WorldWideScience

Sample records for compact x-ray diode

  1. Compact X-ray Sources in Nearby Galaxy Nuclei

    CERN Document Server

    Colbert, E J M

    1998-01-01

    We have found compact, near-nuclear X-ray sources in 21 (54\\%) of a complete sample of 39 nearby face-on spiral and elliptical galaxies with available ROSAT HRI data. ROSAT X-ray luminosities (0.2 $-$ 2.4 keV) of these compact X-ray sources are $\\sim$10$^{37}

  2. X-Ray Emission from Compact Sources

    Energy Technology Data Exchange (ETDEWEB)

    Cominsky, L

    2004-03-23

    This paper presents a review of the physical parameters of neutron stars and black holes that have been derived from X-ray observations. I then explain how these physical parameters can be used to learn about the extreme conditions occurring in regions of strong gravity, and present some recent evidence for relativistic effects seen in these systems. A glossary of commonly used terms and a short tutorial on the names of X-ray sources are also included.

  3. A two-stage series diode for intense large-area moderate pulsed X rays production

    Science.gov (United States)

    Lai, Dingguo; Qiu, Mengtong; Xu, Qifu; Su, Zhaofeng; Li, Mo; Ren, Shuqing; Huang, Zhongliang

    2017-01-01

    This paper presents a method for moderate pulsed X rays produced by a series diode, which can be driven by high voltage pulse to generate intense large-area uniform sub-100-keV X rays. A two stage series diode was designed for Flash-II accelerator and experimentally investigated. A compact support system of floating converter/cathode was invented, the extra cathode is floating electrically and mechanically, by withdrawing three support pins several milliseconds before a diode electrical pulse. A double ring cathode was developed to improve the surface electric field and emission stability. The cathode radii and diode separation gap were optimized to enhance the uniformity of X rays and coincidence of the two diode voltages based on the simulation and theoretical calculation. The experimental results show that the two stage series diode can work stably under 700 kV and 300 kA, the average energy of X rays is 86 keV, and the dose is about 296 rad(Si) over 615 cm2 area with uniformity 2:1 at 5 cm from the last converter. Compared with the single diode, the average X rays' energy reduces from 132 keV to 88 keV, and the proportion of sub-100-keV photons increases from 39% to 69%.

  4. Compact Optical Counterparts of Ultraluminous X-ray Sources

    CERN Document Server

    Tao, Lian; Grise, Fabien; Kaaret, Philip

    2011-01-01

    Using archival Hubble Space Telescope (HST) imaging data, we report the multiband photometric properties of 13 ultraluminous X-ray sources (ULXs) that have a unique compact optical counterpart. Both magnitude and color variation are detected at time scales of days to years. The optical color, variability, and X-ray to optical flux ratio indicate that the optical emission of most ULXs is dominated by X-ray reprocessing on the disk, similar to that of low mass X-ray binaries. For most sources, the optical spectrum is a power-law, $F_{\

  5. Stacked, filtered multi-channel X-ray diode array

    Science.gov (United States)

    MacNeil, L. P.; Dutra, E. C.; Compton, S. M.; Jacoby, B. A.; Raphaelian, M. L.

    2015-08-01

    There are many types of X-ray diodes that are used for X-ray flux or spectroscopic measurements and for estimating the spectral shape of the VUV to soft X-ray spectrum. However, a need arose for a low cost, robust X-ray diode to use for experiments in hostile environments on multiple platforms, and for experiments that utilize forces that may destroy the diode(s). Since the typical proposed use required a small size with a minimal single line-of-sight, a parallel array could not be used. So, a stacked, filtered multi-channel X-ray diode array was developed, called the MiniXRD. To achieve significant cost savings while maintaining robustness and ease of field setup, repair, and replacement, we designed the system to be modular. The filters were manufactured in-house and cover the range from 450 eV to 5000 eV. To achieve the line-of-sight accuracy needed, we developed mounts and laser alignment techniques. We modeled and tested elements of the diode design at NSTec Livermore Operations (NSTec / LO) to determine temporal response and dynamic range, leading to diode shape and circuitry changes to optimize impedance and charge storage. We fielded individual and stacked systems at several national facilities as ancillary `ride-along' diagnostics to test and improve the design usability. We present the MiniXRD system performance which supports consideration as a viable low-cost alternative for multiple-channel low-energy X-ray measurements. This diode array is currently at Technical Readiness Level (TRL) 6.

  6. Stacked, filtered multi-channel X-ray diode array

    Energy Technology Data Exchange (ETDEWEB)

    MacNeil, Lawrence [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Dutra, Eric [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Raphaelian, Mark [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Compton, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jacoby, Barry [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-01

    There are many types of X-ray diodes used for X-ray flux or spectroscopic measurements and for estimating the spectral shape of the VUV to soft X-ray spectrum. However, a need exists for a low-cost, robust X-ray diode to use for experiments in hostile environments on multiple platforms, and for experiments that utilize forces that may destroy the diode(s). Since the typical proposed use required a small size with a minimal single line-of-sight, a parallel array could not be used. So, a stacked, filtered multi-channel X-ray diode array was developed, called the MiniXRD. To achieve significant cost savings while maintaining robustness and ease of field setup, repair, and replacement, we designed the system to be modular. The filters were manufactured in-house and cover the range from 450 eV to 5000 eV. To achieve the line-of-sight accuracy needed, we developed mounts and laser alignment techniques. We modeled and tested elements of the diode design at NSTec Livermore Operations (NSTec / LO) to determine temporal response and dynamic range, leading to diode shape and circuitry changes to optimize impedance and charge storage. The authors fielded individual and stacked systems at several national facilities as ancillary "ride-along" diagnostics to test and improve the design usability. This paper presents the MiniXRD system performance, which supports consideration as a viable low-costalternative for multiple-channel low-energy X-ray measurements. This diode array is currently at Technical Readiness Level (TRL) 6.

  7. Stacked, Filtered Multi-Channel X-Ray Diode Array

    Energy Technology Data Exchange (ETDEWEB)

    MacNeil, Lawrence P. [National Security Technologies, LLC; Dutra, Eric C. [National Security Technologies, LLC; Raphaelian, Mark; Compton, Steven [Lawrence Livermore National Laboratory; Jacoby, Barry [Lawrence Livermore National Laboratory

    2015-08-01

    This system meets the need for a low-cost, robust X-ray diode array to use for experiments in hostile environments on multiple platforms, and for experiments utilizing forces that may destroy the diode(s). Since these uses require a small size with a minimal single line-of-sight, a parallel array often cannot be used. So a stacked, filtered multi-channel X-ray diode array was developed that was called the MiniXRD. The design was modeled, built, and tested at National Security Technologies, LLC (NSTec) Livermore Operations (LO) to determine fundamental characteristics. Then, several different systems were fielded as ancillary “ridealong” diagnostics at several national facilities to allow us to iteratively improve the design and usability. Presented here are design considerations and experimental results. This filtered diode array is currently at Technical Readiness Level (TRL) 6.

  8. Compact X-ray Light Source Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Thevuthasan, Suntharampillai; Evans, James E.; Terminello, Louis J.; Koppenaal, David W.; Manke, Kristin L.; Plata, Charity

    2012-12-01

    This report, produced jointly by EMSL and FCSD, is the result of a workshop held in September 2011 that examined the utility of a compact x-ray light source (CXLS) in addressing many scientific challenges critical to advancing energy science and technology.

  9. A compact PC-based X-ray imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Asimidis, A. [Physics Department, Laboratory B, University of Ioannina, GR-45110 Ioannina (Greece)]. E-mail: aasimid@cc.uoi.gr; Evangelou, I. [Physics Department, Laboratory B, University of Ioannina, GR-45110 Ioannina (Greece); Kokkas, P. [Physics Department, Laboratory B, University of Ioannina, GR-45110 Ioannina (Greece); Manthos, N. [Physics Department, Laboratory B, University of Ioannina, GR-45110 Ioannina (Greece); Triantis, F. [Physics Department, Laboratory B, University of Ioannina, GR-45110 Ioannina (Greece); Speller, R.D. [Medical Physics and Bioengineering Department, University College London, 11-20 Capper Street, London WC1E 6JA (United Kingdom); Hall, G. [Physics Department, Imperial College, London SW7 2BW (United Kingdom); Stelt, P.F. van der [Department of Oral and Maxillofacial Radiology, Academic Centre for Dentistry Amsterdam, NL 1066 EA Amsterdam (Netherlands)

    2007-04-01

    A compact, portable PC-based X-ray imaging system has been developed based on a 2D silicon microstrip sensor and particle physics readout electronics. The sensor is housed in a specially built hybrid, which also hosts the front-end electronics. The control and the readout electronics used are based on the standard PCI and PMC architectures and were originally developed for High Energy Physics Experiments. The use of PCI based electronics and the development of the control software for the PC-Linux platform led to a compact, portable, low cost imaging system. The system was initially tested and evaluated with beta particles from a {sup 90}Sr radioactive source, gamma rays from an {sup 241}Am radioactive source and cosmic rays, and it displayed consistent response. It was then operated using a compact X-ray machine with Mo tube and images of various targets were reconstructed offline using the ROOT data analysis package.

  10. X-ray emission from hot subdwarfs with compact companions

    CERN Document Server

    Mereghetti, Sandro; Esposito, Paolo; Tiengo, Andrea

    2012-01-01

    We review the X-ray observations of hot subdwarf stars. While no X-ray emission has been detected yet from binaries containing B-type subdwarfs, interesting results have been obtained in the case of the two luminous O-type subdwarfs HD 49798 and BD +37 442. Both of them are members of binary systems in which the X-ray luminosity is powered by accretion onto a compact object: a rapidly spinning (13.2 s) and massive (1.28 M_sun) white dwarf in the case of HD 49798 and most likely a neutron star, spinning at 19.2 s, in the case of BD +37 442. Their study can shed light on the poorly known processes taking place during common envelope evolutionary phases and on the properties of wind mass loss from hot subdwarfs.

  11. Compact x-ray lasers in the laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Barletta, W.A.

    1988-10-03

    Compact x-ray lasers in the laboratory can be produced with ultrahigh gradient rf linacs based on recent advances in linac technology by an SLAC-LLNL-LBL collaboration and on the development of bright, high current electron sources by BNL and LANL. The GeV electron beams generated with such accelerators can be converted to soft x rays in the range of 2--10 nm by passage through short period, high field strength wigglers. Alternatively, the beam can pump a low density dielectric to produce x rays via recombination. Such linear light sources can produce trains of picosecond (or shorter) pulses of extremely high spectral brilliance suitable for flash holography of biological specimens in vivo and for studies of fast chemical reactions. 15 refs., 7 figs., 3 tabs.

  12. Compact Stars in low-mass X-ray binaries

    OpenAIRE

    Hossein, Sk. Monowar; Molla, Sajahan; Jafry, Md. Abdul Kayum; Kalam, Mehedi

    2014-01-01

    We propose a model for compact stars in low-mass X-ray binaries(LMXBs) namely KS 1731-260, EXO 1745-248 and 4U 1608-52. Here we investigate the physical phenomena of a compact star in the LMXBs. Using our model, we have calculated central density, surface density, mass(M) and red-shift for the above mentioned compact stars, which is very much consistent with the reported data. We also obtain the possible equation of state(EOS) of the stars which is physically acceptable.

  13. A novel compact Tokamak Hard X-ray diagnostic detector

    Institute of Scientific and Technical Information of China (English)

    曹靖; 蒋春雨; 赵艳凤; 杨青巍; 阴泽杰

    2015-01-01

    A compact X-ray detector based on the lutetium yttrium oxyorthosilicate scintillator (LYSO) and silicon photomultiplier (SiPM) has been designed and fabricated for the hard X-ray diagnosis on the HL 2A and HL 2M Tokamak devices. The LYSO scintillator and SiPM in small dimensions were combined in a heat shrink tube package, making the detector compact and integrative. The Monte Carlo particle transport simulation tool, Geant4, was utilized for the design of the detector for the hard X-ray from 10 keV to 200 keV and the best structure scheme was presented. Finally, the detector was used to measure the photon spectrum of a 137Cs gamma source with a pre-amplifier and a multichannel amplitude analyzer. The measured spectrum is consistent with the theoretic spectrum, it has shown that the energy resolution of the detector is less than 14.8%at an energy of 662 keV.

  14. Population synthesis of ultra-compact X-ray binaries

    Institute of Scientific and Technical Information of China (English)

    Chun-Hua Zhu; Guo-Liang Lü; Zhao-Jun Wang

    2012-01-01

    Ultra-compact X-ray binaries (UCXBs) are very interesting and important objects.By taking the population synthesis approach to the evolution of binaries,we carry out a detailed study of UCXBs.We estimate that there are ~ 5000-10000 UCXBs in the Galaxy,and their birthrates are ~ 2.6-7.5 × 10-4 yr-1.Most UCXBs are transient X-ray sources,but their X-ray luminosities are much lower than those of persistent sources.Therefore,the majority of observed UCXBs should be persistent sources.About 40%-70% of neutron stars (NSs) in UCXBs form via an accretion-induced collapse from an accreting ONe white dwarf (WD),1%-10% of NSs in UCXBs form via core-collapse supernovae and others form via the evolution-induced collapse of a naked helium star.About 50%-80% of UCXBs have naked helium star donors,5%-10% of UCXBs have HeWD donors,15%-40% of UCXBs have COWD donors and UCXBs with ONeWD donors are negligible.Our investigation indicates that the uncertainty mainly comes from evolution of the common-envelope which develops in these systems.

  15. Compact X-ray source based on Compton backscattering

    CERN Document Server

    Bulyak, E V; Zelinsky, A; Karnaukhov, I; Kononenko, S; Lapshin, V G; Mytsykov, A; Telegin, Yu P; Khodyachikh, A; Shcherbakov, A; Molodkin, V; Nemoshkalenko, V; Shpak, A

    2002-01-01

    The feasibility study of an intense X-ray source based on the interaction between the electron beam in a compact storage ring and the laser pulse accumulated in an optical resonator is carried out. We propose to reconstruct the 160 MeV electron storage ring N-100, which was shutdown several years ago. A new magnetic lattice will provide a transverse of electron beam size of approx 35 mu m at the point of electron beam-laser beam interaction. The proposed facility is to generate X-ray beams of intensity approx 2.6x10 sup 1 sup 4 s sup - sup 1 and spectral brightness approx 10 sup 1 sup 2 phot/0.1%bw/s/mm sup 2 /mrad sup 2 in the energy range from 10 keV up to 0.5 MeV. These X-ray beam parameters meet the requirements for most of technological and scientific applications. Besides, we plan to use the new facility for studying the laser cooling effect.

  16. Towards brilliant, compact x-ray sources: a new x-ray photonic device

    Science.gov (United States)

    Scherer, Brian; Mandal, Sudeep; Salisbury, Joshua; Edic, Peter; Hopkins, Forrest; Lee, Susanne M.

    2017-05-01

    General Electric has designed an innovative x-ray photonic device that concentrates a polychromatic beam of diverging x-rays into a less divergent, parallel, or focused x-ray beam. The device consists of multiple, thin film multilayer stacks. X-rays incident on a given multilayer stack propagate within a high refractive index transmission layer while undergoing multiple total internal reflections from a novel, engineered multilayer containing materials of lower refractive index. Development of this device could lead to order-of-magnitude flux density increases, over a large broadband energy range from below 20 keV to above 300 keV. In this paper, we give an overview of the device and present GE's progress towards fabricating prototype devices.

  17. Soft x-ray spectromicroscopy using compact scanning transmission x-ray microscope at the photon factory

    Energy Technology Data Exchange (ETDEWEB)

    Takeichi, Yasuo, E-mail: yasuo.takeichi@kek.jp; Inami, Nobuhito; Ono, Kanta [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba 305-0801 (Japan); Ueno, Tetsuro [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Suga, Hiroki [Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526 (Japan); Takahashi, Yoshio [The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2016-07-27

    We report the stability and recent performances of a new type of scanning transmission X-ray microscopy. The optics and compact design of the microscope realized mobility and robust performance. Detailed consideration to the vibration control will be described. The insertion device upgraded to elliptical polarization undulator enabled linear dichroism and circular dichroism experiments.

  18. A Compact X-Ray System for Macromolecular Crystallography. 5

    Science.gov (United States)

    Gubarev, Mikhail; Ciszak, Ewa; Ponomarev, Igor; Joy, Marshall

    2000-01-01

    We describe the design and performance of a high flux x-ray system for macromolecular crystallography that combines a microfocus x-ray generator (40 gm FWHM spot size at a power level of 46.5Watts) and a 5.5 mm focal distance polycapillary optic. The Cu K(sub alpha) X-ray flux produced by this optimized system is 7.0 times above the X-ray flux previously reported. The X-ray flux from the microfocus system is also 3.2 times higher than that produced by the rotating anode generator equipped with a long focal distance graded multilayer monochromator (Green optic; CMF24-48-Cu6) and 30% less than that produced by the rotating anode generator with the newest design of graded multilayer monochromator (Blue optic; CMF12-38-Cu6). Both rotating anode generators operate at a power level of 5000 Watts, dissipating more than 100 times the power of our microfocus x-ray system. Diffraction data collected from small test crystals are of high quality. For example, 42,540 reflections collected at ambient temperature from a lysozyme crystal yielded R(sub sym) 5.0% for the data extending to 1.7A, and 4.8% for the complete set of data to 1.85A. The amplitudes of the reflections were used to calculate difference electron density maps that revealed positions of structurally important ions and water molecules in the crystal of lysozyme using the phases calculated from the protein model.

  19. A Compact X-Ray System for Macromolecular Crystallography

    Science.gov (United States)

    Gubarev, Mikhail; Ciszak, Ewa; Ponomarev, Igor; Gibson, Walter; Joy, Marshall

    2000-01-01

    We describe the design and performance of a high flux x-ray system for a macromolecular crystallography that combines a microfocus x-ray generator (40 micrometer full width at half maximum spot size at a power level of 46.5 W) and a collimating polycapillary optic. The Cu Ka lpha x-ray flux produced by this optimized system through a 500,um diam orifice is 7.0 times greater than the x-ray flux previously reported by Gubarev et al. [M. Gubarev et al., J. Appl. Crystallogr. 33, 882 (2000)]. The x-ray flux from the microfocus system is also 2.6 times higher than that produced by a rotating anode generator equipped with a graded multilayer monochromator (green optic, Osmic Inc. CMF24-48-Cu6) and 40% less than that produced by a rotating anode generator with the newest design of graded multilayer monochromator (blue optic, Osmic, Inc. CMF12-38-Cu6). Both rotating anode generators operate at a power level of 5000 W, dissipating more than 100 times the power of our microfocus x-ray system. Diffraction data collected from small test crystals are of high quality. For example, 42 540 reflections collected at ambient temperature from a lysozyme crystal yielded R(sub sym)=5.0% for data extending to 1.70 A, and 4.8% for the complete set of data to 1.85 A. The amplitudes of the observed reflections were used to calculate difference electron density maps that revealed positions of structurally important ions and water molecules in the crystal of lysozyme using the phases calculated from the protein model.

  20. Compact scanning transmission x-ray microscope at the photon factory

    Energy Technology Data Exchange (ETDEWEB)

    Takeichi, Yasuo, E-mail: yasuo.takeichi@kek.jp; Inami, Nobuhito; Ono, Kanta [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba 305-0801 (Japan); Suga, Hiroki [Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526 (Japan); Takahashi, Yoshio [Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526 (Japan); The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2016-01-28

    We report the design and performance of a compact scanning transmission X-ray microscope developed at the Photon Factory. Piezo-driven linear stages are used as coarse stages of the microscope to realize excellent compactness, mobility, and vibrational and thermal stability. An X-ray beam with an intensity of ∼10{sup 7} photons/s was focused to a diameter of ∼40 nm at the sample. At the soft X-ray undulator beamline used with the microscope, a wide range of photon energies (250–1600 eV) is available. The microscope has been used to research energy materials and in environmental sciences.

  1. X-ray reflection in oxygen-rich accretion discs of ultra-compact X-ray binaries

    CERN Document Server

    Madej, O K; Jonker, P G; Parker, M L; Ross, R; Fabian, A C; Chenevez, J

    2014-01-01

    We present spectroscopic X-ray data of two candidate ultra-compact X-ray binaries: 4U~0614+091 and 4U~1543$-$624. We confirm the presence of a broad O VIII Ly$\\alpha$ reflection line (at $\\approx18\\ \\AA$) using {\\it XMM-Newton} and {\\it Chandra} observations obtained in 2012 and 2013. The donor star in these sources is carbon-oxygen or oxygen-neon-magnesium white dwarf. Hence, the accretion disc is enriched with oxygen which makes the O VIII Ly$\\alpha$ line particularly strong. We also confirm the presence of a strong absorption edge at $\\approx14$ \\AA\\ so far interpreted in the literature as due to absorption by neutral neon in the circumstellar and interstellar medium. However, the abundance required to obtain a good fit to this edge is $\\approx3-4$ times solar, posing a problem for this interpretation. Furthermore, modeling the X-ray reflection off a carbon and oxygen enriched, hydrogen and helium poor disc with models assuming solar composition likely biases several of the best-fit parameters. In order to...

  2. First X-ray observations of Low-Power Compact Steep Spectrum Sources

    CERN Document Server

    Kunert-Bajraszewska, M; Siemiginowska, A; Guainazzi, M

    2013-01-01

    We report first X-ray Chandra observations of a sample of seven low luminosity compact (LLC) sources. They belong to a class of young compact steep spectrum (CSS) radio sources. Four of them have been detected, the other three have upper limit estimations for X-ray flux, one CSS galaxy is associated with an X-ray cluster. We have used the new observations together with the observational data for known strong CSS and gigahertz-peaked spectrum (GPS) objects and large scale FRIs and FRIIs to study the relation between morphology, X-ray properties and excitation modes in radio-loud AGNs. We found that: (1) The low power objects fit well to the already established X-ray - radio luminosity correlation for AGNs and occupy the space among, weaker in the X-rays, FRI objects. (2) The high excitation galaxies (HEG) and low excitation galaxies (LEG) occupy distinct locus in the radio/X-ray luminosity plane, notwithstanding their evolutionary stage. This is in agreement with the postulated different origin of the X-ray em...

  3. The Diffuse and Compact X-ray Components of the Starburst Galaxy Henize~2-10

    CERN Document Server

    Kobulnicky, Henry A

    2010-01-01

    Chandra X-ray imaging spectroscopy of the starburst galaxy Henize 2-10 reveals a strong nuclear point source and at least two fainter compact sources embedded within a more luminous diffuse thermal component. Spectral fits to the nuclear X-ray source imply an unabsorbed X-ray luminosity L_x >10^40 erg/s for reasonable power law or blackbody models, consistent with accretion onto a >50 solar mass black hole behind a foreground absorbing column of N_H>10^23 /cm^2. Two of these point sources have L_x=2-5 x 10^38 erg/s, comparable to luminous X-ray binaries. These compact sources constitute a small fraction (<16%) of the total X-ray flux from He~2-10 in the 0.3--6.0 keV band and just 31% of the X-rays in the hard 1.1--6.0 keV band which is dominated by diffuse emission. Two-temperature solar-composition plasmas (kT~0.2 keV and kT~0.7 keV) fit the diffuse X-ray component as well as single-temperature plasmas with enhanced alpha/Fe ratios. Since the observed radial gradient of the X-ray surface brightness closel...

  4. Evaluation of a multi-guard ring (MGR) structure diode as diagnostic X-ray dosimeter

    Science.gov (United States)

    Camargo, F.; Khoury, H. J.; Nascimento, C. R.; Asfora, V. K.; Bueno, C. C.

    2007-09-01

    In this paper, we describe the results obtained for the evaluation of a multi-guard ring (MGR) structure diode as diagnostic X-ray dosimeter. This device was developed in the framework of R&D programs for the future CMS experiment at the Large Hadron Collider (LHC) with high radiation hardness to fulfill the requirements from this accelerator environment. In order to use the MGR diode as a dosimeter, it was connected in the photovoltaic mode to the input of an integrating electrometer and positioned at the center of an X-ray beam, beside a previously calibrated ionization chamber. The dependence of the diode response on the X-ray beam doses was evaluated for 35-90 kV X-ray generator bias supply, with doses in the range of 50 μGy-5 mGy. The good linearity of the dose-response curve obtained showed the MGR diode dosimeter to be a reliable alternative method for diagnostic X-ray dosimetry.

  5. Progress in compact soft x-ray lasers and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Suckewer, S.; Skinner, C.H.

    1995-01-01

    The ultra-high brightness and short pulse duration of soft x-ray lasers provide unique advantages for novel applications. A crucial factor in the availability of these devices is their scale and cost. Recent breakthroughs in this field has brought closer the advent of table-top devices, suitable for applications to fields such as x-ray microscopy, chemistry, material science, plasma diagnostics, and lithography. In this article we review recent progress in the development of compact (table-top) soft x-ray lasers.

  6. X-ray phase-contrast tomography with a compact laser-driven synchrotron source.

    Science.gov (United States)

    Eggl, Elena; Schleede, Simone; Bech, Martin; Achterhold, Klaus; Loewen, Roderick; Ruth, Ronald D; Pfeiffer, Franz

    2015-05-05

    Between X-ray tubes and large-scale synchrotron sources, a large gap in performance exists with respect to the monochromaticity and brilliance of the X-ray beam. However, due to their size and cost, large-scale synchrotrons are not available for more routine applications in small and medium-sized academic or industrial laboratories. This gap could be closed by laser-driven compact synchrotron light sources (CLS), which use an infrared (IR) laser cavity in combination with a small electron storage ring. Hard X-rays are produced through the process of inverse Compton scattering upon the intersection of the electron bunch with the focused laser beam. The produced X-ray beam is intrinsically monochromatic and highly collimated. This makes a CLS well-suited for applications of more advanced--and more challenging--X-ray imaging approaches, such as X-ray multimodal tomography. Here we present, to our knowledge, the first results of a first successful demonstration experiment in which a monochromatic X-ray beam from a CLS was used for multimodal, i.e., phase-, dark-field, and attenuation-contrast, X-ray tomography. We show results from a fluid phantom with different liquids and a biomedical application example in the form of a multimodal CT scan of a small animal (mouse, ex vivo). The results highlight particularly that quantitative multimodal CT has become feasible with laser-driven CLS, and that the results outperform more conventional approaches.

  7. Versatile compact X-ray radiography module for materials science under microgravity conditions

    Science.gov (United States)

    Kargl, F.; Balter, M.; Stenzel, Ch; Gruhl, Th; Daneke, N.; Meyer, A.

    2011-12-01

    A versatile compact microfocus X-ray radiography facility is presented. The facility serves as a technology demonstrator showing the applicability of X-ray radiography to experiments in space. It has been designed as an insert fully compatible with requirements of the Materials Science Laboratory aboard the International Space Station. The facility consists of a microfocus X-ray source delivering up to 20 W X-ray power at 100kV acceleration voltage and a 49.2×49.3mm RadEye2 sensor with a Scint-X scintillator at 48μm per pixel resolution with a 14bit dynamic range. The total device weight including sample chamber is 43 kg. The facility is classified as a fully protected radiography equipment according to German radiation safety laws. The capabilities of the facility for research in materials sciences are demonstrated in ground-based experiments.

  8. The INTEGRAL long monitoring of persistent Ultra Compact X-ray Bursters

    CERN Document Server

    Fiocchi, M; Ubertini, P; Bird, A J; Natalucci, L; Sguera, V

    2008-01-01

    The combination of compact objects, short period variability and peculiar chemical composition of the Ultra Compact X-ray Binaries make up a very interesting laboratory to study accretion processes and thermonuclear burning on the neutron star surface. The improved large optical telescopes and more sensitive X-ray satellites have increased the number of known Ultra Compact X-ray Binaries allowing their study with unprecedented detail. We analyze the average properties common to all ultra compact Bursters observed by INTEGRAL from ~0.2keV to ~150keV. We have performed a systematic analysis of the INTEGRAL public data and Key-Program proprietary observations of a sample of the Ultra Compact X-ray Binaries. In order to study their average properties in a very broad energy band, we combined INTEGRAL with BeppoSAX and SWIFT data whenever possible. For sources not showing any significant flux variations along the INTEGRAL monitoring, we build the average spectrum by combining all available data; in the case of vari...

  9. 4H-SiC Schottky diode arrays for X-ray detection

    Science.gov (United States)

    Lioliou, G.; Chan, H. K.; Gohil, T.; Vassilevski, K. V.; Wright, N. G.; Horsfall, A. B.; Barnett, A. M.

    2016-12-01

    Five SiC Schottky photodiodes for X-ray detection have been electrically characterized at room temperature. One representative diode was also electrically characterized over the temperature range 20°C to 140 °C. The performance at 30 °C of all five X-ray detectors, in both current mode and for photon counting X-ray spectroscopy was investigated. The diodes were fabricated in an array form such that they could be operated as either a 2×2 or 1×3 pixel array. Although the devices showed double barrier heights, high ideality factors and higher than expected leakage current at room temperature (12 nA/cm2 at an internal electric field of 105 kV/cm), they operated as spectroscopic photon counting soft X-ray detectors uncooled at 30 °C. The measured energy resolution (FWHM at 17.4 keV, Mo Kα) varied from 1.36 to 1.68 keV among different diodes.

  10. X-ray detection with a linear silicon photo-diode array

    Energy Technology Data Exchange (ETDEWEB)

    Zutavern, F.; Aton, T.; Franck, C; Schnatterly, S.

    1982-01-01

    A phosphor-coated silicon photo-diode array has been used as the detector in an ultra-high vacuum, soft X-ray emission spectrograph. In developing this detection system, measurements on a bare array, a phosphor coated array, and a phosphor coated photo-multiplier tube were made at the Synchrotron Ultraviolet Radiation Facility (SURF), NBS, Washington, D.C. The results of these measurements and the performance of this detection system will be discussed. These results will then be extrapolated into the X-ray energy range used by crystallographers.

  11. Filtered x-ray diode diagnostics fielded on the Z-accelerator for source power measurements

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, G.A.; Deeney, C.; Cuneo, M. [and others

    1998-06-02

    Filtered x-ray diode, (XRD), detectors are used as primary radiation flux diagnostics on Sandia`s Z-accelerator, which generates nominally a 200 TW, 2 MJ, x-ray pulse. Given such flux levels and XRD sensitivities the detectors are being fielded 23 meters from the source. The standard diagnostic setup and sensitivities are discussed. Vitreous carbon photocathodes are being used to reduce the effect of hydrocarbon contamination present in the Z-machine vacuum system. Nevertheless pre- and post-calibration data taken indicate spectrally dependent changes in the sensitivity of these detectors by up to factors up to 2 or 3.

  12. Design study of compact Laser-Electron X-ray Generator for material and life science applications

    CERN Document Server

    Bessonov, E G; Kostrukov, P V; Maslova, Yu Ya; Tunkin, V G; Postnov, A A; Mikhailichenko, A A; Shvedunov, V I; Ishkhanov, B S; Vinogradov, A V

    2016-01-01

    X-Ray generations utilizing Thomson scattering fill in the gap that exists between conventional and synchrotron-based X-ray sources. They are expected to be more intense than X-ray tubes and more compact, accessible and less expensive than synchrotron. In this work, two operation modes of Thomson X-ray source are documented: quasi CW(QCW) and a pulsed one are considered for material sciences and medical applications being implemented currently at Synchrotron Radiation (SR) facilities.

  13. Development of Compact Soft X-ray Source Based on Laser Undulator

    CERN Document Server

    Kuroda, Ryunosuke; Minamiguchi, S; Saitô, T; Ueyama, D; Washio, Masakazu

    2004-01-01

    A compact soft X-ray source is required in various research fields such as material and biological science. The laser undulator based on backward Compton scattering has been developed as a compact soft X-ray source for the biological observation at Waseda University. It is performed in a water window region (250eV - 500 eV) using the interaction between 1047 nm Nd:YLF laser and 4 MeV high quality electron beam generated from rf gun system. The range of energy in the water window region has K-shell absorption edges of Oxygen, Carbon and Nitrogen, which mainly constitute of living body. Since the absorption coefficient of water is much smaller than the protein’s coefficient in this range, a dehydration of the specimens is not necessary. As a preliminary experiment, about 300 eV X-ray generation was carried out. As next step, soft X-ray optics with zone plate was proposed for Soft X-ray microscopy. In this conference, we will report details and results of the experiment.

  14. The Chandra planetary nebula survey (CHANPLANS). II. X-ray emission from compact planetary nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, M.; Kastner, J. H. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Montez, R. Jr. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN (United States); Balick, B. [Department of Astronomy, University of Washington, Seattle, WA (United States); Frew, D. J.; De Marco, O.; Parker, Q. A. [Department of Physics and Astronomy and Macquarie Research Centre for Astronomy, Astrophysics and Astrophotonics, Macquarie University, Sydney, NSW 2109 (Australia); Jones, D. [Departamento de Física, Universidad de Atacama, Copayapu 485, Copiapó (Chile); Miszalski, B. [South African Astronomical Observatory, P.O. Box 9, Observatory, 7935 (South Africa); Sahai, R. [Jet Propulsion Laboratory, MS 183-900, California Institute of Technology, Pasadena, CA 91109 (United States); Blackman, E.; Frank, A. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Chu, Y.-H. [Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Guerrero, M. A. [Instituto de Astrofísica de Andalucía, IAA-CSIC, Glorieta de la Astronomía s/n, Granada, E-18008 (Spain); Lopez, J. A. [Instituto de Astronomía, Universidad Nacional Autonoma de Mexico, Campus Ensenada, Apdo. Postal 22860, Ensenada, B. C. (Mexico); Zijlstra, A. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Bujarrabal, V. [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Corradi, R. L. M. [Departamento de Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife (Spain); Nordhaus, J. [NSF Astronomy and Astrophysics Fellow, Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623 (United States); and others

    2014-10-20

    We present results from the most recent set of observations obtained as part of the Chandra X-ray observatory Planetary Nebula Survey (CHANPLANS), the first comprehensive X-ray survey of planetary nebulae (PNe) in the solar neighborhood (i.e., within ∼1.5 kpc of the Sun). The survey is designed to place constraints on the frequency of appearance and range of X-ray spectral characteristics of X-ray-emitting PN central stars and the evolutionary timescales of wind-shock-heated bubbles within PNe. CHANPLANS began with a combined Cycle 12 and archive Chandra survey of 35 PNe. CHANPLANS continued via a Chandra Cycle 14 Large Program which targeted all (24) remaining known compact (R {sub neb} ≲ 0.4 pc), young PNe that lie within ∼1.5 kpc. Results from these Cycle 14 observations include first-time X-ray detections of hot bubbles within NGC 1501, 3918, 6153, and 6369, and point sources in HbDs 1, NGC 6337, and Sp 1. The addition of the Cycle 14 results brings the overall CHANPLANS diffuse X-ray detection rate to ∼27% and the point source detection rate to ∼36%. It has become clearer that diffuse X-ray emission is associated with young (≲ 5 × 10{sup 3} yr), and likewise compact (R {sub neb} ≲ 0.15 pc), PNe with closed structures and high central electron densities (n{sub e} ≳ 1000 cm{sup –3}), and is rarely associated with PNe that show H{sub 2} emission and/or pronounced butterfly structures. Hb 5 is one such exception of a PN with a butterfly structure that hosts diffuse X-ray emission. Additionally, two of the five new diffuse X-ray detections (NGC 1501 and NGC 6369) host [WR]-type central stars, supporting the hypothesis that PNe with central stars of [WR]-type are likely to display diffuse X-ray emission.

  15. Semi-transparent SiC Schottky diodes for X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lees, J.E. [Space Research Centre, Department of Physics and Astronomy, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH (United Kingdom)]. E-mail: lee@star.le.ac.uk; Bassford, D.J. [Space Research Centre, Department of Physics and Astronomy, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH (United Kingdom); Fraser, G.W. [Space Research Centre, Department of Physics and Astronomy, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH (United Kingdom); Horsfall, A.B. [Semiconductor Technology Group, School of Electrical, Electronic and Computer Engineering, Merz Court, University of Newcastle, Newcastle NE1 7RU (United Kingdom); Vassilevski, K.V. [Semiconductor Technology Group, School of Electrical, Electronic and Computer Engineering, Merz Court, University of Newcastle, Newcastle NE1 7RU (United Kingdom); Wright, N.G. [Semiconductor Technology Group, School of Electrical, Electronic and Computer Engineering, Merz Court, University of Newcastle, Newcastle NE1 7RU (United Kingdom); Owens, A. [Office of Science Payload and Advanced Concepts, European Space Agency ESTEC SCI-A, Postbus 299, 2200AG Noordwijk (Netherlands)

    2007-07-21

    We describe a novel SiC Schottky diode architecture. The semi-transparent SiC Schottky diode has an 'ultra-thin' (18 nm Ni/Ti) Schottky contact, a gold annular overlayer and a gold corner-contact pad. We show that the new architecture exhibits the same essential characteristics as a more conventional 'thick-contact' Schottky diode ({>=}100 nm). Such diodes will have a higher efficiency for low-energy (<5 keV) X-rays than that of conventional structures combined with minimal self-fluorescence from the electrode materials. We present X-ray spectra from {sup 55}Fe, {sup 109}Cd and {sup 241}Am radioactive sources that show these diodes can be used for spectroscopy with promising energy resolution (1.47 keV FWHM at 22 keV) at room temperature (23 {sup o}C). The reduction in contact thickness, however, does reduce the barrier height of the new diodes in comparison to those fabricated using the conventional process, and requires a trade-off between the low-energy detection threshold and the noise in the detector.

  16. Compact source of narrowband and tunable X-rays for radiography

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Sudeep, E-mail: sbanejee2@unl.edu [Department of Physics and Astronomy, University of Nebraska, Lincoln, NE 68516 (United States); Chen, Shouyuan; Powers, Nathan; Haden, Daniel; Liu, Cheng; Golovin, G.; Zhang, Jun; Zhao, Baozhen [Department of Physics and Astronomy, University of Nebraska, Lincoln, NE 68516 (United States); Clarke, S.; Pozzi, S. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Silano, J.; Karwowski, H. [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599 (United States); Umstadter, Donald [Department of Physics and Astronomy, University of Nebraska, Lincoln, NE 68516 (United States)

    2015-05-01

    We discuss the development of a compact X-ray source based on inverse-Compton scattering with a laser-driven electron beam. This source produces a beam of high-energy X-rays in a narrow cone angle (5–10 mrad), at a rate of 10{sup 8} photons-s{sup −1}. Tunable operation of the source over a large energy range, with energy spread of ∼50%, has also been demonstrated. Photon energies >10 MeV have been obtained. The narrowband nature of the source is advantageous for radiography with low dose, low noise, and minimal shielding.

  17. X-ray detection with zinc-blende (cubic) GaN Schottky diodes.

    Science.gov (United States)

    Gohil, T; Whale, J; Lioliou, G; Novikov, S V; Foxon, C T; Kent, A J; Barnett, A M

    2016-01-01

    The room temperature X-ray responses as functions of time of two n type cubic GaN Schottky diodes (200 μm and 400 μm diameters) are reported. The current densities as functions of time for both diodes showed fast turn-on transients and increases in current density when illuminated with X-ray photons of energy up to 35 keV. The diodes were also electrically characterized: capacitance, implied depletion width and dark current measurements as functions of applied bias at room temperature are presented. At -5 V reverse bias, the capacitances of the diodes were measured to be (84.05 ± 0.01) pF and (121.67 ± 0.02) pF, respectively. At -5 V reverse bias, the dark current densities of the diodes were measured to be (347.2 ± 0.4) mA cm(-2) and (189.0 ± 0.2) mA cm(-2), respectively. The Schottky barrier heights of the devices (0.52 ± 0.07) eV and (0.63 ± 0.09) eV, respectively, were extracted from the forward dark current characteristics.

  18. A Bright Spatially-Coherent Compact X-ray Synchrotron Source

    CERN Document Server

    Kneip, S; Martins, J L; Martins, S F; Bellei, C; Chvykov, V; Dollar, F; Fonseca, R; Huntington, C; Kalintchenko, G; Maksimchuk, A; Mangles, S P D; Matsuoka, T; Nagel, S R; Palmer, C; Schreiber, J; Phuoc, K Ta; Thomas, A G R; Yanovsky, V; Silva, L O; Krushelnick, K; Najmudin, Z

    2009-01-01

    Each successive generation of x-ray machines has opened up new frontiers in science, such as the first radiographs and the determination of the structure of DNA. State-of-the-art x-ray sources can now produce coherent high brightness keV x-rays and promise a new revolution in imaging complex systems on nanometre and femtosecond scales. Despite the demand, only a few dedicated synchrotron facilities exist worldwide, partially due the size and cost of conventional (accelerator) technology. Here we demonstrate the use of a recently developed compact laser-plasma accelerator to produce a well-collimated, spatially-coherent, intrinsically ultrafast source of hard x-rays. This method reduces the size of the synchrotron source from the tens of metres to centimetre scale, accelerating and wiggling a high electron charge simultaneously. This leads to a narrow-energy spread electron beam and x-ray source that is >1000 times brighter than previously reported plasma wiggler and thus has the potential to facilitate a myri...

  19. Hard X-rays from Ultra-Compact HII Regions in W49A

    CERN Document Server

    Tsujimoto, M; Feigelson, E D; Getman, K V; Broos, P S

    2006-01-01

    We report the Chandra detection of hard X-ray emission from the Welch ring in W49A, an organized structure of ultra-compact (UC) HII regions containing a dozen nascent early-type stars. Two UC HII regions are associated with hard X-ray emission in a deep Advanced CCD Imaging Spectrometer image exposed for 96.7 ks. One of the two X-ray sources has no near-infrared counterpart and is extended by ~5 arcsec, or ~0.3 pc, at a distance of ~11.4 kpc, which is spatially aligned with the cometary radio continuum emission associated with the UC HII region. The X-ray spectrum of the emission, when fit with a thermal model, indicates a heavily absorbed plasma with extinction of \\~5x10^{23}/cm^{2}, temperature of ~7 keV, and X-ray luminosity in the 3.0-8.0 keV band of ~3x10^{33} ergs/s. Both the luminosity and the size of the emission resemble the extended hard emission found in UC HII regions in Sagittarius B2, yet they are smaller by an order of magnitude than the emission found in massive star clusters such as NGC 3603...

  20. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    CERN Document Server

    Madau, Piero

    2016-01-01

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct HeI photoionizations are the main source of IGM ...

  1. Classification of compact binaries: an X-ray analog to the HR diagram

    Science.gov (United States)

    Dil Vrtilek, Saeqa; Raymond, John C.; Gopalan, Giri; Boroson, Bram Seth; Bornn, Luke

    2016-06-01

    X-ray binary systems (XRBs), when examined in an appropriate coordinate system derived from X-ray spectral and intensity information, appear to cluster based on their compact object type. We introduce such a coordinate system, in which two coordinates are hardness ratios and the third is a broadband X-ray intensity. In Gopalan, Vrtilek, & Bornn (2015) we developed a Bayesian statistical model that estimates the probability that an XRB contains a black hole, non-pulsing neutron star, or pulsing neutron star, depending on its location in our coordinate space. In particular, we utilized a latent variable model in which the latent variables follow a Gaussian process prior distribution. Here we expand our work to incorporate systems where the compact object is a white dwarf: cataclysmic variables (CVs). The fact that the CVs also fall into a location spatially distinct from the other XRB types supports the use of X-ray color-color-intensity diagrams as 3-dimensional analogs to the Hertzsprung-Russell diagram for normal stars.

  2. Operation of an Extremely Compact Capillary Discharge Soft X-Ray Laser

    Science.gov (United States)

    Benware, B. R.; Moreno, C. H.; Burd, D. J.; Rocca, J. J.

    1996-11-01

    A major goal in ultrashort wavelength laser research is the development of practical laser sources that can impact applications. Of particular interest is the development of compact "table-top" amplifiers. We have previously reported the first observation of large soft x-ray amplification, at 46.9 nm in the J=0-1 line of Ne-like argon in a plasma column generated by a fast capillary discharge.(J. J. Rocca, V. Shlyaptsev, F. G. Tomasel, O. D. Cortazar, D. Hartshorn, and J. L. A. Chilla, Phys. Rev. Lett. 73), 2192 (1994). Herein we report the successful operation of an extremely compact table-top discharge driven 46.9 nm laser. Measurement of the soft x-ray laser output pulse energy, pulse duration and beam divergence will be reported. Work supported by the National Science Foundation.

  3. A compact low cost “master–slave” double crystal monochromator for x-ray cameras calibration of the Laser MégaJoule Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, S., E-mail: sebastien.hubert@cea.fr; Prévot, V.

    2014-12-21

    The Alternative Energies and Atomic Energy Commission (CEA-CESTA, France) built a specific double crystal monochromator (DCM) to perform calibration of x-ray cameras (CCD, streak and gated cameras) by means of a multiple anode diode type x-ray source for the MégaJoule Laser Facility. This DCM, based on pantograph geometry, was specifically modeled to respond to relevant engineering constraints and requirements. The major benefits are mechanical drive of the second crystal on the first one, through a single drive motor, as well as compactness of the entire device. Designed for flat beryl or Ge crystals, this DCM covers the 0.9–10 keV range of our High Energy X-ray Source. In this paper we present the mechanical design of the DCM, its features quantitatively measured and its calibration to finally provide monochromatized spectra displaying spectral purities better than 98%.

  4. An X-ray View of the Zoo of Compact Objects and Associated Supernova Remnants

    Science.gov (United States)

    Safi-Harb, Samar

    2015-08-01

    Core-collapse explosions of massive stars leave behind some of the most exotic compact objects in the Universe. These include: rotation-powered pulsars like the Crab, powering pulsar wind nebulae (PWNe) observed across the electromagnetic spectrum; highly magnetized neutron stars ("magnetars") shining or bursting at high-energies; and X-ray emitting “Central Compact Objects” (CCOs) with intrinsic properties and emission mechanism that remain largely unknown. I will highlight this observed diversity of compact stellar remnants from an X-ray perspective, and address the connection between their properties and those of their hosting supernova remnants (SNRs). In particular I will highlight topics related to their formation and evolution, including: 1) which supernovae make magnetars and the shell-less PWNe?, 2) what can we learn from the apparent age discrepancy between SNRs and their associated pulsars? I will conclude with prospects for observations of SNRs with the upcoming ASTRO-H X-ray mission. The unprecedented spectral resolution on board of ASTRO-H’s micro-calorimeter will particularly open a new discovery window for supernova progenitors' science.

  5. INTRAGROUP AND GALAXY-LINKED DIFFUSE X-RAY EMISSION IN HICKSON COMPACT GROUPS

    Energy Technology Data Exchange (ETDEWEB)

    Desjardins, Tyler D.; Gallagher, Sarah C. [Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7 (Canada); Tzanavaris, Panayiotis; Hornschemeier, Ann E. [Laboratory for X-ray Astrophysics, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Mulchaey, John S. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Brandt, William N.; Charlton, Jane C.; Garmire, Gordon P.; Gronwall, Caryl; Konstantopoulos, Iraklis S. [Department of Astronomy and Astrophysics, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA 16802 (United States); Johnson, Kelsey E. [Department of Astronomy, University of Virginia, P.O. Box 3813, Charlottesville, VA 22904 (United States); Zabludoff, Ann I., E-mail: tdesjar@uwo.ca [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 95721 (United States)

    2013-02-15

    Isolated compact groups (CGs) of galaxies present a range of dynamical states, group velocity dispersions, and galaxy morphologies with which to study galaxy evolution, particularly the properties of gas both within the galaxies and in the intragroup medium. As part of a large, multiwavelength examination of CGs, we present an archival study of diffuse X-ray emission in a subset of nine Hickson compact groups (HCGs) observed with the Chandra X-Ray Observatory. We find that seven of the groups in our sample exhibit detectable diffuse emission. However, unlike large-scale emission in galaxy clusters, the diffuse features in the majority of the detected groups are linked to the individual galaxies, in the form of both plumes and halos likely as a result of vigourous star formation or activity in the galaxy nucleus, as well as in emission from tidal features. Unlike previous studies from earlier X-ray missions, HCGs 31, 42, 59, and 92 are found to be consistent with the L{sub X} -T relationship from clusters within the errors, while HCGs 16 and 31 are consistent with the cluster L{sub X} -{sigma} relation, though this is likely coincidental given that the hot gas in these two systems is largely due to star formation. We find that L{sub X} increases with decreasing group H I to dynamical-mass ratio with tentative evidence for a dependence in X-ray luminosity on H I morphology whereby systems with intragroup H I indicative of strong interactions are considerably more X-ray luminous than passively evolving groups. We also find a gap in the L{sub X} of groups as a function of the total group specific star formation rate. Our findings suggest that the hot gas in these groups is not in hydrostatic equilibrium and these systems are not low-mass analogs of rich groups or clusters, with the possible exception of HCG 62.

  6. Intragroup and Galaxy-linked Diffuse X-ray Emission In Hickson Compact Groups

    Science.gov (United States)

    Desjardins, Tyler D.; Gallagher, Sarah C.; Tzanavaris, Panayiotis; Mulchaey, John S.; Brandt, William N.; Charlton, Jane C.; Garmire, Gordon P.; Gronwall, Caryl; Cardiff, Ann; Johnson, Kelsey E.; Konstantopoulos, Iraklis, S.; Zabludoff, Ann I.

    2013-01-01

    Isolated compact groups (CGs) of galaxies present a range of dynamical states, group velocity dispersions, and galaxy morphologies with which to study galaxy evolution, particularly the properties of gas both within the galaxies and in the intragroup medium. As part of a large, multiwavelength examination of CGs, we present an archival study of diffuse X-ray emission in a subset of nine Hickson compact groups (HCGs) observed with the Chandra X-Ray Observatory. We find that seven of the groups in our sample exhibit detectable diffuse emission. However, unlike large-scale emission in galaxy clusters, the diffuse features in the majority of the detected groups are linked to the individual galaxies, in the form of both plumes and halos likely as a result of vigourous star formation or activity in the galaxy nucleus, as well as in emission from tidal features. Unlike previous studies from earlier X-ray missions, HCGs 31, 42, 59, and 92 are found to be consistent with the L(sub X-Tau) relationship from clusters within the errors, while HCGs 16 and 31 are consistent with the cluster L(sub X-sigma) relation, though this is likely coincidental given that the hot gas in these two systems is largely due to star formation. We find that L(sub X) increases with decreasing group Hi to dynamical-mass ratio with tentative evidence for a dependence in X-ray luminosity on Hi morphology whereby systems with intragroup Hi indicative of strong interactions are considerably more X-ray luminous than passively evolving groups. We also find a gap in the L(sub X) of groups as a function of the total group specific star formation rate. Our findings suggest that the hot gas in these groups is not in hydrostatic equilibrium and these systems are not low-mass analogs of rich groups or clusters, with the possible exception of HCG 62.

  7. High intensity compact Compton X-ray sources: Challenges and potential of applications

    Energy Technology Data Exchange (ETDEWEB)

    Jacquet, M., E-mail: mjacquet@lal.in2p3.fr

    2014-07-15

    Thanks to the exceptional development of high power femtosecond lasers in the last 15 years, Compton based X-ray sources are in full development over the world in the recent years. Compact Compton sources are able to combine the compactness of the instrument with a beam of high intensity, high quality, tunable in energy. In various fields of applications such as biomedical science, cultural heritage preservation and material science researches, these sources should provide an easy working environment and the methods currently used at synchrotrons could be largely developed in a lab-size environment as hospitals, labs, or museums.

  8. Optics for the lattice of the compact storage ring for a Compton X-ray source

    Institute of Scientific and Technical Information of China (English)

    YU Pei-Cheng; WANG Yu; SHEN Xiao-zhe; HUANG Wen-Hui; YAN Li-xin; DU Ying-Chao; LI Ren-Kai; TANG Chuan-Xiang

    2009-01-01

    We present two types of optics for the lattice of a compact storage ring for a Compton X-ray source.The optics design for different operation modes of the storage ring are discussed in detail.For the pulse mode optics,an IBS-suppression scheme is applied to optimize the optics for lower IBS emittance growth rate;as for the steady mode,the method to control momentum compact factor is adopted[Gladkikh P,Phys.Rev.ST Accel.Beams 8,050702]to obtain stability of the electron beam.

  9. Monochromatic computed tomography with a compact laser-driven X-ray source.

    Science.gov (United States)

    Achterhold, K; Bech, M; Schleede, S; Potdevin, G; Ruth, R; Loewen, R; Pfeiffer, F

    2013-01-01

    A laser-driven electron-storage ring can produce nearly monochromatic, tunable X-rays in the keV energy regime by inverse Compton scattering. The small footprint, relative low cost and excellent beam quality provide the prospect for valuable preclinical use in radiography and tomography. The monochromaticity of the beam prevents beam hardening effects that are a serious problem in quantitative determination of absorption coefficients. These values are important e.g. for osteoporosis risk assessment. Here, we report quantitative computed tomography (CT) measurements using a laser-driven compact electron-storage ring X-ray source. The experimental results obtained for quantitative CT measurements on mass absorption coefficients in a phantom sample are compared to results from a rotating anode X-ray tube generator at various peak voltages. The findings confirm that a laser-driven electron-storage ring X-ray source can indeed yield much higher CT image quality, particularly if quantitative aspects of computed tomographic imaging are considered.

  10. K-edge digital subtraction imaging based on a dichromatic and compact x-ray source

    Science.gov (United States)

    Sarnelli, A.; Taibi, A.; Tuffanelli, A.; Baldazzi, G.; Bollini, D.; Cabal Rodriguez, A. E.; Gombia, M.; Prino, F.; Ramello, L.; Tomassi, E.; Gambaccini, M.

    2004-07-01

    This work proposes a compact dichromatic imaging system for the application of the K-edge digital subtraction technique based on a conventional x-ray tube and a monochromator system. A quasi-monochromatic x-ray beam at the energy of iodine K-edge is produced by Bragg diffraction on a mosaic crystal. Two thin adjacent beams with energies that bracket the K-edge discontinuity are obtained from the diffracted beam by means of a proper collimation system. They are then detected using an array of Si detectors. A home-made phantom is used to study the image quality as a function of iodine concentration. Signal and signal-to-noise ratio analysis has also been performed. The results are compared with theoretical expectations.

  11. K-edge digital subtraction imaging based on a dichromatic and compact x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Sarnelli, A [Dipartimento di Fisica dell' Universita di Ferrara and INFN Sezione di Ferrara, Via Paradiso 12, I-44100 Ferrara (Italy); Taibi, A [Dipartimento di Fisica dell' Universita di Ferrara and INFN Sezione di Ferrara, Via Paradiso 12, I-44100 Ferrara (Italy); Tuffanelli, A [Dipartimento di Fisica dell' Universita di Ferrara and INFN Sezione di Ferrara, Via Paradiso 12, I-44100 Ferrara (Italy); Baldazzi, G [Dipartimento di Fisica dell' Universita di Bologna and INFN Sezione di Bologna, Viale Berti Pichat 64/2, 40127 Bologna (Italy); Bollini, D [Dipartimento di Fisica dell' Universita di Bologna and INFN Sezione di Bologna, Viale Berti Pichat 64/2, 40127 Bologna (Italy); Rodriguez, A E Cabal [CAEDAN, Havana (Cuba); Gombia, M [Dipartimento di Fisica dell' Universita di Bologna and INFN Sezione di Bologna, Viale Berti Pichat 64/2, 40127 Bologna (Italy); Prino, F [Dipartimento di Scienze e Tecnologie Avanzate, Universita del Piemonte Orientale and INFN Sezione di Alessandria, C.so, Borsalino 54, I-15100 Alessandria (Italy); Ramello, L [Dipartimento di Scienze e Tecnologie Avanzate, Universita del Piemonte Orientale and INFN Sezione di Alessandria, C.so, Borsalino 54, I-15100 Alessandria (Italy); Tomassi, E [Dipartimento di Scienze e Tecnologie Avanzate, Universita del Piemonte Orientale and INFN Sezione di Alessandria, C.so, Borsalino 54, I-15100 Alessandria (Italy); Gambaccini, M [Dipartimento di Fisica dell' Universita di Ferrara and INFN Sezione di Ferrara, Via Paradiso 12, I-44100 Ferrara (Italy)

    2004-07-21

    This work proposes a compact dichromatic imaging system for the application of the K-edge digital subtraction technique based on a conventional x-ray tube and a monochromator system. A quasi-monochromatic x-ray beam at the energy of iodine K-edge is produced by Bragg diffraction on a mosaic crystal. Two thin adjacent beams with energies that bracket the K-edge discontinuity are obtained from the diffracted beam by means of a proper collimation system. They are then detected using an array of Si detectors. A home-made phantom is used to study the image quality as a function of iodine concentration. Signal and signal-to-noise ratio analysis has also been performed. The results are compared with theoretical expectations.

  12. A compact x-ray beam intensity monitor using gas amplified sample current measurement

    Science.gov (United States)

    Hayakawa, Shinjiro; Kobayashi, Kazuo; Gohshi, Yohichi

    2000-01-01

    Development of a compact beam intensity monitor using gas amplified sample current measurement is described. The monitor can be a powerful tool for x-ray spectroscopy and microscopy when the beam is defined by a small pinhole or slits and when the workspace around the sample is limited. The thickness of the monitor is as small as approximately 3 mm, and the dimension is 10 mm square. The photon flux is monitored by measuring x-ray excited current from an Al foil under atmospheric conditions. Emitted electrons from the Al foil can ionize surrounding air molecules, and the gas amplified current can be measured with the use of a biased grid that prevents created ion pairs from recombination.

  13. Development of achromatic full-field x-ray microscopy with compact imaging mirror system

    Science.gov (United States)

    Matsuyama, S.; Emi, Y.; Kino, H.; Sano, Y.; Kohmura, Y.; Tamasaku, K.; Yabashi, M.; Ishikawa, T.; Yamauchi, K.

    2013-09-01

    Compact advanced Kirkpatrick-Baez optics are used to construct a microscope that is easy to align and robust against vibrations and thermal drifts. The entire length of the imaging mirror system is 286 mm, which is 34% shorter than the previous model. A spatial resolution test is performed in which magnified bright-field images of a pattern are taken with an X-ray camera at an energy of 10 keV at the BL29XUL beamline of SPring-8. A line-and-space pattern having a 50- nm width could be resolved, although the image contrast is low.

  14. Bounds on Compactness for LMXB Neutron Stars from X-ray Burst Oscillations

    CERN Document Server

    Nath, N R; Swank, J H; Nath, Nitya; Strohmayer, Tod E.; Swank, Jean H.

    2001-01-01

    We have modelled X-ray burst oscillations observed with the Rossi X-ray Timing Explorer (RXTE) from two low mass X-ray binaries (LMXB): 4U 1636-53 with a frequency of 580 Hz, and 4U 1728-34 at a frequency of 363 Hz. We have computed least squares fits to the oscillations observed during the rising phase of bursts using a model which includes emission from either a single circular hot spot or a pair of circular antipodal hot spots on the surface of a neutron star. We model the spreading of the thermonuclear hot spots by assuming that the hot spot angular size grows linearly with time. We calculate the flux as a function of rotational phase from the hot spots and take into account photon deflection in the relativistic gravitational field of the neutron star assuming the exterior spacetime is the Schwarzschild metric. We find acceptable fits with our model and we use these to place constraints on the compactness of the neutron stars in these sources. For 4U 1636-53, in which detection of a 290 Hz sub-harmonic su...

  15. Diagnosing x-ray power and energy of tungsten wire array z-pinch with a flat spectral response x-ray diode

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kun-lun; Ren, Xiao-dong; Huang, Xian-bin, E-mail: caephxb2003@aliyun.com; Zhang, Si-qun; Zhou, Shao-tong; Dan, Jia-kun; Li, Jing; Xu, Qiang; Ouyang, Kai; Cai, Hong-chun; Wei, Bing; Ji, Ce; Feng, Shu-ping; Wang, Meng; Xie, Wei-ping; Deng, Jian-jun [Key Laboratory of Pulsed Power Technology, IFP, CAEP, Mianyang 621900 (China)

    2015-11-15

    Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter to yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%.

  16. Compact hard x-ray imaging system with a large FOV

    Science.gov (United States)

    Katsuragawa, Miho; Takeda, Shin'ichiro; Sato, Goro; Harayama, Atsushi; Kennedy, Patrick K.; Deasy, Kieran; Watanabe, Shin; Takahashi, Tadayuki

    2016-07-01

    We have developed a compact hard X-ray imaging system composed of a cadmium telluride double-sided strip detector (CdTe-DSD) and a coded mask. We investigate the imaging performance using two different coded masks with different sizes and patterns. In our system, a CdTe-DSD of pitch 250μm is used in conjunction with a coded mask is placed 70-100 mm above the detector to form a compact imaging system. We obtained an angular resolution of up to 11.8 arc min, as measured from gamma-ray lines of point-like radioactive isotope sources. This is consistent with that expected from the geometry. The energy resolution is 1.7 keV (FWHM) at 60 keV and the energy range of imaging is from 5 keV to 122 keV. These results agree very well with Monte Carlo simulations of the detector.

  17. Evaluation of 1024 channel VUV-photo-diodes for soft x-ray diagnostic applications

    Energy Technology Data Exchange (ETDEWEB)

    Molvik, A.W.

    1997-04-25

    We tested the operation of 1024 channel diode arrays (Model AXUV-1024, from IRD, Inc.) in subdued room light to establish that they worked and to determine the direction and speed of the scan of the 1024 channels. Further tests were performed in vacuum in the HAP, High-Average-Power Facility. There we found that the bare or glass covered diodes detected primarily visible light as expected, but diodes filtered by aluminized parylene, produced a signal consistent with soft x-rays. It is probable that the spectral response and sensitivity, as discussed below, reproduce that previously demonstrated by 1 to 16 channel VUV-photodiodes; however, significantly more effort would be required to establish that experimentally. These detectors appear to be worth further evaluation where 25 w spatial resolution bolometers or spectrograph detectors of known sensitivity are required, and single-shot or 0.02-0.2s time response is adequate. (Presumably, faster readout would be available with custom drive circuitry.)

  18. Proposal of a compact repetitive dichromatic x-ray generator with millisecond duty cycle for medical applications

    Science.gov (United States)

    Bessonov, E. G.; Gorbunkov, M. V.; Tunkin, V. G.; Fechtchenko, R. M.; Artyukov, I. A.; Shabalin, Yu. V.; Kostryukov, P. V.; Maslova, Yu. Y.; Poseryaev, A. V.; Shvedunov, V. I.; Vinogradov, A. V.; Mikhailichenko, A. A.; Ishkhanov, B. S.

    2005-12-01

    Many practical applications of x-rays lie in the important for the society fields of medical imaging, custom, transport inspection and security. Scientific applications besides of fundamental research include material sciences, biomicroscopy, and protein crystallography. Two types of x-ray sources dominate now: conventional tubes and electron accelerators equipped with insertion devices. The first are relatively cheap, robust, and compact but have low brightness and poorly controlled photon spectrum. The second generate low divergent beams with orders of magnitude higher brightness and well-controlled and tunable spectrum, but are very expensive and large in scale. So accelerator based x-ray sources are mainly still used for scientific applications and x-ray tubes - in commercial equipment. The latter motivated by the importance for the society made an impressive progress during last decades mostly due to the fast developments of radiation detectors, computers and software used for image acquisition and processing. At the same time many important problems cannot be solved without radical improvement of the parameters of the x-ray beam that in commercial devices is still provided by conventional x-ray tubes. Therefore there is a quest now for a compact and relatively cheap source to generate x-ray beam with parameters and controllability approaching synchrotron radiation. Rapid developments of lasers and particle accelerators resulted in implementation of laser plasma x-ray sources and free electron lasers for various experiments requiring high intensity, shrt duration and monochromatic x-ray radiation. Further progress towards practical application is expected from the combination of laser and particle accelerator in a single unit for efficient x-ray generation.

  19. Ways of development of compact coherent femtosecond X-ray sources for applications in nano- and biophotonics

    Science.gov (United States)

    Mikheev, L.

    2017-01-01

    Ways of the development of compact coherent sources of soft X-ray femtosecond pulses are discussed, which meet the requirements for the implementation of the “diffraction-before-destruction” approach in the lensless X-ray Coherent Diffractive Imaging (CDI) technique enabling quantitative 3D mapping of material structure with the nanoscale spatial resolution. An innovative hybrid (solid/gas) approach to produce ultra-intense femtosecond laser pulses in the visible is described in the context of its applications for laser driven high harmonic generation (HHG) and soft X-ray generation in laser plasmas due to recombination mechanism of excitation.

  20. The Mass of the Compact Object in the Low-Mass X-ray Binary 2S 0921-630

    CERN Document Server

    Abubekerov, M K; Cherepashchuk, A M; Shimanskii, V V

    2012-01-01

    We interpret the observed radial-velocity curve of the optical star in the low-mass X-ray binary 2S 0921-630 using a Roche model, taking into account the X-ray heating of the optical star and screening of X-rays coming from the relativistic object by the accretion disk. Consequences of possible anisotropy of the X-ray radiation are considered.We obtain relations between the masses of the optical and compact (X-ray) components, mv and mx, for orbital inclinations i=60, 75, 90 degrees. Including X-ray heating enabled us to reduce the compact object's mass by near 0.5-1Msun, compared to the case with no heating. Based on the K0III spectral type of the optical component (with a probable mass of mv=2.9Msun, we concluded that mx=2.45-2.55Msun (for i=75-90 degrees). If the K0III star has lost a substantial part of its mass as a result of mass exchange, as in the V404 Cyg and GRS 1905+105 systems, and its mass is $m_v=0.65-0.75Msun, the compact object's mass is close to the standard mass of a neutron star, mx=1.4Msun...

  1. Compact X-ray Source using a High Repetition Rate Laser and Copper Linac

    CERN Document Server

    Graves, W S; Brown, P; Carbajo, S; Dolgashev, V; Hong, K -H; Ihloff, E; Khaykovich, B; Lin, H; Murari, K; Nanni, E A; Resta, G; Tantawi, S; Zapata, L E; Kärtner, F X; Moncton, D E

    2014-01-01

    A design for a compact x-ray light source (CXLS) with flux and brilliance orders of magnitude beyond existing laboratory scale sources is presented. The source is based on inverse Compton scattering of a high brightness electron bunch on a picosecond laser pulse. The accelerator is a novel high-efficiency standing-wave linac and RF photoinjector powered by a single ultrastable RF transmitter at x-band RF frequency. The high efficiency permits operation at repetition rates up to 1 kHz, which is further boosted to 100 kHz by operating with trains of 100 bunches of 100 pC charge, each separated by 5 ns. The 100 kHz repetition rate is orders of magnitude beyond existing high brightness copper linacs. The entire accelerator is approximately 1 meter long and produces hard x-rays tunable over a wide range of photon energies. The colliding laser is a Yb:YAG solid-state amplifier producing 1030 nm, 100 mJ pulses at the same 1 kHz repetition rate as the accelerator. The laser pulse is frequency-doubled and stored for m...

  2. A compact tunable polarized X-ray source based on laser-plasma helical undulators

    CERN Document Server

    Luo, Ji; Zeng, Ming; Vieira, Jorge; Yu, Lu-Le; Weng, Su-Ming; Silva, Luis O; Jaroszynski, Dino A; Sheng, Zheng-Ming; Zhang, Jie

    2016-01-01

    Laser wakefield accelerators have great potential as the basis for next generation compact radiation sources because their accelerating gradients are three orders of magnitude larger than traditional accelerators. However, X-ray radiation from such devices still lacks of tunability, especially the intensity and polarization distribution. Here we propose a tunable polarized radiation source from a helical plasma undulator based on plasma channel guided wakefield accelerator. When a laser pulse is initially incident with a skew angle relative to the channel axis, the laser and accelerated electrons experience collective spiral motions, which leads to elliptically polarized synchrotron-like radiation with flexible tunability on radiation intensity, spectra and polarization. We demonstrate that a radiation source with millimeter size and peak brilliance of $2\\times10^{19} photons/s/mm^{2}/mrad^{2}/0.1%$ bandwidth can be made with moderate laser and electron beam parameters. This brilliance is comparable with the ...

  3. First correlation between compact object and circumstellar disk in the Be/X-ray binaries

    CERN Document Server

    Zamanov, R K

    2000-01-01

    A remarkable correlation between the H-alpha emission line and the radio behaviour of LSI+61 303 (V615 Cas, GT 0236+610) over its 4 yr modulation is discovered. The radio outburst peak is shifted by a quarter of the 4 yr modulation period (about 400 days) with respect to the equivalent width of the H-alpha emission line variability. The onset of the LSI+61 303 radio outbursts varies in phase with the changes of the H-alpha emission line, at least during the increase of H-alpha equivalent width. This is the first clear correlation between the emission associated to the compact object and the Be circumstellar disk in a Be/X-ray binary system.

  4. Design and performance of a compact scanning transmission X-ray microscope at the Photon Factory

    Energy Technology Data Exchange (ETDEWEB)

    Takeichi, Y., E-mail: yasuo.takeichi@kek.jp; Mase, K.; Ono, K. [Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801 (Japan); Department of Materials Structure Science, SOKENDAI (The Graduate University for Advanced Studies), 1-1 Oho, Tsukuba 305-0801 (Japan); Inami, N. [Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801 (Japan); Suga, H. [Department of Earth and Planetary Systems Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526 (Japan); Miyamoto, C. [Department of Earth and Planetary Systems Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 113-0033 (Japan); Ueno, T. [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Takahashi, Y. [Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801 (Japan); Department of Earth and Planetary Systems Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526 (Japan); Department of Earth and Planetary Systems Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 113-0033 (Japan)

    2016-01-15

    We present a new compact instrument designed for scanning transmission X-ray microscopy. It has piezo-driven linear stages, making it small and light. Optical components from the virtual source point to the detector are located on a single optical table, resulting in a portable instrument that can be operated at a general-purpose spectroscopy beamline without requiring any major reconstruction. Careful consideration has been given to solving the vibration problem common to high-resolution microscopy, so as not to affect the spatial resolution determined by the Fresnel zone plate. Results on bacteriogenic iron oxides, single particle aerosols, and rare-earth permanent magnets are presented as examples of its performance under diverse applications.

  5. Periodic X-ray Modulation and its relation with orbital elements in Compact Binaries

    CERN Document Server

    Ghosh, Arindam

    2014-01-01

    Stellar companion of a black hole orbiting in an eccentric orbit will experience modulating tidal force with a periodicity same as that of the orbital period. This, in turn, would modulate accretion rates, and the seed photon flux which are inverse Comptonized to produce harder X-rays. By analyzing complete all sky monitor (ASM) data (1.5-12 keV) of RXTE and all sky survey data (15-50 keV) of Swift/BAT we discover this periodicity in several objects. We also estimate eccentricities from the RMS power of the peak around quasi-orbital periods (QOP). Our method provides an independent way to obtain time periods and eccentricities of such compact binaries.

  6. Compact soft x-ray multichord camera: Design and initial operation

    Science.gov (United States)

    Franz, P.; Gadani, G.; Pasqualotto, R.; Marrelli, L.; Martin, P.; Spizzo, G.; Brunsell, P.; Chapman, B. E.; Paganucci, F.; Rossetti, P.; Xiao, C.

    2003-03-01

    A compact and low cost diagnostic for spatially resolved measurements of soft x-ray or total radiation emission has been designed and realized to be flexibly applied to different plasma physics experiments. Its reduced size (outer diameter=35 mm) makes it suited to a variety of devices. The line integrated emissivity (brightness) has been measured along up to 20 lines of sight, using an array of miniaturized silicon photodiodes. Preliminary prototypes of the diagnostic have been installed in the Madison Symmetric Torus reversed field pinch (RFP) device at University of Wisconsin and in the EXTRAP T2 RFP device at the Royal Institute of Technology in Stockholm. Application of the diagnostic to a gas-fed (argon, helium) magnetoplasma dynamic thruster (MPDT) with an external magnetic field will also be discussed.

  7. X-rays from cusps of compact remnants near galactic centres

    CERN Document Server

    Nayakshin, S; Nayakshin, Sergei; Sunyaev, Rashid

    2006-01-01

    Compact remnants -- stellar mass black holes and neutron stars formed in the inner few parsec of galactic centres are predicted to sink into the central parsec due to dynamical friction on low mass stars, forming a high concentration cusp (Morris 1993). Same physical region may also contain very high density molecular clouds and accretion discs that are needed to fuel SMBH activity. Here we estimate gas capture rates onto the cusp of stellar remnants, and the resulting X-ray luminosity, as a function of the accretion disc mass. At low disc masses, most compact objects are too dim to be observable, whereas in the high disc case most of them are accreting at their Eddington rates. We find that for low accretion disc masses, compact remnant cusps may be more luminous than the central SMBHs. This ``diffuse'' emission may be of importance for local moderately bright AGN, especially Low Luminosity AGN. We also briefly discuss how this expected emission can be used to put constraints on the black hole cusp near our ...

  8. A vacuum-sealed compact x-ray tube based on focused carbon nanotube field-emission electrons.

    Science.gov (United States)

    Jeong, Jin-Woo; Kim, Jae-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho

    2013-03-01

    We report on a fully vacuum-sealed compact x-ray tube based on focused carbon nanotube (CNT) field-emission electrons for various radiography applications. The specially designed two-step brazing process enabled us to accomplish a good vacuum level for the stable and reliable operation of the x-ray tube without any active vacuum pump. Also, the integrated focusing electrodes in the field-emission electron gun focused electron beams from the CNT emitters onto the anode target effectively, giving a small focal spot of around 0.3 mm with a large current of above 50 mA. The active-current control through the cathode electrode of the x-ray tube led a fast digital modulation of x-ray dose with a low voltage of below 5 V. The fabricated compact x-ray tube showed a stable and reliable operation, indicating good maintenance of a vacuum level of below 5 × 10(-6) Torr and the possibility of field-emission x-ray tubes in a stand-alone device without an active pumping system.

  9. A vacuum-sealed compact x-ray tube based on focused carbon nanotube field-emission electrons

    Science.gov (United States)

    Jeong, Jin-Woo; Kim, Jae-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho

    2013-03-01

    We report on a fully vacuum-sealed compact x-ray tube based on focused carbon nanotube (CNT) field-emission electrons for various radiography applications. The specially designed two-step brazing process enabled us to accomplish a good vacuum level for the stable and reliable operation of the x-ray tube without any active vacuum pump. Also, the integrated focusing electrodes in the field-emission electron gun focused electron beams from the CNT emitters onto the anode target effectively, giving a small focal spot of around 0.3 mm with a large current of above 50 mA. The active-current control through the cathode electrode of the x-ray tube led a fast digital modulation of x-ray dose with a low voltage of below 5 V. The fabricated compact x-ray tube showed a stable and reliable operation, indicating good maintenance of a vacuum level of below 5 × 10-6 Torr and the possibility of field-emission x-ray tubes in a stand-alone device without an active pumping system.

  10. Deep Chandra Observations of the Compact Starburst Galaxy Henize 2-10: X-rays from the Massive Black Hole

    CERN Document Server

    Reines, Amy; Miller, Jon; Sivakoff, Gregory; Greene, Jenny; Hickox, Ryan; Johnson, Kelsey

    2016-01-01

    We present follow-up X-ray observations of the candidate massive black hole (BH) in the nucleus of the low-mass, compact starburst galaxy Henize 2-10. Using new high-resolution observations from the Chandra X-ray Observatory totaling 200 ks in duration, as well as archival Chandra observations from 2001, we demonstrate the presence of a previously unidentified X-ray point source that is spatially coincident with the known nuclear radio source in Henize 2-10 (i.e., the massive BH). We show that the hard X-ray emission previously identified in the 2001 observation is dominated by a source that is distinct from the nucleus, with the properties expected for a high-mass X-ray binary. The X-ray luminosity of the nuclear source suggests the massive BH is radiating significantly below its Eddington limit (~10^-6 L_Edd), and the soft spectrum resembles other weakly accreting massive BHs including Sagittarius A*. Analysis of the X-ray light curve of the nucleus reveals the tentative detection of a ~9-hour periodicity, ...

  11. R&D Toward a Compact High-Brilliance X-Ray Source Based on Channeling Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Piot, P.; /Fermilab /Northern Illinois U.; Brau, C.A.; Choi, B.K.; Gabella, W.E.; Jarvis, J.D.; Mendenhall, M.H.; /Vanderbilt U.; Lewellen, J.W.; /Naval Postgraduate School; Mihalcea, D.; /Northern Illinois U.

    2012-08-01

    X-rays have been valuable to a large number of fields including Science, Medicine, and Security. Yet, the availability of a compact high-spectral brilliance X-ray sources is limited. A technique to produce X-rays with spectral brilliance B {approx} 10{sup 12} photons.(mm-mrd){sup -2}.(0.1% BW){sup -1} .s{sup -1} is discussed. The method is based on the generation and acceleration of a low-emittance field-emitted electron bunches. The bunches are then focused on a diamond crystal thereby producing channeling radiation. In this paper, after presenting the overarching concept, we discuss the generation, acceleration and transport of the low-emittance bunches with parameters consistent with the production of high-brilliance X-rays through channeling radiation. We especially consider the example of the Advanced Superconducting Test Accelerator (ASTA) currently in construction at Fermilab where a proof-of-principle experiment is in preparation.

  12. EXPLORING X-RAY BINARY POPULATIONS IN COMPACT GROUP GALAXIES WITH CHANDRA

    Energy Technology Data Exchange (ETDEWEB)

    Tzanavaris, P.; Hornschemeier, A. E. [Laboratory for X-ray Astrophysics, NASA/Goddard Spaceflight Center, Mail Code 662, Greenbelt, MD 20771 (United States); Gallagher, S. C.; Lenkić, L. [Department of Physics and Astronomy and Centre for Planetary and Space Exploration, The University of Western Ontario, London, ON N6A 3K7 (Canada); Desjardins, T. D. [Department of Physics and Astronomy, 177 Chem.-Phys. Building, University of Kentucky, 505 Rose Street, Lexington KY 40506-0055202 (United States); Walker, L. M. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Johnson, K. E. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Mulchaey, J. S. [The Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States)

    2016-02-01

    We obtain total galaxy X-ray luminosities, L{sub X}, originating from individually detected point sources in a sample of 47 galaxies in 15 compact groups of galaxies (CGs). For the great majority of our galaxies, we find that the detected point sources most likely are local to their associated galaxy, and are thus extragalactic X-ray binaries (XRBs) or nuclear active galactic nuclei (AGNs). For spiral and irregular galaxies, we find that, after accounting for AGNs and nuclear sources, most CG galaxies are either within the ±1σ scatter of the Mineo et al. L{sub X}–star formation rate (SFR) correlation or have higher L{sub X} than predicted by this correlation for their SFR. We discuss how these “excesses” may be due to low metallicities and high interaction levels. For elliptical and S0 galaxies, after accounting for AGNs and nuclear sources, most CG galaxies are consistent with the Boroson et al. L{sub X}–stellar mass correlation for low-mass XRBs, with larger scatter, likely due to residual effects such as AGN activity or hot gas. Assuming non-nuclear sources are low- or high-mass XRBs, we use appropriate XRB luminosity functions to estimate the probability that stochastic effects can lead to such extreme L{sub X} values. We find that, although stochastic effects do not in general appear to be important, for some galaxies there is a significant probability that high L{sub X} values can be observed due to strong XRB variability.

  13. Using X-rays to determine which compact groups are illusory

    Science.gov (United States)

    Ostriker, Jeremiah P.; Lubin, Lori M.; Hernquist, Lars

    1995-01-01

    If the large-scale galaxy distribution is filamentary, as suggested by some observations and recent hydrodynamical simulations, then lengthwise views of filaments will apparently produce compact groups (CGs) that are in reality stretched out along the line of sight. This possibility has been advocated recently by Hernquist, Katz, & Weinberg (1995). Here we propose a test for this hypothesis using X-ray emission from CGs. The observable quantity Q identical with L(sub x)a(sup 3)(sup p)/(L(sup 2)(sup g))T(sup 1/2)(sub x) should be proportional to the axis ratio of the group, a/c, where a and c are the short and long axes of a prolate distribution, a(sub p) is the radius of the group projected onto the sky, L(sub x) is the bolometric X-ray luminosity, L(sub g) is the group blue luminosity, and T(sub x) is the gas temperature. We find that the distribution of Q is consistent with the notion that many CGs with unusually small values of a/c are frauds, i.e., that the values of Q are anomalously small. Absent other information, it is equally possible that CGs are very gas-poor relative to rich clusters; however, this can be tested using the Sunyaev-Zeldovich effect. If the groups have a close to normal ratio of gas to total mass, but are simply stretched out along the line of sight, a Sunyaev-Zeldovich signal should be detectable.

  14. The Chandra Planetary Nebula Survey (ChanPlaNS). II. X-ray Emission from Compact Planetary Nebulae

    CERN Document Server

    Freeman, M; Montez, R; Balick, B; Frew, D J; Jones, D; Miszalski, B; Sahai, R; Blackman, E; Chu, Y -H; De Marco, O; Frank, A; Guerrero, M A; Lopez, J A; Zijlstra, A; Bujarrabal, V; Corradi, R L M; Nordhaus, J; Parker, Q A; Sandin, C; Schönberner, D; Soker, N; Sokoloski, J L; Steffen, M; Toalá, J A; Ueta, T; Villaver, E

    2014-01-01

    We present results from the most recent set of observations obtained as part of the Chandra X-ray observatory Planetary Nebula Survey (ChanPlaNS), the first comprehensive X-ray survey of planetary nebulae (PNe) in the solar neighborhood (i.e., within ~1.5 kpc of the Sun). The survey is designed to place constraints on the frequency of appearance and range of X-ray spectral characteristics of X-ray-emitting PN central stars and the evolutionary timescales of wind-shock-heated bubbles within PNe. ChanPlaNS began with a combined Cycle 12 and archive Chandra survey of 35 PNe. ChanPlaNS continued via a Chandra Cycle 14 Large Program which targeted all (24) remaining known compact (R_neb ~1000 cm^-3), and rarely associated with PNe that show H_2 emission and/or pronounced butterfly structures. Hb 5 is one such exception of a PN with a butterfly structure that hosts diffuse X-ray emission. Additionally, of the five new diffuse X-ray detections, two host [WR]-type CSPNe, NGC 1501 and NGC 6369, supporting the hypothes...

  15. miniPixD: a compact sample analysis system which combines X-ray imaging and diffraction

    Science.gov (United States)

    Moss, Robert; Crews, Chiaki; Wilson, Matthew; Speller, Robert

    2017-02-01

    This paper introduces miniPixD: a new, compact system that utilises transmission X-ray imaging and X-ray diffraction (XRD) to locate and identify materials of interest within an otherwise opaque volume. The system and the embodied techniques have utility in security screening, medical diagnostics, non-destructive testing (NDT) and quality assurance (QA). This paper outlines the design of the system including discussion on the choice of components and presents some data from relevant samples which are compared to other energy dispersive and angular dispersive XRD techniques.

  16. The Distribution of Elements in 48 Canine Compact Bone Types Using Handheld X-Ray Fluorescence.

    Science.gov (United States)

    Nganvongpanit, Korakot; Buddhachat, Kittisak; Piboon, Promporn; Klinhom, Sarisa

    2016-11-01

    A major question when we talk about the elements in the bone is whether all bones contain the same elements. To answer this question, this study was designed for determination of the elemental levels in 48 various canine compact bones using handheld X-ray fluorescence technique. From a total of 26 elements that could be detected, only 13 elements were found in all 48 bones. The sternum and os penis were significantly different from the other bones in that they contained the highest number of elements. The ratio of Ca and P was significantly different when comparing certain bones: there was a higher Ca/P ratio in the patella (right), calcaneus (right and left), and sternum compared with a lower ratio in the radius (left), rib (left), phalanx (left forelimb), and carpus (left). These results are the first to demonstrate that different types of bones have different elemental profiles, even for major elements such as Ca and P. Moreover, the Ca/P ratio was also different between bone types. This data is important for the selection of bones appropriate to the element studied. In addition, the results proved that the elements were not equally distributed in every bone in the body.

  17. Performance of compact TES arrays with integrated high-fill-fraction X-ray absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Lindeman, Mark A. E-mail: lindeman@lheapop.gsfc.nasa.gov; Bandler, Simon; Brekosky, Regis P.; Chervenak, James A.; Figueroa-Feliciano, Enectali; Finkbeiner, Fred M.; Kelley, Richard L.; Saab, Tarek; Stahle, Caroline K.; Talley, D.J

    2004-03-11

    We have recently produced and tested two-dimensional arrays of Mo/Au transition-edge-sensor (TES) calorimeters with Bi/Cu absorbers. The arrays represent a significant step towards meeting the specifications of NASA's Constellation-X mission. The calorimeters are compactly spaced within 5x5 arrays of 250 {mu}m square pixels necessary for an angular resolution of 5 arcsec. Lithographically produced absorbers hang over the substrate and wiring between the TESs for high filling fraction and high quantum efficiency. We designed the calorimeters with heat capacities and thermal couplings such that X-rays produce pulses with fall times of approximately 300 {mu}s to allow relatively high count rates with low dead time. We read out up to four of the pixels simultaneously. The arrays demonstrated very good energy resolution (5 eV at 1.5 keV and 7 eV at 6 keV) and little crosstalk between neighboring pixels.

  18. Demonstration of the self-magnetic-pinch diode as an X-ray source for flash core-punch radiography.

    Energy Technology Data Exchange (ETDEWEB)

    Cordova, Steve Ray; Rovang, Dean Curtis; Portillo, Salvador; Oliver, Bryan Velten; Bruner, Nichelle Lee (Voss Scientific, Albuquerque, NM); Ziska, Derek Raymond (K-Tech Corporation, Albuquerque, NM)

    2007-10-01

    Minimization of the radiographic spot size and maximization of the radiation dose is a continuing long-range goal for development of electron beam driven X-ray radiography sources. In collaboration with members of the Atomic Weapons Establishment(AWE), Aldermaston UK, the Advanced Radiographic Technologies Dept. 1645 is conducting research on the development of X-ray sources for flash core-punch radiography. The Hydrodynamics Dept. at AWE has defined a near term radiographic source requirement for scaled core-punch experiments to be 250 rads{at}m with a 2.75 mm source spot-size. As part of this collaborative effort, Dept. 1645 is investigating the potential of the Self-Magnetic-Pinched (SMP) diode as a source for core-punch radiography. Recent experiments conducted on the RITS-6 accelerator [1,2] demonstrated the potential of the SMP diode by meeting and exceeding the near term radiographic requirements established by AWE. During the demonstration experiments, RITS-6 was configured with a low-impedance (40 {Omega}) Magnetically Insulated Transmission Line (MITL), which provided a 75-ns, 180-kA, 7.5-MeV forward going electrical pulse to the diode. The use of a low-impedance MITL enabled greater power coupling to the SMP diode and thus allowed for increased radiation output. In addition to reconfiguring the driver (accelerator), geometric changes to the diode were also performed which allowed for an increase in dose production without sacrificing the time integrated spot characteristics. The combination of changes to both the pulsed power driver and the diode significantly increased the source x-ray intensity.

  19. A Compact X-Ray System for Support of High Throughput Crystallography

    Science.gov (United States)

    Ciszak, Ewa; Gubarev, Mikhail; Gibson, Walter M.; Joy, Marshall K.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Standard x-ray systems for crystallography rely on massive generators coupled with optics that guide X-ray beams onto the crystal sample. Optics for single-crystal diffractometry include total reflection mirrors, polycapillary optics or graded multilayer monochromators. The benefit of using polycapillary optic is that it can collect x-rays over tile greatest solid angle, and thus most efficiently, utilize the greatest portion of X-rays emitted from the Source, The x-ray generator has to have a small anode spot, and thus its size and power requirements can be substantially reduced We present the design and results from the first high flux x-ray system for crystallography that combine's a microfocus X-ray generator (40microns FWHM Spot size at a power of 45 W) and a collimating, polycapillary optic. Diffraction data collected from small test crystals with cell dimensions up to 160A (lysozyme and thaumatin) are of high quality. For example, diffraction data collected from a lysozyme crystal at RT yielded R=5.0% for data extending to 1.70A. We compare these results with measurements taken from standard crystallographic systems. Our current microfocus X-ray diffraction system is attractive for supporting crystal growth research in the standard crystallography laboratory as well as in remote, automated crystal growth laboratory. Its small volume, light-weight, and low power requirements are sufficient to have it installed in unique environments, i.e.. on-board International Space Station.

  20. A compact micro-beam system using a tapered glass capillary for proton-induced X-ray radiography

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Jun [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)], E-mail: jhasegaw@nr.titech.ac.jp; Shiba, Shigeki; Fukuda, Hitoshi; Oguri, Yoshiyuki [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2008-05-15

    A compact micro-beam system, containing a tapered glass capillary tube with a tip diameter on the order of 10 {mu}m, was constructed to examine the applicability of capillary-generated micro-beams to high-contrast radiography based on proton-induced quasi-monochromatic X-rays. The transport efficiency of swift protons (2-3 MeV) through the capillary was examined as a function of the capillary tilt angle and the capillary tip diameter. We obtained transport efficiencies of approximately three times larger than would be expected from the geometrical shape of the capillary. This enhancement indicates that a focusing effect occurred in the capillary. A metallic thin foil was irradiated with the micro-beam and quasi-monochromatic X-rays were produced. By calculating the X-ray yields induced by proton bombardment in the foil and comparing them with the X-ray counts observed at the detector, the throughput efficiency of the X-ray imaging system was evaluated. We demonstrated magnification radiography of a small object to show that a spatial resolution on the order of 10 {mu}m was achievable in our system.

  1. A Compact 5 MeV S-Band Electron Linac Based X-Ray Source for Industrial Radiography

    CERN Document Server

    Auditore, Lucrezia; De Pasquale, Domenico; Emanuele, Umberto; Italiano, Antonio; Trifirò, Antonio; Trimarchi, Marina

    2005-01-01

    A compact and reliable X-ray source, based on a 5 MeV, 1 kW, S-band electron linac, has been set up at the Dipartimento di Fisica, Universit\\'a di Messina. This source, coupled with a GOS scintillator screen and a CCD camera, represents an innovative transportable system for industrial radiography and X-ray tomography. Optimization of the parameters influencing the e-gamma conversion and the X-ray beam characteristics have been studied by means of the MCNP-4C2 code. The converter choice is the result of the study of the e-gamma conversion performances for different materials and materials thicknesses. Also the converter position with respect to the linac exit window was studied. The chosen converter consists in a Ta-Cu target inserted close to the linac window. The Cu layer acts as a filter both on the electrons from the source and on the low energy X-rays. The X-ray beam angular profile was studied by means of GafChromic films with and without collimation. In the final source project, a collimation system pr...

  2. Development of a Hard X-ray focal plane Compton Polarimeter: A compact polarimetric configuration with Scintillators and Si photomultipliers

    CERN Document Server

    Chattopadhyay, T; Goyal, S K; S., Mithun N P; Patel, A R; Shukla, R; Ladiya, T; Shanmugam, M; Patel, V R; Ubale, G P

    2015-01-01

    X-ray polarization measurement of cosmic sources provides two unique parameters namely degree and angle of polarization which can probe the emission mechanism and geometry at close vicinity of the compact objects. Specifically, the hard X-ray polarimetry is more rewarding because the sources are expected to be intrinsically highly polarized at higher energies. With the successful implementation of Hard X-ray optics in NuSTAR, it is now feasible to conceive Compton polarimeters as focal plane detectors. Such a configuration is likely to provide sensitive polarization measurements in hard X-rays with a broad energy band. We are developing a focal plane hard X-ray Compton polarimeter consisting of a plastic scintillator as active scatterer surrounded by a cylindrical array of CsI(Tl) scintillators. The scatterer is 5 mm diameter and 100 mm long plastic scintillator (BC404) viewed by normal PMT. The photons scattered by the plastic scatterer are collected by a cylindrical array of 16 CsI(Tl) scintillators (5 mm x...

  3. Quantitative X-Ray Phase-Contrast Microtomography from a Compact Laser Driven Betatron Source

    CERN Document Server

    Wenz, J; Khrennikov, K; Bech, M; Thibault, P; Heigoldt, M; Pfeiffer, F; Karsch, S

    2014-01-01

    X-ray phase-contrast imaging has recently led to a revolution in resolving power and tissue contrast in biomedical imaging, microscopy and materials science. The necessary high spatial coherence is currently provided by either large-scale synchrotron facilities with limited beamtime access or by microfocus X-ray tubes with rather limited flux. X-rays radiated by relativistic electrons driven by well-controlled high-power lasers offer a promising route to a proliferation of this powerful imaging technology. A laser-driven plasma wave accelerates and wiggles electrons, giving rise to brilliant keV X-ray emission. This so-called Betatron radiation is emitted in a collimated beam with excellent spatial coherence and remarkable spectral stability. Here we present the first phase-contrast micro-tomogram revealing quantitative electron density values of a biological sample using betatron X-rays, and a comprehensive source characterization. Our results suggest that laser-based X-ray technology offers the potential fo...

  4. Development of a hard x-ray focal plane compton polarimeter: a compact polarimetric configuration with scintillators and Si photomultipliers

    Science.gov (United States)

    Chattopadhyay, T.; Vadawale, S. V.; Goyal, S. K.; Mithun, N. P. S.; Patel, A. R.; Shukla, R.; Ladiya, T.; Shanmugam, M.; Patel, V. R.; Ubale, G. P.

    2016-02-01

    X-ray polarization measurement of cosmic sources provides two unique parameters namely degree and angle of polarization which can probe the emission mechanism and geometry at close vicinity of the compact objects. Specifically, the hard X-ray polarimetry is more rewarding because the sources are expected to be intrinsically highly polarized at higher energies. With the successful implementation of Hard X-ray optics in NuSTAR, it is now feasible to conceive Compton polarimeters as focal plane detectors. Such a configuration is likely to provide sensitive polarization measurements in hard X-rays with a broad energy band. We are developing a focal plane hard X-ray Compton polarimeter consisting of a plastic scintillator as active scatterer surrounded by a cylindrical array of CsI(Tl) scintillators. The scatterer is 5 mm diameter and 100 mm long plastic scintillator (BC404) viewed by normal PMT. The photons scattered by the plastic scatterer are collected by a cylindrical array of 16 CsI(Tl) scintillators (5 mm × 5 mm × 150 mm) which are read by Si Photomultiplier (SiPM). Use of the new generation SiPMs ensures the compactness of the instrument which is essential for the design of focal plane detectors. The expected sensitivity of such polarimetric configuration and complete characterization of the plastic scatterer, specially at lower energies have been discussed in [11, 13]. In this paper, we characterize the CsI(Tl) absorbers coupled to SiPM. We also present the experimental results from the fully assembled configuration of the Compton polarimeter.

  5. LIGHT SOURCE: Optics for the lattice of the compact storage ring for a Compton X-ray source

    Science.gov (United States)

    Yu, Pei-Cheng; Wang, Yu; Shen, Xiao-Zhe; Huang, Wen-Hui; Yan, Li-Xin; Du, Ying-Chao; Li, Ren-Kai; Tang, Chuan-Xiang

    2009-06-01

    We present two types of optics for the lattice of a compact storage ring for a Compton X-ray source. The optics design for different operation modes of the storage ring are discussed in detail. For the pulse mode optics, an IBS-suppression scheme is applied to optimize the optics for lower IBS emittance growth rate; as for the steady mode, the method to control momentum compact factor is adopted [Gladkikh P, Phys. Rev. ST Accel. Beams 8, 050702] to obtain stability of the electron beam.

  6. Central compact objects, superslow X-ray pulsars, gamma-ray bursts: do they have anything to do with magnetars?

    CERN Document Server

    Tong, H

    2014-01-01

    Magnetars and many of the magnetar-related objects are summarized together and discussed. It is shown that there is an abuse of language in the use of "magnetar". Anomalous X-ray pulsars and soft gamma-ray repeaters are well-known magnetar candidates. The current so called anti-magnetar (for central compact objects), accreting magnetar (for superslow X-ray pulsars in high mass X-ray binaries), and millisecond magnetar (for the central engine of some gamma-ray bursts), they may not be real magnetars in present understandings. Their observational behaviors are not caused by the magnetic energy. Many of them are just neutron stars with strong surface dipole field. A neutron star plus strong dipole field is not a magnetar. The characteristic parameters of the neutron stars for the central engine of some gamma-ray bursts are atypical from the neutron stars in the Galaxy. Possible signature of magnetic activities in accreting systems are discussed, including repeated bursts and a hard X-ray tail. China's future har...

  7. R and D toward a compact high-brilliance X-ray source based on channeling radiation

    Energy Technology Data Exchange (ETDEWEB)

    Piot, P.; Brau, C. A.; Gabella, W. E.; Choi, B. K.; Jarvis, J. D.; Lewellen, J. W.; Mendenhall, M. H.; Mihalcea, D. [Northern Illinois Center for Accelerator and Detector Development and Department of Physics, Northern Illinois University, DeKalb, IL 60115 (United States) and Accelerator Physics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Dept. of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235 (United States) and Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN 37235 (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Physics Department and Combat Systems, Naval Postgraduate School, Monterey, CA 93943 (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Northern Illinois Center for Accelerator and Detector Development and Department of Physics, Northern Illinois University, DeKalb, IL 60115 (United States)

    2012-12-21

    X-rays have been valuable to a large number of fields including Science, Medicine, and Security. Yet, the availability of a compact high-spectral brilliance X-ray sources is limited. A technique to produce X-rays with spectral brilliance B{approx} 10{sup 12} photons.(mm-mrd){sup -2}. (0.1% BW){sup -1}.s{sup -1} is discussed. The method is based on the generation and acceleration of a low-emittance field-emitted electron bunches. The bunches are then focused on a diamond crystal thereby producing channeling radiation. In this paper, after presenting the overarching concept, we discuss the generation, acceleration and transport of the low-emittance bunches with parameters consistent with the production of high-brilliance X-rays through channeling radiation. We especially consider the example of the Advanced Superconducting Test Accelerator (ASTA) currently in construction at Fermilab where a proof-of-principle experiment is in preparation.

  8. Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror

    CERN Document Server

    Tsai, Hai-En; Shaw, Joseph; Li, Zhengyan; Arefiev, Alexey V; Zhang, Xi; Zgadzaj, Rafal; Henderson, Watson; Khudik, V; Shvets, G; Downer, M C

    2014-01-01

    We present results of the first tunable Compton backscattering (CBS) x-ray source that is based on the easily aligned combination of a laser-plasma accelerator (LPA) and a plasma mirror (PM). The LPA is driven in the blowout regime by 30 TW, 30 fs laser pulses, and produces high-quality, tunable, quasi-monoenergetic electron beams. A thin plastic film near the gas jet exit efficiently retro-reflects the LPA driving pulse with relativistic intensity into oncoming electrons to produce $2\\times10^{7}$ CBS x-ray photons per shot with 10-20 mrad angular divergence and 50 % (FWHM) energy spread without detectable bremsstrahlung background. The x-ray central energy is tuned from 75 KeV to 200 KeV by tuning the LPA e-beam central energy. Particle-in-cell simulations of the LPA, the drive pulse/PM interaction and CBS agree well with measurements.

  9. On Relativistic Disk Spectroscopy in Compact Objects with X-ray CCD Cameras

    Science.gov (United States)

    Miller, J. M.; D'Aì, A.; Bautz, M. W.; Bhattacharyya, S.; Burrows, D. N.; Cackett, E. M.; Fabian, A. C.; Freyberg, M. J.; Haberl, F.; Kennea, J.; Nowak, M. A.; Reis, R. C.; Strohmayer, T. E.; Tsujimoto, M.

    2010-12-01

    X-ray charge-coupled devices (CCDs) are the workhorse detectors of modern X-ray astronomy. Typically covering the 0.3-10.0 keV energy range, CCDs are able to detect photoelectric absorption edges and K shell lines from most abundant metals. New CCDs also offer resolutions of 30-50 (E/ΔE), which is sufficient to detect lines in hot plasmas and to resolve many lines shaped by dynamical processes in accretion flows. The spectral capabilities of X-ray CCDs have been particularly important in detecting relativistic emission lines from the inner disks around accreting neutron stars and black holes. One drawback of X-ray CCDs is that spectra can be distorted by photon "pile-up," wherein two or more photons may be registered as a single event during one frame time. We have conducted a large number of simulations using a statistical model of photon pile-up to assess its impacts on relativistic disk line and continuum spectra from stellar-mass black holes and neutron stars. The simulations cover the range of current X-ray CCD spectrometers and operational modes typically used to observe neutron stars and black holes in X-ray binaries. Our results suggest that severe photon pile-up acts to falsely narrow emission lines, leading to falsely large disk radii and falsely low spin values. In contrast, our simulations suggest that disk continua affected by severe pile-up are measured to have falsely low flux values, leading to falsely small radii and falsely high spin values. The results of these simulations and existing data appear to suggest that relativistic disk spectroscopy is generally robust against pile-up when this effect is modest.

  10. A compact permanent-magnet system for measuring magnetic circular dichroism in resonant inelastic soft X-ray scattering.

    Science.gov (United States)

    Miyawaki, Jun; Suga, Shigemasa; Fujiwara, Hidenori; Niwa, Hideharu; Kiuchi, Hisao; Harada, Yoshihisa

    2017-03-01

    A compact and portable magnet system for measuring magnetic dichroism in resonant inelastic soft X-ray scattering (SX-RIXS) has been developed at the beamline BL07LSU in SPring-8. A magnetic circuit composed of Nd-Fe-B permanent magnets, which realised ∼0.25 T at the center of an 11 mm gap, was rotatable around the axis perpendicular to the X-ray scattering plane. Using the system, a SX-RIXS spectrum was obtained under the application of the magnetic field at an angle parallel, nearly 45° or perpendicular to the incident X-rays. A dedicated sample stage was also designed to be as compact as possible, making it possible to perform SX-RIXS measurements at arbitrary incident angles by rotating the sample stage in the gap between the magnetic poles. This system enables facile studies of magnetic dichroism in SX-RIXS for various experimental geometries of the sample and the magnetic field. A brief demonstration of the application is presented.

  11. Resonant Auger Destruction and Iron K-Alpha Spectra in Compact X-ray Sources

    OpenAIRE

    Liedahl, Duane A.

    2005-01-01

    We examine the effects of resonant Auger destruction in modifying the intensities and flux distributions of K-alpha spectra from iron L-shell ions. Applications include X-ray irradiated stellar winds in X-ray binaries and accretion disk atmospheres. Using detailed atomic models, we find that resonant Auger destruction is selective, in that only a subset of the emitted K-alpha lines is highly attenuated. We also show that that the local excitation conditions can have a dramatic effect on the K...

  12. X-ray emission from a high-atomic-number z-pinch plasma created from compact wire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Nash, T.J.; Marder, B.M. [and others

    1996-03-01

    Thermal and nonthermal x-ray emission from the implosion of compact tungsten wire arrays, driven by 5 MA from the Saturn accelerator, are measured and compared with LLNL Radiation-Hydro-Code (RHC) and SNL Hydro-Code (HC) numerical models. Multiple implosions, due to sequential compressions and expansions of the plasma, are inferred from the measured multiple x-radiation bursts. Timing of the multiple implosions and the thermal x-ray spectra measured between 1 and 10 keV are consistent with the RHC simulations. The magnitude of the nonthermal x-ray emission measured from 10 to 100 keV ranges from 0.02 to 0.08% of the total energy radiated and is correlated with bright-spot emission along the z-axis, as observed in earlier Gamble-11 single exploding-wire experiments. The similarities of the measured nonthermal spectrum and bright-spot emission with those measured at 0.8 MA on Gamble-II suggest a common production mechanism for this process. A model of electron acceleration across magnetic fields in highly-collisional, high-atomic-number plasmas is developed, which shows the existence of a critical electric field, E{sub c}, below which strong nonthermal electron creation (and the associated nonthermal x rays) do not occur. HC simulations show that significant nonthermal electrons are not expected in this experiment (as observed) because the calculated electric fields are at least one to two orders-of-magnitude below E{sub c}. These negative nonthermal results are confirmed by RHC simulations using a nonthermal model based on a Fokker-Plank analysis. Lastly, the lower production efficiency and the larger, more irregular pinch spots formed in this experiment relative to those measured on Gamble II suggest that implosion geometries are not as efficient as single exploding-wire geometries for warm x-ray production.

  13. On Relativistic Disk Spectroscopy in Compact Objects with X-ray CCD Cameras

    CERN Document Server

    Miller, J M; Bautz, M W; Bhattacharyya, S; Burrows, D N; Cackett, E M; Fabian, A C; Freyberg, M J; Haberl, F; Kennea, J; Nowak, M A; Reis, R C; Strohmayer, T E; Tsujimoto, M

    2010-01-01

    X-ray charge-coupled devices (CCDs) are the workhorse detectors of modern X-ray astronomy. Typically covering the 0.3-10.0 keV energy range, CCDs are able to detect photoelectric absorption edges and K shell lines from most abundant metals. New CCDs also offer resolutions of 30-50 (E/dE), which is sufficient to detect lines in hot plasmas and to resolve many lines shaped by dynamical processes in accretion flows. The spectral capabilities of X-ray CCDs have been particularly important in detecting relativistic emission lines from the inner disks around accreting neutron stars and black holes. One drawback of X-ray CCDs is that spectra can be distorted by photon "pile-up", wherein two or more photons may be registered as a single event during one frame time. We have conducted a large number of simulations using a statistical model of photon pile-up to assess its impacts on relativistic disk line and continuum spectra from stellar-mass black holes and neutron stars. The simulations cover the range of current X-...

  14. DEVELOPMENT OF NEW MID-INFRARED ULTRAFAST LASER SOURCES FOR COMPACT COHERENT X-RAY SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Sterling Backus

    2012-05-14

    In this project, we proposed to develop laser based mid-infrared lasers as a potentially robust and reliable source of ultrafast pulses in the mid-infrared region of the spectrum, and to apply this light source to generating bright, coherent, femtosecond-to-attosecond x-ray beams.

  15. Massive Stars and Their Compact Remnants in High-Mass X-Ray Binaries

    NARCIS (Netherlands)

    Kaper, L.; van der Meer, A.

    2007-01-01

    In a high-mass X-ray binary (HMXB) a massive star interacts with a neutron-star or black-hole companion in various ways. The gravitational interaction enables the measurement of fundamental parameters such as the mass of both binary components, providing important constraints on the evolutionary his

  16. Compact pnCCD-based X-ray camera with high spatial and energy resolution: a color X-ray camera.

    Science.gov (United States)

    Scharf, O; Ihle, S; Ordavo, I; Arkadiev, V; Bjeoumikhov, A; Bjeoumikhova, S; Buzanich, G; Gubzhokov, R; Günther, A; Hartmann, R; Kühbacher, M; Lang, M; Langhoff, N; Liebel, A; Radtke, M; Reinholz, U; Riesemeier, H; Soltau, H; Strüder, L; Thünemann, A F; Wedell, R

    2011-04-01

    For many applications there is a requirement for nondestructive analytical investigation of the elemental distribution in a sample. With the improvement of X-ray optics and spectroscopic X-ray imagers, full field X-ray fluorescence (FF-XRF) methods are feasible. A new device for high-resolution X-ray imaging, an energy and spatial resolving X-ray camera, is presented. The basic idea behind this so-called "color X-ray camera" (CXC) is to combine an energy dispersive array detector for X-rays, in this case a pnCCD, with polycapillary optics. Imaging is achieved using multiframe recording of the energy and the point of impact of single photons. The camera was tested using a laboratory 30 μm microfocus X-ray tube and synchrotron radiation from BESSY II at the BAMline facility. These experiments demonstrate the suitability of the camera for X-ray fluorescence analytics. The camera simultaneously records 69,696 spectra with an energy resolution of 152 eV for manganese K(α) with a spatial resolution of 50 μm over an imaging area of 12.7 × 12.7 mm(2). It is sensitive to photons in the energy region between 3 and 40 keV, limited by a 50 μm beryllium window, and the sensitive thickness of 450 μm of the chip. Online preview of the sample is possible as the software updates the sums of the counts for certain energy channel ranges during the measurement and displays 2-D false-color maps as well as spectra of selected regions. The complete data cube of 264 × 264 spectra is saved for further qualitative and quantitative processing.

  17. Developments of compact pulsed-power system toward X-ray sources

    Directory of Open Access Journals (Sweden)

    Miyamoto Takuya

    2013-11-01

    Full Text Available In order to generate X-rays from X-pinch, the peak current and current-rising time required are estimated to be 100 kA and 100 ns, respectively. To obtain these parameters, we developed a pulsed-power system, which consists of a parallelized pulse-forming network (PFN. The 20 PFN modules of the system were driven at a charging voltage of 20 kV by a thin copper wire of load resistance. The results showed that the current and current-rising time are 18 kA and 107 ns, respectively. The wire/plasma temperature is 6.9 eV. The pulsed-power system is expected to generate X-rays from X-pinch by the proposed system. This can be achieved by raising the voltage and increasing the number of PFN modules.

  18. X-ray Observations of Disrupted Recycled Pulsars: No Refuge for Orphaned Central Compact Objects

    CERN Document Server

    Gotthelf, E V; Allen, B; Knispel, B

    2013-01-01

    We present a Chandra X-ray survey of the disrupted recycled pulsars (DRPs), isolated radio pulsars with P > 20 ms and B_s 1E4 - 1E5 yr, roughly 10 times the ages of the approximately 10 known CCOs in a similar volume of the Galaxy. The order of a hundred CCO descendants that could be detected by this method are thus either intrinsically radio quiet, or occupy a different region of (P,B_s) parameter space from the DRPs. This motivates a new X-ray search for orphaned CCOs among radio pulsars with larger B-fields, which could verify the theory that their fields are buried by fall-back of supernova ejecta, but quickly regrow to join the normal pulsar population.

  19. Development of a compact laser-produced plasma soft X-ray source for radiobiology experiments

    Energy Technology Data Exchange (ETDEWEB)

    Adjei, Daniel, E-mail: nana.adjeidan@gmail.com [Institute of Optoelectronics, Military University of Technology, 2, Kaliskiego Str., 00-908 Warsaw (Poland); Radiation Protection Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Accra (Ghana); Ayele, Mesfin Getachew; Wachulak, Przemyslaw; Bartnik, Andrzej; Wegrzynski, Łukasz; Fiedorowicz, Henryk [Institute of Optoelectronics, Military University of Technology, 2, Kaliskiego Str., 00-908 Warsaw (Poland); Vyšín, Luděk [Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8 (Czech Republic); Faculty of Nuclear Sciences and Engineering Physics, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1 (Czech Republic); Wiechec, Anna; Lekki, Janusz; Kwiatek, Wojciech M. [Institute of Nuclear Physics, Polish Academy of Sciences, 152, Radzikowskiego Str., 31-342 Cracow (Poland); Pina, Ladislav [Faculty of Nuclear Sciences and Engineering Physics, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1 (Czech Republic); Davídková, Marie [Institute of Nuclear Physics, Czech Academy of Sciences, Řež (Czech Republic); Juha, Libor [Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8 (Czech Republic)

    2015-12-01

    A desk-top laser-produced plasma (LPP) source of soft X-rays (SXR) has been developed for radiobiology research. The source is based on a double-stream gas puff target, irradiated with the focused beam of a commercial Nd:YAG laser. The source has been optimized to get a maximum photon emission from LPP in the X-ray “water window” spectral wavelength range from 2.3 nm (i.e., an absorption edge of oxygen) to 4.4 nm (i.e., an absorption edge of carbon) (280–540 eV in photon energy units) by using argon gas-puff target and spectral filtering by free-standing thin foils. The present source delivers nanosecond pulses of soft X-rays at a fluence of about 4.2 × 10{sup 3} photons/μm{sup 2}/pulse on a sample placed inside the vacuum chamber. In this paper, the source design, radiation output characterization measurements and initial irradiation experiments are described. The source can be useful in addressing observations related to biomolecular, cellular and organisms’ sensitivity to pulsed radiation in the “water window”, where carbon atoms absorb X-rays more strongly than the oxygen, mostly present in water. The combination of the SXR source and the radiobiology irradiation layout, reported in this article, make possible a systematic investigation of relationships between direct and indirect action of ionizing radiation, an increase of a local dose in carbon-rich compartments of the cell (e.g., lipid membranes), an experimental estimation of a particular role of the Auger effect (in particular in carbon atoms) in the damage to biological systems, and the study of ionization/excitation-density (LET – Linear Energy Transfer) and dose-rate effects in radiobiology.

  20. A Compact X-ray Source in the Radio PWN G141.2+5.0

    Science.gov (United States)

    Reynolds, Stephen P.; Borkowski, Kazimierz J.

    2015-08-01

    We report the results of a 50 ks Chandra observation of the recently discovered radio object G141.2+5.0, presumed to be a pulsar-wind nebula (PWN) (Kothes et al. 2014). We find a faint unresolved X-ray source coincident with the central peak of radio emission. Spectral fits to the 241 counts show that an absorbed power-law describes the data well, with absorbing column NH = 4.8 (2.6, 7.3) x 1021 cm-2 and photon index Γ = 1.6 (1.2, 2.1). (A black-body fit is slightly less favored statistically, and has an implausibly high temperature, kT = 0.9 keV.) For a distance of 4 kpc, the unabsorbed luminosity between 0.5 and 8 keV is 1.8 (1.1, 3.0) x 1032 erg s-1. No extended emission is seen; a very conservative upper limit to Lx (nebula) is about the same luminosity as that observed from the point source. The radio luminosity is about 3 x 1030 erg s-1 the X-ray upper limit then gives Lx/Lr < 700, satisfied by almost all pulsar-wind nebulae. Both Lx and Γ are quite typical of pulsars in PWNe. The steep radio spectrum (α ~ -0.7), if continued to the X-ray without a break, predicts Lx (nebula) ~ 1 x 1033 erg s-1, so additional spectral steepening between radio and X-rays is required, as is true of all known PWNe. The high Galactic latitude gives a z-distance of 350 pc above the Galactic plane, quite unusual for a Population I object.

  1. Development of a compact laser-produced plasma soft X-ray source for radiobiology experiments

    Science.gov (United States)

    Adjei, Daniel; Ayele, Mesfin Getachew; Wachulak, Przemyslaw; Bartnik, Andrzej; Wegrzynski, Łukasz; Fiedorowicz, Henryk; Vyšín, Luděk; Wiechec, Anna; Lekki, Janusz; Kwiatek, Wojciech M.; Pina, Ladislav; Davídková, Marie; Juha, Libor

    2015-12-01

    A desk-top laser-produced plasma (LPP) source of soft X-rays (SXR) has been developed for radiobiology research. The source is based on a double-stream gas puff target, irradiated with the focused beam of a commercial Nd:YAG laser. The source has been optimized to get a maximum photon emission from LPP in the X-ray "water window" spectral wavelength range from 2.3 nm (i.e., an absorption edge of oxygen) to 4.4 nm (i.e., an absorption edge of carbon) (280-540 eV in photon energy units) by using argon gas-puff target and spectral filtering by free-standing thin foils. The present source delivers nanosecond pulses of soft X-rays at a fluence of about 4.2 × 103 photons/μm2/pulse on a sample placed inside the vacuum chamber. In this paper, the source design, radiation output characterization measurements and initial irradiation experiments are described. The source can be useful in addressing observations related to biomolecular, cellular and organisms' sensitivity to pulsed radiation in the "water window", where carbon atoms absorb X-rays more strongly than the oxygen, mostly present in water. The combination of the SXR source and the radiobiology irradiation layout, reported in this article, make possible a systematic investigation of relationships between direct and indirect action of ionizing radiation, an increase of a local dose in carbon-rich compartments of the cell (e.g., lipid membranes), an experimental estimation of a particular role of the Auger effect (in particular in carbon atoms) in the damage to biological systems, and the study of ionization/excitation-density (LET - Linear Energy Transfer) and dose-rate effects in radiobiology.

  2. An Evolving Compact Jet in the Black Hole X-Ray Binary MAXI J1836-194

    OpenAIRE

    Russell, D.M.; et al; Markoff, S.; Homan, J.; Altamirano, D.

    2013-01-01

    We report striking changes in the broadband spectrum of the compact jet of the black hole transient MAXI J1836-194 over state transitions during its discovery outburst in 2011. A fading of the optical-infrared (IR) flux occurred as the source entered the hard-intermediate state, followed by a brightening as it returned to the hard state. The optical-IR spectrum was consistent with a power law from optically thin synchrotron emission, except when the X-ray spectrum was softest. By fitting the ...

  3. Compact X-ray Free Electron Laser from a Laser-plasma Accelerator using a Transverse Gradient Undulator

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhirong; Ding, Yuantao; /SLAC; Schroeder, Carl B.; /LBL, Berkeley

    2012-09-13

    Compact laser-plasma accelerators can produce high energy electron beams with low emittance, high peak current but a rather large energy spread. The large energy spread hinders the potential applications for coherent FEL radiation generation. In this paper, we discuss a method to compensate the effects of beam energy spread by introducing a transverse field variation into the FEL undulator. Such a transverse gradient undulator together with a properly dispersed beam can greatly reduce the effects of electron energy spread and jitter on FEL performance. We present theoretical analysis and numerical simulations for SASE and seeded extreme ultraviolet and soft x-ray FELs based on laser plasma accelerators.

  4. Inverse Compton X-ray Emission from Supernovae with Compact Progenitors: Application to SN2011fe

    CERN Document Server

    Margutti, R; Chomiuk, L; Chevalier, R; Hurley, K; Milisavljevic, D; Foley, R J; Hughes, J P; Slane, P; Fransson, C; Moe, M; Barthelmy, S; Boynton, W; Briggs, M; Connaughton, V; Costa, E; Cummings, J; Del Monte, E; Enos, H; Fellows, C; Feroci, M; Fukazawa, Y; Gehrels, N; Goldsten, J; Golovin, D; Hanabata, Y; Harshman, K; Krimm, H; Litvak, M L; Makishima, K; Marisaldi, M; Mitrofanov, I G; Murakami, T; Ohno, M; Palmer, D M; Sanin, A B; Starr, R; Svinkin, D

    2012-01-01

    We present a generalized analytic formalism for the inverse Compton X-ray emission from hydrogen-poor supernovae and apply this framework to SN2011fe using Swift-XRT, UVOT and Chandra observations. We characterize the optical properties of SN2011fe in the Swift bands and find them to be broadly consistent with a "normal" SN Ia, however, no X-ray source is detected by either XRT or Chandra. We constrain the progenitor system mass loss rate to be lower than 2x10^-9 M_sun/yr (3sigma c.l.) for wind velocity v_w=100 km/s. Our result rules out symbiotic binary progenitors for SN2011fe and argues against Roche-lobe overflowing subgiants and main sequence secondary stars if >1% of the transferred mass is lost at the Lagrangian points. Regardless of the density profile, the X-ray non-detections are suggestive of a clean environment (particle density < 150 cm-3) for (2x10^15

  5. Testing for Shock-Heated X-Ray Gas around Compact Steep Spectrum Radio Galaxies

    Science.gov (United States)

    Noel-Storr, Jacob; O'Dea, Christopher; Worrall, Diana M.; Clarke, Tracy E.; Tremblay, Grant; Baum, Stefi; Christiansen, Kevin; Mullarkey, Christopher; Mittal, Rupal

    2017-01-01

    We present Chandra and XMM-Newton X-ray, VLA radio, and optical observations of two CSS radio galaxies. B3 1445+410 is a low excitation emission line galaxy with possibly a hybrid FRI/II (or Fat Double) radio morphology. The Chandra observations are point-like and well fit with a power-law consistent with emission from a Doppler boosted core. PKS B1017-325 is a galaxy with a bent double radio morphology. The XMM-Newton observations are consistent with an ISM with a contribution from hot shocked gas. We compile selected radio and X-ray properties of the nine CSS radio galaxies with X-ray detections so far. We find that 1/3 show evidence for hot shocked gas. We note that the counts in the sources are low and the properties of the 3 sources with evidence for hot shocked gas are typical of the other CSS radio galaxies. We suggest that hot shocked gas may be typical of CSS radio galaxies due to their propagation through their host galaxies.

  6. A compact high-resolution X-ray ion mobility spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Reinecke, T.; Kirk, A. T.; Heptner, A.; Niebuhr, D.; Böttger, S.; Zimmermann, S. [Department of Sensors and Measurement Technology, Institute of Electrical Engineering and Measurement Technology, Leibniz Universität Hannover, Appelstr. 9A, 30167 Hannover (Germany)

    2016-05-15

    For the ionization of gaseous samples, most ion mobility spectrometers employ radioactive ionization sources, e.g., containing {sup 63}Ni or {sup 3}H. Besides legal restrictions, radioactive materials have the disadvantage of a constant radiation with predetermined intensity. In this work, we replaced the {sup 3}H source of our previously described high-resolution ion mobility spectrometer with 75 mm drift tube length with a commercially available X-ray source. It is shown that the current configuration maintains the resolving power of R = 100 which was reported for the original setup containing a {sup 3}H source. The main advantage of an X-ray source is that the intensity of the radiation can be adjusted by varying its operating parameters, i.e., filament current and acceleration voltage. At the expense of reduced resolving power, the sensitivity of the setup can be increased by increasing the activity of the source. Therefore, the performance of the setup can be adjusted to the specific requirements of any application. To investigate the relation between operating parameters of the X-Ray source and the performance of the ion mobility spectrometer, parametric studies of filament current and acceleration voltage are performed and the influence on resolving power, peak height, and noise is analyzed.

  7. A Bow Shock Nebula Around a Compact X-Ray Source in the Supernova Remnant IC443

    CERN Document Server

    Olbert, C M; Williams, N E; Keohane, J W; Frail, D A

    2001-01-01

    We present spectra and high resolution images of the hard X-ray feature along the southern edge of the supernova remnant IC443. Data from the Chandra X-ray Observatory reveal a comet-shaped nebula of hard emission, which contains a softer point source at its apex. We also present 20cm, 6cm, and 3.5cm images from the Very Large Array that clearly show the cometary nebula. Based on the radio and X-ray morphology and spectrum, and the radio polarization properties, we argue that this object is a synchrotron nebula powered by the compact source that is physically associated with IC443. The spectrum of the soft point source is adequately but not uniquely fit by a black body model (kT=0.71 +/- 0.08 keV, L=(6.5 +/- 0.9) * 10^31 erg/s). The cometary morphology of the nebula is the result of the supersonic motion of the neutron star (V_NS=250 +/- 50 km/s), which causes the relativistic wind of the pulsar to terminate in a bow shock and trail behind as a synchrotron tail. This velocity is consistent with an age of 30,0...

  8. Extending the possibilities of a Kratky-Compact-Camera by use of focussing multilayer X-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    Henze, Thomas; Petzold, Albrecht; Schroeter, Klaus; Thurn-Albrecht, Thomas [Institut fuer Physik, Martin-Luther-Universitaet Halle-Wittenberg, 06099 Halle (Germany)

    2009-07-01

    The use of focussing multilayer x-ray optics on laboratory x-ray equipment offers the potential of a substantial gain in primary beam intensity without a significant loss of resolution. We present the result of a refurbishment of Kratky-Compact-Camera, a classical setup for small angle x-ray scattering on isotropic samples, with an elliptically bent focussing multilayer. The advantages of the Kratky collimation system are ease of alignment, high intensity and low background. A further gain in intensity is highly desirable for time dependent experiments as well as for measurement of weakly scattering samples. The performance of the revised setup is analyzed quantitatively by comparing intensity and full width at half maximum of the primary beam, as well as the minimal accessible scattering vector with the corresponding parameters of the simple setup without optics. A gain in intensity of a factor 2 up to 10 is achieved, depending on the details of the alignment. In addition the multilayer produces a monochromatic beam. First measurements on exemplary polymer systems are shown.

  9. Characteristics of a multi-keV monochromatic point x-ray source based on vacuum diode with laser-produced plasma as cathode

    Indian Academy of Sciences (India)

    A Moorti; A Raghuramaiah; P A Naik; P D Gupta

    2004-11-01

    Temporal, spatial and spectral characteristics of a multi-keV monochromatic point x-ray source based on vacuum diode with laser-produced plasma as cathode are presented. Electrons from a laser-produced aluminium plasma were accelerated towards a conical point tip titanium anode to generate K-shell x-ray radiation. Approximately 1010 photons/pulse were generated in x-ray pulses of ∼ 18 to ∼ 28 ns duration from a source of ∼ 300 m diameter, at ℎ = 4.51 keV ( emission of titanium), with a brightness of ∼ 1020 photons/cm2 /s/sr. This was sufficient to record single-shot x-ray radiographs of physical objects on a DEF-5 x-ray film kept at a distance of up to ∼ 10 cm.

  10. Development of a kilowatt-class, joule-level ultrafast laser for driving compact high average power coherent EUV/soft x-ray sources

    Science.gov (United States)

    Reagan, Brendan A.; Baumgarten, Cory M.; Pedicone, Michael A.; Bravo, Herman; Yin, Liang; Woolston, Mark; Wang, Hanchen; Menoni, Carmen S.; Rocca, Jorge J.

    2016-03-01

    Our recent progress in the development of high energy / high average power, chirped pulse amplification laser systems based on diode-pumped, cryogenically-cooled Yb:YAG amplifiers is discussed, including the demonstration of a laser that produces 1 Joule, sub-10 picosecond duration, λ = 1.03μm pulses at 500 Hz repetition rate. This compact, all-diodepumped laser combines a mode-locked Yb:KYW oscillator and a water-cooled Yb:YAG preamplifer with two cryogenic power amplification stages to produce 1.5 Joule pulses with high beam quality which are subsequently compressed. This laser system occupies an optical table area of less than 1.5x3m2. This laser was employed to pump plasma-based soft x-ray lasers at λ = 10-20nm at repetition rates >=100 Hz. To accomplish this, temporally-shaped pulses were focused at grazing incidence into a high aspect ratio line focus using cylindrical optics on a high shot capacity rotating metal target. This results in an elongated plasma amplifier that produces microjoule pulses at several narrow-linewidth EUV wavelengths between λ = 109Å and 189Å. The resulting fraction of a milliwatt average powers are the highest reported to date for a compact, coherent source operating at these wavelengths, to the best of our knowledge.

  11. X-ray properties of the Sun and some compact objects of our Galaxy

    CERN Document Server

    Debnath, Dipak

    2011-01-01

    In the Thesis, I study the X-ray properties of the two major stages of the life cycle of the stars: one is the normal life of a lighter mass star (Sun) and another is the collapsed state (black hole) of a star (black hole candidates GRO J1655-40, GX 339-4 and GRBs). I am lucky to be a team member for developing X-ray solar space instruments RT-2 (S, G and CZT) which observed both the Sun and Gamma-Ray Bursts (GRBs) from space. A part of my Thesis contains development of RT-2 instruments, characterization of CZT & CMOS imaging detectors (used in RT-2/CZT instrument), some observational results of solar flares and GRBs. My Thesis also contains the detailed timing & spectral properties of the 2005 outburst of the well known Galactic black hole candidate GRO J1655-40 and initial rising phase of 2010 outburst of the transient Galactic stellar mass black hole candidate GX 339-4.

  12. Further Evidence that Quasar X-Ray Emitting Regions Are Compact: X-Ray and Optical Microlensing in the Lensed Quasar Q J0158-4325

    CERN Document Server

    Morgan, Christopher W; Chen, Bin; Tewes, Malte; Kochanek, Christopher S; Dai, Xinyu; Kozlowski, Szymon; Blackburne, Jeffrey A; Mosquera, Ana M; Chartas, George; Courbin, Frederic; Meylan, Georges

    2012-01-01

    We present four new seasons of optical monitoring data and six epochs of X-ray photometry for the doubly-imaged lensed quasar Q J0158-4325. The high-amplitude, short-period microlensing variability for which this system is known has historically precluded a time delay measurement by conventional methods. We attempt to circumvent this limitation by application of a Monte Carlo microlensing analysis technique, but we are only able to prove that the delay must have the expected sign (image A leads image B). Despite our failure to robustly measure the time delay, we successfully model the microlensing at optical and X-ray wavelengths to find a half light radius for soft X-ray emission log(r_{1/2,X,soft}/cm) = 14.3^{+0.4}_{-0.5}, an upper limit on the half-light radius for hard X-ray emission log(r_{1/2,X,hard}/cm) <= 14.6 and a refined estimate of the inclination-corrected scale radius of the optical R-band (rest frame 3100 Angstrom) continuum emission region of log(r_s/cm) = 15.6+-0.3.

  13. Compact X-ray free-electron laser based on an optical undulator

    Energy Technology Data Exchange (ETDEWEB)

    Bacci, A.; Maroli, C. [Sezione di Milano INFN, Via Celoria 16, 20133 Milan (Italy); Petrillo, V. [Sezione di Milano INFN, Via Celoria 16, 20133 Milan (Italy); Universita degli Studi di Milano, Via Celoria 16, 20133 Milan (Italy)], E-mail: Petrillo@mi.infn.it; Rossi, A.R.; Serafini, L. [Sezione di Milano INFN, Via Celoria 16, 20133 Milan (Italy); Tomassini, P. [Sezione di Milano INFN, Via Celoria 16, 20133 Milan (Italy); Universita degli Studi di Pisa, Via Buonarroti, 256127 Pisa (Italy)

    2008-03-21

    The interaction between a very high-brightness electron beam and a relativistically intense optical laser pulse produces X-rays via coherent Thomson back scattering with FEL collective amplification. The phenomenon is, however, very selective, so that the characteristics of both electron and laser beam must satisfy tight requirements in terms of beam current, emittance, energy spread and laser amplitude stability within the pulse. The three-dimensional equations governing the radiation phenomena have been studied in both linear and non-linear regime and solved numerically for the particularly interesting values of wavelengths of 1 A, 1 and 12 nm. The performance of the collective Thomson source has been compared with that of an equivalent static undulator. A set of scaling laws ruling the phenomenon is also presented.

  14. Evolution of low-mass X-ray binaries: dependence on the mass of the compact object

    Institute of Scientific and Technical Information of China (English)

    Qian Xu; Tao Li; Xiang-Dong Li

    2012-01-01

    We perform numerical calculations to simulate the evolution of low-mass X-ray binary systems.For the accreting compact object we consider the initial mass of 1.4,10,20,100,200,500 and 1000 M☉,corresponding to neutron stars (NSs),stellarmass black holes (BHs) and intermediate-mass BHs.Mass transfer in these binaries is driven by nuclear evolution of the donors and/or orbital angular momentum loss due to magnetic braking and gravitational wave radiation.For the different systems,we determine their bifurcation periods Pbif that separate the formation of converging systems from the diverging ones,and show that Pbif changes from ~ 1 d to (≥)3 d for a 1 M☉ donor star,with increasing initial accretor mass from 1.4 to 1000 M☉.This means that the dominant mechanism of orbital angular momentum loss changes from magnetic braking to gravitational radiation.As an illustration we compare the evolution of binaries consisting of a secondary star of 1 M☉ at a fixed initial period of 2 d.In the case of the NS or stellar-mass BH accretor,the system evolves to a well-detached He white dwarf-neutron star/black hole pair,but it evolves to an ultracompact binary if the compact object is an intermediate-mass BH.Thus the binary evolution heavily depends upon the mass of the compact object.However,we show that the final orbital period-white dwarf mass relation found for NS low-mass X-ray binaries is fairly insensitive to the initial mass of the accreting star,even if it is an intermediate-mass BH.

  15. An evolving compact jet in the black hole X-ray binary MAXI J1836-194

    CERN Document Server

    Russell, D M; Miller-Jones, J C A; O'Brien, K; Soria, R; Sivakoff, G R; Slaven-Blair, T; Lewis, F; Markoff, S; Homan, J; Altamirano, D; Curran, P A; Rupen, M P; Belloni, T M; Bel, M Cadolle; Casella, P; Corbel, S; Dhawan, V; Fender, R P; Gallo, E; Gandhi, P; Heinz, S; Koerding, E G; Krimm, H A; Maitra, D; Migliari, S; Remillard, R A; Sarazin, C L; Shahbaz, T; Tudose, V

    2013-01-01

    We report striking changes in the broadband spectrum of the compact jet of the black hole transient MAXI J1836-194 over state transitions during its discovery outburst in 2011. A fading of the optical-infrared (IR) flux occurred as the source entered the hard-intermediate state, followed by a brightening as it returned to the hard state. The optical-IR spectrum was consistent with a power law from optically thin synchrotron emission, except when the X-ray spectrum was softest. By fitting the radio to optical spectra with a broken power law, we constrain the frequency and flux of the optically thick/thin break in the jet synchrotron spectrum. The break gradually shifted to higher frequencies as the source hardened at X-ray energies, from ~ 10^11 to ~ 4 x 10^13 Hz. The radiative jet luminosity integrated over the spectrum appeared to be greatest when the source entered the hard state during the outburst decay (although this is dependent on the high energy cooling break, which is not seen directly), even though ...

  16. On the Nature of the Compact Object in SS 433. Observational Evidence of X-Ray Photon Index Saturation

    Science.gov (United States)

    Seifina, Elena; Titarchuk, Lev

    2010-01-01

    We present an analysis of the X-ray spectral properties observed from black hole , candidate (BHC) binary SS 433. We have analyzed Rossi X-ray Time Explorer (RXTE) data from this source, coordinated with Green Bank Interferometer/RATAN-600. We show that SS 433 undergoes a X-ray spectral transition from the low hard state (LHS) to the intermediate state (IS). We show that the X-ray broad-band energy spectra during all spectral states are well fit by a sum of so called "Bulk Motion Comptonization (BMC) component" and by two (broad and narrow) Gaussians for the continuum and line emissions respectively. In addition to these spectral model components we also find a strong feature that we identify as a" blackbody-like (BB)" component which color temperature is in the range of 4-5 keV in 24 IS spectra during the radio outburst decay in SS 433. Our observational results on the "high temperature BB" bump leads us to suggest the presence of gravitationally redshifted annihilation line emission in this source. In fact this spectral feature has been recently reproduced in Monte Carlo simulations by Laurent and Titarchuk. We have also established the photon index saturation at about 2.3 in index vs mass accretion correlation. This index-mass accretion correlation allows us to evaluate the low limit of black hole (BH) mass of compact object in SS 433, M(sub bh) approximately > 2 solar masses, using the scaling method using BHC GX 339-4 as a reference source. Our estimate of the BH mass in SS 433 is consistent with recent BH mass measurement using the radial-velocity measurements of the binary system by Hillwig & Gies who find that M(sub x)( = (4.3 +/- 0.8) solar masses. This is the smallest BH mass found up to now among all BH sources. Moreover, the index saturation effect versus mass accretion rate revealed in SS 433, like in a number of other BH candidates, is the strong observational evidence for the presence of a BH in SS 433.

  17. Compact ring-based X-ray source with on-orbit and on-energy laser-plasma injection

    CERN Document Server

    Turner, Marlene; Edelen, Auralee; Gerity, James; Lajoie, Andrew; Lawler, Gerard; Lishilin, Osip; Moon, Kookjin; Sahai, Aakash Ajit; Seryi, Andrei; Shih, Kai; Zerbe, Brandon

    2016-01-01

    We report here the results of a one week long investigation into the conceptual design of an X-ray source based on a compact ring with on-orbit and on-energy laser-plasma accelerator. We performed these studies during the June 2016 USPAS class "Physics of Accelerators, Lasers, and Plasma..." applying the art of inventiveness TRIZ. We describe three versions of the light source with the constraints of the electron beam with energy $1\\,\\rm{GeV}$ or $3\\,\\rm{GeV}$ and a magnetic lattice design being normal conducting (only for the $1\\,\\rm{GeV}$ beam) or superconducting (for either beam). The electron beam recirculates in the ring, to increase the effective photon flux. We describe the design choices, present relevant parameters, and describe insights into such machines.

  18. Compact x-ray free-electron laser from a laser-plasma accelerator using a transverse-gradient undulator.

    Science.gov (United States)

    Huang, Zhirong; Ding, Yuantao; Schroeder, Carl B

    2012-11-16

    Compact laser-plasma accelerators can produce high energy electron beams with low emittance, high peak current but a rather large energy spread. The large energy spread hinders the potential applications for coherent free-electron laser (FEL) radiation generation. We discuss a method to compensate the effects of beam energy spread by introducing a transverse field variation into the FEL undulator. Such a transverse gradient undulator together with a properly dispersed beam can greatly reduce the effects of electron energy spread and jitter on FEL performance. We present theoretical analysis and numerical simulations for self-amplified spontaneous emission and seeded extreme ultraviolet and soft x-ray FELs based on laser plasma accelerators.

  19. Some Like it Hot: Linking Diffuse X-Ray Luminosity, Baryonic Mass, and Star Formation Rate in Compact Groups of Galaxies

    Science.gov (United States)

    Desjardins, Tyler D.; Gallagher, Sarah C.; Hornschemeier, Ann E.; Mulchaey, John S.; Walker, Lisa May; Brandt, Willian N.; Charlton, Jane C.; Johnson, Kelsey E.; Tzanavaris, Panayiotis

    2014-01-01

    We present an analysis of the diffuse X-ray emission in 19 compact groups (CGs) of galaxies observed with Chandra. The hottest, most X-ray luminous CGs agree well with the galaxy cluster X-ray scaling relations in L(x-T) and (L(x-sigma), even in CGs where the hot gas is associated with only the brightest galaxy. Using Spitzer photometry, we compute stellar masses and classify Hickson CGs 19, 22, 40, and 42, and RSCGs 32, 44, and 86 as fossil groups using a new definition for fossil systems that includes a broader range of masses. We find that CGs with total stellar and Hi masses are great than or equal to 10(sup (11.3) solar mass are often X-ray luminous, while lower-mass CGs only sometimes exhibit faint, localized X-ray emission. Additionally, we compare the diffuse X-ray luminosity against both the total UV and 24 micron star formation rates of each CG and optical colors of the most massive galaxy in each of the CGs. The most X-ray luminous CGs have the lowest star formation rates, likely because there is no cold gas available for star formation, either because the majority of the baryons in these CGs are in stars or the X-ray halo, or due togas stripping from the galaxies in CGs with hot halos. Finally, the optical colors that trace recent star formation histories of the most massive group galaxies do not correlate with the X-ray luminosities of the CGs, indicating that perhaps the current state of the X-ray halos is independent of the recent history of stellar mass assembly in the most massive galaxies.

  20. High energy resolution hard X-ray and gamma-ray imagers using CdTe diode devices

    CERN Document Server

    Watanabe, Shin; Aono, Hiroyuki; Takeda, Shin'ichiro; Odaka, Hirokazu; Kokubun, Motohide; Takahashi, Tadayuki; Nakazawa, Kazuhiro; Tajima, Hiroyasu; Onishi, Mitsunobu; Kuroda, Yoshikatsu

    2008-01-01

    We developed CdTe double-sided strip detectors (DSDs or cross strip detectors) and evaluated their spectral and imaging performance for hard X-rays and gamma-rays. Though the double-sided strip configuration is suitable for imagers with a fine position resolution and a large detection area, CdTe diode DSDs with indium (In) anodes have yet to be realized due to the difficulty posed by the segmented In anodes. CdTe diode devices with aluminum (Al) anodes were recently established, followed by a CdTe device in which the Al anodes could be segmented into strips. We developed CdTe double-sided strip devices having Pt cathode strips and Al anode strips, and assembled prototype CdTe DSDs. These prototypes have a strip pitch of 400 micrometer. Signals from the strips are processed with analog ASICs (application specific integrated circuits). We have successfully performed gamma-ray imaging spectroscopy with a position resolution of 400 micrometer. Energy resolution of 1.8 keV (FWHM: full width at half maximum) was ob...

  1. Maximum mass ratio of AM CVn-type binary systems and maximum white dwarf mass in ultra-compact X-ray binaries

    Directory of Open Access Journals (Sweden)

    Arbutina Bojan

    2011-01-01

    Full Text Available AM CVn-type stars and ultra-compact X-ray binaries are extremely interesting semi-detached close binary systems in which the Roche lobe filling component is a white dwarf transferring mass to another white dwarf, neutron star or a black hole. Earlier theoretical considerations show that there is a maximum mass ratio of AM CVn-type binary systems (qmax ≈ 2/3 below which the mass transfer is stable. In this paper we derive slightly different value for qmax and more interestingly, by applying the same procedure, we find the maximum expected white dwarf mass in ultra-compact X-ray binaries.

  2. X-Ray Polarimetry

    CERN Document Server

    Kaaret, Philip

    2014-01-01

    We review the basic principles of X-ray polarimetry and current detector technologies based on the photoelectric effect, Bragg reflection, and Compton scattering. Recent technological advances in high-spatial-resolution gas-filled X-ray detectors have enabled efficient polarimeters exploiting the photoelectric effect that hold great scientific promise for X-ray polarimetry in the 2-10 keV band. Advances in the fabrication of multilayer optics have made feasible the construction of broad-band soft X-ray polarimeters based on Bragg reflection. Developments in scintillator and solid-state hard X-ray detectors facilitate construction of both modular, large area Compton scattering polarimeters and compact devices suitable for use with focusing X-ray telescopes.

  3. Beam monitor system for an x-ray free electron laser and compact laser

    Directory of Open Access Journals (Sweden)

    Y. Otake

    2013-04-01

    Full Text Available A beam-monitor system for XFEL/SPring 8, “SACLA,” has been constructed. In order to maintain a stable self-amplified spontaneous emission (SASE interaction, the straightness and overlap of the axes to within 3  μm between the electron beams and the radiated x rays for an undulator section of about 100 m length is necessary. This straightness means relative alignment to an experimental target sample. Furthermore, a temporal stability of 30 fs in order to maintain a constant peak beam current is also necessary to conduct stable SASE lasing. The monitor system was developed to satisfy these spatial and temporal stability and resolution criteria. The system comprises spatial monitors, such as cavity-type beam-position monitors and screen monitors, as well as temporal measurement instruments, such as current monitors, waveguide spectrometers, coherent synchrotron-radiation detectors, a streak camera, and an rf deflector. Commissioning of SACLA started from March 2011, and the monitors performed sufficient roles to tune the beams for lasing. The achieved overall performances of the system, including data acquisition, are: the beam position monitor has a spatial resolution of 600 nm in rms; the bunch-length monitors show ability to observe bunch lengths from 1 ns in an injector with velocity bunching to less than 30 fs after three-stage bunch compressors. The less than 3  μm spatial resolution of the screen monitor was also confirmed during practical beam operation. Owing to these fulfilled performances, such as the high spatial and temporal resolutions, stable lasing of SACLA has been achieved.

  4. Further Evidence that Quasar X-Ray Emitting Regions Are Compact: X-Ray and Optical Microlensing in the Lensed Quasar Q J0158-4325

    OpenAIRE

    Morgan, Christopher W.; Hainline, Laura J.; Chen, Bin; Tewes, Malte; Kochanek, Christopher S.; Dai, Xinyu; Kozlowski, Szymon; Blackburne, Jeffrey A.; Mosquera, Ana M.; Chartas, George; Courbin, Frederic; Meylan, Georges

    2012-01-01

    We present four new seasons of optical monitoring data and six epochs of X-ray photometry for the doubly-imaged lensed quasar Q J0158-4325. The high-amplitude, short-period microlensing variability for which this system is known has historically precluded a time delay measurement by conventional methods. We attempt to circumvent this limitation by application of a Monte Carlo microlensing analysis technique, but we are only able to prove that the delay must have the expected sign (image A lea...

  5. An Evolving Compact Jet in the Black Hole X-Ray Binary MAXI J1836-194

    Science.gov (United States)

    Russell, D. M.; Russell, T. D.; Miller-Jones, J. C. A.; O'Brien, K.; Soria, R.; Sivakoff, G. R.; Slaven-Blair, T.; Lewis, F.; Markoff, S.; Homan, J.; Altamirano, D.; Curran, P. A.; Rupen, M. P.; Belloni, T. M.; Cadolle Bel, M.; Casella, P.; Corbel, S.; Dhawan, V.; Fender, R. P.; Gallo, E.; Gandhi, P.; Heinz, S.; Körding, E. G.; Krimm, H. A.; Maitra, D.; Migliari, S.; Remillard, R. A.; Sarazin, C. L.; Shahbaz, T.; Tudose, V.

    2013-05-01

    We report striking changes in the broadband spectrum of the compact jet of the black hole transient MAXI J1836-194 over state transitions during its discovery outburst in 2011. A fading of the optical-infrared (IR) flux occurred as the source entered the hard-intermediate state, followed by a brightening as it returned to the hard state. The optical-IR spectrum was consistent with a power law from optically thin synchrotron emission, except when the X-ray spectrum was softest. By fitting the radio to optical spectra with a broken power law, we constrain the frequency and flux of the optically thick/thin break in the jet synchrotron spectrum. The break gradually shifted to higher frequencies as the source hardened at X-ray energies, from ~1011 to ~4 × 1013 Hz. The radiative jet luminosity integrated over the spectrum appeared to be greatest when the source entered the hard state during the outburst decay (although this is dependent on the high-energy cooling break, which is not seen directly), even though the radio flux was fading at the time. The physical process responsible for suppressing and reactivating the jet (neither of which are instantaneous but occur on timescales of weeks) is uncertain, but could arise from the varying inner accretion disk radius regulating the fraction of accreting matter that is channeled into the jet. This provides an unprecedented insight into the connection between inflow and outflow, and has implications for the conditions required for jets to be produced, and hence their launching process. Based on observations collected at the European Southern Observatory, Chile, under ESO Program IDs 087.D-0914 and 089.D-0970.

  6. Compact Roll-to-Roll Coater for in Situ X-ray Diffraction Characterization of Organic Electronics Printing.

    Science.gov (United States)

    Gu, Xiaodan; Reinspach, Julia; Worfolk, Brian J; Diao, Ying; Zhou, Yan; Yan, Hongping; Gu, Kevin; Mannsfeld, Stefan; Toney, Michael F; Bao, Zhenan

    2016-01-27

    We describe a compact roll-to-roll (R2R) coater that is capable of tracking the crystallization process of semiconducting polymers during solution printing using X-ray scattering at synchrotron beamlines. An improved understanding of the morphology evolution during the solution-processing of organic semiconductor materials during R2R coating processes is necessary to bridge the gap between "lab" and "fab". The instrument consists of a vacuum chuck to hold the flexible plastic substrate uniformly flat for grazing incidence X-ray scattering. The time resolution of the drying process that is achievable can be tuned by controlling two independent motor speeds, namely, the speed of the moving flexible substrate and the speed of the printer head moving in the opposite direction. With this novel design, we are able to achieve a wide range of drying time resolutions, from tens of milliseconds to seconds. This allows examination of the crystallization process over either fast or slow drying processes depending on coating conditions. Using regioregular poly(3-hexylthiophene-2,5-diyl) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) inks based on two different solvents as a model system, we demonstrate the capability of our in situ R2R printing tool by observing two distinct crystallization processes for inks drying from the solvents with different boiling points (evaporation rates). We also observed delayed on-set point for the crystallization of P3HT polymer in the 1:1 P3HT/PCBM BHJ blend, and the inhibited crystallization of the P3HT during the late stage of the drying process.

  7. AN EVOLVING COMPACT JET IN THE BLACK HOLE X-RAY BINARY MAXI J1836-194

    Energy Technology Data Exchange (ETDEWEB)

    Russell, D. M. [Instituto de Astrofisica de Canarias (IAC), E-38200 La Laguna, Tenerife (Spain); Russell, T. D.; Miller-Jones, J. C. A.; Soria, R.; Slaven-Blair, T.; Curran, P. A. [International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia); O' Brien, K. [Department of Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Sivakoff, G. R. [Department of Physics, University of Alberta, CCIS 4-181, Edmonton, AB T6G 2E1 (Canada); Lewis, F. [Faulkes Telescope Project, University of Glamorgan, Pontypridd CF37 1DL (United Kingdom); Markoff, S.; Altamirano, D. [Astronomical Institute ' ' Anton Pannekoek' ' , University of Amsterdam, P.O. Box 94249, 1090 GE Amsterdam (Netherlands); Homan, J. [MIT Kavli Institute for Astrophysics and Space Research, 70 Vassar Street, Cambridge, MA 02139 (United States); Rupen, M. P.; Dhawan, V. [NRAO Domenici Science Operations Center, 1003 Lopezville Road, Socorro, NM 87801 (United States); Belloni, T. M. [INAF - Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807 Merate (Italy); Cadolle Bel, M. [European Space Agency, European Space Astronomy Centre, ISOC, Villanueva de la Canada, Madrid (Spain); Casella, P. [INAF - Osservatorio Astronomico di Roma, Via Frascati 33, I-00040 Monteporzio Catone, Roma (Italy); Corbel, S. [Laboratoire AIM, UMR 7158, CEA/DSM, CNRS, Universite Paris Diderot, IRFU/SAp, Gif-sur-Yvette (France); Fender, R. P. [School of Physics and Astronomy, University of Southampton, Southampton, Hampshire SO17 1BJ (United Kingdom); Gallo, E., E-mail: russell@iac.es [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); and others

    2013-05-10

    We report striking changes in the broadband spectrum of the compact jet of the black hole transient MAXI J1836-194 over state transitions during its discovery outburst in 2011. A fading of the optical-infrared (IR) flux occurred as the source entered the hard-intermediate state, followed by a brightening as it returned to the hard state. The optical-IR spectrum was consistent with a power law from optically thin synchrotron emission, except when the X-ray spectrum was softest. By fitting the radio to optical spectra with a broken power law, we constrain the frequency and flux of the optically thick/thin break in the jet synchrotron spectrum. The break gradually shifted to higher frequencies as the source hardened at X-ray energies, from {approx}10{sup 11} to {approx}4 Multiplication-Sign 10{sup 13} Hz. The radiative jet luminosity integrated over the spectrum appeared to be greatest when the source entered the hard state during the outburst decay (although this is dependent on the high-energy cooling break, which is not seen directly), even though the radio flux was fading at the time. The physical process responsible for suppressing and reactivating the jet (neither of which are instantaneous but occur on timescales of weeks) is uncertain, but could arise from the varying inner accretion disk radius regulating the fraction of accreting matter that is channeled into the jet. This provides an unprecedented insight into the connection between inflow and outflow, and has implications for the conditions required for jets to be produced, and hence their launching process.

  8. Compact green-diode-based lasers for biophotonic bioimaging

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Hansen, Anders Kragh; Petersen, Paul Michael

    2014-01-01

    Diode lasers simultaneously offer tunability, high-power emission, and compact size at fairly low cost and are increasingly preferred for pumping titanium:sapphire lasers.......Diode lasers simultaneously offer tunability, high-power emission, and compact size at fairly low cost and are increasingly preferred for pumping titanium:sapphire lasers....

  9. XMM-Newton Measurement of the Galactic Halo X-ray Emission using a Compact Shadowing Cloud

    CERN Document Server

    Henley, David B; Cumbee, Renata S; Stancil, Phillip C

    2014-01-01

    Observations of interstellar clouds that cast shadows in the soft X-ray background can be used to separate the background Galactic halo emission from the local emission due to solar wind charge exchange (SWCX) and/or the Local Bubble (LB). We present an XMM-Newton observation of a shadowing cloud, G225.60-66.40, that is sufficiently compact that the on- and off-shadow spectra can be extracted from a single field of view (unlike previous shadowing observations of the halo with CCD-resolution spectrometers, which consisted of separate on- and off-shadow pointings). We analyzed the spectra using a variety of foreground models: one representing LB emission, and two representing SWCX emission. We found that the resulting halo model parameters (temperature $T_h \\approx 2 \\times 10^6$ K, emission measure $E_h \\approx 4 \\times 10^{-3}$ cm$^{-6}$ pc) were not sensitive to the foreground model used. This is likely due to the relative faintness of the foreground emission in this observation. However, the data do favor t...

  10. Extreme ultraviolet and soft X-ray imaging with compact, table top laser plasma EUV and SXR sources

    Science.gov (United States)

    Wachulak, P. W.; Bartnik, A.; Kostecki, J.; Wegrzynski, L.; Fok, T.; Jarocki, R.; Szczurek, M.; Fiedorowicz, H.

    2015-12-01

    We present a few examples of imaging experiments, which were possible using a compact laser-plasma extreme ultraviolet (EUV) and soft X-ray (SXR) source, based on a double stream gas puff target. This debris-free source was used in full-field EUV imaging to obtain magnified images of test samples, ZnO nanofibers and images of the membranes coated with salt crystals. The source was also employed for SXR microscopy in the "water-window" spectral range using grazing incidence Wolter type-I objective to image test samples and to perform the initial studies of biological objects. Gas puff target EUV source, spectrally tuned for 13.5 nm wavelength with multilayer mirror and thin film filters, was also used in variety of shadowgraphy experiments to study the density of newly developed modulated density gas puff targets. Finally, the source was also employed in EUV tomography experiments of low density objects with the goal to measure and optimize the density of the targets dedicated to high harmonic generation.

  11. Polarimetric and spectroscopic optical observations of the ultra-compact X-ray binary 4U 0614+091

    CERN Document Server

    Baglio, M C; D'Avanzo, P; Campana, S; Covino, S; Russell, D M; Shahbaz, T

    2014-01-01

    Aims: We present a polarimetric and spectroscopic study of the persistent ultra compact X-ray binary 4U 0614+091 aimed at searching for the emission of a relativistic particle jet and at unveiling the orbital period of the system. Methods: We obtained r-band polarimetric observations with the Telescopio Nazionale Galileo (TNG) equipped with the PAOLO polarimeter and with the Nordic Optical Telescope (NOT) equipped with the ALFOSC instrument, covering ~ 2 hours and ~ 0.5 hours observations, respectively. We carried out low resolution spectroscopy of the system using the ESO Very Large Telescope equipped with FORS1 for ~ 1.5 hours (16 spectra covering the range 430-800 nm). Results: The polarimetric analysis performed starting from the TNG dataset revealed a polarisation degree in the r-band of 3 % +/- 1 %. From the NOT dataset, due to the lower S/N ratio, we could obtain only a 3 sigma upper limit of 3.4 %. From the joining of a spectroscopic and photometric analysis, through the study of the equivalent width ...

  12. A Compact Light Source: Design and Technical Feasibility Study of a Laser-Electron Storage Ring X-Ray Source

    Energy Technology Data Exchange (ETDEWEB)

    Loewen, R

    2004-02-02

    Thomson scattering infrared photons off energetic electrons provides a mechanism to produce hard X-rays desirable for applied sciences research. Using a small, modest energy (25MeV) electron storage ring together with a resonantly-driven optical storage cavity, a narrow spectrum of hard X-rays could be produced with the quality and monochromatic intensity approaching that of beamline sources at large synchrotron radiation laboratories. The general design of this X-ray source as well as its technical feasibility are presented. In particular, the requirements of optical pulse gain enhancement in an external cavity are described and experimentally demonstrated using a CW mode-locked laser.

  13. Electron Temperature Measurement Using PIN Diodes as Detectors to Record the X-ray Pulses from a Low-Energy Mather-Type Plasma Focus

    Institute of Scientific and Technical Information of China (English)

    M. Asif; Amna Ikram

    2004-01-01

    In the experiment to determine the plasma electron temperature, a modified multichannel PIN diodes assembly is used as detectors to record the X-ray pulses from a low-energy Mather-type plasma focus device energized by a 32μF, 15 kV (3.6 k J) single capacitor, with deuterium as a filling gas. The ratio of the integrated bremsstrahlung emission transmitting through foils to the total incident flux as a function of foil thickness at various temperatures is obtained for foil absorbers of material. Using 3μm, 6μm, 9μm,12μm,15μm and 18μm thick aluminium absorbers, the transmitted X-ray flux is detected. By comparing the experimental and theoretical curves through a computer program, the plasma electron temperature is determined. Results show that the deuterium focus plasma electron temperature is about 800 eV.

  14. Transition of an X-ray binary to the hard ultraluminous state in the blue compact dwarf galaxy VII Zw 403

    CERN Document Server

    Brorby, Matthew; Feng, Hua

    2015-01-01

    We examine the X-ray spectra of VII Zw 403, a nearby low-metallicity blue compact dwarf (BCD) galaxy. The galaxy has been observed to contain an X-ray source, likely a high mass X-ray binary (HMXB), with a luminosity of 1.3-23x10^38 erg s^-1 in the 0.3-8 keV energy range. A new Suzaku observation shows a transition to a luminosity of 1.7x10^40 erg s^-1 [0.3-8 keV], higher by a factor of 7-130. The spectra from the high flux state are hard, best described by a disk plus Comptonization model, and exhibit curvature at energies above 5 keV. This is consistent with many high-quality ultraluminous X-ray source spectra which have been interpreted as stellar mass black holes (StMBH) accreting at super-Eddington rates. However, this lies in contrast to another HMXB in a low-metallicity BCD, I Zw 18, that exhibits a soft spectrum at high flux, similar to Galactic black hole binaries and has been interpreted as a possible intermediate mass black hole. Determining the spectral properties of HMXBs in BCDs has important im...

  15. Multiple Components of the Luminous Compact X-ray Source at the Edge of Holmberg II observed by ASCA and ROSAT

    CERN Document Server

    Miyaji, T; Hasinger, G; Miyaji, Takamitsu; Lehmann, Ingo; Hasinger, Guenther

    2001-01-01

    We report the results of the analysis of ASCA/ROSAT observations of the compact luminous X-ray source found at the edge of the nearby star-forming dwarf galaxy Holmberg II (UGC 4305).Our ASCA spectrum revealed that the X-ray emission extends to the hard band and can be best described by a power-law with a photon spectral index of 1.9. The ASCA spectrum does not fit with a multi-color disk blackbody. The joint ASCA-ROSAT spectrum suggests two components to the spectrum: the hard power-law component and a warm thermal plasma kT~0.3[keV]. An additional absorption over that of our galaxy is required. The wobble correction of the ROSAT HRI image has clearly unveiled the existence of an extended component which amounts to 27+/-5% of the total X-ray emission. These observations indicate that there are more than one component in the X-ray emission. The properties of the point-like component is indicative of an accretion onto an intermediate mass blackhole, unless a beaming is taking place. We argue that the extended ...

  16. A relativistically broadened O VIII Lyalpha line in the ultra-compact X-ray binary 4U 0614+091

    CERN Document Server

    Madej, O K; Fabian, A C; Pinto, C; Verbunt, F; de Plaa, J

    2010-01-01

    Ultra-compact X-ray binaries consist of a neutron star or black hole that accretes material from a white dwarf-donor star. The ultra-compact nature is expressed in very short orbital periods of less than 1 hour. In the case of 4U 0614+091 oxygen-rich material from a CO or ONe white dwarf is flowing to the neutron star. This oxygen-rich disc can reflect X-rays emitted by the neutron star giving a characteristic emission spectrum. We have analyzed high-resolution RGS and broad band EPIC spectra of 4U 0614+091 obtained by the XMM-Newton satellite. We detect a broad emission feature at ~0.7 keV in both instruments, which cannot be explained by unusual abundances of oxygen and neon in the line of sight, as proposed before in the literature. We interpret this feature as O VIII Lyalpha emission caused by reflection of X-rays off highly ionized oxygen, in the strong gravitational field close to the neutron star.

  17. Spitzer Reveals Infrared Optically Thin Synchrotron Emission from the Compact Jet of the Neutron Star X-Ray Binary 4U 0614+091

    Science.gov (United States)

    Migliari, S.; Tomsick, J. A.; Maccarone, T. J.; Gallo, E.; Fender, R. P.; Nelemans, G.; Russell, D. M.

    2006-05-01

    Spitzer observations of the neutron star (ultracompact) X-ray binary (XRB) 4U 0614+091 with the Infrared Array Camera reveal emission of nonthermal origin in the range 3.5-8 μm. The mid-infrared spectrum is well fit by a power law with spectral index of α=-0.57+/-0.04 (where the flux density is Fν~να). Given the ultracompact nature of the binary system, we exclude the possibility that either the companion star or the accretion disk can be the origin of the observed emission. These observations represent the first spectral evidence for a compact jet in a low-luminosity neutron star XRB and furthermore of the presence, already observed in two black hole (BH) XRBs, of a ``break'' in the synchrotron spectrum of such compact jets. We can derive a firm upper limit on the break frequency of the spectrum of νthin=3.7×1013 Hz, which is lower than that observed in BH XRBs by at least a factor of 10. Assuming a high-energy cooling cutoff at ~1 keV, we estimate a total (integrated up to X-rays) jet power to X-ray bolometric luminosity ratio of ~5%, much lower than that inferred in BHs.

  18. Spitzer Reveals Infrared Optically-Thin Synchrotron Emission from the Compact Jet of the Neutron Star X-Ray Binary 4U 0614+091

    CERN Document Server

    Migliari, S; Gallo, E; Maccarone, T J; Nelemans, G; Russell, D M; Tomsick, J A

    2006-01-01

    Spitzer observations of the neutron star (ultra-compact) X-ray binary (XRB) 4U 0614+091 with the Infrared Array Camera reveal emission of non-thermal origin in the range 3.5-8 um. The mid-infrared spectrum is well fit by a power law with spectral index of alpha=-0.57+/-0.04 (where the flux density is F_nu \\propto nu^(alpha)). Given the ultra-compact nature of the binary system, we exclude the possibility that either the companion star or the accretion disk can be the origin of the observed emission. These observations represent the first spectral evidence for a compact jet in a low-luminosity neutron star XRB and furthermore of the presence, already observed in two black hole (BH) XRBs, of a `break' in the synchrotron spectrum of such compact jets. We can derive a firm upper limit on the break frequency of the spectrum of nu_thin=3.7x10^(13) Hz, which is lower than that observed in BH XRBs by at least a factor of 10. Assuming a high-energy cooling cutoff at ~1 keV, we estimate a total (integrated up to X-rays...

  19. 'Water window' compact, table-top laser plasma soft X-ray sources based on a gas puff target

    Energy Technology Data Exchange (ETDEWEB)

    Wachulak, P.W., E-mail: wachulak@gmail.co [Institute of Optoelectronics, Military University of Technology, ul. gen. S. Kaliskiego 2, 00-908 Warsaw (Poland); Bartnik, A.; Fiedorowicz, H.; Rudawski, P.; Jarocki, R.; Kostecki, J.; Szczurek, M. [Institute of Optoelectronics, Military University of Technology, ul. gen. S. Kaliskiego 2, 00-908 Warsaw (Poland)

    2010-05-15

    We have developed compact, high repetition, table-top soft-X-ray sources, based on a gas puff target, emitting in 'water window' spectral range at lambda = 2.88 nm from nitrogen gas target or, in 2-4 nm range of wavelengths, from argon gas target. Double stream gas puff target was pumped optically by commercial Nd:YAG laser, energy 0.74 J, pulse time duration 4 ns. Spatial distribution of laser-produced plasma was imaged using a pinhole camera. Using transmission grating spectrometer, argon and nitrogen emission spectra were obtained, showing strong emission in the 'water window' spectral range. Using AXUV100 detector the flux measurements of the soft-X-ray pulses were carried out and are presented. These debris free sources are table-top alternative for free electron lasers and synchrotron installations. They can be successfully employed in microscopy, spectroscopy and metrology experiments among others.

  20. Quantifying vertical stress transmission and compaction-induced soil structure using sensor mat and X-ray computed tomography

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Schjønning, Per; Keller, Thomas

    2016-01-01

    distributions, and (ii) a tactile sensor mat was employed for measuring stresses at the interface of the topsoil and subsoil columns. The resulting soil pore structure under applied stresses was quantified using X-ray CT and by air-permeability measurements. In topsoil discrete stress transmission patterns were...

  1. Note: On the generation of sub-300 keV flash-X-rays using rod-pinch diode: An experimental investigation

    Energy Technology Data Exchange (ETDEWEB)

    Satyanarayana, N.; Rajawat, R. K.; Basu, Shibaji [Facility for Electromagnetic Systems, BARCF(V), B-Block, Autonagar, Visakhapatnam 530012, Andhra Pradesh (India); Rao, A. Durga Prasad [Department of Nuclear Physics, Andhra University, Visakhapatnam 530001, Andhra Pradesh (India); Mittal, K. C. [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, Maharashtra (India)

    2014-09-15

    Generation of flash X-rays (FXRs) at less than 500 keV is described with emphasis on experimental investigation. The pulser is a Tesla transformer-Water transmission line based pulsed power generator operating in double resonance mode to power a rod-pinch diode. The configuration of aspect ratio reported here falls much below the normally reported ratios for the rod-pinch diode operation. Experimental investigation at such low pulsed voltage has revealed “flowering” of the anode tip and “pitting” of the perspex window. A possible explanation in terms of Lorentz body force is discussed rather than the pinch mechanism generally suggested in literature. The experimental investigation for the FXR generation is corroborated by measuring the radiation dose using CaSO{sub 4} (Dy) thermo luminescent dosimeters.

  2. Bone X-Ray (Radiography)

    Science.gov (United States)

    ... bony fragments following treatment of a fracture. guide orthopedic surgery, such as spine repair/fusion, joint replacement ... A portable x-ray machine is a compact apparatus that can be taken to the patient in ...

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... x-ray machine is a compact apparatus that can be taken to the patient in a hospital ... so that any change in a known abnormality can be monitored over time. Follow-up examinations are ...

  4. A Compact X-Ray Source in the Radio Pulsar-wind Nebula G141.2+5.0

    Science.gov (United States)

    Reynolds, Stephen P.; Borkowski, Kazimierz J.

    2016-01-01

    We report the results of a 50 ks Chandra observation of the recently discovered radio object G141.2+5.0, presumed to be a pulsar-wind nebula. We find a moderately bright unresolved X-ray source that we designate CXOU J033712.8 615302 coincident with the central peak radio emission. An absorbed power-law fit to the 241 counts describes the data well, with absorbing column {N}H=6.7(4.0,9.7)× {10}21 cm-2 and photon index {{Γ }}=1.8(1.4,2.2). For a distance of 4 kpc, the unabsorbed luminosity between 0.5 and 8 keV is {1.7}-0.3+0.4× {10}32 erg s-1 (90% confidence intervals). Both LX and Γ are quite typical of pulsars in PWNe. No extended emission is seen; we estimate a conservative 3σ upper limit to the surface brightness of any X-ray PWN near the point source to be 3× {10}-17 erg cm-2 s-1 arcsec-2 between 0.5 and 8 keV, assuming the same spectrum as the point source; for a nebula of diameter 13\\prime\\prime , the flux limit is 6% of the flux of the point source. The steep radio spectrum of the PWN (α ˜ -0.7), if continued to the X-ray without a break, predicts {L}{{X}} {{(nebula)}}˜ 1× {10}33 erg s-1, so additional spectral steepening between radio and X-rays is required, as is true of all known PWNe. The high Galactic latitude gives a z-distance of 350 pc above the Galactic plane, quite unusual for a Population I object.

  5. Discovery of a broad O VIII Ly alpha line in the ultra-compact X-ray binary 4U 1543-624

    CERN Document Server

    Madej, O K

    2010-01-01

    We report the discovery of a broad emission feature at ~0.7 keV in the spectra of the ultra-compact X-ray binary 4U 1543-624, obtained with the high-resolution spectrographs of the XMM-Newton and Chandra satellites. We confirm the presence of the feature in the broad band MOS2 spectrum of the source. As suggested before in the literature, the donor star in this source is a CO or ONe white dwarf, which transfers oxygen-rich material to the accretor, conceivably a neutron star. The X-rays reprocessed in this oxygen-rich accretion disc could give a reflection spectrum with O VIII Ly alpha as the most prominent emission line. Apart from the feature at ~0.7 keV we confirm the possible presence of a weak emission feature at ~6.6 keV, which was reported in the literature for this data set. We interpret the feature at ~0.7 keV and ~6.6 keV as O VIII Ly alpha and Fe K alpha emission respectively, caused by X-rays reflected off the accretion disc in the strong gravitational field close to the accretor.

  6. Discovery of a 105 ms X-ray Pulsar in Kesteven 79: On the Nature of Compact Central Objects in Supernova Remnants

    CERN Document Server

    Gotthelf, E V; Seward, F D

    2003-01-01

    We report the discovery of 105-ms X-ray pulsations from the compact central object (CCO) in the supernova remnant Kes 79 using data acquired with the Newton X-Ray Multi-Mirror Mission. Two observations of the pulsar taken 6 days apart yield an upper limit on its spin-down rate of dP/dt 24 kyr. The latter exceeds the remnant's estimated age, suggesting that the pulsar was born spinning near its current period. The X-ray spectrum of PSR J1852+0040 is best characterized by a blackbody model of temperature kT_BB = 0.44 +/- 0.03 keV, radius R_BB approx. 0.9 km, and L_bol = 3.7E33 ergs/s at d = 7.1 kpc. The sinusoidal light curve is modulated with a pulsed fraction of >45%, suggestive of a small hot spot on the surface of the rotating neutron star. The lack of a discernible pulsar wind nebula is consistent with an interpretation of PSR J1852+0040 as a rotation-powered pulsar whose spin-down luminosity falls below the empirical threshold for generating bright wind nebulae, dE/dt_c approx. 4E36 ergs/s. The age discr...

  7. Particle-In-Cell Simulations of the Electron Beam Source for X-Ray Radiography Generated by the Rod-Pinch Diode in the Cygnus Experiment

    Science.gov (United States)

    Yin, Lin; Kwan, Thomas; Devolder, Barbara; Berninger, Mike; Bowers, Kevin; Smith, John

    2003-10-01

    The Cygnus experiment [Smith et al., AIP Conference Proceedings, 650, 135, 2002] is in operation at Los Alamos National Laboratory to support the Sub-Critical Experiments Program at the Nevada Test Site. In the Cygnus design, a rod-pinch diode is used to produce a low-energy (up to ˜ 2.25 MeV) radiographic electron source at the tip of a needle anode rod that extends through an annular cathode. As the electrons deposit their energies on the high-Z anode tip, bremsstrahlung photons are produced and are used to generate radiographs of an object. In this work we use the two-dimensional particle-in-cell code MERLIN to examine the diode physics and the dynamics of the rod-pinch electron source which is used in integrated X-ray radiographic chain model calculations [Kwan et al., Comp. Phys. Comm., 142, 263, 2001]. TEM waves are launched at one simulation boundary to set up the voltage required for the electron emission. Electron and ion trajectories are followed self-consistently in the electromagnetic fields as the electron beam impinges at the tip of the anode rod. The MERLIN simulation results of the electron endpoint energy and the diode voltage/current are consistent with the peak values obtained from Cygnus shots. The diode impedance response to the experimental parameters currently used in the Cygnus shots will be discussed.

  8. Quantifying vertical stress transmission and compaction-induced soil structure using sensor mat and X-ray computed tomography

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Schjønning, Per; Keller, Thomas

    2016-01-01

    applied stresses. Total porosity was reduced 5-16% and macroporosity (pores > 0.5 mm) 50-85% at 620 kPa for topsoils. For subsoils - serving here as the material underlying the topsoil tests columns - only a small decrease was observed in both total porosity and macroporosity. Air permeability was reduced...... distributions, and (ii) a tactile sensor mat was employed for measuring stresses at the interface of the topsoil and subsoil columns. The resulting soil pore structure under applied stresses was quantified using X-ray CT and by air-permeability measurements. In topsoil discrete stress transmission patterns were...

  9. Conformational characterization of synapse-associated protein 97 by nuclear magnetic resonance and small-angle X-ray scattering shows compact and elongated forms.

    Science.gov (United States)

    Tully, Mark D; Grossmann, J Günter; Phelan, Marie; Pandelaneni, Sravan; Leyland, Mark; Lian, Lu-Yun

    2012-01-31

    Synapse-associated protein 97 (SAP97) is a membrane-associated guanylate kinase protein that interacts with other proteins such as ion channels, subunits of glutamate receptors, and other cytoskeletal proteins and molecular scaffolds. The molecular diversity of SAP97 results from alternative splicing at the N-terminus, and in the U1 and U5 regions. There are two main N-terminal isoforms: the β-isoform has an L27 domain, whereas in the α-isoform, this is replaced by a palmitoylation motif. We have used multiangle light scattering, nuclear magnetic resonance, and small-angle X-ray scattering studies to characterize the conformation of a truncated form of the β-isoform, hence mimicking the α-isoform. This paper provides a comprehensive view of the small-angle X-ray scattering data, and the resulting data show that the scattering data are consistent with the presence of an ensemble of forms in dynamic equilibrium, with two prominent populations of compact and extended forms, with R(g) values of 38 ± 7 Å (52%) and 70 ± 10 Å (37%), respectively. The data show that without the L27 domain, the conformation of SAP97 is biased toward the compact form. We propose a hypothesis in which the overall conformation of SAP97 is determined by the nature of the N-terminus, which may, in turn, influence the specific role of a particular splice variant.

  10. A Compact X-ray Source in the Radio Pulsar-Wind Nebula G141.2+5.0

    CERN Document Server

    Reynolds, Stephen P

    2016-01-01

    We report the results of a 50 ks Chandra observation of the recently discovered radio object G141.2+5.0, presumed to be a pulsar-wind nebula. We find a moderately bright unresolved X-ray source which we designate CXOU J033712.8 615302 coincident with the central peak radio emission. An absorbed power-law fit to the 241 counts describes the data well, with absorbing column $N_H = 6.7 (4.0, 9.7) \\times 10^{21}$ cm$^{-2}$ and photon index $\\Gamma = 1.8 (1.4, 2.2)$. For a distance of 4 kpc, the unabsorbed luminosity between 0.5 and 8 keV is $ 1.7^{+0.4}_{-0.3} \\times 10^{32}$ erg s$^{-1}$ (90\\% confidence intervals). Both $L_X$ and $\\Gamma$ are quite typical of pulsars in PWNe. No extended emission is seen; we estimate a conservative $3 \\sigma$ upper limit to the surface brightness of any X-ray PWN near the point source to be $3 \\times 10^{-17}$ erg cm$^{-2}$ s$^{-1}$ arcsec$^{-2}$ between 0.5 and 8 keV, assuming the same spectrum as the point source; for a nebula of diameter $13"$, the flux limit is 6\\% of the f...

  11. Thermo-enhanced field emission from ZnO nanowires: Role of defects and application in a diode flat panel X-ray source

    Science.gov (United States)

    Zhang, Zhipeng; Chen, Daokun; Chen, Wenqing; Chen, Yicong; Song, Xiaomeng; Zhan, Runze; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun

    2017-03-01

    A thermo-enhanced field emission phenomenon was observed from ZnO nanowires. The field emission current increased by almost two orders of magnitude under a constant applied electric field, and the turn-on field decreased from 6.04 MV/m to 5.0 MV/m when the temperature increased from 323 to 723 K. The Poole-Frenkel electron excitation from the defect-induced trapping centers to the conduction band under high electric fields is believed to be the primary cause of the observed phenomenon. The experimental results fit well with the proposed physical model. The field emission from ZnO nanowires with different defect concentrations further confirmed the role of defects. Using the thermo-enhanced field emission phenomenon, a diode flat panel X-ray source was demonstrated, for which the energy and dose can be separately tuned. The thermo-enhanced field emission phenomenon observed from ZnO nanowires could be an effective way to realize a large area flat panel multi-energy X-ray source.

  12. Skull x-ray

    Science.gov (United States)

    X-ray - head; X-ray - skull; Skull radiography; Head x-ray ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  13. Neck x-ray

    Science.gov (United States)

    X-ray - neck; Cervical spine x-ray; Lateral neck x-ray ... There is low radiation exposure. X-rays are monitored so that the lowest amount of radiation is used to produce the image. Pregnant women and ...

  14. Methane hydrate distribution from prolonged and repeated formation in natural and compacted sand samples: X-ray CT observations

    Energy Technology Data Exchange (ETDEWEB)

    Rees, E.V.L.; Kneafsey, T.J.; Seol, Y.

    2010-07-01

    To study physical properties of methane gas hydrate-bearing sediments, it is necessary to synthesize laboratory samples due to the limited availability of cores from natural deposits. X-ray computed tomography (CT) and other observations have shown gas hydrate to occur in a number of morphologies over a variety of sediment types. To aid in understanding formation and growth patterns of hydrate in sediments, methane hydrate was repeatedly formed in laboratory-packed sand samples and in a natural sediment core from the Mount Elbert Stratigraphic Test Well. CT scanning was performed during hydrate formation and decomposition steps, and periodically while the hydrate samples remained under stable conditions for up to 60 days. The investigation revealed the impact of water saturation on location and morphology of hydrate in both laboratory and natural sediments during repeated hydrate formations. Significant redistribution of hydrate and water in the samples was observed over both the short and long term.

  15. Intense Super-radiant X-rays from a Compact Source using a Nanocathode Array and Emittance Exchange

    CERN Document Server

    Graves, W S; Moncton, D E; Piot, P

    2012-01-01

    A novel method of producing intense short wavelength radiation from relativistic electrons is described. The electrons are periodically bunched at the wavelength of interest enabling in-phase super-radiant emission that is orders of magnitude more intense than that of unbunched electrons. The periodic bunching is achieved in steps beginning with an array of beamlets emitted from a nanoengineered field emission array. The beamlets are then manipulated and converted to a longitudinal density modulation via a transverse to longitudinal emittance exchange. Periodic bunching at short wavelength is shown to be possible, and the partially coherent x-ray properties produced by Inverse Compton scattering from an intense laser are estimated for an example at 13 nm wavelength using a 1.5 MeV electron beam.

  16. Detection of a 1258 Hz high-amplitude kilohertz quasi-periodic oscillation in the ultra-compact X-ray binary 1A 1246-588

    CERN Document Server

    Jonker, P G; Méndez, M; Van der Klis, M

    2007-01-01

    We have observed the ultra-compact low-mass X-ray binary (LMXB) 1A 1246-588 with the Rossi X-ray Timing Explorer (RXTE). In this manuscript we report the discovery of a kilohertz quasi-periodic oscillation (QPO) in 1A 1246-588. The kilohertz QPO was only detected when the source was in a soft high-flux state reminiscent of the lower banana branch in atoll sources. Only one kilohertz QPO peak is detected at a relatively high frequency of 1258+-2 Hz and at a single trial significance of more than 7 sigma. Kilohertz QPOs with a higher frequency have only been found on two occasions in 4U 0614+09. Furthermore, the frequency is higher than that found for the lower kilohertz QPO in any source, strongly suggesting that the QPO is the upper of the kilohertz QPO pair often found in LMXBs. The full-width at half maximum is 25+-4 Hz, making the coherence the highest found for an upper kilohertz QPO. From a distance estimate of ~6 kpc from a radius expansion burst we derive that 1A 1246-588 is at a persistent flux of ~0....

  17. Modeling the X-rays from the Central Compact Object PSR J1852+0040 in Kesteven 79: Evidence for a Strongly Magnetized Neutron Star

    CERN Document Server

    Bogdanov, Slavko

    2014-01-01

    I present modeling of the X-ray pulsations from the central compact object (CCO) PSR J1852+0040 in the Galactic supernova remnant Kesteven 79. In the context of thermal surface radiation from a rotating neutron star, a conventional polar cap model can reproduce the broad, large-amplitude X-ray pulse only with a "pencil plus fan" beam emission pattern, which is characteristic of strongly magnetized ($\\gtrsim$10^12 Gauss) neutron star atmospheres, substantially stronger than the ~10^10 Gauss external dipole field inferred from the pulsar spin-down rate. This discrepancy can be explained by an axially displaced dipole. For other beaming patterns, it is necessary to invoke high-aspect-ratio emitting regions that are greatly longitudinally elongated, possibly due to an extremely offset dipole. For all assumed emission models, the existence of strong internal magnetic fields ($\\gtrsim$10^14} Gauss) that preferentially channel internal heat to only a portion of the exterior is required to account for the implied hig...

  18. 1RXS J180408.9-342058: an ultra compact X-ray binary candidate with a transient jet

    CERN Document Server

    Baglio, M C; Campana, S; Goldoni, P; Masetti, N; Munoz-Darias, T; Patino-Alvarez, V; Chavushyan, V

    2016-01-01

    We present a detailed NIR/optical/UV study of the transient low mass X-ray binary 1RXS J180408.9-342058 performed during its 2015 outburst, aimed at determining the nature of its companion star. We obtained three optical spectra at the 2.1 m San Pedro Martir Observatory telescope (Mexico). We performed optical and NIR photometric observations with both the REM telescope and the New Technology Telescope (NTT) in La Silla. We obtained optical and UV observations from the Swift archive. Finally, we performed optical polarimetry of the source by using the EFOSC2 instrument mounted on the NTT. The optical spectrum of the source is almost featureless since the hydrogen and He I emissions lines, typically observed in LMXBs, are not detected. Similarly, carbon and oxygen lines are neither observed. We marginally detect the He II 4686 AA emission line, suggesting the presence of helium in the accretion disc. No significant optical polarisation level was observed. The lack of hydrogen and He I emission lines in the spe...

  19. The Galactic distribution of X-ray binaries and its implications for compact object formation and natal kicks

    Science.gov (United States)

    Repetto, Serena; Igoshev, Andrei P.; Nelemans, Gijs

    2017-01-01

    The aim of this work is to study the imprints that different models for black hole (BH) and neutron star (NS) formation have on the Galactic distribution of X-ray binaries (XRBs) which contain these objects. We find that the root mean square of the height above the Galactic plane of BH- and NS-XRBs is a powerful proxy to discriminate among different formation scenarios, and that binary evolution following the BH/NS formation does not significantly affect the Galactic distributions of the binaries. We find that a population model in which at least some BHs receive a (relatively) high natal kick fits the observed BH-XRBs best. For the NS case, we find that a high NK distribution, consistent with the one derived from the measurement of pulsar proper motion, is the most preferable. We also analyse the simple method we previously used to estimate the minimal peculiar velocity of an individual BH-XRB at birth. We find that this method may be less reliable in the bulge of the Galaxy for certain models of the Galactic potential, but that our estimate is excellent for most of the BH-XRBs.

  20. A Circumbinary Disk Scenario for the Negative Orbital-period Derivative of the Ultra-compact X-Ray Binary 4U 1820-303

    Science.gov (United States)

    Jiang, Long; Chen, Wen-Cong; Li, Xiang-Dong

    2017-03-01

    It is generally thought that an ultra-compact X-ray Binary is composed of a neutron star and a helium white dwarf donor star. As one of the most compact binaries, 4U 1820-303 in globular cluster NGC 6624 was predicted to have an orbital period of \\dot{P}/P∼ 1.1× {10}-7 yr‑1 if the mass transfer is fully driven by gravitational radiation. However, recent analysis of 16 year data from Rossi X-ray Timing Explorer and other historical records has yielded a negative orbital-period derivative in the past 35 years. In this work, we propose an evolutionary circumbinary (CB) disk model to account for this anomalous orbital-period derivative. 4U 1820-30 is known to undergo superburst events caused by runaway thermal nuclear burning on the neutron star. We assume that, for a small fraction of the superbursts, part of the ejected material may form a CB disk around the binary. If the recurrence time of such superbursts is ∼10,000 year and ∼10% of the ejected mass feeds a CB disk, the abrupt angular-momentum loss causes a temporary orbital shrink, and the donor’s radius and its Roche lobe radius do not keep in step. Driven by mass transfer and angular-momentum loss, the binary would adjust its orbital parameters to recover a new stable stage. Based on theoretical analysis and numerical simulation, we find that the required feed mass at the CB disk is approximately ∼10‑8 M ⊙.

  1. Chest X Ray?

    Science.gov (United States)

    ... this page from the NHLBI on Twitter. Chest X Ray A chest x ray is a fast and painless imaging test ... tissue scarring, called fibrosis. Doctors may use chest x rays to see how well certain treatments are ...

  2. X-Rays

    Science.gov (United States)

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat ...

  3. Medical X-Rays

    Science.gov (United States)

    ... Benefits The discovery of X-rays and the invention of CT represented major advances in medicine. X- ... in X-ray and CT Examinations — X-ray definition, dose measurement, safety precautions, risk, and consideration with ...

  4. A quantitative correlation of the effect of density distributions in roller-compacted ribbons on the mechanical properties of tablets using ultrasonics and X-ray tomography.

    Science.gov (United States)

    Akseli, Ilgaz; Iyer, Srinivas; Lee, Hwahsiung P; Cuitiño, Alberto M

    2011-09-01

    Enabling the paradigm of quality by design requires the ability to quantitatively correlate material properties and process variables to measureable product performance attributes. In this study, we show how heterogeneities in compacted ribbon densities quantitatively correlate to tablet mechanical properties. These density variations, which have been purposely modulated by internal and external lubrications, are characterized longitudinally and transversally by nondestructive ultrasonic and X-ray micro-computed tomography measurements. Subsequently, different transversal regions of the compacted ribbon are milled under the same conditions, and granules with nominally the same particle size distribution are utilized to manufacture cylindrical tablets, whose mechanical properties are further analyzed by ultrasonic measurements. We consider three different ribbon conditions: no lubrication (case 1); lubricated powder (case 2); and lubricated tooling (hopper, side sealing plates, feed screws, and rolls) (case 3). This study quantitatively reveals that variation in local densities in ribbons (for case 1) and process conditions (i.e., internal case 2 and external lubrication case 3) during roller compaction significantly affect the mechanical properties of tablets even for granules with the same particle size distribution. For case 1, the mechanical properties of tablets depend on the spatial location where granules are produced. For cases 2 and 3, the ribbon density homogeneity was improved by the use of a lubricant. It is demonstrated that the mechanical performances of tablets are decreased due to applied lubricant and work-hardening phenomenon. Moreover, we extended our study to correlate the speed of sound to the tensile strength of the tablet. It is found that the speed of sound increases with the tensile strength for the tested tablets.

  5. Recent results of X-ray observations from OSO-7 and SAS-3

    Science.gov (United States)

    Clark, G. W.

    1978-01-01

    Recent observations bearing on the nature of compact X-ray sources obtained from the MIT instruments aboard OSO-7 and SAS-3 are discussed. Results on the X-ray sky survey, new ultralow-energy X-ray sources, X-ray sources in globular clusters, slow X-ray pulsars, and variability and position of compact X-ray sources in Cen A are discussed. Descriptions of the satellite-borne X-ray instruments are provided.

  6. Construction of an X-ray detecting module and its application to relative-sensitivity measurement using a silicon PIN diode in conjunction with short-decay-time scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Nihei, Shinichi [Department of Physics, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694 (Japan); Sato, Eiichi, E-mail: dresato@iwate-med.ac.jp [Department of Physics, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694 (Japan); Hamaya, Tatsuki; Numahata, Wataru; Kogita, Hayato; Kami, Syouta; Arakawa, Yumeka; Oda, Yasuyuki [Department of Physics, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694 (Japan); Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya [Department of Surgery, Toho University Ohashi Medical Center, 2-17-6 Ohashi, Meguro, Tokyo 153-8515 (Japan)

    2014-12-11

    To detect low-dose-rate X-rays, we have developed an X-ray-detecting module for semiconductor diodes. The module consists of a current–voltage (I–V) amplifier, a voltage–voltage (V–V) amplifier, and an alternating-current adopter with a smoothing circuit. The photocurrents flowing through a diode are converted into voltages and amplified using the I–V and V–V amplifiers. To measure relative sensitivities, we used three silicon PIN diodes (Si-PIN), a cerium-doped yttrium aluminum perovskite [YAP(Ce)] crystal, and a Lu{sub 2}(SiO{sub 4})O [LSO] crystal. Three detectors are as follows: an Si-PIN, a YAP(Ce)–Si-PIN, and an LSO–Si-PIN. Using the three detectors, the amplifier output voltages were in proportion to the tube current at a constant tube voltage of 70 kV. Using a multichannel analyzer, the event-pulse-height spectra were measured to analyze X-ray-electric conversion effect in the three detectors. The output voltage of the Si-PIN was approximately twice as high as those obtained using the YAP(Ce)–Si-PIN and the LSO–Si-PIN at the measurement conditions. - Highlights: • X-ray detecting module was developed to measure relative sensitivities of detectors. • Event-pulse-height spectra were measured to analyze X-ray-electric conversion effect. • Total photon number substantially decreased using scintillation detectors. • Scintillation effects using YAP(Ce) and LSO were quite low. • Si-PIN sensitivity without scintillators was quite high.

  7. UH-FLUX: Compact, Energy Efficient Superconducting Asymmetric Energy Recovery LINAC for Ultra-high Fluxes of X-ray and THz Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Konoplev, Ivan [Univ. of Oxford (United Kingdom). JAI, Dept. of Physics; Ainsworth, Robert [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Burt, Graeme [Lancaster Univ. (United Kingdom). Cockcroft Inst.; Seryi, Andrei [Univ. of Oxford (United Kingdom). JAI, Dept. of Physics

    2016-06-01

    The conventional ERLs have limited peak beam current because increasing the beam charge and repetition rate leads to appearance of the beam break-up instabilities. At this stage the highest current, from the SRF ERL, is around 300 mA. A single-turn (the beam will be transported through the accelerating section, interaction point and deceleration section of the AERL only once) Asymmetric Energy Recovery LINAC (AERL) is proposed. The RF cells in different sections of the cavity are tuned in such a way that only operating mode is uniform inside all of the cells. The AERL will drive the electron beams with typical energies of 10 - 30 MeV and peak currents above 1 A, enabling the generation of high flux UV/X-rays and high power coherent THz radiation. We aim to build a copper prototype of the RF cavity for a compact AERL to study its EM properties. The final goal is to build AERL based on the superconducting RF cavity. Preliminary design for AERL's cavity has been developed and will be presented. The results of numerical and analytical models and the next steps toward the AERL operation will also be discussed.

  8. Near-Infrared Spectroscopy of Low Mass X-ray Binaries : Accretion Disk Contamination and Compact Object Mass Determination in V404 Cyg and Cen X-4

    CERN Document Server

    Khargharia, Juthika; Robinson, Edward L

    2010-01-01

    We present near-infrared (NIR) broadband (0.80--2.42 $\\mu$m) spectroscopy of two low mass X-ray binaries: V404 Cyg and Cen X-4. One important parameter required in the determination of the mass of the compact objects in these systems is the binary inclination. We can determine the inclination by modeling the ellipsoidal modulations of the Roche-lobe filling donor star, but the contamination of the donor star light from other components of the binary, particularly the accretion disk, must be taken into account. To this end, we determined the donor star contribution to the infrared flux by comparing the spectra of V404 Cyg and Cen X-4 to those of various field K-stars of known spectral type. For V404 Cyg, we determined that the donor star has a spectral type of K3 III. We determined the fractional donor contribution to the NIR flux in the H- and K-bands as $0.98 \\pm .05$ and $0.97 \\pm .09$, respectively. We remodeled the H-band light curve from \\citet{sanwal1996} after correcting for the donor star contribution...

  9. Soft X-ray Extended Emissions of Short Gamma-Ray Bursts as Electromagnetic Counterparts of Compact Binary Mergers; Possible Origin and Detectability

    CERN Document Server

    Nakamura, Takashi; Nakauchi, Daisuke; Suwa, Yudai; Sakamoto, Takanori; Kawai, Nobuyuki

    2013-01-01

    We investigate the possible origin of extended emissions (EE) of short gamma-ray bursts (SGRBs) with an isotropic energy of $\\sim 10^{50\\mbox{-}51} \\ \\rm erg$ and a duration of $\\sim 100 \\ \\rm s$, based on the compact binary (neutron star (NS)-NS or NS-black hole (BH)) merger scenario. We analyze the evolution of magnetized neutrino-dominated accretion disks of mass $\\sim 0.1 \\ M_\\odot$ around BHs formed after the mergers, and estimate the power of relativistic outflows via the Blandford-Znajek (BZ) process. We show that a rotation energy of the BH up to $\\sim 10^{53} \\ \\rm erg$ can be extracted with a time scale of $\\sim 100 \\ \\rm s$ with a disk viscosity parameter of $\\alpha \\sim 0.01$. Such a BZ power dissipates by clashing with non-relativistic pre-ejected matter of mass $M \\sim 10^{-(2\\mbox{-}4)} \\ M_\\odot$, and form a mildly relativistic fireball. We show that the dissipative photospheric emissions from such fireballs are likely in soft X-ray band ($1\\mbox{-}10 \\ \\rm keV$) for $M \\sim 10^{-2} M_\\odot$ p...

  10. UH-FLUX: Compact, Energy Efficient Superconducting Asymmetric Energy Recovery LINAC for Ultra-high Fluxes of X-ray and THz Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Konoplev, Ivan [JAI, UK; Ainsworth, Robert [Fermilab; Burt, Graeme [Lancaster U.; Seryi, Andrei [JAI, UK

    2016-06-01

    The conventional ERLs have limited peak beam current because increasing the beam charge and repetition rate leads to appearance of the beam break-up instabilities. At this stage the highest current, from the SRF ERL, is around 300 mA. A single turn (the beam will be transported through the accelerating section, interaction point and deceleration section of the AERL only once) Asymmetric Energy Recovery LINAC (AERL) is proposed. The RF cells in different sections of the cavity are tuned in such a way that only operating mode is uniform inside all of the cells. The AERL will drive the electron beams with typical energies of 10 - 30 MeV and peak currents above 1 A, enabling the generation of high flux UV/X-rays and high power coherent THz radiation. We aim to build a copper prototype of the RF cavity for a compact AERL to study its EM properties. The final goal is to build AERL based on the superconducting RF cavity. Preliminary design for AERL's cavity has been developed and will be presented. The results of numerical and analytical models and the next steps toward the AERL operation will also be discussed.

  11. Topological X-Rays and MRIs

    Science.gov (United States)

    Lynch, Mark

    2002-01-01

    Let K be a compact subset of the interior of the unit disk D in the plane and suppose one can't see through the boundary of D and identify K. However, assume that one can take "topological X-rays" of D which measure the "density" of K along the lines of the X-rays. By taking these X-rays from all directions, a "topological MRI" is generated for…

  12. Construction of an X-ray detecting module and its application to relative-sensitivity measurement using a silicon PIN diode in conjunction with short-decay-time scintillators

    Science.gov (United States)

    Nihei, Shinichi; Sato, Eiichi; Hamaya, Tatsuki; Numahata, Wataru; Kogita, Hayato; Kami, Syouta; Arakawa, Yumeka; Oda, Yasuyuki; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya

    2014-12-01

    To detect low-dose-rate X-rays, we have developed an X-ray-detecting module for semiconductor diodes. The module consists of a current-voltage (I-V) amplifier, a voltage-voltage (V-V) amplifier, and an alternating-current adopter with a smoothing circuit. The photocurrents flowing through a diode are converted into voltages and amplified using the I-V and V-V amplifiers. To measure relative sensitivities, we used three silicon PIN diodes (Si-PIN), a cerium-doped yttrium aluminum perovskite [YAP(Ce)] crystal, and a Lu2(SiO4)O [LSO] crystal. Three detectors are as follows: an Si-PIN, a YAP(Ce)-Si-PIN, and an LSO-Si-PIN. Using the three detectors, the amplifier output voltages were in proportion to the tube current at a constant tube voltage of 70 kV. Using a multichannel analyzer, the event-pulse-height spectra were measured to analyze X-ray-electric conversion effect in the three detectors. The output voltage of the Si-PIN was approximately twice as high as those obtained using the YAP(Ce)-Si-PIN and the LSO-Si-PIN at the measurement conditions.

  13. X-ray experiments for Space applications in intermediate energy range

    CERN Document Server

    Yadav, Vipin K; Nandi, Anuj; Palit, Sourav

    2009-01-01

    X-ray experiments in the intermediate energy range (1-50 keV) are carried out at the Indian Centre for Space Physics (ICSP), Kolkata for space application. The purpose is to carry out developmental studies of space instruments to observe energetic phenomena from compact objects (black hole and compact stars) and active stars and their testing and evaluation. The testing/evaluation setup primarily consists of an X-ray generator, various X-ray imaging masks, an X-ray imager (CMOS) and an X-ray spectrometer (Si-PIN photo-diode). The X-ray generator (Mo target) operates in 1-50 kV anode voltage, and 1-30 mA beam current. A 45 feet long shielded collimator is used to collimate the beam which leads to the detector chamber having a 30 arc-sec angular diameter. Two types of imaging masks are used - conventional Coded Aperture Masks (CAM) and Tungsten Fresnel half-period zone-plates (ZPs) having angular resolutions of a few tens of arc-sec. The Moire fringe pattern produced by the composite shadows of two ZPs is inver...

  14. Extremity x-ray

    Science.gov (United States)

    ... degenerative) Bone tumor Broken bone (fracture) Dislocated bone Osteomyelitis (infection) Arthritis Other conditions for which the test ... Bone tumor Bone x-ray Broken bone Clubfoot Osteomyelitis X-ray Review Date 7/3/2016 Updated ...

  15. Abdominal x-ray

    Science.gov (United States)

    ... are, or may be, pregnant. Alternative Names Abdominal film; X-ray - abdomen; Flat plate; KUB x-ray ... Assistant Studies, Department of Family Medicine, UW Medicine, School of Medicine, University of Washington, Seattle, WA. Also ...

  16. X-Ray Supernovae

    CERN Document Server

    Immler, S; Immler, Stefan; Lewin, Walter H.G.

    2002-01-01

    We present a review of X-ray observations of supernovae (SNe). By observing the (~0.1--100 keV) X-ray emission from young SNe, physical key parameters such as the circumstellar matter (CSM) density, mass-loss rate of the progenitor and temperature of the outgoing and reverse shock can be derived as a function of time. Despite intensive search over the last ~25 years, only 15 SNe have been detected in X-rays. We review the individual X-ray observations of these SNe and discuss their implications as to our understanding of the physical processes giving rise to the X-ray emission.

  17. Perspectives of medical X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Freudenberger, J. E-mail: joerg.freudenberger@med.siemens.de; Hell, E.; Knuepfer, W

    2001-06-21

    While X-ray image intensifiers (XII), storage phosphor screens and film-screen systems are still the work horses of medical imaging, large flat panel solid state detectors using either scintillators and amorphous silicon photo diode arrays (FD-Si), or direct X-ray conversion in amorphous selenium are reaching maturity. The main advantage with respect to image quality and low patient dose of the XII and FD-Si systems is caused by the rise of the Detector Quantum Efficiency originating from the application of thick needle-structured phosphor X-ray absorbers. With the detectors getting closer to an optimal state, further progress in medical X-ray imaging requires an improvement of the usable source characteristics. The development of clinical monochromatic X-ray sources of high power would not only allow an improved contrast-to-dose ratio by allowing smaller average photon energies in applications but would also lead to new imaging techniques.

  18. Perspectives of medical X-ray imaging

    Science.gov (United States)

    Freudenberger, J.; Hell, E.; Knüpfer, W.

    2001-06-01

    While X-ray image intensifiers (XII), storage phosphor screens and film-screen systems are still the work horses of medical imaging, large flat panel solid state detectors using either scintillators and amorphous silicon photo diode arrays (FD-Si), or direct X-ray conversion in amorphous selenium are reaching maturity. The main advantage with respect to image quality and low patient dose of the XII and FD-Si systems is caused by the rise of the Detector Quantum Efficiency originating from the application of thick needle-structured phosphor X-ray absorbers. With the detectors getting closer to an optimal state, further progress in medical X-ray imaging requires an improvement of the usable source characteristics. The development of clinical monochromatic X-ray sources of high power would not only allow an improved contrast-to-dose ratio by allowing smaller average photon energies in applications but would also lead to new imaging techniques.

  19. Note: development of a compact x-ray particle image velocimetry for measuring opaque flows. II. Three-dimensional velocity field reconstruction.

    Science.gov (United States)

    Jung, Sung Yong; Lee, Sang Joon

    2012-04-01

    An x-ray particle image velocimetry (PIV) system using a cone-beam type x-ray was developed. The field of view and the spatial resolution are 36 × 24.05 mm(2) and 20 μm, respectively. The three-dimensional velocity field was reconstructed by adopting the least squares minimum residue and simultaneous multiplicative algebraic reconstruction techniques. According to a simulation study with synthetic images, the reconstructions were acceptable with 7 projections and 50 iterations. The reconstructed and supplied flow rates differed by only about 6.49% in experimental verification. The x-ray tomographic PIV system would be useful for 3D velocity field information of opaque flows.

  20. Analytical characterization of a new mobile X-ray fluorescence and X-ray diffraction instrument combined with a pigment identification case study

    Energy Technology Data Exchange (ETDEWEB)

    Van de Voorde, Lien, E-mail: lien.vandevoorde@ugent.be [Ghent University, Department of Analytical Chemistry, X-ray Microspectroscopy and Imaging Research Group, Krijgslaan 281 S12, B-9000 Gent (Belgium); Vekemans, Bart [Ghent University, Department of Analytical Chemistry, X-ray Microspectroscopy and Imaging Research Group, Krijgslaan 281 S12, B-9000 Gent (Belgium); Verhaeven, Eddy [Antwerp University, Faculty of Design Sciences, Mutsaardstraat 31, B-2000 Antwerpen (Belgium); Tack, Pieter; De Wolf, Robin; Garrevoet, Jan [Ghent University, Department of Analytical Chemistry, X-ray Microspectroscopy and Imaging Research Group, Krijgslaan 281 S12, B-9000 Gent (Belgium); Vandenabeele, Peter [Ghent University, Department of Archaeology, Archaeometry Research Group, Sint-Pietersnieuwstraat 35, B-9000 Gent (Belgium); Vincze, Laszlo [Ghent University, Department of Analytical Chemistry, X-ray Microspectroscopy and Imaging Research Group, Krijgslaan 281 S12, B-9000 Gent (Belgium)

    2015-08-01

    A new, commercially available, mobile system combining X-ray diffraction and X-ray fluorescence has been evaluated which enables both elemental analysis and phase identification simultaneously. The instrument makes use of a copper or molybdenum based miniature X-ray tube and a silicon-Pin diode energy-dispersive detector to count the photons originating from the samples. The X-ray tube and detector are both mounted on an X-ray diffraction protractor in a Bragg–Brentano θ:θ geometry. The mobile instrument is one of the lightest and most compact instruments of its kind (3.5 kg) and it is thus very useful for in situ purposes such as the direct (non-destructive) analysis of cultural heritage objects which need to be analyzed on site without any displacement. The supplied software allows both the operation of the instrument for data collection and in-depth data analysis using the International Centre for Diffraction Data database. This paper focuses on the characterization of the instrument, combined with a case study on pigment identification and an illustrative example for the analysis of lead alloyed printing letters. The results show that this commercially available light-weight instrument is able to identify the main crystalline phases non-destructively, present in a variety of samples, with a high degree of flexibility regarding sample size and position. - Highlights: • New X-ray fluorescence and X-ray diffraction instrument for non-destructive analysis • Commercially available, mobile system • One of the lightest and most compact of its kind • Characterization, data acquisition and analysis are performed. • Results of measurements on pigment model samples and cultural heritage materials.

  1. Temporal synchronization of GHz repetition rate electron and laser pulses for the optimization of a compact inverse-Compton scattering x-ray source

    CERN Document Server

    Hadmack, Michael R; Madey, John M J; Kowalczyk, Jeremy M D

    2014-01-01

    The operation of an inverse-Compton scattering source of x-rays or gamma-rays requires the precision alignment and synchronization of highly focused electron bunches and laser pulses at the collision point. The arrival times of electron and laser pulses must be synchronized with picosecond precision. We have developed an RF synchronization technique that reduces the initial timing uncertainty from 350 ps to less than 2 ps, greatly reducing the parameter space to be optimized while commissioning the x-ray source. We describe the technique and present measurements of its performance.

  2. Stellar X-Ray Polarimetry

    Science.gov (United States)

    Swank, J.

    2011-01-01

    Most of the stellar end-state black holes, pulsars, and white dwarfs that are X-ray sources should have polarized X-ray fluxes. The degree will depend on the relative contributions of the unresolved structures. Fluxes from accretion disks and accretion disk corona may be polarized by scattering. Beams and jets may have contributions of polarized emission in strong magnetic fields. The Gravity and Extreme Magnetism Small Explorer (GEMS) will study the effects on polarization of strong gravity of black holes and strong magnetism of neutron stars. Some part of the flux from compact stars accreting from companion stars has been reflected from the companion, its wind, or accretion streams. Polarization of this component is a potential tool for studying the structure of the gas in these binary systems. Polarization due to scattering can also be present in X-ray emission from white dwarf binaries and binary normal stars such as RS CVn stars and colliding wind sources like Eta Car. Normal late type stars may have polarized flux from coronal flares. But X-ray polarization sensitivity is not at the level needed for single early type stars.

  3. Spitzer Reveals Infrared Optically-Thin Synchrotron Emission from the Compact Jet of the Neutron Star X-Ray Binary 4U 0614+091

    NARCIS (Netherlands)

    Migliari, S.; Tomsick, J.A.; Maccarone, T.J.; Gallo, E.; Fender, R.P.; Nelemans, G.; Russell, D.M.

    2006-01-01

    Spitzer observations of the neutron star (ultracompact) X-ray binary (XRB) 4U 0614+091 with the Infrared Array Camera reveal emission of nonthermal origin in the range 3.5-8 mum. The mid-infrared spectrum is well fit by a power law with spectral index of alpha=-0.57+/-0.04 (where the flux density is

  4. Formation and evolution of X-ray binaries

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We review recent progress in theoretical understanding of X-ray binaries,which has largely been driven by new observations.We select several topics including formation of compact low-mass X-ray binaries,the evolutionary connection between low-mass X-ray binaries and binary and millisecond radio pulsars,and ultraluminous X-ray sources,to illustrate the interplay between theories and observations.

  5. New Insights into X-ray Binaries

    CERN Document Server

    Casares, Jorge

    2009-01-01

    X-ray binaries are excellent laboratories to study collapsed objects. On the one hand, transient X-ray binaries contain the best examples of stellar-mass black holes while persistent X-ray binaries mostly harbour accreting neutron stars. The determination of stellar masses in persistent X-ray binaries is usually hampered by the overwhelming luminosity of the X-ray heated accretion disc. However, the discovery of high-excitation emission lines from the irradiated companion star has opened new routes in the study of compact objects. This paper presents novel techniques which exploits these irradiated lines and summarises the dynamical masses obtained for the two populations of collapsed stars: neutron stars and black holes.

  6. X-Rays from Green Pea Analogs

    Science.gov (United States)

    Brorby, Matthew

    2014-09-01

    X-rays may have contributed to the heating and reionization of the IGM in the early universe. High mass X-ray binaries (HMXB) within small, low-metallicity galaxies are expected to be the main source of X-rays at this time. Since studying these high-redshift galaxies is currently impossible, we turn to local analogs that have the same properties the galaxies in the early are expected to have. A number of recent studies have shown an enhanced number of HMXBs in nearby low metallicity galaxies. We propose to observe a sample of metal-deficient luminous compact galaxies (LCG) in order to determine if the X-ray luminosity is enhanced relative to SFR, thereby providing further evidence to the importance of X-rays in the early universe.

  7. Beam shaping design for compact and high-brightness fiber-coupled laser-diode system.

    Science.gov (United States)

    Yu, Junhong; Guo, Linui; Wu, Hualing; Wang, Zhao; Tan, Hao; Gao, Songxin; Wu, Deyong; Zhang, Kai

    2015-06-20

    Fiber-coupled laser diodes have become essential sources for fiber laser pumping and direct energy applications. A compact and high-brightness fiber-coupled system has been designed based on a significant beam shaping method. The laser-diode stack consists of eight mini-bars and is effectively coupled into a standard 100 μm core diameter and NA=0.22 fiber. The simulative result indicates that the module will have an output power over 440 W. Using this technique, compactness and high-brightness production of a fiber-coupled laser-diode module is possible.

  8. Accelerator-driven X-ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-09

    After an introduction which mentions x-ray tubes and storage rings and gives a brief review of special relativity, the subject is treated under the following topics and subtopics: synchrotron radiation (bending magnet radiation, wiggler radiation, undulator radiation, brightness and brilliance definition, synchrotron radiation facilities), x-ray free-electron lasers (linac-driven X-ray FEL, FEL interactions, self-amplified spontaneous emission (SASE), SASE self-seeding, fourth-generation light source facilities), and other X-ray sources (energy recovery linacs, Inverse Compton scattering, laser wakefield accelerator driven X-ray sources. In summary, accelerator-based light sources cover the entire electromagnetic spectrum. Synchrotron radiation (bending magnet, wiggler and undulator radiation) has unique properties that can be tailored to the users’ needs: bending magnet and wiggler radiation is broadband, undulator radiation has narrow spectral lines. X-ray FELs are the brightest coherent X-ray sources with high photon flux, femtosecond pulses, full transverse coherence, partial temporal coherence (SASE), and narrow spectral lines with seeding techniques. New developments in electron accelerators and radiation production can potentially lead to more compact sources of coherent X-rays.

  9. Dante Soft X-ray Power Diagnostic for NIF

    Energy Technology Data Exchange (ETDEWEB)

    Dewald, E; Campbell, K; Turner, R; Holder, J; Landen, O; Glenzer, S; Kauffman, R; Suter, L; Landon, M; Rhodes, M; Lee, D

    2004-04-15

    Soft x-ray power diagnostics are essential for measuring spectrally resolved the total x-ray flux, radiation temperature, conversion efficiency and albedo that are important quantities for the energetics of indirect drive hohlraums. At the Nova or Omega Laser Facilities, these measurements are performed mainly with Dante, but also with DMX and photo-conductive detectors (PCD's). The Dante broadband spectrometer is a collection of absolute calibrated vacuum x-ray diodes, thin filters and x-ray mirrors used to measure the soft x-ray emission for photon energies above 50 eV.

  10. X-Ray

    Science.gov (United States)

    ... You may be allowed to remain with your child during the test. If you remain in the room during the X-ray exposure, you'll likely be asked to wear a lead apron to shield you from unnecessary exposure. After the X-ray ...

  11. Dental x-rays

    Science.gov (United States)

    ... X-rays are a form of high energy electromagnetic radiation. The x-rays penetrate the body to form ... for detecting cavities, unless the decay is very advanced and deep. Many ... The amount of radiation given off during the procedure is less than ...

  12. Maximum mass ratio of am CVn-type binary systems and maximum white dwarf mass in ultra-compact x-ray binaries (addendum - Serb. Astron. J. No. 183 (2011, 63

    Directory of Open Access Journals (Sweden)

    Arbutina B.

    2012-01-01

    Full Text Available We recalculated the maximum white dwarf mass in ultra-compact X-ray binaries obtained in an earlier paper (Arbutina 2011, by taking the effects of super-Eddington accretion rate on the stability of mass transfer into account. It is found that, although the value formally remains the same (under the assumed approximations, for white dwarf masses M2 >~0.1MCh mass ratios are extremely low, implying that the result for Mmax is likely to have little if any practical relevance.

  13. X-Ray Surveys

    CERN Document Server

    Giommi, P; Perri, M

    1998-01-01

    A review of recent developments in the field of X-ray surveys, especially in the hard (2-10 and 5-10 keV) bands, is given. A new detailed comparison between the measurements in the hard band and extrapolations from ROSAT counts, that takes into proper account the observed distribution of spectral slopes, is presented. Direct comparisons between deep ROSAT and BeppoSAX images show that most hard X-ray sources are also detected at soft X-ray energies. This may indicate that heavily cutoff sources, that should not be detectable in the ROSAT band but are expected in large numbers from unified AGN schemes, are in fact detected because of the emerging of either non-nuclear components, or of reflected, or partially transmitted nuclear X-rays. These soft components may complicate the estimation of the soft X-ray luminosity function and cosmological evolution of AGN.

  14. X-ray Polarimetry

    Science.gov (United States)

    Kallman, T.

    In spite of the recent advances in X-ray instrumentation, polarimetry remains an area which has been virtually unexplored in the last 20 years. The scientific motivation to study polarization has increased during this time: emission models designed to repro- duce X-ray spectra can be tested using polarization, and polarization detected in other wavelength bands makes clear predictions as to the X-ray polarization. Polarization remains the only way to infer geometrical properties of sources which are too small to be spatially resolved. At the same time, there has been recent progress in instrumen- tation which is likely to allow searches for X-ray polarization at levels significantly below what was possible for early detectors. In this talk I will review the history of X-ray polarimetry, discuss some experimental techniques and the scientific problems which can be addressed by future experiments.

  15. X-ray crystallography

    Science.gov (United States)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  16. X-ray lasers

    CERN Document Server

    Elton, Raymond C

    2012-01-01

    The first in its field, this book is both an introduction to x-ray lasers and a how-to guide for specialists. It provides new entrants and others interested in the field with a comprehensive overview and describes useful examples of analysis and experiments as background and guidance for researchers undertaking new laser designs. In one succinct volume, X-Ray Lasers collects the knowledge and experience gained in two decades of x-ray laser development and conveys the exciting challenges and possibilities still to come._Add on for longer version of blurb_M>The reader is first introduced

  17. X-ray Polarization from High Mass X-ray Binaries

    CERN Document Server

    Kallman, T; Blondin, J

    2015-01-01

    X-ray astronomy allows study of objects which may be associated with compact objects, i.e. neutron stars or black holes, and also may contain strong magnetic fields. Such objects are categorically non-spherical, and likely non-circular when projected on the sky. Polarization allows study of such geoemetric effects, and X-ray polarimetry is likely to become feasible for a significant number of sources in the future. A class of potential targets for future X-ray polarization observations is the high mass X-ray binaries (HMXBs), which consist of a compact object in orbit with an early type star. In this paper ws show that X-ray polarization from HMXBs has a distinct signature which depends on the source inclination and orbital phase. The presence of the X-ray source displaced from the star creates linear polarization even if the primary wind is spherically symmetric whenever the system is viewed away from conjunction. Direct X-rays dilute this polarization whenever the X-ray source is not eclipsed; at mid-eclips...

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive medical ...

  19. Spitzer Reveals Infrared Optically-Thin Synchrotron Emission from the Compact Jet of the Neutron Star X-Ray Binary 4U 0614+091

    OpenAIRE

    Migliari, S.; Tomsick, J.A.; Maccarone, T.J.; Gallo, E.; Fender, R. P.; Nelemans, G; Russell, D. M.

    2006-01-01

    Spitzer observations of the neutron star (ultracompact) X-ray binary (XRB) 4U 0614+091 with the Infrared Array Camera reveal emission of nonthermal origin in the range 3.5-8 mum. The mid-infrared spectrum is well fit by a power law with spectral index of alpha=-0.57+/-0.04 (where the flux density is Fnu~nualpha). Given the ultracompact nature of the binary system, we exclude the possibility that either the companion star or the accretion disk can be the origin of the observed emission. These ...

  20. Be/X-ray binaries

    CERN Document Server

    Reig, Pablo

    2011-01-01

    The purpose of this work is to review the observational properties of Be/X-ray binaries. The open questions in Be/X-ray binaries include those related to the Be star companion, that is, the so-called "Be phenomenon", such as, timescales associated to the formation and dissipation of the equatorial disc, mass-ejection mechanisms, V/R variability, and rotation rates; those related to the neutron star, such as, mass determination, accretion physics, and spin period evolution; but also, those that result from the interaction of the two constituents, such as, disc truncation and mass transfer. Until recently, it was thought that the Be stars' disc was not significantly affected by the neutron star. In this review, I present the observational evidence accumulated in recent years on the interaction between the circumstellar disc and the compact companion. The most obvious effect is the tidal truncation of the disc. As a result, the equatorial discs in Be/X-ray binaries are smaller and denser than those around isolat...

  1. Design of a 7-MV Linear Transformer Driver (LTD) for down-hole flash x-ray radiography.

    Energy Technology Data Exchange (ETDEWEB)

    Cordova, Steve Ray; Welch, Dale Robert (Voss Scientific, Albuquerque, NM); Oliver, Bryan Velten; Rose, David Vincent (Voss Scientific, Albuquerque, NM); Johnson, David Lee (L-3 Communications - Pulse Sciences, San Leandro, CA); Bruner, Nichelle Lee (Voss Scientific, Albuquerque, NM); Leckbee, Joshua J.

    2008-09-01

    Pulsed power driven flash x-ray radiography is a valuable diagnostic for subcritical experiments at the Nevada Test Site. The existing dual-axis Cygnus system produces images using a 2.25 MV electron beam diode to produce intense x-rays from a small source. Future hydrodynamic experiments will likely use objects with higher areal mass, requiring increased x-ray dose and higher voltages while maintaining small source spot size. A linear transformer driver (LTD) is a compact pulsed power technology with applications ranging from pulsed power flash x-ray radiography to high current Z-pinch accelerators. This report describes the design of a 7-MV dual-axis system that occupies the same lab space as the Cygnus accelerators. The work builds on a design proposed in a previous report [1]. This new design provides increased diode voltage from a lower impedance accelerator to improve coupling to low impedance diodes such as the self magnetic pinch (SMP) diode. The design also improves the predicted reliability by operating at a lower charge voltage and removing components that have proven vulnerable to failure. Simulations of the new design and experimental results of the 1-MV prototype are presented.

  2. Bone x-ray

    Science.gov (United States)

    ... or broken bone Bone tumors Degenerative bone conditions Osteomyelitis (inflammation of the bone caused by an infection) ... Multiple myeloma Osgood-Schlatter disease Osteogenesis imperfecta Osteomalacia Osteomyelitis Paget disease of the bone Rickets X-ray ...

  3. Hand x-ray

    Science.gov (United States)

    ... include fractures, bone tumors , degenerative bone conditions, and osteomyelitis (inflammation of the bone caused by an infection). ... chap 46. Read More Bone tumor Broken bone Osteomyelitis X-ray Review Date 9/8/2014 Updated ...

  4. Pelvis x-ray

    Science.gov (United States)

    X-ray - pelvis ... Tumors Degenerative conditions of bones in the hips, pelvis, and upper legs ... hip joint Tumors of the bones of the pelvis Sacroiliitis (inflammation of the area where the sacrum ...

  5. Chest X-Ray

    Medline Plus

    Full Text Available ... and use a very small dose of ionizing radiation to produce pictures of the inside of the ... x-ray use a tiny dose of ionizing radiation, the benefit of an accurate diagnosis far outweighs ...

  6. Chest X-Ray

    Medline Plus

    Full Text Available ... Index A-Z Spotlight October is National Breast Cancer Awareness Month Recently posted: Medical Imaging Costs Magnetoencephalography ( ... of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  7. Chest X-Ray

    Medline Plus

    Full Text Available ... chest x-ray is used to evaluate the lungs, heart and chest wall and may be used ... diagnose and monitor treatment for a variety of lung conditions such as pneumonia, emphysema and cancer. A ...

  8. X-ray - skeleton

    Science.gov (United States)

    ... x-ray particles pass through the body. A computer or special film records the images. Structures that ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  9. X-Ray Diffraction.

    Science.gov (United States)

    Smith, D. K.; Smith, K. L.

    1980-01-01

    Reviews applications in research and analytical characterization of compounds and materials in the field of X-ray diffraction, emphasizing new developments in applications and instrumentation in both single crystal and powder diffraction. Cites 414 references. (CS)

  10. Chest X-Ray

    Medline Plus

    Full Text Available ... breath, persistent cough, fever, chest pain or injury. It may also be useful to help diagnose and ... have some concerns about chest x-rays. However, it’s important to consider the likelihood of benefit to ...

  11. X-Ray Diffraction.

    Science.gov (United States)

    Smith, D. K.; Smith, K. L.

    1980-01-01

    Reviews applications in research and analytical characterization of compounds and materials in the field of X-ray diffraction, emphasizing new developments in applications and instrumentation in both single crystal and powder diffraction. Cites 414 references. (CS)

  12. Chest X-Ray

    Medline Plus

    Full Text Available ... breath, persistent cough, fever, chest pain or injury. It may also be useful to help diagnose and ... have some concerns about chest x-rays. However, it’s important to consider the likelihood of benefit to ...

  13. Chest X-Ray

    Medline Plus

    Full Text Available ... CT Angiography Video: Myelography Video: CT of the Heart Video: Radioiodine I-131 Therapy Radiology and You ... x-ray is used to evaluate the lungs, heart and chest wall and may be used to ...

  14. Development of a compact radiation-hardened low-noise front-end readout ASIC for CZT-based hard X-ray imager

    Energy Technology Data Exchange (ETDEWEB)

    Gao, W., E-mail: gaowu@nwpu.edu.cn; Gan, B.; Li, X.; Wei, T.; Gao, D.; Hu, Y.

    2015-04-21

    In this paper, we present the development and performances of a radiation-hardened front-end readout application-specific integrated circuit (ASIC) dedicated to CZT detectors for a hard X-ray imager in space applications. The readout channel consists of a charge sensitive amplifier (CSA), a CR-RC shaper, a fast shaper, a discriminator and a driving buffer. With the additional digital filtering, the readout channel can achieve very low noise performances and low power dissipation. An eight-channel prototype ASIC is designed and fabricated in 0.35 μm CMOS process. The energy range of the detected X-rays is evaluated as 1.45 keV to 281 keV. The gain is larger than 100 mV/fC. The equivalent noise charge (ENC) of the ASIC is 53 e{sup −} at zero farad plus 10 e{sup −} per picofarad. The power dissipation is less than 4.4 mW/channel. Through the measurement with a CZT detector, the energy resolution is less than 3.45 keV (FWHM) under the irradiation of the radioactive source {sup 241}Am. The radiation effect experiments indicate that the proposed ASIC can resist the total ionization dose (TID) irradiation of higher than 200 krad (Si)

  15. Development of a compact radiation-hardened low-noise front-end readout ASIC for CZT-based hard X-ray imager

    Science.gov (United States)

    Gao, W.; Gan, B.; Li, X.; Wei, T.; Gao, D.; Hu, Y.

    2015-04-01

    In this paper, we present the development and performances of a radiation-hardened front-end readout application-specific integrated circuit (ASIC) dedicated to CZT detectors for a hard X-ray imager in space applications. The readout channel consists of a charge sensitive amplifier (CSA), a CR-RC shaper, a fast shaper, a discriminator and a driving buffer. With the additional digital filtering, the readout channel can achieve very low noise performances and low power dissipation. An eight-channel prototype ASIC is designed and fabricated in 0.35 μm CMOS process. The energy range of the detected X-rays is evaluated as 1.45 keV to 281 keV. The gain is larger than 100 mV/fC. The equivalent noise charge (ENC) of the ASIC is 53 e- at zero farad plus 10 e- per picofarad. The power dissipation is less than 4.4 mW/channel. Through the measurement with a CZT detector, the energy resolution is less than 3.45 keV (FWHM) under the irradiation of the radioactive source 241Am. The radiation effect experiments indicate that the proposed ASIC can resist the total ionization dose (TID) irradiation of higher than 200 krad (Si).

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... holds the x-ray film or image recording plate . Sometimes the x-ray is taken with the ... an x-ray film holder or image recording plate is placed beneath the patient. top of page ...

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the limitations of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) ... diagnosis and disease management. top of page How is the procedure performed? The technologist, an individual specially ...

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... holds the x-ray film or image recording plate . Sometimes the x-ray is taken with the ... an x-ray film holder or image recording plate is placed beneath the patient. top of page ...

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... drawer under the table holds the x-ray film or image recording plate . Sometimes the x-ray ... extended over the patient while an x-ray film holder or image recording plate is placed beneath ...

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... that might interfere with the x-ray images. Women should always inform their physician and x-ray ... Safety page for more information about radiation dose. Women should always inform their physician or x-ray ...

  1. Compact stacking of diode lasers for pulsed light sources of high brightness.

    Science.gov (United States)

    Alahautala, Taito; Lassila, Erkki; Hernberg, Rolf

    2004-07-20

    A compact stacking architecture for high-power diode-laser arrays is proposed and compared with traditional stacks. The objective of compact stacking is to achieve high brightness values without the use of microlenses. The calculated brightness for a compact stack is over 300 W mm(-2) sr(-1), which is approximately 40 times higher than that of a traditional stack made of similar laser emitters. Even higher brightness values of over 600 W mm(-2) sr(-1) were reached in practice. A laser head was manufactured in which the light from several compact laser stacks could be fiber coupled or the light could be transformed to a highly uniform beam.

  2. Low energy x-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, W.R.

    1981-06-05

    A subkilovolt spectrometer has been produced to permit high-energy-resolution, time-dependent x-ray intensity measurements. The diffracting element is a curved mica (d = 9.95A) crystal. To preclude higher order (n > 1) diffractions, a carbon x-ray mirror that reflects only photons with energies less than approx. 1.1 keV is utilized ahead of the diffracting element. The nominal energy range of interest is 800 to 900 eV. The diffracted photons are detected by a gold-surface photoelectric diode designed to have a very good frequency response, and whose current is recorded on an oscilloscope. A thin, aluminium light barrier is placed between the diffracting crystal and the photoelectric diode detector to keep any uv generated on or scattered by the crystal from illuminating the detector. High spectral energy resolution is provided by many photocathodes between 8- and 50-eV wide placed serially along the diffracted x-ray beam at the detector position. The spectrometer was calibrated for energy and energy dispersion using the Ni L..cap alpha../sub 1/ /sub 2/ lines produced in the LLNL IONAC accelerator and in third order using a molybdenum target x-ray tube. For the latter calibration the carbon mirror was replaced by one surfaced with rhodium to raise the cut-off energy to about 3 keV. The carbon mirror reflection dependence on energy was measured using one of our Henke x-ray sources. The curved mica crystal diffraction efficiency was measured on our Low-Energy x-ray (LEX) machine. The spectrometer performs well although some changes in the way the x-ray mirror is held are desirable. 16 figures.

  3. X-Ray Absorption with Transmission X-Ray Microscopes

    NARCIS (Netherlands)

    de Groot, F.M.F.

    2016-01-01

    In this section we focus on the use of transmission X-ray microscopy (TXM) to measure the XAS spectra. In the last decade a range of soft X-ray and hard X-ray TXM microscopes have been developed, allowing the measurement of XAS spectra with 10–100 nm resolution. In the hard X-ray range the TXM

  4. X-ray Pulsars

    CERN Document Server

    Walter, Roland

    2016-01-01

    X-ray pulsars shine thanks to the conversion of the gravitational energy of accreted material to X-ray radiation. The accretion rate is modulated by geometrical and hydrodynamical effects in the stellar wind of the pulsar companions and/or by instabilities in accretion discs. Wind driven flows are highly unstable close to neutron stars and responsible for X-ray variability by factors $10^3$ on time scale of hours. Disk driven flows feature slower state transitions and quasi periodic oscillations related to orbital motion and precession or resonance. On shorter time scales, and closer to the surface of the neutron star, X-ray variability is dominated by the interactions of the accreting flow with the spinning magnetosphere. When the pulsar magnetic field is large, the flow is confined in a relatively narrow accretion column, whose geometrical properties drive the observed X-ray emission. In low magnetized systems, an increasing accretion rate allows the ignition of powerful explosive thermonuclear burning at t...

  5. X-ray Chirped Pulse Amplification: towards GW Soft X-ray Lasers

    Directory of Open Access Journals (Sweden)

    Marta Fajardo

    2013-07-01

    Full Text Available Extensive modeling of the seeding of plasma-based soft X-ray lasers is reported in this article. Seminal experiments on amplification in plasmas created from solids have been studied in detail and explained. Using a transient collisional excitation scheme, we show that a 18 µJ, 80 fs fully coherent pulse is achievable by using plasmas pumped by a compact 10 Hz laser. We demonstrate that direct seeding of plasmas created by nanosecond lasers is not efficient. Therefore, we propose and fully study the transposition to soft X-rays of the Chirped Pulse Amplification (CPA technique. Soft X-ray pulses with energy of 6 mJ and 200 fs duration are reachable by seeding plasmas pumped by compact 100 J, sub-ns, 1 shot/min lasers. These soft X-ray lasers would reach GW power, corresponding to an increase of 100 times as compared to the highest peak power achievable nowadays in the soft X-ray region (30 eV–1 keV. X-ray CPA is opening new horizon for soft x-ray ultra-intense sources.

  6. X-ray spectral properties of accretion discs in X-ray binaries

    Energy Technology Data Exchange (ETDEWEB)

    White, N.E.; Stella, L.; Parmar, A.N.

    1988-01-01

    Exosat observations are used to compare the spectral properties of the persistent emission from a number of X-ray burst sources, high-luminosity low-mass X-ray binaries (LMXRB) and galactic black hole candidates with various models for X-ray emission from an accretion disk surrounding a compact object in a binary system. It is shown that only a Comptonization model provides a good fit to all of the spectra considered. The fits to the spectra of the high-luminosity LMXRB systems necessitate an additional blackbody component with a luminosity 16 to 34 percent that from the Comptonized component. 82 references.

  7. X-Ray Protection

    Science.gov (United States)

    1955-01-01

    15,000. • When developed In Kodak liquid X-ray developer for 5 min at a temperature of 200 C. b Film sensitivities vary with photon energy by the...for example temporomandibular -joint exposures where a skin dose of 25 r or more may be obtained during a single exposure with 65 kvp, 1.5 mm aluminum...communication. W. J. Updegrave, Temporomandibular articulation-X-ray examina- tion, Dental Radiography and Photography 26, No. 3, 41 (1953). H. 0. Wyckoff, R. J

  8. X-ray Reflection

    Science.gov (United States)

    Fabian, A. C.; Ross, R. R.

    2010-12-01

    Material irradiated by X-rays produces backscattered radiation which is commonly known as the Reflection Spectrum. It consists of a structured continuum, due at high energies to the competition between photoelectric absorption and electron scattering enhanced at low energies by emission from the material itself, together with a complex line spectrum. We briefly review the history of X-ray reflection in astronomy and discuss various methods for computing the reflection spectrum from cold and ionized gas, illustrated with results from our own work reflionx. We discuss how the reflection spectrum can be used to obtain the geometry of the accretion flow, particularly the inner regions around black holes and neutron stars.

  9. Panoramic Dental X-Ray

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Panoramic Dental X-ray Panoramic dental x-ray uses a very small dose of ... x-ray , is a two-dimensional (2-D) dental x-ray examination that captures the entire mouth ...

  10. Compact diode stack end pumped Nd:YAG amplifier using core doped ceramics.

    Science.gov (United States)

    Denis, Thomas; Hahn, Sven; Mebben, Sandra; Wilhelm, Ralf; Kolleck, Christian; Neumann, Jörg; Kracht, Dietmar

    2010-02-10

    We report on a compact Nd:YAG amplifier emitting a maximum pulse energy of 14 mJ. By amplifying a passively Q-switched oscillator (M(2)diode pumped by an 8 bar diode stack of 800 W power and a nonimaging optic. This optic homogenizes the pump light and transfers it into a 5 mm diameter core doped rod with a centrally neodymium doped region of 3 mm and a samarium doped YAG cladding. We show that this cladding reduces parasitic effects in the laser rod compared to an undoped YAG cladding. Finally, we compare the compact amplifier with an amplifier, which is mode selectively pumped by a fiber coupled pump diode.

  11. Chest X-Ray

    Medline Plus

    Full Text Available ... Therapy November 8 is the International Day of Radiology (IDoR) Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. Geoffrey ...

  12. X-RAY POLARIZATION FROM HIGH-MASS X-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Kallman, T. [NASA/GSFC, Code 662, Greenbelt, MD 20771 (United States); Dorodnitsyn, A. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Blondin, J. [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States)

    2015-12-10

    X-ray astronomy allows study of objects that may be associated with compact objects, i.e., neutron stars or black holes, and also may contain strong magnetic fields. Such objects are categorically nonspherical, and likely noncircular when projected on the sky. Polarization allows study of such geometric effects, and X-ray polarimetry is likely to become feasible for a significant number of sources in the future. Potential targets for future X-ray polarization observations are the high-mass X-ray binaries (HMXBs), which consist of a compact object in orbit with an early-type star. In this paper we show that X-ray polarization from HMXBs has a distinct signature that depends on the source inclination and orbital phase. The presence of the X-ray source displaced from the star creates linear polarization even if the primary wind is spherically symmetric whenever the system is viewed away from conjunction. Direct X-rays dilute this polarization whenever the X-ray source is not eclipsed; at mid-eclipse the net polarization is expected to be small or zero if the wind is circularly symmetric around the line of centers. Resonance line scattering increases the scattering fraction, often by large factors, over the energy band spanned by resonance lines. Real winds are not expected to be spherically symmetric, or circularly symmetric around the line of centers, owing to the combined effects of the compact object gravity and ionization on the wind hydrodynamics. A sample calculation shows that this creates polarization fractions ranging up to tens of percent at mid-eclipse.

  13. New class of compact diode pumped sub 10 fs lasers for biomedical applications

    DEFF Research Database (Denmark)

    Le, T.; Mueller, A.; Sumpf, B.;

    2016-01-01

    -laser. In this work we present an alternative method by deploying frequency-doubled IR diodes with good beam qualities to pump fs-lasers. The revolutionary approach allows choosing any pump wavelengths in the green region and avoids complicated relay optics for the diodes. For the first time we show results...... of a diode-pumped 10 fs-laser and how a single diode setup can be integrated into a 30 x 30 cm(2) fs-laser system generating sub 20 fs laser pulses with output power towards half a Watt. This technology paves the way for a new class of very compact and cost-efficient fs-lasers for life science and industrial...... applications....

  14. Design and Analysis of Compact Directionally Coupled Bistable Laser Diodes

    Institute of Scientific and Technical Information of China (English)

    Mitsuru; Takenaka; Yoshiaki; Nakano

    2003-01-01

    A compact optical flip-flop with a directional coupler has been designed and analyzed. Using a narrow gap directional coupler, we have predicted the device length could be reduced down to 500μm from 1300μm.

  15. Design and Analysis of Compact Directionally Coupled Bistable Laser Diodes

    Institute of Scientific and Technical Information of China (English)

    Mitsuru Takenaka; Yoshiaki Nakano

    2003-01-01

    A compact optical flip-flop with a directional coupler has been designed and analyzed. Using a narrow gap directional coupler, we have predicted the device length could be reduced down to 500 μm from 1300 μm.

  16. X-Ray Diffraction and Fluorescence Instrument for Mineralogical Analysis at the Lunar Surface Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop LUNA, a compact and lightweight X-Ray Diffraction (XRD) / X-Ray Fluorescence (XRF) instrument for mineralogical analysis of regolith, rock...

  17. X-Ray Diffraction and Fluorescence Instrument for Mineralogical Analysis at the Lunar Surface Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a compact and lightweight X-Ray Diffraction (XRD) / X-Ray Fluorescence (XRF) instrument for analysis of mineralogical composition of regolith,...

  18. Compact high brightness diode laser emitting 500W from a 100μm fiber

    Science.gov (United States)

    Heinemann, Stefan; Fritsche, Haro; Kruschke, Bastian; Schmidt, Torsten; Gries, Wolfgang

    2013-02-01

    High power, high brightness diode lasers are beginning to compete with solid state lasers, i.e. disk and fiber lasers. The core technologies for brightness scaling of diode lasers are optical stacking and dense spectral combining (DSC), as well as improvements of the diode material. Diode lasers have the lowest cost of ownership, highest efficiency and most compact design among all lasers. Multiple Single Emitter (MSE) modules allow highest power and highest brightness diode lasers based on standard broad area diodes. Multiple single emitters, each rated at 12 W, are stacked in the fast axis with a monolithic slow axis collimator (SAC) array. Volume Bragg Gratings (VBG) stabilizes the wavelength and narrow the linewidth to less than 1 nm. Dichroic mirrors are used for dense wavelength multiplexing of 4 channels within 12 nm. Subsequently polarization multiplexing generates 450 W with a beam quality of 4.5 mm*mrad. Fast control electronics and miniaturized switched power supplies enable pulse rise times of less than 10 μs, with pulse widths continuously adjustable from 20 μs to cw. Further power scaling up to multi-kilowatts can be achieved by multiplexing up to 16 channels. The power and brightness of these systems enables the use of direct diode lasers for cutting and welding. The technologies can be transferred to other wavelengths to include 793 nm and 1530 nm. Optimized spectral combining enables further improvements in spectral brightness and power.

  19. X-Ray Astronomy

    Science.gov (United States)

    Wu, S. T.

    2000-01-01

    Dr. S. N. Zhang has lead a seven member group (Dr. Yuxin Feng, Mr. XuejunSun, Mr. Yongzhong Chen, Mr. Jun Lin, Mr. Yangsen Yao, and Ms. Xiaoling Zhang). This group has carried out the following activities: continued data analysis from space astrophysical missions CGRO, RXTE, ASCA and Chandra. Significant scientific results have been produced as results of their work. They discovered the three-layered accretion disk structure around black holes in X-ray binaries; their paper on this discovery is to appear in the prestigious Science magazine. They have also developed a new method for energy spectral analysis of black hole X-ray binaries; four papers on this topics were presented at the most recent Atlanta AAS meeting. They have also carried Monte-Carlo simulations of X-ray detectors, in support to the hardware development efforts at Marshall Space Flight Center (MSFC). These computation-intensive simulations have been carried out entirely on the computers at UAH. They have also carried out extensive simulations for astrophysical applications, taking advantage of the Monte-Carlo simulation codes developed previously at MSFC and further improved at UAH for detector simulations. One refereed paper and one contribution to conference proceedings have been resulted from this effort.

  20. Compact Wideband Antiparallel Diode Frequency Triplers Utilizing Planar Transitions

    Directory of Open Access Journals (Sweden)

    Wahab Mohyuddin

    2015-01-01

    Full Text Available Two designs of frequency triplers, which use planar transitions as baluns and an antiparallel diode pair to achieve wide bandwidth, are presented. The ultrawideband transitions are utilized for input and output impedance matching of the frequency triplers. The design process and operation principles are described in this paper. The implemented frequency triplers exhibit flat response over wide frequency range of 3 to 9 GHz. The proposed Type A frequency tripler shows conversion loss of ~18 dB with above 30 dB even harmonics suppression. With Type B frequency tripler, conversion loss of ~17 dB and above 25 dB even harmonic suppression are achieved.

  1. X-ray lithography masking

    Science.gov (United States)

    Smith, Henry I. (Inventor); Lim, Michael (Inventor); Carter, James (Inventor); Schattenburg, Mark (Inventor)

    1998-01-01

    X-ray masking apparatus includes a frame having a supporting rim surrounding an x-ray transparent region, a thin membrane of hard inorganic x-ray transparent material attached at its periphery to the supporting rim covering the x-ray transparent region and a layer of x-ray opaque material on the thin membrane inside the x-ray transparent region arranged in a pattern to selectively transmit x-ray energy entering the x-ray transparent region through the membrane to a predetermined image plane separated from the layer by the thin membrane. A method of making the masking apparatus includes depositing back and front layers of hard inorganic x-ray transparent material on front and back surfaces of a substrate, depositing back and front layers of reinforcing material on the back and front layers, respectively, of the hard inorganic x-ray transparent material, removing the material including at least a portion of the substrate and the back layers of an inside region adjacent to the front layer of hard inorganic x-ray transparent material, removing a portion of the front layer of reinforcing material opposite the inside region to expose the surface of the front layer of hard inorganic x-ray transparent material separated from the inside region by the latter front layer, and depositing a layer of x-ray opaque material on the surface of the latter front layer adjacent to the inside region.

  2. Handbook of X-Ray Astronomy

    Science.gov (United States)

    Arnaud, Keith A. (Editor); Smith, Randall K.; Siemiginowska, Aneta

    2011-01-01

    X-ray astronomy was born in the aftermath of World War II as military rockets were repurposed to lift radiation detectors above the atmosphere for a few minutes at a time. These early flights detected and studied X-ray emission from the Solar corona. The first sources beyond the Solar System were detected during a rocket flight in 1962 by a team headed by Riccardo Giaccom at American Science and Engineering, a company founded by physicists from MIT. The rocket used Geiger counters with a system designed to reduce non-X-ray backgrounds and collimators limiting the region of sky seen by the counters. As the rocket spun, the field of view (FOV) happened to pass over what was later found to be the brightest non-Solar X-ray source; later designated See X-1. It also detected a uniform background glow which could not be resolved into individual sources. A follow-up campaign using X-ray detectors with better spatial resolution and optical telescopes identified See X-1 as an interacting binary with a compact (neutron star) primary. This success led to further suborbital rocket flights by a number of groups. More X-ray binaries were discovered, as well as X-ray emission from supernova remnants, the radio galaxies M87 and Cygnus-A, and the Coma cluster. Detectors were improved and Geiger counters were replaced by proportional counters, which provided information about energy spectra of the sources. A constant challenge was determining precise positions of sources as only collimators were available.

  3. Panoramic Dental X-Ray

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Panoramic Dental X-ray Panoramic dental x-ray uses a ... Your e-mail address: Personal message (optional): Bees: Wax: Notice: RadiologyInfo respects your privacy. Information entered here ...

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the body. X-rays are the oldest and most frequently used form of medical imaging. A bone ... bones. top of page How should I prepare? Most bone x-rays require no special preparation. You ...

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... tissue shows up in shades of gray and air appears black. Until recently, x-ray images were ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ...

  6. Soft X-ray Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Seely, John

    1999-05-20

    The contents of this report cover the following: (1) design of the soft x-ray telescope; (2) fabrication and characterization of the soft x-ray telescope; and (3) experimental implementation at the OMEGA laser facility.

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of page What are some common uses of the procedure? A bone x-ray is used to: ... and x-rays. top of page What does the equipment look like? The equipment typically used for ...

  8. Bone X-Ray (Radiography)

    Science.gov (United States)

    ... clothing that might interfere with the x-ray images. Women should always inform their physician and x-ray ... small burst of radiation that passes through the body, recording an image on photographic film or a special detector. Different ...

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures ...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Us News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses ... assess trauma patients in emergency departments. A CT scan can image complicated fractures, subtle fractures or dislocations. ...

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... patient. top of page How does the procedure work? X-rays are a form of radiation like ... very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that ...

  13. Abdomen X-Ray (Radiography)

    Science.gov (United States)

    ... Professions Site Index A-Z X-ray (Radiography) - Abdomen Abdominal x-ray uses a very small dose ... to produce pictures of the inside of the abdominal cavity. It is used to evaluate the stomach, liver, ...

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... radiation like light or radio waves. X-rays pass through most objects, including the body. Once it ... organs, allow more of the x-rays to pass through them. As a result, bones appear white ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ...

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... and x-rays. A Word About Minimizing Radiation Exposure Special care is taken during x-ray examinations ... patient's body not being imaged receive minimal radiation exposure. top of page What are the limitations of ...

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... fracture. guide orthopedic surgery, such as spine repair/fusion, joint replacement and fracture reductions. look for injury, ... and Media Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to X-ray ( ...

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of page What are some common uses of the procedure? A bone x-ray is used to: ... and x-rays. top of page What does the equipment look like? The equipment typically used for ...

  19. X-Ray Exam: Hip

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Hip KidsHealth > For Parents > X-Ray Exam: Hip A A A What's in ... español Radiografía: cadera What It Is A hip X-ray is a safe and painless test that ...

  20. X-Ray Exam: Finger

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Finger KidsHealth > For Parents > X-Ray Exam: Finger A A A What's in ... español Radiografía: dedo What It Is A finger X-ray is a safe and painless test that ...

  1. X-Ray Exam: Foot

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Foot KidsHealth > For Parents > X-Ray Exam: Foot A A A What's in ... español Radiografía: pie What It Is A foot X-ray is a safe and painless test that ...

  2. X-Ray Exam: Wrist

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Wrist KidsHealth > For Parents > X-Ray Exam: Wrist A A A What's in ... español Radiografía: muñeca What It Is A wrist X-ray is a safe and painless test that ...

  3. X-Ray Exam: Ankle

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Ankle KidsHealth > For Parents > X-Ray Exam: Ankle A A A What's in ... español Radiografía: tobillo What It Is An ankle X-ray is a safe and painless test that ...

  4. X-Ray Exam: Pelvis

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Pelvis KidsHealth > For Parents > X-Ray Exam: Pelvis A A A What's in ... español Radiografía: pelvis What It Is A pelvis X-ray is a safe and painless test that ...

  5. X-Ray Exam: Forearm

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Forearm KidsHealth > For Parents > X-Ray Exam: Forearm A A A What's in ... español Radiografía: brazo What It Is A forearm X-ray is a safe and painless test that ...

  6. X-ray selected BALQSOs

    CERN Document Server

    Page, M J; Ceballos, M; Corral, A; Ebrero, J; Esquej, P; Krumpe, M; Mateos, S; Rosen, S; Schwope, A; Streblyanska, A; Symeonidis, M; Tedds, J A; Watson, M G

    2016-01-01

    We study a sample of six X-ray selected broad absorption line (BAL) quasi-stellar objects (QSOs) from the XMM-Newton Wide Angle Survey. All six objects are classified as BALQSOs using the classic balnicity index, and together they form the largest sample of X-ray selected BALQSOs. We find evidence for absorption in the X-ray spectra of all six objects. An ionized absorption model applied to an X-ray spectral shape that would be typical for non-BAL QSOs (a power law with energy index alpha=0.98) provides acceptable fits to the X-ray spectra of all six objects. The optical to X-ray spectral indices, alpha_OX, of the X-ray selected BALQSOs, have a mean value of 1.69 +- 0.05, which is similar to that found for X-ray selected and optically selected non-BAL QSOs of similar ultraviolet luminosity. In contrast, optically-selected BALQSOs typically have much larger alpha_OX and so are characterised as being X-ray weak. The results imply that X-ray selection yields intrinsically X-ray bright BALQSOs, but their X-ray sp...

  7. X-ray Crystallography Facility

    Science.gov (United States)

    2000-01-01

    Edward Snell, a National Research Council research fellow at NASA's Marshall Space Flight Center (MSFC), prepares a protein crystal for analysis by x-ray crystallography as part of NASA's structural biology program. The small, individual crystals are bombarded with x-rays to produce diffraction patterns, a map of the intensity of the x-rays as they reflect through the crystal.

  8. Applications of Indirect Imaging techniques in X-ray binaries

    CERN Document Server

    Harlaftis, E T

    2000-01-01

    A review is given on aspects of indirect imaging techniques in X-ray binaries which are used as diagnostics tools for probing the X-ray dominated accretion disc physics. These techniques utilize observed properties such as the emission line profile variability, the time delays between simultaneous optical/X-ray light curves curves, the light curves of eclipsing systems and the pulsed emission from the compact object in order to reconstruct the accretion disc's line emissivity (Doppler tomography), the irradiated disc and heated secondary (echo mapping), the outer disc structure (modified eclipse mapping) and the accreting regions onto the compact object, respectively.

  9. Frequency stability of a tunable diode laser mounted in a compact Stirling cycle cooler

    Science.gov (United States)

    Durso, Santo S.; May, R. D.; Tuchscherer, M. A.; Webster, C. R.

    1989-01-01

    A tunable diode laser (TDL) has been operated with a compact lightweight closed-cycle Stirling cooler. The laser linewidth has been measured near 80 K and found to be about half of that when using more massive closed-cycle coolers. Novel applications include balloon-borne and aircraft-adapted instruments, where size, weight, and power requirements place stringent demands on necessary TDL cooling systems.

  10. SMM x ray polychromator

    Science.gov (United States)

    Saba, J. L. R.

    1993-01-01

    The objective of the X-ray Polychromator (XRP) experiment was to study the physical properties of solar flare plasma and its relation to the parent active region to understand better the flare mechanism and related solar activity. Observations were made to determine the temperature, density, and dynamic structure of the pre-flare and flare plasma as a function of wavelength, space and time, the extent to which the flare plasma departs from thermal equilibrium, and the variation of this departure with time. The experiment also determines the temperature and density structure of active regions and flare-induced changes in the regions.

  11. X-ray today

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, U. [Philips Medical Systems, Hamburg (Germany)

    2001-09-01

    The interest attracted by the new imaging modalities tends to overshadow the continuing importance of projection radiography and fluoroscopy. Nevertheless, projection techniques still represent by far the greatest proportion of diagnostic imaging examinations, and play an essential role in the growing number of advanced interventional procedures. This article describes some of the latest developments in X-ray imaging technology, using two products from the Philips range as examples: the Integris Allura cardiovascular system with 3D image reconstruction, and the BV Pulsera: a high-end, multi-functional mobile C-arm system with cardiac capabilities. (orig.)

  12. Table-top laser-driven ultrashort electron and X-ray source: the CIBER-X source project

    Science.gov (United States)

    Girardeau-Montaut, Jean-Pierre; Kiraly, Bélà; Girardeau-Montaut, Claire; Leboutet, Hubert

    2000-09-01

    We report on the development of a new laser-driven table-top ultrashort electron and X-ray source, also called the CIBER-X source . X-ray pulses are produced by a three-step process which consists of the photoelectron emission from a thin metallic photocathode illuminated by 16 ps duration laser pulses at 213 nm. The e-gun is a standard Pierce diode electrode type, in which electrons are accelerated by a cw electric field of ˜11 MV/m up to a hole made in the anode. The photoinjector produces a train of 70-80 keV electron pulses of ˜0.5 nC and 20 A peak current at a repetition rate of 10 Hz. The electrons are then transported outside the diode along a path of 20 cm length, and are focused onto a target of thullium by magnetic fields produced by two electromagnetic coils. X-rays are then produced by the impact of electrons on the target. Simulations of geometrical, electromagnetic fields and energetic characteristics of the complete source were performed previously with the assistance of the code PIXEL1 also developed at the laboratory. Finally, experimental electron and X-ray performances of the CIBER-X source as well as its application to very low dose imagery are presented and discussed. source Compacte d' Impulsions Brèves d' Electrons et de Rayons X

  13. X-ray luminosity functions of different morphological and X-ray type AGN populations

    CERN Document Server

    Pović, M; Sánchez-Portal, M; Bongiovanni, A; Cepa, J; Lorenzo, M Fernández; Lara-López, M A; Gallego, J; Ederoclite, A; Márquez, I; Masegosa, J; Alfaro, E; Castañeda, H; González-Serrano, J I; González, J J; 10.1002/asna.201211840

    2013-01-01

    Luminosity functions are one of the most important observational clues when studying galaxy evolution over cosmic time. In this paper we present the X-ray luminosity functions of X-ray detected AGN in the SXDS and GWS fields. The limiting fluxes of our samples are 9.0x10^(-15) and 4.8x10^(-16) erg/cm^2/sec^(-1) in the 0.5 - 7.0 keV band in the two fields, respectively. We carried out analysis in three X-ray bands and in two redshift intervals up to z < 1.4. Moreover, we derive the luminosity functions for different optical morphologies and X-ray types. We confirm strong luminosity evolution in all three bands, finding the most luminous objects at higher redshift. However, no signs of density evolution are found in any tested X-ray band. We obtain similar results for compact and early-type objects. Finally, we observe the `Steffen effect', where X-ray type-1 sources are more numerous at higher luminosities in comparison with type-2 sources.

  14. X-ray lithography source

    Science.gov (United States)

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  15. Multi-Kilovolt X-Ray Conversion Efficiencies

    Energy Technology Data Exchange (ETDEWEB)

    Back, C A; Davis, J L; Grun, J; Landen, O L; Miller, M C; Suter, L J

    2001-08-23

    X-ray sources in the 3-7 keV energy regime can be produced by laser-irradiating mid- and high-Z gas-filled targets with high-powered lasers. A series of experiments have been performed using underdense targets that are supersonically heated with {approx} 35 kJ of 0.35 {micro}m laser light. These targets were cylindrical Be enclosures that were filled with 1-2 atms of Xe or Ar gas. L-shell x-ray emission is emitted from the plasma and detected by Bragg crystal spectrometers and x-ray diodes. Absolute flux measurements show conversion efficiencies of {approx} 10% in the multi-kilovolt x-ray emission. These sources can be used as bright x-ray backlighters or for material testing.

  16. Burst Detector X-Ray IIR

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The Burst Detector X-Ray (BDX) instrument for the Block IIR series of Global Positioning System satellites is described. The BDX instrument can locate and characterize exoatmospheric nuclear detonations by using four sensors consisting of sets of filters over silicon diodes to detect x rays of various energies from the burst. On the BDX-IIR, a fifth sensor with a response spanning those of the other sensors confirms coincidences among the four main channels. The mechanical and electronic features of the BDX-IIR and its sensors are described. The calibrations and the system tests used in flight are presented. The commands for the BDX-IIR are given. The messages sent from the BDX-IIR are described in detail.

  17. Realization of compact broadband optical diode in linear air-hole photonic crystal waveguide.

    Science.gov (United States)

    Ye, Han; Yu, Zhongyuan; Liu, Yumin; Chen, Zhihui

    2016-10-17

    In this paper, we present a compact broadband design for reciprocal optical diode in linear two-dimensional air-hole photonic crystal waveguide. The forward even-to-odd mode conversion and backward blockade of even mode are achieved by introducing the functional region with 1.2a×2.8a area. The inside dielectric distribution is obtained by finite element method combining geometry projection method and the method of moving asymptotes. In our design, only one asymmetrically deformed air hole locates in the functional region. The parabola-like unidirectionality keeps higher than 15dB within the operational bandwidth 0.01c/a (about 40nm when 1550nm is the center wavelength), and the maximum value reaches approximate 24 dB near the center frequency. Meanwhile, the forward transmission efficiency keeps higher than 89.9%. Moreover, the optical diode effect of the proposed design is validated in three-dimensional model and the tolerance of the imperfection in fabricating is demonstrated as well. This compact broadband optical diode can contribute to the all-optical integrated circuits.

  18. Topological X-Rays Revisited

    Science.gov (United States)

    Lynch, Mark

    2012-01-01

    We continue our study of topological X-rays begun in Lynch ["Topological X-rays and MRI's," iJMEST 33(3) (2002), pp. 389-392]. We modify our definition of a topological magnetic resonance imaging and give an affirmative answer to the question posed there: Can we identify a closed set in a box by defining X-rays to probe the interior and without…

  19. X-ray instrumentation for SR beamlines

    CERN Document Server

    Kovalchuk, M V; Zheludeva, S I; Aleshko-Ozhevsky, O P; Arutynyan, E H; Kheiker, D M; Kreines, A Y; Lider, V V; Pashaev, E M; Shilina, N Y; Shishkov, V A

    2000-01-01

    The main possibilities and parameters of experimental X-ray stations are presented: 'Protein crystallography', 'X-ray structure analysis', 'High-precision X-ray optics', 'X-ray crystallography and material science', 'X-ray topography', 'Photoelectron X-ray standing wave' that are being installed at Kurchatov SR source by A.V. Shubnikov Institute of Crystallography.

  20. X-ray Fluorescence Sectioning

    CERN Document Server

    Cong, Wenxiang

    2012-01-01

    In this paper, we propose an x-ray fluorescence imaging system for elemental analysis. The key idea is what we call "x-ray fluorescence sectioning". Specifically, a slit collimator in front of an x-ray tube is used to shape x-rays into a fan-beam to illuminate a planar section of an object. Then, relevant elements such as gold nanoparticles on the fan-beam plane are excited to generate x-ray fluorescence signals. One or more 2D spectral detectors are placed to face the fan-beam plane and directly measure x-ray fluorescence data. Detector elements are so collimated that each element only sees a unique area element on the fan-beam plane and records the x-ray fluorescence signal accordingly. The measured 2D x-ray fluorescence data can be refined in reference to the attenuation characteristics of the object and the divergence of the beam for accurate elemental mapping. This x-ray fluorescence sectioning system promises fast fluorescence tomographic imaging without a complex inverse procedure. The design can be ad...

  1. Soft X-ray optics

    CERN Document Server

    Spiller, Eberhard A

    1993-01-01

    This text describes optics mainly in the 10 to 500 angstrom wavelength region. These wavelengths are 50 to 100 times shorter than those for visible light and 50 to 100 times longer than the wavelengths of medical x rays or x-ray diffraction from natural crystals. There have been substantial advances during the last 20 years, which one can see as an extension of optical technology to shorter wavelengths or as an extension of x-ray diffraction to longer wavelengths. Artificial diffracting structures like zone plates and multilayer mirrors are replacing the natural crystals of x-ray diffraction.

  2. X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  3. X-ray harmonic comb from relativistic electron spikes

    CERN Document Server

    Pirozhkov, Alexander S; Esirkepov, Timur Zh; Ragozin, Eugene N; Faenov, Anatoly Ya; Pikuz, Tatiana A; Kawachi, Tetsuya; Sagisaka, Akito; Mori, Michiaki; Kawase, Keigo; Koga, James K; Kameshima, Takashi; Fukuda, Yuji; Chen, Liming; Daito, Izuru; Ogura, Koichi; Hayashi, Yukio; Kotaki, Hideyuki; Kiriyama, Hiromitsu; Okada, Hajime; Nishimori, Nobuyuki; Kondo, Kiminori; Kimura, Toyoaki; Tajima, Toshiki; Daido, Hiroyuki; Kato, Yoshiaki; Bulanov, Sergei V

    2010-01-01

    X-ray devices are far superior to optical ones for providing nanometre spatial and attosecond temporal resolutions. Such resolution is indispensable in biology, medicine, physics, material sciences, and their applications. A bright ultrafast coherent X-ray source is highly desirable, for example, for the diffractive imaging of individual large molecules, viruses, or cells. Here we demonstrate experimentally a new compact X-ray source involving high-order harmonics produced by a relativistic-irradiance femtosecond laser in a gas target. In our first implementation using a 9 Terawatt laser, coherent soft X-rays are emitted with a comb-like spectrum reaching the 'water window' range. The generation mechanism is robust being based on phenomena inherent in relativistic laser plasmas: self-focusing, nonlinear wave generation accompanied by electron density singularities, and collective radiation by a compact electric charge. The formation of singularities (electron density spikes) is described by the elegant mathem...

  4. Jets from ultraluminous X-ray sources

    Science.gov (United States)

    Urquhart, Ryan

    2017-08-01

    An important set of unsolved problems in accretion physics is whether super-Eddington accretion flows produce jets, what the jet power is (compared with the accretion power), and what the large-scale effect of the jet is on the surrounding gas. Most ultraluminous X-ray sources (ULXs) are super-Eddington stellar-mass compact objects: they provide the best local-Universe test of MHD accretion flow simulations. Observational evidence of collimated jets and fast outflows in ULXs may come in different forms: steady synchrotron radio emission from an unresolved, persistent core; radio flaring associated with discrete ejecta; internal shocks along the jet; hotspots from the jet/ISM interaction; hundred-parsec scale wind/jet-inflated nebulae. We discuss examples of the various cases, use them as proxies to measure the jet power, and compare them with (sub-Eddington) AGN and X-ray binary jets.

  5. X-Ray Polarimetry with GEMS

    Science.gov (United States)

    Strohmayer, Tod

    2011-01-01

    The polarization properties of cosmic X-ray sources are still largely unexplored. The Gravity and Extreme Magnetism SMEX (GEMS) will carry out the first sensitive X-ray polarization survey of a wide range of sources including; accreting compact objects (black holes and neutron stars), AGN, supernova remnants, magnetars and rotation-powered pulsars. GEMS employs grazing-incidence foil mirrors and novel time-projection chamber (TPC) polarimeters leveraging the photoelectric effect to achieve high polarization sensitivity in the 2 - 10 keV band. I will provide an update of the project status, illustrate the expected performance with several science examples, and provide a brief overview of the data analysis challenges

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... clothing that might interfere with the x-ray images. Women should always inform their physician and x-ray ... small burst of radiation that passes through the body, recording an image on photographic film or a special detector. Different ...

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... bone absorbs much of the radiation while soft tissue, such as muscle, fat and organs, allow more of the x-rays to pass through them. As a result, bones appear white on the x-ray, soft tissue shows up in shades of gray and air ...

  8. Focusing X-Ray Telescopes

    Science.gov (United States)

    O'Dell, Stephen; Brissenden, Roger; Davis, William; Elsner, Ronald; Elvis, Martin; Freeman, Mark; Gaetz, Terrance; Gorenstein, Paul; Gubarev, Mikhall; Jerlus, Diab; Juda, Michael; Kolodziejczak, Jeffrey; Murray, Stephen; Petre, Robert; Podgorski, William; Ramsey, Brian; Reid, Paul; Saha, Timo; Wolk, Scott; Troller-McKinstry, Susan; Weisskopf, Martin; Wilke, Rudeger; Zhang, William

    2010-01-01

    During the half-century history of x-ray astronomy, focusing x-ray telescopes, through increased effective area and finer angular resolution, have improved sensitivity by 8 orders of magnitude. Here, we review previous and current x-ray-telescope missions. Next, we describe the planned next-generation x-ray-astronomy facility, the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility, Generation X. Its scientific objectives will require very large areas (about 10,000 sq m) of highly-nested, lightweight grazing-incidence mirrors, with exceptional (about 0.1-arcsec) resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.

  9. X-Ray Tomographic Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Bonnie Schmittberger

    2010-08-25

    Tomographic scans have revolutionized imaging techniques used in medical and biological research by resolving individual sample slices instead of several superimposed images that are obtained from regular x-ray scans. X-Ray fluorescence computed tomography, a more specific tomography technique, bombards the sample with synchrotron x-rays and detects the fluorescent photons emitted from the sample. However, since x-rays are attenuated as they pass through the sample, tomographic scans often produce images with erroneous low densities in areas where the x-rays have already passed through most of the sample. To correct for this and correctly reconstruct the data in order to obtain the most accurate images, a program employing iterative methods based on the inverse Radon transform was written. Applying this reconstruction method to a tomographic image recovered some of the lost densities, providing a more accurate image from which element concentrations and internal structure can be determined.

  10. X-Ray Diffraction Apparatus

    Science.gov (United States)

    Blake, David F. (Inventor); Bryson, Charles (Inventor); Freund, Friedmann (Inventor)

    1996-01-01

    An x-ray diffraction apparatus for use in analyzing the x-ray diffraction pattern of a sample is introduced. The apparatus includes a beam source for generating a collimated x-ray beam having one or more discrete x-ray energies, a holder for holding the sample to be analyzed in the path of the beam, and a charge-coupled device having an array of pixels for detecting, in one or more selected photon energy ranges, x-ray diffraction photons produced by irradiating such a sample with said beam. The CCD is coupled to an output unit which receives input information relating to the energies of photons striking each pixel in the CCD, and constructs the diffraction pattern of photons within a selected energy range striking the CCD.

  11. X-ray monitoring optical elements

    Energy Technology Data Exchange (ETDEWEB)

    Stoupin, Stanislav; Shvydko, Yury; Katsoudas, John; Blank, Vladimir D.; Terentyev, Sergey A.

    2016-12-27

    An X-ray article and method for analyzing hard X-rays which have interacted with a test system. The X-ray article is operative to diffract or otherwise process X-rays from an input X-ray beam which have interacted with the test system and at the same time provide an electrical circuit adapted to collect photoelectrons emitted from an X-ray optical element of the X-ray article to analyze features of the test system.

  12. X-ray diagnostics for TFTR

    Energy Technology Data Exchange (ETDEWEB)

    von Goeler, S.; Hill, K.W.; Bitter, M.

    1982-12-01

    A short description of the x-ray diagnostic preparation for the TFTR tokamak is given. The x-ray equipment consists of the limiter x-ray monitoring system, the soft x-ray pulse-height-analysis-system, the soft x-ray imaging system and the x-ray crystal spectrometer. Particular attention is given to the radiation protection of the x-ray systems from the neutron environment.

  13. Compact diode-laser spectrometer ISOWAT for highly sensitive airborne measurements of water-isotope ratios

    Science.gov (United States)

    Dyroff, C.; Fütterer, D.; Zahn, A.

    2010-02-01

    The tunable diode-laser absorption spectrometer ISOWAT for airborne measurements of the water-isotope ratios 18O/16O and D/H is described. The spectrometer uses a distributed feedback (DFB) diode laser to probe fundamental rovibrational water-absorption lines at around 2.66 μm. Very-low-noise system components along with signal averaging allow for a detection limit of 1.2 and 4.5 ‰ for measurements of 18O/16O and D/H, respectively, for a water-vapour mixing ratio of 100 ppmv and an averaging time of 60 s. This corresponds to a minimum detectable absorbance of ˜5×10-6 or ˜6.6×10-10 cm-1 when normalized to pathlength. In addition to its high sensitivity, the spectrometer is highly compact (19-inch rack at a height of 35 cm, excluding pump and calibration unit) and light weight (automated. ISOWAT will be calibrated during flight with known water-isotope ratios using a compact calibration-gas source.

  14. Compact, diode-pumped, solid-state lasers for next generation defence and security sensors

    Science.gov (United States)

    Silver, M.; Lee, S. T.; Borthwick, A.; McRae, I.; Jackson, D.; Alexander, W.

    2015-06-01

    Low-cost semiconductor laser diode pump sources have made a dramatic impact in sectors such as advanced manufacturing. They are now disrupting other sectors, such as defence and security (D&S), where Thales UK is a manufacturer of sensor systems for application on land, sea, air and man portable. In this talk, we will first give an overview of the market trends and challenges in the D&S sector. Then we will illustrate how low cost pump diodes are enabling new directions in D&S sensors, by describing two diode pumped, solid- state laser products currently under development at Thales UK. The first is a new generation of Laser Target Designators (LTD) that are used to identify targets for the secure guiding of munitions. Current systems are bulky, expensive and require large battery packs to operate. The advent of low cost diode technology, merged with our novel solid-state laser design, has created a designator that will be the smallest, lowest cost, STANAG compatible laser designator on the market. The LTD delivers greater that 50mJ per pulse up to 20Hz, and has compact dimensions of 125×70×55mm. Secondly, we describe an ultra-compact, eye-safe, solid-state laser rangefinder (LRF) with reduced size, weight and power consumption compared to existing products. The LRF measures 100×55×34mm, weighs 200g, and can range to greater than 10km with a single laser shot and at a reprate of 1Hz. This also leverages off advances in laser pump diodes, but also utilises low cost, high reliability, packaging technology commonly found in the telecoms sector. As is common in the D&S sector, the products are designed to work in extreme environments, such as wide temperature range (-40 to +71°C) and high levels of shock and vibration. These disruptive products enable next- generation laser sensors such as rangefinders, target designators and active illuminated imagers.

  15. Semiconductor X-ray detectors

    CERN Document Server

    Lowe, Barrie Glyn

    2014-01-01

    Identifying and measuring the elemental x-rays released when materials are examined with particles (electrons, protons, alpha particles, etc.) or photons (x-rays and gamma rays) is still considered to be the primary analytical technique for routine and non-destructive materials analysis. The Lithium Drifted Silicon (Si(Li)) X-Ray Detector, with its good resolution and peak to background, pioneered this type of analysis on electron microscopes, x-ray fluorescence instruments, and radioactive source- and accelerator-based excitation systems. Although rapid progress in Silicon Drift Detectors (SDDs), Charge Coupled Devices (CCDs), and Compound Semiconductor Detectors, including renewed interest in alternative materials such as CdZnTe and diamond, has made the Si(Li) X-Ray Detector nearly obsolete, the device serves as a useful benchmark and still is used in special instances where its large, sensitive depth is essential. Semiconductor X-Ray Detectors focuses on the history and development of Si(Li) X-Ray Detect...

  16. Nanofocusing refractive X-ray lenses

    Energy Technology Data Exchange (ETDEWEB)

    Boye, Pit

    2010-02-05

    This thesis is concerned with the optimization and development of the production of nanofocusing refractive X-ray lenses. These optics made of either silicon or diamond are well-suited for high resolution X-ray microscopy. The goal of this work is the design of a reproducible manufacturing process which allows the production of silicon lenses with high precision, high quality and high piece number. Furthermore a process for the production of diamond lenses is to be developed and established. In this work, the theoretical basics of X-rays and their interaction with matter are described. Especially, aspects of synchrotron radiation are emphasized. Important in X-ray microscopy are the different optics. The details, advantages and disadvantages, in particular those of refractive lenses are given. To achieve small X-ray beams well beyond the 100 nm range a small focal length is required. This is achieved in refractive lenses by moving to a compact lens design where several single lenses are stacked behind each other. The, so-called nanofocusing refractive lenses (NFLs) have a parabolic cylindrical shape with lateral structure sizes in the micrometer range. NFLs are produced by using micro-machining techniques. These micro-fabrication processes and technologies are introduced. The results of the optimization and the final fabrication process for silicon lenses are presented. Subsequently, two experiments that are exemplary for the use of NFLs, are introduced. The rst one employs a high-resolution scanning fluorescence mapping of a geological sample, and the second one is a coherent x-ray diffraction imaging (CXDI) experiment. CXDI is able to reconstruct the illuminated object from recorded coherent diffraction patterns. In a scanning mode, referred to as ptychography, this method is even able to reconstruct the illumination and the object simultaneously. Especially the reconstructed illumination and the possibility of computed propagation of the wave field along the

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... during x-ray examinations to use the lowest radiation dose possible while producing the best images for evaluation. National and international radiology protection organizations continually review ...

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the oldest and most frequently used form of medical imaging. A bone x-ray makes images of any ... a radiologist or other physician. To locate a medical imaging or radiation oncology provider in your community, you ...

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... replacement and fracture reductions. look for injury, infection, arthritis , abnormal bone growths and bony changes seen in ... injuries, including fractures, and joint abnormalities, such as arthritis. X-ray equipment is relatively inexpensive and widely ...

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... top of page What are the benefits vs. risks? Benefits Bone x-rays are the fastest and ... in the typical diagnostic range for this exam. Risks There is always a slight chance of cancer ...

  1. CELESTIAL X-RAY SOURCES.

    Science.gov (United States)

    sources, (4) the physical conditions in the pulsating x-ray source in the Crab Nebula , and (5) miscellaneous related topics. A bibliography of all work performed under the contract is given. (Author)

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... asked to wait until the radiologist determines that all the necessary images have been obtained. A bone ... while it may be barely seen, if at all, on a hip x-ray. For suspected spine ...

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... patients and physicians. Because x-ray imaging is fast and easy, it is particularly useful in emergency ... diagnosis and treatment of the individual patient's condition. Ultrasound imaging, which uses sound waves instead of ionizing ...

  4. X-Ray Assembler Data

    Data.gov (United States)

    U.S. Department of Health & Human Services — Federal regulations require that an assembler who installs one or more certified components of a diagnostic x-ray system submit a report of assembly. This database...

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... a form of radiation like light or radio waves. X-rays pass through most objects, including the ... individual patient's condition. Ultrasound imaging, which uses sound waves instead of ionizing radiation to create diagnostic images, ...

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... pregnant. Many imaging tests are not performed during pregnancy so as not to expose the fetus to ... See the Safety page for more information about pregnancy and x-rays. top of page What does ...

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... are easily accessible and are frequently compared to current x-ray images for diagnosis and disease management. ... of North America, Inc. (RSNA). To help ensure current and accurate information, we do not permit copying ...

  8. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... ionizing radiation to produce pictures of any bone in the body. It is commonly used to diagnose ... bone x-ray makes images of any bone in the body, including the hand, wrist, arm, elbow, ...

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... examination may also be necessary so that any change in a known abnormality can be monitored over ...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... patients and physicians. Because x-ray imaging is fast and easy, it is particularly useful in emergency ... 06, 2016 Send us your feedback Did you find the information you were looking for? Yes No ...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... in emergency rooms, physician offices, ambulatory care centers, nursing homes and other locations, making it convenient for ... Safety page for more information about radiation dose. Women should always inform their physician or x-ray ...

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... evaluation with additional views or a special imaging technique. A follow-up examination may also be necessary ... radiology protection organizations continually review and update the technique standards used by radiology professionals. Modern x-ray ...

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... x-ray images were maintained on large film sheets (much like a large photographic negative). Today, most ... accredited facilities database . This website does not provide cost information. The costs for specific medical imaging tests, ...

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... in a known abnormality can be monitored over time. Follow-up examinations are sometimes the best way ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... for more information about pregnancy and x-rays. A Word About Minimizing Radiation Exposure Special care is ... code: Phone no: Thank you! Do you have a personal story about radiology? Share your patient story ...

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... these links. About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | Site Map Copyright © 2017 Radiological ...

  17. X-ray tomography system for industrial applications

    Science.gov (United States)

    Auditore, L.; Barna, R. C.; Emanuele, U.; Loria, D.; Trifiro, A.; Trimarchi, M.

    2008-05-01

    X-ray radiography and tomography are two of the most used non-destructive testing techniques both in industrial and cultural heritage fields. However, the inspection of heavy materials or thick objects requires X-ray energies larger than the maximum energy provided by commercial X-ray tubes (600 kV). For this reason, and owing to the long experience of the INFN-Gruppo Collegato di Messina in designing and assembling low energy electron linacs, a 5 MeV electron linac based X-ray tomographic system has been developed at the Dipartimento di Fisica, Università di Messina. The X-ray source, properly designed, provides a 16 cm diameter X-ray spot at the sample position, and a beam opening angle of about 3.6 degree. Optimization of the parameters influencing the e-γ conversion and the X-ray beam characteristics have been studied by means of the MCNP-4C2 (Monte-Carlo-N-Particle, version 4C2) code. The image acquisition system consists of a CCD camera and a scintillator screen. Preliminary radiographies and tomographies showing the high quality performances of the tomographic system have been acquired. Finally, the compactness of the accelerator system is one of the advantages of the discussed tomography device which could be made transportable.

  18. Recent X-Ray Laser Experiments on the COMET Facility

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, J; Smith, R F; Nilsen, J; Hunter, J R; Barbee, T W; Shlyaptsev, V N; Filevich, J; Rocca, J J; Marconi, M C; Fiedorowicz, H; Bartnik, A

    2001-09-22

    The development of the transient collisional excitation x-ray laser scheme using tabletop laser systems with multiple pulse capability has progressed rapidly in the last three years. The high small-signal gain and strong x-ray output have been demonstrated for laser drive energies of typically less than 10 J. We report recent x-ray laser experiments on the Lawrence Livermore National Laboratory (LLNL) Compact Multipulse Terawatt (COMET) tabletop facility using this technique. In particular, the saturated output from the Ni-like Pd ion 4d - 4p x-ray laser at 146.8 {angstrom} has been well characterized and has potential towards a useable x-ray source in a number of applications. One important application of a short wavelength x-ray laser beam with picosecond pulse duration is the study of a high density laser-produced plasma. We report the implementation of a Mach-Zehnder type interferometer using diffraction grating optics as beam splitters designed for the Ni-like Pd laser and show results from probing a 600 ps heated plasma. In addition, gas puff targets are investigated as an x-ray laser gain medium and we report results of strong lasing on the n = 3 - 3 transitions of Ne-like Ar.

  19. Development of cable fed flash X-ray (FXR) system

    Science.gov (United States)

    Menon, Rakhee; Mitra, S.; Patel, A. S.; Kumar, R.; Singh, G.; Senthil, K.; Kumar, Ranjeet; Kolge, T. S.; Roy, Amitava; Acharya, S.; Biswas, D.; Sharma, Archana

    2017-08-01

    Flash X-ray sources driven by pulsed power find applications in industrial radiography, and a portable X-ray source is ideal where the radiography needs to be taken at the test site. A compact and portable flash X-ray (FXR) system based on a Marx generator has been developed with the high voltage fed to the FXR tube via a cable feed-through arrangement. Hard bremsstrahlung X-rays of few tens of nanosecond duration are generated by impinging intense electron beams on an anode target of high Z material. An industrial X-ray source is developed with source size as low as 1 mm. The system can be operated from 150 kV to 450 kV peak voltages and a dose of 10 mR has been measured at 1 m distance from the source window. The modeling of the FXR source has been carried out using particle-in-cell and Monte Carlo simulations for the electron beam dynamics and X-ray generation, respectively. The angular dose profile of X-ray has been measured and compared with the simulation.

  20. Electromechanical x-ray generator

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Scott A; Platts, David; Sorensen, Eric B

    2016-05-03

    An electro-mechanical x-ray generator configured to obtain high-energy operation with favorable energy-weight scaling. The electro-mechanical x-ray generator may include a pair of capacitor plates. The capacitor plates may be charged to a predefined voltage and may be separated to generate higher voltages on the order of hundreds of kV in the AK gap. The high voltage may be generated in a vacuum tube.

  1. Accelerator x-ray sources

    CERN Document Server

    Talman, Richard

    2007-01-01

    This first book to cover in-depth the generation of x-rays in particle accelerators focuses on electron beams produced by means of the novel Energy Recovery Linac (ERL) technology. The resulting highly brilliant x-rays are at the centre of this monograph, which continues where other books on the market stop. Written primarily for general, high energy and radiation physicists, the systematic treatment adopted by the work makes it equally suitable as an advanced textbook for young researchers.

  2. X-ray fluorescence holography

    CERN Document Server

    Hayashi, K; Takahashi, Y

    2003-01-01

    X-ray fluorescence holography (XFH) is a new structural analysis method of determining a 3D atomic arrangement around fluorescing atoms. We developed an XFH apparatus using advanced X-ray techniques and succeeded in obtaining high-quality hologram data. Furthermore, we introduced applications to the structural analysis of a thin film and the environment around dopants and, discussed the quantitative analysis of local lattice distortion. (author)

  3. X-ray Sensitive Material

    Science.gov (United States)

    2015-12-01

    these published reports. There were two main types of X-ray detection methods: “indirect,” which uses a scintillation material coupled to a light...Reference 3), inorganic semiconductors (silicon [Si], cadmium zinc telluride [CdZnTe]) (Reference 4) and selenium (References 5 and 6), Ne-Xe...metal-oxide semiconductor field-effect transistor (MOSFET) X-ray dosimeters (Reference 24). Electrets may be charged by a range of methods

  4. X-ray laser; Roentgenlaser

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsen, Emil J.; Breiby, Dag W.

    2009-07-01

    X-ray is among the most important research tools today, and has given priceless contributions to all disciplines within the natural sciences. State of the art in this field is called XFEL, X-ray Free Electron Laser, which may be 10 thousand million times stronger than the x-rays at the European Synchrotron Radiation Facility in Grenoble. In addition XFEL has properties that allow the study of processes which previously would have been impossible. Of special interest are depictions on atomic- and molecular level by the use of x-ray holographic methods, and being able to study chemical reactions in nature's own timescale, the femtosecond. Conclusion: The construction of x-ray lasers is a natural development in a scientific field which has an enormous influence on the surrounding society. While the discovery of x-ray was an important breakthrough in itself, new applications appear one after the other: Medical depiction, dissemination, diffraction, DNA and protein structures, synchrotron radiation and tomography. There is reason to believe that XFEL implies a technological leap as big as the synchrotrons some decades ago. As we are now talking about studies of femtosecond and direct depiction of chemical reactions, it is obvious that we are dealing with a revolution to come, with extensive consequences, both scientifically and culturally. (EW)

  5. X-Pinch And Its Applications In X-ray Radiograph

    Science.gov (United States)

    Zou, Xiaobing; Wang, Xinxin; Liu, Rui; Zhao, Tong; Zeng, Naigong; Zhao, Yongchao; Du, Yanqiang

    2009-07-01

    An X-pinch device and the related diagnostics of x-ray emission from X-pinch were briefly described. The time-resolved x-ray measurements with photoconducting diodes show that the x-ray pulse usually consists of two subnanosecond peaks with a time interval of about 0.5 ns. Being consistent with these two peaks of the x-ray pulse, two point x-ray sources of size ranging from 100 μm to 5 μm and depending on cut-off x-ray photon energy were usually observed on the pinhole pictures. The x-pinch was used as x-ray source for backlighting of the electrical explosion of single wire and the evolution of X-pinch, and for phase-contrast imaging of soft biological objects such as a small shrimp and a mosquito.

  6. X-Rays, Pregnancy and You

    Science.gov (United States)

    ... and Procedures Medical Imaging Medical X-ray Imaging X-Rays, Pregnancy and You Share Tweet Linkedin Pin ... the decision with your doctor. What Kind of X-Rays Can Affect the Unborn Child? During most ...

  7. X-ray outbursts of low-mass X-ray binary transients observed in the RXTE era

    CERN Document Server

    Yan, Zhen

    2014-01-01

    We have performed a statistical study of the outburst properties of 110 bright X-ray outbursts in 36 low-mass X-ray binary transients (LMXBTs) seen with the All-Sky Monitor (ASM; 2--12 keV) on board the Rossi X-ray Timing Explorer ({\\it RXTE}) in 1996--2011. We have measured a number of outburst properties including peak X-ray luminosity, rate-of-change of luminosity on daily timescale, $e$-folding rise and decay timescales, outburst duration and total radiated energy. We found the average values of some properties such as peak X-ray luminosity, rise and decay timescales, outburst duration and total radiated energy of black hole LMXBTs are at least two times larger than those of neutron star LMXBTs, implying that these properties can be used to infer the nature of the central compact object of a newly discovered LMXBT. We also found the outburst peak X-ray luminosity is correlated with the rate-of-change of X-ray luminosity in both the rise and the decay phases, which is consistent with our previous studies. ...

  8. First Search for an X-ray -- Optical Reverberation Signal in an Ultraluminous X-ray Source

    CERN Document Server

    Pasham, Dheeraj R; Cenko, S Bradley; Trippe, Margaret L; Mushotzky, Richard F; Gandhi, Poshak

    2016-01-01

    Using simultaneous optical (VLT/FORS2) and X-ray (XMM-Newton) data of NGC 5408, we present the first ever attempt to search for a reverberation signal in an ultraluminous X-ray source (NGC 5408 X-1). The idea is similar to AGN broad line reverberation mapping where a lag measurement between the X-ray and the optical flux combined with a Keplerian velocity estimate should enable us to weigh the central compact object. We find that although NGC 5408 X-1's X-rays are variable on a timescale of a few hundred seconds (RMS of 9.0$\\pm$0.5%), the optical emission does not show any statistically significant variations. We set a 3$\\sigma$ upper limit on the RMS optical variability of 3.3%. The ratio of the X-ray to the optical variability is an indicator of X-ray reprocessing efficiency. In X-ray binaries, this ratio is roughly 5. Assuming a similar ratio for NGC 5408 X-1, the expected RMS optical variability is $\\approx$2% which is still a factor of roughly two lower than what was possible with the VLT observations in...

  9. Neutron and X-ray Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Carini, Gabriella [SLAC National Accelerator Lab., Menlo Park, CA (United States); Denes, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gruener, Sol [Cornell Univ., Ithaca, NY (United States); Lessner, Elianne [Dept. of Energy (DOE), Washington DC (United States). Office of Science Office of Basic Energy Sciences

    2012-08-01

    : Improvements in the readout speed and energy resolution of X-ray detectors are essential to enable chemically sensitive microscopies. Advances would make it possible to take images with simultaneous spatial and chemical information. Very high-energy-resolution X-ray detectors: The energy resolution of semiconductor detectors, while suitable for a wide range of applications, is far less than what can be achieved with X-ray optics. A direct detector that could rival the energy resolution of optics could dramatically improve the efficiency of a multitude of experiments, as experiments are often repeated at a number of different energies. Very high-energy-resolution detectors could make these experiments parallel, rather than serial. Low-background, high-spatial-resolution neutron detectors: Low-background detectors would significantly improve experiments that probe excitations (phonons, spin excitations, rotation, and diffusion in polymers and molecular substances, etc.) in condensed matter. Improved spatial resolution would greatly benefit radiography, tomography, phase-contrast imaging, and holography. Improved acquisition and visualization tools: In the past, with the limited variety of slow detectors, it was straightforward to visualize data as it was being acquired (and adjust experimental conditions accordingly) to create a compact data set that the user could easily transport. As detector complexity and data rates explode, this becomes much more challenging. Three goals were identified as important for coping with the growing data volume from high-speed detectors: Facilitate better algorithm development. In particular, algorithms that can minimize the quantity of data stored. Improve community-driven mechanisms to reduce data protocols and enhance quantitative, interactive visualization tools. Develop and distribute community-developed, detector-specific simulation tools. Aim for parallelization to take advantage of high-performance analysis platforms. Improved analysis

  10. Lasers, extreme UV and soft X-ray

    Energy Technology Data Exchange (ETDEWEB)

    Nilsen, Joseph [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-20

    Three decades ago, large ICF lasers that occupied entire buildings were used as the energy sources to drive the first X-ray lasers. Today X-ray lasers are tabletop, spatially coherent, high-repetition rate lasers that enable many of the standard optical techniques such as interferometry to be extended to the soft X-ray regime between wavelengths of 10 and 50 nm. Over the last decade X-ray laser performance has been improved by the use of the grazing incidence geometry, diode-pumped solid-state lasers, and seeding techniques. The dominant X-ray laser schemes are the monopole collisional excitation lasers either driven by chirped pulse amplification (CPA) laser systems or capillary discharge. The CPA systems drive lasing in neon-like or nickel-like ions, typically in the 10 – 30 nm range, while the capillary system works best for neon-like argon at 46.9 nm. Most researchers use nickel-like ion lasers near 14 nm because they are well matched to the Mo:Si multilayer mirrors that have peak reflectivity near 13 nm and are used in many applications. As a result, the last decade has seen the birth of the X-ray free electron laser (XFEL) that can reach wavelengths down to 0.15 nm and the inner-shell Ne laser at 1.46 nm.

  11. Al-free active region laser diodes at 894 nm for compact Cesium atomic clocks

    Science.gov (United States)

    Von Bandel, N.; Bébé Manga Lobé, J.; Garcia, M.; Larrue, A.; Robert, Y.; Vinet, E.; Lecomte, M.; Drisse, O.; Parillaud, O.; Krakowski, M.

    2015-03-01

    Time-frequency applications are in need of high accuracy and high stability clocks. Compact industrial Cesium atomic clocks optically pumped is a promising area that could satisfy these demands. However, the stability of these clocks relies, among others, on the performances of laser diodes that are used for atomic pumping. This issue has led the III-V Lab to commit to the European Euripides-LAMA project that aims to provide competitive compact optical Cesium clocks for earth applications. This work will provide key experience for further space technology qualification. We are in charge of the design, fabrication and reliability of Distributed-Feedback diodes (DFB) at 894nm (D1 line of Cesium) and 852nm (D2 line). The use of D1 line for pumping will provide simplified clock architecture compared to D2 line pumping thanks to simpler atomic transitions and larger spectral separation between lines in the 894nm case. Also, D1 line pumping overcomes the issue of unpumped "dark states" that occur with D2 line. The modules should provide narrow linewidth (<1MHz), very good reliability in time and, crucially, be insensitive to optical feedback. The development of the 894nm wavelength is grounded on our previous results for 852nm DFB. Thus, we show our first results from Al-free active region with InGaAsP quantum well broad-area lasers (100μm width, with lengths ranging from 2mm to 4mm), for further DFB operation at 894nm. We obtained low internal losses below 2cm-1, the external differential efficiency is 0.49W/A with uncoated facets and a low threshold current density of 190A/cm², for 2mm lasers at 20°C.

  12. X-ray Echo Spectroscopy

    Science.gov (United States)

    Shvyd'ko, Yuri

    2016-02-01

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >108 ) with broadband ≃5 - 13 meV dispersing systems are introduced featuring more than 103 signal enhancement. The technique is general, applicable in different photon frequency domains.

  13. X-ray echo spectroscopy

    CERN Document Server

    Shvyd'ko, Yuri

    2015-01-01

    X-ray echo spectroscopy, a counterpart of neutron spin-echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a point-like x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x-rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1--0.02-meV ultra-high-resolution IXS applications (resolving power $> 10^8$) with broadband $\\simeq$~5--13~meV dispersing systems are introduced featuring more than $10^3$ signal e...

  14. X-ray Echo Spectroscopy.

    Science.gov (United States)

    Shvyd'ko, Yuri

    2016-02-26

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >10^{8}) with broadband ≃5-13  meV dispersing systems are introduced featuring more than 10^{3} signal enhancement. The technique is general, applicable in different photon frequency domains.

  15. Single-pulse x-ray diffraction using polycapillary optics for in situ dynamic diffraction.

    Science.gov (United States)

    Maddox, B R; Akin, M C; Teruya, A; Hunt, D; Hahn, D; Cradick, J; Morgan, D V

    2016-08-01

    Diagnostic use of single-pulse x-ray diffraction (XRD) at pulsed power facilities can be challenging due to factors such as the high flux and brightness requirements for diffraction and the geometric constraints of experimental platforms. By necessity, the x-ray source is usually positioned very close, within a few inches of the sample. On dynamic compression platforms, this puts the x-ray source in the debris field. We coupled x-ray polycapillary optics to a single-shot needle-and-washer x-ray diode source using a laser-based alignment scheme to obtain high-quality x-ray diffraction using a single 16 ns x-ray pulse with the source >1 m from the sample. The system was tested on a Mo sample in reflection geometry using 17 keV x-rays from a Mo anode. We also identified an anode conditioning effect that increased the x-ray intensity by 180%. Quantitative measurements of the x-ray focal spot produced by the polycapillary yielded a total x-ray flux on the sample of 3.3 ± 0.5 × 10(7) molybdenum Kα photons.

  16. The INTEGRAL view of intermediate long X-ray bursts

    DEFF Research Database (Denmark)

    CONCLUSIONS Most intermediate bursts are observed from low luminosity sources and are interpreted as long pure He bursts. If no H is accreted, they are consistent with the burning of a slowly accreted, thick He layer, in Ultra Compact X-ray Binaries (UCXB) where the donor star is probably a degen...

  17. The Large Observatory for X-ray Timing (LOFT)

    NARCIS (Netherlands)

    Feroci, M.; Stella, L.; van der Klis, M.; Courvoisier, T.J.L.; Hernanz, M.; Hudec, R.; Santangelo, A.; Walton, D.; Zdziarski, A.; Barret, D.; Belloni, T.; Braga, J.; Brandt, S.; Budtz-Jørgensen, C.; Campana, S.; den Herder, J.W.; Huovelin, J.; Israel, G.L.; Pohl, M.; Ray, P.; Vacchi, A.; Zane, S.; Argan, A.; Attinà, P.; Bertuccio, G.; Bozzo, E.; Campana, R.; Chakrabarty, D.; Costa, E.; De Rosa, A.; Del Monte, E.; Di Cosimo, S.; Donnarumma, I.; Evangelista, Y.; Haas, D.; Jonker, P.; Korpela, S.; Labanti, C.; Malcovati, P.; Mignani, R.; Muleri, F.; Rapisarda, M.; Rashevsky, A.; Rea, N.; Rubini, A.; Tenzer, C.; Wilson-Hodge, C.; Winter, B.; Wood, K.; Zampa, G.; Zampa, N.; Abramowicz, M.A.; Alpar, M.A.; Altamirano, D.; Alvarez, J.M.; Amati, L.; Amoros, C.; Antonelli, L.A.; Artigue, R.; Azzarello, P.; Bachetti, M.; Baldazzi, G.; Barbera, M.; Barbieri, C.; Basa, S.; Baykal, A.; Belmont, R.; Boirin, L.; Bonvicini, V.; Burderi, L.; Bursa, M.; Cabanac, C.; Cackett, E.; Caliandro, G.A.; Casella, P.; Chaty, S.; Chenevez, J.; Coe, M.J.; Collura, A.; Corongiu, A.; Covino, S.; Cusumano, G.; D'Amico, F.; Dall'Osso, S.; De Martino, D.; De Paris, G.; Di Persio, G.; Di Salvo, T.; Done, C.; Dovčiak, M.; Drago, A.; Ertan, U.; Fabiani, S.; Falanga, M.; Fender, R.; Ferrando, P.; Della Monica Ferreira, D.; Fraser, G.; Frontera, F.; Fuschino, F.; Galvez, J.L.; Gandhi, P.; Giommi, P.; Godet, O.; Göǧüş, E.; Goldwurm, A.; Götz, D.; Grassi, M.; Guttridge, P.; Hakala, P.; Henri, G.; Hermsen, W.; Horak, J.; Hornstrup, A.; in 't Zand, J.J.M.; Isern, J.; Kalemci, E.; Kanbach, G.; Karas, V.; Kataria, D.; Kennedy, T.; Klochkov, D.; Kluźniak, W.; Kokkotas, K.; Kreykenbohm, I.; Krolik, J.; Kuiper, L.; Kuvvetli, I.; Kylafis, N.; Lattimer, J.M.; Lazzarotto, F.; Leahy, D.; Lebrun, F.; Lin, D.; Lund, N.; Maccarone, T.; Malzac, J.; Marisaldi, M.; Martindale, A.; Mastropietro, M.; McClintock, J.; McHardy, I.; Mendez, M.; Mereghetti, S.; Miller, M.C.; Mineo, T.; Morelli, E.; Morsink, S.; Motch, C.; Motta, S.; Muñoz-Darias, T.; Naletto, G.; Neustroev, V.; Nevalainen, J.; Olive, J.F.; Orio, M.; Orlandini, M.; Orleanski, P.; Ozel, F.; Pacciani, L.; Paltani, S.; Papadakis, I.E.; Papitto, A.; Patruno, A.; Pellizzoni, A.; Petráček, V.; Petri, J.; Petrucci, P.O.; Phlips, B.; Picolli, L.; Possenti, A.; Psaltis, D.; Rambaud, D.; Reig, P.; Remillard, R.; Rodriguez, J.; Romano, P.; Romanova, M.; Schanz, T.; Schmid, C.; Segreto, A.; Shearer, A.; Smith, A.; Smith, P.J.; Soffitta, P.; Stergioulas, N.; Stolarski, M.; Stuchlik, Z.; Tiengo, A.; Torres, D.; Török, G.; Turolla, R.; Uttley, P.; Vaughan, S.; Vercellone, S.; Waters, R.; Watts, A.; Wawrzaszek, R.; Webb, N.; Wilms, J.; Zampieri, L.; Zezas, A.; Ziolkowski, J.

    2012-01-01

    High-time-resolution X-ray observations of compact objects provide direct access to strong-field gravity, to the equation of state of ultradense matter and to black hole masses and spins. A 10 m2-class instrument in combination with good spectral resolution is required to exploit the relevant diagno

  18. The Large Observatory for X-ray Timing (LOFT)

    NARCIS (Netherlands)

    Feroci, M.; Stella, L.; van der Klis, M.; Courvoisier, T. J.-L.; Hernanz, M.; Hudec, R.; Santangelo, A.; Walton, D.; Zdziarski, A.; Barret, D.; Belloni, T.; Braga, J.; Brandt, S.; Budtz-Jørgensen, C.; Campana, S.; den Herder, J.-W.; Huovelin, J.; Israel, G. L.; Pohl, M.; Ray, P.; Vacchi, A.; Zane, S.; Argan, A.; Attinà, P.; Bertuccio, G.; Bozzo, E.; Campana, R.; Chakrabarty, D.; Costa, E.; De Rosa, A.; Del Monte, E.; Di Cosimo, S.; Donnarumma, I.; Evangelista, Y.; Haas, D.; Jonker, P.; Korpela, S.; Labanti, C.; Malcovati, P.; Mignani, R.; Muleri, F.; Rapisarda, M.; Rashevsky, A.; Rea, N.; Rubini, A.; Tenzer, C.; Wilson-Hodge, C.; Winter, B.; Wood, K.; Zampa, G.; Zampa, N.; Abramowicz, M. A.; Alpar, M. A.; Altamirano, D.; Alvarez, J. M.; Amati, L.; Amoros, C.; Antonelli, L. A.; Artigue, R.; Azzarello, P.; Bachetti, M.; Baldazzi, G.; Barbera, M.; Barbieri, C.; Basa, S.; Baykal, A.; Belmont, R.; Boirin, L.; Bonvicini, V.; Burderi, L.; Bursa, M.; Cabanac, C.; Cackett, E.; Caliandro, G. A.; Casella, P.; Chaty, S.; Chenevez, J.; Coe, M. J.; Collura, A.; Corongiu, A.; Covino, S.; Cusumano, G.; D'Amico, F.; Dall'Osso, S.; De Martino, D.; De Paris, G.; Di Persio, G.; Di Salvo, T.; Done, C.; Dovčiak, M.; Drago, A.; Ertan, U.; Fabiani, S.; Falanga, M.; Fender, R.; Ferrando, P.; Della Monica Ferreira, D.; Fraser, G.; Frontera, F.; Fuschino, F.; Galvez, J. L.; Gandhi, P.; Giommi, P.; Godet, O.; Göǧüş, E.; Goldwurm, A.; Götz, D.; Grassi, M.; Guttridge, P.; Hakala, P.; Henri, G.; Hermsen, W.; Horak, J.; Hornstrup, A.; in't Zand, J. J. M.; Isern, J.; Kalemci, E.; Kanbach, G.; Karas, V.; Kataria, D.; Kennedy, T.; Klochkov, D.; Kluźniak, W.; Kokkotas, K.; Kreykenbohm, I.; Krolik, J.; Kuiper, L.; Kuvvetli, I.; Kylafis, N.; Lattimer, J. M.; Lazzarotto, F.; Leahy, D.; Lebrun, F.; Lin, D.; Lund, N.; Maccarone, T.; Malzac, J.; Marisaldi, M.; Martindale, A.; Mastropietro, M.; McClintock, J.; McHardy, I.; Mendez, M.; Mereghetti, S.; Miller, M. C.; Mineo, T.; Morelli, E.; Morsink, S.; Motch, C.; Motta, S.; Muñoz-Darias, T.; Naletto, G.; Neustroev, V.; Nevalainen, J.; Olive, J. F.; Orio, M.; Orlandini, M.; Orleanski, P.; Ozel, F.; Pacciani, L.; Paltani, S.; Papadakis, I.; Papitto, A.; Patruno, A.; Pellizzoni, A.; Petráček, V.; Petri, J.; Petrucci, P. O.; Phlips, B.; Picolli, L.; Possenti, A.; Psaltis, D.; Rambaud, D.; Reig, P.; Remillard, R.; Rodriguez, J.; Romano, P.; Romanova, M.; Schanz, T.; Schmid, C.; Segreto, A.; Shearer, A.; Smith, A.; Smith, P. J.; Soffitta, P.; Stergioulas, N.; Stolarski, M.; Stuchlik, Z.; Tiengo, A.; Torres, D.; Török, G.; Turolla, R.; Uttley, P.; Vaughan, S.; Vercellone, S.; Waters, R.; Watts, A.; Wawrzaszek, R.; Webb, N.; Wilms, J.; Zampieri, L.; Zezas, A.; Ziolkowski, J.

    2012-01-01

    High-time-resolution X-ray observations of compact objects provide direct access to strong-field gravity, to the equation of state of ultradense matter and to black hole masses and spins. A 10 m(2)-class instrument in combination with good spectral resolution is required to exploit the relevant diag

  19. X-ray imaging: Perovskites target X-ray detection

    Science.gov (United States)

    Heiss, Wolfgang; Brabec, Christoph

    2016-05-01

    Single crystals of perovskites are currently of interest to help fathom fundamental physical parameters limiting the performance of perovskite-based polycrystalline solar cells. Now, such perovskites offer a technology platform for optoelectronic devices, such as cheap and sensitive X-ray detectors.

  20. Portable X-Ray Device

    Science.gov (United States)

    1983-01-01

    Portable x-ray instrument developed by NASA now being produced commercially as an industrial tool may soon find further utility as a medical system. The instrument is Lixiscope - Low Intensity X-Ray Imaging Scope -- a self-contained, battery-powered fluoroscope that produces an instant image through use of a small amount of radioactive isotope. Originally developed by Goddard Space Flight Center, Lixiscope is now being produced by Lixi, Inc. which has an exclusive NASA license for one version of the device.

  1. A Catalog of Intermediate-luminosity X-ray Objects

    CERN Document Server

    Colbert, E

    2002-01-01

    ROSAT, and now Chandra, X-ray images allow studies of extranuclear X-ray point sources in galaxies other than our own. X-ray observations of normal galaxies with ROSAT and Chandra have revealed that off-nuclear, compact, Intermediate-luminosity (Lx 2-10 keV >= 1e39 erg/s) X-ray Objects (IXOs, a.k.a. ULXs) are quite common. Here we present a catalog and finding charts for 87 IXOs in 54 galaxies, derived from all of the ROSAT HRI imaging data for galaxies with cz <= 5000 km/s from the Third Reference Catalog of Bright Galaxies (RC3). We have defined the cutoff Lx for IXOs so that it is well above the Eddington luminosity of a 1.4 Msol black hole (10^{38.3} erg/s), so as not to confuse IXOs with ``normal'' black hole X-ray binaries. This catalog is intended to provide a baseline for follow-up work with Chandra, and with space- and ground-based survey work at wavelengths other than X-ray. We demonstrate that elliptical galaxies with IXOs have a larger number of IXOs per galaxy than non-elliptical galaxies with...

  2. On the X-ray heated skin of Accretion Disks

    CERN Document Server

    Nayakshin, S

    1999-01-01

    We present a simple analytical formula for the Thomson depth of the X-rayheated skin of accretion disks valid at any radius and for a broad range ofspectral indices of the incident X-rays, accretion rates and black hole masses.We expect that this formula may find useful applications in studies of geometryof the inner part of accretion flows around compact objects, and in severalother astrophysically important problems, such as the recently observed X-ray``Baldwin'' effect (i.e., monotonic decrease of Fe line's equivalent width withthe X-ray luminosity of AGN), the problem of missing Lyman edge in AGN, andline and continuum variability studies in accretion disks around compactobjects. We compute the reflected X-ray spectra for several representativecases and show that for hard X-ray spectra and large ionizing fluxes the skinrepresents a perfect mirror that does not produce any Fe lines or absorptionfeatures. At the same time, for soft X-ray spectra or small ionizing fluxes,the skin produces very strong ionized...

  3. Formation and destruction of jets in X-ray binaries

    CERN Document Server

    Kylafis, N D; Kazanas, D; Christodoulou, D M

    2011-01-01

    Neutron-star and black-hole X-ray binaries (XRBs) exhibit radio jets, whose properties depend on the X-ray spectral state and history of the source. In particular, black-hole XRBs emit compact, steady radio jets when they are in the so-called hard state, the jets become eruptive as the sources move toward the soft state, disappear in the soft state, and re-appear when the sources return to the hard state. On the other hand, jets from neutron-star X-ray binaries are typically weaker radio emitters than the black-hole ones at the same X-ray luminosity and in some cases radio emission is detected in the soft state. Significant phenomenology has been accumulated so far regarding the spectral states of neutron-star and black-hole XRBs, and there is general agreement about the type of the accretion disk around the compact object in the various spectral states. Our aim is to investigate whether the phenomenology regarding the X-ray emission on one hand and the jet appearance and disappearance on the other can be put...

  4. Jets and Accretion Disks in X-ray Binaries

    Science.gov (United States)

    Tomsick, John

    The outflow of material in the form of jets is a common phenomenon in astronomical sources with accretion disks. Even though jets are seen coming from the cores of galaxies, Galactic compact objects in X-ray binaries, and stars as they are forming, we do not understand in detail what accretion disk conditions are necessary to support a relativistic jet. This proposal focuses on multi-wavelength studies of X-ray binaries in order to improve our understanding of the connection between the disk and the jet. Specifically, this proposal includes work on two approved cycle 14 Rossi X-ray Timing Explorer (RXTE) programs, an approved XMM-Newton program, as well as a synthesis study of transient black hole X-ray binaries using archival RXTE and radio data. We plan to use X-ray spectral and timing properties to determine the disk properties during the re-activation of the compact jet (as seen in the radio and infrared) during the decays of black hole transient outbursts, to determine how the inner disk properties change at low mass accretion rates, and to use RXTE along with multi-wavelength observations to constrain the jet properties required for the microquasar Cygnus~X-3 to produce high- energy emission. Due to the ubiquity of jets in astrophysical settings, these science topics are relevant to NASA programs dealing with the origin, structure, evolution, and destiny of the Universe, and especially to understanding phenomena near black holes.

  5. Avalanche Photodiodes as Fast X-ray Detectors.

    Science.gov (United States)

    Kishimoto, S

    1998-05-01

    An avalanche photodiode (APD) detector provides a sub-nanosecond time resolution and an output rate of more than 10(8) counts s(-1) of synchrotron X-rays. Moreover, the APD has the advantage of low noise. A review of recent developments of detectors using APD devices designed for X-ray experiments is presented in this paper. One of the detectors has an excellent time response of 100 ps resolution and a narrow width on its response function, 1.4 ns at 10(-5) maximum. The other consists of a stack of four diodes and has a transmission structure. The stacked detector improved the efficiency for X-rays, e.g. 55% at 16.53 keV. The output rates reached more than 10(8) counts s(-1) per device.

  6. S-band linac-based X-ray source with {pi}/2-mode electron linac

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, Abhay, E-mail: abhay@post.kek.jp [Department of Accelerator Science, School of High Energy Accelerator Science, Graduate University for Advanced Studies, Shonan International Village, Hayama, Miura, Kanagawa 240-0193 (Japan); Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Araki, Sakae [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Dixit, Tanuja [Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Fukuda, Masafumi [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Krishnan, R; Pethe, Sanjay [Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Sakaue, Kazuyuki [Waseda University, Shinjuku-ku, Tokyo 169-8555 (Japan); Terunuma, Nobuhiro; Urakawa, Junji [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Washio, Masakazu [Waseda University, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2011-05-01

    The activities with the compact X-ray source are attracting more attention, particularly for the applications of the source in medical fields. We propose the fabrication of a compact X-ray source using the SAMEER electron linear accelerator and the KEK laser undulator X-ray source (LUCX) technologies. The linac developed at SAMEER is a standing wave side-coupled S-band linac operating in the {pi}/2 mode. In the proposed system, a photocathode RF gun will inject bunches of electrons in the linac to accelerate and achieve a high-energy, low-emittance beam. This beam will then interact with the laser in the laser cavity to produce X-rays of a type well suited for various applications. The side-coupled structure will make the system more compact, and the {pi}/2 mode of operation will enable a high repetition rate operation, which will help to increase the X-ray yield.

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... small burst of radiation that passes through the body, recording an image on photographic film or a special detector. Different ... This ensures that those parts of a patient's body not being imaged receive minimal radiation ... x-ray images are among the clearest, most detailed views of ...

  8. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... for more information about pregnancy and x-rays. A Word About Minimizing Radiation Exposure Special care is ... encourage linking to this site. × Recommend RadiologyInfo to a friend Send to (friend's e-mail address): From ( ...

  9. X-rays and magnetism.

    Science.gov (United States)

    Fischer, Peter; Ohldag, Hendrik

    2015-09-01

    Magnetism is among the most active and attractive areas in modern solid state physics because of intriguing phenomena interesting to fundamental research and a manifold of technological applications. State-of-the-art synthesis of advanced magnetic materials, e.g. in hybrid structures paves the way to new functionalities. To characterize modern magnetic materials and the associated magnetic phenomena, polarized x-rays have emerged as unique probes due to their specific interaction with magnetic materials. A large variety of spectroscopic and microscopic techniques have been developed to quantify in an element, valence and site-sensitive way properties of ferro-, ferri-, and antiferromagnetic systems, such as spin and orbital moments, and to image nanoscale spin textures and their dynamics with sub-ns time and almost 10 nm spatial resolution. The enormous intensity of x-rays and their degree of coherence at next generation x-ray facilities will open the fsec time window to magnetic studies addressing fundamental time scales in magnetism with nanometer spatial resolution. This review will give an introduction into contemporary topics of nanoscale magnetic materials and provide an overview of analytical spectroscopy and microscopy tools based on x-ray dichroism effects. Selected examples of current research will demonstrate the potential and future directions of these techniques.

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z X-ray ( ... are the fastest and easiest way for your doctor to view and assess bone fractures, injuries and ...

  11. X-Ray Diffractive Optics

    Science.gov (United States)

    Dennis, Brian; Li, Mary; Skinner, Gerald

    2013-01-01

    X-ray optics were fabricated with the capability of imaging solar x-ray sources with better than 0.1 arcsecond angular resolution, over an order of magnitude finer than is currently possible. Such images would provide a new window into the little-understood energy release and particle acceleration regions in solar flares. They constitute one of the most promising ways to probe these regions in the solar atmosphere with the sensitivity and angular resolution needed to better understand the physical processes involved. A circular slit structure with widths as fine as 0.85 micron etched in a silicon wafer 8 microns thick forms a phase zone plate version of a Fresnel lens capable of focusing approx. =.6 keV x-rays. The focal length of the 3-cm diameter lenses is 100 microns, and the angular resolution capability is better than 0.1 arcsecond. Such phase zone plates were fabricated in Goddard fs Detector Development Lab. (DDL) and tested at the Goddard 600-microns x-ray test facility. The test data verified that the desired angular resolution and throughput efficiency were achieved.

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... and places the x-ray film holder or digital recording plate under the table in the area of the body being imaged. When necessary, sandbags, pillows or other positioning devices will be used to help you maintain the ...

  13. Alpha proton x ray spectrometer

    Science.gov (United States)

    Rieder, Rudi; Waeke, H.; Economou, T.

    1994-01-01

    Mars Pathfinder will carry an alpha-proton x ray spectrometer (APX) for the determination of the elemental chemical composition of Martian rocks and soils. The instrument will measure the concentration of all major and some minor elements, including C, N, and O at levels above typically 1 percent.

  14. X-ray backscatter imaging

    Science.gov (United States)

    Dinca, Dan-Cristian; Schubert, Jeffrey R.; Callerame, J.

    2008-04-01

    In contrast to transmission X-ray imaging systems where inspected objects must pass between source and detector, Compton backscatter imaging allows both the illuminating source as well as the X-ray detector to be on the same side of the target object, enabling the inspection to occur rapidly and in a wide variety of space-constrained situations. A Compton backscatter image is similar to a photograph of the contents of a closed container, taken through the container walls, and highlights low atomic number materials such as explosives, drugs, and alcohol, which appear as especially bright objects by virtue of their scattering characteristics. Techniques for producing X-ray images based on Compton scattering will be discussed, along with examples of how these systems are used for both novel security applications and for the detection of contraband materials at ports and borders. Differences between transmission and backscatter images will also be highlighted. In addition, tradeoffs between Compton backscatter image quality and scan speed, effective penetration, and X-ray source specifications will be discussed.

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... An x-ray (radiograph) is a noninvasive medical test that helps physicians diagnose and treat medical conditions. ...

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... for more information about pregnancy and x-rays. A Word About Minimizing Radiation Exposure Special care is ... encourage linking to this site. × Recommend RadiologyInfo to a friend Send to (friend's e-mail address): From ( ...

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... dislocations. In elderly or patients with osteoporosis, a hip fracture may be clearly seen on a CT scan, while it may be barely seen, if at all, on a hip x-ray. For suspected spine injury or other ...

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... An x-ray (radiograph) is a noninvasive medical test that helps physicians diagnose and treat medical conditions. ...

  19. High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

    OpenAIRE

    de Groot, F. M. F.

    2001-01-01

    In this review, high-resolution X-ray emission and X-ray absorption spectroscopy will be discussed. The focus is on the 3d transition-metal systems. To understand high-resolution X-ray emission and reso-nant X-ray emission, it is first necessary to spend some time discussing the X-ray absorption process. Section II discusses 1s X-ray absorption, i.e., the K edges, and section III deals with 2p X-ray absorption, the L edges. X-ray emission is discussed in, respectively, the L edges. X-ray emis...

  20. Hard disk drive based microsecond x-ray chopper for characterization of ionization chambers and photodiodes

    Science.gov (United States)

    Müller, O.; Lützenkirchen-Hecht, D.; Frahm, R.

    2015-03-01

    A fast X-ray chopper capable of producing ms long X-ray pulses with a typical rise time of few μs was realized. It is ideally suited to investigate the temporal response of X-ray detectors with response times of the order of μs to ms, in particular, any kind of ionization chambers and large area photo diodes. The drive mechanism consists of a brushless DC motor and driver electronics from a common hard disk drive, keeping the cost at an absolute minimum. Due to its simple construction and small dimensions, this chopper operates at home lab based X-ray tubes and synchrotron radiation sources as well. The dynamics of the most important detectors used in time resolved X-ray absorption spectroscopy, namely, ionization chambers and Passivated Implanted Planar Silicon photodiodes, were investigated in detail. The results emphasize the applicability of this X-ray chopper.

  1. Hard disk drive based microsecond x-ray chopper for characterization of ionization chambers and photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Müller, O., E-mail: o.mueller@uni-wuppertal.de; Lützenkirchen-Hecht, D.; Frahm, R. [Bergische Universität Wuppertal, Gaußstraße 20, Wuppertal 42119 (Germany)

    2015-03-15

    A fast X-ray chopper capable of producing ms long X-ray pulses with a typical rise time of few μs was realized. It is ideally suited to investigate the temporal response of X-ray detectors with response times of the order of μs to ms, in particular, any kind of ionization chambers and large area photo diodes. The drive mechanism consists of a brushless DC motor and driver electronics from a common hard disk drive, keeping the cost at an absolute minimum. Due to its simple construction and small dimensions, this chopper operates at home lab based X-ray tubes and synchrotron radiation sources as well. The dynamics of the most important detectors used in time resolved X-ray absorption spectroscopy, namely, ionization chambers and Passivated Implanted Planar Silicon photodiodes, were investigated in detail. The results emphasize the applicability of this X-ray chopper.

  2. High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Groot, F.M.F. de

    2000-01-01

    In this review, high-resolution X-ray emission and X-ray absorption spectroscopy will be discussed. The focus is on the 3d transition-metal systems. To understand high-resolution X-ray emission and reso-nant X-ray emission, it is first necessary to spend some time discussing the X-ray absorption

  3. X-ray irradiation of the winds in binaries with massive components

    CERN Document Server

    Krticka, Jiri; Krtickova, Iva

    2015-01-01

    Binaries with hot massive components are strong X-ray sources. Besides the intrinsic X-ray emission of individual binary members originating in their winds, X-ray emission stems from the accretion on the compact companion or from wind collision. Since hot star winds are driven by the light absorption in the lines of heavier elements, wind acceleration is sensitive to the ionization state. Therefore, the over-ionization induced by external X-ray source strongly influences the winds of individual components. We studied the effect of external X-ray irradiation on hot star winds. We used our kinetic equilibrium (NLTE) wind models to estimate the influence of external X-ray ionization for different X-ray luminosities and source distances. The models are calculated for parameters typical of O stars. The influence of X-rays is given by the X-ray luminosity, by the optical depth between a given point and the X-ray source, and by a distance to the X-ray source. Therefore, the results can be interpreted in the diagrams...

  4. Discovery of extended X-ray emission around the highly magnetic RRAT J1819-1458

    NARCIS (Netherlands)

    Rea, N.; McLaughlin, M.A.; Gaensler, B.M.; Slane, P.O.; Stella, L.; Reynolds, S.P.; Burgay, M.; Israel, G.L.; Possenti, A.; Chatterjee, S.

    2009-01-01

    We report on the discovery of extended X-ray emission around the high magnetic field rotating radio transient J1819-1458. Using a 30 ks Chandra ACIS-S observation, we found significant evidence for extended X-ray emission with a peculiar shape: a compact region out to similar to 5.'' 5, and more dif

  5. Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak

    Science.gov (United States)

    Li, Y. L.; Xu, G. S.; Tritz, K.; Zhu, Y. B.; Wan, B. N.; Lan, H.; Liu, Y. L.; Wei, J.; Zhang, W.; Hu, G. H.; Wang, H. Q.; Duan, Y. M.; Zhao, J. L.; Wang, L.; Liu, S. C.; Ye, Y.; Li, J.; Lin, X.; Li, X. L.

    2015-12-01

    A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks.

  6. Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y. L.; Xu, G. S.; Wan, B. N.; Lan, H.; Liu, Y. L.; Wei, J.; Zhang, W.; Hu, G. H.; Wang, H. Q.; Duan, Y. M.; Zhao, J. L.; Wang, L.; Liu, S. C.; Ye, Y.; Li, J.; Lin, X.; Li, X. L. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Tritz, K. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Zhu, Y. B. [Department of Physics and Astronomy, University of California, Irvine, California 92697-4575 (United States)

    2015-12-15

    A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks.

  7. X-ray reprocessing in binaries

    Science.gov (United States)

    Paul, Biswajit

    2016-07-01

    We will discuss several aspects of X-ray reprocessing into X-rays or longer wavelength radiation in different kinds of binary systems. In high mass X-ray binaries, reprocessing of hard X-rays into emission lines or lower temperature black body emission is a useful tool to investigate the reprocessing media like the stellar wind, clumpy structures in the wind, accretion disk or accretion stream. In low mass X-ray binaries, reprocessing from the surface of the companion star, the accretion disk, warps and other structures in the accretion disk produce signatures in longer wavelength radiation. X-ray sources with temporal structures like the X-ray pulsars and thermonuclear burst sources are key in such studies. We will discuss results from several new investigations of X-ray reprocessing phenomena in X-ray binaries.

  8. Epi-detecting label-free multimodal imaging platform using a compact diode-pumped femtosecond solid-state laser

    DEFF Research Database (Denmark)

    Andreana, Marco; Le, Tuan; Hansen, Anders Kragh

    2017-01-01

    We have developed an epi-detected multimodal nonlinear optical microscopy platform based on a compact and cost-effective laser source featuring simultaneous acquisition of signals arising from hyperspectral coherent anti-Stokes Raman scattering (CARS), two-photon fluorescence, and second harmonic...... for these three modalities, achieving sufficient spectral resolution for CARS in the lipid region. The experimental results on a biological tissue reveal that the combination of the epi-detection scheme and the use of a compact diode-pumped femtosecond solid-state laser in the nonlinear optical microscope...

  9. Ultrafast Time Resolved X-ray Diffraction Studies of Laser Heated Metals and Semiconductors

    Science.gov (United States)

    Chen, Peilin; Tomov, I. V.; Rentzepis, P. M.

    1998-03-01

    Time resolved hard x-ray diffraction has been employed to study the dynamics of lattice structure deformation. When laser pulse energy is deposited in a material it generates a non uniform transient temperature distribution, which alters the lattice structure of the crystal. The deformed crystal lattice will change the angle of diffraction for a monochromatic x-ray beam. We report picosecond and nanosecond time resolved x-ray diffraction measurements of the lattice temperature distribution, transient structure and stress, in Pt (111) and GaAs (111) crystals, caused by pulsed UV laser irradiation. An ArF excimer laser operated at 300 Hz was used, both, to drive an x-ray diode with copper anode and heat the crystal. Bragg diffracted x-ray radiation was recorded by a direct imaging x-ray CCD. Changes in the diffraction patterns induced by a few millijouls pulse energy were observed at different time delays between the laser heating pulse and the x-ray probing pulse. A kinematical model for time resolved x-ray diffraction was used to analyze the experimental data. Good agreement between the measured and calculated scattered x-ray intensities profiles was achieved, indicating that detailed time resolved x-ray diffraction measurements can be made with nanosecond and picosecond resolution for small temperature changes. Our system can detect changes in the lattice spacing of about 10-3 A.

  10. Flash photolysis using a light emitting diode: an efficient, compact, and affordable solution.

    Science.gov (United States)

    Bernardinelli, Yann; Haeberli, Christian; Chatton, Jean-Yves

    2005-06-01

    Flash photolysis has become an essential technique for dynamic investigations of living cells and tissues. This approach offers several advantages for instantly changing the concentration of bioactive compounds outside and inside living cells with high spatial resolution. Light sources for photolysis need to deliver pulses of high intensity light in the near UV range (300-380 nm), to photoactivate a sufficient amount of molecules in a short time. UV lasers are often required as the light source, making flash photolysis a costly approach. Here we describe the use of a high power 365 nm light emitting diode (UV LED) coupled to an optical fiber to precisely deliver the light to the sample. The ability of the UV LED light source to photoactivate several caged compounds (CMNB-fluorescein, MNI-glutamate, NP-EGTA, DMNPE-ATP) as well as to evoke the associated cellular Ca(2+) responses is demonstrated in both neurons and astrocytes. This report shows that UV LEDs are an efficient light source for flash photolysis and represent an alternative to UV lasers for many applications. A compact, powerful, and low-cost system is described in detail.

  11. Compact, robust, and spectrally pure diode-laser system with filter cavity

    CERN Document Server

    Kirilov, Emil; Segl, Maximilian; Nägerl, Hanns-Christoph

    2014-01-01

    We report on a design of a compact laser system composed of an extended cavity diode laser with high passive stability and a pre-filter Fabri-Perot cavity. The laser is frequency stabilized relative to the cavity using a serrodyne technique with a correction bandwidth of $\\geq 6$ MHz and a dynamic range of $\\geq 700$ MHz. The free running laser system has a power spectral density (PSD) $\\leq 100$ Hz$^{2}$/Hz centered mainly in the acoustic frequency range. A highly tunable $0.5-1.3$ GHz copy of the spectrally pure output beam is provided, which can be used for further stabilization of the laser system to an ultra-stable reference. We demonstrate a simple one-channel lock to such a reference that brings down the PSD to the sub-Hz level. The system is easy to operate, scalable, and highly applicable to atomic/molecular experiments demanding high spectral purity, long-term stability, and robustness.

  12. Ultraprecision motion control technique for high-resolution x-ray instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Shu, D.; Toellner, T. S.; Alp, E. E.

    2000-07-17

    With the availability of third-generation hard x-ray synchrotron radiation sources, such as the Advanced Photon Source (APS) at Argonne National Laboratory, x-ray inelastic scattering and x-ray nuclear resonant scattering provide powerful means for investigating the vibrational dynamics of a variety of materials and condensed matter systems. Novel high-resolution hard x-ray optics with meV energy resolution requires a compact positioning mechanism with 20--50-nrad angular resolution and stability. In this paper, the authors technical approach to this design challenge is presented. Sensitivity and stability test results are also discussed.

  13. Very faint X-ray binaries with XMM-Newton

    Science.gov (United States)

    Armas Padilla, M.

    2016-06-01

    A population of very faint X-ray binaries has been discovered in the last years thanks to the improvement in sensitivity and resolution of the new generations of X-ray missions. These systems show anomalously low luminosities, below 10^{36} ergs/sec, challenging our understanding of accretion physics and binary evolution models, and thereby opening new windows for both observational and theoretical work on accretion onto compact objects. XMM-Newton is playing a crucial role in the study of this dim family of objects thanks to its incomparable spectral capabilities at low luminosities. I will review the state-of-the-art of the field and present our XMM results in both black hole and neutron star objects. Finally, I will discuss the possibilities that the new generation of X-ray telescopes offer for this research line.

  14. X-Ray-powered Macronovae

    Science.gov (United States)

    Kisaka, Shota; Ioka, Kunihito; Nakar, Ehud

    2016-02-01

    A macronova (or kilonova) was observed as an infrared excess several days after the short gamma-ray burst GRB 130603B. Although the r-process radioactivity is widely discussed as an energy source, it requires a huge mass of ejecta from a neutron star (NS) binary merger. We propose a new model in which the X-ray excess gives rise to the simultaneously observed infrared excess via thermal re-emission, and explore what constraints this would place on the mass and velocity of the ejecta. This X-ray-powered model explains both the X-ray and infrared excesses with a single energy source such as the central engine like a black hole, and allows for a broader parameter region than the previous models, in particular a smaller ejecta mass ˜ {10}-3{--}{10}-2{M}⊙ and higher iron abundance mixed as suggested by general relativistic simulations for typical NS-NS mergers. We also discuss the other macronova candidates in GRB 060614 and GRB 080503, and the implications for the search of electromagnetic counterparts to gravitational waves.

  15. X-Ray Crystallography Reagent

    Science.gov (United States)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    2003-01-01

    Microcapsules prepared by encapsulating an aqueous solution of a protein, drug or other bioactive substance inside a semi-permeable membrane by are disclosed. The microcapsules are formed by interfacial coacervation under conditions where the shear forces are limited to 0-100 dynes per square centimeter at the interface. By placing the microcapsules in a high osmotic dewatering solution. the protein solution is gradually made saturated and then supersaturated. and the controlled nucleation and crystallization of the protein is achieved. The crystal-filled microcapsules prepared by this method can be conveniently harvested and stored while keeping the encapsulated crystals in essentially pristine condition due to the rugged. protective membrane. Because the membrane components themselves are x-ray transparent, large crystal-containing microcapsules can be individually selected, mounted in x-ray capillary tubes and subjected to high energy x-ray diffraction studies to determine the 3-D smucture of the protein molecules. Certain embodiments of the microcapsules of the invention have composite polymeric outer membranes which are somewhat elastic, water insoluble, permeable only to water, salts, and low molecular weight molecules and are structurally stable in fluid shear forces typically encountered in the human vascular system.

  16. Mutual control of X-rays and nuclear transitions

    Energy Technology Data Exchange (ETDEWEB)

    Gunst, Jonas Friedrich

    2015-12-14

    In the course of this Thesis the mutual control between X-rays and nuclear transitions is investigated theoretically. In the first Part, we study the nuclear photoexcitation with the highly brilliant and coherent X-ray free-electron lasers (XFELs). Apart from amplifying the direct resonant interaction with nuclear transitions, the super-intense XFEL can produce new states of matter like cold, high-density plasmas where secondary nuclear excitation channels may come into play, e.g., nuclear excitation by electron capture (NEEC). Our results predict that in the case of {sup 57}Fe targets secondary NEEC can be safely neglected, whereas it is surprisingly the dominating contribution (in comparison to the direct photoexcitation) for the XFEL-induced {sup 93m}Mo isomer triggering. Based on these case studies, we elaborate a general set of criteria to identify the prevailing excitation channel for a certain nuclear isotope. These criteria may be most relevant for future nuclear resonance experiments at XFEL facilities. On the opposite frontier, the interplay between single X-ray photons and nuclear transitions offer potential storage and processing applications for information science in their most compact form. In the second Part of this Thesis, we show that nuclear forward scattering off {sup 57}Fe targets can be employed to process polarization-encoded single X-rays via timed magnetic field rotations. Apart from the realization of logical gates with X-rays, the polarization encoding is used to design an X-ray quantum eraser scheme where the interference between scattering paths can be switched off and on in a controlled manner. Such setups may advance time-energy complementarity tests to so far unexplored parameter regimes, e.g., to the domain of X-ray quanta.

  17. Strongly absorbed quiescent X-ray emission from the X-ray transient XTE J0421+56

    CERN Document Server

    Boirin, L; Lumb, D H; Orlandini, M; Schartel, N

    2002-01-01

    We have observed the soft X-ray transient XTE J0421+56 in quiescence with XMM-Newton. The observed spectrum is highly unusual being dominated by a broad feature at 6.5 keV and can be modeled by a strongly absorbed continuum. The spectra of X-ray transients observed so far are normally modeled using Advection Dominated Accretion Flow models, black-bodies, power-laws, or by the thermal emission from a neutron star surface. The strongly absorbed X-ray emission of XTE J0421+56 could result from the compact object being embedded within the dense circumstellar wind emitted from the supergiant B[e] companion star.

  18. X-Ray Emission from the Halo of M31

    Science.gov (United States)

    Mushotzky, Richard (Technical Monitor); DiStefano, Rosanne

    2004-01-01

    Our goal was to use short (10 ksec) observations of selected fields in the halo of M31, to determine the size and characteristics of its X-ray population and to study the connection between globular clusters and X-ray sources. The program of observations has yet to be successfully completed. We received acceptable data from just 2 of the 5 approved fields. Nevertheless, the results were intriguing and we have submitted a paper based on this data to Nature. We find that the X-ray source density is significantly enhanced in the vicinity of one GC, providing the first observational evidence supporting the ejection hypothesis. We also find additional X-ray sources, including some which are very soft, in large enough numbers to suggest that not all could have been formed in GCs. That is, some must be descended from the same primordial halo population that produced any compact stars comprising part of the halo's dark matter. Extrapolating fiom the X-ray source population, we estimate that stellar remnants and dim old stars in the halo could comprise as much as 25% of the estimated mass (approx. 10(exp 12) Solar Mass) of the halo. These results suggest that the other approved fields should be observed soon and also provide strong motivation for the future XMM-Newton programs.

  19. Fluence thresholds for grazing incidence hard x-ray mirrors

    Science.gov (United States)

    Aquila, A.; Sobierajski, R.; Ozkan, C.; Hájková, V.; Burian, T.; Chalupský, J.; Juha, L.; Störmer, M.; Bajt, S.; Klepka, M. T.; DłuŻewski, P.; Morawiec, K.; Ohashi, H.; Koyama, T.; Tono, K.; Inubushi, Y.; Yabashi, M.; Sinn, H.; Tschentscher, T.; Mancuso, A. P.; Gaudin, J.

    2015-06-01

    X-ray Free Electron Lasers (XFELs) have the potential to contribute to many fields of science and to enable many new avenues of research, in large part due to their orders of magnitude higher peak brilliance than existing and future synchrotrons. To best exploit this peak brilliance, these XFEL beams need to be focused to appropriate spot sizes. However, the survivability of X-ray optical components in these intense, femtosecond radiation conditions is not guaranteed. As mirror optics are routinely used at XFEL facilities, a physical understanding of the interaction between intense X-ray pulses and grazing incidence X-ray optics is desirable. We conducted single shot damage threshold fluence measurements on grazing incidence X-ray optics, with coatings of ruthenium and boron carbide, at the SPring-8 Angstrom compact free electron laser facility using 7 and 12 keV photon energies. The damage threshold dose limits were found to be orders of magnitude higher than would naively be expected. The incorporation of energy transport and dissipation via keV level energetic photoelectrons accounts for the observed damage threshold.

  20. GIANT OUTBURSTS IN Be/X-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Rebecca G.; Nixon, Chris; Armitage, Philip J. [JILA, University of Colorado and NIST, UCB 440, Boulder, CO 80309 (United States); Lubow, Stephen H. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Price, Daniel J. [Monash Centre for Astrophysics (MoCA), School of Mathematical Sciences, Monash University, Victoria 3800 (Australia)

    2014-08-01

    Be/X-ray binary systems exhibit both periodic (Type I) X-ray outbursts and giant (Type II) outbursts, whose origins have remained elusive. We suggest that Type II X-ray outbursts occur when a highly misaligned decretion disk around the Be star becomes eccentric, allowing the compact object companion to capture a large amount of material at periastron. Using three-dimensional smoothed particle hydrodynamics simulations, we model the long-term evolution of a representative Be/X-ray binary system. We find that periodic (Type I) X-ray outbursts occur when the neutron star is close to periastron for all disk inclinations. Type II outbursts occur for large misalignment angles and are associated with eccentricity growth which occurs on a timescale of about 10 orbital periods. Mass capture from the eccentric decretion disk results in an accretion disk around the neutron star whose estimated viscous time is long enough to explain the extended duration of Type II outbursts. Previous studies suggested that the outbursts are caused by a warped disk but our results suggest that this is not sufficient; the disk must be both highly misaligned and eccentric to initiate a Type II accretion event.

  1. pyXSIM: Synthetic X-ray observations generator

    Science.gov (United States)

    ZuHone, John A.; Hallman, Eric. J.

    2016-08-01

    pyXSIM simulates X-ray observations from astrophysical sources. X-rays probe the high-energy universe, from hot galaxy clusters to compact objects such as neutron stars and black holes and many interesting sources in between. pyXSIM generates synthetic X-ray observations of these sources from a wide variety of models, whether from grid-based simulation codes such as FLASH (ascl:1010.082), Enzo (ascl:1010.072), and Athena (ascl:1010.014), to particle-based codes such as Gadget (ascl:0003.001) and AREPO, and even from datasets that have been created “by hand”, such as from NumPy arrays. pyXSIM can also manipulate the synthetic observations it produces in various ways and export the simulated X-ray events to other software packages to simulate the end products of specific X-ray observatories. pyXSIM is an implementation of the PHOX (ascl:1112.004) algorithm and was initially the photon_simulator analysis module in yt (ascl:1011.022); it is dependent on yt.

  2. Fluence thresholds for grazing incidence hard x-ray mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Aquila, A.; Ozkan, C.; Sinn, H.; Tschentscher, T.; Mancuso, A. P.; Gaudin, J. [European XFEL GmbH, Albert-Einstein-Ring 19, Hamburg D-22671 (Germany); Sobierajski, R.; Klepka, M. T.; Dłużewski, P.; Morawiec, K. [Institute of Physics, PAS Al. Lotnikw 32/46, Warsaw PL-02-668 (Poland); Hájková, V.; Burian, T.; Chalupský, J.; Juha, L. [Institute of Physics, ASCR, Na Slovance 2, CZ 182 21 Prague 8 (Czech Republic); Störmer, M. [Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, Geesthacht D-21502 (Germany); Bajt, S. [Deutsches Elektronen-Synchrotron, Notkestraße 85, Hamburg D-22607 (Germany); Ohashi, H.; Koyama, T.; Tono, K. [RIKEN/SPring-8 Kouto 1-1-1, Sayo, Hyogo 679-5148 (Japan); Japan Synchrotron Radiation Research Institute (JASRI), Kouto 1-1-1, Sayo, Hyogo 679-5198 (Japan); Inubushi, Y. [RIKEN/SPring-8 Kouto 1-1-1, Sayo, Hyogo 679-5148 (Japan); and others

    2015-06-15

    X-ray Free Electron Lasers (XFELs) have the potential to contribute to many fields of science and to enable many new avenues of research, in large part due to their orders of magnitude higher peak brilliance than existing and future synchrotrons. To best exploit this peak brilliance, these XFEL beams need to be focused to appropriate spot sizes. However, the survivability of X-ray optical components in these intense, femtosecond radiation conditions is not guaranteed. As mirror optics are routinely used at XFEL facilities, a physical understanding of the interaction between intense X-ray pulses and grazing incidence X-ray optics is desirable. We conducted single shot damage threshold fluence measurements on grazing incidence X-ray optics, with coatings of ruthenium and boron carbide, at the SPring-8 Angstrom compact free electron laser facility using 7 and 12 keV photon energies. The damage threshold dose limits were found to be orders of magnitude higher than would naively be expected. The incorporation of energy transport and dissipation via keV level energetic photoelectrons accounts for the observed damage threshold.

  3. X-ray states of redback millisecond pulsars

    CERN Document Server

    Linares, Manuel

    2014-01-01

    Compact binary millisecond pulsars with main-sequence donors, often referred to as "redbacks", constitute the long-sought link between low-mass X-ray binaries and millisecond radio pulsars, and offer a unique probe of the interaction between pulsar winds and accretion flows. We present a systematic study of eight nearby redbacks, using more than 100 observations obtained with Swift's X-ray Telescope. We distinguish between three main states: pulsar, disk and outburst states. We find X-ray mode switching in the disk state of PSR J1023+0038 and XSS J12270-4859, similar to what was found in the other redback which showed evidence for accretion: rapid, recurrent changes in X-ray luminosity (0.5-10 keV, L$_\\mathrm{X}$), between [6-9]$\\times$10$^{32}$ erg s$^{-1}$ (disk-passive state) and [3-5]$\\times$10$^{33}$ erg s$^{-1}$ (disk-active state). This strongly suggests that mode switching $-$which has not been observed in quiescent low-mass X-ray binaries$-$ is universal among redback millisecond pulsars in the disk ...

  4. X-rays from Cepheus A East and West

    Science.gov (United States)

    Pravdo, Steven H.; Tsuboi, Yohko

    2005-01-01

    We report the discovery of X-rays from both components of Cepheus A, East and West, with the XMM-Newton observatory. HH 168 joins the ranks of other energetic Herbig-Haro objects that are sources of T &GE; 10(6) K X-ray emission. The effective temperature of HH 168 is T = 5.8(-2.3)(+3.5) x 10(6) K, and its unabsorbed luminosity is 1: 1; 10(29) ergs s(-1), making it hotter and less luminous than other representatives of its class. We also detect prominent X-ray emission from the complex of compact radio sources believed to be the power sources for Cep A. We call this source HWX, and it is distinguished by its hard X-ray spectrum, T = 1.2(-0.5)(+1.2) 10(8) K, and its complex spatial distribution. It may arise from one or more protostars associated with the radio complex, the outflows, or a combination of the two. We detect 102 X-ray sources, many presumed to be pre-main-sequence stars on the basis of the reddening of their optical and IR counterparts.

  5. Chest X-Ray (Chest Radiography)

    Science.gov (United States)

    ... clothing that might interfere with the x-ray images. Women should always inform their physician and x-ray ... small burst of radiation that passes through the body, recording an image on photographic film or a special detector. Different ...

  6. The origin of the hard X-ray tail in neutron-star X-ray binaries

    Science.gov (United States)

    Reig, P.; Kylafis, N.

    2016-06-01

    Context. Neutron star X-ray binaries emit a compact, optically thick, relativistic radio jet during low-luminosity, usually hard states, as Galactic black-hole X-ray binaries do. When radio emission is bright, a hard power-law tail without evidence for an exponential cutoff is observed in most systems. Aims: We have developed a jet model that explains many spectral and timing properties of black-hole binaries in the states where a jet is present. Our goal is to investigate whether our jet model can reproduce the hard tail, with the correct range of photon index and the absence of a high-energy cutoff, in neutron-star X-ray binaries. Methods: We performed Monte Carlo simulations of the Compton upscattering of soft, accretion-disk or boundary layer photons in the jet and computed the emergent energy spectra, as well as the time lag of hard photons with respect to softer ones as a function of Fourier frequency. We fit the energy spectra with a power law modified by an exponential cutoff at high energy. Results: We demonstrate that our jet model naturally explains the observed power-law distribution with photon index in the range 1.8-3. With an appropriate choice of the parameters, the cutoff expected from Comptonization is shifted to energies above ~300 keV, producing a pure power law without any evidence for a rollover, in agreement with the observations. Conclusions: Our results reinforce the idea that the link between the outflow (jet) and inflow (disk) in X-ray binaries does not depend on the nature of the compact object, but on the process of accretion. Furthermore, we address the differences between jets in black-hole and neutron-star X-ray binaries and predict that the break frequency in the spectral energy distribution of neutron-star X-ray binaries, as a class, will be lower than that of black-hole binaries.

  7. Ultrafast outflows in ultraluminous X-ray sources

    CERN Document Server

    Pinto, Ciro; Middleton, Matthew; Walton, Dom

    2016-01-01

    Ultraluminous X-ray sources (ULXs) are bright extragalactic sources with X-ray luminosities above 10^39 erg/s powered by accretion onto compact objects. According to the first studies performed with XMM-Newton ULXs seemed to be excellent candidates to host intermediate-mass black holes (10^2-4 solar masses). However, in the last years the interpretation of super-Eddington accretion onto stellar-mass black holes or neutron stars for most ULXs has gained a strong consensus. One critical missing piece to confirm the super-Eddington scenario was the direct detection of the massive, radiatively-driven winds expected as atomic emission/absorption lines in ULX spectra. The first evidence for winds was found as residuals in the soft X-ray spectra of ULXs. Most recently we have been able to resolve these residuals into rest-frame emission and blueshifted (~0.2c) absorption lines arising from highly ionized gas in the deep high-resolution XMM-Newton spectra of two ultraluminous X-ray sources. The compact object is ther...

  8. X-Ray Exam: Scoliosis (For Parents)

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Scoliosis KidsHealth > For Parents > X-Ray Exam: Scoliosis A A A What's in ... español Radiografía: escoliosis What It Is A scoliosis X-ray is a relatively safe and painless test ...

  9. X-Ray Exam: Neck (For Parents)

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Neck KidsHealth > For Parents > X-Ray Exam: Neck A A A What's in ... español Radiografía: cuello What It Is A neck X-ray is a safe and painless test that ...

  10. X-Ray Exam: Femur (Upper Leg)

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Femur (Upper Leg) KidsHealth > For Parents > X-Ray Exam: Femur (Upper Leg) A A A ... español Radiografía: fémur What It Is A femur X-ray is a safe and painless test that ...

  11. Center for X-ray Optics, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1989-04-01

    This report briefly reviews the following topics: soft-x-ray imaging; reflective optics for hard x-rays; coherent XUV sources; spectroscopy with x-rays; detectors for coronary artery imaging; synchrotron-radiation optics; and support for the advanced light source.

  12. Cryotomography x-ray microscopy state

    Science.gov (United States)

    Le Gros, Mark; Larabell, Carolyn A.

    2010-10-26

    An x-ray microscope stage enables alignment of a sample about a rotation axis to enable three dimensional tomographic imaging of the sample using an x-ray microscope. A heat exchanger assembly provides cooled gas to a sample during x-ray microscopic imaging.

  13. Transmission type flat-panel X-ray source using ZnO nanowire field emitters

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Daokun; Song, Xiaomeng; Zhang, Zhipeng; Chen, Jun, E-mail: stscjun@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510275 (China); School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Li, Ziping [The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275 (China); She, Juncong; Deng, Shaozhi; Xu, Ningsheng [State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510275 (China); School of Microelectronics, Sun Yat-sen University, Guangzhou 510275 (China)

    2015-12-14

    A transmission type flat-panel X-ray source in diode structure was fabricated. Large-scale patterned ZnO nanowires grown on a glass substrate by thermal oxidation were utilized as field emitters, and tungsten thin film coated on silica glass was used as the transmission anode. Uniform distribution of X-ray generation was achieved, which benefited from the uniform electron emission from ZnO nanowires. Self-ballasting effect induced by the intrinsic resistance of ZnO nanowire and decreasing of screening effect caused by patterned emitters account for the uniform emission. Characteristic X-ray peaks of W-L lines and bremsstrahlung X-rays have been observed under anode voltages at a range of 18–20 kV, the latter of which were the dominant X-ray signals. High-resolution X-ray images with spatial resolution less than 25 μm were obtained by the flat-panel X-ray source. The high resolution was attributed to the small divergence angle of the emitted X-rays from the transmission X-ray source.

  14. X-Ray Visions of SS Cygni

    Science.gov (United States)

    Young, D. L.

    2004-12-01

    The Chandra X-Ray Observatory is the most sophisticated X-ray observatory launched by NASA. Chandra is designed to observe X-rays from highenergy regions of the universe, such as X-ray binary stars. On September 14, 2000, triggered by alerts from amateur astronomers worldwide, Chandra observed the outburst of the brightest northern dwarf nova SS Cygni. The cooperation of hundreds of amateur variable star astronomers and the Chandra X-Ray scientists and spacecraft specialists provided proof that the collaboration of amateur and professional astronomers is a powerful tool to study cosmic phenomena.

  15. X-ray Spectroscopy of Cooling Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, J.R.; /SLAC; Fabian, A.C.; /Cambridge U., Inst. of Astron.

    2006-01-17

    We review the X-ray spectra of the cores of clusters of galaxies. Recent high resolution X-ray spectroscopic observations have demonstrated a severe deficit of emission at the lowest X-ray temperatures as compared to that expected from simple radiative cooling models. The same observations have provided compelling evidence that the gas in the cores is cooling below half the maximum temperature. We review these results, discuss physical models of cooling clusters, and describe the X-ray instrumentation and analysis techniques used to make these observations. We discuss several viable mechanisms designed to cancel or distort the expected process of X-ray cluster cooling.

  16. Comets: mechanisms of x-ray activity

    Science.gov (United States)

    Ibadov, Subhon

    2016-07-01

    Basic mechanisms of X-ray activity of comets are considered, including D-D mechanism corresponding to generation of X-rays due to production of hot short-living plasma clumps at high-velocity collisions between cometary and interplanetary dust particles as well as M-M one corresponding to production of X-rays due to recombination of multicharge ions of solar wind plasma via charge exchange process at their collisions with molecules/atoms of the cometary atmospheres. Peculiarities of the variation of the comet X-ray spectrum and X-ray luminosity with variation of its heliocentric distance are revealed.

  17. Saturn: A large area X-ray simulation accelerator

    Science.gov (United States)

    Bloomquist, D. D.; Stinnett, R. W.; McDaniel, D. H.; Lee, J. R.; Sharpe, A. W.; Halbleib, J. A.; Schlitt, L. G.; Spence, P. W.; Corcoran, P.

    1987-06-01

    Saturn is the result of a major metamorphosis of the Particle Beam Fusion Accelerator-I (PBFA-I) from an ICF research facility to the large-area X-ray source of the Simulation Technology Laboratory (STL) project. Renamed Saturn, for its unique multiple-ring diode design, the facility is designed to take advantage of the numerous advances in pulsed power technology. Saturn will include significant upgrades in the energy storage and pulse-forming sections. The 36 magnetically insulated transmission lines (MITLs) that provided power flow to the ion diode of PBFA-I were replaced by a system of vertical triplate water transmission lines. These lines are connected to three horizontal triplate disks in a water convolute section. Power will flow through an insulator stack into radial MITLs that drive the three-ring diode. Saturn is designed to operate with a maximum of 750 kJ coupled to the three-ring e-beam diode with a peak power of 25 TW to provide an X-ray exposure capability of 5 x 10 rads/s (Si) and 5 cal/g (Au) over 500 cm.

  18. X-rays from solar system objects

    CERN Document Server

    Bhardwaj, Anil; Gladstone, G Randall; Cravens, Thomas E; Lisse, Carey M; Dennerl, Konrad; Branduardi-Raymont, Graziella; Wargelin, Bradford J; Waite, J Hunter; Robertson, Ina; Ostgaard, Nikolai; Beiersdorfer, Peter; Snowden, Steven L; Kharchenko, Vasili; 10.1016/j.pss.2006.11.009

    2010-01-01

    During the last few years our knowledge about the X-ray emission from bodies within the solar system has significantly improved. Several new solar system objects are now known to shine in X-rays at energies below 2 keV. Apart from the Sun, the known X-ray emitters now include planets (Venus, Earth, Mars, Jupiter, and Saturn), planetary satellites (Moon, Io, Europa, and Ganymede), all active comets, the Io plasma torus (IPT), the rings of Saturn, the coronae (exospheres) of Earth and Mars, and the heliosphere. The advent of higher-resolution X-ray spectroscopy with the Chandra and XMM-Newton X-ray observatories has been of great benefit in advancing the field of planetary X-ray astronomy. Progress in modeling X-ray emission, laboratory studies of X-ray production, and theoretical calculations of cross-sections, have all contributed to our understanding of processes that produce X-rays from the solar system bodies. At Jupiter and Earth, both auroral and non-auroral disk X-ray emissions have been observed. X-ray...

  19. Phase-contrast X-ray CT

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Atsushi [Hitachi Ltd., Hatoyama, Saitama (Japan). Advanced Research Lab.

    1996-08-01

    X-ray transmission imaging that creates image contrast from the distribution of the X-ray absorption coefficient is not sensitive to materials consisting of light elements such as hydrogen, carbon, nitrogen, and oxygen. On the other hand, the X-ray phase shift caused by the light elements is substantial enough to be detected even when absorption is almost zero. Hence, phase-contrast X-ray imaging is a promising technique for observing the structure inside biological soft tissues without the need for staining and without serious radiation exposure. Using fringe scanning X-ray interferometry, the X-ray phase shift caused by an object was measured. Three-dimensional image reconstruction of cancerous tissues using the measured phase shifts was enabled under tomographic configuration phase-contrast X-ray computed tomography (CT). (author)

  20. Multiple angle measurement and modeling of M-band x-ray fluxes from vacuum hohlraum

    Science.gov (United States)

    Guo, Liang; Li, Shanwei; Li, Zhichao; Jing, Longfei; Xie, Xufei; Jiang, Xiaohua; Yang, Dong; Du, Huabin; Hou, Lifei; Yang, Jiamin; Liu, Shenye; Jiang, Shaoen; Ding, Yongkun; Hu, Guangyue; Zheng, Jian

    2016-09-01

    The energetics experiment of vacuum gold hohlraums is implemented on the Shenguang-II laser facility. The total and M-band x-ray fluxes from the laser entrance holes are measured by the flat response x-ray diodes which are set at multiple angles with respect to the axis of the hohlraums. The measured M-band fractions are from 5.72% to 7.71%, which present a specific angular distribution. Based on the fact that the M-band x-rays are mainly emitted from the under-dense high-temperature plasmas, a simplified model is developed to give a quantitative prediction of the intensity, temporal behavior, and angular distribution of the M-band x-ray flux. The results obtained with our model are in good agreement with the experimental data, showing that our model can be a useful tool for M-band x-ray investigation.

  1. X-ray Sources Generated from Gas-Filled Laser-Heated Targets

    Energy Technology Data Exchange (ETDEWEB)

    Back, C A; Grun, J; Decker, C D; Davis, J; Laming, J M; Feldman, U; Suter, L J; Landen, O L; Miller, M; Serduke, F; Wuest, C

    2000-06-06

    The X-ray sources in the 4-7 keV energy regime can be produced by laser-irradiating high-Z gas-filled targets with high-powered lasers. A series of experiments have been performed using underdense targets that are supersonically heated with {approx} 35 W of 0.35 {micro}m laser light. These targets were cylindrical Be enclosures that were filled with 1-2 atms of Xe gas. L-shell x-ray emission is emitted from the plasma and detected by Bragg crystal spectrometers and x-ray diodes. Absolute flux measurements show conversion efficiencies of {approx} 10% in the multi-kilovolt x-ray emission. These sources can be used as bright x-ray backlighters or for material testing.

  2. Recent developments in X-ray imaging detectors

    CERN Document Server

    Moy, J P

    2000-01-01

    The replacement of the radiographic film in medical imaging has been the driving force in X-ray imaging developments. It requires a approx 40 cm wide detector to cover all examinations, an equivalent noise level of 1-5 X-ray quanta per pixel, and spatial resolution in the range 100-150 mu m. The need for entirely electronic imaging equipments has fostered the development of many X-ray detectors, most of them based on an array of amorphous silicon pixels, which is the only technology capable to achieve such large areas. Essentially, two concepts have been implemented: - intermediate conversion of X-rays to light by a scintillator, detected by an array of light sensitive pixels, comprising a photodiode and a switching device, either a TFT or a diode. - conversion into electron-hole pairs in a photoconductor, collected by an array of electrodes and switches. In both cases, charge amplifiers read the generated charges line by line. Scintillator and photoconductor-based systems are now close to production. They ac...

  3. Wide-Field MAXI: soft X-ray transient monitor

    CERN Document Server

    Arimoto, Makoto; Yatsu, Yoichi; Tomida, Hiroshi; Ueno, Shiro; Kimura, Masashi; Mihara, Tatehiro; Serino, Motoko; Morii, Mikio; Tsunemi, Hiroshi; Yoshida, Atsumasa; Sakamoto, Takanori; Kohmura, Takayoshi; Negoro, Hitoshi; Ueda, Yoshihiro; Tsuboi, Yohko; Ebisawa, Ken

    2015-01-01

    Wide-Field MAXI (WF-MAXI: Wide-Field Monitor of All-sky X-ray Image) is a proposed mission to detect and localize X-ray transients including electro-magnetic counterparts of gravitational-wave events such as gamma-ray bursts and supernovae etc., which are expected to be directly detected for the first time in late 2010's by the next generation gravitational telescopes such as Advanced LIGO and KAGRA. The most distinguishing characteristics of WF-MAXI are a wide energy range from 0.7 keV to 1 MeV and a large field of view (~25 % of the entire sky), which are realized by two main instruments: (i) Soft X-ray Large Solid Angle Camera (SLC) which consists of four pairs of crisscross coded aperture cameras using CCDs as one-dimensional fast-readout detectors covering 0.7 - 12 keV and (ii) Hard X-ray Monitor (HXM) which is a multi-channel array of crystal scintillators coupled with avalanche photo-diodes covering 20 keV - 1 MeV.

  4. X-ray Timing of Neutron Stars, Astrophysical Probes of Extreme Physics

    CERN Document Server

    Arzoumanian, Z; Cordes, J; Gendreau, K; Lai, D; Lattimer, J; Link, B; Lommen, A; Miller, C; Ray, P; Rutledge, R; Strohmayer, T; Wilson-Hodge, C; Wood, K

    2009-01-01

    The characteristic physical timescales near stellar-mass compact objects are measured in milliseconds. These timescales -- the free-fall time, the fastest stable orbital period, and stellar spin periods -- encode the fundamental physical properties of compact objects: mass, radius, and angular momentum. The characteristic temperature of matter in the vicinity of neutron stars is such that the principal electromagnetic window into their realms is the X-ray band. Because of these connections to the fundamental properties of neutron stars, X-ray timing studies remain today the most direct means of probing their structure and dynamics. While current X-ray observatories have revealed many relevant and fascinating phenomena, they lack the sensitivity to fully exploit them to uncover the fundamental properties of compact objects and their extreme physics. With this white paper, we summarize and highlight the science opportunities that will accompany an order-of-magnitude improvement in X-ray timing sensitivity, a go...

  5. Full-field transmission x-ray imaging with confocal polycapillary x-ray optics.

    Science.gov (United States)

    Sun, Tianxi; Macdonald, C A

    2013-02-07

    A transmission x-ray imaging setup based on a confocal combination of a polycapillary focusing x-ray optic followed by a polycapillary collimating x-ray optic was designed and demonstrated to have good resolution, better than the unmagnified pixel size and unlimited by the x-ray tube spot size. This imaging setup has potential application in x-ray imaging for small samples, for example, for histology specimens.

  6. Compton polarimeter for 10-30 keV x rays

    Science.gov (United States)

    Weber, S.; Beilmann, C.; Shah, C.; Tashenov, S.

    2015-09-01

    We present a simple and versatile polarimeter for x rays in the energy range of 10-30 keV. It uses Compton scattering in low-Z materials such as beryllium or boron carbide. The azimuthal distribution of the scattered x rays is sampled by an array of 12 silicon PIN diodes operated at room temperature. We evaluated the polarimetry performance using Monte-Carlo simulations and show experimental results.

  7. Compton polarimeter for 10–30 keV x rays

    Energy Technology Data Exchange (ETDEWEB)

    Weber, S.; Beilmann, C.; Shah, C.; Tashenov, S. [Physics Institute, Heidelberg University, 69120 Heidelberg (Germany)

    2015-09-15

    We present a simple and versatile polarimeter for x rays in the energy range of 10–30 keV. It uses Compton scattering in low-Z materials such as beryllium or boron carbide. The azimuthal distribution of the scattered x rays is sampled by an array of 12 silicon PIN diodes operated at room temperature. We evaluated the polarimetry performance using Monte-Carlo simulations and show experimental results.

  8. Motorized Beam Alignment of a Commercial X-ray Diffractometer

    Science.gov (United States)

    Van Zandt, Noah R.; Myers, James F.; Rogers, Richard B

    2013-01-01

    X-ray diffraction (XRD) is a powerful analysis method that allows researchers to noninvasively probe the crystalline structure of a material. This includes the ability to determine the crystalline phases present, quantify surface residual stresses, and measure the distribution of crystallographic orientations. The Structures and Materials Division at the NASA Glenn Research Center (GRC) heavily uses the on-site XRD lab to characterize advanced metal alloys, ceramics, and polymers. One of the x-ray diffractometers in the XRD lab (Bruker D8 Discover) uses three different x-ray tubes (Cu, Cr, and Mn) for optimal performance over numerous material types and various experimental techniques. This requires that the tubes be switched out and aligned between experiments. This alignment maximizes the x-ray tube s output through an iterative process involving four set screws. However, the output of the x-ray tube cannot be monitored during the adjustment process due to standard radiation safety engineering controls that prevent exposure to the x-ray beam when the diffractometer doors are open. Therefore, the adjustment process is a very tedious series of blind adjustments, each followed by measurement of the output beam using a PIN diode after the enclosure doors are shut. This process can take up to 4 hr to perform. This technical memorandum documents an in-house project to motorize this alignment process. Unlike a human, motors are not harmed by x-ray radiation of the energy range used in this instrument. Therefore, using motors to adjust the set screws will allow the researcher to monitor the x-ray tube s output while making interactive adjustments from outside the diffractometer. The motorized alignment system consists of four motors, a motor controller, and a hand-held user interface module. Our goal was to reduce the alignment time to less than 30 min. The time available was the 10-week span of the Lewis' Educational and Research Collaborative Internship Project (LERCIP

  9. Matching microlensing events with X-ray sources

    CERN Document Server

    Sartore, N

    2011-01-01

    The detection of old neutron stars and black holes in isolation is one of the cornerstones of compact object astrophysics. Microlensing surveys may help on this purpose since the lensing mechanism is independent of the emission properties of the lens. Indeed, several black hole candidates deriving through microlensing observations have been reported in the literature. The identification of counterparts, especially in the X-rays, would be a strong argument in favor of the compact nature of these lenses. We perform a cross-correlation between the catalogs of microlensing events by the OGLE, MACHO and MOA teams, and those of X-rays sources from XMM-Newton and Chandra satellites. Based on our previous work, we select only microlensing events longer than 100 days, which should contain a large fraction of lenses as compact objects. Our matching criterion takes into account the positional coincidence in the sky. We find a single match between a microlensing event OGLE 2004-BLG-81 and the X-ray source 2XMM J180540.5-...

  10. Compact tunable high power picosecond source based on Yb-doped fiber amplification of gain switch laser diode.

    Science.gov (United States)

    Liu, Hongjun; Gao, Cunxiao; Tao, Jintao; Zhao, Wei; Wang, Yishan

    2008-05-26

    A compact tunable high power picosecond source based on Yb-doped fiber amplification of gain switch laser diode is demonstrated. A multi-stage single mode Yb-doped fiber preamplifier was combined with a single mode double-clad Yb-doped fiber main amplifier to construct the amplification system, which is seeded by a gain switch laser diode. By optimizing preamplifier???s parameters to compensate the seed spectrum gain, a "flat top" broadband spectrum is obtained to realize wavelength tunable output with a self-made tunable filter. The tunable pulses were further amplified to 3.5 W average power 90 ps pulses at 1 MHz repetition rate, and the center wavelength was tunable in the ranges from 1053 nm to 1073 nm with excellent beam quality.

  11. New class of compact diode pumped sub 10 fs lasers for biomedical applications

    DEFF Research Database (Denmark)

    Le, T.; Mueller, A.; Sumpf, B.;

    2016-01-01

    Diode-pumping Ti: sapphire lasers promises a new approach to low-cost femtosecond light sources. Thus in recent years much effort has been taken just to overcome the quite low power and low beam qualities of available green diodes to obtain output powers of several hundred milliwatts from a fs-la...

  12. Laser induced x-ray `RADAR' particle physics model

    Science.gov (United States)

    Lockley, D.; Deas, R.; Moss, R.; Wilson, L. A.; Rusby, D.; Neely, D.

    2016-05-01

    The technique of high-power laser-induced plasma acceleration can be used to generate a variety of diverse effects including the emission of X-rays, electrons, neutrons, protons and radio-frequency radiation. A compact variable source of this nature could support a wide range of potential applications including single-sided through-barrier imaging, cargo and vehicle screening, infrastructure inspection, oncology and structural failure analysis. This paper presents a verified particle physics simulation which replicates recent results from experiments conducted at the Central Laser Facility at Rutherford Appleton Laboratory (RAL), Didcot, UK. The RAL experiment demonstrated the generation of backscattered X-rays from test objects via the bremsstrahlung of an incident electron beam, the electron beam itself being produced by Laser Wakefield Acceleration. A key initial objective of the computer simulation was to inform the experimental planning phase on the predicted magnitude of the backscattered X-rays likely from the test objects. This objective was achieved and the computer simulation was used to show the viability of the proposed concept (Laser-induced X-ray `RADAR'). At the more advanced stages of the experimental planning phase, the simulation was used to gain critical knowledge of where it would be technically feasible to locate key diagnostic equipment within the experiment. The experiment successfully demonstrated the concept of X-ray `RADAR' imaging, achieved by using the accurate timing information of the backscattered X-rays relative to the ultra-short laser pulse used to generate the electron beam. By using fast response X-ray detectors it was possible to derive range information for the test objects being scanned. An X-ray radar `image' (equivalent to a RADAR B-scan slice) was produced by combining individual X-ray temporal profiles collected at different points along a horizontal distance line scan. The same image formation process was used to generate

  13. Analyzing the Spectra of Accreting X-Ray Pulsars

    Science.gov (United States)

    Wolff, Michael

    This proposal seeks funding for the analysis of accretion-powered X-ray pulsar spectra from NASA/ HEASARC archived X-ray data. Spectral modeling of accreting X-ray pulsars can tell us a great deal about the physical conditions in and near high mass X-ray binary systems. Such systems have accretion flows where plasma is initially channeled from an accretion disk by the strong neutron star magnetic field, eventually falling onto the magnetic polar cap of the neutron star compact object. Many of these accreting X-ray pulsars have X-ray spectra that consist of broad power-law continua with superposed cyclotron resonant scattering features indicating magnetic field strengths above 10^12 G. The energies of these cyclotron line features have recently been shown to vary with X-ray luminosity in a number of sources such as Her X-1 and V 0332+53, a phenomenon not well understood. Another recent development is the relatively new analytic model for the spectral continuum formation in accretion-powered pulsar systems developed by Becker & Wolff. In their formalism the accretion flows are assumed to go through radiation- dominated radiative shocks and settle onto the neutron star surface. The radiation field consists of strongly Comptonized bremsstrahlung emission from the entire plasma, Comptonized cyclotron emission from the de-excitations of Landau-excited electrons in the neutron star magnetic field, and Comptonized black-body emission from a thermal mound near the neutron star surface. We seek to develop the data analysis tools to apply this model framework to the X-ray data from a wide set of sources to make progress characterizing the basic accretion properties (e.g., magnetic field strength, plasma temperatures, polar cap size, accretion rate per unit area, dominance of bulk vs. thermal Comptonization) as well as understanding the variations of the cyclotron line energies with X-ray luminosity. The three major goals of our proposed work are as follows: In the first year

  14. X-ray imaging in advanced studies of ophthalmic diseases.

    Science.gov (United States)

    Antunes, Andrea; Safatle, Angélica M V; Barros, Paulo S M; Morelhão, Sérgio L

    2006-07-01

    Microscopic characterization of pathological tissues has one major intrinsic limitation, the small sampling areas with respect to the extension of the tissues. Mapping possible changes on vast tissues and correlating them with large ensembles of clinical cases is not a feasible procedure for studying most diseases, as for instance vision loss related diseases and, in particular, the cataract. Although intraocular lens implants are successful treatments, cataract still is a leading public-health issue that grows in importance as the population increases and life expectancy is extended worldwide. In this work we have exploited the radiation-tissue interaction properties of hard x-rays--very low absorption and scattering--to map distinct lesions on entire eye lenses. At the used synchrotron x-ray photon energy of 20 keV (wavelength lambda=0.062 nm), scattering and refraction are angular resolved effects. It allows the employed x-ray image technique to efficiently characterize two types of lesions in eye lenses under cataractogenesis: distributions of tiny scattering centers and extended areas of fiber cell compaction. The data collection procedure is relatively fast; allowing dozens of samples to be totally imaged (scattering, refraction, and mass absorption images) in a single day of synchrotron beam time. More than 60 cases of canine cataract, not correlated to specific causes, were investigated in this first application of x-rays to image entire lenses. Cortical opacity cases, or partial opacity, could be related to the presence of calcificated tissues at the cortical areas, clearly visible in the images, whose elemental contents were verified by micro x-ray fluorescence as very rich in calcium. Calcificated tissues were also observed at nuclear areas in some cases of hypermature cataract. Total opacity cases without distinguishable amount of scattering centers consist in 70% of the analyzed cases, where remarkable fissure marks owing to extended areas of fiber

  15. New BaBrCl: Eu~(2+) phosphors for X-ray image recording

    Institute of Scientific and Technical Information of China (English)

    WANG YongSheng; MENG XianGuo; HE DaWei

    2009-01-01

    Photostimulated luminescence (PSL) is observed in BaBrCh Eu~(2+) after X-ray irradiation at room tem-perature. It is suggested by PSL stimulation spectrum and difference absorption spectrum (DAS) that F centers are formed upon X-ray irradiation and both spectra show two bands which are centered at about 550 nm and 675 nm respectively. This enables the use of semiconductor light-emitting diodes (LED) instead of gas lasers for photostimulation. The PSL intensity increases linearly with X-ray irra-diation dose increasing, and the conversion efficiency is 29% that for the standard commercial storage phosphor BaFBr:Eu from Fuji imaging plate.

  16. Omega Dante Soft X-Ray Power Diagnostic Component Calibration at the National Synchrotron Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, K; Weber, F; Dewald, E; Glenzer, S; Landen, O; Turner, R; Waide, P

    2004-04-15

    The Dante soft x-ray spectrometer installed on the Omega laser facility at the Laboratory for Laser Energetics, University of Rochester is a twelve-channel filter-edge defined x-ray power diagnostic. It is used to measure the absolute flux from direct drive, indirect drive (hohlraums) and other plasma sources. Calibration efforts using two beam lines, U3C (50eV-1keV) and X8A (1keV-6keV) at the National Synchrotron Light Source (NSLS) have been implemented to insure the accuracy of these measurements. We have calibrated vacuum x-ray diodes, mirrors and filters.

  17. Omega Dante soft x-ray power diagnostic component calibration at the National Synchrotron Light Source

    Science.gov (United States)

    Campbell, K. M.; Weber, F. A.; Dewald, E. L.; Glenzer, S. H.; Landen, O. L.; Turner, R. E.; Waide, P. A.

    2004-10-01

    The Dante soft x-ray spectrometer, installed on the Omega laser facility at the Laboratory for Laser Energetics, University of Rochester, is a 12-channel filter-edge defined soft x-ray power diagnostic. It is used to measure the spectrally resolved, absolute flux from direct drive, indirect drive (hohlraums) and other plasma sources. Dante component calibration efforts using two beam lines, U3C (50 eV-1 keV) and X8A (1-6 keV) at the National Synchrotron Light Source have been implemented to improve the accuracy of these measurements. We have calibrated metallic vacuum x-ray diodes, mirrors and filters.

  18. X-Ray Attenuation Cell

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D.; Toor, A.

    2000-03-03

    To minimize the pulse-to-pulse variation, the LCLS FEL must operate at saturation, i.e. 10 orders of magnitude brighter spectral brilliance than 3rd-generation light sources. At this intensity, ultra-high vacuums and windowless transport are required. Many of the experiments, however, will need to be conducted at a much lower intensity thereby requiring a reliable means to reduce the x-ray intensity by many orders of magnitude without increasing the pulse-to-pulse variation. In this report we consider a possible solution for controlled attenuation of the LCLS x-ray radiation. We suggest using for this purpose a windowless gas-filled cell with the differential pumping. Although this scheme is easily realizable in principle, it has to be demonstrated that the attenuator can be made short enough to be practical and that the gas loads delivered to the vacuum line of sight (LOS) are acceptable. We are not going to present a final, optimized design. Instead, we will provide a preliminary analysis showing that the whole concept is robust and is worth further study. The spatial structure of the LCLS x-ray pulse at the location of the attenuator is shown in Fig. 1. The central high-intensity component, due to the FEL, has a FWHM of {approx}100 {micro}m. A second component, due to the undulator's broad band spontaneous radiation is seen as a much lower intensity ''halo'' with a FWHM of 1 mm. We discuss two versions of the attenuation cell. The first is directed towards a controlled attenuation of the FEL up to the 4 orders of magnitude in the intensity, with the spontaneous radiation halo being eliminated by collimators. In the second version, the spontaneous radiation is not sacrificed but the FEL component (as well as the first harmonic of the spontaneous radiation) gets attenuated by a more modest factor up to 100. We will make all the estimates assuming that the gas used in the attenuator is Xenon and that the energy of the FEL is 8.25 keV. At

  19. A Comprehensive Archival Chandra Search for X-ray Emission from Ultracompact Dwarf Galaxies

    CERN Document Server

    Pandya, Viraj; Greene, Jenny E

    2016-01-01

    We present the first comprehensive archival study of the X-ray properties of ultracompact dwarf (UCD) galaxies, with the goal of identifying weakly-accreting central black holes in UCDs. Our study spans 578 UCDs distributed across thirteen different host systems, including clusters, groups, fossil groups, and isolated galaxies. Of the 336 spectroscopically-confirmed UCDs with usable archival Chandra imaging observations, 21 are X-ray-detected. Imposing a completeness limit of $L_X>2\\times10^{38}$ erg s$^{-1}$, the global X-ray detection fraction for the UCD population is $\\sim3\\%$. Of the 21 X-ray-detected UCDs, seven show evidence of long-term X-ray time variability on the order of months to years. X-ray-detected UCDs tend to be more compact than non-X-ray-detected UCDs, and we find tentative evidence that the X-ray detection fraction increases with surface luminosity density and global stellar velocity dispersion. The X-ray emission of UCDs is fully consistent with arising from a population of low-mass X-ra...

  20. Controlling X-rays With Light

    Energy Technology Data Exchange (ETDEWEB)

    Glover, Ernie; Hertlein, Marcus; Southworth, Steve; Allison, Tom; van Tilborg, Jeroen; Kanter, Elliot; Krassig, B.; Varma, H.; Rude, Bruce; Santra, Robin; Belkacem, Ali; Young, Linda

    2010-08-02

    Ultrafast x-ray science is an exciting frontier that promises the visualization of electronic, atomic and molecular dynamics on atomic time and length scales. A largelyunexplored area of ultrafast x-ray science is the use of light to control how x-rays interact with matter. In order to extend control concepts established for long wavelengthprobes to the x-ray regime, the optical control field must drive a coherent electronic response on a timescale comparable to femtosecond core-hole lifetimes. An intense field is required to achieve this rapid response. Here an intense optical control pulse isobserved to efficiently modulate photoelectric absorption for x-rays and to create an ultrafast transparency window. We demonstrate an application of x-ray transparencyrelevant to ultrafast x-ray sources: an all-photonic temporal cross-correlation measurement of a femtosecond x-ray pulse. The ability to control x-ray/matterinteractions with light will create new opportunities at current and next-generation x-ray light sources.

  1. Diffractive X-Ray Telescopes

    Science.gov (United States)

    Skinner, Gerald K.

    2010-01-01

    Diffractive X-ray telescopes, using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution many orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro-arc-seconds or even better, that would allow, for example, imaging of the distorted spacetime in the immediate vicinity of the super-massive black holes in the center of active galaxies. What then is precluding their immediate adoption? Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history, and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed.

  2. Diffractive X-ray Telescopes

    CERN Document Server

    Skinner, Gerald K

    2010-01-01

    Diffractive X-ray telescopes using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution several orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro-arc-seconds or even better, that would allow, for example, imaging of the distorted space- time in the immediate vicinity of the super-massive black holes in the center of active galaxies What then is precluding their immediate adoption? Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history, and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed.

  3. Tabletop Ultrabright Kiloelectronvolt X-Ray Sources from Xe and Kr Hollow Atom States

    Science.gov (United States)

    Sankar, Poopalasingam

    Albert Einstein, the father of relativity, once said, "Look deep into nature, and then you will understand everything better". Today available higher resolution tabletop tool to look deep into matters and living thing is an x-ray source. Although the available tabletop x-rays sources of the 20th century, such as the ones used for medical or dental x-rays are tremendously useful for medical diagnostics and industry, a major disadvantage is that they have low quality skillful brightness, which limits its resolution and accuracy. In the other hand, x-ray free-electrons laser (XFEL) and synchrotron radiation sources provided extreme bright x-rays. However, number of applications of XFEL and synchrotron such as medical and industrials, has been hampered by their size, complexity, and cost. This has set a goal of demonstrating x-ray source with enough brightness for potential applications in an often-called tabletop compact x-ray source that could be operated in university laboratory or hospitals. We have developed two tabletop ultrabright keV x-ray sources, one from a Xe hollow-atom states and the other one from Kr hollow-atom stares with a unique characteristic that makes them complementary to currently-available extreme-light sources; XFEL, and synchrotron x-ray source. Upgraded tabletop ultra-fast KrF* pump-laser interacts with target rare-gas clusters and produces hollow-atom states, which later coherently collapse to the empty inner-shell and thereby generate keV x-ray radiation. The KrF* pump-laser beam is self-focused and forms a self-channel to guide the generated x-ray radiation in the direction of the pump-laser beam to produce directed x-ray beam. Xe (M) x-ray source operates at 1.2-1.6 nm wavelength while the Kr(L) x-ray source operates in 600-800 pm wavelength. System is mounted upon 3 optical-tables (5´x12´) with two KrF amplifiers at a repetition rate of 0.1 Hz. A lower bound for brightness value for both Xe and Kr x-ray sources is 1026 photons s-1mm-2

  4. Installation of soft X-ray array diagnostics and its application to tomography reconstruction using synthetic KSTAR X-ray images

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Hun; Jang, Juhyeok; Hong, Joohwan; Jang, Siwon; Choe, Wonho, E-mail: wchoe@kaist.ac.kr [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Impurity and Edge Research Center, Daejeon 305-701 (Korea, Republic of); Pacella, D.; Romano, A.; Gabellieri, L. [Associazione Euratom-ENEA sulla Fusione, C.R. Frascati 00044 (Italy); Kim, Junghee [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Major of Nuclear Fusion and Plasma Science Department, Korea University of Science and Technology, Daejeon 305-350 (Korea, Republic of)

    2014-11-15

    Four-array system of soft X-ray diagnostics was installed on KSTAR tokamak. Each array has 32 viewing chords of two photo-diode array detectors with spatial resolution of 2 cm. To estimate signals from the soft X-ray radiation power, typical n{sub e}, T{sub e}, and argon impurity line radiation profiles in KSTAR are chosen. The photo-diodes were absolutely calibrated as a function of the incident photon energy in 2–40 keV range with a portable X-ray tube. Two-dimensional T{sub e} image properties by multi-energy method were simulated and visualized with six combinations of beryllium filter sets within the dynamic range of signal ratio.

  5. Large area x-ray detectors for cargo radiography

    Science.gov (United States)

    Bueno, C.; Albagli, D.; Bendahan, J.; Castleberry, D.; Gordon, C.; Hopkins, F.; Ross, W.

    2007-04-01

    Large area x-ray detectors based on phosphors coupled to flat panel amorphous silicon diode technology offer significant advances for cargo radiologic imaging. Flat panel area detectors provide large object coverage offering high throughput inspections to meet the high flow rate of container commerce. These detectors provide excellent spatial resolution when needed, and enhanced SNR through low noise electronics. If the resolution is reduced through pixel binning, further advances in SNR are achievable. Extended exposure imaging and frame averaging enables improved x-ray penetration of ultra-thick objects, or "select-your-own" contrast sensitivity at a rate many times faster than LDAs. The areal coverage of flat panel technology provides inherent volumetric imaging with the appropriate scanning methods. Flat panel area detectors have flexible designs in terms of electronic control, scintillator selection, pixel pitch, and frame rates. Their cost is becoming more competitive as production ramps up for the healthcare, nondestructive testing (NDT), and homeland protection industries. Typically used medical and industrial polycrystalline phosphor materials such as Gd2O2S:Tb (GOS) can be applied to megavolt applications if the phosphor layer is sufficiently thick to enhance x-ray absorption, and if a metal radiator is used to augment the quantum detection efficiency and reduce x-ray scatter. Phosphor layers ranging from 0.2-mm to 1-mm can be "sandwiched" between amorphous silicon flat panel diode arrays and metal radiators. Metal plates consisting of W, Pb or Cu, with thicknesses ranging from 0.25-mm to well over 1-mm can be used by covering the entire area of the phosphor plate. In some combinations of high density metal and phosphor layers, the metal plate provides an intensification of 25% in signal due to electron emission from the plate and subsequent excitation within the phosphor material. This further improves the SNR of the system.

  6. Comparative study of X-ray emission from plasma focus relative to different preionization schemes

    Science.gov (United States)

    Ahmad, S.; Qayyum, A.; Hassan, M.; Zakaullah, M.

    2017-07-01

    A 2.7-kJ Mather-type plasma focus has been investigated for X-ray emission with preionization produced by an α-source, a β-source, and a shunt resistor. Time-resolved and time integrated measurements are carried out using a PIN-diode-based X-ray spectrometer and pinhole camera. The β-source (28Ni63) assisted preionization enhances the X-ray emission up to 25%, while preionization induced by depleted uranium (92U238) increases both Cu-Kα and total X-ray yield of about 100%. The preionization caused by the optimum shunt resistor enhances the Cu-Kα and total X-ray yield of about 53%. It is found that preionization also broadens the working pressure range for the high X-ray yield and improves the shot-to-shot reproducibility of the system. Pinhole images reveal that the X-ray emission from the anode tip is dominant owing to impact of electron bombardment, while the X-ray emission from hot spots is also visible.

  7. Improved x-ray spectroscopy with room temperature CZT detectors.

    Science.gov (United States)

    Fritz, Shannon G; Shikhaliev, Polad M; Matthews, Kenneth L

    2011-09-07

    Compact, room temperature x-ray spectroscopy detectors are of interest in many areas including diagnostic x-ray imaging, radiation protection and dosimetry. Room temperature cadmium zinc telluride (CZT) semiconductor detectors are promising candidates for these applications. One of the major problems for CZT detectors is low-energy tailing of the energy spectrum due to hole trapping. Spectral post-correction methods to correct the tailing effect do not work well for a number of reasons; thus it is advisable to eliminate the hole trapping effect in CZT using physical methods rather than correcting an already deteriorated energy spectrum. One method is using a CZT detector with an electrode configuration which modifies the electric field in the CZT volume to decrease low-energy tailing. Another method is to irradiate the CZT surface at a tilted angle, which modifies depth of interaction to decrease low-energy tailing. Neither method alone, however, eliminates the tailing effect. In this work, we have investigated the combination of modified electric field and tilted angle irradiation in a single detector to further decrease spectral tailing. A planar CZT detector with 10 × 10 × 3 mm³ size and CZT detector with 5 × 5 × 5 mm³ size and cap-shaped electrode were used in this study. The cap-shaped electrode (referred to as CAPture technology) modifies the electric field distribution in the CZT volume and decreases the spectral tailing effect. The detectors were investigated at 90° (normal) and 30° (tilted angle) irradiation modes. Two isotope sources with 59.6 and 122 keV photon energies were used for gamma-ray spectroscopy experiments. X-ray spectroscopy was performed using collimated beams at 60, 80 and 120 kVp tube voltages, in both normal and tilted angle irradiation. Measured x-ray spectra were corrected for K x-ray escape fractions that were calculated using Monte Carlo methods. The x-ray spectra measured with tilted angle CAPture detector at 60, 80 and 120

  8. [Lithium fluoride: not only dosimetry, but also X ray imaging?].

    Science.gov (United States)

    Bonfigli, F; Campurra, G; Montereali, R M; Vincenti, M A

    2011-01-01

    Lithium fluoride is a well known material used for dosimetry. In the last years it was proposed and tested also as imaging detector for X-ray microscopy. Optical microscopy represents the oldest and most used imaging technique for medicine and cell biology investigations; later other imaging techniques, including electron microscopy, were introduced. The recent technological developments in the soft X-ray field, concerning sources, optics and detectors, have been increased the interest of physicians and biologists for X-ray microscopy, mainly to obtain in vivo imaging of cells. An innovative imaging detector has been proposed and tested by researchers of C.R. ENEA Frascati, as handy, versatile and compact plate for soft X-ray imaging with very high spatial resolution, wide dynamic range, large field of view and easy to read by an optical microscope. Scientific and technological applications can be foreseen in several fields, as nanotechnologies, materials, photonics, life science and microscopy (including cell imaging, also in vivo).

  9. Development of microchannel plate x-ray optics

    Science.gov (United States)

    Kaaret, Philip

    1995-01-01

    The goal of this research program was to develop a novel technique for focusing x-rays based on the optical system of a lobster's eye. A lobster eye employs many closely packed reflecting surfaces arranged within a spherical or cylindrical shell. These optics have two unique properties: they have unlimited fields of view and can be manufactured via replication of identical structures. Because the angular resolution is given by the ratio of the size of the individual optical elements to the focal length, optical elements with size on the order of one hundred microns are required to achieve good angular resolution with a compact telescope. We employed anisotropic etching of single crystal silicon wafers for the fabrication of micron-scale optical elements. This technique, commonly referred to as silicon micromachining, is based on silicon fabrication techniques developed by the microelectronics industry. We have succeeded in producing silicon lenses with a geometry suitable for a 1-d focusing x-ray optics. These lenses have an aspect ratio (40:1) suitable for x-ray reflection and have very good optical surface alignment. We have developed a number of process refinements which improved the quality of the lens geometry and the repeatability of the etch process. In addition to the silicon fabrication, an x-ray beam line was constructed at Columbia for testing the optics. Most recently, we have done several experiments to find the fundamental limits that the anisotropic etch process placed on the etched surface roughness.

  10. A multipurpose tunable source of monochromatic X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Chesta, M.A.; Plivelic, T.S.; Mainardi, R.T. E-mail: mainardi@mail.famaf.unc.edu.ar

    2002-02-01

    The emission of characteristic X-rays from any chemical element induced by beta particles of high energy (10{sup 5}-10{sup 6} eV) is much higher than photon excitation, with the possible exception of selective excitation. This work describes the properties of a variable energy X-ray generator that uses {sup 90}Sr as a source of beta particles and a multitarget array in a transparent source geometry. This compact device provides, through suitable selection of the target material, over 30 monoenergetic lines spread uniformly in the energy range of between 6 and 100 keV. The X-ray photon flux thus generated has an intensity of between 10{sup 2}-10{sup 3} s{sup -1} sr{sup -1} per MBq of the beta source activity. With this single beta source, the X-ray yield is higher as compared with generators using {sup 241}Am or other X- or gamma-ray sources with the same activity, and the line's intensity changes by less than a factor of three over the whole energy range.

  11. Suzaku X-ray Observations of the Fermi Bubbles' Edges

    CERN Document Server

    Kataoka, J; Totani, T; Sofue, Y; Stawarz, L; Takahashi, Y; Takeuchi, Y; Tsunemi, H; Kimura, M; Takei, Y; Cheung, C C; Inoue, Y; Nakamori, T

    2013-01-01

    We present Suzaku X-ray observations along two edge regions of the Fermi Bubbles, with eight ~20 ksec pointings across the northern part of the North Polar Spur (NPS) surrounding the north bubble and six across the southernmost edge of the south bubble. After removing compact X-ray features, diffuse X-ray emission is clearly detected and is well reproduced by a three-component spectral model consisting of unabsorbed thermal emission (temperature kT ~0.1 keV from the Local Bubble (LB), absorbed kT ~0.3 keV thermal emission related to the NPS and/or Galactic Halo (GH), and a power-law component at a level consistent with the cosmic X-ray background. The emission measure (EM) of the 0.3 keV plasma decreases by ~50% toward the inner regions of the north-east bubble, with no accompanying temperature change. However, such a jump in the EM is not clearly seen in the south bubble data. While it is unclear if the NPS originates from a nearby supernova remnant or is related to previous activity within/around the Galact...

  12. Handbook of X-Ray Data

    CERN Document Server

    Zschornack, Günter

    2007-01-01

    This sourcebook is intended as an X-ray data reference for scientists and engineers working in the field of energy or wavelength dispersive X-ray spectrometry and related fields of basic and applied research, technology, or process and quality controlling. In a concise and informative manner, the most important data connected with the emission of characteristic X-ray lines are tabulated for all elements up to Z = 95 (Americium). This includes X-ray energies, emission rates and widths as well as level characteristics such as binding energies, fluorescence yields, level widths and absorption edges. The tabulated data are characterized and, in most cases, evaluated. Furthermore, all important processes and phenomena connected with the production, emission and detection of characteristic X-rays are discussed. This reference book addresses all researchers and practitioners working with X-ray radiation and fills a gap in the available literature.

  13. X-ray data booklet. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, D. (ed.)

    1986-04-01

    A compilation of data is presented. Included are properties of the elements, electron binding energies, characteristic x-ray energies, fluorescence yields for K and L shells, Auger energies, energy levels for hydrogen-, helium-, and neonlike ions, scattering factors and mass absorption coefficients, and transmission bands of selected filters. Also included are selected reprints on scattering processes, x-ray sources, optics, x-ray detectors, and synchrotron radiation facilities. (WRF)

  14. X-ray generation using carbon nanotubes

    OpenAIRE

    Parmee, Richard J.; Collins, Clare M.; William I. Milne; Cole, Matthew T.

    2015-01-01

    This is the final published version. It first appeared at http://www.nanoconvergencejournal.com/content/2/1/1. Since the discovery of X-rays over a century ago the techniques applied to the engineering of X-ray sources have remained relatively unchanged. From the inception of thermionic electron sources, which, due to simplicity of fabrication, remain central to almost all X-ray applications, there have been few fundamental technological advances. However, with the emergence of ever more d...

  15. Applications of soft x-ray lasers

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, C.H.

    1993-08-01

    The high brightness and short pulse duration of soft x-ray lasers provide unique advantages for novel applications. Imaging of biological specimens using x-ray lasers has been demonstrated by several groups. Other applications to fields such as chemistry, material science, plasma diagnostics, and lithography are beginning to emerge. We review the current status of soft x-ray lasers from the perspective of applications, and present an overview of the applications currently being developed.

  16. Observation of femtosecond X-ray interactions with matter using an X-ray-X-ray pump-probe scheme.

    Science.gov (United States)

    Inoue, Ichiro; Inubushi, Yuichi; Sato, Takahiro; Tono, Kensuke; Katayama, Tetsuo; Kameshima, Takashi; Ogawa, Kanade; Togashi, Tadashi; Owada, Shigeki; Amemiya, Yoshiyuki; Tanaka, Takashi; Hara, Toru; Yabashi, Makina

    2016-02-01

    Resolution in the X-ray structure determination of noncrystalline samples has been limited to several tens of nanometers, because deep X-ray irradiation required for enhanced resolution causes radiation damage to samples. However, theoretical studies predict that the femtosecond (fs) durations of X-ray free-electron laser (XFEL) pulses make it possible to record scattering signals before the initiation of X-ray damage processes; thus, an ultraintense X-ray beam can be used beyond the conventional limit of radiation dose. Here, we verify this scenario by directly observing femtosecond X-ray damage processes in diamond irradiated with extraordinarily intense (∼10(19) W/cm(2)) XFEL pulses. An X-ray pump-probe diffraction scheme was developed in this study; tightly focused double-5-fs XFEL pulses with time separations ranging from sub-fs to 80 fs were used to excite (i.e., pump) the diamond and characterize (i.e., probe) the temporal changes of the crystalline structures through Bragg reflection. It was found that the pump and probe diffraction intensities remain almost constant for shorter time separations of the double pulse, whereas the probe diffraction intensities decreased after 20 fs following pump pulse irradiation due to the X-ray-induced atomic displacement. This result indicates that sub-10-fs XFEL pulses enable conductions of damageless structural determinations and supports the validity of the theoretical predictions of ultraintense X-ray-matter interactions. The X-ray pump-probe scheme demonstrated here would be effective for understanding ultraintense X-ray-matter interactions, which will greatly stimulate advanced XFEL applications, such as atomic structure determination of a single molecule and generation of exotic matters with high energy densities.

  17. The Low X-Ray State of LS 5039 / RX J1826.2-1450

    CERN Document Server

    Martocchia, A; Negueruela, I

    2004-01-01

    Recent XMM-Newton and Chandra observations of the high mass X-ray binary LS 5039 / RX J1826.2-1450 caught the source in a faint X-ray state. In contrast with previous RXTE observations, we fail to detect any evidence of iron line emission. We also fail to detect X-ray pulsations. The X-ray spectrum can be well fitted by a simple powerlaw, slightly harder than in previous observations, and does not require the presence of any additional disk or blackbody component. XMM-Newton data imply an X-ray photoelectric absorption ($N_{\\rm H} \\sim 7 \\times 10^{21}$ cm$^{-2}$) consistent with optical reddening, indicating that no strong local absorption occurs at the time of these observations. We discuss possible source emission mechanisms and hypotheses on the nature of the compact object, giving particular emphasis to the young pulsar scenario.

  18. VizieR Online Data Catalog: Intermediate-luminosity X-ray objects catalog (Colbert+, 2002)

    Science.gov (United States)

    Colbert, E. J. M.; Ptak, A. F.

    2002-11-01

    ROSAT, and now Chandra, X-ray images allow studies of extranuclear X-ray point sources in galaxies other than our own. X-ray observations of normal galaxies with ROSAT and Chandra have revealed that off-nuclear, compact, intermediate-luminosity (LX[2-10keV]>=1039erg/s) X-ray objects (IXOs, a.k.a. ULXs [ultraluminous X-ray sources]) are quite common. Here we present a catalog and finding charts for 87 IXOs in 54 galaxies, derived from all of the ROSAT HRI imaging data for galaxies with cz<=5000km/s from the Third Reference Catalog of Bright Galaxies. (2 data files).

  19. Phase-contrast X-ray CT

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Atsushi [Hitachi Ltd., Saitama (Japan). Advanced Research Laboratory; Takeda, Tohoru; Itai, Yuji

    1995-12-01

    Phase-contrast X-ray computed tomography (CT) enabling the observation of biological soft tissues without contrast enhancement has been developed. The X-ray phase shift caused by an object is measured and input to a standard CT reconstruction algorithm. A thousand times increase in the image sensitivity to soft tissues is achieved compared with the conventional CT using absorption contrast. This is because the X-ray phase shift cross section of light elements is about a thousand times larger than the absorption cross section. The phase shift is detected using an X-ray interferometer and computer analyses of interference patterns. Experiments were performed using a synchrotron X-ray source. Excellent image sensitivity is demonstrated in the observation of cancerous rabbit liver. The CT images distinguish cancer lesion from normal liver tissue and, moreover, visualize the pathological condition in the lesion. Although the X-ray energy employed and the present observation area size are not suitable for medical applications as they are, phase-contrast X-ray CT is promising for investigating the internal structure of soft tissue which is almost transparent for X-rays. The high sensitivity also provides the advantage of reducing X-ray doses. (author).

  20. An Imaging X-Ray Polarimetry Mission

    Science.gov (United States)

    Weisskopf, Martin C.; Bellazini, Ronaldo; Costa, Enrico; Ramsey, Brian; O'Dell, Steve; Elsner, Ronald; Pavlov, George; Matt, Giorgio; Kaspi, Victoria; Tennant, Allyn; Coppi, Paolo; Wu, Kinwah; Siegmund, Oswald

    2008-01-01

    Technical progress both in x-ray optics and in polarization-sensitive x-ray detectors, which our groups have pioneered, enables a scientifically powerful---yet inexpensive---dedicated mission for imaging x-ray polarimetry. Such a mission is sufficiently sensitive to measure x-ray (linear) polarization for a broad range of cosmic sources --particularly those involving neutron stars, stellar black holes, and supermassive black holes (active galactic nuclei). We describe the technical elements, discuss a mission concept, and synopsize the important physical and astrophysical questions such a mission would address.

  1. The efficacy of x-ray pelvimetry

    Energy Technology Data Exchange (ETDEWEB)

    Barton, J.J. (Univ. of Illinois, Chicago); Garbaciak, J.A. Jr.; Ryan, G.M., Jr.

    1982-06-01

    Comparison is made of x-ray pelvimetry use on a public and private service in 1974 with experience in 1979, when the clinic service did no x-ray pelvimetry while the private service continued as before. It is concluded that the use of x-ray pelvimetry is inadequate as a predictor of cesarean section because of cephalopelvic disproportion, does not improve neonatal mortality, and poses potential hazards to the mother and fetus. Its use in the management of breech presentations is not currently established by our data. Guidelines are presented for the management of patients in labor without using x-ray pelvimetry.

  2. Symbiotic Stars in X-rays

    Science.gov (United States)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2014-01-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of 9 white dwarf symbiotics that were not previously known to be X-ray sources and one that was previously detected as a supersoft X-ray source. The 9 new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. Swift/XRT detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component, which we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component, which likely arises in a region where low-velocity shocks produce X-ray emission, i.e. a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the alpha/beta/gamma classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new sigma classification for sources with

  3. Ultrashort X-ray pulse science

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Alan Hap [Univ. of California, Berkeley, CA (US). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    1998-05-01

    A variety of phenomena involves atomic motion on the femtosecond time-scale. These phenomena have been studied using ultrashort optical pulses, which indirectly probe atomic positions through changes in optical properties. Because x-rays can more directly probe atomic positions, ultrashort x-ray pulses are better suited for the study of ultrafast structural dynamics. One approach towards generating ultrashort x-ray pulses is by 90° Thomson scattering between terawatt laser pulses and relativistic electrons. Using this technique, the author generated ~ 300 fs, 30 keV (0.4 Å) x-ray pulses. These x-ray pulses are absolutely synchronized with ultrashort laser pulses, allowing femtosecond optical pump/x-ray probe experiments to be performed. Using the right-angle Thomson scattering x-ray source, the author performed time-resolved x-ray diffraction studies of laser-perturbated InSb. These experiments revealed a delayed onset of lattice expansion. This delay is due to the energy relaxation from a dense electron-hole plasma to the lattice. The dense electron-hole plasma first undergoes Auger recombination, which reduces the carrier concentration while maintaining energy content. Longitudinal-optic (LO) phonon emission then couples energy to the lattice. LO phonon decay into acoustic phonons, and acoustic phonon propagation then causes the growth of a thermally expanded layer. Source characterization is instrumental in utilizing ultrashort x-ray pulses in time-resolved x-ray spectroscopies. By measurement of the electron beam diameter at the generation point, the pulse duration of the Thomson scattered x-rays is determined. Analysis of the Thomson scattered x-ray beam properties also provides a novel means of electron bunch characterization. Although the pulse duration is inferred for the Thomson scattering x-ray source, direct measurement is required for other x-ray pulse sources. A method based on the laser-assisted photoelectric effect (LAPE) has been demonstrated as a

  4. Hard X-ray Modulation Telescope

    Institute of Scientific and Technical Information of China (English)

    LU Fangjun

    2011-01-01

    The Hard X-ray Modulation Telescope (HXMT) will be China's first astronomical satellite. On board HXMT there are three kinds of slat-collimated telescopes, the High Energy X-ray Telescope (HE, 20-250 keV, 5000 cm^2), the Medium Energy X-ray Telescope (ME, 5-30 keV, 952 cm^2), and the Low Energy X-ray Telescope (LE, 1-15 keV, 384 cm^2).

  5. Ultrashort X-ray pulse science

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Alan Hap [Univ. of California, Berkeley, CA (US). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    1998-05-01

    A variety of phenomena involves atomic motion on the femtosecond time-scale. These phenomena have been studied using ultrashort optical pulses, which indirectly probe atomic positions through changes in optical properties. Because x-rays can more directly probe atomic positions, ultrashort x-ray pulses are better suited for the study of ultrafast structural dynamics. One approach towards generating ultrashort x-ray pulses is by 90{sup o} Thomson scattering between terawatt laser pulses and relativistic electrons. Using this technique, the author generated {approx} 300 fs, 30 keV (0.4 {angstrom}) x-ray pulses. These x-ray pulses are absolutely synchronized with ultrashort laser pulses, allowing femtosecond optical pump/x-ray probe experiments to be performed. Using the right-angle Thomson scattering x-ray source, the author performed time-resolved x-ray diffraction studies of laser-perturbated InSb. These experiments revealed a delayed onset of lattice expansion. This delay is due to the energy relaxation from a dense electron-hole plasma to the lattice. The dense electron-hole plasma first undergoes Auger recombination, which reduces the carrier concentration while maintaining energy content. Longitudinal-optic (LO) phonon emission then couples energy to the lattice. LO phonon decay into acoustic phonons, and acoustic phonon propagation then causes the growth of a thermally expanded layer. Source characterization is instrumental in utilizing ultrashort x-ray pulses in time-resolved x-ray spectroscopies. By measurement of the electron beam diameter at the generation point, the pulse duration of the Thomson scattered x-rays is determined. Analysis of the Thomson scattered x-ray beam properties also provides a novel means of electron bunch characterization. Although the pulse duration is inferred for the Thomson scattering x-ray source, direct measurement is required for other x-ray pulse sources. A method based on the laser-assisted photoelectric effect (LAPE) has

  6. An Imaging X-Ray Polarimetry Mission

    Science.gov (United States)

    Weisskopf, Martin C.; Bellazini, Ronaldo; Costa, Enrico; Ramsey, Brian; O'Dell, Steve; Elsner, Ronald; Pavlov, George; Matt, Giorgio; Kaspi, Victoria; Tennant, Allyn; hide

    2008-01-01

    Technical progress both in x-ray optics and in polarization-sensitive x-ray detectors, which our groups have pioneered, enables a scientifically powerful---yet inexpensive---dedicated mission for imaging x-ray polarimetry. Such a mission is sufficiently sensitive to measure x-ray (linear) polarization for a broad range of cosmic sources --particularly those involving neutron stars, stellar black holes, and supermassive black holes (active galactic nuclei). We describe the technical elements, discuss a mission concept, and synopsize the important physical and astrophysical questions such a mission would address.

  7. X-rays from the youngest stars

    Science.gov (United States)

    Feigelson, Eric D.

    1994-01-01

    The X-ray properties of classical and weak-lined T Tauri stars are briefly reviewed, emphasizing recent results from the ROSAT satellite and prospects for ASCA. The interpretation of the high level of T Tauri X-rays as enhanced solar-type magnetic activity is discussed and criticized. The census of X-ray emitters is significantly increasing estimates of galactic star formation efficiency, and X-ray emission may be important for self-regulation of star formation. ASCA images will detect star formation regions out to several kiloparsecs and will study the magnetically heated plasma around T Tauri stars. However, images will often suffer from crowding effects.

  8. X-ray emission from comets.

    Science.gov (United States)

    Cravens, T E

    2002-05-10

    The discovery of x-ray emission from comet Hyakutake was surprising given that comets are known to be cold. Observations by x-ray satellites such as the Röntgen Satellite (ROSAT) indicate that x-rays are produced by almost all comets. Theoretical and observational work has demonstrated that charge-exchange collisions of highly charged solar wind ions with cometary neutral species can explain this emission. X-ray observations of comets and other solar system objects may be used to determine the structure and dynamics of the solar wind.

  9. X-ray pulsar rush in 1998

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, K.; Tsujimoto, K.; Nishiuchi, Mamiko; Yokogawa, J.; Koyama, K. [Kyoto Univ., Faculty of Science, Kyoto (Japan)

    1999-08-01

    We present recent remarkable topics about discoveries of X-ray pulsars. 1. Pulsations from two Soft Gamma-ray Repeaters: These pulsars have enormously strong magnetic field (B {approx} 10{sup 15} G), thus these are called as 'magnetar', new type of X-ray pulsars. 2. New Crab-like pulsars: These discoveries lead to suggesting universality of Crab-like pulsars. 3. An X-ray bursting millisecond pulsar: This is strong evidence for the recycle theory of generating radio millisecond pulsars. 4. X-ray pulsar rush in the SMC: This indicates the younger star formation history in the SMC. (author)

  10. An ultra compact laser diode source for integration in a handheld point-of-care photoacoustic scanner

    Science.gov (United States)

    Kohl, A.; Canal, C.; Laugustin, A.; Rabot, O.

    2016-03-01

    Photoacoustics is a novel medical imaging technique with high potential for early detection of different diseases such as skin cancer or rheumatology. It is a hybrid modality with pulsed laser light for excitation of the tissue, and ultrasound as response. One of the hurdles for its introduction into the clinic, or even in clinical pilot studies and larger trials, is the bulkiness and price of existing photoacoustic systems. This presentation describes how recent developments in diode laser technology lead to a compact ultrasound scanner with built-in photoacoustic functionality. This is a key for the introduction of photoacoustic technology in the clinic and future point of care systems. We have developed a diode laser system and driver that deliver pulse energies which up to now were only achievable with Nd:YAG lasers. The efficiency and compactness allows integration in a handheld probe. The paper will highlights the laser technology and its radical integration with a medical ultrasound scanner, leading to a first prototype for clinical pilot studies.

  11. Observational Aspects of Hard X-ray Polarimetry

    Science.gov (United States)

    Chattopadhyay, Tanmoy

    2016-04-01

    of such hard X-ray telescopes, which may provide sensitive polarization measurements due to flux concentration in hard X-rays with a very low background. On the other hand, such a configuration ensures implementation of an optimized geometry close to an ideal one for the Compton polarimeters. In this context, we initiated the development of a focal plane Compton polarimeter, consisting of a plastic scatterer surrounded by a cylindrical array of CsI(Tl) scintillators. Geant-4 simulations of the planned configuration estimates 1% MDP for a 100 mCrab source in 1 million seconds of exposure. Sensitivity of the instrument is found to be critically dependent on the lower energy detection limit of the plastic scatterer; lower the threshold, better is the sensitivity. In the actual experiment, the plastic is readout by a photomultiplier tube procured from Saint-Gobain. We carried out extensive experiments to characterize the plastic especially for lower energy depositions. The CsI(Tl) scintillators are readout by Si photomultipliers (SiPM). SiPMs are small in size and robust and therefore provide the compactness necessary for the designing of focal plane detectors. Each of the CsI(Tl)-SiPM systems was characterized precisely to estimate their energy threshold and detection probability along the length of the scintillators away from SiPM. Finally, we integrated the Compton polarimeter and tested its response to polarized and unpolarized radiation and compared the experimental results with Geant-4 simulation. Despite the growing realization of the scientific values of X-ray polarimetry and the efforts in developing sensitive X-ray polarimeters, there has not been a single dedicated X-ray polarimetry mission planned in near future. In this scenario, it is equally important to attempt polarization measurements from the existing or planned instruments which are not meant for X-ray polarization measurements but could be sensitive to it. There have been several attempts in past in

  12. An efficient photoelectric X-ray Polarimeter for the study of Black Holes and Neutron Stars

    CERN Document Server

    Costa, E; Bellazzini, R; Brez, A; Lumb, N; Spandre, G; Costa, Enrico; Soffitta, Paolo; Bellazzini, Ronaldo; Brez, Alessandro; Lumb, Nicholas; Spandre, Gloria

    2001-01-01

    In astronomy there are basically four kinds of observations to extract the information carried by electromagnetic radiation: photometry, imaging, spectroscopy and polarimetry. By optimal exploitation of the first three techniques, X-ray astronomy has been able to unveil the violent world of compact high energy sources. Here we report on a new instrument that brings high efficiency also to X-ray polarimetry, the last unexplored field of X-ray astronomy. It will then be possible to resolve the internal structures of compact sources which otherwise would remain inaccessible, even to X-ray interferometry1. Polarimetry could provide a direct, visual picture of the state of matter under extreme magnetic and gravitational fields by measuring the radiation polarized through interaction with the highly asymmetric matter distribution (accretion disk) and with the magnetic field. The new instrument derives the polarization information from the track of the photoelectrons imaged by a finely subdivided gas detector. Its g...

  13. Muonic X-ray spectroscopy: Effect of the presence of protons on X-ray production

    National Research Council Canada - National Science Library

    Mohamadsalehi, F; Gheisari, R; Rahimi, N

    2016-01-01

    ... . The target has a high efficiency for analyzing characteristic X-rays in ion implantation. To predict the effect of the presence of protons on X-ray production, we have proposed a new kinetic schema...

  14. SMM X-ray polychromator

    Science.gov (United States)

    Strong, Keith T.; Haisch, Bernhard M. (Compiler); Lemen, James R. (Compiler); Acton, L. W.; Bawa, H. S.; Claflin, E. S.; Freeland, S. L.; Slater, G. L.; Kemp, D. L.; Linford, G. A.

    1988-01-01

    The range of observing and analysis programs accomplished with the X-Ray Polychromator (XRP) instruments during the decline of solar cycle 21 and the rise of the solar cycle 22 is summarized. Section 2 describes XRP operations and current status. This is meant as a guide on how the instrument is used to obtain data and what its capabilities are for potential users. The science section contains a series of representative abstracts from recently published papers on major XRP science topics. It is not meant to be a complete list but illustrates the type of science that can come from the analysis of the XRP data. There then follows a series of appendixes that summarize the major data bases that are available. Appendix A is a complete bibliography of papers and presentations produced using XRP data. Appendix B lists all the spectroscopic data accumulated by the Flat Crystal Spectrometer (FCS). Appendix C is a compilation of the XRP flare catalogue for events equivalent to a GOES C-level flare or greater. It lists the start, peak and end times as well as the peak Ca XIX flux.

  15. X-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kalender, Willi A [Institute of Medical Physics, University Erlangen-Nuernberg, Henkestr. 91, D-91052 Erlangen (Germany)

    2006-07-07

    X-ray computed tomography (CT), introduced into clinical practice in 1972, was the first of the modern slice-imaging modalities. To reconstruct images mathematically from measured data and to display and to archive them in digital form was a novelty then and is commonplace today. CT has shown a steady upward trend with respect to technology, performance and clinical use independent of predictions and expert assessments which forecast in the 1980s that it would be completely replaced by magnetic resonance imaging. CT not only survived but exhibited a true renaissance due to the introduction of spiral scanning which meant the transition from slice-by-slice imaging to true volume imaging. Complemented by the introduction of array detector technology in the 1990s, CT today allows imaging of whole organs or the whole body in 5 to 20 s with sub-millimetre isotropic resolution. This review of CT will proceed in chronological order focussing on technology, image quality and clinical applications. In its final part it will also briefly allude to novel uses of CT such as dual-source CT, C-arm flat-panel-detector CT and micro-CT. At present CT possibly exhibits a higher innovation rate than ever before. In consequence the topical and most recent developments will receive the greatest attention. (review)

  16. Technical Development of Profile Measurement for the Soft X-Ray Via Compton Backward Scattering

    CERN Document Server

    Saito, Taku; Hayano, Hitoshi; Hidume, Kentaro; Kashiwagi, Shigeru; Kuroda, Ryunosuke; Minamiguchi, Shuichi; Oshima, Akihiro; Ueyama, Daisuke; Urakawa, Junji; Washio, Masakazu

    2005-01-01

    A compact X-ray source is called for such various fields as material development, biological science, and medical treatment. At Waseda University, we have already succeeded to generate the soft X-ray of the wavelength within so-called water window region (250-500eV) via Compton backward scattering between 1047nm Nd:YLF laser and 4.2MeV high quality electron beam. Although this method equips some useful characters, e.g. high intensity, short pulse, energy variableness, etc, the X-ray generating system is compact enough to fit in tabletop size. In the next step, there rises two principal tasks, that is, to make the soft X-ray intensity higher, and to progress X-ray profile measurement techniques as preliminary experiments for biomicroscopy. Specifically, we utilize two-pass amp for the former, and irradiate X-ray to a resist film which is previously exposed by UV lamp or get images with X-ray CCD for the latter. In this conference, we will show the experimental results and some future plans.

  17. X-ray states of redback millisecond pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Linares, M. [Instituto de Astrofísica de Canarias, c/Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain)

    2014-11-01

    Compact binary millisecond pulsars with main-sequence donors, often referred to as 'redbacks', constitute the long-sought link between low-mass X-ray binaries and millisecond radio pulsars and offer a unique probe of the interaction between pulsar winds and accretion flows. We present a systematic study of eight nearby redbacks, using more than 100 observations obtained with Swift's X-ray Telescope. We distinguish between three main states: pulsar, disk, and outburst states. We find X-ray mode switching in the disk state of PSR J1023+0038 and XSS J12270-4859, similar to what was found in the other redback that showed evidence for accretion: rapid, recurrent changes in X-ray luminosity (0.5-10 keV, L {sub X}), between (6-9) × 10{sup 32} erg s{sup –1} (disk-passive state) and (3-5) × 10{sup 33} erg s{sup –1} (disk-active state). This strongly suggests that mode switching—which has not been observed in quiescent low-mass X-ray binaries—is universal among redback millisecond pulsars in the disk state. We briefly explore the implications for accretion disk truncation and find that the inferred magnetospheric radius in the disk state of PSR J1023+0038 and XSS J12270-4859 lies outside the light cylinder. Finally, we note that all three redbacks that have developed accretion disks have relatively high L {sub X} in the pulsar state (>10{sup 32} erg s{sup –1}).

  18. A Sealed, UHV Compatible, Soft X-ray Detector Utilizing Gas Electron Multipliers

    Energy Technology Data Exchange (ETDEWEB)

    Schaknowski, N.A.; Smith, G.

    2009-10-25

    An advanced soft X-ray detector has been designed and fabricated for use in synchrotron experiments that utilize X-ray absorption spectroscopy in the study a wide range of materials properties. Fluorescence X-rays, in particular C{sub K} at 277eV, are converted in a low pressure gas medium, and charge multiplication occurs in two gas electron multipliers, fabricated in-house from glass reinforced laminate, to enable single photon counting. The detector satisfies a number of demanding characteristics often required in synchrotron environments, such as UHV compatibility compactness, long-term stability, and energy resolving capability.

  19. A simulation study of Tsinghua Thomson scattering X-ray source

    Institute of Scientific and Technical Information of China (English)

    TANG Chuan-Xiang; LI Ren-Kai; HUANG Wen-Hui; CHEN Huai-Bi; DU Ying-Chao; DU Qiang; DU Tai-Bin; HE Xiao-Zhong; HUA Jian-Fei; LIN Yu-Zhen; QIAN Hou-Jun; SHI Jia-Ru; XIANG Dao; YAN Li-Xin; Yu Pei-Cheng

    2009-01-01

    Thomson scattering X-ray sources are compact and afrordable facifities that produce short duration,high brightness X-ray pulses enabling new experimental capacities in ultra-fast science studies,and also medical and industrial applications.Such a facility has been built at the Accelerator Laboratory of Tsinghua University,and upgrade is in progress.In this paper,we present a proposed layout of the upgrade with design parameters by simulation,aiming at high X-ray pulses flux and brightness,and also enabling advanced dynamics studies and applications of the electron beam.Design and construction status of main subsystems are also presented.

  20. The gravitational microlens influence on X-ray spectral line generated by an AGN accretion disc

    Directory of Open Access Journals (Sweden)

    Popović L.Č.

    2001-01-01

    Full Text Available The influence of gravitational microlensing on the X-ray spectral line profiles originated from a relativistic accretion disc has been studied. Using a disc model, we show that microlensing can induce noticeable changes in the line shapes when the Einstein ring radius associated with the microlens is of a size comparable to that of the accretion disc. Taking into account the relatively small size of the X-ray accretion disc, we found that compact objects (of about a Solar mass which belong to the bulge of the host galaxy can produce significant changes in the X-ray line profile of AGN.

  1. LIGHT SOURCE: A simulation study of Tsinghua Thomson scattering X-ray source

    Science.gov (United States)

    Tang, Chuan-Xiang; Li, Ren-Kai; Huang, Wen-Hui; Chen, Huai-Bi; Du, Ying-Chao; Du, Qiang; Du, Tai-Bin; He, Xiao-Zhong; Hua, Jian-Fei; Lin, Yu-Zhen; Qian, Hou-Jun; Shi, Jia-Ru; Xiang, Dao; Yan, Li-Xin; Yu, Pei-Cheng

    2009-06-01

    Thomson scattering X-ray sources are compact and affordable facilities that produce short duration, high brightness X-ray pulses enabling new experimental capacities in ultra-fast science studies, and also medical and industrial applications. Such a facility has been built at the Accelerator Laboratory of Tsinghua University, and upgrade is in progress. In this paper, we present a proposed layout of the upgrade with design parameters by simulation, aiming at high X-ray pulses flux and brightness, and also enabling advanced dynamics studies and applications of the electron beam. Design and construction status of main subsystems are also presented.

  2. Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics

    Science.gov (United States)

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2016-08-09

    A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.

  3. PULSED CAPILLARY DISCHARGE CHARACTERIZATION FOR SOFT X-RAY MICROSCOPY APPLICATIONS

    OpenAIRE

    VALDIVIA LEIVA; MARIA PIA

    2011-01-01

    The hollow cathode capillary discharge is of great interest as a high brightness, short pulse soft x-ray source. This thesis presents work done in the development, modifications, and subsequent characterization of a compact plasma source comprised of a pulsed capillary discharge exploiting hollow cathode dynamics. The low inductance, low stored energy, source is optimized using optical, electrical, x-ray, and e-beam diagnostics. The effect of parameters on the capillary phys...

  4. Simulation of transient collisional x-ray lasers

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Akira; Utsumi, Takayuki; Moribayashi, Kengo; Zhidkov, A.; Kawachi, Tetsuya; Kado, Masataka; Hasegawa, Noboru [Advanced Photon Research Center, Kansai Research Establishment, Japan Atomic Energy Research Institute, Neyagawa, Osaka (Japan)

    2000-03-01

    We have developed a collisional radiative model of electron collisional excited x-ray lasers. We calculate the ion abundance and soft x-ray gain for the Ne-like 3s-3p transition and Ni-like 4d-4p transition, in short pulse laser irradiated plasmas. We combine a detailed model using the atomic data calculated by the HULLAC code and the averaged model based on the screened hydrogenic approximation to develop a compact model. Effects of dielectronic recombination channels and radiation trapping of the lower laser level are investigated. The calculation of the transient gain is carried out using the plasma temperature and density obtained from a 1D hydrodynamics code. (author)

  5. Gravitational waves from remnants of ultraluminous X-ray sources

    CERN Document Server

    Hopman, C; Hopman, Clovis; Zwart, Simon Portegies

    2005-01-01

    Ultraluminous X-ray sources (ULXs) with X-ray luminosities larger than the Eddington luminosity of stellar mass objects may be powered by intermediate mass black holes (IBHs) of masses Mbh~10^3Msun. If IBHs form in young dense stellar clusters, they can be fed by Roche lobe overflow from a tidally captured massive (Ms>10Msun) stellar companion. After the donor leaves the main sequence it forms a compact remnant, which spirals in due to gravitational wave (GW) emission. We show that space based detectors such as the Light Interferometer Space Antenna are likely to detect several of these sources. GW sources stemming from this scenario have small eccentricities which give distinct GW signals. Detection of such a GW signal will unambiguously prove the existence of IBHs, and support the hypothesis that some ULXs are powered by IBHs with captured companions.

  6. High duty cycle inverse Compton scattering X-ray source

    Science.gov (United States)

    Ovodenko, A.; Agustsson, R.; Babzien, M.; Campese, T.; Fedurin, M.; Murokh, A.; Pogorelsky, I.; Polyanskiy, M.; Rosenzweig, J.; Sakai, Y.; Shaftan, T.; Swinson, C.

    2016-12-01

    Inverse Compton Scattering (ICS) is an emerging compact X-ray source technology, where the small source size and high spectral brightness are of interest for multitude of applications. However, to satisfy the practical flux requirements, a high-repetition-rate ICS system needs to be developed. To this end, this paper reports the experimental demonstration of a high peak brightness ICS source operating in a burst mode at 40 MHz. A pulse train interaction has been achieved by recirculating a picosecond CO2 laser pulse inside an active optical cavity synchronized to the electron beam. The pulse train ICS performance has been characterized at 5- and 15- pulses per train and compared to a single pulse operation under the same operating conditions. With the observed near-linear X-ray photon yield gain due to recirculation, as well as noticeably higher operational reliability, the burst-mode ICS offers a great potential for practical scalability towards high duty cycles.

  7. Numerical studies of gravitational accretion from x-ray heated stellar winds. Doctoral thesis

    Energy Technology Data Exchange (ETDEWEB)

    Lupo, J.A.

    1981-12-01

    We present three numerical models of accretion from radiation driven stellar winds onto compact objects in massive X-ray binary systems. The wind is given a velocity profile consistent with a radiatively driven wind, and a 'negative mass' gravitational potential is derived from this profile to represent the wind driving force in the hydrodynamic equations. An X-ray heating model is used which determines the X-ray heating time from the Compton heating time and the known steady state energies for optically thin gas illuminated by X-rays. This allows X-ray heating to be included in the hydrodynamic equations. The X-ray luminosity is held proportional to the accretion rate, assuming that the gravitational potential energy released is equivalent to 10% of the infalling rest-mass energy. A two-dimensional Eulerian computer code is used to solve the equations of motion. Model estimates of the ionization structure, accretion rates and flow characteristics, and the effects of thermal instabilities are discussed. The impact of the X-ray radiation on the wind driving force is demonstrated. Results indicate a possible mechanism for slow X-ray flares, such as observed in 4U1700-37.

  8. Numerical studies of gravitational accretion from x-ray heated stellar winds

    Energy Technology Data Exchange (ETDEWEB)

    Lupo, J.A.

    1981-01-01

    Three numerical models of accretion from radiation driven stellar winds onto compact objects in massive x-ray binary systems are presented. The wind is given a velocity profile consistent with a radiatively driven wind, and a ''negative mass'' gravitational potential is derived from this profile to represent the wind driving force in the hydrodynamic equations. An x-ray heating model is used which determines the x-ray heating time from the Compton heating time and the known steady state energies for optically thin gas illuminated by x-rays. This allows x-ray heating to be included in the hydrodynamic equations. The x-ray luminosity is held proportional to the accretion rate, assuming that the gravitational potential energy released is equivalent to 10% of the infalling rest-mass energy. A two-dimensional Eulerian computer code is used to solve the equations of motion. Model estimates of the ionization structure, accretion rates and flow characteristics, and the effects of thermal instabilities are discussed. The impact of the x-ray radiation on the wind driving force is demonstrated. Results indicate a possible mechanism for slow x-ray flares, such as observed in 4U1700-37.

  9. Shielded radiography with a laser-driven MeV-energy X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shouyuan; Golovin, Grigory [Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Miller, Cameron [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Haden, Daniel; Banerjee, Sudeep; Zhang, Ping; Liu, Cheng; Zhang, Jun; Zhao, Baozhen [Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Clarke, Shaun; Pozzi, Sara [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Umstadter, Donald, E-mail: donald.umstadter@unl.edu [Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States)

    2016-01-01

    We report the results of experimental and numerical-simulation studies of shielded radiography using narrowband MeV-energy X-rays from a compact all-laser-driven inverse-Compton-scattering X-ray light source. This recently developed X-ray light source is based on a laser-wakefield accelerator with ultra-high-field gradient (GeV/cm). We demonstrate experimentally high-quality radiographic imaging (image contrast of 0.4 and signal-to-noise ratio of 2:1) of a target composed of 8-mm thick depleted uranium shielded by 80-mm thick steel, using a 6-MeV X-ray beam with a spread of 45% (FWHM) and 10{sup 7} photons in a single shot. The corresponding dose of the X-ray pulse measured in front of the target is ∼100 nGy/pulse. Simulations performed using the Monte-Carlo code MCNPX accurately reproduce the experimental results. These simulations also demonstrate that the narrow bandwidth of the Compton X-ray source operating at 6 and 9 MeV leads to a reduction of deposited dose as compared to broadband bremsstrahlung sources with the same end-point energy. The X-ray beam’s inherently low-divergence angle (∼mrad) is advantageous and effective for interrogation at standoff distance. These results demonstrate significant benefits of all-laser driven Compton X-rays for shielded radiography.

  10. X-ray lasers: Multicolour emission

    Science.gov (United States)

    Feng, Chao; Deng, Haixiao

    2016-11-01

    The X-ray free-electron laser at the SLAC National Accelerator Laboratory in the US can now generate multicolour X-ray pulses with unprecedented brightness using the fresh-slice technique. The development opens the way to new forms of spectroscopy.

  11. X-Ray Detection Visits the Classroom

    Science.gov (United States)

    Peralta, Luis; Farinha, Ana; Pinto, Ana

    2008-01-01

    Film has been used to detect x-rays since the early days of their discovery by Rontgen. Although nowadays superseded by other techniques, film still provides a cheap means of x-ray detection, making it attractive in high-school or undergraduate university courses. If some sort of quantitative result is required, the film's optical absorbance or…

  12. X-raying clumped stellar winds

    CERN Document Server

    Oskinova, L M; Feldmeier, A

    2008-01-01

    X-ray spectroscopy is a sensitive probe of stellar winds. X-rays originate from optically thin shock-heated plasma deep inside the wind and propagate outwards throughout absorbing cool material. Recent analyses of the line ratios from He-like ions in the X-ray spectra of O-stars highlighted problems with this general paradigm: the measured line ratios of highest ions are consistent with the location of the hottest X-ray emitting plasma very close to the base of the wind, perhaps indicating the presence of a corona, while measurements from lower ions conform with the wind-embedded shock model. Generally, to correctly model the emerging X-ray spectra, a detailed knowledge of the cool wind opacities based on stellar atmosphere models is prerequisite. A nearly grey stellar wind opacity for the X-rays is deduced from the analyses of high-resolution X-ray spectra. This indicates that the stellar winds are strongly clumped. Furthermore, the nearly symmetric shape of X-ray emission line profiles can be explained if t...

  13. X-rays, clumping and wind structures

    Science.gov (United States)

    Oskinova, Lidia; Hamann, Wolf-Rainer; Ignace, Richard; Feldmeier, Achim

    2011-01-01

    X-ray emission is ubiquitous among massive stars. In the last decade, X-ray observations revolutionized our perception of stellar winds but opened a Pandora's box of urgent problems. X-rays penetrating stellar winds suffer mainly continuum absorption, which greatly simplifies the radiative transfer treatment. The small and large scale structures in stellar winds must be accounted for to understand the X-ray emission from massive stars. The analysis of X-ray spectral lines can help to infer the parameters of wind clumping, which is prerequisite for obtaining empirically correct stellar mass-loss rates. The imprint of large scale structures, such as CIRs and equatorial disks, on the X-ray emission is predicted, and new observations are testing theoretical expectations. The X-ray emission from magnetic stars proves to be more diverse than anticipated from the direct application of the magnetically-confined wind model. Many outstanding questions about X-rays from massive stars will be answered when the models and the observations advance.

  14. Cryogenic imaging x-ray spectrometer

    NARCIS (Netherlands)

    Wiegerink, Remco J.; van Baar, J.J.J.; de Boer, J.H.; Ridder, M.L.; Bruijn, M.P.; Germeau, A.; Hoevers, H.F.C.

    2005-01-01

    A micro-calorimeter array consisting of superconducting transition-edge sensors is under development for the X-ray imaging spectrometer on board of ESA's XEUS (X-ray Evolving Universe Spectroscopy) mission. An array of 32 /spl times/ 32 pixels with a pixel size of 250 micron square is envisaged. So

  15. Low Energy X-Ray Diagnostics - 1981.

    Science.gov (United States)

    1981-01-01

    Filtering, and Scattering of Soft X-Rays by Mirrors Victor Rehn Michelson Laboratory, Physics Division Naval Weapons Center, China Lake, California...met with in K.Tregidgo, 18, 2003 (1979). the manufacture of X-ray optical components. In 32. W.P.Linnik, C. R. Acad. Sci. URSS ., 5, 210 (1933). general

  16. Scaling of X-ray emission and ion velocity in laser produced Cu plasmas

    Science.gov (United States)

    Prasad, Y. B. S. R.; Senecha, V. K.; Pant, H. C.; Kamath, M. P.; Solanki, G. S.; Tripathi, P. K.; Kulkarni, A. P.; Gupta, S.; Pareek, R.; Joshi, A. S.; Sreedhar, N.; Nigam, Sameer; Navathe, C. P.

    2000-11-01

    The x-ray emission from slab targets of copper irradiated by Nd:glass laser (1.054 m m, 5 and 15 ns) at intensities between 1012 and 1014 W/cm2 has been studied. The x-ray emissions were monitored with the help of high quantum efficiency x-ray silicon photo diodes and vacuum photo diodes, all covered with aluminium filters of different thickness. The x-ray intensity vs the laser intensity has a scaling factor of (1.2--1.92). The relative x-ray conversion efficiency follows an empirical relationship which is in close agreement with the one reported by Babonneau et al. The ion velocities were monitored using Langmuir probes placed at different angles and radial distances from the target position. The variation of the ion velocity with the laser intensity follows a scaling of the form Fb where b ~ 0.22 which is in good agreement with the reported scaling factor values. The results on the x-ray emission from Cu plasma are reported.

  17. Scaling of x-ray emission and ion velocity in laser produced Cu plasmas

    Indian Academy of Sciences (India)

    Y B S R Prasad; V K Senecha; H C Pant; M P Kamath; G S Solanki; P K Tripathi; A P Kulkarni; S Gupta; R Pareek; A S Joshi; N Sreedhar; Sameer Nigam; C P Navathe

    2000-11-01

    The x-ray emission from slab targets of copper irradiated by Nd:glass laser (1.054 m, 5 and 15 ns) at intensities between 1012 and 1014W/cm2 has been studied. The x-ray emissions were monitored with the help of high quantum efficiency x-ray silicon photo diodes and vacuum photo diodes, all covered with aluminium filters of different thickness. The x-ray intensity vs the laser intensity has a scaling factor of (1.2–1.92). The relative x-ray conversion efficiency follows an empirical relationship which is in close agreement with the one reported by Babonneau et al. The ion velocities were monitored using Langmuir probes placed at different angles and radial distances from the target position. The variation of the ion velocity with the laser intensity follows a scaling of the form where ∼ 0.22 which is in good agreement with the reported scaling factor values. The results on the x-ray emission from Cu plasma are reported.

  18. Laser-driven soft-X-ray undulator source

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Matthias

    2010-08-04

    The experimental results described in this thesis demonstrate the successful synergy between the research fields described above: the development of an undulator source driven by laser-plasma accelerated electron beams. First efforts in this new field have led to the production of radiation in the visible to infrared part of the electromagnetic spectrum [Schlenvoigt et al., 2008]. In contrast to these early achievements, the experiment described here shows the successful production of laser-driven undulator radiation in the soft-X-ray range with a remarkable reproducibility. The source produced tunable, collimated beams with a wavelength of {proportional_to}17 nm from a compact setup. Undulator spectra were detected in {proportional_to}70% of consecutive driver-laser shots, which is a remarkable reproducibility for a first proof-of-concept demonstration using ultra-high intensity laser systems. This can be attributed to a stable electron acceleration scheme as well as to the first application of miniature magnetic quadrupole lenses with laseraccelerated beams. The lenses significantly reduce the electron beam divergence and its angular shot-to-shot fluctuations The setup of this experiment is the foundation of potential university-laboratory-sized, highly-brilliant hard X-ray sources. By increasing the electron energy to about 1 GeV, X-ray pulses with an expected duration of {proportional_to}10 fs and a photon energy of 1 keV could be produced in an almost identical arrangement. It can also be used as a testbed for the development of a free-electron laser of significantly smaller dimension than facilities based on conventional accelerators [Gruener et al., 2007]. Such compact sources have the potential for application in many fields of science. In addition, these developments could lead to ideal sources for ultrafast pump-probe experiments due to the perfect synchronization of the X-ray beam to the driver laser. (orig.)

  19. An X-ray view of quasars

    CERN Document Server

    Singh, K P

    2013-01-01

    I present an overview of observational studies of quasars of all types, with particular emphasis on X-ray observational studies. The presentation is based on the most popularly accepted unified picture of quasars - collectively referred to as AGN (active galactic nuclei) in this review. Characteristics of X-ray spectra and X-ray variability obtained from various X-ray satellites over the last 5 decades have been presented and discussed. The contribution of AGN in understanding the cosmic X-ray background is discussed very briefly. Attempt has been made to provide up-to-date information; however, this is a vast subject and this presentation is not intended to be comprehensive.

  20. LOBSTER - New Space X-Ray telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Hudec, R. [Astronomical Institute, Academy of Sciences of the Czech Republic, CZ-251 65 Ondrejov (Czech Republic); Pina, L. [Faculty of Nuclear Science, Czech Technical University, Prague (Czech Republic); Simon, V. [Astronomical Institute, Academy of Sciences of the Czech Republic, CZ-251 65 Ondrejov (Czech Republic); Sveda, L. [Faculty of Nuclear Science, Czech Technical University, Prague (Czech Republic); Inneman, A.; Semencova, V. [Center for Advanced X-ray Technologies, Reflex, Prague (Czech Republic); Skulinova, M. [Astronomical Institute, Academy of Sciences of the Czech Republic, CZ-251 65 Ondrejov (Czech Republic)

    2007-04-15

    We discuss the technological and scientific aspects of fully innovative very wide-field X-ray telescopes with high sensitivity. The prototypes of Lobster telescopes designed, developed and tested are very promising, allowing the proposals for space projects with very wide-field Lobster Eye X-ray optics to be considered for the first time. The novel telescopes will monitor the sky with unprecedented sensitivity and angular resolution of order of 1 arcmin. They are expected to contribute essentially to study of various astrophysical objects such as AGN, SNe, Gamma-ray bursts (GRBs), X-ray flashes (XRFs), galactic binary sources, stars, CVs, X-ray novae, various transient sources, etc. For example, the Lobster optics based X-ray All Sky Monitor is capable to detect around 20 GRBs and 8 XRFs yearly and this will surely significantly contribute to the related science.

  1. High Energy Vision: Processing X-rays

    CERN Document Server

    DePasquale, Joseph; Edmonds, Peter

    2015-01-01

    Astronomy is by nature a visual science. The high quality imagery produced by the world's observatories can be a key to effectively engaging with the public and helping to inspire the next generation of scientists. Creating compelling astronomical imagery can, however, be particularly challenging in the non-optical wavelength regimes. In the case of X-ray astronomy, where the amount of light available to create an image is severely limited, it is necessary to employ sophisticated image processing algorithms to translate light beyond human vision into imagery that is aesthetically pleasing while still being scientifically accurate. This paper provides a brief overview of the history of X-ray astronomy leading to the deployment of NASA's Chandra X-ray Observatory, followed by an examination of the specific challenges posed by processing X-ray imagery. The authors then explore image processing techniques used to mitigate such processing challenges in order to create effective public imagery for X-ray astronomy. ...

  2. Globular Cluster X-ray Sources

    CERN Document Server

    Verbunt, F

    2004-01-01

    After a brief historical overview we discuss the luminous X-ray sources in globular clusters of our Galaxy. This is followed by an overview of the very luminous X-ray sources studied in globular clusters of 14 other galaxies, and a discussion of their formation and the relation to X-ray sources outside globular clusters. We describe the discovery and classification of low-luminosity X-ray sources, and end the review with some remarks on the formation and evolution of X-ray sources in globular clusters. Observational results are summarized in three tables. Comments are very welcome. Please send them to F.W.M.Verbunt@astro.uu.nl and lewin@mit.edu.

  3. X-ray Fourier ptychographic microscopy

    CERN Document Server

    Simons, H; Guigay, J P; Detlefs, C

    2016-01-01

    Following the recent developement of Fourier ptychographic microscopy (FPM) in the visible range by Zheng et al. (2013), we propose an adaptation for hard x-rays. FPM employs ptychographic reconstruction to merge a series of low-resolution, wide field of view images into a high-resolution image. In the x-ray range this opens the possibility to overcome the limited numerical aperture of existing x-ray lenses. Furthermore, digital wave front correction (DWC) may be used to charaterize and correct lens imperfections. Given the diffraction limit achievable with x-ray lenses (below 100 nm), x-ray Fourier ptychographic microscopy (XFPM) should be able to reach resolutions in the 10 nm range.

  4. X-ray diffraction: instrumentation and applications.

    Science.gov (United States)

    Bunaciu, Andrei A; Udriştioiu, Elena Gabriela; Aboul-Enein, Hassan Y

    2015-01-01

    X-ray diffraction (XRD) is a powerful nondestructive technique for characterizing crystalline materials. It provides information on structures, phases, preferred crystal orientations (texture), and other structural parameters, such as average grain size, crystallinity, strain, and crystal defects. X-ray diffraction peaks are produced by constructive interference of a monochromatic beam of X-rays scattered at specific angles from each set of lattice planes in a sample. The peak intensities are determined by the distribution of atoms within the lattice. Consequently, the X-ray diffraction pattern is the fingerprint of periodic atomic arrangements in a given material. This review summarizes the scientific trends associated with the rapid development of the technique of X-ray diffraction over the past five years pertaining to the fields of pharmaceuticals, forensic science, geological applications, microelectronics, and glass manufacturing, as well as in corrosion analysis.

  5. X-ray modeling for SMILE

    Science.gov (United States)

    Sun, T.; Wang, C.; Wei, F.; Liu, Z. Q.; Zheng, J.; Yu, X. Z.; Sembay, S.; Branduardi-Raymont, G.

    2016-12-01

    SMILE (Solar wind Magnetosphere Ionosphere Link Explorer) is a novel mission to explore the coupling of the solar wind-magnetosphere-ionosphere system via providing global images of the magnetosphere and aurora. As the X-ray imaging is a brand new technique applied to study the large scale magnetopause, modeling of the solar wind charge exchange (SWCX) X-ray emissions in the magnetosheath and cusps is vital in various aspects: it helps the design of the Soft X-ray Imager (SXI) on SMILE, selection of satellite orbits, as well as the analysis of expected scientific outcomes. Based on the PPMLR-MHD code, we present the simulation results of the X-ray emissions in geospace during storm time. Both the polar orbit and the Molniya orbit are used. From the X-ray images of the magnetosheath and cusps, the magnetospheric responses to an interplanetary shock and IMF southward turning are analyzed.

  6. Multiphoton imaging with a novel compact diode-pumped Ti:sapphire oscillator

    DEFF Research Database (Denmark)

    König, Karsten; Andersen, Peter E.; Le, Tuan;

    2015-01-01

    Multiphoton laser scanning microscopy commonly relies on bulky and expensive femtosecond lasers. We integrated a novel minimal-footprint Ti:sapphire oscillator, pumped by a frequency-doubled distributed Bragg reflector tapered diode laser, into a clinical multiphoton tomograph and evaluated its...

  7. Measurement of the energy and power radiated by a pulsed blackbody x-ray source

    Directory of Open Access Journals (Sweden)

    H. C. Ives

    2006-11-01

    Full Text Available We have developed a diagnostic system that measures the spectrally integrated (i.e. the total energy and power radiated by a pulsed blackbody x-ray source. The total-energy-and-power (TEP diagnostic system is optimized for blackbody temperatures between 50 and 350 eV. The system can view apertured sources that radiate energies and powers as high as 2 MJ and 200 TW, respectively, and has been successfully tested at 0.84 MJ and 73 TW on the Z pulsed-power accelerator. The TEP system consists of two pinhole arrays, two silicon-diode detectors, and two thin-film nickel bolometers. Each of the two pinhole arrays is paired with a single silicon diode. Each array consists of a 38×38 square array of 10-μm-diameter pinholes in a 50-μm-thick tantalum plate. The arrays achromatically attenuate the x-ray flux by a factor of ∼1800. The use of such arrays for the attenuation of soft x rays was first proposed by Turner and co-workers [Rev. Sci. Instrum. 70, 656 (1999RSINAK0034-674810.1063/1.1149385]. The attenuated flux from each array illuminates its associated diode; the diode’s output current is recorded by a data-acquisition system with 0.6-ns time resolution. The arrays and diodes are located 19 and 24 m from the source, respectively. Because the diodes are designed to have an approximately flat spectral sensitivity, the output current from each diode is proportional to the x-ray power. The nickel bolometers are fielded at a slightly different angle from the array-diode combinations, and view (without pinhole attenuation the same x-ray source. The bolometers measure the total x-ray energy radiated by the source and—on every shot—provide an in situ calibration of the array-diode combinations. Two array-diode pairs and two bolometers are fielded to reduce random uncertainties. An analytic model (which accounts for pinhole-diffraction effects of the sensitivity of an array-diode combination is presented.

  8. Focused beam total reflection X-ray fluorescence with low power sources coupled to doubly curved crystal optics

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.W. [X-ray Optical Systems, Inc. East Greenbush, NY 12061 (United States)]. E-mail: zchen@xos.com; Mail, N. [Center For X-ray Optics, State University of New York, University at Albany (United States); Wei, F.Z. [X-ray Optical Systems, Inc. East Greenbush, NY 12061 (United States); MacDonald, C.A. [Center For X-ray Optics, State University of New York, University at Albany (United States); Gibson, W.M. [X-ray Optical Systems, Inc. East Greenbush, NY 12061 (United States)

    2005-04-30

    A focused beam total X-ray fluorescence technique was developed based on doubly curved crystal optics. This technique provides good detection sensitivity and spatial resolution for localized detection of surface deposits. Compact low power X-ray sources were used to demonstrate the benefit of the X-ray optics for focusing Cr K{alpha}, Cu K{alpha} and Mo K{alpha} radiation. The detection capability of the focused beam Total reflection X-ray fluorescence system was investigated with dried droplets of calibrated low concentration solutions. Detection limits at the femtogram level were demonstrated.

  9. Development of a speckle-based portable device for in situ metrology of synchrotron X-ray mirrors

    Science.gov (United States)

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal

    2016-01-01

    A portable device for in situ metrology of synchrotron X-ray mirrors based on the near-field speckle scanning technique has been developed. Ultra-high angular sensitivity is achieved by scanning a piece of abrasive paper or filter membrane in the X-ray beam. In addition to the compact setup and ease of implementation, a user-friendly graphical user interface has been developed to ensure that optimizing active X-ray mirrors is simple and fast. The functionality and feasibility of this device have been demonstrated by characterizing and optimizing X-ray mirrors. PMID:27577767

  10. Development of a speckle-based portable device for in situ metrology of synchrotron X-ray mirrors.

    Science.gov (United States)

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal

    2016-09-01

    A portable device for in situ metrology of synchrotron X-ray mirrors based on the near-field speckle scanning technique has been developed. Ultra-high angular sensitivity is achieved by scanning a piece of abrasive paper or filter membrane in the X-ray beam. In addition to the compact setup and ease of implementation, a user-friendly graphical user interface has been developed to ensure that optimizing active X-ray mirrors is simple and fast. The functionality and feasibility of this device have been demonstrated by characterizing and optimizing X-ray mirrors.

  11. Investigation on new scintillators for subnanosecond time-resolved x-ray measurements

    Science.gov (United States)

    Haruki, R.; Shibuya, K.; Nishikido, F.; Koshimizu, M.; Yoda, Y.; Kishimoto, S.

    2010-03-01

    We investigated new x-ray detectors for nuclear resonant scattering measurements with high energy x rays. The organic-inorganic perovskite scintillator of phenethylamine lead halide ((C6H5C2H4NH3)2PbX4) (X:Br, I) was used. These compounds have fast light emission due to an exciton. They include heavy atoms, which make the detector to have high efficiency to high energy x rays. The merit of these scintillators is that we can make a thick crystal compared to a Si wafer which is used in an avalanche photo-diode detector. We successfully measured 67.41 keV x ray signals, the energy of 61Ni nuclear resonant scattering, with high detection efficiency of 42.5 % by the scintillator.

  12. Calibration Of A KrF Laser-Plasma Source For X-Ray Microscopy Applications

    Science.gov (United States)

    Turcu, I. C. E.; O'Neill, F.; Zammit, U.; Al-Hadithi, Y.; Eason, R. W.; Rogayski, A. M.; Hills, C. P. B.; Michette, A. G.

    1988-02-01

    Plasma X-ray sources for biological microscopy in the water-window have been produced by focusing tige 200 3, 50 ns Sprit q KrF laser onto carbon targets at irradiance between 2.2 x 10" W/cm4 and 3.7 x 10i3W/cm. Absolute measurements of X-ray production have been made using a calibrated, vacuum X-ray diode detector. A peak conversion efficiency . 10% is measured from KrF laseri)Tight tcto wate-window X-rays at 280 eV < hv < 530 eV for a target irradiance . 1 x x 10 W/cm'. Some measurements with gold and tungsten targets give conversion efficiencies 2$25% at a similar laser irradiance.

  13. First X-ray fluorescence CT experimental results at the SSRF X-ray imaging beamline

    Institute of Scientific and Technical Information of China (English)

    DENG Biao; YANG Qun; XIE Hong-Lan; DU Guo-Hao; XIAO Wi-Qiao

    2011-01-01

    X-ray fluorescence CT is a non-destructive technique for detecting elemental composition and distribution inside a specimen. In this paper, the first experimental results of X-ray fluorescence CT obtained at the SSRF X-ray imaging beamline (BL13W1) are described. The test samples were investigated and the 2D elemental image was reconstructed using a filtered back-projection algorithm. In the sample the element Cd was observed. Up to now, the X-ray fluorescence CT could be carried out at the SSRF X-ray imaging beamline.

  14. Clumpy wind accretion in supergiant neutron star high mass X-ray binaries

    Science.gov (United States)

    Bozzo, E.; Oskinova, L.; Feldmeier, A.; Falanga, M.

    2016-05-01

    The accretion of the stellar wind material by a compact object represents the main mechanism powering the X-ray emission in classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. In this work we present the first attempt to simulate the accretion process of a fast and dense massive star wind onto a neutron star, taking into account the effects of the centrifugal and magnetic inhibition of accretion ("gating") due to the spin and magnetic field of the compact object. We made use of a radiative hydrodynamical code to model the nonstationary radiatively driven wind of an O-B supergiant star and then place a neutron star characterized by a fixed magnetic field and spin period at a certain distance from the massive companion. Our calculations follow, as a function of time (on a total timescale of several hours), the transitions of the system through all different accretion regimes that are triggered by the intrinsic variations in the density and velocity of the nonstationary wind. The X-ray luminosity released by the system is computed at each time step by taking into account the relevant physical processes occurring in the different accretion regimes. Synthetic lightcurves are derived and qualitatively compared with those observed from classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. Although a number of simplifications are assumed in these calculations, we show that taking into account the effects of the centrifugal and magnetic inhibition of accretion significantly reduces the average X-ray luminosity expected for any neutron star wind-fed binary. The present model calculations suggest that long spin periods and stronger magnetic fields are favored in order to reproduce the peculiar behavior of supergiant fast X-ray transients in the X-ray domain.

  15. X-Ray Background from Early Binaries

    Science.gov (United States)

    Kohler, Susanna

    2016-11-01

    What impact did X-rays from the first binary star systems have on the universe around them? A new study suggests this radiation may have played an important role during the reionization of our universe.Ionizing the UniverseDuring the period of reionization, the universe reverted from being neutral (as it was during recombination, the previous period)to once again being ionized plasma a state it has remained in since then. This transition, which occurred between 150 million and one billion years after the Big Bang (redshift of 6 z 20), was caused by the formation of the first objects energetic enough to reionize the universes neutral hydrogen.ROSAT image of the soft X-ray background throughout the universe. The different colors represent different energy bands: 0.25 keV (red), 0.75 keV (green), 1.5 keV (blue). [NASA/ROSAT Project]Understanding this time period in particular, determining what sources caused the reionization, and what the properties were of the gas strewn throughout the universe during this time is necessary for us to be able to correctly interpret cosmological observations.Conveniently, the universe has provided us with an interesting clue: the large-scale, diffuse X-ray background we observe all around us. What produced these X-rays, and what impact did this radiation have on the intergalactic medium long ago?The First BinariesA team of scientists led by Hao Xu (UC San Diego) has suggested that the very first generation of stars might be an important contributor to these X-rays.This hypothetical first generation, Population III stars, are thought to have formed before and during reionization from large clouds of gas containing virtually no metals. Studies suggest that a large fraction of Pop III stars formed in binaries and when those stars ended their lives as black holes, ensuing accretion from their companions could produceX-ray radiation.The evolution with redshift of the mean X-ray background intensities. Each curve represents a different

  16. Free-fall accretion and emitting caustics in wind-fed X-ray sources

    Science.gov (United States)

    Illarionov, Andrei F.; Beloborodov, Andrei M.

    2001-05-01

    In wind-fed X-ray binaries the accreting matter is Compton-cooled and falls freely on to the compact object. The matter has a modest angular momentum l and accretion is quasi-spherical at large distances from the compact object. Initially small non-radial velocities grow in the converging supersonic flow and become substantial in the vicinity of the accretor. The streamlines with l>(GMR*)1/2 (where M and R* are the mass and radius of the compact object) intersect outside R* and form a two-dimensional caustic which emits X-rays. The streamlines with low angular momentum, lorbital phase of the binary. The accretor then appears as a `Moon-like' X-ray source.

  17. X-ray in Zeta-Ori

    Science.gov (United States)

    López-García, M. A.; López-Santiago, J. L.; Albacete-Colombo, J. F.; De Castro, E.

    2013-05-01

    Nearby star-forming regions are ideal laboratories to study high-energy emission processes but they usually present high absorption what makes difficult to detect the stellar population inside the molecular complex. As young late-type stars show high X-ray emission and X-ray photons are little absorbed by interstellar material, X-ray dedicated surveys are an excellent tool to detect the low-mass stellar population in optically absorbed regions. In this work, we present a study of the star-forming region Zeta-Ori and its surroundings. We combine optical, infrared and X-ray data. Properties of the X-ray emiting plasma and infrared features of the young stellar objects detected in the XMM-Newton observation are determined. The southern part of the Orion B giant molecular cloud complex harbor other star forming regions, as NGC 2023 and NGC 2024, we use this regions to compare. We study the spectral energy distribution of X-ray sources. Combining these results with infrared, the X-ray sources are classified as class I, class II and class III objects. The X-ray spectrum and ligth curve of detected X-ray sources is analyzed to found flares. We use a extincion-independent index to select the stars with circumstellar disk, and study the relationship between the present of disk and the flare energy. The results are similar to others studies and we conclude that the coronal properties of class II and class III objects in this region do not differ significantly from each other and from stars of similar infrared class in the ONC.

  18. Quantification of lycopene in the processed tomato-based products by means of the light-emitting diode (LED) and compact photoacoustic (PA) detector

    NARCIS (Netherlands)

    Bicanic, D.D.; Skenderovic, H.; Markovic, K.; Doka, O.; Pichler, L.; Pichler, G.; Luterotti, S.

    2010-01-01

    The combined use of a high power light emitting diode (LED) and the compact photoacoustic (PA) detector offers the possibility for a rapid (no extraction needed), accurate (precision 1.5%) and inexpensive quantification of lycopene in different products derived from the thermally processed tomatoes.

  19. X-ray phase-contrast methods

    Energy Technology Data Exchange (ETDEWEB)

    Lider, V. V., E-mail: lider@ns.crys.ras.ru; Kovalchuk, M. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2013-11-15

    This review is devoted to a comparative description of the methods for forming X-ray phase-contrast images of weakly absorbing (phase) objects. These include the crystal interferometer method, the Talbot interferometer method, diffraction-enhanced X-ray imaging, and the in-line method. The potential of their practical application in various fields of science and technology is discussed. The publications on the development and optimization of X-ray phase-contrast methods and the experimental study of phase objects are analyzed.

  20. Two-dimensional x-ray diffraction

    CERN Document Server

    He, Bob B

    2009-01-01

    Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea