WorldWideScience

Sample records for compact steam reformer

  1. Experimental Study on a Compact Methanol Steam Reformer with Pd/Ag Membrane

    Science.gov (United States)

    Faizal, Hasan Mohd; Kuwabara, Masato; Kizu, Ryo; Yokomori, Takeshi; Ueda, Toshihisa

    The performance of high purity hydrogen production from methanol for a compact steam reformer with a hydrogen purification membrane was investigated experimentally. A 77 wt.% Pd/23 wt.% Ag membrane with 25µm thickness and CuO/ZnO/ Al2O3 catalyst were used. Heating was performed by a Bunsen type burner using City Gas 13A. The methanol reforming and purification of H2 were investigated at different reference catalyst zone temperatures (589-689K), pressures at the retentate side (0.2-0.5MPa), steam to methanol(S/C) ratios (0.8-1.6) and reactant flow rates (1.7 ×10-4 to 4.4×10-4 mol/s). The results show that at high reference temperature, high pressure and certain points of the reactant flow rate, the maximum hydrogen permeation rate is obtained when the S/C ratio is around 1. The modified Sieverts’ equation which considers the decrease in H2 concentration at the membrane surface, was proposed. The experimental result was lower than the permeation rate estimated by the modified Sieverts’ equation, which is probably caused by the adsorption of non-H2 species during permeation. It is further demonstrated that the modified Sieverts’ equation is able to estimate a more reasonable hydrogen permeation rate in comparison to the estimation by the ordinary Sieverts’ equation. In addition, it is shown that the compact methanol steam reformer with a Pd/Ag membrane is able to produce high purity hydrogen with very low CO concentration, which fulfills the Polymer Electrolyte Fuel Cell (PEFC) requirement (<10ppm).

  2. Steam reforming of light oxygenates

    DEFF Research Database (Denmark)

    Trane-Restrup, Rasmus; Resasco, Daniel E; Jensen, Anker Degn

    2013-01-01

    Steam reforming (SR) of ethanol, acetic acid, acetone, acetol, 1-propanol, and propanal has been investigated over Ni/MgAl2O4 at temperatures between 400 and 700 degrees C and at a steam-to-carbon-ratio (S/C) of 6. The yield of H-2 and conversion increased with temperature, while the yield of by...

  3. Steam reforming of ethanol

    DEFF Research Database (Denmark)

    Trane-Restrup, Rasmus; Dahl, Søren; Jensen, Anker Degn

    2013-01-01

    Steam reforming (SR) of oxygenated species like bio-oil or ethanol can be used to produce hydrogen or synthesis gas from renewable resources. However, deactivation due to carbon deposition is a major challenge for these processes. In this study, different strategies to minimize carbon deposition...... on Ni-based catalysts during SR of ethanol were investigated in a flow reactor. Four different supports for Ni were tested and Ce0.6Zr0.4O2 showed the highest activity, but also suffered from severe carbon deposition at 600 °C or below. Operation at 600 °C or above were needed for full conversion...... of ethanol over the most active catalysts at the applied conditions. At these temperatures the offgas composition was close to the thermodynamical equilibrium. Operation at high temperatures, 700 °C and 750 °C, gave the lowest carbon deposition corresponding to 30–60 ppm of the carbon in the feed ending...

  4. Steam Hydrocarbon Cracking and Reforming

    Science.gov (United States)

    Golombok, Michael

    2004-01-01

    The interactive methods of steam hydrocarbon reforming and cracking of the oil and chemical industries are scrutinized, with special focus on their resemblance and variations. The two methods are illustrations of equilibrium-controlled and kinetically-controlled processes, the analysis of which involves theories, which overlap and balance each…

  5. Method of steam reforming methanol to hydrogen

    Science.gov (United States)

    Beshty, Bahjat S.

    1990-01-01

    The production of hydrogen by the catalyzed steam reforming of methanol is accomplished using a reformer of greatly reduced size and cost wherein a mixture of water and methanol is superheated to the gaseous state at temperatures of about 800.degree. to about 1,100.degree. F. and then fed to a reformer in direct contact with the catalyst bed contained therein, whereby the heat for the endothermic steam reforming reaction is derived directly from the superheated steam/methanol mixture.

  6. Steam reforming catalyst

    Science.gov (United States)

    Kramarz, Kurt W.; Bloom, Ira D.; Kumar, Romesh; Ahmed, Shabbir; Wilkenhoener, Rolf; Krumpelt, Michael

    2001-01-01

    A method of forming a hydrogen rich gas from a source of hydrocarbon fuel. A vapor of the hydrocarbon fuel and steam is brought in contact with a two-part catalyst having a dehydrogenation powder portion and an oxide-ion conducting powder portion at a temperature not less than about 770.degree.C. for a time sufficient to generate the hydrogen rich. The H.sub.2 content of the hydrogen gas is greater than about 70 percent by volume. The dehydrogenation portion of the catalyst includes a group VIII metal, and the oxide-ion conducting portion is selected from a ceramic oxide from the group crystallizing in the fluorite or perovskite structure and mixtures thereof. The oxide-ion conducting portion of the catalyst is a ceramic powder of one or more of ZrO.sub.2, CeO.sub.2, Bi.sub.2 O.sub.3, (BiVO).sub.4, and LaGaO.sub.3.

  7. Sintering of nickel steam reforming catalysts

    DEFF Research Database (Denmark)

    Sehested, Jens; Larsen, Niels Wessel; Falsig, Hanne

    2014-01-01

    . In this paper, particle migration and coalescence in nickel steam reforming catalysts is studied. Density functional theory calculations indicate that Ni-OH dominate nickel transport at nickel surfaces in the presence of steam and hydrogen as Ni-OH has the lowest combined energies of formation and diffusion...

  8. Supported metal catalysts for alcohol/sugar alcohol steam reforming.

    Science.gov (United States)

    Davidson, Stephen D; Zhang, He; Sun, Junming; Wang, Yong

    2014-08-21

    Despite extensive studies on hydrogen production via steam reforming of alcohols and sugar alcohols, catalysts typically suffer a variety of issues from poor hydrogen selectivity to rapid deactivation. Here, we summarize recent advances in fundamental understanding of functionality and structure of catalysts for alcohol/sugar alcohol steam reforming, and provide perspectives on further development required to design highly efficient steam reforming catalysts.

  9. Catalytic steam reforming of model biogas

    Energy Technology Data Exchange (ETDEWEB)

    Philipp Kolbitsch; Christoph Pfeifer; Hermann Hofbauer [Vienna University of Technology, Vienna (Austria). Institute of Chemical Engineering

    2008-05-15

    Catalytic steam reforming of a model biogas (CH{sub 4}/CO{sub 2} = 60/40) is investigated to produce H{sub 2}-rich synthesis gas. Gas engines benefit from synthesis gas fuel in terms of higher efficiency and lower NOx production when compared to raw biogas or CH{sub 4}. The process is realized in a fixed bed reactor with a Ni-based catalyst on CaO/Al{sub 2}O{sub 3} support. To optimize the performance, the reactor temperature and the amount of excess steam are varied. The experimental results are compared to the theoretical values from thermodynamic calculation and the main trends of CH{sub 4} conversion and H{sub 2} yield are analyzed and verified. Finally, optimal reactor temperature is pointed out and a range of potential steam to methane ratios is presented. The experimental results will be applied to design a steam reformer at an existing anaerobic biomass fermentation plant in Strem, Austria. 20 refs., 8 figs., 4 tabs.

  10. Methanol steam reforming in a fuel cell drive system

    Science.gov (United States)

    Wiese, W.; Emonts, B.; Peters, R.

    Within the framework of the Joule III project a compact methanol reformer (CMR) with a specific weight of 2 kg/kW (lower heating value of H 2) was developed. This CMR contains a methanol and water vaporizer, a steam reformer, a heat carrier circuit and a catalytic burner unit. A laboratory fixed-bed reactor consisting of four tubes which could be filled with different amounts of catalyst was used to investigate the catalyst performance and the ageing behaviour. A hydrogen yield of 10 m N3/(h l Cat) can be achieved at 280°C. In this case, the methanol conversion rate is 95% and the dry product gas contains 0.9% CO. A linear decrease of the catalyst activity was observed which can be described by a loss of active catalyst mass of 5.5 mg/h. The catalyst was operated for more than 1000 h without having exhibited activity losses that made a catalyst change necessary. Besides, the stationary behaviour of the reforming reactor, the dynamic behaviour was studied. The time needed for start-up procedures has to be improved for reformers of a next generation. Moreover, the hydrogen production during reformer load changes will be discussed. Simulations of the power train in driving cycles show the different states of a reformer during dynamic operation.

  11. Catalytic glycerol steam reforming for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Dan, Monica, E-mail: monica.dan@itim-cj.ro; Mihet, Maria, E-mail: maria.mihet@itim-cj.ro; Lazar, Mihaela D., E-mail: diana.lazar@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj Napoca (Romania)

    2015-12-23

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H{sub 2}. In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al{sub 2}O{sub 3}. The catalyst was prepared by wet impregnation method and characterized through different methods: N{sub 2} adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H{sub 2}, CH{sub 4}, CO, CO{sub 2}. The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H{sub 2}O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%.

  12. Duplex tube steam reformer development program

    Energy Technology Data Exchange (ETDEWEB)

    Lewe, C K; Nieto, J M; Papadopoulos, A

    1978-09-01

    Work done in partial fulfillment of Task 7 of the Duplex Steam Reformer Development Program is described. The DSR concept acts as a double barrier between a process heat high temperature reactor plant (PNP) and a closed loop chemical heat pipe (CHP) for the long distance transport of chemical energy to a remote industrial user. The current state of the DSR design is described as well as related systems and equipment. The PNP concept presented is based upon work currently underway in the Federal Republic of Germany.

  13. Steam Reforming of Bio-oil Model Compounds

    DEFF Research Database (Denmark)

    Trane, Rasmus; Jensen, Anker Degn; Dahl, Søren

    The steam reforming of bio-oil is a sustainable and renewable route to synthesis gas and hydrogen, where one of the main hurdles is carbon formation on the catalyst.......The steam reforming of bio-oil is a sustainable and renewable route to synthesis gas and hydrogen, where one of the main hurdles is carbon formation on the catalyst....

  14. Methane Steam Reforming Kinetics for a Rhodium-Based Catalyst

    DEFF Research Database (Denmark)

    Jakobsen, Jon Geest; Jakobsen, M.; Chorkendorff, Ib

    2010-01-01

    Methane steam reforming is the key reaction to produce synthesis gas and hydrogen at the industrial scale. Here the kinetics of methane steam reforming over a rhodium-based catalyst is investigated in the temperature range 500-800 A degrees C and as a function of CH4, H2O and H-2 partial pressures...

  15. Hydrogen generation utilizing integrated CO2 removal with steam reforming

    Science.gov (United States)

    Duraiswamy, Kandaswamy; Chellappa, Anand S

    2013-07-23

    A steam reformer may comprise fluid inlet and outlet connections and have a substantially cylindrical geometry divided into reforming segments and reforming compartments extending longitudinally within the reformer, each being in fluid communication. With the fluid inlets and outlets. Further, methods for generating hydrogen may comprise steam reformation and material adsorption in one operation followed by regeneration of adsorbers in another operation. Cathode off-gas from a fuel cell may be used to regenerate and sweep the adsorbers, and the operations may cycle among a plurality of adsorption enhanced reformers to provide a continuous flow of hydrogen.

  16. Catalytic steam reforming of bio-oil

    DEFF Research Database (Denmark)

    Trane, R.; Dahl, S.; Skjøth-Rasmussen, M.S.

    2012-01-01

    Hydrogen and synthesis gas can be produced in an environmentally friendly and sustainable way through steam reforming (SR) of bio-oil and this review presents the state-of-the-art of SR of bio-oil and model compounds hereof. The possible reactions, which can occur in the SR process...... been obtained in both fluidized and fixed bed reactors, but the coke formation appears to be less significant in fluidized beds. The addition of O2 to the system can decrease the coke formation and provide autothermal conditions at the expense of a lower H2 and CO-yield.The SR of bio-oil is still...... in an early stage of development and far from industrial application mainly due the short lifetime of the catalysts, but there are also other aspects of the process which need clarification. Future investigations in SR of bio-oil could be to find a sulfur tolerant and stable catalyst, or to investigate...

  17. Experimental characterization and modeling of an ethanol steam reformer

    DEFF Research Database (Denmark)

    Mandø, Matthias; Bovo, Mirko; Nielsen, Mads Pagh

    2006-01-01

    This work describes the characterization of an ethanol reforming system for a high temperature PEM fuel cell system. High temperature PEM fuel cells are well suited for operation on reformate gas due to the superior CO tolerance compared with low temperature PEM. Steam reforming of liquid biofuels...

  18. TWR Bench-Scale Steam Reforming Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    D. W. Marshall; N. R. Soelberg

    2003-05-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by ThermoChem Waste Remediation, LLC, (TWR) for treatment of SBW into a "road ready" waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). TWR is the licensee of Manufacturing Technology Conservation International (MTCI) steam-reforming technology in the field of radioactive waste treatment. A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrate residues were about 400 ppm in the product and NOx destruction exceeded 86%. The demonstration was successful.

  19. TWR Bench-Scale Steam Reforming Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, D.W.; Soelberg, N.R.

    2003-05-21

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by ThermoChem Waste Remediation, LLC, (TWR) for treatment of SBW into a ''road ready'' waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). TWR is the licensee of Manufacturing Technology Conservation International (MTCI) steam-reforming technology in the field of radioactive waste treatment. A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrate residues were about 400 ppm in the product and NOx destruction exceeded 86%. The demonstration was successful.

  20. FLUIDIZED BED STEAM REFORMER MONOLITH FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C

    2006-12-22

    Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or ''mineralized'' waste form while converting organic components to CO{sub 2} and steam, and nitrate/nitrite components, if any, to N{sub 2}. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO{sub 4}, I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydroceramics. All but one of the nine monoliths tested met the <2g/m{sup 2} durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydroceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form.

  1. Hydrogen-based power generation from bioethanol steam reforming

    Science.gov (United States)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-12-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  2. Hydrogen-based power generation from bioethanol steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Tasnadi-Asztalos, Zs., E-mail: tazsolt@chem.ubbcluj.ro; Cormos, C. C., E-mail: cormos@chem.ubbcluj.ro; Agachi, P. S. [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos, Postal code: 400028, Cluj-Napoca (Romania)

    2015-12-23

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO{sub 2} emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  3. Biomass to hydrogen via fast pyrolysis and catalytic steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Chornet, E.; Wang, D.; Montane, D. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1995-09-01

    Fast pyrolysis of biomass results in a pyrolytic oil which is a mixture of (a) carbohydrate-derived acids, aldehydes and polyols, (b) lignin-derived substituted phenolics, and (c) extractives-derived terpenoids and fatty acids. The conversion of this pyrolysis oil into H{sub 2} and CO{sub 2} is thermodynamically favored under appropriate steam reforming conditions. Our efforts have focused in understanding the catalysis of steam reforming which will lead to a successful process at reasonable steam/carbon ratios arid process severities. The experimental work, carried out at the laboratory and bench scale levels, has centered on the performance of Ni-based catalysts using model compounds as prototypes of the oxygenates present in the pyrolysis oil. Steam reforming of acetic acid, hydroxyacetaldehyde, furfural and syringol has been proven to proceed rapidly within a reasonable range of severities. Time-on-stream studies are now underway using a fixed bed barometric pressure reactor to ascertain the durability of the catalysts and thus substantiate the scientific and technical feasibility of the catalytic reforming option. Economic analyses are being carried out in parallel to determine the opportunity zones for the combined fast pyrolysis/steam reforming approach. A discussion on the current state of the project is presented.

  4. Steam reforming of biomass derived oxygenates to hydrogen : Importance of metal-support boundary

    NARCIS (Netherlands)

    Takanabe, K.; Aika, Ken-ichi; Seshan, Kulathu Iyer; Lefferts, L.

    2006-01-01

    Steam reforming of acetic acid over Pt/ZrO2 catalysts was studied as a model reaction of steam reforming of biomass derived oxygenates. Pt/ZrO2 catalysts were very active; however, the catalyst deactivated in time by formation of oligomers which block the active sites for steam reforming.

  5. Steam Reforming of Low-Level Mixed Waste

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-01-01

    Under DOE Contract No. DE-AR21-95MC32091, Steam Reforming of Low-Level Mixed Waste, ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design construction, and testing of the PDU as well as performance and economic projections for a 500- lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area published April 1997.1 The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfidly tested including a 750-hour test on material simulating a PCB- and Uranium- contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (>99.9999oA) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radlonuclides in the volume-reduced solids. Cost studies have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

  6. Optimizing a steam-methane reformer for hydrogen production

    NARCIS (Netherlands)

    de Jong, M.; Reinders, Angelina H.M.E.; Kok, Jacobus B.W.; Westendorp, G.

    2009-01-01

    By means of steam reforming, natural gas is converted to carbon dioxide and hydrogen. The reactions take place in reactor tubes which are covered with catalyst at the inside, where the reactive mixture flows. At the outside they are heated by combustion of natural gas with air. In this paper the

  7. In silico search for novel methane steam reforming catalysts

    DEFF Research Database (Denmark)

    Xu, Yue; Lausche, Adam C; Wang, Shengguang

    2013-01-01

    App’) with a microkinetic modeling technique to predict the rates and selectivities of a prospective material. This paper illustrates this screening technique using the steam reforming of methane to carbon monoxide and hydrogen as a test reaction. While catalysts are already commercially available for this process...

  8. CATALYTIC STEAM REFORMING OF CHLOROCARBONS: METHLYCHLORIDE. (R822721C633)

    Science.gov (United States)

    The effective destruction of trichloroethane, trichloroethylene and perchloroethylene by steam reforming with a commercial nickel catalyst has been demonstrated. Conversion levels of up to 0.99999 were attained in both laboratory and semi-pilot experiments, with the products c...

  9. Steam reforming of technical bioethanol for hydrogen production

    DEFF Research Database (Denmark)

    Rass-Hansen, Jeppe; Johansson, Roger; Møller, Martin Hulbek

    2008-01-01

    distillation fractions of technical 2nd generation bioethanol, produced in a pilot plant, influence the performance of nickel- and ruthenium-based catalysts during steam reforming, and we discuss what is required to obtain high activity and long catalyst lifetime. We conclude that the use of technical...

  10. Optimizing the Heat Exchanger Network of a Steam Reforming System

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh; Korsgaard, Anders Risum; Kær, Søren Knudsen

    2004-01-01

    gas steam reformer along with gas purification reactors to generate clean hydrogen suited for a PEM stack. The temperatures in the various reactors in the fuel processing system vary from around 1000°C to the stack temperature at 80°C. Furthermore, external heating must be supplied to the endothermic...... steam reforming reaction and steam must be generated. The dependence of the temperature profiles on conversion in shift reactors for gas purification is also significant. The optimum heat integration in the system is thus imperative in order to minimize the need for hot and cold utilities. A rigorous 1D......Proton Exchange Membrane (PEM) based combined heat and power production systems are highly integrated energy systems. They may include a hydrogen production system and fuel cell stacks along with post combustion units optionally coupled with gas turbines. The considered system is based on a natural...

  11. Fluidized-bed steam methane reforming with oxygen input

    Energy Technology Data Exchange (ETDEWEB)

    Roy, S.; Pruden, B.B. [University of Calgary, Alberta (Canada). Dept. of Chemical and Petroluem Engineering; Adris, A.M. [SABIC R and D, Riyadh (Saudi Arabia). Dept. of Research and Technology Support; Grace, J.R.; Lim, C.J. [University of British Columbia, Vancouver (Canada). Dept. of Chemical Engineering

    1999-07-01

    A study was undertaken to determine whether oxygen could be added directly to a fluidized bed of catalyst to provide all of the endothermic heat for the reforming reaction. It is shown that oxygen can be successfully introduced onto a reforming reactor to provide for the endothermic heat of reforming reactions. The methane conversion increased with increasing reactor temperature, oxygen input flow rate and steam-methane ratio and decreased with increasing reactor pressure as expected. Methane conversion and hydrogen yield are compared to those expected at equilibrium. There was 100% conversion of oxygen under all conditions. Most experimental runs reached and maintained autothermal conditions. The hydrogen yield increased with increasing temperature and steam-methane ratio. The hydrogen yield decreased minimally with increasing reactor pressure and oxygen flowrate. (author)

  12. Biomass-to-hydrogen via fast pyrolysis and catalytic steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Chornet, E.; Wang, D.; Czernik, S. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-10-01

    Pyrolysis of lignocellulosic biomass and reforming the pyroligneous oils is being studied as a strategy for producing hydrogen. Novel technologies for the rapid pyrolysis of biomass have been developed in the past decade. They provide compact and efficient systems to transform biomass into vapors that are condensed to oils, with yields as high as 75-80 wt.% of the anhydrous biomass. This {open_quotes}bio-oil{close_quotes} is a mixture of aldehydes, alcohols, acids, oligomers from the constitutive carbohydrates and lignin, and some water derived from the dehydration reactions. Hydrogen can be produced by reforming the bio-oil or its fractions with steam. A process of this nature has the potential to be cost competitive with conventional means of producing hydrogen. The reforming facility can be designed to handle alternate feedstocks, such as natural gas and naphtha, if necessary. Thermodynamic modeling of the major constituents of the bio-oil has shown that reforming is possible within a wide range of temperatures and steam-to-carbon ratios. Existing catalytic data on the reforming of oxygenates have been studied to guide catalyst selection. Tests performed on a microreactor interfaced with a molecular beam mass spectrometer showed that, by proper selection of the process variables: temperature, steam-to-carbon ratio, gas hourly space velocity, and contact time, almost total conversion of carbon in the feed to CO and CO{sub 2} could be obtained. These tests also provided possible reaction mechanisms where thermal cracking competes with catalytic processes. Bench-scale, fixed bed reactor tests demonstrated high hydrogen yields from model compounds and carbohydrate-derived pyrolysis oil fractions. Reforming bio-oil or its fractions required proper dispersion of the liquid to avoid vapor-phase carbonization of the feed in the inlet to the reactor. A special spraying nozzle injector was designed and successfully tested with an aqueous fraction of bio-oil.

  13. Effect of Cobalt Particle Size on Acetone Steam Reforming

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Junming; Zhang, He; Yu, Ning; Davidson, Stephen; Wang, Yong

    2015-06-11

    Carbon-supported cobalt nanoparticles with different particle sizes were synthesized and characterized by complementary characterization techniques such as X-ray diffraction, N-2 sorption, acetone temperature-programmed desorption, transmission electron microscopy, and CO chemisorption. Using acetone steam reforming reaction as a probe reaction, we revealed a volcano-shape curve of the intrinsic activity (turnover frequency of acetone) and the CO2 selectivity as a function of the cobalt particle size with the highest activity and selectivity observed at a particle size of approximately 12.8nm. Our results indicate that the overall performance of acetone steam reforming is related to a combination of particle-size-dependent acetone decomposition, water dissociation, and the oxidation state of the cobalt nanoparticles.

  14. A study of steam methanol reforming in a microreactor

    Science.gov (United States)

    Suh, Jeong-Se; Lee, Ming-tsang; Greif, Ralph; Grigoropoulos, Costas P.

    Steam reforming of methanol is investigated numerically considering both heat and mass transfer of the species in a packed bed microreactor. The numerical results are shown to be in good agreement with experimental data [M.T. Lee, R. Greif, C.P. Grigoropoulos, H.G. Park, F.K. Hsu, J. Power Sources Transport in, 166 (2007) 194-201] with a BASF F3-01(CuO/ZnO/Al 2O 3) catalyst. A correlation for the conversion efficiency of methanol has been obtained as a function of the operating temperature and a dimensionless time parameter which represents the ratio of the characteristic time of the methanol flow to the time for chemical reaction. The results show that for the constant wall temperature condition the steam reforming process of methanol results in a nearly uniform temperature throughout the microreactor over the range of operating conditions.

  15. Design of a surface alloy catalyst for steam reforming

    DEFF Research Database (Denmark)

    Besenbacher, F.; Chorkendorff, Ib; Clausen, B.S.

    1998-01-01

    Detailed studies of elementary chemical processes on well-characterized single crystal surfaces have contributed substantially to the understanding of heterogeneous catalysis. insight into the structure of surface alloys combined with an understanding of the relation between the surface compositi...... and reactivity is shown to lead directly to new ideas for catalyst design, The feasibility of such an approach is illustrated by the synthesis, characterization, and tests of a high-surface area gold-nickel catalyst for steam reforming....

  16. Steam reforming of low-level mixed waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design, construction, and testing of the PDU as well as performance and economic projections for a 300-lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area and published in April 1997. The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfully tested including a 750-hour test on material simulating a PCB- and Uranium-contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (> 99.9999%) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radionuclides in the volume-reduced solids. Economic evaluations have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

  17. Application of Flexible Micro Temperature Sensor in Oxidative Steam Reforming by a Methanol Micro Reformer

    Directory of Open Access Journals (Sweden)

    Yi-Man Lo

    2011-02-01

    Full Text Available Advances in fuel cell applications reflect the ability of reformers to produce hydrogen. This work presents a flexible micro temperature sensor that is fabricated based on micro-electro-mechanical systems (MEMS technology and integrated into a flat micro methanol reformer to observe the conditions inside that reformer. The micro temperature sensor has higher accuracy and sensitivity than a conventionally adopted thermocouple. Despite various micro temperature sensor applications, integrated micro reformers are still relatively new. This work proposes a novel method for integrating micro methanol reformers and micro temperature sensors, subsequently increasing the methanol conversion rate and the hydrogen production rate by varying the fuel supply rate and the water/methanol ratio. Importantly, the proposed micro temperature sensor adequately controls the interior temperature during oxidative steam reforming of methanol (OSRM, with the relevant parameters optimized as well.

  18. Application of Flexible Micro Temperature Sensor in Oxidative Steam Reforming by a Methanol Micro Reformer

    Science.gov (United States)

    Lee, Chi-Yuan; Lee, Shuo-Jen; Shen, Chia-Chieh; Yeh, Chuin-Tih; Chang, Chi-Chung; Lo, Yi-Man

    2011-01-01

    Advances in fuel cell applications reflect the ability of reformers to produce hydrogen. This work presents a flexible micro temperature sensor that is fabricated based on micro-electro-mechanical systems (MEMS) technology and integrated into a flat micro methanol reformer to observe the conditions inside that reformer. The micro temperature sensor has higher accuracy and sensitivity than a conventionally adopted thermocouple. Despite various micro temperature sensor applications, integrated micro reformers are still relatively new. This work proposes a novel method for integrating micro methanol reformers and micro temperature sensors, subsequently increasing the methanol conversion rate and the hydrogen production rate by varying the fuel supply rate and the water/methanol ratio. Importantly, the proposed micro temperature sensor adequately controls the interior temperature during oxidative steam reforming of methanol (OSRM), with the relevant parameters optimized as well. PMID:22319407

  19. Application of flexible micro temperature sensor in oxidative steam reforming by a methanol micro reformer.

    Science.gov (United States)

    Lee, Chi-Yuan; Lee, Shuo-Jen; Shen, Chia-Chieh; Yeh, Chuin-Tih; Chang, Chi-Chung; Lo, Yi-Man

    2011-01-01

    Advances in fuel cell applications reflect the ability of reformers to produce hydrogen. This work presents a flexible micro temperature sensor that is fabricated based on micro-electro-mechanical systems (MEMS) technology and integrated into a flat micro methanol reformer to observe the conditions inside that reformer. The micro temperature sensor has higher accuracy and sensitivity than a conventionally adopted thermocouple. Despite various micro temperature sensor applications, integrated micro reformers are still relatively new. This work proposes a novel method for integrating micro methanol reformers and micro temperature sensors, subsequently increasing the methanol conversion rate and the hydrogen production rate by varying the fuel supply rate and the water/methanol ratio. Importantly, the proposed micro temperature sensor adequately controls the interior temperature during oxidative steam reforming of methanol (OSRM), with the relevant parameters optimized as well.

  20. Steam Methane Reformation Testing for Air-Independent Solid Oxide Fuel Cell Systems

    Science.gov (United States)

    Mwara, Kamwana N.

    2015-01-01

    Recently, NASA has been looking into utilizing landers that can be propelled by LOX-CH (sub 4), to be used for long duration missions. Using landers that utilize such propellants, also provides the opportunity to use solid oxide fuel cells as a power option, especially since they are able to process methane into a reactant through fuel reformation. One type of reformation, called steam methane reformation, is a process to reform methane into a hydrogen-rich product by reacting methane and steam (fuel cell exhaust) over a catalyst. A steam methane reformation system could potentially use the fuel cell's own exhaust to create a reactant stream that is hydrogen-rich, and requires less internal reforming of the incoming methane. Also, steam reformation may hold some advantages over other types of reforming, such as partial oxidation (PROX) reformation. Steam reformation does not require oxygen, while up to 25 percent can be lost in PROX reformation due to unusable CO (sub 2) reformation. NASA's Johnson Space Center has conducted various phases of steam methane reformation testing, as a viable solution for in-space reformation. This has included using two different types of catalysts, developing a custom reformer, and optimizing the test system to find the optimal performance parameters and operating conditions.

  1. THOR Bench-Scale Steam Reforming Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    D. W. Marshall; N. R. Soelberg; K. M. Shaber

    2003-05-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by THORsm Treatment Technologies, LLC, for treatment of SBW into a "road ready" waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrates were not detected in the product and NOx destruction exceeded 98%. The demonstration was successful.

  2. THOR Bench-Scale Steam Reforming Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, D.W.; Soelberg, N.R.; Shaber, K.M.

    2003-05-21

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by THORsm Treatment Technologies, LLC, for treatment of SBW into a ''road ready'' waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrates were not detected in the product and NOx destruction exceeded 98%. The demonstration was successful.

  3. Thermodynamic analysis of carbon formation boundary and reforming performance for steam reforming of dimethyl ether

    Science.gov (United States)

    Faungnawakij, Kajornsak; Kikuchi, Ryuji; Eguchi, Koichi

    Thermodynamic analysis of dimethyl ether steam reforming (DME SR) was investigated for carbon formation boundary, DME conversion, and hydrogen yield for fuel cell application. The equilibrium calculation employing Gibbs free minimization was performed to figure out the required steam-to-carbon ratio (S/C = 0-5) and reforming temperature (25-1000 °C) where coke formation was thermodynamically unfavorable. S/C, reforming temperature and product species strongly contributed to the coke formation and product composition. When chemical species DME, methanol, CO 2, CO, H 2, H 2O and coke were considered, complete conversion of DME and hydrogen yield above 78% without coke formation were achieved at the normal operating temperatures of molten carbonate fuel cell (600 °C) and solid oxide fuel cell (900 °C), when S/C was at or above 2.5. When CH 4 was favorable, production of coke and that of hydrogen were significantly suppressed.

  4. Catalytic steam reforming of ethanol for hydrogen production: Brief status

    Directory of Open Access Journals (Sweden)

    Bineli Aulus R.R.

    2016-01-01

    Full Text Available Hydrogen represents a promising fuel since it is considered as a cleanest energy carrier and also because during its combustion only water is emitted. It can be produced from different kinds of renewable feedstocks, such as ethanol, in this sense hydrogen could be treated as biofuel. Three chemical reactions can be used to achieve this purpose: the steam reforming (SR, the partial oxidation (POX and the autothermal reforming (ATR. In this study, the catalysts implemented in steam reforming of ethanol were reviewed. A wide variety of elements can be used as catalysts for this reaction, such as base metals (Ni, Cu and Co or noble metals (Rh, Pt and Ru usually deposited on a support material that increases surface area and improves catalytic function. The use of Rh, Ni and Pt supported or promoted with CeO2, and/or La2O3 shows excellent performance in ethanol SR catalytic process. The ratio of water to ethanol, reaction temperatures, catalysts loadings, selectivity and activity are also discussed as they are extremely important for high hydrogen yields.

  5. Development and validation of a CFD-based steam reformer model

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen; Dahlqvist, Mathis; Saksager, Anders

    2006-01-01

    Steam reforming of liquid biofuels (ethanol, bio-diesel etc.) represents a sustainable source of hydrogen for micro Combined Heat and Power (CHP) production as well as Auxiliary Power Units (APUs). In relation to the design of the steam reforming reactor several parameter are important including...... for expensive prototypes. This paper presents an advanced Computational Fluid Dynamics based model of a steam reformer. The model was implemented in the commercial CFD code Fluent through the User Defined Functions interface. The model accounts for the flue gas flow as well as the reformate flow including...... a detailed mechanism for the reforming reactions. Heat exchange between the flue gas and reformate streams through the reformer reactor walls was also included as a conjugate heat transfer process.  From a review of published models for the catalytic steam reforming of ethanol and preliminary predictions...

  6. Methane steam reforming kinetics over Ni-YSZ anodematerials for Solid Oxide FuelCells

    DEFF Research Database (Denmark)

    Mogensen, David

    accurately predict the steam reforming rate in a stack from the rate expression obtained from the packed bed experiments. During the experiments a previously unreported long term dynamic behavior of the catalyst was observed. After startup, the initial high reactivity was slowly reduced by a factor 5-10 over...... energy. The overall efficiency of a fuel cell system operating on natural gas can be significantly improved by having part of the steam reforming take place inside the SOFC stack. In order to avoid large temperature gradients as a result of the highly endothermal steam reforming reaction, the amount...... of internal reforming has to be carefully controlled. The objective of this thesis is to make such a careful control possible by examining the rate of internal steam reforming in SOFCs. The catalytic steam reforming activity of Ni-YSZ anode material was tested both in a packed bed reactor to determine...

  7. Ni Catalysts Supported on Modified Alumina for Diesel Steam Reforming

    Directory of Open Access Journals (Sweden)

    Antonios Tribalis

    2016-01-01

    Full Text Available Nickel catalysts are the most popular for steam reforming, however, they have a number of drawbacks, such as high propensity toward coke formation and intolerance to sulfur. In an effort to improve their behavior, a series of Ni-catalysts supported on pure and La-, Ba-, (La+Ba- and Ce-doped γ-alumina has been prepared. The doped supports and the catalysts have been extensively characterized. The catalysts performance was evaluated for steam reforming of n-hexadecane pure or doped with dibenzothiophene as surrogate for sulphur-free or commercial diesel, respectively. The undoped catalyst lost its activity after 1.5 h on stream. Doping of the support with La improved the initial catalyst activity. However, this catalyst was completely deactivated after 2 h on stream. Doping with Ba or La+Ba improved the stability of the catalysts. This improvement is attributed to the increase of the dispersion of the nickel phase, the decrease of the support acidity and the increase of Ni-phase reducibility. The best catalyst of the series doped with La+Ba proved to be sulphur tolerant and stable for more than 160 h on stream. Doping of the support with Ce also improved the catalytic performance of the corresponding catalyst, but more work is needed to explain this behavior.

  8. Kinetic Study of Nonequilibrium Plasma-Assisted Methane Steam Reforming

    Directory of Open Access Journals (Sweden)

    Hongtao Zheng

    2014-01-01

    Full Text Available To develop a detailed reaction mechanism for plasma-assisted methane steam reforming, a comprehensive numerical and experimental study of effect laws on methane conversion and products yield is performed at different steam to methane molar ratio (S/C, residence time s, and reaction temperatures. A CHEMKIN-PRO software with sensitivity analysis module and path flux analysis module was used for simulations. A set of comparisons show that the developed reaction mechanism can accurately predict methane conversion and the trend of products yield in different operating conditions. Using the developed reaction mechanism in plasma-assisted kinetic model, the reaction path flux analysis was carried out. The result shows that CH3 recombination is the limiting reaction for CO production and O is the critical species for CO production. Adding 40 wt.% Ni/SiO2 in discharge region has significantly promoted the yield of H2, CO, or CO2 in dielectric packed bed (DPB reactor. Plasma catalytic hybrid reforming experiment verifies the reaction path flux analysis tentatively.

  9. Preliminary assessment of synthesis gas production via hybrid steam reforming of methane and glycerol

    NARCIS (Netherlands)

    Balegedde Ramachandran, P.; van Rossum, G.; Kersten, Sascha R.A.; van Swaaij, Willibrordus Petrus Maria

    2012-01-01

    In this article, hybrid steam reforming (HSR) of desulphurized methane, together with crude glycerol, in existing commercial steam reformers to produce synthesis gas is proposed. The proposed concept consists of a gasifier to produce vapors, gases, and char from crude glycerol, which is coupled with

  10. Catalyst deactivation during steam reforming of acetic acid over Pt/ZrO2.

    NARCIS (Netherlands)

    Takanabe, K.; Takanabe, Kazuhiro; Aika, Ken-ichi; Seshan, Kulathuiyer; Lefferts, Leonardus

    2006-01-01

    Steam reforming of acetic acid as a model compound present in bio-oil over Pt/ZrO2 catalysts has been investigated. Pt/ZrO2 yields steam reforming products (i.e., H2, CO, CO2) to the amounts predicted by thermodynamic equilibrium; however, conversion and yields dropped rapidly with time on course.

  11. Thermodynamic evaluation of methanol steam reforming for hydrogen production

    Science.gov (United States)

    Faungnawakij, Kajornsak; Kikuchi, Ryuji; Eguchi, Koichi

    Thermodynamic equilibrium of methanol steam reforming (MeOH SR) was studied by Gibbs free minimization for hydrogen production as a function of steam-to-carbon ratio (S/C = 0-10), reforming temperature (25-1000 °C), pressure (0.5-3 atm), and product species. The chemical species considered were methanol, water, hydrogen, carbon dioxide, carbon monoxide, carbon (graphite), methane, ethane, propane, i-butane, n-butane, ethanol, propanol, i-butanol, n-butanol, and dimethyl ether (DME). Coke-formed and coke-free regions were also determined as a function of S/C ratio. Based upon a compound basis set MeOH, CO 2, CO, H 2 and H 2O, complete conversion of MeOH was attained at S/C = 1 when the temperature was higher than 200 °C at atmospheric pressure. The concentration and yield of hydrogen could be achieved at almost 75% on a dry basis and 100%, respectively. From the reforming efficiency, the operating condition was optimized for the temperature range of 100-225 °C, S/C range of 1.5-3, and pressure at 1 atm. The calculation indicated that the reforming condition required from sufficient CO concentration (<10 ppm) for polymer electrolyte fuel cell application is too severe for the existing catalysts (T r = 50 °C and S/C = 4-5). Only methane and coke thermodynamically coexist with H 2O, H 2, CO, and CO 2, while C 2H 6, C 3H 8, i-C 4H 10, n-C 4H 10, CH 3OH, C 2H 5OH, C 3H 7OH, i-C 4H 9OH, n-C 4H 9OH, and C 2H 6O were suppressed at essentially zero. The temperatures for coke-free region decreased with increase in S/C ratios. The impact of pressure was negligible upon the complete conversion of MeOH.

  12. Catalytic deactivation on methane steam reforming catalysts. 2. Kinetic study

    Energy Technology Data Exchange (ETDEWEB)

    Agnelli, M.E.; Ponzi, E.N.; Yeramian, A.A.

    1987-08-01

    The kinetics of methane steam reforming reaction over an alumina-supported nickel catalyst was investigated at a temperature range of 640-740/sup 0/C in a flow reactor at atmospheric pressure. The experiments were performed varying the inlet concentration of methane, hydrogen, and water. A kinetic scheme of the Houghen-Watson type was satisfactorily proposed assuming the dissociative adsorption of CH/sub 4/ as the rate-limiting step, but this kinetic scheme can be easily replaced by a first-order kinetics (r/sub CH/4/sub / = kapparho/sub CH/4/sub /) for engineering purposes. Catalyst activation with H/sub 2/ and N/sub 2/ mixtures or with the reactant mixture results in the same extent of reaction.

  13. Influence of geometry on pressure and velocity distribution in packed-bed methanol steam reforming reactor

    Science.gov (United States)

    Ivanović, Ivana; Sedmak, Aleksandar; Milošević, Miloš; Cvetković, Ivana; Pohar, Andrej; Likozar, Blaž

    2017-07-01

    The main tasks of this research is to propose several changes in the packed bed micro methanol steam reformer geometry in order to ensure its performance. The reformer is an integral part of the existing indirect internal reforming high temperature PEMFC and most of its geometry is already defined. The space for remodeling is very limited.

  14. Evaluation of dissociated and steam-reformed methanol as automotive engine fuels

    Science.gov (United States)

    Lalk, T. R.; Mccall, D. M.; Mccanlies, J. M.

    1984-01-01

    Dissociated and steam reformed methanol were evaluated as automotive engine fuels. Advantages and disadvantages in using methanol in the reformed rather than liquid state were discussed. Engine dynamometer tests were conducted with a four cylinder, 2.3 liter, spark ignition automotive engine to determine performance and emission characteristics operating on simulated dissociated and steam reformed methanol (2H2 + CO and 3H2 + CO2 respectively), and liquid methanol. Results are presented for engine performance and emissions as functions of equivalence ratio, at various throttle settings and engine speeds. Operation on dissociated and steam reformed methanol was characterized by flashback (violent propagation of a flame into the intake manifold) which limited operation to lower power output than was obtainable using liquid methanol. It was concluded that: an automobile could not be operated solely on dissociated or steam reformed methanol over the entire required power range - a supplementary fuel system or power source would be necessary to attain higher powers; the use of reformed mechanol, compared to liquid methanol, may result in a small improvement in thermal efficiency in the low power range; dissociated methanol is a better fuel than steam reformed methanol for use in a spark ignition engine; and use of dissociated or steam reformed methanol may result in lower exhaust emissions compared to liquid methanol.

  15. Transport in packed-bed and wall-coated steam-methanol reformers

    Science.gov (United States)

    Lee, Ming-tsang; Greif, Ralph; Grigoropoulos, Costas P.; Park, Hyung Gyu; Hsu, Frank K.

    Methanol-steam reforming can be utilized as a fuel processing system for hydrogen fuel cells. A study of the reacting flow in packed-bed and wall-coated catalytic reactors is presented. The wall-coated reformer has a smaller power requirement for delivering fuel than the packed catalytic bed reformer. Also, the coated catalytic layer has a smaller thermal resistance compared to the packed catalytic bed. This yields enhanced thermal field management for the wall-coated reformer that is essential for reformer performance. Understanding the transport in reformers is essential for improving both the efficiency of the reforming process and the quality of the processed fuel.

  16. Influence of Steam Reforming Catalyst Geometry on the Performance of Tubular Reformer – Simulation Calculations

    Directory of Open Access Journals (Sweden)

    Franczyk Ewelina

    2015-06-01

    Full Text Available A proper selection of steam reforming catalyst geometry has a direct effect on the efficiency and economy of hydrogen production from natural gas and is a very important technological and engineering issue in terms of process optimisation. This paper determines the influence of widely used seven-hole grain diameter (ranging from 11 to 21 mm, h/d (height/diameter ratio of catalyst grain and Sh/St (hole surface/total cylinder surface in cross-section ratio (ranging from 0.13 to 0.37 on the gas load of catalyst bed, gas flow resistance, maximum wall temperature and the risk of catalyst coking. Calculations were based on the one-dimensional pseudo-homogeneous model of a steam reforming tubular reactor, with catalyst parameters derived from our investigations. The process analysis shows that it is advantageous, along the whole reformer tube length, to apply catalyst forms of h/d = 1 ratio, relatively large dimensions, possibly high bed porosity and Sh/St ≈ 0.30-0.37 ratio. It enables a considerable process intensification and the processing of more natural gas at the same flow resistance, despite lower bed activity, without catalyst coking risk. Alternatively, plant pressure drop can be reduced maintaining the same gas load, which translates directly into diminishing the operating costs as a result of lowering power consumption for gas compression.

  17. Strain measurement on a compact nuclear reactor steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Scaldaferri, Denis Henrique Bianchi; Gomes, Paulo de Tarso Vida; Mansur, Tanius Rodrigues, E-mail: dhbs@cdtn.b, E-mail: gomespt@cdtn.b, E-mail: tanius@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Pozzo, Renato del, E-mail: delpozzo@ctmsp.mar.mil.b [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), SP (Brazil); Mola, Jairo [Unitecnica Engenharia, Sao Paulo, SP (Brazil)

    2011-07-01

    This work presents the strain measurement procedures applied to a compact nuclear reactor steam generator, during a hydrostatic test, using strain gage technology. The test was divided in two steps: primary side test and secondary side test. In the primary side test twelve points for strain measurement using rectangular rosettes, three points (two external and one internal) for temperature measurement using special strain gages and one point for pressure measurement using a pressure transducer were monitored. In the secondary side test 18 points for strain measurement using rectangular rosettes, four points (two external and two internal) for temperature measurement using special strain gages and one point for pressure measurement using a pressure transducer were monitored. The measurement points on both internal and external pressurizer walls were established from pre-calculated stress distribution by means of numerical approach (finite elements modeling). Strain values using a quarter Wheatstone bridge circuit were obtained. Stress values, from experimental strain were determined, and to numerical calculation results were compared. (author)

  18. Sorption-enhanced steam methane reforming in fluidized bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Kim

    2006-10-15

    Hydrogen is considered to be an important potential energy carrier; however, its advantages are unlikely to be realized unless efficient means can be found to produce it without generation of CO{sub 2}. Sorption-enhanced steam methane reforming (SE-SMR) represent a novel, energy-efficient hydrogen production route with in situ CO{sub 2} capture, shifting the reforming and water gas shift reactions beyond their conventional thermodynamic limits. The use of fluidized bed reactors for SE-SMR has been investigated. Arctic dolomite, a calcium-based natural sorbent, was chosen as the primary CO{sub 2}-acceptor in this study due to high absorption capacity, relatively high reaction rate and low cost. An experimental investigation was conducted in a bubbling fluidized bed reactor of diameter 0.1 m, which was operated cyclically and batch wise, alternating between reforming/carbonation conditions and higher-temperature calcination conditions. Hydrogen concentrations of >98 mole% on a dry basis were reached at 600 C and 1 atm, for superficial gas velocities in the range of {approx}0.03-0.1 m/s. Multiple reforming-regeneration cycles showed that the hydrogen concentration remained at {approx}98 mole% after four cycles. The total production time was reduced with an increasing number of cycles due to loss of CO{sub 2}-uptake capacity of the dolomite, but the reaction rates of steam reforming and carbonation seemed to be unaffected for the conditions investigated. A modified shrinking core model was applied for deriving carbonation kinetics of Arctic dolomite, using experimental data from a novel thermo gravimetric reactor. An apparent activation energy of 32.6 kj/mole was found from parameter fitting, which is in good agreement with previous reported results. The derived rate expression was able to predict experimental conversion up to {approx}30% very well, whereas the prediction of higher conversion levels was poorer. However, the residence time of sorbent in a continuous

  19. CATALYTIC STEAM REFORMING OF CHLOROCARBONS: POLYCHLORINATED BIPHENYLS (PCBS). (R826694C633)

    Science.gov (United States)

    Experiments with commercial askarals (Aroclors 1221, 1248 and 1254) have confirmed the feasibility of catalytic steam reforming as a method for destroying polychlorinated biphenyls (PCBs). Rhodium, platinum and nickel supported on Durability Testing of Fluidized Bed Steam Reforming Products

    Energy Technology Data Exchange (ETDEWEB)

    JANTZEN, CAROL M.; PAREIZS, JOHN M.; LORIER, TROY H.; MARRA, JAMES C.

    2005-07-01

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of radioactive wastes but especially aqueous high sodium wastes at the Hanford site, at the Idaho National Laboratory (INL), and at the Savannah River Site (SRS). The FBSR technology converts organic compounds to CO{sub 2} and H{sub 2}O, converts nitrate/nitrite species to N{sub 2}, and produces a solid residue through reactions with superheated steam, the fluidizing media. If clay is added during processing a ''mineralized'' granular waste form can be produced. The mineral components of the waste form are primarily Na-Al-Si (NAS) feldspathoid minerals with cage-like and ring structures and iron bearing spinel minerals. The cage and ring structured minerals atomically bond radionuclides like Tc{sup 99} and Cs{sup 137} and anions such as SO{sub 4}, I, F, and Cl. The spinel minerals appear to stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Durability testing of the FBSR products was performed using ASTM C1285 (Product Consistency Test) and the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP). The FBSR mineral products (bed and fines) evaluated in this study were found to be two orders of magnitude more durable than the Hanford Low Activity Waste (LAW) glass requirement of 2 g/m{sup 2} release of Na{sup +}. The PCT responses for the FBSR samples tested were consistent with results from previous FBSR Hanford LAW product testing. Differences in the response can be explained by the minerals formed and their effects on PCT leachate chemistry.

  1. Investigations on a new internally-heated tubular packed-bed methanol–steam reformer

    KAUST Repository

    Nehe, Prashant

    2015-05-01

    Small-scale reformers for hydrogen production through steam reforming of methanol can provide an alternative solution to the demand of continuous supply of hydrogen gas for the operation of Proton Exchange Membrane Fuel Cells (PEMFCs). A packed-bed type reformer is one of the potential designs for such purpose. An externally heated reformer has issues of adverse lower temperature in the core of the reformer and significant heat loss to the environment thus impacting its performance. Experimental and numerical studies on a new concept of internally heated tubular packed-bed methanol-steam reformer have been reported in this paper with improved performance in terms of higher methanol conversion and reduced heat losses to surroundings. CuO/ZnO/Al2O3 is used as the catalyst for the methanol-steam reforming reaction and a rod-type electric heater at the center of the reactor is used for supplying necessary heat for endothermic steam reforming reaction. The vaporizer and the reformer unit with a constant volume catalyst bed are integrated in the annular section of a tubular reformer unit. The performance of the reformer was investigated at various operating conditions like feed rate of water-methanol mixture, mass of the catalyst and reforming temperature. The experimental and numerical results show that the methanol conversion and CO concentration increase with internal heating for a wide range of operating conditions. The developed reformer unit generates 50-80W (based on lower heating value) of hydrogen gas for applications in PEMFCs. For optimized design and operating conditions, the reformer unit produced 298sccm reformed gas containing 70% H2, 27% CO2 and 3% CO at 200-240°C which can produce a power output of 25-32W assuming 60% fuel cell efficiency and 80% of hydrogen utilization in a PEMFC. © 2015 Hydrogen Energy Publications, LLC.

  2. Comparison of compact reformer configurations for on-board fuel processing

    Energy Technology Data Exchange (ETDEWEB)

    Karakaya, Mustafa; Avci, Ahmet K. [Department of Chemical Engineering, Bogazici University, Bebek 34342, Istanbul (Turkey)

    2010-03-15

    Two compact reformer configurations in the context of production of hydrogen in a fuel processing system for use in a Proton Exchange Membrane Fuel Cell (PEMFC) based auxiliary power unit in the 2-3 kW range are compared using computer-based modeling techniques. Hydrogen is produced via catalytic steam reforming of n-heptane, the surrogate for petroleum naphtha. Heat required for this endothermic reaction is supplied via catalytic combustion of methane, the model compound for natural gas. The combination of steam reforming and catalytic combustion is modeled for a microchannel reactor configuration in which reactions and heat transfer take place in parallel, micro-sized flow paths with wall-coated catalysts and for a cascade reactor configuration in which reactions occur in a series of adiabatic packed-beds, heat exchange in interconnecting microchannel heat exchangers being used to maintain the desired temperature. Size and efficiency of the fuel processor consisting of the reformer, hydrogen clean-up units and heat exchange peripherals are estimated for either case of using a microchannel and a cascade configuration in the reforming step. The respective sizes of fuel processors with microchannel and cascade configurations are 1.53 x 10{sup -3} and 1.71 x 10{sup -3} m{sup 3}. The overall efficiency of the fuel processor, defined as the ratio of the lower heating value of the hydrogen produced to the lower heating value of the fuel consumed, is 68.2% with the microchannel reactor and 73.5% with the cascade reactor mainly due to 30% lower consumption of n-heptane in the latter. The cascade system also offers advanced temperature control over the reactions and ease of catalyst replacement. (author)

  3. Zircon Supported Copper Catalysts for the Steam Reforming of Methanol

    Science.gov (United States)

    Widiastri, M.; Fendy, Marsih, I. N.

    2008-03-01

    Steam reforming of methanol (SRM) is known as one of the most favorable catalytic processes for producing hydrogen. Current research on zirconia, ZrO2 supported copper catalyst revealed that CuO/ZrO2 as an active catalyst for the SRM. Zircon, ZrSiO4 is available from the by-product of tin mining. In the work presented here, the catalytic properties of CuO/ZrSiO4 with various copper oxide compositions ranging from 2.70% (catalyst I), 4.12% (catalyst II), and 7.12%-mass (catalyst III), synthesized by an incipient wetness impregnation technique, were investigated to methanol conversion, selectivity towards CO formation, and effect of ZnO addition (7.83%CuO/8.01%ZnO/ZrSiO4 = catalyst V). The catalytic activity was obtained using a fixed bed reactor and the zircon supported catalyst activity was compared to those of CuO/ZnO/Al2O3 catalyst (catalyst IV) and commercial Kujang LTSC catalyst. An X-ray powder diffraction (XRD) analysis was done to identify the abundant phases of the catalysts. The catalysts topography and particle diameter were measured with scanning electron microscopy (SEM) and composition of the catalysts was measured by SEM-EDX, scanning electron microscope-energy dispersive using X-ray analysis. The results of this research provide information on the possibility of using zircon (ZrSiO4) as solid support for SRM catalysts.

  4. Additive Manufacturing of Catalyst Substrates for Steam-Methane Reforming

    Science.gov (United States)

    Kramer, Michelle; McKelvie, Millie; Watson, Matthew

    2018-01-01

    Steam-methane reforming is a highly endothermic reaction, which is carried out at temperatures up to 1100 °C and pressures up to 3000 kPa, typically with a Ni-based catalyst distributed over a substrate of discrete alumina pellets or beads. Standard pellet geometries (spheres, hollow cylinders) limit the degree of mass transfer between gaseous reactants and catalyst. Further, heat is supplied to the exterior of the reactor wall, and heat transfer is limited due to the nature of point contacts between the reactor wall and the substrate pellets. This limits the degree to which the process can be intensified, as well as limiting the diameter of the reactor wall. Additive manufacturing now gives us the capability to design structures with tailored heat and mass transfer properties, not only within the packed bed of the reactor, but also at the interface between the reactor wall and the packed bed. In this work, the use of additive manufacturing to produce monolithic-structured catalyst substrate models, made from acrylonitrile-butadiene-styrene, with enhanced conductive heat transfer is described. By integrating the reactor wall into the catalyst substrate structure, the effective thermal conductivity increased by 34% from 0.122 to 0.164 W/(m K).

  5. FLUIDIZED BED STEAM REFORMING ENABLING ORGANIC HIGH LEVEL WASTE DISPOSAL

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M

    2008-05-09

    Waste streams planned for generation by the Global Nuclear Energy Partnership (GNEP) and existing radioactive High Level Waste (HLW) streams containing organic compounds such as the Tank 48H waste stream at Savannah River Site have completed simulant and radioactive testing, respectfully, by Savannah River National Laboratory (SRNL). GNEP waste streams will include up to 53 wt% organic compounds and nitrates up to 56 wt%. Decomposition of high nitrate streams requires reducing conditions, e.g. provided by organic additives such as sugar or coal, to reduce NOX in the off-gas to N2 to meet Clean Air Act (CAA) standards during processing. Thus, organics will be present during the waste form stabilization process regardless of the GNEP processes utilized and exists in some of the high level radioactive waste tanks at Savannah River Site and Hanford Tank Farms, e.g. organics in the feed or organics used for nitrate destruction. Waste streams containing high organic concentrations cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by pretreatment. The alternative waste stabilization pretreatment process of Fluidized Bed Steam Reforming (FBSR) operates at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). The FBSR process has been demonstrated on GNEP simulated waste and radioactive waste containing high organics from Tank 48H to convert organics to CAA compliant gases, create no secondary liquid waste streams and create a stable mineral waste form.

  6. Additive Manufacturing of Catalyst Substrates for Steam-Methane Reforming

    Science.gov (United States)

    Kramer, Michelle; McKelvie, Millie; Watson, Matthew

    2017-08-01

    Steam-methane reforming is a highly endothermic reaction, which is carried out at temperatures up to 1100 °C and pressures up to 3000 kPa, typically with a Ni-based catalyst distributed over a substrate of discrete alumina pellets or beads. Standard pellet geometries (spheres, hollow cylinders) limit the degree of mass transfer between gaseous reactants and catalyst. Further, heat is supplied to the exterior of the reactor wall, and heat transfer is limited due to the nature of point contacts between the reactor wall and the substrate pellets. This limits the degree to which the process can be intensified, as well as limiting the diameter of the reactor wall. Additive manufacturing now gives us the capability to design structures with tailored heat and mass transfer properties, not only within the packed bed of the reactor, but also at the interface between the reactor wall and the packed bed. In this work, the use of additive manufacturing to produce monolithic-structured catalyst substrate models, made from acrylonitrile-butadiene-styrene, with enhanced conductive heat transfer is described. By integrating the reactor wall into the catalyst substrate structure, the effective thermal conductivity increased by 34% from 0.122 to 0.164 W/(m K).

  7. Steam Reforming of Acetic Acid over Co-Supported Catalysts: Coupling Ketonization for Greater Stability

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Stephen D. [Energy and Environmental; Spies, Kurt A. [Energy and Environmental; Mei, Donghai [Energy and Environmental; Kovarik, Libor [Energy and Environmental; Kutnyakov, Igor [Energy and Environmental; Li, Xiaohong S. [Energy and Environmental; Lebarbier Dagle, Vanessa [Energy and Environmental; Albrecht, Karl O. [Energy and Environmental; Dagle, Robert A. [Energy and Environmental

    2017-09-11

    We report on the markedly improved stability of a novel 2-bed catalytic system, as compared to a conventional 1-bed steam reforming catalyst, for the production of H2 from acetic acid. The 2-bed catalytic system comprises of i) a basic oxide ketonization catalyst for the conversion of acetic acid to acetone, and a ii) Co-based steam reforming catalyst, both catalytic beds placed in sequence within the same unit operation. Steam reforming catalysts are particularly prone to catalytic deactivation when steam reforming acetic acid, used here as a model compound for the aqueous fraction of bio-oil. Catalysts comprising MgAl2O4, ZnO, CeO2, and activated carbon (AC) both with and without Co-addition were evaluated for conversion of acetic acid and acetone, its ketonization product, in the presence of steam. It was found that over the bare oxide support only ketonization activity was observed and coke deposition was minimal. With addition of Co to the oxide support steam reforming activity was facilitated and coke deposition was significantly increased. Acetone steam reforming over the same Co-supported catalysts demonstrated more stable performance and with less coke deposition than with acetic acid feedstock. DFT analysis suggests that over Co surface CHxCOO species are more favorably formed from acetic acid versus acetone. These CHxCOO species are strongly bound to the Co catalyst surface and could explain the higher propensity for coke formation from acetic acid. Based on these findings, in order to enhance stability of the steam reforming catalyst a dual-bed (2-bed) catalyst system was implemented. Comparing the 2-bed and 1-bed (Co-supported catalyst only) systems under otherwise identical reaction conditions the 2-bed demonstrated significantly improved stability and coke deposition was decreased by a factor of 4.

  8. Comparison of steam and autothermal reforming of methanol for fuel cell applications

    Science.gov (United States)

    Yoon, Hyung Chul

    This proposed study investigates two different reforming methods; autothermal and steam reforming of methanol for fuel cell systems. Generally, the efficiency of the overall fuel cell system can be improved by utilizing thermal waste energy from integrated fuel cell system components. This waste energy typically originates from retentate gas from membrane hydrogen separation units and/or flue gas from anode of the fuel cell. Theoretically, steam-reforming fuel cell systems have higher thermal efficiencies than autothermal reforming fuel cell systems due to the resultant high concentration of hydrogen. Therefore, steam reforming is generally recognized as the more suitable fuel processor for fuel cell applications. However, steam reforming can be adversely affected by mass and heat transfer limitations and catalyst degradation. Heat exchange efficiency with steam reformers has been found in experimental units to be less than 50%. As compared to a steam reformer, an autothermal reformer has internal heat generation which allows for lessened radial temperature gradients and higher resultant heat exchange. Impure methanol streams as found in practice have minute quantities of higher order hydrocarbons which can result in significant catalyst degradation. Due to increased temperature, an autothermal method can reform the small quantities of higher order hydrocarbons and thus increase the effective catalyst lifetime. It is presently unknown if these theoretical and practical benefits of autothermal reformation can balance the entropy increase associated with higher temperature reformation. It is the goal of this proposed dissertation topic to investigate both steam reformation and autothermal reformation when considering use of methanol for hydrogen fuel cell systems. This will be done with both theory based models and with actual experiments with the available laboratory facilities. Specifically the integration of the reformer system will be considered, the overall fuel

  9. Solid oxide fuel cell steam reforming power system

    Science.gov (United States)

    Chick, Lawrence A.; Sprenkle, Vincent L.; Powell, Michael R.; Meinhardt, Kerry D.; Whyatt, Greg A.

    2013-03-12

    The present invention is a Solid Oxide Fuel Cell Reforming Power System that utilizes adiabatic reforming of reformate within this system. By utilizing adiabatic reforming of reformate within the system the system operates at a significantly higher efficiency than other Solid Oxide Reforming Power Systems that exist in the prior art. This is because energy is not lost while materials are cooled and reheated, instead the device operates at a higher temperature. This allows efficiencies higher than 65%.

  10. Influence of nanocatalyst on oxidative coupling, steam and dry reforming of methane: A short review

    DEFF Research Database (Denmark)

    Farsi, Ali; Mansouri, Seyed Soheil

    2016-01-01

    The influence of nanocatalyst on three main reactions for natural gas conversion such as steam reforming, dry reforming and oxidative coupling of methane has been reviewed with an emphasis on the literatures’ reports and results. Although literatures’ experimental results showed that the conversion...

  11. Steam reforming of crude glycerol with in situ CO(2) sorption.

    Science.gov (United States)

    Dou, Binlin; Rickett, Gavin L; Dupont, Valerie; Williams, Paul T; Chen, Haisheng; Ding, Yulong; Ghadiri, Mojtaba

    2010-04-01

    Steam reforming of the crude glycerol by-product of a biodiesel production plant has been evaluated experimentally at atmospheric pressure, with and without in situ CO(2) sorption, in a continuous flow fixed-bed reactor between 400 degrees C and 700 degrees C. The process outputs were compared to those using pure glycerol. Thermodynamic equilibrium calculations were used to assess the effect on the steam reforming process of the main crude impurities (methanol and four fatty acid methyl esters). The crude glycerol and steam conversions and the H(2) purity reached 100%, 11% and 68%, respectively at 600 degrees C. No CH(4) was found at and above 600 degrees C. Steam reforming of crude glycerol with in situ CO(2) removal is shown to be an effective means of achieving hydrogen purity above 88% in pre-CO(2) breakthrough conditions. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Methane steam reforming kinetics over Ni-YSZ anode materials for Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Mogensen, David

    Solid Oxide Fuel Cells (SOFC) is a technology with great potential. Its high efficiency makes it a relevant alternative to existing technologies for utilizing fossil fuels and its fuel versatility makes it invaluable in the transition from a fossil fuel based energy system to on based on renewable...... of internal reforming has to be carefully controlled. The objective of this thesis is to make such a careful control possible by examining the rate of internal steam reforming in SOFCs. The catalytic steam reforming activity of Ni-YSZ anode material was tested both in a packed bed reactor to determine...

  13. Review on Copper and Palladium Based Catalysts for Methanol Steam Reforming to Produce Hydrogen

    OpenAIRE

    Xinhai Xu; Kaipeng Shuai; Ben Xu

    2017-01-01

    Methanol steam reforming is a promising technology for producing hydrogen for onboard fuel cell applications. The methanol conversion rate and the contents of hydrogen, carbon monoxide and carbon dioxide in the reformate, significantly depend on the reforming catalyst. Copper-based catalysts and palladium-based catalysts can effectively convert methanol into hydrogen and carbon dioxide. Copper and palladium-based catalysts with different formulations and compositions have been thoroughly inve...

  14. DURABILITY TESTING OF FLUIDIZED BED STEAM REFORMER (FBSR) WASTE FORMS

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C

    2006-01-06

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium aqueous radioactive wastes. The addition of clay and a catalyst as co-reactants converts high sodium aqueous low activity wastes (LAW) such as those existing at the Hanford and Idaho DOE sites to a granular ''mineralized'' waste form that may be made into a monolith form if necessary. Simulant Hanford and Idaho high sodium wastes were processed in a pilot scale FBSR at Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low-activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium-bearing waste (SBW). The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The durability of the FBSR waste form products was tested in order to compare the measured durability to previous FBSR waste form testing on Hanford Envelope C waste forms that were made by THOR Treatment Technologies (TTT) and to compare the FBSR durability to vitreous LAW waste forms, specifically the Hanford low activity waste (LAW) glass known as the Low-activity Reference Material (LRM). The durability of the FBSR waste form is comparable to that of the LRM glass for the test responses studied.

  15. Steam reforming of biodiesel by-product to make renewable hydrogen.

    Science.gov (United States)

    Slinn, Matthew; Kendall, Kevin; Mallon, Christian; Andrews, James

    2008-09-01

    The aim of this paper was to investigate the viability of steam reforming the combined glycerol and water by-product streams of a biodiesel plant. A platinum alumina catalyst was used to optimise the operating conditions for glycerol steam reforming and mass spectroscopy was chosen to measure reformer gas yield. The problem is that glycerol steam reforming is relatively untested even with pure glycerol and the by-product quality may be too poor. The strategy was therefore to optimise the process using pure glycerol and compare the performance with by-product glycerol. To test catalyst degradation caused by carbon deposition, a Solid Oxide fuel cell (SOFC) was used as a separate reformer and electrical performance was measured to indicate carbon deposition. This is the first time a SOFC has been run on glycerol. The results showed that thermodynamic theory can be used to predict reformer performance. At high temperatures high gas yield can be reached (almost 100%) and selectivities of 70% (dry basis) obtained. The optimum conditions for glycerol reforming were 860 degrees C temperature (maximum tested), 0.12 mols/min glycerol flow per kg of catalyst and 2.5 steam/carbon ratio. Reforming catalysts lasted for several days of continuous operation with minimal degradation, 0.4% of feed deposited. By-product glycerol performed slightly worse with a lower yield and more carbon deposition, 2% of feed. The results show that glycerol steam reforming is a viable alternative use for glycerol and potentially a better option than purification.

  16. In-Space Propulsion, Logistics Reduction, and Evaluation of Steam Reformer Kinetics: Problems and Prospects

    Science.gov (United States)

    Jaworske, D. A.; Palaszewski, B. A.; Kulis, M. J.; Gokoglu, S. A.

    2015-01-01

    Human space missions generate waste materials. A 70-kg crewmember creates a waste stream of 1 kg per day, and a four-person crew on a deep space habitat for a 400+ day mission would create over 1600 kg of waste. Converted into methane, the carbon could be used as a fuel for propulsion or power. The NASA Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) project is investing in space resource utilization with an emphasis on repurposing logistics materials for useful purposes and has selected steam reforming among many different competitive processes as the preferred method for repurposing organic waste into methane. Already demonstrated at the relevant processing rate of 5.4 kg of waste per day, high temperature oxygenated steam consumes waste and produces carbon dioxide, carbon monoxide, and hydrogen which can then be converted into methane catalytically. However, the steam reforming process has not been studied in microgravity. Data are critically needed to understand the mechanisms that allow use of steam reforming in a reduced gravity environment. This paper reviews the relevant literature, identifies gravity-dependent mechanisms within the steam gasification process, and describes an innovative experiment to acquire the crucial kinetic information in a small-scale reactor specifically designed to operate within the requirements of a reduced gravity aircraft flight. The experiment will determine if the steam reformer process is mass-transport limited, and if so, what level of forced convection will be needed to obtain performance comparable to that in 1-g.

  17. Internal steam reforming in solid oxide fuel cells: Status and opportunities of kinetic studies and their impact on modelling

    DEFF Research Database (Denmark)

    Mogensen, David; Grunwaldt, J.-D.; Hendriksen, Peter Vang

    2011-01-01

    catalysts and SOFC anode materials. Surprisingly, there is a good agreement between measured rates pr. geometric anode area at high operating temperatures, even for very different anodes. Detailed experimental data on the intrinsic steam reforming kinetics of Ni-YSZ are necessary for micro structure SOFC...... of such a system require SOFC models that include accurate description of the steam reforming rate. The objective of this article is to review the reported kinetic expressions for the steam reforming reaction. Extensive work has been performed on traditional catalysts for steam reforming. Because of differences...... in operating conditions, catalyst support material and structure it is critical to transfer this knowledge directly to internal reforming in SOFCs, which is discussed in further detail in this article. There are big differences in the reported kinetic expression for steam reforming over both industrial Ni...

  18. Review on Copper and Palladium Based Catalysts for Methanol Steam Reforming to Produce Hydrogen

    Directory of Open Access Journals (Sweden)

    Xinhai Xu

    2017-06-01

    Full Text Available Methanol steam reforming is a promising technology for producing hydrogen for onboard fuel cell applications. The methanol conversion rate and the contents of hydrogen, carbon monoxide and carbon dioxide in the reformate, significantly depend on the reforming catalyst. Copper-based catalysts and palladium-based catalysts can effectively convert methanol into hydrogen and carbon dioxide. Copper and palladium-based catalysts with different formulations and compositions have been thoroughly investigated in the literature. This work summarized the development of the two groups of catalysts for methanol steam reforming. Interactions between the activity components and the supports as well as the effects of different promoters were discussed. Compositional and morphological characteristics, along with the methanol steam reforming performances of different Cu/ZnO and Pd/ZnO catalysts promoted by Al2O3, CeO2, ZrO2 or other metal oxides, were reviewed and compared. Moreover, the reaction mechanism of methanol steam reforming over the copper based and palladium based catalysts were discussed.

  19. First principles calculations and experimental insight into methane steam reforming over transition metal catalysts

    DEFF Research Database (Denmark)

    Jones, Glenn; Jakobsen, Jon Geest; Shim, Signe Sarah

    2008-01-01

    in situ TEM measurements under a hydrogen atmosphere. The overall agreement between theory and experiment (at 773 K, 1 bar pressure and 10% conversion) is found to be excellent with Ru and Rh being the most active pure transition metals for methane steam reforming, while Ni, Ir, Pt, and Pd...... metal Surfaces to develop an overview of the steam reforming process catalyzed by a range of transition metal surfaces. By combining scaling relationships with thermodynamic and kinetic analysis, we show that it is possible to determine the reactivity trends of the pure metals for methane steam...... reforming. The reaction is found to be kinetically controlled by a methane dissociation step and a CO formation step, where the latter step is found to be dominant at lower temperatures. The particle size of the metal catalysts particles have been determined by transmission electron microscopy (TEM...

  20. PENGENDALIAN KOMPRESOR DAN STEAM REFORMER PADA PERANCANGAN PABRIK BIOHIDROGEN DARI BIOMASSA DENGAN PENGENDALI PI

    Directory of Open Access Journals (Sweden)

    Abdul Wahid

    2016-09-01

    Full Text Available Proses pada pabrik biohidrogen dari biomassa terbagi menjadi beberapa unit proses, yaitu unit pengolahan awal bahan baku, unit gasifikasi, unit char combustor, unit kompresi, unit H2S Removal, unit steam reforming, unit water gas shift, dan unit pressure swing adsorber. Pada penelitian ini akan dijelaskan pengendalian pada kompresor dan steam reformer. Kedua unit tersebut penting dikendalikan agar mencapai tekanan yang diinginkan pada masukan H2S Removal dan untuk mendapatkan gas hidrogen pada unit Steam Reformer. Pengendali yang digunakan adalah pengendali PI karena hampir dapat menangani setiap situasi pengendalian proses. Untuk mendapatkan kinerja yang optimum, dilakukan penyetelan pengendali dengan metode Ziegler Nichols, Lopez, dan Default Unisim, kemudian membandingkan nilai IAE dan ISE dari ketiga jenis penyetelan tersebut. Hasilnya pengendalian tekanan dan suhu yang optimum adalah dengan metode penyetelan pengendali Ziegler Nichols. Sedangkan pengendalian surge-01, surge-02, surge-03 pada kompresor metode yang paling optimum adalah Default Unisim, dan untuk surge-04 adalah metode Lopez.

  1. Syngas Production from CO2 Reforming and CO2-steam Reforming of Methane over Ni/Ce-SBA-15 Catalyst

    Science.gov (United States)

    Tan, J. S.; Danh, H. T.; Singh, S.; Truong, Q. D.; Setiabudi, H. D.; Vo, D.-V. N.

    2017-06-01

    This study compares the catalytic performance of mesoporous 10 Ni/Ce-SBA-15 catalyst for CO2 reforming and CO2-steam reforming of methane reactions in syngas production. The catalytic performance of 10 Ni/Ce-SBA-15 catalyst for CO2 reforming and CO2-steam reforming of methane was evaluated in a temperature-controlled tubular fixed-bed reactor at stoichiometric feed composition, 1023 K and atmospheric pressure for 12 h on-stream with gas hourly space velocity (GHSV) of 36 L gcat -1 h-1. The 10 Ni/Ce-SBA-15 catalyst possessed a high specific BET surface area and average pore volume of 595.04 m2 g-1. The XRD measurement revealed the presence of NiO phase with crystallite dimension of about 13.60 nm whilst H2-TPR result indicates that NiO phase was completely reduced to metallic Ni0 phase at temperature beyond 800 K and the reduction temperature relied on different degrees of metal-support interaction associated with the location and size of NiO particles. The catalytic reactivity was significantly enhanced with increasing H2O/CO2 feed ratio. Interestingly, the H2/CO ratio for CO2-steam reforming of methane varied between 1 and 3 indicated the occurrence of parallel reactions, i.e., CH4 steam reforming giving a H2/CO of 3 whilst reverse water-gas shift (RWGS) reaction consuming H2 to produce CO gaseous product.

  2. Durable Cu composite catalyst for hydrogen production by high temperature methanol steam reforming

    Science.gov (United States)

    Matsumura, Yasuyuki

    2014-12-01

    Durable catalysts are necessitated for the high temperature methanol steam reforming in compact hydrogen processors. The high durability at 400 °C can be obtained with a composite Cu catalyst where a small amount of Cu-ZnO-ZrO2-Y2O3-In2O3 is coprecipitated on a zirconia support. The lifetime of the composite catalyst containing 3 wt.% Cu is estimated to be as long as 53 × 102 h at 400 °C to produce the full conversion at a contact time of 250 g h m-3. The deactivation rate empirically relates to the cube of the activity. The gradual deactivation is caused by the gradual reduction of the Cu surface amount and also by the reduction of the surface activity which is believed to decrease with an increase in the Cu particle size. The interaction between the thin layer of the coprecipitate and the support surface probably suppresses the aggregation of the coprecipitate leading to Cu sintering.

  3. Numerical study of heat mass transfer characteristics in microchannel steam methane reforming reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seung Won; Lee, Kyn Jung; Cho, Yeon Hwa [Korea Univ., Seoul (Korea, Republic of); Moon, Dong Ju [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2012-09-15

    A numerical study of a microchannel steam methane reforming reactor has been performed to understand the characteristics of heat and mass transfer. The integration of Rh catalyzed steam methane reforming and Pt catalyzed methane combustion has been simulated. The reaction rates for chemical reactions have been incorporated into the simulation. This study investigated the effect of contact time, flow pattern (parallel of counter), and channel size on the reforming performance and temperature distribution. The parallel and counter flow have opposite temperature distribution, and they show a different type of reaction rate and species mole fraction. As the contact time decreases and channel size increases, mass transfer between the catalyst layer and the flow is limited, and the reforming performance is decreased.

  4. A novel reforming method for hydrogen production from biomass steam gasification.

    Science.gov (United States)

    Gao, Ningbo; Li, Aimin; Quan, Cui

    2009-09-01

    In this work, an experimental study of biomass gasification in different operation conditions has been carried out in an updraft gasifier combined with a porous ceramic reformer. The effects of gasifier temperature, steam to biomass ratio (S/B), and reforming temperature on the gas characteristic parameters were investigated with and without porous ceramic filled in reformer. The results indicated that considerable synergistics effects were observed as the porous ceramic was filled in reformer leading to an increase in the hydrogen production. With the increasing gasifier temperature varying from 800 to 950 degrees C, hydrogen yield increased from 49.97 to 79.91 g H(2)/kg biomass. Steam/biomass ratio of 2.05 seemed to be optimal in all steam-gasification runs. The effect of reforming temperature for water-soluble tar produced in porous ceramic reforming was also investigated, and it was found that the conversion ratio of total organic carbon (TOC) contents is between 71.08% and 75.74%.

  5. Hydrogen generation having CO2 removal with steam reforming

    Science.gov (United States)

    Kandaswamy, Duraiswamy; Chellappa, Anand S.; Knobbe, Mack

    2015-07-28

    A method for producing hydrogen using fuel cell off gases, the method feeding hydrocarbon fuel to a sulfur adsorbent to produce a desulfurized fuel and a spent sulfur adsorbent; feeding said desulfurized fuel and water to an adsorption enhanced reformer that comprises of a plurality of reforming chambers or compartments; reforming said desulfurized fuel in the presence of a one or more of a reforming catalyst and one or more of a CO2 adsorbent to produce hydrogen and a spent CO2 adsorbent; feeding said hydrogen to the anode side of the fuel cell; regenerating said spent CO2 adsorbents using the fuel cell cathode off-gases, producing a flow of hydrogen by cycling between said plurality of reforming chambers or compartments in a predetermined timing sequence; and, replacing the spent sulfur adsorbent with a fresh sulfur adsorbent at a predetermined time.

  6. Biogas Upgrading to Hydrogen Rich Gas by Steam Reforming: Comparison and Optimization of Plant Configurations

    Energy Technology Data Exchange (ETDEWEB)

    Ashrafi, Mojdeh; Proell, Tobias; Hofbauer, Hermann [Vienna Univ. of Technology, Vienna (Austria). Institute for Chemical Engineering

    2006-07-15

    Two process configurations for the production of H{sub 2}-rich gas from biogas through steam reforming are investigated: The autothermic reformer and the externally heated reformer. A mathematical model of the reformer is developed and implemented in a steady state simulation environment. The model is based on thermodynamic equilibrium using the free energy minimisation method. Heat integration is taken into consideration for the overall process scheme and plant operation is analysed at different operating parameters such as steam to organic carbon ratio in the reformer, the reformer exit temperature, and the CH{sub 4}/CO{sub 2} ratio of the raw biogas. The performance is described by the CH{sub 4} conversion rate, H{sub 2} concentration in the reformed gas, and the energetic efficiency of the plant. Finally, it can be concluded that, depending on downstream technology, the autothermic reformer may suit because of higher energetic efficiency in the case of combined heat and power production and, on the other hand, the externally heated approach is advantageous if a nitrogen-free product gas is required for synthesis of upgraded fuels or products (e.g. H{sub 2})

  7. On-board reforming of biodiesel and bioethanol for high temperature PEM fuel cells: Comparison of autothermal reforming and steam reforming

    Science.gov (United States)

    Martin, Stefan; Wörner, Antje

    2011-03-01

    In the 21st century biofuels will play an important role as alternative fuels in the transportation sector. In this paper different reforming options (steam reforming (SR) and autothermal reforming (ATR)) for the on-board conversion of bioethanol and biodiesel into a hydrogen-rich gas suitable for high temperature PEM (HTPEM) fuel cells are investigated using the simulation tool Aspen Plus. Special emphasis is placed on thermal heat integration. Methyl-oleate (C19H36O2) is chosen as reference substance for biodiesel. Bioethanol is represented by ethanol (C2H5OH). For the steam reforming concept with heat integration a maximum fuel processing efficiency of 75.6% (76.3%) is obtained for biodiesel (bioethanol) at S/C = 3. For the autothermal reforming concept with heat integration a maximum fuel processing efficiency of 74.1% (75.1%) is obtained for biodiesel (bioethanol) at S/C = 2 and λ = 0.36 (0.35). Taking into account the better dynamic behaviour and lower system complexity of the reforming concept based on ATR, autothermal reforming in combination with a water gas shift reactor is considered as the preferred option for on-board reforming of biodiesel and bioethanol. Based on the simulation results optimum operating conditions for a novel 5 kW biofuel processor are derived.

  8. Polymer electrolyte membrane fuel cell grade hydrogen production by methanol steam reforming: A comparative multiple reactor modeling study

    Science.gov (United States)

    Katiyar, Nisha; Kumar, Shashi; Kumar, Surendra

    2013-12-01

    Analysis of a fuel processor based on methanol steam reforming has been carried out to produce fuel cell grade H2. Six reactor configurations namely FBR1 (fixed bed reactor), MR1 (H2 selective membrane reactor with one reaction tube), MR2 (H2 selective membrane reactor with two reaction tubes), FBR2 (FBR1 + preferential CO oxidation (PROX) reactor), MR3 (MR1 + PROX), and MR4 (MR2 + PROX) are evaluated by simulation to identify the suitable processing scheme. The yield of H2 is significantly affected by H2 selective membrane, residence time, temperature, and pressure conditions at complete methanol conversion. The enhancement in residence time in MR2 by using two identical reaction tubes provides H2 yield of 2.96 with 91.25 mol% recovery at steam/methanol ratio of 1.5, pressure of 2 bar and 560 K temperature. The exit retentate gases from MR2 are further treated in PROX reactor of MR4 to reduce CO concentration to 4.1 ppm to ensure the safe discharge to the environment. The risk of carbon deposition on reforming catalyst is highly reduced in MR4, and MR4 reactor configuration generates 7.4 NL min-1 of CO free H2 from 0.12 mol min-1 of methanol which can provide 470 W PEMFC feedstock requirement. Hence, process scheme in MR4 provides a compact and innovative fuel cell grade H2 generating unit.

  9. Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oil

    Energy Technology Data Exchange (ETDEWEB)

    Czernik, S.; Wang, D.; Chornet, E. [National Renewable Energy Lab., Golden, CO (United States). Center for Renewable Chemical Technologies and Materials

    1998-08-01

    Hydrogen is the prototype of the environmentally cleanest fuel of interest for power generation using fuel cells and for transportation. The thermochemical conversion of biomass to hydrogen can be carried out through two distinct strategies: (a) gasification followed by water-gas shift conversion, and (b) catalytic steam reforming of specific fractions derived from fast pyrolysis and aqueous/steam processes of biomass. This paper presents the latter route that begins with fast pyrolysis of biomass to produce bio-oil. This oil (as a whole or its selected fractions) can be converted to hydrogen via catalytic steam reforming followed by a water-gas shift conversion step. Such a process has been demonstrated at the bench scale using model compounds, poplar oil aqueous fraction, and the whole pyrolysis oil with commercial Ni-based steam reforming catalysts. Hydrogen yields as high as 85% have been obtained. Catalyst initial activity can be recovered through regeneration cycles by steam or CO{sub 2} gasification of carbonaceous deposits.

  10. Steam and CO2 reforming of methane over a Ru/ZrO2 catalyst

    DEFF Research Database (Denmark)

    Jakobsen, Jon Geest; Jørgensen, T.L.; Chorkendorff, Ib

    2010-01-01

    The kinetics of methane steam reforming over a Ru/ZrO2 catalyst was studied at 1.3 bar total pressure and in the temperature range 425-575 degrees C. These data were fitted by combining a reactor model with a series of kinetic models. The best fit was obtained by a model with methane dissociative...

  11. First-principles investigations of the Ni3Sn alloy at steam reforming conditions

    DEFF Research Database (Denmark)

    Saadi, Souheil; Hinnemann, Berit; Helveg, Stig

    2009-01-01

    The structure and surface composition of a Ni3Sn alloy at conditions relevant for the steam reforming reaction was investigated using density functional theory calculations. Both the flat Ni3Sn [1 0 (1) over bar 0] surface and a surface with steps in the closed packed direction [1 0 (1) over bar 0...

  12. Modeling and simulation of an isothermal reactor for methanol steam reforming

    Directory of Open Access Journals (Sweden)

    Raphael Menechini Neto

    2014-04-01

    Full Text Available Due to growing electricity demand, cheap renewable energy sources are needed. Fuel cells are an interesting alternative for generating electricity since they use hydrogen as their main fuel and release only water and heat to the environment. Although fuel cells show great flexibility in size and operating temperature (some models even operate at low temperatures, the technology has the drawback for hydrogen transportation and storage. However, hydrogen may be produced from methanol steam reforming obtained from renewable sources such as biomass. The use of methanol as raw material in hydrogen production process by steam reforming is highly interesting owing to the fact that alcohol has the best hydrogen carbon-1 ratio (4:1 and may be processed at low temperatures and atmospheric pressures. They are features which are desirable for its use in autonomous fuel cells. Current research develops a mathematical model of an isothermal methanol steam reforming reactor and validates it against experimental data from the literature. The mathematical model was solved numerically by MATLAB® and the comparison of its predictions for different experimental conditions indicated that the developed model and the methodology for its numerical solution were adequate. Further, a preliminary analysis was undertaken on methanol steam reforming reactor project for autonomous fuel cell.

  13. CATALYTIC STEAM REFORMING OF CHLOROCARBONS: TRICHLOROETHANE, TRICHLOROETHYLENE AND PERCHLOROETHYLENE. (R826694C633)

    Science.gov (United States)

    The effective destruction of trichloroethane, trichloroethylene and perchloroethylene by steam reforming with a commercial nickel catalyst has been demonstrated. Conversion levels of up to 0.99999 were attained in both laboratory and semi-pilot experiments, with the products c...

  14. CATALYTIC STEAM REFORMING OF CHLOROCARBONS: CATALYST COMPARISONS. (R822721C633)

    Science.gov (United States)

    Catalyst candidates for steam reforming chlorocarbons have been screened for activity using methyl chloride as a model reactant. At 500°C, a H2O/C ratio of about 10 and a GHSV of 254 000 h-1, catalysts comprising 0.5% loading of the metals o...

  15. CATALYTIC STEAM REFORMING OF CHLOROCARBONS: CATALYST COMPARISONS. (R826694C633)

    Science.gov (United States)

    Catalyst candidates for steam reforming chlorocarbons have been screened for activity using methyl chloride as a model reactant. At 500°C, a H2O/C ratio of about 10 and a GHSV of 254 000 h-1, catalysts comprising 0.5% loading of the metals ...

  16. Sustainable hydrogen from bio-oil - Catalytic steam reforming of acetic acid as a model oxygenate

    NARCIS (Netherlands)

    Takanabe, Kazuhiro; Seshan, K.; Lefferts, Leon; Aika, Ken-ichi

    2004-01-01

    Steam reforming of acetic acid as a model oxygenate present in bio-oil over Pt/ZrO2 catalysts has been studied. Pt/ZrO2 catalysts are very active, completely converting acetic acid and give hydrogen yield close to thermodynamic equilibrium. The catalyst deactivated by formation of oligomers, which

  17. Sustainable hydrogen from bio-oil - Steam reforming of acetic acid as a model oxygenate

    NARCIS (Netherlands)

    Takanabe, K.; Aika, Ken-ichi; Seshan, Kulathuiyer; Lefferts, Leonardus

    2004-01-01

    Steam reforming of acetic acid over Pt/ZrO2 catalysts has been investigated. Pt/ZrO2 catalysts are very active, completely converting acetic acid, and give a hydrogen yield close to thermodynamic equilibrium. The catalyst deactivated by formation of oligomers which block the active sites. The

  18. Pd-Ag membrane reactor for steam reforming reactions: a comparison between different fuels

    NARCIS (Netherlands)

    Gallucci, F.; Basile, A.

    2008-01-01

    The simulation of a dense Pd-based membrane reactor for carrying out the methane, the methanol and the ethanol steam reforming (SR) reactions for pure hydrogen production is performed. The same simulation is also performed in a traditional reactor. This modelling work shows that the use of membrane

  19. Techno-economic analysis of biomethanol production via hybrid steam reforming of glycerol with natural gas

    NARCIS (Netherlands)

    Balegedde Ramachandran, P.; Oudenhoven, Stijn; Kersten, Sascha R.A.; van Rossum, G.; van der Ham, Aloysius G.J.

    2013-01-01

    The present article deals with the techno-economic assessment of the hybrid steam reforming (HSR) process of glycerol (obtained via transesterification) together with natural gas to produce biomethanol via the synthesis gas route. In this techno-economic assessment, a model is developed in the

  20. Ethanol steam reforming kinetics of a Pd-Ag membrane reactor

    NARCIS (Netherlands)

    Tosti, Silvano; Basile, Angelo; Borelli, Rodolfo; Borgognoni, Fabio; Castelli, Stefano; Fabbricino, Massimiliano; Gallucci, F.; Licusati, Celeste

    2009-01-01

    The ethanol steam reforming reaction carried out in a Pd-based tubular membrane reactor has been modelled via a finite element code. The model considers the membrane tube divided into finite volume elements where the mass balances for both lumen and shell sides are carried out accordingly to the

  1. Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming

    Energy Technology Data Exchange (ETDEWEB)

    Spath, P. L.; Mann, M. K.

    2000-09-28

    A life cycle assessment of hydrogen production via natural gas steam reforming was performed to examine the net emissions of greenhouse gases as well as other major environmental consequences. LCA is a systematic analytical method that helps identify and evaluate the environmental impacts of a specific process or competing processes.

  2. Synthesis gas production via hybrid steam reforming of natural gas and bio-liquids

    NARCIS (Netherlands)

    Balegedde Ramachandran, P.

    2013-01-01

    This thesis deals with (catalytic) steam reforming of bio-liquids for the production of synthesis gas. Glycerol, both crude from the biodiesel manufacturing and refined, and pyrolysis oil are tested as bio-based feedstocks. Liquid bio-based feeds could be preferred over inhomogeneous fibrous solid

  3. FLUIDIZED BED STEAM REFORMING FOR TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    Energy Technology Data Exchange (ETDEWEB)

    HEWITT WM

    2011-04-08

    This report is one of four reports written to provide background information regarding immobilization technologies remaining under consideration for supplemental immobilization of Hanford's low-activity waste. This paper provides the reader a general understanding of fluidized bed steam reforming and its possible application to treat and immobilize Hanford low-activity waste.

  4. Sustainable hydrogen from bio-oil - Catalytic steam reforming of acetic acid as a model oxygenate

    NARCIS (Netherlands)

    Takanabe, Kazuhiro; Aika, Ken-ichi; Seshan, K.; Lefferts, Leon

    Studies were conducted with acetic acid (HAc) as model oxygenate for the design of active and stable catalysts for steam reforming of bio-oil. Pt/ZrO2 catalysts were prepared by wet impregnation technique. The Pt/ZrO2 catalysts showed high activities at initial time on stream, but lost its activity

  5. A numerical analysis of heat and mass transfer during the steam reforming process of ethane

    Science.gov (United States)

    Tomiczek, Marcin; Kaczmarczyk, Robert; Mozdzierz, Marcin; Brus, Grzegorz

    2017-11-01

    This paper presents a numerical analysis of heat and mass transfer during the steam reforming of ethane. From a chemical point of view, the reforming process of heavy hydrocarbons, such as ethane, is complex. One of the main issue is a set of undesired chemical reactions that causes the deposition of solid carbon and consequently blocks the catalytic property of a reactor. In the literature a carbon deposition regime is selected by thermodynamical analysis to design safe operation conditions. In the case of Computational Fluid Dynamic (CFD, hereafter) models each control volume should be investigated to determinate if carbon deposition is thermodynamically favourable. In this paper the authors combine equilibrium and kinetics analysis to simulate the steam reforming of methane-ethane rich fuel. The results of the computations were juxtaposed with experimental data for methane steam reforming, and good agreement was found. An analysis based on the kinetics of reactions was conducted to predict the influence of temperature drop and non-equilibrium composition on solid carbon deposition. It was found that strong non-uniform temperature distribution in the reactor causes conditions favourable for carbon deposition at the inlet of the reformer. It was shown that equilibrium calculations, often used in the literature, are insufficient.

  6. Numerical study on micro-reformer performance and local transport phenomena of the plate methanol steam micro-reformer

    Science.gov (United States)

    Hsueh, Ching-Yi; Chu, Hsin-Sen; Yan, Wei-Mon

    The objective of this work is to investigate the transport phenomena and performance of a plate steam methanol micro-reformer. Micro channels of various height and width ratios are numerically analyzed to understand their effects on the reactant gas transport characteristics and micro-reformer performance. In addition, influences of Reynolds number and geometric size of micro channel on methanol conversion of micro-reformer and gas transport phenomena are also explored. The predicted results demonstrated that better performance is noted for a micro channel reformer with lower aspect-ratio micro channel. This is due to the larger the chemical reaction surface area for a lower aspect-ratio channel reformer. It is also found that the methanol conversion decreases with increasing Reynolds number Re. The results also indicate that the smaller micro channel size experiences a better methanol conversion. This is due to the fact that a smaller micro channel has a much more uniform temperature distribution, which in turn, fuel utilization efficiency is improved for a smaller micro channel reformer.

  7. Steam reforming of ethanol over Ni-based catalysts: Effect of feed composition on catalyst stability

    DEFF Research Database (Denmark)

    Trane-Restrup, Rasmus; Dahl, Søren; Jensen, Anker Degn

    2014-01-01

    In this work the effects of steam-to-carbon ratio (S/C), and addition of H2 or O2 to the feed on the product yields and carbon deposition in the steam reforming (SR) of ethanol over Ni/MgAl2O4, Ni/Ce0.6Zr0.4O2, and Ni/CeO2 at 600 °C have been investigated. Increasing the S/C-ratio from 1.6 to 8.3...

  8. Glycerol Steam Reforming Over Ni-Fe-Ce/Al2O3 Catalyst: Effect of Cerium.

    Science.gov (United States)

    Go, Gwang-Sub; Go, Yoo-Jin; Lee, Hong-Joo; Moon, Dong-Ju; Park, Nam-Cook; Kim, Young-Chul

    2016-02-01

    In this work, hydrogen production from glycerol by steam reforming was studied using Ni-metal oxide catalysts. Ni-based catalyst becomes deactivated during steam reforming reactions because of coke deposits and sintering. Therefore, the aim of this study was to reduce carbon deposits and sintering on the catalyst surface by adding a promoter. Ni-metal oxide catalysts supported on Al2O3 were prepared via impregnation method, and the calcined catalyst was reduced under H2 flow for 2 h prior to the reaction. The characteristics of the catalysts were examined by XRD, TPR, TGA, and SEM. The Ni-Fe-Ce/Al2O3 catalyst, which contained less than 2 wt% Ce, showed the highest hydrogen selectivity and glycerol conversion. Further analysis of the catalysts revealed that the Ni-Fe-Ce/Al2O3 catalyst required a lower reduction temperature and produced minimum carbon deposit.

  9. Effect of ZnO facet on ethanol steam reforming over Co/ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ning; Zhang, He; Davidson, Stephen D.; Sun, Junming; Wang, Yong

    2016-01-01

    The effects of ZnO facets on ethanol steam reforming (ESR) were investigated over Co/ZnO catalysts synthesized using ZnO with different fractions of (10-10) non-polar facet. Co supported on ZnO with a higher fraction of (10-10) non-polar facet shows higher C-C cleavage activity and higher selectivity to CO2 (lower selectivity to CO) compared with Co supported on ZnO with less (10-10) non-polar facet exposed. The improved ethanol steam reforming performances are attributed to the high fraction of metallic Co stabilized by the ZnO (10-10) non-polar facet, which enhanced C-C cleavage and water-gas-shift (WGS) activities.

  10. ZnO is a CO2-selective steam reforming catalyst

    Science.gov (United States)

    Lorenz, Harald; Friedrich, Matthias; Armbrüster, Marc; Klötzer, Bernhard; Penner, Simon

    2013-01-01

    ZnO was tested as possible methanol and – since formaldehyde is one of the key intermediates in methanol conversion reactions – also as formaldehyde steam reforming catalyst. Catalytic experiments in a batch as well as a flow reactor resulted in highly selective steam reforming, though at low specific activities, of formaldehyde and methanol over ZnO toward CO2 (selectivity of 95–99.6%). Comparison of the behavior of ZnPd near-surface intermetallic phases, unsupported intermetallic ZnPd and supported ZnPd/ZnO catalysts reveals that formaldehyde is formed from methanol in parallel with CO2 on the former, while on unsupported intermetallic ZnPd and ZnO-supported ZnPd, it is efficiently reacted toward CO2, thus, a beneficial role of ZnO in oxidizing formaldehyde-derived intermediates toward CO2 is evident. PMID:23335817

  11. K (Na)-promoted Ni, Al layered double hydroxide catalysts for the steam reforming of methanol

    Science.gov (United States)

    Qi, Caixia; Amphlett, John C.; Peppley, Brant A.

    Production of hydrogen by methanol steam reforming has been studied over a series of Ni/Al layered double hydroxide catalysts prepared by the co-precipitation method, with the aim to develop a stable catalyst that can be used in a membrane-joint performer at temperatures greater than 300 °C. H 2, CO and CO 2 are generally the major products together with trace amounts of CH 4. The presence of potassium and/or sodium cations was found to improve the activity of methanol conversion. The selectivity for CO 2 rather than CO was better with K ions than Na ions, especially at higher temperatures (e.g. 390-400 °C). Methanol steam reforming over a K-promoted Ni/Al layered double hydroxide catalyst resulted in better activity and similar stability compared to a commercial Cu catalyst.

  12. ZnO is a CO(2)-selective steam reforming catalyst.

    Science.gov (United States)

    Lorenz, Harald; Friedrich, Matthias; Armbrüster, Marc; Klötzer, Bernhard; Penner, Simon

    2013-01-01

    ZnO was tested as possible methanol and - since formaldehyde is one of the key intermediates in methanol conversion reactions - also as formaldehyde steam reforming catalyst. Catalytic experiments in a batch as well as a flow reactor resulted in highly selective steam reforming, though at low specific activities, of formaldehyde and methanol over ZnO toward CO(2) (selectivity of 95-99.6%). Comparison of the behavior of ZnPd near-surface intermetallic phases, unsupported intermetallic ZnPd and supported ZnPd/ZnO catalysts reveals that formaldehyde is formed from methanol in parallel with CO(2) on the former, while on unsupported intermetallic ZnPd and ZnO-supported ZnPd, it is efficiently reacted toward CO(2), thus, a beneficial role of ZnO in oxidizing formaldehyde-derived intermediates toward CO(2) is evident.

  13. Hydrogen production from glucose and sorbitol by sorption-enhanced steam reforming: challenges and promises.

    Science.gov (United States)

    He, Li; Chen, De

    2012-03-12

    Concerning energy and environmental sustainability, it is appealing to produce hydrogen from sugars or sugar alcohols that are readily obtained from the hydrolysis of cellulosic biomass. Nevertheless, the conversion of such compounds for hydrogen production poses great technical challenges. In this paper, we report that hydrogen purity and yield can be significantly improved by integrating in situ CO(2) capture into the steam reforming reaction of the model compounds-glucose and sorbitol. The experimental assessment was conducted at a steam-to-carbon ratio of 1.8 for sorbitol and 6 for glucose from 450-625 °C. As predicted by thermodynamic analysis, combining CO(2) capture and reforming reactions at favorable operating conditions yielded very high purity hydrogen, for instance, 98.8 mol % from sorbitol and 99.9 mol % from glucose. However, there are trade-offs between hydrogen purity and yield in practice. The lower operating temperatures in the examined range helped to increase the hydrogen purity and reduce the CO content in the gas product, whereas a high hydrogen yield was more likely to be obtained at higher temperatures. Coupling CO(2) capture lowered the risk of coke formation during the steam reforming of glucose. Coke accumulated in the reactor for the sorption-enhanced steam reforming of glucose was mostly from the slow pyrolysis of glucose before it came into contact with the catalyst-acceptor bed. This problem may be solved by improving heat transfer or reconstructing the reactor, for instance, by using a fluidized-bed reactor. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Hydrogen production via steam reforming of ethyl alcohol over nano-structured indium oxide catalysts

    Science.gov (United States)

    Umegaki, Tetsuo; Kuratani, Kentaro; Yamada, Yusuke; Ueda, Atsushi; Kuriyama, Nobuhiro; Kobayashi, Tetsuhiko; Xu, Qiang

    2008-05-01

    Mesoporous and worm-like In2O3 catalysts have been prepared using KIT-6 and MCM-41 silicas as templates, which show low crystallinities and high surface areas. Compared with commercial In2O3 catalyst with low surface area, these two nano-structured In2O3 catalysts exhibit higher catalytic activity for steam reforming of ethyl alcohol at low temperature to produce hydrogen containing no detectable CO impurity, presenting an advantage in comparison with the previous reported catalysts.

  15. Steam reforming of biomass based oxygenates - Mechanism of acetic acid activation on supported platinum catalysts.

    NARCIS (Netherlands)

    Matas Güell, B.; Babych, Igor V.; Seshan, Kulathuiyer; Lefferts, Leonardus

    2008-01-01

    The activation of acetic acid during steam reforming reactions over Pt-based catalysts has been probed by decomposing CH3COOD over Pt/C. The product mixture contained CO2, CH4 and its D-analogs (CH4−xDx, 0⩽x⩽4), H2, HD and D2. CO2, CH3D and D2 are typically primary desorption products whereas the

  16. Direct steam reforming of diesel and diesel–biodiesel blends for distributed hydrogen generation

    OpenAIRE

    Martin, Stefan; Kraaij, Gerard; Ascher, Torsten; Baltzopoulou, Penelope; Karagiannakis, George; Wails, David; Wörner, Antje

    2015-01-01

    Distributed hydrogen generation from liquid fuels has attracted increasing attention in the past years. Petroleum-derived fuels with already existing infrastructure benefit from high volumetric and gravimetric energy densities, making them an interesting option for cost competitive decentralized hydrogen production. In the present study, direct steam reforming of diesel and diesel blends (7 vol.% biodiesel) is investigated at various operating conditions using a proprietary precious metal ...

  17. Steam reforming of n-butanol over Rh/ZrO2 catalyst : Role of 1-butene and butyraldehyde

    NARCIS (Netherlands)

    Harju, Heikki; Lehtonen, Juha; Lefferts, Leon

    2016-01-01

    Steam reforming (SR) of n-butanol and its main reaction intermediates, i.e., 1-butene, and butyraldehyde, was studied over 0,5wt.% Rh/ZrO2 catalyst at 500 and 700°C, atmospheric pressure and steam to carbon (S/C) molar ratio of 4. Coke deposits on the spent catalyst samples were characterized using

  18. Density functional theory study of acetic acid steam reforming on Ni(111)

    Science.gov (United States)

    Ran, Yan-Xiong; Du, Zhen-Yi; Guo, Yun-Peng; Feng, Jie; Li, Wen-Ying

    2017-04-01

    Catalytic steam reforming of bio-oil is a promising process to convert biomass into hydrogen. To shed light on this process, acetic acid is selected as the model compound of the oxygenates in bio-oil, and density functional theory is applied to investigate the mechanism of acetic acid steam reforming on the Ni(111) surface. The most favorable pathway of this process on the Ni(111) surface is suggested as CH3COOH* → CH3COO* → CH3CO* → CH2CO* → CH2* + CO* → CH* → CHOH* → CHO* → CO*, followed by the water gas shift reaction to produce CO2 and H2. CH* species are identified as the major carbon deposition precursor, and the water gas shift reaction is the rate-determining step during the whole acetic acid steam reforming process, as CO* + OH* → cis-COOH* is kinetically restricted with the highest barrier of 1.85 eV. Furthermore, the formation pathways and initial dissociation of important intermediates acetone and acetaldehyde are also investigated.

  19. Steam and partial oxidation reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Directory of Open Access Journals (Sweden)

    Yousri M.A. Welaya

    2012-06-01

    Full Text Available Proton exchange membrane fuel cell (PEM generates electrical power from air and from hydrogen or hydrogen rich gas mixtures. Therefore, there is an increasing interest in converting current hydrocarbon based marine fuels such as natural gas, gasoline, and diesel into hydrogen rich gases acceptable to the PEM fuel cells on board ships. Using chemical flow sheeting software, the total system efficiency has been calculated. Natural gas appears to be the best fuel for hydrogen rich gas production due to its favorable composition of lower molecular weight compounds. This paper presents a study for a 250 kW net electrical power PEM fuel cell system utilizing a partial oxidation in one case study and steam reformers in the second. This study has shown that steam-reforming process is the most competitive fuel processing option in terms of fuel processing efficiency. Partial oxidation process has proved to posses the lowest fuel processing efficiency. Among the options studied, the highest fuel processing efficiency is achieved with natural gas steam reforming system.

  20. Parametric study of hydrogen production from ethanol steam reforming in a membrane microreactor

    Directory of Open Access Journals (Sweden)

    M. de-Souza

    2013-06-01

    Full Text Available Microreactors are miniaturized chemical reaction systems, which contain reaction channels with characteristic dimensions in the range of 10-500 µm. One possible application for microreactors is the conversion of ethanol to hydrogen used in fuel cells to generate electricity. In this paper a rigorous isothermal, steady-state two-dimensional model was developed to simulate the behavior of a membrane microreactor based on the hydrogen yield from ethanol steam reforming. Furthermore, this membrane microreactor is compared to a membraneless microreactor. A potential advantage of the membrane microreactor is the fact that both ethanol steam reforming and the separation of hydrogen by a permselective membrane occur in one single microdevice. The simulation results for steam reforming yields are in agreement with experimental data found in the literature. The results show that the membrane microreactorpermits a hydrogen yield of up to 0.833 which is more than twice that generated by the membraneless reactor. More than 80% of the generated hydrogen permeates through the membrane and, due to its high selectivity, the membrane microreactor delivers high-purity hydrogen to the fuel cell.

  1. Enhanced catalytic behavior of Ni alloys in steam methane reforming

    Science.gov (United States)

    Yoon, Yeongpil; Kim, Hanmi; Lee, Jaichan

    2017-08-01

    The dissociation process of methane on Ni and Ni alloys are investigated by density functional theory (DFT) in terms of catalytic efficiency and carbon deposition. Examining the dissociation to CH3, CH2, CH, C, and H is not sufficient to properly predict the catalytic efficiency and carbon deposition, and further investigation of the CO gas-evolving reaction is required to completely understand methane dissociation in steam. The location of alloying element in Ni alloy needed be addressed from the results of ab-inito molecular dynamics (MD). The reaction pathway of methane dissociation associated with CO gas evolution is traced by performing first-principles calculations of the adsorption and activation energies of each dissociation step. During the dissociation process, two alternative reaction steps producing adsorbed C and H or adsorbed CO are critically important in determining coking inhibition as well as H2 gas evolution (i.e., the catalytic efficiency). The theoretical calculations presented here suggest that alloying Ni with Ru is an effective way to reduce carbon deposition and enhance the catalytic efficiency of H2 fueling in solid oxide fuel cells (SOFCs).

  2. Synthesis and Characterization of 1D Ceria Nanomaterials for CO Oxidation and Steam Reforming of Methanol

    Directory of Open Access Journals (Sweden)

    Sujan Chowdhury

    2011-01-01

    Full Text Available Novel one-dimensional (1D ceria nanostructure has been investigated as a promising and practical approach for the reforming of methanol reaction. Size and shape of the ceria nanomaterials are directly involved with the catalytic activities. Several general synthesis routes as including soft and hard template-assemble phenomenon for the preparation of 1D cerium oxide are discussed. This preparation phenomenon is consisting with low cost and ecofriendly. Nanometer-sized 1D structure provides a high-surface area that can interact with methanol and carbon-monoxide reaction. Overall, nanometer-sized structure provides desirable properties, such as easy recovery and regeneration. As a result, the use of 1D cerium has been suitable for catalytic application of reforming. In this paper, we describe the 1D cerium oxide syntheses route and then summarize their properties in the field of CO oxidation and steam reforming of methanol approach.

  3. PRODUCTION OF HYDROGEN FROM THE STEAM AND OXIDATIVE REFORMING OF LPG: THERMODYNAMIC AND EXPERIMENTAL STUDY

    Directory of Open Access Journals (Sweden)

    P. P. Silva

    2015-09-01

    Full Text Available AbstractThe objective of this paper was to use a thermodynamic analysis to find operational conditions that favor the production of hydrogen from steam and oxidative reforming of liquefied petroleum gas (LPG. We also analyzed the performance of a catalyst precursor, LaNiO3, in order to compare the performance of the obtained catalyst with the thermodynamic equilibrium predictions. The results showed that it is possible to produce high concentrations of hydrogen from LPG reforming. The gradual increase of temperature and the use of high water concentrations decrease the production of coke and increase the formation of H2. The reaction of oxidative reforming of LPG was more suitable for the production of hydrogen and lower coke formation. Furthermore the use of an excess of water (H2O/LPG =7.0 and intermediate temperatures (973 K are the most suitable conditions for the process.

  4. INVESTIGATION OF FUEL CHEMISTRY AND BED PERFORMANCE IN A FLUIDIZED BED BLACK LIQUOR STEAM REFORMER

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Whitty

    2003-12-01

    The University of Utah project ''Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer'' (DOE award number DE-FC26-02NT41490) was developed in response to a solicitation for projects to provide technical support for black liquor and biomass gasification. The primary focus of the project is to provide support for a DOE-sponsored demonstration of MTCI's black liquor steam reforming technology at Georgia-Pacific's paper mill in Big Island, Virginia. A more overarching goal is to improve the understanding of phenomena that take place during low temperature black liquor gasification. This is achieved through five complementary technical tasks: (1) construction of a fluidized bed black liquor gasification test system, (2) investigation of bed performance, (3) evaluation of product gas quality, (4) black liquor conversion analysis and modeling and (5) computational modeling of the Big Island gasifier. Four experimental devices have been constructed under this project. The largest facility, which is the heart of the experimental effort, is a pressurized fluidized bed gasification test system. The system is designed to be able to reproduce conditions near the black liquor injectors in the Big Island steam reformer, so the behavior of black liquor pyrolysis and char gasification can be quantified in a representative environment. The gasification test system comprises five subsystems: steam generation and superheating, black liquor feed, fluidized bed reactor, afterburner for syngas combustion and a flue gas cooler/condenser. The three-story system is located at University of Utah's Industrial Combustion and Gasification Research Facility, and all resources there are available to support the research.

  5. Steam reforming of liquid hydrocarbons over a nickel-alumina spinel catalyst

    Science.gov (United States)

    Fauteux-Lefebvre, Clémence; Abatzoglou, Nicolas; Blanchard, Jasmin; Gitzhofer, François

    Interest in steam reforming of liquid hydrocarbons is growing due to the necessity of developing reliable alternatives for their use in fuel cells. In particular, solid oxide fuel cells, which can operate with mixtures of H 2 and CO, are excellent candidates for being fed with liquid fuels coming from both fossil and renewable sources. Fossil-derived, synthetic diesel is an interesting option. In this work, an Al 2O 3-ZrO 2-supported nickel-alumina spinel was tested in a lab-scale isothermal packed-bed reactor as a catalyst of steam reforming of propane, hexadecane and tetralin as surrogates of constitutive families of all commercially available diesel fuels. The results show that the reaction reaches equilibrium at reaction severities lower than those reported in the literature. When operated at steam excess of 250%, carbon formation is not higher than expected by theoretical thermodynamic equilibrium calculations, and no significant catalyst deactivation is observed over the test durations. Scanning electron microscopy of the fresh and used catalyst surfaces shows no significant quantities of carbon.

  6. The role of surface reactions on the active and selective catalyst design for bioethanol steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Benito, M. [Instituto de Catalisis y Petroleoquimica (CSIC), C/Marie Curie 2, Campus Cantoblanco, 28049 Madrid (Spain); Ciemat, Av. Complutense 22, 28040 Madrid (Spain); Padilla, R.; Serrano-Lotina, A.; Rodriguez, L.; Daza, L. [Instituto de Catalisis y Petroleoquimica (CSIC), C/Marie Curie 2, Campus Cantoblanco, 28049 Madrid (Spain); Brey, J.J. [Hynergreen Technologies, Av. Buhaira 2, 41018 Sevilla (Spain)

    2009-07-01

    In order to study the role of surface reactions involved in bioethanol steam reforming mechanism, a very active and selective catalyst for hydrogen production was analysed. The highest activity was obtained at 700 C, temperature at which the catalyst achieved an ethanol conversion of 100% and a selectivity to hydrogen close to 70%. It also exhibited a very high hydrogen production efficiency, higher than 4.5 mol H{sub 2} per mol of EtOH fed. The catalyst was operated at a steam to carbon ratio (S/C) of 4.8, at 700 C and atmospheric pressure. No by-products, such as ethylene or acetaldehyde were observed. In order to consider a further application in an ethanol processor, a long-term stability test was performed under the conditions previously reported. After 750 h, the catalyst still exhibited a high stability and selectivity to hydrogen production. Based on the intermediate products detected by temperature programmed desorption and reaction (TPD and TPR) experiments, a reaction pathway was proposed. Firstly, the adsorbed ethanol is dehydrogenated to acetaldehyde producing hydrogen. Secondly, the adsorbed acetaldehyde is transformed into acetone via acetic acid formation. Finally, acetone is reformed to produce hydrogen and carbon dioxide, which were the final reaction products. The promotion of such reaction sequence is the key to develop an active, selective and stable catalyst, which is the technical barrier for hydrogen production by ethanol reforming. (author)

  7. Bio-ethanol steam reforming: Insights on the mechanism for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Benito, M.; Sanz, J.L.; Isabel, R.; Padilla, R.; Daza, L. [Instituto de Catalisis y Petroleoquimica (CSIC), Campus Cantoblanco, 28049 Madrid (Spain); Arjona, R. [Greencell (ABENGOA BIOENERGIA), Av. de la Buhaira 2, 41018 Sevilla (Spain)

    2005-10-10

    New catalysts for hydrogen production by steam reforming of bio-ethanol have been developed. Catalytic tests have been performed at laboratory scale, with the reaction conditions demanded in a real processor: i.e. ethanol and water feed, without a diluent gas. Catalyst ICP0503 has shown high activity and good resistance to carbon deposition. Reaction results show total conversion, high selectivity to hydrogen (70%), CO{sub 2}, CO and CH{sub 4} being the only by-products obtained. The reaction yields 4.25mol of hydrogen by mol of ethanol fed, close to the thermodynamic equilibrium prediction. The temperature influence on the catalytic activity for this catalyst has been studied. Conversion reaches 100% at temperature higher than 600{sup o}C. In the light of reaction results obtained, a reaction mechanism for ethanol steam reforming is proposed. Long-term reaction experiments have been performed in order to study the stability of the catalytic activity. The excellent stability of the catalyst ICP0503 indicates that the reformed stream could be fed directly to a high temperature fuel cell (MCFC, SOFC) without a further purification treatment. These facts suggest that ICP0503 is a good candidate to be implemented in a bio-ethanol processor for hydrogen production to feed a fuel cell. (author)

  8. High yields of hydrogen production from methanol steam reforming with a cross-U type reactor.

    Science.gov (United States)

    Zhang, Shubin; Zhang, Yufeng; Chen, Junyu; Zhang, Xuelin; Liu, Xiaowei

    2017-01-01

    This paper presents a numerical and experimental study on the performance of a methanol steam reformer integrated with a hydrogen/air combustion reactor for hydrogen production. A CFD-based 3D model with mass and momentum transport and temperature characteristics is established. The simulation results show that better performance is achieved in the cross-U type reactor compared to either a tubular reactor or a parallel-U type reactor because of more effective heat transfer characteristics. Furthermore, Cu-based micro reformers of both cross-U and parallel-U type reactors are designed, fabricated and tested for experimental validation. Under the same condition for reforming and combustion, the results demonstrate that higher methanol conversion is achievable in cross-U type reactor. However, it is also found in cross-U type reactor that methanol reforming selectivity is the lowest due to the decreased water gas shift reaction under high temperature, thereby carbon monoxide concentration is increased. Furthermore, the reformed gas generated from the reactors is fed into a high temperature proton exchange membrane fuel cell (PEMFC). In the test of discharging for 4 h, the fuel cell fed by cross-U type reactor exhibits the most stable performance.

  9. High yields of hydrogen production from methanol steam reforming with a cross-U type reactor.

    Directory of Open Access Journals (Sweden)

    Shubin Zhang

    Full Text Available This paper presents a numerical and experimental study on the performance of a methanol steam reformer integrated with a hydrogen/air combustion reactor for hydrogen production. A CFD-based 3D model with mass and momentum transport and temperature characteristics is established. The simulation results show that better performance is achieved in the cross-U type reactor compared to either a tubular reactor or a parallel-U type reactor because of more effective heat transfer characteristics. Furthermore, Cu-based micro reformers of both cross-U and parallel-U type reactors are designed, fabricated and tested for experimental validation. Under the same condition for reforming and combustion, the results demonstrate that higher methanol conversion is achievable in cross-U type reactor. However, it is also found in cross-U type reactor that methanol reforming selectivity is the lowest due to the decreased water gas shift reaction under high temperature, thereby carbon monoxide concentration is increased. Furthermore, the reformed gas generated from the reactors is fed into a high temperature proton exchange membrane fuel cell (PEMFC. In the test of discharging for 4 h, the fuel cell fed by cross-U type reactor exhibits the most stable performance.

  10. High yields of hydrogen production from methanol steam reforming with a cross-U type reactor

    Science.gov (United States)

    Zhang, Shubin; Chen, Junyu; Zhang, Xuelin; Liu, Xiaowei

    2017-01-01

    This paper presents a numerical and experimental study on the performance of a methanol steam reformer integrated with a hydrogen/air combustion reactor for hydrogen production. A CFD-based 3D model with mass and momentum transport and temperature characteristics is established. The simulation results show that better performance is achieved in the cross-U type reactor compared to either a tubular reactor or a parallel-U type reactor because of more effective heat transfer characteristics. Furthermore, Cu-based micro reformers of both cross-U and parallel-U type reactors are designed, fabricated and tested for experimental validation. Under the same condition for reforming and combustion, the results demonstrate that higher methanol conversion is achievable in cross-U type reactor. However, it is also found in cross-U type reactor that methanol reforming selectivity is the lowest due to the decreased water gas shift reaction under high temperature, thereby carbon monoxide concentration is increased. Furthermore, the reformed gas generated from the reactors is fed into a high temperature proton exchange membrane fuel cell (PEMFC). In the test of discharging for 4 h, the fuel cell fed by cross-U type reactor exhibits the most stable performance. PMID:29121067

  11. Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Whitty

    2007-06-30

    University of Utah's project entitled 'Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer' (DOE Cooperative Agreement DE-FC26-02NT41490) was developed in response to a solicitation released by the U.S. Department of Energy in December 2001, requesting proposals for projects targeted towards black liquor/biomass gasification technology support research and development. Specifically, the solicitation was seeking projects that would provide technical support for Department of Energy supported black liquor and biomass gasification demonstration projects under development at the time.

  12. Session 4: New multifunctional catalyst for the steam reforming of bio-ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Aupretre, F.; Descorme, C.; Duprez, D. [Poitiers Univ., Lab. de Catalyse en Chimie Organique, LACCO CNRS, 86 (France); Casanave, D.; Uzio, D. [Institut Francais du Petrole. Centre d' Etude et de Developpement Industriel de Solaize, 69 - Vernaison (France)

    2004-07-01

    The aim of this work is to study the multi-step preparation of a new Rh catalyst designed for the ethanol steam reforming at 700 C under 8-12 bars. The experimental results are described. In conclusion, it can be said that the best catalyst support is a Mg-Al spinel layer deposited on Al{sub 2}O{sub 3}. A good balance in acido-basic properties taken into account all along the preparation allows to obtain a very active and stable catalyst. (O.M.)

  13. Methane Steam Reforming over an Ni-YSZ Solid Oxide Fuel Cell Anode in Stack Configuration

    DEFF Research Database (Denmark)

    Mogensen, David; Grunwaldt, Jan-Dierk; Hendriksen, Peter Vang

    2014-01-01

    The kinetics of catalytic steam reforming of methane over an Ni-YSZ anode of a solid oxide fuel cell (SOFC) have been investigated with the cell placed in a stack configuration. In order to decrease the degree of conversion, a single cell stack with reduced area was used. Measurements were...... performed in the temperature range 600-800 degrees C and the partial pressures of all reactants and products were varied. The obtained rates could be well fitted with a power law expression (r proportional to P-CH4(0.7)). A simple model is presented which is capable of predicting the methane conversion...

  14. Environmental impact comparison of steam methane reformation and thermochemical processes of hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Naterer, G.F.; Jaber, O.; Dincer, I. [Ontario Univ., Oshawa, ON (Canada). Inst. of Technology

    2010-07-01

    This paper compares the environmental impact of various processes of hydrogen production, particularly steam methane reforming (SMR) and the copper-chlorine (Cu-Cl) and modified sulfur-iodine (S-I) thermochemical cycles. Natural gas is used as the energy source for each of the different methods. Also, an integrated Cu-Cl and SMR plant is examined to show the reduction of greenhouse gas emissions by modifying existing SMR plants with thermochemical processes. The analysis shows that the thermochemical Cu-Cl cycle outperforms the other conventional methods of hydrogen production, with lower fuel requirements and carbon dioxide emissions. (orig.)

  15. Comparative thermoeconomic analysis of hydrogen production by water electrolysis and by ethanol steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Riveros-Godoy, Gustavo; Chavez-Rodriguez, Mauro; Cavaliero, Carla [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Mechanical Engineering School], Email: garg@fem.unicamp.br

    2010-07-01

    Hydrogen is the focus of this work that evaluates in comparative form through thermo economic analysis two hydrogen production processes: water electrolysis and ethanol steam reforming. Even though technical-economical barriers still exist for the development of an economy based on hydrogen, these difficulties are opportunities for the appearance of new business of goods and services, diversification of the energy mix, focus of research activities, development and support to provide sustainability to the new economy. Exergy and rational efficiency concept are used to make a comparison between both processes. (author)

  16. Metal catalysts for steam reforming of tar derived from the gasification of lignocellulosic biomass.

    Science.gov (United States)

    Li, Dalin; Tamura, Masazumi; Nakagawa, Yoshinao; Tomishige, Keiichi

    2015-02-01

    Biomass gasification is one of the most important technologies for the conversion of biomass to electricity, fuels, and chemicals. The main obstacle preventing the commercial application of this technology is the presence of tar in the product gas. Catalytic reforming of tar appears a promising approach to remove tar and supported metal catalysts are among the most effective catalysts. Nevertheless, improvement of catalytic performances including activity, stability, resistance to coke deposition and aggregation of metal particles, as well as catalyst regenerability is greatly needed. This review focuses on the design and catalysis of supported metal catalysts for the removal of tar in the gasification of biomass. The recent development of metal catalysts including Rh, Ni, Co, and their alloys for steam reforming of biomass tar and tar model compounds is introduced. The role of metal species, support materials, promoters, and their interfaces is described. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Kinetic Studies on State of the Art Solid Oxide Cells – A Comparison between Hydrogen/Steam and Reformate Fuels

    DEFF Research Database (Denmark)

    Njodzefon, Jean-Claude; Graves, Christopher R.; Mogensen, Mogens Bjerg

    2015-01-01

    /steam and reformate fuels hydrogen/carbon-dioxide and hydrogen/methane/steam. It was found that the kinetics at the fuel electrode were exactly the same in both reformates. The hydrogen/steam fuel displayed slightly faster kinetics than the reformate fuels. Furthermore the gas conversion impedance in the hydrogen...... into a single process as the gas conversion was reduced. The SOC with finer electrode microstructure displayed improved kinetics.......Electrochemical reaction kinetics at the electrodes of Solid Oxide Cells (SOCs) were investigated at 700 °C for two cells with different fuel electrode microstructures as well as on a third cell with a reduced active electrode area. Three fuel mixtures were investigated – hydrogen...

  18. STEAM AND SOFC BASED REFORMING OPTIONS OF PEM FUEL CELLS FOR MARINE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Mohamed M. El Gohary

    2015-06-01

    Full Text Available The need for green energy sources without or with low emissions in addition to improve the using efficiency of current fossil fuels in the marine field makes it important to replace or improve current fossil-fuelled engines. The replacement process should work on narrowing the gap between the most scientific innovative clean energy technologies and the concepts of feasibility and cost-effective solutions. Early expectations of very low emissions and relatively high efficiencies have been met in marine power plants using fuel cell. In this study, steam and SOFC based reforming options of natural gas for PEM fuel cells are proposed as an attractive option to limit the environmental impact of the marine sector. The benefits of these two different reforming options can be assessed using computer predictions incorporating chemical flow sheeting software. It is found that a high overall efficiency approaching 60% may be achieved using SOFC based reforming systems which are significantly better than a reformed PEM system or an SOFC only system.

  19. Modelling of methanol-to-hydrogen steam reforming with a heat flux distributed along a microchannel

    Science.gov (United States)

    Kuznetsov, V. V.; Kozlov, S. P.

    2008-09-01

    The flow of reacting mixture of methanol and steam in a 2D microslot was studied numerically at activation of the reactions on the channel wall. This modelling was carried out in the framework of Navier — Stokes equations for a laminar flow of multicomponent compressible gas. Correlations between thermal, diffusion, and physical-chemical processes were studied under the conditions of intense endothermic reaction and external heat supply distributed along the channel. It is shown that not only the amount of heat supplied to the reaction zone is essential, but also the mode of heat supply along the channel length is important, which allows optimization of the compact reactor for hydrogen production.

  20. Catalytic steam reforming of methane, methanol, and ethanol over Ni/YSZ: The possible use of these fuels in internal reforming SOFC

    Science.gov (United States)

    Laosiripojana, N.; Assabumrungrat, S.

    This study investigated the possible use of methane, methanol, and ethanol with steam as a direct feed to Ni/YSZ anode of a direct internal reforming Solid Oxide Fuel Cell (DIR-SOFC). It was found that methane with appropriate steam content can be directly fed to Ni/YSZ anode without the problem of carbon formation, while methanol can also be introduced at a temperature as high as 1000 °C. In contrast, ethanol cannot be used as the direct fuel for DIR-SOFC operation even at high steam content and high operating temperature due to the easy degradation of Ni/YSZ by carbon deposition. From the steam reforming of ethanol over Ni/YSZ, significant amounts of ethane and ethylene were present in the product gas due to the incomplete reforming of ethanol. These formations are the major reason for the high rate of carbon formation as these components act as very strong promoters for carbon formation. It was further observed that ethanol with steam can be used for an indirect internal reforming operation (IIR-SOFC) instead. When ethanol was first reformed by Ni/Ce-ZrO 2 at the temperature above 850 °C, the product gas can be fed to Ni/YSZ without the problem of carbon formation. Finally, it was also proposed from the present work that methanol with steam can be efficiently fed to Ni/YSZ anode (as DIR operation) at the temperature between 900 and 975 °C without the problem of carbon formation when SOFC system has sufficient space volume at the entrance of the anode chamber, where methanol can homogeneously convert to CH 4, CO, CO 2, and H 2 before reaching SOFC anode.

  1. Non-syngas direct steam reforming of methanol to hydrogen and carbon dioxide at low temperature.

    Science.gov (United States)

    Yu, Kai Man Kerry; Tong, Weiyi; West, Adam; Cheung, Kevin; Li, Tong; Smith, George; Guo, Yanglong; Tsang, Shik Chi Edman

    2012-01-01

    A non-syngas direct steam reforming route is investigated for the conversion of methanol to hydrogen and carbon dioxide over a CuZnGaO(x) catalyst at 150-200 °C. This route is in marked contrast with the conventional complex route involving steam reformation to syngas (CO/H2) at high temperature, followed by water gas shift and CO cleanup stages for hydrogen production. Here we report that high quality hydrogen and carbon dioxide can be produced in a single-step reaction over the catalyst, with no detectable CO (below detection limit of 1 ppm). This can be used to supply proton exchange membrane fuel cells for mobile applications without invoking any CO shift and cleanup stages. The working catalyst contains, on average, 3-4 nm copper particles, alongside extremely small size of copper clusters stabilized on a defective ZnGa2O4 spinel oxide surface, providing hydrogen productivity of 393.6 ml g(-1)-cat h(-1) at 150 °C.

  2. Bimetallic PtSn/C catalysts obtained via SOMC/M for glycerol steam reforming.

    Science.gov (United States)

    Pastor-Pérez, Laura; Merlo, Andrea; Buitrago-Sierra, Robison; Casella, Mónica; Sepúlveda-Escribano, Antonio

    2015-12-01

    A detailed study on the preparation of bimetallic PtSn/C catalysts using surface-controlled synthesis methods, and on their catalytic performance in the glycerol steam reforming reaction has been carried out. In order to obtain these well-defined bimetallic phases, techniques derived from Surface Organometallic Chemistry on Metals (SOMC/M) were used. The preparation process involved the reaction between an organometallic compound ((C4H9)4Sn) and a supported transition metal (Pt) in a H2 atmosphere. Catalysts with Sn/Pt atomic ratios of 0.2, 0.3, 0.5, and 0.7 were obtained, and characterized using several techniques: ICP, H2 chemisorption, TEM and XPS. These systems were tested in the glycerol steam reforming varying the reaction conditions (glycerol concentration and reaction temperature). The best performance was observed for the catalysts with the lowest tin contents (PtSn0.2/C and PtSn0.3/C). It was observed that the presence of tin increased the catalysts' stability when working under more severe reaction conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Liguras, Dimitris K.; Kondarides, Dimitris I.; Verykios, Xenophon E. [Department of Chemical Engineering, University of Patras, GR-26504 Patras (Greece)

    2003-07-25

    The catalytic performance of supported noble metal catalysts for the steam reforming (SR) of ethanol has been investigated in the temperature range of 600-850C with respect to the nature of the active metallic phase (Rh, Ru, Pt, Pd), the nature of the support (Al{sub 2}O{sub 3}, MgO, TiO{sub 2}) and the metal loading (0-5wt.%). It is found that for low-loaded catalysts, Rh is significantly more active and selective toward hydrogen formation compared to Ru, Pt and Pd, which show a similar behavior. The catalytic performance of Rh and, particularly, Ru is significantly improved with increasing metal loading, leading to higher ethanol conversions and hydrogen selectivities at given reaction temperatures. The catalytic activity and selectivity of high-loaded Ru catalysts is comparable to that of Rh and, therefore, ruthenium was further investigated as a less costly alternative. It was found that, under certain reaction conditions, the 5% Ru/Al{sub 2}O{sub 3} catalyst is able to completely convert ethanol with selectivities toward hydrogen above 95%, the only byproduct being methane. Long-term tests conducted under severe conditions showed that the catalyst is acceptably stable and could be a good candidate for the production of hydrogen by steam reforming of ethanol for fuel cell applications.

  4. Experimental and Numerical Study of Low Temperature Methane Steam Reforming for Hydrogen Production

    Directory of Open Access Journals (Sweden)

    Martin Khzouz

    2017-12-01

    Full Text Available Low temperature methane steam reforming for hydrogen production, using experimental developed Ni/Al2O3 catalysts is studied both experimentally and numerically. The catalytic activity measurements were performed at a temperature range of 500–700 °C with steam to carbon ratio (S/C of 2 and 3 under atmospheric pressure conditions. A mathematical analysis to evaluate the reaction feasibility at all different conditions that have been applied by using chemical equilibrium with applications (CEA software and in addition, a mathematical model focused on the kinetics and the thermodynamics of the reforming reaction is introduced and applied using a commercial finite element analysis software (COMSOL Multiphysics 5.0. The experimental results were employed to validate the extracted simulation data based on the yields of the produced H2, CO2 and CO at different temperatures. A maximum hydrogen yield of 2.7 mol/mol-CH4 is achieved at 700 °C and S/C of 2 and 3. The stability of the 10%Ni/Al2O3 catalyst shows that the catalyst is prone to deactivation as supported by Thermogravimetric Analysis TGA results.

  5. Experimental investigation of axially non-uniform catalysis for methanol steam reforming

    Science.gov (United States)

    Wang, Guoqiang; Wang, Feng; Li, Longjian; Zhang, Guofu

    2014-03-01

    To enhance the hydrogen production, we designed a plate-type reactor to investigate the effect of the catalyst activity distribution on methanol steam reforming. The methanol steam reforming performance on a commercial CuO/ZnO/Al2O3 catalyst in a packed bed and a coating bed were compared experimentally. We found that higher conversion was achieved for the coating bed of uniform axial catalyst distribution compared to the packed bed. The cold spot temperature difference is restricted by using a higher fraction of inert particles at the inlet of the reactor and using a lower fraction of inert particles near the outlet of the reactor. Alleviating the cold spot difference can contribute to the improvement of the reactor performance. The minimum temperature of 3 K was determined in the case of coating bed I. This improvement results from the use of the appropriate non-uniform catalyst distribution to induce a favorable interaction among the mass and heat transfers. The highest conversion of 96.26% was achieved at the inlet weight hourly space velocity of 0.97 h-1 when the temperature was 543 K.

  6. Phase 2 TWR Steam Reforming Test for Sodium-Bearing Waste Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas R. Soelberg; Doug Marshall; Dean Taylor; Steven Bates

    2004-01-01

    About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste (SBW) is stored in stainless steel tanks a the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory (INEEL). Steam reforming is a candidate technology being investigated for converting the SBW into a road ready waste form that can be shipped to the Waste Isolation Pilot Plant in New Mexico for interment. Fluidized bed steam reforming technology, licensed to ThermoChem Waste Remediation, LLC (TWR) by Manufacturing Technology Conversion International, was tested in two phases using an INEEL (Department of Energy) fluidized bed test system located at the Science Applications International Corporation (SAIC) Science and Technology Applications Research Center in Idaho Falls, Idaho. The Phase 1 tests were reported earlier. The Phase 2 tests are reported here. For Phase 2, the process feed rate, reductant stoichiometry, and process temperature were varied to identify and demonstrate how the process might be optimized to improve operation and product characteristics. The first week of testing was devoted primarily to process chemistry and the second week was devoted more toward bed stability and particle size control.

  7. Phase 2 THOR Steam Reforming Tests for Sodium Bearing Waste Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas R. Soelberg

    2004-01-01

    About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste is stored in stainless steel tanks at the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory. Steam reforming is a candidate technology being investigated for converting the waste into a road ready waste form that can be shipped to the Waste Isolation Pilot Plant in New Mexico for interment. A steam reforming technology patented by Studsvik, Inc., and licensed to THOR Treatment Technologies has been tested in two phases using a Department of Energy-owned fluidized bed test system located at the Science Applications International Corporation (SAIC) Science and Technology Applications Research Center located in Idaho Falls, Idaho. The Phase 1 tests were reported earlier in 2003. The Phase 2 tests are reported here. For Phase 2, the process feed rate, stoichiometry, and chemistry were varied to identify and demonstrate process operation and product characteristics under different operating conditions. Two test series were performed. During the first series, the process chemistry was designed to produce a sodium carbonate product. The second series was designed to produce a more leach-resistant, mineralized sodium aluminosilicate product. The tests also demonstrated the performance of a MACT-compliant off-gas system.

  8. Stable hydrogen production from ethanol through steam reforming reaction over nickel-containing smectite-derived catalyst.

    Science.gov (United States)

    Yoshida, Hiroshi; Yamaoka, Ryohei; Arai, Masahiko

    2014-12-25

    Hydrogen production through steam reforming of ethanol was investigated with conventional supported nickel catalysts and a Ni-containing smectite-derived catalyst. The former is initially active, but significant catalyst deactivation occurs during the reaction due to carbon deposition. Side reactions of the decomposition of CO and CH4 are the main reason for the catalyst deactivation, and these reactions can relatively be suppressed by the use of the Ni-containing smectite. The Ni-containing smectite-derived catalyst contains, after H2 reduction, stable and active Ni nanocrystallites, and as a result, it shows a stable and high catalytic performance for the steam reforming of ethanol, producing H2.

  9. Influence of potassium on the competition between methane and ethane in steam reforming over Pt supported on yttrium-stabilized zirconia.

    NARCIS (Netherlands)

    Graf, P.O.; Mojet, Barbara; Lefferts, Leonardus

    2008-01-01

    effect of addition of potassium to Pt supported on yttrium-stabilized zirconia (PtYSZ) catalyst for steam reforming of methane, ethane and methane/ethane mixtures was explored. Addition of potassium has a positive effect on preferential steam reforming of methane in mixtures of methane and ethane

  10. Steam reforming of acetic acid as a biomass derived oxygenate: Bifunctional pathway for hydrogen formation over Pt/ZrO2 catalysts.

    NARCIS (Netherlands)

    Takanabe, K.; Aika, Ken-ichi; Inazu, Koji; Baba, Toshihide; Seshan, Kulathuiyer; Lefferts, Leonardus

    2006-01-01

    Mechanistic studies on steam reforming of acetic acid over Pt/ZrO2 catalysts were performed as extension of our previous work [K. Takanabe, K. Aika, K. Seshan, L. Lefferts, J. Catal. 227 (2004) 101]. An overall picture of the bifunctional mechanism is established for steam reforming of acetic acid,

  11. Feasibility of the direct generation of hydrogen for fuel-cell-powered vehicles by on-board steam reforming of naphtha

    NARCIS (Netherlands)

    Darwish, Naif A.; Hilal, Nidal; Versteeg, Geert; Heesink, Bert

    2004-01-01

    A process flow sheet for the production of hydrogen to run a 50 kW fuel-cell-powered-vehicle by steam reforming of naphtha is presented. The major units in the flow sheet involve a desulfurization unit, a steam reformer, a low temperature (LT) shift reactor, a methanation reactor, and a membrane

  12. Feasability of the direct generation of hydrogen for fuel-cell-powered vehicles by on-board steam reforming of naphta

    NARCIS (Netherlands)

    Darwish, Naif A.; Hilal, Nidal; Versteeg, Geert; Heesink, Albertus B.M.

    2004-01-01

    A process flow sheet for the production of hydrogen to run a 50 kW fuel-cell-powered-vehicle by steam reforming of naphtha is presented. The major units in the flow sheet involve a desulfurization unit, a steam reformer, a low temperature (LT) shift reactor, a methanation reactor, and a membrane

  13. Kinetics of the methane steam reforming; Kinetik der Methan-Dampf-Reformierung

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, I.

    1999-09-01

    The methane steam reforming is a possibility to use natural gas for the fuel cell technology. The anode of the high temperature fuel cell SOFC consists of Nickel cermet (Ni/YSZ) which serves to catalyze the steam reforming reaction directly at the SOFC anode. This internal reforming is an interesting option for cost reduction and higher efficiency of the SOFC system. The quite endothermic and fast reforming reaction leads to problems in the heat balance of the fuel cell. To get the heat balanced, a thorough knowledge of the reforming kinetics on SOFC-anodes at operating conditions is required. In this work the kinetics of the steam reforming reaction of CH{sub 4} are studied at temperatures of 600 C-700 C and partial pressures of 3.9 {<=} p{sub CH{sub 4}} {<=} 20.3 kPa and O {<=} p{sub H{sub 2}O} {<=} 31.2 kPa at ambient pressure (p=101.3 kPa) on a Ni/YSZ catalyst. The SOFC anode is crashed to small particles of diameters of 125 {mu}m {<=} d{sub cat} {<=} 250 {mu}m. The choice of this particle size, in the order of the determined reaction depth, avoids rate limitations by intraparticle mass transfer. The active nickel surface is determined by CO and hydrogen adsorption measurements, that renders feasible a normalization of the measured reforming rate on the nickel surface. A rate expression with competitive Langmuir-Hinshelwood adsorption of methane and water vapor is well describing the experimental data. Adsorption measruements in a temperature region of 600 C-800 C are worked out to estimate the advantage of the decrease in working temperature of the SOFC to 650 C for the internal methane steam reforming. The reaction of adsorbed methane with isotopic marked steam (D{sub 2}O) in the gas phase as well as the reaction of adsorbed D{sub 2}O with methane in the gas phase are used to determine the methane and the steam adsorption on Ni/YSZ. The investigation of the reaction of D{sub 2}O with the adsorbed species of the methane steam reforming serves for the

  14. Effectiveness of heat-integrated methanol steam reformer and polymer electrolyte membrane fuel cell stack systems for portable applications

    Science.gov (United States)

    Lotrič, A.; Sekavčnik, M.; Hočevar, S.

    2014-12-01

    Efficiently combining proton exchange membrane fuel cell (PEMFC) stack with methanol steam reformer (MSR) into a small portable system is still quite a topical issue. Using methanol as a fuel in PEMFC stack includes a series of chemical processes where each proceeds at a unique temperature. In a combined MSR-PEMFC-stack system with integrated auxiliary fuel processors (vaporizer, catalytic combustor, etc.) the processes are both endothermic and exothermic hence their proper thermal integration can help raising the system efficiency. A concept of such fully integrated and compact system is proposed in this study. Three separate systems are designed based on different PEMFC stacks and MSR. Low-temperature (LT) and conventional high-temperature (cHT) PEMFC stack characteristics are based on available data from suppliers. Also, a novel high-temperature (nHT) PEMFC stack is proposed because its operating temperature coincides with that of MSR. A comparative study of modelled systems is performed using a mass and energy balances zero-dimensional model, which is interdependently coupled to a physical model based on finite element method (FEM). The results indicate that a system with nHT PEMFC stack is feasible and has the potential to reach higher system efficiencies than systems with LT or cHT PEMFC stacks.

  15. Propane steam reforming in micro-channels-results from catalyst screening and optimisation

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, Gunther; Zapf, Ralf; Hessel, Volker; Loewe, Holger [Chemical Process Engineering, Institut fuer Mikrotechnik Mainz GmbH, Carl-Zeiss-Str. 18-20, 55129 Mainz (Germany)

    2004-12-08

    Wash-coated alumina catalyst coatings introduced into micro-channels were applied for the steam reforming of propane with the aim of hydrogen generation for mobile fuel cell applications. Home-made rhodium, platinum, nickel and palladium catalysts were tested in a standard screening protocol at a steam to carbon ratio 1.4 and 3 temperatures (450, 550 and 650{sup o}C) at 8ms residence time in the micro-channels and compared to some commercial catalysts. Besides methane, mainly propene was formed as by-product. Rhodium was identified as the best candidate concerning selectivity and activity. The introduction of platinum as a second metallic component and of CeO{sub 2} further improved the performance of the rhodium catalyst. The calcination temperature applied during the catalyst preparation had a drastic effect on platinum catalyst activity but did hardly affect the performance of the Rh/Pt/CeO{sub 2} catalyst. At a steam to carbon ratio of 2.3 and a reaction temperature of 750{sup o}C, the Rh/Pt/CeO{sub 2} catalyst showed full conversion at a turnover frequency of 63gH{sub 2}/g catalyst and hour after 6h on stream.

  16. Methanol steam reforming in microreactor with constructal tree-shaped network

    Science.gov (United States)

    Chen, Yongping; Zhang, Chengbin; Wu, Rui; Shi, Mingheng

    2011-08-01

    The construcal tree-shaped network is introduced into the design of a methanol steam microreactor in the context of optimization of the flow configuration. A three-dimensional model for methanol steam reaction in this designed microreactor is developed and numerically analyzed. The methanol conversion, CO concentration in the product and the total pressure drop of the gases in the microreactor with constructal tree-shaped network are evaluated and compared with those in the serpentine reactor. It is found that the reaction of methanol steam reforming is enhanced in the constructal tree-shaped microreactor, since the tree-shaped reactor configuration, which acts an optimizer for the reactant distribution, provides a reaction space with larger surface-to-volume ratio and the reduction of reactant velocities in the branches. Compared with the serpentine microreactor, the constructal reactor possesses a higher methanol conversion rate accompanied with a higher CO concentration. The conversion rate of the constructal microreactor is more than 10% over that of serpentine reactor. More particularly, the reduction of flow distance makes the constructal microreactor still possess almost the same pressure drop as the corresponding serpentine reactor, despite that the bifurcations induce extra local pressure loss, and the reduction of channel size in branches also causes pressure losses.

  17. A novel nano-Ni/SiO2 catalyst for hydrogen production from steam reforming of ethanol.

    Science.gov (United States)

    Wu, Chunfei; Williams, Paul T

    2010-08-01

    Catalytic steam reforming of ethanol has been regarded as a promising way to produce hydrogen. However, catalytic deactivation is a key problem in the process. In this paper, a novel nano-Ni/SiO2 catalyst was prepared by a simple sol-gel method and compared to catalysts prepared by an impregnation method in relation to the steam reforming ethanol process. Good Ni dispersion and high BET surface areas (>700 m2 g(-1)) were obtained for sol-gel catalysts, whereas only 1 m2 g(-1) surface area was obtained for the Ni/SiO2 impregnation catalyst. The results of catalytic steam reforming of ethanol showed that about twice of the hydrogen production was produced with the Ni/SiO2 catalyst prepared by sol-gel (around 0.2 g h(-1)) compared with that prepared by impregnation (around 0.1 g h(-1)). The analysis of the used catalysts showed that 10Ni/SiO2-B and 20Ni/SiO2-B presented the highest stability, while other catalysts were fragmented into small pieces after the reforming process, especially the catalysts prepared by impregnation. A novel catalyst has been produced that has been shown to be effective in the production of hydrogen from the steam reforming of ethanol.

  18. Steam reforming of hexadecane over a Rh/CeO{sub 2} catalyst in microchannels: Experimental and numerical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Thormann, J.; Pfeifer, P.; Schubert, K. [Institute for Micro Process Engineering (IMVT), Forschungszentrum Karlsruhe GmbH, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Maier, L.; Deutschmann, O. [Institute for Chemical Technology and Polymer Chemistry, University of Karlsruhe, Engesserstr. 20, 76131 Karlsruhe (Germany); Institute for Nuclear and Energy Technologies (IKET), Forschungszentrum Karlsruhe GmbH, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Kunz, U. [Institute of Chemical Process Engineering, Clausthal University of Technology, Leibnizstr. 17, 38678 Clausthal-Zellerfeld (Germany)

    2009-06-15

    Hexadecane is chosen as diesel surrogate to experimentally and numerically investigate diesel reforming in microchannels coated with Rh/CeO{sub 2}. A detailed kinetic model is presented and discussed using experimental data on steam reforming of not only hexadecane but also of methane and propane providing a more detailed understanding also of conversion of hexadecane fragments. The turnover frequencies of these linear alkanes were found to be inversely proportional to the number of carbon atoms per hydrocarbon molecule. Based on these results, a kinetic model was developed that links a global reaction equation for the dissociative adsorption of long-chain hydrocarbons with an elementary surface reaction mechanism of steam reforming of methane over Rh/Al{sub 2}O{sub 3} catalysts. The model adequately describes the observed correlation between turnover frequency and the number of carbon atoms the hydrocarbon contains. Furthermore, a significant impact of the ceria support on the reformate composition was observed. (author)

  19. Hydrogen from biomass gas steam reforming for low temperature fuel cell: energy and exergy analysis

    Directory of Open Access Journals (Sweden)

    A. Sordi

    2009-03-01

    Full Text Available This work presents a method to analyze hydrogen production by biomass gasification, as well as electric power generation in small scale fuel cells. The proposed methodology is the thermodynamic modeling of a reaction system for the conversion of methane and carbon monoxide (steam reforming, as well as the energy balance of gaseous flow purification in PSA (Pressure Swing Adsorption is used with eight types of gasification gases in this study. The electric power is generated by electrochemical hydrogen conversion in fuel cell type PEMFC (Proton Exchange Membrane Fuel Cell. Energy and exergy analyses are applied to evaluate the performance of the system model. The simulation demonstrates that hydrogen production varies with the operation temperature of the reforming reactor and with the composition of the gas mixture. The maximum H2 mole fraction (0.6-0.64 mol.mol-1 and exergetic efficiency of 91- 92.5% for the reforming reactor are achieved when gas mixtures of higher quality such as: GGAS2, GGAS4 and GGAS5 are used. The use of those gas mixtures for electric power generation results in lower irreversibility and higher exergetic efficiency of 30-30.5%.

  20. Fluidized Bed Steam Reforming of INEEL SBW Using THORsm Mineralizing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Arlin L. Olson; Nicholas R. Soelberg; Douglas W. Marshall; Gary L. Anderson

    2004-12-01

    Sodium bearing waste (SBW) disposition is one of the U.S. Department of Energy (DOE) Idaho Operation Office’s (NE-ID) and State of Idaho’s top priorities at the Idaho National Engineering and Environmental Laboratory (INEEL). Many studies have resulted in the identification of five treatment alternatives that form a short list of perhaps the most appropriate technologies for the DOE to select from. The alternatives are (a) calcination with maximum achievable control technology (MACT) upgrade, (b) steam reforming, (c) cesium ion exchange (CsIX) with immobilization, (d) direct evaporation, and (e) vitrification. Each alternative has undergone some degree of applied technical development and preliminary process design over the past four years. DOE desired further experimental data, with regard to steam reforming technology, to make informed decisions concerning selection of treatment technology for SBW. Mineralizing steam reforming technology, offered by THOR Treatment Technologies, LLC would produce a denitrated, granular mineral waste form using a high-temperature fluidized bed process. A pilot scale demonstration of the technology was performed in a 15-cm-diameter reactor vessel September 27 through October 1, 2004. The pilot scale equipment is owned by the DOE, and located at the Science and Technology Applications Research (STAR) Center in Idaho Falls, ID. Flowsheet chemistry and operational parameters were defined through a collaborative effort involving Idaho National Engineering and Environmental Laboratory, Savannah River National Laboratory (SRNL), and THOR Treatment Technologies personnel. Personnel from Science Applications International Corporation, owners of the STAR Center, operated the pilot plant. The pilot scale test was terminated as planned after achieving a total of 100 hrs of cumulative/continuous processing operation. About 230 kg of SBW surrogate were processed that resulted in about 88 kg of solid product, a mass reduction of about 62

  1. Fluidized bed steam reformed mineral waste form performance testing to support Hanford Supplemental Low Activity Waste Immobilization Technology Selection

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pierce, E. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Herman, C. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, D. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Brown, C. F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, N. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Neeway, J. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Valenta, M. M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gill, G. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Swanberg, D. J. [Washington River Protection Solutions (WRPS), Richland, WA (United States); Robbins, R. A. [Washington River Protection Solutions (WRPS), Richland, WA (United States); Thompson, L. E. [Washington River Protection Solutions (WRPS), Richland, WA (United States)

    2015-10-01

    This report describes the benchscale testing with simulant and radioactive Hanford Tank Blends, mineral product characterization and testing, and monolith testing and characterization. These projects were funded by DOE EM-31 Technology Development & Deployment (TDD) Program Technical Task Plan WP-5.2.1-2010-001 and are entitled “Fluidized Bed Steam Reformer Low-Level Waste Form Qualification”, Inter-Entity Work Order (IEWO) M0SRV00054 with Washington River Protection Solutions (WRPS) entitled “Fluidized Bed Steam Reforming Treatability Studies Using Savannah River Site (SRS) Low Activity Waste and Hanford Low Activity Waste Tank Samples”, and IEWO M0SRV00080, “Fluidized Bed Steam Reforming Waste Form Qualification Testing Using SRS Low Activity Waste and Hanford Low Activity Waste Tank Samples”. This was a multi-organizational program that included Savannah River National Laboratory (SRNL), THOR® Treatment Technologies (TTT), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), Office of River Protection (ORP), and Washington River Protection Solutions (WRPS). The SRNL testing of the non-radioactive pilot-scale Fluidized Bed Steam Reformer (FBSR) products made by TTT, subsequent SRNL monolith formulation and testing and studies of these products, and SRNL Waste Treatment Plant Secondary Waste (WTP-SW) radioactive campaign were funded by DOE Advanced Remediation Technologies (ART) Phase 2 Project in connection with a Work-For-Others (WFO) between SRNL and TTT.

  2. An attempt to minimize the temperature gradient along a plug-flow methane/steam reforming reactor by adopting locally controlled heating zones

    Science.gov (United States)

    Mozdzierz, M.; Brus, G.; Sciazko, A.; Komatsu, Y.; Kimijima, S.; Szmyd, J. S.

    2014-08-01

    Plug flow reactors are very common in the chemical process industry, including methane/steam reforming applications. Their operation presents many challenges, such as a strong dependence of temperature and composition distribution on the inlet conditions. The strongly endothermic methane/steam reforming reaction might result in a temperature drop at the inlet of the reactor and consequently the occurrence of large temperature gradients. The strongly non-uniform temperature distribution due to endothermic chemical reaction can have tremendous consequences on the operation of the reactor, such as catalyst degradation, undesired side reactions and thermal stresses. To avoid such unfavorable conditions, thermal management of the reactor becomes an important issue. To carry out thermal management properly, detailed modeling and corresponding numerical analyses of the phenomena occurring inside the reforming system is required. This paper presents experimental and numerical studies on the methane/steam reforming process inside a plug-flow reactor. To optimize the reforming reactors, detailed data about the entire reforming process is required. In this study the kinetics of methane/steam reforming on the Ni/YSZ catalyst was experimentally investigated. Measurements including different thermal boundary conditions, the fuel flow rate and the steam- to-methane ratios were performed. The reforming rate equation derived from experimental data was used in the numerical model to predict gas composition and temperature distribution along the steam-reforming reactor. Finally, an attempt was made to control the temperature distribution by adopting locally controlled heating zones.

  3. Steam Reforming, 6-in. Bench-Scale Design and Testing Project -- Technical and Functional Requirements Description

    Energy Technology Data Exchange (ETDEWEB)

    Losinski, Sylvester John; Marshall, Douglas William

    2002-08-01

    Feasibility studies and technology development work are currently being performed on several processes to treat radioactive liquids and solids currently stored at the Idaho Nuclear Technology and Engineering Center (INTEC), located within the Idaho National Engineering and Environmental Laboratory (INEEL). These studies and development work will be used to select a treatment process for treatment of the radioactive liquids and solids to meet treatment milestones of the Settlement Agreement between the Department of Energy and the State of Idaho. One process under consideration for treating the radioactive liquids and solids, specifically Sodium-Bearing Waste (SBW) and tank heel solids, is fluid bed steam reforming (FBSR). To support both feasibility and development studies a bench-scale FBSR is being designed and constructed. This report presents the technical and functional requirements, experimental objectives, process flow sheets, and equipment specifications for the bench-scale FBSR.

  4. Preparation and characterization of Ni-based perovskite catalyst for steam CO2 reforming of methane.

    Science.gov (United States)

    Yang, Eun-Hyeok; Kim, Sang Woo; Ahn, Byong Song; Moon, Dong Ju

    2013-06-01

    Steam CO2 reforming of methane was investigated over Ni-based perovskite catalyst to produce desired H2/CO ratio by adjusting the feed ratio of CH4, CO2 and H2O for floating GTL process application. La modified perovskites were prepared by the Pechini method and calcined in air and the Ni-based catalysts were prepared by dispersing Ni on the La modified perovskite by an incipient wetness impregnation. The catalysts before and after the reaction were characterized by N2 physisoprtion, CO chemisoprtion, XRD, TPR and SEM techniques. To control desired H2/CO ratio, simulation for SCR was carried out by Aspen plus, and product distribution for SCR was investigated in a fixed bed reactor system using feed ratio estimated by simulation. The Ni-based perovskite catalysts were found to give CH4 and CO2 conversions of up to 82% and 60% respectively to yield a H2/CO product ratio close to 2.

  5. Methanol steam reforming over Cu/CeO2 catalysts: influence of zinc addition

    Directory of Open Access Journals (Sweden)

    Franco Tonelli

    2011-01-01

    Full Text Available Methanol steam reforming reaction was studied over Cu(5 wt.%/CeO2 with and without the presence of Zn. The Zn addition decreased the Cu+2 reducibility and increased the oxygen mobility of ceria. The main products were CO2 and H2 with small amount of CO. Selectivity to CO decreased with the Zn addition and it was lower at lower reaction temperatures and lower space velocities. At 230 ºC and W/F MeOH = 648 g min mol-1 selectivities to H2 and to CO2 were 100% on Zn/Cu/Ce. The catalytic results indicated that CO was mainly a secondary product formed from reverse water gas shift reaction.

  6. Ultrasound-assisted copper deposition on a polymer membrane and application for methanol steam reforming.

    Science.gov (United States)

    Byeon, Jeong Hoon; Kim, Young-Woo

    2013-01-01

    Copper particles were electrolessly deposited on a palladium aerosol activated polymer membrane in the presence of ultrasound. An application of ultrasound introduced a faster deposition (220 μg min(-1) in deposition rate) and finer copper particles (9 nm in crystallite size) than those (11 and 41 μg min(-1); 27 and 32 nm) in the absence of ultrasound (i.e. respectively 20 and 45 °C in bath temperature with mechanical agitation). A better performance of methanol steam reforming (0.59 in mean conversion during 5h operation; 1.3 and 1.6 times respectively higher than those from 20 to 45 °C cases) at a 300 °C reaction temperature was materialized for the ultrasound application, probably due to a finer (i.e. a more textured) copper particle deposition on a polymer membrane. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Catalytic properties of Ni-Zn alloy prepared by mechanical alloying for steam reforming from methanol

    Science.gov (United States)

    Park, Jeshin; Kim, Wonbaek; Suh, Changyoul; Kim, Sangbae

    2012-04-01

    Amorphous Zn65Ni35 alloy, the composition of which lies between β1-NiZn and γ-NiZn phases, was prepared by mechanical alloying for 200 hours. The alloy was heat treated at various temperatures and leached in NaOH solution in an effort to enhance the catalytic properties for hydrogen production from methanol. X-ray diffraction study revealed that the amorphous phase crystallized during the heat treatment to the equilibrium β1-NiZn and γ-NiZn phases. It was found that Zn65Ni35 alloy leached after heat treatment at 928 K showed the highest catalytic activity for steam reforming of methanol. It is believed that the enhanced catalytic activity of the Zn65Ni35 alloy heat treated at 928 K is due to the dispersed Ni particles on β1-ZnNi matrix which was formed during leaching of the γ-Zn21Ni5 phase.

  8. Direct Hysteresis Heating of Catalytically Active Ni–Co Nanoparticles as Steam Reforming Catalyst

    DEFF Research Database (Denmark)

    Mortensen, Peter Mølgaard; Engbæk, Jakob Soland; Vendelbo, Søren Bastholm

    2017-01-01

    We demonstrated a proof-of-concept catalytic steam reforming flow reactor system heated only by supported magnetic nickel–cobalt nanoparticles in an oscillating magnetic field. The heat transfer was facilitated by the hysteresis heating in the nickel–cobalt nanoparticles alone. This produced...... a sufficient power input to equilibrate the reaction at above 780 °C with more than 98% conversion of methane. The high conversion of methane indicated that Co-rich nanoparticles with a high Curie temperature provide sufficient heat to enable the endothermic reaction, with the catalytic activity facilitated...... by the Ni content in the nanoparticles. The magnetic hysteresis losses obtained from temperature-dependent hysteresis measurements were found to correlate well with the heat generation in the system. The direct heating of the catalytic system provides a fast heat transfer and thereby overcomes the heat...

  9. Hydrogen Production via Steam Reforming of Ethyl Alcohol over Palladium/Indium Oxide Catalyst

    Directory of Open Access Journals (Sweden)

    Tetsuo Umegaki

    2009-01-01

    Full Text Available We report the synergetic effect between palladium and indium oxide on hydrogen production in the steam reforming reaction of ethyl alcohol. The palladium/indium oxide catalyst shows higher hydrogen production rate than indium oxide and palladium. Palladium/indium oxide affords ketonization of ethyl alcohol with negligible by-product carbon monoxide, while indium oxide mainly affords dehydration of ethyl alcohol, and palladium affords decomposition of ethyl alcohol with large amount of by-product carbon monoxide. The catalytic feature of palladium/indium oxide can be ascribed to the formation of palladium-indium intermetallic component during the reaction as confirmed by X-ray diffraction and X-ray photoelectron spectroscopic measurements.

  10. Methane Steam Reforming over an Ni-YSZ Solid Oxide Fuel Cell Anode in Stack Configuration

    Directory of Open Access Journals (Sweden)

    D. Mogensen

    2014-01-01

    Full Text Available The kinetics of catalytic steam reforming of methane over an Ni-YSZ anode of a solid oxide fuel cell (SOFC have been investigated with the cell placed in a stack configuration. In order to decrease the degree of conversion, a single cell stack with reduced area was used. Measurements were performed in the temperature range 600–800°C and the partial pressures of all reactants and products were varied. The obtained rates could be well fitted with a power law expression (r ∝PCH40.7. A simple model is presented which is capable of predicting the methane conversion in a stack configuration from intrinsic kinetics of the anode support material. The predictions are compared with the stack measurements presented here, and good agreement is observed.

  11. Surface composition of materials used as catalysts for methanol steam reforming: a theoretical study.

    Science.gov (United States)

    Lim, Kok Hwa; Moskaleva, Lyudmila V; Rösch, Notker

    2006-08-11

    PdZn (1:1) alloy is assumed to be the active component of a promising catalyst for methanol steam reforming. Using density functional calculations on periodic supercell slab models, followed by atomistic thermodynamics modeling, we study the chemical composition of the surfaces PdZn(111) and, as a reference, Cu(111) in contact with water and hydrogen at conditions relevant to methanol steam reforming. For the two surfaces, we determine similar maximum adsorption energies for the dissociative adsorption of H(2), O(2), and the molecular adsorption of H(2)O. These reactions are calculated to be exothermic by about -40, -320, and -20 kJ mol(-1), respectively. Using a thermodynamic analysis based on theoretically predicted adsorption energies and vibrational frequencies, we determine the most favorable surface compositions for given pressure windows. However, surface energy plots alone cannot provide quantitative information on individual coverages in a system of coupled adsorption reactions. To overcome this limitation, we employ a kinetic model, from which equilibrium surface coverages of H, O, OH, and H(2)O are derived. We also discuss the sensitivity of our results and the ensuing conclusions with regard to the model surfaces employed and the inaccuracies of our computational method. Our kinetic model predicts surfaces of both materials, PdZn and Cu, to be essentially adsorbate-free already from very low values of the partial pressure of H(2). The model surfaces PdZn(111) and Cu(111) are predicted to be free of water-related adsorbates for a partial H(2) pressure greater than 10(-8) and 10(-5) atm, respectively.

  12. Co-Fe-Si Aerogel Catalytic Honeycombs for Low Temperature Ethanol Steam Reforming

    Directory of Open Access Journals (Sweden)

    Montserrat Domínguez

    2012-09-01

    Full Text Available Cobalt talc doped with iron (Fe/Co~0.1 and dispersed in SiO2 aerogel was prepared from silica alcogel impregnated with metal nitrates by supercritical drying. Catalytic honeycombs were prepared following the same procedure, with the alcogel synthesized directly over cordierite honeycomb pieces. The composite aerogel catalyst was characterized by X-ray diffraction, scanning electron microscopy, focus ion beam, specific surface area and X-ray photoelectron spectroscopy. The catalytic layer is about 8 µm thick and adheres well to the cordierite support. It is constituted of talc layers of about 1.5 µm × 300 nm × 50 nm which are well dispersed and anchored in a SiO2 aerogel matrix with excellent mass-transfer properties. The catalyst was tested in the ethanol steam reforming reaction, aimed at producing hydrogen for on-board, on-demand applications at moderate temperature (573–673 K and pressure (1–7 bar. Compared to non-promoted cobalt talc, the catalyst doped with iron produces less methane as byproduct, which can only be reformed at high temperature, thereby resulting in higher hydrogen yields. At 673 K and 2 bar, 1.04 NLH2·mLEtOH(l−1·min−1 are obtained at S/C = 3 and W/F = 390 g·min·molEtOH−1.

  13. Steam Reforming of Glycerol Over Nano Size Ni-Ce/LaAlO3 Catalysts.

    Science.gov (United States)

    Kim, Seong-Hak; Go, Yoo-Jin; Park, Nam-Cook; Kim, Jong-Ho; Kim, Young-Chul; Moon, Dong-Ju

    2015-01-01

    In this work, hydrogen production from glycerol by Steam Reforming (SR) was studied by Ni-Ce catalysts supported on LaAlO3 perovskite in order to effect of the cerium loading amount and the reaction conditions. Nano size Ni-Ce/LaAlO3 catalysts were prepared by precipitation method. The structure of the catalysts was characterized by XRD analysis. The morphology, dispersion and the reduction properties of catalysts was examined by SEM, TEM, H2-chemisorption and TPR, respectively. It was found that 15 wt% Ni-5 wt% Ce/LaAlO3 catalyst showed the highest glycerol conversion and hydrogen selectivity. In addition, the catalyst also showed the high carbon dioxide selectivity and the lowest methane selectivity. The results indicate that the catalyst promotes methane reforming reaction. The highest activity in the 15 wt% Ni-5 wt% Ce/LaAlO3 was attributed to the proper cerium loading amount. Moreover, the lowest metal crystal size and rise in active site were found to have an effect on catalytic activity and hydrogen selectivity. The 15 wt% Ni-5 wt% Ce/LaAlO3 catalyst exhibited excellent performance with respect to hydrogen production at reaction temperature of 450 degrees C, at atmospheric pressure, 20 wt% glycerol solution and GHSV = 6,000 mL/g-cat x hr.

  14. Modified Nano-Perovskite Catalysts for the Steam and CO2 Reforming of Methane.

    Science.gov (United States)

    Park, Daeil; Moon, Dong Ju; Bae, Jong Wook; Kim, Taegyu

    2015-08-01

    This paper describes the synthesis and characterization of La0.8Sr0.2NiO3 nano-perovskite type catalyst for steam-CO2 reforming (SCR) and CO2 reforming (DR) of methane. Effect of gelation agents such as PVA, EDTA and PAA on nano-perovskite structures was investigated. XRD, H2-TPR and FT-IR analysis were used to characterize the prepared catalysts. The catalytic reaction was performed in a fixed bed reactor system at 1 atm and 800 °C. The feed ratio of CH4:H2O:CO2 as reactants was adjusted according to the SCR and DR reactions. As a result, CH4 and CO2 conversions of PVA agent catalyst were higher than that of PAA and EDTA agent catalyst for DR reaction because the PVA agent catalyst had a well-established perovskite, a high absorption, a high reducibility. However, the PAA agent catalyst had a higher reactivity due to its high interaction of catalysts for SCR of methane due to its strong interaction of catalysts.

  15. Steam reforming of methane over Pt/Rh based wire mesh catalyst in single channel reformer for small scale syngas production

    DEFF Research Database (Denmark)

    Sigurdsson, Haftor Örn; Kær, Søren Knudsen

    2012-01-01

    The purpose of this study is to investigate a small scale steam methane reformer for syngas production for a micro combined heat and power (mCPH) unit under different operational conditions. The study presents an experimental analysis of the performance of a specially built single channel....... The following parameters are considered in the experiment: catalyst temperature, gas hourly space velocity (GHSV) and steam to carbon ratio (S/C). The catalyst was tested at temperatures between 600 and 900°C, S/C ratios between 2 and 5 and GHSV between 319 and 2201 1/h. The experimental results are used...... of a catalytic parallel plate type heat exchanger (CPHE) reformer stack, where coated Pt/Rh based wire mesh is used as a catalyst. Heat is supplied to the endothermic reaction with infrared electric heaters. All the experiments were performed under atmospheric pressure and at stable operating conditions...

  16. PdZnAl Catalysts for the Reactions of Water-Gas-Shift, Methanol Steam Reforming, and Reverse-Water-Gas-Shift

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, Robert A.; Platon, Alexandru; Datye, Abhaya K.; Vohs, John M.; Wang, Yong; Palo, Daniel R.

    2008-03-07

    Pd/ZnO/Al2O3 catalysts were studied for water-gas-shift (WGS), methanol steam reforming, and reverse-water-gas-shift (RWGS) reactions. WGS activity was found to be dependent on the Pd:Zn ratio with a maximum activity obtained at approximately 0.50, which was comparable to that of a commercial Pt-based catalyst. The catalyst stability was demonstrated for 100 hours time-on-stream at a temperature of 3600C without evidence of metal sintering. WGS reaction rates were approximately 1st order with respect to CO concentration, and kinetic parameters were determined to be Ea = 58.3 kJ mol-1 and k0 = 6.1x107 min-1. During methanol steam reforming, the CO selectivities were observed to be lower than the calculated equilibrium values over a range of temperatures and steam/carbon ratios studied while the reaction rate constants were approximately of the same magnitude for both WGS and methanol steam reforming. These results indicate that although Pd/ZnO/Al2O3 are active WGS catalysts, WGS is not involved in methanol steam reforming. RWGS rate constants are on the order of about 20 times lower than that of methanol steam reforming, suggesting that RWGS reaction could be one of the sources for small amount of CO formation in methanol steam reforming.

  17. Modeling and 3D-simulation of hydrogen production via methanol steam reforming in copper-coated channels of a mini reformer

    Science.gov (United States)

    Sari, Ataallah; Sabziani, Javad

    2017-06-01

    Modeling and CFD simulation of a three-dimensional microreactor includes thirteen structured parallel channels is performed to study the hydrogen production via methanol steam reforming reaction over a Cu/ZnO/Al2O3 catalyst. The well-known Langmuir-Hinshelwood macro kinetic rate expressions reported by Peppley and coworkers [49] are considered to model the methanol steam reforming reactions. The effects of inlet steam to methanol ratio, pre-heat temperature, channels geometry and size, and the level of external heat flux on the hydrogen quality and quantity (i.e., hydrogen flow rate and CO concentration) are investigated. Moreover, the possibility of reducing the CO concentration by passing the reactor effluent through a water gas shift channel placed in series with the methanol reformer is studied. Afterwards, the simulation results are compared with the experimental data reported in the literature considering two different approaches of mixture-averaged and Maxwell-Stefan formulations to evaluate the diffusive flux of mass. The results indicate that the predictions of the Maxwell-Stefan model is in better agreement with experimental data than mixture-averaged one, especially at the lower feed flow rates.

  18. A Comparative Discussion of the Catalytic Activity and CO2-Selectivity of Cu-Zr and Pd-Zr (Intermetallic) Compounds in Methanol Steam Reforming

    National Research Council Canada - National Science Library

    Köpfle, Norbert; Mayr, Lukas; Schmidmair, Daniela; Bernardi, Johannes; Knop‐Gericke, Axel; Hävecker, Michael; Klötzer, Bernhard; Penner, Simon

    2017-01-01

      The activation and catalytic performance of two representative Zr-containing intermetallic systems, namely Cu-Zr and Pd-Zr, have been comparatively studied operando using methanol steam reforming (MSR) as test reaction...

  19. FLUIDIZED BED STEAM REFORMED MINERAL WASTE FORMS: CHARACTERIZATION AND DURABILITY TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C; Troy Lorier, T; John Pareizs, J; James Marra, J

    2007-03-31

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium low activity wastes (LAW) such as those existing at the Hanford site, at the Idaho National Laboratory (INL), and the Savannah River Site (SRS). The addition of clay, charcoal, and a catalyst as co-reactants with the waste denitrates the aqueous wastes and forms a granular mineral waste form that can subsequently be made into a monolith for disposal if necessary. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage and ring structures and iron bearing spinel minerals. The mineralization occurs at moderate temperatures between 650-750 C in the presence of superheated steam. The cage and ring structured feldspathoid minerals atomically bond radionuclides like Tc-99 and Cs-137 and anions such as SO4, I, F, and Cl. The spinel minerals stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low-activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium bearing waste (SBW) in pilot scale facilities at the Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The results of the SPFT testing and the activation energies for dissolution are discussed in this study.

  20. FLUIDIZED BED STEAM REFORMED MINERAL WASTE FORMS: CHARACTERIZATION AND DURABILITY TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C; Troy Lorier, T; John Pareizs, J; James Marra, J

    2006-12-06

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium low activity wastes (LAW) such as those existing at the Hanford site, at the Idaho National Laboratory (INL), and the Savannah River Site (SRS). The addition of clay, charcoal, and a catalyst as co-reactants with the waste denitrates the aqueous wastes and forms a granular mineral waste form that can subsequently be made into a monolith for disposal if necessary. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage and ring structures and iron bearing spinel minerals. The mineralization occurs at moderate temperatures between 650-750 C in the presence of superheated steam. The cage and ring structured feldspathoid minerals atomically bond radionuclides like Tc-99 and Cs-137 and anions such as SO{sub 4}, I, F, and Cl. The spinel minerals stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium bearing waste (SBW) in pilot scale facilities at the Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The results of the SPFT testing and the activation energies for dissolution are discussed in this study.

  1. Steam reforming of tar model compound using Pd catalyst on alumina tube.

    Science.gov (United States)

    Nisamaneenate, Jurarat; Atong, Duangduen; Sricharoenchaikul, Viboon

    2012-12-01

    Gasification processing of biomass as a renewable energy source generates tar in the product gas. Tar leads to foul-up of the process equipment by corrosion and deposit formation. Catalytic elimination of tars is a crucial step to improve fuel gas quality from the process. In this study, a palladium catalyst on alumina (Pd/Al2O3) was used in steam reforming of benzene as a biomass gasification tar model compound. The reaction was carried out in a laboratory-scale tube reactor made of stainless steel to study the effect of reaction temperature, catalyst loading, quantity of palladium catalyst tubes, steam to carbon ratio (S/C), and residence time on catalytic performance and stability. Pd/Al2O3 showed high efficiency ofbenzene decomposition and enhanced the formation of fuel gas. Hydrogen and carbon conversions increased with reaction temperature. Although the benzene concentration increased from 2000 to 5000 mg/l, the catalytic performance at 600 degrees C and 800 degrees C was similar. 1.0 wt% Pd/Al2O3 showed excellent catalytic activity with the highest hydrogen and carbon conversions of 83% and 81%, respectively at 800 degrees C. This result is attributed to the smooth surface of the palladium, as noted from scanning electron microscopy imaging. An S/C of 2 provided the highest conversion. The addition of catalyst from four and seven tubes did not result in any great difference in terms of benzene cracking efficiency. The fourth cyclic usage of 1.0 wt% Pd/Al2O3 exhibited a higher conversion than that of 0.5 wt%.

  2. Fluidized Bed Steam Reforming of Hanford LAW Using THORsm Mineralizing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Arlin L.; Nicholas R Soelberg; Douglas W. Marshall; Gary L. Anderson

    2004-11-01

    The U.S. Department of Energy (DOE) documented, in 2002, a plan for accelerating cleanup of the Hanford Site, located in southeastern Washington State, by at least 35 years. A key element of the plan was acceleration of the tank waste program and completion of ''tank waste treatment by 2028 by increasing the capacity of the planned Waste Treatment Plant (WTP) and using supplemental technologies for waste treatment and immobilization.'' The plan identified steam reforming technology as a candidate for supplemental treatment of as much as 70% of the low-activity waste (LAW). Mineralizing steam reforming technology, offered by THOR Treatment Technologies, LLC would produce a denitrated, granular mineral waste form using a high-temperature fluidized bed process. A pilot scale demonstration of the technology was completed in a 15-cm-diameter reactor vessel. The pilot scale facility was equipped with a highly efficient cyclone separator and heated sintered metal filters for particulate removal, a thermal oxidizer for reduced gas species and NOx destruction, and a packed activated carbon bed for residual volatile species capture. The pilot scale equipment is owned by the DOE, but located at the Science and Technology Applications Research (STAR) Center in Idaho Falls, ID. Pilot scale testing was performed August 2–5, 2004. Flowsheet chemistry and operational parameters were defined through a collaborative effort involving Idaho National Engineering and Environmental Laboratory, Savannah River National Laboratory (SRNL), and THOR Treatment Technologies personnel. Science Application International Corporation, owners of the STAR Center, personnel performed actual pilot scale operation. The pilot scale test achieved a total of 68.7 hrs of cumulative/continuous processing operation before termination in response to a bed de-fluidization condition. 178 kg of LAW surrogate were processed that resulted in 148 kg of solid product, a mass reduction of about 17%. The process

  3. Steam Reforming Solidification of Cesium and Strontium Separations Product from Advanced Aqueous Processing of Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Julia L. Tripp; T. G. Garn; R. D. Boardman; J. D. Law

    2006-02-01

    The Advanced Fuel Cycle Initiative program is conducting research on aqueous separations processes for the nuclear fuel cycle. This research includes development of solvent extraction processes for the separation of cesium and strontium from dissolved spent nuclear fuel solutions to reduce the short-term decay heat load. The cesium/strontium strip solution from candidate separation processes will require treatment and solidification for managed storage. Steam reforming is currently being investigated for stabilization of these streams because it can potentially destroy the nitrates and organics present in these aqueous, nitrate-bearing solutions, while converting the cesium and strontium into leach-resistant aluminosilicate minerals, such as pollucite. These ongoing experimental studies are being conducted to evaluate the effectiveness of steam reforming for this application.

  4. Hydrogen production from steam reforming of acetic acid over Cu-Zn supported calcium aluminate.

    Science.gov (United States)

    Mohanty, Pravakar; Patel, Madhumita; Pant, Kamal K

    2012-11-01

    Hydrogen can be produced by catalytic steam reforming (CSR) of biomass-derived oil. Typically bio oil contains 12-14% acetic acid; therefore, this acid was chosen as model compound for reforming of biooil with the help of a Cu-Zn/Ca-Al catalyst for high yield of H(2) with low CH(4) and CO content. Calcium aluminate support was prepared by solid-solid reaction at 1350°C. X-ray diffraction indicates 12CaO·7Al(2)O(3) as major, CaA(l4)O(7) and Ca(5)A(l6)O(14) as minor phases. Cu and Zn were loaded onto the support by wet-impregnation at 10 and 1wt.%, respectively. The catalysts were characterized by Brunauer-Emmett-Teller (BET), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy TEM and the surface area for both support and Cu-Zn were 10.5 and 5.8m(2)/g, respectively. CSR was carried out in a tubular fixed bed reactor (I.D.=19mm) at temperatures between 600 and 800°C with 3-g loadings and (H(2)O/acetic acid) wt. ratio of 9:1. Significantly high (80%) yield of hydrogen was obtained over Cu-Zn/Ca-Al catalyst, as incorporation of Zn enhanced the H(2) yield by reducing deactivation of the catalyst. The coke formation on the support (Ca-12/Al-7) surface was negligible due to the presence of excess oxygen in the 12CaO·7Al(2)O(3) phase. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Stabilization of Savannah River National Laboartory (SRNL) Aqueous Waste by Fluidized Bed Steam Reforming (FBSR)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C

    2004-11-01

    The Savannah River National Laboratory (SRNL) is a multidisciplinary laboratory operated by Westinghouse Savannah River Company (WSRC) in Aiken, South Carolina. Research and development programs have been conducted at SRNL for {approx}50 years generating non-radioactive (hazardous and non-hazardous) and radioactive aqueous wastes. Typically the aqueous effluents from the R&D activities are disposed of from each laboratory module via the High Activity Drains (HAD) or the Low Activity Drains (LAD) depending on whether they are radioactive or not. The aqueous effluents are collected in holding tanks, analyzed and shipped to either H-Area (HAD waste) or the F/H Area Effluent Treatment Facility (ETF) (LAD waste) for volume reduction. Because collection, analysis, and transport of LAD and HAD waste is cumbersome and since future treatment of this waste may be curtailed as the F/H-Area evaporators and waste tanks are decommissioned, SRNL laboratory operations requested several proof of principle demonstrations of alternate technologies that would define an alternative disposal path for the aqueous wastes. Proof of principle for the disposal of SRNL HAD waste using a technology known as Fluidized Bed Steam Reforming (FBSR) is the focus of the current study. The FBSR technology can be performed either as a batch process, e.g. in each laboratory module in small furnaces with an 8'' by 8'' footprint, or in a semi-continuous Bench Scale Reformer (BSR). The proof of principle experiments described in this study cover the use of the FBSR technology at any scale (pilot or full scale). The proof of principle experiments described in this study used a non-radioactive HAD simulant.

  6. Reaction conditions effect and pathways in the oxidative steam reforming of raw bio-oil on a Rh/CeO

    NARCIS (Netherlands)

    Arandia, Aitor; Remiro, Aingeru; Oar-Arteta Gonzalez, L.; Bilbao, Javier; Gayubo, Ana G.

    2017-01-01

    A reaction scheme has been proposed for the oxidative steam reforming (OSR) of raw bio-oil on a Rh/CeO2-ZrO2 catalyst, based on the study of the effect reaction conditions (temperature, space time, oxygen/carbon ratio and steam/carbon ratio) have on product yields

  7. Methanol steam reforming over Pd/ZnO and Pd/CeO{sub 2} catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, Easwar S.; Bej, Shyamal K.; Thompson, Levi T. [University of Michigan, Department of Chemical Engineering, 3026 H.H. Dow Building, 2300 Hayward Avenue, Ann Arbor, MI 48109-2136 (United States)

    2005-08-10

    The goal of work described in this paper was to better understand the methanol steam reforming (MSR) activity and selectivity patterns of ZnO and CeO{sub 2} supported Pd catalysts. This reaction is being used to produce H{sub 2}-rich gas for a number of applications including hydrogen fuel cells. The Pd/ZnO catalysts had lower MSR rates but were more selective for the production of CO{sub 2} than the Pd/CeO{sub 2} catalysts. The CH{sub 3}OH conversion rates were proportional to the H{sub 2} chemisorption uptake suggesting that the rate determining step was catalyzed by Pd. The corresponding turnover frequencies averaged 0.8+/-0.3s{sup -1} and 0.4+/-0.2s{sup -1} at 230{sup o}C for the Pd/ZnO and Pd/CeO{sub 2} catalysts, respectively. The selectivities are explained based on the reaction pathways, and characteristics of the support. The key surface intermediate appeared to be a formate. The ZnO supported catalysts had a higher density of acidic sites and favored pathways where the intermediate was converted to CO{sub 2} while the CeO{sub 2} supported catalysts had a higher density of basic sites and favored the production of CO.

  8. Methanol Steam Reforming Promoted by Molten Salt-Modified Platinum on Alumina Catalysts

    Science.gov (United States)

    Kusche, Matthias; Agel, Friederike; Ní Bhriain, Nollaig; Kaftan, Andre; Laurin, Mathias; Libuda, Jörg; Wasserscheid, Peter

    2014-01-01

    We herein describe a straight forward procedure to increase the performance of platinum-on-alumina catalysts in methanol steam reforming by applying an alkali hydroxide coating according to the “solid catalyst with ionic liquid layer” (SCILL) approach. We demonstrate by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature-programmed desorption (TPD) studies that potassium doping plays an important role in the catalyst activation. Moreover, the hygroscopic nature and the basicity of the salt modification contribute to the considerable enhancement in catalytic performance. During reaction, a partly liquid film of alkali hydroxides/carbonates forms on the catalyst/alumina surface, thus significantly enhancing the availability of water at the catalytically active sites. Too high catalyst pore fillings with salt introduce a considerable mass transfer barrier into the system as indicated by kinetic studies. Thus, the optimum interplay between beneficial catalyst modification and detrimental mass transfer effects had to be identified and was found on the applied platinum-on-alumina catalyst at KOH loadings around 7.5 mass %. PMID:25124120

  9. A Facile Steam Reforming Strategy to Delaminate Layered Carbon Nitride Semiconductors for Photoredox Catalysis.

    Science.gov (United States)

    Yang, Pengju; Ou, Honghui; Fang, Yuanxing; Wang, Xinchen

    2017-03-27

    The delamination of layered crystals that produces single or few-layered nanosheets while enabling exotic physical and chemical properties, particularly for semiconductor functions in optoelectronic applications, remains a challenge. Here, we report a facile and green approach to prepare few-layered polymeric carbon nitride (PCN) semiconductors by a one-step carbon/nitrogen steam reforming reaction. Bulky PCN, obtained from typical precursors including urea, melamine, dicyandiamide, and thiourea, are exfoliated into few-layered nanosheets, while engineering its surface carbon vacancies. The unique sheet structures with strengthened surface properties endow PCNs with more active sites, and an increased charge separation efficiency with a prolonged charge lifetime, drastically promoting their photoredox performance. After an assay of a H2 evolution reaction, an apparent quantum yield of 11.3 % at 405 nm was recorded for the PCN nanosheets, which is much higher than those of PCN nanosheets. This delamination method is expandable to other carbon-based 2D materials for advanced applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Sorption-enhanced steam reforming of ethanol: thermodynamic comparison of CO{sub 2} sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.J.; Santos, J.C.; Cunha, A.F.; Rodrigues, A.E. [University of Porto, Faculty of Engineering, Department of Chemical Engineering, Associated Laboratory LSRE/LCM, Laboratory of Separation and Reaction Engineering, Porto (Portugal); Diaz Alvarado, F.; Gracia, F. [Universidad de Chile, Facultad de Ingenieria, Departamento de Ingenieria Quimica y Biotecnologia, Laboratorio de Catalisis, Santiago (Chile)

    2012-05-15

    A thermodynamic analysis is performed with a Gibbs free energy minimization method to compare the conventional steam reforming of ethanol (SRE) process and sorption-enhanced SRE (SE-SRE) with three different sorbents, namely, CaO, Li{sub 2}ZrO{sub 3}, and hydrotalcite-like compounds (HTlc). As a result, the use of a CO{sub 2} adsorbent can enhance the hydrogen yield and provide a lower CO content in the product gas at the same time. The best performance of SE-SRE is found to be at 500 C with an HTlc sorbent. Nearly 6 moles hydrogen per mole ethanol can be produced, when the CO content in the vent stream is less than 10 ppm, so that the hydrogen produced via SE-SRE with HTlc sorbents can be directly used for fuel cells. Higher pressures do not favor the overall SE-SRE process due to lower yielding of hydrogen, although CO{sub 2} adsorption is enhanced. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Ru-Catalyzed Steam Methane Reforming: Mechanistic Study from First Principles Calculations

    Directory of Open Access Journals (Sweden)

    Ryan Lacdao Arevalo

    2017-04-01

    Full Text Available Elucidating the reaction mechanism of steam methane reforming (SMR is imperative for the rational design of catalysts for efficient hydrogen production. In this paper, we provide mechanistic insights into SMR on Ru surface using first principles calculations based on dispersion-corrected density functional theory. Methane activation (i.e., C–H bond cleavage was found to proceed via a thermodynamically exothermic dissociative adsorption process, resulting in (CHy + zH* species (“*” denotes a surface-bound state, and y + z = 4, with C* and CH* being the most stable adsorbates. The calculation of activation barriers suggests that the conversion of C* into O-containing species via C–O bond formation is kinetically slow, indicating that the surface reaction of carbon intermediates with oxygen is a possible rate-determining step. The results suggest the importance of subsequent elementary reactions following methane activation in determining the formation of stable carbon structures on the surface that deactivates the catalyst or the conversion of carbon into O-containing species.

  12. Cu-Al spinel oxide as an efficient catalyst for methanol steam reforming.

    Science.gov (United States)

    Xi, Hongjuan; Hou, Xiaoning; Liu, Yajie; Qing, Shaojun; Gao, Zhixian

    2014-10-27

    Cu-Al spinel oxide, which contains a small portion of the CuO phase, has been successfully used in methanol steam reforming (MSR) without prereduction. The omission of prereduction not only avoids the copper sintering prior to the catalytic reaction, but also slows down the copper-sintering rate in MSR. During this process, the CuO phase can initiate MSR at a lower temperature, and CuAl2O4 releases active copper gradually. The catalyst CA2.5-900, calcined at 900 °C with n(Al)/n(Cu) = 2.5, has a higher CuAl2O4 content, higher BET surface area, and smaller CuAl2O4 crystal size. Its activity first increases and then decreases during MSR. Furthermore, both fresh and regenerated CA2.5-900 showed better catalytic performance than the commercial Cu-Zn-Al catalyst. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Steam reforming of methanol over copper loaded anodized aluminum oxide (AAO) prepared through electrodeposition

    Science.gov (United States)

    Linga Reddy, E.; Karuppiah, J.; Lee, Hyun Chan; Kim, Dong Hyun

    2014-12-01

    In order to study the steam reforming of methanol (SRM) to produce hydrogen for fuel cells, porous γ-alumina support is developed on Al substrate using anodic oxidation process and copper catalyst particles are deposited homogeneously over anodic aluminum oxide (AAO) surface by electrodeposition method. We investigated the effect of electrodeposition time and hot water treatment (HWT) on the activity of catalysts for SRM reaction in the temperature range between 160 and 360 °C. The experimental results indicate that the SRM activity, CO2 and dimethyl ether (DME) selectivity's over Cu catalysts increased as the electrodeposition time increased from 30 to 120 s, further increment in deposition time of Cu have no significant effect on it. The rates of SRM conversion are found to be higher for the catalysts made from the supports obtained after HWT, which may be due to the enhancement in the surface area of AAO support. It is found that the SRM activity and CO2 selectivity strongly depended upon the free exposed copper sites available for methanol adsorption and reaction, and DME in products is mainly observed in the reaction temperature range between 300 and 350 °C and it is higher for the catalysts with low Cu content.

  14. Toward autonomous control of microreactor system for steam reforming of methanol

    Science.gov (United States)

    Shin, W. C.; Besser, R. S.

    Since the introduction of microchemical systems (MCS) in the last decade, it has been recognized that one of the most crucial challenges is the implementation of an appropriate control strategy. A novel study in realizing a controllable miniature chemical plant for a small-scale hydrogen source for fuel cells is presented. Catalytic steam reforming (SR) reaction of a methanol-water mixture was the model reaction studied. A microscaled reactor, sensors and actuators, were successfully prepared and integrated by using microelectromechanical systems (MEMS) technology. Microfabricated system components were then interconnected with a comprehensive control algorithm which could form the basis for an eventual autonomous, self-contained system. MCS represent a concept wherein precisely microfabricated fluid passages and reaction zones are integrated with sensors and actuators. Having an appropriate control strategy for the entire system of MCS is therefore a significant technical challenge. Although numerous MEMS-based examples of sensors and actuators exist for control of pressure, temperature and flow, there are few cases where these components have been combined with chemical reaction units and control algorithms into MCS. In this study, control of temperature and flow allows the hydrogen production rate to be modulated in a suitable fashion to support proton exchange fuel cell operation as a model. The reaction characteristics with temperature and flow changes, cold start-up behavior and the response to rapid changes in hydrogen demand were investigated. The control scheme implemented showed potential for autonomous control of fuel processing and other microchemical processing applications.

  15. Methanol steam reforming promoted by molten salt-modified platinum on alumina catalysts.

    Science.gov (United States)

    Kusche, Matthias; Agel, Friederike; Ní Bhriain, Nollaig; Kaftan, Andre; Laurin, Mathias; Libuda, Jörg; Wasserscheid, Peter

    2014-09-01

    We herein describe a straight forward procedure to increase the performance of platinum-on-alumina catalysts in methanol steam reforming by applying an alkali hydroxide coating according to the "solid catalyst with ionic liquid layer" (SCILL) approach. We demonstrate by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature-programmed desorption (TPD) studies that potassium doping plays an important role in the catalyst activation. Moreover, the hygroscopic nature and the basicity of the salt modification contribute to the considerable enhancement in catalytic performance. During reaction, a partly liquid film of alkali hydroxides/carbonates forms on the catalyst/alumina surface, thus significantly enhancing the availability of water at the catalytically active sites. Too high catalyst pore fillings with salt introduce a considerable mass transfer barrier into the system as indicated by kinetic studies. Thus, the optimum interplay between beneficial catalyst modification and detrimental mass transfer effects had to be identified and was found on the applied platinum-on-alumina catalyst at KOH loadings around 7.5 mass%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Radionuclide and contaminant immobilization in the fluidized bed steam reforming waste products

    Energy Technology Data Exchange (ETDEWEB)

    Neeway, James J.; Qafoku, Nikolla; Westsik, Joseph H.; Brown, Christopher F.; Jantzen, Carol; Pierce, Eric M.

    2012-05-01

    The goal of this chapter is to introduce the reader to the Fluidized Bed Steam Reforming (FBSR) process and resulting waste form. The first section of the chapter gives an overview of the potential need for FBSR processing in nuclear waste remediation followed by an overview of the engineering involved in the process itself. This is followed by a description of waste form production at a chemical level followed by a section describing different process streams that have undergone the FBSR process. The third section describes the resulting mineral product in terms of phases that are present and the ability of the waste form to encapsulate hazardous and radioactive wastes from several sources. Following this description is a presentation of the physical properties of the granular and monolith waste form product including and contaminant release mechanisms. The last section gives a brief summary of this chapter and includes a section on the strengths associated with this waste form and the needs for additional data and remaining questions yet to be answered. The reader is directed elsewhere for more information on other waste forms such as Cast Stone (Lockrem, 2005), Ceramicrete (Singh et al., 1997, Wagh et al., 1999) and geopolymers (Kyritsis et al., 2009; Russell et al., 2006).

  17. Promotion effect of cobalt-based catalyst with rare earth for the ethanol steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Chiou, Josh Y. Z.; Chen, Ya-Ping; Yu, Shen-Wei; Wang, Chen-Bin [Department of Chemical and Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Tahsi, Taoyuan 33509, Taiwan (China)

    2013-12-16

    Catalytic performance of ethanol steam reforming (ESR) was investigated on praseodymium (Pr) modified ceria-supported cobalt oxide catalyst. The ceria-supported cobalt oxide (Ce-Co) catalyst was prepared by co-precipitation-oxidation (CPO) method, and the doped Pr (5 and 10 wt% loading) catalysts (Pr{sub 5}−Ce−Co and Pr{sub 10}−Ce−Co) were prepared by incipient wetness impregnation method. The reduction pretreatment under 250 and 400 °C (H250 and H400) was also studied. All samples were characterized by XRD, TPR and TEM. Catalytic performance of ESR was tested from 250 to 500 °C in a fixed-bed reactor. The doping of Pr into the ceria lattice has significantly promoted the activity and reduced the coke formation. The products distribution also can be influenced by the different reduction pretreatment. The Pr{sub 10}−Ce−Co−H400 sample is a preferential ESR catalyst, where the hydrogen distribution approaches 73% at 475 °C with less amounts (< 2%) of CO and CH{sub 4}.

  18. Performance of the Fluidized Bed Steam Reforming Product Under Hydraulically Unsaturated Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Neeway, James J.; Qafoku, Nikolla; Williams, Benjamin D.; Rod, Kenton A.; Bowden, Mark E.; Brown, Christopher F.; Pierce, Eric M.

    2014-05-01

    Currently, several candidates for secondary waste immobilization at the Hanford site in the State of Washington, USA are being considered. To demonstrate the durability of the product in the unsaturated Integrated Disposal Facility (IDF) at the site, a series of tests have been performed one of the candidate materials using the Pressurized Unsaturated Flow (PUF) system. The material that was tested was the Fluidized Bed Steam Reformer (FBSR) granular product and the granular product encapsulated in a geopolymer matrix. The FBSR product is composed primarily of an insoluble sodium aluminosilicate matrix with the dominant phases being feldspathoid minerals mostly nepheline, sodalite, and nosean. The PUF test method allows for the accelerated weathering of materials, including radioactive waste forms, under hydraulically unsaturated conditions, thus mimicking the open-flow and transport properties that most likely will be present at the IDF. The experiments show a trend of decreasing tracer release as a function of time for several of the elements released from the material including Na, Si, Al, and Cs. However, some of the elements, notably I and Re, show a steady release throughout the yearlong test. This result suggests that the release of these minerals from the sodalite cage occurs at a different rate compared with the dissolution of the predominant nepheline phase.

  19. Preparation of Palladium-Impregnated Ceria by Metal Complex Decomposition for Methane Steam Reforming Catalysis

    Directory of Open Access Journals (Sweden)

    Worawat Wattanathana

    2017-01-01

    Full Text Available Palladium-impregnated ceria materials were successfully prepared via an integrated procedure between a metal complex decomposition method and a microwave-assisted wetness impregnation. Firstly, ceria (CeO2 powders were synthesized by thermal decomposition of cerium(III complexes prepared by using cerium(III nitrate or cerium(III chloride as a metal source to form a metal complex precursor with triethanolamine or benzoxazine dimer as an organic ligand. Palladium(II nitrate was consequently introduced to the preformed ceria materials using wetness impregnation while applying microwave irradiation to assist dispersion of the dopant. The palladium-impregnated ceria materials were obtained by calcination under reduced atmosphere of 10% H2 in He stream at 700°C for 2 h. Characterization of the palladium-impregnated ceria materials reveals the influences of the metal complex precursors on the properties of the obtained materials. Interestingly, the palladium-impregnated ceria prepared from the cerium(III-benzoxazine dimer complex revealed significantly higher BET specific surface area and higher content of the more active Pdδ+ (δ > 2 species than the materials prepared from cerium(III-triethanolamine complexes. Consequently, it exhibited the most efficient catalytic activity in the methane steam reforming reaction. By optimization of the metal complex precursors, characteristics of the obtained palladium-impregnated ceria catalysts can be modified and hence influence the catalytic activity.

  20. Hydrogen production by ethanol steam reforming over Cu-Ni supported catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Vizcaino, A.J.; Carrero, A.; Calles, J.A. [Department of Chemical and Environmental Technology, Rey Juan Carlos University, Escuela Superior de Ciencias Experimentales y Tecnologia (ESCET), c/ Tulipan s/n, 28933 Mostoles (Spain)

    2007-07-15

    In the present work, Cu-Ni supported catalysts were tested in ethanol steam reforming reaction. Two commercial amorphous solids (SiO{sub 2} and {gamma}-Al{sub 2}O{sub 3}) and three synthesized materials (MCM-41, SBA-15 and ZSM-5 nanocrystalline) were used as support. A series of Cu-Ni/SiO{sub 2} catalysts with different Cu and Ni content were also prepared. It was found that aluminium containing supports favour ethanol dehydration to ethylene in the acid sites, which in turn, promotes the coke deactivation process. The highest hydrogen selectivity is achieved with the Cu-Ni/SBA-15 catalyst, due to a smaller metallic crystallite size. Nevertheless, the Cu-Ni/SiO{sub 2} catalyst showed the best catalytic performance, since a better equilibrium between high hydrogen selectivity and CO{sub 2}/CO{sub x} ratio is obtained. It was seen that nickel is the phase responsible for hydrogen production in a greater grade, although both CO production and coke deposition are decreased when copper is added to the catalyst. (author)

  1. Bi-reforming of methane from any source with steam and carbon dioxide exclusively to metgas (CO-2H2) for methanol and hydrocarbon synthesis.

    Science.gov (United States)

    Olah, George A; Goeppert, Alain; Czaun, Miklos; Prakash, G K Surya

    2013-01-16

    A catalyst based on nickel oxide on magnesium oxide (NiO/MgO) thermally activated under hydrogen is effective for the bi-reforming with steam and CO(2) (combined steam and dry reforming) of methane as well as natural gas in a tubular flow reactor at elevated pressures (5-30 atm) and temperatures (800-950 °C). By adjusting the CO(2)-to-steam ratio in the gas feed, the H(2)/CO ratio in the produced syn-gas could be easily adjusted in a single step to the desired value of 2 for methanol and hydrocarbon synthesis.

  2. Characterization of ZrO 2-promoted Cu/ZnO/nano-Al 2O 3 methanol steam reforming catalysts

    Science.gov (United States)

    Jones, Samuel D.; Neal, Luke M.; Everett, Michael L.; Hoflund, Gar B.; Hagelin-Weaver, Helena E.

    2010-10-01

    Three Cu/ZnO/ZrO 2/Al 2O 3 methanol reforming catalysts were investigated using X-ray photoelectron spectroscopy (XPS). The catalysts which contained ZrO 2 from a monoclinic nanoparticle ZrO 2 precursor exhibit both a higher activity toward the methanol steam reforming reaction and a lower CO production rate compared to catalysts composed of an XRD-amorphous ZrO 2 produced by impregnation using a Zr(NO 3) 2 precursor. The presence of a monoclinic phase appears to result in an increased charge transfer between the Zr and Cu species, as evidenced by a relatively electron-rich ZrO 2 phase and a partially oxidized Cu species on reduced catalysts. This electron deficient Cu species is more reactive toward the methanol reforming reaction and partially suppresses CO formation through the reverse water gas shift or methanol decomposition reactions.

  3. Analysis and development of an ethanol compact reformer for hydrogen production for fuel cell; Analise e modelagem de reformador compacto de etanol para obtencao de hidrodenio para celula a combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, P.R.F.; Oliveira, A.A.M. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Combustao e Engenharia de Sistemas Termicos], e-mail: renzo@labcet.ufsc.br, e-mail: amirol@emc.ufsc.br

    2006-07-01

    The objective of this work is to analyze the ethanol steam reforming for hydrogen production in a compact and modular reforming unit designed for the generation of 1 kw of electrical power. For this, initially the thermodynamic limits for the steam reforming of ethanol are calculated in order to assess the limits in the production of hydrogen and other by-products and to select the best values of process stoichiometry, temperature and pressure for maximum hydrogen selectivity and minimum coke formation. In the following, a First and second Laws analysis is performed to analyze the equilibrium conditions of the main chemical reactions and to estimate the magnitude of the heat transfer required by the heating, evaporation, superheating and reforming of ethanol. Then, the catalytic reformer reactor is analyzed and sized, basing the analysis into the application of the equation for the conservation of mass of the chemical species and a model for the chemical kinetics. A basic reactor design is then proposed accompanied by the corresponding sizes and operating conditions. (author)

  4. FLUIDIZED BED STEAM REFORMING TECHNOLOGY FOR ORGANIC AND NITRATE SALT SUPERNATE

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C; Michael02 Smith, M

    2007-03-30

    About two decades ago a process was developed at the Savannah River Site (SRS) to remove Cs137 from radioactive high level waste (HLW) supernates so the supernates could be land disposed as low activity waste (LAW). Sodium tetraphenylborate (NaTPB) was used to precipitate Cs{sup 137} as CsTPB. The flowsheet called for destruction of the organic TPB by acid hydrolysis so that the Cs{sup 137} enriched residue could be mixed with other HLW sludge, vitrified, and disposed of in a federal geologic repository. The precipitation process was demonstrated full scale with actual HLW waste and a 2.5 wt% Cs137 rich precipitate containing organic TPB was produced admixed with 240,000 gallons of salt supernate. Organic destruction by acid hydrolysis proved to be problematic and other disposal technologies were investigated. Fluidized Bed Steam Reforming (FBSR), which destroys organics by pyrolysis, is the current baseline technology for destroying the TPB and the waste nitrates prior to vitrification. Bench scale tests were designed and conducted at the Savannah River National Laboratory (SRNL) to reproduce the pyrolysis reactions. The formation of alkali carbonate phases that are compatible with DWPF waste pre-processing and vitrification were demonstrated in the bench scale tests. Test parameters were optimized for a pilot scale FBSR demonstration that was performed at the SAIC Science & Technology Application Research (STAR) Center in Idaho Falls, ID by Idaho National Laboratory (INL) and SRNL in 2003. An engineering scale demonstration was completed by THOR{reg_sign} Treatment Technologies (TTT) and SRNL in 2006 at the Hazen Research, Inc. test facility in Golden, CO. The same mineral carbonate phases, the same organic destruction (>99.99%) and the same nitrate/nitrite destruction (>99.99%) were produced at the bench scale, pilot scale, and engineering scale although different sources of carbon were used during testing.

  5. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles

    National Research Council Canada - National Science Library

    Oara Neumann; Curtis Feronti; Albert D. Neumann; Anjie Dong; Kevin Schell; Benjamin Lu; Eric Kim; Mary Quinn; Shea Thompson; Nathaniel Grady; Peter Nordlander; Maria Oden; Naomi J. Halas

    2013-01-01

    .... Here, we show the use of broadband light-absorbing nanoparticles as solar photothermal heaters, which generate high-temperature steam for a standalone, efficient solar autoclave useful for sanitation...

  6. Steam reforming of ethanol over Co3O4–Fe2O3 mixed oxides

    KAUST Repository

    Abdelkader, A.

    2013-05-03

    Co3O4, Fe2O3 and a mixture of the two oxides Co-Fe (molar ratio of Co3O4/Fe 2O3 = 0.67 and atomic ratio of Co/Fe = 1) were prepared by the calcination of cobalt oxalate and/or iron oxalate salts at 500 C for 2 h in static air using water as a solvent/dispersing agent. The catalysts were studied in the steam reforming of ethanol to investigate the effect of the partial substitution of Co3O4 with Fe2O 3 on the catalytic behaviour. The reforming activity over Fe 2O3, while initially high, underwent fast deactivation. In comparison, over the Co-Fe catalyst both the H2 yield and stability were higher than that found over the pure Co3O4 or Fe 2O3 catalysts. DRIFTS-MS studies under the reaction feed highlighted that the Co-Fe catalyst had increased amounts of adsorbed OH/water; similar to Fe2O3. Increasing the amount of reactive species (water/OH species) adsorbed on the Co-Fe catalyst surface is proposed to facilitate the steam reforming reaction rather than decomposition reactions reducing by-product formation and providing a higher H2 yield. © Copyright © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  7. Steam reforming of ethanol for hydrogen production over Cu/Co-Mg-Al-based catalysts prepared by hydrotalcite route.

    Science.gov (United States)

    Homsi, Doris; Rached, Jihane Abou; Aouad, Samer; Gennequin, Cédric; Dahdah, Eliane; Estephane, Jane; Tidahy, Haingomalala Lucette; Aboukaïs, Antoine; Abi-Aad, Edmond

    2017-04-01

    The performances of different 5Cu/Co x Mg 6-x Al 2 (x = 0; 2; 4; 6) catalysts prepared by the wet impregnation method were investigated in the ethanol steam-reforming reaction (ESR) at 450 °C during 4 h under a steam/ethanol ratio of 3 (S/E = 3). The best catalyst among the prepared solids was 5Cu/Co 6 Al 2 as it showed a complete ethanol conversion and the highest hydrogen and carbon dioxide productivities. However, following 50 h of aging, the catalyst deactivated due to the formation of a high amount of carbonaceous products detected by differential scanning calorimetry/thermogravimetry. On the other hand, the 5Cu/Co 2 Mg 4 Al 2 catalyst showed a much lower quantity of coke deposition with no deactivation due to the basic character conferred by the magnesium oxide phase.

  8. Effectiveness factors for a commercial steam reforming (Ni) catalyst and for a calcined dolomite used downstream biomass gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Corella, J.; Narvaez, I.; Orio, A. [Madrid Univ. (Spain). Dept. of Chem. Eng.

    1996-12-31

    A commercial steam reforming catalyst from BASF, the G1-25 S one, and a calcined dolomite, Norte-1, from Cantabria-Spain, have been used, once crushed and sieved to different particle fractions between 1.0 and 4.0 mm. The materials have been tested downstream small pilot biomass gasifiers, bubbling fluidized bed type, gasifying with air and with steam. The Thiele modulus and the effectiveness factor have been calculated at temperatures of 750-850 deg C. It is experimentally shown that diffusion control plays an important part when particle size is larger than ca. 0.5 mm. This has to be taken into account when comparing the quality of the solids for tar elimination. (author) (5 refs.)

  9. Mechanistic aspects of the ethanol steam reforming reaction for hydrogen production on Pt, Ni, and PtNi catalysts supported on gamma-Al2O3.

    Science.gov (United States)

    Sanchez-Sanchez, Maria Cruz; Navarro Yerga, Rufino M; Kondarides, Dimitris I; Verykios, Xenophon E; Fierro, Jose Luis G

    2010-03-25

    Mechanistic aspects of ethanol steam reforming on Pt, Ni, and PtNi catalysts supported on gamma-Al(2)O(3) are investigated from the analysis of adsorbed species and gas phase products formed on catalysts during temperature-programmed desorption of ethanol and during ethanol steam reforming reaction. DRIFTS-MS analyses of ethanol decomposition and ethanol steam reforming reactions show that PtNi and Ni catalysts are more stable than the Pt monometallic counterpart. Ethanol TPD results on Ni, Pt, and NiPt catalysts point to ethanol dehydrogenation and acetaldehyde decomposition as the first reaction pathways of ethanol steam reforming over the studied catalysts. The active sites responsible for the acetaldehyde decomposition are easily deactivated in the first minutes on-stream by carbon deposits. For Ni and PtNi catalysts, a second reaction pathway, consisting in the decomposition of acetate intermediates formed over the surface of alumina support, becomes the main reaction pathway operating in steam reforming of ethanol once the acetaldehyde decomposition pathway is deactivated. Taking into account the differences observed in the mechanism of ethanol decomposition, the better stability observed for PtNi catalyst is proposed to be related with a cooperative effect between Pt and Ni activities together with the enhanced ability of Ni to gasify the methyl groups formed by decomposition of acetate species. On the contrary, monometallic catalysts are believed to dehydrogenate these methyl groups forming coke that leads to deactivation of metal particles.

  10. Remarkable support effect on the reactivity of Pt/In2O3/MOx catalysts for methanol steam reforming

    Science.gov (United States)

    Liu, Xin; Men, Yong; Wang, Jinguo; He, Rong; Wang, Yuanqiang

    2017-10-01

    Effects of supports over Pt/In2O3/MOx catalysts with extremely low loading of Pt (1 wt%) and In2O3 loadings (3 wt%) are investigated for the hydrogen production of methanol steam reforming (MSR) in the temperature range of 250-400 °C. Under practical conditions without the pre-reduction, the 1Pt/3In2O3/CeO2 catalyst shows the highly efficient catalytic performance, achieving almost complete methanol conversion (98.7%) and very low CO selectivity of 2.6% at 325 °C. The supported Pt/In2O3 catalysts are characterized by means of Brunauer-Emmett-Teller (BET) surface area, X-ray diffraction (XRD), high-resolution transmission microscopy (HRTEM), temperature programmed reduction with hydrogen (H2-TPR), CO pulse chemisorption, temperature programmed desorption of methanol and water (CH3OH-TPD and H2O-TPD). These demonstrate that the nature of catalyst support of Pt/In2O3/MOx plays crucial roles in the Pt dispersion associated by the strong interaction among Pt, In2O3 and supporting materials and the surface redox properties at low temperature, and thus affects their capability to activate the reactants and determines the catalytic activity of methanol steam reforming. The superior 1Pt/3In2O3/CeO2 catalyst, exhibiting a remarkable reactivity and stability for 32 h on stream, demonstrates its potential for efficient hydrogen production of methanol steam reforming in mobile and de-centralized H2-fueled PEMFC systems.

  11. Steam reforming: an old process for a new solution; Le vaporeformage catalytique: un vieux procede pour une solution nouvelle...

    Energy Technology Data Exchange (ETDEWEB)

    Aupretre, F.; Descorme, C.; Duprez, D. [Poitiers Univ., Lab. de Catalyse en Chimie Organique, LACCO, UMR CNRS 6503, 86 (France)

    2000-07-01

    A bibliographic review allows to understand very quickly the stake that the electric-powered vehicle represents. The research of a hydrogen production process answering to the demands of the fuel cell application is then one of the main stakes. The catalytic steam reforming of hydrocarbons or of alcohols is a very promising way. The choices of ethanol and of rhodium based catalysts supported on oxides with strong oxygen mobility will be entirely justified because of the physico-chemical characteristics of the ethanol, of the reaction mechanism, of the cerium based oxide catalyst and of the specifications involved in the fuel cell application. (O.M.)

  12. Ethanol steam reforming heated up by molten salt CSP: Reactor assessment

    NARCIS (Netherlands)

    De Falco, Marcello; Gallucci, F.

    2010-01-01

    In this paper hydrogen production via reforming of ethanol has been studied in a novel hybrid plant consisting in a ethanol reformer and a concentrating solar power (CSP) plant using molten salt as heat carrier fluid. The heat needed for the reforming of ethanol has been supplied to the system by

  13. Surface Reaction Kinetics of Steam- and CO2-Reforming as Well as Oxidation of Methane over Nickel-Based Catalysts

    Directory of Open Access Journals (Sweden)

    Karla Herrera Delgado

    2015-05-01

    Full Text Available An experimental and kinetic modeling study on the Ni-catalyzed conversion of methane under oxidative and reforming conditions is presented. The numerical model is based on a surface reaction mechanism consisting of 52 elementary-step like reactions with 14 surface and six gas-phase species. Reactions for the conversion of methane with oxygen, steam, and CO2 as well as methanation, water-gas shift reaction and carbon formation via Boudouard reaction are included. The mechanism is implemented in a one-dimensional flow field description of a fixed bed reactor. The model is evaluated by comparison of numerical simulations with data derived from isothermal experiments in a flow reactor over a powdered nickel-based catalyst using varying inlet gas compositions and operating temperatures. Furthermore, the influence of hydrogen and water as co-feed on methane dry reforming with CO2 is also investigated.

  14. Preparation and initial characterization of fluidized bed steam reforming pure-phase standards

    Energy Technology Data Exchange (ETDEWEB)

    Missimer, D. M.; Rutherford, R. L.

    2013-03-21

    Hanford is investigating the Fluidized Bed Steam Reforming (FBSR) process for their Low Activity Waste. The FBSR process offers a low-temperature continuous method by which liquid waste can be processed with the addition of clay into a sodium aluminosilicate (NAS) waste form. The NAS waste form is mainly comprised of nepheline (NaAlSiO{sub 4}), sodalite (Na{sub 8}[AlSiO{sub 4}]{sub 6}Cl{sub 2}), and nosean (Na{sub 8}[AlSiO{sub 4}]{sub 6}SO{sub 4}). Anions such as perrhenate (ReO{sub 4}{sup -}), pertechnetate (TcO{sub 4}{sup -}), and iodine (I{sup -}) are expected to replace sulfate in the nosean structure and/or chloride in the sodalite mineral structure (atomically bonded inside the aluminosilicate cages that these mineral structures possess). In the FBSR waste form, each of these phases can exist in a variety of solid solutions that differ from the idealized forms observed in single crystals in nature. The lack of understanding of the durability of these stoichiometric or idealized mineral phases complicates the ability to deconvolute the durability of the mixed phase FBSR product since it is a combination of different NAS phases. To better understand the behavior, fabrication and testing of the individual phases of the FBSR product is required. Analytical Development (AD) of the Science and Technology directorate of the Savannah River National Laboratory (SRNL) was requested to prepare the series of phase-pure standards, consisting of nepheline, nosean, and Cl, Re, and I sodalite. Once prepared, X-ray Diffraction (XRD) analyses were used to confirm the products were phase pure. These standards are being used for subsequent characterization studies consisting of the following: single-pass flow-through (SPFT) testing, development of thermodynamic data, and x-ray diffraction (XRD) calibration curves. In addition to the above mentioned phase-pure standards, AD was tasked with fabricating a mixed Tc-Re sodalite.

  15. Hydrogen production from ethanol steam reforming over cerium and nickel based oxyhydrides

    Energy Technology Data Exchange (ETDEWEB)

    Jalowiecki-Duhamel, L.; Pirez, C.; Capron, M.; Dumeignil, F.; Payen, E. [Unite de Catalyse et de Chimie du Solide, UMR CNRS 8181, Bat. C3, Universite des Sciences et Technologies de Lille, 59655 Villeneuve d' Ascq Cedex (France)

    2010-12-15

    Hydrogen production from ethanol steam reforming (H{sub 2}O/C{sub 2}H{sub 5}OH = 3) was investigated over cerium-nickel CeNi{sub x}O{sub Y} (0 < x {<=} 5) mixed oxide catalysts. The influence of different parameters was analysed, such as reaction temperature, Ni content and in-situ pre-treatment in H{sub 2}. While an ethanol conversion of 100% is reached at 400 C, a stable activity i.e., ethanol conversion, and H{sub 2} selectivity can be obtained at very low temperature (200 C) when the solid is previously in-situ treated in H{sub 2} in a temperature range between 200 C and 300 C. After such a treatment, the solids studied are hydrogen reservoirs, called oxyhydrides, with the presence of hydrogen species of hydride nature in the anionic vacancies of the solid. Different physicochemical techniques, including XPS, ion sputtering, XRD, TPR were used to characterize the catalysts. Depending on the composition and metal loading, a solid solution and/or a highly dispersed nickel oxide in ceria can be obtained. Ion sputtering followed by XPS analysis allowed estimating the size of NiO nanoparticles (2-3 nm) present in the compounds, too small to be detected by XRD. The characterization of CeNi{sub x}O{sub Y} solids, evidenced the existence of high interactions between Ce and Ni cations located either in the solid solution of cerium-nickel or at the interface between NiO and CeO{sub 2} (or solid solution). The active nickel species belonging to the small particles and/or to the solid solution, participating actively in the catalytic reaction, present the characteristic of being able to be reduced and reoxidized easily and reversibly (redox process), allowed by their close interaction with Ce species. Finally, correlations among the species present in the solid, and the catalytic performances are discussed, and an active site based on the formation of anionic vacancies and a mechanism involving a heterolytic abstraction of a hydride species from ethanol are envisaged

  16. Performance of the Fluidized Bed Steam Reforming product under hydraulically unsaturated conditions.

    Science.gov (United States)

    Neeway, James J; Qafoku, Nikolla P; Williams, Benjamin D; Rod, Kenton; Bowden, Mark E; Brown, Christopher F; Pierce, Eric M

    2014-05-01

    Several candidates for supplemental low-activity waste (LAW) immobilization at the Hanford site in Washington State, USA are being considered. One waste sequestering technology considered is Fluidized Bed Steam Reforming (FBSR). The granular product resulting from the FBSR process is composed primarily of an insoluble sodium aluminosilicate matrix with the dominant phases being feldspathoid minerals with a 1:1:1 molar ratio of Na, Al and Si. To demonstrate the durability of the product, which can be disposed of at the unsaturated Integrated Disposal Facility (IDF) at Hanford, a series of tests has been performed using the Pressurized Unsaturated Flow (PUF) system, which allows for the accelerated weathering of the solid materials. The system maintains hydraulically unsaturated conditions, thus mimicking the open-flow and transport properties that will be present at the IDF. Two materials were tested using the system: 1) the FBSR granular product and 2) the FBSR granular product encapsulated in a geopolymer to form a monolith. Results of the experiments show a trend of relatively constant effluent concentration of Na, Si, Al, and Cs as a function of time from both materials. The elements I and Re show a steady release throughout the yearlong test from the granular material but their concentrations seem to be increasing at one year from the monolith material. This result suggests that these two elements may be present in the sodalite cage structure rather than in the predominant nepheline phase because their release occurs at a different rate compared to nepheline phase. Also, these elements to not seem to reprecipitate when released from the starting material. Calculated one-year release rates for Si are on the order of 10(-6) g/(m(2) d) for the granular material and 10(-5) g/(m(2) d) for the monolith material while Re release is seen to be two orders of magnitude higher than Si release rates. SEM imaging and XRD analysis show how the alteration of the two

  17. Performance of the Fluidized Bed Steam Reforming product under hydraulically unsaturated conditions

    Energy Technology Data Exchange (ETDEWEB)

    Neeway, James J [ORNL; Rod, Kenton A. [Pacific Northwest National Laboratory (PNNL); Bowden, Mark E [Pacific Northwest National Laboratory (PNNL); Pierce, Eric M [ORNL; Qafoku, Nikolla [Pacific Northwest National Laboratory (PNNL); Williams, Benjamin D [Pacific Northwest National Laboratory (PNNL); Brown, Christopher F [Pacific Northwest National Laboratory (PNNL)

    2014-01-01

    Several candidates for supplemental low-activity waste (LAW) immobilization at the Hanford site in Washington State, USA are being considered. One waste sequestering technology considered is Fluidized Bed Steam Reforming (FBSR). The granular product resulting from the FBSR process is composed primarily of an insoluble sodium aluminosilicate matrix with the dominant phases being feldspathoid minerals with a 1:1:1 molar ratio of Na, Al and Si. To demonstrate the durability of the product, which can be disposed of at the unsaturated Integrated Disposal Facility (IDF) at Hanford, a series of tests has been performed using the Pressurized Unsaturated Flow (PUF) system, which allows for the accelerated weathering of the solid materials. The system maintains hydraulically unsaturated conditions, thus mimicking the open-flow and transport properties that will be present at the IDF. Two materials were tested using the system: 1) the FBSR granular product and 2) the FBSR granular product encapsulated in a geopolymer to form a monolith. Results of the experiments show a trend of relatively constant effluent concentration of Na, Si, Al, and Cs as a function of time from both materials. The elements I and Re show a steady release throughout the yearlong test from the granular material but their concentrations seem to be increasing at one year from the monolith material. This result suggests that these two elements may be present in the sodalite cage structure rather than in the predominant nepheline phase because their release occurs at a different rate compared to nepheline phase. Also, these elements to not seem to reprecipitate when released from the starting material. Calculated one-year release rates for Si are on the order of 10 6 g/(m2 d) for the granular material and 10 5 g/(m2 d) for the monolith material while Re release is seen to be two orders of magnitude higher than Si release rates. SEM imaging and XRD analysis show how the alteration of the two materials is

  18. Heat and fuel coupled operation of a high temperature polymer electrolyte fuel cell with a heat exchanger methanol steam reformer

    Science.gov (United States)

    Schuller, G.; Vázquez, F. Vidal; Waiblinger, W.; Auvinen, S.; Ribeirinha, P.

    2017-04-01

    In this work a methanol steam reforming (MSR) reactor has been operated thermally coupled to a high temperature polymer electrolyte fuel cell stack (HT-PEMFC) utilizing its waste heat. The operating temperature of the coupled system was 180 °C which is significantly lower than the conventional operating temperature of the MSR process which is around 250 °C. A newly designed heat exchanger reformer has been developed by VTT (Technical Research Center of Finland LTD) and was equipped with commercially available CuO/ZnO/Al2O3 (BASF RP-60) catalyst. The liquid cooled, 165 cm2, 12-cell stack used for the measurements was supplied by Serenergy A/S. The off-heat from the electrochemical fuel cell reaction was transferred to the reforming reactor using triethylene glycol (TEG) as heat transfer fluid. The system was operated up to 0.4 A cm-2 generating an electrical power output of 427 Wel. A total stack waste heat utilization of 86.4% was achieved. It has been shown that it is possible to transfer sufficient heat from the fuel cell stack to the liquid circuit in order to provide the needed amount for vaporizing and reforming of the methanol-water-mixture. Furthermore a set of recommendations is given for future system design considerations.

  19. Hydrogen production enhancement and the effect of passive mixing using flow disturbers in a steam-reforming reactor

    Science.gov (United States)

    Liao, Chang-Hsien

    This study investigates the influence of changing the flow pathway inside a methanol steam reformer by introduction of flow disturbers in the flow field. In a reforming reaction, it is known that fuel conversion from hydrocarbons to hydrogen can be limited by chemical kinetics, which is a function of local temperature. For a typical cylindrical reactor, large thermal gradients inside the packed bed result from insufficient heat and mass transfer. This causes a non-ideal condition for complete conversion to hydrogen. Active mixing methods in critical fluid pathways have been proven to improve heat and mass transfer inside reforming reactors. A new method of passive mixing in the fluid pathways by introducing flow disturbers inside the packed catalyst bed is presented. A principle of characteristic time of a 1st order reaction is also presented and studied. The reactor output parameters of fuel conversion, temperature profile, characteristic time, pressure drop, reactor efficiency, and power demand are analyzed and compared to quantify the influence of the passive mixing technique. Input variables in this study are packing density of flow disturbers, space velocity and catalyst size. This study is expected to provide a basic analysis and contribute to the improvement of reformer design for better fuel processing system performance.

  20. Kinetics for Steam and CO2 Reforming of Methane Over Ni/La/Al2O3 Catalyst.

    Science.gov (United States)

    Park, Myung Hee; Choi, Bong Kwan; Park, Yoon Hwa; Moon, Dong Ju; Park, Nam Cook; Kim, Young Chul

    2015-07-01

    Kinetic studies of mixed (steam and dry) reforming of methane on Ni/La/Al2O3 and Ni/La-Co (1, 3 wt%)/Al2O3 catalysts were performed in an atmospheric fixed-bed reactor. Kinetic parameters for the mixed reforming over these catalysts were obtained under reaction conditions free from heat and mass transfer limitations. Variables for the mixed reforming were the reaction temperature and partial pressure of reactants. The fitting of the experimental data for the rate of methane conversion, rCH4, using the power law rate equation rCH4 = k(PrCH4)α(PCO2)β(PH2O)γ showed that the reaction orders α, β, and γ are steady and obtained values equal to α = 1, β = 0, and γ = 0. In other words, among CH4, CO2, H2O, and H2, only CH4 reaction orders were not zero and they were affected by the promoters. The apparent activation energy on catalysts Ni/La/Al2O3, Ni/La-Co (1)/Al2O3 and Ni/La-Co (3)/Al2O3 is 85.2, 93.8, and 99.4 kJ/mol, respectively. The addition of Co to Ni/La/Al2O3 was increased the apparent activation energy of the mixed reforming reaction. And the Ni/La-Co (3 wt%)/Al2O3 catalyst showed the highest reforming activity and apparent activation energy. The Co promoters can increase the apparent activation energy of mixed reforming of methane.

  1. Hydrocarbon reforming catalysts and new reactor designs for compact hydrogen generators

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, A.; Schwab, E.; Urtel, H. [BASF SE, Ludwigshafen (Germany); Farrauto, R. [BASF Catalysts LLC, Iselin, NJ (United States)

    2010-12-30

    A hydrogen based future energy scenario will use fuel cells for the conversion of chemically stored energy into electricity. Depending upon the type of fuel cell, different specifications will apply for the feedstock which is converted in the cell, ranging from very clean hydrogen for PEM-FC's to desulfurized methane for SOFC and MCFC technology. For the foreseeable future, hydrogen will be supplied by conventional reforming, however operated in compact and dynamic reformer designs. This requires that known catalyst formulations are offered in specific geometries, giving flexibility for novel reactor design options. These specific geometries can be special tablet shapes as well as monolith structures. Finally, also nonhydrocarbon feedstock might be used in special applications, e.g. bio-based methanol and ethanol. BASF offers catalysts for the full process chain starting from feedstock desulfurization via reforming, high temperature shift, low temperature shift to CO fine polishing either via selective oxidation or selective methanation. Depending upon the customer's design, most stages can be served either with precious metal based monolith solutions or base metal tablet solutions. For the former, we have taken the automobile catalyst monolith support and extended its application to the fuel cell hydrogen generation. Washcoats of precious metal supported catalysts can for example be deposited on ceramic monoliths and/or metal heat exchangers for efficient generation of hydrogen. Major advantages are high through puts due to more efficient heat transfer for catalysts on metal heat exchangers, lower pressure drop with greater catalyst mechanical and thermal stability compared to particulate catalysts. Base metal tablet catalysts on the other hand can have intrinsic cost advantages, larger fractions of the reactor can be filled with active mass, and if produced in unconventional shape, again novel reactor designs are made possible. Finally, if it comes to

  2. Alkali Metal CO2 Sorbents and the Resulting Metal Carbonates: Potential for Process Intensification of Sorption-Enhanced Steam Reforming.

    Science.gov (United States)

    Memon, Muhammad Zaki; Zhao, Xiao; Sikarwar, Vineet Singh; Vuppaladadiyam, Arun K; Milne, Steven J; Brown, Andy P; Li, Jinhui; Zhao, Ming

    2017-01-03

    Sorption-enhanced steam reforming (SESR) is an energy and cost efficient approach to produce hydrogen with high purity. SESR makes it economically feasible to use a wide range of feedstocks for hydrogen production such as methane, ethanol, and biomass. Selection of catalysts and sorbents plays a vital role in SESR. This article reviews the recent research aimed at process intensification by the integration of catalysis and chemisorption functions into a single material. Alkali metal ceramic powders, including Li2ZrO3, Li4SiO4 and Na2ZrO3 display characteristics suitable for capturing CO2 at low concentrations (500 °C), and thus are applicable to precombustion technologies such as SESR, as well as postcombustion capture of CO2 from flue gases. This paper reviews the progress made in improving the operational performance of alkali metal ceramics under conditions that simulate power plant and SESR operation, by adopting new methods of sorbent synthesis and doping with additional elements. The paper also discusses the role of carbonates formed after in situ CO2 chemisorption during a steam reforming process in respect of catalysts for tar cracking.

  3. MECHANISTIC KINETIC MODELS FOR STEAM REFORMING OF CONCENTRATED CRUDE ETHANOL ON NI/AL2O3 CATALYST

    Directory of Open Access Journals (Sweden)

    O. A. OLAFADEHAN

    2015-05-01

    Full Text Available Mechanistic kinetic models were postulated for the catalytic steam reforming of concentrated crude ethanol on a Ni-based commercial catalyst at atmosphere pressure in the temperature range of 673-863 K, and at different catalyst weight to the crude ethanol molar flow rate ratio (in the range 0.9645-9.6451 kg catalyst h/kg mole crude ethanol in a stainless steel packed bed tubular microreactor. The models were based on Langmuir-Hinshelwood-Hougen-Watson (LHHW and Eley-Rideal (ER mechanisms. The optimization routine of Nelder-Mead simplex algorithm was used to estimate the inherent kinetic parameters in the proposed models. The selection of the best kinetic model amongst the rival kinetic models was based on physicochemical, statistical and thermodynamic scrutinies. The rate determining step for the steam reforming of concentrated crude ethanol on Ni/Al2O3 catalyst was found to be surface reaction between chemisorbed CH3O and O when hydrogen and oxygen were adsorbed as monomolecular species on the catalyst surface. Excellent agreement was obtained between the experimental rate of reaction and conversion of crude ethanol, and the simulated results, with ADD% being ±0.46.

  4. On direct internal methane steam reforming kinetics in operating solid oxide fuel cells with nickel-ceria anodes

    Science.gov (United States)

    Thallam Thattai, A.; van Biert, L.; Aravind, P. V.

    2017-12-01

    Major operating challenges remain to safely operate methane fuelled solid oxide fuel cells due to undesirable temperature gradients across the porous anode and carbon deposition. This article presents an experimental study on methane steam reforming (MSR) global kinetics for single operating SOFCs with Ni-GDC (gadolinium doped ceria) anodes for low steam to carbon (S/C) ratios and moderate current densities. The study points out the hitherto insufficient research on MSR global and intrinsic kinetics for operating SOFCs with complete Ni-ceria anodes. Further, it emphasizes the need to develop readily applicable global kinetic models as a subsequent step from previously reported state-of-art and complex intrinsic models. Two rate expressions of the Power law (PL) and Langmuir-Hinshelwood (LH) type have been compared and based on the analysis, limitations of using previously proposed rate expressions for Ni catalytic beds to study MSR kinetics for complete cermet anodes have been identified. Firstly, it has been shown that methane reforming on metallic (Ni) current collectors may not be always negligible, contrary to literature reports. Both PL and LH kinetic models predict significantly different local MSR reaction rate and species partial pressure distributions along the normalized reactor length, indicating a strong need for further experimental verifications.

  5. Hydrogen production from raw bioethanol steam reforming : optimization of catalyst composition with improved stability against various impurities

    Energy Technology Data Exchange (ETDEWEB)

    Le Valant, A.; Can, F.; Bion, N.; Epron, F.; Duprez, D. [Poitiers Univ., Poitiers (France). Laboratoire de Catalyse en Chimie organique

    2009-07-01

    This study investigated the effects of raw ethanol impurities on catalytic performance during ethanol steam reforming processes. An Rh/MgAI{sub 2}O{sub 4} reference catalyst was used. Steam reforming was conducted in a fixed bed reactor. The study showed that aldehyde, amine, and methanol have no negative impacts on catalytic performance. Deactivation is caused by coke formation as a result of the presence of the impurities in the feed. The composition of the support and metallic phases of the catalyst formulation were then modified in order to improve the stability of the catalyst in the presence of deactivating impurities. Rare earth elements were used to replace magnesium and decrease strong and medium acid sites. Ethanol conversion and hydrogen yield were both increased when the dehydration reaction was disfavoured. The metallic phase was modified by the addition of a second metal. It was concluded that the Rh-NiY-Al{sub 2}O{sub 3} catalyst has the highest hydrogen yield, and is more stable than the reference catalyst. 16 refs., 7 figs.

  6. Kinerja Katalis Paduan ZnO dengan Tembaga dan Logam-Logam Golongan VIII pada Steam Reforming Etanol menjadi Hidrogen

    Directory of Open Access Journals (Sweden)

    Marwan Marwan

    2009-12-01

    Full Text Available Steam reforming of ethanol to H2 using ZnO catalyst with promotor metal, i.e. copper or metal group VIII (Pd, Pt and Ni has been investigated. Catalyst’s performances are tested further at micro reactor operating at atmosphere pressure. Ethanol solution 20% is injected to reactor at rate of 2 ml/jam and is mixed with nitrogen flow at 25 ml/menit. XRD analysis shows active phases existence of each promotor for produced catalyst. Reaction product includes H2, CO2, and a nonidentified component. Selectivity of H2 fromation depends on chosen promotor metal types, where the selectifity decreases as follows: Pt > Pd > Cu ≈ Ni. Reaction temperature and promotor concentration also influence selectifity H2. For catalyst 1% Pd/ZnO and 1% Pt/ZnO, selectivity H2 was optimum at temperature reaction 450oC. Whereas Pd promotor concentration’s increasing from 1% to 5% improves H2 selectivity. Keywords: ethanol, hidrogen, steam reforming, ZnO

  7. Hydrogen Production from Cyclic Chemical Looping Steam Methane Reforming over Yttrium Promoted Ni/SBA-16 Oxygen Carrier

    Directory of Open Access Journals (Sweden)

    Sanaz Daneshmand-Jahromi

    2017-09-01

    Full Text Available In this work, the modification of Ni/SBA-16 oxygen carrier (OC with yttrium promoter is investigated. The yttrium promoted Ni-based oxygen carrier was synthesized via co-impregnation method and applied in chemical looping steam methane reforming (CL-SMR process, which is used for the production of clean energy carrier. The reaction temperature (500–750 °C, Y loading (2.5–7.4 wt. %, steam/carbon molar ratio (1–5, Ni loading (10–30 wt. % and life time of OCs over 16 cycles at 650 °C were studied to investigate and optimize the structure of OC and process temperature with maximizing average methane conversion and hydrogen production yield. The synthesized OCs were characterized by multiples techniques. The results of X-ray powder diffraction (XRD and energy dispersive X-ray spectroscopy (EDX of reacted OCs showed that the presence of Y particles on the surface of OCs reduces the coke formation. The smaller NiO species were found for the yttrium promoted OC and therefore the distribution of Ni particles was improved. The reduction-oxidation (redox results revealed that 25Ni-2.5Y/SBA-16 OC has the highest catalytic activity of about 99.83% average CH4 conversion and 85.34% H2 production yield at reduction temperature of 650 °C with the steam to carbon molar ratio of 2.

  8. Response Surface Methodology and Aspen Plus Integration for the Simulation of the Catalytic Steam Reforming of Ethanol

    Directory of Open Access Journals (Sweden)

    Bernay Cifuentes

    2017-01-01

    Full Text Available The steam reforming of ethanol (SRE on a bimetallic RhPt/CeO2 catalyst was evaluated by the integration of Response Surface Methodology (RSM and Aspen Plus (version 9.0, Aspen Tech, Burlington, MA, USA, 2016. First, the effect of the Rh–Pt weight ratio (1:0, 3:1, 1:1, 1:3, and 0:1 on the performance of SRE on RhPt/CeO2 was assessed between 400 to 700 °C with a stoichiometric steam/ethanol molar ratio of 3. RSM enabled modeling of the system and identification of a maximum of 4.2 mol H2/mol EtOH (700 °C with the Rh0.4Pt0.4/CeO2 catalyst. The mathematical models were integrated into Aspen Plus through Excel in order to simulate a process involving SRE, H2 purification, and electricity production in a fuel cell (FC. An energy sensitivity analysis of the process was performed in Aspen Plus, and the information obtained was used to generate new response surfaces. The response surfaces demonstrated that an increase in H2 production requires more energy consumption in the steam reforming of ethanol. However, increasing H2 production rebounds in more energy production in the fuel cell, which increases the overall efficiency of the system. The minimum H2 yield needed to make the system energetically sustainable was identified as 1.2 mol H2/mol EtOH. According to the results of the integration of RSM models into Aspen Plus, the system using Rh0.4Pt0.4/CeO2 can produce a maximum net energy of 742 kJ/mol H2, of which 40% could be converted into electricity in the FC (297 kJ/mol H2 produced. The remaining energy can be recovered as heat.

  9. Hydrogen production by steam reforming of bio-alcohols. The use of conventional and membrane-assisted catalytic reactors

    Energy Technology Data Exchange (ETDEWEB)

    Seelam, P. K.

    2013-11-01

    The energy consumption around the globe is on the rise due to the exponential population growth and urbanization. There is a need for alternative and non-conventional energy sources, which are CO{sub 2}-neutral, and a need to produce less or no environmental pollutants and to have high energy efficiency. One of the alternative approaches is hydrogen economy with the fuel cell (FC) technology which is forecasted to lead to a sustainable society. Hydrogen (H{sub 2}) is recognized as a potential fuel and clean energy carrier being at the same time a carbon-free element. Moreover, H{sub 2} is utilized in many processes in chemical, food, metallurgical, and pharmaceutical industry and it is also a valuable chemical in many reactions (e.g. refineries). Non-renewable resources have been the major feedstock for H{sub 2} production for many years. At present, {approx}50% of H{sub 2} is produced via catalytic steam reforming of natural gas followed by various down-stream purification steps to produce {approx}99.99% H{sub 2}, the process being highly energy intensive. Henceforth, bio-fuels like biomass derived alcohols (e.g. bio-ethanol and bio-glycerol), can be viable raw materials for the H{sub 2} production. In a membrane based reactor, the reaction and selective separation of H{sub 2} occur simultaneously in one unit, thus improving the overall reactor efficiency. The main motivation of this work is to produce H{sub 2} more efficiently and in an environmentally friendly way from bio-alcohols with a high H{sub 2} selectivity, purity and yield. In this thesis, the work was divided into two research areas, the first being the catalytic studies using metal decorated carbon nanotube (CNT) based catalysts in steam reforming of ethanol (SRE) at low temperatures (<450 deg C). The second part was the study of steam reforming (SR) and the water-gas-shift (WGS) reactions in a membrane reactor (MR) using dense and composite Pd-based membranes to produce high purity H{sub 2}. CNTs

  10. Multifunctional Pd/Ni-Co catalyst for hydrogen production by chemical looping coupled with steam reforming of acetic acid.

    Science.gov (United States)

    Fermoso, Javier; Gil, María V; Rubiera, Fernando; Chen, De

    2014-11-01

    High yield of high-purity H2 from acetic acid, a model compound of bio-oil obtained from the fast pyrolysis of biomass, was produced by sorption-enhanced steam reforming (SESR). An oxygen carrier was introduced into a chemical loop (CL) coupled to the cyclical SESR process to supply heat in situ for the endothermic sorbent regeneration to increase the energy efficiency of the process. A new multifunctional 1 %Pd/20 %Ni-20 %Co catalyst was developed for use both as oxygen carrier in the CL and as reforming catalyst in the SESR whereas a CaO-based material was used as CO2 sorbent. In the sorbent-air regeneration step, the Ni-Co atoms in the catalyst undergo strong exothermic oxidation reactions that provide heat for the CaO decarbonation. The addition of Pd to the Ni-Co catalyst makes the catalyst active throughout the whole SESR-CL cycle. Pd significantly promotes the reduction of Ni-Co oxides to metallic Ni-Co during the reforming stage, which avoids the need for a reduction step after regeneration. H2 yield above 90 % and H2 purity above 99.2 vol % were obtained. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Geometric Characteristics of Methane Steam Reforming with Low Temperature Heat Source

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Gahui; Yun, Jinwon; Yu, Sangseok [Chungnam Nat’l Univ., Daejeon (Korea, Republic of)

    2016-12-15

    In a hybrid fuel cell system, low-temperature reforming technology, which uses waste heat as a heat source, is applied to improve system efficiency. A low temperature reformer is required to optimize geometry in low thermal conditions so that the reformer can achieve the proper methane conversion rate. This study analyzed internal temperature distributions and the reaction patterns of a reformer by considering the change of the shape factor on the limited heat supply condition. Unlike the case of a high temperature reformer, analysis showed that the reaction of a low temperature reformer takes place primarily in the high temperature region of the reactor exit. In addition, it was confirmed that the efficiency can be improved by reducing the GHSV (gas hourly space velocity) or increasing the heat transfer area in the radial direction. Through reacting characteristic analysis, according to change of the aspect ratio, it was confirmed that a low temperature reformer can improve the efficiency by increasing the heat transfer in the radial direction, rather than in the longitudinal direction.

  12. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles.

    Science.gov (United States)

    Neumann, Oara; Feronti, Curtis; Neumann, Albert D; Dong, Anjie; Schell, Kevin; Lu, Benjamin; Kim, Eric; Quinn, Mary; Thompson, Shea; Grady, Nathaniel; Nordlander, Peter; Oden, Maria; Halas, Naomi J

    2013-07-16

    The lack of readily available sterilization processes for medicine and dentistry practices in the developing world is a major risk factor for the propagation of disease. Modern medical facilities in the developed world often use autoclave systems to sterilize medical instruments and equipment and process waste that could contain harmful contagions. Here, we show the use of broadband light-absorbing nanoparticles as solar photothermal heaters, which generate high-temperature steam for a standalone, efficient solar autoclave useful for sanitation of instruments or materials in resource-limited, remote locations. Sterilization was verified using a standard Geobacillus stearothermophilus-based biological indicator.

  13. A unique microwave effect on the microstructural modification of Cu/ZnO/Al2O3 catalysts for steam reforming of methanol.

    Science.gov (United States)

    Zhang, Xin-Rong; Wang, Lu-Cun; Cao, Yong; Dai, Wei-Lin; He, He-Yong; Fan, Kang-Nian

    2005-08-28

    A short time (3-10 min) of microwave irradiation on the CuO/ZnO/Al2O3 oxide precursor can result in a unique tailored microstructural modification on the catalyst, leading to a significantly enhanced performance for H2 production from steam reforming of methanol.

  14. Pyrolysis of de-oiled seed cake of Jatropha Curcas and catalytic steam reforming of pyrolytic bio-oil to hydrogen.

    Science.gov (United States)

    Renny, Andrew; Santhosh, Viswanathan; Somkuwar, Nitin; Gokak, D T; Sharma, Pankaj; Bhargava, Sanjay

    2016-11-01

    The aim of this work was to study the pyrolysis of de-oiled seed cake of Jatropha Curcas and catalytic steam reforming of pyrolytic bio-oil to hydrogen. As per literature, presence of heavy nitrogenous and oxygenated compounds leads to catalyst deactivation. Here, an attempt has been made to tune pyrolytic reactions to optimize the N and O content of the pyrolytic bio-oil. Bio-oil conversion and hydrogen yield decreased as reaction progressed, which attributes to temporary loss of catalytic activity by blockage of catalyst pores by carbon deposition. Further, retention of steam reforming activity after repetitive steam activation suggests long-term catalyst usage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Highly stable and active Ni-doped ordered mesoporous carbon catalyst on the steam reforming of ethanol application

    Directory of Open Access Journals (Sweden)

    Josh Y.Z. Chiou

    2017-02-01

    Full Text Available A novel one-step direct synthesis of nickel embedded in an ordered mesoporous carbon catalyst (NiOMC is done in a basic medium of nonaqueous solution by a solvent evaporation-induced self-assembly process. The NiOMC sample is characterized by a variety of analytical and spectroscopy techniques, e.g., N2 adsorption/desorption isotherm measurement, X-ray diffraction (XRD, transmission electron microscopy (TEM and temperature-programed reduction (TPR. In this study, the NiOMC catalyst is found to exhibit superior catalytic activity for the steam reforming of ethanol (SRE, showing high hydrogen selectivity and durability. Ethanol can be completely converted at 350 °C over the NiOMC catalyst. Also, the durability of the NiOMC catalyst on the SRE reaction exceeds 100 h at 450 °C, with SH2 approaching 65% and SCO of less than 1%.

  16. Preparation of Cu-Fe-Al-O nanosheets and their catalytic application in methanol steam reforming for hydrogen production

    Science.gov (United States)

    Wang, Leilei; Zhang, Fan; Miao, Dinghao; Zhang, Lei; Ren, Tiezhen; Hui, Xidong; He, Zhanbing

    2017-03-01

    Candidates of precious metal catalysts, prepared in a facile and environmental way and showing high catalytic performances at low temperatures, are always highly desired by industry. In this work, large-scale Cu-Fe-Al-O nanosheets were synthesized by facile dealloying of Al-Cu-Fe alloys in NaOH solution. The composition, microscopic morphology, and crystal structure were respectively investigated using wavelength-dispersive x-ray spectroscopy with an electron probe microanalyzer, scanning electron microscopy, x-ray diffraction, and transmission electron microscopy. Furthermore, we found that the 2D Cu-Fe-Al-O nanosheets gave excellent catalytic performances in hydrogen production by methanol steam reforming at relatively low temperatures, e.g. 513 K.

  17. Initial steps in methanol steam reforming on PdZn and ZnO surfaces: Density functional theory studies

    Science.gov (United States)

    Smith, Gregory K.; Lin, Sen; Lai, Wenzhen; Datye, Abhaya; Xie, Daiqian; Guo, Hua

    2011-04-01

    Recent experiments suggested that PdZn alloy on ZnO support is a very active and selective catalyst for methanol steam reforming (MSR). To gain insight into MSR mechanism on this catalyst, plane-wave density functional theory calculations were carried out on the initial steps of MSR on both PdZn and ZnO surfaces. Our calculations indicate that the dissociation of both methanol and water is highly activated on flat surfaces of PdZn such as (111) and (100), while the dissociation barriers can be lowered significantly by surface defects, represented here by the (221), (110), and (321) faces of PdZn. The corresponding processes on the polar Zn-terminated ZnO(0001) surfaces are found to have low or null barriers. Implications of these results for both MSR and low temperature mechanisms are discussed.

  18. Influence of Gold on Ce-Zr-Co Fluorite-Type Mixed Oxide Catalysts for Ethanol Steam Reforming

    Directory of Open Access Journals (Sweden)

    Véronique Pitchon

    2012-02-01

    Full Text Available The effect of gold presence on carbon monoxide oxidation and ethanol steam reforming catalytic behavior of two Ce-Zr-Co mixed oxides catalysts with a constant Co charge and different Ce/Zr ratios was investigated. The Ce-Zr-Co mixed oxides were obtained by the pseudo sol-gel like method, based on metallic propionates polymerization and thermal decomposition, whereas the gold-supported Ce-Zr-Co mixed oxides catalysts were prepared using the direct anionic exchange. The catalysts were characterized using XRD, TPR, and EDXS-TEM. The presence of Au in doped Ce-Zr-Co oxide catalyst decreases the temperature necessary to reduce the cobalt and the cerium loaded in the catalyst and favors a different reaction pathway, improving the acetaldehyde route by ethanol dehydrogenation, instead of the ethylene route by ethanol dehydration or methane re-adsorption, thus increasing the catalytic activity and selectivity into hydrogen.

  19. Improving carbon tolerance of Ni-YSZ catalytic porous membrane by palladium addition for low temperature steam methane reforming

    Science.gov (United States)

    Lee, Sang Moon; Won, Jong Min; Kim, Geo Jong; Lee, Seung Hyun; Kim, Sung Su; Hong, Sung Chang

    2017-10-01

    Palladium was added on the Ni-YSZ catalytic porous membrane by wet impregnation and electroless plating methods. Its surface morphology characteristics and carbon deposition properties for the low temperature steam methane reforming were investigated. The addition of palladium could obviously be enhanced the catalytic activity as well as carbon tolerance of the Ni-YSZ porous membrane. The porous membranes were evaluated by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR), CH4 temperature-programmed reduction (CH4-TPR), and O2 temperature-programmed oxidation (O2-TPO). It was found that the Pd-Ni-YSZ catalytic porous membrane showed the superior stability as well as the deposition of carbon on the surface during carbon dissociation adsorption at 650 °C was also suppressed.

  20. Hydrogen production from raw bioethanol steam reforming: optimization of catalyst composition with improved stability against various impurities

    Energy Technology Data Exchange (ETDEWEB)

    Le Valant, A.; Can, F.; Bion, N.; Epron, F.; Duprez, D. [Laboratoire de Catalyse en Chimie organique, Univ. de Poitiers, Poitiers Cedex (France)], E-mail: florence.epron.cognet@univ-poitiers.fr

    2009-07-01

    Usually, ethanol steam reforming is performed using pure ethanol, whereas the use of raw bioethanol is of major importance for a cost effective industrial application. Raw bioethanol contains higher alcohols as the main impurities and also aldehydes, amines, acids and esters. The effect of these impurities on the catalytic performances for ethanol steam reforming (ESR) has been studied, using a reference catalyst, Rh/MgAl{sub 2}O{sub 4}. It was shown that the aldehyde, the amine and methanol has no negative effect on the catalytic performances, contrary to the ester, acid and higher alcohols. The deactivation is mainly explained by coke formation favored by the presence of these impurities in the feed. In order to improve the stability of the catalyst and its performances in the presence of these deactivating impurities, the catalyst formulation, i.e. the composition of the support and of the metallic phase, was modified. The addition of rare earth elements instead of magnesium to the alumina support leads to a decrease of the strong and medium acid sites and to an increase of the basicity. On these modified supports, the dehydration reaction, leading to olefins, which are coke precursors, is disfavored, the ethanol conversion and the hydrogen yield are increased. The best catalytic performances were obtained with Rh/Y-Al{sub 2}O{sub 3}. Then, the metallic phase was also modified by adding a second metal (Ni, Pt or Pd). The Rh-Ni/Y-Al{sub 2}O{sub 3} catalyst leads to the highest hydrogen yield. This catalyst, tested in the presence of raw bioethanol during 24h was very stable compared to the reference catalyst Rh/MgAl{sub 2}O{sub 4}, which was strongly deactivated after 2h of time-on-stream. (author)

  1. Yttria-stabilized zirconia (YSZ) supported Ni-Co alloys (precursor of SOFC anodes) as catalysts for the steam reforming of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Resini, Carlo; Ramis, Gianguido; Busca, Guido [Dipartimento di Ingegneria Chimica e Processo, Universita di Genova, P.le J.F. Kennedy, 1, 16129 Genova and Centro Interuniversitario di Ricerca di Monitoraggio Ambientale (CIMA), via Cadorna, 7, 17100 Savona (Italy); Consorzio INSTM, Via Benedetto Varchi n. 59, 50132 Firenze (Italy); Concepcion Herrera Delgado, Maria; Alemany, Luis J. [Departamento de Ingenieria Quimica, Universidad de Malaga, 29071 Malaga (Spain); Presto, Sabrina; Riani, Paola; Marazza, Rinaldo [Consorzio INSTM, Via Benedetto Varchi n. 59, 50132 Firenze (Italy); Dipartimento di Chimica e Chimica Industriale, Universita di Genova, Via Dodecaneso 31, 16146 Genova (Italy)

    2008-07-15

    Bioethanol is an attractive fuel for direct internal reforming SOFC (DIR-SOFC). The aim of this work is to investigate the activity of Ni-YSZ, used as precursor for the preparation of SOFC anodes and as catalyst of the ethanol steam reforming reaction. The effect of the addition of cobalt is also studied, as the best performance is given by Ni-Co (25:25)/YSZ catalyst. This achieves total conversion of ethanol around 670 K, at which temperature the H{sub 2} yield is 65%. The addition of Co results in the inhibition of the dehydration reaction as well as of methane production. Furthermore, Co also has an effect on the hydrogen yield, by increasing it and thus apparently favouring methane steam reforming. (author)

  2. Direct methanol steam reforming to hydrogen over CuZnGaOx catalysts without CO post-treatment: mechanistic considerations.

    Science.gov (United States)

    Tong, Weiyi; Cheung, Kevin; West, Adam; Yu, Kai-Man; Tsang, Shik Chi Edman

    2013-05-21

    Utilization of hydrogen gas (and carbon dioxide) from methanol steam reforming reaction directly without CO post-treatment to supply proton exchange membrane fuel cells for mobile applications is an attractive option. CuZnGaOx based mixed oxides prepared by co-precipitation are found to be active as catalysts for the reforming reaction. It is also found that the use of lower temperature and a faster substrate flow rate with a shorter contact time with the catalyst bed can significantly reduce the CO level in the product gas stream. At 150 °C this class of oxides gives a decent methanol conversion but can also totally suppress the CO production at a short contact time, which is in a sharp contrast with conventional CuZnOx based catalysts that give a significant degree of CO formation. Characterization using Diffuse Reflectance Infrared Fourier Transform (DRIFT) analysis presented in this work clearly suggests the importance of the interface between copper metal-defective oxides for the catalysis. Mechanistic aspects of this reaction are therefore discussed in this paper.

  3. A theoretical study on the role of water and its derivatives in acetic acid steam reforming on Ni(111)

    Science.gov (United States)

    Du, Zhen-Yi; Ran, Yan-Xiong; Guo, Yun-Peng; Feng, Jie; Li, Wen-Ying

    2017-10-01

    Catalytic steam reforming of acetic acid can be divided into two steps, i.e. acetic acid decomposition followed by water gas shift. While theoretical studies have been devoted to these two individual reactions, the role of water and its derivatives in the reforming process, especially in CH3COOH decomposition, remains largely unknown. In this study, a thorough investigation of the effects of the solvent water and its derived O*/OH* species on some key dehydrogenation steps on Ni(111) is carried out using density functional theory. The involved dehydrogenation species include O-H bond scission species H2O*, CH3COOH*, trans-COOH* and C-H bond scission species CH3CO*, CH3C*, CH2C*. The results show that the pre-adsorbed O*, OH*, and H2O* species not only affect the adsorption stability of these species, but also influence their dehydrogenation reactivity. O* and OH* species can both enhance the O-H bond scission, and the promotional effect of O* is superior to OH*. Nevertheless, H-abstraction from C-H bond by O* and OH* are both hindered except for CH3CO* dehydrogenation in the presence of OH*. Furthermore, the solvent water notably weakens O-H bonds, yet exhibits negligible effect on the C-H bond breakage. Analogously, the solvent effect of CH3COOH* on O-H bond scission is also investigated.

  4. A passively-fed methanol steam reformer heated with two-stage bi-fueled catalytic combustor

    Science.gov (United States)

    Lo, Kai-Fan; Wong, Shwin-Chung

    2012-09-01

    This paper presents further progress on our simple novel passively-fed methanol steam reformer. The present study focuses on the development of a catalytic combustor workable with both hydrogen and methanol fuels. The aim is to reutilize the exhaust hydrogen from a fuel cell under stable operation but burn methanol during the start-up. On a copper plate, the catalytic combustor in a u-turn channel is integrally machined under a two-turn serpentine-channel reformer. To resolve the highly different fuel reactivities, a suitably diluted catalyst formula demonstrates uniform temperature distributions burning with either liquid methanol or an H2/CO2 mixture simulating the exhaust gas from a fuel cell. In a two-stage process, it first takes 25 min to reach 270 °C by burning methanol. After the fuel is switched to the H2/CO2 mixture, another 20 min is needed to attain an optimal steady state which yields a high methanol conversion of 95% and acceptably low CO fraction of 1.04% at a reaction temperature of 278 °C. The H2 and CO2 concentrations are 75.1% and 23.6%.

  5. Analysis alloy quasicrystalline Al62,2 Cu25,3 Fe12,5 for steam reforming of methanol

    Directory of Open Access Journals (Sweden)

    Lourdes Cristina Lucena Agostinho Jamshidi

    2015-10-01

    Full Text Available This study shows a good performance of quasicrystal Al62,2Cu25,3Fe12,5 as catalyst in catalytic reactions. This metal catalyst, without being leached with acid or base, with dry stoichiometric composition, Al62,2Cu25,3Fe12,5 is revealed among the reactions which occurred to be a partial oxidation; and promoted the formation of products: methanol, methanal + methanoic acid, water and dimethyl ether. For this research were used such experimental techniques as X-ray Diffraction (XRD to follow the evolution of the alloy phase, the Scanning Electron Microscopy (SEM that provides the study of surface microstructure, and Transmission Electron Microscopy (MET. All these techniques study the morphology of the internal phase, and defect a quasicrystalline nucleus. Catalytic tests of methanol conversion and selectivity intermediate products were obtained using this catalyst quasicrystal. The activity and stability of quasicrystal catalyst for reforming of methanol vapor show sufficient growth compared to the other catalysts. Fe and Cu species are highly dispersed in the homogeneous layer of quasicrystal catalyst which increase the catalytic activity and suppress the aggregation of Cu particles. We suppose that the quasicrystal can be a good catalyst used in a catalytic steam reforming, with high catalytic activity and excellent thermal stability.

  6. Computational Investigation of the Thermochemistry and Kinetics of Steam Methane Reforming Over a Multi-Faceted Nickel Catalyst

    KAUST Repository

    Blaylock, D. Wayne

    2011-08-20

    A microkinetic model of steam methane reforming over a multi-faceted nickel surface using planewave, periodic boundary condition density functional theory is presented. The multi-faceted model consists of a Ni(111) surface, a Ni(100) surface, and nickel step edge sites that are modeled as a Ni(211) surface. Flux and sensitivity analysis are combined to gain an increased understanding of the important reactions, intermediates, and surface facets in SMR. Statistical thermodynamics are applied to allow for the investigation of SMR under industrially-relevant conditions (e.g., temperatures in excess of 500 °C and pressures in excess of 1 bar). The most important surface reactions are found to occur at the under-coordinated step edge sites modeled using the Ni(211) surface as well as on the Ni(100) surface. The primary reforming pathway is predicted to be through C*+ O*→ CO*at high temperatures; however, hydrogen-mediated reactions such as C*+ OH*→ COH*and C.H.*+ O*→ CHO*are predicted to become more important at low temperatures. The rate-limiting reactions are predicted to be dissociative chemisorption of methane in addition to the aforementioned C-O addition reactions. © 2011 Springer Science+Business Media, LLC.

  7. Catalyst evaluation for high-purity H2 production by sorption-enhanced steam-methane reforming coupled to a Ca/Cu process

    Science.gov (United States)

    Navarro, M. V.; López, J. M.; García, T.; Grasa, G.; Murillo, R.

    2017-09-01

    The operational limits of a commercial nickel-based catalyst under the conditions of a sorption-enhanced steam-methane reforming process coupled to a Ca/Cu chemical loop are investigated for high-purity H2 production in a cyclic operation. The performance of the reforming catalyst is tested by means of a high number of oxidation-reduction-reforming cycles. After 100 oxidation-reduction cycles, this catalyst retains its exceptional reforming activity. The methane conversion values are close to the thermodynamic equilibrium under very demanding conditions: temperature between 500 °C - 700 °C and mass hourly space velocity of 8.8 kgCH4 h-1 kgcat-1. After 200 cycles, the sample shows reduction in its reforming activity in line with a lower dispersion of the Ni species. Sintering of Ni nanocrystals is evidenced during the oxidation-reduction multi-cycles. The performance of the catalyst after 200 oxidation-reduction cycles mixed with a CaO-based CO2 sorbent is studied under optimal conditions calculated for the sorption-enhanced reforming process coupled to a Ca/Cu cycle (temperature of 650 °C, steam/methane ratio of 4, sorbent/catalyst ratio of 4 and space velocity of 0.75 kgCH4 h-1 kgcat-1). Remarkably, an equilibrium value over 92 vol.% H2 concentration is achieved, highlighting this catalyst as a promising candidate for the next steps of the process development.

  8. Ni-Based Catalysts for Low Temperature Methane Steam Reforming: Recent Results on Ni-Au and Comparison with Other Bi-Metallic Systems

    Directory of Open Access Journals (Sweden)

    Anna M. Venezia

    2013-06-01

    Full Text Available Steam reforming of light hydrocarbons provides a promising method for hydrogen production. Ni-based catalysts are so far the best and the most commonly used catalysts for steam reforming because of their acceptably high activity and significantly lower cost in comparison with alternative precious metal-based catalysts. However, nickel catalysts are susceptible to deactivation from the deposition of carbon, even when operating at steam-to-carbon ratios predicted to be thermodynamically outside of the carbon-forming regime. Reactivity and deactivation by carbon formation can be tuned by modifying Ni surfaces with a second metal, such as Au through alloy formation. In the present review, we summarize the very recent progress in the design, synthesis, and characterization of supported bimetallic Ni-based catalysts for steam reforming. The progress in the modification of Ni with noble metals (such as Au and Ag is discussed in terms of preparation, characterization and pretreatment methods. Moreover, the comparison with the effects of other metals (such as Sn, Cu, Co, Mo, Fe, Gd and B is addressed. The differences of catalytic activity, thermal stability and carbon species between bimetallic and monometallic Ni-based catalysts are also briefly shown.

  9. Catalytic Steam Reforming of Toluene as a Model Compound of Biomass Gasification Tar Using Ni-CeO2/SBA-15 Catalysts

    Directory of Open Access Journals (Sweden)

    Erik Dahlquist

    2013-07-01

    Full Text Available Nickel supported on SBA-15 doped with CeO2 catalysts (Ni-CeO2/SBA-15 was prepared, and used for steam reforming of toluene which was selected as a model compound of biomass gasification tar. A fixed-bed lab-scale set was designed and employed to evaluate the catalytic performances of the Ni-CeO2/SBA-15 catalysts. Experiments were performed to reveal the effects of several factors on the toluene conversion and product gas composition, including the reaction temperature, steam/carbon (S/C ratio, and CeO2 loading content. Moreover, the catalysts were subjected to analysis of their carbon contents after the steam reforming experiments, as well as to test the catalytic stability over a long experimental period. The results indicated that the Ni-CeO2/SBA-15 catalysts exhibited promising capabilities on the toluene conversion, anti-coke deposition and catalytic stability. The toluene conversion reached as high as 98.9% at steam reforming temperature of 850 °C and S/C ratio of 3 using the Ni-CeO2(3wt%/SBA-15 catalyst. Negligible coke formation was detected on the used catalyst. The gaseous products mainly consisted of H2 and CO, together with a little CO2 and CH4.

  10. Hydrogen-Rich Gas Production by Sorption Enhanced Steam Reforming of Woodgas Containing TAR over a Commercial Ni Catalyst and Calcined Dolomite as CO2 Sorbent

    Directory of Open Access Journals (Sweden)

    Vincenzo Naso

    2013-07-01

    Full Text Available The aim of this work was the evaluation of the catalytic steam reforming of a gaseous fuel obtained by steam biomass gasification to convert topping atmosphere residue (TAR and CH4 and to produce pure H2 by means of a CO2 sorbent. This experimental work deals with the demonstration of the practical feasibility of such concepts, using a real woodgas obtained from fluidized bed steam gasification of hazelnut shells. This study evaluates the use of a commercial Ni catalyst and calcined dolomite (CaO/MgO. The bed material simultaneously acts as reforming catalyst and CO2 sorbent. The experimental investigations have been carried out in a fixed bed micro-reactor rig using a slipstream from the gasifier to evaluate gas cleaning and upgrading options. The reforming/sorption tests were carried out at 650 °C while regeneration of the sorbent was carried out at 850 °C in a nitrogen environment. Both combinations of catalyst and sorbent are very effective in TAR and CH4 removal, with conversions near 100%, while the simultaneous CO2 sorption effectively enhances the water gas shift reaction producing a gas with a hydrogen volume fraction of over 90%. Multicycle tests of reforming/CO2 capture and regeneration were performed to verify the stability of the catalysts and sorbents to remove TAR and capture CO2 during the duty cycle.

  11. Thermodynamic simulation of biomass gas steam reforming for a solid oxide fuel cell (SOFC system

    Directory of Open Access Journals (Sweden)

    A. Sordi

    2009-12-01

    Full Text Available This paper presents a methodology to simulate a small-scale fuel cell system for power generation using biomass gas as fuel. The methodology encompasses the thermodynamic and electrochemical aspects of a solid oxide fuel cell (SOFC, as well as solves the problem of chemical equilibrium in complex systems. In this case the complex system is the internal reforming of biomass gas to produce hydrogen. The fuel cell input variables are: operational voltage, cell power output, composition of the biomass gas reforming, thermodynamic efficiency, electrochemical efficiency, practical efficiency, the First and Second law efficiencies for the whole system. The chemical compositions, molar flows and temperatures are presented to each point of the system as well as the exergetic efficiency. For a molar water/carbon ratio of 2, the thermodynamic simulation of the biomass gas reforming indicates the maximum hydrogen production at a temperature of 1070 K, which can vary as a function of the biomass gas composition. The comparison with the efficiency of simple gas turbine cycle and regenerative gas turbine cycle shows the superiority of SOFC for the considered electrical power range.

  12. MINERALIZING, STEAM REFORMING TREATMENT OF HANFORD LOW-ACTIVITY WASTE (a.k.a. INEEL/EXT-05-02526)

    Energy Technology Data Exchange (ETDEWEB)

    A. L. Olson; N. R. Soelberg; D. W. Marshall; G. L. Anderson

    2005-02-01

    The U.S. Department of Energy (DOE) documented, in 2002, a plan for accelerating cleanup of the Hanford Site, located in southeastern Washington State, by at least 35 years. A key element of the plan was acceleration of the tank waste program and completion of ''tank waste treatment by 2028 by increasing the capacity of the planned Waste Treatment Plant (WTP) and using supplemental technologies for waste treatment and immobilization.'' The plan identified steam reforming technology as a candidate for supplemental treatment of as much as 70% of the low-activity waste (LAW). Mineralizing steam reforming technology, offered by THOR Treatment Technologies, LLC would produce a denitrated, granular mineral waste form using a high-temperature fluidized bed process. A pilot scale demonstration of the technology was completed in a 15-cm-diameter reactor vessel. The pilot scale facility was equipped with a cyclone separator and heated sintered metal filters for particulate removal, a thermal oxidizer for reduced gas species and NOx destruction, and a packed activated carbon bed for residual volatile species capture. The pilot scale equipment is owned by the DOE, but located at the Science and Technology Applications Research (STAR) Center in Idaho Falls, ID. Pilot scale testing was performed August 2–5, 2004. Flowsheet chemistry and operational parameters were defined through a collaborative effort involving Idaho National Engineering and Environmental Laboratory (INEEL), Savannah River National Laboratory (SRNL), and THOR Treatment Technologies personnel. Science Application International Corporation, owners of the STAR Center, personnel performed actual pilot scale operation. The pilot scale test achieved a total of 68.4 hours of cumulative/continuous processing operation before termination in response to a bed de-fluidization condition. 178 kg of LAW surrogate were processed that resulted in 148 kg of solid product, a mass reduction of about 17%. The process achieved

  13. CO2-selective methanol steam reforming on In-doped Pd studied by in situ X-ray photoelectron spectroscopy

    Science.gov (United States)

    Rameshan, Christoph; Lorenz, Harald; Mayr, Lukas; Penner, Simon; Zemlyanov, Dmitry; Arrigo, Rosa; Haevecker, Michael; Blume, Raoul; Knop-Gericke, Axel; Schlögl, Robert; Klötzer, Bernhard

    2012-01-01

    In situ X-ray photoelectron spectroscopy (in situ XPS) was used to study the structural and catalytic properties of Pd–In near-surface intermetallic phases in correlation with previously studied PdZn and PdGa. Room temperature deposition of ∼4 monolayer equivalents (MLEs) of In metal on Pd foil and subsequent annealing to 453 K in vacuum yields a ∼1:1 Pd/In near-surface multilayer intermetallic phase. This Pd1In1 phase exhibits a similar “Cu-like” electronic structure and indium depth distribution as its methanol steam reforming (MSR)-selective multilayer Pd1Zn1 counterpart. Catalytic characterization of the multilayer Pd1In1 phase in MSR yielded a CO2-selectivity of almost 100% between 493 and 550 K. In contrast to previously studied In2O3-supported PdIn nanoparticles and pure In2O3, intermediate formaldehyde is only partially converted to CO2 using this Pd1In1 phase. Strongly correlated with PdZn, on an In-diluted PdIn intermetallic phase with “Pd-like” electronic structure, prepared by thermal annealing at 623 K, methanol steam reforming is suppressed and enhanced CO formation via full methanol dehydrogenation is observed. To achieve CO2-TOF values on the isolated Pd1In1 intermetallic phase as high as on supported PdIn/In2O3, at least 593 K reaction temperature is required. A bimetal-oxide synergism, with both bimetallic and oxide synergistically contributing to the observed catalytic activity and selectivity, manifests itself by accelerated formaldehyde-to-CO2 conversion at markedly lowered temperatures as compared to separate oxide and bimetal. Combination of suppression of full methanol dehydrogenation to CO on Pd1In1 inhibited inverse water–gas-shift reaction on In2O3 and fast water activation/conversion of formaldehyde is the key to the low-temperature activity and high CO2-selectivity of the supported catalyst. PMID:23226689

  14. CO(2)-selective methanol steam reforming on In-doped Pd studied by in situ X-ray photoelectron spectroscopy.

    Science.gov (United States)

    Rameshan, Christoph; Lorenz, Harald; Mayr, Lukas; Penner, Simon; Zemlyanov, Dmitry; Arrigo, Rosa; Haevecker, Michael; Blume, Raoul; Knop-Gericke, Axel; Schlögl, Robert; Klötzer, Bernhard

    2012-11-01

    In situ X-ray photoelectron spectroscopy (in situ XPS) was used to study the structural and catalytic properties of Pd-In near-surface intermetallic phases in correlation with previously studied PdZn and PdGa.Room temperature deposition of ∼4 monolayer equivalents (MLEs) of In metal on Pd foil and subsequent annealing to 453 K in vacuum yields a ∼1:1 Pd/In near-surface multilayer intermetallic phase. This Pd(1)In(1) phase exhibits a similar "Cu-like" electronic structure and indium depth distribution as its methanol steam reforming (MSR)-selective multilayer Pd(1)Zn(1) counterpart.Catalytic characterization of the multilayer Pd(1)In(1) phase in MSR yielded a CO(2)-selectivity of almost 100% between 493 and 550 K. In contrast to previously studied In(2)O(3)-supported PdIn nanoparticles and pure In(2)O(3), intermediate formaldehyde is only partially converted to CO(2) using this Pd(1)In(1) phase. Strongly correlated with PdZn, on an In-diluted PdIn intermetallic phase with "Pd-like" electronic structure, prepared by thermal annealing at 623 K, methanol steam reforming is suppressed and enhanced CO formation via full methanol dehydrogenation is observed.To achieve CO(2)-TOF values on the isolated Pd(1)In(1) intermetallic phase as high as on supported PdIn/In(2)O(3), at least 593 K reaction temperature is required. A bimetal-oxide synergism, with both bimetallic and oxide synergistically contributing to the observed catalytic activity and selectivity, manifests itself by accelerated formaldehyde-to-CO(2) conversion at markedly lowered temperatures as compared to separate oxide and bimetal. Combination of suppression of full methanol dehydrogenation to CO on Pd(1)In(1) inhibited inverse water-gas-shift reaction on In(2)O(3) and fast water activation/conversion of formaldehyde is the key to the low-temperature activity and high CO(2)-selectivity of the supported catalyst.

  15. Steam reforming of tar derived from lignin over pompom-like potassium-promoted iron-based catalysts formed on calcined scallop shell.

    Science.gov (United States)

    Guan, Guoqing; Kaewpanha, Malinee; Hao, Xiaogang; Zhu, Ai-Min; Kasai, Yutaka; Kakuta, Seiji; Kusakabe, Katsuki; Abudula, Abuliti

    2013-07-01

    In order to understand the improvement effect of potassium (K) on the catalytic activity of iron-loaded calcined scallop shell (CS) for the steam reforming tar derived from biomass, various K precursors were applied for the catalyst preparation. It is found that pompom-like iron-based particles with a mesoporous structure were easily formed on the surface of calcined scallop shell (CS) when K2CO3 was used as K precursor while no such kind of microsphere was formed when other kinds of K precursors such as KOH and KNO3 were applied. The optimum K-loading amount for the preparation of this catalyst was investigated. Based on the experimental results obtained, a mechanism for the formation of these microspheres was proposed. This pompom-like potassium-promoted iron-based catalyst showed a better catalytic activity and reusability for the steam reforming of tar derived from lignin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Development of a novel ceramic microchannel reactor for methane steam reforming

    Science.gov (United States)

    Murphy, Danielle M.

    Microchannel heat exchanger and reactor technology has recently gained interest as an innovative way to improve heat-exchanger efficiency, reduce size and weight, and utilize thermal management capabilities to improve conversion, yield, selectivity, and catalyst life. Among many other possible applications, this technology is suitable for advanced recuperated engines, oxy-fired combustion processes for oxygen separation, gas-cooled nuclear reactors, recuperative heat exchanger and reformer units for solid oxide fuel cell systems, and chemical processing. This work presents the design, fabrication, and performance of novel ceramic microchannel reactors in heat-exchanger and fuel-reforming applications. Although most microchannel devices are made of metal materials, ceramics offer an alternative which enables significantly higher operating temperatures, improved tolerance to harsh chemical environments, and improved adherence of ceramic-based catalyst washcoats. Significant cost savings in materials and manufacturing methods for high-volume manufacturing can also be achieved. High-temperature performance of the ceramic microchannel reactor is measured through non-reactive heat-exchanger experiments within a dedicated test stand. Heat-exchanger effectiveness of up to 88% is experimentally established. After coating catalyst material over half of the reactor layers, use of the ceramic microchannel reactor in methane fuel-processing applications is demonstrated. As a fuel reformer, the ceramic microchannel reactor achieves process intensification by combining heat-exchanger and catalytic-reactor functions to produce syngas. Gas hourly space velocities (GHSV) up to 50,000 hr-1 with methane conversion higher than 85% are achieved. A complete computational fluid dynamics (CFD) model, as well as a geometrically simplified hybrid CFD/chemical kinetics model, is used in conjunction with experimentation to examine heat transfer, fluid flow, and chemical kinetics within the

  17. High Activity of Ce1-xNixO2-y for H2 Production through Ethanol Steam Reforming: Tuning Catalytic Performance through Metal-Oxide Interactions

    Energy Technology Data Exchange (ETDEWEB)

    G Zhou; L Barrio; S Agnoli; S Senanayake; J Evans; A Kubacka; M Estrella; J Hanson; A Martinez-Arias; et al.

    2011-12-31

    The importance of the oxide: Ce{sub 0.8}Ni{sub 0.2}O{sub 2-y} is an excellent catalyst for ethanol steam reforming. Metal-oxide interactions perturb the electronic properties of the small particles of metallic nickel present in the catalyst under the reaction conditions and thus suppress any methanation activity. The nickel embedded in ceria induces the formation of O vacancies, which facilitate cleavage of the OH bonds in ethanol and water.

  18. Deactivation Studies of Rh/Ce0.8Zr0.2O2 Catalysts in Low Temperature Ethanol Steam Reforming

    Energy Technology Data Exchange (ETDEWEB)

    Platon, Alex; Roh, Hyun-Seog; King, David L.; Wang, Yong

    2007-10-30

    Rapid deactivation of Rh/Ce0.8Zr0.2O2 catalysts in low temperature ethanol steam reforming was studied. A significant build-up of carbonaceous intermediate, instead of carbon deposit, was observed at a lower reaction temperature which was attributed to the rapid catalyst deactivation. Co-feed experiments indicated that acetone and ethylene caused more severe catalyst deactivation than other oxygenates such as acidic acid and acetaldehyde.

  19. Steam reforming of methanol over oxide decorated nanoporous gold catalysts: a combined in situ FTIR and flow reactor study.

    Science.gov (United States)

    Shi, J; Mahr, C; Murshed, M M; Gesing, T M; Rosenauer, A; Bäumer, M; Wittstock, A

    2017-03-29

    Methanol as a green and renewable resource can be used to generate hydrogen by reforming, i.e., its catalytic oxidation with water. In combination with a fuel cell this hydrogen can be converted into electrical energy, a favorable concept, in particular for mobile applications. Its realization requires the development of novel types of structured catalysts, applicable in small scale reactor designs. Here, three different types of such catalysts were investigated for the steam reforming of methanol (SRM). Oxides such as TiO 2 and CeO 2 and mixtures thereof (Ce 1 Ti 2 O x ) were deposited inside a bulk nanoporous gold (npAu) material using wet chemical impregnation procedures. Transmission electron and scanning electron microscopy reveal oxide nanoparticles (1-2 nm in size) abundantly covering the strongly curved surface of the nanoporous gold host (ligaments and pores on the order of 40 nm in size). These catalysts were investigated in a laboratory scaled flow reactor. First conversion of methanol was detected at 200 °C. The measured turn over frequency at 300 °C of the CeO x /npAu catalyst was 0.06 s -1 . Parallel investigation by in situ infrared spectroscopy (DRIFTS) reveals that the activation of water and the formation of OH ads are the key to the activity/selectivity of the catalysts. While all catalysts generate sufficient OH ads to prevent complete dehydrogenation of methanol to CO, only the most active catalysts (e.g., CeO x /npAu) show direct reaction with formic acid and its decomposition to CO 2 and H 2 . The combination of flow reactor studies and in operando DRIFTS, thus, opens the door to further development of this type of catalyst.

  20. Effects of preparation method on the performance of Ni/Al(2)O(3) catalysts for hydrogen production by bio-oil steam reforming.

    Science.gov (United States)

    Li, Xinbao; Wang, Shurong; Cai, Qinjie; Zhu, Lingjun; Yin, Qianqian; Luo, Zhongyang

    2012-09-01

    Steam reforming of bio-oil derived from the fast pyrolysis of biomass is an economic and renewable process for hydrogen production. The main objective of the present work has been to investigate the effects of the preparation method of Ni/Al(2)O(3) catalysts on their performance in hydrogen production by bio-oil steam reforming. The Ni/Al(2)O(3) catalysts were prepared by impregnation, co-precipitation, and sol-gel methods. XRD, XPS, H(2)-TPR, SEM, TEM, TG, and N(2) physisorption measurements were performed to characterize the texture and structure of the catalysts obtained after calcination and after their subsequent use. Ethanol and bio-oil model compound were selected for steam reforming to evaluate the catalyst performance. The catalyst prepared by the co-precipitation method was found to display better performance than the other two. Under the optimized reaction conditions, an ethanol conversion of 99% and a H(2) yield of 88% were obtained.

  1. Hydrogen Production from Methanol Steam Reforming over TiO2 and CeO2 Pillared Clay Supported Au Catalysts

    Directory of Open Access Journals (Sweden)

    Rongbin Zhang

    2018-01-01

    Full Text Available Abstract: Methanol steam reforming is a promising process for the generation of hydrogen. In this study, Au catalysts supported on modified montmorillonite were prepared and their catalytic activity for methanol steam reforming was investigated at 250–500 °C. The physical and chemical properties of the as-prepared catalysts were characterized by Brunauer–Emmet–Teller method (BET, X-ray diffraction (XRD, transmission electron microscopic (TEM, scanning electron microscopy (SEM, X-ray photoelectron spectroscopy (XPS, Inductively Coupled Plasma (ICP, and thermogravimetrc analysis (TGA. For the catalysts examined, Au-Ti-Ce/Na-ABen exhibits the best catalytic performance with methanol conversion of 72% and H2 selectivity of 99% at 350 °C. This could be attributed to Au, Ce, and Ti species which form a solid solution and move into the interlayer space of the bentonite leading to a high surface area, large average pore volume, large average pore diameter, and small Au particle size. We considered that the synergistic effect of the crosslinking agent, the Ce species, and the Au active sites were responsible for the high activity of Au-Ti-Ce/Na-ABen catalyst for methanol steam reforming.

  2. Draft, development and optimization of a fuel cell system for residential power generation with steam reformer; Entwurf, Aufbau und Optimierung eines PEM-Brennstoffzellensystems zur Hausenergieversorgung mit Dampfreformer

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, H.

    2006-05-17

    The first development cycle of a residential power generation system is described. A steam reformer was chosen to produce hydrogen out of natural gas. After carbon monoxide purification with a preferential oxidation (PrOx) unit the hydrogen rich reformat gas is feed to the anode of the PEM-fuel cell, where due to the internal reaction with air oxygen form the cathode side water, heat and electricity is produced. Due to an incomplete conversion the anode off gas contains hydrogen and residual methane, which is feed to the burner of the steam reformer to reduce the needed amount of external fuel to heat the steam reformer. To develop the system the components are separately investigated and optimized in their construction or operation to meet the system requirements. After steady state and dynamic characterization of the components they were coupled one after another to build the system. To operate the system a system control was developed to operate and characterize this complex system. After characterization the system was analyzed for further optimization. During the development of the system inventions like a water cooled PrOx, an independent fuel cell controller or a burner for anodic off gas recirculation were made. The work gives a look into the interactions between the components and allows to understand the problems by coupling such components. (orig.)

  3. Valorisation of Vietnamese Rice Straw Waste: Catalytic Aqueous Phase Reforming of Hydrolysate from Steam Explosion to Platform Chemicals

    Directory of Open Access Journals (Sweden)

    Cao Huong Giang

    2014-12-01

    Full Text Available A family of tungstated zirconia solid acid catalysts were synthesised via wet impregnation and subsequent thermochemical processing for the transformation of glucose to 5-hydroxymethylfurfural (HMF. Acid strength increased with tungsten loading and calcination temperature, associated with stabilisation of tetragonal zirconia. High tungsten dispersions of between 2 and 7 W atoms·nm−2 were obtained in all cases, equating to sub-monolayer coverages. Glucose isomerisation and subsequent dehydration via fructose to HMF increased with W loading and calcination temperature up to 600 °C, indicating that glucose conversion to fructose was favoured over weak Lewis acid and/or base sites associated with the zirconia support, while fructose dehydration and HMF formation was favoured over Brönsted acidic WOx clusters. Aqueous phase reforming of steam exploded rice straw hydrolysate and condensate was explored heterogeneously for the first time over a 10 wt% WZ catalyst, resulting in excellent HMF yields as high as 15% under mild reaction conditions.

  4. Estimation of transient heat flux density during the heat supply of a catalytic wall steam methane reformer

    Science.gov (United States)

    Settar, Abdelhakim; Abboudi, Saïd; Madani, Brahim; Nebbali, Rachid

    2017-08-01

    Due to the endothermic nature of the steam methane reforming reaction, the process is often limited by the heat transfer behavior in the reactors. Poor thermal behavior sometimes leads to slow reaction kinetics, which is characterized by the presence of cold spots in the catalytic zones. Within this framework, the present work consists on a numerical investigation, in conjunction with an experimental one, on the one-dimensional heat transfer phenomenon during the heat supply of a catalytic-wall reactor, which is designed for hydrogen production. The studied reactor is inserted in an electric furnace where the heat requirement of the endothermic reaction is supplied by electric heating system. During the heat supply, an unknown heat flux density, received by the reactive flow, is estimated using inverse methods. In the basis of the catalytic-wall reactor model, an experimental setup is engineered in situ to measure the temperature distribution. Then after, the measurements are injected in the numerical heat flux estimation procedure, which is based on the Function Specification Method (FSM). The measured and estimated temperatures are confronted and the heat flux density which crosses the reactor wall is determined.

  5. Secondary Waste Form Screening Test Results—THOR® Fluidized Bed Steam Reforming Product in a Geopolymer Matrix

    Energy Technology Data Exchange (ETDEWEB)

    Pires, Richard P.; Westsik, Joseph H.; Serne, R. Jeffrey; Mattigod, Shas V.; Golovich, Elizabeth C.; Valenta, Michelle M.; Parker, Kent E.

    2011-07-14

    Screening tests are being conducted to evaluate waste forms for immobilizing secondary liquid wastes from the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Plans are underway to add a stabilization treatment unit to the Effluent Treatment Facility to provide the needed capacity for treating these wastes from WTP. The current baseline is to use a Cast Stone cementitious waste form to solidify the wastes. Through a literature survey, DuraLith alkali-aluminosilicate geopolymer, fluidized-bed steam reformation (FBSR) granular product encapsulated in a geopolymer matrix, and a Ceramicrete phosphate-bonded ceramic were identified both as candidate waste forms and alternatives to the baseline. These waste forms have been shown to meet waste disposal acceptance criteria, including compressive strength and universal treatment standards for Resource Conservation and Recovery Act (RCRA) metals (as measured by the toxicity characteristic leaching procedure [TCLP]). Thus, these non-cementitious waste forms should also be acceptable for land disposal. Information is needed on all four waste forms with respect to their capability to minimize the release of technetium. Technetium is a radionuclide predicted to be in the secondary liquid wastes in small quantities, but the Integrated Disposal Facility (IDF) risk assessment analyses show that technetium, even at low mass, produces the largest contribution to the estimated IDF disposal impacts to groundwater.

  6. Estimation of transient heat flux density during the heat supply of a catalytic wall steam methane reformer

    Science.gov (United States)

    Settar, Abdelhakim; Abboudi, Saïd; Madani, Brahim; Nebbali, Rachid

    2018-02-01

    Due to the endothermic nature of the steam methane reforming reaction, the process is often limited by the heat transfer behavior in the reactors. Poor thermal behavior sometimes leads to slow reaction kinetics, which is characterized by the presence of cold spots in the catalytic zones. Within this framework, the present work consists on a numerical investigation, in conjunction with an experimental one, on the one-dimensional heat transfer phenomenon during the heat supply of a catalytic-wall reactor, which is designed for hydrogen production. The studied reactor is inserted in an electric furnace where the heat requirement of the endothermic reaction is supplied by electric heating system. During the heat supply, an unknown heat flux density, received by the reactive flow, is estimated using inverse methods. In the basis of the catalytic-wall reactor model, an experimental setup is engineered in situ to measure the temperature distribution. Then after, the measurements are injected in the numerical heat flux estimation procedure, which is based on the Function Specification Method (FSM). The measured and estimated temperatures are confronted and the heat flux density which crosses the reactor wall is determined.

  7. Steam reforming of biomass tar producing H2-rich gases over Ni/MgOx/CaO1-x catalyst.

    Science.gov (United States)

    Li, Chunshan; Hirabayashi, Daisuke; Suzuki, Kenzi

    2010-01-01

    Series nickel catalysts Ni/MgO(x)/CaO(1-)(x) (x=0.3, 0.5, 0.7, Ni: 5 wt%) were prepared and tested in fixed-bed reactor for biomass tar steam reforming, toluene as tar destruction model compound. Different ratios of MgO and CaO were mixed to simulate dolomite as Ni support. Two preparation methods: solid mixing with (SMW) and without water (SM) were used, the preparation methods and concentration of MgO had an important influence on toluene conversion and products. Catalysts prepared by SM method exhibited higher performance on toluene conversion, resulted in higher H(2) yield, and also, higher CO(2) and lower CO selectivity with higher temperature. For the same preparation method, higher concentration of MgO resulted in higher toluene conversion, and also influence on CO, CO(2) selectivity, but no obvious influence on the H(2) yield. Catalysts were characterized by BET, X-ray diffraction (XRD), SEM.

  8. Steam reforming of biomass gasification tar using benzene as a model compound over various Ni supported metal oxide catalysts.

    Science.gov (United States)

    Park, Hyun Ju; Park, Sung Hoon; Sohn, Jung Min; Park, Junhong; Jeon, Jong-Ki; Kim, Seung-Soo; Park, Young-Kwon

    2010-01-01

    The steam reforming of benzene as a model compound of biomass gasification tar was carried out over various Ni/metal oxide catalysts. The effects of the support, temperature, Ni-precursor, Ni loading and reaction time were examined, and their catalytic performance was compared with that of a commercial Ni catalyst. Among the Ni/metal oxide catalysts used, 15 wt% Ni/CeO(2)(75%)-ZrO(2)(25%) showed the highest catalytic performance owing to its greater redox characteristics and increased surface area, irrespective of the reaction temperature. The catalytic activity of 15 wt% Ni/CeO(2)(75%)-ZrO(2)(25%) was higher than that of the commercial Ni catalyst. Moreover, the catalyst activity was retained due to its excellent resistance to coke deposition even after 5h. The Ni-precursor played a critical role in the catalytic activity. With the exception of nickel nitrate, all the Ni-precursors (chloride and sulfate) caused deactivation of the catalyst.

  9. Effects of temperature and pressure on the performance of a solid oxide fuel cell running on steam reformate of kerosene

    Energy Technology Data Exchange (ETDEWEB)

    Chick, Lawrence A.; Marina, Olga A.; Coyle, Christopher A.; Thomsen, Edwin C.

    2013-08-15

    A button solid oxide fuel cell with a La0.6Sr0.4Co0.2Fe0.8O3 cathode and a nickel-YSZ anode was tested over a range of temperatures from 650 to 800°C and a range of pressures from 101 to 724 kPa. The fuel was simulated steam-reformed kerosene and the oxidant was air. The observed increases in open circuit voltages (OCV) were accurately predicted by the Nernst equation. Kinetics also increased, although the power boost due to kinetics was about two thirds as large as the boost due to OCV. The total power boost in going from 101 to 724 kPa at 750°C and 0.8 volts was 66%. Impedance spectroscopy demonstrated a significant decrease in electrodic losses at elevated pressures. Complex impedance spectra were dominated by a combination of low frequency processes that decreased markedly with increasing pressure. A composite of high-frequency processes also decreased with pressure, but to a lesser extent. An empirical algorithm that accurately predicts the increased fuel cell performance at elevated pressures was developed for our results and was also suitable for some, but not all, data reported in the literature.

  10. Studying the characteristics of a 5 kW power installation on solid-oxide fuel cells with steam reforming of natural gas

    Science.gov (United States)

    Munts, V. A.; Volkova, Yu. V.; Plotnikov, N. S.; Dubinin, A. M.; Tuponogov, V. G.; Chernishev, V. A.

    2015-11-01

    The results from tests of a 5 kW power plant on solid-oxide fuel cells (SOFCs), in which natural gas is used as fuel, are presented. The installation's process circuit, the test procedure, and the analysis of the obtained results are described. The characteristics of the power plant developed by the Ural Industrial Company are investigated in four steady-state modes of its operation: with the SOFC nominal power capacity utilized by 40% (2 kW), 60% (3 kW), 90% (4.5 kW) and 110% (5.4 kW) (the peaking mode). The electrical and thermodynamic efficiencies are calculated for all operating modes, and the most efficient mode, in which the electrical efficiency reached almost 70%, is determined. The air excess coefficient and heat loss with flue gases q 2 are determined, and it is revealed that the heat loss q 5 decreases from 40 to 25% with increasing the load. Thermal balances are drawn up for the following components of the system the reformer, the SOFC battery, the catalytic burner for afterburning anode gases, the heat exchanger for heating the cathode air and the mixture of natural gas and steam, and the actual fuel utilization rates in the electrochemical generator are calculated. An equation for the resulting natural gas steam reforming reaction was obtained based on the results from calculating the equilibrium composition of reforming products for the achieved temperatures at the reformer outlet t 3.

  11. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

    2012-02-02

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline

  12. Efficient utilization of greenhouse gases in a gas-to-liquids process combined with CO2/steam-mixed reforming and Fe-based Fischer-Tropsch synthesis.

    Science.gov (United States)

    Zhang, Chundong; Jun, Ki-Won; Ha, Kyoung-Su; Lee, Yun-Jo; Kang, Seok Chang

    2014-07-15

    Two process models for carbon dioxide utilized gas-to-liquids (GTL) process (CUGP) mainly producing light olefins and Fischer-Tropsch (F-T) synthetic oils were developed by Aspen Plus software. Both models are mainly composed of a reforming unit, an F-T synthesis unit and a recycle unit, while the main difference is the feeding point of fresh CO2. In the reforming unit, CO2 reforming and steam reforming of methane are combined together to produce syngas in flexible composition. Meanwhile, CO2 hydrogenation is conducted via reverse water gas shift on the Fe-based catalysts in the F-T synthesis unit to produce hydrocarbons. After F-T synthesis, the unreacted syngas is recycled to F-T synthesis and reforming units to enhance process efficiency. From the simulation results, it was found that the carbon efficiencies of both CUGP options were successfully improved, and total CO2 emissions were significantly reduced, compared with the conventional GTL processes. The process efficiency was sensitive to recycle ratio and more recycle seemed to be beneficial for improving process efficiency and reducing CO2 emission. However, the process efficiency was rather insensitive to split ratio (recycle to reforming unit/total recycle), and the optimum split ratio was determined to be zero.

  13. A Phenomenological Study on the Synergistic Role of Precious Metals in the Steam Reforming of Logistic Fuels on Trimetal-Supported Catalysts

    Directory of Open Access Journals (Sweden)

    Abdul-Majeed Azad

    2010-01-01

    Full Text Available Fuel processors are required to convert sulfur-laden logistic fuels (jet fuels, diesel, and coal into fuel cell quality hydrogen-rich reformate with little or no sulfur for extended periods. Sulfur poisons and deactivates the reforming catalyst, therefore, sulfur-tolerant catalysts ought to be developed. In this paper, the development, characterization, and evaluation of a series of nanoscale ceria-supported reforming catalysts containing three noble metals in low concentration (1 wt% ≤ total metal loading ≤ 1.33 wt% for the steam-reforming of kerosene (a JP-8 surrogate are reported. Their performance is quantified in terms of H2 yield, tolerance towards sulfur in the fuel, and the on-stream stability and compared with that of monometal and bimetal analogs under identical conditions. Due to the inherent cooperative synergy, a trimetal catalyst was found far superior to its mono- and bimetallic analog containing same amount of the precious metal loading in terms of quality of the reformate (measured by H2 level in steady-state as well as the catalyst longevity on-stream prior to deactivation. At the same time a mechanistic correlation between the distinct role of a given precious metal and the extent of its loading in each of the formulations and quality of the corresponding desulfurized H2-rich reformate was discovered.

  14. Steam reforming of bio-ethanol over Ni on Ce-ZrO2 support: Influence of redox properties on the catalyst reactivity

    Directory of Open Access Journals (Sweden)

    Sumittra Charojrochkul

    2006-11-01

    Full Text Available The steam reforming of ethanol over Ni on Ce-ZrO2 support, (Ni/ Ce-ZrO2 were studied. The catalyst provides significantly higher reforming reactivity and excellent resistance toward carbon deposition compared to Ni/Al2O3 under the same conditions. At the temperature above 800ºC, the main products from the reforming processes over Ni/Ce-ZrO2 were H2, CO, and CO2 with small amount of CH4 depending on the inlet ethanol/steam and oxygen/ethanol ratios, whereas high hydrocarbon compounds i.e., C2H4 and C2H6 were also observed from the reforming of ethanol over Ni/Al2O3 in the range of conditions studied (700- 1000ºC.These excellent ethanol reforming performances of Ni/Ce-ZrO2 in terms of stability, reactivity and product selectivities are due to the high redox property of Ce-ZrO2. During the ethanol reforming process, in addition to the reactions on Ni surface, the gas-solid reactions between the gaseous components presented in the system (C2H5OH, C2H6, C2H4, CH4, CO2, CO, H2O, and H2 and the lattice oxygen (Ox on Ce-ZrO2 surface also take place. Among these redox reactions, the reactions of adsorbed surface hydrocarbons with the lattice oxygen (Ox (CnHm + Ox → nCO + m/2(H2 + Ox-n can eliminate the formation of high hydrocarbons (C2H6 and C2H4, which easily decompose and form carbon species on Ni surface (CnHm→ nC + m/2H2.

  15. Hydrogen production from raw bioethanol steam reforming: Optimization of catalyst composition with improved stability against various impurities

    Energy Technology Data Exchange (ETDEWEB)

    Le Valant, Anthony; Can, Fabien; Bion, Nicolas; Duprez, Daniel; Epron, Florence [Laboratoire de Catalyse en Chimie organique, UMR6503 CNRS, Universite de Poitiers, 40 avenue du recteur Pineau, 86022 Poitiers Cedex (France)

    2010-05-15

    The use of raw bioethanol is of major importance for a cost effective industrial application. Raw bioethanol contains higher alcohols as the main impurities and also aldehydes, amines, acids and esters. The effect of these impurities on the catalytic performances for ethanol steam reforming (ESR) has been studied, using a reference catalyst, Rh/MgAl{sub 2}O{sub 4}. It was shown that the aldehyde, the amine and methanol have no negative effect on the catalytic performances, contrary to the ester, acid and higher alcohols. The deactivation is mainly explained by coke formation favored by the presence of these impurities in the feed. In order to improve the stability of the catalyst and its performances in the presence of these deactivating impurities, the catalyst formulation, i.e. the composition of the support and of the metallic phase, was modified. The addition of rare earth elements instead of magnesium to the alumina support leads to a decrease of the strong and medium acid sites and to an increase of the basicity. On these modified supports, the dehydration reaction, leading to olefins, which are coke precursors, is disfavored, the ethanol conversion and the hydrogen yield are increased. The best catalytic performances were obtained with Rh/Y-Al{sub 2}O{sub 3}. Then, the metallic phase was also modified by adding a second metal (Ni, Pt or Pd). The Rh-Ni/Y-Al{sub 2}O{sub 3} catalyst leads to the highest hydrogen yield. This catalyst, tested in the presence of raw bioethanol during 24 h was very stable compared to the reference catalyst Rh/MgAl{sub 2}O{sub 4}, which was strongly deactivated after 2 h of time-on -stream. (author)

  16. FLUIDIZED BED STEAM REFORMING MINERALIZATION FOR HIGH ORGANIC AND NITRATE WASTE STREAMS FOR THE GLOBAL NUCLEAR ENERGY PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C; Michael Williams, M

    2008-01-11

    Waste streams that may be generated by the Global Nuclear Energy Partnership (GNEP) Advanced Energy Initiative may contain significant quantities of organics (0-53 wt%) and/or nitrates (0-56 wt%). Decomposition of high nitrate streams requires reducing conditions, e.g. organic additives such as sugar or coal, to reduce the NO{sub x} in the off-gas to N{sub 2} to meet the Clean Air Act (CAA) standards during processing. Thus, organics will be present during waste form stabilization regardless of which GNEP processes are chosen, e.g. organics in the feed or organics for nitrate destruction. High organic containing wastes cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by preprocessing. Alternative waste stabilization processes such as Fluidized Bed Steam Reforming (FBSR) operate at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). FBSR converts organics to CAA compliant gases, creates no secondary liquid waste streams, and creates a stable mineral waste form that is as durable as glass. For application to the high Cs-137 and Sr-90 containing GNEP waste streams a single phase mineralized Cs-mica phase was made by co-reacting illite clay and GNEP simulated waste. The Cs-mica accommodates up to 30% wt% Cs{sub 2}O and all the GNEP waste species, Ba, Sr, Rb including the Cs-137 transmutation to Ba-137. For reference, the cesium mineral pollucite (CsAlSi{sub 2}O{sub 6}), currently being studied for GNEP applications, can only be fabricated at {ge} 1000 C. Pollucite mineralization creates secondary aqueous waste streams and NO{sub x}. Pollucite is not tolerant of high concentrations of Ba, Sr or Rb and forces the divalent species into different mineral host phases. The pollucite can accommodate up to 33% wt% Cs{sub 2}O.

  17. A New Compact for Higher Education: Funding and Autonomy for Reform and Accountability

    Science.gov (United States)

    Kallison, James M., Jr.; Cohen, Philip

    2010-01-01

    Over the past few decades, America's social compact for higher education as a public good has effectively lapsed as government support of higher education has diminished. Given the need for a highly educated workforce in today's knowledge-based global economy, we propose a new compact for higher education that couples increased funding with…

  18. Ab initio thermodynamics examination of sulfur species present on Rh, Ni, and binary Rh-Ni surfaces under steam reforming reaction conditions.

    Science.gov (United States)

    Lee, Kyungtae; Song, Chunshan; Janik, Michael J

    2012-04-03

    The stable form of adsorbed sulfur species and their coverage were investigated on Rh, Ni, and Rh-Ni binary metal surfaces using density functional theory calculations and the ab initio thermodynamics framework. S adsorption, SO(x) (x = 1-4) adsorption, and metal sulfide formation were examined on Rh(111) and Ni(111) pure metals. Both Rh and Ni metals showed a preference for S surface adsorption rather than SO(x) adsorption under steam reforming conditions. The transition temperature from a clean surface (reforming conditions of 4-100 ppm S and 800 °C, Rh(1)Ni(2) is covered with (1)/(9) ML of sulfur at the lower end of this range (4-33 ppm S). The possibility of sulfate formation on Rh catalysts was examined by considering higher oxygen pressures, a Rh(221) stepped surface, and the interface between a Rh(4) cluster and CeO(2)(111) surface. SO(x) surface species are stable only at high oxygen pressure or low temperatures outside those relevant to the steam reforming of hydrocarbons.

  19. Hydrogen Production by Ethanol Steam Reforming (ESR over CeO2 Supported Transition Metal (Fe, Co, Ni, Cu Catalysts: Insight into the Structure-Activity Relationship

    Directory of Open Access Journals (Sweden)

    Michalis Konsolakis

    2016-03-01

    Full Text Available The aim of the present work was to investigate steam reforming of ethanol with regard to H2 production over transition metal catalysts supported on CeO2. Various parameters concerning the effect of temperature (400–800 °C, steam-to-carbon (S/C feed ratio (0.5, 1.5, 3, 6, metal entity (Fe, Co, Ni, Cu and metal loading (15–30 wt.% on the catalytic performance, were thoroughly studied. The optimal performance was obtained for the 20 wt.% Co/CeO2 catalyst, achieving a H2 yield of up to 66% at 400 °C. In addition, the Co/CeO2 catalyst demonstrated excellent stability performance in the whole examined temperature range of 400–800 °C. In contrast, a notable stability degradation, especially at low temperatures, was observed for Ni-, Cu-, and Fe-based catalysts, ascribed mainly to carbon deposition. An extensive characterization study, involving N2 adsorption-desorption (BET, X-ray diffraction (XRD, Scanning Electron Microscopy (SEM/EDS, X-ray Photoelectron Spectroscopy (XPS, and Temperature Programmed Reduction (H2-TPR was undertaken to gain insight into the structure-activity correlation. The excellent reforming performance of Co/CeO2 catalysts could be attributed to their intrinsic reactivity towards ethanol reforming in combination to their high surface oxygen concentration, which hinders the deposition of carbonaceous species.

  20. Development of the integrated methanol fuel processor using micro-channel patterned devices and its performance for steam reforming of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Jung Min [Department of Mineral Resources and Energy Engineering, Chonbuk Nat' l University, 664-14 Duckjin-dong, Duckjin-gu, Jeonju, Jeonbuk, 561-756 (Korea); Chang Byun, Young; Yeon Cho, Jun; Choe, Jaehoon [LG Chem, Ltd./Research Park, 104-1, Moonji-dong Yuseong-gu Daejeon, 305-380 (Korea); Ho Song, Kwang [Department of Chemical and Biological Engineering, Korea University, Seoul 136-713 (Korea)

    2007-12-15

    A plate-type integrated fuel processor consisting of three different micro-structured modules was developed for hydrogen production in a 150 W PEMFC system. This system includes a reformer with combustor, two heat exchangers, and an evaporator with a combustor. Methanol steam reforming was chosen as a means to produce hydrogen for the PEMFC system. This system could be operated without any external heat supply. Hydrogen was used as the initial combustion fuel during startup, while methanol was used later. Cu/Zn/Al{sub 2}O{sub 3} and Pt/Al{sub 2}O{sub 3} catalysts were chosen for the steam reforming of methanol and the combustion, respectively, and coated on microchannel-patterned stainless steel sheets. The integrated system was operated consistently with 80% of methanol conversion at 300 {sup circle} C for 20 h without deactivation of the catalysts. The production rate on dry basis and the composition of hydrogen was 2.4NL-{sup -1} and ca 70%, respectively. Overall the thermal efficiency of this fuel processor based on the LHV was 56.7%. (author)

  1. A Phenomenological Study on the Synergistic Role of Precious Metals in the Steam Reforming of Logistic Fuels on Bimetal-Supported Catalysts

    Directory of Open Access Journals (Sweden)

    Abdul-Majeed Azad

    2011-01-01

    Full Text Available Fuel processors are required to convert sulfur-laden logistic fuels into hydrogen-rich reformate and deliver to the fuel cell stack with little or no sulfur. Since sulfur poisons and deactivates the reforming catalyst, robust sulfur-tolerant catalysts ought to be developed. In this paper, the development, characterization and evaluation of a series of reforming catalysts containing two noble metals (with total metal loading not exceeding 1 weight percent supported on nanoscale ceria for the steam-reforming of kerosene is reported. Due to inherent synergy, a bimetallic catalyst is superior to its monometallic analog, for the same level of loading. The choice of noble metal combination in the bimetallic formulations plays a vital and meaningful role in their performance. Presence of ruthenium and/or rhodium in formulations containing palladium showed improved sulfur tolerance and significant enhancement in their catalytic activity and stability. Rhodium was responsible for higher hydrogen yields in the logistic fuel reformate. Duration of steady hydrogen production was higher in the case of RhPd (75 h than for RuPd (68 h; hydrogen generation was stable over the longest period (88 h with RuRh containing no Pd. A mechanistic correlation between the characteristic role of precious metals in the presence of each other is discussed.

  2. A Comparative Discussion of the Catalytic Activity and CO2-Selectivity of Cu-Zr and Pd-Zr (Intermetallic Compounds in Methanol Steam Reforming

    Directory of Open Access Journals (Sweden)

    Norbert Köpfle

    2017-02-01

    Full Text Available The activation and catalytic performance of two representative Zr-containing intermetallic systems, namely Cu-Zr and Pd-Zr, have been comparatively studied operando using methanol steam reforming (MSR as test reaction. Using an inverse surface science and bulk model catalyst approach, we monitored the transition of the initial metal/intermetallic compound structures into the eventual active and CO2-selective states upon contact to the methanol steam reforming mixture. For Cu-Zr, selected nominal stoichiometries ranging from Cu:Zr = 9:2 over 2:1 to 1:2 have been prepared by mixing the respective amounts of metallic Cu and Zr to yield different Cu-Zr bulk phases as initial catalyst structures. In addition, the methanol steam reforming performance of two Pd-Zr systems, that is, a bulk system with a nominal Pd:Zr = 2:1 stoichiometry and an inverse model system consisting of CVD-grown ZrOxHy layers on a polycrystalline Pd foil, has been comparatively assessed. While the CO2-selectivity and the overall catalytic performance of the Cu-Zr system is promising due to operando formation of a catalytically beneficial Cu-ZrO2 interface, the case for Pd-Zr is different. For both Pd-Zr systems, the low-temperature coking tendency, the high water-activation temperature and the CO2-selectivity spoiling inverse WGS reaction limit the use of the Pd-Zr systems for selective MSR applications, although alloying of Pd with Zr opens water activation channels to increase the CO2 selectivity.

  3. Synthesis and Activity Test of Cu/ZnO/Al2O3 for the Methanol Steam Reforming as a Fuel Cell’s Hydrogen Supplier

    Directory of Open Access Journals (Sweden)

    IGBN Makertihartha

    2009-05-01

    Full Text Available The synthesis of hydrogen from hydrocarbons through the steam reforming of methanol on Cu/ZnO/Al2O3 catalyst has been investigated. This process is assigned to be one of the promising alternatives for fuel cell hydrogen process source. Hydrogen synthesis from methanol can be carried out by means of methanol steam reforming which is a gas phase catalytic reaction between methanol and water. In this research, the Cu/ZnO/Al2O3 catalyst prepared by the dry impregnation was used. The specific surface area of catalyst was 194.69 m2/gram.The methanol steam reforming (SRM reaction was carried out by means of the injection of gas mixture containing methanol and water with 1:1.2 mol ratio and 20-90 mL/minute feed flow rate to a fixed bed reactor loaded by 1 g of catalyst. The reaction temperature was 200-300 °C, and the reactor pressure was 1 atm. Preceding the reaction, catalyst was reduced in the H2/N2 mixture at 160 °C. This study shows that at 300 °C reaction temperature, methanol conversion reached 100% at 28 mL/minute gas flow rate. This conversion decreased significantly with the increase of gas flow rate. Meanwhile, the catalyst prepared for SRM was stable in 36 hours of operation at 260 °C. The catalyst exhibited a good stability although the reaction condition was shifted to a higher gas flow rate.

  4. Development of high-integrated steam reformer for mobile PEM-fuel cell systems; Entwicklung eines hochintegrierten Dampfreformers fuer mobile PEM-Brennstoffzellensysteme

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, J.

    2007-07-01

    Auxiliary Power Units (APUs) based on fuel cells are an interesting means of satisfying the increasing demand of electrical energy in automobiles, since they have the potential to be efficient, low emission and operate independent of the engine. In this context, fuel cell systems based on hydrogen driven polyelectrolyte fuel cell (PEFC), a steam reformer, and a hydrogen selective membrane are a promising option. It was the scope of this work to design an optimal system configuration and develop an integrated burnerreformerunit for the system under examination. In system design, Aspen Plus was used to model the steadystate operation of the fuel cell system at full load. Sensitivity analyses were conducted to understand the interdependencies of the systems components and identify starting points for system optimization. Based on these starting points several new system configurations have been developed and simulated. Comparing these systems, a system in which the retentate is recirculated partly turned out to be optimal. By partly recirculating retentate, the system's efficiency increases by 6 % and the maximum temperature allowing the closure of the water balance rises by 10%. In general, the presence of hydrogen and the increase in the steam molar fraction going along with the recirculating have a positive impact on catalyst life time (mild operation conditions). The conceptual design, manufacture and test of a steam reformer heated by a porous burner were other key activities of this work. The operation of the reformer fed with gasoline was critical. Although single measuring points could be gathered, a trouble and cokefree operation of the reformer was even under mild operation conditions not possible. A comparison of the reformer to new steam reformers known from the literature is based on experiments operating the reformer on methane. It shows the superiority concerning the load changing capability (1:20 instead of 1:5) as well as the comparability of the

  5. 2009 PILOT SCALE FLUIDIZED BED STEAM REFORMING TESTING USING THE THOR (THERMAL ORGANIC REDUCTION) PROCESS: ANALYTICAL RESULTS FOR TANK 48H ORGANIC DESTRUCTION - 10408

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M.; Jantzen, C.; Burket, P.; Crawford, C.; Daniel, G.; Aponte, C.; Johnson, C.

    2009-12-28

    The Savannah River Site (SRS) must empty the contents of Tank 48H, a 1.3 million gallon Type IIIA HLW storage tank, to return this tank to service. The tank contains organic compounds, mainly potassium tetraphenylborate that cannot be processed downstream until the organic components are destroyed. The THOR{reg_sign} Treatment Technologies (TTT) Fluidized Bed Steam Reforming (FBSR) technology, herein after referred to as steam reforming, has been demonstrated to be a viable process to remove greater than 99.9% of the organics from Tank 48H during various bench scale and pilot scale tests. These demonstrations were supported by Savannah River Remediation (SRR) and the Department of Energy (DOE) has concurred with the SRR recommendation to proceed with the deployment of the FBSR technology to treat the contents of Tank 48H. The Savannah River National Laboratory (SRNL) developed and proved the concept with non-radioactive simulants for SRR beginning in 2003. By 2008, several pilot scale campaigns had been completed and extensive crucible testing and bench scale testing were performed in the SRNL Shielded Cells using Tank 48H radioactive sample. SRNL developed a Tank 48H non-radioactive simulant complete with organic compounds, salt, and metals characteristic of those measured in a sample of the radioactive contents of Tank 48H. FBSR Pilot Scaled Testing with the Tank 48H simulant has demonstrated the ability to remove greater than 98% of the nitrites and greater than 99.5% of the nitrates from the Tank 48H simulant, and to form a solid product that is primarily alkali carbonate. The alkali carbonate is soluble and, thus, amenable to pumping as a liquid to downstream facilities for processing. The FBSR technology was demonstrated in October of 2006 in the Engineering Scale Test Demonstration (ESTD) pilot scale steam reformer at the Hazen Research Inc. (HRI) facility in Golden, CO. Additional ESTD tests were completed in 2008 and in 2009 that further demonstrated the

  6. Catalytic Steam Reforming of Gasifier Tars: On-Line Monitoring of Tars with a Transportable Molecular-Beam Mass Spectrometer; Milestone Completion Report

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, D.; Ratcliff, M.; Dayton, D.

    2002-05-01

    A method for evaluating catalytic tar decomposition in real time is presented. The effectiveness of two catalysts are compared. A key technical and economic barrier to commercialization of biomass gasification technologies is the removal of tars that are unavoidably formed in this thermochemical process. Tars contain fuel value; however, they are problematic in gas engines (both reciprocating and turbine) because they condense in the fuel delivery system, forming deposits that negatively affect operation and efficiency. These tars also combust with high luminosity, potentially forming soot particles. The conventional technology for tar removal is wet scrubbing. Although this approach has shown some success, there are significant equipment and operating costs associated with it. In order to prevent the generation of toxic wastewater, the tars must be separated and either disposed as hazardous waste or, preferably, combusted in the gasification plant. A conceptually better approach is catalytic steam reforming of the tars to hydrogen and carbon monoxide (CO), effectively increasing the gasification efficiency and eliminating the problems mentioned above. In FY2000, Battelle Columbus Laboratories attempted to demonstrate integrated gasification-gas turbine operation using catalytic steam reforming of tars. NREL participated in those tests using the transportable molecular-beam mass spectrometer (TMBMS) to monitor the catalytic reactor's performance on-line [10]. Unfortunately, the pilot plant tests encountered operational problems that prevented conclusive determination of the efficacy of the selected catalyst (Battelle's DN34). In FY2001, NREL performed on-site tar steam reforming tests using a slip-stream of hot pyrolysis gas from the Thermochemical Process Development Unit (TCPDU), which was directed to a bench-scale fluidized bed reactor system designed expressly for this purpose. Supporting this effort, the TMBMS was employed to provide on-line analysis

  7. Factors affecting the long-term stability of mesoporous nickel-based catalysts in combined steam and dry reforming of methane

    OpenAIRE

    Jabbour, K.; El Hassan, N.; Davidson, A.; Casale, S.; Massiani, Pascale

    2016-01-01

    International audience; An ordered mesoporous " one-pot " nickel-alumina catalyst (5 wt% Ni) was synthesized using the evaporation-induced self-assembly method. Compared to an impregnated and to a non-porous catalysts, the ordered "one-pot" Ni-alumina sample displayed, after in-situ reduction, the highest and the most stable catalytic performances along 40h of run at 800°C in combined steam and dry reforming of methane, with conversion and selectivity values close to the thermodynamic expecte...

  8. Catalyst Deactivation and Regeneration in Low Temperature Ethanol Steam Reforming with Rh/CeO2-ZrO2 Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Hyun-Seog; Platon, Alex; Wang, Yong; King, David L.

    2006-08-01

    Rh/CeO2-ZrO2 catalysts with various CeO2/ZrO2 ratios have been applied to H2 production from ethanol steam reforming at low temperatures. The catalysts all deactivated with time on stream (TOS) at 350 C. The addition of 0.5% K has a beneficial effect on catalyst stability, while 5% K has a negative effect on catalytic activity. The catalyst could be regenerated considerably even at ambient temperature and could recover its initial activity after regeneration above 200 C with 1% O2. The results are most consistent with catalyst deactivation due to carbonaceous deposition on the catalyst.

  9. Investigation of the promoting effect of Mn on a Pt/C catalyst for the steam and aqueous phase reforming of glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Bossola, Filippo; Pereira-Hernández, Xavier Isidro; Evangelisti, Claudio; Wang, Yong; Dal Santo, Vladimiro

    2017-05-01

    The catalytic performances in steam reforming (SR) and aqueous phase reforming (APR) of glycerol of a bimetallic Pt-Mn catalyst supported on activated carbon are investigated and correlated with the surface properties of the catalyst. Under SR conditions, Mn showed a significant promoting effect over Pt/C, both in terms of hydrogen production rate and conversion, with a higher selectivity toward the glycerol dehydration products. Upon addition of Mn the amount of strong Lewis acid sites increased, promoting the dehydration of glycerol and favoring the CAO over CAC cleavage at expenses of hydrogen selectivity. Conversely, under APR conditions, a slightly higher hydrogen selectivity and only minimal enhancement in hydrogen production were found, while the products selectivity was comparable to Pt/C. Most of Mn leached into the aqueous media, but the remaining (<5% of the fresh parent sample) might be alloyed with Pt and promote the CO desorption from neighbor Pt sites.

  10. A contribution to the modelling of steam reformers for natural gas fuelled fuel cell heating systems; Ein Beitrag zur Modellierung von Dampfreformern fuer erdgasbetriebene Brennstoffzellenheizgeraete

    Energy Technology Data Exchange (ETDEWEB)

    Nietzsche, Joerg

    2010-10-29

    The author attempted to verify the assumptions and simplifications of common mathematical models of small-scale steam reformers. The emphasis was on the derivation of important model parameters on the basis of easily identifiable catalyst, fluid and reactor characteristics. An easily validated 2D model of a reformer tube is then used for a wide sensitivity analysis and a comparative investigation of various reactor types. [German] Die Motivation dieser Arbeit liegt in der Ueberpruefung der bislang in mathematischen Modellen von kleintechnischen Dampfreformern getroffenen Annahmen und Vereinfachungen, mit speziellem Augenmerk auf die Aufklaerung der Herkunft wichtiger Modellparameter anhand von leicht bestimmbaren Katalysator-, Fluid- und Reaktoreigenschaften. Ein leicht zu validierendes, zweidimensionales Modell eines Reformerrohres soll im Anschluss fuer eine breit angelegte Sensitivitaetsanalyse und eine vergleichende Untersuchung verschiedener Reaktortypen dienen.

  11. MINERALIZATION OF RADIOACTIVE WASTES BY FLUIDIZED BED STEAM REFORMING (FBSR): COMPARISONS TO VITREOUS WASTE FORMS, AND PERTINENT DURABILITY TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C

    2008-12-26

    The Savannah River National Laboratory (SRNL) was requested to generate a document for the Washington State Department of Ecology and the U.S. Environmental Protection Agency that would cover the following topics: (1) A description of the mineral structures produced by Fluidized Bed Steam Reforming (FBSR) of Hanford type Low Activity Waste (LAW including LAWR which is LAW melter recycle waste) waste, especially the cage structured minerals and how they are formed. (2) How the cage structured minerals contain some contaminants, while others become part of the mineral structure (Note that all contaminants become part of the mineral structure and this will be described in the subsequent sections of this report). (3) Possible contaminant release mechanisms from the mineral structures. (4) Appropriate analyses to evaluate these release mechanisms. (5) Why the appropriate analyses are comparable to the existing Hanford glass dataset. In order to discuss the mineral structures and how they bond contaminants a brief description of the structures of both mineral (ceramic) and vitreous waste forms will be given to show their similarities. By demonstrating the similarities of mineral and vitreous waste forms on atomic level, the contaminant release mechanisms of the crystalline (mineral) and amorphous (glass) waste forms can be compared. This will then logically lead to the discussion of why many of the analyses used to evaluate vitreous waste forms and glass-ceramics (also known as glass composite materials) are appropriate for determining the release mechanisms of LAW/LAWR mineral waste forms and how the durability data on LAW/LAWR mineral waste forms relate to the durability data for LAW/LAWR glasses. The text will discuss the LAW mineral waste form made by FBSR. The nanoscale mechanism by which the minerals form will be also be described in the text. The appropriate analyses to evaluate contaminant release mechanisms will be discussed, as will the FBSR test results to

  12. DURABILITY TESTING OF FLUIDIZED BED STEAM REFORMER WASTE FORMS FOR SODIUM BEARING WASTE AT IDAHO NATIONAL LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C; Carol Jantzen, C

    2007-08-27

    Fluidized Bed Steam Reforming (FBSR) processing of Sodium Bearing Waste simulants was performed in December 2006 by THOR{sup sm} Treatment Technologies LLC (TTT) The testing was performed at the Hazen Research Inc. (HRI) pilot plant facilities in Golden, CO. FBSR products from these pilot tests on simulated waste representative of the SBW at the Idaho Nuclear Technology and Engineering Center (INTEC) were subsequently transferred to the Savannah River National Laboratory (SRNL) for characterization and leach testing. Four as-received Denitration and Mineralization Reformer (DMR) granular/powder samples and four High Temperature Filter (HTF) powder samples were received by SRNL. FBSR DMR samples had been taken from the ''active'' bed, while the HTF samples were the fines collected as carryover from the DMR. The process operated at high fluidizing velocities during the mineralization test such that nearly all of the product collected was from the HTF. Active bed samples were collected from the DMR to monitor bed particle size distribution. Characterization of these crystalline powder samples shows that they are primarily Al, Na and Si, with > 1 wt% Ca, Fe and K. The DMR samples contained less than 1 wt% carbon and the HTF samples ranged from 13 to 26 wt% carbon. X-ray diffraction analyses show that the DMR samples contained significant quantities of the Al{sub 2}O{sub 3} startup bed. The DMR samples became progressively lower in starting bed alumina with major Na/Al/Si crystalline phases (nepheline and sodium aluminosilicate) present as cumulative bed turnover occurred but 100% bed turnover was not achieved. The HTF samples also contained these major crystalline phases. Durability testing of the DMR and HTF samples using the ASTM C1285 Product Consistency Test (PCT) 7-day leach test at 90 C was performed along with several reference glass samples. Comparison of the normalized leach rates for the various DMR and HTF components was made with the

  13. A Phenomenological Study on the Synergistic Role of Precious Metals and the Support in the Steam Reforming of Logistic Fuels on Monometal Supported Catalysts

    Directory of Open Access Journals (Sweden)

    Abdul-Majeed Azad

    2010-01-01

    Full Text Available Clean power source utilizing vast logistic fuel reserves (jet fuels, diesel, and coal would be the main driver in the 21st century for high efficiency. Fuel processors are required to convert these fuels into hydrogen-rich reformate for extended periods in the presence of sulfur, and deliver hydrogen with little or no sulfur to the fuel cell stack. However, the jet and other logistic fuels are invariably sulfur-laden. Sulfur poisons and deactivates the reforming catalyst and therefore, to facilitate continuous uninterrupted operation of logistic fuel processors, robust sulfur-tolerant catalysts ought to be developed. New noble metal-supported ceria-based sulfur-tolerant nanocatalysts were developed and thoroughly characterized. In this paper, the performance of single metal-supported catalysts in the steam-reforming of kerosene, with 260 ppm sulfur is highlighted. It was found that ruthenium-based formulation provided an excellent balance between hydrogen production and stability towards sulfur, while palladium-based catalyst exhibited rapid and steady deactivation due to the highest propensity to sulfur poisoning. The rhodium supported system was found to be most attractive in terms of high hydrogen yield and long-term stability. A mechanistic correlation between the role of the nature of the precious metal and the support for generating clean desulfurized H2-rich reformate is discussed.

  14. Design principles of an integrated natural gas steam reformer for stationary PEMFC systems; Auslegungsprinzipien eines integrierten Erdgas-Dampfreformers fuer stationaere PEM-Brennstoffzellen-Systeme

    Energy Technology Data Exchange (ETDEWEB)

    Grosser, K.

    2006-09-05

    The function, efficiency and economic efficiency of fuel cell systems are defined by various influencing factors, especially in the case of hydrogen production by steam reforming of natural gas. The dissertation describes the design of integrated natural gas steam reformers for PEM fuel cell systems in the electric power range of 1- 10 kW; the influencing factors of the process are investigated and weighted. Design principles are derived from which optimum operating parameters can be defined and which can be used for designing a multitude of components. [German] Die Funktionsfaehigkeit, der Wirkungsgrad und die Wirtschaftlichkeit von Brennstoffzellen-Systemen werden insbesondere bei der Wasserstofferzeugung durch Erdgas-Dampfreformierung durch verschiedene Einflussfaktoren bestimmt. In dieser Dissertation werden die Methodik der Auslegung integrierter Erdgas-Dampfreformer fuer PEM-Brennstoffzellen-Systeme im elektrischen Leistungsbereich von 1-10 kW beschrieben und die prozessbestimmenden Einflussfaktoren untersucht und gewichtet. Daraus werden Auslegungsprinzipien abgeleitet, mit denen sich die optimalen Betriebsparameter ermitteln lassen und die zur konstruktiven Gestaltung einer Vielzahl von Anlagenteilen genutzt werden koennen.

  15. The Influence of Promoter on Ni(15)/La(5)/γ-Al2O3 Catalyst in CO2-Steam Reforming of Methane to Syngas at High Pressure.

    Science.gov (United States)

    Ok, Hye Jeong; Park, Myung Hee; Moon, Dong Ju; Kim, Jong Ho; Park, Nam Cook; Kim, Young Chul

    2015-01-01

    Catalysts were investigated with respect to catalytic activity and coke formation in combined steam and carbon dioxide reforming of methane to develop a highly active and stable catalyst for gas to liquid processes. Ni/La-X/Al2O3 (X = Co, Ce, Mo) catalysts were prepared by an impregnation method. The combined steam and carbon dioxide reforming of methane reaction were studied as a function of high pressure (20 bar) in a fixed bed reactor system. X-ray diffraction, BET surface area, and H2-temperature programmed reduction were used to observe the characteristics of the prepared catalysts. Coke formation of used catalysts was examined by scanning electron microscopy, transmission electron microscopy and the coke amount of used catalysts was measured by thermo gravimetric analysis. Catalysts with smaller particle size had a higher temperature of reduction, which had a positive effect on catalytic activity. The improvement in active site rise and dispersion and the lowest metal crystal size had an effect on catalyst activity. As a result, the Ni/La-Co/Al2O3 catalyst showed the highest activity at a reaction temperature of 800 degrees C and a reaction pressure of 20 bar.

  16. Integration of Methane Steam Reforming and Water Gas Shift Reaction in a Pd/Au/Pd-Based Catalytic Membrane Reactor for Process Intensification.

    Science.gov (United States)

    Castro-Dominguez, Bernardo; Mardilovich, Ivan P; Ma, Liang-Chih; Ma, Rui; Dixon, Anthony G; Kazantzis, Nikolaos K; Ma, Yi Hua

    2016-09-19

    Palladium-based catalytic membrane reactors (CMRs) effectively remove H₂ to induce higher conversions in methane steam reforming (MSR) and water-gas-shift reactions (WGS). Within such a context, this work evaluates the technical performance of a novel CMR, which utilizes two catalysts in series, rather than one. In the process system under consideration, the first catalyst, confined within the shell side of the reactor, reforms methane with water yielding H₂, CO and CO₂. After reforming is completed, a second catalyst, positioned in series, reacts with CO and water through the WGS reaction yielding pure H₂O, CO₂ and H₂. A tubular composite asymmetric Pd/Au/Pd membrane is situated throughout the reactor to continuously remove the produced H₂ and induce higher methane and CO conversions while yielding ultrapure H₂ and compressed CO₂ ready for dehydration. Experimental results involving (i) a conventional packed bed reactor packed (PBR) for MSR, (ii) a PBR with five layers of two catalysts in series and (iii) a CMR with two layers of two catalysts in series are comparatively assessed and thoroughly characterized. Furthermore, a comprehensive 2D computational fluid dynamics (CFD) model was developed to explore further the features of the proposed configuration. The reaction was studied at different process intensification-relevant conditions, such as space velocities, temperatures, pressures and initial feed gas composition. Finally, it is demonstrated that the above CMR module, which was operated for 600 h, displays quite high H₂ permeance and purity, high CH₄ conversion levels and reduced CO yields.

  17. Stabilization of Hydrogen Production via Methanol Steam Reforming in Microreactor by Al2O3 Nano-Film Enhanced Catalyst Adhesion.

    Science.gov (United States)

    Jeong, Heondo; Na, Jeong-Geol; Jang, Min Su; Ko, Chang Hyun

    2016-05-01

    In hydrogen production by methanol steam reforming reaction with microchannel reactor, Al2O3 thin film formed by atomic layer deposition (ALD) was introduced on the surface of microchannel reactor prior to the coating of catalyst particles. Methanol conversion rate and hydrogen production rate, increased in the presence of Al2O3 thin film. Over-view and cross-sectional scanning electron microscopy study showed that the adhesion between catalyst particles and the surface of microchannel reactor enhanced due to the presence of Al2O3 thin film. The improvement of hydrogen production rate inside the channels of microreactor mainly came from the stable fixation of catalyst particles on the surface of microchannels.

  18. Pembuatan Katalis Cu/ZnO/Al2O3 untuk Proses Steam Reforming Metanol menjadi Hidrogen sebagai Bahan Bakar Alternatif

    Directory of Open Access Journals (Sweden)

    Husni Husin

    2010-06-01

    Full Text Available Study on the use of copper zinc oxide supported on alumina catalyst for steam reforming of methanol to hydrogen has been done. The aim of this work is to study the catalytic properties of copper based catalysts used in the steam reforming of methanol. This method is known as one of the most favorable catalytic processes for producing hydrogen on-board. The catalyst was prepared by impregnation method with Cu loading of 5%, 10%, and 15%,. The X-ray diffraction pattern shows that the catalyst compositions are Cu, CuO, ZnO, and Al2O3. The reactions were carried out in the fixed bed tubular reactor operating at temperatures of 150oC, 200oC, 250oC, 300oC, and 350oC and atmospheric pressure. The product was analyzed using Shimadzu Gas Chromatography GC 8A with mole sieve 5A and porapak-N column 80/100 mesh. The performance of the catalyst shows that the highest methanol conversion was 86% over Cu/ZnO/Al2O3 catalyst with 15% of Cu loading. The selectivity and yield of hydrogen was 66% and 57% respectively over Cu/ZnO/Al2O3 catalyst with 15% of Cu loading. Selectivity of carbon dioxide is 18% over Cu/ZnO/Al2O3 catalyst with 15% of Cu loading at 300oC. Keywords: alumina oxide catalyst, copper zinc oxide, hydrogen, impregnation

  19. A study on methanol steam reforming to CO 2 and H 2 over the La 2CuO 4 nanofiber catalyst

    Science.gov (United States)

    Gao, Lizhen; Sun, Gebiao; Kawi, Sibudjing

    2008-01-01

    The La 2CuO 4 crystal nanofibers were prepared by using single-walled carbon nanotubes as templates under mild hydrothermal conditions. The steam reforming of methanol (SRM) to CO 2 and H 2 over such nanofiber catalysts was studied. At the low temperature of 150 °C and steam/methanol=1.3, methanol was completely (100%, 13.8 g/h g catalyst) converted to hydrogen and CO 2 without the generation of CO. Within the 60 h catalyst lifespan test, methanol conversion was maintained at 98.6% (13.6 g/h g catalyst) and with 100% CO 2 selectivity. In the meantime, for distinguishing the advantage of nanoscale catalyst, the La 2CuO 4 bulk powder was prepared and tested for the SRM reaction for comparison. Compared with the La 2CuO 4 nanofiber, the bulk powder La 2CuO 4 showed worse catalytic activity for the SRM reaction. The 100% conversion of methanol was achieved at the temperature of 400 °C, with the products being H 2 and CO 2 together with CO. The catalytic activity in terms of methanol conversion dropped to 88.7% (12.2 g/h g catalyst) in 60 h. The reduction temperature for nanofiber La 2CuO 4 was much lower than that for the La 2CuO 4 bulk powder. The nanofibers were of higher specific surface area (105.0 m 2/g), metal copper area and copper dispersion. The in situ FTIR and EPR experiments were employed to study the catalysts and catalytic process. In the nanofiber catalyst, there were oxygen vacancies. H 2-reduction resulted in the generation of trapped electrons [e] on the vacancy sites. Over the nanofiber catalyst, the intermediate H 2CO/HCO was stable and was reformed to CO 2 and H 2 by steam rather than being decomposed directly to CO and H 2. Over the bulk counterpart, apart from the direct decomposition of H 2CO/HCO to CO and H 2, the intermediate H 2COO might go through two decomposition ways: H 2COO=CO+H 2O and H 2COO=CO 2+H 2.

  20. Thermodynamic analysis of solid oxide fuel cells operated with methanol and ethanol under direct utilization, steam reforming, dry reforming or partial oxidation conditions

    Science.gov (United States)

    Cimenti, M.; Hill, J. M.

    There is increasing interest in developing solid oxide fuel cells (SOFC) for portable applications. For these devices it would be convenient to directly use a liquid fuel such as methanol and ethanol rather than hydrogen. The direct utilization of alcohol fuels in SOFC involves several processes, including the deposition of carbon, which can lead to irreversible deactivation of the fuel cell. Several publications have addressed the thermodynamic analysis of the reforming of methanol (MeOH) and ethanol (EtOH) in SOFC, but none have considered the direct utilization of these fuels. The equilibrium compositions, the carbon deposition boundaries, and the electromotive forces for the direct utilization and partial oxidation of methanol and ethanol in SOFC as a function of the fuel utilization are obtained in this study. In addition, the minimum amounts of H 2O, and CO 2 for direct and indirect reforming with MeOH and EtOH to avoid carbon formation are calculated.

  1. Hydrogen Production by Steam Reforming of Ethanol over Nickel Catalysts Supported on Sol Gel Made Alumina: Influence of Calcination Temperature on Supports.

    Science.gov (United States)

    Yaakob, Zahira; Bshish, Ahmed; Ebshish, Ali; Tasirin, Siti Masrinda; Alhasan, Fatah H

    2013-05-30

    Selecting a proper support in the catalyst system plays an important role in hydrogen production via ethanol steam reforming. In this study, sol gel made alumina supports prepared for nickel (Ni) catalysts were calcined at different temperatures. A series of (Ni/AlS.G.) catalysts were synthesized by an impregnation procedure. The influence of varying the calcination temperature of the sol gel made supports on catalyst activity was tested in ethanol reforming reaction. The characteristics of the sol gel alumina supports and Ni catalysts were affected by the calcination temperature of the supports. The structure of the sol gel made alumina supports was transformed in the order of γ → (γ + θ) → θ-alumina as the calcination temperature of the supports increased from 600 °C to 1000 °C. Both hydrogen yield and ethanol conversion presented a volcano-shaped behavior with maximum values of 4.3 mol/mol ethanol fed and 99.5%, respectively. The optimum values were exhibited over Ni/AlS.G800 (Ni catalyst supported on sol gel made alumina calcined at 800 °C). The high performance of the Ni/AlS.G800 catalyst may be attributed to the strong interaction of Ni species and sol gel made alumina which lead to high nickel dispersion and small particle size.

  2. One-Pot Synthesis of Mesoporous Ni-Ti-Al Ternary Oxides: Highly Active and Selective Catalysts for Steam Reforming of Ethanol.

    Science.gov (United States)

    Gonçalves, Alexandre A S; Faustino, Patrícia B; Assaf, José M; Jaroniec, Mietek

    2017-02-22

    One-pot synthesis of nanostructured ternary oxides of Ni, Al, and Ti was designed and performed via evaporation induced self-assembly (EISA). For the purpose of comparison, analogous oxides were also prepared by the impregnation method. The resulting materials were applied in two catalytic reactions: steam reforming of ethanol (SRE) for H2 production (subjected to prior activation with H2) and ethanol dehydration (ED; used without prior activation), to in situ analyze carbon accumulation by ethylene depletion when ethanol interacts with acidic sites present on the support. Modification of Ni-Al mixed oxides with titania was shown to have several benefits. CO2, NH3, and propylamine sorption data indicate a decrease in the strength of acidic and basic sites after addition of titania, which in turn slowed down the carbon accumulation during the ED reaction. These changes in interactions between ethanol and byproducts with the support led to different reaction pathways in SRE, indicating that the catalysts obtained by EISA with titania addition showed higher ethylene selectivity and CO2/CO ratios. The opposite was observed for the impregnated catalysts, which were less coke-stable during ED reactions and showed no ethylene selectivity in SRE. Carbon formed during ED reactions was shown to be thermodynamically less favorable and easier to decompose in the presence of titania. All catalysts studied displayed similar and high selectivities (∼80%) and yields (∼5.3 molH2/molethanol) toward H2, which place them among the most active and selective catalysts for SRE. These results indicate the importance of tailoring the support surface acidity to achieve high reforming performance and higher selectivity toward SRE, one of the key processes to produce cleaner and efficient fuels. For an efficient reforming process, the yield of byproducts is low but still they affect the catalyst stability in the long-run, thus this work may impact future studies toward development of near

  3. Integration of Methane Steam Reforming and Water Gas Shift Reaction in a Pd/Au/Pd-Based Catalytic Membrane Reactor for Process Intensification

    Science.gov (United States)

    Castro-Dominguez, Bernardo; Mardilovich, Ivan P.; Ma, Liang-Chih; Ma, Rui; Dixon, Anthony G.; Kazantzis, Nikolaos K.; Ma, Yi Hua

    2016-01-01

    Palladium-based catalytic membrane reactors (CMRs) effectively remove H2 to induce higher conversions in methane steam reforming (MSR) and water-gas-shift reactions (WGS). Within such a context, this work evaluates the technical performance of a novel CMR, which utilizes two catalysts in series, rather than one. In the process system under consideration, the first catalyst, confined within the shell side of the reactor, reforms methane with water yielding H2, CO and CO2. After reforming is completed, a second catalyst, positioned in series, reacts with CO and water through the WGS reaction yielding pure H2O, CO2 and H2. A tubular composite asymmetric Pd/Au/Pd membrane is situated throughout the reactor to continuously remove the produced H2 and induce higher methane and CO conversions while yielding ultrapure H2 and compressed CO2 ready for dehydration. Experimental results involving (i) a conventional packed bed reactor packed (PBR) for MSR, (ii) a PBR with five layers of two catalysts in series and (iii) a CMR with two layers of two catalysts in series are comparatively assessed and thoroughly characterized. Furthermore, a comprehensive 2D computational fluid dynamics (CFD) model was developed to explore further the features of the proposed configuration. The reaction was studied at different process intensification-relevant conditions, such as space velocities, temperatures, pressures and initial feed gas composition. Finally, it is demonstrated that the above CMR module, which was operated for 600 h, displays quite high H2 permeance and purity, high CH4 conversion levels and reduced CO yields. PMID:27657143

  4. Vapor-liquid activity coefficients for methanol and ethanol from heat of solution data: application to steam-methane reforming.

    Science.gov (United States)

    Kunz, R G; Baade, W F

    2001-11-16

    This paper presents equations and curves to calculate vapor-liquid phase equilibria for methanol and ethanol in dilute aqueous solution as a function of temperature, using activity coefficients at infinite dilution. These thermodynamic functions were originally derived to assess the distribution of by-product contaminants in the process condensate and the steam-system deaerator of a hydrogen plant [Paper ENV-00-171 presented at the NPRA 2000 Environmental Conference, San Antonio, TX, 10-12 September 2000], but have general applicability to other systems as well. The functions and calculation method described here are a necessary piece of an overall prediction technique to estimate atmospheric emissions from the deaerator-vent when the process condensate is recycled as boiler feed water (BFW) make-up. Having such an estimation technique is of particular significance at this time because deaerator-vent emissions are already coming under regulatory scrutiny in California [Emissions from Hydrogen Plant Process Vents, Adopted 21 January 2000] followed closely elsewhere in the US, and eventually worldwide. The overall technique will enable a permit applicant to estimate environmental emissions to comply with upcoming regulations, and a regulatory agency to evaluate those estimates. It may also be useful to process engineers as a tool to estimate contaminant concentrations and flow rates in internal process streams such as the steam-generating system. Metallurgists and corrosion engineers might be able to use the results for materials selection.

  5. Single Step Bi-reforming and Oxidative Bi-reforming of Methane (Natural Gas) with Steam and Carbon Dioxide to Metgas (CO-2H2) for Methanol Synthesis: Self-Sufficient Effective and Exclusive Oxygenation of Methane to Methanol with Oxygen.

    Science.gov (United States)

    Olah, George A; Goeppert, Alain; Czaun, Miklos; Mathew, Thomas; May, Robert B; Prakash, G K Surya

    2015-07-15

    Catalysts based on suitable metal oxide supports, such as NiO/MgO and CoO/MgO, were shown to be active for single step bi-reforming, the combined steam and dry reforming of methane or natural gas with H2O and CO2 exclusively to metgas (CO-2H2) for efficient methanol synthesis. Reactions were carried out in a tubular flow reactor under pressures up to 42 bar at 830-910 °C. Using a CH4 to steam to CO2 ratio of ∼3:2:1 in the gas feed, the H2/CO ratio of 2:1 was achieved, which is desired for subsequent methanol synthesis. The needed 2/1 steam/CO2 feed ratio together with the reaction heat for the endothermic bi-reforming can be conveniently obtained by the complete combustion of a quarter part of the overall used methane (natural gas) with oxygen of the air (oxidative bi-reforming). Complete combustion of a part of methane followed by bi-reforming leads to the production of metgas (H2/CO in 2:1 mol ratio) for self-sufficient exclusive methanol synthesis. The long sought after but elusive efficient and selective oxygenation of methane to methanol is thus achieved in an effective and economic way without any oxidation byproduct formation according to CH4 + 1/2O2 → CH3OH.

  6. Enhancement of Glycerol Steam Reforming Activity and Thermal Stability by Incorporating CeO2 and TiO2 in Ni- and Co-MCM-41 Catalysts

    Science.gov (United States)

    Dade, William N.

    Hydrogen (H2) has many applications in industry with current focus shifted to production of hydrocarbon fuels and valuable oxygenates using the Fischer-Tropsch technology and direct use in proton exchange membrane fuel cell (PEMFC). Hydrogen is generally produced via steam reforming of natural gas or alcohols like methanol and ethanol. Glycerol, a by-product of biodiesel production process, is currently considered to be one of the most attractive sources of sustainable H2 due to its high H/C ratio and bio-based origin. Ni and Co based catalysts have been reported to be active in glycerol steam reforming (GSR); however, deactivation of the catalysts by carbon deposition and sintering under GSR operating conditions is a major challenge. In this study, a series of catalysts containing Ni and Co nanoparticles incorporated in CeO2 and TiO2 modified high surface area MCM-41 have been synthesized using one-pot method. The catalysts are tested for GSR (at H2O/Glycerol mole ratio of 12 and GHSV of 2200 h-1) to study the effect of support modification and reaction temperature (450 - 700 °C) on the product selectivity and long term stability. GSR results revealed that all the catalysts performed significantly well exhibiting over 85% glycerol conversion at 650 °C except Ni catalysts that showed better low temperature activities. Deactivation studies of the catalysts conducted at 650 °C indicated that the Ni-TiO2-MCM-41 and Ni-CeO 2-MCM-41 were resistant to deactivation with ˜100% glycerol conversion for 40 h. In contrast, Co-TiO2-MCM-41 perform poorly as the catalyst rapidly deactivated after 12 h to yield ˜20% glycerol conversion after 40 h. The WAXRD and TGA-DSC analyses of spent catalysts showed a significant amount of coke deposition that might explain catalysts deactivation. The flattening shape of the original BET type IV isotherm with drastic reduction of catalyst surface area can also be responsible for observed drop in catalysts activities.

  7. Hydrogen production by reforming of liquid hydrocarbons in a membrane reactor for portable power generation-Experimental studies

    Science.gov (United States)

    Damle, Ashok S.

    One of the most promising technologies for lightweight, compact, portable power generation is proton exchange membrane (PEM) fuel cells. PEM fuel cells, however, require a source of pure hydrogen. Steam reforming of hydrocarbons in an integrated membrane reactor has potential to provide pure hydrogen in a compact system. Continuous separation of product hydrogen from the reforming gas mixture is expected to increase the yield of hydrogen significantly as predicted by model simulations. In the laboratory-scale experimental studies reported here steam reforming of liquid hydrocarbon fuels, butane, methanol and Clearlite ® was conducted to produce pure hydrogen in a single step membrane reformer using commercially available Pd-Ag foil membranes and reforming/WGS catalysts. All of the experimental results demonstrated increase in hydrocarbon conversion due to hydrogen separation when compared with the hydrocarbon conversion without any hydrogen separation. Increase in hydrogen recovery was also shown to result in corresponding increase in hydrocarbon conversion in these studies demonstrating the basic concept. The experiments also provided insight into the effect of individual variables such as pressure, temperature, gas space velocity, and steam to carbon ratio. Steam reforming of butane was found to be limited by reaction kinetics for the experimental conditions used: catalysts used, average gas space velocity, and the reactor characteristics of surface area to volume ratio. Steam reforming of methanol in the presence of only WGS catalyst on the other hand indicated that the membrane reactor performance was limited by membrane permeation, especially at lower temperatures and lower feed pressures due to slower reconstitution of CO and H 2 into methane thus maintaining high hydrogen partial pressures in the reacting gas mixture. The limited amount of data collected with steam reforming of Clearlite ® indicated very good match between theoretical predictions and

  8. Production of Renewable Hydrogen from Glycerol Steam Reforming over Bimetallic Ni-(Cu,Co,Cr Catalysts Supported on SBA-15 Silica

    Directory of Open Access Journals (Sweden)

    Alicia Carrero

    2017-02-01

    Full Text Available Glycerol steam reforming (GSR is a promising alternative to obtain renewable hydrogen and help the economics of the biodiesel industry. Nickel-based catalysts are typically used in reforming reactions. However, the choice of the catalyst greatly influences the process, so the development of bimetallic catalysts is a research topic of relevant interest. In this work, the effect of adding Cu, Co, and Cr to the formulation of Ni/SBA-15 catalysts for hydrogen production by GSR has been studied, looking for an enhancement of its catalytic performance. Bimetallic Ni-M/SBA-15 (M: Co, Cu, Cr samples were prepared by incipient wetness co-impregnation to reach 15 wt % of Ni and 4 wt % of the second metal. Catalysts were characterized by inductively coupled plasma atomic emission spectroscopy (ICP-AES, N2-physisorption, X-ray powder diffraction (XRD, hydrogen temperature programmed reduction (H2-TPR, transmission electron microscopy (TEM, scanning electron microscopy (SEM, and thermogravimetric analyses (TGA, and tested in GSR at 600 °C and atmospheric pressure. The addition of Cu, Co, and Cr to the Ni/SBA-15 catalyst helped to form smaller crystallites of the Ni phase, this effect being more pronounced in the case of the Ni-Cr/SBA-15 sample. This catalyst also showed a reduction profile shifted towards higher temperatures, indicating stronger metal-support interaction. As a consequence, the Ni-Cr/SBA-15 catalyst exhibited the best performance in GSR in terms of glycerol conversion and hydrogen production. Additionally, Ni-Cr/SBA-15 achieved a drastic reduction in coke formation compared to the Ni/SBA-15 material.

  9. Hydrogen Production by Steam Reforming of Liquefied Natural Gas (LNG) Over Nickel-Phosphorus-Alumina Xerogel Catalyst Prepared by a Carbon-Templating Epoxide-Driven Sol-Gel Method.

    Science.gov (United States)

    Bang, Yongju; Park, Seungwon; Han, Seung Ju; Yoo, Jaekyeong; Choi, Jung Ho; Kang, Tae Hun; Lee, Jinwon; Song, In Kyu

    2016-05-01

    A nickel-phosphorus-alumina xerogel catalyst was prepared by a carbon-templating epoxide-driven sol-gel method (denoted as CNPA catalyst), and it was applied to the hydrogen production by steam reforming of liquefied natural gas (LNG). For comparison, a nickel-phosphorus-alumina xerogel catalyst was also prepared by a similar method in the absence of carbon template (denoted as NPA catalyst). The effect of carbon template addition on the physicochemical properties and catalytic activities of the catalysts in the steam reforming of LNG was investigated. Both CNPA and NPA catalysts showed excellent textural properties with well-developed mesoporous structure. However, CNPA catalyst retained a more reducible nickel aluminate phase than NPA catalyst. XRD analysis of the reduced CNPA and NPA catalysts revealed that nickel sintering on the CNPA catalyst was suppressed compared to that on the NPA catalyst. From H2-TPD and CH4-TPD measurements of the reduced CNPA and NPA catalysts, it was also revealed that CNPA catalyst with large amount of hydrogen uptake and strong hydrogen-binding sites showed larger amount of methane adsorption than NPA catalyst. In the hydrogen production by steam reforming of LNG, CNPA catalyst with large methane adsorption capacity showed a better catalytic activity than NPA catalyst.

  10. Co/ZnO and Ni/ZnO catalysts for hydrogen production by bioethanol steam reforming. Influence of ZnO support morphology on the catalytic properties of Co and Ni active phases

    Energy Technology Data Exchange (ETDEWEB)

    Da Costa-Serra, J.F.; Chica, A. [Instituto de Tecnolgia Quimica (UPV-CSIC), Universidad Politecnica de Valencia, Consejo Superior de Investigaciones Cientificas, Avenida de los naranjos s/n, 46022 Valencia (Spain); Guil-Lopez, R. [Instituto de Catalisis y Petroleoquimica, CSIC, Marie Curie 2, Cantoblanco, 28049 Madrid (Spain)

    2010-07-15

    Renewable hydrogen production from steam reforming of bioethanol is an interesting approach to produce sustainable hydrogen. However, simultaneous competitive reactions can occur, decreasing the hydrogen production yield. To overcome this problem, modifications in the steam reforming catalysts are being studied. Ni and Co active phases supported over modified ZnO have been widely studied in hydrogen production from steam reforming of bioethanol. However, the influence of the morphology and particle size of ZnO supports on the catalytic behaviour of the supported Ni and Co has not been reported. In the present work, we show how the morphology, shape, and size of ZnO support particles can control the impregnation process of the metal active centres, which manages the properties of active metallic particles. It has been found that nanorod particles of ZnO, obtained by calcination of Zn acetate, favour the metal-support interactions, decreasing the metallic particle sizes and avoiding metal (Co or Ni) sinterization during the calcination of metal precursors. Small metallic particle sizes lead to high values of active metal exposure surface, increasing the bioethanol conversion and hydrogen production. (author)

  11. The role of metal-support interaction for CO-free hydrogen from low temperature ethanol steam reforming on Rh-Fe catalysts.

    Science.gov (United States)

    Choong, Catherine K S; Chen, Luwei; Du, Yonghua; Schreyer, Martin; Daniel Ong, S W; Poh, Chee Kok; Hong, Liang; Borgna, Armando

    2017-02-08

    Rh-Fe catalysts supported on Ca-Al2O3, MgO and ZrO2 were evaluated in ethanol steam reforming at 623 K and compared to Rh catalysts on the same supports without iron promotion. The metal-support interaction among the three entities, i.e. Rh ↔ Fe2O3 ← support (ZrO2, MgO and Ca-Al2O3) was investigated using H2-chemisorption, TEM, XPS and in situ techniques such as DRIFTS, temperature-resolved XRD and XAS. As compared to the unpromoted Rh catalysts on the same supports, the CO selectivity is depressed in the presence of iron on Rh/MgO and Rh/Ca-Al2O3, the latter being significantly superior. The role of metal-support interaction for CO-free hydrogen generation was unravelled using a combination of techniques. It was found that the reducibility of iron oxide determines the extent of the strong metal support interaction between Rh and Fe2O3 and the reducibility of iron oxide was affected by the support. On Rh-Fe/Ca-Al2O3, a good balance of the interaction between Rh, Fe2O3 and Ca-Al2O3 prevents strong metal support interaction between Rh and Fe2O3 and thus promotes CO elimination via water-gas-shift reaction on Rh-FexOy sites.

  12. Preparation and characterization of active Ni/MgO in oxidative steam reforming of n-C{sub 4}H{sub 10}

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Katsutoshi [Department of Applied Chemistry, Faculty of Engineering, Oita University, 700 Dannoharu Oita City, Oita 870-1192 (Japan); Research Fellow of the Japan Society for the Promotion of Science (Japan); Sago, Fumiaki; Nagaoka, Katsutoshi; Takita, Yusaku [Department of Applied Chemistry, Faculty of Engineering, Oita University, 700 Dannoharu Oita City, Oita 870-1192 (Japan)

    2010-06-15

    Oxidative steam reforming of n-C{sub 4}H{sub 10} over MgO-supported Ni catalysts is described. The Ni/MgO catalysts were prepared by the impregnation method from aqueous Ni(NO{sub 3}){sub 2} precursor solutions at two pH values. Ni/MgO prepared at pH 7 exhibited considerably higher activity than Ni/MgO prepared from a conventional acidic aqueous precursor solution (pH 3.5). The H{sub 2} formation rate for the modified Ni/MgO was up to 2.3 times that for conventional Ni/MgO under a high space velocity of 1660 L(h g){sup -1}. Furthermore, after reduction at high temperature (1273 K), the modified Ni/MgO showed a higher H{sub 2} formation rate than did Rh/MgO. The superior performance of the modified Ni/MgO was ascribed to stronger resistance to oxidation of Ni{sup 0} due to the formation of relatively large Ni{sup 0} particles. (author)

  13. Influence of Ce-precursor and fuel on structure and catalytic activity of combustion synthesized Ni/CeO{sub 2} catalysts for biogas oxidative steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Vita, Antonio, E-mail: antonio.vita@itae.cnr.it; Italiano, Cristina; Fabiano, Concetto; Laganà, Massimo; Pino, Lidia

    2015-08-01

    A series of nanosized Ni/CeO{sub 2} catalysts were prepared by Solution Combustion Synthesis (SCS) varying the fuel (oxalyldihydrazide, urea, carbohydrazide and glycerol), the cerium precursor (cerium nitrate and cerium ammonium nitrate) and the nickel loading (ranging between 3.1 and 15.6 wt%). The obtained powders were characterized by X-ray Diffraction (XRD), N{sub 2}-physisorption, CO-chemisorption, Temperature Programmed Reduction (H{sub 2}-TPR) and Scanning Electron Microscopy (SEM). The catalytic activity towards the Oxy Steam Reforming (OSR) of biogas was assessed. The selected operating variables have a strong influence on the nature of combustion and, in turn, on the morphological and structural properties of the synthesized catalysts. Particularly, the use of urea allows to improve nickel dispersion, surface area, particle size and reducibility of the catalysts, affecting positively the biogas OSR performances. - Highlights: • Synthesis of Ni/CeO{sub 2} nanopowders by quick and easy solution combustion synthesis. • The fuel and precursor drive the structural and morphological properties of the catalysts. • The use of urea as fuel allows to improve nickel dispersion, surface area and particle size. • Ni/CeO{sub 2} (7.8 wt% of Ni loading) powders synthesized by urea route exhibits high performances for the biogas OSR process.

  14. Effect of Gold Particle Size on Steam Reforming of Methanol Over Au/CeO2-ZrO2 Catalysts.

    Science.gov (United States)

    Lakshmanan, Pandian; Kim, Dong Ha; Park, Eun Duck

    2016-05-01

    We examined the effect of the particle size of gold on steam reforming of methanol over Au/CeO2-ZrO2 catalysts. Gold was loaded onto CeO2-ZrO2 through deposition-precipitation. The average particle size (2-12 nm) of the gold was controlled by thermal reduction under H2 at various temperatures and by chemical reduction with various reducing agents. The catalytic activity decreased significantly with increasing particle size of the gold. The turnover frequency at the interface between gold and a support appeared to be independent of particle size in the range 2-5 nm, which implies that the perimeter of the particle may be the active site for this reaction. Methanol adsorption and conversion over these catalysts were also investigated with in-situ diffuse reflectance infrared Fourier transform spectroscopy. Analytical results for various adsorbed intermediate species during methanol conversion suggests that transformation of methoxy species is facilitated by use of smaller gold particles.

  15. Hydrogen production by steam reforming of methanol in a micro-channel reactor coated with Cu/ZnO/ZrO 2/Al 2O 3 catalyst

    Science.gov (United States)

    Jeong, Heondo; Kim, Kweon Ill; Kim, Tae Hwan; Ko, Chang Hyun; Park, Hwa Choon; Song, In Kyu

    Hydrogen production by steam reforming of methanol is studied over Cu/Zn-based catalysts (Cu/ZnO, Cu/ZnO/Al 2O 3, Cu/ZnO/ZrO 2/Al 2O 3). Cu/Zn-based catalysts are derived from hydrotalcite-like precursors prepared by a co-precipitation method. The catalysts are characterized by N 2O chemisorption, XRD, and BET surface area measurements. ZrO 2 added to the Cu/Zn-based catalyst enhances copper dispersion on the catalyst surface. Among the catalysts tested, Cu/ZnO/ZrO 2/Al 2O 3 exhibits the highest methanol conversion and the lowest CO concentration in the outlet gas. A micro-channel reactor coated with a Cu/ZnO/ZrO 2/Al 2O 3 catalyst in the presence of an undercoated Al 2O 3 buffer layer exhibits higher methanol conversion and lower CO concentration in the outlet gas than in the absence of an undercoated Al 2O 3 buffer layer. The micro-channel reactor with a undercoated Al 2O 3 buffer layer produces large amounts of hydrogen compared with one without a buffer layer. The undercoated Al 2O 3 buffer layer enhances the adhesion between catalysts and micro-channel walls, which leads to improvement in reactor performance.

  16. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank SX-105 And AN-103) By Fluidized Bed Steam Reformation

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, Carol; Herman, Connie; Crawford, Charles; Bannochie, Christopher; Burket, Paul; Daniel, Gene; Cozzi, Alex; Nash, Charles; Miller, Donald; Missimer, David

    2014-01-10

    One of the immobilization technologies under consideration as a Supplemental Treatment for Hanford’s Low Activity Waste (LAW) is Fluidized Bed Steam Reforming (FBSR). The FBSR technology forms a mineral waste form at moderate processing temperatures thus retaining and atomically bonding the halides, sulfates, and technetium in the mineral phases (nepheline, sodalite, nosean, carnegieite). Additions of kaolin clay are used instead of glass formers and the minerals formed by the FBSR technology offers (1) atomic bonding of the radionuclides and constituents of concern (COC) comparable to glass, (2) short and long term durability comparable to glass, (3) disposal volumes comparable to glass, and (4) higher Na2O and SO{sub 4} waste loadings than glass. The higher FBSR Na{sub 2}O and SO{sub 4} waste loadings contribute to the low disposal volumes but also provide for more rapid processing of the LAW. Recent FBSR processing and testing of Hanford radioactive LAW (Tank SX-105 and AN-103) waste is reported and compared to previous radioactive and non-radioactive LAW processing and testing.

  17. Promotion of Ca-Co Bifunctional Catalyst/Sorbent with Yttrium for Hydrogen Production in Modified Chemical Looping Steam Methane Reforming Process

    Directory of Open Access Journals (Sweden)

    Samira Akbari-Emadabadi

    2017-09-01

    Full Text Available In this study, the application of a calcium-based bifunctional catalyst/sorbent is investigated in modified chemical looping steam methane reforming (CLSMR process for in situ CO2 sorption and H2 production. The yttrium promoted Ca-Co samples were synthesized and applied as bifunctional catalysts/sorbent. The influence of reduction temperature (500–750 °C, Ca/Co and Ca/Y ratios (1.5–∞ and 3–18, respectively and catalyst life time are determined in CLSMR process. The physicochemical transformation of fresh, used and regenerated samples after 16 redox cycles are determined using X-ray powder diffraction (XRD, N2 adsorption–desorption, field emission scanning electron microscopy (FESEM, energy dispersive X-ray spectroscopy (EDX and transmission electron microscopy (TEM techniques. The effect of yttrium promoter on the structure of catalyst and regeneration step on the reversibility of bifunctional catalyst/sorbent was two important factors. The characterization results revealed that the presence of yttrium in the structure of Ca-9Co sample could improve the morphology and textural properties of catalyst/sorbents. The suitable reversibility of bifunctional catalyst/sorbents during the repeated cycles is confirmed by characterization of calcined samples. The Ca-9Co-4.5Y as optimal catalyst illustrated superior performance and stability. It showed about 95.8% methane conversion and 82.9% hydrogen yield at 700 °C and stable activity during 16 redox cycles.

  18. Steam Reforming of Ethylene Glycol over Ni/Al{sub 2}O{sub 3} Catalysts: Effect of the Preparation Method and Reduction Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Dong Hyuck; Park, Jung Eun; Park, Eun Duck [Ajou University, Suwon (Korea, Republic of)

    2015-02-15

    The effect of preparation method on the catalytic activities of the Ni/Al{sub 2}O{sub 3} catalysts on steam reforming of ethylene glycol was investigated. The catalysts were prepared with various preparation methods such as an incipient wetness impregnation, wet impregnation, and coprecipitation method. In the case of coprecipitation method, various precipitants such as KOH, K{sub 2}CO{sub 3}, and NH{sub 4}OH were compared. The prepared catalysts were characterized by using N{sub 2} physisorption, inductively coupled plasma-atomic emission spectroscopy, X-ray diffraction, temperature programmed reduction, pulsed H{sub 2} chemisorption, temperature-programmed oxidation, scanning electron microscopy, and thermogravimetric analysis. Among the catalysts reduced at 773 K, the Ni/Al{sub 2}O{sub 3} catalyst prepared by a coprecipitation with KOH or K{sub 2}CO{sub 3} as precipitants showed the best catalytic performance. The preparation method affected the particle size of Ni, reducibility of nickel oxides, catalytic performance (activity and stability), and types of coke formed during the reaction. The Ni/Al{sub 2}O{sub 3} catalyst prepared by a coprecipitation with KOH showed the increasing catalytic activity with an increase in the reduction temperature from 773 to 1173 K because of an increase in the reduction degree of Ni oxide species even though the particle size of Ni increased with increasing reduction temperature.

  19. Development of Fe-Ni/YSZ-GDC electro-catalysts for application as SOFC anodes. XRD and TPR characterization, and evaluation in ethanol steam reforming reaction

    Energy Technology Data Exchange (ETDEWEB)

    Paz Fiuza, Raigenis da; Silva, Marcos Aurelio da; Boaventura, Jaime Soares [UFBA, Salvador, Bahia (Brazil). Energy and Materials Science Group

    2010-07-01

    Electro-catalysts based on Fe-Ni alloys were prepared using physical mixture and modified Pechini methods; they were supported on a composite of Yttria Stabilized Zirconia (YSZ) and Gadolinia Doped Ceria (GDC). The composites had compositions of 35% metal load and 65% support (70% wt. YSZ and 30% wt. GDC mixture) (cermets). The samples were characterized by Temperature-Programmed Reduction (TPR) and X-Ray Diffraction (XRD) and evaluated in ethanol steam reforming at 650 C for six hours and in the temperature range 300 - 900 C. The XRD results showed that the bimetallic sample calcined at 800 C formed a mixed oxide (NiFe{sub 2}O{sub 4}) in spinel structure; after reducing the sample in hydrogen, Ni-Fe alloys were formed. The presence of Ni decreased the final reduction temperature of the NiFe{sub 2}O{sub 4} species. The addition of Fe to Ni anchored to YSZ-GDC increased the hydrogen production and inhibits the carbon deposition. The bimetallic 30Fe5Ni samples reached an ethanol conversion of about 95%, and a hydrogen yield up to 48% at 750 C. In general, the ethanol conversion and hydrogen production were independent of the metal content in the electro-catalyst. However, the substitution of Ni for Fe significantly reduced the carbon deposition on the electro-catalyst: 74, 31 and 9 wt. % in the 35Ni, 20Fe15Ni, and 30Fe5Ni samples, respectively. (orig.)

  20. Lunar Organic Waste Reformer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Organic Waste Reformer (LOWR) utilizes high temperature steam reformation to convert all plastic, paper, and human waste materials into useful gases. In...

  1. Reforming Catalysts

    Directory of Open Access Journals (Sweden)

    Simon Penner

    2017-11-01

    Full Text Available Steam and dry reforming of hydrocarbons (e.g., methane, ethane or propane, alcohols (e.g., methanol, ethanol or glycerol or bio-compounds is one of the most promising and effective routes to enhanced hydrogen production and for the production of synthesis gas likewise.[...

  2. DFT Studies of Adsorption of Cu7-atom Nanoclusters on TiO2 Surfaces and Application to Methanol Steam Reforming Reactions

    Science.gov (United States)

    Taft, Michael J., Sr.

    Alcohol conversion to hydrogen, via steam reforming, is an alternative energy process that is promising for the future of clean energy economies. With advancements in fuel cell technologies, on-board hydrogen reforming could leverage already existing automotive designs and fuel infrastructure. The design of catalytic materials with tunable properties requires a level of insight that has yet to be achieved experimentally. The central objective of this project is to develop a working model of metal-oxide surface mediated copper clusters, since such catalytic beds have a wide-range of applications. More specifically, we investigate the catalytic framework of this process with theoretical models of the active metal (Cu) and metal­oxide support (TiO2). We employ a Density Functional Theory (DFT)-Generalized Gradient Approximation (GGA) approach for the quantum level electronic structure calculations of Cu, TiO2 and CH3OH. Additionally, we have generated anatase (A(001), A(101)) and rutile (R(100), R(110)) surface morphologies and 7­atom copper cluster complexes with those planes. To examine the possible influence of TiO2 on the adsorption properties of our active metal, Cu7, we have carried out adsorption studies with CH3OH. Our final data and observations predict that the Cu7 cluster adopts a symmetric pentagonal bipyramidal geometry with D5h symmetry. We find that the anatase morphology has a greater overall stability than rutile. The adsorption strength of the Cu7 cluster has been predicted in this study to be according to the following order: A(001) > A(101)> R(110). Indeed, the R(100) surface appears to be an unfavorable surface for metal cluster binding. Our data indicates that copper cluster stabilization on the metal-oxide surface depends on the nature of the crystal face. Again, we studied the adsorption properties of methanol on nascent Cu7 cluster, Cu7-TiO 2 complex and on pure TiO2-surface in A(001) polymorphic form. The calculations revealed that methanol

  3. Bridging the Gap: From Model Surfaces to Nanoparticle Analogs for Selective Oxidation and Steam Reforming of Methanol and Selective Hydrogenation Catalysis

    Science.gov (United States)

    Boucher, Matthew B.

    Most industrial catalysts are very complex, comprising of non-uniform materials with varying structures, impurities, and interaction between the active metal and supporting substrate. A large portion of the ongoing research in heterogeneous catalysis focuses on understanding structure-function relationships in catalytic materials. In parallel, there is a large area of surface science research focused on studying model catalytic systems for which structural parameters can be tuned and measured with high precision. It is commonly argued, however, that these systems are oversimplified, and that observations made in model systems do not translate to robust catalysts operating in practical environments; this discontinuity is often referred to as a "gap." The focus of this thesis is to explore the mutual benefits of surface science and catalysis, or "bridge the gap," by studying two catalytic systems in both ultra-high vacuum (UHV) and near ambient-environments. The first reaction is the catalytic steam reforming of methanol (SRM) to hydrogen and carbon dioxide. The SRM reaction is a promising route for on-demand hydrogen production. For this catalytic system, the central hypothesis in this thesis is that a balance between redox capability and weak binding of reaction intermediates is necessary for high SRM activity and selectivity to carbon dioxide. As such, a new catalyst for the SRM reaction is developed which incorporates very small amounts of gold (methanol-water mixtures with model catalyst surfaces. Model catalysts were studied in a UHV chamber where the base pressure was maintained at 10-10 mbar. High resolutions surface science techniques show that hydrogen-bonded networks of water are capable of deprotonating methanol to methoxy on low index surfaces in the absence of atomic oxygen. These UHV studies show that adsorbates, other than oxygen, are capable of activating methanol on Group IB metal surfaces. The second reaction involves the selective hydrogenation of

  4. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING AS A SUPPLEMENTARY TREATMENT FOR HANFORD'S LOW ACTIVITY WASTE AND SECONDARY WASTES

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.; Crawford, C.; Cozzi, A.; Bannochie, C.; Burket, P.; Daniel, G.

    2011-02-24

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates

  5. 140 g H{sub 2}/kg biomass d.a.f. by a CO-shift reactor downstream from a FB biomass gasifier and a catalytic steam reformer

    Energy Technology Data Exchange (ETDEWEB)

    Corella, Jose; Molina, Gregorio; Toledo, Jose M. [Department of Chemical Engineering, University ' ' Complutense' ' of Madrid, 28040 Madrid (Spain); Aznar, Maria P.; Caballero, Miguel A. [Chemical and Environmental Engineering Department, CPS, 3 Maria de Luna st., University of Saragossa, 50018 Saragossa (Spain)

    2008-04-15

    The effect of adding a CO-shift reactor downstream from a fluidized bed biomass gasifier and a steam reforming catalytic reactor is studied in this paper. The upstream gasifier was of small pilot plant scale, 10 kg biomass/h. Therefore, the downstream catalytic reactors, steam reformer and CO-shift, operated under a real gasification gas. The gasifying agent used was H{sub 2}O-O{sub 2} mixtures. The CO-shift catalytic reactor used had one high (HT) and one low temperature (LT) adiabatic beds. Two commercial catalysts were used throughout the process. CO-conversions (eliminations) were higher than 90% and a H{sub 2}-content as high as 73 vol%, dry basis, were obtained by the CO-shift system. This H{sub 2} content is equivalent to a yield of 140gH{sub 2}/kg biomass d.a.f. The CO conversion and the increase (up to 14 vol%) of the H{sub 2} content, correlate well with the molar steam/CO ratio in the gasification gas at the inlet of the HT bed. (author)

  6. Techno-economic analysis of sorption-enhanced steam methane reforming in a fixed bed reactor network integrated with fuel cell

    Science.gov (United States)

    Diglio, Giuseppe; Hanak, Dawid P.; Bareschino, Piero; Mancusi, Erasmo; Pepe, Francesco; Montagnaro, Fabio; Manovic, Vasilije

    2017-10-01

    Sorption-enhanced steam methane reforming (SE-SMR) is a promising alternative for H2 production with inherent CO2 capture. This study evaluates the techno-economic performance of SE-SMR in a network of fixed beds and its integration with a solid oxide fuel cell (SE-SMR-SOFC) for power generation. The analysis revealed that both proposed systems are characterised by better economic performance than the reference systems. In particular, for SE-SMR the levelised cost of hydrogen is 1.6 €ṡkg-1 and the cost of CO2 avoided is 29.9 €ṡtCO2-1 (2.4 €ṡkg-1 and 50 €ṡtCO2-1, respectively, for SMR with CO2 capture) while for SE-SMR-SOFC the levelised cost of electricity is 0.078 €ṡkWh-1 and the cost of CO2 avoided is 36.9 €ṡtCO2-1 (0.080 €ṡkWh-1 and 80 €ṡtCO2-1, respectively, for natural gas-fired power plant with carbon capture). The sensitivity analysis showed that the specific cost of fuel and the capital cost of fuel cell mainly affect the economic performance of SE-SMR and SE-SMR-SOFC, respectively. The daily revenue of the SE-SMR-SOFC system is higher than that of the natural gas-fired power plant if the difference between the carbon tax and the CO2 transport and storage cost is > 6 €ṡtCO2-1.

  7. Synthesis and Application of Cerium-Incorporated SBA-16 Supported Ni-Based Oxygen Carrier in Cyclic Chemical Looping Steam Methane Reforming

    Directory of Open Access Journals (Sweden)

    Maryam Meshksar

    2018-01-01

    Full Text Available Hydrogen, as a clean energy carrier, could be produced aided by cyclic oxidation-reduction of oxygen carriers (OCs in contact with carbonaceous fuel in chemical looping steam methane reforming (CL-SMR process. In this study, the cerium was incorporated into the SBA-16 support structure to synthesize the Ni/Ce-SBA-16 OC. The supports were synthesized using hydrothermal method followed by impregnation of Ni and characterized via low and wide angle X-ray diffraction (XRD, Brunauer-Emmett-Teller (BET, scanning electron microscopy (SEM, coupled with energy dispersive X-ray (EDX spectroscopy, and transmission electron micrograph (TEM techniques. In addition, the effect of various Si/Ce molar ratios (20–60 in the support structure, Ni loading (10–30 wt %, reaction temperature (500–750 °C, and life time of optimal oxygen carrier over 16 cycles were investigated. The results of wide angle XRD and SEM revealed that the incorporation of CeO2 in the channels of SBA-16 caused the formation of nickel metallic particles with smaller size and prevents the coke formation. The results showed that OC with 15 wt % Ni and Si/Ce molar ratio of 40 (15Ni/Ce-SBA-16(40 has the best performance when compared with other OCs in terms of catalytic activity and structural properties. The methane conversion of about 99.7% was achieved at 700 °C using 15Ni/Ce-SBA-16(40 OC. We anticipate that the strategy can be extended to investigate a variety of novel modified mesoporous silica as the supporting material for the Ni based OCs.

  8. Development of Fe-Ni/YSZ-GDC electrocatalysts for application as SOFC anodes: XRD and TPR characterization and evaluation in the ethanol steam reforming reaction

    Energy Technology Data Exchange (ETDEWEB)

    da Paz Fiuza, Raigenis; Aurelio da Silva, Marcos; Boaventura, Jaime Soares [Energy and Materials Science Group - GECIM, Institute of Chemistry, Physical Chemistry Department, Universidade Federal da Bahia, 41170290 Salvador, Bahia (Brazil)

    2010-10-15

    Electrocatalysts based on Fe-Ni alloys were prepared by means of modified Pechini and physical mixture methods and using on a composite of Yttria Stabilized Zirconia (YSZ) and Gadolinia-Doped Ceria (GDC) as support. The former method was based on the formation a polymeric precursor that was subsequently calcined; the later method was based on the mixture of NiO and the support. The resulting composites had 35 wt.% metal load and 65 wt.% support (70 wt.% YSZ and 30 wt.% GDC mixture) (cermets). The samples were then characterized by Temperature-Programmed Reduction (TPR) and X-Ray Diffraction (XRD) and evaluated in the ethanol steam reforming at 650 C for 6 h in the temperature range of 300-900 C. The XRD results showed that the bimetallic sample calcined at 800 C formed a mixed oxide (NiFe{sub 2}O{sub 4}) with a spinel structure, which, after reduction in hydrogen, formed Ni-Fe alloys. The presence of Ni was observed to decrease the final reduction temperature of the NiFe{sub 2}O{sub 4} species. The addition of iron to the nickel anchored to YSZ-GDC increased the hydrogen production and inhibited carbon deposition. The resulting bimetallic 30Fe5Ni sample reached an ethanol conversion of about 95% and a hydrogen yield up to 48% at 750 C. In general, ethanol conversion and hydrogen production were independent of the metal content in the electrocatalyst. However, the substitution of nickel for iron significantly reduced carbon deposition on the electrocatalyst: 74, 31, and 9 wt.% in the 35Ni, 20Fe15Ni, and 30Fe5Ni samples, respectively. (author)

  9. Synthesis and characterization of bimetallic Cu-Ni/ZrO{sub 2} nanocatalysts: H{sub 2} production by oxidative steam reforming of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Hernandez, R.; Mondragon Galicia, G.; Mendoza Anaya, D.; Palacios, J. [Instituto Nacional de Investigaciones Nucleares; Carretera Mexico-Toluca S/N La Marquesa, Ocoyoacac, Estado de Mexico C.P. 52750 (Mexico); Angeles-Chavez, C. [Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas, No. 152, C.P. 07730, Mexico D.F. (Mexico); Arenas-Alatorre, J. [Instituto de Fisica-UNAM, Apartado Postal 20-364, C.P. 01000, Mexico D.F. (Mexico)

    2008-09-15

    Cu/ZrO{sub 2}, Ni/ZrO{sub 2} and bimetallic Cu-Ni/ZrO{sub 2} catalysts were prepared by deposition-precipitation method to produce hydrogen by oxidative steam reforming of methanol (OSRM) reaction in the range of 250-360 C. TPR analysis of the Cu-Ni/ZrO{sub 2} catalyst showed that the presence of Cu facilitates the reduction of the Ni at lower temperatures. In addition, this sample showed two reduction peaks, the former peak was attributed to the reduction of the adjacent Cu and Ni atoms which could be forming a bimetallic Cu-rich phase, and the second was assigned to the remaining Ni atoms forming bimetallic Ni-rich nanoparticles. Transmission Electron Microscopy revealed Cu or Ni nanoparticles on the monometallic samples, while bimetallic nanoparticles were identified on the Cu-Ni/ZrO{sub 2} catalyst. On the other hand, Cu-Ni/ZrO{sub 2} catalyst exhibited better catalytic activity than the monometallic samples. The difference between them was related to the Cu-Ni nanoparticles present on the former catalyst, as well as the bifunctional role of the bimetallic phase and the support that improve the catalytic activity. All the catalysts showed the same selectivity toward H{sub 2} at the maximum reaction temperature and it was {proportional_to}60%. The high selectivity toward CO is associated to the presence of the bimetallic Ni-rich nanoparticles, as evidenced by TEM-EDX analysis, since this behavior is similar to the one showed by the monometallic Ni-catalyst. (author)

  10. Steam reforming of fast pyrolysis-derived aqueous phase oxygenates over Co, Ni, and Rh metals supported on MgAl2O4

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Rong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Inst. for Integrated Catalysis; Dagle, Vanessa Lebarbier [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Inst. for Integrated Catalysis; Flake, Matthew [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Inst. for Integrated Catalysis; Kovarik, Libor [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Albrecht, Karl O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Inst. for Integrated Catalysis; Deshmane, Chinmay [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Inst. for Integrated Catalysis; Dagle, Robert A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Inst. for Integrated Catalysis

    2016-07-01

    In this study we examine feasibility for steam reforming the mixed oxygenate aqueous fraction derived from mildly hydrotreated fast pyrolysis bio-oils. Catalysts selective towards hydrogen formation and resistant to carbon formation utilizing feeds with relatively low steam-to-carbon (S/C) ratios are desired. Rh (5 wt%), Pt (5 wt%), Ru (5 wt%), Ir (5 wt%), Ni (15 wt%), and Co (15 wt%) metals supported on MgAl2O4 were evaluated for catalytic performance at 500°C and 1 atm using a complex feed mixture comprising of acids, polyols, cycloalkanes, and phenolic compounds. The Rh catalyst was found to be the most active and resistant to carbon formation. The Ni and Co catalysts were found to be more active than the other noble metal catalysts investigated (Pt, Ru, and Ir). However, Ni was found to form significantly more carbon (coke) on the catalyst surface. Furthermore, Co was found to be the most selective towards H2 formation. Evaluating the effect of temperature on stability for the Rh catalyst we found that catalyst stability was best when operated at 500°C as compared to the higher temperatures investigated (700, 800°C). When operating at 700°C significantly more graphitic formation was observed on the spent catalyst surface. Operating at 800°C resulted in reactor plugging as a result of thermal decomposition of the reactants. Thus, a concept analogous to the petroleum industries’ use of a pre-reformer, operated at approximately 500°C for steam reforming of the heavier naphtha components, followed by a high temperature methane reforming operated in the 600-850°C temperature range, could be applied in the case of steam reforming biomass derived oxygenates. Moreover, stability evaluations were performed over the Rh, Ni, and Co catalysts at 500°C and 1 atm, under similar initial conversions, reveal the Co catalyst to be the most stable and selective towards H2 production. Conversion and selectivity to CH4

  11. Radioactive demonstration of final mineralized waste forms for Hanford waste treatment plant secondary waste (WTP-SW) by fluidized bed steam reforming (FBSR) using the bench scale reformer platform

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cozzi, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Daniel, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jantzen, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-08-01

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as 137Cs, 129I, 99Tc, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150°C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW.

  12. Hydrogen production from methane steam reforming over Ni on high surface area CeO2 and CeO2-ZrO supports synthesized by surfactant-assisted method

    Directory of Open Access Journals (Sweden)

    Sumittra Charojrochkul

    2006-11-01

    Full Text Available Methane steam reforming performances of Ni on high surface area (HSA CeO2 and CeO2-ZrO2 supports have been studied under solid oxide fuel cell (SOFC operating conditions. Their performances were compared to general Ni/CeO2, Ni/CeO2-ZrO2, and Ni/Al2O3. It was firstly observed that Ni/CeO2-ZrO2 (HSA with the Ce/Zr ratio of 3/1 showed the best performance in terms of activity and stability toward the methane steam reforming among those with the Ce/Zr ratios of 1/1, 1/3, and 3/1. Both Ni/CeO2-ZrO2 (HSA and Ni/CeO2 (HSA presented better resistance toward carbon formation than the general Ni/CeO2, Ni/CeO2- ZrO2, and Ni/Al2O3 at the same operating conditions. These benefits are related to the high oxygen storage capacity (OSC of CeO2-ZrO2. During the steam reforming process, in addition to the reactions on Ni surface (*, the redox reactions between the gaseous components presented in the system and the lattice oxygen (Ox on CeO2-ZrO2 surface also take place. Among these reactions, the redox reactions between the high carbon formation potential compounds (CH4, CHx-*n and CO and the lattice oxygen (Ox can prevent the formation of carbon species from the methane decomposition and Boudard reactions at the inlet H2O/CH4 ratio of 3.0/1.0.

  13. Effects of adding lanthanum to Ni/ZrO{sub 2} catalysts on ethanol steam reforming; Efeito da adicao de lantanio em catalisadores de Ni/ZrO{sub 2} aplicados na reacao de reforma a vapor de etanol

    Energy Technology Data Exchange (ETDEWEB)

    Profeti, Luciene Paula Roberto [Centro de Ciencias Agrarias, Universidade Federal do Espirito Santo, Alegre, ES (Brazil); Habitzheuter, Filipe; Assaf, Elisabete Moreira, E-mail: eassaf@iqsc.usp.br [Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, SP (Brazil)

    2012-07-01

    The catalytic performance of Ni/ZrO{sub 2} catalysts loaded with different lanthanum content for steam reforming of ethanol was investigated. Catalysts were characterized by BET surface area, X-ray diffraction, UV-vis spectroscopy, temperature programmed reduction, and X-ray absorption fine structure techniques. Results showed that lanthanum addition led to an increase in the degree of reduction of both NiO and nickel surface species interacting with the support, due to the higher dispersion effect. The best catalytic performance at 450 deg C was found for the Ni/12LZ catalyst, which exhibited an effluent gaseous mixture with the highest H{sub 2} yield. (author)

  14. Enhanced methane steam reforming activity and electrochemical performance of Ni0.9Fe0.1-supported solid oxide fuel cells with infiltrated Ni-TiO2 particles.

    Science.gov (United States)

    Li, Kai; Jia, Lichao; Wang, Xin; Pu, Jian; Chi, Bo; Li, Jian

    2016-10-24

    Ni0.9Fe0.1 alloy-supported solid oxide fuel cells with NiTiO3 (NTO) infiltrated into the cell support from 0 to 4 wt.% are prepared and investigated for CH4 steam reforming activity and electrochemical performance. The infiltrated NiTiO3 is reduced to TiO2-supported Ni particles in H2 at 650 °C. The reforming activity of the Ni0.9Fe0.1-support is increased by the presence of the TiO2-supported Ni particles; 3 wt.% is the optimal value of the added NTO, corresponding to the highest reforming activity, resistance to carbon deposition and electrochemical performance of the cell. Fueled wet CH4 at 100 mL min(-1), the cell with 3 wt.% of NTO demonstrates a peak power density of 1.20 W cm(-2) and a high limiting current density of 2.83 A cm(-2) at 650 °C. It performs steadily for 96 h at 0.4 A cm(-2) without the presence of deposited carbon in the Ni0.9Fe0.1-support and functional anode. Five polarization processes are identified by deconvoluting and data-fitting the electrochemical impedance spectra of the cells under the testing conditions; and the addition of TiO2-supported Ni particles into the Ni0.9Fe0.1-support reduces the polarization resistance of the processes ascribed to CH4 steam reforming and gas diffusion in the Ni0.9Fe0.1-support and functional anode.

  15. Modelagem de um reator integral aplicado na reação de reforma a vapor de metano = Modeling of integral reactor applied methane steam reforming

    Directory of Open Access Journals (Sweden)

    Giane Gonçalves

    2007-07-01

    Full Text Available Freqüentemente, a validação de modelos matemáticos aplicados a reatores industriais esbarra na dificuldade de obtenção de medidas experimentais confiáveis. Uma maneira de contornar esta limitação corresponde à implantação de uma unidade em escala de bancada devidamente instrumentada, na qual são obtidos dados experimentais emcondições controladas. Neste contexto, foram efetuados ensaios em um reator integral de reforma a vapor de metano em escala de bancada, em diversas condições experimentais. As medidas de temperatura no leito foram efetuadas por meio de um termopar multiponto em seis posições axiais distintas, enquanto a composição do efluente do reator foi determinada por cromatografia gasosa. Estes dados experimentais foram comparados com as previsões de um modelo pseudo-homogêneo, unidimensional e dinâmico. Os resultados indicam que o modelo é adequado, sendo que tanto a atividade catalítica como a conversão são sensíveis à temperatura operacional, enquanto a temperatura do leito é praticamente insensível à vazão nas condições experimentais exploradas.Frequently, the validation of applied mathematical models of industrial reactors dash into the difficulty of obtaining reliable experimental data. A way to overcome this limitation is the proper use and operation or a in bench scale, experimental setup from whichexperimental data can be obtained in controlled conditions. In this context, experiments were carried out in an integral reactor of steam reform, in different experimental conditions. Thermocouples were placed along the catalyst bed to allow for temperature monitoring in six equally spaced and distinct positions of the reactor, the composition of the effluent of the reactor was determined by gas chromatography. These experimental data were compared with the theoretical results of a pseudo-homogeneous one-dimensional,dynamic mathematical model. The results indicate that the model can successfully

  16. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank Farm Blend) By Fluidized Bed Steam Reformation (FBSR)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hall, H. K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, D. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2013-08-01

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Supplemental Treatment is likely to be required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP’s LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750°C) continuous method by which LAW can be processed irrespective of whether the waste contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be comparable to LAW glass, i.e. leaches Tc-99, Re and Na at <2g/m2 during ASTM C1285 (Product Consistency) durability testing. Monolithing of the granular FBSR product was investigated to prevent dispersion during transport or burial/storage. Monolithing in an inorganic geopolymer binder, which is

  17. Ethanol steam reforming over Rh/Ce{sub x}Zr{sub 1-x}O{sub 2} catalysts. Impact of the CO-CO{sub 2}-CH{sub 4} interconversion reactions on the H{sub 2} production

    Energy Technology Data Exchange (ETDEWEB)

    Birot, Anne; Epron, Florence; Duprez, Daniel [Laboratoire de Catalyse en Chimie Organique (LACCO), UMR 6503 CNRS and University of Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex (France); Descorme, Claude [IRCELYON, UMR 5256 CNRS/Universite Claude Bernard Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex (France)

    2008-02-21

    Ce{sub x}Zr{sub 1-x}O{sub 2} mixed oxide-supported 1 wt.% Rh catalysts were prepared by wet impregnation using Rh nitrate as a precursor and calcined at 900 C. They were characterized by BET surface area, XRD, CO{sub 2} chemisorption and H{sub 2} chemisorption at -85 C and tested in the ethanol steam reforming at 600 C under atmospheric pressure, with water to ethanol molar ratio equal to 4, without carrier gas. The best performances, i.e. the highest hydrogen yield and the lowest coke deposition, were obtained over Rh/Ce{sub 0.5}Zr{sub 0.5}O{sub 2}, i.e. 3.63 mol H{sub 2}/mol{sub ethanol}. This catalyst was subsequently evaluated under various reaction conditions. Whatever the temperature and the water to ethanol ratio, the ethanol steam reforming yielded a large amount of methane, which tends to reduce the H{sub 2} production. To elucidate the origin of the methane production, CO/CO{sub 2}/CH{sub 4} interconversion reactions were studied. It was shown that such catalyst favours the formation of methane via CO hydrogenation. The direct hydrogenation of CO{sub 2} was not observed. In parallel, the catalyst was active in the reverse water gas shift (RWGS) reaction between CO{sub 2} and H{sub 2}, leading CO and H{sub 2}O. (author)

  18. Numerical simulation of effect of catalyst wire-mesh pressure drop characteristics on flow distribution in catalytic parallel plate steam reformer

    DEFF Research Database (Denmark)

    Sigurdsson, Haftor Örn; Kær, Søren Knudsen

    2012-01-01

    , is considered to investigate the effect of catalyst wire-mesh pressure drop characteristics on flow distribution in the CPHE reformer. Flow distribution in a CPHE reformer is rarely uniform due to inlet and exhaust manifold design. Poorly-designed manifolds may lead to severe flow maldistribution, flow reversal...... source to account for the pressure drop. The numerical model is verified experimentally, numerical and experimental results are found to be in good agreement. The study shows that severe flow maldistribution exists in the current reformer stack. At nominal load some channels in the CPHE reformer receive...... up to four times the average mass flow, while other channels have reversed flow. Flow maldistribution and flow reversal can be improved significantly by increasing the pressure drop characteristics of the catalyst wire-mesh....

  19. Catalisadores Ni/Al2O3 promovidos com molibdênio para a reação de reforma a vapor de metano Mo-Ni/AL2O3 catalysts for the methane steam reforming reaction

    Directory of Open Access Journals (Sweden)

    Silvia Sálua Maluf

    2003-03-01

    Full Text Available Mo-promoted Ni/Al2O3 catalysts for the methane steam reforming reaction were studied in this work. The Ni/Al2O3 catalysts were prepared by precipitation and molibdenum was added by impregnation up to 2%wt. The solids were tested using a micro-reactor under two H2Ov/C conditions and were characterized by ICP-OES, XRD, N2 adsoption, H2 chemisorption and TPR. NiO and NiAl2O4 phases were observed and the metallic area decreased with the increase of the Mo content. From the catalytic tests high stability was verified for H2Ov/C=4.0. On the other hand, only the catalyst containing 0,05% Mo stayed stable during 30 hours of the test at H2Ov/C=2.0.

  20. Experimental Evaluation of SI Engine Operation Supplemented by Hydrogen Rich Gas from a Compact Plasma Boosted Reformer

    Energy Technology Data Exchange (ETDEWEB)

    J. B. Green, Jr.; N. Domingo; J. M. E. Storey; R.M. Wagner; J.S. Armfield; L. Bromberg; D. R. Cohn; A. Rabinovich; N. Alexeev

    2000-06-19

    It is well known that hydrogen addition to spark-ignited (SI) engines can reduce exhaust emissions and increase efficiency. Micro plasmatron fuel converters can be used for onboard generation of hydrogen-rich gas by partial oxidation of a wide range of fuels. These plasma-boosted microreformers are compact, rugged, and provide rapid response. With hydrogen supplement to the main fuel, SI engines can run very lean resulting in a large reduction in nitrogen oxides (NO x ) emissions relative to stoichiometric combustion without a catalytic converter. This paper presents experimental results from a microplasmatron fuel converter operating under variable oxygen to carbon ratios. Tests have also been carried out to evaluate the effect of the addition of a microplasmatron fuel converter generated gas in a 1995 2.3-L four-cylinder SI production engine. The tests were performed with and without hydrogen-rich gas produced by the plasma boosted fuel converter with gasoline. A one hundred fold reduction in NO x due to very lean operation was obtained under certain conditions. An advantage of onboard plasma-boosted generation of hydrogen-rich gas is that it is used only when required and can be readily turned on and off. Substantial NO x reduction should also be obtainable by heavy exhaust gas recirculation (EGR) facilitated by use of hydrogen-rich gas with stoichiometric operation.

  1. FLUIDIZED BED STEAM REFORMING (FBSR) OF HIGH LEVEL WASTE (HLW) ORGANIC AND NITRATE DESTRUCTION PRIOR TO VITRIFICATION: CRUCIBLE SCALE TO ENGINEERING SCALE DEMONSTRATIONS AND NON-RADIOACTIVE TO RADIOACTIVE DEMONSTRATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C; Michael Williams, M; Gene Daniel, G; Paul Burket, P; Charles Crawford, C

    2009-02-07

    Over a decade ago, an in-tank precipitation process to remove Cs-137 from radioactive high level waste (HLW) supernates was demonstrated at the Savannah River Site (SRS). The full scale demonstration with actual HLW was performed in SRS Tank 48 (T48). Sodium tetraphenylborate (NaTPB) was added to enable Cs-137 extraction as CsTPB. The CsTPB, an organic, and its decomposition products proved to be problematic for subsequent processing of the Cs-137 precipitate in the SRS HLW vitrification facility for ultimate disposal in a HLW repository. Fluidized Bed Steam Reforming (FBSR) is being considered as a technology for destroying the organics and nitrates in the T48 waste to render it compatible with subsequent HLW vitrification. During FBSR processing the T48 waste is converted into organic-free and nitrate-free carbonate-based minerals which are water soluble. The soluble nature of the carbonate-based minerals allows them to be dissolved and pumped to the vitrification facility or returned to the tank farm for future vitrification. The initial use of the FBSR process for T48 waste was demonstrated with simulated waste in 2003 at the Savannah River National Laboratory (SRNL) using a specially designed sealed crucible test that reproduces the FBSR pyrolysis reactions, i.e. carbonate formation, organic and nitrate destruction. This was followed by pilot scale testing of simulants at the Science Applications International Corporation (SAIC) Science & Technology Application Research (STAR) Center in Idaho Falls, ID by Idaho National Laboratory (INL) and SRNL in 2003-4 and then engineering scale demonstrations by THOR{reg_sign} Treatment Technologies (TTT) and SRS/SRNL at the Hazen Research, Inc. (HRI) test facility in Golden, CO in 2006 and 2008. Radioactive sealed crucible testing with real T48 waste was performed at SRNL in 2008, and radioactive Benchscale Steam Reformer (BSR) testing was performed in the SRNL Shielded Cell Facility (SCF) in 2008.

  2. Kinetics of Internal Methane Steam Reforming in Solid Oxide Fuel Cells and Its Influence on Cell Performance– Coupling Experiments and Modeling

    NARCIS (Netherlands)

    Fan, L.; Pourquie, M.J.B.M.; Thattai, A.; Verkooijen, A.H.M.; Aravind, P.V.

    2013-01-01

    Mathematical modeling tools are useful for predicting the safe operation limits and efficiencies of SOFCs. For a particular SOFC design, variations in internal methane reforming kinetic parameters is expected to affect local gas compositions, local Nernst voltages, current densities and temperature

  3. Catalytic steam reforming of volatiles released via pyrolysis of wood sawdust for hydrogen-rich gas production on Fe–Zn/Al2O3 nanocatalysts

    OpenAIRE

    Chen, F; Wu, C; Dong, L; Jin, F; Williams, PT; Huang, J

    2015-01-01

    Thermo-chemical processing of biomass is a promising alternative to produce renewable hydrogen as a clean fuel or renewable syngas for a sustainable chemical industry. However, the fast deactivation of catalysts due to coke formation and sintering limits the application of catalytic thermo-chemical processing in the emerging bio-refining industry. In this research, Fe–Zn/Al2O3 nanocatalysts have been prepared for the production of hydrogen through pyrolysis catalytic reforming of wood sawdust...

  4. Effect study of the support in nickel and cobalt catalysts for obtaining hydrogen from ethanol steam reforming; Estudo do efeito do suporte em catalisadores de cobalto e niquel para obtencao de hidrogenio a partir da reforma a vapor do etanol

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Sirlane Gomes da

    2013-09-01

    A range of oxide-supported metal catalysts have been investigated for the steam reforming of ethanol for the production of hydrogen and subsequent application in fuel cells. The catalysts were synthesized by the co-precipitation and internal gelification methods using cobalt and nickel as active metals supported on aluminum, zirconium, lanthanum and cerium oxides. After prepared and calcined at 550 C Masculine-Ordinal-Indicator the solids were fully characterized by different techniques such as X-rays diffraction(DRX), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy, nitrogen adsorption (B.E.T), temperature-programmed reduction in H2 (TPR-H2) and thermogravimetric analysis. The catalytic tests were performed in a monolithic quartz reactor and submitted to different thermodynamic conditions of steam reforming of ethanol at temperatures varying from 500 Masculine-Ordinal-Indicator C to 800 Masculine-Ordinal-Indicator C. The product gas streams from the reactor were analyzed by an on-line gas chromatograph. The cobalt/nickel catalyst supported on a ceria-lanthania mixture (Co{sub 10%} / Ni{sub 5%} - CeO{sub 2}La{sub 2}O{sub 3}) showed good catalytic performance in hydrogen selectivity reaching a concentration greater than 65%, when compared to other catalytic systems such as: Co{sub 10%} / Ni5% - CeO{sub 2}; Co{sub 10%} / Ni{sub 5%} - CeO{sub 2}ZrO{sub 2}; Co{sub 10%} / Ni{sub 5%} - ZrO{sub 2}; Co{sub 10%} / Ni{sub 5%} - La{sub 2}O{sub 3}; Co{sub 10%} / Ni{sub 5%} - CeO{sub 2}La{sub 2}O{sub 3}/K{sub 2%}; Co{sub 10}% / Ni{sub 5%} - CeO{sub 2}La{sub 2}O{sub 3} / Na{sub 2%}; Ni{sub 10%} / Co{sub 5%} - CeO{sub 2}La{sub 2}O{sub 3}; Co-Al{sub 2}O{sub 3} e Co-Al{sub 2}O{sub 3}CeO{sub 2}. (author)

  5. Combustion synthesized copper-ion substituted FeAl2O4 (Cu0.1Fe0.9Al2O4): A superior catalyst for methanol steam reforming compared to its impregnated analogue

    Science.gov (United States)

    Maiti, Sayantani; Llorca, Jordi; Dominguez, Montserrat; Colussi, Sara; Trovarelli, Alessandro; Priolkar, Kaustubh R.; Aquilanti, Giuliana; Gayen, Arup

    2016-02-01

    A series of copper ion substituted MAl2O4 (M = Mg, Mn, Fe and Zn) spinels is prepared by a single step solution combustion synthesis (SCS) and tested for methanol steam reforming (MSR). The copper ion substituted Cu0.1Fe0.9Al2O4 appears to be the most active, showing ∼98% methanol conversion at 300 °C with ∼5% CO selectivity at GHSV = 30,000 h-1 and H2O:CH3OH = 1.1. The analogous impregnated catalyst, CuO (10 at%)/FeAl2O4, is found to be much less active. These materials are characterized by XRD, H2-TPR, BET, HRTEM, XPS and XANES analyses. Spinel phase formation is highly facilitated upon Cu-ion substitution and Cu loading beyond 10 at% leads to the formation of CuO as an additional phase. The ionic substitution of copper in FeAl2O4 leads to the highly crystalline SCS catalyst containing Cu2+ ion sites that are shown to be more active than the dispersed CuO nano-crystallites on the FeAl2O4 impregnated catalyst, despite its lower surface area. The as prepared SCS catalyst contains also a portion of copper as Cu1+ that increases when subjected to reforming atmosphere. The MSR activity of the SCS catalyst decreases with time-on-stream due to the sintering of catalyst crystallites as established from XPS and HRTEM analyses.

  6. Catalytic behavior of Ni/Zr{sub x}Ti{sub 1-x}O{sub 2} and the effect of SiO{sub 2} doping in oxidative steam reforming of n-butane

    Energy Technology Data Exchange (ETDEWEB)

    Sago, Fumiaki [Department of Applied Chemistry, Faculty of Engineering, Oita University, 700 Dannoharu, Oita City, Oita 870-1192 (Japan); KYOCERA Corporation (Japan); Fukuda, Sho; Nagaoka, Katsutoshi; Nishiguchi, Hiroyasu; Takita, Yusaku [Department of Applied Chemistry, Faculty of Engineering, Oita University, 700 Dannoharu, Oita City, Oita 870-1192 (Japan); Sato, Katsutoshi [Department of Applied Chemistry, Faculty of Engineering, Oita University, 700 Dannoharu, Oita City, Oita 870-1192 (Japan); Research Fellow of the Japan Society for the Promotion of Science, Washington, DC (United States)

    2009-10-15

    Catalytic behaviors of TiO{sub 2}-, Zr{sub 0.5}Ti{sub 0.5}O{sub 2}-, and ZrO{sub 2}-supported Ni catalysts were investigated for oxidative steam reforming of n-C{sub 4}H{sub 10} at 723 K. The composite oxide support, Zr{sub 0.5}Ti{sub 0.5}O{sub 2}, shows high specific surface area (136 m{sup 2}/g), leading to fine Ni particles. Thus, the Ni/Zr{sub 0.5}Ti{sub 0.5}O{sub 2} catalyst exhibits higher and more stable activity than that exhibited by other catalysts. However, relatively large amounts of coke are deposited on the catalyst during reaction. Thus, to retard carbon deposition, the influence of SiO{sub 2} additive was studied. Large amounts of SiO{sub 2} additive (5 or 10 mol%) decrease initial activity; at 10 mol%, degradation is also induced by oxidation of Ni{sup 0}. However, small amounts of SiO{sub 2} additive (1.5 mol%) effectively retard coking without lowering initial activity. The resultant Ni/Zr{sub 0.5}Ti{sub 0.5}O{sub 2}-SiO{sub 2} (1.5 mol%) catalyst exhibits high and stable activity without coking. (author)

  7. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank SX-105, Tank AN-103, And AZ-101/102) By Fluidized Bed Steam Reformation (FBSR)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M.; Crawford, C. L.; Bannochie, C. J.; Burket, P. R.; Cozzi, A. D.; Daniel, W. E.; Hall, H. K.; Miller, D. H.; Missimer, D. M.; Nash, C. A.; Williams, M. F.

    2013-09-18

    Fluidized Bed Steam Reforming (FBSR) is a robust technology for the immobilization of a wide variety of radioactive wastes. Applications have been tested at the pilot scale for the high sodium, sulfate, halide, organic and nitrate wastes at the Hanford site, the Idaho National Laboratory (INL), and the Savannah River Site (SRS). Due to the moderate processing temperatures, halides, sulfates, and technetium are retained in mineral phases of the feldspathoid family (nepheline, sodalite, nosean, carnegieite, etc). The feldspathoid minerals bind the contaminants such as Tc-99 in cage (sodalite, nosean) or ring (nepheline) structures to surrounding aluminosilicate tetrahedra in the feldspathoid structures. The granular FBSR mineral waste form that is produced has a comparable durability to LAW glass based on the short term PCT testing in this study, the INL studies, SPFT and PUF testing from previous studies as given in the columns in Table 1-3 that represent the various durability tests. Monolithing of the granular product was shown to be feasible in a separate study. Macro-encapsulating the granular product provides a decrease in leaching compared to the FBSR granular product when the geopolymer is correctly formulated.

  8. Hydrogen production with CO 2 capture by coupling steam reforming of methane and chemical-looping combustion: Use of an iron-based waste product as oxygen carrier burning a PSA tail gas

    Science.gov (United States)

    Ortiz, María; Gayán, Pilar; de Diego, Luis F.; García-Labiano, Francisco; Abad, Alberto; Pans, Miguel A.; Adánez, Juan

    In this work it is analyzed the performance of an iron waste material as oxygen carrier for a chemical-looping combustion (CLC) system. CLC is a novel combustion technology with the benefit of inherent CO 2 separation that can be used as a source of energy for the methane steam reforming process (SR). The tail gas from the PSA unit is used as fuel in the CLC system. The oxygen carrier behaviour with respect to gas combustion was evaluated in a continuous 500 W th CLC prototype using a simulated PSA off-gas stream as fuel. Methane or syngas as fuel were also studied for comparison purposes. The oxygen carrier showed enough high oxygen transport capacity and reactivity to fully convert syngas at 880 °C. However, lower conversion of the fuel was observed with methane containing fuels. An estimated solids inventory of 1600 kg MW th -1 would be necessary to fully convert the PSA off-gas to CO 2 and H 2O. An important positive effect of the oxygen carrier-to-fuel ratio up to 1.5 and the reactor temperature on the combustion efficiency was found. A characterization of the calcined and after-used particles was carried out showing that this iron-based material can be used as oxygen carrier in a CLC plant since particles maintain their properties (reactivity, no agglomeration, high durability, etc.) after more than 111 h of continuous operation.

  9. Reactor modeling to simulate catalytic partial oxidation and steam reforming of methane. Comparison of temperature profiles and strategies for hot spot minimization

    Energy Technology Data Exchange (ETDEWEB)

    Barrio, V.L.; Cambra, J.F.; Arias, P.L.; Gueemez, M.B. [School of Engineering (UPV/EHU), c/Alameda Urquijo s/n, 48013 Bilbao (Spain); Schaub, G.; Rohde, M. [Engler-Bunte-Institut, Universitaet Karlsruhe, Engler-Bunte-Ring 1, 76131 Karlsruhe (Germany); Rabe, S.; Vogel, F. [Paul Scherrer Institute, Laboratory for Energy and Materials Cycles, CH-5232 Villigen PSI (Switzerland)

    2007-07-15

    Catalytic partial oxidation (CPO) reactions of methane in the presence of steam (low temperature CPO, LTCPO) over a noble metal catalyst were investigated. A quasi-homogeneous one-dimensional model was developed in order to model a lab-scale fixed-bed reactor to produce syngas. These model calculations can contribute to the optimization of the process with respect to the formation of important hot spots ({delta} T{>=}130 ). These useful data can enable the model development in order to study the influence of the space velocity, product composition and other variables. Furthermore, a feed splitting study was performed. In the heat balance an overall heat transport term was included to account for small heat losses/gains along the reactor. The agreement between simulations and the degree of detail in the model is appropriate for the amount and kind of experimental data available. Thus, this model can also assist in a pilot reactor design, materials and further scale-up. (author)

  10. Steam drum design for direct steam generation

    Science.gov (United States)

    Willwerth, Lisa; Müller, Svenja; Krüger, Joachim; Succo, Manuel; Feldhoff, Jan Fabian; Tiedemann, Jörg; Pandian, Yuvaraj; Krüger, Dirk; Hennecke, Klaus

    2017-06-01

    For the direct steam generation in solar fields, the recirculation concept has been demonstrated in several installations. Water masses in the solar field vary during transient phases, such as passing clouds. The volume of the steam drum can serve as a buffer during such transients by taking in excess water and providing water storage. The saturated steam mass flow to the superheating section or the consumer can be maintained almost constant during short transients; therefore the steam drum plays a key role for constant steam supply. Its buffer effect depends on the right sizing of the steam drum for the prevailing situations. Due to missing experiences, steam drums have been sized under conservative assumptions and are thereby usually oversized. With this paper, experiences on the steam drum of the 5 MWel TSE1 power plant are discussed for optimized future plant design. The results are also of relevance for process heat installations, in which saturated steam is produced by the solar field.

  11. Performance comparison between partial oxidation and methane steam for SOFC micro-CHP systems

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Olesen, Anders Christian; Nielsen, Mads Pagh

    2011-01-01

    The aim of this research work is to describe in qualitative and quantitative form the performance of a micro Combined Heat and Power system for residential application based on Solid Oxide Fuel Cell fueled by natural gas with two different types of pre-reforming systems, namely Steam Reforming...... and Partial Oxidation and recirculation of anode and cathode gas. The comparative analysis among the different configurations will lead us to conclude that maximum efficiency is achieved when cathode and anode gas recirculation are used along with steam methane reforming. Further Steam Methane Reforming...

  12. Energy Analysis in Combined Reforming of Propane

    Directory of Open Access Journals (Sweden)

    K. Moon

    2013-01-01

    Full Text Available Combined (steam and CO2 reforming is one of the methods to produce syngas for different applications. An energy requirement analysis of steam reforming to dry reforming with intermediate steps of steam reduction and equivalent CO2 addition to the feed fuel for syngas generation has been done to identify condition for optimum process operation. Thermodynamic equilibrium data for combined reforming was generated for temperature range of 400–1000°C at 1 bar pressure and combined oxidant (CO2 + H2O stream to propane (fuel ratio of 3, 6, and 9 by employing the Gibbs free energy minimization algorithm of HSC Chemistry software 5.1. Total energy requirement including preheating and reaction enthalpy calculations were done using the equilibrium product composition. Carbon and methane formation was significantly reduced in combined reforming than pure dry reforming, while the energy requirements were lower than pure steam reforming. Temperatures of minimum energy requirement were found in the data analysis of combined reforming which were optimum for the process.

  13. Steam reforming and gasification of pyrolysis oil

    NARCIS (Netherlands)

    van Rossum, G.

    2009-01-01

    Mankind needs sustainable energy to adjust its footprint so the earth can support a growing and economically developing population. Biomass is a special sustainable energy source since, besides heat and power, it can also be used for the production of chemicals and liquid transportation fuels. To

  14. An experimental investigation of biodiesel steam reforming

    OpenAIRE

    Martin, Stefan; Kraaij, Gerard; Ascher, Torsten; Wails, David; Wörner, Antje

    2015-01-01

    Recently, liquid biofuels have attracted increasing attention as renewable feedstock for hydrogen production in the transport sector. Since the lack of hydrogen infrastructure and distribution poses an obstacle for the introduction of fuel cell vehicles to the market, it is reasonable to consider using liquid biofuels for on-board or on-site hydrogen generation. Biodiesel offers the advantage of being an environmentally friendly resource while also having high gravimetric and volumetric energ...

  15. Generating steam efficiently

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. [ABCO Industries, Abilene, TX (United States)

    1997-12-31

    This paper outlines a few methods or options for generating steam efficiently in cogeneration plants when using conventional steam generators (boilers) and gas turbine Heat Recovery Steam Generators (HRSGS). By understanding the performance characteristics of these systems and operating them at their most efficient loads, steam can be generated at low cost. Suggestions are also made to improve the efficiency of existing HRSGS.

  16. Steam coal forecaster

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This quarterly forecasting service provides a short-term analysis and predictions of the international steam coal trade. Sections are entitled: market review; world steam coal at a glance; economics/foreign exchange; demand (reviewing the main purchasing companies country-by-country); supply (country-by-country information on the main producers of steam coal); and freight. A subscription to Steam Coal Forecaster provides: a monthly PDF of McCloskey's Steam Coal Forecaster sent by email; access to database of stories in Steam Coal Forecaster via the search function; and online access to the latest issue of Steam Coal.

  17. Steam Digest 2002

    Energy Technology Data Exchange (ETDEWEB)

    2003-11-01

    Steam Digest 2002 is a collection of articles published in the last year on steam system efficiency. DOE directly or indirectly facilitated the publication of the articles through it's BestPractices Steam effort. Steam Digest 2002 provides a variety of operational, design, marketing, and program and program assessment observations. Plant managers, engineers, and other plant operations personnel can refer to the information to improve industrial steam system management, efficiency, and performance.

  18. Steam Digest 2001

    Energy Technology Data Exchange (ETDEWEB)

    2002-01-01

    Steam Digest 2001 chronicles BestPractices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

  19. Thermal steam plasma decomposition of organochlorine compounds

    Science.gov (United States)

    Surov, A. V.; Subbotin, D. I.; Popov, V. E.; Popov, S. D.; Litvyikova, A. I.; Nakonechniy, Gh V.; Serba, E. O.; Obraztsov, N. V.

    2017-11-01

    For the almost complete processing of organochlorine compounds are required a high temperature, hydrogen to produce hydrogen chloride and a high degree of mixing. Reforming chlorobenzene by steam and carbon dioxide in the presence of methane using a three-phase AC plasma torch was carried out. Soot composition was analyzed by energy dispersive X-ray analysis. The yield of soot was 0.84% wt. of raw materials, the content of chlorine in the soot was 2.08% by wt.

  20. The Invisibility of Steam

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2014-01-01

    Almost everyone "knows" that steam is visible. After all, one can see the cloud of white issuing from the spout of a boiling tea kettle. In reality, steam is the gaseous phase of water and is invisible. What you see is light scattered from the tiny droplets of water that are the result of the condensation of the steam as its temperature…

  1. Steam Digest Volume IV

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-07-01

    This edition of the Steam Digest is a compendium of 2003 articles on the technical and financial benefits of steam efficiency, presented by the stakeholders of the U.S. Department of Energy's BestPractices Steam effort.

  2. Steam Digest: Volume IV

    Energy Technology Data Exchange (ETDEWEB)

    2004-07-01

    This edition of the Steam Digest is a compendium of 2003 articles on the technical and financial benefits of steam efficiency, presented by the stakeholders of the U.S. Department of Energy's BestPractices Steam effort.

  3. Characterization of catalysts Rh and Ni/Ce{sub x}Zr{sub 1-x}O{sub 2} for hydrogen production by ethanol steam reforming; Caracterisation de catalyseurs Rhodium et Nickel/ Ce{sub x}Zr{sub 1-x}O{sub 2} pour la production d'hydrogene par vaporeformage de l'ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Birot, A

    2005-07-01

    This work concerned a study on catalytic behaviour of metallic catalysts (Rh or Ni) supported on earth rare oxides Ce{sub x}Zr{sub 1-x}O{sub 2} in ethanol steam reforming in order to produce hydrogen. Catalyst 1%Rh/Ce0,50Zr0,50O{sub 2} showed a good activity with a good hydrogen yield. We turned a study onto understanding inter-conversion reaction between H{sub 2}, CO and CO{sub 2} which lead to CH{sub 4} formation. We also studied intrinsic properties of catalysts. We confirmed basic character of catalysts and a good hydrogenation activity. A good activity in CO hydrogenation allowed to evidence a necessity to use a catalyst which is less active in hydrogenation reaction and with a basic character in order to improve hydrogen yield. (author)

  4. Produção de hidrogênio a partir da reforma a vapor de etanol utilizando catalisadores Cu/Ni/gama-Al2o3 Hydrogen production by ethanol steam reforming using Cu/Ni/gamma-Al2o3 catalysts

    Directory of Open Access Journals (Sweden)

    Thaísa A. Maia

    2007-04-01

    Full Text Available Cu/Ni/gamma-Al2O3 catalysts were prepared by an impregnation method with 2.5 or 5% wt of copper and 5 or 15% wt of nickel and applied in ethanol steam reforming. The catalysts were characterized by atomic absorption spectrophotometry, X-ray diffraction, temperature programmed reduction with hydrogen and nitrogen adsorption. The samples showed low crystallinity, with the presence of CuO and NiO, both as crystallites and in dispersed phase, as well as of NiO-Al2O3. The catalytic tests carried out at 400 ºC, with a 3:1 water/ethanol molar ratio, indicated the 5Cu/5Ni/Al2O3 catalyst as the most active for hydrogen production, with a hydrogen yield of 77% and ethanol conversion of 98%.

  5. Demonstration of direct internal reforming for MCFC power plants

    Energy Technology Data Exchange (ETDEWEB)

    Aasberg-Petersen, K.; Christensen, P.S.; Winther, S.K. [HALDOR TOPSOE A/S, Lynby (Denmark)] [and others

    1996-12-31

    The conversion of methane into hydrogen for an MCFC by steam reforming is accomplished either externally or internally in the stack. In the case of external reforming the plant electrical efficiency is 5% abs. lower mainly because more parasitic power is required for air compression for stack cooling. Furthermore, heat produced in the stack must be transferred to the external reformer to drive the endothermic steam reforming reaction giving a more complex plant lay-out. A more suitable and cost effective approach is to use internal steam reforming of methane. Internal reforming may be accomplished either by Indirect Internal Reforming (DIR) and Direct Internal Reforming (DIR) in series or by DIR-only as illustrated. To avoid carbon formation in the anode compartment higher hydrocarbons in the feedstock are converted into hydrogen, methane and carbon oxides by reaction with steam in ail adiabatic prereformer upstream the fuel cell stack. This paper discusses key elements of the desire of both types of internal reforming and presents data from pilot plants with a combined total of more than 10,000 operating hours. The project is being carried out as part of the activities of the European MCFC Consortium ARGE.

  6. Applications of solar reforming technology

    Energy Technology Data Exchange (ETDEWEB)

    Spiewak, I. [Weizmann Inst. of Science, Rehovoth (Israel); Tyner, C.E. [Sandia National Labs., Albuquerque, NM (United States); Langnickel, U. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Koeln (Germany)

    1993-11-01

    Research in recent years has demonstrated the efficient use of solar thermal energy for driving endothermic chemical reforming reactions in which hydrocarbons are reacted to form synthesis gas (syngas). Closed-loop reforming/methanation systems can be used for storage and transport of process heat and for short-term storage for peaking power generation. Open-loop systems can be used for direct fuel production; for production of syngas feedstock for further processing to specialty chemicals and plastics and bulk ammonia, hydrogen, and liquid fuels; and directly for industrial processes such as iron ore reduction. In addition, reforming of organic chemical wastes and hazardous materials can be accomplished using the high-efficiency destruction capabilities of steam reforming. To help identify the most promising areas for future development of this technology, we discuss in this paper the economics and market potential of these applications.

  7. Hydrogen production from biomass over steam gasification

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, R.; Potetz, A.; Hofbauer, H. [Vienna Univ. of Technology (Austria). Inst. of Chemical Engineering; Weber, G. [Bioenergy 2020+, Guessing (Austria)

    2010-12-30

    Renewable hydrogen is one option for a clean energy carrier in the future. There were several research programs in the past, to produce hydrogen on a renewable basis by electrolysis, direct conversion of water or by gasification of biomass. None of these options were developed to a stage, that they could be used on a commercial basis. At the moment almost all hydrogen is produced from fossil fuels and one main consumer of hydrogen are refineries. So a good option to demonstrate the production of renewable hydrogen and bring it later into the market is over refineries. The most economic option to produce renewable hydrogen at the moment is over gasification of biomass. In Austria an indirect gasification system was developed and is demonstrated in Guessing, Austria. The biomass CHP Guessing uses the allothermal steam dual fluidised bed gasifier and produces a high grade product gas, which is used at the moment for the CHP in a gas engine. As there is no nitrogen in the product gas and high hydrogen content, this gas can be also used as synthesis gas or for production of hydrogen. The main aim of this paper is to present the experimental and simulation work to convert biomass into renewable hydrogen. The product gas of the indirect gasification system is mainly hydrogen, carbon monoxide, carbon dioxide and methane. Within the ERA-Net project ''OptiBtLGas'' the reforming of methane and the CO-shift reaction was investigated to convert all hydrocarbons and carbon monoxide to hydrogen. On basis of the experimental results the mass- and energy balances of a commercial 100 MW fuel input plant was done. Here 3 different cases of complexity of the overall plant were simulated. The first case was without reforming and CO-shift, only by hydrogen separation. The second case was by including steam - reforming and afterwards separation of hydrogen. The third case includes hydrocarbon reforming, CO-shift and hydrogen separation. In all cases the off-gases (CO

  8. Attrition resistant fluidizable reforming catalyst

    Science.gov (United States)

    Parent, Yves O [Golden, CO; Magrini, Kim [Golden, CO; Landin, Steven M [Conifer, CO; Ritland, Marcus A [Palm Beach Shores, FL

    2011-03-29

    A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.

  9. Nickel catalysts for internal reforming in molten carbonate fuel cells

    NARCIS (Netherlands)

    Berger, R.J.; Berger, R.J.; Doesburg, E.B.M.; Doesburg, E.B.M.; van Ommen, J.G.; Ross, J.R.H.; Ross, J.R.H.

    1996-01-01

    Natural gas may be used instead of hydrogen as fuel for the molten carbonate fuel cell (MCFC) by steam reforming the natural gas inside the MCFC, using a nickel catalyst (internal reforming). The severe conditions inside the MCFC, however, require that the catalyst has a very high stability. In

  10. An Isothermal Steam Expander for an Industrial Steam Supplying System

    OpenAIRE

    Chen-Kuang Lin; Guang-Jer Lai; Yoshiyuki Kobayashi; Masahiro Matsuo; Min-Chie Chiu

    2015-01-01

    Steam is an essential medium used in the industrial process. To ensure steam quality, small and middle scale boilers are often adopted. However, because a higher steam pressure (compared to the necessary steam pressure) is generated, the boiler’s steam pressure will be reduced via a pressure regulator before the steam is directed through the process. Unfortunately, pressure is somewhat wasted during the reducing process. Therefore, in order to promote energy efficiency, a pressure regulator i...

  11. Method for improving catalyst function in auto-thermal and partial oxidation reformer-based processors

    Science.gov (United States)

    Ahmed, Shabbir; Papadias, Dionissios D.; Lee, Sheldon H.D.; Ahluwalia, Rajesh K.

    2014-08-26

    The invention provides a method for reforming fuel, the method comprising contacting the fuel to an oxidation catalyst so as to partially oxidize the fuel and generate heat; warming incoming fuel with the heat while simultaneously warming a reforming catalyst with the heat; and reacting the partially oxidized fuel with steam using the reforming catalyst.

  12. Compact Multiantenna

    Directory of Open Access Journals (Sweden)

    L. Rudant

    2012-01-01

    Full Text Available Planar inverted-f antenna (PIFA and notch antenna are combined within a compact 2-port MIMO antenna. Electrical and magnetic duality of the two antennas avoids a critical coupling and best performances can be expected for multiple-input multiple-output (MIMO communication. When excitation of notch antenna is optimized properly, the notch length can be short enough so that the two antennas can be colocated in a single compact volume. This compact multiantenna design is suitable for integration in MIMO handheld terminals. A prototype for broadband network application in 3.4–3.8’GHz frequency band has been characterized in anechoic chamber.

  13. Steampunk: Full Steam Ahead

    Science.gov (United States)

    Campbell, Heather M.

    2010-01-01

    Steam-powered machines, anachronistic technology, clockwork automatons, gas-filled airships, tentacled monsters, fob watches, and top hats--these are all elements of steampunk. Steampunk is both speculative fiction that imagines technology evolved from steam-powered cogs and gears--instead of from electricity and computers--and a movement that…

  14. STEAM by Design

    Science.gov (United States)

    Keane, Linda; Keane, Mark

    2016-01-01

    We live in a designed world. STEAM by Design presents a transdisciplinary approach to learning that challenges young minds with the task of making a better world. Learning today, like life, is dynamic, connected and engaging. STEAM (Science, Technology, Environment, Engineering, Art, and Math) teaching and learning integrates information in…

  15. Safety Picks up "STEAM"

    Science.gov (United States)

    Roy, Ken

    2016-01-01

    This column shares safety information for the classroom. STEAM subjects--science, technology, engineering, art, and mathematics--are essential for fostering students' 21st-century skills. STEAM promotes critical-thinking skills, including analysis, assessment, categorization, classification, interpretation, justification, and prediction, and are…

  16. Steam generator specifications

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. [ABCO Industries, Abilene, TX (United States)

    1996-12-31

    This paper describes some of the recent trends in steam generator designs and how engineers should develop specifications for them. Purchasing a steam generator based on standard designs available in the form of tabular data or based on square feet of surface can lead to a poor selection as will be explained later. Several aspects such as emissions, steam parameters, special plant requirements can affect the design and configuration of steam generators. A custom designed steam generator is the best choice as it has several advantages over standard design. Also, to arrive at the optimum design one has to consider not only the initial costs but also the operating costs. Going by thumb rules or misleading and outdated surface area norms should be avoided.

  17. An Isothermal Steam Expander for an Industrial Steam Supplying System

    Directory of Open Access Journals (Sweden)

    Chen-Kuang Lin

    2015-01-01

    Full Text Available Steam is an essential medium used in the industrial process. To ensure steam quality, small and middle scale boilers are often adopted. However, because a higher steam pressure (compared to the necessary steam pressure is generated, the boiler’s steam pressure will be reduced via a pressure regulator before the steam is directed through the process. Unfortunately, pressure is somewhat wasted during the reducing process. Therefore, in order to promote energy efficiency, a pressure regulator is replaced by a steam expander. With this steam expander, the pressure will be transformed into mechanical energy and extracted during the expansion process. A new type of isothermal steam expander for an industrial steam supplying system will be presented in the paper. The isothermal steam expander will improve the energy efficiency of a traditional steam expander by replacing the isentropic process with an isothermal expansion process. With this, steam condensation will decrease, energy will increase, and steam quality will be improved. Moreover, the mathematical model of the isothermal steam expander will be established by using the Schmidt theory, the same principle used to analyze Stirling engines. Consequently, by verifying the correctness of the theoretical model for the isothermal steam expander using experimental data, a prototype of 100 c.c. isothermal steam expander is constructed.

  18. Effects of the different atmospheric steam curing processes on the ...

    Indian Academy of Sciences (India)

    In this paper an attempt has been made to study the use of microsilica on the properties of self-compacting-concrete (SCC) such as compressive strength, splitting tensile strength, flexural strength, ultrasonic pulse velocity (UPV) and micro-hardness when exposed to different atmospheric steam curing temperatures.

  19. Development of large scale internal reforming molten carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, A.; Shinoki, T.; Matsumura, M. [Mitsubishi Electric Corp., Hyogo (Japan)

    1996-12-31

    Internal Reforming (IR) is a prominent scheme for Molten Carbonate Fuel Cell (MCFC) power generating systems in order to get high efficiency i.e. 55-60% as based on the Higher Heating Value (HHV) and compact configuration. The Advanced Internal Reforming (AIR) technology has been developed based on two types of the IR-MCFC technology i.e. Direct Internal Reforming (DIR) and Indirect Internal Reforming (DIR).

  20. Steam boiler technology

    Energy Technology Data Exchange (ETDEWEB)

    Teir, S.

    2003-07-01

    This book is the published version of the e-book with the same name. The interactive lecture slides, which accompany most chapters, exist only in the online version and on the attached CD-Rom. The Steam Boiler Technology e-book is the main course book for the course on steam boiler technology provided by the Laboratory of Energy Engineering and Environmental Protection at Helsinki University of Technology. The steam boiler technology e-Book is provided by the Laboratory of Energy Engineering and Environmental Protection at Helsinki University of Technology. The book covers the basics and the history of steam generation, modern boilers types and applications, steam/water circulation design, feedwater and steam systems components, heat exchangers in steam boilers, boiler calculations, thermal design of heat exchangers. The chapters of the second edition have been corrected based on reader and reviewer comments, and four new chapters have been added. The user interface of the electronic version has also been updated. The password for the online book will be changed once a year. If you have problems accessing the online book, or need a new password, please contact sebastian.teir@hut.fi.

  1. Hydrogen production by reforming of liquid hydrocarbons in a membrane reactor for portable power generation-Model simulations

    Science.gov (United States)

    Damle, Ashok S.

    One of the most promising technologies for lightweight, compact, portable power generation is proton exchange membrane (PEM) fuel cells. PEM fuel cells, however, require a source of pure hydrogen. Steam reforming of hydrocarbons in an integrated membrane reactor has potential to provide pure hydrogen in a compact system. In a membrane reactor process, the thermal energy needed for the endothermic hydrocarbon reforming may be provided by combustion of the membrane reject gas. The energy efficiency of the overall hydrogen generation is maximized by controlling the hydrogen product yield such that the heat value of the membrane reject gas is sufficient to provide all of the heat necessary for the integrated process. Optimization of the system temperature, pressure and operating parameters such as net hydrogen recovery is necessary to realize an efficient integrated membrane reformer suitable for compact portable hydrogen generation. This paper presents results of theoretical model simulations of the integrated membrane reformer concept elucidating the effect of operating parameters on the extent of fuel conversion to hydrogen and hydrogen product yield. Model simulations indicate that the net possible hydrogen product yield is strongly influenced by the efficiency of heat recovery from the combustion of membrane reject gas and from the hot exhaust gases. When butane is used as a fuel, a net hydrogen recovery of 68% of that stoichiometrically possible may be achieved with membrane reformer operation at 600 °C (873 K) temperature and 100 psig (0.791 MPa) pressure provided 90% of available combustion and exhaust gas heat is recovered. Operation at a greater pressure or temperature provides a marginal improvement in the performance whereas operation at a significantly lower temperature or pressure will not be able to achieve the optimal hydrogen yield. Slightly higher, up to 76%, net hydrogen recovery is possible when methanol is used as a fuel due to the lower heat

  2. Steam generator tube failures

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

  3. Understand steam generator performance

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. (ABCO Industries, Abilene, TX (United States))

    1994-12-01

    Several variables affect the design and performance of packaged steam generators. Engineers should understand these parameters and their effects so that they can select cost-effective design options and write good specifications. Knowing how the steam parameters and efficiency vary with load can also help plant engineers plan their operation better. This article discusses the effects of such variables as excess air, fuel type, exit gas temperature, load, and emissions on generator design and operation. It also discusses some of the potential benefits of customized steam generators over standard, prepackaged designs, which often compromise on overall performance. The focus of the article is limited to gaseous and oil fuels.

  4. Ethanol steam reforming over Ni/M{sub x}O{sub y}-Al{sub 2}O{sub 3} (M=Ce, La, Zr and Mg) catalysts: Influence of support on the hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Sanchez, M.C.; Navarro, R.M.; Fierro, J.L.G. [Instituto de Catalisis y Petroleoquimica, CSIC, C/ Marie Curie 2 Cantoblanco 28049 Madrid (Spain)

    2007-07-15

    Hydrogen production from ethanol reforming over alumina-supported nickel catalysts modified with Ce, Mg, Zr and La was studied. Characterization of catalysts by XRD, TPR, XRD and TPD of NH{sub 3} revealed changes in the acidity, nickel dispersion and nickel-support interaction with the type of the modifier added to Al{sub 2}O{sub 3}. The acidity of catalysts containing Mg, Ce, La and Zr additives decreased with respect to that supported on bare Al{sub 2}O{sub 3}. The trend of metal dispersion as derived from XRD and H{sub 2} chemisorption results followed the order: La{sub 2}O{sub 3}-Al{sub 2}O{sub 3}>MgO-Al{sub 2}O{sub 3}>CeO{sub 2}-Al{sub 2}O{sub 3}>Al{sub 2}O{sub 3}>ZrO{sub 2}-Al{sub 2}O{sub 3}. TPR and XPS analyses indicate the development of strong interactions between nickel species and ZrO{sub 2}, La{sub 2}O{sub 3} and CeO{sub 2} oxides added to supports. The activity measurements coupled with the physicochemical characterization data indicated the different catalysts functionality that influences on their reforming activity. Thus, the higher reforming activity for Mg-modified catalyst respect to bare Al{sub 2}O{sub 3} was explained in terms of the lower acidity and better dispersion achieved in the former, while for Ce- and Zr-promoted catalysts the improvement in intrinsic activity was ascribed to the enhancement of water adsorption/dissociation on the Ni-Ce and Ni-Zr interfaces developed on these catalysts. On the other hand, the lower intrinsic activity of La-added catalyst was explained in terms of the dilution effect caused by the presence of lanthanum on Ni surfaces. Characterization of catalysts after reaction showed differences on the amount and type of coke deposited on catalysts surfaces. La and Ce additives were found to prevent the formation of carbon filaments on nickel surfaces, which is responsible of the changes in product selectivities with reaction time observed on Ni/Al{sub 2}O{sub 3}, Ni/ZrO{sub 2}-Al{sub 2}O{sub 3} and Ni/MgO-Al{sub 2}O

  5. Steam Properties Database

    Science.gov (United States)

    SRD 10 NIST/ASME Steam Properties Database (PC database for purchase)   Based upon the International Association for the Properties of Water and Steam (IAPWS) 1995 formulation for the thermodynamic properties of water and the most recent IAPWS formulations for transport and other properties, this updated version provides water properties over a wide range of conditions according to the accepted international standards.

  6. Characterization and Modeling of a Methanol Reforming Fuel Cell System

    DEFF Research Database (Denmark)

    Sahlin, Simon Lennart

    topologies is the Reformed Methanol Fuel Cell (RMFC) system that operates on a mix of methanol and water. The fuel is reformed with a steam reforming to a hydrogen rich gas, however with additional formation of Carbon Monoxide and Carbon Dioxide. High Temperature Polymer Electrolyte Membrane Fuel Cell (HT...... to heat up the steam reforming process. However, utilizing the excess hydrogen in the system complicates the RMFC system as the amount of hydrogen can vary depending on the fuel methanol supply, fuel cell load and the reformer gas composition. This PhD study has therefore been involved in investigating......Many fuel cells systems today are operated with compressed hydrogen which has great benefits because of the purity of the hydrogen and the relatively simple storage of the fuel. However, compressed hydrogen is stored in the range of 800 bar, which can be expensive to compress.One of the interesting...

  7. Telecom Reform

    DEFF Research Database (Denmark)

    Telecom Reform: Principles, Policies and Regulatory Practices, provides a comprehensive and definitive review and assessment of the unfolding telecom reform process, and its implications for information society development. It is an invaluable resource and authoritative reference on telecom reform...... and information infrastructure issues - for people in government, academia, industry and the consulting community. This book addresses the process of policy and regulatory reform in telecom that is now in its formative stage. It draws on detailed knowledge of industry development and regulatory experience......, as well as expertise in the new technologies, industries, economics, policy development, and law to present and critique the principles, policies and regulatory practices associated with telecom reform. Twenty six international experts address thirty two topics that are essential to successful telecom...

  8. Administrative Reform

    DEFF Research Database (Denmark)

    Plum, Maja

    Through the example of a Danish reform of educational plans in early childhood education, the paper critically addresses administrative educational reforms promoting accountability, visibility and documentation. Drawing on Foucaultian perspectives, the relation between knowledge and governing......, implied in the reform, is analysed as a technology of accounting. A technology producing ‘the professional nursery teacher' as a reflective daily researcher, who outlives her pedagogical desire as an analytical care of the optimisation of ‘the learning child'. Thus, the paper analyses the micro physics......, in this way, can be seen as a practice which mobilises and optimises this humanistic legacy, reproducing and transforming it into a new pedagogical desire....

  9. Steam explosion studies review

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Moon Kyu; Kim, Hee Dong

    1999-03-01

    When a cold liquid is brought into contact with a molten material with a temperature significantly higher than the liquid boiling point, an explosive interaction due to sudden fragmentation of the melt and rapid evaporation of the liquid may take place. This phenomenon is referred to as a steam explosion or vapor explosion. Depending upon the amount of the melt and the liquid involved, the mechanical energy released during a vapor explosion can be large enough to cause serious destruction. In hypothetical severe accidents which involve fuel melt down, subsequent interactions between the molten fuel and coolant may cause steam explosion. This process has been studied by many investigators in an effort to assess the likelihood of containment failure which leads to large scale release of radioactive materials to the environment. In an effort to understand the phenomenology of steam explosion, extensive studies has been performed so far. The report presents both experimental and analytical studies on steam explosion. As for the experimental studies, both small scale tests which involve usually less than 20 g of high temperature melt and medium/large scale tests which more than 1 kg of melt is used are reviewed. For the modelling part of steam explosions, mechanistic modelling as well as thermodynamic modelling is reviewed. (author)

  10. Compact vortices

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Losano, L.; Marques, M.A.; Zafalan, I. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Menezes, R. [Universidade Federal da Paraiba, Departamento de Ciencias Exatas, Rio Tinto, PB (Brazil); Universidade Federal de Campina Grande, Departamento de Fisica, Campina Grande, PB (Brazil)

    2017-02-15

    We study a family of Maxwell-Higgs models, described by the inclusion of a function of the scalar field that represent generalized magnetic permeability. We search for vortex configurations which obey first-order differential equations that solve the equations of motion. We first deal with the asymptotic behavior of the field configurations, and then implement a numerical study of the solutions, the energy density and the magnetic field. We work with the generalized permeability having distinct profiles, giving rise to new models, and we investigate how the vortices behave, compared with the solutions of the corresponding standard models. In particular, we show how to build compact vortices, that is, vortex solutions with the energy density and magnetic field vanishing outside a compact region of the plane. (orig.)

  11. A Novel Cyclic Catalytic Reformer for Hydrocarbon Fuels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposed Small Business Innovative Research (SBIR) Phase I addresses development of a compact reformer system based on a cyclic partial oxidation (POx)...

  12. Reform and Backlash to Reform

    DEFF Research Database (Denmark)

    Hougaard Jensen, Svend E.; Hagen Jørgensen, Ole

    Using a stochastic general equilibrium model with overlapping generations, this paper studies (i) the effects on both extensive and intensive labor supply responses to changes in fertility rates, and (ii) the potential of a retirement reform to mitigate the effects of fertility changes on labor...... supply. In order to neutralize the effects on effective labor supply of a fertility decline, a retirement reform, designed to increase labor supply at the extensive margin, is found to simultaneously reduce labor supply at the intensive margin. This backlash to retirement reform requires the statutory...

  13. High performance steam development

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, T.; Schneider, P. [Solar Turbines Inc., San Diego, CA (United States)

    1995-10-01

    Over 30 years ago U.S. industry introduced the world`s highest temperature (1200{degrees}F at 5000 psig) and most efficient power plant, the Eddystone coal-burning steam plant. The highest alloy material used in the plant was 316 stainless steel. Problems during the first few years of operation caused a reduction in operating temperature to 1100{degrees}F which has generally become the highest temperature used in plants around the world. Leadership in high temperature steam has moved to Japan and Europe over the last 30 years.

  14. STEAM GENERATOR GROUP PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Clark, R. A.; Lewis, M

    1985-09-01

    This report is a summary of progress in the Surry Steam Generator Group Project for 1984. Information is presented on the analysis of two baseline eddy current inspections of the generator. Round robin series of tests using standard in-service inspection techniques are described along with some preliminary results. Observations are reported of degradation found on tubing specimens removed from the generator, and on support plates characterized in-situ. Residual stresses measured on a tubing specimen are reported. Two steam generator repair demonstrations are described; one for antivibration bar replacement, and one on tube repair methods. Chemical analyses are shown for sludge samples removed from above the tube sheet.

  15. Hydrogen production with a solar steam–methanol reformer and colloid nanocatalyst

    KAUST Repository

    Lee, Ming-Tsang

    2010-01-01

    In the present study a small steam-methanol reformer with a colloid nanocatalyst is utilized to produce hydrogen. Radiation from a focused continuous green light laser (514 nm wavelength) is used to provide the energy for steam-methanol reforming. Nanocatalyst particles, fabricated by using pulsed laser ablation technology, result in a highly active catalyst with high surface to volume ratio. A small novel reformer fabricated with a borosilicate capillary is employed to increase the local temperature of the reformer and thereby increase hydrogen production. The hydrogen production output efficiency is determined and a value of 5% is achieved. Experiments using concentrated solar simulator light as the radiation source are also carried out. The results show that hydrogen production by solar steam-methanol colloid nanocatalyst reforming is both feasible and promising. © 2009 Professor T. Nejat Veziroglu.

  16. Dual Pressure versus Hybrid Recuperation in an Integrated Solid Oxide Fuel Cell Cycle – Steam Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    steam in a HRSG (heat recovery steam generator). The bottoming steam cycle was modeled with two configurations: (1) a simple single pressure level and (2) a dual pressure level with both a reheat and a pre-heater. The SOFC stacks in the present SOFC-ST hybrid cycles were not pressurized. The dual......A SOFC (solid oxide fuel cell) cycle running on natural gas was integrated with a ST (steam turbine) cycle. The fuel is desulfurized and pre-reformed before entering the SOFC. A burner was used to combust the remaining fuel after the SOFC stacks. The off-gases from the burner were used to produce...... pressure configuration steam cycle combined with SOFC cycle (SOFC-ST) was new and has not been studied previously. In each of the configuration, a hybrid recuperator was used to recovery the remaining energy of the off-gases after the HRSG. Thus, four different plants system setups were compared to each...

  17. Effect of pressurized steam on AA1050 aluminium

    DEFF Research Database (Denmark)

    Jariyaboon, Manthana; Møller, Per; Ambat, Rajan

    2012-01-01

    Purpose - The purpose of this paper is to understand the effect of pressurized steam on surface changes, structures of intermetallic particles and corrosion behavior of AA1050 aluminium. Design/methodology/approach - Industrially pure aluminium (AA1050, 99.5 per cent) surfaces were exposed...... measurements were used to study corrosion behavior. Findings - A 590?nm boehmite oxide layer was generated on AA1050 associated with partially dissolved and/or fallen off Fe-containing intermetallic particles after exposure to pressurized steam. A significant reduction (25 times) in anodic and cathodic...... reactivities was observed due to the formation of the compact oxide layer. Originality/value - This paper reveals a detailed investigation of how pressurized steam can affect the corrosion behaviour of AA1050 aluminium and the structure of Fe-containing intermetallic particles....

  18. Advances in ethanol reforming for the production of hydrogen

    Directory of Open Access Journals (Sweden)

    Laura Guerrero

    2014-06-01

    Full Text Available Catalytic steam reforming of ethanol (SRE is a promising route for the production of renewable hydrogen (H2. This article reviews the influence of doping supported-catalysts used in SRE on the conversion of ethanol, selectivity for H2, and stability during long reaction periods. In addition, promising new technologies such as membrane reactors and electrochemical reforming for performing SRE are presented.

  19. Steam generators in cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. [Abco Industries, Inc., Abilene, TX (United States)

    1994-12-31

    This paper addresses the performance aspects of packaged steam generators and small to medium sized single pressure gas turbine heat recovery steam generators (HRSGs) used in cogeneration plants. HRSGs in combined cycle plants are not addressed here as they usually involve multiple steam pressure operation and comparison with steam generators, which operate at single pressure, would be difficult. Also,the paper deals with simple Brayton cycles with heat recovery for cogeneration only and hence discussions on steam turbines is avoided. The paper addresses the behavior of the steam generators with respect to load with emphasis on fuel utilization, efficiency and performance. The information, it is hoped, would be of interest to plant engineers who would like to operate the steam generators at their best efficiency points.

  20. Slab reformer

    Science.gov (United States)

    Spurrier, Francis R.; DeZubay, Egon A.; Murray, Alexander P.; Vidt, Edward J.

    1984-02-07

    Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot comubstion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.

  1. Compact torus

    Energy Technology Data Exchange (ETDEWEB)

    Furth, H.P.

    1980-10-01

    The objective of the compact torus approach is to provide toroidal magnetic-field configurations that are based primarily on plasma currents and can be freed from closely surrounding mechanical structures. Some familiar examples are the current-carrying plasma rings of reversed-field theta pinches and relativistic-electron smoke ring experiments. The spheromak concept adds an internal toroidal magnetic field component, in order to enhance MHD stability. In recent experiments, three different approaches have been used to generate spheromak plasmas: (1) the reversed-field theta pinch; (2) the coaxial plasma gun; (3) a new quasi-static method, based on the initial formation of a toroidal plasma sleeve around a mechanical ring that generates poloidal and toroidal fluxes, followed by field-line reconnection to form a detached spheromak plasma. The theoretical and experimental MHD stability results for the spheromak configuration are found to have common features.

  2. A MEMS methanol reformer heated by decomposition of hydrogen peroxide.

    Science.gov (United States)

    Kim, Taegyu; Hwang, Jin Soo; Kwon, Sejin

    2007-07-01

    This paper presents the design, fabrication and evaluation of a micro methanol reformer complete with a heat source. The micro system consists of the steam reforming reactor of methanol, the catalytic decomposition reactor of hydrogen peroxide, and a heat exchanger between the two reactors. In the present study, catalytic decomposition of hydrogen peroxide is used as a process to supply heat to the reforming reactor. The decomposition process of hydrogen peroxide produces water vapor and oxygen as a product that can be used efficiently to operate the reformer/PEMFC system. Cu/ZnO was selected as a catalyst for methanol steam reforming and Pt for the decomposition of hydrogen peroxide. Incipient wetness method was used to load catalysts on a porous support. Catalyst loaded supports were inserted in the cavity made on the glass wafer. The performance of the methanol steam reforming system was measured at various test conditions and the optimum operation condition was sought. At the optimum condition, the hydrogen selectivity was 86.4% and the thermal efficiency was 44.8%. The product gas included 74.1% H(2), 24.5% CO(2) and 1.4% CO and the total volume production rate was 23.5 ml min(-1). This amount of hydrogen can produce 1.5 W of power on a typical PEMFC.

  3. Steam condenser developments

    Science.gov (United States)

    Lang, H. V.

    Factors determining condenser size and tube arrangement are reviewed, including steam side pressure drop; incondensible blanketing; effect of incondensibles on heat transfer; vent requirements; deaeration; condensate depression; cooling water velocity; tube material and diameter selection; fouling; and enhanced heat transfer tubes. Tube nest shapes and condenser concepts are described. Thermal design, and condenser acceptance testing are treated; field test results on "Church Window'' condensers are reported.

  4. Wet steam wetness measurement in a 10 MW steam turbine

    Directory of Open Access Journals (Sweden)

    Kolovratník Michal

    2014-03-01

    Full Text Available The aim of this paper is to introduce a new design of the extinction probes developed for wet steam wetness measurement in steam turbines. This new generation of small sized extinction probes was developed at CTU in Prague. A data processing technique is presented together with yielded examples of the wetness distribution along the last blade of a 10MW steam turbine. The experimental measurement was done in cooperation with Doosan Škoda Power s.r.o.

  5. Parametric Characterization of Reformate-operated PBI-based High Temperature PEM Fuel Cell Stack

    DEFF Research Database (Denmark)

    Sahlin, Simon Lennart

    2017-01-01

    This paper presents an experimental characterization of a HT-PEMFC short stack performed by means of impedance spectroscopy. Selected operating parameters; temperature, stoichiometry and reactant compositions were varied to investigate their effects on a reformate operated stack. Polarization cur...... hydrogen, steam reforming and autothermal reforming gas at 160 ◦ C and showed how significantly lower performance with autoreformate at the same stoichiometry....

  6. Upgrading of reformate gas for different applications with focus on small-scale hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Jannasch, Anna-Karin; Silversand, Fredrik [CATATOR AB, Lund (Sweden)

    2004-12-01

    Hydrogen gas or hydrogen rich gas is today used in many different applications, i.e. as fuel in fuel cells or additive in vehicle fuel (i.e. hythane) and as reagent or reducing agent in different industrial product lines. The majority of the hydrogen is produced either via electrolysis or reformation, where this work has entirely been focused on the latter alternative. The overarching aims of this project have been to demonstrate the need for reformate purification for different applications, and then, to investigate different available methods that can be used in order to enable the requested gas clean-up. The different purification methods have been examined with respect to parameters such as operating conditions (temperature, pressure), impurity tolerance, size, weight and cost. Another goal of the project has been to investigate how the reformer fuel type used influences the reformate gas quality and hence, the need for gas purification before the reformate can be fed to e.g. a low temperature polymer membrane fuel cell (PEMFC). For this reason, some experimental work has been performed. First, analysis of the reformate gas composition when natural gas, LPG, gasoline, diesel, kerosene (low and high S-concentration (i.e. JP8)) and ethanol have been processed. The reformation tests were carried out in a small scale reformer unit ({approx} 1 kW H{sub 2}) including Catator's catalyst formulations developed for the steam reforming, the water gas shift and the preferential oxidation reaction, respectively. Verification tests, with synthetic gas blends, including different potential reformate impurities, and with real reformate gas were thereafter performed with a commercial 4-cell PEMFC stack (3-5 W). Finally, some examination and also to some extent further development of Catator's existing gas purification units were made, i.e. chemical (WGS, PROX) and physical (regenerative adsorption). The Pd-alloy membrane seems to be the obvious choice of purification

  7. Process for purifying geothermal steam

    Science.gov (United States)

    Li, C.T.

    Steam containing hydrogen sulfide is purified and sulfur recovered by passing the steam through a reactor packed with activated carbon in the presence of a stoichiometric amount of oxygen which oxidizes the hydrogen sulfide to elemental sulfur which is adsorbed on the bed. The carbon can be recycled after the sulfur has been recovered by vacuum distillation, inert gas entrainment or solvent extraction. The process is suitable for the purification of steam from geothermal sources which may also contain other noncondensable gases.

  8. Accelerated growth of oxide film on aluminium alloys under steam: Part I: Effects of alloy chemistry and steam vapour pressure on microstructure

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Gudla, Visweswara C.; Jellesen, Morten S.

    2015-01-01

    Aluminium alloys were treated with steam of varying vapour pressures which resulted in the growth of aluminium oxyhydroxide layers of an average thickness of ~450–825 nm. The microstructure and composition of the generated layers were characterised by GD-OES, FEG-SEM, GI-XRD and TEM. The thicknes...... of alkaline etching pre-treatment influenced the thickness and growth of theoxide. Moreover the steam treatment resulted in the partial oxidation of second phase intermetallic particles present in the aluminium alloy microstructure....... of the oxide layeras well as the compactness increased with steam vapour pressure. The increase in vapour pressure also resulted in a better coverage over the intermetallic particles. Oxide layer showed a layered structure with more compact layer at the Al interface and a nano-scale needle like structure...

  9. Hydrogen production from methane reforming: thermodynamic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Assis, A.J.; Hori, Carla E.; Avila Neto, Cicero; Franco, Tatiana [Federal University of Uberlandia (UFU), MG (Brazil). School of Chemical Engineering]. E-mail: adilsonjassis@gmail.com

    2008-07-01

    The main contributions of this study are to conduct a comparative thermodynamic analysis of methane reforming reactions and to asses the influence of key operational variables on chemical equilibrium using an in-house code, developed in the open-source software Scilab{sup c} INRIA-ENPC (www.scilab.org). Equilibrium compositions are calculated by two distinct methods: evaluation of equilibrium constants and Lagrange multipliers. Both methods result in systems of non-linear algebraic equations, solved numerically using the Scilab function 'fsolve'. Comparison between experimental and simulated equilibrium data, published in the literature, was used to validate the simulated results. Effects of temperature, pressure, initial H{sub 2}O/CH{sub 4} ratio (steam reforming), initial CH{sub 4}:CO{sub 2}:N{sub 2} ratio (dry reforming) and initial O{sub 2}/CH{sub 4} ratio (partial oxidation) on the reaction products were evaluated. (author)

  10. DEMONSTRATION BULLETIN STEAM ENHANCED REMEDIATION STEAM TECH ENVIRONMENTAL SERVICES, INC.

    Science.gov (United States)

    Steam Enhanced Remediation is a process in which steam is injected into the subsurface to recover volatile and semivolatile organic contaminants. It has been applied successfully to recover contaminants from soil and aquifers and at a fractured granite site. This SITE demonstra...

  11. CATALYTIC STEAM REFORMING OF CHLOROCARBONS: METHLYCHLORIDE. (R826694C633)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  12. Radial Microchannel Reactor (RMR) used in Steam Reforming CH4

    Science.gov (United States)

    2013-05-13

    separate from an external combustion by passing a precisely measurable electrical heat flow through a reactor wall maintained at a well determined...the performance and reduce cost of CHP systems based on SOFC. The experiments, results and conclusion on the 300 micron gap Radial Microchannel...reaction is occurring. Figure 3: Experimental Test Bench Figure 2: RMR Design shown fluid flow, electrical heater and TC locations

  13. Methane Steam Reforming Kinetics in Operating Solid Oxide Fuel Cells

    NARCIS (Netherlands)

    Fan, L.

    2014-01-01

    By 2040, electricity generation will account for more than 40 % of global energy consumption. Gains in efficiency through energy-saving practices and technologies – such as hybrid vehicles and new, high efficiency natural gas power plants – will temper demand growth and curb emissions. Different

  14. Program computes turbine steam rates and properties

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. (ABCO Industries, Inc., Abilene, TX (US))

    1988-11-01

    BASIC computer program quickly evaluates steam properties and rates during expansion in a steam turbine. Engineers involved in cogeneration projects and power plant studies often need to calculate the steam properties during expansion in a steam turbine to evaluate the theoretical and actual steam rates and hence, the electrical power output. With the help of this program written in BASIC, one can quickly evaluate all the pertinent data. Correlations used for steam property evaluation are also presented.

  15. Steam generator tube integrity program

    Energy Technology Data Exchange (ETDEWEB)

    Dierks, D.R.; Shack, W.J. [Argonne National Laboratory, IL (United States); Muscara, J.

    1996-03-01

    A new research program on steam generator tubing degradation is being sponsored by the U.S. Nuclear Regulatory Commission (NRC) at Argonne National Laboratory. This program is intended to support a performance-based steam generator tube integrity rule. Critical areas addressed by the program include evaluation of the processes used for the in-service inspection of steam generator tubes and recommendations for improving the reliability and accuracy of inspections; validation and improvement of correlations for evaluating integrity and leakage of degraded steam generator tubes, and validation and improvement of correlations and models for predicting degradation in steam generator tubes as aging occurs. The studies will focus on mill-annealed Alloy 600 tubing, however, tests will also be performed on replacement materials such as thermally-treated Alloy 600 or 690. An overview of the technical work planned for the program is given.

  16. Evaluate deaerator steam requirements quickly

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. (ABCO Industries, Inc., Abilene, TX (US))

    1991-02-01

    Steam plant engineers frequently have to perform energy balance calculations around the deaerator to estimate the steam required to preheat and deaerate the make-up water and condensate returns. This calculation involves solving two sets of equations, one for mass and the other for energy balance. Reference to steam tables is also necessary. However, with the help of this program written in BASIC, one can arrive at the make-up water and steam requirements quickly, without referring to steam tables. This paper shows the mass and energy balance equations for the deaerator. This paper gives the program listing. An number of condensate returns can be handled. An example illustrates the use of the program.

  17. Catalyzed steam gasification of biomass. Phase II. Final research report

    Energy Technology Data Exchange (ETDEWEB)

    Hooverman, R.H.

    1979-05-01

    The Wright-Malta gasification process is characterized by low-temperature, catalyzed steam gasification in a pressurized rotary kiln. Fresh biomass moves slowly and continuously through the kiln, where it is gradually heated to around 1200/sup 0/F in an atmosphere of 300 psi steam. During its traverse, pyrolysis and reaction of steam with the nascent char convert nearly all of the organic solids to the gaseous phase. The volatile pyrolysis products pass through the kiln co-currently with the solids and are similarly cracked and steam-reformed within the kiln to fixed gases. Heat for the gasification process is provided by sensible heat recovered from the product gas and the wood decomposition exotherm, making the process inherently very energy-efficient. This report summarizes the work done during the experimental, laboratory-scale phase of development of the W-M biomass gasification process. Two bench-scale experimental gasifiers were constructed and tested: the ''minikiln'', a batch-feed, rotating autoclave; and the ''biogasser'', a stationary, continuous-feed, tubular reactor with zone heating and auger transport. Studies were carried out in these reactors to determine the extent of conversion of biomass solids to gas, and the makeup of the product gas, over a wide range of process conditions. The process variables that were investigated included reactor pressure and temperature, catalyst type and concentration, moisture content and type of biomass feed.

  18. Effective use of heat-recovery steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. (Abco Industries, Abilene, TX (United States))

    1993-01-01

    Heat-recovery steam generators (HRSGs), often called waste-heat boilers, recover energy from gas streams in a wide range of chemical-process plants. They play the same role in cogeneration and combined-cycle plants that generate steam and electric power, and in facilities that incinerate solid, liquid or gaseous waste. The HRSG is basically a heat exchanger that serves as a boiler. The steam-generation rate and the amount of space available help determine the particular type used in a given situation. So do the quantity, temperature, pressure, chemical composition and purity of the gas. HRSGs are in general custom-designed for each situation, and the purchasing company's engineers must take special care in preparing a well-written specification. Guidelines for doing so appear later. How to use HRSGs effectively in chemical-process plants can be aptly illustrated by two major examples, both covered below: steam reforming of natural gas to produce hydrogen, as in an ammonia or methanol plant; and manufacture of sulfuric acid by the contact process. Also included below is a look at HRSGs in incineration plants, followed by guidelines for proper specifying of these heat-exchange devices.

  19. Bench-Scale Monolith Autothermal Reformer Catalyst Screening Evaluations in a Micro-Reactor With Jet-A Fuel

    Science.gov (United States)

    Tomsik, Thomas M.; Yen, Judy C.H.; Budge, John R.

    2006-01-01

    Solid oxide fuel cell systems used in the aerospace or commercial aviation environment require a compact, light-weight and highly durable catalytic fuel processor. The fuel processing method considered here is an autothermal reforming (ATR) step. The ATR converts Jet-A fuel by a reaction with steam and air forming hydrogen (H2) and carbon monoxide (CO) to be used for production of electrical power in the fuel cell. This paper addresses the first phase of an experimental catalyst screening study, looking at the relative effectiveness of several monolith catalyst types when operating with untreated Jet-A fuel. Six monolith catalyst materials were selected for preliminary evaluation and experimental bench-scale screening in a small 0.05 kWe micro-reactor test apparatus. These tests were conducted to assess relative catalyst performance under atmospheric pressure ATR conditions and processing Jet-A fuel at a steam-to-carbon ratio of 3.5, a value higher than anticipated to be run in an optimized system. The average reformer efficiencies for the six catalysts tested ranged from 75 to 83 percent at a constant gas-hourly space velocity of 12,000 hr 1. The corresponding hydrocarbon conversion efficiency varied from 86 to 95 percent during experiments run at reaction temperatures between 750 to 830 C. Based on the results of the short-duration 100 hr tests reported herein, two of the highest performing catalysts were selected for further evaluation in a follow-on 1000 hr life durability study in Phase II.

  20. Arbitration Reform

    Directory of Open Access Journals (Sweden)

    Svetlana Stepurina

    2017-01-01

    Full Text Available УДК 347.73:341.63Subject. This informational article highlights recent changes to the Russian legislation on arbitration.Purpose. To highlight the most important aspects of arbitration law reform, and examines the effects they will have on the development of arbitration in RussiaMethodology. The author uses a formal-legal method.Results, scope of application. The author distinguishes the difference between constantly acting arbitration courts and arbitration courts ad hoc. The special status of a number of arbitration institutions (the ICAC and MAC at the Russian Chamber of Commerce and Industry, is contrary to the constitutional principle of equality under the law. A major achievement of the new legislation on arbitration courts is expanding the range arbitrarily disputes.Conclusions. The new legislation more clearly prescribed the interaction of arbitration and state courts, including requiring the latter to promote the arbitrators, acting under the regulations of the permanent arbitration institutions in obtaining evidence.In addition, the reform of the arbitration law have left aside the problem of improving the quality of judicial control over arbitration decisions.The arbitration law will still be able to improve the arbitration, to enhance its credibility and attractiveness for the participants of civil turnover.

  1. Chemical Looping Combustion of Hematite Ore with Methane and Steam in a Fluidized Bed Reactor

    Directory of Open Access Journals (Sweden)

    Samuel Bayham

    2017-08-01

    Full Text Available Chemical looping combustion is considered an indirect method of oxidizing a carbonaceous fuel, utilizing a metal oxide oxygen carrier to provide oxygen to the fuel. The advantage is the significantly reduced energy penalty for separating out the CO2 for reuse or sequestration in a carbon-constrained world. One of the major issues with chemical looping combustion is the cost of the oxygen carrier. Hematite ore is a proposed oxygen carrier due to its high strength and resistance to mechanical attrition, but its reactivity is rather poor compared to tailored oxygen carriers. This problem is further exacerbated by methane cracking, the subsequent deposition of carbon and the inability to transfer oxygen at a sufficient rate from the core of the particle to the surface for fuel conversion to CO2. Oxygen needs to be readily available at the surface to prevent methane cracking. The purpose of this work was to demonstrate the use of steam to overcome this issue and improve the conversion of the natural gas to CO2, as well as to provide data for computational fluid dynamics (CFD validation. The steam will gasify the deposited carbon to promote the methane conversion. This work studies the performance of hematite ore with methane and steam mixtures in a 5 cm fluidized bed up to approximately 140 kPa. Results show an increased conversion of methane in the presence of steam (from 20–45% without steam to 60–95% up to a certain point, where performance decreases. Adding steam allows the methane conversion to carbon dioxide to be similar to the overall methane conversion; it also helped to prevent carbon accumulation from occurring on the particle. In general, the addition of steam to the feed gas increased the methane conversion. Furthermore, the addition of steam caused the steam methane reforming reaction to form more hydrogen and carbon monoxide at higher steam and methane concentrations, which was not completely converted at higher concentrations and

  2. Pure hydrogen production via autothermal reforming of ethanol in a fluidized bed membrane reactor: A simulation study

    NARCIS (Netherlands)

    Gallucci, F.; van Sint Annaland, M.; Kuipers, J.A.M.

    2010-01-01

    In this paper the production of ultra-pure hydrogen via autothermal reforming of ethanol in a fluidized bed membrane reactor has been studied. The heat needed for the steam reforming of ethanol is obtained by burning part of the hydrogen recovered via the hydrogen perm-selective membrane thereby

  3. ULTRA-SUPERCRITICAL STEAM CORROSION

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, G.R.; Alman, D.E.; Bullard, S.B.; Covino, B.S., Jr.; Cramer, S.D.; Ziomek-Moroz, M.

    2003-04-22

    Efficiency increases in fossil energy boilers and steam turbines are being achieved by increasing the temperature and pressure at the turbine inlets well beyond the critical point of water. To allow these increases, advanced materials are needed that are able to withstand the higher temperatures and pressures in terms of strength, creep, and oxidation resistance. As part of a larger collaborative effort, the Albany Research Center (ARC) is examining the steam-side oxidation behavior for ultrasupercritical (USC) steam turbine applications. Initial tests are being done on six alloys identified as candidates for USC steam boiler applications: ferritic alloy SAVE12, austenitic alloy Super 304H, the high Cr-high Ni alloy HR6W, and the nickel-base superalloys Inconel 617, Haynes 230, and Inconel 740. Each of these alloys has very high strength for its alloy type. Three types of experiments are planned: cyclic oxidation in air plus steam at atmospheric pressure, thermogravimetric ana lysis (TGA) in steam at atmospheric pressure, and exposure tests in supercritical steam up to 650 C (1202 F) and 34.5 MPa (5000 psi). The atmospheric pressure tests, combined with supercritical exposures at 13.8, 20.7, 24.6, and 34.5 MPa (2000, 3000, 4000, and 5000 psi) should allow the determination of the effect of pressure on the oxidation process.

  4. Steepest Ascent Tariff Reform

    DEFF Research Database (Denmark)

    Raimondos-Møller, Pascalis; Woodland, Alan

    2014-01-01

    The policy reform literature is primarily concerned with the construction of reforms that yield welfare gains. By contrast, this paper’s contribution is to develop a theoretical concept for which the focus is upon the sizes of welfare gains accruing from policy reforms rather than upon their signs....... In undertaking this task, and by focusing on tariff reforms, we introduce the concept of a steepest ascent policy reform, which is a locally optimal reform in the sense that it achieves the highest marginal gain in utility of any feasible local reform. We argue that this reform presents itself as a natural...... benchmark for the evaluation of the welfare effectiveness of other popular tariff reforms such as the proportional tariff reduction and the concertina rules, since it provides the maximal welfare gain of all possible local reforms. We derive properties of the steepest ascent tariff reform, construct...

  5. Thermodynamic properties of dissociated steam

    Science.gov (United States)

    Aminov, R. Z.; Gudym, A. A.

    2017-11-01

    In connection with the development of hydrogen technologies and the generation of dissociated steam as a result of the oxidation of hydrogen in an oxygen environment, it became necessary to determine the calorific parameters of dissociated steam. In the existing tables, the caloric parameters of dissociated steam are presented at a reference temperature of 0 K. By contrast, the authors have developed tables of dissociated steam using a reference temperature of 0°C, within the pressure range 0.01–20.0 MPa and the temperature range 1250–4000 K, along with a system of equations for the industrial calculation of the properties of dissociated steam within the temperature range 1250–2300 K and pressure range 0.01–10.0 MPa, followed by a temperature range of 2200–3600 K. During the dissociation of steam, a mixture of eight components are formed including hydrogen H, oxygen O, radicals OH and HO2, molecules of hydrogen H2, oxygen O2, steam H2O, and hydrogen peroxide H2O2. All existing tables of the properties of dissociated steam are based on a mixture of six components: H2, O2, OH, H, O, and H2O. For evaluate whether this is an oversimplification, the composition of the mixture comprising all eight components was calculated, taking into account additional chemical reactions for the formation of HO2 and H2O2. At a pressure of 0.01 MPa, the maximum mole fraction of HO2 was 2.8·10‑5 at a temperature of 3000 K, and at a pressure of 10 MPa, the maximum mole fraction was 5·10‑5 at a temperature of 4000 K. The mole fraction of H2O2 was much lower. Thus at temperatures up to 3000 K, calculations of the properties of dissociated steam are restricted to six components.

  6. General purpose steam table library :

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, John H.; Belcourt, Kenneth Noel; Nourgaliev, Robert

    2013-08-01

    Completion of the CASL L3 milestone THM.CFD.P7.04 provides a general purpose tabular interpolation library for material properties to support, in particular, standardized models for steam properties. The software consists of three parts, implementations of analytic steam models, a code to generate tables from those models, and an interpolation package to interface the tables to CFD codes such as Hydra-TH. Verification of the standard model is maintained through the entire train of routines. The performance of interpolation package exceeds that of freely available analytic implementation of the steam properties by over an order of magnitude.

  7. Trends in packaged steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. [ABCO Industries, Abilene, TX (United States)

    1996-09-01

    Oil and gas-fired packaged steam generators are used in many industrial plants. They generate saturated or superheated steam up to 250,000 lb/hr, 1000 psig, and 950 F. They may be used for continuous steam generation or as standby boilers in cogeneration systems. Numerous variables affect the design of this equipment. A few important considerations should be addressed at an early point by the plant engineer specifying or evaluating equipment options. These considerations include trends such as customized designs that minimize operating costs and ensure emissions regulations are met. The paper discusses efficiency considerations first.

  8. Advanced technologies on steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, Kaoru; Nakamura, Yuuki [Mitsubishi Heavy Industry Co., Takasago (Japan); Nakamori, Nobuo; Mizutani, Toshiyuki; Uwagawa, Seiichi; Saito, Itaru [Mitsubishi Heavy Industry Co., Kobe (Japan); Matsuoka, Tsuyoshi [Mitsubishi Heavy Industry Co., Yokohama (Japan)

    1997-12-31

    The thermal-hydraulic tests for a horizontal steam generator of a next-generation PWR (New PWR-21) were performed. The purpose of these tests is to understand the thermal-hydraulic behavior in the secondary side of horizontal steam generator during the plant normal operation. A test was carried out with cross section slice model simulated the straight tube region. In this paper, the results of the test is reported, and the effect of the horizontal steam generator internals on the thermalhydraulic behavior of the secondary side and the circulation characteristics of the secondary side are discussed. (orig.). 3 refs.

  9. Modelling and Optimization of Reforming Systems for use in PEM Fuel Cell

    DEFF Research Database (Denmark)

    Berry, Melissa; Korsgaard, Anders Risum; Nielsen, Mads Pagh

    2004-01-01

    reactors needed for CO removal to make the synthesis gas suitable for use in a PEM fuel cell. The systems are optimized to minimize the total volume, and must supply adequate hydrogen to a fuel cell with a 100kW load. The resultant system efficiencies are calculated. The CPOX system is the smallest......Three different reforming methods for the conversion of natural gas to hydrogen are studied and compared: Steam Reforming (SR), Auto-thermal Reforming (ATR), and Catalytic Partial Oxidation (CPOX). Thermodynamic and kinetic models are developed for the reforming reactors as well as the subsequent...

  10. Dynamic modeling of a three-stage low-temperature ethanol reformer for fuel cell application

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Vanesa M.; Serra, Maria [Institut de Robotica i Informatica Industrial (CSIC-UPC), Llorens i Artigas 4-6, 08028 Barcelona (Spain); Lopez, Eduardo; Llorca, Jordi [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, ed. ETSEIB, 08028 Barcelona (Spain)

    2009-07-01

    A low-temperature ethanol reformer based on a cobalt catalyst for the production of hydrogen has been designed aiming the feed of a fuel cell for an autonomous low-scale power production unit. The reformer comprises three stages: ethanol dehydrogenation to acetaldehyde and hydrogen over SnO{sub 2} followed by acetaldehyde steam reforming over Co(Fe)/ZnO catalyst and water gas shift reaction. Kinetic data have been obtained under different experimental conditions and a dynamic model has been developed for a tubular reformer loaded with catalytic monoliths for the production of the hydrogen required to feed a 1 kW PEMFC. (author)

  11. Simplify heat recovery steam generator evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. (ABCO Industries, Abilene, TX (US))

    1990-03-01

    Heat recovery steam generators (HRSGs) are widely used in process and power plants, refineries and in several cogeneration/combined cycle systems. They are usually designed for a set of gas and steam conditions but often operate under different parameters due to plant constraints, steam demand, different ambient conditions (which affect the gas flow and exhaust gas temperature in a gas turbine plant), etc. As a result, the gas and steam temperature profiles in the HRSG, steam production and the steam temperature differ from the design conditions, affecting the entire plant performance and economics. Also, consultants and process engineers who are involved in evaluating the performance of the steam system as a whole, often would like to simulate the performance of an HRSG under different gas flows, inlet gas temperature and analysis, steam pressure and feed water temperature to optimize the entire steam system and select proper auxiliaries such as steam turbines, condensers, deaerators, etc.

  12. Reforming Again: Now Teachers

    Science.gov (United States)

    Marx, Ronald W.

    2014-01-01

    Background: Educational reform responds to local and national pressures to improve educational outcomes, and reform efforts cycle as similar pressures recur. Currently, reform efforts focus on teachers, even though confidence in a host of American social institutions is dropping. One of the most widespread reforms regarding teachers is the…

  13. Model Compaction Equation

    African Journals Online (AJOL)

    compaction are two parameters that indicate the degree of compaction in sandstones. When the values are low, the sands are undercompacted, but when they are high the sands are compacted. A number of equations relating porosity and depth in sandstones have been published (Athy,. 1930; Hubbert and Rubey, 1959; ...

  14. Medium capacity reheat steam turbines; Chuyoryo sainetsu joki turbine

    Energy Technology Data Exchange (ETDEWEB)

    Asano, S.; Takahashi, Y.; Moriyama, T. [Fuji Electric Co. Ltd., Tokyo (Japan)

    2000-12-12

    Worldwide movements for serious environmental problems and free power marketing, in addition to increasing reheat plants for the gas turbine combined cycle, have increased market needs for medium capacity reheat steam turbines. Fuji Electric has newly developed a high-performance machine to meet the market needs. The machine realizes compactness through optimum design, including the basic turbine construction, valve arrangement and security system, as well as high efficiency by using the new type profile, and is capable of good operation and manipulation using recent digital control technology. (author)

  15. Vibration Analysis for Steam Dryer of APR1400 Steam Generator

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sung-heum; Ko, Doyoung [KHNP CRI, Daejeon (Korea, Republic of); Cho, Minki [Doosan Heavy Industry, Changwon (Korea, Republic of)

    2016-10-15

    This paper is related to comprehensive vibration assessment program for APR1400 steam generator internals. According to U.S. Nuclear Regulatory Commission, Regulatory Guide 1.20 (Rev.3, March 2007), we conducted vibration analysis for a steam dryer as the second steam separator of steam generator internals. The vibration analysis was performed at the 100 % power operating condition as the normal operation condition. The random hydraulic loads were calculated by the computational fluid dynamics and the structural responses were predicted by power spectral density analysis for the probabilistic method. In order to meet the recently revised U.S. NRC RG 1.20 Rev.3, the CVAP against the potential adverse flow effects in APR1400 SG internals should be performed. This study conducted the vibration response analysis for the SG steam dryer as the second moisture separator at the 100% power condition, and evaluated the structural integrity. The predicted alternating stress intensities were evaluated to have more than 17.78 times fatigue margin compared to the endurance limit.

  16. Thermal and chemical analysis of carbon dioxide reforming of methane using the out-of-pile test facility

    Energy Technology Data Exchange (ETDEWEB)

    Huang Ziyong [Institute of Nuclear Energy Technology, Tsinghua University (China); Ohashi, Hirofumi; Inagaki, Yoshiyuki [Department of Advanced Nuclear Heat Technology, Oarai Research Establishment, Japan Atomic Energy Research Institute, Oarai, Ibaraki (Japan)

    2000-03-01

    In the Japan Atomic Energy Research Institute, a hydrogen production system is being designed to produce hydrogen by means of steam reforming of natural gas (its main composition is methane(CH{sub 4})) using nuclear heat (10 MW, 1178 K) supplied by the High Temperature Engineering Test Reactor (HTTR). Prior to coupling of the steam reforming system with the HTTR, an out-of-pile demonstration test was planned to confirm safety, controllability and performance of the steam reforming system under simulated operational conditions of the prototype. The out-of-pile test facility simulates key components downstream to an intermediate heat exchanger of the HTTR hydrogen production system on a scale of 1 : 30 and has a hydrogen production capacity of 110 Nm{sup 3}/h using an electric heater as a reactor substitute. The test facility is presently under construction. Reforming of natural gas with carbon dioxide CO{sub 2} (CO{sub 2} reforming) using the out-of-pile test facility is also being considered. In recent years, catalytic reforming of natural gas with CO{sub 2} to synthesis gas (CO and H{sub 2}) has been proposed as one of the most promising technologies for utilization of those two greenhouse gases. Numerical analysis on heat and mass balance has practical significance in CO{sub 2} reforming when the steam reforming process is adopted in the out-of-pile test. Numerical analysis of CO{sub 2} reforming and reforming of natural gas with CO{sub 2} and steam (CO{sub 2}+H{sub 2}O reforming) have been carried out using the mathematical model. Results such as the methane conversion rate, product gas composition, and the components temperature distribution considering the effects of helium gas temperature, reforming pressure, molar ratio of process gases and so on have been obtained in the numerical analysis. Heat and mass balance of the out-of-pile test facility considering chemical reactions are evaluated well. The methane conversation rates are about 0.36 and 0.35 which

  17. Analysis of Korean Elementary Pre-Service Teachers' Changing Attitudes about Integrated STEAM Pedagogy through Developing Lesson Plans

    Science.gov (United States)

    Kim, Dongryeul; Bolger, Molly

    2017-01-01

    Integrated curricula have become a major educational focus in Korea. Policy changes began in 2009 when the Korea Ministry of Education, Science, and Technology announced a new curriculum incorporating Science, Technology, Engineering, Arts, and Mathematics (STEAM). Various stages of educational reform have occurred since that time. This study…

  18. A miniature fuel reformer system for portable power sources

    Science.gov (United States)

    Dolanc, Gregor; Belavič, Darko; Hrovat, Marko; Hočevar, Stanko; Pohar, Andrej; Petrovčič, Janko; Musizza, Bojan

    2014-12-01

    A miniature methanol reformer system has been designed and built to technology readiness level exceeding a laboratory prototype. It is intended to feed fuel cells with electric power up to 100 W and contains a complete setup of the technological elements: catalytic reforming and PROX reactors, a combustor, evaporators, actuation and sensing elements, and a control unit. The system is engineered not only for performance and quality of the reformate, but also for its lightweight and compact design, seamless integration of elements, low internal electric consumption, and safety. In the paper, the design of the system is presented by focussing on its miniaturisation, integration, and process control.

  19. Plasma catalytic reforming of methane

    Energy Technology Data Exchange (ETDEWEB)

    Bromberg, L.; Cohn, D.R.; Rabinovich, A. [Massachusetts Inst. of Technology, Cambridge, MA (United States). Plasma Science and Fusion Center; Alexeev, N. [Russian Academy of Sciences, Moscow (Russian Federation). Baikov Inst. of Metallurgy

    1998-08-01

    Thermal plasma technology can be efficiently used in the production of hydrogen and hydrogen-rich gases from methane and a variety of fuels. This paper describes progress in plasma reforming experiments and calculations of high temperature conversion of methane using heterogeneous processes. The thermal plasma is a highly energetic state of matter that is characterized by extremely high temperatures (several thousand degrees Celsius) and high degree of dissociation and substantial degree of ionization. The high temperatures accelerate the reactions involved in the reforming process. Hydrogen-rich gas (50% H{sub 2}, 17% CO and 33% N{sub 2}, for partial oxidation/water shifting) can be efficiently made in compact plasma reformers. Experiments have been carried out in a small device (2--3 kW) and without the use of efficient heat regeneration. For partial oxidation/water shifting, it was determined that the specific energy consumption in the plasma reforming processes is 16 MJ/kg H{sub 2} with high conversion efficiencies. Larger plasmatrons, better reactor thermal insulation, efficient heat regeneration and improved plasma catalysis could also play a major role in specific energy consumption reduction and increasing the methane conversion. A system has been demonstrated for hydrogen production with low CO content ({approximately} 1.5%) with power densities of {approximately} 30 kW (H{sub 2} HHV)/liter of reactor, or {approximately} 10 m{sup 3}/hr H{sub 2} per liter of reactor. Power density should further increase with increased power and improved design.

  20. Experimental and predicted approaches for biomass gasification with enriched air-steam in a fluidised bed.

    Science.gov (United States)

    Fu, Qirang; Huang, Yaji; Niu, Miaomiao; Yang, Gaoqiang; Shao, Zhiwei

    2014-10-01

    Thermo-chemical gasification of sawdust refuse-derived fuel was performed on a bench-scale fluidised bed gasifier with enriched air and steam as fluidising and oxidising agents. Dolomite as a natural mineral catalyst was used as bed material to reform tars and hydrocarbons. A series of experiments were carried out under typical operating conditions for gasification, as reported in the article. A modified equilibrium model, based on equilibrium constants, was developed to predict the gasification process. The sensitivity analysis of operating parameters, such as the fluidisation velocity, oxygen percentage of the enriched air and steam to biomass ratios on the produced gas composition, lower heating value, carbon conversion and cold gas efficiency was investigated. The results showed that the predicted syngas composition was in better agreement with the experimental data compared with the original equilibrium model. The higher fluidisation velocity enhanced gas-solid mixing, heat and mass transfers, and carbon fines elutriation, simultaneously. With the increase of oxygen percentage from 21% to 45%, the lower heating value of syngas increased from 5.52 MJ m(-3) to 7.75 MJ m(-3) and cold gas efficiency from 49.09% to 61.39%. The introduction of steam improved gas quality, but a higher steam to biomass ratio could decrease carbon conversion and gasification efficiency owing to a low steam temperature. The optimal value of steam to biomass ratio in this work was 1.0. © The Author(s) 2014.

  1. Characterization and Modeling of a Methanol Reforming Fuel Cell System:Karakterisering og Modellering af en Methanol Reformering Fuel Cell System

    OpenAIRE

    Sahlin, Simon Lennart

    2016-01-01

    Many fuel cells systems today are operated with compressed hydrogen which has great benefits because of the purity of the hydrogen and the relatively simple storage of the fuel. However, compressed hydrogen is stored in the range of 800 bar, which can be expensive to compress.One of the interesting topologies is the Reformed Methanol Fuel Cell (RMFC) system that operates on a mix of methanol and water. The fuel is reformed with a steam reforming to a hydrogen rich gas, however with additional...

  2. Autothermal and partial oxidation reformer-based fuel processor, method for improving catalyst function in autothermal and partial oxidation reformer-based processors

    Science.gov (United States)

    Ahmed, Shabbir; Papadias, Dionissios D.; Lee, Sheldon H. D.; Ahluwalia, Rajesh K.

    2013-01-08

    The invention provides a fuel processor comprising a linear flow structure having an upstream portion and a downstream portion; a first catalyst supported at the upstream portion; and a second catalyst supported at the downstream portion, wherein the first catalyst is in fluid communication with the second catalyst. Also provided is a method for reforming fuel, the method comprising contacting the fuel to an oxidation catalyst so as to partially oxidize the fuel and generate heat; warming incoming fuel with the heat while simultaneously warming a reforming catalyst with the heat; and reacting the partially oxidized fuel with steam using the reforming catalyst.

  3. Compaction behaviour of soils

    OpenAIRE

    Kurucuk, Nurses

    2017-01-01

    Soil compaction is widely applied in geotechnical engineering practice. It is used to maximise the dry density of soils to reduce subsequent settlement under working loads or to reduce the permeability of soils. The durability and stability of structures are highly related to the appropriate compaction achievement. The structural failure of roads and airfields, and the damage caused by foundation settlement can often be traced back to the failure in achieving adequate compaction. For that rea...

  4. Self-Compacting Concrete

    OpenAIRE

    Okamura, Hajime; Ouchi, Masahiro

    2003-01-01

    Self-compacting concrete was first developed in 1988 to achieve durable concrete structures. Since then, various investigations have been carried out and this type of concrete has been used in practical structures in Japan, mainly by large construction companies. Investigations for establishing a rational mix-design method and self-compactability testing methods have been carried out from the viewpoint of making self-compacting concrete a standard concrete.

  5. Steam Digest 2001: Office of Industrial Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-01-01

    Steam Digest 2001 chronicles Best Practices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

  6. Compact Antenna Range

    Data.gov (United States)

    Federal Laboratory Consortium — Facility consists of a folded compact antenna range including a computer controlled three axis position table, parabolic reflector and RF sources for the measurement...

  7. Compact Polarimetry Potentials

    Science.gov (United States)

    Truong-Loi, My-Linh; Dubois-Fernandez, Pascale; Pottier, Eric

    2011-01-01

    The goal of this study is to show the potential of a compact-pol SAR system for vegetation applications. Compact-pol concept has been suggested to minimize the system design while maximize the information and is declined as the ?/4, ?/2 and hybrid modes. In this paper, the applications such as biomass and vegetation height estimates are first presented, then, the equivalence between compact-pol data simulated from full-pol data and compact-pol data processed from raw data as such is shown. Finally, a calibration procedure using external targets is proposed.

  8. Anchors for Education Reforms

    Science.gov (United States)

    Alok, Kumar

    2012-01-01

    Education reforms, considering their significance, deserve better methods than mere "trial and error." This article conceptualizes a network of six anchors for education reforms: education policy, education system, curriculum, pedagogy, assessment, and teacher education. It establishes the futility to reform anchors in isolation and…

  9. Reforming Special Education.

    Science.gov (United States)

    Fishkin, Anne S.; Sullivan, Michael

    This paper describes education reform as an integrated effort to modify not only the structure and elements of the education system but also the culture or belief structure of that system. Central to any discussion of school reform are the elements of restructuring, empowerment, and change. Current reform efforts in restructuring revolve around a…

  10. Energy and exergy analysis of an ethanol reforming process for solid oxide fuel cell applications.

    Science.gov (United States)

    Tippawan, Phanicha; Arpornwichanop, Amornchai

    2014-04-01

    The fuel processor in which hydrogen is produced from fuels is an important unit in a fuel cell system. The aim of this study is to apply a thermodynamic concept to identify a suitable reforming process for an ethanol-fueled solid oxide fuel cell (SOFC). Three different reforming technologies, i.e., steam reforming, partial oxidation and autothermal reforming, are considered. The first and second laws of thermodynamics are employed to determine an energy demand and to describe how efficiently the energy is supplied to the reforming process. Effect of key operating parameters on the distribution of reforming products, such as H2, CO, CO2 and CH4, and the possibility of carbon formation in different ethanol reformings are examined as a function of steam-to-ethanol ratio, oxygen-to-ethanol ratio and temperatures at atmospheric pressure. Energy and exergy analysis are performed to identify the best ethanol reforming process for SOFC applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Hydrogen production through sorption enhanced reforming

    Energy Technology Data Exchange (ETDEWEB)

    Reijers, H.T.J.; Roskam-Bakker, D.F.; Dijkstra, J.W.; Smidt, R.P. de; Groot, A. de; Van den Brink, R.W. [Energy research Centre of the Netherlands, ECN, Petten (Netherlands)

    2003-09-01

    Introduction of hydrogen as an energy carrier offers an opportunity to reduce the CO{sub 2} emission from diffuse sources, like vehicles and newly built residential districts. In the long term, it is expected that a hydrogen infrastructure will contribute to CO{sub 2} reduction. In the short term, hydrogen will likely play a role where the application, especially fuel cells, asks for hydrogen. These applications include the transport sector and small-scale combined heat and power. On-site hydrogen production on a gas station or in a residential district requires an average hydrogen production rate between 1000 and 4000 Nm{sup 3}/hour. At the moment, hydrogen is produced industrially in large-scale steam-reformers at rates in the order of 100,000 Nm{sup 3}/hour and at high pressures (20 - 40 bar) and high temperatures (800 - 950 degrees C). To withstand these extreme conditions, expensive materials are required. Besides, a considerable amount of export steam is produced, which cannot be used in the small-scale hydrogen energy systems mentioned before. So there is a need for hydrogen production units operating at milder conditions, while maintaining a high system efficiency. One of the technologies currently investigated at ECN for this purpose is sorption enhanced reforming (SER). Here the methane steam reforming process is conducted in the presence of a CO{sub 2} sorbent. By removing reaction product CO{sub 2}, the equilibrium is shifted to the product side, yielding a relatively pure hydrogen stream. The system is operated periodically in two modes: an sorption cycle during which natural gas and steam are fed to the SER reactor, and a desorption cycle in which the sorbent is regenerated. The CO{sub 2} that is released during regeneration could possibly be used for CO{sub 2} sequestration. The CO{sub 2} sorbent should fulfill the following requirements: high CO{sub 2} uptake, rapid kinetics, chemical stability at high H{sub 2}O concentrations and low costs. A

  12. BWR Steam Dryer Alternating Stress Assessment Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Morante, R. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hambric, S. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ziada, S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-12-01

    This report presents an overview of Boiling Water Reactor (BWR) steam dryer design; the fatigue cracking failures that occurred at the Quad Cities (QC) plants and their root causes; a history of BWR Extended Power Uprates (EPUs) in the USA; and a discussion of steam dryer modifications/replacements, alternating stress mechanisms on steam dryers, and structural integrity evaluations (static and alternating stress).

  13. Parametric study for horizontal steam generator modelling

    Energy Technology Data Exchange (ETDEWEB)

    Ovtcharova, I. [Energoproekt, Sofia (Bulgaria)

    1995-12-31

    In the presentation some of the calculated results of horizontal steam generator PGV - 440 modelling with RELAP5/Mod3 are described. Two nodalization schemes have been used with different components in the steam dome. A study of parameters variation on the steam generator work and calculated results is made in cases with separator and branch.

  14. The quest for intensified steam cracking process

    NARCIS (Netherlands)

    Van Goethem, M.W.M.; Verheijen, P.J.T.

    2005-01-01

    In this paper the results are presented on the quest for an intensified steam cracking process. The main focus is to improve the efficiency of the steam cracking process. The first part of the investigation is to examine which of the current available processes is close to the ideal steam cracking

  15. New downhole steam generator tested

    Energy Technology Data Exchange (ETDEWEB)

    Bleakley, W.B.

    1981-07-01

    Completion of 2 field tests of a new-model down-hole steam generator paves the way for further evaluation and development of a system destined to increase California's heavy oil production. Current air pollution restrictions there prevent installation of conventional steam generators in several areas of interest to oil operators. The current series of tests, conducted by Chemical Oil Recovery Co. (CORCO) of Bakersfield, California, follows an earlier prototype operation conducted by Sandia National Laboratories in conjunction with the US Department of Energy. The CORCO tests were conducted on the surface with the generator's output going into Tenneco Oil Exploration and Production Co.'s overland-Riokern Well No. 80, located in the Kern River field 4 miles north of Bakersfield. The first test was concluded with just under 1000 bbl of steam injected, less than planned due to a higher-than-expected injection pressure. The unit operated at less than 25% capacity because of the air compressor limitation. Compressor output was only 285 psi, not enough to inject the desired volumes into the reservoir. Test data shows that injection amounted to 150 bpd of 90 to 95% quality steam at 225-psi wellhead pressure. After injection, the well was shut in for 3 days to allow soaking, then put on production. Initial production was 40 bopd at 175 F.

  16. The STEAM behind the Scenes

    Science.gov (United States)

    Smith, Carmen Petrick; King, Barbara; González, Diana

    2015-01-01

    There is a growing need for STEAM-based (Science, Technology, Engineering, Arts, and Mathematics) knowledge and skills across a wide range of professions (Brazell 2013). Yet students often fail to see the usefulness of mathematics beyond the classroom (Kloosterman, Raymond, and Emenaker 1996), and they do not regularly make connections between…

  17. The STEAM-Powered Classroom

    Science.gov (United States)

    Harper, Charlie

    2017-01-01

    An instructional coach argues that STEAM (science, technology, engineering, arts, and mathematics) programming combined with problem-based learning can offer rich academic experiences--and not just in science classrooms. He outlines relevant problem-based lesson ideas, and discusses ways school leaders can better support instructional practices…

  18. Steam-water relative permeability

    Energy Technology Data Exchange (ETDEWEB)

    Ambusso, W.; Satik, C.; Home, R.N. [Stanford Univ., CA (United States)

    1997-12-31

    A set of relative permeability relations for simultaneous flow of steam and water in porous media have been measured in steady state experiments conducted under the conditions that eliminate most errors associated with saturation and pressure measurements. These relations show that the relative permeabilities for steam-water flow in porous media vary approximately linearly with saturation. This departure from the nitrogen/water behavior indicates that there are fundamental differences between steam/water and nitrogen/water flows. The saturations in these experiments were measured by using a high resolution X-ray computer tomography (CT) scanner. In addition the pressure gradients were obtained from the measurements of liquid phase pressure over the portions with flat saturation profiles. These two aspects constitute a major improvement in the experimental method compared to those used in the past. Comparison of the saturation profiles measured by the X-ray CT scanner during the experiments shows a good agreement with those predicted by numerical simulations. To obtain results that are applicable to general flow of steam and water in porous media similar experiments will be conducted at higher temperature and with porous rocks of different wetting characteristics and porosity distribution.

  19.  Railway Reforms

    DEFF Research Database (Denmark)

    Asmild, Mette; Holvad, Torben; Hougaard, Jens Leth

    This paper considers railway operations in 23 European countries during 1995-2001, where a series of reform initiatives were launched by the European Commission, and analyses whether these reform initiatives improved the operating efficiency of the railways. Efficiency is measured using Multi......-directional Efficiency Analysis, which enables investigation of how railway reforms affect the inefficiencies of specific cost drivers. The main findings are that the reform initiatives generally improve operating efficiency but potentially differently for different cost drivers. Specifically, the paper provides clear...... empirical evidence that accounting separation is important for improving operating efficiency for both material and staff costs, whereas other reforms only influenced one of these factors...

  20. Model Compaction Equation

    African Journals Online (AJOL)

    exponential loss of porosity with depth (Ramm et al., 1997). Compaction coefficient and percentage compaction are two .... distribution of overpressure zones in the Niger. Delta in order to further investigate the overpressure. ..... light of the theory of continental drift. Geology Magazine, 105: 385 - 397. Weber, K.J. And E.M. ...

  1. Steepest Ascent Tariff Reforms

    DEFF Research Database (Denmark)

    Raimondos-Møller, Pascalis; Woodland, Alan D.

    2006-01-01

    a theoretical concept where the focus is upon the size of welfare gains accruing from tariff reforms rather than simply with the direction of welfare effects that has been the concern of theliterature.JEL code: F15.Keywords: Steepest ascent tariff reforms; piecemeal tariff policy; welfare; market access; small...... for the evaluation of the welfare effectiveness of other well known tariff reform rules, as e.g. the proportional and the concertina rules. We develop the properties of this tariff reform, characterize the sources of the potential welfare gains from tariff reform, use it to establish conditions under which some...... existing reforms are locally optimal, provide geometric illustrations and compare welfare effectiveness of reforms using numerical examples. Moreover, being a general concept, we apply it to the issue of market access and examine its implications. Overall, the paper's contribution lies in presenting...

  2. Calculate the moisture content of steam

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. (ABCO Industries, Inc., Abilene, TX (United States))

    1993-08-01

    Water droplets in steam can create serious problems. For example, if the steam is being used to drive turbines, droplets can damage the turbine blades. It is important, therefore, for an engineer to know if steam contains moisture, especially if the steam is generated in low-pressure boilers (under 500 psia). Unlike larger boilers, these units don't have internal separation devices such as cyclones. Calculating the steam's moisture content, or quality, can be complicated procedure. Now, a simple chart can be used to get the data from one temperature reading. The paper explains the procedure.

  3. Assessing the Life-Cycle Performance of Hydrogen Production via Biofuel Reforming in Europe

    Directory of Open Access Journals (Sweden)

    Ana Susmozas

    2015-06-01

    Full Text Available Currently, hydrogen is mainly produced through steam reforming of natural gas. However, this conventional process involves environmental and energy security concerns. This has led to the development of alternative technologies for (potentially green hydrogen production. In this work, the environmental and energy performance of biohydrogen produced in Europe via steam reforming of glycerol and bio-oil is evaluated from a life-cycle perspective, and contrasted with that of conventional hydrogen from steam methane reforming. Glycerol as a by-product from the production of rapeseed biodiesel and bio-oil from the fast pyrolysis of poplar biomass are considered. The processing plants are simulated in Aspen Plus® to provide inventory data for the life cycle assessment. The environmental impact potentials evaluated include abiotic depletion, global warming, ozone layer depletion, photochemical oxidant formation, land competition, acidification and eutrophication. Furthermore, the cumulative (total and non-renewable energy demand is calculated, as well as the corresponding renewability scores and life-cycle energy balances and efficiencies of the biohydrogen products. In addition to quantitative evidence of the (expected relevance of the feedstock and impact categories considered, results show that poplar-derived bio-oil could be a suitable feedstock for steam reforming, in contrast to first-generation bioglycerol.

  4. Steam cooling system for a gas turbine

    Science.gov (United States)

    Wilson, Ian David; Barb, Kevin Joseph; Li, Ming Cheng; Hyde, Susan Marie; Mashey, Thomas Charles; Wesorick, Ronald Richard; Glynn, Christopher Charles; Hemsworth, Martin C.

    2002-01-01

    The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows.

  5. Steam atmosphere drying concepts using steam exhaust recompression

    Energy Technology Data Exchange (ETDEWEB)

    DiBella, F.A. (TECOGEN, Inc., Waltham, MA (United States))

    1992-08-01

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg[sub evap] to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  6. Steam atmosphere drying concepts using steam exhaust recompression

    Energy Technology Data Exchange (ETDEWEB)

    DiBella, F.A. [TECOGEN, Inc., Waltham, MA (United States)

    1992-08-01

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg{sub evap} to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  7. Joining semi-closed gas turbine cycle and tri-reforming: SCGT-TRIREF as a proposal for low CO{sub 2} emissions powerplants

    Energy Technology Data Exchange (ETDEWEB)

    Fiaschi, Daniele; Baldini, Andrea [Dipartimento di Energetica ' ' Sergio Stecco' ' , University of Florence, Via C. Lombroso 6/17, 50134 Firenze (Italy)

    2009-08-15

    Methane conversion to a rich H{sub 2} fuel by reforming reactions is a largely applied industrial process. Recently, it has been considered for applications combined to gas turbine power plants, as a mean for (I) chemical recuperation (i.e. chemical looping CRGT) and (II) decarbonising the primary fuel and make the related power cycle a low CO{sub 2} releaser. The possibility of enhancing methane conversion by the addition of CO{sub 2} to the steam reactant flow (i.e. tri-reforming) has been assessed and showed interesting results. When dealing with gas turbines, the possibility of applying tri-reforming is related to the availability of some CO{sub 2} into the fluegas going to the reformer. This happens in semi-closed gas turbine cycles (SCGT), where the fluegas has a typical 14-15% CO{sub 2} mass content. The possibility of joining CRGT and SCGT technologies to improve methane reforming and propose an innovative, low CO{sub 2} emissions gas turbine cycle was assessed here. One of the key issues of this joining is also the possibility of greatly reduce the external water consumption due to the reforming, as the SCGT is a water producer cycle. The SCGT-TRIREF cycle is an SCGT cycle where fuel tri-reforming is applied. The steam due to the reformer is generated by the vaporization of the condensed water coming out from the fluegas condensing heat exchanger, upstream the main compressor, where the exhausts are cooled down and partially recirculated. The heat due to the steam generation is recuperated from the turbine exhausts cooling. The reforming process is partially sustained by the heat recovered from the turbine exhausts (which generates superheated steam) and partially by the auto thermal reactions of methane with fresh air, coming from the compressor (i.e. partial combustion). The effect of CO{sub 2} on methane reforming (tri-reforming effect) increases with decreasing steam/methane ratio: at very low values, around 30% of methane is converted by reactions

  8. Small Valdivia compact spaces

    CERN Document Server

    Kubi's, W; Kubi\\'s, Wieslaw; Michalewski, Henryk

    2005-01-01

    We prove a preservation theorem for the class of Valdivia compact spaces, which involves inverse sequences of ``simple'' retractions. Consequently, a compact space of weight $\\loe\\aleph_1$ is Valdivia compact iff it is the limit of an inverse sequence of metric compacta whose bonding maps are retractions. As a corollary, we show that the class of Valdivia compacta of weight at most $\\aleph_1$ is preserved both under retractions and under open 0-dimensional images. Finally, we characterize the class of all Valdivia compacta in the language of category theory, which implies that this class is preserved under all continuous weight preserving functors.

  9. Compact boson stars

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Betti [School of Engineering and Science, Jacobs University, Postfach 750 561, D-28725 Bremen (Germany); Kleihaus, Burkhard; Kunz, Jutta [Institut fuer Physik, Universitaet Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Schaffer, Isabell, E-mail: i.schaffer@jacobs-university.de [School of Engineering and Science, Jacobs University, Postfach 750 561, D-28725 Bremen (Germany)

    2012-07-24

    We consider compact boson stars that arise for a V-shaped scalar field potential. They represent a one parameter family of solutions of the scaled Einstein-Gordon equations. We analyze the physical properties of these solutions and determine their domain of existence. Along their physically relevant branch emerging from the compact Q-ball solution, their mass increases with increasing radius. Employing arguments from catastrophe theory we argue that this branch is stable, until the maximal value of the mass is reached. There the mass and size are on the order of magnitude of the Schwarzschild limit, and thus the spiraling respectively oscillating behaviour, well known for compact stars, sets in.

  10. Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF.

    Science.gov (United States)

    Hwang, In-Hee; Kobayashi, Jun; Kawamoto, Katsuya

    2014-02-01

    Pyrolysis and steam gasification of woody biomass chip (WBC) obtained from construction and demolition wastes, refuse-derived fuel (RDF), and refuse paper and plastic fuel (RPF) were performed at various temperatures using a lab-scale instrument. The gas, liquid, and solid products were examined to determine their generation amounts, properties, and the carbon balance between raw material and products. The amount of product gas and its hydrogen concentration showed a considerable difference depending on pyrolysis and steam gasification at higher temperature. The reaction of steam and solid product, char, contributed to an increase in gas amount and hydrogen concentration. The amount of liquid products generated greatly depended on temperature rather than pyrolysis or steam gasification. The compositions of liquid product varied relying on raw materials used at 500°C but the polycyclic aromatic hydrocarbons became the major compounds at 900°C irrespective of the raw materials used. Almost fixed carbon (FC) of raw materials remained as solid products under pyrolysis condition whereas FC started to decompose at 700°C under steam gasification condition. For WBC, both char utilization by pyrolysis at low temperature (500°C) and syngas recovery by steam gasification at higher temperature (900°C) might be practical options. From the results of carbon balance of RDF and RPF, it was confirmed that the carbon conversion to liquid products conspicuously increased as the amount of plastic increased in the raw material. To recover feedstock from RPF, pyrolysis for oil recovery at low temperature (500°C) might be one of viable options. Steam gasification at 900°C could be an option but the method of tar reforming (e.g. catalyst utilization) should be considered. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Closed loop steam cooled airfoil

    Science.gov (United States)

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  12. Catalytic autothermal reforming of Jet fuel

    Science.gov (United States)

    Lenz, Bettina; Aicher, Thomas

    Aircraft manufacturers have to reduce the emissions and the specific fuel consumption of their systems. Fuel cell use in a 'more electric aircraft' can be one possibility. To keep the technology simple only one fuel (Jet A, Jet A-1) shall be used on board the aircraft. Therefore, the catalytic reforming of Jet A-1 fuel was examined in this paper, although the use of fossil fuels causes the production of greenhouse effect promoting gases like carbon dioxide CO 2. The autothermal reforming of desulphurised kerosene is examined with a 15 kW (based on the lower heating value of Jet fuel) test rig. The experiments are performed at steam to carbon ratios of S/C = 1.5-2.5 and air to fuel ratios of λ = 0.24-0.32, respectively. The composition of the product gas, the volumetric flow rate of the product gas at standard conditions and the temperatures in the catalyst are determined as a function of the operating variables. The gas hourly space velocity (GHSV) is varied between 50,000 and 300,000 h -1. The influence of sulphur containing feed streams (real Jet fuel) on reforming behaviour is investigated as well as the influence of the hydrogen concentration on the hydrodesulphurisation process. Another simple way of desulphurisation is the adsorption of liquid sulphur containing hydrocarbons, the influence of the variation of the liquid hourly space velocity (LHSV) is measured at a temperature of 150 °C.

  13. Steam Turbine Assisted Cogeneration systems

    Directory of Open Access Journals (Sweden)

    Šariský Marián

    2004-09-01

    Full Text Available Searching for the best way of improving using systems of production electrical energy and heat is part of an intensive development in the field of energetic. Using steam turbines in the cogeneration system is very important step at increasing the effection not only of the whole system, but of the gas turbine as well. The advantages and the characteristic features of the system are shown in the article.

  14. Compost Compaction Evaluation.

    Science.gov (United States)

    1993-10-01

    aerated static pile composting ) has been shown to be most effective at reducing the explosives levels in the soils (4). As a result, it is anticipated...y ■,... tiiii silsis H-ifjfe Compost Compaction Evaluation Report No. ENAEC-TS-CR-93110 Contract No. DACA31-9-D-0079 Task Order No. 01...Leave blank) 2. REPORT DATE October 1993 3. REPORT TYPE AND DATES COVERED Final Report 4. TITLE AND SUBTITLE Compost Compaction Evaluation 6

  15. Lesotho - Land Administration Reform

    Data.gov (United States)

    Millennium Challenge Corporation — Michigan State University was assigned to design the impact evaluation (IE) of the Land Administration Reform Project (LARP) funded under the Millennium Challenge...

  16. Production of hydrogen for fuel cells by reformation of biomass-derived ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Fatsikostas, Athanasios N.; Kondarides, Dimitris I.; Verykios, Xenophon E. [Department of Chemical Engineering, University of Patras, GR-26500 Patras (Greece)

    2002-07-03

    The reformation of biomass-derived ethanol to a hydrogen-rich gas stream suitable for feeding fuel cells is investigated as an efficient and environmentally friendly process for the production of electricity for mobile and stationary applications. Steam reforming of ethanol is investigated over Ni catalysts supported on La{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, YSZ and MgO. The influence of several parameters on the catalytic activity and selectivity is examined including reaction temperature, water-to-ethanol ratio and space velocity. Results reveal that the Ni/La{sub 2}O{sub 3} catalyst exhibits high activity and selectivity toward hydrogen production and, most important, long term stability for steam reforming of ethanol. The enhanced stability of this catalyst may be due to scavenging of coke deposition on the Ni surface by lanthanum oxycarbonate species which exist on top of the Ni particles under reaction conditions.

  17. Application of a new rotor steel forging for medium rating single cylinder steam turbines

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, M.; Tsuda, Y. [Power and Industrial Systems R and D, Toshiba Corp., Tsurumi-ku, Yokohama (Japan); Kaneko, J. [Keihin Product Operations, Toshiba Corp., Tsurumi-ku, Yokohama (Japan)

    2002-07-01

    The demand of the 80-300 MW class medium rating steam turbines has been recently increasing specially for combined cycle plants and IPP (independent power producer) plants. The compact structure is needed for the effective use of grounds, the saving of raw materials and the reduction of exhausted CO{sub 2} in these steam turbines. For these viewpoints, a new 2.25%Cr1.7%NiMoVNbW steel forging has been developed for the high pressure (HP)-low pressure (LP) single cylinder steam turbine rotor. The principal technological features of this rotor steel are as follows: (1) The optimization of chemical composition for the increasing of tensile strength, toughness and creep rupture strength. (2) The application of differential heat treatment condition for HP and LP rotor portions. (3) The application of ESR (electroslag remelting) process for the reduction of carbon segregation in the center portion of the rotor ingot. This new steel shows a good creep rupture strength equivalent to the conventional 1%CrMoV HP rotor steels and the excellent proof stress and toughness which is the supreme level in single cylinder turbine rotors. Twelve rotor forgings have been already produced for the commercial HP-LP single cylinder steam turbines and have been operated without any problem. The development of this new rotor steel forging has contributed for the extension of single cylinder steam turbine rating and the increasing of turbine efficiency due to the application of longer blades. (orig.)

  18. Insulate Steam Distribution and Condensate Return Lines - Steam Tip Sheet #2

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-31

    This revised AMO tip sheet on insulating steam distribution and condensate return lines provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  19. Steam Technical Brief: How to Calculate the True Cost of Steam

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-06-25

    This BestPractice Steam Technical Brief helps you calculate the true cost of steam. Knowing the correct cost is important for many reasons and all of them have to do with improving the company's bottom line.

  20. Compaction of FGD-gypsum

    NARCIS (Netherlands)

    Stoop, B.T.J.; Larbi, J.A.; Heijnen, W.M.M.

    1996-01-01

    It is shown that it is possible to produce compacted gypsum with a low porosity and a high strength on a laboratory scale by uniaxial compaction of flue gas desulphurization (FGD-) gypsum powder. Compacted FGD-gypsum cylinders were produced at a compaction pres-sure between 50 and 500 MPa yielding

  1. Analysis of an alumina refinery steam system

    OpenAIRE

    Power, Craig Leslie

    2017-01-01

    The Rio Tinto Alcan - Yarwun (RTA Y) alumina refinery is currently undergoing a major expansion, with the possibility of further expansion in the future. The current expansion sees the addition of a Gas Turbine (GT) and Heat Recovery Steam Generator (HRSG) to the utility system, resulting in significant excess high pressure (HP) steam generating capacity in the utility system. Additionally, an excess of low pressure (LP) flash steam is generated from the HP condensate and is currently vented ...

  2. Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mendler, O J; Takeuchi, K; Young, M Y

    1986-10-01

    The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results.

  3. Amazing & extraordinary facts the steam age

    CERN Document Server

    Holland, Julian

    2012-01-01

    Respected transport author Julian Holland delves into the intriguing world of steam in his latest book, which is full of absorbing facts and figures on subjects ranging from Cornish beam engines, steam railway locomotives, road vehicles and ships through to traction engines, steam rollers and electricity generating stations and the people who designed and built them. Helped along the way by the inventive minds of James Watt, Richard Trevithick and George Stephenson, steam became the powerhouse that drove the Industrial Revolution in Britain in the late 18th and 19th centuries.

  4. Efficiently generate steam from cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. [ABCO Industries, Abilene, TX (United States)

    1997-05-01

    As cogeneration gets more popular, some plants have two choices of equipment for generating steam. Plant engineers need to have a decision chart to split the duty efficiently between (oil-fired or gas-fired) steam generators (SGs) and heat recovery steam generators (HRSGs) using the exhaust from gas turbines. Underlying the dilemma is that the load-versus-efficiency characteristics of both types of equipment are different. When the limitations of each type of equipment and its capability are considered, analysis can come up with several selection possibilities. It is almost always more efficient to generate steam in an HRSG (designed for firing) as compared with conventional steam generators. However, other aspects, such as maintenance, availability of personnel, equipment limitations and operating costs, should also be considered before making a final decision. Loading each type of equipment differently also affects the overall efficiency or the fuel consumption. This article describes the performance aspects of representative steam generators and gas turbine HRSGs and suggests how plant engineers can generate steam efficiently. It also illustrates how to construct a decision chart for a typical installation. The equipment was picked arbitrarily to show the method. The natural gas fired steam generator has a maximum capacity of 100,000 lb/h, 400-psig saturated steam, and the gas-turbine-exhaust HRSG has the same capacity. It is designed for supplementary firing with natural gas.

  5. Land Reform and Sustainable Development

    OpenAIRE

    Elizabeth Stanton; Peter Rosset; James Boyce

    2005-01-01

    Land reform, equitable distribution, economic development, environmental quality, land reform strategies, Brazil, Landless Workers’ Movement, East Asia, rural poverty, land productivity, sustainable agriculture, comparative advantage, small farms.

  6. An investigation into the transient behavior of a microreactor system for reforming of Diesel fuel in the kw range

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, G.; Schelhaas, K.P.; Schuerer, J.; Tiemann, D.; Ziogas, A. [Institut fuer Mikrotechnik Mainz GmbH, Mainz (Germany); Hessel, V. [Institut fuer Mikrotechnik Mainz GmbH, Mainz (Germany); Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (Netherlands); O' Connell, M.

    2009-11-15

    A diesel reformer based on microreaction technology was developed for application in an auxiliary power unit (APU) system. The transient characteristics of this reactor for reforming of diesel fuel are reported. Diesel steam reforming was performed at various S/C ratios with load changes ranging from 30 % LL to 80 % LL, i.e., a 1.5 kW to a 4 kW electrical equivalent. The reactor itself was based on an integrated reformer/burner heat exchange reactor concept. The reforming was performed at temperatures above 750 C and at various S/C ratios, down to a minimum of 3.17. Variation of experimental parameters, such as O/C and S/C ratios, are critical for optimum and efficient operation of the reformer. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  7. The Danish Police Reform

    DEFF Research Database (Denmark)

    Degnegaard, Rex; Mark, Sofie

    2013-01-01

    , the reform process was problematic and the following years were challenging and filled with changes and turbulence. Media, politicians and the police itself directed heavy criticism towards the effects of the reform and reviews of the reform as well as of the work of the police were carried out resulting...... for organisations to work with transparency and involvement with the aim of upholding and further developing a social responsibility to their environment. This case on the other hand takes an inside-out perspective on social responsibility by illustrating how social responsibility is necessary for public...... and private organisations doing business-in-society. The case concerns the reformation of the Danish Police. In 2007 the Danish Police started implementing an extensive reform that affected all parts of the organisation. Despite thorough planning of the process including several change management initiatives...

  8. RPV steam generator pressure boundary

    Energy Technology Data Exchange (ETDEWEB)

    Strosnider, J.

    1996-03-01

    As the types of SG tube degradation affecting PWR SGs has changed, and improvements in tube inspection and repair technology have occurred, current SG regulatory requirements and guidance have become increasingly out of date. This regulatory situation has been dealt with on a plant-specific basis, however to resolve this problem in the long term, the NRC has begun development of a performance-based rule. As currently structured, the proposed steam generator rule would require licensees to implement SG programs that monitor the condition of the steam generator tubes against accepted performance criteria to provide reasonable assurance that the steam generator tubes remain capable of performing their intended safety functions. Currently the staff is developing three performance criteria that will ensure the tubes can continue to perform their safety function and therefore satisfy the SG rule requirements. The staff, in developing the criteria, is striving to ensure that the performance criteria have the two key attributes of being (1) measurable (enabling the tube condition to be {open_quotes}measured{close_quotes} against the criteria) and (2) tolerable (ensuring that failures to meet the criteria do not result in unacceptable consequences). A general description of the criteria are: (1) Structural integrity criteria: Ensures that the structural integrity of the SG tubes is maintained for the operating cycle consistent with the margins intended by the ASME Code. (2) Leakage integrity criteria: Ensures that postulated accident leakages and the associated dose releases are limited relative to 10 CFR Part 50 guidelines and 10 CFR Part 50 Appendix A GDC 19. (3) Operational leakage criteria: Ensures that the operating unit will be shut down as a defense-in depth measure when operational SG tube leakage exceeds established leakage limits.

  9. Steam microturbines in distributed cogeneration

    CERN Document Server

    Kicinski, Jan

    2014-01-01

    This book presents the most recent trends and concepts in power engineering, especially with regard to prosumer and civic energy generation. In so doing, it draws widely on his experience gained during the development of steam microturbines for use in small combined heat and power stations based on the organic Rankine cycle (CHP-ORC). Major issues concerning the dynamic properties of mechanical systems, in particular rotating systems, are discussed, and the results obtained when using unconventional bearing systems, presented. Modeling and analysis of radial-flow and axial-flow microturbines a

  10. In Situ Steam Fracture Experiments.

    Science.gov (United States)

    1984-12-31

    an average tensile strength of 1.1 MPa, as measured by TerraTek. An overcore test performed by Fenix and Scisson in 1982, at the 1.05 meter to 1.21...acker 46 The source region had a 42-millidarcy value. Fenix and Scisson geologists (Reference 4) reported a visual fracture between Holes A and B. These...Tunnel, Neva- Test Site," SAND 80-1138, April 1981. 3. O’Brien, M. 8., "Results of Steam Hydraulic Fracture Drilling," Memo from Fenix and Scisson to J

  11. Compaction of poultry litter.

    Science.gov (United States)

    Bernhart, M; Fasina, O O; Fulton, J; Wood, C W

    2010-01-01

    Poultry litter, a combination of accumulated chicken manure, feathers and bedding materials, is a potential feedstock for bioenergy and other value-added applications. The use of this waste product has been historically limited to within few miles of the place of generation because of its inherent low density. Compaction is one possible way to enhance the storage and transportation of the litter. This study therefore investigates the effect of moisture content (19.8-70.7%, d.b.) and pressure (0.8-8.4 MPa) on the compaction characteristics of poultry litter. Results obtained showed that the initial density of densified poultry litter, energy required for compaction and the strength of the densified material after 2 months of storage were significantly (Ppoultry litter.

  12. Reforming Educational Reform: A Democratic Perspective

    Science.gov (United States)

    Green, J.

    2005-05-01

    This essay examines the status of educational reform in the United States as represented by the current Bush administration's program titled "No Child Left Behind" (NCLB). Employing the techniques of critical theory and logical analysis, contemporary reform efforts are compared with other, more progressive, educational reform movements in an effort to gain perspective and conceptual "traction" as it were, in differentiating such movements. Criteria are established for the assessment and evaluation of reform movements. These are employed in judging the efficacy of NCLB's aim, content, and methods, as well as the results of its program following four years of implementation. The merits of the centrality of standardized testing, pre-ordained curricular content, and exclusively didactic teaching methodologies are criticized, along with the extra-school societal forces which ordain these and determine their prominence in the NCLB program. The essentialism adopted by NCLB is, moreover, evaluated in the light of pragmatic, phenomenological, and postmodern educational theory. Arguing that the school is always and inevitably an instrument of societal forces, interests, and groups, it is contended that these not only be acknowledged, but that avenues be formalized for a thorough going and continuous educational "conversation," to borrow Rorty's term, for an amicable resolution of the issues of education's aim(s), content, and methods.

  13. Steam generator tubing NDE performance

    Energy Technology Data Exchange (ETDEWEB)

    Henry, G. [Electric Power Research Institute, Charlotte, NC (United States); Welty, C.S. Jr. [Electric Power Research Institute, Palo Alto, CA (United States)

    1997-02-01

    Steam generator (SG) non-destructive examination (NDE) is a fundamental element in the broader SG in-service inspection (ISI) process, a cornerstone in the management of PWR steam generators. Based on objective performance measures (tube leak forced outages and SG-related capacity factor loss), ISI performance has shown a continually improving trend over the years. Performance of the NDE element is a function of the fundamental capability of the technique, and the ability of the analysis portion of the process in field implementation of the technique. The technology continues to improve in several areas, e.g. system sensitivity, data collection rates, probe/coil design, and data analysis software. With these improvements comes the attendant requirement for qualification of the technique on the damage form(s) to which it will be applied, and for training and qualification of the data analysis element of the ISI process on the field implementation of the technique. The introduction of data transfer via fiber optic line allows for remote data acquisition and analysis, thus improving the efficiency of analysis for a limited pool of data analysts. This paper provides an overview of the current status of SG NDE, and identifies several important issues to be addressed.

  14. Steam turbine materials and corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, G.R.; Ziomek-Moroz, M.

    2007-01-01

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines. The list of alloys being examined is discussed, including the addition of new alloys to the study. These include alloy 625, selected because of its use as one of the two alloys used for turbine rotors, valves, casings, blading and bolts in the European AD700 full-scale demonstration plant (Scholven Unit F). The other alloy, alloy 617, is already one of the alloys currently being examined by this project. Other new alloys to the study are the three round robin alloys in the UK-US collaboration: alloys 740, TP347HFG, and T92. Progress on the project is presented on cyclic oxidation in 50% air – 50% water vapor, furnace exposures in moist air, and thermogravimetric analysis in argon with oxygen saturated steam. An update on the progress towards obtaining an apparatus for high pressure exposures is given.

  15. Steam-frothing of milk for coffee

    DEFF Research Database (Denmark)

    Münchow, Morten; Jørgensen, Leif; Amigo Rubio, Jose Manuel

    2015-01-01

    A method for evaluation of the foaming properties of steam-frothed milk, based on image analysis (feature extraction) carried out on a video taken immediately after foam formation, was developed. The method was shown to be able to analyse steam-frothed milk made using a conventional espresso mach...

  16. Third international seminar on horizontal steam generators

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Third International Seminar on Horizontal Steam Generators held on October 18-20, 1994 in Lappeenranta, consisted of six sessions dealing with the topics: thermal hydraulic experiments and analyses, primary collector integrity, management of primary-to-secondary leakage accidents, feedwater collector replacement and discussion of VVER-440 steam generator safety issues.

  17. 21 CFR 880.6880 - Steam sterilizer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Steam sterilizer. 880.6880 Section 880.6880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... intended for use by a health care provider to sterilize medical products by means of pressurized steam. (b...

  18. Nomogram estimates holdup time in steam drums

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V.

    1985-06-01

    If the supply of water to a steam drum is interrupted because of feedpump failure or other reason, steam will continue to be generated and the water level in the drum will start to fall rapidly. This paper offers calculations and illustrates with a nomogram how long it will take under these conditions for the drum to be emptied.

  19. The Invention of the Steam Engine

    NARCIS (Netherlands)

    Van der Kooij, B.J.G.

    2015-01-01

    This casestudy is a historic analysis of the developments that resulted in the steam engine. The range of inventions that started with Savery's 'Miner's Friend' (a water pump to solve the dramatic water problem in the British eighteenth century mines) over a century culminated in the steam engine

  20. Woody biomass and RPF gasification using reforming catalyst and calcium oxide.

    Science.gov (United States)

    Kobayashi, Jun; Kawamoto, Katsuya; Fukushima, Ryutaro; Tanaka, Shingo

    2011-05-01

    This study focused on steam gasification and reforming of waste biomass using a reforming catalyst. The purpose of the study was to evaluate the durability of a commercial Ni reforming catalyst and the effect of CaO on the reforming behavior, and to clarify detailed factors of catalytic performance, as well as the effect of operating parameters on the characteristics of produced gas composition. Moreover, catalyst regeneration was carried out and the behavior of catalytic activity based on gas composition was investigated. Using a fluidized bed gasifier and a fixed bed reformer, gasification and reforming of waste biomass were carried out. Commercial Ni-based catalyst and calcined limestone (CaO) were applied to the reforming reaction. Temperature of the gasifier and reformer was almost 1023K. Ratio of steam to carbon in the feedstock [molmol(-1)] and equivalence ratio (i.e., ratio of actual to theoretical amount of oxygen) [-] were set at about 2 and 0.3, respectively. The feed rate of the feedstock into the bench-scale gasifier was almost 15kgh(-1). The results of waste biomass gasification confirmed the improvement in H(2) composition by the CO(2) absorption reaction using the reforming catalyst and CaO. In addition, CaO proved to be especially effective in decreasing the tar concentration in the case of woody biomass gasification. Catalytic activity was maintained by means of catalyst regeneration processing by hydrogen reduction after air oxidation when woody biomass was used as feedstock. Copyright © 2011 Elsevier Ltd. All rights reserved.