proposed for the thermal analysis. - Abstract: Bentonite buffer is one of the major barrier components of a high-level radioactive waste (HLW) repository, and the thermal conductivity of the bentonite buffer is a key parameter for the thermal performance assessment of the HLW repository. This study measured the thermal conductivity of compacted bentonite as a buffer material and investigated its dependence upon various disposal conditions: the dry density, water content, anisotropic structure of the compacted bentonite, and temperature. The measurement results showed that the thermal conductivity was significantly influenced by the water content and dry density of the compacted bentonite, while there was not a significant variation with respect to the temperature. The anisotropy of the thermal conductivity had a negligible variation for an increasing dry density. The present study also proposed a geometric mean model of thermal conductivity which best fits the experimental data.

  14. Diffusion of strongly sorbing cations (60Co and 152Eu) in compacted Febex bentonite

    Garcia-Gutierrez, M.; Missana, T.; Alonso, U.; Mingarro, M.; Cormenzana, J.L.

    2010-01-01

    Document available in extended abstract form only. Compacted bentonite is used as an engineered barrier in high-level radioactive waste (HLRW) repositories because is a swelling clay of very low permeability and high sorption capability for many solutes. The transport of radionuclides through compacted bentonite is a diffusion-controlled process retarded by sorption. Performance assessment calculations of a repository need diffusion coefficients data of relevant radionuclides. Several studies on diffusion behaviour of neutral, anionic and weakly sorbing elements on clay exist while very few studies are available for moderately sorbing elements, and almost no studies for Eu, a highly sorbing element are reported. In this study, diffusion experiments with strongly sorbing radionuclides, as 60 Co and 152 Eu, have been performed through compacted FEBEX bentonite. Diffusion essays with these strongly sorbing radionuclides are not straightforward to carry out because they are very time consuming essays, but also because sorption on the diffusion cells, tubing, filters and reservoirs, typically used in the classical through-diffusion or in-diffusion methods make hard the interpretation of the experimental results and the calculation of the diffusion coefficients. FEBEX bentonite was selected as Spanish reference buffer materials, and used in many national and international projects. The clay comes from the Cortijo de Archidona deposit (Almeria, Spain), and has a smectite content greater than 90% (93 ± 2%), with quartz (2 ± 1%), plagioclase (3 ± 1%), cristobalite (2 ± 1%), potassic feldspar, calcite, and trydimite as accessory minerals. The specific weight of the FEBEX bentonite is 2.7 g/cm 3 . Diffusion experiments were performed using the instantaneous plane source method. In this setup, a paper filter tagged with a tracer is introduced between two compacted tablets, avoiding contact between the tracer and the experimental vessels. The tracer can diffuse into both

  15. Field test of ethanol/bentonite slurry grouting into rock fracture

    Motoyuki Asada; Hitoshi Nakashima; Takashi Ishii; Sumio Horiuchi

    2006-01-01

    Crystalline rocks have fractures which may cause unexpected routes of groundwater seepage. Cement grouting is one of the most effective methods to minimize seepage; however, cement materials may not be suitable for the purpose of extra-long durability, because cement is neutralized or degraded by chemical and physical influence of chemical reaction. Natural clay like bentonite is one of the most promising materials for seepage barrier; however, water/bentonite grout is so viscous that enough amount of bentonite can not be grouted into rock fractures. To increase bentonite content in grout with low viscosity, the utilization of ethanol as a mixing liquid was studied. Ethanol suppresses bentonite swelling, and more bentonite can be injected more than that of water/bentonite slurry. In this paper, grouting into in-situ rock mass fracture from the ground surface was tested to investigate the barrier performance and workability of ethanol/bentonite slurry as a grouting material. (author)

  16. Influence of material and solution composition on the extrusion/erosion behaviour of compacted bentonite

    Schatz, Timothy; Martikainen, Jari; Koskinen, Kari

    2010-01-01

    experiments, total material mass loss through a compacted material/porous frit/solution reservoir interface was measured as a function of time. The effect of material and solution composition on extruded mass loss was analysed using combinations of compacted, homo-ionised bentonite (Ca-, Na-, Mg-Mt and admixtures thereof) and aqueous solutions of interest (from deionised water to high salinity concentrations). In some cases, measurements of stable colloid concentrations, above the distinct gel/sol phase boundary, were performed as well. Additionally, mechanical effects on mass extrusion were also analysed by varying both the porosity and the length of the interface. Results from these experiments indicate that the extrusion of compacted buffer mass is a self-limiting, diffusion-controlled process. These observations are in accordance with a view that ascribes the driving force of the extrusion process to swelling pressure with resistance provided by the viscosity of the extruded material and friction with the fracture surface. Moreover, material and solution composition effects on the rate of mass loss were clearly observed as well. Additionally, the mass fraction of spontaneously generated colloids, relative to the total extruded mass, was small to negligible for every measured case. As with the overall rate of mass loss, there were also clear material and solution composition effects on the magnitude of the measured colloidal mass fractions. (authors)

  17. A Numerical Investigation on the Effect of Gas Pressure on the Water Saturation of Compacted Bentonite-Sand Samples

    Jiang-Feng Liu

    2017-01-01

    Full Text Available In deep geological disposal for high-level radioactive waste, the generated gas can potentially affect the sealing ability of bentonite buffers. There is a competition between water and gas: the former provides sealing by swelling bentonite, and the latter attempts to desaturate the bentonite buffer. Thus, this study focused on numerically modelling the coupling effects of water and gas on the water saturation and sealing efficiency of compacted bentonite-sand samples. Different gas pressures were applied to the top surface of an upper sample, whereas the water pressure on the bottom side of the lower sample was maintained at 4 MPa. The results indicated that gas pressure did not significantly affect the saturation of the bentonite-sand sample until 2 MPa. At 2 MPa, the degree of water saturation of the upper sample was close to 1.0. As the gas pressure increased, this influence was more apparent. When the gas pressure was 6 MPa or higher, it was difficult for the upper sample to become fully saturated. Additionally, the lower sample was desaturated due to the high gas pressure. This indicated that gas pressure played an important role in the water saturation process and can affect the sealing efficiency of bentonite-based buffer materials.

  18. Review of a report on diffusion and sorption properties of radionuclides in compacted bentonite

    Ochs, M. [BMG Engineering Ltd (United Kingdom)

    1997-10-01

    The present report encompasses the discussion of data uncertainties of the revised report prepared by Yu and Neretnieks (1977). Uncertainties of the reference system, in particular the porewater chemistry relevant for compacted bentonite, are illustrated with the help of a thermodynamic model. Uncertainties regarding the chemistry of the critical elements considered by Yu and Neretnieks (1977) are reviewed, and ranges of validity with regard to the extrapolation of sorption and diffusion data are indicated, where appropriate. The data selection made by Yu and Neretnieks (1977) is reviewed for each critical element, and uncertainties associated with these data are discussed. Possibilities on how to handle such uncertainties are discussed, and very briefly, the use of thermodynamic models for sensitivity analyses is illustrated using Cs. 33 refs.

  19. Elastoplastic constitutive models parameters for unsaturated compacted bentonite sand buffer (BSB)

    Priyanto, D.; Man, A.; Dixon, D.; Blatz, J.

    2010-01-01

    Document available in extended abstract form only. Compacted Bentonite-Sand Buffer (BSB) material is one of the clay based sealing-system components proposed for use in a Canadian Deep Geological Repository (DGR) for used nuclear fuel. BSB is a 50:50 mixture (by dry mass) of bentonite and well-graded silica sand, compacted to a dry density of at least 1.67 Mg/m 3 . Numerical modelling of the evolution of a DGR requires defining of the Hydro-Mechanical (HM) parameters of the BSB. The objective of this paper is to determine the parameters that are needed to utilize an elastoplastic model to describe the BSB. The parameters of the Basic Barcelona Model (BBM) for BSB are determined based on the results of laboratory tests done under both water-saturated and unsaturated conditions. The BBM utilizes three key stress-state variables: net mean stress (p), deviatoric stress (q), and suction (s). Modification of the BBM to improve the prediction of the BSB behaviour is made based on these laboratory test results. Pre-consolidation stress (p o ), stiffness parameters due to changes in p in elastic (?) and plastic (λ(s)) ranges are determined from triaxial test results under isotropic loading, unloading and constant mass conditions with suctions in the range of 0-125 MPa. An increase of s results in an increase of p o and a decrease of λ(s) for s < 30 MPa, and constant po and λ(s) for s > 30 MPa. These data are used to determine the LC-Line. Blatz (2000) and Anderson (2003) concluded that the BSB has clay-dominated behaviour for s < 30 MPa and sand-dominated behaviour for s > 30 MPa. Based on this conclusion, the hardening parameter so of the suction increase yield curve is equal to 30 MPa. Using a measured s-v relationship from shrinkage tests, stiffness parameters for changes in s in the elastic range (?s) are approximately ∼ 0.065 and in the plastic range (λs) are approximately ∼ 0, which is different from the original BBM featuring λs > ?s. The tensile strength

  20. Microstructural modifications induced by hydraulic and mechanical actions on compacted bentonite

    Romero, E.; Suriol, J.; Lloret, A.; Castellanos, E.; Villar, M.V.

    2010-01-01

    Document available in extended abstract form only. The hydration of bentonite generates microstructural changes that modify both its hydraulic and mechanical properties. As a consequence, the evolution of porosity and microstructure influence greatly the hydration transient state. Measurements and observations at this microstructural level are very important, since they help in further understanding higher structural levels and their consequences on material properties and behaviour under various hydro-mechanical stress state conditions. To accomplish the complex issue of microstructural studies, several techniques have to be applied. A very useful technique for the quantitative study at the microscale is mercury intrusion porosimetry (MIP), since the range of pore diameters that can be examined (from 6 nm to 400 μm) is very wide. The influence of various mechanical (loading) and hydraulic (wetting / drying) stress paths on the pore size distribution of compacted bentonite was analysed. Some of the conclusions reached are: - The pore size distribution is clearly bi-modal. The dominant values are 10 nm, which would correspond to the pores inside clay aggregates that are not affected by the magnitude of the compaction load, and a larger pore size, which depends on compaction degree and ranges from 20 μm (for ρd=1.68 g/cm 3 ) to 30 μm (for ρd = 1.4 g/cm 3 ). These larger voids would correspond to the inter-granular pores. The boundary between the two pore size families is around 150-200 nm. The same pattern is found irrespective of the clay water content. - There exists a significant pore volume into which the mercury cannot penetrate because it corresponds to pores smaller than 6 nm, and it is the same irrespective of the density of the specimens. - The inter-granular pores disappear when a clay slurry is compacted. - After wetting of compacted samples, the hindered and latent inter-aggregate pore size mode emerges (350 and 1100 nm). Simultaneously, and as a

  1. On the formation of a moving redox-front by α-radiolysis of compacted water saturated bentonite

    Eriksen, T.E.; Ndalamba, P.

    1988-12-01

    The formation of an expanding volume containing the radiolytically formed oxidants H 2 O 2 and O 2 has been studied in α-irradiated compacted water saturated bentonite (ρ = 2.12 gxcm -3 ). The G-values (0.67±0.05), (0.64±0.07) for H 2 O 2 and O 2 respectively are in fair agreement with the corresponding G-values obtained in experiments with synthetic ground water. From the leaching of γ-irradiated bentonite it is concluded that only a fraction of the Fe 2+ content is easily accessible as scavenger for the radiolytically formed oxidants. (orig.)

  2. Report on hydro-mechanical and chemical-mineralogical analyses of the bentonite buffer in Canister Retrieval Test

    Dueck, Ann; Johannesson, Lars-Erik; Kristensson, Ola; Olsson, Siv [Clay Technology AB (Sweden)

    2011-12-15

    The effect of five years of exposure to repository-like conditions on compacted Wyoming bentonite was determined by comparing the hydraulic, mechanical, and mineralogical properties of samples from the bentonite buffer of the Canister Retrieval Test (CRT) with those of reference material. The CRT, located at the Swedish Aspo Hard Rock Laboratory (HRL), was a full-scale field experiment simulating conditions relevant for the Swedish KBS-3 concept for disposal of high-level radioactive waste in crystalline host rock. The compacted bentonite, surrounding a copper canister equipped with heaters, had been subjected to heating at temperatures up to 95 deg C and hydration by natural Na-Ca-Cl type groundwater for almost five years at the time of retrieval. Under the thermal and hydration gradients that prevailed during the test, sulfate in the bentonite was redistributed and accumulated as anhydrite close to the canister. The major change in the exchangeable cation pool was a loss in Mg in the outer parts of the blocks, suggesting replacement of Mg mainly by Ca along with the hydration with groundwater. Close to the copper canister, small amounts of Cu were incorporated in the bentonite. A reduction of strain at failure was observed in the innermost part of the bentonite buffer, but no influence was seen on the shear strength. No change of the swelling pressure was observed, while a modest decrease in hydraulic conductivity was found for the samples with the highest densities. No coupling was found between these changes in the hydro-mechanical properties and the montmorillonite . the X-ray diffraction characteristics, the cation exchange properties, and the average crystal chemistry of the Na-converted < 1 {mu}m fractions provided no evidence of any chemical/structural changes in the montmorillonite after the 5-year hydrothermal test.

  3. Study of sorption and diffusion of 137Cs in compacted bentonite saturated with saline water at 60degC

    Suzuki, Satoru; Haginuma, Masashi; Suzuki, Kazunori

    2007-01-01

    The effect of compaction of bentonite on the sorption behavior of 137 Cs was studied for the safety assessment of the high level radioactive waste. The diffusion coefficients (effective D e and apparent D a ) and the distribution coefficient for sorption K d for 137 Cs in compacted and dispersed bentonite saturated with saline water were investigated at 60degC by four different sorption and diffusion experiments: the in-diffusion, through-diffusion, reservoir-depletion and batch sorption experiments. The system of the through-diffusion experiment was carefully designed to maintain the boundary conditions of constant concentration at each end of the specimen. D e and D a were found to be reproducible and showed good consistency among three of the diffusion experiments (through-diffusion, in-diffusion and reservoir depletion). K d of 137 Cs in compacted bentonite determined from the three types of diffusion experiments was in good accordance with that determined by the batch sorption experiment for dispersed bentonite. (author)

  4. Porewater Chemistry in Compacted Re-Saturated MX-80 Bentonite: Physico-Chemical Characterisation and Geochemical Modelling

    Bradbury, M. H.; Baeyens, B.

    2002-06-01

    Bentonites of various types are being investigated in many countries as backfill materials in high-level radioactive waste disposal concepts. Being able to understand the chemistry of the pore water in compacted bentonite, and the factors which influence it, is critical to the synthesis of sorption data bases and to predicting radionuclide solubilities, and hence to repository safety studies. However, quantification of the water chemistry in compacted bentonite is difficult because reliable samples for chemical analysis cannot be obtained even by squeezing at exceedingly high pressures. In this report concepts are developed which are somewhat different from those used in previously published works on bentonite pore water. Considerations of the swelling properties of montmorillonite led to the proposition that there were, generally speaking, three types of water associated with re-saturated compacted bentonite. The water defined as the pore water is only a small fraction of the total. The pore water volume present in re-saturated bentonites having different initial dry densities was quantified using CI- 'through diffusion' data. Highly compacted bentonite is considered to function as an efficient semi-permeable membrane so that re-saturation involves predominantly the movement of water molecules and not solute molecules. This implies that the composition of the external saturating aqueous phase is a second order effect. Consequently CI- concentrations in the pore water could be calculated from the deduced pore water volume values and the measured CI- inventory. The pH of the pore water of a compacted bentonite is an extremely important parameter because of its influence on radionuclide solubility and sorption. Arguments are presented in support of the thesis that the initial pH is fixed by the high buffering capacity afforded by the amphoteric =SOH sites. The pH of the pore water depends directly on the speciation of these sites i.e. the proportions of sites present

  5. Measurements on cation exchange capacity of bentonite in the long-term test of buffer material (LOT)

    Muurinen, A.

    2011-01-01

    Determination of cation exchange capacity (CEC) of bentonite in the LOT experiment was the topic of this study. The measurements were performed using the complex of copper(II) ion with trietylenetetramine [Cu(trien)] 2+ as the index cation. Testing of the determination method suggested that (i) drying and wetting of the bentonite, and (ii) exchange time affect the obtained result. The real CEC measurements were carried out with the bentonite samples taken from the A2 parcel of the LOT experiment. The CEC values of the LOT samples were compared with those of the reference samples taken from the same bentonite batch before the compaction of the blocks for the experiment. The conclusions drawn have been made on the basis of the results determined with the wet bentonite samples using the direct exchange of two weeks with 0.01 M [Cu(trien)] 2+ solution because this method gave the most complete cation exchange in the CEC measurements. The differences between the samples taken from different places of the A2 parcel were quite small and close to the accuracy of the method. However, it seems that the CEC values of the field experiment are somewhat higher than the CEC of the reference samples and the values of the hot area are higher than those obtained from the low temperature area. It is also obvious that the variation of CEC increases with increasing temperature. (orig.)

  6. Diffusion mechanisms of strontium, cesium and cobalt in compacted sodium bentonite

    Muurinen, A.; Rantanen, J.; Penttilae-Hiltunen, P.

    1986-01-01

    For a porous water-saturated material where diffusion in the porewater, sorption on the solid material and diffusion of the sorbed ions (surface diffusion) occur, a diffusion equation can be derived where the apparent diffusivity includes two terms. One represents diffusion in the pore-water, the other surface diffusion. In this research diffusion mechanisms were studied. The apparent diffusivities of strontium, cesium and cobalt in compacted sodium bentonite were measured by a non-steady state method. The sorption factors were adjusted using different sodium chloride solutions, groundwater and addition of EDTA for saturation of the bentonite samples. The corresponding sorption factors were measured by a batch method. The results suggest that cations diffuse also while being sorbed. A combined pore diffusion-surface diffusion model has been used to explain the transport and the corresponding diffusivities have been evaluated. The surface diffusivities (D/sub s/) of Sr and Cs were 8-9 x 10 -12 m 2 /s and 4-7 x 10 -13 m 2 /s respectively. The pore diffusivity epsilon D/sub p/ of Cs was 3.5 x 10 -11 m 2 /s which has been used also for Sr. The sorption mechanisms of Co seems to be different from that of Sr or Cs and the results allow no specific conclusions of the diffusion mechanisms of Co. The apparent diffusivity of Co ranged from 2 x 10 -14 to 7 x 10 -14 m 2 /s. The anionic Co-EDTA seems to follow some other diffusion mechanism than the cations

  7. Diffusion of organic colloids in compacted bentonite. The influence of ionic strength on molecular size and transport capacity of the colloids

    Wold, S.; Eriksen, Trygve E.

    2000-09-01

    Diffusion of radionuclides in compacted bentonite can be affected by inorganic and organic colloids if the radionuclides form complexes with the colloids. Formation and mobility of the colloid-radionuclide complexes will be governed by the properties of the colloids as well as the competition between complexation and sorption of the radionuclides on bentonite. This report presents the results of experiments with organic colloids humic acid (HA) and lignosulfonate (LS). The aim of the experiments has been to describe the HA and LS properties: size distribution, acidity, sorption on bentonite, diffusivity in compacted bentonite, complexation with strontium, and diffusion of strontium in bentonite in the presence of HA. This study indicates that the diffusion of cationic radionuclides like Sr 2+ is not affected by the presence of HA in high ionic strength solution. In 0.1 M NaClO 4 solution, HA is most probably not available for complexation due to coiling and shielding of the negative sites

  8. Gas migration in KBS-3 buffer bentonite. Sensitivity of test parameters to experimental boundary conditions

    Harrington, J.F.; Horseman, S.T.

    2003-01-01

    In the current Swedish repository design concept, hydrogen gas can be generated inside a waste canister by anaerobic corrosion of the ferrous metal liner. If the gas generation rate exceeds the diffusion rate of gas molecules in the buffer porewater, gas will accumulate in the void-space of a canister until its pressure becomes large enough for it to enter the bentonite as a discrete gaseous phase. Three long tenn gas injection tests have been performed on cylinders of pre-compacted MX80 bentonite. Two of these tests were undertaken using a custom-designed constant volume and radial flow (CVRF) apparatus. Gas was injected at a centrally located porous filter installed in the clay before hydration. Arrangements were made for gas to flow to three independently monitored sink-filter arrays mounted around the specimen. Axial and radial total stresses and internal porewater pressures were continuously monitored. Breakthrough and peak gas pressures were substantially larger than the sum of the swelling pressure and the external porewater. The third test was performed. using an apparatus which radially constrains the specimen during gas flow. Observed sensitivity of the breakthrough and peak gas pressures to the test boundary conditions suggests that gas entry must be accompanied by dilation of the bentonite fabric. In other words, there is a tendency for the volume of the specimen to increase during this process. The experimental evidence is consistent with the flow of gas along a relatively small number of crack-like pathways which propagate through the clay as gas pressure increases. Gas entry and breakthrough under constant volume boundary conditions causes a substantial increase in the total stress and the internal porewater pressure. It is possible to determine the point at which gas enters the clay by monitoring changes in these parameters. Localisation of gas flow within multiple pathways results, in nonuniform discharge rates at the sinks. When gas injection

  9. Gas migration in KBS-3 buffer bentonite. Sensitivity of test parameters to experimental boundary conditions

    Harrington, J.F.; Horseman, S.T. [British Geological Survey, Nottingham (United Kingdom)

    2003-01-01

    In the current Swedish repository design concept, hydrogen gas can be generated inside a waste canister by anaerobic corrosion of the ferrous metal liner. If the gas generation rate exceeds the diffusion rate of gas molecules in the buffer porewater, gas will accumulate in the void-space of a canister until its pressure becomes large enough for it to enter the bentonite as a discrete gaseous phase. Three long tenn gas injection tests have been performed on cylinders of pre-compacted MX80 bentonite. Two of these tests were undertaken using a custom-designed constant volume and radial flow (CVRF) apparatus. Gas was injected at a centrally located porous filter installed in the clay before hydration. Arrangements were made for gas to flow to three independently monitored sink-filter arrays mounted around the specimen. Axial and radial total stresses and internal porewater pressures were continuously monitored. Breakthrough and peak gas pressures were substantially larger than the sum of the swelling pressure and the external porewater. The third test was performed. using an apparatus which radially constrains the specimen during gas flow. Observed sensitivity of the breakthrough and peak gas pressures to the test boundary conditions suggests that gas entry must be accompanied by dilation of the bentonite fabric. In other words, there is a tendency for the volume of the specimen to increase during this process. The experimental evidence is consistent with the flow of gas along a relatively small number of crack-like pathways which propagate through the clay as gas pressure increases. Gas entry and breakthrough under constant volume boundary conditions causes a substantial increase in the total stress and the internal porewater pressure. It is possible to determine the point at which gas enters the clay by monitoring changes in these parameters. Localisation of gas flow within multiple pathways results, in nonuniform discharge rates at the sinks. When gas injection

  10. Effect Of Coir Fibres On The Compaction And Unconfined Compressive Strength Of Bentonite-Lime-Gypsum Mixture

    Tilak B. Vidya

    2015-06-01

    Full Text Available This paper presents the effect of coir fibres on the compaction and unconfined compressive strength of a bentonite-lime-gypsum mixture. The coir fiber content varied from 0.5 to 2 %. The results indicated that the dry unit weight and the optimum moisture content of a bentonite – lime mix increased with the addition of gypsum. The unconfined compressive strength of the bentonite increased with the increase in the lime content up to 8 %. Beyond 8 %, the unconfined compressive strength decreased. The dry unit weight of the reference mix decreased, and the optimum moisture content increased with the addition of coir fibre. The unconfined compressive strength of the bentonite + 8 % lime mix increased up to 4 % with the gypsum. Beyond 4 %, the unconfined compressive strength decreased. The unconfined compressive strength of the reference mix increased with the addition of coir fibre up to a fibre content of 1.5 %. The unconfined compressive strength of the reference mix-coir fibre composite was less in comparison to the reference mix. The unconfined compressive strength of the bentonite increased with the addition of lime and gypsum and with the increase in the curing period. The improvement in the post-peak region was better for the reference mix with reinforced coir fibres as compared to the unreinforced reference mix. The improved post-peak behaviour of the bentonite-lime-gypsum-coir fibre mixture could boost the construction of temporary roads on such problematic soils. Further, its use will also provide an environmental motivation for providing a means of consuming large quantities of coir fibres.

  11. Geochemical Processes and compacted bentonite FEBEX with a thermohydraulic gradient with a thermohydraulic gradient; Procesos geoquimicos y modificaciones texturales en bentonita FEBEX compactada sometida a un gradiente termohidraulico

    Leguey Jimenez, S; Cuevas Rodriguez, J; Martin Barca, M; Vigil de la Villa Mencia, R.; Ramirez Martin, S; Garcia Gimenez, R [Universidad Autonoma de Madrid (Spain)

    2002-07-01

    At present, the main source of High Level radioactive Waste (HLW) is the electrical energy production during all sep of developing. In almost all the countries with nuclear programs, the option for the final management of HLW is the Deep Geological Repository (DGR), based on the concept of multi barrier. According to this concept, the wastes is isolated from biosphere by the interposition of confinement barrier. In the context of an investigation of the near field for a repository of HLW, the FEBEX Project, a set of laboratory test has been designed to give a better understanding of the thermo-hydro-mechanical and geochemical behaviour of the compacted bentonite as a confinement barrier. The object of these work is to analyse the properties of the bentonite and its behaviour under conditions that will be found in a repository. The precipitation of mineral phases, due to local changes in the chemical equilibrium and the hydration itself, can produce changes in the salinity of the interstitial water and in the microstructural organisation of the clay particles. the hydraulic and mechanical properties of the bentonite can be modified by the special conditions of the barrier. (Author)

  12. Laboratory studies on the effect of freezing and thawing exposure on bentonite buffer performance: Closed-system tests

    Schatz, T.; Martikainen, J. [B and Tech Oy, Helsinki (Finland)

    2010-12-15

    This report presents a set of results from laboratory studies on the effect of freezing and thawing on compacted bentonite buffer material. In order to evaluate the effect of freezing and thawing on compacted bentonite buffer performance a series of experiments were conducted using closed, constant-volume cells as follows: Pre- and post-freezing swelling pressure measurements were performed on fully saturated MX-80 and Deponit CA-N bentonite samples, at dry density values of approximately 1.6 g/cm{sup 3}, over five freeze/thaw cycles from room temperature to -18 deg C with rapid (instantaneous) temperature exposure. Pressure measurements were performed on fully saturated MX-80 bentonite samples, at dry density values of 1.470 and 1.501 g/cm{sup 3}, during a temperature run from room temperature to -10 deg C with step-change temperature exposure and back from -10 deg C to room temperature under continuous temperature change exposure at 0.1 deg C/h. Pressure measurements were performed on fully saturated MX-80 bentonite samples, encompassing a range of dry density values from 0.940 to 1.534 g/cm{sup 3}, during repeated temperature runs from room temperature to -10 deg C and back with continuous temperature change exposure at 0.1 deg C/h. Pressure measurements were performed on a fully saturated Deponit CA-N bentonite sample, at a dry density of 1.484 g/cm{sup 3}, during a temperature run from room temperature to -10 deg C and back with continuous temperature change exposure at 0.1 deg C/h. In some cases, hydraulic conductivity measurements were performed before and after freeze/thaw exposure. In general, exposure to freezing temperatures, down to an average temperature of -10 deg C, results in the development of significant internal pressures in compacted bentonite samples, which is attributed to the formation of ice. The specific test results are summarised as follows: Increases in pressure by factors of 1.5 to 2.2 were observed for MX-80 samples at dry densities

  13. On barrier performance of high compaction bentonite in facilities of disposing high level radioactive wastes in formation

    Ikeda, Hidefumi; Komada, Hiroya

    1989-01-01

    As for the method of disposing high level radioactive wastes generated in the reprocessing of spent fuel, at present formation disposal is regarded as most promising. The most important point in this formation disposal is to prevent the leak of radioactive nuclides within the disposal facilities into bedrocks and their move to the zone of human life. As the method of formation disposal, the canisters containing high level radioactive wastes are placed in the horizontal or vertical holes for disposal dug from horizontal tunnels which are several hundreds m underground, and the tunnels and disposal holes are filled again. For this filling material, the barrier performance to prevent and retard the leak of radioactive nuclides out of the disposal facilities is expected, and the characteristics of low water permeability, the adsorption of nuclides and long term stability are required. However, due to the decay heat of wastes just after the disposal, high temperature and drying condition arises, and this must be taken in consideration. The characteristics required for filling materials and the selection of the materials, the features and classification of bentonite, the properties of high compaction bentonite, and the move of water, heat and nuclides in high compaction bentonite are reported.(Kako, I.)

  14. Limits to the use of highly compacted bentonite as a deterrent for microbiologically influenced corrosion in a nuclear fuel waste repository

    Stroes-Gascoyne, Simcha; Hamon, Connie J.; Maak, Peter

    Recent studies have suggested that microbial activity in highly compacted bentonite (⩾1600 kg/m 3) is severely suppressed. Therefore, it appears that the dry density of emplaced bentonite barriers in a geological repository for nuclear waste may be tailored such that a microbiologically unfavorable environment can be created adjacent to used fuel containers. This would ensure that microbiologically influenced corrosion is a negligible contributor to the overall corrosion process. However, this premise is valid only as long as the emplaced bentonite maintains a uniform high dry density (⩾1600 kg/m 3) because it has been shown that high dry density only suppresses microbial activity but not necessarily eliminates the viable microbial population in bentonite. In a repository, a reduction in the dry density of highly compacted bentonite may occur at a number of interface locations, such as placement gaps, contact regions with materials of different densities and contact points with water-carrying fractures in the rock. Experiments were carried out in our laboratory to examine the effects of a reduction in dry density (from 1600 kg/m 3 to about 1000 kg/m 3) on the recovery of microbial culturability in compacted bentonite. Results showed that upon expansion of compacted bentonite into a void, the resulting reduction in dry density stimulated or restored culturability of indigenous microbes. In a repository this would increase the possibility of in situ activity, which might be detrimental for the longevity of waste containers. Reductions in dry density, therefore, should be minimized or eliminated by adequate design and placement methods of compacted bentonite. Materials compliance models can be used to determine the required as-placed dry densities of bentonite buffer and gap fillings to achieve specific targets for long-term equilibrium dry densities for various container placement room designs. Locations where flowing fractures could be in contact with highly

  15. The influence of sand content on swelling pressures and structure developed in statically compacted Na-bentonite

    Gray, M.N.; Cheung, S.C.H.; Dixon, D.A.

    1984-09-01

    A laboratory investigation of the vertical and lateral swelling pressures developed in statically compacted, air-dry specimens of sodium (Na)-bentonite:silica sand mixtures as they are saturated in confined conditions with double-distilled, deionized water is described. The results are interpreted with the aid of observations of the compacted soil structures made in a scanning electron microscope. It is shown that the sand acts as an inert filler material and vertical swelling pressures are controlled by a parameter termed the effective clay dry density (qsub(c)). A limiting value of qsub(c) exists below which vertical and lateral swelling pressures do not differ and are theoretically predictable. Above this value, vertical pressures exceed lateral ones. This is related to a change from an isotropic to an anisotropic soil fabric as qsub(c) is increased above the limiting value

  16. New quantitative methods for mineral and porosity mapping in clayey materials: application to the compacted bentonites of engineered barriers

    Pret, D.

    2003-12-01

    Clayey materials are well known for their non permeable properties and their textural changes between the dry and hydrated states. Their porous network is classically investigated in the dry state using bulk measurements. However, the relationship between porosity and mineral spatial heterogeneities in the hydrated state is poorly understood. The textural analysis limits induce some difficulties to understand the migration of solute species into compacted bentonites (as for nuclear waste repository). The goal of this work is to improve the analysis techniques for hydrated clayey materials in order to provide a multi-scale quantitative petrography. The bentonite samples are impregnated using a resin whose properties are close to water ones. The classical petrographic study reveals strong heterogeneities of spatial and size distributions of porosity and minerals. SEM images analysis allows a quantification and a simple mapping of pores and minerals into unaltered bentonites. Nevertheless, as alterations are suspected to happen in the repository context, two methods for the analysis of all types of materials have been also developed. Two specific softwares permits the treatments of autoradiographs and chemical element maps obtained using electron microprobe. The results are quantitative maps highlighting the spatial porosity heterogeneities from the decimetric to the micrometric scales. All pore sizes are taken into account including clay interlayer spaces. Moreover, an accurate mineral mapping is also supplied on millimetric areas with a spatial resolution close to the micrometer. In a widely point of view, this work provides new complementary tools for the textural analysis of fine grained materials and the improvement of migration modelling of solute species. (author)

  17. Thermodynamic data of water on smectite surface and those applications to swelling pressure of compacted bentonite

    Sato, H.

    2009-01-01

    Swelling pressure was discussed focusing on the thermodynamic properties of water on smectite (montmorillonite) which is the major clay mineral constituent of the bentonite buffer. The thermodynamic data of the water on the smectite surface were obtained as a function of water content and temperature in a range of dry density 0.6-0.9 Mg/m 3 . Purified Na-smectite of which all interlayer cations were exchanged with Na+ ions, was used. The activity (a H 2 O ) and the relative partial molar Gibbs free energy (ΔG H 2 O ) of the water were obtained at 25 C. Both a H 2 O and ΔG H 2 O decreased with a decrease of water content, and similar results were obtained to data reported for montmorillonite (Kunipia-F bentonite). Since the specific surface area of smectite is about 800 m 2 /g, water up to approximately 2 water layers from smectite surface is thermodynamically evaluated to be bound. Swelling pressure versus smectite partial density was calculated based on ΔG H 2 O and compared to data experimentally obtained for various kinds of bentonites. The calculated results were in good agreement with the measured data over the range of smectite partial density between 1.0 and 2.0 Mg/m 3 . (author)

  18. Modeling early in situ wetting of a compacted bentonite buffer installed in low permeable crystalline bedrock

    Dessirier, B.; Frampton, A.; Fransson, À.; Jarsjö, J.

    2016-08-01

    The repository concept for geological disposal of spent nuclear fuel in Sweden and Finland is planned to be constructed in sparsely fractured crystalline bedrock and with an engineered bentonite buffer to embed the waste canisters. An important stage in such a deep repository is the postclosure phase following the deposition and the backfilling operations when the initially unsaturated buffer material gets hydrated by the groundwater delivered by the natural bedrock. We use numerical simulations to interpret observations on buffer wetting gathered during an in situ campaign, the Bentonite Rock Interaction Experiment, in which unsaturated bentonite columns were introduced into deposition holes in the floor of a 417 m deep tunnel at the Äspö Hard Rock Laboratory in Sweden. Our objectives are to assess the performance of state-of-the-art flow models in reproducing the buffer wetting process and to investigate to which extent dependable predictions of buffer wetting times and saturation patterns can be made based on information collected prior to buffer insertion. This would be important for preventing insertion into unsuitable bedrock environments. Field data and modeling results indicate the development of a de-saturated zone in the rock and show that in most cases, the presence or absence of fractures and flow heterogeneity are more important factors for correct wetting predictions than the total inflow. For instance, for an equal open-hole inflow value, homogeneous inflow yields much more rapid buffer wetting than cases where fractures are represented explicitly thus creating heterogeneous inflow distributions.

  19. Effect of dry density and temperature on the hydraulic conductivity of domestic compacted bentonite as a buffer material in the high level waste repository

    Cho, Won Jin; Chun, Kwan Sik; Lee, Jae Owan

    1999-02-01

    This study is intended to investigate the effect of dry density and temperature on the hydraulic conductivity of domestic calcium bentonite. The dry densities of bentonite are 1.4 Mg/m 3 , 1.6 Mg/m 3 and 1.6 Mg/m, and the temperatures are in the range of 20 dg C to 150 dg C. The hydraulic conductivities of compacted bentonite with dry densities higher than 1.4 Mg/m 3 are lower than 10 -1 1 m/s, and are low enough to inhibit the radionuclide release by advection through the buffer. The hydraulic conductivities at the temperature of 150 dg C increase up to about 1 order higher than those at 20 dg C. (author). 28 refs., 5 tabs., 20 figs

  20. Consolidation and compaction as a means to prevent settlement of bentonite/sandy silt mixes for use in waste disposal sites

    Abeele, W.V.

    1985-01-01

    The texture of the local Los Alamos tuff is that of a sandy silt with a high hydraulic conductivity. The permeability is dramatically decreased by addition of small amounts of bentonite. The coefficient of consolidation for bentonite/sandy silt ratios decreases inversely proportional with the square of that ratio, whereas the compression index, the swelling index, and the permeability change index increase with increasing bentonite ratio. A strong relationship also exists between the void ratio and the logarithm of the applied stress for any given bentonite ratio. The empirical linear relationship between the void ratio and the logarithm of the applied stress, developed by Taylor, is excellent and enables us to limit the evaluation of conductivity at any void ratio to the measurement of the initial and the desired void ratio, the initial conductivity, and the permeability change index. The decrease in void ratio caused by consolidation or natural compaction of the mixes are scrutinized. Examples of expected settlement and subsidence are calculated based on the known geotechnical characteristics of bentonite/sandy silt mixes. Remedial actions, i.e., means to limit the amount of settlement, are considered. We finally discuss our field experiment, which studies the influence of subsidence on layered systems in general and on biobarriers in particular. 15 refs., 5 tabs

  1. bentonite-sand mixture as new backfill/buffer material

    Cui Suli; Liu Jisheng; Zhang Huyuan; Liang Jian

    2008-01-01

    The mixture of bentonite and quartz sand is suggested as a new backfill/buffer material for geological disposal of HLW. To improve the further design of underground laboratory and in-situ industrial construction test, the optimization of sand addition to bentonite is focused at present research stage. Based on summarizing the research results abroad, laboratory tests were conducted on the mixture of GMZ001 bentonite and quartz sand, such as compaction test and swelling tests etc. Test data shows that GMZ bentonite-sand mixture exhibits a favorite compaction with a 30% sand addition, a highest swelling pressure with a 20% sand addition, and a decreasing plasticity with increases in sand addition and pore liquid concentration. (authors)

  2. A coupled THC model of the FEBEX in situ test with bentonite swelling and chemical and thermal osmosis

    Zheng, L.; Samper, J.; Montenegro, L.

    2011-01-01

    The performance assessment of a geological repository for radioactive waste requires quantifying the geochemical evolution of the bentonite engineered barrier. This barrier will be exposed to coupled thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes. This paper presents a coupled THC model of the FEBEX (Full-scale Engineered Barrier EXperiment) in situ test which accounts for bentonite swelling and chemical and thermal osmosis. Model results attest the relevance of thermal osmosis and bentonite swelling for the geochemical evolution of the bentonite barrier while chemical osmosis is found to be almost irrelevant. The model has been tested with data collected after the dismantling of heater 1 of the in situ test. The model reproduces reasonably well the measured temperature, relative humidity, water content and inferred geochemical data. However, it fails to mimic the solute concentrations at the heater-bentonite and bentonite-granite interfaces because the model does not account for the volume change of bentonite, the CO 2 (g) degassing and the transport of vapor from the bentonite into the granite. The inferred HCO 3 - and pH data cannot be explained solely by solute transport, calcite dissolution and protonation/deprotonation by surface complexation, suggesting that such data may be affected also by other reactions.

  3. A coupled THC model of the FEBEX in situ test with bentonite swelling and chemical and thermal osmosis

    Zheng, L.; Samper, J.; Montenegro, L.

    2011-04-01

    The performance assessment of a geological repository for radioactive waste requires quantifying the geochemical evolution of the bentonite engineered barrier. This barrier will be exposed to coupled thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes. This paper presents a coupled THC model of the FEBEX (Full-scale Engineered Barrier EXperiment) in situ test which accounts for bentonite swelling and chemical and thermal osmosis. Model results attest the relevance of thermal osmosis and bentonite swelling for the geochemical evolution of the bentonite barrier while chemical osmosis is found to be almost irrelevant. The model has been tested with data collected after the dismantling of heater 1 of the in situ test. The model reproduces reasonably well the measured temperature, relative humidity, water content and inferred geochemical data. However, it fails to mimic the solute concentrations at the heater-bentonite and bentonite-granite interfaces because the model does not account for the volume change of bentonite, the CO{sub 2}(g) degassing and the transport of vapor from the bentonite into the granite. The inferred HCO{sub 3}{sup -} and pH data cannot be explained solely by solute transport, calcite dissolution and protonation/deprotonation by surface complexation, suggesting that such data may be affected also by other reactions.

  4. Swelling characteristics of Gaomiaozi bentonite and its prediction

    De'an Sun

    2014-04-01

    Full Text Available Gaomiaozi (GMZ bentonite has been chosen as a possible matrix material of buffers/backfills in the deep geological disposal to isolate the high-level radioactive waste (HLRW in China. In the Gaomiaozi deposit area, calcium bentonite in the near surface zone and sodium bentonite in the deeper zone are observed. The swelling characteristics of GMZ sodium and calcium bentonites and their mixtures with sand wetted with distilled water were studied in the present work. The test results show that the relationship between the void ratio and swelling pressure of compacted GMZ bentonite-sand mixtures at full saturation is independent of the initial conditions such as the initial dry density and water content, but dependent on the ratio of bentonite to sand. An empirical method was accordingly proposed allowing the prediction of the swelling deformation and swelling pressure with different initial densities and bentonite-sand ratios when in saturated conditions. Finally, the swelling capacities of GMZ Na- and Ca-bentonites and Kunigel Na-bentonite are compared.

  5. Theory and calculation of water distribution in bentonite in a thermal field

    Carnahan, C.L.

    1988-09-01

    Highly compacted bentonite is under consideration for use as a buffer material in geological repositories for high-level radioactive wastes. To assess the suitability of bentonite for this use, it is necessary to be able to predict the rate and spatial extent of water uptake and water distribution in highly compacted bentonite in the presence of thermal gradients. The ''Buffer Mass Test'' (BMT) was conducted by workers in Sweden as part of the Stripa Project. The BMT measured uptake and spatial distributions of water infiltrating annuli of compacted MX-80 sodium bentonite heated from within and surrounded by granite rock; the measurements provided a body of data very valuable for comparison to results of theoretical calculations. Results of experiments on adsorption of water by highly compacted MX-80 bentonite have been reported by workers in Switzerland. The experiments included measurements of heats of immersion and adsorption-desorption isotherms. These measurements provide the basis for prediction of water vapor pressures in equilibrium with bentonite having specified adsorbed water contents at various temperatures. The present work offers a phenomenological description of the processes influencing movement of water in compacted bentonite in the presence of a variable thermal field. The theory is applied to the bentonite buffer-water system in an assumed steady state of heat and mass transport, using critical data derived from the experimental work done in Switzerland. Results of the theory are compared to distributions of absorbed water in buffers observed in the Swedish BMT experiments. 9 refs., 2 figs

  6. The corrosion rate of copper in a bentonite test package measured with electric resistance sensors

    Rosborg, Bo [Division of Surface and Corrosion Science, KTH, Stockholm (Sweden); Kosec, Tadeja; Kranjc, Andrej; Kuhar, Viljem; Legat, Andraz [Slovenian National Building and Civil Engineering Institute, Ljubljana (Slovenia)

    2012-12-15

    LOT1 test parcel A2 was exposed for six years in the Aespoe Hard Rock Laboratory, which offers a realistic environment for the conditions that will prevail in a deep repository for high-level radioactive waste disposal in Sweden. The test parcel contained copper electrodes for real-time corrosion monitoring in bentonite ring 36, where the temperature was 24 deg C, and copper coupons in bentonite rings 22 and 30, where the temperature was higher. After retrieval of the test parcel in January 2006, a bentonite test package consisting of bentonite rings 35 - 37 was placed in a container and sealed with a thick layer of paraffin. Later the same year new copper electrodes were installed in the test package. In January 2007 electric resistance (ER) sensors of pure copper with a thickness of 35 {mu}m were also installed in the test package mainly to facilitate the interpretation of the results from the real-time corrosion monitoring with electrochemical techniques. The ER measurements have shown that the corrosion rate of pure copper exposed in an oxic bentonite/ saline groundwater environment at room temperate decreases slowly with time to low but measurable values. The corrosion rates estimated from the regularly performed EIS measurements replicate the ER data. Thus, for this oxic environment in which copper acquires corrosion potentials of the order of 200 mV (SHE) or higher, electrochemical measurements provide believable data. Comparing the recorded ER data with an estimate of the average corrosion rate based on comparing cross-sections from exposed and protected sensor elements, it is obvious that the former overestimates the actual corrosion rate, which is understandable. It seems as if electrochemical measurements can provide a better estimate of the corrosion rate; however, this is quite dependent on the use of proper measuring frequencies and evaluation methods. In this respect ER measurements are more reliable. It has been shown that real-time corrosion

  7. The corrosion rate of copper in a bentonite test package measured with electric resistance sensors

    Rosborg, Bo; Kosec, Tadeja; Kranjc, Andrej; Kuhar, Viljem; Legat, Andraz

    2012-12-01

    LOT1 test parcel A2 was exposed for six years in the Aespoe Hard Rock Laboratory, which offers a realistic environment for the conditions that will prevail in a deep repository for high-level radioactive waste disposal in Sweden. The test parcel contained copper electrodes for real-time corrosion monitoring in bentonite ring 36, where the temperature was 24 deg C, and copper coupons in bentonite rings 22 and 30, where the temperature was higher. After retrieval of the test parcel in January 2006, a bentonite test package consisting of bentonite rings 35 - 37 was placed in a container and sealed with a thick layer of paraffin. Later the same year new copper electrodes were installed in the test package. In January 2007 electric resistance (ER) sensors of pure copper with a thickness of 35 μm were also installed in the test package mainly to facilitate the interpretation of the results from the real-time corrosion monitoring with electrochemical techniques. The ER measurements have shown that the corrosion rate of pure copper exposed in an oxic bentonite/ saline groundwater environment at room temperate decreases slowly with time to low but measurable values. The corrosion rates estimated from the regularly performed EIS measurements replicate the ER data. Thus, for this oxic environment in which copper acquires corrosion potentials of the order of 200 mV (SHE) or higher, electrochemical measurements provide believable data. Comparing the recorded ER data with an estimate of the average corrosion rate based on comparing cross-sections from exposed and protected sensor elements, it is obvious that the former overestimates the actual corrosion rate, which is understandable. It seems as if electrochemical measurements can provide a better estimate of the corrosion rate; however, this is quite dependent on the use of proper measuring frequencies and evaluation methods. In this respect ER measurements are more reliable. It has been shown that real-time corrosion

  8. Gas permeability of bentonite barriers: development, construction and testing of a measurement system

    Heraldo Nunes Pitanga

    Full Text Available Abstract This article proposes a testing device to quickly and reliably estimate the gas permeability of bentonite-based clay barriers used in landfill cover systems. The testing methodology is based on a transient gas flow regime that passes through the barrier, therefore not requiring the use of sophisticated equipment that aim to maintain constant differential pressure and measure the gas flow, common requirements for testing methods under a permanent flow regime. To confirm the feasibility of the proposed technique, tests were performed on a pure hydrated bentonite layer, which subsequently encompassed samples of geosynthetic clay liner (GCL at different moisture contents. Geosynthetic clay liners are often selected as a part of the barrier layer for cover systems in solid waste landfills to prevent infiltration of rainfall and migration of biogas into the atmosphere. The results confirmed the equipment reliability and differentiate the different responses of the gas flow barriers studied, considering their different compositions and different moistures.

  9. Can the water content of highly compacted bentonite be increased by applying a high water pressure?

    Pusch, R.; Kasbohm, J.

    2001-10-01

    A great many laboratory investigations have shown that the water uptake in highly compacted MX-80 clay takes place by diffusion at low external pressure. It means that wetting of the clay buffer in the deposition holes of a KBS-3 repository is very slow if the water pressure is low and that complete water saturation can take several tens of years if the initial degree of water saturation of the buffer clay and the ability of the rock to give off water are low. It has therefore been asked whether injection of water can raise the degree of water saturation and if a high water pressure in the nearfield can have the same effect. The present report describes attempts to moisten highly compacted blocks of MX-80 clay with a dry density of 1510 kg/m 3 by injecting water under a pressure of 650 kPa through a perforated injection pipe for 3 and 20 minutes, respectively. The interpretation was made by determining the water content of a number of samples located at different distances from the pipe. An attempt to interpret the pattern of distribution of injected uranium acetate solution showed that the channels into which the solution went became closed in a few minutes and that dispersion in the homogenized clay gave low U-concentrations. The result was that the water content increased from about 9 to about 11-12 % within a distance of about 1 centimeter from the injection pipe and to slightly more than 9 % at a distance of about 4-5 cm almost independently of the injection time. Complete water saturation corresponds to a water content of about 30 % and the wetting effect was hence small from a practical point of view. By use of microstructural models it can be shown that injected water enters only the widest channels that remain after the compaction and that these channels are quickly closed by expansion of the hydrating surrounding clay. Part of the particles that are thereby released become transported by the flowing water and cause clogging of the channels, which is

  10. Understanding the Alteration of Bentonite Backfill Using Coupled THMC Modeling for a Long Term Heater Test at the Grimsel Underground Research Lab

    Birkholzer, J. T.; Zheng, L.; Xu, H.; Rutqvist, J.

    2017-12-01

    Compacted bentonite is commonly used as backfill material in emplacement tunnels of nuclear waste repositories because of its low permeability, high swelling pressure, and retardation capacity of radionuclide. To assess whether this backfill material can maintain these favorable features when undergoing heating from the waste package and hydration from the host rock, we need a thorough understanding of the thermal, hydrological, mechanical, and chemical evolution of bentonite under disposal conditions. Dedicated field tests integrated with THMC modeling provide an effective way to deepen such understanding. Here, we present coupled THMC models for an in situ heater test which was conducted at the Grimsel Test Site in Switzerland for 18 years. The comprehensive monitoring data obtained in the test provide a unique opportunity to evaluate bentonite integrity and test coupled THMC models. We developed a modeling strategy where conceptual model complexity is increased gradually by adding/testing processes such as Non-Darcian flow, enhanced vapor diffusion, thermal osmosis and different constitutive relationships for permeability/porosity changes due to swelling. The final THMC model explains well all the THM data and the concentration profiles of conservative chemical species. Over the course of modeling the in situ test, we learned that (1) including Non-Darcian flow into the model leads to a significant underestimation of hydration rate of bentonite, (2) chemical data provide an important additional piece of information for calibrating a THM model; (3) key processes needed to reproduce the data include vapor diffusion, as well as porosity and permeability changes due to swelling and thermal osmosis; (4) the concentration profiles of cations (calcium, potassium, magnesium and sodium) were largely shaped by transport processes despite their concentration levels being affected by mineral dissolution/precipitation and cation exchange. The concentration profiles of p

  11. Gas Transport in Bentonite

    Villar, M. V.; Gutierre-Rodrigo, V.; Martin, P. I.; Romero, F. J.; Barcala, J. M.

    2013-07-01

    The gas permeability of the Spanish FEBEX bentonite compacted at dry densities of between 1.4 and 1.8 g/cm{sup 3} with high water contents was measured for different confining, injection and back pressures. The results were compared with results obtained in previous investigations for lower degrees of saturation. It was checked that gas permeability was greatly affected by dry density, decreasing about three orders of magnitude when it increased from 1.5 to 1.8 g/cm{sup 3} for similar water content. The increase of water content caused also a decrease in gas permeability. It was found that both gas permeability and the relative gas permeability were mainly related to the accessible porosity. These relationships could be fitted to potential expressions with exponents between 3 and 4, as well as the relationship between intrinsic permeability and void ratio. For gas pressures below 1.2 MPa no effect of the injection or confining pressures on the value of permeability was detected. For a given confining pressure the permeability value decreased as the effective pressure increased, especially if the increase in effective pressure was due to a decrease in gas back pressure. It was checked that the Klinkenberg effect was not significant for this material in the range of pressures applied in the tests. The gas breakthrough pressure values in FEBEX saturated bentonite were determined for different dry densities. They increased clearly with dry density and were always higher than the swelling pressure of the bentonite. In high density samples gas flow tended to stop abruptly after breakthrough, whereas in lower density samples gas flow decreased gradually until a given pressure gradient was reached. The permeabilities computed after breakthrough (which usually did not stabilise) were inversely related to dry density. This would indicate that, even if the flow took place predominantly through preferential pathways that sometimes closed quickly after breakthrough and others

  12. Gas Transport in Bentonite

    Villar, M. V.; Gutierrez-Rodrigo, V.; Martin, P. L.; Romero, F. J.; Barcala, J. M.

    2013-01-01

    The gas permeability of the Spanish FEBEX bentonite compacted at dry densities of between 1.4 and 1.8 g/cm 3 with high water contents was measured for different confining, injection and back pressures. The results were compared with results obtained in previous investigations for lower degrees of saturation. It was checked that gas permeability was greatly affected by dry density, decreasing about three orders of magnitude when it increased from 1.5 to 1.8 g/cm 3 for similar water content. The increase of water content caused also a decrease in gas permeability. It was found that both gas permeability and the relative gas permeability were mainly related to the accessible porosity. These relationships could be fitted to potential expressions with exponents between 3 and 4, as well as the relationship between intrinsic permeability and void ratio. For gas pressures below 1.2 MPa no effect of the injection or confining pressures on the value of permeability was detected. For a given confining pressure the permeability value decreased as the effective pressure increased, especially if the increase in effective pressure was due to a decrease in gas back pressure. It was checked that the Klinkenberg effect was not significant for this material in the range of pressures applied in the tests. The gas breakthrough pressure values in FEBEX saturated bentonite were determined for different dry densities. They increased clearly with dry density and were always higher than the swelling pressure of the bentonite. In high density samples gas flow tended to stop abruptly after breakthrough, whereas in lower density samples gas flow decreased gradually until a given pressure gradient was reached. The permeabilities computed after breakthrough (which usually did not stabilise) were inversely related to dry density. This would indicate that, even if the flow took place predominantly through preferential pathways that sometimes closed quickly after breakthrough and others remained

  13. Effect of material parameters on the compactibility of backfill materials

    Keto, P.; Kuula-Vaeisaenen, P.; Ruuskanen, J.

    2006-05-01

    The effect of different parameters on compactibility of mixture of bentonite and ballast as well as Friedland-clay was studied in laboratory with two different types of compaction tests. The material parameters varied were grain size distribution of the ballast material, grain shape, water ratio and bentonite content (15/30%). The other parameters varied were salinity of the mixing water, mixing process and compaction method and energy. Ballast materials with varying grain size distributions were produced from Olkiluoto mica-gneiss with different type of crushing processes. In addition, sand was chosen for ballast material due to its uniform grain size distribution and rounded grain shape. The maximum grain size of the ballast materials was between 5-10 mm. When comparing the compactibility of ballast materials, the highest dry densities were gained for ballast materials with graded grain size distribution. The compaction behaviour of the tested bentonite ballast mixtures is dominated by the bentonite content. The other parameters varied did not have significant effect on the compactibility of the mixtures with bentonite content of 30%. This can be explained with the amount of bentonite that is higher than what is needed to fill up the volume between the ballast grains. The results gained with the two different compaction tests are comparable. Both the bentonite/ballast mixtures and the Friedland clay behaved similarly when compacted with three different compaction pressures (180, 540 and 980 kPa). (orig.)

  14. Tests for the characterization of bentonite used in the manufacture of clay geo synthetic barriers (GBR-C)

    Leiro, A.; Mateo, B.; Garcia, H.; Llorente, S.

    2011-01-01

    Bentonites are clays essentially composed of the smectite minerals. they are used in the manufacture of Clay Geosynthetic Barriers )GBR-C) which are low-permeability geosynthetic materials, forming part of the lining technologies and construction waterproofing systems. This article shows a series of testing to evaluate the quality of the bentonite for such use. Correlation between different testing has also been established in order to identify the most suitable ones for their characterization. (Author) 8 refs.

  15. Near Field sorption Data Bases for Compacted MX-80 Bentonite for Performance Assessment of a High-Level Radioactive Waste Repository in Opalinus Clay Host Rock

    Bradbury, M.; Baeyens, B

    2003-08-01

    Bentonites of various types and compacted forms are being investigated in many countries as backfill materials in high-level radioactive waste disposal concepts. Nagra is currently considering an Opalinus clay (OPA) formation in the Zuercher Weinland as a potential location for a high-level radioactive waste repository. A compacted MX-80 bentonite is foreseen as a potential backfill material. Performance assessment studies will be performed for this site and one of the requirements for such an assessment are sorption data bases (SDB) for the bentonite near-field. The purpose of this report is to describe the procedures used to develop the SDB. One of the pre-requisites for developing a SDB is a water chemistry for the compacted bentonite porewater. For a number of reasons mentioned in the report, and discussed in more detail elsewhere, this is not a straightforward task. There are considerable uncertainties associated with the major ion concentrations and in particular with the system pH and Eh. The MX-80 SDB was developed for a reference bentonite porewater (pH = 7.25) which was calculated using the reference OPA porewater. In addition, two further SDBs are presented for porewaters calculated at pH values of 6.9 and 7.9 corresponding to lower and upper bound values calculated for the range of groundwater compositions anticipated for the OPA host rock. 'In house' sorption isotherm data were measured for Cs(I), Ni(II), Eu(III), Th(IV), Se(IV) and 1(-1) on the 'as received' MX-80 material equilibrated with a simulated porewater composition. Complementary 'in house' sorption edge and isotherm measurements on conditioned Na/Ca montmorillonites were also available for many of these radionuclides. These data formed the core of the SDB. Nevertheless, some of the required sorption data still had to be obtained from the open literature. An important part of this report is concerned with describing selection procedures and the modifications

  16. Long-term gas migration modelling in compacted bentonite using swelling/shrinkage-dependent two phase flow parameters

    Tawara, Y.; Mori, K.; Tada, K.; Shimura, T.; Sato, S.; Yamamoto, S.; Asano, H.; Namiki, K.

    2012-01-01

    Document available in extended abstract form only. After the completion of field-scaled Gas Migration Test (GMT) at the Grimsel Test Site (GTS Phase V Project, 1996-2004), an advanced gas migration modelling study has been implemented to increase the accuracy and reliability as a part of the R and D programs by the Radioactive Waste Management funding and research Center (RWMC) in Japan. The multiple gas migration modes which consist of diffusive transport of dissolved gas, conventional two phase flow, pore failure induced microscopic fissuring and macroscopic fracturing flow, were identified in GMT bentonite. However the required parameters and constitutive models governing those modes are still uncertain. To tackle this issue, an extended validation and scoping study aiming to generalize such gas migration behavior has been performed in the advanced gas migration modelling study. One of the main objectives of the validation study is to identify gas migration modes using laboratory test data and to qualify the alternative models and parameters. In the scoping study, we have extracted the specific THMC (Thermal, Hydrological, Mechanical and Chemical) coupled processes which have impacts on the performance measures such as the pressure built-up in EBS (Engineered Barrier System) and expelled water to the geosphere by gas generation and transport. The measured data of hydration tests and gas injection tests using bentonite specimens with different water contents were reproduced. Two phase flow parameters were estimated using the observed data of both types of tests, independently. The simulated results of the conventional two phase flow model were well-matched with the hydration test data. In the gas injection test, the extended two phase flow model which simulates the pressure-induced pore failure (pathway dilation), was able to reproduce observed data reasonably. However, we found that the identified parameters obtained from the hydration test data were

  17. Sealing performance assessments of bentonite and bentonite/crushed rock plugs

    Ouyang, Shoung.

    1990-01-01

    Bentonite and mixtures of bentonite and crushed rock are potential sealing materials for high level nuclear waste repositories. The materials have been used to form cap layers to reduce infiltration for mined waste tailings and can also be used to construct clay liners for municipal as well as industrial waste managements. American Colloid C/S granular dentonite and Apache Leap tuff have been mixed to prepare samples for laboratory flow testing. Bentonite weight percent and crushed tuff gradation are the major variables studied. The sealing performance assessments include high injection pressure flow tests, polyaxial flow tests, high temperature flow tests, and piping tests. The results indicate that an appropriate composition would have at least 25% bentonite by weight mixed with well-graded crushed rock. Hydraulic properties of the mixture plugs may be highly anisotropic if significant particle segregation occurs during sample installation and compaction. Temperature has no negative effects on the sealing performance within the test range from room temperature to 60C. The piping damage to the sealing performance is small if the maximum hydraulic gradient does not exceed 120 and 280 for 25 and 35% bentonite content, respectively. The hydraulic gradients above which flow of bentonite may take place are deemed critical. Analytical work includes the introduction of bentonite occupancy percentage and water content at saturation as two major parameters for the plug design. A permeability model developed is useful for the prediction of permeability in clays. A piping model permits the estimation of critical hydraulic gradient allowed before the flow of bentonite takes place. It can also be used to define the maximum allowable pore diameter of a protective filter layer

  18. Correlation of index tests with smectite content determined with XRD in bentonite and smectite rich clays

    Kumpulainen, Sirpa; Kiviranta, Leena; Korkeakoski, Petri

    2012-01-01

    Document available in extended abstract form only. Various index tests are used by bentonite producers and users to assess the amount of swelling minerals in bentonites and smectite rich clays. Index tests are meant to provide relative fast and inexpensive way of testing the amount of swelling minerals, and their performance should not require sophisticated equipment. Such index tests are e.g. methylene blue absorption test, liquid limit and swelling index test (free swelling). In order to select appropriate index test to control the quality of buffer and backfill materials to be used in nuclear waste end disposal in Finland, results from various index tests were correlated with the smectite content determined with XRD and Rietveld refinement. Tests evaluated were: water absorption capacity (WAC) based on DIN 18132, swelling index (SI) based on ASTM D 5890-06, cation exchange capacity (CEC) based on Cu(II)-trien adsorption by Meier and Kahr (1999) and Ammann et al. (2005), liquid limit (LL) based on CEN ISO/TS 17892- 12:2004, methylene blue absorption (MB) based on SFS-EN 933-9, and specific surface area based on absorption of ethylene glycol monoethyl ether (EGME) described by Cerato and Lutenegger (2002). The number of samples tested was 6-25 (exact number of samples was dependent on the test method), and included natural Na-bentonites, natural Ca-bentonites, sodium activated Ca-bentonites and smectite rich clays from Wyoming/USA, Milos/Greece, Gujarat/India and Friedland/Germany. Smectite content in samples was determined after Kiviranta and Kumpulainen (2011) by x-ray diffraction (XRD), optical microscopy, chemical analyses, and full-pattern fitting with the Rietveld method using Siroquant software. Exchangeable cation composition was determined after Belyayeva (1967) and Jackson (1975). In order to achieve correlation of index test results with smectite content, water absorption capacity, liquid limit, and swelling index methods required additional information

  19. Physical and hydraulic characteristics of bentonite-amended soil from Area 5, Nevada Test Site

    Albright, W.

    1995-08-01

    Radioactive waste requires significant isolation from the biosphere. Shallow land burial using low-permeability covers are often used to prevent the release of impounded material. This report details the characterization of a soil mixture intended for use as the low-permeability component of a radioactive waste disposal site. The addition of 6.5 percent bentonite to the sandy soils of the site reduced the value of saturated hydraulic conductivity (K s ) by more than two orders of magnitude to 7.6 x 10- 8 cm/sec. Characterization of the soil mixture included measurements of grain density, grain size distribution, compaction, porosity, dry bulk density, shear strength, desiccation shrinkage, K s , vapor conductivity, air permeability, the characteristic water retention function, and unsaturated hydraulic conductivity by both experimental and numerical estimation methods. The ability of the soil layer to limit infiltration in a simulated application was estimated in a one-dimensional model of a landfill cover

  20. Modifications in Compacted MX-80 Bentonite Due to Thermo-Hydraulic Treatment; Modificaciones en la Bentonita MX-80 Compactada Sometida a Tratamiento Termo-Hidraulico

    Gomez-Espina, R.; Villar, M. V.

    2013-09-01

    The thermo-hydraulic tests reproduce the thermal and hydraulic conditions to which bentonite is subjected in the engineered barrier of a deep geological repository of radioactive waste. The results of thermo-hydraulic test TBT1500, which was running for approximately 1500 days, are presented. This is a continuation to the Technical Report Ciemat 1199, which presented results of test TBT500, performed under similar conditions but with duration of 500 days. In both tests the MX-80 bentonite was used with initial density and water content similar to those of the large-scale test TBT. The bentonite column was heated at the bottom at 140 degree centigrade and hydrated on top with deionized water. At the end of the test a sharp water content gradient was observed along the column, as well as an inverse dry density gradient. Hydration modified also the bentonite microstructure. Besides, an overall decrease of the smectite content with respect to the initial value took place, especially in the most hydrated areas where the percentage of interest ratified illite increased and in the longer test. On the other hand, the content of cristobalite, feldspars and calcite increased. Smectite dissolution processes (probably colloidal) occurred, particularly in the more hydrated areas and in the longer test. Due to the dissolution of low-solubility species and to the loss of exchangeable positions in the smectite, the content of soluble salts in the pore water increased with respect to the original one, especially in the longer test. The solubilized ions were transported; sodium, calcium, magnesium and sulphate having a similar mobility, which was in turn lower than that of potassium and chloride. The cationic exchange complex was also modified. (Author)

  1. Customized bentonite pellets. Manufacturing, performance and gap filling properties

    Marjavaara, P.; Holt, E.; Sjoeblom, V. [VTT Technical Research Centre of Finland, Espoo (Finland)

    2013-12-15

    The goal of this work was to provide knowledge about how to manufacture customized bentonite pellets and how customized bentonite pellets perform in practice during the nuclear repository construction process. The project was mainly focused on laboratory experimental tests to optimize the pellet filling by customizing the raw materials and pellet manufacturing. Bentonite pellets were made using both extrusion and roller compaction methods. The pellets were intended for use in gaps between compacted bentonite and the rock walls in both buffer deposition holes and tunnel backfilling. Performance of different types of custom-made pellets were evaluated with regard to their ease of manufacturing, density, crush strength, abrasion resistance, water holding capacity, free swelling and also their thermal conductivity. These evaluations were done in both Finland (by VTT) and Canada (by AECL). Over 50 different varieties of pellets were roller-compaction manufactured at AECL in Canada and 20 types of extrusion pellets at VTT in Finland. The parameters that were varied during manufacturing included: bentonite raw material type, water content, pellet sizes, bentonite compaction machine parameters, use of recycled pellets, and addition of two different types of filler (illite or granitic sand) at varying addition percentages. By examining the pellets produced with these methods and materials the performance and behaviour of the bentonite pellets were evaluated in laboratory with selected tests. The work done using extrusion pellets showed that it was possible to manufacture pellets with higher water contents, up to 21 % from MX-80. This water content value was higher than what was typically possible using roller-compaction method in this study. Higher water content values allow closer compatibility with the designed bentonite buffer water content. The extrusion tests also showed that the required production simulation runs could be made successfully with reference type of MX

  2. Thermo-mechanical cementation effects in bentonite investigated by unconfined compression tests

    Dueck, Ann; Boergesson, Lennart; Karnland, Ola

    2010-01-01

    Document available in extended abstract form only. Mechanical properties of buffer material are included in the model used for predicting the physical behaviour of saturated buffer in the final disposal of spent nuclear fuel. One simple test where the mechanical properties can be quantified is the unconfined compression test. In this type of test the relation between stress and strain are determined from axial compression of a cylindrical specimen. In the project LOT the unconfined compression test was used to study the mechanical properties on field exposed buffer material. The results from these test series showed that specimens exposed to warm conditions had a significantly reduced strain at failure compared to reference material. Changes in mechanical properties may be due to incipient chemical changes in the material. However, the present study focuses on other possible sources for brittle failure behaviour. In this study the objective was to experimentally investigate if deviating stress-strain behaviour measured after temperature exposure could be explained by Thermo-Hydro-Mechanical processes. The word cementation is used as a general term for the process involving a change in mechanical properties including brittleness at failure. A relatively large number of specimens were tested representing sodium dominated and calcium dominated bentonites. Cylindrical specimens were compacted from air dry powder to a height and diameter of 20 mm. The main part of the specimens was put in a saturation device prior to the tests in order to ensure full saturation. After the saturation each sample was placed in a mechanical press where a constant rate of strain was applied axially to the specimens having no radial confinement. During the test the deformation and the applied force were measured by means of force and strain transducers. After failure the water content and density were determined. Test series were carried out for investigating the influence of for example

  3. Development of construction methods for high-density bentonite barriers using premixed spraying. Part 1. Laboratory tests on methods of spraying roughly crushed bentonite and investigation of mixing methods

    Kobayashi, Ichizo; Tanaka, Toshiyuki; Nakajima, Makoto; Toida, Masaru

    2006-01-01

    According to the present concept of geological disposal of radioactive waste, a disposal facility should consist of a bentonite-engineered barrier, a cementitious-engineered barrier, and natural barriers. To guarantee the validity of the geological disposal concept, the bentonite-engineered barrier must have high impermeability. However, an effective construction method for high-density bentonite-engineered barriers in narrow spaces such as those in radioactive waste geological disposal sites has not been developed. Therefore, the authors have developed a spraying method that has high workability in narrow spaces as a method of constructing bentonite-engineered barriers in narrow spaces. This paper describes the production method for a spraying material and an examination through spraying tests of the spraying distance, the shapes of the spray nozzles, and the ratio of spraying material to air. The test results confirmed that a bentonite-engineered barrier of dry density 1.6 Mg/m 3 could be constructed using the spraying method developed and that the appropriate spraying conditions for the construction of high-density bentonite barriers were obtained. Moreover, the authors developed a construction quality management method using the silicon oil specific-gravity method that can clearly and promptly indicate the dry density of the sprayed bentonite. (author)

  4. Bentonite erosion. Laboratory studies

    Jansson, Mats (Div. of Nuclear Chemistry, Royal Inst. of Technology, Stockholm (Sweden), School of Chemical Science and Engineering)

    2009-11-15

    This report covers the laboratory studies that have been performed at Nuclear Chemistry, KTH in the project 'Bentonite Erosion'. Many of the experiments in this report were performed to support the work of the modelling group and were often relatively simple. One of the experiment series was performed to see the impact of gravity and concentration of mono- and di-valent cations. A clay suspension was prepared in a test tube. A net was placed in contact with the suspension, the test tube was filled with solutions of different concentrations and the system was left overnight to settle. The tube was then turned upside down and the behaviour was visually observed. Either the clay suspension fell through the net or stayed on top. By using this method surprisingly sharp determinations of the Critical Coagulation (Flocculation) Concentration (CCC/CFC) could be made. The CCC/CFC of Ca2+ was for sodium montmorillonite determined to be between 1 and 2 mM. An artificial fracture was manufactured in order to simulate the real case scenario. The set-up was two Plexiglas slabs separated by 1 mm thick spacers with a bentonite container at one side of the fracture. Water was pumped with a very low flow rate perpendicular to bentonite container and the water exiting the fracture was sampled and analyzed for colloid content. The bentonite used was treated in different ways. In the first experiment a relatively montmorillonite rich clay was used while in the second bentonite where only the readily soluble minerals had been removed was used. Since Plexiglas was used it was possible to visually observe the bentonite dispersing into the fracture. After the compacted bentonite (1,000 kg/m3) had been water saturated the clay had expanded some 12 mm out into the fracture. As the experiment progressed the clay expanded more out into the fracture and seemed to fractionate in two different phases with less material in the outmost phase. A dark rim which was later analyzed to contain

  5. Structural analysis of closure cap barriers: A pre-test study for the Bentonite Mat Demonstration Project

    Gong, Chung; Pelfrey, J.R.

    1993-01-01

    The Bentonite Mat Demonstration Project (BMDP) is a field demonstration study to determine the construction/installation requirements, permeability, and subsidence performance characteristics of a composite barrier. The composite barrier will consist of on-site sandy-clay blanketed by a bentonite mat and a flexible High Density Polyethylene (HDPE) liner (also called flexible membrane liner). Construction of one control test pad and three bentonite test pads are planned. The control test pad will be used to establish baseline data. Underneath the composite clay cap is a four feet thick loose sand layer in which cavities will be created by evacuation of sand. The present work provides a mathematical model for the BMDP. The mathematical model will be used to simulate the mechanical and structural responses of the composite clay cap during the testing processes. Based upon engineering experience and technical references, a set of nominal soil parameters have been selected

  6. Mineralogy of the A2 test parcel bentonite lot project at Aespoe HRL

    Olsson, Siv; Karnland, Ola

    2010-01-01

    Document available in extended abstract form only. The ongoing LOT test series at the Aespoe Hard Rock Laboratory in Sweden is focused on quantifying the mineralogical alteration in the buffer in a repository-like environment. The LOT A2 test parcel was exposed to temperatures up to 130 deg. C for almost 6 years. The parcel was retrieved in 2006 and the bentonite has thereafter been analyzed and tested. The chemical and mineralogical characteristics of bentonite from defined positions in the parcel were compared with reference materials. The aim of the study was to elucidate how the bentonite has altered. The present study concern two bentonite blocks from the hottest section and one block from the cool section of the test parcel. The entire volume of the two warm blocks 09 and 11 was exposed to temperatures > 80 deg. C, and the innermost 4 centimeters to temperatures exceeding 100 deg. C. Block no. 33 was never exposed to temperatures exceeding 30 deg. C, apart from the innermost centimeter. The blocks were sampled contiguously at five positions along the radius from the warm copper tube to the rock. Both the bulk material and the clay fraction of the bentonite samples have been analyzed. The chemical composition of the reference and the parcel bentonite was determined by ICP emission spectrometry (AES) and ICP mass spectrometry (MS). Total carbon and sulfur were determined by evolved gas analysis (EGA). Carbonate carbon was determined as CO 2 evolved on treatment with hot 15% HCl. Prior to the chemical analysis of the clay fractions, carbonates were removed by treatment with an acetic acid-sodium acetate buffer with pH 5. The purified clay was thereafter converted to homo-ionic Na-clay by repeated washings with 1 M NaCl solution and excess salts were removed by repeated centrifuge-washing with water followed by dialysis. The cation exchange capacity (CEC) of bulk materials and of clay fractions was determined by exchange with copper-(II)- triethylene

  7. Model for diffusion and porewater chemistry in compacted bentonite. Theoretical basis and the solution methodology for the transport model

    Lehikoinen, J.

    1997-01-01

    This report describes the progress of the computer model for ionic transport in bentonite. The research is part of the project Microstructural and chemical parameters of bentonite as determinants of waste isolation efficiency within the Nuclear fission safety program organized by The Commission of the European Communities. The study was started by collecting a comprehensive body of available data on space-charge transport modelling and creating a conceptualization of the problem at hand. The numerical discretization of the governing equations by finite differences was also initiated. This report introduces the theoretical basis for the model, somewhat more elaborated than presented in Progress Report 1/1996, and rectifies a few mistakes appearing in that report. It also gives a brief introduction to the solution methodology of the disc retized governing equations. (orig.) (12 refs.)

  8. Methodological study of the diffusion of interacting cations through clays. Application: experimental tests and simulation of coupled chemistry-diffusion transport of alkaline ions through a synthetical bentonite

    Melkior, Th.

    2000-01-01

    The subject of this work deals with the project of underground disposal of radioactive wastes in deep geological formations. It concerns the study of the migration of radionuclides through clays. In these materials, the main transport mechanism is assumed to be diffusion under natural conditions. Therefore, some diffusion experiments are conducted. With interacting solutes which present a strong affinity for the material, the duration of these tests will be too long, for the range of concentrations of interest. An alternative is to determine on one hand the geochemical retention properties using batch tests and crushed rock samples and, on the other hand, to deduce the transport parameters from diffusion tests realised with a non-interacting tracer, tritiated water. These data are then used to simulate the migration of the reactive elements with a numerical code which can deal with coupled chemistry-diffusion equations. The validity of this approach is tested by comparing the numerical simulations with the results of diffusion experiments of cations through a clay. The subject is investigated in the case of the diffusion of cesium, lithium and sodium through a compacted sodium bentonite. The diffusion tests are realised with the through-diffusion method. The comparison between the experimental results and the simulations shows that the latter tends to under estimate the propagation of the considered species. The differences could be attributed to surface diffusion and to a decrease of the accessibility to the sites of fixation of the bentonite, from the conditions of clay suspensions in batch tests to the situation of compacted samples. The influence of the experimental apparatus used during the diffusion tests on the results of the measurement has also been tested. It showed that these apparatus have to be taken into consideration when the experimental data are interpreted. A specific model has been therefore developed with the numerical code CASTEM 2000. (author)

  9. BENTONITE PROCESSING

    Anamarija Kutlić

    2012-07-01

    Full Text Available Bentonite has vide variety of uses. Special use of bentonite, where its absorbing properties are employed to provide water-tight sealing is for an underground repository in granites In this paper, bentonite processing and beneficiation are described.

  10. Diffusion of I{sup -}, Cs{sup +}, and Sr{sup 2+} in compacted bentonite - Anion exclusion and surface diffusion

    Eriksen, T.E.; Jansson, Mats [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Nuclear Chemistry

    1996-11-01

    The diffusion of I, Cs and Sr ions in bentonite compacted to a dry density of 1.8 gr/cm{sup 3} and saturated with two groundwaters of different ionic strength have been studied experimentally using the through diffusion technique. The I{sup -} diffusivity and diffusion porosity were found to be concentration independent in the concentration range exp(-8) to exp(-2) mol/dm{sup 3}. The diffusion porosity, being only a fraction of the water porosity for normal groundwaters, is strongly ionic strength dependent due to anion exclusion. The dependence of the diffusion of Cs{sup +} and Sr{sup 2+} on the sorption intensity is accommodated by a model encompassing diffusion of the sorbed cations within the electrical double layer next to the mineral surface in addition to diffusion in the pore water. 18 refs, 12 figs.

  11. LOT A2 Test, THC-modelling of bentonite buffer in a final repository of spent nuclear fuel

    Itaelae, A.; Olin, M.; Rasilainen, K.; Pulkkanen, V.M.

    2010-01-01

    Document available in extended abstract form only. The Finnish spent nuclear fuel disposal is planned to be based on the KBS-3V repository concept. Within this concept, the role of the bentonite buffer is considered to be central. The aim of this study was to model the evolution of the buffer during the thermal phase (heat-generating period of spent fuel), when the bentonite is only partially saturated initially, and the surrounding rock matrix is assumed to be fully saturated. It is essential to study how temperature will affect saturation and also how both of these affect the chemistry of bentonite. In order to make the modeling more concrete, an example experimental case was considered: Long Term Test of Buffer Materials (LOT) A2-parcel test at the Aespoe Hard Rock Laboratory (HRL) in Sweden. In the A2-parcel the MX-80 bentonite was exposed to adverse (120-150 deg. C) temperature conditions and high temperature gradients. The test parcel diameter was smaller than in the actual KBS-3V deposition hole to speed up the saturation. The chemical behaviour of minerals causes their redistribution inside the bentonite. For example, according to the laboratory tests, gypsum dissolves and anhydrite precipitates near the heater-bentonite interface. Also, incoming groundwater affects the bentonite pore water and its properties. These changes may, in turn, influence the mechanical properties of the bentonite. A coupled Thermo-Hydro-Chemical (THC) model was applied, which means that all mechanical effects were ignored. The purpose of the model was first to achieve a satisfactory match between the model and experimental results, and, therefore, the time frame was limited to ten years (LOT A-2 parcel test lasted approximately 6 years). The system was simplified to 1-D in order to reduce the computational work, which can be very significant due to complex chemical calculations. The 1-D model results are reported in Itaelae (2009). The aim is to extend the calculations to 2-D

  12. Prediction of pressure of bentonite buffer in model test of disposal pit for high-level radioactive waste

    Komine, Hideo; Osada, Toru; Takao, Hajime; Ueda, Hiroyoshi

    2013-01-01

    Bentonite-based buffer materials for high-level radioactive waste (HLW) disposal are expected to fill up the space between buffer and a wall of the disposal pit, and/or between buffer and an waste-container called as overpack by its swelling deformation. That is called as self-sealing ability. This study performs the model tests simulated the relationship between buffer and space mentioned above. It also investigates the validity of the theoretical equations for evaluating the swelling characteristics of bentonite-based buffer and backfill material, which were proposed in Komine and Ogata (2003, 2004), by comparing the calculations and the experimental results. (author)

  13. MX-80 Bentonite. Thermal-Hydro-Mechanical Characterisation Performed at CIEMAT in the Context of the Prototype Project

    Villar, M. V.

    2005-01-01

    This document details the results of the thermo-hydro-mechanical (THM) characterisation of the commercial MX-80 bentonite performed by CIEMAT from 2001 to 2004 in the context of a project carried out at the AEspoe Hard Rock Laboratory (Sweden), the Prototype Repository. The swelling pressure and the permeability of the bentonite compacted to different dry densities has been determined, as well as the influence of the permeant salinity on hydraulic conductivity. The influence of salinity on the retention capacity of the compacted bentonite has been studied. For that, a new methodology has been designed. Water retention curves have been determined at temperatures of 20 and 60 0 C. Suction controlled odometer tests have been performed at 20oC. Finally, the behaviour of the MX-80 bentonite has been compared to that of the Spanish FEBEX bentonite. (Author) 13 refs

  14. MX-80 Bentonite. thermal-Hydro-Mechanical Characterisation Performed at CIEMAT in the Context of the Prototype Project

    Villar, M. V.

    2005-07-01

    This document details the results of the thermo-hydro-mechanical (THM) characterisation of the commercial MX-80 bentonite performed by CIEMAT from 2001 to 2004 in the context of a project carried out at the AEspoe Hard Rock Laboratory (Sweden), the Prototype Repository. The swelling pressure and the permeability of the bentonite compacted to different dry densities has been determined, as well as the influence of the permeant salinity on hydraulic conductivity. The influence of salinity on the retention capacity of the compacted bentonite has been studied. For that, a new methodology has been designed. Water retention curves have been determined at temperatures of 20 and 60oC. Suction controlled odometer tests have been performed at 20oC. Finally, the behaviour of the MX-80 bentonite has been compared to that of the Spanish FEBEX bentonite. (Author) 13 refs.

  15. Bentonite in the repository - Manufacture of bentonite blocks. A literature study

    Hultgren, Aa.

    1995-09-01

    Activities in nuclear power countries are reviewed, concerning developments in the use of bentonite for backfilling in nuclear waste repositories, in particular regarding manufacture of bentonite-blocks. Only one report was found which in detail describes the manufacture of highly compacted blocks of bentonite. Use of bentonite for sealing boreholes etc in the oil- and gas industry was also covered in the literature study. 19 refs, 3 tabs

  16. Uniaxial backfill block compaction

    Koskinen, V.

    2012-05-01

    The main parts of the project were: to make a literature survey of the previous uniaxial compaction experiments; do uniaxial compaction tests in laboratory scale; and do industrial scale production tests. Object of the project was to sort out the different factors affecting the quality assurance chain of the backfill block uniaxial production and solve a material sticking to mould problem which appeared during manufacturing the blocks of bentonite and cruched rock mixture. The effect of mineralogical and chemical composition on the long term functionality of the backfill was excluded from the project. However, the used smectite-rich clays have been tested for mineralogical consistency. These tests were done in B and Tech OY according their SOPs. The objective of the Laboratory scale tests was to find right material- and compaction parameters for the industrial scale tests. Direct comparison between the laboratory scale tests and industrial scale tests is not possible because the mould geometry and compaction speed has a big influence for the compaction process. For this reason the selected material parameters were also affected by the previous compaction experiments. The industrial scale tests were done in summer of 2010 in southern Sweden. Blocks were done with uniaxial compaction. A 40 tons of the mixture of bentonite and crushed rock blocks and almost 50 tons of Friedland-clay blocks were compacted. (orig.)

  17. Swelling and hydraulic properties of Ca-bentonite for the buffer of a waste repository

    Lee, J.O.; Cho, W.J.; Kang, C.H.; Chun, K.S.

    2001-01-01

    Swelling and hydraulic tests were carried out to provide the information for the selection of buffer material in a radioactive waste repository. Ca-bentonite and de-ionized water were used for the tests. The swelling pressures of compacted bentonite were in the wide range of 0.7 Kg/cm 2 to 190.2 Kg/cm 2 , and they largely increased with an increase in the dry density and bentonite content. However, the swelling pressures decreased with increasing the initial water content and beyond about 12 wt.% of the initial water content, leveled off to a nearly constant value. The hydraulic conductivities were lower than 10 -11 m/s for the compacted bentonite with the dry density higher than 1.4 Mg/m 3 . They increased with increasing temperature in the range of 20 deg. C to 150 deg. C. (author)

  18. Survey on current status of laboratory test method and experimental consideration for establishing standardized procedure of material containing bentonite. Report of collaboration research between JAEA and CRIEPI (Joint research)

    Tanai, Kenji; Kikuchi, Hirohito; Nakamura, Kunihiko; Tanaka, Yukihisa; Hironaga, Michihiko

    2010-08-01

    In the current concept of repository for radioactive waste disposal, compacted bentonite as well as bentonite based material will be used as an engineered barrier mainly for inhibiting migration of radioactive nuclides. In most cases, properties of bentonite, such as low permeability etc., are obtained by laboratory tests. However, results of laboratory tests of bentonite often vary considerably even if index parameter, such as effective clay density, is constant. One of the causes of the variability is considered to be lack of standardized method of laboratory test for bentonite. Thus standardization of laboratory test methods for bentonite is needed. So, investigation for establishing standardized laboratory test method of bentonite is conducted based on the results of survey on current status of laboratory test method for bentonite. In particular, the literature survey as well as laboratory tests were conducted to find factors affecting the results of laboratory tests for bentonite and to estimate their degree of influence. The following conclusions are obtained through this study. (1) Hydraulic conductivity test. According to the results of literature survey, it is revealed that constant pressure permeability test and consolidation test are currently used for measuring hydraulic conductivity of bentonite and that (a) hydraulic gradient, (b) local seepage flow between lateral surface of the specimen and lateral wall of the container, (c) water pressure which is applied to the specimen, (d) degree of saturation and (e) size of the specimen possibly affect the results of the constant pressure permeability test, while (f) friction between lateral surface of the specimen and lateral wall of the container accompanied by deformation of the specimen, (g) consolidation pressure together with factors (d), (e) affect the results of the consolidation test. Literature which describes that factors (a), (b) and (e) affect the results of the constant pressure permeability test

  19. Corrosion of high-level radioactive waste iron-canisters in contact with bentonite.

    Kaufhold, Stephan; Hassel, Achim Walter; Sanders, Daniel; Dohrmann, Reiner

    2015-03-21

    Several countries favor the encapsulation of high-level radioactive waste (HLRW) in iron or steel canisters surrounded by highly compacted bentonite. In the present study the corrosion of iron in contact with different bentonites was investigated. The corrosion product was a 1:1 Fe layer silicate already described in literature (sometimes referred to as berthierine). Seven exposition test series (60 °C, 5 months) showed slightly less corrosion for the Na-bentonites compared to the Ca-bentonites. Two independent exposition tests with iron pellets and 38 different bentonites clearly proved the role of the layer charge density of the swelling clay minerals (smectites). Bentonites with high charged smectites are less corrosive than bentonites dominated by low charged ones. The type of counterion is additionally important because it determines the density of the gel and hence the solid/liquid ratio at the contact to the canister. The present study proves that the integrity of the multibarrier-system is seriously affected by the choice of the bentonite buffer encasing the metal canisters in most of the concepts. In some tests the formation of a patina was observed consisting of Fe-silicate. Up to now it is not clear why and how the patina formed. It, however, may be relevant as a corrosion inhibitor. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Corrosion of high-level radioactive waste iron-canisters in contact with bentonite

    Kaufhold, Stephan, E-mail: s.kaufhold@bgr.de [BGR, Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover (Germany); Hassel, Achim Walter [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, D-40237 Düsseldorf (Germany); Institute for Chemical Technology of Inorganic Materials, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); Sanders, Daniel [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, D-40237 Düsseldorf (Germany); Dohrmann, Reiner [BGR, Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover (Germany); LBEG, Landesamt für Bergbau, Energie und Geologie, Stilleweg 2, D-30655 Hannover (Germany)

    2015-03-21

    Graphical abstract: Corrosion at the bentonite iron interface proceeds unaerobically with formation of an 1:1 Fe silicate mineral. A series of exposure tests with different types of bentonites showed that Na–bentonites are slightly less corrosive than Ca–bentonites and highly charges smectites are less corrosive compared to low charged ones. The formation of a patina was observed in some cases and has to be investigated further. - Highlights: • At the iron bentonite interface a 1:1 Fe layer silicate forms upon corrosion. • A series of iron–bentonite corrosion products showed slightly less corrosion for Na-rich and high-charged bentonites. • In some tests the formation of a patina was observed consisting of Fe–silicate, which has to be investigated further. - Abstract: Several countries favor the encapsulation of high-level radioactive waste (HLRW) in iron or steel canisters surrounded by highly compacted bentonite. In the present study the corrosion of iron in contact with different bentonites was investigated. The corrosion product was a 1:1 Fe layer silicate already described in literature (sometimes referred to as berthierine). Seven exposition test series (60 °C, 5 months) showed slightly less corrosion for the Na–bentonites compared to the Ca–bentonites. Two independent exposition tests with iron pellets and 38 different bentonites clearly proved the role of the layer charge density of the swelling clay minerals (smectites). Bentonites with high charged smectites are less corrosive than bentonites dominated by low charged ones. The type of counterion is additionally important because it determines the density of the gel and hence the solid/liquid ratio at the contact to the canister. The present study proves that the integrity of the multibarrier-system is seriously affected by the choice of the bentonite buffer encasing the metal canisters in most of the concepts. In some tests the formation of a patina was observed consisting of Fe

  1. Laboratory tests of bentonite stabilization of bottom sediments from a dam reservoir in relation to their usage in municipal solid waste landfill liners

    Karolina Koś

    2016-09-01

    Full Text Available Geotechnical parameters of bottom sediments from a dam reservoir (Rzeszowski Reservoir, Poland with bentonite addition are presented in the paper. Tests were carried out in the aspect of the possible usage of sediments as a material for soil liners in Municipal Solid Waste Landfill. Mentioned sediments did not fulfilled the permeability and plasticity criteria defined for soils that can be used in liners. The bentonite addition caused, among other things, a decrease in permeability coefficient and increase in plasticity index. Based on the carried out tests it was stated that sediments with 6% addition of bentonite fulfil all requirements and can be used for liners in MSWL.

  2. Thermo-mechanical cementation effects in bentonite investigated by unconfined compression tests

    Dueck, Ann

    2010-01-01

    Results from the project LOT showed that specimens exposed to warm conditions had a significantly reduced strain at failure compared to reference material. The objective of the present study was to investigate the impact of parameters such as temperature, density, water content and degree of saturation on the occurrence of brittleness at failure of bentonite specimens. To quantify the influence of the different parameters the unconfined compression test was used on specimens with a height and diameter of 20 mm. In this test the relation between stress and strain is determined from axial compression of a cylindrical specimen. Brittle failure is in this investigation mainly seen on specimens having a density of ρ ≥ 2,060 kg/m 3 or on specimens exposed to high temperature T ≥ 150 deg C in the laboratory. Brittle failure behaviour was also seen on unsaturated specimens with a degree of saturation less than Sr i = 0% before saturation, on specimens with a final degree of saturation of S r ≤ 97% and also on one specimen subjected to consolidation during preparation. Brittle failure and reduced strain were noticed in the heated field exposed material in the LOT project. Similar behaviour was also observed in the present short term laboratory tests. However, the specimens in the present study showing this behaviour had higher density, lower degree of saturation or were exposed to higher temperatures than the field exposed specimens

  3. Bentonite erosion - Laboratory studies

    Jansson, Mats

    2010-01-01

    Document available in extended abstract form only. Bentonite clay is proposed as buffer material in the KBS-3 concept of storing spent nuclear fuel. Since the clay is plastic it will protect the canisters containing the spent fuel from movements in the rock. Furthermore, the clay will expand when taking up water, become very compact and hence limit the transport of solutes to and from the canister to only diffusion. The chemical stability of the bentonite barrier is of vital importance. If much material would be lost the barrier will lose its functions. As a side effect, lots of colloids will be released which may facilitate radionuclide transport in case of a breach in the canister. There are scenarios where during an ice age fresh melt water may penetrate down to repository depths with relatively high flow rates and not mix with older waters of high salinity. Under such conditions bentonite colloids will be more stable and there is a possibility that the bentonite buffer would start to disperse and bentonite colloids be carried away by the passing water. This work is a part of a larger project called Bentonite Erosion, initiated and supported by SKB. In this work several minor experiments have been performed in order to investigate the influence of for instance di-valent cations, gravity, etc. on the dispersion behaviour of bentonite and/or montmorillonite. A bigger experiment where the real situation was simulated using an artificial fracture was conducted. Two Plexiglas slabs were placed on top of each other, separated by plastic spacers. Bentonite was placed in a container in contact with a fracture. The bentonite was water saturated before deionized water was pumped through the fracture. The evolution of the bentonite profile in the fracture was followed visually. The eluate was collected in five different slots at the outlet side and analyzed for colloid concentration employing Photon Correlation Spectroscopy (PCS) and a Single Particle Counter (SPC). Some

  4. The distinct element analysis for swelling pressure test of bentonite. Discussion on the effects of wall friction force and aspect ratio of specimen

    Shimizu, Hiroyuki; Kikuchi, Hirohito; Fujita, Tomoo; Tanai, Kenji

    2011-10-01

    For geological isolation systems for radioactive waste, bentonite based material is assumed to be used as a buffer material. The swelling characteristics of the bentonite based material are expected to fill up the void space around the radioactive wastes by swelling. In general, swelling characteristics and properties of bentonite are evaluated by the laboratory tests. However, due to the lack of standardization of testing method for bentonite, the accuracy and reproducibility of the testing results are not sufficiently proved. In this study, bentonite swelling pressure test were simulated by newly developed Distinct Element Method (DEM) code, and the effects of wall friction force and aspect ratio of bentonite specimen were discussed. As a result, the followings were found. In the beginning of the swelling pressure test, since swelling occurs only around the fluid injection side of the specimen, wall friction force acts only in the swelling area and the specimen moves to opposite side from fluid injection side. However, when the entire specimen started swelling, displacement of the specimen prevented by the wall friction force, and the specimen is pressed against the pressure measurement side. Then, the swelling pressure measured on the pressure measurement side increases. Such displacement in the specimen is significantly affected by the decreasing of mechanical properties and the difference of saturation in the bentonite specimen during the fluid infiltration. Moreover, when the aspect ratio of the specimen is large, the displacement of the particle in the specimen becomes large and the area on which the wall frictional force acts is also large. Therefore, measured swelling pressure increases more greatly as the aspect ratio of the specimen increases. To contributes to the standardization of laboratory test methods for bentonite, these effects of wall friction force revealed by the DEM simulation should be verified through laboratory experiments. (author)

  5. Borehole sealing with highly compactd Na bentonite

    Pusch, R.

    1981-12-01

    This report describes the use of highly compacted Na bentonite for borehole plugging. Bentonites have an extremely low permeability and a low diffusivity, and a swelling ability which produces a nonleaching boundary between clay and rock if the initial bulk density of the bentonite is sufficiently high. The suggested technique, which is applicable to long vertical, and inclined, as well as horizontal boreholes, is based on the use of perforated copper pipes to insert elements of compacted bentonite. Such pipe segments are connected at the rock surface and successively inserted in the hole. When the hole is equipped, the clay takes up water spontaneously and swells through the perforation, and ultimately forms an almost completely homogenous clay core. It embeds the pipe which is left in the hole. Several tests were conducted in the laboratory and one field test was run in Stripa. They all showed that a gel soon fills the slot between the pipe and the confinement which had the form of metal pipes in the laboratory investigations. Subsequently, more clay migrates through the perforation and produces a stiff clay filling in the slot. The redistribution of minerals, leading ultimately to a high degree of homogeneity, can be described as a diffusion process. The rate of redistribution depends on the joint geometry and water flow pattern in the rock. In the rock with an average joint frequence of one per meter or higher, very good homogeneity and sealing ability of the clay are expected within a few months after the application of the plug. (author)

  6. Water uptake and stress development in bentonites and bentonite-sand buffer materials

    Dixon, D.A.; Wan, A.W-L.; Gray, M.N.; Miller, S.H.

    1996-10-01

    The development of swelling pressure and the transfer of pore water pressures through dense bentonite and bentonite-sand materials are examined in this report. This report focuses on the swelling pressure and total pressure developed in initially unsaturated specimens allowed access to free water on one end. The bentonite in this wetted region rapidly develops its full swelling pressure and this pressure is transferred upwards through the specimen. Hence, the bentonite plug will exert a pressure approximately equivalent to the swelling pressure even though only a small region of the plug is actually saturated. A number of specimens were tested with total pressure sensors mounted normal and parallel to the axis of compaction. Lateral pressures developed long before the wetting front reached sensor locations, suggesting stress transfer through the unsaturated portions of these specimens. On achieving saturation, specimens were found to have similar swelling pressures both normal to and parallel to the axis of compaction. This indicates that there is little or no specimen anisotropy induced by the compaction process. Tests were conducted on specimens allowed only to take on a limited quantity of water and it was found that density anisotropy was induced as the result of the swelling pressures generated by the buffer. The wetted skin of buffer developed a considerable pressure and compressed a region of buffer immediately above the wetted region. The results suggest that the buffer material placed in a disposal vault will rapidly develop and transfer swelling pressures as a result of the saturation of a limited region or 'skin' within the emplacement site. The total pressure ultimately present on the container surface should be the sum of the swelling and hydraulic components. (author). 14 refs., 4 tabs., 8 figs

  7. Thermo-mechanical cementation effects in bentonite investigated by unconfined compression tests

    Dueck, Ann (Clay Technology AB, Lund (Sweden))

    2010-01-15

    Results from the project LOT showed that specimens exposed to warm conditions had a significantly reduced strain at failure compared to reference material. The objective of the present study was to investigate the impact of parameters such as temperature, density, water content and degree of saturation on the occurrence of brittleness at failure of bentonite specimens. To quantify the influence of the different parameters the unconfined compression test was used on specimens with a height and diameter of 20 mm. In this test the relation between stress and strain is determined from axial compression of a cylindrical specimen. Brittle failure is in this investigation mainly seen on specimens having a density of rho >= 2,060 kg/m3 or on specimens exposed to high temperature T >= 150 deg C in the laboratory. Brittle failure behaviour was also seen on unsaturated specimens with a degree of saturation less than Sr < 90%. Failure at reduced strain was seen in this investigation on specimens exposed to T = 150 deg C, on specimens having a water content of w{sub i} = 0% before saturation, on specimens with a final degree of saturation of S{sub r} <= 97% and also on one specimen subjected to consolidation during preparation. Brittle failure and reduced strain were noticed in the heated field exposed material in the LOT project. Similar behaviour was also observed in the present short term laboratory tests. However, the specimens in the present study showing this behaviour had higher density, lower degree of saturation or were exposed to higher temperatures than the field exposed specimens

  8. Studies on mechanical behavior of bentonite for development of the constitutive model

    Sasakura, Tsuyoshi; Kuroyanagi, Mikio; Okamoto, Michitaka

    2002-02-01

    To integrate the system for evaluation of long-term hydraulic condition in near field of TRU waste disposal, series of laboratory tests were conducted to investigate the effect of (1) cation exchange of Na-bentonite for Ca ion, and (2) the swelling behavior of bentonite, on its mechanical and hydraulic properties. For the purpose of this study, same lot of bentonite was used in a series of tests to obtain consistent data. A constitutive model of clayey materials, called Cam-clay model, was expanded conceptually to express the effects mentioned above. The research results of this year are summarized below; 1) Some basic properties such as cation exchange capacity, particle density, grain size distribution, compaction-characteristics and water content were obtained. To examine the effect of previous swelling history of bentonite on its swelling characteristics and hydraulic and mechanical properties, specimens, which generated swelling deformation to various volumetric strain levels, were specially prepared and used in the following tests. Swelling pressure tests, swelling deformation tests, permeability tests were conducted to observe one dimensional swelling characteristics and hydraulic properties of Na-bentonite and Ca-bentonite. High-pressured triaxial consolidated-undrained (CU) compression tests and high-pressured consolidation tests were also carried out to investigate the compression, swelling, and shearing behavior of each type of bentonite. 2) As indicated in previous studies, two important phenomena (1) bentonite possesses remarkable swelling capacity, (2) cation exchange of Na-bentonite for Ca-ion lead increasing of hydraulic conductivity, were confirmed in the test results. From the swelling deformation test results and published data, it was found that swelling capacity of bentonite has no dependency on previous swelling history and it could be easily expressed as a function of void ratio e. It was also confirmed that swelling pressure and water

  9. Mobility and survival of sulphate-reducing bacteria in compacted and fully water saturated bentonite - microstructural aspects

    Pusch, R.

    1999-12-01

    Sulphate-reducing bacteria will not be able to enter MX-80 buffer clay with the intended bulk density, i.e. 1900-2100 kg/m 3 . Nor will they be able to survive and migrate in such environment. The only circumstances under which sulphate-reducing bacteria can enter, survive and migrate in engineered soil barriers in a KBS-3-type repository are those prevailing in backfills with lower MX-80 contents than about 10 % or in more smectite-rich, poorly compacted backfills saturated with electrolyte-rich pore water with Ca as dominating cation. In the phase of hydration and expansion of canister-embedding buffer, bacteria can enter the initially very soft clay gel at the rock/buffer contact to a depth of about a centimeter

  10. Mobility and survival of sulphate-reducing bacteria in compacted and fully water saturated bentonite - microstructural aspects

    Pusch, R. [Geodevelopment AB, Lund (Sweden)

    1999-12-01

    Sulphate-reducing bacteria will not be able to enter MX-80 buffer clay with the intended bulk density, i.e. 1900-2100 kg/m{sup 3}. Nor will they be able to survive and migrate in such environment. The only circumstances under which sulphate-reducing bacteria can enter, survive and migrate in engineered soil barriers in a KBS-3-type repository are those prevailing in backfills with lower MX-80 contents than about 10 % or in more smectite-rich, poorly compacted backfills saturated with electrolyte-rich pore water with Ca as dominating cation. In the phase of hydration and expansion of canister-embedding buffer, bacteria can enter the initially very soft clay gel at the rock/buffer contact to a depth of about a centimeter.

  11. Methodological study of the diffusion of interacting cations through clays. Application: experimental tests and simulation of coupled chemistry-diffusion transport of alkaline ions through a synthetical bentonite; Etude methodologique de la diffusion de cations interagissants dans les argiles. Application: mise en oeuvre experimentale et modelisation du couplage chimie-diffusion d'alcalins dans une bentonite synthetique

    Melkior, Th

    2000-07-01

    The subject of this work deals with the project of underground disposal of radioactive wastes in deep geological formations. It concerns the study of the migration of radionuclides through clays. In these materials, the main transport mechanism is assumed to be diffusion under natural conditions. Therefore, some diffusion experiments are conducted. With interacting solutes which present a strong affinity for the material, the duration of these tests will be too long, for the range of concentrations of interest. An alternative is to determine on one hand the geochemical retention properties using batch tests and crushed rock samples and, on the other hand, to deduce the transport parameters from diffusion tests realised with a non-interacting tracer, tritiated water. These data are then used to simulate the migration of the reactive elements with a numerical code which can deal with coupled chemistry-diffusion equations. The validity of this approach is tested by comparing the numerical simulations with the results of diffusion experiments of cations through a clay. The subject is investigated in the case of the diffusion of cesium, lithium and sodium through a compacted sodium bentonite. The diffusion tests are realised with the through-diffusion method. The comparison between the experimental results and the simulations shows that the latter tends to under estimate the propagation of the considered species. The differences could be attributed to surface diffusion and to a decrease of the accessibility to the sites of fixation of the bentonite, from the conditions of clay suspensions in batch tests to the situation of compacted samples. The influence of the experimental apparatus used during the diffusion tests on the results of the measurement has also been tested. It showed that these apparatus have to be taken into consideration when the experimental data are interpreted. A specific model has been therefore developed with the numerical code CASTEM 2000. (author)

  12. Coupled behaviour of bentonite buffer results of PUSKURI project

    Olin, M.; Rasilainen, K.; Itaelae, A.

    2011-08-01

    In the report main results form a KYT2010 programme's project Coupled behaviour of bentonite buffer (PUSKURI) are presented. In THC modelling, Aku Itaelae made and published his Master of Science Thesis. Itaelae was able to successfully model the LOT-experiment. Additionally, he also listed problems and development proposals for THC-modelling of bentonite buffer. VTT and Numerola created in collaboration a model coupling saturation, diffusion and cation exchange; the model was implemented and tested in Numerrin, COMSOL and TOUGHREACT. Petri Jussila's PhD THM-model was implemented into COMSOL to facilitate further development. At GTK, the mineralogical characterisation of bentonite was planned. The previous THM model (Jussila's model) including only small deformations was successfully generalized to finite deformations in way at least formally preserving the original formalism. It appears that the theory allows also a possibility to include finite plastic deformations in the theory. In order to measure the relevant mechanical properties of compacted bentonite, two different experiments, namely hydrostatic compression experiment and one-dimensional compression experiment were designed. In the hydrostatic compression experiment, a cylindrical sample of compacted bentonite covered with liquid rubber coating is placed in the sample chamber equipped with a piston. The same device was also used in one-dimensional compression experiment. X-ray microtomographic techniques were used in order to study the basic mechanisms of water transport in bentonite. The preliminary results indicate that in the present experimental set-up, water transport is dominated by a dispersive mechanism such as diffusion of vapour in gas phase or diffusion of water in solid phase. (orig.)

  13. Copper corrosion in bentonite: Studying of parameters (pH, Eh/O2) of importance for Cu corrosion

    Carlsson, T.; Muurinen, A.

    2007-06-01

    The report describes the development of methods and equipment for studying the parameters (pH, Eh/O 2 ) of importance for copper corrosion. The work involved the fabrication of electrodes for determining Eh and pH in compacted water-saturated bentonite. MX-80 and the Indian Asha 505 bentonites were used in the study. The redox-measurements were carried out by using electrodes prepared of Au and Pt wires. The pH measurements were carried out by using solid IrO x electrodes. The report describes testing of electrodes in different solutions and in bentonite. A destructive method for determining oxygen content in compacted bentonite was tested, too. The electrodes were used in measurements inside compacted bentonite with about the same density as is intended to be used in the Finnish repository for spent nuclear fuel. The results indicate that Au and Pt redox-electrodes and IrO x pH electrodes function in compacted bentonite. The oxygen measurement in bentonite seems to work, too, and can complement the Eh measurements. Eh-values in originally aerobic bentonite samples having a dry densitiy of ≤1.5 g/cm 3 , exhibit mostly a decrease during the first days, which may mainly be ascribed to the depletion of oxygen. The Eh-decrease thereafter is probably associated with redox-reactions involving other species than oxygen. In samples with a dry density of 1.8 g/cm 3 , the observed Eh-decrease is mostly slower. No significant difference between the Eh and pH measurements in MX-80 and Asha 505 could be observed. (orig.)

  14. HM modelling of in-situ gas injection tests in bentonite and argillite: the PGZ experiment

    Gerard, P.; Charlier, R.; Radu, J.P.; La Vaissiere, R. de; Talandier, J.; Collin, F.

    2010-01-01

    Document available in extended abstract form only. During long-term repository of high and intermediate level nuclear waste in deep argillaceous geological formation, steel containers will corroded and organic material will be irradiated. The two processes lead mostly to hydrogen production. This study deals with the numerical modelling of the gas migration in both the host formation and a bentonite plug, with an emphasis on coupling between the gas transfer and the mechanical strains and stresses. More particularly the study aims to support the design of the PGZ in situ experiment that will be performed by Andra in its underground laboratory at Bure. The objective of the experiment is the analysis of the dynamics of the bentonite plug re-saturation, studying the competition between the liquid water coming from the argillite and a gas injection. The modelled experiment consists of a borehole drilled in rock clay, inside which a plug of MX-80 bentonite is set. The bentonite is naturally re-saturated by water coming from the host formation. At the same time a gas pressure, higher than the initial water pressure in the host rock, is imposed at both ends of the plug. The developed model takes into account the coupling between the mechanical behaviour and the water and gas transfers in undisturbed geo-materials. It manages explicitly liquid and vapour water, gaseous and dissolved hydrogen. Elastoplastic and non-linear elastic model are used to model the behaviour of, respectively, the argillaceous rock and the bentonite. The numerical results show the small desaturation obtained in bentonite and argillite. The influence of the coupling of the mechanic on the water and gas transfers is thus limited (due to the Bishop's effective stress). The swelling of the bentonite plug is not hindered by the gas migration and the confining effect of the engineered barrier is maintained. An analysis is made of the influence of the main transfer rock properties on the gas pressure

  15. Thermo-Hydro-Mechanical Characterisation of the Bentonite of a Simulated HLW Repository after Five Years Operation ( In Situ Test of the FEBEX Project)

    Villar, M. V.

    2004-07-01

    After five years of operation, heater 1 of the FEBEX experimental at the Grimsel Test Sites was switched off in February 2002. Following cooling of the system, the bentonite barrier was dismantled and the heater extracted. During dismantling many bentonite samples were taken. Several determinations were carried out in these samples with the aim of: (1) characterise the actual state of the bentonite and (2) determine the possible changes in its properties occurred during the experiment. The results of the thermo-hydro-mechanical characterisation performed at CIEMAT are reported and analysed. The distribution of water content and dry density of the bentonite in vertical sections presents axial symmetry. The construction gaps of the barrier have been filled by the expansion of the bentonite. The water retention capacity, the hydraulic conductivity and the swelling capacity of the samples from Grimsel have not irreversible changed. The pre consolidation pressure of the Grimsel samples has decreased due to the microstructural changes associated to the volume increase experienced during hydration. The thermal conductivity is higher for the bentonite blocks of the external ring of the barrier. (Author)

  16. Thermo-Hydro-Mechanical Characterisation of the Bentonite of a Simulated HLW Repository after Five Years Operation ( In Situ Test of the FEBEX Project)

    Villar, M. V.

    2004-01-01

    After five years of operation, heater 1 of the FEBEX experimental at the Grimsel Test Sites was switched off in February 2002. Following cooling of the system, the bentonite barrier was dismantled and the heater extracted. During dismantling many bentonite samples were taken. Several determinations were carried out in these samples with the aim of: (1) characterise the actual state of the bentonite and (2) determine the possible changes in its properties occurred during the experiment. The results of the thermo-hydro-mechanical characterisation performed at CIEMAT are reported and analysed. The distribution of water content and dry density of the bentonite in vertical sections presents axial symmetry. The construction gaps of the barrier have been filled by the expansion of the bentonite. The water retention capaciaty, the hydraulic conductivity and the swelling capacity of the samples from Grimsel have not irreversible changed. The preconsolidation pressure of the Grimsel samples has decreased due to the microstructural changes asswociated to the volume increase experienced during hydration. The thermal conductivity is higher for the bentonite blocks of the external ring of the barrier. (Author)

  17. Gas migration mechanism of saturated dense bentonite and its modeling

    Tanaka, Yukihisa; Hironaga, Michihiko; Kudo, Koji

    2007-01-01

    In the current concept of repository for nuclear waste disposal, compacted bentonite will be used as an engineered barrier mainly for inhibiting migration of radioactive nuclides. Hydrogen gas can be generated inside the engineered barrier by anaerobic corrosion of metals used for containers, etc. If the gas generation rate exceeds the diffusion rate of gas molecules inside of the engineered barrier, gas will accumulate in the void space inside of the engineered barrier until its pressure becomes large enough for it to enter the bentonite as a discrete gaseous phase. It is expected to be not easy for gas to entering into the bentonite as a discrete gaseous phase because the pore of compacted bentonite is so minute. Therefore it is necessary to investigate the following subjects: a) Effect of the accumulated gas pressure on surrounding objects such as concrete lining, rock mass. b) Effect of gas breakthrough on the barrier function of bentonite. c) Revealing and modeling gas migration mechanism for overcoming the scale effects in laboratory specimen test. Therefore in this study, gas migration tests for compacted and saturated bentonite to investigate and to model the mechanism of gas migration phenomenon. Firstly, the following conclusions were obtained through by the results of the gas migration tests which are conducted in this study: 1) Bubbles appear in the semitransparent drainage tube at first when the total gas is equal to the initial total axial stress or somewhat smaller. By increasing the gas pressure more, breakthrough of gas migration, which is defined as a sudden increase of amount of emission gas, occurred. When the total gas pressure exceeds the initial total axial stress, the total axial stress is always equal to the total gas pressure because specimens shrink in the axial direction with causing the clearance between the end of the specimen and porous metal. 2) Effective gas conductivity after breakthrough of gas migration is times larger than that

  18. Thermo-hydro-geochemical modelling of the bentonite buffer. LOT A2 experiment

    Sena, Clara; Salas, Joaquin; Arcos, David (Amphos 21 Consulting S.L., Barcelona (Spain))

    2010-12-15

    The Swedish Nuclear Fuel and waste management company (SKB) is conducting a series of long term buffer material (LOT) tests at the Aespoe Hard Rock Laboratory (HRL) to test the behaviour of the bentonite buffer under conditions similar to those expected in a KBS-3 deep geological repository for high level nuclear waste (HLNW). In the present work a numerical model is developed to simulate (i) the thermo-hydraulic, (ii) transport and (iii) geochemical processes that have been observed in the LOT A2 test parcel. The LOT A2 test lasted approximately 6 years, and consists of a 4 m long vertical borehole drilled in diorite rock, from the ground of the Aespoe HRL tunnel. The borehole is composed of a central heater, maintained at 130 deg C in the lower 2 m of the borehole, a copper tube surrounding the heater and a 100 mm thick ring of pre-compacted Wyoming MX-80 bentonite around the copper tube /Karnland et al. 2009/. The numerical model developed here is a 1D axis-symmetric model that simulates the water saturation of the bentonite under a constant thermal gradient; the transport of solutes; and, the geochemical reactions observed in the bentonite blocks. Two cases have been modelled, one considering the highest temperature reached by the bentonite (at 3 m depth in the borehole, where temperatures of 130 and 85 deg C have been recorded near the copper tube and near the granitic host rock, respectively) and the other case assuming a constant temperature of 25 deg C, representing the upper part of borehole, where the bentonite has not been heated. In the LOT A2 test, the initial partially saturated bentonite becomes progressively water saturated, due to the injection of Aespoe granitic groundwater at granite - bentonite interface. The transport of solutes during the bentonite water saturation stage is believed to be controlled by water uptake from the surrounding groundwater to the wetting front and, additionally, in the case of heated bentonite, by a cyclic evaporation

  19. Thermo-hydro-geochemical modelling of the bentonite buffer. LOT A2 experiment

    Sena, Clara; Salas, Joaquin; Arcos, David

    2010-12-01

    The Swedish Nuclear Fuel and waste management company (SKB) is conducting a series of long term buffer material (LOT) tests at the Aespoe Hard Rock Laboratory (HRL) to test the behaviour of the bentonite buffer under conditions similar to those expected in a KBS-3 deep geological repository for high level nuclear waste (HLNW). In the present work a numerical model is developed to simulate (i) the thermo-hydraulic, (ii) transport and (iii) geochemical processes that have been observed in the LOT A2 test parcel. The LOT A2 test lasted approximately 6 years, and consists of a 4 m long vertical borehole drilled in diorite rock, from the ground of the Aespoe HRL tunnel. The borehole is composed of a central heater, maintained at 130 deg C in the lower 2 m of the borehole, a copper tube surrounding the heater and a 100 mm thick ring of pre-compacted Wyoming MX-80 bentonite around the copper tube /Karnland et al. 2009/. The numerical model developed here is a 1D axis-symmetric model that simulates the water saturation of the bentonite under a constant thermal gradient; the transport of solutes; and, the geochemical reactions observed in the bentonite blocks. Two cases have been modelled, one considering the highest temperature reached by the bentonite (at 3 m depth in the borehole, where temperatures of 130 and 85 deg C have been recorded near the copper tube and near the granitic host rock, respectively) and the other case assuming a constant temperature of 25 deg C, representing the upper part of borehole, where the bentonite has not been heated. In the LOT A2 test, the initial partially saturated bentonite becomes progressively water saturated, due to the injection of Aespoe granitic groundwater at granite - bentonite interface. The transport of solutes during the bentonite water saturation stage is believed to be controlled by water uptake from the surrounding groundwater to the wetting front and, additionally, in the case of heated bentonite, by a cyclic evaporation

  20. Influence factors of sand-bentonite mixtures on hydraulic conductivity

    Chen Yonggui; Ye Weimin; Chen Bao; Wan Min; Wang Qiong

    2008-01-01

    Buffer material is a very important part of the engineering barrier for geological disposal of high-level radioactive nuclear waste. Compacted bentonite is attracting greater attention as buffer and backfill material because it offer impermeability and swelling properties, but the pure compacted bentonite strength decreases with increasing hydration and these will reduce the buffer capability. To solve this problem, sand is often used to form compacted sand-bentonite mixtures (SBMs) providing high thermal conductivity, excellent compaction capacity, long-time stability, and low engineering cost. As to SBMs, hydraulic conductivity is a important index for evaluation barrier capability. Based on the review of research results, the factors affecting the hydraulic conductivity of SBMs were put forward including bentonite content, grain size distribution, moisture content, dry density, compacting method and energy, and bentonite type. The studies show that the hydraulic conductivity of SBMs is controlled by the hydraulic conductivity of the bentonite, it also decreases as dry density and bentonite content increase, but when the bentonite content reach a critical point, the influence of increasing bentonite to decrease the hydraulic conductivity is limited. A fine and well-graded SBMs is likely to have a lower hydraulic conductivity than a coarse and poorly graded material. The internal erosion or erodibility based on the grain size distribution of the SBMs has a negative effect on the final hydraulic conductivity. The lowest hydraulic conductivity is gained when the mixtures are compacted close to optimum moisture content. Also, the mixtures compacted at moisture contents slightly above optimum values give lower hydraulic conductivity than when compacted at slightly under the optimum moisture content. Finally, discussion was brought to importance of compaction method, compacting energy, and bentonite type to the hydraulic conductivity of SBMs. (authors)

  1. Optimization of bentonite pellet properties

    Sanden, Torbjoern; Andersson, Linus; Jonsson, Esther; Fritzell, Anni

    2012-01-01

    Document available in extended abstract form only. SKB in Sweden is developing and implementing concepts for the final disposal of spent nuclear fuel. A KBS-3V repository consists of a deposition tunnel with copper canisters containing spent fuel placed in vertical deposition holes. The canisters are embedded in highly compacted bentonite. After emplacement of canisters and bentonite blocks, the tunnels will be backfilled and sealed with an in-situ cast plug at the entrance. The main concept for backfilling the deposition tunnels imply pre compacted blocks of bentonite stacked on a bed of bentonite pellet. The remaining slot between blocks and rock will be filled with bentonite pellets. The work described in this abstract is a part of the ASKAR-project which main goal is to make a system design based on the selected concept for backfilling. Immediately after starting the backfill installation, inflowing water from the rock will come in contact with the pellet filling and thereby influence the characteristics of the pellet filling. The pellet filling helps to increase the average density of the backfill, but one of the most important properties beside this is the water storing capacity which will prevent water from reaching the backfill front where it would disturb and influence the quality of the installation. If water flows through the pellet filling out to the backfilling front, there will be erosion of material which also will affect the quality of the installed backfill. In order to optimize the properties regarding water storing capacity and sensitivity for erosion a number of tests have been made with different pellet types. The tests were made in different scales and with equipment specially designed for the purpose. The performed tests can be divided in four parts: 1. Standard tests (determining water content and density of pellet fillings and individual pellets, compressibility of the pellet fillings and strength of the individual pellets); 2. Erosion

  2. Stability of bentonite gels in crystalline rock

    Pusch, R.

    1983-02-01

    The present, extended study comprises a derivation of a simple rock model as a basis for calculation of the penetration rate of bentonite and of the groundwater flow rate, which is a determinant of the erodibility of the protruding clay film. This model, which is representative of a gross permeability of about 10 -8 - 10 -9 m/s, implies a spectrum of slot-shaped joints with apertures ranging between 0.1 and 0.5 mm. It is concluded that less than 2percent of the highly compacted bentonite will be lost into traversing joints in 10 6 years. A closer analysis, in which also Poiseuille retardation and short-term experiments were taken into account, even suggests that the penetration into the considered joints will be less than that. The penetration rate is expected to be 1 decimeter in a few hundred years. The risk of erosion by flowing groundwater was estimated by comparing clay particle bond strength, evaluated from viscometer tests, and theoretically derived drag forces, the conclusion being that the maximum expected water flow rate in the widest joints of the rock model (4 times 10 -4 m/s) is not sufficient to disrupt the gel front or the large individual clay flocs that may exist at this front. The experiments support the conclusion that erosion will not be a source of bentonite loss. A worst case scenario with a shear zone being developed across deposition holes is finally considered and in addition to this, the conditions in the fracture-rich tunnel floor at the upper end of the deposition holes are also analysed. This study shows that even if the rock is much more fractured than normal conditions would imply, the bentonite loss is expected to be very moderate and without substantial effect on the barrier functions of the remaining clay cores in the deposition holes. (author)

  3. Monitoring of bentonite pore water with a probe based on solid-state microsensors

    Orozco, Jahir; Baldi, Antoni; Martin, Pedro L.; Bratov, Andrei; Jimenez, Cecilia

    2006-01-01

    Repositories for the disposal of radioactive waste generally rely on a multi-barrier system to isolate the waste from the biosphere. This multi-barrier system typically comprises Natural geological barrier provided by the repository host rock and its surroundings and an engineered barrier system (EBS). Bentonite is being studied as an appropriated porous material for an EBS to prevent or delay the release and transport of radionuclides towards biosphere. The study of pore water chemistry within bentonite barriers will permit to understand the transport phenomena of radionuclides and obtain a database of the bentonite-water interaction processes. In this work, the measurement of some chemical parameters in bentonite pore water using solid-state microsensors is proposed. Those sensors are well suited for this application since in situ measurements are feasible and they are robust enough for the long periods of time that monitoring is needed in an EBS. A probe containing an ISFET (ion sensitive field effect transistor) for measuring pH, and platinum microelectrodes for measuring conductivity and redox potential was developed, together with the required instrumentation, to study the chemical changes in a test cell with compacted bentonite. Response features of the sensors' probe and instrumentation performance in synthetic samples with compositions similar to those present in bentonite barriers are reported. Measurements of sensors stability in a test cell are also presented

  4. Compression characteristics and permeability of saturated Gaomiaozi ca-bentonite

    Sun Wenjing; Sun De'an; Fang Lei

    2012-01-01

    The compression characteristics and permeability of compacted Gaomiaozi Ca-bentonite saturated by the water uptake tests are studied by conducting a series of one-dimension compression tests. The permeability coefficient can be calculated by the Terzaghi's one-dimensional consolidation theory after the consolidation coefficient is obtained by the square root of time method. It is found that the compression curves of compacted specimens saturated by the water uptake tests tend to be consistent in the relatively high stress range. The compression indexes show a linear decrease with increasing dry density and the swelling index is a constant. The permeability coefficient decreases with increasing compression stress, and they show the linear relationship in double logarithmic coordinates. Meanwhile, the permeability coefficient shows a linear decrease with decreasing void ratio, which has no relationship with initial states, stress states and stress paths. The permeability coefficient k of GMZ Ca-bentonite at dry density Pd of 1.75 g/cm 3 can be calculated as 2.0 × 10 -11 cm/s by the linear relationship between Pd and log k. It is closed to the permeability coefficient of GMZ Ca-bentonite with the same dry density published in literature, which testifies that the method calculating the permeability coefficient is feasible from the consolidation coefficient obtained by the consolidation test. (authors)

  5. Modelling of bentonite-granite solutes transfer from an in situ full-scale experiment to simulate a deep geological repository (Grimsel Test Site, Switzerland)

    Buil, B.; Gomez, P.; Pena, J.; Garralon, A.; Turrero, M.J.; Escribano, A.; Sanchez, L.; Duran, J.M.

    2010-01-01

    Research highlights: → The FEBEX experiment is a 1:1 simulation of a high level waste disposal facility in crystalline rock according to the Spanish radwaste disposal concept. → Solute transfer processes occurrs at the bentonite-granite interface. → An increase of Cl and Na is observed in granitic water of the surrounding of the experiment. → Solute transfer does not affect the sealing and thermo-hydromechanical properties of the engineered barriers. → A diffusive transport of Cl and Na simulated by 1D transport modeling with an effective diffusion coefficient of D e ≅ 5.0 E-11 m 2 /s. - Abstract: The FEBEX experiment is a 1:1 simulation of a high level waste disposal facility in crystalline rock according to the Spanish radwaste disposal concept. This experiment has been performed in a gallery drilled in the underground laboratory Grimsel Test Site (Switzerland). Two boreholes parallel to the FEBEX drift were drilled 20 and 60 cm away from the granite-bentonite interface to provide data on potential bentonite-granite solutes transfer. Periodic sampling and analysis of the major ions showed: (a) the existence of solutes transfer from the bentonite porewater towards the granite groundwater, explaining the Cl - and Na + contents of the latter; (b) that the concentration of the natural tracers coming into the granite groundwater from the bentonite porewater increased over time. This bentonite-granite solutes transfer was modelled in order to predict the increase in the Cl - and Na + concentrations of the granite groundwater. The modelled results seem to confirm that the mechanism of solute migration in this scenario is that of diffusive transport. An effective diffusion coefficient of D e = 5 x 10 -11 m 2 /s was that which best fitted the data obtained.

  6. Rotating shield ceiling for the compact ignition tokamak test cell

    Commander, J.C.

    1986-01-01

    For the next phase of the United States fusion program, a compact, high-field, toroidal ignition machine with liquid nitrogen cooled copper coils, designated the Compact Ignition Tokamak (CIT), is proposed. The CIT machine will be housed in a test cell with design features developed during preconceptual design. Configured as a right cylinder, the selected test cell design features: a test cell and basement with thick concrete shielding walls, and floor; leak tight tritium seals; and operational characteristics well suited to the circular CIT machine configuration and radially oriented ancillary equipment and systems

  7. Bentonite as a waste isolation pilot plant shaft sealing material

    Daemen, J.; Ran, Chongwei

    1996-12-01

    Current designs of the shaft sealing system for the Waste Isolation Pilot Plant (WIPP) propose using bentonite as a primary sealing component. The shaft sealing designs anticipate that compacted bentonite sealing components can perform through the 10,000-year regulatory period and beyond. To evaluate the acceptability of bentonite as a sealing material for the WIPP, this report identifies references that deal with the properties and characteristics of bentonite that may affect its behavior in the WIPP environment. This report reviews published studies that discuss using bentonite as sealing material for nuclear waste disposal, environmental restoration, toxic and chemical waste disposal, landfill liners, and applications in the petroleum industry. This report identifies the physical and chemical properties, stability and seal construction technologies of bentonite seals in shafts, especially in a saline brine environment. This report focuses on permeability, swelling pressure, strength, stiffness, longevity, and densification properties of bentonites

  8. Bentonite as a waste isolation pilot plant shaft sealing material

    Daemen, J.; Ran, Chongwei [Univ. of Nevada, Reno, NV (United States)

    1996-12-01

    Current designs of the shaft sealing system for the Waste Isolation Pilot Plant (WIPP) propose using bentonite as a primary sealing component. The shaft sealing designs anticipate that compacted bentonite sealing components can perform through the 10,000-year regulatory period and beyond. To evaluate the acceptability of bentonite as a sealing material for the WIPP, this report identifies references that deal with the properties and characteristics of bentonite that may affect its behavior in the WIPP environment. This report reviews published studies that discuss using bentonite as sealing material for nuclear waste disposal, environmental restoration, toxic and chemical waste disposal, landfill liners, and applications in the petroleum industry. This report identifies the physical and chemical properties, stability and seal construction technologies of bentonite seals in shafts, especially in a saline brine environment. This report focuses on permeability, swelling pressure, strength, stiffness, longevity, and densification properties of bentonites.

  9. Development and validation of mechanical model for saturated/unsaturated bentonite buffer

    Yamamoto, S.; Komine, H.; Kato, S.

    2010-01-01

    Document available in extended abstract form only. Development and validation of mechanical models for bentonite buffer and backfill materials are one of important subjects to appropriately evaluate long term behaviour or condition of the EBS in radioactive waste disposal. The Barcelona Basic Model (BBM), which is one of extensions of the modified Cam-Clay model for unsaturated and expansive soil, has been developed and widely applied to several problems by using the coupled THM code, Code B right. Advantage of the model is that mechanical characteristics of buffer and backfill materials under not only saturated condition but also unsaturated one are taken account as well as swelling characteristics due to wetting. In this study the BBM is compared with already existing experimental data and already developed another model in terms of swelling characteristics of Japanese bentonite Kunigel-V1, and is validated in terms of consolidation characteristics based on newly performed controlled-suction oedometer tests for the Kunigel-V1 bentonite. Komine et al. (2003) have proposed a model (set of equations) for predicting swelling characteristics based on the diffuse double layer concept and the van der Waals force concept etc. They performed a lot of swelling deformation tests of bentonite and sand-bentonite mixture to confirm the applicability of the model. The BBM well agrees with the model proposed by Komine et al. and the experimental data in terms of swelling characteristics. Compression index and swelling index depending on suction are introduced in the BBM. Controlled-suction consolidation tests (oedometer tests) were performed to confirm the applicability of the suction dependent indexes to unsaturated bentonite. Compacted bentonite with initial dry density of 1.0 Mg/m 3 was tested. Constant suction, 80 kPa, 280 kPa and 480 kPa was applied and kept during the consolidation tests. Applicability of the BBM to consolidation and swelling behaviour of saturated and

  10. Crack arrest toughness of structural steels evaluated by compact test

    Nakano, Yoshifumi; Tanaka, Michihiro

    1982-01-01

    Crack arrest tests such as compact, ESSO and DCB tests were made on SA533B Cl. 1, HT80 and KD32 steels to evaluate the crack arrest toughness. The main results obtained are as follows: (1) The crack arrest toughness could be evaluated by K sub(Ia) which was obtained by the static analysis of compact test. (2) K sub(ID) determined by the dynamic analysis of compact test was greater than K sub(Ia), though K sub(ID) became close to K sub(Ia)/K sub(Q) became a unity where K sub(Q) is the stress intensity factor at the crack initiation. (3) No significant difference was observed between K sub(Ia) and K sub(ca) obtained by ESSO and DCB tests, though K sub(ca) obtained by DCB test tended to be smaller than K sub(Ia) at lower temperatures. (4) K sub(Ia) was smaller than K sub(Ic) in the transition temperature range, while it was greater than K sub(Id). In the temperature range where K sub(Ic), which was determined from J sub(Ic), decreased with temperature increase, however, it was smaller than K sub(Ia). (5) The fracture appearance transition temperature and the absorbed energy obtained by 2 mm V-notch Charpy test were appropriate parameters for representing the crack arrest toughness, while the NDT temperature was not. (author)

  11. Study on the basic property of Gaomiaozi bentonite, inner mongolia

    Liu Yuemiao; Xu Guoqing; Liu Shufen; Chen Zhangru

    2001-01-01

    Buffer/backfill material layer is one of important engineered barriers in the HLW geological repository. The geologic setting of Gaomiaozi bentonite deposit is introduced, and the mineral composition, physical and chemical property, basic geotechnical property, swelling property and permeability of highly compacted bentonite of main ore bed has been studied. The study results show that montmorillonite content of Gaomiaozi bentonite is relatively high, physical and chemical property, geotechnical property and impermeability are good. So Gaomiaozi bentonite deposit could be regarded as supply base of buffer/backfill material for HLW geological repository

  12. On the hydro-mechanical behaviour of MX80 bentonite-based materials

    Yu-Jun Cui

    2017-06-01

    Full Text Available Bentonite-based materials have been considered in many countries as engineered barrier/backfilling materials in deep geological disposal of high-level radioactive waste. During the long period of waste storage, these materials will play an essential role in ensuring the integrity of the storage system that consists of the waste canisters, the engineered barrier/backfill, the retaining structures as well as the geological barrier. Thus, it is essential to well understand the hydro-mechanical behaviours of these bentonite-based materials. This review paper presents the recent advances of knowledge on MX80 bentonite-based materials, in terms of water retention properties, hydraulic behaviour and mechanical behaviour. Emphasis is put on the effect of technological voids and the role of the dry density of bentonite. The swelling anisotropy is also discussed based on the results from swelling tests with measurements of both axial and radial swelling pressures on a sand-bentonite mixture compacted at different densities. Microstructure observation was used to help the interpretation of macroscopic hydro-mechanical behaviour. Also, the evolution of soil microstructure thus the soil density over time is discussed based on the results from mock-up tests. This evolution is essential for understanding the long-term hydro-mechanical behaviour of the engineered barrier/backfill.

  13. Activation of wine bentonite with gamma rays

    Goranov, N.; Antonov, M.

    1997-01-01

    The action of gamma rays on wine bentonite as well as influence of its adsorption and technologic qualities on the composition and stability of wines against protein darkening and precipitation has been studied. The experiments were carried out with wine bentonite produced in the firm Bentonite and irradiated with doses of 0.4, 0.6, 0.8 and 1.0 MR. White and red wines have been treated with irradiated bentonite under laboratory conditions at 1.0 g/dm 3 . All samples are treated at the same conditions. The flocculation rate of the sediment was determined visually. Samples have been taken 24 h later from the cleared wine layers. The following parameters have been determined: clarification, filtration rate, phenolic compounds, calcium, colour intensity, total extracted substances, etc. The volume of the sediment has been determined also. The control samples have been taken from the same unirradiated wines. The results showed better and faster clarification in on the third, the 20th and the 24th hours with using of gamma-irradiated at doses 0.8 and 1.0 MR. The sediment was the most compact and its volume - the smallest compared to the samples treated with bentonite irradiated with doses of 0.6 and 0.4 MR. This ensures a faster clarification and better filtration of treated wines. The bentonite activated with doses of 0.8 and 1.0 MR adsorbs the phenolic compounds and the complex protein-phenolic molecules better. In the same time it adsorbs less extracted substances compared to untreated bentonite and so preserves all organoleptic properties of wine. The irradiated bentonite adsorbs less the monomers of anthocyan compounds which ensures brighter natural colour of wine. The gamma-rays activation consolidates calcium in the crystal lattice of bentonite particles and in this way eliminates the formation of crystal precipitates

  14. Microbial activity in bentonite buffers. Literature study

    Ratto, M.; Itavaara, M.

    2012-07-01

    The proposed disposal concept for high-level radioactive wastes involves storing the wastes underground in copper-iron containers embedded in buffer material of compacted bentonite. Hydrogen sulphide production by sulphate-reducing prokaryotes is a potential mechanism that could cause corrosion of waste containers in repository conditions. The prevailing conditions in compacted bentonite buffer will be harsh. The swelling pressure is 7-8 MPa, the amount of free water is low and the average pore and pore throat diameters are small. This literature study aims to assess the potential of microbial activity in bentonite buffers. Literature on the environmental limits of microbial life in extreme conditions and the occurrence of sulphatereducing prokaryotes in extreme environments is reviewed briefly and the results of published studies characterizing microbes and microbial processes in repository conditions or in relevant subsurface environments are presented. The presence of bacteria, including SRBs, has been confirmed in deep groundwater and bentonite-based materials. Sulphate reducers have been detected in various high-pressure environments, and sulphate-reduction based on hydrogen as an energy source is considered a major microbial process in deep subsurface environments. In bentonite, microbial activity is strongly suppressed, mainly due to the low amount of free water and small pores, which limit the transport of microbes and nutrients. Spore-forming bacteria have been shown to survive in compacted bentonite as dormant spores, and they are able to resume a metabolically active state after decompaction. Thus, microbial sulphide production may increase in repository conditions if the dry density of the bentonite buffer is locally reduced. (orig.)

  15. Coupled behaviour of bentonite buffer results of PUSKURI project; Bentoniittipuskurin kytketty kaeyttaeytyminen PUSKURI-hankkeen tuloksia

    Olin, M.; Rasilainen, K.; Itaelae, A. [and others

    2011-08-15

    In the report main results form a KYT2010 programme's project Coupled behaviour of bentonite buffer (PUSKURI) are presented. In THC modelling, Aku Itaelae made and published his Master of Science Thesis. Itaelae was able to successfully model the LOT-experiment. Additionally, he also listed problems and development proposals for THC-modelling of bentonite buffer. VTT and Numerola created in collaboration a model coupling saturation, diffusion and cation exchange; the model was implemented and tested in Numerrin, COMSOL and TOUGHREACT. Petri Jussila's PhD THM-model was implemented into COMSOL to facilitate further development. At GTK, the mineralogical characterisation of bentonite was planned. The previous THM model (Jussila's model) including only small deformations was successfully generalized to finite deformations in way at least formally preserving the original formalism. It appears that the theory allows also a possibility to include finite plastic deformations in the theory. In order to measure the relevant mechanical properties of compacted bentonite, two different experiments, namely hydrostatic compression experiment and one-dimensional compression experiment were designed. In the hydrostatic compression experiment, a cylindrical sample of compacted bentonite covered with liquid rubber coating is placed in the sample chamber equipped with a piston. The same device was also used in one-dimensional compression experiment. X-ray microtomographic techniques were used in order to study the basic mechanisms of water transport in bentonite. The preliminary results indicate that in the present experimental set-up, water transport is dominated by a dispersive mechanism such as diffusion of vapour in gas phase or diffusion of water in solid phase. (orig.)

  16. Modelling interaction of deep groundwaters with bentonite and radionuclide speciation

    Wanner, H.

    1986-04-01

    In the safety analysis recently reported for a potential Swiss high-level waste repository, radionuclide speciation and solubility limits are calculated for expected granitic groundwater conditions. With the objective of deriving a more realistic description of radionuclide release from the near-field, an investigation has been initiated to quantitatively specify the chemistry of the near-field. In the Swiss case, the main components of the near-field are the glass waste-matrix, a thick steel canister horizontally emplaced in a drift, and a backfill of highly compacted sodium bentonite. This report describes a thermodynamic model which is used to estimate the chemical composition of the pore water in compacted sodium bentonite. Solubility limits and speciation of important actinides and the fission product technetium in the bentonite pore water are then calculated. The model is based on available experimental data on the interaction of sodium bentonite and groundwater and represents means of extrapolation from laboratory data to repository conditions. The modelled composition of the pore water of compacted sodium bentonite, as well as the various compositions resulting from the long-term extrapolation, are used to estimate radionuclide solubilities in the near-field of a deep repository. From the chemical point of view, calcium bentonite seems to be more stable than sodium bentonite in the presence of Swiss Reference Groundwater. Since the effect of calcium bentonite on the groundwater chemical composition will be considerably less marked than that of sodium bentonite, especially with respect to key parameters for the nuclide speciation like carbonate concentration and pH, the use of calcium bentonite instead of sodium bentonite will improve the reliability in the prediction of source terms for radionuclide transport in the geosphere. (author)

  17. Bentonite buffer pre-test. Core drilling of drillholes ONK-PP264...267 in ONKALO at Olkiluoto 2010

    Toropainen, V.

    2010-12-01

    Suomen Malmi Oy (Smoy) core drilled four drillholes for bentonite buffer pre-test in ONKALO at Eurajoki, Olkiluoto in July 2010. The identification numbers of the holes are ONK-PP264..267, and the lengths of the drillholes are approximately 4.30 metres each. The drillholes are 75.7 mm by diameter. The drillholes were drilled in a niche at access tunnel chainage 1475. The hydraulic DE 130 drilling rig was used for the work. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. In addition to drilling, the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock type in the drillholes is pegmatitic granite. The average fracture frequency in the drill cores is 4.0 pcs / m and the average RQD value 94.2 %. (orig.)

  18. Strength and Permeability Evolution of Compressed Bentonite in Response to Salinity and Temperature Changes

    Winnard, B. R.; Mitchell, T. M.; Browning, J.; Cuss, R. J.; Norris, S.; Meredith, P. G.

    2017-12-01

    Deep geological repositories are the preferred solution to dispose of radioactive waste; design concepts for these disposal facilities include compacted, saturated bentonite as a buffer between waste canister and host rock. Bentonite is favoured for its high swelling capacity, low permeability, and radionuclide retention properties. However, its thermo-hydro-mechanical tolerances must be thoroughly tested to ensure adequate long term performance. Climate variations are likely to induce periods of permafrost, and consequently, changes in groundwater salinity at depth. We performed laboratory experiments investigating effects of temperature and salinity change on uniaxial compressive strength (UCS), and permeability of compacted MX-80 bentonite cylinders. These specimens (moisture content = 22.9±0.1%, dry density = 1.66±0.02 g.cm-3) were compacted with deionised water, and a range of wt% NaCl, CaCl2, or KCl, to compare the effects of compaction fluid. Samples of compressed bentonite were cooled to -20 °C, and heated to 90 ºC, a possible temperature forecast for a repository dependent on factors such as geographical location, waste type, and facility design. Tests were all performed at room temperature, however in situ temperature tests are planned. The UCS of samples that experienced freeze thaw, and 40 ºC treatment failed at 6.5 MPa, with 4% strain, maintaining the same values as untreated bentonite compacted with deionised water. Samples compacted with saline solutions also yielded similar strengths, of 7 MPa, and failed at 4%. However, the 90 ºC, regardless of compaction fluid, failed at 15-18 MPa, at just 2% strain. In all experiments, the spread of strain accommodated varied inconsistently, however, peak stress was uniform. Further experiments into heterogeneity are needed to understand the responsible mechanisms. To obtain permeability, we utilised the pore pressure oscillation (PPO) technique with argon as the pore fluid. We also tested water as the pore

  19. Reactive transport modelling of groundwater-bentonite interaction: Effects on exchangeable cations in an alternative buffer material in-situ test

    Wallis, I.; Idiart, A.; Dohrmann, R.; Post, V.

    2016-01-01

    Bentonite clays are regarded a promising material for engineered barrier systems for the encapsulation of hazardous wastes because of their low hydraulic permeability, swelling potential, ability to self-seal cracks in contact with water and their high sorption potential. SKB (Svensk Kärnbränslehantering) has been conducting long term field scale experiments on potential buffer materials at the Äspö Hard Rock Laboratory for radioactive waste disposal in Sweden. The Alternative Buffer Material (ABM) test examined buffer properties of eleven different clay materials under the influence of groundwater and at temperatures reaching up to 135 °C, replicating the heat pulse after waste emplacement. Clay materials were emplaced into holes drilled in fractured granite as compacted rings around a central heater element and subsequently brought into contact with groundwater for 880 days. After test termination, and against expectations, all clay materials were found to have undergone large scale alterations in the cation exchange population. A reactive-diffusive transport model was developed to aid the interpretation of the observed large-scale porewater chemistry changes. It was found, that the interaction between Äspö groundwater and the clay blocks, together with the geochemical nature of the clays (Na vs Ca-dominated clays) exerted the strongest control on the porewater chemistry. A pronounced exchange of Na by Ca was observed and simulated, driven by large Ca concentrations in the contacting groundwater. The model was able to link the porewater alterations to the fracture network in the deposition hole. The speed of alterations was in turn linked to high diffusion coefficients under the applied temperatures, which facilitated the propagation of hydrochemical changes into the clays. With diffusion coefficients increased by up to one order of magnitude at the maximum temperatures, the study was able to demonstrate the importance of considering temperature

  20. Automatic test equipment for C and I of compact LWR

    Mayya, Anuradha; Marathe, P.P.; Madala, Kalyan C.

    2014-01-01

    The C and I of compact LWR consist of a wide variety of electronic modules. Testing of these modules manually was found to be very cumbersome. To ease the testing of these modules, Automatic Test Equipments (ATE) were developed jointly by BARC and ECIL. This paper describes the design of two ATEs for testing 69 types of modules. A power supply ATE was developed for 43 types of power supply modules of type AC-AC, AC-DC, DC-DC and signal conditioning modules. A VME ATE was developed to test 26 types of VME bus based and other microcontroller based non-bussed modules. These ATEs are used for the automated black box testing of modules by feeding power and control inputs and checking the outputs without operator intervention. This paper describes the important considerations in design and the major design challenges. (author)

  1. Corrosion of carbon steel in contact with bentonite

    Dobrev, D.; Vokal, A.; Bruha, P.

    2010-01-01

    Document available in extended abstract form only. Carbon steel canisters were chosen in a number of disposal concepts as reference material for disposal canisters. The corrosion rates of carbon steels in water solution both in aerobic and anaerobic conditions are well known, but only scarce data are available for corrosion behaviour of carbon steels in contact with bentonite. A special apparatus, which enables to measure corrosion rate of carbon steels under conditions simulating conditions in a repository, namely in contact with bentonite under high pressure and elevated temperatures was therefore prepared to study: - Corrosion rate of carbon steels in direct contact with bentonite in comparison with corrosion rate of carbon steels in synthetic bentonite pore water. - Influence of corrosion products on bentonite. The apparatus is composed of corrosion chamber containing a carbon steel disc in direct contact with compacted bentonite. Synthetic granitic water is above compacted bentonite under high pressure (50 - 100 bar) to simulate hydrostatic pressure in a repository. The experiments can be carried out under various temperatures. Bentonites used for experiments were Na-type of bentonite Volclay KWK 80 - 20 and Ca-Mg Czech bentonite from deposit Rokle. Before adding water into corrosion system the corrosion chamber was purged by nitrogen gas. The saturation of bentonite and corrosion rate were monitored by measuring consumption of water, pressure increase caused by swelling pressure of bentonite and by generation of hydrogen. Corrosion rate was also determined after corrosion experiments from weight loss of samples. The results of experiments show that the corrosion behaviour of carbon steels in contact with bentonite is very different from corrosion of carbon steels in water simulating bentonite pore water solution. The corrosion rates of carbon steel in contact with bentonite reached after 30 days of corrosion the values approaching 40 mm/yr contrary to values

  2. Effect of pH to adsorption behavior of Pu on bentonite in aqueous environment

    Wang Xiaoqiang; Tuo Xianguo; Li Pingchuan; Leng Yangchun; Su Jilong; Yueping

    2013-01-01

    The effects of pH to the adsorption behavior of Pu in GMZ-bentonite, Lingshou Ca-bentonite, Na-bentonite and bleaching earth were tested by static adsorption experiments in aqueous environment. The results show that the adsorption equilibrium time of Pu is four days in GMZ-bentonite and 5-6 days in bleaching earth, Ca-bentonite and Na-bentonite. In aqueous environment, the adsorption capacity of bentonite to Pu increases with pH in water phase, and it is weak in acidic aqueous environment and strong in alkaline aqueous environment extremely. (authors)

  3. Fabrication and handling of bentonite blocks

    1978-06-01

    In accordance with the project for the final storage of spent nuclear fuel, the waste will be encapsulated into copper canisters, which will be deposited in a final repository located in rock 500 m below ground level. The canisters will be placed in vertical holes in the bottoms of the tunnels, where the copper cylinders will be surrounded by blocks of highly compacted bentonite. When the blocks are saturated with water and expansion is essentially retained as in the actual case, a very high swelling pressure will arise. The bentonite will be extremely impermeable and thus it will form a barrier against transport of corrosive matters to the canister. The blocks are fabricated by means of cold isostatic pressing of bentonite powder. The base material in the form of powder is enclosed in flexible forms, which are introduced into pressure vessels where the forms are surrounded by oil or water. Thus the powder is compacted into rigid bodies with a bulk density of about 2.2 t/m 3 for ''air dry'' bentonite, which might be compared with a specific density of about 2.7 t/m 3 . The placing of a canister is preceded by piling up bentonite blocks to a level just below the canister lid position, after which the slot around the blocks is filled with bentonite powder. The rest of the blocks are mounted after filling bentonite powder into the inner slot around the canister as well. Finally the storage tunnels will be sealed by filling them with a mixture o02067NRM 0000181 45

  4. Evaluation for swelling characteristics of buffer and backfill materials for high-level nuclear waste disposal. Influence of sand-bentonite content and cation compositions in bentonite

    Komine, Hideo; Ogata, Nobuhide

    1999-01-01

    Compacted bentonite and sand-bentonite mixture are attracting greater attention as buffer and backfill materials for disposal pits and access tunnels in the underground facilities for repositories of high-level nuclear waste. Buffer and backfill materials must have the swelling characteristics and are expected to fill up the space between these materials and surrounding ground by swelling. This role is called as 'Self-sealing'. To design the specifications, such as dry density, bentonite content and size, of buffer and backfill materials for the disposal facilities of high-level nuclear wastes described above, we must evaluate the swelling characteristics of compacted bentonite and sand-bentonite mixtures. For this purpose, this study proposed the evaluation formula for swelling characteristics of buffer and backfill materials containing bentonite. This study derived new equations for evaluating the relationship between the swelling deformation of compacted bentonite and sand-bentonite mixtures, and the swelling behavior of montmorillonite minerals, which are swelling clay minerals. This study also proposed new equations for evaluating the ion compositions of bentonite, ion concentration of pore water and the specific surface of bentonite, which significantly influence the swelling characteristics of buffer and backfill materials. The evaluation formula proposed in this study is presented by combining the above-mentioned new equations with theoretical equations, of which are the Gouy-Chapman diffuse double layer theory and the van der Waals force, of repulsive and attractive forces of montmorillonite minerals. (author)

  5. Review of the properties and uses of bentonite as a buffer and backfill material

    Savage, D.; Lind, A.; Arthur, R.C.

    1999-05-01

    similar studies elsewhere and is therefore contentious and open to debate. There seems to be a general lack of integration of analogue studies with modelling and experimental work in terms of a model of the evolution of the chemistry of bentonite pore fluids with time (i.e. analogue evidence demonstrates the importance of mineral dissolution and precipitation, but this is not incorporated into the chemical modelling approach). Some rationalisation of approaches is required for a credible model of bentonite pore water evolution to be created. There is little apparent use of modelled bentonite pore water chemistry for the calculation of radionuclide solubility, sorption and speciation in PA (c.f. approaches used by Nagra, JNC, TVO). Although recent work in part redresses this imbalance, SKB is alone amongst disposal agencies in this approach. There is little published work by SKB on the interaction of bentonite with cement. There is now a growing literature elsewhere on this subject which does not seem to be reflected in studies carried out by SKB. Collaboration with other waste disposal authorities interested in this topic is recommended. It may be necessary to incorporate chemical processes into the current SKB conceptual model of gas transport in buffer and backfill materials. Dissolved or gaseous H 2 is generated by Fe corrosion under anaerobic conditions, and this gas may be reactive with several minerals in bentonite, including smectite. Although field tests carried out by SKB suggest that the emplacement of compacted bentonite will not be a problem from the perspective of buffer performance, borehole, shaft and vault sealing, there are apparent problems for block manufacture. The introduction of oil as a lubricant in block manufacture, for example may pose problems for long-term behaviour of the near-field due to the presence of these organic materials. Better manufacturing methods are therefore required

  6. Review of the properties and uses of bentonite as a buffer and backfill material

    Savage, D.; Lind, A. [QuantiSci Ltd., Melton Mowbray (United Kingdom); Arthur, R.C. [QuantiSci lnc., Denver, CO (United States)

    1999-05-01

    similar studies elsewhere and is therefore contentious and open to debate. There seems to be a general lack of integration of analogue studies with modelling and experimental work in terms of a model of the evolution of the chemistry of bentonite pore fluids with time (i.e. analogue evidence demonstrates the importance of mineral dissolution and precipitation, but this is not incorporated into the chemical modelling approach). Some rationalisation of approaches is required for a credible model of bentonite pore water evolution to be created. There is little apparent use of modelled bentonite pore water chemistry for the calculation of radionuclide solubility, sorption and speciation in PA (c.f. approaches used by Nagra, JNC, TVO). Although recent work in part redresses this imbalance, SKB is alone amongst disposal agencies in this approach. There is little published work by SKB on the interaction of bentonite with cement. There is now a growing literature elsewhere on this subject which does not seem to be reflected in studies carried out by SKB. Collaboration with other waste disposal authorities interested in this topic is recommended. It may be necessary to incorporate chemical processes into the current SKB conceptual model of gas transport in buffer and backfill materials. Dissolved or gaseous H{sub 2} is generated by Fe corrosion under anaerobic conditions, and this gas may be reactive with several minerals in bentonite, including smectite. Although field tests carried out by SKB suggest that the emplacement of compacted bentonite will not be a problem from the perspective of buffer performance, borehole, shaft and vault sealing, there are apparent problems for block manufacture. The introduction of oil as a lubricant in block manufacture, for example may pose problems for long-term behaviour of the near-field due to the presence of these organic materials. Better manufacturing methods are therefore required 112 refs, 4 figs, 4 tabs

  7. Full-scale demonstration of EBS construction technology I. Block, pellet and in-situ compaction method

    Toguri, Satohito; Asano, Hidekazu; Takao, Hajime; Matsuda, Takeshi; Amemiya, Kiyoshi

    2008-01-01

    (i) Bentonite Block: Applicability of manufacturing technology of buffer material was verified by manufacturing of full scale bentonite ring which consists of one-eight (1/8) dividing block (Outside Diameter (OD): 2.220 mm H: 300 mm). Density characteristic, dimension and scale effect, which were considered the tunnel environment under transportation, were evaluated. Vacuum suction technology was selected as handling technology for the ring. Hoisting characteristic of vacuum suction technology was presented through evaluation of the mechanical property of buffer material, the friction between blocks, etc. by using a full-scale bentonite ring (OD 2.200 mm, H 300 mm). And design of bentonite block and emplacement equipment were presented in consideration of manufacturability of the block, stability of handling and improvement of emplacement efficiency. (ii) Bentonite Pellet Filling: Basic characteristics such as water penetration, swelling and thermal conductivity of various kinds of bentonite pellet were collected by laboratory scale tests. Applicability of pellet filling technology was evaluated by horizontal filling test using a simulated full-scale drift tunnel (OD 2.200 mm, L 6 m) . Filling density, grain size distribution, etc. were also measured. (iii) In-Situ Compaction of Bentonite: Dynamic compaction method (heavy weight fall method) was selected as in-situ compaction technology. Compacting examination which used a full scale disposal pit (OD 2.360 mm) was carried out. Basic specification of compacting equipment and applicability of in-situ compaction technology were presented. Density, density distribution of buffer material and energy acted on the wall of the pit, were also measured. (author)

  8. Quality assurance of the bentonite material

    Ahonen, L.; Korkeakoski, P.; Tiljander, M.; Kivikoski, H.; Laaksonen, R.

    2008-05-01

    This report describes a quality assurance chain for the bentonite material acquisition for a nuclear waste disposal repository. Chemical, mineralogical and geotechnical methods, which may be applied in quality control of bentonite are shortly reviewed. As a case study, many of the presented control studies were performed for six different bentonite samples. Chemical analysis is a very reliable research method to control material homogeneity, because the accuracy and repeatability of the study method is extremely good. Accurate mineralogical study of bentonite is a complicated task. X-ray diffractometry is the best method to identify smectite minerals, but quantitative analysis of smectite content remains uncertain. To obtain a better quantitative analysis, development of techniques based on automatic image analysis of SEM images is proposed. General characteristics of bentonite can be obtained by rapid indicator tests, which can be done on the place of reception. These tests are methylene blue test giving information on the cation exchange capacity, swelling index and determination of water absorption. Different methods were used in the determination of cation exchange capacity (CEC) of bentonite. The results indicated differences both between methodologies and between replicate determinations for the same material and method. Additional work should be done to improve the reliability and reproducibility of the methodology. Bentonite contains water in different modes. Thus, different determination methods are used in bentonite studies and they give somewhat dissimilar results. Clay research use frequently the so-called consistency tests (liquid limit, plastic limit and plasticity index). This study method does, however, not seem to be very practical in quality control of bentonite. Therefore, only the determination of liquid limit with fall-cone method is recommended for quality control. (orig.)

  9. Experimental studies on the interactions between anaerobically corroding iron and bentonite

    Carlson, Liisa (Geological Survey of Finland, Espoo (Finland)); Karnland, Ola; Olsson, Siv (Clay Technology AB, Lund (Sweden)); Rance, Andy; Smart, Nick (Serco Assurance, Hook (United Kingdom))

    2008-06-15

    Anaerobic corrosion experiments using compacted bentonite, carbon steel and cast iron coupons, and carbon steel wires, were performed at temperatures of 30 deg C and 50 deg C. Dry Wyoming bentonite MX-80 powder was mixed with pieces of wire, and then compacted in stainless steel holders. The samples were evacuated and placed in test cells under nitrogen. For the coupon tests, the coupons were placed in the upper and lower part of cells filled with compacted bentonite. The compacted bentonite samples were immersed in deaerated artificial ground water containing sodium chloride and sodium carbonate at pH 10.4. The experiments with coupons ran for 356 days at 50 deg C and for 900 days at 30 deg C and the experiments with wires ran for 829 days at 30 deg C and for 911 days at 50 deg C. Corrosion products on the surface of wires and coupons were examined using Raman spectroscopy, scanning electron microscopy and electron microprobe analysis. A mixture of magnetite, hematite and goethite was found on the surface of coupons. Only magnetite was observed on the surface of wires. The bentonite was examined using X-ray diffraction (XRD), scanning electron microscopy (SEM), electron microprobe analysis (EPMA), Raman spectroscopy, Moessbauer transmission spectroscopy, Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM) with energy dispersive spectroscopy (EDS) and selected area electron diffraction. In addition, cation exchange capacity and exchangeable cations as well as total chemical composition were determined. Hydraulic conductivity and swelling pressure were also measured. In the coupon tests, increased iron contents could be observed in a thin contact zone. Sodium from the synthetic ground water had substituted for a fraction of the calcium in the interlayer positions of montmorillonite, which could be seen also in the total contents of these elements. A small increase in hydraulic conductivity was observed. In the wire tests a high

  10. Construction of experimental HMA test sections in order to monitor the compaction process

    ter Huerne, Henderikus L.; Molenaar, A.A.A.; van de Ven, M.F.C.

    2003-01-01

    For getting better understanding about the process of HMA compaction, a test section was constructed while the governing process parameters, like; compaction progress, temperature of the material at which activities were employed, equipment properties and meteorological circumstances, were

  11. Calculation of saturated hydraulic conductivity of bentonite

    He Jun

    2006-01-01

    Hydraulic conductivity test has some defects such as weak repeatability, time-consuming. Taking bentonite as dual porous media, the calculation formula of the distance, d 2 , between montmorillonite in intraparticle pores is deduced. Improved calculated method of hydraulic conductivity is obtained using d 2 and Poiseuille law. The method is valid through the comparison with results of test and other methods. The method is very convenient to calculate hydraulic conductivity of bentonite of certain montmorillonite content and void ratio. (authors)

  12. Assessment Criteria of Bentonite Binding Properties

    S. Żymankowska-Kumon

    2012-09-01

    Full Text Available The criteria, with which one should be guided at the assessment of the binding properties of bentonites used for moulding sands, areproposed in the paper. Apart from the standard parameter which is the active bentonite content, the unrestrained growth indicator should be taken into account since it seems to be more adequate in the estimation of the sand compression strength. The investigations performed for three kinds of bentonites, applied in the Polish foundry plants, subjected to a high temperature influences indicate, that the pathway of changes of the unrestrained growth indicator is very similar to the pathway of changes of the sand compression strength. Instead, the character of changes of the montmorillonite content in the sand in dependence of the temperature is quite different. The sand exhibits the significant active bentonite content, and the sand compression strength decreases rapidly. The montmorillonite content in bentonite samples was determined by the modern copper complex method of triethylenetetraamine (Cu(II-TET. Tests were performed for bentonites and for sands with those bentonites subjected to high temperatures influences in a range: 100-700ºC.

  13. SGC Tests for Influence of Material Composition on Compaction Characteristic of Asphalt Mixtures

    Qun Chen

    2013-01-01

    Full Text Available Compaction characteristic of the surface layer asphalt mixture (13-type gradation mixture was studied using Superpave gyratory compactor (SGC simulative compaction tests. Based on analysis of densification curve of gyratory compaction, influence rules of the contents of mineral aggregates of all sizes and asphalt on compaction characteristic of asphalt mixtures were obtained. SGC Tests show that, for the mixture with a bigger content of asphalt, its density increases faster, that there is an optimal amount of fine aggregates for optimal compaction and that an appropriate amount of mineral powder will improve workability of mixtures, but overmuch mineral powder will make mixtures dry and hard. Conclusions based on SGC tests can provide basis for how to adjust material composition for improving compaction performance of asphalt mixtures, and for the designed asphalt mixture, its compaction performance can be predicted through these conclusions, which also contributes to the choice of compaction schemes.

  14. Creep rupture of mild steel compact tension test pieces

    Priddle, E.K.

    1978-10-01

    Creep rupture lives have been determined for compact tension and unnotched tensile test pieces of mild steel at 450 0 C. Three sizes of compact tension specimens were used in which the ratios of reference stress to elastic stress intensity factor were 2.76, 4.78 and 6.6 (msup(-1/2)). The analysis of results in terms of either initial reference stress or stress intensity was unable to reduce the data to a single failure curve. An empirical correlation was found between rupture time and a reference stress/crack length combination where t = 2.46 x 10 20 sub(σref) sup(-8.96) asup(-1.56) (units hours, MPa and metres). This equation has no valid application to materials or specimens other than those from which it was derived. Reported data for 1/2Cr Mo V and 2 1/4Cr Mo steels at 565 0 C were also correlated by this approach. (author)

  15. Diffusion of Radionuclides in Bentonite Clay - Laboratory and in situ Studies

    Jansson, Mats

    2002-12-01

    This thesis deals with the diffusion of ions in compacted bentonite clay. Laboratory experiments were performed to examine in detail different processes that affect the diffusion. To demonstrate that the results obtained from the laboratory investigations are valid under in situ conditions, two different kinds of in situ experiments were performed. Laboratory experiments were performed to better understand the impact of ionic strength on the diffusion of S 2+ and Cs + ions, which sorb to mineral surfaces primarily by ion exchange. Furthermore, surface related diffusion was examined and demonstrated to take place for Sr 2+ and Cs + but not for Co 2+ , which sorbs on mineral surfaces by complexation. The diffusion of anions in bentonite clay compacted to different dry densities was also investigated. The results indicate that anion diffusion in bentonite clay consists of two processes, one fast and another slower. We ascribe the fast diffusive process to intralayer diffusion and the slow process to diffusion in interparticle water, where anions are to some extent sorbed to edge sites of the montmorillonite. Two different types of in situ experiments were performed, CHEMLAB and LOT. CHEMLAB is a borehole laboratory, where cation (Cs + , Sr 2+ and Co 2+ ) and anion (I- and TcO 4 - ) diffusion experiments were performed using groundwater from a fracture in the borehole. In the LOT experiments cylindrical bentonite blocks surrounding a central copper rod were placed in a 4 m deep vertical borehole. The borehole was then sealed and the blocks are left for 1, 5 or >> 5 years. When the bentonite was water saturated the central copper rod is heated to simulate the temperature increase due to radioactive decay of the spent fuel. Bentonite doped with radioactive Cs and Co was placed in one of the lower blocks. Interestingly, the redox-sensitive pertechnetate ion (TcO 4 - ) which thermodynamically should be reduced and precipitate as TcO 2 n H 2 O, travelled unreduced through

  16. STUDY OF THERMAL AND ACID STABILITY OF BENTONITE CLAY

    Karna Wijaya

    2010-06-01

    Full Text Available The thermal and acid stability of the bentonite clays (Na- and Ca-bentonite have been tested. The thermal stability testing has been carried out by heating 5 gram of the clays  for five hours at 200, 300 and 500 °C respectively, meanwhile acid stability testing was performed by immersing 5 gram clays into 100 mL sulphuric acid 1M, 2M and 3M for 24 hours. The tested clays, then were characterized by means of X-Ray difractometry and IR-spectroscopy methods. The characterization results showed that upon heating, both Ca- and Na-bentonites indicated same thermal stability. However, upon acid treatment, Na-bentonite was found relatively stabiler and more resistance then Ca-bentonite.   Keywords: bentonite, clay, thermal stability, acid stability.

  17. Quality control and characterization of bentonite materials

    Kiviranta, L.; Kumpulainen, S.

    2011-12-01

    Before bentonite material is taken into use in performance testing, the quality of the material needs to be checked. Three high grade bentonite materials: two natural Nabentonites from Wyoming, and one natural Ca-bentonite from Milos, were characterized. Each material was characterized using duplicate or triplicate samples in order to study variability in material quality in batches. The procedure consisted of basic acceptance testing (water ratio, CEC, swelling index, liquid limit, and granule size distribution), advanced acceptance testing (exchangeable cations, chemical and mineralogical composition, density, swelling pressure and hydraulic conductivity) and complementary testing (herein surface area, water absorption capacity, montmorillonite composition, grain size distribution and plastic limit). All three materials qualified the requirements set for buffer bentonite for CEC, smectite content, swelling pressure, and hydraulic conductivity. Wyoming bentonites contained approximately 88 wt.% of smectite, and Milos bentonite 79 wt.% of smectite and 3 wt.% of illite. Precision of smectite analyses was ±2 %, and variances in composition of parallel samples within analytical errors, at least for Wyoming bentonites. Accuracy of quantitative analyses for trace minerals such as gypsum, pyrite or carbonates, was however low. As the concentrations of these trace minerals are important for Eh or pH buffering reactions or development of bentonite pore water composition, normative concentrations are recommended to be used instead of mineralogically determined concentrations. The swelling pressures and hydraulic conductivities of different materials were compared using EMDD. Swelling pressure was relatively higher for studied Cabentonite than for the studied Na-bentonites and the difference could not be explained with different smectite contents. Hydraulic conductivities seemed to be similar for all materials. The results of index tests correlated with the smectite content

  18. Deep repository - engineered barrier systems. Half scale tests to examine water uptake by bentonite pellets in a block-pellet backfill system

    Dixon, David; Lundin, Cecilia; Oertendahl, Ellinor; Hedin, Mikael; Ramqvist, Gunnar

    2008-12-01

    In order to examine the behaviour of water entering a section of tunnel that had recently been backfilled using a combination of bentonite pellets and compacted, smectitic clay blocks, a series of large-scale tests have been completed. These tests, done at a scale of approximately 0.5 that of an emplacement tunnel were completed in a mock-up constructed in the Buffer Laboratory at SKB's Aespoe Hard Rock Laboratory. A total of 12 tests, undertaken under well controlled conditions were completed, examining the effects of inflow rate, inflow location and time on assemblies of blocks and pellets. Water was supplied to the assembly at rates ranging from 0.1 to 2.5 l/min and the time for water exit, the exit location, potential for erosion of backfill, the rate of water uptake and resistance of the assembly to water influx were all monitored for periods of 3 to 7 days. The testing time was selected to simulate a reasonable duration for unanticipated backfilling interruption. Longer durations were not necessary and risked both the stability of the system and the loss of the early stage conditions through progression of swelling and homogenization. Testing determined that initial water movement through backfill is largely controlled by the pellets. Water influx of up to 30 l/h at a single location was diverted by the pellets forming essentially horizontal flow channels (pipes) along the chamber wall - pellet interface. These piping features directed the majority of the incoming water around the backfill and towards the unconfined downstream face of the assembly. The time required for the water to exit the assembly was dependant on a combination of inflow rate and distance that it needed to travel. Water typically exited the face of the backfill at well-defined location(s) and once established, these features remained for the duration of the test. The exiting water typically carried only limited eroded material but could cause some disruption of the downstream face of the

  19. Deep repository - engineered barrier systems. Half scale tests to examine water uptake by bentonite pellets in a block-pellet backfill system

    Dixon, David (Atomic Energy of Canada Limited (AECL) (Canada)); Lundin, Cecilia (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Oertendahl, Ellinor (NCC (Sweden)); Hedin, Mikael (Aangpannefoereningen, Stockholm (Sweden)); Ramqvist, Gunnar (Eltekno AB (Sweden))

    2008-12-15

    In order to examine the behaviour of water entering a section of tunnel that had recently been backfilled using a combination of bentonite pellets and compacted, smectitic clay blocks, a series of large-scale tests have been completed. These tests, done at a scale of approximately 0.5 that of an emplacement tunnel were completed in a mock-up constructed in the Buffer Laboratory at SKB's Aespoe Hard Rock Laboratory. A total of 12 tests, undertaken under well controlled conditions were completed, examining the effects of inflow rate, inflow location and time on assemblies of blocks and pellets. Water was supplied to the assembly at rates ranging from 0.1 to 2.5 l/min and the time for water exit, the exit location, potential for erosion of backfill, the rate of water uptake and resistance of the assembly to water influx were all monitored for periods of 3 to 7 days. The testing time was selected to simulate a reasonable duration for unanticipated backfilling interruption. Longer durations were not necessary and risked both the stability of the system and the loss of the early stage conditions through progression of swelling and homogenization. Testing determined that initial water movement through backfill is largely controlled by the pellets. Water influx of up to 30 l/h at a single location was diverted by the pellets forming essentially horizontal flow channels (pipes) along the chamber wall - pellet interface. These piping features directed the majority of the incoming water around the backfill and towards the unconfined downstream face of the assembly. The time required for the water to exit the assembly was dependant on a combination of inflow rate and distance that it needed to travel. Water typically exited the face of the backfill at well-defined location(s) and once established, these features remained for the duration of the test. The exiting water typically carried only limited eroded material but could cause some disruption of the downstream face of

  20. Modelling interaction of deep groundwaters with bentonite and radionuclide speciation

    Wanner, H.

    1986-04-01

    In the safety analysis recently reported for a potential Swiss high-level waste repository, radionuclide speciation and solubility limits are calculated for expected granitic groundwater conditions. This report describes a thermodynamic model which is used to estimate the chemical composition of the pore water in compacted sodium bentonite. The model is based on available experimental data and describes the basic reactions between bentonite and groundwater by an ion-exchange model for sodium, potassium, magnesium, and calcium. The model assumes equilibrium with calcite as long as sufficient carbonates remain in the bentonite, as well as quartz saturation. The long-term situation is modelled by the assumption that the near-field of a deep repository behaves like a mixing tank. It is found that sodium bentonite will slowly be converted to calcium bentonite. The modelled composition of the pore water of compacted sodium bentonite is used to estimate radionuclide solubilities in the near-field of a deep repository. The elements considered are: uranium, neptunium, plutonium, thorium, americium, and technetium. The redox potential in the near-field is assumed to be controlled by the corrosion products of the iron canister. Except for uranium and neptunium, radionuclide solubilities turn out to be lower under the modelled near-field conditions than in the groundwater of the surrounding granitic host rock. Uranium and neptunium solubility might be higher by orders of magnitude in the near-field than in the far-field. From the chemical point of view, calcium bentonite seems to be more stable than sodium bentonite in the presence of Swiss Reference Groundwater. The use of calcium bentonite instead of sodium bentonite will improve the reliability in the prediction of source terms for radionuclide transport in the geosphere. (author)

  1. Modelling interaction of deep groundwaters with bentonite and radionuclide speciation

    Wanner, H.

    1986-04-01

    In the safety analysis recently reported for a potential Swiss high-level waste repository, radionuclide speciation and solubility limits are calculated for expected granitic groundwater conditions. With the objective of deriving a more realistic description of radionuclide release from the near-field, an investigation has been initiated to quantitatively specify the chemistry of the near-field. In the Swiss case, the main components of the near-field are the glass waste-matrix, a thick steel canister horizontally emplaced in a drift, and a backfill of highly compacted sodium bentonite. This report describes a thermodynamic model which is used to estimate the chemical composition of the pore water in compacted sodium bentonite. Solubility limits and speciation of important actinides and the fission product technetium in the bentonite pore water are then calculated. The model is based on available experimental data on the interaction of sodium bentonite and groundwater and represents means of extrapolation from laboratory data to repository conditions. The basic reactions between sodium bentonite and groundwater are described by an ion-exchange model for sodium, potassium, magnesium, and calcium. The model assumes equilibrium with calcite as long as sufficient carbonates remain in the bentonite, as well as quartz saturation. It is calculated that the pore water of compacted sodium bentonite saturated with Swiss Reference Groundwater will have a pH value of 9.7 and a free carbonate activity of 8x10 -4 M. The long-term situation is modelled by the assumption that the near-field of a deep repository behaves like a mixing tank. In this way, an attempt is made to account for the continuous water exchange between the near-field and the host rock. It is found that sodium bentonite will be slowly converted to calcium bentonite. This conversion is roughly estimated to be completed after 2 million years

  2. Final report on physical test program of Spanish clays (Saponites and bentonites)

    Pusch, R.; Karnland, O.; Sanden, T.

    1996-10-01

    Two Spanish candidate buffer clays were hydrothermally treated and then investigated with respect to the physical properties and chemical and mineralogical compositions. four temperatures were used: room temperature 70 degree centigree, 120 degree centigree and 170 degree centigree, and three periods of testing: 10 days, 60 days and 360 days. The hydrothermal treatment was made by use of pressurized vessels with different solutions rich in Na``+/Ca``2+, K``+ and Mg``2+, respectively. The testing comprised determination of physical properties, e.g. the hydraulic conductivity and the rheological behavior, as well as of chemical and mineralogical changes. The hydraulic conductivity was found to be significantly affected by the type of dominant cation. With time, the conductivity dropped due to microstructural homogenization but exposure to higher temperatures caused an increased conductivity. The mechanical strength was highest of the Saponites primarily due to colloid-chemical effects. The dominant chemical effect up to 120 degree centigree was cation exchange. At 170 degree centigree significant dissolution took place, releasing silica from the clay. Mineral changes were insignificant and no conversion of the smectite to illite could be identified in the montmorillonitic clay, while some slight alteration of saponite to illite took place to about the same extent at all temperatures, including room temperature.

  3. Comparison of the mineralogical composition, physical, swelling and hydraulic properties of untreated sodium bentonites from Canada, the United States and Japan

    Dixon, D.A.; Miller, S.H.

    1995-11-01

    A large variety of commercial grade sodium bentonite products are available from suppliers in North America and Japan. This report generally characterizes the products available for environmental engineering applications. A compilation of the swelling capacity and hydraulic properties of the available products, together with their basic mineralogical composition, physical and engineering properties is presented. This report identifies the range of materials available commercially and documents the basic physical properties of these products. The geological origins and locations of bentonite-ore deposits are discussed with reference to the availability and variability of this material. The hydraulic and swelling characteristics of 17 different bentonite products from 9 different producers were compared. Considerable variation was noted in the free-swell capacity of these clays but this was not reflected in the swelling pressure or hydraulic conductivity of densely compacted specimens. The density -hydraulic conductivity relationship was found to be independent of product for untreated sodium bentonite clays with hydraulic conductivity decreasing with increasing clay density (for materials tested at high (>500) hydraulic gradients). A large body of hydraulic conductivity data was obtained from the literature to supplement the data generated by this study. The literature values further supported the results of this study. Hydraulic conductivity and swelling pressure performance at high density are consistent when sodium bentonites of similar quality are densely compacted prior to use. (author) 27 refs., 5 tabs., 17 figs

  4. Numerical simulation of alteration of sodium bentonite by diffusion of ionic groundwater components

    Jacobsen, J.S.; Carnahan, C.L.

    1987-12-01

    Experiments measuring the movement of trace amounts of radionuclides through compacted bentonite have typically used unaltered bentonite. Models based on experiments such as these may not lead to accurate predictions of the migration through altered or partially altered bentonite of radionuclides that undergo ion exchange. To address this problem, we have modified an existing transport code to include ion exchange and aqueous complexation reactions. The code is thus able to simulate the diffusion of major ionic groundwater components through bentonite and reactions between the bentonite and groundwater. Numerical simulations have been made to investigate the conversion of sodium bentonite to calcium bentonite for a reference groundwater characteristic of deep granitic formations. 20 refs., 2 figs., 2 tabs

  5. Study on the properties of Gaomiaozi bentonite as the buffer/backfilling materials for HLW disposal

    Liu Xiaodong; Luo Taian; Zhu Guoping; Chen Qingchun

    2007-12-01

    Systematic studies including mineral composition and structure, physico- chemical properties and thermal properties have been conducted on Gaomiaozi bentonite, Xinghe County, Inner Mongolia Autonomous Region. The compaction characteristics of bentonite and the influence of additive to bentonite have been discussed. The analysis of mineral composition and structure show that the bentonite ores are dominated by montmorillonite. Preliminary studies of the characteristics of ores indicated that No-type bentonite from the deposit has good absorption, excellent swelling and high cation exchangeability. The compressibility of bentonite will be improved by adding the additives such as quartz sand. The studies indicated that the characteristics of Gaomiaozi bentonite can satisfy the requirement of buffer/backfilling materials for HLW repository and the ores can be selected as the preferential candidate to provide buffer/backfill- ing materials for HLW repository in China. (authors)

  6. Study on the properties of Gaomiaozi bentonite as the buffer/backfilling materials for HLW disposal

    Xiaodong, Liu [East China Inst. of Technology, Fuzhou (China); [Key Laboratory of Nuclear Resources and Environment of Ministry of Education, Fuzhou (China); Taian, Luo; Guoping, Zhu; Qingchun, Chen [East China Inst. of Technology, Fuzhou (China)

    2007-12-15

    Systematic studies including mineral composition and structure, physico- chemical properties and thermal properties have been conducted on Gaomiaozi bentonite, Xinghe County, Inner Mongolia Autonomous Region. The compaction characteristics of bentonite and the influence of additive to bentonite have been discussed. The analysis of mineral composition and structure show that the bentonite ores are dominated by montmorillonite. Preliminary studies of the characteristics of ores indicated that No-type bentonite from the deposit has good absorption, excellent swelling and high cation exchangeability. The compressibility of bentonite will be improved by adding the additives such as quartz sand. The studies indicated that the characteristics of Gaomiaozi bentonite can satisfy the requirement of buffer/backfilling materials for HLW repository and the ores can be selected as the preferential candidate to provide buffer/backfill- ing materials for HLW repository in China. (authors)

  7. Synthesis of PDLLA/PLLA-bentonite nanocomposite through sonication

    Sitompul, Johnner; Setyawan, Daru; Kim, Daniel Young Joon; Lee, Hyung Woo

    2016-01-01

    This paper concerns the synthesis of poly(D,L-lactic acid)/poly(L-lactic acid) bentonite nanocomposites. Poly (D,L-lactic acid) (PDLLA) was synthesized using lactic acid through the ZnO-catalyzed direct polycondensation method at vacuum pressure and poly(L-lactic acid) (PLLA) was synthesized with L-lactide by ring-opening polymerization method. The PDLLA/PLLA-bentonite nanocomposite films were synthesized using the solvent casting method. The nanoclay, bentonite, was prepared using the solution-intercalation method by dissolving the nanoparticles into chloroform before sonication. In this study, PDLLA/PLLA-bentonite nanocomposite films were produced using variable amounts of nanoclay and sonication times during the mixing of PDLLA/PLLA and bentonite. The properties of the PDLLA/PLLA nanocomposites were then characterized using the X-ray Diffraction (XRD), Universal Testing Machine (UTM), Water Vapor Permeability (WVP) tests, and the enzymatic biodegradability test. The XRD test was used to measure the intercalation of nanoclay layers in the PDLLA/PLLA matrix and the PDLLA/PLLA-bentonite intercalated nanocomposite films. It was found through these various tests that adding bentonite to the PDLLA/PLLA increases tensile strength to 56.76 MP. Furthermore, the biodegradability increases as well as the barrier properties of the polymers The different sonication time used during the mixing of the polymer solution with bentonite also affected the properties of the PDLLA/PLLA-bentonite nanocomposite films.

  8. Synthesis of PDLLA/PLLA-bentonite nanocomposite through sonication

    Sitompul, Johnner, E-mail: sitompul@che.itb.ac.id; Setyawan, Daru, E-mail: daru.setyawan@gmail.com; Kim, Daniel Young Joon, E-mail: daniel.kim12321@gmail.com [Department of Chemical Engineering, Faculty of Industrial Technology, Institute of Technology Bandung Jl. Ganesha 10, Bandung, West Java, 40132 (Indonesia); Lee, Hyung Woo, E-mail: leehw@che.itb.ac.id [Department of Chemical Engineering, Faculty of Industrial Technology, Institute of Technology Bandung Jl. Ganesha 10, Bandung, West Java, 40132 (Indonesia); Research and Business Foundation, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 440-746 (Korea, Republic of)

    2016-04-19

    This paper concerns the synthesis of poly(D,L-lactic acid)/poly(L-lactic acid) bentonite nanocomposites. Poly (D,L-lactic acid) (PDLLA) was synthesized using lactic acid through the ZnO-catalyzed direct polycondensation method at vacuum pressure and poly(L-lactic acid) (PLLA) was synthesized with L-lactide by ring-opening polymerization method. The PDLLA/PLLA-bentonite nanocomposite films were synthesized using the solvent casting method. The nanoclay, bentonite, was prepared using the solution-intercalation method by dissolving the nanoparticles into chloroform before sonication. In this study, PDLLA/PLLA-bentonite nanocomposite films were produced using variable amounts of nanoclay and sonication times during the mixing of PDLLA/PLLA and bentonite. The properties of the PDLLA/PLLA nanocomposites were then characterized using the X-ray Diffraction (XRD), Universal Testing Machine (UTM), Water Vapor Permeability (WVP) tests, and the enzymatic biodegradability test. The XRD test was used to measure the intercalation of nanoclay layers in the PDLLA/PLLA matrix and the PDLLA/PLLA-bentonite intercalated nanocomposite films. It was found through these various tests that adding bentonite to the PDLLA/PLLA increases tensile strength to 56.76 MP. Furthermore, the biodegradability increases as well as the barrier properties of the polymers The different sonication time used during the mixing of the polymer solution with bentonite also affected the properties of the PDLLA/PLLA-bentonite nanocomposite films.

  9. Insulation irradiation test programme for the Compact Ignition Tokamak

    McManamy, T.J.; Kanemoto, G.; Snook, P.

    1991-01-01

    In a programme to evaluate the effects of radiation exposure on the electrical insulation for the toroidal field coils of the Compact Ignition Tokamak, three types of boron-free insulation were irradiated at room temperature in the Advanced Technology Reactor (ATR) and tested at the Idaho National Engineering Laboratory. The materials were Spaulrad-S, Shikishima PG5-1 and Shikishima PG3-1. The first two use a bismaleimide resin and the third an aromatic amine hardened epoxy. Spaulrad-S is a two-dimensional (2-D) weave of S-glass, while the others are 3-D weaves of T-glass. Flexure and shear/compression samples were irradiated to ≅ 5 x 10 9 and 3 x 10 10 rad with 35-40% of the total dose from neutrons. The shear/compression samples were tested in pairs by applying an average compression of 345 MPa and then a shear load. After static tests were completed, fatigue testing was performed by cycling the shear load for up to 30000 cycles with a constant compression. The static shear strength of the samples that did not fail was then determined. Generally, shear strengths of the order of 120 MPa were measured. The behaviour of the flexure and shear/compression samples was significantly different; large reductions in the flexure strength were observed, while the shear strength stayed the same or increased slightly. The 3-D weave material demonstrated higher strength and significantly less radiation damage than the 2-D material in flexure but performed almost identically when tested with combined shear and compression. The epoxy system was much more sensitive to fatigue damage than the bismaleimide materials. No swelling was measured; however, the epoxy samples did twist slightly. (author)

  10. Comparative activity of carbapenem testing (the COMPACT study in Turkey

    Leblebicioglu Hakan

    2012-02-01

    Full Text Available Abstract Background Recent evidence indicates that Gram-negative bacterial pathogens, the most common of which are Pseudomonas spp., Enterobacteriaceae, and Acinetobacter baumannii, are frequent causes of hospital-acquired infections. This study aims to evaluate the in vitro activity of doripenem and comparator carbapenem antibiotics against Gram-negative clinical isolates collected from COMParative Activity of Carbapenem Testing (COMPACT study centres in Turkey. Methods Ten centres in Turkey were invited to submit Pseudomonas aeruginosa, Enterobacteriaceae, and other Gram-negative isolates from intensive care unit (ICU/non-ICU patients with complicated intra-abdominal infections, bloodstream infections, or nosocomial pneumonia, including ventilator-associated pneumonia, between May and October 2008. Susceptibility was determined by each centre using E-test. A central laboratory performed species confirmation as well as limited susceptibility and quality-control testing. Results Five hundred and ninety six isolates were collected. MIC90 values for doripenem, meropenem, and imipenem, respectively, were 32, ≥ 64, and ≥ 64 mg/L against Pseudomonas spp.; 0.12, 0.12, and 0.5 mg/L against Enterobacteriaceae; and ≥ 64 mg/L for each against other Gram-negative isolates. In determining the susceptibility of hospital isolates of selected Gram-negative pathogens to doripenem, imipenem, and meropenem, we found that against all pathogens combined, the MIC90 for ICU compared with non-ICU isolates was higher. Conclusions Doripenem showed similar or slightly better activity than meropenem and better activity than imipenem against the Gram-negative pathogens collected in Turkey.

  11. Fe-bentonite. Experiments and modelling of the interactions of bentonites with iron

    Herbert, Horst-Juergen; Xie, Mingliang [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Koeln (Germany); Kasbohm, Joern; Lan, Nguyen T. [Greifswald Univ. (Germany); Hoang Thi Minh Thao [Hanoi Univ. of Science (Viet Nam)

    2011-11-15

    The main objectives of this study were to enhance the understanding of the interactions of bentonites with steel containers in the near field of a repository in salt formations and to determine missing experimental thermo-hydraulical-chemical and mineralogical data needed for the THC modelling of the interactions of bentonites with iron. At the beginning of this project a literature review helped to clarify the state of the art regarding the above mentioned objectives prior to the start of the experimental work. In the following experimental programme the hydraulic changes in the pore space of compacted MX80 bentonites containing metallic iron powder and in contact with three solutions of different ionic strength containing different concentrations of Fe{sup 2+} have been investigated. The alterations of MX80 and several other bentonites have been assessed in contact with the low ionic strength Opalinus Clay Pore Water (OCPW) and the saturated salt solutions NaCl solution and IP21 solution. Under repository relevant boundary conditions we determined on compacted MX80 samples with the raw density of 1.6 g/cm{sup 3} simultaneously interdependent properties like swelling pressures, hydraulic parameters (permeabilities and porosities), mineralogical data (changes of the smectite composition and iron corrosion products), transport parameters (diffusion coefficients) and thermal data (temperature dependent reaction progresses). The information and data resulting from the experiments have been used in geochemical modelling calculations and the existing possibilities and limitations to simulate these very complex near field processes were demonstrated. The main conclusion of this study is that the alteration of bentonites in contact with iron is accentuated and accelerated. Alterations in contact with solutions of different ionic strength identified by the authors in previous studies were found be much more intensive in contact with metallic iron and at elevated

  12. Geochemical modelling of hydrogen gas migration in an unsaturated bentonite buffer

    Sedighi, M.; Thomas, H.R.; Al Masum, S.; Vardon, P.J.; Nicholson, D.; Chen, Q.

    2014-01-01

    This paper presents an investigation of the transport and fate of hydrogen gas through compacted bentonite buffer. Various geochemical reactions that may occur in the multiphase and multicomponent system of the unsaturated bentonite buffer are considered. A reactive gas transport model, developed

  13. Effect of heating and pore water salinity on the swelling characteristics of bentonite buffer

    Dhawan, Sarita; Rao, M. Sudhakar

    2010-01-01

    Document available in extended abstract form only. Changes in swell potential of bentonite-sand mixture as a function of temperature and pore water salinity were measured. Bentonite dried at 105 deg. C and sand was mixed in 50:50 ratio by weight for study. The bentonite sand mix was compacted to 1.83 Mg/m 3 dry density and 13.8% water content (mixed with distilled water) obtained from Modified proctor compaction test for all test conditions. For the first series, the mix was prepared using distilled water as molding fluid. The compacted samples were dried at temperatures 50 deg. C and 80 deg. C for time periods 2 to 45 days. Dried samples were assembled in oedometer cells and allowed to swell under load of 6.25 kPa. In second series, bentonite sand mixes were prepared with 1000 ppm Na, 1000 ppm K, 1000 ppm Ca and 1000 ppm Mg solutions using chloride salts to achieve water content of 13.8%. The mixes were then compacted and dried at 80 deg. C for 15 days and allowed to swell in oedometer assembly. In third series of experiments, bentonite sand mix were compacted with distilled water as molding fluid and heated at 80 deg. C for 15 days. The dried samples were then swollen inundating with solutions simulating less saline granitic ground water and a moderately saline groundwater. The swell behavior is compared with samples without heating treatment. For samples prepared with distilled water and heated, the swell potential reduced up to 10-28% on heating compared to sample without any heating. The swell reduction varied depending on temperature and time period. The volumetric shrinkage varied from 1.4 to 3.3% of original volume of compacted sample on heating. Addition of sand was found effective in controlling shrinkage caused by heating. For samples prepared with salt solutions with no heating and inundated with distilled water for swell, the swell potential reduced from 12-20% compared to sample mixed and inundated with distilled water. The reduction in swell

  14. Alkali-activated fly ash-based geopolymers with zeolite or bentonite as additives

    Hu, Mingyu; Zhu, Xiaomin; Long, Fumei [Nanchang University, Nanchang (China). College of Civil Engineering

    2009-11-15

    Geopolymers were synthesized by using fly ash as the main starting material, zeolite or bentonite as supplementary materials, and NaOH and CaO together as activator. An orthogonal array testing protocol was used to analyze the influence of the mix proportion on the properties of the geopolymers. The results indicate that the concentration of NaOH solution and the CaO content play an important role on the strength of the materials. Especially, with zeolite as additive, the fly ash-based geopolymer shows the highest strength and the best sulfate resistance. Infrared spectroscopy, X-ray, and SEM-EDX demonstrate that supplementary zeolite may involve the process of geopolymerization to form a stable zeolitic structure and improve the properties of the geopolymer. Bentonite simply acts as a filler to make the geopolymer more compact, but shows no improvement on the compositions and the microstructures of the geopolymer.

  15. The insulation irradiation test program for the Compact Ignition Tokamak

    McManamy, T.J.; Kanemoto, G.; Snook, P.

    1990-01-01

    The electrical insulation for the toroidal field coils of the Compact Ignition Tokamak (CIT) is expected to be exposed to radiation doses on the order of 10 10 rad with ∼90% of the dose from neutrons. The coils are cooled to liquid nitrogen temperature and then heated during the pulse to a peak temperature >300 K. In a program to evaluate the effects of radiation exposure on the insulators, three types of boron-free insulation were irradiated at room temperature in the Advanced Technology Reactor (ATR) and tested at the Idaho National Engineering Laboratory. The materials were Spaulrad-S, Shikishima PG5-1, and Shikishima PG3-1. The first two use a bismaleimide resin and the third an aromatic amine hardened epoxy. Spaulrad-S is a two-dimensional (2-D) weave of S-glass, while the others are 3-D weaves of T-glass. Flexure and shear/compression samples were irradiated to approximately 5 x 10 9 rad and 3 x 10 10 rad with 35 to 40% of the total dose from neutrons. The shear/compression samples were tested in pairs by applying an average compression of 345 MPa and then a shear load. After static tests were completed, fatigue testing was done by cycling the shear load for up to 30,000 cycles with a constant compression. The static shear strength of the samples that did not fail was then determined. Generally, shear strengths on the order of 120 MPa were measured. The behavior of the flexure and shear/compression samples was significantly different; large reductions in the flexure strength were observed, while the shear strength stayed the same or increased slightly. The 3-D weave material demonstrated higher strength and significantly less radiation damage than the 2-D material in flexure but performed nearly identically when tested with combined shear and compression. The epoxy system was much more sensitive to fatigue damage than the bismaleimide materials. 9 refs., 5 figs

  16. Earthquake induced rock shear through a deposition hole. Modelling of three model tests scaled 1:10. Verification of the bentonite material model and the calculation technique

    Boergesson, Lennart (Clay Technology AB, Lund (Sweden)); Hernelind, Jan (5T Engineering AB, Vaesteraas (Sweden))

    2010-11-15

    Three model shear tests of very high quality simulating a horizontal rock shear through a deposition hole in the centre of a canister were performed 1986. The tests and the results are described by /Boergesson 1986/. The tests simulated a deposition hole in the scale 1:10 with reference density of the buffer, very stiff confinement simulating the rock, and a solid bar of copper simulating the canister. The three tests were almost identical with exception of the rate of shear, which was varied between 0.031 and 160 mm/s, i.e. with a factor of more than 5,000 and the density of the bentonite, which differed slightly. The tests were very well documented. Shear force, shear rate, total stress in the bentonite, strain in the copper and the movement of the top of the simulated canister were measured continuously during the shear. After finished shear the equipment was dismantled and careful sampling of the bentonite with measurement of water ratio and density were made. The deformed copper 'canister' was also carefully measured after the test. The tests have been modelled with the finite element code Abaqus with the same models and techniques that were used for the full scale scenarios in SR-Site. The results have been compared with the measured results, which has yielded very valuable information about the relevancy of the material models and the modelling technique. An elastic-plastic material model was used for the bentonite where the stress-strain relations have been derived from laboratory tests. The material model is made a function of both the density and the strain rate at shear. Since the shear is fast and takes place under undrained conditions, the density is not changed during the tests. However, strain rate varies largely with both the location of the elements and time. This can be taken into account in Abaqus by making the material model a function of the strain rate for each element. A similar model, based on tensile tests on the copper used in

  17. Hydro-mechanical behaviour of bentonite-based materials used for high-level radioactive waste disposal

    Wang, Q.

    2012-01-01

    This study deals with the hydro-mechanical behaviour of compacted bentonite-based materials used as sealing materials in high-level radioactive waste repositories. The pure MX80 bentonite, mixtures of MX80/crushed clay-stone and MX80/sand were used in the investigation. An experimental study on the swelling pressure of the bentonite-based materials was first performed. The results evidenced the effects of water chemistry, hydration procedure and duration, pre-existing technological void and experimental methods. Emphasis was put on the relationship between the swelling pressure and the final dry density of bentonite. Afterwards, the water retention test, hydration test and suction controlled oedometer test were conducted on samples with different voids including the technological void and the void inside the soil. By introducing the parameters as bentonite void ratio and water volume ratio, an overall analysis of the effects of voids on the hydro-mechanical response of the compacted material was performed. To get better insight into the seal evolution in case of technological void, the effects of final dry density and hydration time on the microstructure features were also characterized. Then, the hydraulic properties under unsaturated state were investigated by carrying out water retention test and infiltration test as well as the microstructure observation. The results obtained allowed relating the variation of hydraulic conductivity to the microstructure changes. A small scale (1/10) mock up test of the SEALEX in situ experiment was also performed to study the recovery capacity of bentonite-based material with consideration of a technological void. The results were used for interpreting the in-situ observations. With a reduced time scale, it provides useful information for estimating the saturation duration and sealing effectiveness of the field design. Finally, the experimental data obtained in the laboratory on bentonite/sand mixture were interpreted in the

  18. Analysis of corrosion products of carbon steel in wet bentonite

    Osada, Kazuo; Nagano, Tetsushi; Nakayama, Shinichi; Muraoka, Susumu

    1992-02-01

    As a part of evaluation of the long-term durability for the overpack containers for high-level radioactive waste, we have conducted corrosion tests for carbon steel in wet bentonite, a candidate buffer material. The corrosion rates were evaluated by weight difference of carbon steel and corrosion products were analyzed by Fourier transform infrared spectroscopy (FT-IR) and colorimetry. At 40degC, the corrosion rate of carbon steel in wet bentonite was smaller than that in pure water. At 95degC, however, the corrosion rate in wet bentonite was much higher than that in pure water. This high corrosion rate in wet bentonite at 95degC was considered to result from evaporation of moisture in bentonite in contact with the metal. This evaporation led to dryness and then to shrinkage of the bentonite, which generated ununiform contact of the metal with bentonite. Probably, this ununiform contact promoted the local corrosion. The locally corroded parts of specimen in wet bentonite at 95degC were analyzed by Fourier transform infrared microspectroscopy (micro-FT-IR), and lepidocrocite γ-FeO(OH) was found as well as goethite α-FeO(OH). In wet bentonite at 95degC, hematite α-Fe 2 O 3 was identified by means of colorimetry. (author)

  19. Immobilization of spent Bentonite by using cement matrix

    Isman MT; Endro-Kismolo

    1996-01-01

    Investigation of spent bentonite immobilization by using cement was done. The purpose of the investigation was to know the performance of cement in binding bentonite waste. The investigation was done by adding cement, water, and bentonite waste into a container and string until the mixture became homogenous. The mixture was put into a polyethylene tube (3.5 cm in diameter and 4 cm high) and it was cured up to 28 days. The specific weight of the monolith block was then calculated, and the compressive strength and the leaching rate in ground water and sea water was tested. The mass ratio of water to cement was 0.4. The variable investigated was the mass ratio of bentonite to cement. The immobilized bentonite waste was natural bentonite waste and activated bentonite waste. The result of the investigation showed that cement was good for binding bentonite waste. The maximum binding mass ratio of bentonite to cement was 0.4. In this condition the specific weight of the monolith block was 2.177 gram/cm 3 , its compressive strength was 22.6 N/mm 2 , and the leaching rate for 90 days in ground water and sea water was 5.7 x 10 -4 gram cm -2 day -1

  20. MANU. Purchase of Bentonite. Process Description

    Laaksonen, R.

    2010-01-01

    The aim of this study is to describe the entire bentonite purchasing process accurately. This will enable efficient and focused use of information related to the purchasing phase and to each individual bentonite batch. This work continues from the work started in the report by Ahonen et al. (2008), Quality Assurance of the Bentonite Material, Posiva Working Report 2008-33. The current work includes a short enquiry for all relevant and at the time known producers or re-sellers of bentonite. Questions about relevant products suitable for civil engineering use, more specifically nuclear waste disposal site use, were asked together with test methods, typical test results and test standards. The following aspects and opinions have been processed from the results that were obtained during the project. Each seller/producer has a quality management system, QMS (typically ISO 9001), and ability to perform the basic tests, but there is not an established common set of properties to be tested. Some producers are willing to test according to customers' specifications. Posiva could arrange a network of capable laboratories to carry out tests according to its selected standards. This activity should then be accredited with a reasonable testing volume. Before starting the purchase of bentonite at a large scale, Posiva should go through negotiations and audits with each seller in order to make sure that both parties are testing with the same methods and both understand the range where the values of key parameters may lie. A database is needed for gathering statistically relevant information from the bentonite material parameters over the long run. This is needed for determining the limits within which the material parameters should remain in order to be acceptable. Posiva is encouraged to create a process to optimize the test types and the amount of tests should be identified for immediate and long term use. This process ensures the required quality and costs involved. (orig.)

  1. Engineering Properties of Bentonite Stabilized with Lime and Phosphogypsum

    Kumar Sujeet

    2014-12-01

    Full Text Available Engineering properties such as compaction, unconfined compressive strength, consistency limits, percentage swell, free swell index, the California bearing ratio and the consolidation of bentonite stabilized with lime and phosphogypsum are presented in this paper. The content of the lime and phosphogypsum varied from 0 to 10 %. The results reveal that the dry unit weight and optimum moisture content of bentonite + 8 % lime increased with the addition of 8 % phosphogypsum. The percentage of swell increased and the free swell index decreased with the addition of 8 % phosphogypsum to the bentonite + 8 % lime mix. The unconfined compressive strength of the bentonite + 8 % lime increased with the addition of 8 % phosphogypsum as well as an increase in the curing period up to 14 days. The liquid limit and plastic limit of the bentonite + 8 % lime increased, whereas the plasticity index remained constant with the addition of 8 % phosphogypsum. The California bearing ratio, modulus of subgrade reaction, and secant modulus increased for the bentonite stabilized with lime and phosphogypsum. The coefficient of the consolidation of the bentonite increased with the addition of 8 % lime and no change with the addition of 8 % phosphogypsum.

  2. Bentonite Permeability at Elevated Temperature

    Katherine A. Daniels

    2017-01-01

    Full Text Available Repository designs frequently favour geological disposal of radioactive waste with a backfill material occupying void space around the waste. The backfill material must tolerate the high temperatures produced by decaying radioactive waste to prevent its failure or degradation, leading to increased hydraulic conductivity and reduced sealing performance. The results of four experiments investigating the effect of temperature on the permeability of a bentonite backfill are presented. Bentonite is a clay commonly proposed as the backfill in repository designs because of its high swelling capacity and very low permeability. The experiments were conducted in two sets of purpose-built, temperature controlled apparatus, designed to simulate isotropic pressure and constant volume conditions within the testing range of 4–6 MPa average effective stress. The response of bentonite during thermal loading at temperatures up to 200 °C was investigated, extending the previously considered temperature range. The results provide details of bentonite’s intrinsic permeability, total stress, swelling pressure and porewater pressure during thermal cycles. We find that bentonite’s hydraulic properties are sensitive to thermal loading and the type of imposed boundary condition. However, the permeability change is not large and can mostly be accounted for by water viscosity changes. Thus, under 150 °C, temperature has a minimal impact on bentonite’s hydraulic permeability.

  3. Long term mineralogical properties of bentonite/quartz buffer substance

    Jacobsson, A.; Pusch, R.

    1978-06-01

    This report shows results from investigations concerning properties in bentonitebased buffersubstances which are suggested to be used when high level radioactive wastes from nuclear powerplants are to be stored finally. Recommended material characteristica of the bentonite to be used are summerized. In an attempt to find geological evidence for bentonite to loose its desireable properties there were no such findings at the temperatures, groundwater situations and pressures which are to be expected at the actual depositing depth (500 m) for a considerable period of time. Concerning biological activity and then specially the mobility and activity of bacteria the conclusion is that there will be little or no influence from them either there is bentonite-sand or compacted pure bentonite in the buffer mass

  4. One-dimensional self-sealing ability of bentonites in artificial seawater

    Komine, Hideo; Yasuhara, Kazuya; Murakami, Satoshi

    2009-01-01

    A high-level radioactive waste disposal facility might be built in a coastal area in Japan from the viewpoint of feasible transportation of waste. Therefore, it is important to investigate the effects of seawater on a bentonite-based buffer. This study investigated the influence of seawater on self-sealing ability of three common sodium-types of bentonite by the laboratory experiment and chemical analysis. From the results of laboratory experiment, suitable specifications were defined for a bentonite-based buffer that can withstand the effects of seawater. Furthermore, mechanism on filtration of seawater components in highly compacted bentonite was discussed by the results of chemical analysis. (author)

  5. Treatment and characterization of clays (Brasgel and Green Bentonite) for use in zinc removal tests of synthetic effluents

    Patricio, A.C.L.; Silva, M.M. da; Lima, W.S.; Laborde, H.M.; Rodrigues, M.G.F.

    2011-01-01

    The main objective of this work was to synthesize two organophilic clays starting from the green Bentonite clay and Brasgel in their natural forms and to evaluate the potential in the process of zinc removal of wastewater through a finite bath system. After the treatment process, the clays in the natural and organophilic form were characterized by the techniques of X-ray Diffraction (XRD), Infrared Spectroscopy (IR), in addition, organophilic clays obtained were submitted to the swelling of Foster, aiming to analyze their behavior in certain organic solvents. The analysis of the efficiency of organophilic clays in the Zn"+"2 removal process was performed in solutions based on a factorial design 2"2 + 3 replicates in the central point, having as analysis variables the pH of the solution (3.0 to 5.0) and the initial concentration of zinc ranging from 10 to 50 ppm

  6. A proposed standard round compact specimen for plane strain fracture toughness testing

    Underwood, J. H.; Newman, J. C., Jr.; Seeley, R. R.

    1980-01-01

    A round, disk-shaped specimen is proposed as a standard test specimen for addition to ASTM Test for Plane-Strain Fracture Toughness of Metallic Materials (E 399-78A). The specimen is diametrically cracked, and loaded in the same way as the existing standard compact specimen. Tests and analyses were performed to verify that the proposed round compact specimen and associated stress intensity factor K solution are appropriate for a standard plane strain fracture toughness test. The use of the round compact specimen for other fracture tests is described.

  7. Thermal properties of bentonite under extreme conditions

    Vasicek, R. [Czech Technical Univ., Centre of Experimental Geotechnics, Faculty of Civil Engineering, Prague (Czech Republic)

    2005-07-01

    Centre of Experimental Geotechnics (CEG) deals with the research of the behaviour of bentonite and clays. The measurement of thermal properties is not so frequent test in geotechnical laboratory but in relation to deep repository it is a part which should not be overlooked. The reason is the heat generated by canister with spent nuclear fuel and possible influence of the heat on the materials of the engineered barrier. In the initial stages following the burial of canister with the waste the barrier materials will be exposed to elevated temperature. According to existing information, these temperatures should not exceed 90 C. That heat can induce a creation of cracks and opening of joint between highly compacted blocks. It will predispose the bentonite barrier to penetration of water from surrounding towards to canister. Therefore easy removal of heat through the barrier is required. It is essential that the tests aimed at determining the real values of measured parameters are carried out in conditions identical with those anticipated in a future disposal system. These relatively complicated thermophysical tests are logical continuation of the simple ones, carried out under laboratory temperature and on not fully saturated samples without possibility to measure the swelling pressure. Thermophysical properties and swelling pressure are dominantly influenced by water content (which is influenced by temperature). Therefore is important to realize the tests under different moisture and thermal conditions. These tests are running at the APT-PO1 Analyser, designed to fulfill mentioned requirements - it allows measurement of thermal properties under temperature up to 200 C and swelling pressure up to 20 MPa. The device is capable to register the evolution of temperature, swelling and vapor pressure. The measurement of thermal conductivity and volume heat capacity is realized by the dynamic impulse method with point source of heat. Four types of tests are possible: at

  8. Translating laboratory compaction test results to field scale

    Roholl, J.A.; Thienen-Visser, K. van; Breunese, J.N.

    2016-01-01

    In recent studies on the surface subsidence caused by hydrocarbon recovery of the Groningen gas field, the predicted subsidence is overestimated if results of compaction experiments are not corrected by an empirical `upscaling factor'. In order to find an explanation for this `upscaling factor', an

  9. Bentonite-amended soils special study

    1990-10-01

    This report presents the results of a two-phased special study to evaluate the viability of soil amended with a high percentage of bentonite as an infiltration barrier in the cover of Uranium Mill Tailings Remedial Action (UMTRA) Project disposal cells. Phase I of the study was initiated in order to examine the feasibility of using bentonite-amended soils as a cover component on sideslopes and topslopes. The Phase I objectives were to test a variety of materials to determine if low hydraulic conductivities were achievable in materials exhibiting sufficient strength and to select suitable materials for further testing. Phase II objectives were to (1) optimize designs -- test materials with various percentages of bentonite added; (2) provide design recommendations; (3) address constructibility concerns; and (4) evaluate long-term performance with respect to desiccation effects on the amended materials

  10. Exchangeability of bentonite buffer and backfill materials

    Savage, D. [Savage Earth Associates Ltd, Bournemouth (United Kingdom); Arthur, R. [Intera Inc, Ottawa, ON, (Canada); Luukkonen, A.

    2012-08-15

    whether these minerals are performance-critical or not. An assessment of this issue is desirable. Posiva's view that assessments of the exchangeability of different bentonite types as buffer materials should be based on performance requirements for this engineered barrier seems reasonable, but the level of understanding needed to adequately support such assessments is not clear and would seem to depend on the types of requirements being considered. Assessments addressing long-term safety requirements may be the most challenging because these requirements relate to a target state of the buffer that will not be attained until hundreds or thousands of years have elapsed since the initial state, and to subsequent interactions involving the buffer with continuously evolving near-field conditions. Should such assessments be based in whole or in part on experimental testing, then it is important to consider whether the experimental conditions are appropriate and defensibly bounding with respect to conditions expected in the near field over long periods of time. Assessments based on modelling should consider whether the models adequately represent thermal, mass-transport, chemical - mineralogical and mechanical processes controlling bentonite-water interactions, whether the reliability of the models has been verified to the extent possible in relation to relevant experimental and natural systems studied, and whether model results can be sensibly related to safety-relevant physical, thermal and rheological properties of the buffer. (orig.)

  11. Experimental characterization of cement-bentonite interaction using core infiltration techniques coupled with 4D X-ray tomography

    Dolder, F.; Maeder, U.; Jenni, A.

    2012-01-01

    (Fig. 3). The resulting micrographs describe the density distribution in three dimensions and as a function of time. Densities are calibrated with reference samples mounted in an identical apparatus. After 1-2 years we will stop the experiment and subject the rock samples to post-mortem mineralogical and petrophysical analysis. Finally, it should be possible to describe and model cement/bentonite skin effects and possibly further develop this new method. In Figure 3, an example is given where a shear zone in granite was impregnated with cement slurry and stabilized with resin as a test on a medical scanner, with densities in the range anticipated for our work. In the current experiment a compacted and saturated MX-80 bentonite is used as starting material. A confining pressure of 40 bar is applied,. The infiltration fluid pressure is 20 bar, and outflow is into a syringe at ambient pressure. The infiltrating fluid represents an ordinary Portland cement pore-water after a hydration time of 623 days. The first data in Figure 2 show a compaction of the bentonite core after insertion into the infiltration apparatus. The decrease in hydraulic conductivity can be interpreted as an adjustment of compaction of the bentonite sample to the boundary conditions. (authors)

  12. Bentonite-amended soil special study

    1989-12-01

    This special study was conducted to assess the viability of soil with a high percentage of bentonite added as an infiltration barrier in the cover of Uranium Mill Tailings Remedial Action (UMTRA) Project disposal cells. To achieve maximum concentration limits (MCLs) at several UMTRA Project sites, covers with a very low permeability are needed. If alternate concentration limits (ACLs) are the appropriate site groundwater compliance strategy, the US Department of Energy (DOE) is required to demonstrate, among other things, that the infiltration to the disposal cell is as low as reasonably achievable, and hence that the cover has a very low permeability. When the study discussed here was begun, the lowest permeability element available was CLAYMAX R , a manufactured liner material constructed of natural material (bentonite clay) between two geosynthetics.The strength of soil-bentonite mixes was measured to see if they could be placed on sideslopes and not pose stability problems. Also evaluated were the hydraulic conductivities of soil-bentonite mixes. If the strengths and permeabilities of soils with a high percentage of bentonite are favorable, the soils may be used as infiltration barriers in current cover designs without changing pile geometries. The scope of work for this study called for a literature review and a two-phased laboratory testing program. This report presents the results of the literature review and the first phase of the testing program

  13. Saturation of bentonite dependent upon temperature

    Hausmannova, Lucie; Vasicek, Radek

    2010-01-01

    volume which attains a value of 1.0 in the fully saturated material. In the case of fully saturated bentonite with high dry density this value may exceed this theoretical limit due to very strong forces acting within the structure of the solid material which change the properties of the fixed water monolayer (the highest values of water density are close to 2000 kg/m 3 ). The aim of the experiment was to compare the degree of saturation of samples saturated at different temperatures (25 deg. C, 95 deg. C and 110 deg. C). Nine small physical models were used in the experiment. Cylindrically shaped samples with a height of 20 mm and a diameter of 30 mm were tested. The models were perforated and equipped with permeable plates on both bases to allow the supply of water. The expansion of the samples (volume change) was not permitted. The swelling pressure was not measured so as to keep the construction of the models as simple as possible. The saturation medium consisted of distilled water. The samples were compacted directly into the body of the individual models. The investigated medium consisted of Czech Ca-Mg bentonite from the Rokle locality, sieved to a fraction of 0-1 mm. The target dry density was 1700 kg/m 3 because Rokle bentonite at this dry density level contains the desired properties for use as a buffer (principally low permeability and a certain level of swelling pressure). A specific density of 2800 kg/m 3 was used for further calculations. Three models were used for testing at a certain temperature. The three models were then placed in a pressure cooker and each pressure cooker was stored at a different temperature (25 deg. C, 95 deg. C and 110 deg. C). The cookers had safety valves to limit the increase in generated steam pressure at higher temperatures; the exact monitoring of steam pressure was, unfortunately not possible. The models were dismantled after all the bentonite samples became fully saturated. The experiment was monitored by the regular weighing

  14. Mobility of U, Np, Pu, Am and Cm from spent nuclear fuel into bentonite clay

    Ramebaeck, H.; Skaalberg, M.; Eklund, U.B.; Kjellberg, L.; Werme, L.

    1998-01-01

    The mobility of uranium, neptunium, plutonium, americium and curium from spent nuclear fuel (UO 2 ) into compacted bentonite was studied. Pieces of spent BWR UO 2 fuel was embedded in a compacted bentonite clay/low saline synthetic groundwater system. After a contact time of six years the bentonite was sliced into 0.1 mm thick slices and analysed for its content of actinides. Radiometric as well as inductively coupled plasma mass spectrometry (ICP-MS) were used for the analysis. The influence on the mobility by the addition of metallic iron, metallic copper and vivianite (Fe(II)-mineral) to the bentonite clay was investigated. The results show a low mobility of actinides in bentonite clay. Except for uranium the mobility of the other actinides could, after six years of diffusion time, only be detected less than 1 mm from the spent fuel. (orig.)

  15. Freezing of bentonite. Experimental studies and theoretical considerations

    Birgersson, Martin; Karnland, Ola; Nilsson, Ulf (Clay Technology AB, Lund (Sweden))

    2010-01-15

    During its lifetime, a KBS-3 repository will be subject to various ambient temperatures. Backfilled tunnels, shafts and investigation bore holes closest to ground level will experience periods of temperature below 0 deg C. From a safety assessment perspective, it is therefore essential to understand the behavior of compacted bentonite below 0 deg C. A theoretical framework for predicting the pressure response in compacted water saturated bentonite due to temperature changes has been developed based on thermodynamics and a single pore-type. This model predicts an approximately linear temperature dependence of swelling pressure P{sub s}(w,DELTAT) = P{sub s}(w,0 deg C) + DELTAs(w)DELTAT/nu{sub clay}(w) where DELTAT denotes a temperature difference from 0 deg C, DELTAs(w) is the difference in partial molar entropy between clay water and bulk water, nu{sub clay} (w) is the partial molar volume of the clay water and w denotes the water/solid mass ratio of the clay. As bulk water changes phase at 0 deg C, DELTAs(w) has a different value dependent on whether DELTAT is negative or positive. Above 0 deg C DELTAs(w) is a small value for all relevant densities which means that the pressure response due to temperature changes is small. A further consequence of this fact is that DELTAs(w) is a large positive number below 0 deg C when the external water phase is transformed to ice. Consequently, the model predicts a large drop of swelling pressure with temperature below 0 deg C, in the order of 1.2 MPa/deg C. Specifically, the swelling pressure is zero at a certain (negative) temperature T{sub C}. T{sub C} also quantifies the freezing point of the bentonite sample under consideration, as ice formation in the bentonite does not occur until swelling pressure is lost. A large set of laboratory tests have been performed where fully water saturated samples of bentonites have been exposed to temperatures in the range -10 deg C to +25 deg C. The swelling pressure response has been

  16. Bentonite swelling pressure in strong NaCl solutions. Correlation between model calculations and experimentally determined data

    Karnland, O. [Clay Technology, Lund (Sweden)

    1997-12-01

    A number of quite different quantitative models concerning swelling pressure in bentonite clay have been proposed by different researchers over the years. The present report examines some of the models which possibly may be used also for saline conditions. A discrepancy between calculated and measured values was noticed for all models at brine conditions. In general the models predicted a too low swelling pressure compared to what was experimentally found. An osmotic component in the clay/water system is proposed in order to improve the previous conservative use of the thermodynamic model. Calculations of this osmotic component is proposed to be made by use of the clay cation exchange capacity and Donnan equilibrium. Calculations made by this approach showed considerably better correlation to literature laboratory data, compared to calculations made by the previous conservative use of the thermodynamic model. A few verifying laboratory tests were made and are briefly described in the report. The improved thermodynamic model predicts substantial bentonite swelling pressures also in saturated sodium chloride solution if the density of the system is high enough. In practice, the model predicts a substantial swelling pressure for the buffer in a KBS-3 repository if the system is exposed to brines, but the positive effects of mixing bentonite into a backfill material will be lost, since the available compaction technique does not give a sufficiently high bentonite density 37 refs, 15 figs

  17. Bentonite swelling pressure in strong NaCl solutions. Correlation between model calculations and experimentally determined data

    Karnland, O.

    1997-12-01

    A number of quite different quantitative models concerning swelling pressure in bentonite clay have been proposed by different researchers over the years. The present report examines some of the models which possibly may be used also for saline conditions. A discrepancy between calculated and measured values was noticed for all models at brine conditions. In general the models predicted a too low swelling pressure compared to what was experimentally found. An osmotic component in the clay/water system is proposed in order to improve the previous conservative use of the thermodynamic model. Calculations of this osmotic component is proposed to be made by use of the clay cation exchange capacity and Donnan equilibrium. Calculations made by this approach showed considerably better correlation to literature laboratory data, compared to calculations made by the previous conservative use of the thermodynamic model. A few verifying laboratory tests were made and are briefly described in the report. The improved thermodynamic model predicts substantial bentonite swelling pressures also in saturated sodium chloride solution if the density of the system is high enough. In practice, the model predicts a substantial swelling pressure for the buffer in a KBS-3 repository if the system is exposed to brines, but the positive effects of mixing bentonite into a backfill material will be lost, since the available compaction technique does not give a sufficiently high bentonite density

  18. Testing the Binary Black Hole Nature of a Compact Binary Coalescence.

    Krishnendu, N V; Arun, K G; Mishra, Chandra Kant

    2017-09-01

    We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.

  19. Observations of bentonite-hyper-alkaline fluid and bentonite-cement interactions by the X-ray computed tomography

    Nakabayashi, R.; Chino, D.; Kawaragi, C.; Sato, T.; Yoneda, T.; Kaneko, K.; Shibata, S.; Sakamoto, H.

    2010-01-01

    Document available in extended abstract form only. Bentonite-hyper-alkaline fluid interaction has been a key research issue in the performance assessment of radioactive waste disposal. It has therefore been investigated based on the dissolution rate of smectite (main constituent mineral of bentonite) under such hyper-alkaline condition. Generally, the dissolution rate has been obtained from batch and flow-through experiments under the conditions with high fluid/solid weight rations. These previous studies have provided a contribution to kinetic model of smectite dissolution. Some of them in particularly showed some equations explaining the effect of different factors such as pH of reactive fluid, temperature and deviation from equilibrium on smectite dissolution rate. However, the experimental conditions in such studies were completely different from the conditions in actual radioactive waste disposal system. For quantitative understanding, dissolution experiments for the compacted bentonite have also been conducted. These studies showed that the dissolution rate of compacted bentonite was different from that of batch and flow-through experiments. However, the difference has not been understood in details. On the other hand, the interface between bentonite and cement has also been investigated by experiments in laboratories and field sites, via reaction transport modelling. Despite the very few in numbers of experimental results as function of time, there are many long-term modelling works intended for bentonite-cement interaction. The models developed by many authors should be verified by comparing results of the model calculations with experimental observations. The experimental results with different conditions are therefore necessary for verifications and comparisons. Even in the experimental works done previously, the alteration process at the interface has mainly been observed by EPMA. EPMA is a destructive analysis with lower time resolution for 2D images

  20. Mechanisms and models for bentonite erosion

    Neretnieks, Ivars; Longcheng Liu; Moreno, Luis (Dept. of Chemical Engineering and Technology, School of Chemical Science and Engineering, Royal Inst. of Technology, KTH, Stockholm (Sweden))

    2009-12-15

    There are concerns that the bentonite buffer surrounding the canisters with spent nuclear fuel may erode when non-saline groundwaters seep past the buffer. This is known to happen if the water content of ions is below the critical coagulation concentration CCC. Above the CCC the smectite forms a coherent gel, which does not release particles. One main effort in this study has been directed to assess under which conditions the pore water composition of the gel at the gel/water interface could be lower than the CCC. Another main effort has been directed to understanding the behaviour of expansive gel when the pore water is below the CCC. We have developed a Dynamic model for sodium gel expansion in fractures where the gel soaks up non-saline water as it expands. The model is based on a force balance between and on smectite particles, which move in the water. The Dynamic model of gel expansion showing the evolution in time and space of a gel was successfully tested against expansion experiments in test tubes. The expansion was measured with high resolution and in great detail over many months by Magnetic Resonance Imaging. The model also predicted the gel expansion through filters with very narrow pores well. A gel viscosity model of dilute gels was derived, which accounts for ion concentration influence as well as the volume fraction of smectite in the gel. The model accounts for the presence of the DDL, which seemingly makes the particles larger so that they interact at lower particle densities. Simulations were performed for a case where the gel expands outward into the fracture that intersects the deposition hole. Fresh groundwater approaches and passes the gel/water interface. Smectite colloids move out into the water due to the repulsive forces between the particle and by Brownian motion (effect included in the Dynamic model). The dilute gel/sol is mobilised and flows downstream in a thin region where the viscosity is low enough to permit flow. Sodium diffuses

  1. Mechanisms and models for bentonite erosion

    Neretnieks, Ivars; Longcheng Liu; Moreno, Luis

    2009-12-01

    There are concerns that the bentonite buffer surrounding the canisters with spent nuclear fuel may erode when non-saline groundwaters seep past the buffer. This is known to happen if the water content of ions is below the critical coagulation concentration CCC. Above the CCC the smectite forms a coherent gel, which does not release particles. One main effort in this study has been directed to assess under which conditions the pore water composition of the gel at the gel/water interface could be lower than the CCC. Another main effort has been directed to understanding the behaviour of expansive gel when the pore water is below the CCC. We have developed a Dynamic model for sodium gel expansion in fractures where the gel soaks up non-saline water as it expands. The model is based on a force balance between and on smectite particles, which move in the water. The Dynamic model of gel expansion showing the evolution in time and space of a gel was successfully tested against expansion experiments in test tubes. The expansion was measured with high resolution and in great detail over many months by Magnetic Resonance Imaging. The model also predicted the gel expansion through filters with very narrow pores well. A gel viscosity model of dilute gels was derived, which accounts for ion concentration influence as well as the volume fraction of smectite in the gel. The model accounts for the presence of the DDL, which seemingly makes the particles larger so that they interact at lower particle densities. Simulations were performed for a case where the gel expands outward into the fracture that intersects the deposition hole. Fresh groundwater approaches and passes the gel/water interface. Smectite colloids move out into the water due to the repulsive forces between the particle and by Brownian motion (effect included in the Dynamic model). The dilute gel/sol is mobilised and flows downstream in a thin region where the viscosity is low enough to permit flow. Sodium diffuses

  2. Enhanced shear strength of sodium bentonite using frictional additives

    Schmitt, K.E.; Bowders, J.J.; Gilbert, R.B.; Daniel, D.E.

    1997-01-01

    One of the most important obstacles to using geosynthetic clay liners (GCLs) in landfill cover systems is the low shear strength provided by the bentonitic portion of the GCL. In this study, the authors propose that granular, frictional materials might be added to the bentonite to form an admixture that would have greater shear strength than the bentonite alone while still raining low hydraulic conductivity. Bentonite was mixed with two separate granular additives, expanded shale and recycled to form mixtures consisting of 20-70% bentonite by weight. In direct shear tests at normal stresses of 34.5-103.5 kPa, effective friction angles were measured as 45 degrees for the expanded 36 degrees for the recycled glass, and 7 degrees for the hydrated granular bentonite. The strength of the expanded shale mixtures increased nearly linearly as the percentage shale in the mixture increased, to 44 degrees for a bentonite mixture with 80% shale. The addition of recycled glass showed little effect on the shear strength of the mixtures of glass and bentonite. Hydraulic conductivity measurements for both types of mixtures indicated a linear increase with log(k) as the amount of granular additive increased. For applications involving geosynthetic clay liners for cover systems, a mixture of 40% expanded shale and 60% bentonite is recommended, although further testing must be done. The 40/60 mixture satisfies the hydraulic equivalency requirement, with k = 5.1X10 -9 cm/sec, while increasing the shear strength parameters of the bentonitic mixture to φ' = 17 degrees and c' = 0

  3. Bentonite erosion by dilute waters in initially saturated bentonite

    Olin, Markus; Seppaelae, Anniina; Laurila, Teemu; Koskinen, Kari

    2012-01-01

    simplifications of the original model (Olin, 2012). All the model versions created so far are shown in Figure 1. In addition, there are some suggestions given to the model of Neretnieks. The numerical modelling is performed by COMSOL Multiphysics version 4.2a. The original equations in Neretnieks et al. (2009) model include several nested function calls, whereas in this work it was chosen to apply numerical functions in COMSOL Multiphysics instead of implementing the functions directly. In this approach, the values of functions are given over a mesh and COMSOL interpolates and extrapolates the function values needed (BESW D implementation). All the functions were tested in Matlab and Maple before implementing them into COMSOL. In addition, we fitted the original highly nonlinear diffusivity of smectite to a relatively simple analytical function (BESW-S). Typical results from the model calculations are shown in Figure 2. Our main observation is that in the model calculations there is not so much bentonite upstream migration, while in downstream a clear wake has formed. This is in clear contrast to the almost circular montmorillonite extrusion in the experiment. (authors)

  4. Analytical study on the suitability of using bentonite coated gravel as a landfill liner material

    Roberts, Anel A.; Shimaoka, Takayuki

    2008-01-01

    This study investigates the feasibility of using bentonite coated gravel (BCG) as a liner material for waste landfills. BCG has proven to be a very effective capping material/method for the remediation of contaminated sediments in aquatic environments. The concept of BCG is similar to that of peanuts/almonds covered with chocolate; each aggregate particle has been covered with the clayey material. Laboratory tests were aimed at evaluating regulated and non-regulated factors for liner materials, i.e., permeability and strength. Tests included X-ray diffraction, methylene blue absorption, compaction, free swelling, permeability, 1D consolidation, triaxial compression and cone penetration. The compactive efforts used for this study were the reduced Proctor, standard Proctor, intermediate Proctor, modified Proctor and super modified Proctor. The compactive energy corresponding to each effort, respectively, is as follows: 355.5, 592.3, 1196.3, 2693.3, and 5386.4 kJ/m 3 . Results revealed that even though aggregate content represents 70% of the weight of the material, hydraulic conductivities as low as 6 x 10 -10 cm/s can be achieved when proper compactive efforts are used. Compressibility is very low for this material even at low (or no) compactive efforts. Results also demonstrated how higher compactive efforts can lower the permeability of BCG; however, over-compaction creates fractures in the aggregate core of BCG that could increase permeability. Moreover, higher compactive efforts create higher swelling pressures that could compromise the performance of a barrier constructed using BCG. As a result of this study, moderate compactive efforts, i.e., intermediate Proctor or modified Proctor, are recommended for constructing a BCG barrier. Using moderate compactive efforts, very low hydraulic conductivities, good workability and good trafficability are easily attainable

  5. Radiometric and ultrasonic testing of vibrating roller compacting effects

    Prikryl, F.; Habarta, J.; Kovarikova, E.

    1977-01-01

    A hole was filled with two layers of concrete mixture. Each layer was compacted using a Dynapac CA 25 vibrating roller 10,000 kg in weight, operating with a frequency of 30 Hz. A concrete block thus produced had dimensions of 11.0x2.5 m and a height of 1.6 m. After the concrete block hardening (roughly 120 days) drill cores were bored and bulk density was determined using nondestructive methods. Bulk density determination of the concrete between the drill cores was conducted using a 137 Cs emitter of an activity of 89 GBq, a FHZ-88b Geiger-Mueller counter was used as the detector. The emitter and detector were placed to touch the bore wall and were lowered to different depths in 10 cm increments. 10 count rate values were measured in each depth. The measurement time was chosen such that the decay statistical error did not exceed 1;. Bulk density of the individual segments of the drill cores was determined using 60 Co of an activitBy of 55 Mq as the radiation source and a TESLA 20/100 GWl GM counter as the detector. The detector operating voltage was 1240 V. Ultrasonic measurements were conducted using the USME-5 instrument. The measured bulk density values show that the compacting of a concrete layer 80 cm in thickness using a vibrating roller is sufficiently efficient. Both nondestructive methods were well proven, the results show that bulk density values in different depths differ due to concrete moisture content. (J.P.)

  6. Compaction comparison testing using a modified impact soil tester and nuclear density gauge

    Erchul, R.A.

    1999-07-01

    The purpose of this paper is to compare test results of a modified Impact Soil Tester (IST) on compacted soil with data obtained from the same soil using a nuclear density gauge at the US Army Corp of Engineer's Buena Vista Flood Wall project in Buena Vista, Virginia. The tests were run during construction of the earth flood wall during the summer of 1996. This comparison testing demonstrated the credibility of the procedure developed for the IST as a compacting testing device. The comparison data was obtained on a variety of soils ranging from silty sands to clays. The Flood Wall comparison compaction data for 90% Standard Proctor shows that the results of the IST as modified are consistent with the nuclear density gauge 89% of the time for all types of soil tested. However, if the soils are more cohesive than the results are consistent with the nuclear density gauge 97% of the time. In addition these comparison tests are in general agreement with comparison compaction testing using the same testing techniques and methods of compacted backfill in utility trenches conducted earlier for the Public Works Department, Chesterfield County, Virginia.

  7. Compaction comparison testing using a modified impact soil tester and nuclear density gauge

    Erchul, R.A.

    1999-01-01

    The purpose of this paper is to compare test results of a modified Impact Soil Tester (IST) on compacted soil with data obtained from the same soil using a nuclear density gauge at the US Army Corp of Engineer's Buena Vista Flood Wall project in Buena Vista, Virginia. The tests were run during construction of the earth flood wall during the summer of 1996. This comparison testing demonstrated the credibility of the procedure developed for the IST as a compacting testing device. The comparison data was obtained on a variety of soils ranging from silty sands to clays. The Flood Wall comparison compaction data for 90% Standard Proctor shows that the results of the IST as modified are consistent with the nuclear density gauge 89% of the time for all types of soil tested. However, if the soils are more cohesive than the results are consistent with the nuclear density gauge 97% of the time. In addition these comparison tests are in general agreement with comparison compaction testing using the same testing techniques and methods of compacted backfill in utility trenches conducted earlier for the Public Works Department, Chesterfield County, Virginia

  8. Interaction between rock, bentonite buffer and canister. FEM calculations of some mechanical effects on the canister in different disposal concepts

    Boergesson, L.

    1992-07-01

    An important task of the buffer of highly compacted bentonite is to offer a mechanical protection to the canister. This role has been investigated by a number of finite element calculations using the complex elasto plastic material models for the bentonite that have been developed on the basis of laboratory tests and adapted to the code ABAQUS. The following main functions and scenarios have been investigated for some different canister types and repository concepts: - The effect of the water and swelling pressure, - The effect of a rock shear perpendicular to the canister axis, - The effect of creep in the copper after a rock shear displacement, - The thermomechanical effects when an initially saturated buffer is used

  9. Investigation on the effect of seawater to hydraulic property and wetting process of bentonite

    Hasegawa, Takuma

    2004-01-01

    On high-level waste disposal, bentonite is one of the most promising material for buffer and backfill material. The hydraulic properties and wetting process of bentonite are important not only for barrier performance assessment but also for prediction of waste disposal environment, such as resaturation time and thermal distribution. In Japan, we should consider the effect of seawater for bentonite, because radioactive waste will be disposed of in coastal area and in marine sediment where seawater remained. However, it is not enough to understand the effect of seawater. Therefore, experimental study was conducted to investigate the effect of seawater on the hydraulic conductivity and wetting process of bentonite. The effect of seawater on hydraulic conductivity is significant for Na-bentonite, the hydraulic conductivity of Na-bentonite in seawater is one order to magnitude higher than that in distilled water. On the other hand, the hydraulic conductivity of Ca-bentonite is not influenced by seawater. The hydraulic conductivity of bentonite decreases as effective montmorillonite density increases. The effective montmorillonite density is ratio between the weight of montmorillonite and volume of porosity and montmorillonite. The hydraulic conductivity of bentonite is close related to swelling property since the hydraulic conductivity decrease as the swelling pressure increase. Wetting process of compacted bentonite could be evaluated by diffusion phenomena since infiltration rate and change of saturation rate and represented by diffusion equation. The effect of seawater on water diffusivity is significant for Na-type bentonite with low effective montmorillonite density. Except for that condition, the water diffusivity of bentonite is almost constant and is not influenced by effective montmorillonite density and seawater. (author)

  10. Development of mechanistic sorption model and treatment of uncertainties for Ni sorption on montmorillonite/bentonite

    Ochs, Michael; Ganter, Charlotte; Tachi, Yukio; Suyama, Tadahiro; Yui, Mikazu

    2011-02-01

    Sorption and diffusion of radionuclides in buffer materials (bentonite) are the key processes in the safe geological disposal of radioactive waste, because migration of radionuclides in this barrier is expected to be diffusion-controlled and retarded by sorption processes. It is therefore necessary to understand the detailed/coupled processes of sorption and diffusion in compacted bentonite and develop mechanistic /predictive models, so that reliable parameters can be set under a variety of geochemical conditions relevant to performance assessment (PA). For this purpose, JAEA has developed the integrated sorption and diffusion (ISD) model/database in montmorillonite/bentonite systems. The main goal of the mechanistic model/database development is to provide a tool for a consistent explanation, prediction, and uncertainty assessment of K d as well as diffusion parameters needed for the quantification of radionuclide transport. The present report focuses on developing the thermodynamic sorption model (TSM) and on the quantification and handling of model uncertainties in applications, based on illustrating by example of Ni sorption on montmorillonite/bentonite. This includes 1) a summary of the present state of the art of thermodynamic sorption modeling, 2) a discussion of the selection of surface species and model design appropriate for the present purpose, 3) possible sources and representations of TSM uncertainties, and 4) details of modeling, testing and uncertainty evaluation for Ni sorption. Two fundamentally different approaches are presented and compared for representing TSM uncertainties: 1) TSM parameter uncertainties calculated by FITEQL optimization routines and some statistical procedure, 2) overall error estimated by direct comparison of modeled and experimental K d values. The overall error in K d is viewed as the best representation of model uncertainty in ISD model/database development. (author)

  11. Formula of Moulding Sand, Bentonite and Portland Cement toImprove The Quality of Al-Si Cast Alloy

    Andoko Andoko; Poppy Puspitasari; Avita Ayu Permanasari; Didin Zakaria Lubis

    2017-01-01

    A binder is any material used to strengthen the bonding of moulding sand grains. The primary function of the binder is to hold the moulding sand and other materialstogether to produce high-quality casts. In this study, there were four binder compositions being tested, i.e. 5% bentonite + 5% Portland cement, 4% bentonite + 6% Portland cement, 6% bentonite + 4% Portland cement, and 7% bentonite + 3% Portland cement. Each specimen was measured for its compressive strength, shear strength, tensil...

  12. Geochemical modelling of bentonite porewater in high-level waste repositories

    Wersin, Paul

    2003-03-01

    The description of the geochemical properties of the bentonite backfill that serves as engineered barrier for nuclear repositories is a central issue for perfomance assessment since these play a large role in determining the fate of contaminants released from the waste. In this study the porewater chemistry of bentonite was assessed with a thermodynamic modelling approach that includes ion exchange, surface complexation and mineral equilibrium reactions. The focus was to identify the geochemical reactions controlling the major ion chemistry and acid-base properties and to explore parameter uncertainties specifically at high compaction degrees. First, the adequacy of the approach was tested with two distinct surface complexation models by describing recent experimental data performed at highly varying solid/liquid ratios and ionic strengths. The results indicate adequate prediction of the entire experimental data set. Second, the modelling was extended to repository conditions, taking as an example the current Swiss concept for high-level waste where the compacted bentonite backfill is surrounded by argillaceous rock. The main reactions controlling major ion chemistry were found to be calcite equilibrium and concurrent Na-Ca exchange reactions and de-protonation of functional surface groups. Third, a sensitivity analysis of the main model parameters was performed. The results thereof indicate a remarkable robustness of the model with regard to parameter uncertainties. The bentonite system is characterised by a large acid-base buffering capacity which leads to stable pH-conditions. The uncertainty in pH was found to be mainly induced by the pCO 2 of the surrounding host rock. The results of a simple diffusion-reaction model indicate only minor changes of porewater composition with time, which is primarily due to the geochemical similarities of the bentonite and the argillaceous host rock. Overall, the results show the usefulness of simple thermodynamic models to

  13. Geochemical investigation of iron transport into bentonite as steel corrodes

    Hunter, Fiona; Bate, Fiona; Heath, Tim; Hoch, Andrew

    2007-09-01

    In Sweden and Finland, it is proposed that spent nuclear fuel will be encapsulated in sealed cylindrical canisters, for disposal in a geologic repository, either in vertical boreholes (KBS-3V) or in long horizontal boreholes (KBS-3H). The canisters will consist of a thick cast iron insert and a copper outer container, and each canister will be surrounded by a compacted bentonite clay buffer. It is important to investigate the possible consequences if a failure of these physical barriers was to occur. For instance, if mechanical failure of the copper outer container were to occur then groundwater could enter the annulus and reach the cast iron insert. This would result in anaerobically corroded iron from the cast iron insert interacting with the bentonite surrounding the canisters. The presence of anaerobically corroded iron in groundwater raises the question of how the bentonite will be affected by this process. In the case of the KBS-3H concept, mechanical failure of the copper outer container could lead to interaction between anaerobically corroded iron and bentonite, as above. However, direct contact between anaerobically corroding carbon steel and bentonite is also likely because of the presence of perforated carbon steel support structures in the long horizontal boreholes. As part of the NF-PRO project, an extensive experimental programme has been carried out over several years to study the interactions between anaerobically corroding carbon steel or cast iron and bentonite. The purpose of this report is to describe the modelling work that has been carried out, and the conclusions that have been reached. The experimental programme has carried out a series of long term experiments looking at anaerobic corrosion of carbon steel or cast iron in compacted MX80 bentonite at 30 deg C or 50 deg C. In the bentonite the concentration of iron decreased with increasing distance away from the iron-bentonite interface, with local iron concentrations as high as 20 wt % in

  14. Geochemical investigation of iron transport into bentonite as steel corrodes

    Hunter, Fiona; Bate, Fiona; Heath, Tim; Hoch, Andrew [Serco Assurance, Harwe ll (United Kingdom)

    2007-09-15

    In Sweden and Finland, it is proposed that spent nuclear fuel will be encapsulated in sealed cylindrical canisters, for disposal in a geologic repository, either in vertical boreholes (KBS-3V) or in long horizontal boreholes (KBS-3H). The canisters will consist of a thick cast iron insert and a copper outer container, and each canister will be surrounded by a compacted bentonite clay buffer. It is important to investigate the possible consequences if a failure of these physical barriers was to occur. For instance, if mechanical failure of the copper outer container were to occur then groundwater could enter the annulus and reach the cast iron insert. This would result in anaerobically corroded iron from the cast iron insert interacting with the bentonite surrounding the canisters. The presence of anaerobically corroded iron in groundwater raises the question of how the bentonite will be affected by this process. In the case of the KBS-3H concept, mechanical failure of the copper outer container could lead to interaction between anaerobically corroded iron and bentonite, as above. However, direct contact between anaerobically corroding carbon steel and bentonite is also likely because of the presence of perforated carbon steel support structures in the long horizontal boreholes. As part of the NF-PRO project, an extensive experimental programme has been carried out over several years to study the interactions between anaerobically corroding carbon steel or cast iron and bentonite. The purpose of this report is to describe the modelling work that has been carried out, and the conclusions that have been reached. The experimental programme has carried out a series of long term experiments looking at anaerobic corrosion of carbon steel or cast iron in compacted MX80 bentonite at 30 deg C or 50 deg C. In the bentonite the concentration of iron decreased with increasing distance away from the iron-bentonite interface, with local iron concentrations as high as 20 wt % in

  15. A study of the condition for the passivation of carbon steel in bentonite

    Taniguchi, Naoki; Morimoto, Masataka; Honda, Akira

    1999-01-01

    It is important to study the corrosion behavior of materials to be used for overpack for high-level radioactive waste disposal. Carbon steel is one of the candidate materials. The type of corrosion on carbon steel depends on whether the carbon steel is passivated or not. In this study, the condition for the passivation of carbon steel was studied using bentonite as the buffer material. Anodic polarization in bentonite and the measurements of pH of porewater in bentonite was measured. The results of these experiments showed that the possibility of passivation is small in highly compacted bentonite in groundwater in Japan. Therefore, localized corrosion on carbon steel due to the breakdown of passive film is unlikely in bentonite. In other words, general corrosion seems to be the most probable type of corrosion under repository condition in Japan. (author)

  16. TESTING OF FRAMED STRUCTURE PARTS OF COMPACT MUON SOLENOID BY NONDESTRUCTIVE METHOD

    L. V. Larchenkov

    2013-01-01

    Full Text Available Suspension parts of a compact muon solenoid for Large Hadron Collider have been tested in the paper. The paper describes a steady-state and cyclic “tension-compression” load created by superconducting electromagnet with energy of 3 GJ and magnetic induction of 4 tesla. A nondestructive testing method has been applied in the paper.

  17. Diffusion in crushed rock and in bentonite clay

    Olin, M.

    1994-04-01

    Diffusion theories for porous media with sorption are reviewed to serve as a basis for considering diffusion in simple systems like sand of crushed rock. A Fickian diffusion and linear sorption model is solved both by analytical Laplance transform and Green's function methods and by numerical methods, and then applied to small-scale experiments for Finnish low- and medium-level operating waste repositories. The main properties of bentonite are reviewed. The hydraulic conductivity of compacted bentonite is so low that the major transport mechanism is diffusion. A Fickian diffusion and linear sorption model is applied to bentonite. The main component of bentonite, montmorillonite, has a high ion-exchange capacity and thus, transport in bentonite consists of interactive chemical and diffusion phenomena. A chemical equilibrium model, CHEQ, is developed for ion-exchange reactions in bentonite water systems. CHEQ is applied to some bentonite experiments with success, especially for monovalent ions. The fitted log-binding constants for sodium exchange with potassium, magnesium, and calcium were 0.27, 1.50, and 2.10, respectively. A coupled chemical and diffusion model, CHEQDIFF, is developed to take account of diffusion in pore water, surface diffusion and ion-exchange reactions. The model is applied to the same experiments as CHEQ, and validation is partly successful. In the diffusion case, the above-mentioned values for binding constants are used. The apparent diffusion (both anions and cations) and surface diffusion (only for cations) constants used are 3.0*10 -11 m 2 /s and 6.0*10 -12 m 2 /s, respectively, but these values are questionable, as experimental results good enough for fitting are not available. (orig.). (74 refs., 27 figs., 12 tabs.)

  18. Long-term stability of bentonite. A literature review

    Laine, H.; Karttunen, P.

    2010-07-01

    extensive for divalent cations and it is not as easily eroded or dissolved in case of diluted groundwater or in case of high pH. Although the information on cementation by thermal effects from natural bentonite occurrences may not be directly applicable to the repository conditions, they show that very high temperatures have affected the bentonites and for long periods of time and there is still unaltered montmorillonite in those deposits. Natural occurrences of bentonite and smectite provide information on the bentonite behaviour in varying conditions. How to adapt this information in the predicting the buffer behaviour is a challenging task. To be able to make a direct comparison between different natural occurrences and the buffer, more detailed information would be needed on density/compaction rate, saturation degrees, pressure conditions, chemical conditions, and duration of the thermal events for the natural bentonites as these are well known for the buffer. (orig.)

  19. Bentonite erosion. Final report

    Birgersson, Martin; Boergesson, Lennart; Hedstroem, Magnus; Karnland, Ola; Nilsson, Ulf (Clay Technology AB, Lund (Sweden))

    2009-12-15

    Low saline water may reach KBS-3 repository depth, e.g. during periods of glaciation. Under such aqueous conditions, the montmorillonite part of the bentonite buffer might transform into a sol and thereby be transported away with flowing water in fractures. The primary aim with this report is to improve the understanding of the basic principles for this possible montmorillonite particle release. The report includes experimental and theoretical work performed at Clay Technology. Natural bentonite and ion-exchanged purified montmorillonite from three different geographical origins, Wyoming (U.S.), Milos (Greece) and Kutch (India) have been studied. Experimental and/or theoretical investigations have been performed with respect to: - Free swelling ability; - Rheological properties; - Rate of bentonite loss into fractures; - Filtering; - Ion exchange; - Sol formation ability; - Ion diffusion; - Mass loss due to erosion. The performed erosion experiments show that erosion does not occur in a mixed calcium/sodium montmorillonite with at least 20% calcium in exchange positions, when the external solution contains above 4 mM charge equivalents. This result is in agreement with the presented conceptual view of sol formation and measured equilibrium properties in mixed calcium/sodium montmorillonite. The findings imply that the buffer will be stable for non-glacial conditions. However, erosion due to sol formation cannot be ruled out for glacial conditions.

  20. Bentonite erosion. Final report

    Birgersson, Martin; Boergesson, Lennart; Hedstroem, Magnus; Karnland, Ola; Nilsson, Ulf

    2009-12-01

    Low saline water may reach KBS-3 repository depth, e.g. during periods of glaciation. Under such aqueous conditions, the montmorillonite part of the bentonite buffer might transform into a sol and thereby be transported away with flowing water in fractures. The primary aim with this report is to improve the understanding of the basic principles for this possible montmorillonite particle release. The report includes experimental and theoretical work performed at Clay Technology. Natural bentonite and ion-exchanged purified montmorillonite from three different geographical origins, Wyoming (U.S.), Milos (Greece) and Kutch (India) have been studied. Experimental and/or theoretical investigations have been performed with respect to: - Free swelling ability; - Rheological properties; - Rate of bentonite loss into fractures; - Filtering; - Ion exchange; - Sol formation ability; - Ion diffusion; - Mass loss due to erosion. The performed erosion experiments show that erosion does not occur in a mixed calcium/sodium montmorillonite with at least 20% calcium in exchange positions, when the external solution contains above 4 mM charge equivalents. This result is in agreement with the presented conceptual view of sol formation and measured equilibrium properties in mixed calcium/sodium montmorillonite. The findings imply that the buffer will be stable for non-glacial conditions. However, erosion due to sol formation cannot be ruled out for glacial conditions.

  1. Modeling hydraulic conductivity and swelling pressure of several kinds of bentonites affected by concentration of saline water

    Tanaka, Yukihisa; Hasegawa, Takuma; Nakamura, Kunihiko

    2007-01-01

    In case of construction of repository for radioactive waste near the coastal area, the effect of brine on hydraulic conductivity of bentonite as an engineering barrier should be considered because it is known that the hydraulic conductivity of bentonite increases with increasing in salt concentration of water. Thus, the effect of salinity of water on hydraulic conductivity of bentonite has been conducted experimentally. However, it is necessary to elucidate and to model the mechanism of the phenomenon because various kinds of bentonites may possibly be placed in various salinity of salt water. In this study, a model for evaluating permeability of compacted bentonite is proposed considering a) increase in number of sheets of montomorillonite crystal because of cohesion, b) decrease in viscosity of water in interlayer between sheets of montmorillonite crystal. Quantitative evaluation method for permeability of several kinds of bentonite under brine is proposed based on the model mentioned above. (author)

  2. Evaluation of brazilian bentonites as additive in the radwaste cementation

    Tello, C.C.O. de.

    1988-01-01

    The behavior of some Brazilian bentonites has been evaluated, concerning to their use as additive in the radwaste cementation. The purpose of the bentonite is to retain the radioelements in the final product in leaching process. Experiments to determine properties such as compressive strenght, viscosity, set time leaching and cesium sorption have been carried out to this evaluation. After one-year test, the results show that the bentonites greatly reduce the cesium release. A literature survey about cementation process and plants and about the cement product characteristics has been made in order to obtain a reliable final product, able to be transported and storaged. Some leaching test methods and mathematical models, that could be applied in the evaluation of cement products with bentonite have been evaluated. (author) [pt

  3. CRIEPI's research results (2006-2011) and clarified future issues on alteration behavior of bentonite barrier by alkaline solutions

    Yokoyama, Shingo; Nakamura, Kunihiko; Tanaka, Yukihisa; Hironaga, Michihiko

    2013-01-01

    In radioactive waste disposal facilities, bentonite barrier would be altered by alkaline solutions which arise by leaching of cementitious materials. Consequently suitable properties of the bentonite barrier would be degraded for a long time period. In CRIEPI, the investigation on the alteration of the bentonite under alkaline conditions was started in 2006, and several CRIEPI reports have been published. Specifically, we have investigated the kinetics of montmorillonite dissolution, the mineralogical alteration of compacted bentonite (with high- and low-dry density) and the change of permeability of the compacted bentonite (with high- and low-dry density) during alteration under the alkaline conditions. Furthermore, stability of saponite, which has similar physical properties to the bentonite, under the alkaline conditions was also examined. In this report, we show the outline of those research results, and lay out the clarified future issues extracted from our results. Ten clarified future issues were divided three categories as follows: 1) the estimation of the alteration behavior of the bentonite by alkaline solutions, 2) the elucidation of the mechanism of physical properties (e.g., permeability, swelling properties and mechanistic properties) change of the compacted bentonites during alteration, and 3) the development of the model building and simulation technology concerning the change in physical properties during alteration under alkaline conditions. (author)

  4. On-Going Bentonite Pore Water Studies by NMR and SAXS

    Carlsson, Torbjoern; Muurinen, Arto; Root, Andrew

    2013-01-01

    Compacted water-saturated MX-80 bentonite is presently being studied by SAXS and NMR in order to quantify the major pore water phases in the bentonite. The SAXS and NMR measurements gave very similar results indicating that the pore water is mainly distributed between two major phases (interlayer and non-interlayer water) and also indicate how these phases depend on the bentonite dry density. The results from the SAXS and NMR studies at VTT indicate the same thing: - The pore water in water-saturated compacted (?dry = 0.7-1.6 g/cm 3 ) bentonite is divided into two main phases: interlayer water and non-interlayer water. - The amounts of these pore water phases can be determined quantitatively with the above methods. (authors)

  5. Hydrothermal alkaline stability of bentonite barrier by concrete interstitial wastes

    Leguey Jimenez, S.; Cuevas Rodriguez, J.; Ramirez Martin, S.; Vigil de la villa Mencia, R.; Martin Barca, M.

    2002-01-01

    At present, the main source of High Level radioactive Waste (HLW) is the electrical energy production during all the steps of developing. In almost all the countries with nuclear programs, the option for the final management of HLW is the Deep Geological Repository (DGR) based on the concept of multi barrier. According to this concept, the waste is isolated from biosphere by the interposition of confinement barriers. Two of the engineering barriers in the Spanish design of DGR in granitic rock are compacted bentonite and concrete. The bentonite barrier is the backfilling and sealing material for the repository gallery, because of its mechanical and physico-chemical properties. The main qualities of concrete as a component of a multi barrier system are its low permeability, mechanical resistance and chemical properties. With regard to chemical composition of concrete, the alkaline nature of cement pore water lowers the solubility of many radioactive elements. However, structural transformation in smectite, dissolution or precipitation of minerals and, consequently, changes in the bentonite properties could occurs in the alkaline conditions generated by the cement degradation. The main objective of the present work is to evaluate the effect of concrete in the stability of Spanish reference bentonite (La Serrata of Nijar, Almeria, Spain) in conditions similar to those estimated in a DGR in granitic rock. Because of the main role of bentonite barrier in the global performance of the repository, the present study is essential to guarantee its security. (Author)

  6. Physical changes in MX-80 bentonite saturated under thermal gradient

    Villar, Maria Victoria; Gomez-Espina, Roberto; Gutierrez-Nebot, Luis; Campos, Rocio; Barrios, Iciar

    2012-01-01

    Document available in extended abstract form only. This study was developed in the framework of the Temperature Buffer Test (TBT project), which was a full-scale test for HLW disposal that aimed at improving the understanding of the thermo-hydro-mechanical (THM) behaviour of buffers with a temperature around and above 100 deg. C during the water saturation transient. The French organisation ANDRA run this test at the Aespoe HRL in cooperation with SKB (Svensk Kaernbraenslehantering AB 2005). To simulate the conditions of the field test in the laboratory, 20-cm high columns of MX80 bentonite compacted at dry density 1.70 g/cm 3 with an initial water content of 16 percent were submitted in thermo-hydraulic cells to heating and hydration by opposite ends for different periods of time (TH test). The temperature at the bottom of the columns was set at 140 deg. C and on top at 30 C, and deionised water was injected on top at a pressure of 0.01 MPa. The tests were running for 337, 496 and 1510 days. Upon dismantling water content, dry density, specific surface area, porosity and basal spacings, among others, were determined in different positions along the bentonite columns. The strong gradients developed are remarkable. In the shorter tests the water content decreased below the initial value in the 7 cm closest to the heater, whereas in the longer test the decrease below the initial value took place only in the 5 cm closest to the heater. In the remaining part of the columns the water content increased with respect to the initial value, particularly so in the longest test. The dry density along the bentonite changed accordingly, decreasing in the hydrated areas below the initial value and increasing near the heater. The decrease in dry density is due to the swelling of the bentonite upon saturation, while the dry density increase results from the combination of two processes: the compression of the dry areas exerted by the hydrated bentonite, and the shrinkage due to the

  7. Soil-bentonite design mix for slurry cutoff walls used as containment barriers

    Rad, N.S.; Bachus, R.C.; Jacobson, B.D.

    1995-01-01

    In recent years, soil-bentonite slurry cutoff walls have been increasingly used as containment barriers around contaminated soils to impede or, in some cases, nearly eliminate the off-site migration of contaminated ground water or other potentially hazardous liquids. The paper presents the procedures used and the results obtained during an extensive laboratory testing program performed to select varying soil-bentonite slurry mix components for a soil-bentonite slurry cutoff wall constructed around an old landfill at a former oil refinery. The landfill is underlain to varying depths by a coarse granular soils that has been exposed to oil-products. Compatibility of three commercially available bentonite products with the free oil-products and the oil-contaminated ground water found at some locations in the landfill was initially investigated. Based on the test results, one of the bentonite products was selected for use in the soil-bentonite slurry testing program. A clayey soil from a borrow source, potable water from the site, and subsurface soils from the proposed soil-bentonite slurry wall alignment were used to form different soil-bentonite slurry mixes. Slump tests were performed to evaluate the workability of the mixes. Based on the test results, a single mix was selected for further study, including permeability/compatibility testing. The results of the compatibility testing program are presented and discussed in the paper. A specific design mix methodology for evaluating the chemical compatibility of soil-bentonite slurry mixes with permeants is proposed

  8. Formation of accessory mineral bed layers during erosion of bentonite buffer material

    Schatz, Timothy; Kanerva, Noora

    2012-01-01

    (kaolin, quartz sand, chromatographic silica). The resulting mixtures were compacted into dense sample tablets with effective montmorillonite dry densities between 1.4 to 1.6 g/cm 3 . The fracture erosion tests were performed using a Grimsel groundwater simulant (relative to Na + and Ca 2+ concentration only) contact solution at an average flow rate of 0.09 ml/min through the system. In colloid filtration theories, the filter bed is modelled as an assemblage of single or unit collectors having a known geometry. According to Richards [2010], the particle size distribution of the accessory minerals in MX-80 bentonite consists of particles with sizes less than 30 μm. Of the additive materials used in this study, the kaolin material consists of particles with sizes less than 20 μm showing a peak size of 6 μm, the chromatographic silica consists of particles with sizes narrowly distributed between 10 to 14 μm, and the sand consists of particles with sizes between 160 to 550 μm at a peak size of 280 μm. The tests were designed to lead to the development of erosive conditions (i.e., sodium montmorillonite against a dilute solution) and, in every case, the formation of an accessory mineral bed layer near the extrusion/erosion interface was observed. Moreover, these layers grew progressively in thickness over the course of the tests. These results provide evidence that, following erosive loss of colloidal montmorillonite through contact with dilute groundwater at a transmissive fracture interface, accessory phases (within bentonite) remain behind and form bed layers

  9. Concrete/Febex Bentonite Interaction: Results On Short-Term Column Experiments

    Escribano, A.; Turrero, M.J.; Torres, E.; Martin, P.L. [CIEMAT, Environmental Department, Avda. Complutense, 22, 28040 Madrid (Spain)

    2008-07-01

    Interaction between the alkaline pore fluids from the concrete engineered barriers and the bentonite at the repository conditions may generate products that can diffuse through the porous structure of the bentonite affecting their properties. A comprehensive study based on series of short term experiments is being performed to provide experimental evidences on the physical, chemical and mineralogical changes during the concrete-compacted bentonite interaction. Samples were analyzed by XRD, SEM-EDS and FTIR. Measurements of swelling capacity, specific surface area and chemical analysis for cation exchange capacity and soluble salts analyses were also performed. (authors)

  10. Concrete/Febex Bentonite Interaction: Results On Short-Term Column Experiments

    Escribano, A.; Turrero, M.J.; Torres, E.; Martin, P.L.

    2008-01-01

    Interaction between the alkaline pore fluids from the concrete engineered barriers and the bentonite at the repository conditions may generate products that can diffuse through the porous structure of the bentonite affecting their properties. A comprehensive study based on series of short term experiments is being performed to provide experimental evidences on the physical, chemical and mineralogical changes during the concrete-compacted bentonite interaction. Samples were analyzed by XRD, SEM-EDS and FTIR. Measurements of swelling capacity, specific surface area and chemical analysis for cation exchange capacity and soluble salts analyses were also performed. (authors)

  11. Investigation of the selected properties of dusts from the reclamation of spent sands with bentonite

    J. Kamińska

    2011-10-01

    Full Text Available The investigation results of the selected properties of dusts generated during the mechanical reclamation of spent sands with bentonite as well as dusts from the dedusting system of sand processing plant are presented in the hereby paper. Investigations were performed with regard to determination conditions allowing to pelletise dusts in the bowl granulator. The verified methods of testing physical and chemical dust properties such as: specific density, bulk density of loosely put materials and apparent density of compacted materials together with their corresponding porosity, ignition losses and pH values, were applied. Granular composition of dusts generated during abrasion of spent binding materials in mechanical dry reclamation processes of spent sands with bentonite and coal dusts were performed by the laser diffraction analysis, allowing to broaden the measuring range of particle diameters. The optimal wetting agent content (in this case water at which the dust-water mixture obtains the best strength properties – after compacting by means of the standard moulder’s rammer – was determined.

  12. Hydro-mechanical and gas transport properties of bentonite blocks - role of interfaces

    Popp, Till; Roehlke, Christopher; Salzer, Klaus; Gruner, Matthias

    2012-01-01

    sealing elements. The investigations consist of: - long-term water injection tests in a new designed oedometer cell with different sample constellations under well controlled stress and swelling conditions to provide data about - time dependent interface 'permeability' changes during long-term compaction and fluid injection - gas entry pressures and relative gas permeability changes during pressure dependent gas injection; - shear tests to quantify mechanical interface properties of pre-saturated bentonite blocks under well controlled shear forces or displacements. As initial characterization both, triaxial and direct strength tests were performed, which allow to separate between matrix and interface properties. The investigations are being performed in the framework of the pan-European project FORGE project which aims on the generation and movement of repository gases. Results and interpretation The performed lab investigations cover a wide field of hydro-mechanical properties of bentonite blocks, which represent a favorable option for constructing sealing plugs in different host rock environments. Based on the experimental results the following conclusions can be drawn: - At dry conditions gas flow along interfaces is at least 4 orders higher than through the matrix. Increase of confinement significantly lowers the gas flow but the effect is more pronounced for interfaces → crack sealing. - Saturation of bentonite block assembly, i.e. blocks with a common interface, is not affected by the interfaces and only weakly by the acting confining pressure. - During gas injection a significant effect is only observed if the minimal stress is passed resulting in some minor gas flow. - The gas break through results in stationary inflow but no significant effect on the total stress is measured, probably due to the central gas injection. - The measured gas threshold pressures under constant volume conditions significantly exceed the sum of the swelling pressure and externally

  13. Research program to study the gamma radiation effects in Spanish bentonites

    Dies, J.; Tarrasa, F.; Cuevas de las, C.; Miralles, L.; Pueyo, J. J.

    2000-01-01

    The engineering barrier of a radioactive waste underground disposal facility, placed in a granitic host rock, will consist of a backfill of compacted bentonite blocks. At first, this material will be subjected to a gamma radiation field, from the waste canister, and heat from the spent fuel inside the canister. Moreover, any groundwater that reaches the repository will saturate the bentonite. For these reasons the performance of the engineered barrier must be carefully assessed in laboratory experiments. (Author)

  14. Evaluation of bentonite alteration due to interactions with iron. Sensitivity analyses to identify the important factors for the bentonite alteration

    Sasamoto, Hiroshi; Wilson, James; Sato, Tsutomu

    2013-01-01

    Performance assessment of geological disposal systems for high-level radioactive waste requires a consideration of long-term systems behaviour. It is possible that the alteration of swelling clay present in bentonite buffers might have an impact on buffer functions. In the present study, iron (as a candidate overpack material)-bentonite (I-B) interactions were evaluated as the main buffer alteration scenario. Existing knowledge on alteration of bentonite during I-B interactions was first reviewed, then the evaluation methodology was developed considering modeling techniques previously used overseas. A conceptual model for smectite alteration during I-B interactions was produced. The following reactions and processes were selected: 1) release of Fe 2+ due to overpack corrosion; 2) diffusion of Fe 2+ in compacted bentonite; 3) sorption of Fe 2+ on smectite edge and ion exchange in interlayers; 4) dissolution of primary phases and formation of alteration products. Sensitivity analyses were performed to identify the most important factors for the alteration of bentonite by I-B interactions. (author)

  15. Test of a compact 750 keV H- preinjector

    Meitzler, C.R.; Datte, P.; Huson, F.R.; Kazimi, R.; Kronke, C.; Machida, S.; MacKay, W.; Ohnuma, S.; Raparia, D.; Sun, D.; Tompkins, P.; Ziegler, J.

    1989-01-01

    A 750 keV RFQ based accelerator is being developed at the Texas Accelerator Center. A modified magnetron ion source will produce 10--100 mA of 30 keV H - beam. A 35 keV transport line that transports the beam from the ion source to the entrance of the RFQ without becoming neutralized has been designed and is under construction. The RFQ is a 86 cm long, four rod structure that operates at 470 MHz. Results of tests on the cold model are reported. 5 refs

  16. Electric Resistance Tests on Compacted Clay Material under Dynamic Load Coupled with Dry-Wet Cycling

    Zheng Lu

    2018-01-01

    Full Text Available The study of compacted clay material under dynamic load coupled with dry-wet cycling is one of the most important areas in the field of transportation. In this paper, experiments in terms of compacted clay under dynamic load coupled with dry-wet cycling are performed, and synchronous resistivity tests are also conducted. According to the test results, the influences of cumulative plastic strain, dry-wet cycles, and amplitudes on the soil resistivity are analyzed. Then a new damage factor based on resistivity is proposed to evaluate the long-term performance of compacted clay material. The result of research shows that the evolution of the soil resistivity can be divided into two stages, which has a contrary tendency with that of cumulative plastic strain. The dry-wet cycles and amplitudes have a significant effect on the damage of the compacted soil, which indicates that the dry-wet cycling of compacted soil materials should not be ignored in road engineering, especially in rainy and humid areas.

  17. Mineralogical behaviour of bentonites in open and closed systems

    Herbert, H.J.; Kasbohm, J.

    2004-01-01

    Mineralogical and chemical changes of bentonites were investigated in a natural analogue study and in laboratory experiments. As a working hypothesis we assumed that in geological, i.e. open systems, bentonites may be penetrated over geological time scales by larger water volumes than high compacted bentonites used as technical barriers in repositories in salt formations. Under this assumption open geological systems are characterised by low solid/liquid ratios and closed repository systems by high solid/liquid ratios. Consequently in laboratory experiments the mineralogical changes were investigated under different solid/liquid ratios and compared with results of a natural analogue study. In the natural analogue study in deep boreholes in the East Slovakian Basin the expandability of montmorillonite and the degree of transformation in illite-smectite (IS) mixed layer structures was found to be dependent not only on depth and temperature but also on the salinity of the pore waters. In this open geological system with a comparatively low solid/liquid ratio the observed changes in the montmorillonite were significantly different than those observed in the laboratory study on compacted MX-80 bentonite. (authors)

  18. Evolution of the bentonite barrier under glacial meltwater intrusion conditions

    Schaefer, T.; Bouby, M. [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Inst. for Nuclear Waste Disposal (INE); Blechschmidt, I. [NAGRA National Cooperation Disposal Radioactive Waste, Wettingen (Switzerland); and others

    2015-07-01

    Recent safety assessments for repository concepts that combine a clay engineered barrier system (EBS) with a fractured rock have shown that melt water intrusion may have a direct impact on the EBS barrier function in two aspects: - Generation of colloids may degrade the engineered barrier - Colloid transport of radionuclides may reduce the efficiency of the natural barrier The studies presented here are performed in the framework of the Federal Ministry of Economic Affairs and Energy (BMWi) KIT/GRS project KOLLORADO-e, the EU collaborative project CP BELBaR (www.skb.se/belbar) and especially within the Colloid Formation and Migration (CFM) project at the Grimsel Test Site, GTS (www.grimsel.com). Key research areas are (a) the erosion of the bentonite buffer, (b) clay colloid stability and (c) colloid-radionuclide- host rock surface interactions. Concerning bentonite buffer integrity parameters like the bentonite type, Na-/Ca-exchangeable cation ratio, compaction density, role of accessory minerals, the fracture aperture size and groundwater chemistry and flow velocity are investigated in order to identify controlling factors, understand the main mechanisms of erosion from the bentonite surface and to quantify the extent of the possible erosion under these different conditions. Clay colloid stability studies are performed under different geochemical conditions. The main objective is to answer the question if colloids formed at the near/far field interface would be stable only if favourable conditions exist and therefore their relevance for radionuclide transport will be strongly dependent on the local geochemical conditions (inorganic cations Na{sup +}, Ca{sup 2+}, Mg{sup 2+}, Al{sup 3+} and organic complexing agents). Finally, the interaction between colloids and radionuclides and the host rock is intensively investigated in order to answer the question, how colloid mobility may be affected by the composition of the host rock, surface roughness and the mechanism of

  19. Physicochemical, mineralogical and mechanical properties of domestic bentonite and bentonite-sand mixture as a buffer material in the high-level waste repository

    Cho, Won Jin; Lee, Jae Owan; Kang, Chul Hyung; Chun, Kwan Sik

    1999-09-01

    The physicochemical properties such as specific weight, free swell rate, chemical composition, cation exchange capacity (CEC), surface area and distribution coefficient of Kyunggju bentonite were measured, and the mineralogical analysis was performed to investigate the mineralogical composition. For the compacted bentonite and the mixture of bentonite and sand, the liquid and plastic limit, the linear shrinkage, and compaction property, the compression property, the shear property, and the consolidation property were investigated and analyzed. The bentonite contains montmorillonite (70 percent), feldspar (29 percent), and small amounts of quartz(-1 percent). The compressive strengths of bentonites are increased from 0.53 MPa to 8.83 MPa rapidly with increasing dry density of 1.4 g/cm 3 to 1.8 g/cm 3 . The cohesion and internal friction angles of bentonites with the dry density of 1.4 g/cm 3 to 1.8 g/cm 3 are in the range of 500 to 1100 kPa and 27 to 50 degree, respectively. (Author). 21 refs., 20 tabs., 46 figs

  20. Physicochemical, mineralogical and mechanical properties of domestic bentonite and bentonite-sand mixture as a buffer material in the high-level waste repository

    Cho, Won Jin; Lee, Jae Owan; Kang, Chul Hyung; Chun, Kwan Sik

    1999-09-01

    The physicochemical properties such as specific weight, free swell rate, chemical composition, cation exchange capacity (CEC), surface area and distribution coefficient of Kyunggju bentonite were measured, and the mineralogical analysis was performed to investigate the mineralogical composition. For the compacted bentonite and the mixture of bentonite and sand, the liquid and plastic limit, the linear shrinkage, and compaction property, the compression property, the shear property, and the consolidation property were investigated and analyzed. The bentonite contains montmorillonite (70 percent), feldspar (29 percent), and small amounts of quartz(-1 percent). The compressive strengths of bentonites are increased from 0.53 MPa to 8.83 MPa rapidly with increasing dry density of 1.4 g/cm{sup 3} to 1.8 g/cm{sup 3}. The cohesion and internal friction angles of bentonites with the dry density of 1.4 g/cm{sup 3} to 1.8 g/cm{sup 3} are in the range of 500 to 1100 kPa and 27 to 50 degree, respectively. (Author). 21 refs., 20 tabs., 46 figs.

  1. Simulation of the Test Method "L-Box" for Self-Compacting Concrete

    Thrane, Lars Nyholm; Szabo, Peter; Geiker, Mette Rica

    2004-01-01

    Both filling and passing ability are important properties to be considered for self-compacting concrete. This paper presents simulations of the L-box test and corresponding experiments. The assumption of a continuum mechanical approach, where the fluid rheology is described by the Bingham model...

  2. Determining fracture energy parameters of concrete from the modified compact tension test

    Canteli, A.; Castañón, L.; Nieto, B.; Lozano, M.; Holušová, Táňa; Seitl, Stanislav

    2014-01-01

    Roč. 30, OCT (2014), s. 383-393 ISSN 1971-8993 R&D Projects: GA MŠk(CZ) EE2.3.20.0214 Grant - others:interní podpora AV ČR(CZ) M100411204 Institutional support: RVO:68081723 Keywords : Concrete fracture energy * Modified compact tension test * Concrete * Numerical simulation Subject RIV: JL - Materials Fatigue, Friction Mechanics

  3. Investigation of the existence of self compacting properties in high performance concrete through experimental tests

    Heitor H. Yoshida

    2007-03-01

    Full Text Available The self compacting concrete is characterized by its capacity to flow inside the formwork filling it exclusively by the force of the gravity with adequate cohesion and viscosity in such a way that segregation does not occur. One of its characteristic is the presence of fines which provide the necessary cohesion,and grains with maximum diameter of 20 mm. This work presents some procedures and experimental methods that make it possible to evaluate self compacting properties of high performance concrete. First, a bibliographical review on the subject was carried out, and later, the equipment used for the accomplishment of the assays were manufactured, in order to verify the properties related to the self compacting concrete: cohesion, viscosity and segregation. As for the work, two concretes were produced with Portland ARI Cement, thick sand, stone powder, sand 0, superplasticizer made of ether-carboxilate chains that differentiate from each other for the presence of active silica in one of them and fly ash in the other. Based on the results, it was verified whether the high performance concrete had self compacting characteristics. In this case, both were considered positive. It was also analyzed the behavior of these concretes in their hardened state by means of the compressive strength test. The Self Compacting Concrete has many advantages such as: reduction in the number of employees, shorter construction period, the non-use of the vibrator and the filling of formworks with high density of… or of complex geometry.

  4. Interim report on the settlement test in Stripa

    Boergesson, Lennart; Pusch, R.

    1989-11-01

    A deposition hole, of the KBS 3 concept type, is being simulated by a borehole with 40 cm diameter in the Stripa mine. The canister is heated and different vertical loads applied to the canister. The resulting canister displacement, rock displacements and swelling and compression of the compacted bentonite and sand/bentonite overfill are studied. The test is still running. So far the results and calculations have yielded the following main conclusions: The canister is heaving since the compacted bentonite is swelling upwards, thereby compacting the overlying sand/bentonite overfill; The effect of a temperature increase on the surrounding rock can only be explained by block movements. The very high pore pressure induced in heated bentonite is strongly affecting the rock; The total consolidation settlement caused by the weight of the canister is several times larger than the total creep settlement achieved in the initial 100-1000 years; The processes observed during the test are fairly well understood and seems to be predictable

  5. Microstructure of bentonite in relation to its physical properties within nuclear waste repositories

    Laine, E.

    1998-01-01

    High-level nuclear waste in Finland is planned to be placed in bedrock at a depth of several hundred metres. The spent fuel containers in boreholes drilled in the floors of deposition tunnels will be surrounded by bentonite blocks. The upper parts of the tunnels will be filled with mixture of bentonite and crushed rock. The behaviour of the bentonite around the containers during several years after deposition of nuclear waste should be predicted. In the present report, a short literature study of the microstructure of bentonite is presented. The report concentrates on bentonite MX-80. The use of stochastic imaging of microstructure was tested by using the Boolean simulation. Using stochastic imaging, the effect of changes of bentonite microstructure on its physical properties can be evaluated and predicted. (orig.)

  6. Study of the Properties of Bentonites for their use in Clay Geo synthetic Barriers

    Leiro Lopez, A.; Mateo Sanz, B.; Garcia Cidoncha, H.; Blanco Fernandez, M.

    2014-01-01

    Bentonites used for the production of clay geo synthetic barriers need to meet some properties so that they can be a waterproofing system. among the bentonites used in industry, sodium bentonite has the lowest permeability due to its high water absorption capacity in the inter-laminar space, causing it to swell and form a barrier to water flow. this paper provides the study of the properties of four bentonite to evaluate their quality the study of the properties of four bentonite to evaluate their quality. For this study, the main properties have been tested: water absorption, swelling index, fluid loss, cation exchange capacity and montmorillonite content. In order to optimize the procedure for the characterization of bentonites, correlations between different tests have been done, to identify the most suitable ones. Finally, a compatibility test has been carried out to study the performance of bentonites in water containing a high amount of sales, because in this case, an ion exchange between the interlayer sodium ions of bentonite and cations dissolved in the water can take, resulting in a decrease swell of the bentonite. (Author)

  7. Extreme gravity tests with gravitational waves from compact binary coalescences: (II) ringdown

    Berti, Emanuele; Yagi, Kent; Yang, Huan; Yunes, Nicolás

    2018-05-01

    The LIGO/Virgo detections of binary black hole mergers marked a watershed moment in astronomy, ushering in the era of precision tests of Kerr dynamics. We review theoretical and experimental challenges that must be overcome to carry out black hole spectroscopy with present and future gravitational wave detectors. Among other topics, we discuss quasinormal mode excitation in binary mergers, astrophysical event rates, tests of black hole dynamics in modified theories of gravity, parameterized "post-Kerr" ringdown tests, exotic compact objects, and proposed data analysis methods to improve spectroscopic tests of Kerr dynamics by stacking multiple events.

  8. Assessment of Real-Time Compaction Quality Test Indexes for Rockfill Material Based on Roller Vibratory Acceleration Analysis

    Tianbo Hua

    2018-01-01

    Full Text Available Compaction quality is directly related to the structure and seepage stability of a rockfill dam. To timely and accurately test the compaction quality of the rockfill material, four real-time test indexes were chosen to characterize the soil compaction degree based on the analysis of roller vibratory acceleration, including acceleration peak value (ap, acceleration root mean square value (arms, crest factor value (CF, and compaction meter value (CMV. To determine which of these indexes is the most appropriate, a two-part field compaction experiment was conducted using a vibratory roller in different filling zones of the dam body. Data on rolling parameters, real-time test indexes, and compaction quality indexes were collected to perform statistical regression analyses. Combined with the spectrum analysis of the acceleration signal, it was found that the CF index best characterizes the compaction degree of the rockfill material among the four indexes. Furthermore, the quantitative relations between the real-time index and compaction quality index were established to determine the control criterion of CF, which can instruct the site work of compaction quality control in the rockfill rolling process.

  9. Evaluation of hydraulic conductivities of bentonite and rock under hyper alkaline and nitrate conditions

    Iriya, K.; Fujii, K.; Kubo, H.

    2002-02-01

    The chemical conditions of TRU waste repository were estimated as alkaline conditions effected by cementitious materials. And, some TRU wastes include soluble nitrate salt, we have to consider the repository conditions might be high ionic strength condition leaching of nitrate salt. In this study, experimental studies were carried out to evaluate hydraulic conductivities of bentonite and rock under hyper alkaline and nitrate conditions. The followings results were obtained for bentonite. 1) In the immersion experiments of bentonite in hyper alkaline fluids with and without nitrate, the disappearance of montmorillonite of bentonite was observed and CSH formation was found after 30 days. In hyper alkaline fluid with nitrate, minerals at θ=37 nm by XRD was identified. 2) Significant effects of hyper alkaline on hydraulic conductivity of compacted bentonite were not observed. However, hydraulic conductivities of hyper alkaline fluid with nitrate and ion exchanged bentonite increased. In hyper alkaline with nitrate, more higher hydraulic conductivities of exchanged bentonite were measured. The followings results were obtained for rock. 1) In the immersion experiments of crushed tuff in hyper alkaline fluids with and without nitrate, CSH and CASH phases were observed. 2) The hydraulic conductivity of tuff in hyper alkaline fluids decreased gradually. Finally, hyper alkaline flow in tuff stopped after 2 months and hyper alkaline flow with nitrate stopped shorter than without nitrate. In the results of analysis of tuff after experiment, we could identified secondary minerals, but we couldn't find the clogging evidence of pores in tuff by secondary minerals. (author)

  10. Design, prototyping, and testing of a compact superconducting double quarter wave crab cavity

    Xiao, Binping; Alberty, Luis; Belomestnykh, Sergey; Ben-Zvi, Ilan; Calaga, Rama; Cullen, Chris; Capatina, Ofelia; Hammons, Lee; Li, Zenghai; Marques, Carlos; Skaritka, John; Verdu-Andres, Silvia; Wu, Qiong

    2015-04-01

    We proposed a novel design for a compact superconducting crab cavity with a double quarter wave (DQWCC) shape. After fabrication and surface treatments, this niobium proof-of-principle cavity was tested cryogenically in a vertical cryostat. The cavity is extremely compact yet has a low frequency of 400 MHz, an essential property for service in the Large Hadron Collider luminosity upgrade. The cavity's electromagnetic properties are well suited for this demanding task. The demonstrated deflecting voltage of 4.6 MV is well above the required 3.34 MV for a crab cavity in the future High Luminosity LHC. In this paper, we present the design, prototyping, and results from testing the DQWCC.

  11. Design, prototyping, and testing of a compact superconducting double quarter wave crab cavity

    Binping Xiao

    2015-04-01

    Full Text Available We proposed a novel design for a compact superconducting crab cavity with a double quarter wave (DQWCC shape. After fabrication and surface treatments, this niobium proof-of-principle cavity was tested cryogenically in a vertical cryostat. The cavity is extremely compact yet has a low frequency of 400 MHz, an essential property for service in the Large Hadron Collider luminosity upgrade. The cavity’s electromagnetic properties are well suited for this demanding task. The demonstrated deflecting voltage of 4.6 MV is well above the required 3.34 MV for a crab cavity in the future High Luminosity LHC. In this paper, we present the design, prototyping, and results from testing the DQWCC.

  12. Final report of the Buffer Mass Test. Volume II: test results

    Pusch, R.; Boerjesson, L.; Ramqvist, G.

    1985-08-01

    The evaluation of the Buffer Mass Test mainly concerned the heating of the bentonite/rock system that simulated hot canisters in deposition holes, the swelling and swelling pressure of the expanding bentonite in the heater holes, and the water uptake of the bentonite in the holes as well as in the tunnel backfill. These processes had been predicted on the basis of laboratory-derived data and FEM calculations with due consideration of the actual geometry. The recorded temperatures of the bentonite and surrounding rock were found to be below the maximum temperature that had been set, but higher than the expected values in the initial period of testing. The heater surface temperatures dropped in the course of the tests due to the uptake of water from the rock even in the driest hole which was located in almost fracture-free rock. The water uptake in the highly compacted bentonite in the heater holes was manifested by a successively increased swelling pressure at the bentonite/rock interface. It was rather uniformly distributed over this interface and reached a maximum value of about 10 MPa. The water content determination confirmed that water had been absorbed by the bentonite from the rock even in the driest holes where the counteracting thermal gradient was rather high. In the wettest holes the saturation became almost complete and a high degree of saturation was also observed in the tunnel backfill. Both in the heater holes and the tunnel, the moistening was found to be very uniform along the periphery, which is at least partly explained by the self-sealing ability of bentonite buffer materials. A general conclusion is that the involved physical processes are well understood and that the ultimate physical state of the buffer materials under repository conditions can be safely predicted. With 15 refs. (Author)

  13. Final report of the borehole, shaft, and tunnel sealing test. Vol.2

    Pusch, R.; Boergesson, L.; Ramqvist, G.

    1987-01-01

    Shaft sealing by use of highly compacted bentonite was investigated in a 14 m long shaft in which two plugs were constructed with a central sand-filled central space for injecting water. A first reference test with concrete plugs was followed by a main test in which the plug material consisted of blocks of highly compacted sodium bentonite powder. In the latter test, the outflow from the injection chamber was only a few percent of that with the concrete plugs, which demonstrates the excellent sealing properties of the clay. The main effect was that practically no water flow took place along the rock/clay interface. The longevity of smectite clay in crystalline rock is sufficient to make bentonite plugs operative for several thousand years. (authors)

  14. Safety Testing of AGR-2 UCO Compacts 6-4-2 and 2-3-1

    Hunn, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Morris, Robert N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baldwin, Charles A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burns, Zachary M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Montgomery, Fred C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Skitt, Darren J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    Post-irradiation examination (PIE) and elevated-temperature safety testing are being performed on tristructural-isotropic (TRISO) coated-particle fuel compacts from the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program second irradiation experiment (AGR-2). Details on this irradiation experiment have been previously reported [Collin 2014]. The AGR-2 PIE effort builds upon the understanding acquired throughout the AGR-1 PIE campaign [Demkowicz et al. 2015] and is establishing a database for the different AGR-2 fuel designs.

  15. The physical properties and compaction characteristics of swelling soils

    Komine, Hideo; Ogata, Nobuhide

    1990-01-01

    Expansive soils have recently attracted increasing attention as the back filling material for the repositories of high level nuclear wastes or as the material for improving extremely soft grounds. However, since very little has been known concerning the physical and mechanical properties of such materials, it is necessary to clarify the swelling, compaction and thermal characteristics of expansive soils. For this purpose, various kinds of index tests and a series of static compaction tests were performed using several kinds of swelling soils in order to investigate the relationship between the fundamental physical properties and the compaction characteristics. Since the ordinary testing method stipulated in JIS is difficult to perform for such expansive soils, the new method was proposed to obtained the reliable values of specific gravity, grain size distribution and liquid/plastic limits. By this method, some representative values were presented for various kinds of clay including bentonite. As the results of static compaction tests, the compaction characteristics of clay were strongly dependent on the plastic limit of clay. The maximum dry density and optimum water content were strongly dependent on both plastic limit and compaction pressure. (K.I.)

  16. Advances on experimental techniques for the characterization of THM behaviour of bentonite

    Villar, M.V. [CIEMAT - Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Lioret, A. [Universidad Politecnica de Cataluna (UPC), Barcelona (Spain)

    2005-07-01

    The design of high level radioactive waste (HLW) repositories in deep geological media in which bentonite clay is proposed as a sealing material leads to the need of further studying the behaviour of highly compacted expansive soils when subjected to mechanical, hydraulic and thermal changes. Laboratory tests may help to understand the processes that take place in the clay barrier under simple and controlled conditions and to develop the governing equations. The laboratory tests enable to isolate the different processes, making their interpretation easier, and provide with fundamental data concerning the parameters to be used in the models. The extremely low permeability of these materials, their avidity for water (high suction) and their high swelling capacity make necessary the modification of the conventional laboratory techniques and procedures to determine basic physical parameters. The main hydraulic properties of the barrier to be considered are the permeability and the water retention capacity. Among the mechanical properties of bentonites, the most outstanding is their capacity to change volume and thus, the characterisation and measurement of swelling pressure, swelling under load and mechanical compressibility are keystones to understand the behaviour of expansive materials. Besides, since the barrier will be subjected to thermal and hydraulic gradients, the variation of its mechanical and hydraulic characteristics with temperature and suction must be known. (authors)

  17. Determining fracture energy parameters of concrete from the modified compact tension test

    A. Fernández-Canteli

    2014-10-01

    Full Text Available The modified compact tension (MCT test, though not yet recognized as a valid test for determining fracture energy of concrete, is believed to represent a plausible and suitable alternative versus other well established procedures, such as the wedge-splitting test (WST and the three point (3PB or four point bending (4PB tests, due to its simplicity and low cost. The aim of the paper is twofold: Firstly, to demonstrate the necessary correspondence between the experimental MCT test setup and finite element simulations and secondly, to initiate the way of establishing the desirable conversion between the fracture energy parameter values resulting from the MCT test and the standard conventional procedures. MCT tests are carried out and compared with the numerical results from 2-D and 3-D finite element calculations using the commercial codes ABAQUS and ATENA, the latter being specifically developed for applications on concrete structures and elements. In this way, the usability of the modified compact tension test for practical purposes is confirmed.

  18. Effects of bentonite on plasma urea and creatinine of wistar albino rats.

    The in vivo effect of Nigerian calcium bentonite clay on wistar albino rat plasma urea and creatinine levels were investigated. The rats were fed for a period of four weeks with varying concentrations of the bentonite clay, and the urea and creatinine levels determined using spectrophotometric methods. Test results showed ...

  19. Study on Identification of Material Model Parameters from Compact Tension Test on Concrete Specimens

    Hokes, Filip; Kral, Petr; Husek, Martin; Kala, Jiri

    2017-10-01

    Identification of a concrete material model parameters using optimization is based on a calculation of a difference between experimentally measured and numerically obtained data. Measure of the difference can be formulated via root mean squared error that is often used for determination of accuracy of a mathematical model in the field of meteorology or demography. The quality of the identified parameters is, however, determined not only by right choice of an objective function but also by the source experimental data. One of the possible way is to use load-displacement curves from three-point bending tests that were performed on concrete specimens. This option shows the significance of modulus of elasticity, tensile strength and specific fracture energy. Another possible option is to use experimental data from compact tension test. It is clear that the response in the second type of test is also dependent on the above mentioned material parameters. The question is whether the parameters identified within three-point bending test and within compact tension test will reach the same values. The presented article brings the numerical study of inverse identification of material model parameters from experimental data measured during compact tension tests. The article also presents utilization of the modified sensitivity analysis that calculates the sensitivity of the material model parameters for different parts of loading curve. The main goal of the article is to describe the process of inverse identification of parameters for plasticity-based material model of concrete and prepare data for future comparison with identified values of the material model parameters from different type of fracture tests.

  20. Design of a Loose Part Monitoring System Test-bed using CompactRIO

    Kim, Min-seok; Lee, Kwang-Dae; Lee, Eui-Jong [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    A loose part monitoring system (LPMS) is included in the NSSS integrity monitoring system (NIMS), which serves to detect loose parts in reactor coolant systems (RCS). LPMSs at Nuclear Power Plants (NPPs) in Korea follow the ASME OM standard and acquire data from 18 sensors simultaneously. Data acquisition requires a sampling rate of more than 50KHz along with a 12bit A/D converter. Existing LPMS equipment is composed of several different platforms, such as a digital signal processor (DSP), a field-programmable gate array (FPGA), a micro control unit (MCU), and electric circuit cards. These systems have vulnerabilities, such as discontinuance due to aging and incompatibility issues between different pieces of equipment. This paper suggests CompactRIO as a new platform. We devised a Test-bed using CompactRIO and demonstrate that the proposed method meets the criteria required by the standard. The LPMS provides an alert when an impact event occurs and provides information with which to analyze the location, energy, and mass of the loose parts. LPMSs in NPPs in Korea operate on a variety of platforms. Thus, these systems are vulnerable to discontinuances due to aging and incompatibilities arising from the use of different type of equipment. In order to solve these problems, this paper suggests CompactRIO as a new platform. It is a rugged, reconfigurable, high-performance industrial embedded system. The results of performance tests meet the criteria set by the current standard.

  1. Testing of Compact Bolted Fasteners with Insulation and Friction-Enhanced Shims for NCSX

    Dudek, L.E.; Chrzanowski, J.H.; Gettelfinger, G.; Heitzenroeder, P.; Jurczynski, S.; Viola, M.; Freudenberg, K.

    2009-01-01

    The fastening of the National Compact Stellarator Experiment's (NCSX) modular coils presented a number of engineering and manufacturing challenges due to the high magnetic forces, need to control induced currents, tight tolerances and restrictive space envelope. A fastening method using high strength studs, jack nuts, insulating spacers, bushings and alumina coated shims was developed which met the requirements. A test program was conducted to verify the design. The tests included measurements of flatness of the spacers, determination of contact area, torque vs. tension of the studs and jack nuts, friction coefficient tests on the alumina and G-10 insulators, electrical tests, and tension relaxation tests due to temperature excursions from room temperature to liquid nitrogen temperatures. This paper will describe the design and the results of the test program.

  2. Pore water chemistry of Rokle Bentonite (Czech Republic)

    Cervinka, R.; Vejsada, J.

    2010-01-01

    Document available in extended abstract form only. With inflowing the groundwater to Deep Geological Repository (DGR), the interaction of this water with engineering barrier materials will alter both, barrier materials and also the groundwater. One of the most important alterations represents the formation of bentonite pore water that will affect a number of important processes, e.g. corrosion of waste package materials, solubility of radionuclides, diffusion and sorption of radionuclides. The composition of bentonite pore water is influenced primarily by the composition of solid phase (bentonite), liquid phase (inflowing groundwater), the gaseous phase (partial pressure of CO 2 ), bentonite compaction and the rate of groundwater species diffusion through bentonite. Also following processes have to be taken into account: dissolution of admixtures present in the bentonite (particularly well soluble salts, e.g. KCl, NaCl, gypsum), ion exchange process and protonation and deprotonation of surface hydroxyl groups on clay minerals. Long-term stability of mineral phases and possible mineral transformation should not be neglected as well. In the Czech Republic, DGR concept takes local bentonite into account as material for both buffer and backfill. The candidate bentonite comes from the Rokle deposit (NW Bohemia) and represents complex mixture of (Ca,Mg)-Fe-rich montmorillonite, micas, kaolinite and other mineral admixtures (mainly Ca, Mg, Fe carbonates, feldspars and iron oxides). The mineralogical and chemical characteristics were published previously. This bentonite is different in composition and properties from worldwide studied Na-bentonite (e.g. MX-80, Volclay) or Na-Ca bentonite (e.g. Febex). This fact leads to the need of investigation of Rokle bentonite in greater detail to verify its suitability as a buffer and backfill in DGR. Presented task is focused on the study of pore water evolution. Our approach for this study consists in modeling the pore water using

  3. PIE on Safety-Tested Loose Particles from Irradiated Compact 4-4-2

    Hunn, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gerczak, Tyler J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Morris, Robert Noel [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baldwin, Charles A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Montgomery, Fred C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    Post-irradiation examination (PIE) is being performed in support of tristructural isotropic (TRISO) coated particle fuel development and qualification for High Temperature Gas-cooled Reactors (HTGRs). This work is sponsored by the Department of Energy Office of Nuclear Energy (DOE-NE) through the Advanced Reactor Technologies (ART) Office under the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program. The AGR-1 experiment was the first in a series of TRISO fuel irradiation tests initiated in 2006. The AGR-1 TRISO particles and fuel compacts were fabricated at Oak Ridge National Laboratory (ORNL) in 2006 using laboratory-scale equipment and irradiated for 3 years in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) to demonstrate and evaluate fuel performance under HTGR irradiation conditions. Post-irradiation examination was performed at INL and ORNL to study how the fuel behaved during irradiation, and to test fuel performance during exposure to elevated temperatures at or above temperatures that could occur during a depressurized conduction cooldown event. This report summarizes safety testing and post-safety testing PIE conducted at ORNL on loose particles extracted from irradiated AGR-1 Compact 4-4-2.

  4. Characterization of Cr/Bentonite and HZSM-5 Zeolite as Catalysts for Ethanol Conversion to Biogasoline

    Robert Ronal Widjaya

    2012-04-01

    Full Text Available In this research it has been done characterization on Cr/Bentonit and Zeolit HZSM-5 catalysts for ethanol catalytic process to biogasoline (equal to gasoline. Cr/Bentonit has high acidity and resistant to a lot of moisture, so in addition to being able to processing feed which a lot of moisture (>15% from ethanol-water mixture, also it is not easy deactivated. Cr/Bentonit which is then used as the catalyst material on the process of ethanol conversion to be biogasoline and the result was compared with catalyst HZSM-5 zeolite. Several characterization methods: X-ray diffraction, Brunauer Emmett Teller (BET, thermogravimetry analysis (TGA, and catalyst activity tests using catalytic Muffler instrument and gas chromatography-mass spectrometry (GC-MS for product analysis were performed on both catalysts. From acidity measurement, it is known that acidity level of Cr/Bentonit is the highest and also from XRD result, it is known there is shift for 2theta in Cr/Bentonit, which indicates that Cr-pillar in the Bentonite can have interaction. It is also supported by BET data that shows the addition of specific surface are in Cr/Bentonite compared with natural Bentonite before pillarization. Futhermore catalyst activity test produced the results, analyzed by GC-MS, identified as butanol and also possibly formed hexanol, decane, dodecane, undecane, which are all included in gasoline range (C4 until C12.

  5. Thermodynamic modelling of bentonite-groundwater interaction and implications for near field chemistry in a repository for spent fuel

    Wanner, H.; Wersin, P.; Sierro, N.

    1992-11-01

    Predictions of near field geochemistry are made using a thermodynamic model for bentonite/ground interaction. This model is a refinement and extension of the model developed by the senior author. It is based on recent experiments performed at high solid/water ratio and adapted to the Swedish type of HLW repository design. Thus, from the obtained experimental results on solution composition, the model includes chemical reactions resulting from both the impurities and the main clay fraction within the bentonite. Ion exchange reactions are treated both with and without the contribution of edge sites. Due to its thermodynamic basis, the model exhibits prediction capability over a wide range of conditions in terms of solid/water ratio. The modelling of repository conditions implies, due to the lack of experimental information, simplifications with regard to thermodynamic properties of the bentonite. This mainly involves the non-consideration of the temperature effects and of the acid/base properties of the solid. Nevertheless, our results yield insight into important processes affecting porewater chemistry. Thus, the model suggests that proton exchange reactions may exert a strong control on calcite dissolution within highly compacted bentonite. Estimations of chemical changes over time in the bentonite were done in the basis of a mixing tank model. These results indicate transformation of Na-bentonite to Ca-bentonite over time. The extent of this process, however, critically depends on the amount of carbonate present in the bentonite. (authors) (34 refs.)

  6. Influence of the gripping fixture on the modified compact tension test results: Evaluation of the experiments on cylindrical concrete specimens

    Holušová, T.; Lozano, M.; Canteli, A.; Komárková, T.; Kocáb, D.; Seitl, Stanislav

    2015-01-01

    Roč. 15, č. 2 (2015) ISSN 1804-4824 Institutional support: RVO:68081723 Keywords : Modified compact tension test * fracture parametr * Cementitious composites * Aramis measurement * grips Subject RIV: JL - Materials Fatigue, Friction Mechanics

  7. PIE on Safety-Tested AGR-1 Compact 5-1-1

    Hunn, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Morris, Robert Noel [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baldwin, Charles A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Montgomery, Fred C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gerczak, Tyler J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-01

    Post-irradiation examination (PIE) is being performed in support of tristructural isotropic (TRISO) coated particle fuel development and qualification for High-Temperature Gas-cooled Reactors (HTGRs). AGR-1 was the first in a series of TRISO fuel irradiation experiments initiated in 2006 under the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program; this work continues to be funded by the Department of Energy's Office of Nuclear Energy as part of the Advanced Reactor Technologies (ART) initiative. AGR-1 fuel compacts were fabricated at Oak Ridge National Laboratory (ORNL) in 2006 and irradiated for three years in the Idaho National Laboratory (INL) Advanced Test Reactor (ATR) to demonstrate and evaluate fuel performance under HTGR irradiation conditions. PIE is being performed at INL and ORNL to study how the fuel behaved during irradiation, and to examine fuel performance during exposure to elevated temperatures at or above temperatures that could occur during a depressurized conduction cooldown event. This report summarizes safety testing of irradiated AGR-1 Compact 5-1-1 in the ORNL Core Conduction Cooldown Test Facility (CCCTF) and post-safety testing PIE.

  8. Compact X-ray source at STF (Super Conducting Accelerator Test Facility)

    Urakawa, J

    2012-01-01

    KEK-STF is a super conducting linear accelerator test facility for developing accelerator technologies for the ILC (International Linear Collider). We are supported in developing advanced accelerator technologies using STF by Japanese Ministry (MEXT) for Compact high brightness X-ray source development. Since we are required to demonstrate the generation of high brightness X-ray based on inverse Compton scattering using super conducting linear accelerator and laser storage cavity technologies by October of next year (2012), the design has been fixed and the installation of accelerator components is under way. The necessary technology developments and the planned experiment are explained.

  9. Water uptake and motion in highly densified bentonite

    Kahr, G.; Mueller-Vonmoos, F.; Kraehenbuehl, F.; Stoeckli, H.F.

    1986-07-01

    Water uptake by the bentonites MX-80 and Montigel was investigated according to the classical method of determination of the heat immersion and the adsorption-desorption isotherms. In addition, the layer expansion of the montmorillonite was measured as a function of the water content. The evaluation of the adsorption isotherms according to Dubinin-Radushkevich and the stratification distances determined by x-ray confirmed gradual water uptake. Up to 10% water content, the water is adsorbed as a monolayer, up to 20%, as a bimolecular layer around the interlayer cations. The partial specific entropy could be determined from the approximative calculation of the partial specific enthalpy from the heats of immersion and the free enthalpy from the adsorption isotherms. From this it is evident that the interlayer water shows a high degree of order. In this condition, the mobility of the water molecules is considerably lower than in free water. From the adsorption isotherm and the layer expansion observed, it can be assumed that water can appear in the pore space only from approximately 25% water content. The spaces outwith the interlayer space and the surfaces of the montmorillonite particles are considered as pore space. If free swelling is prevented and with dry densities greater than 1.8 Mg/m/sup 3/ for the highly compacted bentonites, water uptake causes a drastic reduction of the original pore space so that practically all the water is in the interlayer space. Calculation of the swelling pressure from the adsorption isotherms gives a good approximation of the measured swelling pressures. A montmorillonite surface of ca. 750 m/sup 2//g for both bentonites can be derived from a Dubinin-Radushkevich analysis of the adsorption isotherm. Water uptake into the compacted unsaturated bentonites can be described as diffusion with a diffusion coefficient of the order of magnitude of 3.10/sup -10/ m/sup 2//s. (author)

  10. Sorption of technetium and its analogue rhenium on bentonite material under aerobic conditions

    Koudelkova, M.; Vinsova, H.; Konirova, R.; Ernestova, M.; Jedinakova-Krizova, V.; Tereesha, M.

    2003-01-01

    The uptake of technetium on bentonite materials has been studied from the point of view of characterization of long-term radioactive elements behavior in nuclear waste repository. Bentonite R (locality Rokle, Czech Republic) and two types of model groundwater (granitic and bentonite) were selected for the sorption experiments. The aim of our research has been to find out the conditions suitable for the technetium sorption on selected bentonite under oxidizing condition. The sorption experiments with Tc-99 on bentonite have been carried out by batch method. The influence of the addition of different materials (e.g. activated carbon, graphite, Fe 2+ ) with bentonite, the effect of solid: aqueous phase ratio and a pH value on the percentage of technetium uptake and on the K d values were tested. Perrhenate was selected as an analogue of pertechnetate in non-active experiments of capillary electrophoresis (CE) and isotachophoresis (ITP). The percentage of rhenium sorbed on bentonite material was determined from the decrease of perrhenate peak area (CE) and from the shortening of the ITP zone corresponding to perrhenate. Both electromigration methods provided comparable results. The results obtained in this study with non-active material were compared to those of technetium acquired by radiometry and polarography. The 8 days kinetics of the perrhenate and pertechnetate sorption on bentonite was described mathematically with a tendency to predict long-term behavior of studied systems. (authors)

  11. Compact Heat Exchanger Design and Testing for Advanced Reactors and Advanced Power Cycles

    Sun, Xiaodong; Zhang, Xiaoqin; Christensen, Richard; Anderson, Mark

    2018-03-31

    The goal of the proposed research is to demonstrate the thermal hydraulic performance of innovative surface geometries in compact heat exchangers used as intermediate heat exchangers (IHXs) and recuperators for the supercritical carbon dioxide (s-CO2) Brayton cycle. Printed-circuit heat exchangers (PCHEs) are the primary compact heat exchangers of interest. The overall objectives are: 1. To develop optimized PCHE designs for different working fluid combinations including helium to s-CO2, liquid salt to s-CO2, sodium to s-CO2, and liquid salt to helium; 2. To experimentally and numerically investigate thermal performance, thermal stress and failure mechanism of PCHEs under various transients; and 3. To study diffusion bonding techniques for elevated-temperature alloys and examine post-test material integrity of the PCHEs. The project objectives were accomplished by defining and executing five different tasks corresponding to these specific objectives. The first task involved a thorough literature review and a selection of IHX candidates with different surface geometries as well as a summary of prototypic operational conditions. The second task involved optimization of PCHE design with numerical analyses of thermal-hydraulic performances and mechanical integrity. The subsequent task dealt with the development of testing facilities and engineering design of PCHE to be tested in s-CO2 fluid conditions. The next task involved experimental investigation and validation of the thermal-hydraulic performances and thermal stress distribution of prototype PCHEs manufactured with particular surface geometries. The last task involved an investigation of diffusion bonding process and posttest destructive testing to validate mechanical design methods adopted in the design process. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed s-CO2 test loop (STL

  12. Applicability of low alkaline cement for construction and alteration of bentonite in the cement. 2

    Iriya, Keishiro; Fujii, Kensuke; Tajima, Takatoshi; Takeda, N.; Kubo, Hiroshi

    2003-02-01

    This study consists of accelerating corrosion test of rebar in saline, automogeneous shrinkage test of HFSC, accelerating test for bentonite and rock, and summarizing rock and bentonite alteration. Corrosion of rebars in HFSC: Since sorption capacity of HFSC for Cl ion is slow due to low alkalinity, rate of corrosion of rebar in HFSC is very large. Cracking due to corrosion is generating in 4 years or 20 years, although service period is deferent in OPC amount. Automogenous shrinkage: Automogenous shrinkage of HFSC is larger than OPC in cement paste. It decreases corresponding to rise of fly ash content. The shrinkage in HFSC 226 is quite similar to OPC. The shrinkage in HFSC concrete is smaller than OPC concrete. 720 days alteration test of bentonite by solution of low alkaline cement: Ion exchange to Ca bentonite and calcite are observed in the solid phase. Thin plate of bentonite is disappeared and round shaped secondary mineral is generated. Dissolution of bentonite and generation of secondary minerals are limited in pH 11.0 or less, since pH of bentonite is about 10.0. 720 days alteration test of rock by solution of low alkaline cement: Calcite is generated in very test. Very small evidence is observed as generation of secondary minerals. Etched pits are observed in tuff A due to corrosion. (author)

  13. INITIAL TESTS AND ACCURACY ASSESMENT OF A COMPACT MOBILE LASER SCANNING SYSTEM

    K. Julge

    2016-06-01

    Full Text Available Mobile laser scanning (MLS is a faster and cost-effective alternative to static laser scanning, even though there is a slight trade-off in accuracy. This contribution describes a compact mobile laser scanning system mounted on a vehicle. The technical parameters of the used system components, i.e. a small LIDAR sensor Velodyne VLP-16 and a dual antenna GNSS/INS system Advanced Navigation Spatial Dual, are reviewed, along with the integration of these components for spatial data acquisition. Calculation principles of 3D coordinates from the real-time data of all the involved sensors are discussed. The field tests were carried out in a controlled environment of a parking lot and at different velocities. Experiments were carried out to test the ability of the GNSS/INS system to cope with difficult conditions, e.g. sudden movements due to cornering or swerving. The accuracy of the resulting MLS point cloud is evaluated with respect to high-accuracy static terrestrial laser scanning data. Problems regarding combining LIDAR, GNSS and INS sensors are outlined, as well as the initial accuracy assessments. Initial tests revealed errors related to insufficient quality of inertial data and a need for the trajectory post-processing calculations. Although this study was carried out while the system was mounted on a car, there is potential for operating the system on an unmanned aerial vehicle, all-terrain vehicle or in a backpack mode due to its relatively compact size.

  14. Comparison between instrumented precracked Charpy and compact specimen tests of carbon steels

    Nanstad, R.K.

    1980-01-01

    The General Atomic Company High Temperature Gas-Cooled Reactor (HTGR) is housed within a prestressed concrete reactor vessel (PCRV). Various carbon steel structural members serve as closures at penetrations in the vessel. A program of testing and evaluation is underway to determine the need for reference fracture toughness (K/sub IR/) and indexing procedures for these materials as described in Appendix G to Section III, ASME Code for light water reactor steels. The materials of interest are carbon steel forgings (SA508, Class 1) and plates (SA537, Classes 1 and 2) as well as weldments of these steels. The fracture toughness behavior is characterized with instrumented precracked Charpy V-votch specimens (PCVN) - slow-bend and dynamic - and compact specimens (10-mm and 25-mm thicknesses) using both linear elastic (ASTM E399) and elastic-plastic (equivalent Energy and J-Integral) analytical procedures. For the dynamic PCVN tests, force-time traces are analyzed according to the procedures of the Pressure Vessel Research Council (PVRC)/Metal Properties Council (MPC). Testing and analytical procedures are discussed and PCVN results are compared to those obtained with compact specimens

  15. Initial Tests and Accuracy Assesment of a Compact Mobile Laser Scanning System

    Julge, K.; Ellmann, A.; Vajakas, T.; Kolka, R.

    2016-06-01

    Mobile laser scanning (MLS) is a faster and cost-effective alternative to static laser scanning, even though there is a slight trade-off in accuracy. This contribution describes a compact mobile laser scanning system mounted on a vehicle. The technical parameters of the used system components, i.e. a small LIDAR sensor Velodyne VLP-16 and a dual antenna GNSS/INS system Advanced Navigation Spatial Dual, are reviewed, along with the integration of these components for spatial data acquisition. Calculation principles of 3D coordinates from the real-time data of all the involved sensors are discussed. The field tests were carried out in a controlled environment of a parking lot and at different velocities. Experiments were carried out to test the ability of the GNSS/INS system to cope with difficult conditions, e.g. sudden movements due to cornering or swerving. The accuracy of the resulting MLS point cloud is evaluated with respect to high-accuracy static terrestrial laser scanning data. Problems regarding combining LIDAR, GNSS and INS sensors are outlined, as well as the initial accuracy assessments. Initial tests revealed errors related to insufficient quality of inertial data and a need for the trajectory post-processing calculations. Although this study was carried out while the system was mounted on a car, there is potential for operating the system on an unmanned aerial vehicle, all-terrain vehicle or in a backpack mode due to its relatively compact size.

  16. The use of synthetic Zn-/Ni-labeled montmorillonite colloids as a natural bentonite marker

    Huber, F.; Heck, S.; Hoess, P.; Bouby, M.; Schaefer, T.; Truche, L.; Brendle, J.

    2012-01-01

    Document available in extended abstract form only. Quantification of bentonite erosion rates/colloid release rates and the colloid attachment under unfavourable conditions for clay colloids is frequently based on the detection of the alumino-silicate building blocks and accompanied by relative high analytical uncertainties due to the presence of high background concentrations in the groundwater. In situ experiments planned at the Grimsel Test Site (CH) in the frame of the Colloid Formation and Migration (CFM) project foresee the emplacement of a compacted bentonite source and determination of the bentonite erosion rate under near-natural flow conditions. To univocally differentiate between the natural background colloid concentration and the eroded bentonite an irreversible labeling of the bentonite colloid source placed in a granite fracture would greatly improve their detection and reduce the analytical uncertainty. It is thought to use an admixture to label the natural bentonite. Therefore, the characteristics as erosion behavior, colloid stability and radionuclide sorption/reversibility behavior have to be studied and compared. Here, we focus on the radionuclide sorption reversibility. Synthetic montmorillonite containing structurally bound Zn and Ni in its octahedral layer was used within this study. Actually, Zn and Ni are good candidates to determine more accurately the colloid concentration as the ICP-MS sensitivity is at least one order of magnitude higher and the Zn and Ni background concentrations found in natural ground waters (e.g. Grimsel ground water, GGW) are very low. In the present study, the colloids are first separated and characterized by AsFlFFF-ICP-MS. Then, they are used to perform radionuclide reversibility kinetic experiments similar to those already published under anoxic conditions and room temperature. The aim is to compare the results obtained with those already available on natural FEBEX bentonite derived colloids. The size

  17. γ-radiation induced corrosion of copper in bentonite-water systems under anaerobic conditions

    Karin Norrfors, K.; Björkbacka, Åsa; Kessler, Amanda; Wold, Susanna; Jonsson, Mats

    2018-03-01

    In this work we have experimentally studied the impact of bentonite clay on the process of radiation-induced copper corrosion in anoxic water. The motivation for this is to further develop our understanding of radiation-driven processes occurring in deep geological repositories for spent nuclear fuel where copper canisters containing the spent nuclear fuel will be embedded in compacted bentonite. Experiments on radiation-induced corrosion in the presence and absence of bentonite were performed along with experiments elucidating the impact irradiation on the Cu2+ adsorption capacity of bentonite. The experiments presented in this work show that the presence of bentonite clay has no or very little effect on the magnitude of radiation-induced corrosion of copper in anoxic aqueous systems. The absence of a protective effect similar to that observed for radiation-induced dissolution of UO2 is attributed to differences in the corrosion mechanism. This provides further support for the previously proposed mechanism where the hydroxyl radical is the key radiolytic oxidant responsible for the corrosion of copper. The radiation effect on the bentonite sorption capacity of Cu2+ (reduced capacity) is in line with what has previously been reported for other cations. The reduced cation sorption capacity is partly attributed to a loss of Al-OH sites upon irradiation.

  18. Characterization of cracking in Strain-Hardening Cementitious Composites using the compact tension test

    Pereira, Eduardo B.; Fischer, Gregor; Barros, Joaquim A. O.

    The characterization of the tensile behavior of strain hardening cementitious composites (SHCC) is of significant importance to the material design. In a previous work the tensile stress-crack opening response of different types of SHCC was characterized using notched specimens tested in direct...... tension, where a single crack was obtained and mechanically characterized by performing Single Crack Tension Test (SCTT). In this study the tensile behavior of SHCC materials is characterized under eccentric tensile load using the Compact Tension Test (CTT). The long edge notch placed in the rectangular...... plate specimens and the eccentrically applied tensile load create the local conditions necessary to the initiation of a single crack at the tip of the notch. Further propagation and opening of the crack in Mode I allow the assessment of the tensile load-displacement relationship. The experimental...

  19. Cellular uptake and cytotoxic potential of respirable bentonite particles with different quartz contents and chemical modifications in human lung fibroblasts

    Geh, Stefan; Rettenmeier, Albert W.; Dopp, Elke [University Hospital, Institute of Hygiene and Occupational Medicine, Essen (Germany); Yuecel, Raif [University Hospital, Institute of Cell Biology (Cancer Research), Essen (Germany); Duffin, Rodger [Institute of Environmental Health Research (IUF), Duesseldorf (Germany); University of Edinburgh, ELEGI COLT Lab, Scotland (United Kingdom); Albrecht, Catrin; Borm, Paul J.A. [Institute of Environmental Health Research (IUF), Duesseldorf (Germany); Armbruster, Lorenz [Verein fuer Technische Sicherheit und Umweltschutz e.V., Gotha (Germany); Raulf-Heimsoth, Monika; Bruening, Thomas [Research Institute for Occupational Medicine of the Institutions for Statutory Accident Insurance and Prevention (BGFA), Bochum (Germany); Hoffmann, Eik [University of Rostock, Institute of Biology, Department of Cell Biology and Biosystems Technology, Rostock (Germany)

    2006-02-01

    Considering the biological reactivity of pure quartz in lung cells, there is a strong interest to clarify the cellular effects of respirable siliceous dusts, like bentonites. In the present study, we investigated the cellular uptake and the cytotoxic potential of bentonite particles (Oe< 10 {mu}m) with an {alpha}-quartz content of up to 6% and different chemical modifications (activation: alkaline, acidic, organic) in human lung fibroblasts (IMR90). Additionally, the ability of the particles to induce apoptosis in IMR90-cells and the hemolytic activity was tested. All bentonite samples were tested for endotoxins with the in vitro-Pyrogen test and were found to be negative. Cellular uptake of particles by IMR90-cells was studied by transmission electron microscopy (TEM). Cytotoxicity was analyzed in IMR90-cells by determination of viable cells using flow cytometry and by measuring of the cell respiratory activity. Induced apoptotic cells were detected by AnnexinV/Propidiumiodide-staining and gel electrophoresis. Our results demonstrate that activated bentonite particles are better taken up by IMR90-cells than untreated (native) bentonite particles. Also, activated bentonite particles with a quartz content of 5-6% were more cytotoxic than untreated bentonites or bentonites with a quartz content lower than 4%. The bentonite samples induced necrotic as well as apoptotic cell death. In general, bentonites showed a high membrane-damaging potential shown as hemolytic activity in human erythrocytes. We conclude that cellular effects of bentonite particles in human lung cells are enhanced after chemical treatment of the particles. The cytotoxic potential of the different bentonites is primarily characterized by a strong lysis of the cell membrane. (orig.)

  20. Compact Undulator for the Cornell High Energy Synchrotron Source: Design and Beam Test Results

    Temnykh, A.; Dale, D.; Fontes, E.; Li, Y.; Lyndaker, A.; Revesz, P.; Rice, D.; Woll, A.

    2013-03-01

    We developed, built and beam tested a novel, compact, in-vacuum undulator magnet based on an adjustable phase (AP) scheme. The undulator is 1 m long with a 5mm gap. It has a pure permanent magnet structure with 24.4mm period and 1.1 Tesla maximum peak field. The device consists of two planar magnet arrays mounted on rails inside of a rectangular box-like frame with 156 mm × 146 mm dimensions. The undulator magnet is enclosed in a 273 mm (10.75") diameter cylindrical vacuum vessel with a driver mechanism placed outside. In May 2012 the CHESS Compact Undulator (CCU) was installed in Cornell Electron Storage Ring and beam tested. During four weeks of dedicated run we evaluated undulator radiation properties as well as magnetic, mechanical and vacuum properties of the undulator magnet. We also studied the effect of the CCU on storage ring beam. The spectral characteristics and intensity of radiation were found to be in very good agreement with expected. The magnet demonstrated reproducibility of undulator parameter K at 1.4 × 10-4 level. It was also found that the undulator K. parameter change does not affect electron beam orbit and betatron tunes.

  1. Natural analogue study for interaction between alkaline groundwater and bentonite at Mangatarem region in the Philippines

    Tsukada, Y.; Fujita, K.; Nakabayashi, R.; Sato, T.; Yoneda, T.; Yamakawa, M.; Fujii, N.; Namiki, K.; Kasama, T.; Alexander, R.; Arcilla, C.; Pascua, C.

    2012-01-01

    investigate the influence of high pH water on the bentonite, samples were collected from the interface between the bentonite and the pillow lava and tested. The bentonite samples were collected at 10 cm intervals from the pillow lava into the bentonite to assess the reaction of bentonite by interaction with high pH water. The samples show no significant difference in mineralogy or cation exchange capacity on cm scales. In XRD measurements at 40% r.h, the bentonite samples showed the same position of the 001 reflection, which means that all the bentonite observed here contains Ca-smectite. However, the present data cannot exclude the possibility of Ca-rich alkaline fluids affecting the interlayer cation of smectite in the bentonite with. The contact zone between the pillow lavas and the bentonite is divided into five zones based on microscopic and mineralogical characteristics: (1) unaltered bentonite; (2) Fe-enriched bentonite; (3)altered bentonite(4) altered pillow lava and (5) unaltered pillow lava characterized by Si-enrichment. The altered bentonite area was limited to zones 1-5 mm thick and authigenic K-feldspar, zeolite, Fe-smectite were observed by SEM, EPMA and TEM. Previous studies have shown that these minerals can result from the alteration of smectite by high pH fluids (e.g. Bauer and Velde, 1999). In addition, the EPMA analysis revealed that Fe 2+ was leached from the pillow lavas and enriched in the part of the altered bentonite. This suggest that alkaline fluids could have passed through fractures in the pillow lava and the bentonite, and converted the smectites in the bentonite to nontronite, which caused the clogging of fluid pathways with filling minerals. Here, a natural analogue study of bentonite-cement interaction was carried out in the Saile quarry in Mangatarem. An alkaline fluid pathway, from the source pillow lava into the overlying bentonite has been identified on the basis of presence of low temperature chrysotile. The alkaline solutions converted

  2. Sorption of technetium and its analogue rhenium on bentonite material under aerobic conditions

    Vinsova, H.; Koudelkova, M.; Konirova, R.; Vecernik, P.; Jedinakova-Krizova, V.

    2003-01-01

    The uptake of technetium on bentonite materials has been studied from the point of view of characterization of long-term radioactive elements behavior in nuclear waste repository. Bentonite R (locality Rokle, Czech Republic) and two types of model groundwater (granitic and bentonite) were selected for the sorption experiments. It is generally known that bentonite materials show an excellent cation-exchange capacity and, on the other hand, a poor uptake of anions. Technetium occurs under aerobic conditions in its most stable oxidation state (+VII) as pertechnetate, which makes a question of its sorption on bentonite more complex when compared with e.g. Cs + or Sr 2+ . To increase the K d values for technetium sorption on bentonite, it is necessary to carry out the experiments under anaerobic conditions in the presence of reducing agent, which is capable to lower the oxidation state of technetium which enables its successful immobilization. The aim of our research has been to find out the conditions suitable for the technetium sorption on selected bentonite under oxidizing conditions. The sorption experiments with Tc-99 on bentonite have been carried out by batch method. The influence of the addition of different materials (e.g. activated carbon, graphite, Fe 2+ , Fe) with bentonite, the effect of solid:aqueous phase ratio and a pH value on the percentage of technetium uptake and on the K d values were tested. Perrhenate was selected as an analogue of pertechnetate in non-active experiments of capillary electrophoresis (CE) and isotachophoresis (ITP). The percentage of rhenium sorbed on bentonite material was determined from the decrease of perrhenate peak area (CE) and from the shortening of the ITP zone corresponding to perrhenate. Both electromigration methods provided comparable results. The results obtained in this study with non-active material were compared to those of technetium acquired by radiometry and polarography. (authors)

  3. R and D of control system of compact self-bunching RF gun test facility

    Pang Jian; Pei Yuanji; Huang Guirong; Wang Jinxiang

    2010-01-01

    An experimental device was recently constructed for testing the beam characteristics of a compact self-bunching RF gun at the National Synchrotron Radiation Laboratory. It designs an independent monitor and control system for the experimental device so as not to disturb the operation of 200MeV LINAC. According to the three-level architecture of a general control scheme, the proposed system consists of circuits that execute kernel control, photosignal emission/reception, and switch values input/output, respectively. It performs timing control, device status monitoring as well as interlock protection, and it can be remotely operated with the assistance of PC software. Testing results show that our system achieves the specified performance and meets the requirement of experimental device stably and reliably. Our proposed system can also be applied to control other small-scale accelerators. (authors)

  4. Studies on the chemical conditions and microstructure in the reference bentonites of alternative buffer materials project (ABM) in Aespoe

    Muurinen, A.

    2009-06-01

    The chemical and microstructural properties of some bentonites used in the ABM project in Aespoe HRL were studied in laboratory experiments. The aim was to obtain information about the materials before they were used in the field experiment and to test the research methods that will be used when the packages of the field experiment are retrieved. The bentonites of interest were MX-80, Deponit CAN, Asha 505 and Friedland Clay. The pH values in the compacted samples prepared from the clay powders and deionized water were about 8 for MX-80, 7 for Deponit and Asha, and 6.5 for Friedland clay. The Eh values in the compacted MX-80, Asha and Deponit samples varied between 100 mV and -100 mV, and in the Friedland clay from 0 mV to 200 mV. The total porosity, chloride porosity and the microstructure were studied in compacted samples prepared from MX-80, Deponit, Asha and Friedland Clay and equilibrated through filter plates with 0.1 M NaCl solution for 12.5 months in aerobic conditions. The dry densities of the samples were approximately 0.7, 1.0, 1.25 and 1.55 g/cm 3 . XRD and SAXS (Small Angle X-ray Scattering) were used to study the microstructure of the MX-80 and Deponit bentonites. It was obvious that the chloride porosity was lower than the water porosity in all the clays, which indicates the exclusion of anions caused by the negatively charged surfaces. In the XRD measurements on MX-80, Asha and Deponit, the measured basal spaces represented by the diffraction peaks were smaller than the theoretical one assuming a homogenous microstructure. This indicates that there was a substantial amount of water also in the pores, which were not seen by XRD. The SAXS data modelling which considered single discs and stacks of discs proposed that a large fraction of the clay should be considered as single platelets. The fraction of the single discs decreased with the increasing density of the sample. The number of layers in the stacks varied from 4 to 8. By combining the

  5. Very High Temperature Test of Alloy617 Compact Heat Exchanger in Helium Experimental Loop

    Kim, Chan Soo; Park, Byung-Ha; Kim, Eung-Seon [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The Intermediate Heat eXchanger (IHX) is a key-challenged high temperature component which determines the efficiency and the economy of VHTR system. Heat generated in the VHTR fuel block is transferred from the VHTR to the intermediate loop through IHX. In the present, the shell-helical tube heat exchanger is generally used as IHX of the helium cooled reactor. Recently, a Printed Circuit Heat Exchanger (PCHE) is one of the candidates for the IHX in a VHTR because its operation temperature and pressure are larger than any other compact heat exchanger types. These test results show that there is no problem in operation of HELP at the very high temperature experimental condition and the alloy617 compact heat exchanger can be operated in the very high temperature condition above 850℃. In the future, the high temperature structural analysis will be studied to estimate the thermal stress during transient and thermal shock condition. The conditions and evaluation standard for the alloy 617 diffusion bonding will be minutely studied to fabricate the large-scale PCHE for the high temperature condition.

  6. Diffusion, sorption, and retardation processes of anions in bentonite and organo-bentonites for multibarrier systems

    Schampera, Birgit; Dultz, Stefan

    2013-04-01

    The low permeability, high cation exchange capacity (CEC) and plasticity of bentonites favor their use in multibarrier systems of waste deposits [1]. Bentonites have a high CEC but their ability to sorb anions is very low. There is, however, need for retardation of anions and organic pollutants in many applications. Bentonites, modified with certain organic cations, have the capacity to sorb anions and non-polar organic compounds in addition to cations. Investigations on organically modified clays address a wide variety of applications including immobilization of pollutants in contaminated soils, waste water treatment and in situ placement for the protection of ground water [2]. Many experiments on anion and cation sorption of organo-clays were conducted in the batch mode which does not reflect solid-liquid ratios and material densities in barrier systems. Diffusion experiments on compacted clays allow the evaluation of transport processes and sorption of pollutants at conditions relevant for repositories. For organo-clays only few diffusion studies are published e.g. [3] measured the diffusion of tritium and [4] the diffusion of H2O in bentonite and organo-bentonites. The organic cation hexadecylpyridinium (HDPy) was added to Wyoming bentonite (MX-80) in amounts corresponding to 2-400 % of the CEC. The uptake of organic cations was determined by the C-content, XRD and IR-spectroscopy. Wettability was analyzed by the contact angle. Physical, chemical and mineralogical properties of clays were characterized. Diffusion experiments were carried out in situ in a cell attached to the ATR-unit of a FTIR-spectrometer. For H2O-diffusion the compacted organo-clays are saturated first with D2O, afterwards H2O is supplied to the surface at the top of the clay platelet. Anion-diffusion was conducted with NO3--solution instead of H2O only having characteristic IR band positions at 1350 cm-1. Three different concentrations (0.25M, 0.5M and 1M) were used. Additional batch

  7. Stress-strain relation of bentonite at undrained shear. Laboratory tests to investigate the influence of material composition and test technique

    Dueck, Ann; Boergesson, Lennart; Johannesson, Lars-Erik (Clay Technology AB, Lund (Sweden))

    2010-12-15

    This report describes a laboratory study conducted to update the material model of the buffer material used in the analyses of the effect of a rock shear through a deposition hole. The study considers some new conditions and is especially focused on the reference case with MX-80Ca developed for SR-Site (MX-80 ion exchanged to Ca). The material model is based on relations between density, swelling pressure, shear strength and rate of strain. The reference model is described by Boergesson et al. (2010). The laboratory study is focused on undrained stress-strain-strength properties, which have been studied mainly by conducting triaxial tests and unconfined compression tests. The test results are compared to the earlier measurements and models which show that the new results fit very well into the general picture and models. For the new conditions suitable values of constants included in the model are proposed

  8. Stress-strain relation of bentonite at undrained shear. Laboratory tests to investigate the influence of material composition and test technique

    Dueck, Ann; Boergesson, Lennart; Johannesson, Lars-Erik

    2010-12-01

    This report describes a laboratory study conducted to update the material model of the buffer material used in the analyses of the effect of a rock shear through a deposition hole. The study considers some new conditions and is especially focused on the reference case with MX-80Ca developed for SR-Site (MX-80 ion exchanged to Ca). The material model is based on relations between density, swelling pressure, shear strength and rate of strain. The reference model is described by Boergesson et al. (2010). The laboratory study is focused on undrained stress-strain-strength properties, which have been studied mainly by conducting triaxial tests and unconfined compression tests. The test results are compared to the earlier measurements and models which show that the new results fit very well into the general picture and models. For the new conditions suitable values of constants included in the model are proposed

  9. Fuel Accident Condition Simulator (FACS) Furnace for Post-Irradiation Heating Tests of VHTR Fuel Compacts

    Paul A Demkowicz; Paul Demkowicz; David V Laug

    2010-10-01

    Abstract –Fuel irradiation testing and post-irradiation examination are currently in progress as part of the Next Generation Nuclear Plant Fuels Development and Qualification Program. The PIE campaign will include extensive accident testing of irradiated very high temperature reactor fuel compacts to verify fission product retention characteristics at high temperatures. This work will be carried out at both the Idaho National Laboratory (INL) and the Oak Ridge National Laboratory, beginning with accident tests on irradiated fuel from the AGR-1 experiment in 2010. A new furnace system has been designed, built, and tested at INL to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000°C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, Eu, and I) and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator (FACS) furnace system, as well as preliminary system calibration results.

  10. Irradiation and testing of compact ignition tokamak toroidal field coil insulation materials

    Kanemoto, G.K.; Sherick, M.J.; Sparks, D.C.

    1990-05-01

    This report documents the results of an irradiation and testing program performed on behalf of Martin Marietta Energy Systems, Inc. in support of the Compact Ignition Tokamak Research and Development program. The purpose of the irradiation and testing program was to determine the effects of neutron and gamma irradiation on the mechanical and electrical properties of candidate toroidal field coil insulation materials. Insulation samples were irradiated in the Advanced Test Reactor (ATR) in a large I-hole. The insulation samples were irradiated within a lead shield to reduce exposure to gamma radiation to better approximate the desired ration of neutron to gamma exposure. Two different exposure levels were specified for the insulation samples. To accomplish this, the samples were encapsulated in two separate aluminum capsules; the capsules positioned at the ATR core mid-plane and at the top of the fueled region to take advantage of the axial cosine distribution of the neutron and gamma flux; and by varying the length of irradiation time of the two capsules. Disassembly of the irradiated capsules and testing of the insulation samples were performed at the Test Reactor Area (TRA) Hot Cell Facilities. Testing of the samples included shear compression static, shear compression fatigue, flexure static, and electrical resistance measurements

  11. Diffusion of radionuclides in concrete/bentonite systems

    Albinsson, Y.; Boerjesson, S.; Andersson, K.; Allard, B.

    1993-02-01

    In a repository for nuclear waste, different construction materials will be used. Two important materials among these are concrete and bentonite clay. These will act as mechanical barriers, preventing convective water flow and also retard transport due to diffusion of dissolved radionuclides by a combination of mechanical constraints and chemical interactions with the solid. An important issue is the possible change of the initial sodium bentonite into the calcium form due to ion exchange with calcium from the cement. The initial leaching of the concrete has been studied using radioactive spiked concrete in contact with compacted bentonite. The diffusion of Cs, Am and Pu into 5 different types of concrete in contact with porewater have been measured. The measured diffusivity for Cs agrees reasonable well with data found in literature. For Am and Pu no movement could be measured (less than 0.2 mm) even though the contact times were extremely long (2.5 y and 5 y, respectively). This report gives also a summary of the previously published results about sorption and diffusion of radionuclides in cement performed in Prav/KBS/SKB projects 1980-1990. 25 refs

  12. An Evaluation of Models of Bentonite Pore Water Evolution

    Savage, David; Watson, Claire; Wilson, James (Quintessa Ltd, Henley-on-Thames (United Kingdom)); Arthur, Randy (Monitor Scientific LLC, Denver, CO (United States))

    2010-01-15

    The determination of a bentonite pore water composition and understanding its evolution of with time underpins many radioactive waste disposal issues, such as buffer erosion, canister corrosion, and radionuclide solubility, sorption, and diffusion, inter alia. The usual approach to modelling clay pore fluids is based primarily around assumed chemical equilibrium between Na+, K+, Ca2+, and Mg2+ aqueous species and ion exchange sites on montmorillonite, but also includes protonation- deprotonation of clay edge surface sites, and dissolution-precipitation of the trace mineral constituents, calcite and gypsum. An essential feature of this modelling approach is that clay hydrolysis reactions (i.e. dissolution of the aluminosilicate octahedral and tetrahedral sheets of montmorillonite) are ignored. A consequence of the omission of clay hydrolysis reactions from bentonite pore fluid models is that montmorillonite is preserved indefinitely in the near-field system, even over million-year timescales. Here, we investigate the applicability of an alternative clay pore fluid model, one that incorporates clay hydrolysis reactions as an integral component and test it against well-characterised laboratory experimental data, where key geochemical parameters, Eh and pH, have been measured directly in compacted bentonite. Simulations have been conducted using a range of computer codes to test the applicability of this alternative model. Thermodynamic data for MX-80 smectite used in the calculations were estimated using two different methods. Simulations of 'end-point' pH measurements in batch bentonite-water slurry experiments showed different pH values according to the complexity of the system studied. The most complete system investigated revealed pH values were a strong function of partial pressure of carbon dioxide, with pH increasing with decreasing PCO{sub 2} (log PCO{sub 2} values ranging from -3.5 to -7.5 bars produced pH values ranging from 7.9 to 9.6). A second

  13. Construction and beam test of a small compact electromagnetic PbWO4 calorimeter

    Feller, R.P.; Gendner, N.; Holm, U.; Johnson, K.F.; Meyer-Larsen, A.; Thies, S.

    2002-01-01

    A compact homogenous electromagnetic calorimeter with an energy resolution of better than 5%/√E/GeV, made out of lanthanum-doped lead tungstate crystals from Bogoroditsk, Russia, has been built for use in the ZEUS detector. The whole calorimeter, composed of 4x4 crystals, each of dimensions 23.8x23.8x200 mm 3 , light guides and photomultipliers, fits into a space of 12x12x27 cm 3 . Beam tests with electrons up to 100 GeV showed an energy resolution of better than 4.9%/√E/GeV, a linearity of better than 1% and a position resolution of 1.1 mm. The influence of temperature variations and recovery of an irradiated crystal on the total energy signal could be corrected to better than 1%. EGS4 simulations reproduce the results very well

  14. Testing of a compact 10-Gbps Lasercomm system for maritime platforms

    Juarez, Juan C.; Souza, Katherine T.; Nicholes, Dustin D.; Riggins, James L.; Tomey, Hala J.; Venkat, Radha A.

    2017-08-01

    Lasercomm technology continues to be of interest for many applications both in the commercial and defense sectors because of its potential to provide high bandwidth communications that are secure without the need for RF spectrum management. Over the last decade, terrestrial Lasercomm development has progressed from initial experiments in the lab through field demonstrations in airborne and maritime environments. While these demonstrations have shown high capability levels, the complexity, size, weight, and power of the systems has slowed transition into fielded systems. This paper presents field test results of a recently developed maritime Lasercomm terminal and modem architecture with a compact form factor for enabling robust, 10-Gbps class data transport over highly scintillated links as found in terrestrial applications such as air-to-air, air-to-surface, and surface-to-surface links.

  15. Organophilic bentonites based on Argentinean and Brazilian bentonites: part 2: potential evaluation to obtain nanocomposites

    L. B. Paiva

    2012-12-01

    Full Text Available This work describes the preparation of composites of polypropylene and organophilic bentonites based on Brazilian and Argentinean bentonites. During the processing of the samples in a twin screw microextruder, torque and pressures of the extruder were accompanied and the viscosity values were calculated. No significant changes in the torque, pressure and viscosity were found for composites prepared with different bentonites. The samples were characterized by XRD and TEM to evaluate the structure and dispersion of the organophilic bentonites. Composites with exfoliated, partially exfoliated and intercalated structures were obtained and correlations between the intrinsic properties of the sodium clays and organophilic bentonites and their influence on the composites were studied. The cation exchange capacity of the sodium bentonites and the swelling capacity of the organophilic bentonites were the most important properties to obtain exfoliated structures in composites. All bentonites showed the potential to obtain polymer nanocomposites, but the ones from Argentina displayed the best results.

  16. Alteration of bentonite when contacted with supercritical CO2

    Jinseok, K.; Jo, H. Y.; Yun, S. T.

    2014-12-01

    Deep saline formations overlaid by impermeable caprocks with a high sealing capacity are attractive CO2 storage reservoirs. Shales, which consist of mainly clay minerals, are potential caprocks for the CO2 storage reservoirs. The properties of clay minerals in shales may affect the sealing capacity of shales. In this study, changes in clay minerals' properties when contacted with supercritical (SC) CO2 at various conditions were investigated. Bentonite, whichis composed of primarily montmorillonite, was used as the clay material in this study. Batch reactor tests on wet bentonite samples in the presence of SC CO2 with or without aqueous phases were conducted at high pressure (12 MPa) and moderate temperature (50 oC) conditions for a week. Results show that the bentonite samples obtained from the tests with SC CO2 had less change in porosity than those obtained from the tests without SC CO2 (vacuum-drying) at a given reaction time, indicating that the bentonite samples dried in the presence of SC CO2 maintained their structure. These results suggest that CO2 molecules can diffuse into interlayer of montmorillonite, which is a primary mineral of bentonite, and form a single CO2 molecule layer or double CO2 molecule layers. The CO2 molecules can displace water molecules in the interlayer, resulting in maintaining the interlayer spacing when dehydration occurs. Noticeable changes in reacted bentonite samples obtained from the tests with an aqueous phase (NaCl, CaCl2, or sea water) are decreases in the fraction of plagioclase and pyrite and formation of carbonate minerals (i.e., calcite and dolomite) and halite. In addition, no significant exchanges of Na or Ca on the exchangeable complex of the montmorillonite in the presence of SC CO2 occurred, resulting in no significant changes in the swelling capacity of bentonite samples after reacting with SC CO2 in the presence of aqueous phases. These results might be attributed by the CO2 molecule layer, which prevents

  17. Sensitivity of total stress to changes in externally applied water pressure in KBS-3 buffer bentonite

    Harrington, J.F.; Birchall, D.J.

    2007-04-01

    In the current Swedish repository design concept, composite copper and steel canisters containing spent nuclear fuel will be placed in large diameter disposal boreholes drilled into the floor of the repository tunnels. The space around each canister will be filled with pre-compacted bentonite which over time will draw in the surrounding ground water and swell, closing up any construction joints. However, for the purposes of performance assessment, it is necessary to consider the effect of glacial loading of a future repository and its impact on the mechanical behaviour of the bentonite, in particular, the sensitivity of total stress to changes in porewater pressure (backpressure). Two experimental histories have been undertaken using a custom-designed constant volume and radial flow (CVRF) apparatus. In both tests backpressure was varied in a number of incremental and decremental cycles while total stress, porewater pressure and volumetric flow rate were continuously monitored. The swelling pressure of the buffer clay at dry densities of 1.8 Mg/m 3 and 1.61 Mg/m 3 was determined to be around 5.5 MPa and 7.2 MPa respectively. For initial ascending porewater pressure histories the average proportionality factor α ranged from 0.86 and 0.92. Data exhibited a general trend of increasing α with increasing backpressure. In test Mx80-11 this was supported by analysis of the water inflow data which indicated a reduction in system compressibility. Asymptotic values of porewater pressure within the clay are in good agreement with externally applied backpressure values. Inspection of data provides no evidence for the development of hydraulic thresholds within the clay, subject to the boundary conditions of this test geometry. Analysis of the stress data demonstrates significant hysteresis between ascending and descending porewater pressure histories. The amount of hysteresis appears to be linked to the magnitude of the backpressure applied to the specimen, suggesting some

  18. Sensitivity of total stress to changes in externally applied water pressure in KBS-3 buffer bentonite

    Harrington, J.F.; Birchall, D.J. [British Geological Survey, Chemical and Biological Hazards Programme, Kingsley Dunham Centre (United Kingdom)

    2007-04-15

    In the current Swedish repository design concept, composite copper and steel canisters containing spent nuclear fuel will be placed in large diameter disposal boreholes drilled into the floor of the repository tunnels. The space around each canister will be filled with pre-compacted bentonite which over time will draw in the surrounding ground water and swell, closing up any construction joints. However, for the purposes of performance assessment, it is necessary to consider the effect of glacial loading of a future repository and its impact on the mechanical behaviour of the bentonite, in particular, the sensitivity of total stress to changes in porewater pressure (backpressure). Two experimental histories have been undertaken using a custom-designed constant volume and radial flow (CVRF) apparatus. In both tests backpressure was varied in a number of incremental and decremental cycles while total stress, porewater pressure and volumetric flow rate were continuously monitored. The swelling pressure of the buffer clay at dry densities of 1.8 Mg/m{sup 3} and 1.61 Mg/m{sup 3} was determined to be around 5.5 MPa and 7.2 MPa respectively. For initial ascending porewater pressure histories the average proportionality factor {alpha} ranged from 0.86 and 0.92. Data exhibited a general trend of increasing {alpha} with increasing backpressure. In test Mx80-11 this was supported by analysis of the water inflow data which indicated a reduction in system compressibility. Asymptotic values of porewater pressure within the clay are in good agreement with externally applied backpressure values. Inspection of data provides no evidence for the development of hydraulic thresholds within the clay, subject to the boundary conditions of this test geometry. Analysis of the stress data demonstrates significant hysteresis between ascending and descending porewater pressure histories. The amount of hysteresis appears to be linked to the magnitude of the backpressure applied to the specimen

  19. A compact internal drum test rig for measurements of rolling contact forces between a single tread block and a substrate

    Lundberg, O.E.; Kari, L.; Lopez Arteaga, I.

    2017-01-01

    A novel test rig design is presented which enables detailed studies of the three force components generated in the impact and release phase of rolling contact between a tyre tread block and a substrate. The design of the compact internal drum test rig provides realistic impact and release angles for

  20. Effect on physical properties of laterite soil with difference percentage of sodium bentonite

    Kasim, Nur Aisyah; Azmi, Nor Azizah Che; Mukri, Mazidah; Noor, Siti Nur Aishah Mohd

    2017-08-01

    This research was carried out in an attempt to know the physical properties of laterite soil with the appearance of difference percentage of sodium bentonite. Lateritic soils usually develop in tropical and other regions with similar hot and humid climate, where heavy rainfall, warm temperature and well drainage lead to the formation of thick horizons of reddish lateritic soil profiles rich in iron and aluminium. When sodium predominates, a large amount of water can be absorbed in the interlayer, resulting in the remarkable swelling properties observed with hydrating sodium bentonite. There are some basic physical properties test conducted in this research which are Specific Gravity Test, pH Test, Sieve Analysis, Hydrometer Test, Shrinkage Limit and Atterberg Limit. The test will be conducted with 0%, 5%, 10%, 15% and 20% of sodium bentonite. Each test will be repeated three times for the accuracy of the result. From the physical properties test the soil properties characteristic react with the sodium bentonite can be determine. Therefore the best percentage of sodium bentonite admixture can be determined for laterite soil. The outcomes of this study give positive results due to the potential of sodium bentonite to improve the laterite soil particle.

  1. Roles of bentonite in radioactive waste disposal

    Suzuki, Keizo

    1995-01-01

    Bentonite is used in radioactive waste disposal from the following points; (1) properties (2) now utilization fields (3) how to use in radioactive waste disposal (4) how much consumption and deposits as source at the present time. Bentonite is produced as alteration products from pyroclastic rocks such as volcanic ash and ryolite, and is clay composed mainly smectite (montmorillonite in general). Therefore, special properties of bentonite such as swelling potential, rheological property, bonding ability, cation exchange capacity and absorption come mainly from properties of montmorillonite. Bentonite has numerous uses such as iron ore pelleizing, civil engineering, green sand molding, cat litter, agricultural chemicals and drilling mud. Consumption of bentonite is about 600-700 x 10 3 tons in Japan and about 10 x 10 6 tons in the world. Roles of bentonite to be expected in radioactive waste disposal are hydraulic conductivity, swelling potential, absorption, mechanical strength, ion diffusion capacity and long-term durability. These properties come from montmorillonite. (author)

  2. EVALUATION OF THE BENTONITE CONTENT IN SPENT FOUNDRY SANDS AS A FUNCTION OF HYDRAULIC CONDUCTIVITY COEFFICIENT

    Schirlene Chegatti

    2013-06-01

    Full Text Available This study evaluates the relationship of the bentonite content and hydraulic conductivity coefficient (k of waste foundry sands in tests of hydraulic conductivity in a flexible wall permeameter. The test samples had concentrations of activated sodium bentonite and natural sodium bentonite between 4% and 15%. It was also analyzed chemically the liquid leachate (aluminum, barium, chromium, cadmium, lead, phenols, iron, fluoride, and manganese, following de standard tests of Standard Methods 3111 B e D for the determination of this components in liquid samples. The experiments were supplemented with cation exchange capacity analysis. The results indicate that the values of are is related to the content of bentonite in waste foundry sand and the percolation from this waste disposal.

  3. Final report of the Buffer Mass Test - Volume I: Scope, preparative field work and test arrangement

    Pusch, R.; Nilsson, J.; Ramqvist, G.

    1985-07-01

    The Buffer Mass Test was conducted in a 30 m long drift at 340 m depth in the Stripa mine, The main objective being to check the predicted functions of certain bentonite-based buffer materials in rock environment. These materials were blocks of highly compacted sodium bentonite placed in large boreholes simulating deposition holes for canisters, and on-site compacted sand/bentonite mixtures used as tunnel backfill. The blocks of bentonite embedded electrical heaters which served to produce heat so as to create conditions similar to those in a repository. The temperature in the initially non-saturated buffer materials was expected to be a function of the water uptake from the rock, which was also assumed to lead to rather high swelling pressures. The recording of these processes and of the moistening of the buffer materials , as well as of the associated build-up of piezometric heads at rock/buffer interfaces, was the major item of the field test. For this purpose the buffer materials and the rock were equipped with a large number of thermal elements, pressure and piezometric cells as well as moisture sensors. The choise of positions and properties of these gauges, which were connected to an effective data acquisition system, was based on predictions that required a careful site documentation with respect to the fracture characteristics and hydrological properties of the surrounding rock. (author)

  4. Activation of a Ca-bentonite as buffer material

    Huang, Wei-Hsing; Chen, Wen-Chuan

    2016-04-01

    Swelling behavior is an important criterion in achieving the low-permeability sealing function of buffer material. A potential buffer material may be used for radioactive waste repository in Taiwan is a locally available clayey material known as Zhisin clay, which has been identified as a Ca-bentonite. Due to its Ca-based origin, Zhisin was found to exhibit swelling capacity much lower than that of Na-bentonite. To enhance the swelling potential of Zhisin clay, a cation exchange process by addition of Na2CO3 powder was introduced in this paper. The addition of Na2CO3 reagent to Zhisin clay, in a liquid phase, caused the precipitation of CaCO3 and thereby induced a replacement of Ca2+ ions by Na+ ions on the surface of bentonite. Characterization test conducted on Zhisin clay includes chemical analysis, cation exchange capacity, X-ray diffraction, and thermogravimetry (TG). Free-swelling test apparatus was developed according to International Society of Rock Mechanics recommendations. A series of free-swelling tests were conducted on untreated and activated specimens to characterize the effect of activation on the swelling capacity of Zhisin clay. Efforts were made to determine an optimum dosage for the activation, and to evaluate the aging effect. Also, the activated material was evaluated for its stability in various hydrothermal conditions for potential applications as buffer material in a repository. Experimental results show that Na2CO3-activated Zhisin clay is superior in swelling potential to untreated Zhisin clay. Also, there exists an optimum amount of activator in terms of improvements in the swelling capacity. A distinct time-swell relationship was discovered for activated Zhisin clay. The corresponding mechanism refers to exchange of cations and breakdown of quasi-crystal, which results in ion exchange hysteresis of Ca-bentonite. Due to the ion exchange hysteresis, activated bentonite shows a post-rise time-swell relationship different than the sigmoid

  5. Swelling characteristics of sand-bentonite mixtures under one-dimensional stress

    Cui, Hongbin; Sun, De'an; Matsuoka, Hajime; Xu Yongfu

    2004-01-01

    Based on the concept that the maximum water volume absorbed by unit volume of montmorillonite is constant, the swelling deformation of sand-bentonite mixtures is uniquely characterized using the void ratio of montmorillonite, which is defined by the ratio of water volume to montomorillonite volume. The relationship between the montmorillonite void ratio and overburden pressure at fully swelling is independent of the initial compaction condition and the sand-bentonite mixture ratio, and is a linear line in their log scale. When overburden pressure is large enough and/or the bentonite ratio of the mixture is small, the measured plots deviate from the line. A method for predicting the limited overburden pressure which is linearly correlated with the montmorillonite void ratio is proposed and verified using the concept of the skeleton void ratio. (author)

  6. Buffer construction technique using granular bentonite

    Masuda, Ryoichi; Asano, Hidekazu; Toguri, Satohito; Mori, Takuo; Shimura, Tomoyuki; Matsuda, Takeshi; Uyama, Masao; Noda, Masaru

    2007-01-01

    Buffer construction using bentonite pellets as filling material is a promising technology for enhancing the ease of repository operation. In this study, a test of such technology was conducted in a full-scale simulated disposal drift, using a filling system which utilizes a screw conveyor system. The simulated drift, which contained two dummy overpacks, was configured as a half-cross-section model with a height of 2.22 m and a length of 6.0 m. The average dry density of the buffer obtained in the test was 1.29 Mg/m 3 , with an angle of repose of 35 to 40 degrees. These test results indicate that buffer construction using a screw conveyor system for pellet emplacement in a waste disposal drift is a promising technology for repositories for high level radioactive wastes. (author)

  7. Compact Multipurpose Mobile Laser Scanning System — Initial Tests and Results

    Craig Glennie

    2013-01-01

    Full Text Available We describe a prototype compact mobile laser scanning system that may be operated from a backpack or unmanned aerial vehicle. The system is small, self-contained, relatively inexpensive, and easy to deploy. A description of system components is presented, along with the initial calibration of the multi-sensor platform. The first field tests of the system, both in backpack mode and mounted on a helium balloon for real-world applications are presented. For both field tests, the acquired kinematic LiDAR data are compared with highly accurate static terrestrial laser scanning point clouds. These initial results show that the vertical accuracy of the point cloud for the prototype system is approximately 4 cm (1σ in balloon mode, and 3 cm (1σ in backpack mode while horizontal accuracy was approximately 17 cm (1σ for the balloon tests. Results from selected study areas on the Sacramento River Delta and San Andreas Fault in California demonstrate system performance, deployment agility and flexibility, and potential for operational production of high density and highly accurate point cloud data. Cost and production rate trade-offs place this system in the niche between existing airborne and tripod mounted LiDAR systems.

  8. Thermal loading of bentonite. Impact on hydromechanics and permeability

    Zihms, Stephanie G.; Harrington, Jon [British Geological Survey, Nickerhill Keyworth (United Kingdom)

    2015-07-01

    Due to its favorable properties, in particular, low permeability and swelling capacity, bentonite has been favored as an engineered barrier and backfill material for the geological storage of radioactive waste. To ensure safe long-term performance it is important to understand any changes in these properties when the material is subject to heat emitting waste. As such, this study will investigate the hydro-mechanical response of bentonite under multi-step thermal loading subject to a constant volume boundary condition. The experimental set up allows continuous measurements of hydraulic and mechanical response during each phase of the thermal cycle. The constant volume cell was placed inside an oven and connected to a hydraulic system with the water reservoir located externally. A pressure gradient of 4 MPa was placed across the sample for the duration of the test in order to map the evolution of permeability. After initial hydration of the bentonite, in this case signified by reaching the asymptote in total stress, the temperature was raised in 20 C increments from 20 to 80 C followed by a final 10 C step to reach 90 C. Each temperature was held constant for at least 7-10 days to allow the stresses and hydraulic transients to equilibrate. This data set will provide an insight into the hydromechanical behavior of the bentonite and the evolution of its permeability when exposed to elevated temperatures.

  9. Investigation into the behaviour of bentonite in contact with magnetite and iron under the conditions of a final repository

    Mueller-Vonmoos, M.; Kahr, G.; Bucher, F.; Madsen, F.; Mayor, P.A.

    1991-05-01

    This report presents the results of investigations into how magnetite and iron affect the swelling behaviour of the Na-bentonite MX-80 and the Ca-bentonite Montigel. The experiments were conducted under conditions similar to those expected in a repository and covered cation exchange capacity, exchangeable cations and the swelling behaviour of the Na-bentonite MX-80 and the Ca-bentonite Montigel. Waste disposal is assumed to occur at a temperature of 80 o C under an anoxic atmosphere. In addition to this, the behaviour of trivalent iron in the interlayer space of montmorillonite was investigated. The investigations confirmed that contact between iron and bentonite under such conditions leads mainly to formation of magnetite and hydrogen. Montmorillonite does not take up iron by cation-exchange, either on contact with magnetite or with iron itself. The trivalent iron is unstable in the interlayer space of the montmorillonite and is exchanged mainly for aluminium; no change in the interlayer charge can be determined in such a case. It is therefore to be assumed that the aluminium is taken up from the edges of the clay particles into the interlayer space, but that no chlorite formation can be observed during this process. At 80 o C and 150 o C, the swelling pressures of the highly compacted bentonite-iron samples, related to the dry density of the bentonites, corresponded more or less to the swelling pressures of the untreated bentonites. The swelling pressure of the Fe(III)-bentonites was around 50% higher. It is assumed that this is mainly due to the high hydration energy of the iron and aluminium ions. 6 figs., 6 tabs., 13 refs

  10. An optimum silica flour-bentonite mixture for an engineered barrier

    Walker, J.N.; Daffern, D.D.; Emer, D.F.

    1991-01-01

    To dispose of low-level and mixed wastes (MAR) by burial, it is necessary to design an impermeable closure, which limits water infiltration through the waste. Bentonite has very low permeability to water but can be subject to volume alterations. Over time, these alterations can lead to channeling and subsequent permeability increases. The fluid conductivity and bulk properties of silica flour and bentonite mixtures were tested to find a mixture that would retain the low conductivity of the bentonite while maintaining volumetric stability. Silica flour was chosen for its small grain size and spherical shape, and its similarity to silty soil. Test results indicate that a 90% silica flour and 10% bentonite mixture will provide the optimum properties for this application. 5 refs., 2 figs., 2 tabs

  11. Granular MX-80 bentonite as buffer material: a focus on swelling characteristics

    Rizzi, M.; Laloui, L.; Salager, S.; Marschall, P.

    2010-01-01

    Document available in extended abstract form only. The Swiss High Level Waste (HLW) disposal concept envisages the emplacement of the waste canisters in horizontal tunnels excavated at a depth of several hundred meters in an over-consolidated clay-stone formation. After waste emplacement the disposal tunnels are backfilled with MX-80 granular bentonite. Research activities are presented in this paper, aimed at characterising the geomechanical behaviour of the MX-80 granular bentonite and at providing the theoretical framework for modelling its response to thermo-hydro- mechanical (THM) perturbations. From the experimental point of view, a series of tests has been designed in order to extract constitutive data and to assess the temperature and suction effects on the mechanical behaviour of the bentonite, paying particular attention in the investigation to the swelling behaviour of the material. As for the theoretical framework an elasto-plastic constitutive model has been developed to take into account those coupled processes of stress, capillary pressure, and temperature to which the bentonite will be submitted,. Bentonite is mainly composed of the smectite mineral montmorillonite with a high swelling capacity which may provide sufficient sealing properties to seal the tunnel without gaps and to restore the buffer continuity. In fact, as bentonite hydrates in the repositories it will expand in those areas where it is allowed and will exert a swelling pressure where the material is confined. The results of both confined and free swelling tests are presented. Confined tests are aiming at determining the pressure applied by the material during complete saturation under isochoric conditions, whereas in the free swelling tests the strain on hydration is measured. Some results from confined swelling tests at ambient temperature are presented. The specimen is compacted uniaxially directly in the cells, the initial dry density being chosen in the range between 1.6 and 1

  12. Modelling Ni diffusion in bentonite using different sorption models

    Pfingsten, W.; Baeyens, B.; Bradbury, M.

    2010-01-01

    Document available in extended abstract form only. An important component of the multi barrier disposal concept for a radioactive waste repository is the bentonite backfill surrounding the canisters containing vitrified high-level waste and spent fuel located in the tunnels deep within the chosen host rock. The effectiveness of the compacted bentonite barrier is such that calculations have indicated that many radionuclides have decayed to insignificant levels before having diffused through the thickness of bentonite. These calculations are performed using the simple Kd sorption concept in which the values are taken from batch type experiments performed on dispersed systems performed for a single metal at a time, usually at trace concentrations. However, in such complex systems many radionuclides, inactive metal contaminants/ground water components may be simultaneously present in the aqueous phase at a range of concentrations varying with time during the temporal evolution of the repository system. An important aspect influencing the sorption of any radioactive metal under a set of given geochemical conditions is its competition with other metals present, and how this may vary as a function of concentration. Competitive sorption effects are not currently included in safety assessments and are thus an issue which needs to be addressed. Here we provide some first estimates of the potential influence of competitive sorption effects on the migration of radioactive metals through compacted bentonite as a function of their concentration and the concentration of competing metals. Ni(II) and Fe(II) were chosen as possible competing cations since their concentration levels are expected to have values greater than trace levels and effects might be maximal and canister corrosion represents a permanent Fe source at the bentonite interface which could influence bivalent radionuclide diffusion. The modelling of the Ni(II) diffusion/sorption has been carried out using three

  13. Research program to study the gamma radiation effects in Spanish bentonites; Programa de investigacion para estudiar los efectos de la radiacion gamma en bentonitas calcicas espanolas

    Dies, J; Tarrasa, F [Universidad Politecnica de Catalunya (Spain); Cuevas de las, C; Miralles, L; Pueyo, J J [Universidad de Barcelona (Spain)

    2000-07-01

    The engineering barrier of a radioactive waste underground disposal facility, placed in a granitic host rock, will consist of a backfill of compacted bentonite blocks. At first, this material will be subjected to a gamma radiation field, from the waste canister, and heat from the spent fuel inside the canister. Moreover, any groundwater that reaches the repository will saturate the bentonite. For these reasons the performance of the engineered barrier must be carefully assessed in laboratory experiments. (Author)

  14. Development of spraying methods for high density bentonite barriers. Part 3. Field investigation of spraying methods

    Tanaka, Toshiyuki; Nakajima, Makoto; Kobayashi, Ichizo; Toida, Masaru; Fukuda, Katsumi; Sato, Tatsuro; Nonaka, Katsumi; Gozu, Keisuke

    2007-01-01

    The authors have developed a new method of constructing high density bentonite barriers by means of a wet spraying method. Using this method, backfill material can be placed in narrow upper and side parts in a low-level radioactive waste disposal facility. Using a new supplying machine for bentonite, spraying tests were conducted to investigate the conditions during construction. On the basis of the test results, the various parameters for the spraying method were investigated. The test results are summarized as follows: 1. The new machine supplied about twice the weight of material supplied by a screw conveyor. A dry density of spraying bentonite 0.05 Mg/m 3 higher than that of a screw conveyor with the same water content could be achieved. 2. The dry density of sprayed bentonite at a boundary with concrete was the same as that at the center of the cross section. 3. The variation in densities of bentonite sprayed in the vertical downward and horizontal directions was small. Also, density reduction due to rebound during spraying was not seen. 4. Bentonite controlled by water content could be sprayed smoothly in the horizontal direction by a small machine. Also rebound could be collected by a machine conveying air. (author)

  15. Testing and selecting cosmological models with ultra-compact radio quasars

    Li, Xiaolei [Beijing Normal University, Department of Astronomy, Beijing (China); University of Michigan, Department of Physics, Ann Arbor, MI (United States); Cao, Shuo; Qi, Jingzhao; Zhu, Zong-Hong [Beijing Normal University, Department of Astronomy, Beijing (China); Zheng, Xiaogang; Biesiada, Marek [Beijing Normal University, Department of Astronomy, Beijing (China); University of Silesia, Department of Astrophysics and Cosmology, Institute of Phyisics, Katowice (Poland)

    2017-10-15

    In this paper, we place constraints on four alternative cosmological models under the assumption of the spatial flatness of the Universe: CPL, EDE, GCG and MPC. A new compilation of 120 compact radio quasars observed by very-long-baseline interferometry, which represents a type of new cosmological standard rulers, are used to test these cosmological models. Our results show that the fits on CPL obtained from the quasar sample are well consistent with those obtained from BAO. For other cosmological models considered, quasars provide constraints in agreement with those derived with other standard probes at 1σ confidence level. Moreover, the results obtained from other statistical methods including figure of merit, Om(z) and statefinder diagnostics indicate that: (1) Radio quasar standard ruler could provide better statistical constraints than BAO for all cosmological models considered, which suggests its potential to act as a powerful complementary probe to BAO and galaxy clusters. (2) Turning to Om(z) diagnostics, CPL, GCG and EDE models cannot be distinguished from each other at the present epoch. (3) In the framework of statefinder diagnostics, MPC and EDE will deviate from the ΛCDM model in the near future, while GCG model cannot be distinguished from the ΛCDM model unless much higher precision observations are available. (orig.)

  16. RF power source for the compact linear collider test facility (CTF3)

    McMonagle, G; Brown, Peter; Carron, G; Hanni, R; Mourier, J; Rossat, G; Syratchev, I V; Tanner, L; Thorndahl, L

    2004-01-01

    The CERN CTF3 facility will test and demonstrate many vital components of CLIC (Compact Linear Collider). This paper describes the pulsed RF power source at 2998.55 MHz for the drive-beam accelerator (DBA), which produces a beam with an energy of 150 MeV and a current of 3.5 Amps. Where possible, existing equipment from the LEP preinjector, especially the modulators and klystrons, is being used and upgraded to achieve this goal. A high power RF pulse compression system is used at the output of each klystron, which requires sophisticated RF phase programming on the low level side to achieve the required RF pulse. In addition to the 3 GHz system two pulsed RF sources operating at 1.5 GHz are being built. The first is a wide-band, low power, travelling wave tube (TWT) for the subharmonic buncher (SHB) system that produces a train of "phase coded" subpulses as part of the injector scheme. The second is a high power narrow band system to produce 20 MW RF power to the 1.5 GHz RF deflectors in the delay loop situate...

  17. The bentonite industry in North America

    Dixon, D.A.; Hnatiw, D.S.J.; Walker, B.T.

    1992-11-01

    The Canadian Nuclear Fuel Waste Management Program is studying a concept for the disposal of nuclear fuel waste at a depth of 500 to 1000 m below the surface in stable crystalline rock of the Canadian Shield. The waste containers would be surrounded by a clay-based buffer material, composed of equal proportions of bentonite clay and silica sand. In the reference disposal concept, some 1.9 x 10 5 Mg of used fuel would be emplaced. This would require 2.5 x 10 6 Mg of bentonite. A review of the bentonite industry in North America was carried out to establish the availability of sufficient high-quality material. There are proven reserves of sodium bentonite clay in excess of 1.5 x 10 8 Mg, and vast supplies are known to exist but not yet proven. The Canadian conceptual disposal vault would require 6 x 10 4 Mg of sodium bentonite each year for 40 years. The bentonite industry of North America has an installed annual production capacity of 2 x 10 7 Mg. A disposal vault would therefore require approximately 2% of the industry capacity. A number of commercial products have been screened for potential suitability for use as a component of the buffer. Ten currently marketed bentonite products have been identified as meeting the initial quality standards for the buffer, and two non-commercial bentonites have been identified as having the potential for use in a disposal vault. (Author) (14 figs., 7 tabs., 18 refs.)

  18. Mechanics of Ballast Compaction. Volume 3 : Field Test Results for Ballast Physical State Measurement

    1982-03-01

    The important mechanical processes which influence the ballast physical state in track are tamping, crib and shoulder compaction and train traffic. Three methods of assessing physical state were used at four railroad sites to obtain needed data on th...

  19. Test fields on compact spacetimes: Problems, some partial results and speculations

    Yurtsever, U.

    1989-09-01

    In this paper we study some basic aspects of (Lorentzian) field theory on compact Lorentz manifolds. All compact spacetimes are acausal, i.e. possess closed timelike curves; this makes them a useful testbed in analyzing some new notions of causality that we will introduce for more general acausal spacetimes. In addition, studying compact spacetimes in their own right raises a wide range of fascinating mathematical problems some of which we will explore. We will see that it is reasonable to expect Lorentzian field theory on a compact spacetime to provide information on the topology of the underlying manifold; if this is true, then this information is likely to be ''orthogonal'' (or complementary) to the information obtained through the study of Euclidean field theory. (author). 45 refs, 2 figs

  20. Field test on sand compaction pile method with copper slag sand; Dosuisai slag wo mochiita SCP koho no shiken seko

    Minami, K.; Matsui, H.; Naruse, E.; Kitazume, M. [Port and Harbour Research Inst., Kanagawa (Japan)

    1997-09-20

    This paper describes the sand compaction pile (SCP) method using copper slag sand. The SCP method is a method by which sand compaction piles are constructed in the ground, and improvement can be obtained in a short period. This method has been widely used even in the port areas for enhancing the bearing power of soft clay ground and the lateral resistance of sheet pile. A great deal of sand is required as a material. The sand requires high permeability, proper size distribution with less fine particle fraction content, easy compaction property with enough strength, and easy discharging property from the casing of construction machines as required properties. Recently, it becomes hard to secure proper sand materials. The copper slag sand is obtained from refining process of copper as a by-product which is quenched in water flow and crushed in water. The copper slag sand has higher particle density than that of sand, excellent permeability, and similar size distribution to that of sand. From compaction drainage triaxial compression test and permeability test, it was found that the mechanical properties of copper slag sand did not change by the crushing of grains with keeping excellent permeability. Through the test construction, applicability of the copper slag sand to the SCP method could be confirmed as an alternate material of sand. 17 refs., 9 figs., 4 tabs.

  1. Thermally modified bentonite clay for copper removal

    Bertagnolli, C.; Kleinübing, S.J.; Silva, M.G.C.

    2011-01-01

    Bentonite clay coming from Pernambuco was thermally modified in order to increase its affinity and capacity in the copper removal in porous bed. The application of this procedure is justified by the low cost of clay, their abundance and affinity for various metal ions. Thermally treatment modifies the clay adsorption properties enables its use in porous bed system, with the increase in surface area and mechanical strength. The material was characterized by x-ray diffraction, thermogravimetric analysis and N_2 physisorption. Then tests were carried out for adsorption of copper in various experimental conditions and evaluated the mass transfer zone, useful and total adsorbed removal amounts and total copper removal percentage. The results showed that the clay treated at higher temperature showed higher copper removal. (author)

  2. Extrusion and erosion of bentonite buffer material in a flow-through, horizontal, artificial fracture system

    Schatz, Timothy; Kanerva, Noora; Martikainen, Jari

    2012-01-01

    Document available in extended abstract form only. One scenario of interest for the long-term safety assessment of a spent nuclear fuel repository involves the loss of bentonite buffer material through contact with dilute groundwater at a transmissive fracture interface [SKB 2011, Posiva 2012]. In order to simulate the potential extrusion/erosion behaviour of bentonite buffer material in such an environment, a series of small-scale, flow-through, artificial fracture experiments were performed in which swelling clay material could extrude/erode into a well defined, system (see Figure 1). The fracture dimensions were 24 cm (length) x 24 cm (width) x 1 mm (aperture) and the compacted sample dimensions were 2 cm (height) x 2 cm (diameter). Extrusion/erosion effects were analysed against solution chemistry (salt concentration and composition), material composition (sodium montmorillonite and admixtures with calcium montmorillonite), and flow velocity. No erosion was observed for sodium montmorillonite against solution compositions from 10 to 0.5 g/L NaCl. Comparatively, most reports in the literature indicate that a concentration of 0.5 g/L NaCl (8.6 mM) is below, in some cases well below, the (experimentally observed) critical coagulation concentration (CCC) for the colloidal sodium montmorillonite/sodium chloride system [Garcia-Garcia et al. 2007]. It was also the case that no erosion was observed for 50/50 calcium/sodium montmorillonite against 0.5 g/L NaCl. Overall, the results of the flow-through, artificial fracture tests, indicate stability to erosion down to a dilute concentration range between 8 to 4 mM NaCl for both sodium and 50/50 calcium/sodium montmorillonite. These limits compare favorably to the erosion stability limits observed by Birgersson et al. [2009] in the case of the latter material but less so for the former. A number of tests were conducted for which measurable erosion was observed. The calculated mass loss rates for these tests, expressed in

  3. Summary of a GAMBIT Club Workshop on Gas Migration in Bentonite. A Report produced for the GAMBIT Club

    Rodwell, W.R.

    2005-11-01

    In order to review the status of understanding of gas migration in bentonite, and particularly the experimental data that provides the basis for such understanding as exists, the GAMBIT Club organised a workshop of invited participants that was held in Madrid during 29-30 October 2003. (The GAMBIT Club is a consortium of radioactive waste management agencies: SKB, ANDRA, Enresa, JNC, Nagra, and Posiva.) The motivation for the workshop was the difficulty found in developing models of gas migration in bentonite because of lack of detailed characterisation of its mechanism and controlling parameters. This report provides a summary of the presentations made at the workshop and of the discussions that took place. Copies of the slides presented are provided in the appendix. The titles of the presentations are: Overview of Current Status of Experimental Knowledge and Understanding of Gas migration in Bentonite (William Rodwell); Summary of GAMBIT Club Modelling of Gas Migration in Compacted Bentonite (William Rodwell); A Capillarity/advection Model for Gas Break-through Pressures (Marolo Alfaro, Jim Graham); Recent Experiments by JNC on Gas Migration in Bentonite (Kenji Tanai, Mikihiko Yamamoto); Gas Flow in Clays: Experimental Data Leading to Two-phase and Preferential-path Modelling (Eduardo Alonso); Gas Movement in MX80 Bentonite under Constant Volume Conditions (Jon Harrington, Steve Horseman); Some Practical Observations on Gas Flow in Clays and Clay-rich Rocks (Steve Horseman, Jon Harrington); Early Large-scale Experiments on Gas Break-through Pressures in Clay based Materials (Harald Hoekmark)

  4. Summary of a GAMBIT Club Workshop on Gas Migration in Bentonite. A Report produced for the GAMBIT Club

    Rodwell, W.R. [Serco Assurance, Risley (GB)] (ed.)

    2005-11-15

    In order to review the status of understanding of gas migration in bentonite, and particularly the experimental data that provides the basis for such understanding as exists, the GAMBIT Club organised a workshop of invited participants that was held in Madrid during 29-30 October 2003. (The GAMBIT Club is a consortium of radioactive waste management agencies: SKB, ANDRA, Enresa, JNC, Nagra, and Posiva.) The motivation for the workshop was the difficulty found in developing models of gas migration in bentonite because of lack of detailed characterisation of its mechanism and controlling parameters. This report provides a summary of the presentations made at the workshop and of the discussions that took place. Copies of the slides presented are provided in the appendix. The titles of the presentations are: Overview of Current Status of Experimental Knowledge and Understanding of Gas migration in Bentonite (William Rodwell); Summary of GAMBIT Club Modelling of Gas Migration in Compacted Bentonite (William Rodwell); A Capillarity/advection Model for Gas Break-through Pressures (Marolo Alfaro, Jim Graham); Recent Experiments by JNC on Gas Migration in Bentonite (Kenji Tanai, Mikihiko Yamamoto); Gas Flow in Clays: Experimental Data Leading to Two-phase and Preferential-path Modelling (Eduardo Alonso); Gas Movement in MX80 Bentonite under Constant Volume Conditions (Jon Harrington, Steve Horseman); Some Practical Observations on Gas Flow in Clays and Clay-rich Rocks (Steve Horseman, Jon Harrington); Early Large-scale Experiments on Gas Break-through Pressures in Clay based Materials (Harald Hoekmark)

  5. Rapid increases in permeability and porosity of bentonite-sand mixtures due to alteration by water vapor

    Couture, R.A.

    1984-01-01

    Packed columns of canister packing material containing 25% bentonite and 75% quartz or basalt sand, were exposed to water vapor at temperatures up t 260 0 C. The permeabilities of the columns were subsequently measured after complete saturation with liquid water in a pressurized system. Exposure to water vapor caused irreversible increases in permeability by factors of up to 10 5 . After saturation with liquid water, the permeability was nearly independent of temperature. The increases in permeability were due to a large decrease in the ability of the bentonite to swell in water. Calculations suggest that swelling of bentonite altered at 250 0 C was not sufficient to fill the pore spaces. If the pore spaces are filled, the mixture will form an effective barrier against flow, diffusion, and transport of colloids. The results suggest that if bentonite-based canister packing material is exposed even briefly to water vapor at high temperatures in a high-level nuclear waste repository, its performance will be seriously impaired. The problem is less severe if the proportion of bentonite is high and the material is highly compacted. Previous results show significant degradation of bentonite by water vapor at temperatures as low as 150 0 C. This suggests that in some repositories, backfill in tunnels and drifts may also be affected. 9 references, 5 figures, 1 table

  6. Multi scale impacts of a (Mg,Ca)-Pb exchange on the permeability increase of a bentonite

    Jozja, N.; Baillif, P.; Touray, J.C.; Pons, Ch.H.; Muller, F.; Burgevin, C.

    2003-01-01

    The article addresses the structural effects of solutions of lead nitrate on a suspended or compacted bentonite. A permeability increase is observed on compacted clay. Investigating the composition of output solution, using X-Rays Diffusion at Small Angles and Scanning Electron Microscopy, this permeability increase is explained from structural variations at nano-metric (reduction of particle size) and micrometric scales (micro-fissuration of aggregates). (authors)

  7. Study of the Properties of Bentonites for their use in Clay Geo synthetic Barriers; Estudio de la propiedades de las bentonitas para su utilizacion en barreras geosinteticas arcillosas

    Leiro Lopez, A.; Mateo Sanz, B.; Garcia Cidoncha, H.; Blanco Fernandez, M.

    2014-02-01

    Bentonites used for the production of clay geo synthetic barriers need to meet some properties so that they can be a waterproofing system. among the bentonites used in industry, sodium bentonite has the lowest permeability due to its high water absorption capacity in the inter-laminar space, causing it to swell and form a barrier to water flow. this paper provides the study of the properties of four bentonite to evaluate their quality the study of the properties of four bentonite to evaluate their quality. For this study, the main properties have been tested: water absorption, swelling index, fluid loss, cation exchange capacity and montmorillonite content. In order to optimize the procedure for the characterization of bentonites, correlations between different tests have been done, to identify the most suitable ones. Finally, a compatibility test has been carried out to study the performance of bentonites in water containing a high amount of sales, because in this case, an ion exchange between the interlayer sodium ions of bentonite and cations dissolved in the water can take, resulting in a decrease swell of the bentonite. (Author)

  8. The Use of Modified Bentonite for Removal of Aromatic Organics from Contaminated Soil.

    Gitipour; Bowers; Bodocsi

    1997-12-15

    This study investigates the clay-aromatic interactions with a view to the use of bentonite clay for binding benzene, toluene, ethylbenzene, and o-xylene (BTEX compounds) in contaminated soils. BTEX compounds are the most toxic aromatic constituents of gasoline present in many underground storage tanks. Modified (organophilic) and ordinary bentonites are used to remove these organics. The organophilic bentonites are prepared by replacing the exchangeable inorganic cations present in bentonite particles with a quaternary ammonium salt. Various clay-to-soil ratios were applied to determine the efficiency of the modified bentonite in enhancing the cement-based solidification/stabilization (S/S) of BTEX contaminated soils. Toxicity characteristics leaching procedure (TCLP) tests were performed on soil samples to evaluate the leaching of the organics. In addition, X-ray diffraction analyses were conducted to assess the changes in the basal spacing of the clays as a result of their interaction with BTEX compounds. The findings of this study reveal that organophilic bentonite can act as a successful adsorbent for removing the aromatic organics from contaminated soil. Thus, this material is viable for enhancing the performance of cement-based S/S processes, as an adsorbent for petroleum spills, and for landfill liners and slurry walls. Copyright 1997 Academic Press.

  9. The use of modified bentonite for removal of aromatic organics from contaminated soil

    Gitipour, S.; Bowers, M.T.; Bodocsi, A.

    1997-01-01

    This study investigates the clay-aromatic interactions with a view to the use of bentonite clay for binding benzene, toluene, ethylbenzene, and o-xylene (BTEX compounds) in contaminated soils. BTEX compounds are the most toxic aromatic constituents of gasoline present in many underground storage tanks. Modified (organophilic) and ordinary bentonites are used to remove these organics. The organophilic bentonites are prepared by replacing the exchangeable inorganic cations present in bentonite particles with a quaternary ammonium salt. Various clay-to-soil ratios were applied to determine the efficiency of the modified bentonite in enhancing the cement-based solidification/stabilization (S/S) of BTEX contaminated soils. Toxicity characteristics leaching procedure (TCLP) tests were performed on soil samples to evaluate the leaching of the organics. In addition, X-ray diffraction analyses were conducted to assess the changes in the basal spacing of the clays as a result of their interaction with BTEX compounds. The findings of this study reveal that organophilic bentonite can act as a successful adsorbent for removing the aromatic organics from contaminated soil. Thus, this material is viable for enhancing the performance of cement-based S/S processes, as an adsorbent for petroleum spills, and for landfill liners and slurry walls

  10. Sorption and diffusion of FE(II) in bentonite

    Muurinen, A.; Tournassat, C.; Hadi, J.; Greneche, J.-M.

    2014-02-01

    The iron in the engineering barrier system of a nuclear waste repository interacts via the corrosion process with the swelling clay intended as the buffer material. This interaction may affect the sealing properties of the clay. In the case of iron-bentonite interaction, redox reactions, dissolution/precipitation, the diffusion and sorption are coupled together. In a combined study different processes are difficult to distinguish from each other, and more specific studies are needed for the separate processes. In particular, there is a need for well-controlled diffusion and sorption experiments where iron is kept as Fe(II). In this project, sorption and diffusion of Fe(II) in bentonite have been studied. The experiments were carried out under low-oxygen conditions in an anaerobic glove-box. The radioactive isotope ( 55 Fe) was used as a tracer in the experiments. The sorption experiments were carried out with two batches of purified MX-80 bentonite. One was purified at Bureau de Recherches Geologiques et Minieres, French Geological Survey (BRGM) and the other one at VTT Technical Research Centre of Finland (VTT). Experiments were also carried out with synthetic smectite, which did not include iron, which was prepared at LMPC (ENSC, F 68093 Mulhouse, France). The sorption experiments were carried out in 0.3 M and 0.05 M NaCl solutions as a function of pH, and in 0.3 M NaCl solution buffered at pH 5 as a function of added Fe(II) concentration. The separation of bentonite and solution at the end of the sorption experiment was carried out in the early phase by centrifuging only. In the later phase, ultrafiltering was added in order to improve the separation. The diffusion experiments were carried out in compacted samples prepared from MX-80 purified at VTT and saturated with 0.3 M NaCl at pH 8 and 5. A non-steady-state diffusion experiment method, where the tracer was introduced as an impulse source between two bentonite plugs was used in the measurements

  11. Sorption and diffusion of FE(II) in bentonite

    Muurinen, A. [VTT Technical Research Centre of Finland, Espoo (Finland); Tournassat, C.; Hadi, J. [BRGM, Orleans (France); Greneche, J.-M. [LPCE, Le Mans (France)

    2014-02-15

    The iron in the engineering barrier system of a nuclear waste repository interacts via the corrosion process with the swelling clay intended as the buffer material. This interaction may affect the sealing properties of the clay. In the case of iron-bentonite interaction, redox reactions, dissolution/precipitation, the diffusion and sorption are coupled together. In a combined study different processes are difficult to distinguish from each other, and more specific studies are needed for the separate processes. In particular, there is a need for well-controlled diffusion and sorption experiments where iron is kept as Fe(II). In this project, sorption and diffusion of Fe(II) in bentonite have been studied. The experiments were carried out under low-oxygen conditions in an anaerobic glove-box. The radioactive isotope ({sup 55}Fe) was used as a tracer in the experiments. The sorption experiments were carried out with two batches of purified MX-80 bentonite. One was purified at Bureau de Recherches Geologiques et Minieres, French Geological Survey (BRGM) and the other one at VTT Technical Research Centre of Finland (VTT). Experiments were also carried out with synthetic smectite, which did not include iron, which was prepared at LMPC (ENSC, F 68093 Mulhouse, France). The sorption experiments were carried out in 0.3 M and 0.05 M NaCl solutions as a function of pH, and in 0.3 M NaCl solution buffered at pH 5 as a function of added Fe(II) concentration. The separation of bentonite and solution at the end of the sorption experiment was carried out in the early phase by centrifuging only. In the later phase, ultrafiltering was added in order to improve the separation. The diffusion experiments were carried out in compacted samples prepared from MX-80 purified at VTT and saturated with 0.3 M NaCl at pH 8 and 5. A non-steady-state diffusion experiment method, where the tracer was introduced as an impulse source between two bentonite plugs was used in the measurements

  12. Rheological Behavior of Bentonite-Polyester Dispersions

    Abu-Jdayil, Basim; Al-Omari, Salah Addin

    2013-07-01

    The rheological behavior of a bentonite clay dispersed in unsaturated polyester was investigated. The effects of the solid content and particle size on the steady and transient rheological properties of the dispersions were studied. In addition, two types of bentonite with different Na+/Ca+2 ratio were used in this study. The Herschel-Bulkley and the Weltman models were used to describe the apparent viscosity of the bentonite-polyester composite in relation to the shear rate and shearing time. The bentonite-polyester dispersions were found to exhibit both Newtonian and non-Newtonian behavior. The transition from a Newtonian to a Bingham plastic and then to a shear-thinning material with a yield stress was found to depend on the solid concentration, the particle size, and the type of bentonite. At a low solid content, the apparent viscosity of the bentonite dispersion increased linearly with solid concentration. But a dramatic increase in the apparent viscosity beyond a solid content of 20 wt.% was observed. On the other hand, a thixotropic behavior was detected in bentonite-polyester dispersions with a high solid content and a low particle size. However, this behavior was more pronounced in dispersions with a high Na+/Ca+2 ratio.

  13. Erosion of bentonite buffer in a KBS-3 repository

    Neretnieks, Ivars; Liu, Loncheng; Moreno, Luis

    2010-01-01

    Document available in extended abstract form only. We have developed a Dynamic model for sodium gel expansion in fractures where the gel soaks up non-saline water as it expands. The model is based on a force balance between and on smectite particles, which move in the water. The Dynamic model of gel expansion showing the evolution in time and space of a gel was successfully tested against expansion experiments in test tubes. The expansion was measured with high resolution and in great detail over many months by Magnetic Resonance Imaging, MRI. The model also predicted the gel expansion through filters with very narrow pores well. In addition the model predicts the CCC fairly well, order to orders of magnitude better than the conventional DLVO theory. A gel viscosity model of dilute gels was derived, which accounts for ion concentration influence as well as the volume fraction of smectite in the gel. The model accounts for the presence of the DDL, which seemingly makes the particles larger so that they interact at lower particle densities. The viscosity model uses experimental data to obtain the necessary fitting parameters but is otherwise based on established theories of suspension viscosity. These models form the core of the erosion model. Both show a strong dependence on the ionic strength of the pore water. Simulations were performed for a case where the gel expands outward into the fracture that intersects the deposition hole. Fresh groundwater approaches and passes the gel/water interface. Smectite colloids move out into the water due to the repulsive forces between the particle and by Brownian motion. The dilute gel/sol is mobilised and flows downstream in a thin region where the viscosity is low enough to permit flow. Sodium diffuses from the compacted bentonite into and through the expanding gel towards the gel/water interface and further out into the seeping water. Mass transfer resistance for ions as well as smectite particles in the seeping water is

  14. Development of high-density bentonite barriers by means of spraying methods. Part 2. Investigation of field conditions

    Tanaka, Toshiyuki; Kobayashi, Ichizo; Nakajima, Makoto; Toida, Masaru

    2006-01-01

    The authors have developed a method of constructing high-density bentonite by means of wet spraying to act as a backfill material in narrow places in radioactive waste disposal facilities. On the basis of the results of laboratory tests, they conducted field spraying tests to investigate the field conditions. The results of these tests are summarized as follows: 1) The bentonite could be sprayed smoothly by using a rotary spraying machine and a screw conveyor. 2) Provided that the air flow was at least 18.5 m 3 /min and the nozzle diameter did not exceed 25 mm, an average dry density of bentonite of 1.6 Mg/m 3 or higher could be achieved. 3) The dry density was constant within the spraying distance range 500 mm ∼ 2000 mm. 4) With a nozzle diameter of 19 mm, a spraying distance of 1000 mm, and a water content of 19.5%, an average dry density of the sprayed bentonite of 1.6 Mg/m 3 or higher and a rebound ratio not exceeding 30% was achieved. 5) The dry density of the sprayed bentonite decreased as the volume of bentonite supplied was increased, and it was shows to be closely related to the rotational speed of the spraying machine and the volume of bentonite sprayed from each hole. (author)

  15. The natural and artificial hydration of a bentonite engineered barrier system in a full-scale KBS-3V mock-up; results from the first 7 years of the large scale gas injection test (LASGIT)

    Cuss, R.J.; Harrington, J.F.; Noy, D.J.; Bennett, D.P.; Sellin, P.

    2012-01-01

    Document available in extended abstract form only. The Large scale gas injection test is a full-scale in situ canister test designed to answer specific questions regarding the movement of gas through bentonite in a mock KBS-3v deposition hole. The test is located at 420 m depth within SKB's Aespoe Hard Rock Laboratory (HRL) in Sweden. The objective of Lasgit is to provide quantitative data to improve process understanding and test/validate modelling approaches which might be used in performance assessment. The deposition hole has a depth of 8.5 m and a diameter of around 1.75 m. A full scale KBS-3 canister has been modified for the Lasgit experiment with thirteen circular filters of varying dimensions located on its surface to provide point sources for gas injection, mimicking potential canister defects. These filters can also be used to inject water during the hydration stage, with hydration also conducted through 4 filter mats within the buffer. The deposition hole, buffer and canister are equipped with instrumentation to measure the total stress, pore water pressure and relative humidity in 32, 26 and 7 positions respectively. Additional instrumentation continually monitors variations in temperature, relative displacement of the lid and the restraining forces on the rock anchors. Groundwater inflow through a number of highly-conductive discrete fractures quickly resulted in elevated pore water pressures in sections of the borehole. This lead to the formation of conductive channels, the extrusion of bentonite from the deposition hole, and the discharge of groundwater to the gallery floor. Artificial hydration began after 106 days of testing. Up until the first gas injection test (day 843), the pressures in all of the canister filters and hydration mats were used to hydrate the clay. Initial attempts to raise pore water pressure in the artificial hydration arrays occasionally resulted in the formation of preferential pathways resulting in localized increases in

  16. Axi-Symmetric Simulation of the Slump Flow Test for Self-Compacting

    Thrane, Lars Nyholm; Szabo, Peter; Geiker, Mette Rica

    2004-01-01

    One of the main obstacles for further development of Self-Compacting Concrete (SCC)is to relate the fresh concrete properties, form geometry, reinforcement configuration, and casting technique to the form filling ability. Simulation of the filling ability might provide a tool in obtaining this goal...

  17. Handbook for Local Coordinators: Value-Added, Compact Disk, Union Catalog Test Phase.

    Townley, Charles

    In 1988, the Associated College Libraries of Central Pennsylvania received a grant to create a value-added, compact disk, union catalog from the U.S. Department of Education's College Library Technology and Cooperative Grants Program, Title II of the Higher Education Act. Designed to contain, in time, 2,000,830 records from 17 member library…

  18. Review of supercontainer copper shell-bentonite interactions and possible effects on buffer performance for the KBS-3H design

    King, F.; Wersin, P.

    2014-03-01

    A review is presented of the possible impact of the corrosion of a copper supercontainer shell on the performance of the bentonite buffer. The review is presented in two parts; first an assessment of the likely corrosion behaviour of the copper shell, including an assessment of the amount and speciation of copper corrosion products, and, second an assessment of the possible interactions of these copper corrosion products with the bentonite and the consequences for the buffer performance. The corrosion behaviour of oxygen-free copper in compacted bentonite is reviewed, including the effects of a possible lower-density region at the buffer-rock interface initially. Corrosion occurs under both aerobic conditions, due to the initial O 2 trapped in the bentonite and O 2 in the air or water-filled gap at the buffer/rock interface, and anaerobic conditions, due to sulphide present in the groundwater and that possibly produced by microbial activity in the bentonite. The reaction mechanism, the nature of the dissolved and precipitated corrosion products, and the evolution of the corrosion behaviour with time are discussed with reference to groundwater conditions at both Olkiluoto and Forsmark. Various interactions between the copper corrosion products (Cu(II) and Cu(I) species) and bentonite are considered, including diffusion and sorption and the incorporation of Cu into the bentonite. The available literature information on these processes is first reviewed and then this knowledge is used to predict the likely behaviour in a KBS-3H-style repository. Based on the information currently available, it is concluded that the corrosion of a copper supercontainer shell will only affect the bentonite within a distance of a few cm of the original location of the shell. Eventually, the copper shell will corrode to form an insoluble precipitate layer of Cu 2 S approximately 2-3 times the volume of the original shell. Bentonite within a few cm of this layer of precipitate may also

  19. Thermo-hydro-mechanical tests of buffer material

    Pintado, X.; Hassan, Md. M.; Martikainen, J. [B and Tech Oy, Helsinki (Finland)

    2013-10-15

    MX-80 bentonite is the reference clay material for the buffer component planned to be used in the deep geological repository for the disposal of spent nuclear fuel in Finland. The buffer presents complex thermo-hydro-mechanical behavior which is modeled with different constitutive models for heat flow, water flow and stress-strain evolution in the buffer. Thermo, hydro and mechanical models need parameters to evaluate the THM-behavior. These modeling parameters were determined by performing series of laboratory experiments as follows: Water retention curve tests were performed on compacted bentonite samples, encompassing a range of initial dry density values from 1397 to 1718 kg/m{sup 3} as the initial water content was around of 5-8 %. The water retention curve was determined by imposing different suctions to the samples and the suctions were then checked using capacitive hygrometer and chilled mirror psychrometer. Oedometer tests were performed on compacted bentonite samples, encompassing a range of initial dry density values from 1590 to 1750 kg/m{sup 3} as the initial water content was around of 6 %. Samples were saturated with tap water, 35 or 70 g/L salt solutions. Infiltration tests were performed on compacted unsaturated bentonite samples, encompassing a range of initial dry density values from 1400 to 1720 kg/m{sup 3} as the initial water content was approximately between 4-7 %. Samples were saturated with tap water, 0.87, 35 or 70 g/L salt solutions. Tortuosity tests were performed on bentonite samples, encompassing a range of dry density values from 1460 to 1750 kg/m{sup 3} and the degree of saturation varied between 33-93 %. Thermal conductivity tests were performed on compacted bentonite samples, encompassing a range of dry density values from 1545 to 1715 kg/m{sup 3} and the degree of saturation varied between 31-88 %. The measurement was performed using a thermal needle probe. The general trend of all analyzed parameters was as expected when dry

  20. Thermo-hydro-mechanical tests of buffer material

    Pintado, X.; Hassan, Md. M.; Martikainen, J.

    2013-10-01

    MX-80 bentonite is the reference clay material for the buffer component planned to be used in the deep geological repository for the disposal of spent nuclear fuel in Finland. The buffer presents complex thermo-hydro-mechanical behavior which is modeled with different constitutive models for heat flow, water flow and stress-strain evolution in the buffer. Thermo, hydro and mechanical models need parameters to evaluate the THM-behavior. These modeling parameters were determined by performing series of laboratory experiments as follows: Water retention curve tests were performed on compacted bentonite samples, encompassing a range of initial dry density values from 1397 to 1718 kg/m 3 as the initial water content was around of 5-8 %. The water retention curve was determined by imposing different suctions to the samples and the suctions were then checked using capacitive hygrometer and chilled mirror psychrometer. Oedometer tests were performed on compacted bentonite samples, encompassing a range of initial dry density values from 1590 to 1750 kg/m 3 as the initial water content was around of 6 %. Samples were saturated with tap water, 35 or 70 g/L salt solutions. Infiltration tests were performed on compacted unsaturated bentonite samples, encompassing a range of initial dry density values from 1400 to 1720 kg/m 3 as the initial water content was approximately between 4-7 %. Samples were saturated with tap water, 0.87, 35 or 70 g/L salt solutions. Tortuosity tests were performed on bentonite samples, encompassing a range of dry density values from 1460 to 1750 kg/m 3 and the degree of saturation varied between 33-93 %. Thermal conductivity tests were performed on compacted bentonite samples, encompassing a range of dry density values from 1545 to 1715 kg/m 3 and the degree of saturation varied between 31-88 %. The measurement was performed using a thermal needle probe. The general trend of all analyzed parameters was as expected when dry density, water content, and

  1. BACEKO II. Flow-through, open-front and saturation tests of pre-compacted backfill blocks in a quarter-scale test tunnel

    Keski-Kuha, E.; Nemlander, R.; Koho, P.

    2013-11-01

    The series of tests performed in BACEKO II project examined three different block materials for potential use in backfilling the repository; Friedland clay, 40/60-mixture of bentonite (40 %) and crushed rock (60 %) and Milos B clay in conjunction with pellet materials Cebogel QSE and Milos B clay. The testing program consisted of 9 tests, that continued the 1/4-scale tests executed in BACEKO 2008. The block backfilling degree of the 1/4-scale test tunnels was 73.8 % which was consistent with the material ratios associated with filling a repository tunnel having a 10 % over-excavation ratio. Some of these tests were conducted using a restraint installed at the front face of the setup and open-front tests were subsequently added in order to establish the time span which an open backfill front can remain stable should an interruption in the backfilling process occur. Additionally one flow-through test with higher salinity water (7 % TDS versus the 3,5 % TDS used in all other tests), was performed for an assembly constructed using Friedland clay. The rate of test assembly, consumption of materials and achieved densities were all monitored. During the tests, the erosion rates, progression of saturation and development of total pressure were monitored. In disassembling the tests, samples were collected for gravimetric water content measurement, the erosion pathways were identified and the sections were photographed with an infrared camera to illustrate the moister areas in the backfill. The greatest amounts of eroded material were observed in open-front tests where exiting water removed clay from the face of the backfill and formed a deepening channel in the block backfill. The open-front tests remained stable only until the outflow emerged. The properties of the pellet layer depend on the as-placed conditions which were operatordependant and also affect the outflow times. There was not much difference in the amount of erosion observed for the different block materials

  2. Hydro-mechanical behaviour of bentonite-sand mixture used as sealing materials in radioactive waste disposal galleries

    Saba, Simona

    2013-01-01

    In order to verify the effectiveness of the geological high-level radioactive waste disposal, the French Institution of Radiation protection and Nuclear Safety (IRSN) has implemented the SEALEX project to control the long-term performance of swelling clay-based sealing systems, and to which this work is closely related. Within this project, In-situ tests are carried out on compacted bentonite-sand mixture in natural conditions and in a representative scale. This material is one of the most appropriate sealing materials because of its low permeability and good swelling capacity. Once installed, this material will be hydrated by water from the host-rock and start swelling to close all gaps in the system, in particular the internal pores, rock fractures and technological voids. Afterwards, swelling pressure will develop. In the present work, laboratory experiments were performed to investigate the sealing properties under this complex hydro-mechanical conditions taking into consideration the effect of technological voids. The microstructure of the material in its initial state was first examined by microfocus X-ray computed tomography (μCT). This allowed identification of the distribution of grains of sand and bentonite as well as the pores in the sample. Macro-pores are found concentrated at the periphery of the sample and between the grains of sand, which could affect in the short term the permeability. The hydration of the same material in limited swelling conditions was then observed by 2D photography and 3D μCT. The swelling mechanism with bentonite gel production, the swelling kinetics, the density decrease and the homogenisation of the material were analyzed. The hydration in the conditions of prevented swelling was also studied by swelling pressure tests with radial and axial measurements of swelling pressure. The difference found between the axial and radial swelling pressures suggested the presence of an anisotropic microstructure. Mock-up tests at a 1

  3. Hydro-mechanical behaviour of bentonite-sand mixture used as sealing materials in radioactive waste disposal galleries

    Saba, Simona

    2013-01-01

    In order to verify the effectiveness of the geological high-level radioactive waste disposal, the French Institute for Radiation protection and Nuclear Safety (IRSN) has implemented the SEALEX project to control the long-term performance of swelling clay-based sealing systems, and to which this work is closely related. Within this project, In-situ tests are carried out on compacted bentonite-sand mixture in natural conditions and in a representative scale. This material is one of the most appropriate sealing materials because of its low permeability and good swelling capacity. Once installed, this material will be hydrated by water from the host-rock and start swelling to close all gaps in the system, in particular the internal pores, rock fractures and technological voids. Afterwards, swelling pressure will develop. In the present work, laboratory experiments were performed to investigate the sealing properties under these complex hydro-mechanical conditions taking into consideration the effect of technological voids. The microstructure of the material in its initial state was first examined by microfocus X-ray computed tomography (μCT). This allowed identification of the distribution of grains of sand and bentonite as well as the pores in the sample. Macro-pores are found concentrated at the periphery of the sample and between the grains of sand, which could affect in the short term the permeability. The hydration of the same material in limited swelling conditions was then observed by 2D photography and 3D μCT. The swelling mechanism with bentonite gel production, the swelling kinetics, the density decrease and the homogenisation of the material were analyzed. The hydration in the conditions of prevented swelling was also studied by swelling pressure tests with radial and axial measurements of swelling pressure. The difference found between the axial and radial swelling pressures suggested the presence of an anisotropic microstructure. Mock-up tests at a 1

  4. Adsorption behaviour of bivalent ions onto Febex bentonite

    Missana, T.; Garcia-Gutierrez, M. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Dpt. de Impacto Ambiental de la Energia Madrid (Spain)

    2005-07-01

    The sorption and transport properties of radionuclides in the near and far field barriers of a deep geological radioactive waste repository are amongst the principal aspects to be evaluated for the performance assessment (PA) of such a kind of disposal. The study of the clayey materials is crucial because the backfill material is constituted by compacted clay in most countries design; in addition, argillaceous formations are particularly suitable as host rock formations. It is widely recognised that, to acquire predictive modelling capability, a theoretical effort is needed for a mechanistic understanding of sorption processes, as they greatly influence the transport of radionuclides in clay porous structures. In this work, an exhaustive experimental study of the Co(II), Sr (II) and Ca(II) sorption behaviour on a Spanish bentonite was carried out. The clay used for these experiments is the FEBEX bentonite, which is basically formed by smectite (93 {+-} 2%) with small percentages of quartz (2 {+-} 1 %), plagioclase (3 {+-} 1 %), cristobalite (2 {+-} 1 %) and traces of minerals such as K-feldspar and calcite. (authors)

  5. Test work of sand compaction pile method on coal ash soil foundation. Sekitanbai jiban ni okeru sand compaction pile koho no shiken seko

    Goto, K.; Maeda, S.; Shibata, T. (The Kansai Electric Power Co. Inc., Osaka (Japan))

    1992-01-25

    As an electric power supply source after the 1990 {prime}s, Nos. 5 and 6 units are additionally being constructed by Kansai Electric Power in its Himeji Power Station No.1 which is an exclusively LNG burning power station. The additional construction site of those units is of soil foundation reclaimed with coal ash which was used residual product in the existing No.1 through No.4 units. As a result of soil foundation survey, the coal ash layer and sand layer were known to be of material to be possibly liquidized at the time of earthquake. As measures against the liquidization, application was basically made of a sand compaction pile (SCP) method which is economical and abundant in record. However, that method was so short of record in the coal ash layer that its evaluation was difficult in soil reforming effect. Therefore, its applicability was evaluated by a work test on the site, which resulted in a confirmation that the coal ash as well as the sand can be sufficiently reformed by the SCP method. Started in September, 1991, the additional construction of Nos. 5 and 6 units in Himeji Power Station No.1 uses a 1.5m pitch SCP method to reform the soil foundation. 3 refs., 10 figs., 1 tab.

  6. Lifetime of Bentonites study: hydrothermal stability of saponites; Estudio de longevidad en bentonitas: estabilidad hidrotermal de saponitas

    Leguey, S; Cuevas, J; Garralon, A [Universidad Autonoma de Madrid, Facultad de Ciencias, Departamento de Quimica Agricola, Geologia y Geoquimica, Madrid (Spain)

    1996-10-01

    The report studies the lifetime of bentonite and the hydrothermal stability of saponites. The testing comprised determination of physical and chemical properties of clays, the stability of the mineral porosity, lifetime and the wall of clay.

  7. Organophilization and characterization of commercial bentonite clays

    Cunha, B.B. da; Lima, J.C.C.; Alves, A.M.; Araujo, E.M.; Melo, T.J.A. de

    2012-01-01

    Bentonite clay is a plastic changes resulting from volcanic ash, consisting mostly of montmorillonite. The state of Paraiba is a major source of bentonite clay from Brazil, where the main oil fields are located in Boa Vista and represents the largest national production of raw and beneficiated bentonite. Aimed at the commercial value of this type of clay and its high applicability in the polls, this article aims to make a comparison between two kinds of clay, a national (Brasgel) and other imported (Cloisite) from organophilization of two commercial bentonite, ionic surfactant with Praepagem WB, and characterize them by XRD, FTIR and TG / DTG. We observe that despite getting inferior properties, the clay presents national values very similar to those presented by imported clay. (author)

  8. Application of artificial neural networks for predicting the impact of rolling dynamic compaction using dynamic cone penetrometer test results

    R.A.T.M. Ranasinghe

    2017-04-01

    Full Text Available Rolling dynamic compaction (RDC, which involves the towing of a noncircular module, is now widespread and accepted among many other soil compaction methods. However, to date, there is no accurate method for reliable prediction of the densification of soil and the extent of ground improvement by means of RDC. This study presents the application of artificial neural networks (ANNs for a priori prediction of the effectiveness of RDC. The models are trained with in situ dynamic cone penetration (DCP test data obtained from previous civil projects associated with the 4-sided impact roller. The predictions from the ANN models are in good agreement with the measured field data, as indicated by the model correlation coefficient of approximately 0.8. It is concluded that the ANN models developed in this study can be successfully employed to provide more accurate prediction of the performance of the RDC on a range of soil types.

  9. Improving the quality of biopolymer (poly lactic acid) with the addition of bentonite as filler

    Suryani; Agusnar, Harry; Wirjosentono, Basuki; Rihayat, Teuku; Nurhanifa

    2017-07-01

    PLA (Poly Lactid Acid) - Bentonite polymer nanocomposite which is a combination of natural and nanometer-scale inorganic substances created through three processes, mixing using a melt blending, molding with a hot press using specimens Standard ASTM D 638 Type IV and drying. In this study, PLA combined with two types of natural bentonite obtained from different areas to find differences in the quality of the results of characterization. To optimize the performance of filler, before mixing, bentonite have to furificate first with (NaPO3)6 and also open the interlayer space with CTAB. D-spacing of bentonite imterlayer were analyze by X-Ray difraction (XRD). Characterization bionanocomposite resulting morphologic structure was tested using a Transmission Electron Microscope (TEM). Mechanical analysis of PLA-bentonite nanocomposite in the form of tensile strength was tested using a tensile test specimens of standard American Standard for Testing Materials (ASTM) D 638 Type 4, and thermal resistance using Thermo Gravimetric Analysis (TGA).

  10. Impact of pore-pressure cycling on bentonite in constant volume experiments

    Graham, C.C.; Harrington, J.F.; Cuss, R.J.; Sellin, P.

    2012-01-01

    Document available in extended abstract form only. The SKB safety case for a KBS-3 repository highlights the potential importance of future successive glaciation events on repository functions. One particular uncertainty is the likely affect of elevated pore-water pressures on barrier safety functions. Over the repository lifetime such changes in pore-water pressure are likely to be cyclic in nature, as successive glacial episodes lead to loading and unloading of the engineered barrier. For a clay-water system with the pore-water in thermodynamic equilibrium with an external reservoir of water at pressure, p w , the total stress acting on the surrounding vessel can be expressed as: (1) σ = Π + αp w where Π is the swelling pressure and α is a proportionality constant. We present results from a series of laboratory experiments designed to investigate this relationship, in the context of glacial loading. Blocks of pre-compacted Mx80 bentonite were manufactured by Clay Technology AB (Lund, Sweden), by rapidly compacting bentonite granules in a mould under a one dimensionally applied stress (Johannesson et al., 1995). The blocks were then sub-sampled and cylindrical specimens prepared for testing (120 mm in length and 60 mm in diameter). The experiments were conducted using a specially designed constant volume cell, which allows the evolution of the total stresses acting on the surrounding vessel to be monitored during clay swelling (at three radial and two axial locations). A high precision syringe pump was used to maintain a constant applied pore pressure within the bentonite, while the rate of hydraulic inflow, and consequent stress development, were monitored to determine the point at which hydraulic equilibrium was reached. During the tests each sample was subjected to an incremental series of constant pore-pressure steps, with all samples experiencing at least one loading and unloading cycle. The resulting average total stress data yield alpha values in the

  11. Adsorption of strontium on different sodium-enriched bentonites

    Marinović Sanja R.

    2017-01-01

    Full Text Available Bentonites from three different deposits (Wyoming, TX, USA and Bogovina, Serbia with similar cation exchange capacities were sodium enriched and tested as adsorbents for Sr2+ in aqueous solutions. X-Ray diffraction analysis confirmed successful Na-exchange. The textural properties of the bentonite samples were determined using low-temperature the nitrogen physisorption method. Significant differences in the textural properties between the different sodium enriched bentonites were found. Adsorption was investigated with respect to adsorbent dosage, pH, contact time and the initial concentration of Sr2+. The adsorption capacity increased with pH. In the pH range from 4.0–8.5, the amount of adsorbed Sr2+ was almost constant but 2–3 times smaller than at pH ≈11. Further experiments were performed at the unadjusted pH since extreme alkaline conditions are environmentally hostile and inapplicable in real systems. The adsorption capacity of all the investigated adsorbents toward Sr2+ was similar under the investigated conditions, regardless of significant differences in the specific surface areas. It was shown and confirmed by the Dubinin–Radushkevich model that the cation exchange mechanism was the dominant mechanism of Sr2+ adsorption. Their developed microporous structures contributed to the Sr2+ adsorption process. The adsorption kinetics obeyed the pseudo-second-order model. The isotherm data were best fitted with the Langmuir isotherm model. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III 45001

  12. Treatment and characterization of clays (Brasgel and Green Bentonite) for use in zinc removal tests of synthetic effluents; Tratamento e caracterizacao de argilas (Brasgel e Bentonita verde) visando o uso em testes de remocao de zinco de efluentes sinteticos

    Patricio, A.C.L.; Silva, M.M. da; Lima, W.S.; Laborde, H.M.; Rodrigues, M.G.F., E-mail: cadigena@hotmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia Quimica. Centro de Ciencias e Tecnologia

    2011-07-01

    The main objective of this work was to synthesize two organophilic clays starting from the green Bentonite clay and Brasgel in their natural forms and to evaluate the potential in the process of zinc removal of wastewater through a finite bath system. After the treatment process, the clays in the natural and organophilic form were characterized by the techniques of X-ray Diffraction (XRD), Infrared Spectroscopy (IR), in addition, organophilic clays obtained were submitted to the swelling of Foster, aiming to analyze their behavior in certain organic solvents. The analysis of the efficiency of organophilic clays in the Zn{sup +2} removal process was performed in solutions based on a factorial design 2{sup 2} + 3 replicates in the central point, having as analysis variables the pH of the solution (3.0 to 5.0) and the initial concentration of zinc ranging from 10 to 50 ppm.

  13. ACETAL OBTAINED FROM ETHANOL AND ACID-ACTIVATED BENTONITE AS A CATALYST: AN ALTERNATIVE FOR THE SUGAR-ALCOHOL AGROINDUSTRY

    Oscar Yecid Buitrago Suescún

    2010-05-01

    Full Text Available This study discusses the results of characterizing and activating a bentonite from the Valle del Cauca region. The betonite is used as a catalyst in the reaction to obtain 1,1-Diethoxyethane from ethanol, which can be extracted from sugar cane. Important factors are analyzed such as: the activation of the bentonite; the percentage of bentonite; the reaction temperature; and the ethanol/acetaldehyde feed ratio. In addition, comparison tests are performed against the CaCl2 catalyst which is commonly used in previous literature. Physical and spectrometric constants are measured for the obtained product confirming that it is 1,1-Diethoxyethane.

  14. Geotechnical characteristics of bentonite/sandy silt mixes for use in waste disposal sites

    Abeele, W.V.

    1984-06-01

    The coefficient of consolidation for bentonite/sandy silt ratios of 0.04 to 0.14 decreases inversely proportional with the square of that ratio, whereas the compression index, the swelling index, and the permeability change index increase with increasing bentonite ratio. A strong relationship also exists between the void ratio and the logarithm of the applied stress for any given bentonite ratio. The empirical linear relationship between the void ratio and the logarithm of the applied stress, developed by Taylor, is excellent and enables us to limit the evaluation of conductivity at any void ratio to the measurement of the initial and the desired void ratio, the initial conductivity, and the permeability change index. This allows us to read directly, for a given bentonite ratio, the void ratio (or compaction) needed so that a required hydraulic conductivity will prevail. This is crucial in the choice of materials or mixes to be used in a wick system where an established differentiation in hydraulic conductivity is desirable

  15. Chemical and mineralogical aspects of water-bentonite interaction in nuclear fuel disposal conditions

    Melamed, A.; Pitkaenen, P.

    1996-01-01

    In the field of nuclear fuel disposal, bentonite has been selected as the principal sealing and buffer material for placement around waste canisters, forming both a mechanical and chemical barrier between the radioactive waste and the surrounding ground water. Ion exchange and mineral alteration processes were investigated in a laboratory study of the long-term interaction between compacted Na-bentonite (Volclay MX-80) and ground water solutions, conducted under simulated nuclear fuel disposal conditions. The possible alteration of montmorillonite into illite has been a major object of the mineralogical study. However, no analytical evidence was found, that would indicate the formation of this non-expandable clay type. Apparently, the change of montmorillonite from Na- to Ca-rich was found to be the major alteration process in bentonite. In the water, a concentration decrease in Ca, Mg, and K, and an increase in Na, HCO 3 and SO 4 were recorded. The amount of calcium ions available in the water was considered insufficient to account for the recorded formation of Ca-montmorillonite. It is therefore assumed that the accessory Ca-bearing minerals in bentonite provide the fundamental source of these cations, which exchange with sodium during the alteration process. (38 refs.)

  16. Heater test in the Opalinus Clay of the Mont Terri URL. Gas release and water redistribution - Contribution to heater experiment (HE); Rock and bentonite thermo-hydro-mechanical (THM) processes in the nearfield

    Jockwer, N.; Wieczorek, K.

    2006-06-01

    Beside salt and granite, clay formations are investigated as potential host rocks for disposing radioactive waste. In Switzerland in the canton Jura close to the city of St. Ursanne, an underground laboratory was built in the vicinity of the reconnaissance gallery of a motorway tunnel. Since 1995, a consortium of 12 international organisations is running this laboratory for investigating the suitability of the Opalinus clay formation with regard to disposal of radioactive waste. In 1999, the Heater Experiment B (HE-B) was started for investigating the coupled thermo-hydro-mechanical (THM) processes of the Opalinus clay in interaction with the bentonite buffer. The principal contractors of this project were the Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), the Empresa Nacional de Residuos Radiactivos S. A. (ENRESA), the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, and the National Cooperative for the Disposal of Radioactive Waste (NAGRA). GRS participated in that experiment for determining the subjects of gas generation, gas release, water content, and water redistribution in the Opalinus clay during heating. This was achieved by analysing gas and water samples from the test field before, during, and after the heating period and by performing geoelectric tomography measurements in the heated region. The in-situ measurements were supported by an additional laboratory programme. This report deals with the work of GRS performed in this project during the years 1999 to 2005. All the results obtained in the frame of the project are presented. Additional laboratory measurements conducted by the Pore Water Laboratory at CIEMAT in Madrid are also presented. The participation of GRS was funded by German Ministry of Economics and Labour (BMWA) under the contract No. 02 E 9602 and by the Commission of the European Communities under the contract No. FIKW.CT-2001-00132. (orig.)

  17. Removal of oil from water by bentonite

    Moazed, H.; Viraraghavan, T.

    1999-01-01

    Many materials, included activated carbon, peat, coal, fiberglass, polypropylene, organoclay and bentonite have been used for removing oils and grease from water. However, bentonite has been used only rarely for this purpose. In this study Na-bentonite was used to remove oil from oil-in-water emulsions of various kinds such as standard mineral oil, cutting oils, refinery effluent and produced water from production wells at Estevan, Saskatchewan. Removal efficiencies obtained were 85 to 96 per cent for cutting oils, 84 to 86 per cent for produced water and 54 to 87 per cent for refinery effluent. Bentonite proved to be more effective in the removal of oil from oil-in-water emulsions than from actual waste waters; up to 96 percent from oil-in-water emulsions to only 87 per cent from actual waste water. The percentage of oil removed was found to be a function of the amount of bentonite added and the adsorption time up to the equilibrium time. Result also showed that the Langmuir, Freundlich and BET isotherms are well suited to describe the adsorption of oil by bentonite from the various oily waters employed in this study. 15 refs

  18. Operational Performance and Improvements to the RF Power Sources for the Compact Linear Collider Test Facility (CTF3) at CERN

    McMonagle, Gerard

    2006-01-01

    The CERN CTF3 facility is being used to test and demonstrate key technical issues for the CLIC (Compact Linear Collider) study. Pulsed RF power sources are essential elements in this test facility. Klystrons at S-band (29998.55 GHz), in conjunction with pulse compression systems, are used to power the Drive Beam Accelerator (DBA) to achieve an electron beam energy of 150 MeV. The L-Band RF system, includes broadband Travelling Wave Tubes (TWTs) for beam bunching with 'phase coded' sub pulses ...

  19. Placement of pre-compacted and in situ compacted dense backfill materials in shaft seals

    Martino, J.; Dixon, D.; Kim, C.S.

    2010-01-01

    greatly reduced. The concrete provides confinement for the swelling clay. Two approaches were taken for the central clay unit in each seal. The main shaft uses compacted in situ clay-based material with 40% dry mass Wyoming sodium bentonite (200 mesh gradation), and 60% uniform gradation, water washed sand (< 2% of - 200 mesh size), with a target dry density of 1.80 ± 0.05 Mg/m 3 . The ventilation shaft uses pre-compacted clay blocks composed of 70% Kunigel V1 bentonite and 30% uniform gradation, water washed sand. These blocks were originally prepared in 1998 for the Tunnel Sealing Experiment (TSX) and unused materials were stored underground under plastic sheets. The blocks were designed to be hand placed and are approximately 35 cm x 10 cm x 18 cm in size which is convenient for use in construction of the ventilation shaft seal. In situ compaction required pre-blending of the clay-based material in order to achieve a clay component that is homogeneous with respect to density and initial degree of saturation. Because of the volume involved and in order to test a technique that is both time and cost efficient regarding material preparation, a conventional concrete dry batching truck was utilized. An auger on the truck blended the raw materials, with a water tank supplying the required water. The resulting material was bagged and stored for use once it was quality checked. Clay was delivered to the seal location in the main shaft once the lowermost concrete portion of the seal was cured for 28 days. The bagged clay was transferred to a shaft clam-shell bucket and transported to the seal location and then dumped. The clay material was manually spread to an initial ∼20 cm thickness for compaction and once compaction was completed each lift was approximately 10 cm in thickness. The clay volume in the shaft is approximately 117 m 3 (6-m-thick). Compaction was accomplished by use of two relatively small, hand-operated impact compactors. Along the perimeter of the shaft (and

  20. Influence Of The Gripping Fixture On The Modified Compact Tension Test Results: Evaluation Of The Experiments On Cylindrical Concrete Specimens

    Holušová Táňa

    2015-12-01

    Full Text Available The modified compact tension test (MCT might become in the future a stable test configuration for the evaluation of fracture-mechanics parameters or also for description of fatigue behavior of composites materials such as concrete. Core drilling is used for sampling of existing structures. These samples have cylindrical shape with the selected thickness to avoid the stress concentration. This contribution focuses on the evaluation of the fracture behavior during static and quasi static tests. Static tests are performed on standard specimen with diameter 150 mm and length 300 mm. The quasi-static tests are performed using two different gripping fixtures. The results for quasi-static tests are represented as L-COD diagrams (i.e. load vs. crack opening displacement measured on the loading axis. The comparison of results and discussion of advantages and disadvantages are introduced.

  1. Preparation and characterization Al3+-bentonite Turen Malang for esterification fatty acid (palmitic acid, oleic acid and linoleic acid)

    Abdulloh, Abdulloh; Aminah, Nanik Siti; Triyono, Mudasir, Trisunaryanti, Wega

    2016-03-01

    Catalyst preparation and characterization of Al3+-bentonite for esterification of palmitic acid, oleic acid and linoleic acid has been done. Al3+-bentonite catalyst was prepared from natural bentonite of Turen Malang through cation exchange reaction using AlCl3 solution. The catalysts obtained were characterized by XRD, XRF, pyridine-FTIR and surface area analyser using the BET method. Catalyst activity test of Al3+-bentonite for esterification reaction was done at 65°C using molar ratio of metanol-fatty acid of 30:1 and 0.25 g of Al3+-bentonite catalyst for the period of ½, 1, 2, 3, 4 and 5 hours. Based on the characterization results, the Al3+-bentonite Turen Malang catalyst has a d-spacing of 15.63 Ǻ, acid sites of Brönsted and Lewis respectively of 230.79 µmol/g and 99.39 µmol/g, surface area of 507.3 m2/g and the average of radius pore of 20.09 Å. GC-MS analysis results of the oil phase after esterification reaction showed the formation of biodiesel (FAME: Fatty acid methyl ester), namely methyl palmitate, methyl oleate and methyl linoleate. The number of conversions resulted in esterification reaction using Al3+-bentonite Turen Malang catalyst was 74.61%, 37.75%, and 20, 93% for the esterification of palmitic acid, oleic acid and linoleic acid respectively.

  2. Hydraulic conductivity of some bentonites in artificial seawater

    Komine, Hideo; Murakami, Satoshi; Yasuhara, Kazuya

    2011-01-01

    A high-level radioactive waste disposal facility might be built in a coastal area in Japan from the viewpoint of feasible transportation of waste. Therefore, it is important to investigate the effects of seawater on a bentonite-based buffer. This study investigated the influence of seawater on hydraulic conductivity of three common sodium-types of bentonite and one calcium-type bentonite by the laboratory experiments. >From the results of laboratory experiment, this study discussed the influence of seawater on hydraulic conductivity of bentonites from the viewpoints of kinds of bentonite such as exchangeable-cation type and montmorillonite content and dry density of bentonite-based buffer. (author)

  3. Erosion of bentonite by flow and colloid diffusion

    Moreno, Luis; Liu, Longcheng; Neretnieks, Ivars

    2010-01-01

    water velocity for the rectangular geometry. For the cylindrical geometry, the dependence is somewhat lower (exponent about 0.4) since the length of the gel/water interface decreases with increasing water flow rate. The penetration depth of the gel/water interface decreases with increasing water flow rate. For water velocity of the order of a metre per year the gel may penetrate several metres into the fracture at steady state. The simulations were made with only sodium as counter-ion. Most simulations had sodium concentrations below the critical coagulation concentration, CCC. In the compacted bentonite at the fracture mouth it was 10 mM and 0.1 mM in the approaching water. At these concentrations the gel is expansive and can turn into a sol releasing colloidal particles. The low ion concentration has a strong impact on the fluid viscosity, which increases with decreasing ionic strength. At the same time, however the repulsion forces between the smectite particles increase causing a quicker expansion and sol formation. Simulations with higher sodium concentrations in the seeping water had a marginal influence on the erosion rate. For the highest water flow rates the smectite loss could be up to 0.3 kg per year for one canister. This is more than one order of magnitude more than what would result by smectite particle diffusion alone if gel flow was neglected and account was only taken of particle diffusion out into the seeping water. (authors)

  4. Thermal effect on water retention curve of bentonite: experiment and thermodynamic modeling

    Qin Bing; Chen Zhenghai; Sun Faxin; Liu Yuemiao; Wang Ju

    2012-01-01

    The thermal effects on water retention curve of GMZ bentonite were investigated experimentally and theoretically. Water retention tests were conducted on GMZ bentonite at five temperatures ranging from 20℃ to 100℃. Test results showed that the water retention capacity and the hysteresis of the water retention curve decreased with increasing temperature, and that the water retention curves at different temperatures were almost parallel to each other. Based on the thermodynamics of sorption, a model was established to describe the temperature influence on the water retention curve. The model was validated by comparing the model predictions and the test results. (authors)

  5. Development of a bentonite free swelling model in an elastoplastic framework

    Navarro, V.; Asensio, L.; Yustres, A.; Alonso, J.; Pintado, X.

    2012-01-01

    Document available in extended abstract form only. The aim of this work is to develop a Hydro-Chemo-Mechanical (HcM) model able to consistently reproduce the whole swelling process of both unsaturated and saturated bentonites. The Barcelona Expansive Model (BExM) was taken as a starting point, as it has been satisfactorily applied to model the behaviour of compacted bentonites. However, its suitability for the analysis of free swelling has not been proved, namely for the case when porosities reach values close to and over 0.9 and the soil becomes disarranged. These conditions mean pulling BExM further away from the domain for which it was initially conceived. For this reason, a modified formulation of BExM has been developed. It has been named m/BExM. In order to explain the high swelling ability of bentonites, it is assumed that the distortion of the water structure induced by the clay sheets begins to have a significant effect also in macro water structure when the micro void ratio goes beyond a certain threshold value and the confining forces do not exceed the repulsive forces. Accordingly, macro water will experience a decrease in its chemical potential, and the voids in which this phenomenon takes part will act as sinks, increasing their volume and causing an important raise of macro-porosity (disarrangement of the soil macro skeleton). When this phenomenon starts, the micro strain rate is greater than that of the macro disarrangement. Nonetheless, when the micro void ratio reaches high values, the disarrangement becomes more significant. The variation of the micro void ratio with the swelling pressure is described with an exponential law. The developed formulation takes into account the geochemical effects by using a modified swelling pressure, in keeping with the proposal of Karnland et al. (2005) when working with a saline solution of relevant concentration. The presence of sodium and calcium cations, as well as that of a generic polyvalent anion (by

  6. Leachability of bentonite/cement for medium-level waste immobilisation

    Hamlat, M.S.; Rabia, N. [Centre de Radioprotection et de Surete, Alger-Gare (Algeria)

    1998-12-31

    The release of radionuclides from Algerian bentonite/cement matrix has been measured experimentally using static and dynamic testing procedures. The waste forms were cement/sand and bentonite/cement matrices contaminated with Cs-137. To characterise radionuclide/waste form combination, two parameters, diffusion (D) and distribution coefficients ({alpha}) were used. (D) is an effective diffusion coefficient that describes the kinetic behaviour and is most easily determined using Soxhlet test, whereas, ({alpha}) describes the distribution of radionuclide between aqueous and solid phases at equilibrium and is best measured in static test. Leach rates obtained being very low. Distribution coefficient values have showed that the bentonite has relatively a high degree of fixation. It was concluded that the matrix under study seems play a role for the immobilisation. (orig.)

  7. Leachability of bentonite/cement for medium-level waste immobilisation

    Hamlat, M.S.; Rabia, N.

    1998-01-01

    The release of radionuclides from Algerian bentonite/cement matrix has been measured experimentally using static and dynamic testing procedures. The waste forms were cement/sand and bentonite/cement matrices contaminated with Cs-137. To characterise radionuclide/waste form combination, two parameters, diffusion (D) and distribution coefficients (α) were used. (D) is an effective diffusion coefficient that describes the kinetic behaviour and is most easily determined using Soxhlet test, whereas, (α) describes the distribution of radionuclide between aqueous and solid phases at equilibrium and is best measured in static test. Leach rates obtained being very low. Distribution coefficient values have showed that the bentonite has relatively a high degree of fixation. It was concluded that the matrix under study seems play a role for the immobilisation. (orig.)

  8. Evaluating the effects of compaction of hot mix asphalt on selected laboratory tests

    Kekana, SL

    2008-07-01

    Full Text Available of the gyratory prepared samples for standard laboratory design mix and the field prepared samples, while the short-term aged (SA) sample shows similar rut rates to the field compacted samples. Early failure was evident after 2 000 wheel passes for the short.... The laboratory design mixed is represented by short-term aged mixed and design mix (fresh mix in the laboratory). The type of mix discussed in this study is summarised in Tables 1 and 2 and Figure 1. Detailed information about the mix is discussed in Denneman...

  9. Laboratory Testing of Solar Combi System with Compact Long Term PCM Heat Storage

    Johansen, Jakob Berg; Englmair, Gerald; Dannemand, Mark

    2016-01-01

    To enable the transition from fossil fuels as a primary heat source for domestic hot water preparation and space heating solar thermal energy has great potential. The heat from the sun has the disadvantage that it is not always available when there is a demand. To solve this mismatch a thermal...... seasonal storage can be used to store excess heat from the summer to the winter when the demand is higher than the supply. Installing a long term thermal storage in a one family house it needs to be compact and sensible heat storages are not suitable. A latent heat storage with a phase change material (PCM...

  10. A numerical study of two different specimen fixtures for the modified compact tension test – their influence on concrete fracture parameters

    Holušová, Táňa; Seitl, Stanislav; Cifuentes, H.; Canteli, A.

    2016-01-01

    Roč. 10, č. 35 (2016), s. 242-249 ISSN 1971-8993 Institutional support: RVO:68081723 Keywords : Modified Compact Tension Test * Fracture Parameters * Cementitious Composites * FEM Subject RIV: JL - Materials Fatigue, Friction Mechanics

  11. Removal of heavy metals using bentonite supported nano-zero valent iron particles

    Zarime, Nur Aishah; Yaacob, Wan Zuhari Wan; Jamil, Habibah

    2018-04-01

    This study reports the composite nanoscale zero-valent iron (nZVI) which was successfully synthesized using low cost natural clay (bentonite). Bentonite composite nZVI (B-nZVI) was introduced to reduce the agglomeration of nZVI particles, thus will used for heavy metals treatment. The synthesized material was analyzed using physical, mineralogy and morphology analysis such as Brunnaer-Emmett-Teller (BET) surface area, Field Emission Scanning Electron Microscopy (FESEM), X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) and X-ray Photoelectron Spectroscopy (XPS). The batch adsorption test of Bentonite and B-nZVI with heavy metals solutions (Pb, Cu, Cd, Co, Ni and Zn) was also conducted to determine their effectiveness in removing heavy metals. Through Batch test, B-nZVI shows the highest adsorption capacity (qe= 50.25 mg/g) compared to bentonite (qe= 27.75 mg/g). This occurred because B-nZVI can reduce aggregation of nZVI, dispersed well in bentonite layers thus it can provide more sites for adsorbing heavy metals.

  12. Simulation of bentonite colloid migration through granite

    Rosicka, Dana; Hokr, Milan

    2012-01-01

    Document available in extended abstract form only. Full text of publication follows: Colloidal bentonite particles generate at the interface of buffer and host rock in spent nuclear fuel repository due to an erosion process and migrate through granite by the water flow. Stability of these colloids and their migration possibilities have been studied on account of radionuclide transport possibility as colloid could carry adsorbed radionuclides in groundwater through granite. That is why a simulation of bentonite colloid migration in the surrounding of a repository might be requested. According to chemical condition as ionic strength and pH, the colloidal particles coagulate into clusters and that influence the migration of particles. The coagulation kinetics of natural bentonite colloids were experimentally studied in many articles, for example by light scattering techniques. We created a model of coagulation of bentonite colloids and simulation of a chosen experiment with use of the multicomponent reactive transport equation. The coagulation model describes clustering of particles due to attractive van der Waals forces as result of collision of particles due to heat fluctuation and different velocity of particles during sedimentation and velocity gradient of water flow. Next, the model includes influence of repulsive electrostatic forces among colloidal particles leading to stability of particles provided high surface charge of colloids. In the model, each group of clusters is transported as one solution component and the kinetics of coagulation are implemented as reactions between the components: a shift of particles among groups of particles with similar migration properties, according to size of the clusters of colloids. The simulation of migration of bentonite colloid through granite using the coagulation model was calibrated according to experiment results. On the basis of the simulation, one can estimate the basic processes that occur during bentonite colloid

  13. Properties of the bentonite from Lieskovec deposit and their possible environmental applications

    Andrejkovicova, S.

    2008-01-01

    The community increasingly focuses on broader uses of raw materials, occurring in relatively sufficient amounts. Among them, bentonite play very important role in the environmental applications. Results presented herein are related to the yet comprehensively unexplored Fe-rich bentonite from Lieskovec deposit, Central Slovakia. The objective of this study was complex investigation of Lieskovec bentonite deposit. This bentonite was developed from andesitic pyroclastics; the dominant mineral in all the samples is iron-rich montmorillonite, covering 29 to 56 mass % in the samples. The accessory minerals include kaolinite (5-17 mass %), quartz (3-28 mass %), muscovite/illite (3-16 mass %), volcanic glass (6-14 mass %), orthoclase (1-12 mass %), opal (1-8 mass %) and cristobalite (1-3 mass %). Structural Fe(III) is mainly in phyllosilicates accounting for 70 % to 90 % of the total Fe in the unfractionated samples; less than 5 % is Fe(II). The remainder of the Fe is present in oxide and/or oxyhydroxide phases dominated by poorly ordered goethite and hematite with possibly some maghemite. Basic properties of bentonites result from the structure of the smectites. Size fractionation did not lead to pure smectite. Kaolinite and mica were not successfully removed. Quartz and feldspars were dismantled effectively. Non-clay minerals contribution decreased. Smectite content increased after separation up to 75 mass %. Low cation exchange capacities between 35 and 61 meq/100 g are caused also by low magnesium content in the octahedral sheets of montmorillonite, suggesting lower isomorphic Mg for Al substitution in the octahedral sheets of smectite and thus its lower octahedral charge. The main factor influencing CECs is smectite content affecting dominantly also the geotechnical properties. Geotechnical properties of Lieskovec bentonite, such as liquid limit in range 64-80 % and water adsorption by Enslin test 123-265 % were insufficient for utilization in geo-synthetic clay

  14. CHARACTERIZATION OF BENTONITE FOR ENGINEERED BARRIER SYSTEMS IN RADIOACTIVE WASTE DISPOSAL SITES

    Dubravko Domitrović

    2012-07-01

    Full Text Available Engineered barrier systems are used in radioactive waste disposal sites in order to provide better protection of humans and the environment from the potential hazards associated with the radioactive waste disposal. The engineered barrier systems usually contain cement or clay (bentonite because of their isolation properties and long term performance. Quality control tests of clays are the same for all engineering barrier systems. Differences may arise in the required criteria to be met due for different application. Prescribed clay properties depend also on the type of host rocks. This article presents radioactive waste management based on best international practice. Standard quality control procedures for bentonite used as a sealing barrier in radioactive waste disposal sites are described as some personal experiences and results of the index tests (free swelling index, water adsorption capacity, plasticity limits and hydraulic permeability of bentonite (the paper is published in Croatian.

  15. Fundamental properties of monolithic bentonite buffer material formed by cold isostatic pressing for high-level radioactive waste repository

    Kawakami, S.; Yamanaka, Y.; Kato, K.; Asano, H.; Ueda, H.

    1999-01-01

    The methods of fabrication, handling, and emplacement of engineered barriers used in a deep geological repository for high level radioactive waste should be planned as simply as possible from the engineering and economic viewpoints. Therefore, a new concept of a monolithic buffer material around a waste package have been proposed instead of the conventional concept with the use of small blocks, which would decrease the cost for buffer material. The monolithic buffer material is composed of two parts of highly compacted bentonite, a cup type body and a cover. As the forming method of the monolithic buffer material, compaction by the cold isostatic pressing process (CIP) has been employed. In this study, monolithic bentonite bodies with the diameter of about 333 mm and the height of about 455 mm (corresponding to the approx. 1/5 scale for the Japanese reference concept) were made by the CIP of bentonite powder. The dry densities: ρd of the bodies as a whole were measured and the small samples were cut from several locations to investigate the density distribution. The swelling pressure and hydraulic conductivity as function of the monolithic body density for CIP-formed specimens were also measured. High density (ρd: 1.4--2.0 Mg/m 3 ) and homogeneous monolithic bodies were formed by the CIP. The measured results of the swelling pressure (3--15 MPa) and hydraulic conductivity (0.5--1.4 x 10 -13 m/s) of the specimens were almost the same as those for the uniaxial compacted bentonite in the literature. It is shown that the vacuum hoist system is an applicable handling method for emplacement of the monolithic bentonite

  16. Effect of localized water uptake on backfill hydration and water movement in a backfilled tunnel: half-scale tests at Aespoe Bentonite Laboratory

    Dixon, D.; Jonsson, E.; Hansen, J.; Hedin, M.; Ramqvist, G.

    2011-04-01

    The report describes the outcome of the work within the project 'SU508.20 Impact of water inflow in deposition tunnels'. Project decision SKB doc 1178871 Version 3.0. Two activity plans have been used for the field work: AP TD SU50820-09-019 and AP TD SU 50820-09-071. SKB and Posiva have been examining those processes that may have particularly strong effects on the evolution of a newly backfilled deposition tunnel in a KBS-3V repository. These assessments have involved the conduct of increasingly large and complex laboratory tests and simulations of a backfilled tunnel section. In this series of four tests, the effect of water inflow into a backfilled tunnel section via an intersecting fracture feature was evaluated. The tests included the monitoring of mock-ups where water entered via the simulated fractures as well as evaluation of what the effect of isolated tunnel sections caused by localized water inflow would have on subsequent evolution of these isolated sections. It was found that even a slowly seeping fracture can have a substantial effect on the backfill evolution as it will cause development of a gasket-like feature that effectively cuts of air and water movement from inner to outer regions of the backfilled tunnel. Water entering via these fractures will ultimately move out of the tunnel via a single discrete flow path, in a manner similar to what was observed in previous 1/2-scale and smaller simulations. If the low-rate of water inflow from fracture is the only source of water inflow to the tunnel this will result in hydraulic behaviour similar to that observed for a single inflow point in previous tests. The presence of a fracture feature will however result in a larger proportion of water uptake by the process of suction than might occur in a point inflow situation and hence a more uniform water distribution will be present in the pellet fill. This also results in a greater tendency for water to be absorbed into the adjacent block fill material and

  17. Effect of localized water uptake on backfill hydration and water movement in a backfilled tunnel: half-scale tests at Aespoe Bentonite Laboratory

    Dixon, D. [Atomic Energy of Canada Limited, Chalk River (Canada); Jonsson, E. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Hansen, J. [Posiva Oy, Olkiluoto (Finland); Hedin, M. [Aangpannefoereningen, Stockholm (Sweden); Ramqvist, G. [Eltekno AB, Figeholm (Sweden)

    2011-04-15

    The report describes the outcome of the work within the project 'SU508.20 Impact of water inflow in deposition tunnels'. Project decision SKB doc 1178871 Version 3.0. Two activity plans have been used for the field work: AP TD SU50820-09-019 and AP TD SU 50820-09-071. SKB and Posiva have been examining those processes that may have particularly strong effects on the evolution of a newly backfilled deposition tunnel in a KBS-3V repository. These assessments have involved the conduct of increasingly large and complex laboratory tests and simulations of a backfilled tunnel section. In this series of four tests, the effect of water inflow into a backfilled tunnel section via an intersecting fracture feature was evaluated. The tests included the monitoring of mock-ups where water entered via the simulated fractures as well as evaluation of what the effect of isolated tunnel sections caused by localized water inflow would have on subsequent evolution of these isolated sections. It was found that even a slowly seeping fracture can have a substantial effect on the backfill evolution as it will cause development of a gasket-like feature that effectively cuts of air and water movement from inner to outer regions of the backfilled tunnel. Water entering via these fractures will ultimately move out of the tunnel via a single discrete flow path, in a manner similar to what was observed in previous 1/2-scale and smaller simulations. If the low-rate of water inflow from fracture is the only source of water inflow to the tunnel this will result in hydraulic behaviour similar to that observed for a single inflow point in previous tests. The presence of a fracture feature will however result in a larger proportion of water uptake by the process of suction than might occur in a point inflow situation and hence a more uniform water distribution will be present in the pellet fill. This also results in a greater tendency for water to be absorbed into the adjacent block fill

  18. Sorption behavior of cesium onto bentonite colloid

    Iijima, Kazuki; Masuda, Tsuguya; Tomura, Tsutomu

    2004-01-01

    It is considered that bentonite colloid might be generated from bentonite which will be used as buffer material in geological disposal system, and can facilitate the migration of radionuclides by means of sorption. In order to examine this characteristic, sorption and desorption experiments of Cs onto bentonite colloid were carried out to obtain its distribution coefficient (Kd) and information on the reversibility of its sorption. In addition, particle size distribution and shape of colloid were investigated and their effect on the sorption behavior was discussed. Kds for Cs were around 20 m 3 /kg for sorption and 30 m 3 /kg for desorption, in which sorbed Cs was desorbed by 8.4x10 -4 mol/l of NaCl solution. These values did not show any dependencies on Cs concentration and duration of sorption and desorption. The first 20% of sorbed Cs was desorbed reversibly at least. Most of colloidal particles were larger than 200 nm and TEM micrographs showed they had only several sheets of the clay crystal. Obtained Kds for colloidal bentonite were larger than those for powdered bentonite. This can be caused by difference of competing ions in the solution, characteristics of contained smectite, or sorption site density. (author)

  19. Bentonite electrical conductivity: a model based on series–parallel transport

    Lima, Ana T.

    2010-01-30

    Bentonite has significant applications nowadays, among them as landfill liners, in concrete industry as a repairing material, and as drilling mud in oil well construction. The application of an electric field to such perimeters is under wide discussion, and subject of many studies. However, to understand the behaviour of such an expansive and plastic material under the influence of an electric field, the perception of its electrical properties is essential. This work serves to compare existing data of such electrical behaviour with new laboratorial results. Electrical conductivity is a pertinent parameter since it indicates how much a material is prone to conduct electricity. In the current study, total conductivity of a compacted porous medium was established to be dependent upon density of the bentonite plug. Therefore, surface conductivity was addressed and a series-parallel transport model used to quantify/predict the total conductivity of the system. © The Author(s) 2010.

  20. Early age sealing of buffer-rock gap by artificial wetting to induce bentonite swelling

    Holt, Erika; Marjavaara, Pieti

    2012-01-01

    400% of the buffer. The area near the top of the sample often had a higher water content, attributed to the concentration of material and upward swelling. Two weeks after wetting, the dry density of the gap area with plain water filling or pellets is on the order of 1000 kg/m 3 . The small-scale artificial wetting laboratory test program has provided the basis for some aspects of the First Phase Test of Bentonite Buffer. This test was started in autumn 2011 in Onkalo, Finland at the depth of 140 m below surface. The test is scaled 40% from the current repository hole dimensions, having two separate holes of 800 mm in diameter and three meters depth, both holes have heaters. The 35 mm gap between the rock and bentonite buffer was filled with custom-made roller-compacted MX- 80 pellets. Both the buffer and pellets were made from the same material and had a water content of 17%. In this field demonstration, one hole was artificially wetted and the other was left to dry only exposed to the natural water coming from host rock. The start of the test showed that it was possible to artificially wet the buffer-pellet system as the buffer was confined with a lid. The tests are on-going in ONKALO at the moment and it is planned for them to run for least of two years but it can be continued longer if necessary. The planning of the second phase, full-scale test to be done at the level 420 m below ground in ONKALO has started. Overall, this initial 2009-10 experimental research project showed that it was possible to uniformly wet the buffer to induce a high level of swelling within the first days, which would provide a higher level of safety with respect to thermal, mechanical and chemical stability during the waste deposition construction phase. The uncertainties that remain were the up-scaling of results to full-size deposition scale, especially with respect to the level of buffer uplift

  1. BaM bentonite and some of its properties

    Matal, Oldřich; Vávra Michal; Kachlík, Martin; Maca, Karel; Kotnour, Petr; Pospíšková, Ilona

    2018-01-01

    BaM bentonite is lime-magnesium bentonite of domestic origin. Its properties were measured experimentally with focus on the following parameters: composition, morphology and particle size distribution, powder bulk density, powder pressing parameters, shear strength, and water saturation. The findings will find use in nuclear safety assessments of engineered bentonite barriers in underground nuclear waste disposal facilities. (orig.)

  2. Long term test of buffer material at the Aespoe Hard Rock Laboratory, LOT project. Final report on the A2 test parcel

    Karnland, Ola; Olsson, Siv; Dueck, Ann; Birgersson, Martin; Nilsson, Ulf; Hernan-Haakansson, Tania (Clay Technology AB, Lund (Sweden)); Pedersen, Karsten (Microbial Analytics Sweden AB (Sweden); Goeteborg Univ., Dept. of Cell and Molecular Biology, Goeteborg (Sweden)); Nilsson, Sara; Eriksen, Trygve E. (School of Chemical Science and Engineering, Nuclear chemistry, Royal Inst. of Tech., Stockholm (Sweden)); Rosborg, Bo (Rosborg Consulting, Nykoeping (Sweden))

    2009-11-15

    In the Swedish repository concept for nuclear waste (KBS-3 concept), the spent nuclear fuel will be stored in copper canisters surrounded by compacted bentonite. The decaying power of the fuel will increase the temperature in the repository which, in combination with the uptake of ground-water, are expected to result in minor mineralogical changes in the bentonite. The ongoing LOT test series at the Aespoe Hard Rock Laboratory (HRL) are focused on identifying and quantifying such mineralogical alterations in the bentonite exposed to typical repository-like conditions. Further, buffer-related processes concerning copper corrosion, cation transport, and bacterial survival/activity are studied. In total, the LOT project includes seven test parcels, which contain a central Cu-tube surrounded by cylindrical bentonite blocks with a diameter of 30 cm, and gauges for temperature, total pressure, water pressure and humidity. Electrical heaters placed inside the copper tube are used to simulate the power from the decaying spent fuel. Three parcels are exposed to standard KBS-3 conditions (maximum temperature below 100 deg C) and four parcels to adverse conditions (maximum temperature below approx140 deg C). Both the standard and the adverse test series include short term tests (1 to 2 years), medium term tests (>5 years) and long term tests (>10 years). The present report concerns the A2 test parcel, which was a medium term test exposed to adverse conditions. Cu-coupons, 60Co tracers, bacteria and specific chemical substances were placed in the bentonite at defined positions. After field exposure, the entire test parcel was released from the rock by overlapping percussion drilling and wire sawing. The parcel was lifted and divided at test site and the bentonite material was sampled for specified analyses performed by nine different laboratories in five countries. The main aspects of the various tests and analyses may be summarized in the following items: - physical

  3. Electrochemistry Study on PVC-LiClO4 Polymer Electrolyte Supported by Bengkulu Natural Bentonite for Lithium Battery

    Ghufira

    2012-04-01

    Full Text Available In this research bentonite was used as filler to produce polymer electrolyte (PVCLiClO4. Some weight variation of bentonite have been made by addition, such as 0% wt/wt; 5% wt/wt ; 10% wt/wt ; 15% wt/wt ; 20% wt/wt ; and 25% wt/wt of bentonite to the mixture of 0,5 gramof PVC and 0,125 gram of LiClO4. Ionic conductivity of polymer electrolyte was tested using impedance spectroscopy. The result of the research was showed that a mixture of PVCBentonite(10% wt/wt-LiClO4 gives the highest ionic conductivity (4,