WorldWideScience

Sample records for compact pyroelectric driven

  1. An infrared-driven flexible pyroelectric generator for non-contact energy harvester

    Science.gov (United States)

    Zhao, Tingting; Jiang, Weitao; Liu, Hongzhong; Niu, Dong; Li, Xin; Liu, Weihua; Li, Xuan; Chen, Bangdao; Shi, Yongsheng; Yin, Lei; Lu, Bingheng

    2016-04-01

    In recent years, energy harvesting technologies, which can scavenge many kinds of energies from our living environment to power micro/nanodevices, have attracted increasing attention. However, remote energy transmission, flexibility and electric waveform controllability remain the key challenges for wireless power supply by an energy harvester. In this paper, we design a new infrared-driven non-contact pyroelectric generator for harvesting heat energy, which avoids direct contact between the pyroelectric generator and heat source and realizes remote energy transfer exploiting the photothermal and penetrability of infrared light. The output voltage (under the input impedance of 100 MOhm) and short-circuit current of the pyroelectric generator consisting of a CNT/PVDF/CNT layer (20 mm × 5 mm × 100 μm) can be as large as 1.2 V and 9 nA, respectively, under a 1.45 W cm-2 near-infrared laser (808 nm). We also demonstrate the means by which the pyroelectric generator can modulate square waveforms with controllable periods through irradiation frequency, which is essential for signal sources and medical stimulators. The overshoot of square waveforms are in a range of 9.0%-13.1% with a rise time of 120 ms. The prepared pyroelectric generator can light a liquid crystal display (LCD) in a vacuum chamber from outside. This work paves the way for non-contact energy harvesting for some particular occasions where near-field energy control is not available.In recent years, energy harvesting technologies, which can scavenge many kinds of energies from our living environment to power micro/nanodevices, have attracted increasing attention. However, remote energy transmission, flexibility and electric waveform controllability remain the key challenges for wireless power supply by an energy harvester. In this paper, we design a new infrared-driven non-contact pyroelectric generator for harvesting heat energy, which avoids direct contact between the pyroelectric generator and heat

  2. Candle Soot-Driven Performance Enhancement in Pyroelectric Energy Conversion

    Science.gov (United States)

    Azad, Puneet; Singh, V. P.; Vaish, Rahul

    2018-05-01

    We observed substantial enhancement in pyroelectric output with the help of candle soot coating on the surface of lead zirconate titanate (PZT). Candle soot of varying thicknesses was coated by directly exposing pyroelectric material to the candle flame. The open-circuit pyroelectric voltage and closed-circuit pyroelectric current were recorded while applying infrared heating across the uncoated and candle soot-coated samples for different heating and cooling cycles. In comparison to the uncoated sample, the maximum open-circuit voltage improves seven times for the candle soot-coated sample and electric current increases by eight times across a resistance of 10Å. Moreover, the harvested energy is enhanced by 50 times for candle soot-coated sample. Results indicate that candle soot coating is an effective and economic method to improve infrared sensing performance of pyroelectric materials.

  3. A Novel Compact Pyroelectric X-Ray and Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Yaron Danon

    2007-08-31

    This research was focused on the utilization of pyroelectric crystals for generation of radiation. When in constant temperature pyroelectric crystals are spontaneously polarized. The polarization causes internal charges to accumulate near the crystal faces and masking charges from the environment are attracted to the crystal faces and neutralize the charge. When a pyroelectric crystal is heated or cooled it becomes depolarized and the surface charges become available. If the heating or cooling is done on a crystal in vacuum where no masking charges are available, the crystal becomes a charged capacitor and because of its small capacitance large potential develops across the faces of the crystal.

  4. Spin-driven pyroelectricity in Ni{sub 3}TeO{sub 6} without ferroelectric signatures of the transition at Neel temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.; Komarek, A.C. [Max-Planck-Institute for Chemical Physics of Solids, Dresden (Germany); Du, C.H. [Department of Physics, Tamkang University, Tamsui, Taiwan (China)

    2017-07-15

    Here we report on dielectric studies on Ni{sub 3}TeO{sub 6}. We confirm the spin-driven pyroelectric transition at the Neel temperature (T{sub N}) of ∝52.5 K. The measurement of single crystalline and polycrystalline samples excludes a ferroelectric nature of the transition at T{sub N} in this compound. The excellent pyroelectric properties without any intrinsic ferroelectric hysteresis make Ni{sub 3}TeO{sub 6} appropriate for applications in future devices. Pyroelectric measurements on our Ni{sub 3}TeO{sub 6} single crystals. The polarization that appears on cooling through T{sub N} can not be inverted by opposite poling fields (applied when cooling from above T{sub N} to base temperature). (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Combined Pyroelectric, Piezoelectric and Shape Memory Effects for Thermal Energy Harvesting

    International Nuclear Information System (INIS)

    Zakharov, D; Gusarov, B; Cugat, O; Delamare, J; Gimeno, L; Gusarova, E; Viala, B

    2013-01-01

    This work proposes an enhanced method for thermal energy harvesting exploiting combined pyroelectric, piezoelectric and shape memory (SME) effects, and presents its experimental validation. A material which is pyroelectric is also piezoelectric. If it is combined with a material with SME, which generates large strain and stress in a rather narrow temperature range, the resulting composite material would generate voltage from temperature variations using two different energy conversion principles at once: (1) pyroelectric effect, (2) piezoelectric effect driven by SME. A Macro Fiber Composite piezoelectric was shown here to exhibit significant pyroelectric effect (∼4 V/°C). When combining it with a SME Ti-Ni-Cu alloy into a laminated structure, this effect increased by 50%. This increase may be an order of magnitude higher for an optimized system. Such composites open an opportunity to harvest thermal energy from natural sources, since this method can increase the rather low efficiency of current pyroelectric materials especially for small temperature variations

  6. Pyroelectric photovoltaic spatial solitons in unbiased photorefractive crystals

    International Nuclear Information System (INIS)

    Jiang, Qichang; Su, Yanli; Ji, Xuanmang

    2012-01-01

    A new type of spatial solitons i.e. pyroelectric photovoltaic spatial solitons based on the combination of pyroelectric and photovoltaic effect is predicted theoretically. It shows that bright, dark and grey spatial solitons can exist in unbiased photovoltaic photorefractive crystals with appreciable pyroelectric effect. Especially, the bright soliton can form in self-defocusing photovoltaic crystals if it gives larger self-focusing pyroelectric effect. -- Highlights: ► A new type of spatial soliton i.e. pyroelectric photovoltaic spatial soliton is predicted. ► The bright, dark and grey pyroelectric photovoltaic spatial soliton can form. ► The bright soliton can also exist in self-defocusing photovoltaic crystals.

  7. Pyroelectric Energy Harvesting: Model and Experiments

    Science.gov (United States)

    2016-05-01

    consisting of a current source for the pyroelectric current, a dielectric capacitor for the adiabatic charging and discharging, and optionally a resistor to...polarization) in a piezoelectric material. To extract work from the pyroelectric effect, the material acts as the dielectric in a capacitor that is...amplifier was chosen for the setup. The pyroelectric element is commonly modeled as a dielectric capacitor and a current source in parallel, as seen in

  8. Experiments to Demonstrate Piezoelectric and Pyroelectric Effects

    Science.gov (United States)

    Erhart, Jirí

    2013-01-01

    Piezoelectric and pyroelectric materials are used in many current applications. The purpose of this paper is to explain the basic properties of pyroelectric and piezoelectric effects and demonstrate them in simple experiments. Pyroelectricity is presented on lead zirconium titanate (PZT) ceramics as an electric charge generated by the temperature…

  9. Pyroelectricity in globular protein lysozyme films

    Science.gov (United States)

    Stapleton, A.; Noor, M. R.; Haq, E. U.; Silien, C.; Soulimane, T.; Tofail, S. A. M.

    2018-03-01

    Pyroelectricity is the ability of certain non-centrosymmetric materials to generate an electric charge in response to a change in temperature and finds use in a range of applications from burglar alarms to thermal imaging. Some biological materials also exhibit pyroelectricity but the examples of the effect are limited to fibrous proteins, polypeptides, and tissues and organs of animals and plants. Here, we report pyroelectricity in polycrystalline aggregate films of lysozyme, a globular protein.

  10. Neutron Imaging at Compact Accelerator-Driven Neutron Sources in Japan

    Directory of Open Access Journals (Sweden)

    Yoshiaki Kiyanagi

    2018-03-01

    Full Text Available Neutron imaging has been recognized to be very useful to investigate inside of materials and products that cannot be seen by X-ray. New imaging methods using the pulsed structure of neutron sources based on accelerators has been developed also at compact accelerator-driven neutron sources and opened new application fields in neutron imaging. The world’s first dedicated imaging instrument at pulsed neutron sources was constructed at J-PARC in Japan owing to the development of such new methods. Then, usefulness of the compact accelerator-driven neutron sources in neutron science was recognized and such facilities were newly constructed in Japan. Now, existing and new sources have been used for neutron imaging. Traditional imaging and newly developed pulsed neutron imaging such as Bragg edge transmission have been applied to various fields by using compact and large neutron facilities. Here, compact accelerator-driven neutron sources used for imaging in Japan are introduced and some of their activities are presented.

  11. Photothermally Activated Pyroelectric Polymer Films for Harvesting of Solar Heat with a Hybrid Energy Cell Structure.

    Science.gov (United States)

    Park, Teahoon; Na, Jongbeom; Kim, Byeonggwan; Kim, Younghoon; Shin, Haijin; Kim, Eunkyoung

    2015-12-22

    Photothermal effects in poly(3,4-ethylenedioxythiophene)s (PEDOTs) were explored for pyroelectric conversion. A poled ferroelectric film was coated on both sides with PEDOT via solution casting polymerization of EDOT, to give highly conductive and effective photothermal thin films of PEDOT. The PEDOT films not only provided heat source upon light exposure but worked as electrodes for the output energy from the pyroelectric layer in an energy harvester hybridized with a thermoelectric layer. Compared to a bare thermoelectric system under NIR irradiation, the photothermal-pyro-thermoelectric device showed more than 6 times higher thermoelectric output with the additional pyroelectric output. The photothermally driven pyroelectric harvesting film provided a very fast electric output with a high voltage output (Vout) of 15 V. The pyroelectric effect was significant due to the transparent and high photothermal PEDOT film, which could also work as an electrode. A hybrid energy harvester was assembled to enhance photoconversion efficiency (PCE) of a solar cell with a thermoelectric device operated by the photothermally generated heat. The PCE was increased more than 20% under sunlight irradiation (AM 1.5G) utilizing the transmitted light through the photovoltaic cell as a heat source that was converted into pyroelectric and thermoelectric output simultaneously from the high photothermal PEDOT electrodes. Overall, this work provides a dynamic and static hybrid energy cell to harvest solar energy in full spectral range and thermal energy, to allow solar powered switching of an electrochromic display.

  12. Mechanisms of Pyroelectricity in Three- and Two-Dimensional Materials

    Science.gov (United States)

    Liu, Jian; Pantelides, Sokrates T.

    2018-05-01

    Pyroelectricity is a very promising phenomenon in three- and two-dimensional materials, but first-principles calculations have not so far been used to elucidate the underlying mechanisms. Here we report density-functional theory (DFT) calculations based on the Born-Szigeti theory of pyroelectricity, by combining fundamental thermodynamics and the modern theory of polarization. We find satisfactory agreement with experimental data in the case of bulk benchmark materials, showing that the so-called electron-phonon renormalization, whose contribution has been traditionally viewed as negligible, is important. We predict out-of-plane pyroelectricity in the recently synthesized Janus MoSSe monolayer and in-plane pyroelectricity in the group-IV monochalcogenide GeS monolayer. It is notable that the so-called secondary pyroelectricity is found to be dominant in GeS monolayer. The present work opens a theoretical route to study the pyroelectric effect using DFT and provides a valuable tool in the search for new candidates for pyroelectric applications.

  13. Therapeutic dose from a pyroelectric electron accelerator.

    Science.gov (United States)

    Fullem, T Z; Fazel, K C; Geuther, J A; Danon, Y

    2009-11-01

    Simple heating of pyroelectric crystals has been used as the basis for compact sources of X rays, electrons, ions and neutrons. We report on the evaluation of the feasibility of using a portable pyroelectric electron accelerator to deliver a therapeutic dose to tissue. Such a device could be mass produced as a handheld, battery-powered instrument. Experiments were conducted with several crystal sizes in which the crystal was heated inside a vacuum chamber and the emitted electrons were allowed to penetrate a thin beryllium window into the surrounding air. A Faraday cup was used to count the number of electrons that exited the window. The energy of these electrons was determined by measuring the energy spectrum of the X rays that resulted from the electron interactions with the Faraday cup. Based on these measurements, the dose that this source could deliver to tissue was calculated using Monte Carlo calculations. It was found that 10(13) electrons with a peak energy of the order of 100 keV were emitted from the beryllium window and could deliver a dose of 1664 Gy to a 2-cm-diameter, 110-microm-deep region of tissue located 1.5 cm from the window with air between the window and the tissue. This dose level is high enough to consider this technology for medical applications in which shallow energy deposition is beneficial.

  14. Study on Pyroelectric Harvesters Integrating Solar Radiation with Wind Power

    Directory of Open Access Journals (Sweden)

    Chun-Ching Hsiao

    2015-07-01

    Full Text Available Pyroelectric harvesters use temperature fluctuations to generate electrical outputs. Solar radiation and waste heat are rich energy sources that can be harvested. Pyroelectric energy converters offer a novel and direct energy-conversion technology by transforming time-dependent temperatures directly into electricity. Moreover, the great challenge for pyroelectric energy harvesting lies in finding promising temperature variations or an alternating thermal loading in real situations. Hence, in this article, a novel pyroelectric harvester integrating solar radiation with wind power by the pyroelectric effect is proposed. Solar radiation is a thermal source, and wind is a dynamic potential. A disk generator is used for harvesting wind power. A mechanism is considered to convert the rotary energy of the disk generator to drive a shutter for generating temperature variations in pyroelectric cells using a planetary gear system. The optimal period of the pyroelectric cells is 35 s to harvest the stored energy, about 70 μJ, while the rotary velocity of the disk generator is about 31 RPM and the wind speed is about 1 m/s. In this state, the stored energy acquired from the pyroelectric harvester is about 75% more than that from the disk generator. Although the generated energy of the proposed pyroelectric harvester is less than that of the disk generator, the pyroelectric harvester plays a complementary role when the disk generator is inactive in situations of low wind speed.

  15. Spatial solitons in biased photovoltaic photorefractive materials with the pyroelectric effect

    Energy Technology Data Exchange (ETDEWEB)

    Katti, Aavishkar; Yadav, R.A., E-mail: rayadav@bhu.ac.in

    2017-01-23

    Spatial solitons in biased photorefractive media due to the photovoltaic effect and the pyroelectric effect are investigated. The pyroelectric field considered is induced due to the heating by the incident beam's energy. These solitons can be called screening photovoltaic pyroelectric solitons. It is shown that the solitons can exist in the bright and dark realizations. The conditions for formation of these solitons are discussed. Relevant example is considered to illustrate the self trapping of such solitons. The external electric field interacts with the photovoltaic field and the pyroelectric field to either support or oppose the self trapping. - Highlights: • Effect of pyroelectric field on screening photovoltaic solitons is studied. • Illumination induced pyroelectric field is considered for the first time. • Self trapping depends on external, pyroelectric and photovoltaic space charge field.

  16. Study of pyroelectric activity of PZT/PVDF-HFP composite

    Directory of Open Access Journals (Sweden)

    Luiz Francisco Malmonge

    2003-12-01

    Full Text Available Flexible, free-standing piezo and pyroelectric composite with 0 to 3 connectivity was made up from Lead Zirconate Titanate (PZT powder and poly(vinylidene fluoride-hexafluoropropylene (PVDF-HFP copolymer. The pyroelectric and the piezoelectric longitudinal (d33 coefficients were measured. A 50/50 vol.% PZT/PVDF-HFP composite resulted in piezo and pyroelectric coefficients of d33 = 25.0 pC/N and p = 4.5 × 10-4 C/m²K at 70 °C, respectively. Analysis of the complex permittivity in a wide range of frequency was carried out indicating lower permittivity of the composite in comparison with a permittivity of the PZT ceramic. The low value of the permittivity gives a high pyroelectric figure of merit indicating that this material can be used to build a temperature sensor in spite of the lower pyroelectric coefficient compared with PZT.

  17. Pyroelectricity of silicon-doped hafnium oxide thin films

    Science.gov (United States)

    Jachalke, Sven; Schenk, Tony; Park, Min Hyuk; Schroeder, Uwe; Mikolajick, Thomas; Stöcker, Hartmut; Mehner, Erik; Meyer, Dirk C.

    2018-04-01

    Ferroelectricity in hafnium oxide thin films is known to be induced by various doping elements and in solid-solution with zirconia. While a wealth of studies is focused on their basic ferroelectric properties and memory applications, thorough studies of the related pyroelectric properties and their application potential are only rarely found. This work investigates the impact of Si doping on the phase composition and ferro- as well as pyroelectric properties of thin film capacitors. Dynamic hysteresis measurements and the field-free Sharp-Garn method were used to correlate the reported orthorhombic phase fractions with the remanent polarization and pyroelectric coefficient. Maximum values of 8.21 µC cm-2 and -46.2 µC K-1 m-2 for remanent polarization and pyroelectric coefficient were found for a Si content of 2.0 at%, respectively. Moreover, temperature-dependent measurements reveal nearly constant values for the pyroelectric coefficient and remanent polarization over the temperature range of 0 ° C to 170 ° C , which make the material a promising candidate for IR sensor and energy conversion applications beyond the commonly discussed use in memory applications.

  18. A theoretical model for the pyroelectric response in Langmuir-Blodgett films

    International Nuclear Information System (INIS)

    Capan, R.; Basaran, I.; Richardson, T.H.; Lacey, D.

    2002-01-01

    Understanding the structure of pyroelectric materials is important to elucidate the nature of the temperature-dependent microscopic and macroscopic electric polarisation. Pyroelectric materials must have a non-centrosymmetric structure. Previously, researchers [C.A. Jones, PhD thesis, University of Durham, (1987); J. Mater. Chem. 1 (1991) 819; Langmuir 11 (1995) 4623] have reported the pyroelectric effect of non-centrosymmetric ultrathin LB films prepared using the alternate layer Langmuir-Blodgett (LB) deposition technique. They have proposed three main mechanisms to explain the origin of the pyroelectric activity, namely, tilting, proton transfer, and ionic processes. Linear and cyclic polysiloxane materials with aliphatic and aromatic side groups have been studied in this work. These materials have been alternately deposited with eicosylamine to form the active pyroelectric material in metal-LB film-metal (MIM) devices, whose pyroelectric coefficients have been measured using a quasi-static measurement technique [W.H. Majid, Abd., PhD thesis, Univ. of Sheffield (1994); Mater. Sci. Eng., C, Biomim. Mater., Sens. Syst. 3 (1995) 197; Thin Solid Films 327-329 (1998) 369]. The relation between pyroelectric mechanism(s) and microscopic and macroscopic pyroelectric response for polysiloxane/eicosylamine alternate layer LB films will be explained in this work. Results indicate that the physical mechanism by which the pyroelectric activity arises in the LB films is critically dependent upon their structural quality, the ions within the multilayer arrangement and the molecular dipole moments of the molecules

  19. The flexoelectric effect associated size dependent pyroelectricity in solid dielectrics

    Science.gov (United States)

    Bai, Gang; Liu, Zhiguo; Xie, Qiyun; Guo, Yanyan; Li, Wei; Yan, Xiaobing

    2015-09-01

    A phenomenological thermodynamic theory is used to investigate the effect of strain gradient on the pyroelectric effect in centrosymmetric dielectric solids. Direct pyroelectricity can exist as external mechanical stress is applied to non-pyroelectric dielectrics with shapes such as truncated pyramids, due to elastic strain gradient induced flexoelectric polarization. Effective pyroelectric coefficient was analyzed in truncated pyramids. It is found to be controlled by size, ambient temperature, stress, and aspect ratio and depends mainly on temperature sensitivity of flexoelectric coefficient (TSFC) and strain gradient of the truncated pyramids dielectric solids. These results show that the pyroelectric property of Ba0.67Sr0.33TiO3 above Tc similar to PZT and other lead-based ferroelectrics can be obtained. This feature might widely broaden the selection of materials for infrared detectors with preferable properties.

  20. Rapid deposition process for zinc oxide film applications in pyroelectric devices

    International Nuclear Information System (INIS)

    Hsiao, Chun-Ching; Yu, Shih-Yuan

    2012-01-01

    Aerosol deposition (AD) is a rapid process for the deposition of films. Zinc oxide is a low toxicity and environmentally friendly material, and it possesses properties such as semiconductivity, pyroelectricity and piezoelectricity without the poling process. Therefore, AD is used to accelerate the manufacturing process for applications of ZnO films in pyroelectric devices. Increasing the temperature variation rate in pyroelectric films is a useful method for enhancing the responsivity of pyroelectric devices. In the present study, a porous ZnO film possessing the properties of large heat absorption and high temperature variation rate is successfully produced by the AD rapid process and laser annealing for application in pyroelectric devices. (paper)

  1. Design of the flame detector based on pyroelectric infrared sensor

    Science.gov (United States)

    Liu, Yang; Yu, Benhua; Dong, Lei; Li, Kai

    2017-10-01

    As a fire detection device, flame detector has the advantages of short reaction time and long distance. Based on pyroelectric infrared sensor working principle, the passive pyroelectric infrared alarm system is designed, which is mainly used for safety of tunnel to detect whether fire occurred or not. Modelling and Simulation of the pyroelectric Detector Using Labview. An attempt was made to obtain a simple test platform of a pyroelectric detector which would make an excellent basis for the analysis of its dynamic behaviour. After many experiments, This system has sensitive response, high anti-interference ability and safe and reliable performance.

  2. Phase transformation based pyroelectric waste heat energy harvesting with improved practicality

    International Nuclear Information System (INIS)

    Jo, Hwan Ryul; Lynch, Christopher S

    2016-01-01

    In 2014, almost 60% of thermal energy produced in the United States was lost to the environment as waste heat. Ferroelectric based pyroelectric devices can be used to convert some of this waste heat into usable electrical energy using the Olsen cycle, an ideal thermodynamic cycle, but there are a number of barriers to its realization in a practical device. This study uses the Olsen cycle to benchmark a less efficient thermodynamic cycle that is more easily implemented in devices. The ferroelectric pyroelectric material used was (Pb 0.97 La 0.02 )(Zr 0.55 Sn 0.32 Ti 0.13 )O 3 ceramic, a ferroelectric material that undergoes a temperature driven phase transformation. A net energy density of 0.27 J cm −3 per cycle was obtained from the ferroelectric material using the modified cycle with a temperature change between 25°C and 180°C. This is 15.5% of the Olsen cycle result with the same temperature range and 1–8 MV m −1 applied electric field range. The power density was estimated to 13.5 mW cm −3 with given experimental conditions. A model is presented that quantitatively describes the effect of several parameters on output energy density and can be used to design ferroelectric based pyroelectric energy converters. The model indicates that optimization of material geometry and heating conditions can increase the output power by an order or magnitude. (paper)

  3. The flexoelectric effect associated size dependent pyroelectricity in solid dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Gang, E-mail: baigang@njupt.edu.cn [Jiangsu Provincial Engineering Laboratory for RF Integration and Micropackaging and College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Liu, Zhiguo [Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Xie, Qiyun; Guo, Yanyan; Li, Wei [Jiangsu Provincial Engineering Laboratory for RF Integration and Micropackaging and College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Yan, Xiaobing [College of Electronic and information Engineering, Hebei University, Baoding 071002 (China)

    2015-09-15

    A phenomenological thermodynamic theory is used to investigate the effect of strain gradient on the pyroelectric effect in centrosymmetric dielectric solids. Direct pyroelectricity can exist as external mechanical stress is applied to non-pyroelectric dielectrics with shapes such as truncated pyramids, due to elastic strain gradient induced flexoelectric polarization. Effective pyroelectric coefficient was analyzed in truncated pyramids. It is found to be controlled by size, ambient temperature, stress, and aspect ratio and depends mainly on temperature sensitivity of flexoelectric coefficient (TSFC) and strain gradient of the truncated pyramids dielectric solids. These results show that the pyroelectric property of Ba{sub 0.67}Sr{sub 0.33}TiO{sub 3} above T{sub c} similar to PZT and other lead-based ferroelectrics can be obtained. This feature might widely broaden the selection of materials for infrared detectors with preferable properties.

  4. High-frequency thermal-electrical cycles for pyroelectric energy conversion

    International Nuclear Information System (INIS)

    Bhatia, Bikram; Damodaran, Anoop R.; Cho, Hanna; Martin, Lane W.; King, William P.

    2014-01-01

    We report thermal to electrical energy conversion from a 150 nm thick BaTiO 3 film using pyroelectric cycles at 1 kHz. A microfabricated platform enables temperature and electric field control with temporal resolution near 1 μs. The rapid electric field changes as high as 11 × 10 5  kV/cm-s, and temperature change rates as high as 6 × 10 5  K/s allow exploration of pyroelectric cycles in a previously unexplored operating regime. We investigated the effect of phase difference between electric field and temperature cycles, and electric field and temperature change rates on the electrical energy generated from thermal-electrical cycles based on the pyroelectric Ericsson cycle. Complete thermodynamic cycles are possible up to the highest cycle rates tested here, and the energy density varies significantly with phase shifts between temperature and electric field waveforms. This work could facilitate the design and operation of pyroelectric cycles at high cycle rates, and aid in the design of new pyroelectric systems

  5. Dynamic coupled piezothermoelasticity of pyroelectric composite plate

    International Nuclear Information System (INIS)

    Heidary, F.; Reza Eslami, M.

    2005-01-01

    The equations governing the linear response of coupled piezothermolelastic composite plate, considering the pyroelectric effect, are outlined in this paper. The finite element method with linear shape functions for a first-order shear deformation theory of laminated plates is used to obtain the defections and temperature. The finite element equations are developed for piezothermoelectric sensor and actuator. The governing equations are solved using the time marching method. Numerical results are presented for the conventional active direct proportional control of the plate. Controlled and uncontrolled displacements and temperature responses are graphically illustrated. the corresponding temperature response with consideration of the pyroelectric effects is also presented. Dynamic case studies are carried out to observe the pyroelectric effects in the piezothermoelastic control systems. (authors)

  6. Polymer-Ceramic Composite Materials for Pyroelectric Infrared Detectors: An Overview

    Science.gov (United States)

    Aggarwal, M. D; Currie, J. R.; Penn, B. G.; Batra, A. K.; Lal, R. B.

    2007-01-01

    Ferroelectrics:Polymer composites can be considered an established substitute for conventional electroceramics and ferroelectric polymers. The composites have a unique blend of polymeric properties such as mechanical flexibility, high strength, formability, and low cost, with the high electro-active properties of ceramic materials. They have attracted considerable interest because of their potential use in pyroelectric infrared detecting devices and piezoelectric transducers. These flexible sensors and transducers may eventually be useful for their health monitoring applications for NASA crew launch vehicles and crew exploration vehicles being developed. In the light of many technologically important applications in this field, it is worthwhile to present an overview of the pyroelectric infrared detector theory, models to predict dielectric behavior and pyroelectric coefficient, and the concept of connectivity and fabrication techniques of biphasic composites. An elaborate review of Pyroelectric-Polymer composite materials investigated to date for their potential use in pyroelectric infrared detectors is presented.

  7. Pyroelectrics in a harsh environment

    International Nuclear Information System (INIS)

    Burgess, D.E.

    1988-01-01

    Large arrays of pyroelectric detectors, both linear and two-dimensional, have the potential to satisfy many of the requirements of those IR detection and imaging tasks where low cost and minimal logistics are of paramount importance. They have, however, not been used in all of these applications because of apprehensions and misunderstandings concerning, in particular, microphony and temperature effects. This paper examines methods of pyroelectric array construction which have been developed to eliminate or minimize these effects and to offer to potential users well-characterized devices which are straightforward to operate. It concludes by presenting imagery obtained under harsh conditions. 9 references

  8. Pyroelectric Energy Harvesting: With Thermodynamic-Based Cycles

    OpenAIRE

    Saber Mohammadi; Akram Khodayari

    2012-01-01

    This work deals with energy harvesting from temperature variations using ferroelectric materials as a microgenerator. The previous researches show that direct pyroelectric energy harvesting is not effective, whereas thermodynamic-based cycles give higher energy. Also, at different temperatures some thermodynamic cycles exhibit different behaviours. In this paper pyroelectric energy harvesting using Lenoir and Ericsson thermodynamic cycles has been studied numerically and the two cycles were c...

  9. Temperature Field Analysis for PZT Pyroelectric Cells for Thermal Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Chi-Yuan Lee

    2011-11-01

    Full Text Available This paper proposes the idea of etching PZT to improve the temperature variation rate of a thicker PZT sheet in order to enhance the energy conversion efficiency when used as pyroelectric cells. A partially covered electrode was proven to display a higher output response than a fully covered electrode did. A mesh top electrode monitored the temperature variation rate and the electrode area. The mesh electrode width affected the distribution of the temperature variation rate in a thinner pyroelectric material. However, a pyroelectric cell with a thicker pyroelectric material was beneficial in generating electricity pyroelectrically. The PZT sheet was further etched to produce deeper cavities and a smaller electrode width to induce lateral temperature gradients on the sidewalls of cavities under homogeneous heat irradiation, enhancing the temperature variation rate.

  10. Temperature field analysis for PZT pyroelectric cells for thermal energy harvesting.

    Science.gov (United States)

    Hsiao, Chun-Ching; Ciou, Jing-Chih; Siao, An-Shen; Lee, Chi-Yuan

    2011-01-01

    This paper proposes the idea of etching PZT to improve the temperature variation rate of a thicker PZT sheet in order to enhance the energy conversion efficiency when used as pyroelectric cells. A partially covered electrode was proven to display a higher output response than a fully covered electrode did. A mesh top electrode monitored the temperature variation rate and the electrode area. The mesh electrode width affected the distribution of the temperature variation rate in a thinner pyroelectric material. However, a pyroelectric cell with a thicker pyroelectric material was beneficial in generating electricity pyroelectrically. The PZT sheet was further etched to produce deeper cavities and a smaller electrode width to induce lateral temperature gradients on the sidewalls of cavities under homogeneous heat irradiation, enhancing the temperature variation rate.

  11. Improving Pyroelectric Energy Harvesting Using a Sandblast Etching Technique

    Directory of Open Access Journals (Sweden)

    An-Shen Siao

    2013-09-01

    Full Text Available Large amounts of low-grade heat are emitted by various industries and exhausted into the environment. This heat energy can be used as a free source for pyroelectric power generation. A three-dimensional pattern helps to improve the temperature variation rates in pyroelectric elements by means of lateral temperature gradients induced on the sidewalls of the responsive elements. A novel method using sandblast etching is successfully applied in fabricating the complex pattern of a vortex-like electrode. Both experiment and simulation show that the proposed design of the vortex-like electrode improved the electrical output of the pyroelectric cells and enhanced the efficiency of pyroelectric harvesting converters. A three-dimensional finite element model is generated by commercial software for solving the transient temperature fields and exploring the temperature variation rate in the PZT pyroelectric cells with various designs. The vortex-like type has a larger temperature variation rate than the fully covered type, by about 53.9%.The measured electrical output of the vortex-like electrode exhibits an obvious increase in the generated charge and the measured current, as compared to the fully covered electrode, by of about 47.1% and 53.1%, respectively.

  12. Pyroelectric response of perovskite heterostructures incorporating conductive oxide electrodes

    Science.gov (United States)

    Tipton, Charles Wesley, IV

    2000-10-01

    The use of imaging technologies has become pervasive in many applications as the demand for situational awareness information has increased over the last decade. No better example of the integration of these technologies can be found than that of infrared or thermal imaging. This dissertation, in the field of thermal imaging, has been motivated by the desire to advance the technology of uncooled, thin-film pyroelectric sensors and focuses on the materials and structures from which the detector elements will be built. This work provides a detailed study of the pyroelectric response of the La-Sr-Co-O/Pb-La-Zr-Ti-O/La-Sr-Co-O (LPL) structure. The LPL structure was chosen based on the needs of thin film detectors, the unique properties of the conductive oxide La-Sr-Co-O (LSCO), and the broad applicability of the Pb-La-Zr-Ti-O (PLZT) material system. Epitaxial heterostructures were grown by pulsed laser deposition on single-crystal oxide substrates. Using the oxygen pressure during cooling and heating of the LSCO layer as a key variable, we have been able to produce structures that have a pronounced internal field in the as-grown state. In these capacitors, where the bottom electrode has a large concentration of oxygen vacancies, we have discovered very large pyroelectric responses that are 10 to 30 times larger than expected of PLZT-based pyroelectric materials (typical values are 20 to 40 nCcm-2K -1). The enhanced pyroelectric responses are very repeatable, stable over time, and distinctly different from responses attributed to thermally stimulated currents. Detailed positron annihilation spectroscopy measurements reveal that there is indeed an oxygen concentration gradient across the capacitor. Based on the results of this study, I will present an analysis of the enhanced pyroelectric response. Although the enhanced response has been correlated with high concentrations of oxygen vacancies in the PLZT film and LSCO electrodes, the mechanism by which the large

  13. Nano/microscale pyroelectric energy harvesting: challenges and opportunities

    Directory of Open Access Journals (Sweden)

    Devashish Lingam

    2013-12-01

    Full Text Available With the ever-growing demand for renewable energy sources, energy harvesting from natural resources has gained much attention. Energy sources such as heat and mechanical motion could be easily harvested based on pyroelectric, thermoelectric, and piezoelectric effects. The energy harvested from otherwise wasted energy in the environment can be utilized in self-powered micro and nano devices, and wearable electronics, which required only µW–mW power. This article reviews pyroelectric energy harvesting with an emphasis on recent developments in pyroelectric energy harvesting and devices at micro/nanoscale. Recent developments are presented and future challenges and opportunities for more efficient materials and devices with higher energy conversion efficiency are also discussed.

  14. Mechanism of piezo - and pyroelectricity of poly (vinylidene fluoride) electret

    International Nuclear Information System (INIS)

    Wada, Y.

    1980-01-01

    Basic concepts of the piezo - and pyroelectricity theory of polymer electrets are given. The origins of these effects are presented. The piezo - and pyroelectric constants are numerically obtained. (L.C.) [pt

  15. Modified lead titanate thin films for pyroelectric infrared detectors on gold electrodes

    Science.gov (United States)

    Ahmed, Moinuddin; Butler, Donald P.

    2015-07-01

    Pyroelectric infrared detectors provide the advantage of both a wide spectral response and dynamic range, which also has enabled systems to be developed with reduced size, weight and power consumption. This paper demonstrates the deposition of lead zirconium titanate (PZT) and lead calcium titanate (PCT) thin films for uncooled pyroelectric detectors with the utilization of gold electrodes. The modified lead titanate thin films were deposited by pulsed laser deposition on gold electrodes. The PZT and PCT thins films deposited and annealed at temperatures of 650 °C and 550 °C respectively demonstrated the best pyroelectric performance in this work. The thin films displayed a pyroelectric effect that increased with temperature. Poling of the thin films was carried out for a fixed time periods and fixed dc bias voltages at elevated temperature in order to increase the pyroelectric coefficient by establishing a spontaneous polarization of the thin films. Poling caused the pyroelectric current to increase one order of magnitude.

  16. Pyroelectric Materials for Uncooled Infrared Detectors: Processing, Properties, and Applications

    Science.gov (United States)

    Aggarwal, M. D.; Batra, A. K.; Guggilla, P.; Edwards, M. E.; Penn, B. G.; Currie, J. R., Jr.

    2010-01-01

    Uncooled pyroelectric detectors find applications in diverse and wide areas such as industrial production; automotive; aerospace applications for satellite-borne ozone sensors assembled with an infrared spectrometer; health care; space exploration; imaging systems for ships, cars, and aircraft; and military and security surveillance systems. These detectors are the prime candidates for NASA s thermal infrared detector requirements. In this Technical Memorandum, the physical phenomena underlying the operation and advantages of pyroelectric infrared detectors is introduced. A list and applications of important ferroelectrics is given, which is a subclass of pyroelectrics. The basic concepts of processing of important pyroelectrics in various forms are described: single crystal growth, ceramic processing, polymer-composites preparation, and thin- and thick-film fabrications. The present status of materials and their characteristics and detectors figures-of-merit are presented in detail. In the end, the unique techniques demonstrated for improving/enhancing the performance of pyroelectric detectors are illustrated. Emphasis is placed on recent advances and emerging technologies such as thin-film array devices and novel single crystal sensors.

  17. Defect Characterization of Pyroelectric Materials

    National Research Council Canada - National Science Library

    Keeble, David

    2002-01-01

    Two methods for identify point defects applicable to the study of technologically relevant pyroelectric oxide materials have been investigated, namely Positron Annihilation Lifetime Spectroscopy (PALS...

  18. Pyroelectric Ceramics as Temperature Sensors for Energy System Applications

    Science.gov (United States)

    Silva, Jorge Luis

    Temperature is continuously monitored in energy systems to ensure safe operation temperatures, increase efficiency and avoid high emissions. Most of energy systems operate at high temperature and harsh environments to achieve higher efficiencies, therefore temperature sensing devices that can operate under these conditions are highly desired. The interest has increased in temperature sensors capable to operate and in harsh environments and temperature sensors capable to transmit thermal information wirelessly. One of the solutions for developing harsh environment sensors is to use ceramic materials, especially functional ceramics such as pyroelectrics. Pyroelectric ceramics could be used to develop active sensors for both temperature and pressure due to their capabilities in coupling energy among mechanical, thermal, and electrical domains. In this study, two different pyroelectric materials were used to develop two different temperature sensors systems. First, a high temperature sensor was developed using a lithium niobate (LiNbO3) pyroelectric ceramic. With its Curie temperature of 1210 °C, lithium niobate is capable to maintain its pyroelectric properties at high temperature making it ideal for temperature sensing at high temperature applications. Lithium niobate has been studied previously in the attempt to use its pyroelectric current as the sensing mechanism to measure temperatures up to 500 °C. Pyroelectric coefficient of lithium niobate is a function of temperature as reported in a previous study, therefore a dynamic technique is utilized to measure the pyroelectric coefficient of the lithium niobate used in this study. The pyroelectric coefficient was successfully measured up to 500 °C with coefficients ranging from -8.5 x 10 -5 C/m2 °C at room temperature to -23.70 x 10 -5 C/m2 °C at 500 °C. The lithium niobate sensor was then tested at higher temperatures: 220 °C, 280 °C, 410 °C and 500 °C with 4.31 %, 2.1 %, 0.4 % and 0.6 % deviation

  19. Nanophotonic-Engineered Photothermal Harnessing for Waste Heat Management and Pyroelectric Generation.

    Science.gov (United States)

    Wang, Xiao-Qiao; Tan, Chuan Fu; Chan, Kwok Hoe; Xu, Kaichen; Hong, Minghui; Kim, Sang-Woo; Ho, Ghim Wei

    2017-10-24

    At present, there are various limitations to harvesting ambient waste heat which include the lack of economically viable material and innovative design features that can efficiently recover low grade heat for useful energy conversion. In this work, a thermal nanophotonic-pyroelectric (TNPh-pyro) scheme consisting of a metamaterial multilayer and pyroelectric material, which performs synergistic waste heat rejection and photothermal heat-to-electricity conversion, is presented. Unlike any other pyroelectric configuration, this conceptual design deviates from the conventional by deliberately employing back-reflecting NIR to enable waste heat reutilization/recuperation to enhance pyroelectric generation, avoiding excessive solar heat uptake and also retaining high visual transparency of the device. Passive solar reflective cooling up to 4.1 °C is demonstrated. Meanwhile, the photothermal pyroelectric performance capitalizing on the back-reflecting effect shows an open circuit voltage (V oc ) and short circuit current (I sc ) enhancement of 152 and 146%, respectively. In addition, the designed photoactive component (TiO 2 /Cu) within the metamaterial multilayer provides the TNPh-pyro system with an effective air pollutant photodegradation functionality. Finally, proof-of-concept for concurrent photothermal management and enhanced solar pyroelectric generation under a real outdoor environment is demonstrated.

  20. Neutron interrogation systems using pyroelectric crystals and methods of preparation thereof

    Science.gov (United States)

    Tang, Vincent; Meyer, Glenn A.; Falabella, Steven; Guethlein, Gary; Rusnak, Brian; Sampayan, Stephen; Spadaccini, Christopher M.; Wang, Li-Fang; Harris, John; Morse, Jeff

    2017-08-01

    According to one embodiment, an apparatus includes a pyroelectric crystal, a deuterated or tritiated target, an ion source, and a common support coupled to the pyroelectric crystal, the deuterated or tritiated target, and the ion source. In another embodiment, a method includes producing a voltage of negative polarity on a surface of a deuterated or tritiated target in response to a temperature change of a pyroelectric crystal, pulsing a deuterium ion source to produce a deuterium ion beam, accelerating the deuterium ion beam to the deuterated or tritiated target to produce a neutron beam, and directing the ion beam onto the deuterated or tritiated target to make neutrons using a voltage of the pyroelectric crystal and/or an HGI surrounding the pyroelectric crystal. The directionality of the neutron beam is controlled by changing the accelerating voltage of the system. Other apparatuses and methods are presented as well.

  1. Pyroelectricity as a possible mechanism for cell membrane permeabilization.

    Science.gov (United States)

    García-Sánchez, Tomás; Muscat, Adeline; Leray, Isabelle; Mir, Lluis M

    2018-02-01

    The effects of pyroelectricity on cell membrane permeability had never been explored. Pyroelectricity consists in the generation of an electric field in the surface of some materials when a change in temperature is produced. In the present study, tourmaline microparticles, which are known to display pyroelectrical properties, were subjected to different changes in temperature upon exposure to cells in order to induce an electric field at their surface. Then, the changes in the permeability of the cell membrane to a cytotoxic agent (bleomycin) were assessed by a cloning efficacy test. An increase in the permeability of the cell membrane was only detected when tourmaline was subjected to a change in temperature. This suggests that the apparition of an induced pyroelectrical electric field on the material could actually be involved in the observed enhancement of the cell membrane permeability as a result of cell electropermeabilization. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Self Assembly and Pyroelectric Poling for Organics

    Science.gov (United States)

    2015-07-06

    These “static” charges are the origin of electric field ( Edi ) creation inside the dielectric medium. If the loss of pyroelectric charges is...negligibly small, it would yield Edi = γΔT/[ε0(εdi + εcrLdi/Lcr)] (1) where ε0, εcr, and εdi are the dielectric permittivities of free space, the pyroelectric...field ( Edi ) in the dielectric thin film, and the small open arrows at the thin layer of dielectrics represent the direction of electric fields. The

  3. Accounting for the various contributions to pyroelectricity in lead zirconate titanate thin films

    Science.gov (United States)

    Hanrahan, B.; Espinal, Y.; Neville, C.; Rudy, R.; Rivas, M.; Smith, A.; Kesim, M. T.; Alpay, S. P.

    2018-03-01

    An understanding of the pyroelectric coefficient and particularly its relationship with the applied electric field is critical to predicting the device performance for infrared imaging, energy harvesting, and solid-state cooling devices. In this work, we compare direct measurements of the pyroelectric effect under pulsed heating to the indirect extraction of the pyroelectric coefficient from adiabatic hysteresis loops and predictions from Landau-Devonshire theory for PbZr0.52Ti0.48O3 (PZT 52/48) on platinized silicon substrates. The differences between these measurements are explained through a series of careful measurements that quantify the magnitude and direction of the secondary and field-induced pyroelectric effects. The indirect measurement is shown to be up to 25% of the direct measurement at high fields, while the direct measurements and theoretical predictions converge at high fields as the film approaches a mono-domain state. These measurements highlight the importance of directly measuring the pyroelectric response in thin films, where non-intrinsic effects can be a significant proportion of the total observed pyroelectricity. Material and operating conditions are also discussed which could simultaneously maximize all contributions to pyroelectricity.

  4. Energy harvesting with piezoelectric and pyroelectric materials

    CERN Document Server

    Muensit, Nantakan

    2011-01-01

    The purpose of this book is to present the current state of knowledge in the field of energy harvesting using piezoelectric and pyroelectric materials. The book is addressed to students and academics engaged in research in the fields of energy harvesting, material sciences and engineering. Scientists and engineers who are working in the area of energy conservation and renewable energy resources should find it useful as well. Explanations of fundamental physical properties such as piezoelectricity and pyroelectricity are included to aid the understanding of the non-specialist. Specific technolo

  5. Substantial increase in acceleration potential of pyroelectric crystals

    International Nuclear Information System (INIS)

    Tornow, W.; Lynam, S. M.; Shafroth, S. M.

    2010-01-01

    We report on a substantial increase in the acceleration potential achieved with a LiTaO 3 pyroelectric crystal. With a single 2.5 cm diameter and 2.5 cm long z-cut crystal without electric field-enhancing nanotip we produced positive ion beams with maximal energies between 300 and 310 keV during the cooling phase when the crystal was exposed to 5 mTorr of deuterium gas. These values are about a factor of 2 larger than previously obtained with single pyroelectric crystals.

  6. Research on the Multiple Factors Influencing Human Identification Based on Pyroelectric Infrared Sensors

    Science.gov (United States)

    Lou, Ping; Hu, Jianmin

    2018-01-01

    Analysis of the multiple factors affecting human identification ability based on pyroelectric infrared technology is a complex problem. First, we examine various sensed pyroelectric waveforms of the human body thermal infrared signal and reveal a mechanism for affecting human identification. Then, we find that the mechanism is decided by the distance, human target, pyroelectric infrared (PIR) sensor, the body type, human moving velocity, signal modulation mask, and Fresnel lens. The mapping relationship between the sensed waveform and multiple influencing factors is established, and a group of mathematical models are deduced which fuse the macro factors and micro factors. Finally, the experimental results show the macro-factors indirectly affect the recognition ability of human based on the pyroelectric technology. At the same time, the correctness and effectiveness of the mathematical models is also verified, which make it easier to obtain more pyroelectric infrared information about the human body for discriminating human targets. PMID:29462908

  7. Photoacoustical and pyroelectric dosimetry of X-ray radiation in diagnostic region

    International Nuclear Information System (INIS)

    Carvalho, A.A. de.

    1987-01-01

    Three new types of radiation dosimeters, designed to measure X rays in its diagnostic region are described: the pulsed photoacoustical radiation dosimeter, the pyroelectric radiation dosimeter and the pulsed pyroelectric radiation dosimeter. The photoacoustical radiation dosimeter with the scope of to compare its carachteristics with the carachteristics of the new developed dosimeters is also studied. A methodology for calibration of a photoacoustical dosimeter which doesn't require the calibration of its response in a known field of ionizing radiation is proposed. A theoretical model to explain the results produced by the pulsed pyroelectric radiation dosimeter is presented. The obtained results show that the developed dosimeters are of calorimetric type, being linear its response with the X ray energy fluence rate. (author) [pt

  8. Pyroelectric properties of finite size ferroelectric thin films with structural transition zones

    International Nuclear Information System (INIS)

    Zhou Jing; Lue Tianquan; Sun Punan; Xie Wenguang; Cao Wenwu

    2009-01-01

    A Fermi-type Green's function is used to study pyroelectric properties of the thin film with finite sizes in three dimensions based on a modified transverse Ising model. The results demonstrate that a decrease in the lateral size of the film has a disadvantageous influence on the pyroelectric coefficient of the thin film.

  9. Terahertz computed tomography in three-dimensional using a pyroelectric array detector

    Science.gov (United States)

    Li, Bin; Wang, Dayong; Zhou, Xun; Rong, Lu; Huang, Haochong; Wan, Min; Wang, Yunxin

    2017-05-01

    Terahertz frequency range spans from 0.1 to 10 THz. Terahertz radiation can penetrate nonpolar materials and nonmetallic materials, such as plastics, wood, and clothes. Then the feature makes the terahertz imaging have important research value. Terahertz computed tomography makes use of the penetrability of terahertz radiation and obtains three-dimensional object projection data. In the paper, continuous-wave terahertz computed tomography with a pyroelectric array detectoris presented. Compared with scanning terahertz computed tomography, a pyroelectric array detector can obtain a large number of projection data in a short time, as the acquisition mode of the array pyroelectric detector omit the projection process on the vertical and horizontal direction. With the two-dimensional cross-sectional images of the object are obtained by the filtered back projection algorithm. The two side distance of the straw wall account for 80 pixels, so it multiplied by the pixel size is equal to the diameter of the straw about 6.4 mm. Compared with the actual diameter of the straw, the relative error is 6%. In order to reconstruct the three-dimensional internal structure image of the straw, the y direction range from 70 to 150 are selected on the array pyroelectric detector and are reconstructed by the filtered back projection algorithm. As the pixel size is 80 μm, the height of three-dimensional internal structure image of the straw is 6.48 mm. The presented system can rapidly reconstruct the three-dimensional object by using a pyroelectric array detector and explores the feasibility of on non-destructive evaluation and security testing.

  10. Pyroelectric Charge Release in Rhombohedral PZT

    NARCIS (Netherlands)

    Noheda, Beatriz; Duan, Ning; Cereceda, Noé; Gonzalo, Julio A.

    1998-01-01

    A new experimental set-up controlled by computer has been made to measure the pyroelectric charge of ferroelectric materials with a relatively high conductivity at slow rates of temperature variation. It allowed us to obtain the polarisation vs. temperature behaviour of PZT with various compositions

  11. Pyroelectric properties of phosphoric acid-doped TGS single crystals

    International Nuclear Information System (INIS)

    Saxena, Aparna; Fahim, M; Gupta, Vinay; Sreenivas, K

    2003-01-01

    Pyroelectric properties of phosphoric acid (H 3 PO 4 )-doped triglycine sulfate (TGSP) single crystals grown from solutions containing 0.1-0.5 mol of H 3 PO 4 have been studied. Incorporation of H 3 PO 4 into the crystal lattice is found to induce an internal bias field (E b ) and is observed through the presence of a sustained polarization and pyroelectricity beyond the transition temperature. The internal bias field has been estimated theoretically by fitting the experimentally measured data on temperature dependence of the pyroelectric coefficient (λ), dielectric constant (ε') and polarization (P). A high E b value in the range 9 x 10 3 -15.5 x 10 4 V m -1 is obtained for crystals grown with 0.1-0.5 mol of H 3 PO 4 in the solution, and a specific concentration of 0.2-0.25 mol of H 3 PO 4 in the solution during crystal growth is found to be optimum for a high figure of merit for detectivity, F d = 428 μC m -2 K -1

  12. A VDF/TrFE copolymer on silicon pyroelectric sensor: design considerations and experiments

    NARCIS (Netherlands)

    Setiadi, D.; Setiadi, D.; Regtien, Paulus P.L.

    1995-01-01

    For an optimal design of a VDF/TrFE (vinylidene fluoride trifluoroethylene) copolymer-on-silicon pyroelectric sensor, the one-dimensional diffusion equation is solved for the pyroelectric multilayer structure. Output current and voltage of the sensor are calculated. Improvement of the sensor can be

  13. Functional Cementitious Composites for Pyroelectric Applications

    Science.gov (United States)

    Srikanth, K. S.; Patel, Satyanarayan; Vaish, Rahul

    2018-04-01

    We have synthesized Ba0.85Ca0.15Zr0.10Ti0.88Sn0.02O3 (BCZT-Sn)-cement composites. They were prepared as BCZT-Sn to cement ratios of 90-10% and 85-15% by weight. The larger fraction of BCZT-Sn ceramic was used to minimize the losses in the composites. The open circuit voltage was found to be 0.75 V, 0.56 V and 0.4 V for pure, 10% and 15% cement composites, respectively. The voltage and current were also measured across resistances of 1 and 3 MΩ, and the obtained voltages were lower for composites compared to pure BCZT-Sn. Nonetheless, they remain promising candidates over traditional pyroelectric materials for device applications owing to their advantages, such as (1) these composites can be made without any sintering process and (2) they can be made in any shape and size. We also studied relative permittivity, which influences performance of pyroelectric devices.

  14. Pyroelectric effect in tryglicyne sulphate single crystals - Differential measurement method

    Science.gov (United States)

    Trybus, M.

    2018-06-01

    A simple mathematical model of the pyroelectric phenomenon was used to explain the electric response of the TGS (triglycine sulphate) samples in the linear heating process in ferroelectric and paraelectric phases. Experimental verification of mathematical model was realized. TGS single crystals were grown and four electrode samples were fabricated. Differential measurements of the pyroelectric response of two different regions of the samples were performed and the results were compared with data obtained from the model. Experimental results are in good agreement with model calculations.

  15. Longitudinal and transverse pyroelectric effects in a chiral ferroelectric liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Yablonskii, S. V., E-mail: yablonskii2005@yandex.ru; Bondarchuk, V. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Soto-Bustamante, E. A.; Romero-Hasler, P. N. [Universidad de Chile (Chile); Ozaki, M. [Osaka University, Department of Electronic Engineering, Faculty of Engineering (Japan); Yoshino, K. [Shimane Institute for Industrial Technology (Japan)

    2015-04-15

    In this study, we compare the results of experimental investigations of longitudinal and transverse pyroelectric effects in a chiral ferroelectric crystal. In a transverse geometry, we studied freely suspended liquid-crystal films. In both geometries, samples exhibited bistability, demonstrating stable pyroelectric signals of different polarities at zero voltage. It is shown that a bistable cell based on a freely suspended film requires 40 times less energy expenditures as compared to the conventional sandwich-type cell.

  16. Pyroelectric properties of phosphoric acid-doped TGS single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Aparna; Fahim, M; Gupta, Vinay; Sreenivas, K [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2003-12-21

    Pyroelectric properties of phosphoric acid (H{sub 3}PO{sub 4})-doped triglycine sulfate (TGSP) single crystals grown from solutions containing 0.1-0.5 mol of H{sub 3}PO{sub 4} have been studied. Incorporation of H{sub 3}PO{sub 4} into the crystal lattice is found to induce an internal bias field (E{sub b}) and is observed through the presence of a sustained polarization and pyroelectricity beyond the transition temperature. The internal bias field has been estimated theoretically by fitting the experimentally measured data on temperature dependence of the pyroelectric coefficient ({lambda}), dielectric constant ({epsilon}') and polarization (P). A high E{sub b} value in the range 9 x 10{sup 3}-15.5 x 10{sup 4} V m{sup -1} is obtained for crystals grown with 0.1-0.5 mol of H{sub 3}PO{sub 4} in the solution, and a specific concentration of 0.2-0.25 mol of H{sub 3}PO{sub 4} in the solution during crystal growth is found to be optimum for a high figure of merit for detectivity, F{sub d} = 428 {mu}C m{sup -2} K{sup -1}.

  17. Minimization of pyroelectric effects in relaxor-PbTiO3 crystals for piezoelectric sensors

    International Nuclear Information System (INIS)

    Tang, Yanxue; Shen, Zongyang; Zhang, Shujun; Jiang, Wenhua; Luo, Jun; Shrout, Thomas R.

    2014-01-01

    To minimize pyroelectric effects while keeping high piezoelectric effects in relaxor-PbTiO 3 single crystals, the crystallographic orientation dependence of the pyroelectric and piezoelectric coefficients were investigated for binary (1 − x)Pb(Mg 1/3 Nb 2/3 )O 3 –xPbTiO 3 (PMN–PT), ternary (1 − x − y)Pb(In 1/2 Nb 1/2 )O 3 –yPb(Mg 1/3 Nb 2/3 )O 3 –xPbTiO 3 (PIN–PMN–PT) and Mn-doped PIN–PMN–PT single crystals with the “4R” multidomain state. The secondary pyroelectric coefficients were calculated from the thermodynamic inter-relationship between the piezoelectric, elastic, and thermal expansion coefficients, being on the order of (1.16–1.23) × 10 −4  C m −2  K −1 for binary crystals and (0.97–2.03) × 10 −4  C m −2  K −1 for ternary ones. The primary pyroelectric coefficients were –(6.73–6.84) × 10 −4  C m −2  K −1 and −(5.44–6.43) × 10 −4  C m −2  K −1 for binary and ternary crystals, respectively. The pyroelectric coefficients could be reduced by matrix rotation, but at the cost of decreasing longitudinal piezoelectric coefficients d 33 . Of particular interest is that the maximum piezoelectric coefficients d 24 ∗ at θ = ±55 o and d 34 ∗ at θ = ±35 o by a counterclockwise rotation of θ about the X axis (θ is the rotation angle about the coordinate axes), or d 15 ∗ at θ = ±55 o , and d 35 ∗ at θ = ±35 o by a counterclockwise rotation the Y axis, were found on the order of 3000 pC N −1 . The corresponding pyroelectric coefficients could be reduced by ∼20%. The reduced pyroelectric coefficients that can contribute to decrease undesirable output signals, together with the high piezoelectric coefficients, enable relaxor-PT crystals as favorable candidates for high-sensitivity piezoelectric sensors. - Highlights: • Primary/secondary pyroelectric coefficients were determined for relaxor-PT crystals. • Pyroelectric coefficients could be reduced by

  18. A compact rf driven H- ion source for linac injection

    International Nuclear Information System (INIS)

    Rymer, J.P.; Engeman, G.A.; Hamm, R.W.; Potter, J.M.

    1991-01-01

    A compact rf driven H - ion source has been developed for use as an injector for the AccSys radio frequency quadrupole (RFQ) linacs. A multicusp magnetic bucket geometry developed at Lawrence Berkeley Laboratory confines the plasma created by an antenna driven by 35 kW (peak) of pulsed rf power at 1.8 MHz. A three electrode system is used to extract and accelerate the H - beam, which is then focused into the RFQ by an einzel lens. Permanent magnets in the extraction region sweep electrons onto the second electrode at energies up to half of the full acceleration voltage. A fast pulsed valve allows the hydrogen gas supply to be pulsed, thus minimizing the average gas flow rate into the system. The design features and performance data from the prototype are discussed

  19. Pyroelectricity of Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} films grown by sol–gel process on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Moalla, R. [Institut des Nanotechnologies de Lyon, INL-CNRS UMR 5270, Ecole Centrale de Lyon, Bâtiment F7, 36 av. Guy de Collongue, 69134 Ecully Cedex (France); Le Rhun, G. [CEA, LETI, MINATEC Campus, 17 Rue des Martyrs, 38054 Grenoble (France); Defay, E. [CEA, LETI, MINATEC Campus, 17 Rue des Martyrs, 38054 Grenoble (France); Luxembourg Institute of Science and Technology (LIST), Materials Research & Technology Department (MRT), 41 Rue du Brill, L-4422 Belvaux (Luxembourg); Baboux, N. [Institut des Nanotechnologies de Lyon, INL-CNRS UMR 5270, INSA de Lyon, Bâtiment Blaise Pascal, 7 avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Sebald, G. [Laboratoire de Génie Electrique et Ferroélectricité, LGEF EA 682, INSA de Lyon, Bâtiment Gustave Ferrié, 8 rue de la Physique, 69621 Villeurbanne Cedex (France); Bachelet, R., E-mail: romain.bachelet@ec-lyon.fr [Institut des Nanotechnologies de Lyon, INL-CNRS UMR 5270, Ecole Centrale de Lyon, Bâtiment F7, 36 av. Guy de Collongue, 69134 Ecully Cedex (France)

    2016-02-29

    Pyroelectric Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} films have been grown by sol–gel process on Si(001). Intrinsic pyroelectric coefficient has been measured through ferroelectric loops recorded at different temperatures and is about − 300 μC/m{sup 2}K. Corresponding converted pyroelectric power density is estimated to be ~ 1 mW/cm{sup 3} for a temperature variation of 10 °C every 6 s. Pyroelectric response of these films has been confirmed by direct measurements of the pyroelectric current with temperature variations at zero electric field. These results are of high interest for integrated thermally-sensitive devices. - Highlights: • Functional oxide films are grown by low-cost sol–gel process and spin-coating. • Pyroelectric Pb(Zr,Ti)O{sub 3} films are integrated in planar capacitor structure on Si. • Bulk intrinsic pyroelectric coefficient is measured: ‐ 300 μC/m{sup 2}K. • Converted pyroelectric energy is estimated: 6 mJ/cm{sup 3} per 10 °C thermal cycle. • Direct measurements of pyroelectricity are done on integrated oxide thin films.

  20. Thermoelectric-pyroelectric hybrid energy generation from thermopower waves in core-shell structured carbon nanotube-PZT nanocomposites.

    Science.gov (United States)

    Yeo, Taehan; Hwang, Hayoung; Shin, Dongjoon; Seo, Byungseok; Choi, Wonjoon

    2017-02-10

    There is an urgent need to develop a suitable energy source owing to the rapid development of various innovative devices using micro-nanotechnology. The thermopower wave (TW), which produces a high specific power during the combustion of solid fuel inside micro-nanostructure materials, is a unique energy source for unusual platforms that cannot use conventional energy sources. Here, we report on the significant enhancement of hybrid energy generation of pyroelectrics and thermoelectrics from TWs in carbon nanotube (CNT)-PZT (lead zirconate titanate, P(Z 0.5 -T 0.5 )) composites for the first time. Conventional TWs use only charge carrier transport driven by the temperature gradient along the core materials to produce voltage. In this study, a core-shell structure of CNTs-PZTs was prepared to utilize both the temperature gradient along the core material (thermoelectrics) and the dynamic change in the temperature of the shell structure (pyroelectrics) induced by TWs. The dual mechanism of energy generation in CNT-PZT composites amplified the average peak and duration of the voltage up to 403 mV and 612 ms, respectively, by a factor of 2 and 60 times those for the composites without a PZT layer. Furthermore, dynamic voltage measurements and structural analysis in repetitive TWs confirmed that CNT-PZT composites maintain the original performance in multiple TWs, which improves the reusability of materials. The advanced TWs obtained by the application of a PZT layer as a pyroelectric material contributes to the extension of the usable energy portion as well as the development of TW-based operating devices.

  1. Net Shape Manufacturing of Accelerator Components by High Pressure Combustion Driven Powder Compaction

    CERN Document Server

    Nagarathnam, Karthik

    2005-01-01

    We present an overview of the net shape and cost-effective manufacturing aspects of high density accelerator (normal and superconducting) components (e.g., NLC Copper disks) and materials behavior of copper, stainless steel, refractory materials (W, Mo and TZM), niobium and SiC by innovative high pressure Combustion Driven Compaction (CDC) technology. Some of the unique process advantages include high densities, net-shaping, improved surface finish/quality, suitability for simple/complex geometries, synthesis of single as well as multilayered materials, milliseconds of compaction process time, little or no post-machining, and process flexibility. Some of the key results of CDC fabricated sample geometries, process optimization, sintering responses and structure/property characteristics such as physical properties, surface roughness/quality, electrical conductivity, select microstructures and mechanical properties will be presented. Anticipated applications of CDC compaction include advanced x-ray targets, vac...

  2. Timing A Pulsed Thin Film Pyroelectric Generator For Maximum Power Density

    International Nuclear Information System (INIS)

    Smith, A.N.; Hanrahan, B.M.; Neville, C.J.; Jankowski, N.R

    2016-01-01

    Pyroelectric thermal-to-electric energy conversion is accomplished by a cyclic process of thermally-inducing polarization changes in the material under an applied electric field. The pyroelectric MEMS device investigated consisted of a thin film PZT capacitor with platinum bottom and iridium oxide top electrodes. Electric fields between 1-20 kV/cm with a 30% duty cycle and frequencies from 0.1 - 100 Hz were tested with a modulated continuous wave IR laser with a duty cycle of 20% creating temperature swings from 0.15 - 26 °C on the pyroelectric receiver. The net output power of the device was highly sensitive to the phase delay between the laser power and the applied electric field. A thermal model was developed to predict and explain the power loss associated with finite charge and discharge times. Excellent agreement was achieved between the theoretical model and the experiment results for the measured power density versus phase delay. Limitations on the charging and discharging rates result in reduced power and lower efficiency due to a reduced net work per cycle. (paper)

  3. Bullet Design and Fabrication of Dual Mode Pyroelectric Sensor: High Sensitive Energymeter for Nd: YAG Laser and Detector for Chopped He-Ne Laser

    Directory of Open Access Journals (Sweden)

    S. SATAPATHY

    2008-05-01

    Full Text Available Pyroelectric sensor using TGS has been designed and fabricated which can be operated in laser energy meter mode as well as pyroelectric detector mode. The amplifying circuit configuration has very good signal to noise ratio, very high input impedance and low drift. The pyroelectric sensor has been tested using Q-switched Nd: YAG laser and chopped He-Ne laser. The sensitivity of pyroelectric sensor in energymeter mode is 421.7V/J and the voltage responsivity of the pyroelectric sensor is 3.27 V/W in detector mode.

  4. Comparative Performance of PLZT and PVDF Pyroelectric Sensors Used to the Thermal Characterization of Liquid Samples

    Directory of Open Access Journals (Sweden)

    Gemima Lara Hernandez

    2013-01-01

    Full Text Available Among the photothermal methods, the photopyroelectric (PPE technique is a suitable method to determine thermal properties of different kinds of samples ranging from solids to liquids and gases. Polyvinylidene difluoride (PVDF is one of the most frequently used pyroelectric sensors in PPE technique but has the disadvantage that it can be easily deformed by the sample weight. This deformation could add a piezoelectric effect to the thermal parameters assessment; also PVDF has a narrow temperature operation range when compared with ceramic pyroelectric sensors. In order to minimize possible piezoelectric effects due to sensor deformation, a ceramic of lanthanum modified lead zirconate (PLZT was used as pyroelectric sensor in the PPE technique. Then, thermal diffusivity of some liquid samples was measured, by using the PPE configuration that denominated the thermal wave resonator cavity (TWRC, with a PLZT ceramic as pyroelectric detector. The performance obtained with the proposed ceramic in the TWRC configuration was compared with that obtained with PVDF by using the same configuration.

  5. Pyroelectric effect and lattice thermal conductivity of InN/GaN heterostructures

    Science.gov (United States)

    Hansdah, Gopal; Sahoo, Bijay Kumar

    2018-06-01

    The built-in-polarization (BIP) of InN/GaN heterostructures enhances Debye temperature, phonon mean free path and thermal conductivity of the heterostructure at room temperature. The variation of thermal conductivities (kp: including polarization mechanism and k: without polarization mechanism) with temperature predicts the existence of a transition temperature (Tp) between primary and secondary pyroelectric effect. Below Tp, kp is lower than k; while above Tp, kp is significantly contributed from BIP mechanism due to thermal expansion. A thermodynamic theory has been proposed to explain the result. The room temperature thermal conductivity of InN/GaN heterostructure with and without polarization is respectively 32 and 48 W m-1 K-1. The temperature Tp and room temperature pyroelectric coefficient of InN has been predicted as 120 K and -8.425 μC m-2 K-1, respectively which are in line with prior literature studies. This study suggests that thermal conductivity measurement in InN/GaN heterostructures can help to understand the role of phonons in pyroelectricity.

  6. Enhanced pyroelectric and piezoelectric properties of PZT with aligned porosity for energy harvesting applications.

    Science.gov (United States)

    Zhang, Yan; Xie, Mengying; Roscow, James; Bao, Yinxiang; Zhou, Kechao; Zhang, Dou; Bowen, Chris R

    2017-04-14

    This paper demonstrates the significant benefits of exploiting highly aligned porosity in piezoelectric and pyroelectric materials for improved energy harvesting performance. Porous lead zirconate (PZT) ceramics with aligned pore channels and varying fractions of porosity were manufactured in a water-based suspension using freeze-casting. The aligned porous PZT ceramics were characterized in detail for both piezoelectric and pyroelectric properties and their energy harvesting performance figures of merit were assessed parallel and perpendicular to the freezing direction. As a result of the introduction of porosity into the ceramic microstructure, high piezoelectric and pyroelectric harvesting figures of merits were achieved for porous freeze-cast PZT compared to dense PZT due to the reduced permittivity and volume specific heat capacity. Experimental results were compared to parallel and series analytical models with good agreement and the PZT with porosity aligned parallel to the freezing direction exhibited the highest piezoelectric and pyroelectric harvesting response; this was a result of the enhanced interconnectivity of the ferroelectric material along the poling direction and reduced fraction of unpoled material that leads to a higher polarization. A complete thermal energy harvesting system, composed of a parallel-aligned PZT harvester element and an AC/DC converter, was successfully demonstrated by charging a storage capacitor. The maximum energy density generated by the 60 vol% porous parallel-connected PZT when subjected to thermal oscillations was 1653 μJ cm -3 , which was 374% higher than that of the dense PZT with an energy density of 446 μJ cm -3 . The results are beneficial for the design and manufacture of high performance porous pyroelectric and piezoelectric materials in devices for energy harvesting and sensor applications.

  7. Improved Ambient Pressure Pyroelectric Ion Source

    Science.gov (United States)

    Beegle, Luther W.; Kim, Hugh I.; Kanik, Isik; Ryu, Ernest K.; Beckett, Brett

    2011-01-01

    The detection of volatile vapors of unknown species in a complex field environment is required in many different applications. Mass spectroscopic techniques require subsystems including an ionization unit and sample transport mechanism. All of these subsystems must have low mass, small volume, low power, and be rugged. A volatile molecular detector, an ambient pressure pyroelectric ion source (APPIS) that met these requirements, was recently reported by Caltech researchers to be used in in situ environments.

  8. Theory of piezoelectricity, electrostriction, and pyroelectricity in molecular crystals.

    Science.gov (United States)

    Munn, R W

    2010-03-14

    A microscopic theory is presented for piezoelectricity, electrostriction, and pyroelectricity in molecular crystals. The required coefficients are derived by combining a theoretical treatment of the dependence of molecular dipole moments on molecular displacement and a generalized elastic theory for internal strain.

  9. Assembly and evaluation of a pyroelectric detector bonded to vertically aligned multiwalled carbon nanotubes over thin silicon.

    Science.gov (United States)

    Theocharous, E; Theocharous, S P; Lehman, J H

    2013-11-20

    A novel pyroelectric detector consisting of a vertically aligned nanotube array on thin silicon (VANTA/Si) bonded to a 60 μm thick crystal of LiTaO₃ has been fabricated. The performance of the VANTA/Si-coated pyroelectric detector was evaluated using National Physical Laboratory's (NPL's) detector-characterization facilities. The relative spectral responsivity of the detector was found to be spectrally flat in the 0.8-24 μm wavelength range, in agreement with directional-hemispherical reflectance measurements of witness samples of the VANTA. The spatial uniformity of response of the test detector exhibited good uniformity, although the nonuniformity increased with increasing modulation frequency. The nonuniformity may be assigned either to the dimensions of the VANTA or the continuity of the bond between the VANTA/Si coating and the pyroelectric crystal substrate. The test detector exhibited a small superlinear response, which is similar to that of pyroelectric detectors coated with good quality gold-black coatings.

  10. Pyroelectric response mechanism of barium strontium titanate ceramics in dielectric bolometer mode: The underlying essence of the enhancing effect of direct current bias field

    International Nuclear Information System (INIS)

    Mao, Chaoliang; Cao, Sheng; Yan, Shiguang; Yao, Chunhua; Cao, Fei; Wang, Genshui; Dong, Xianlin; Hu, Xu; Yang, Chunli

    2013-01-01

    Pyroelectric response mechanism of Ba 0.70 Sr 0.30 TiO 3 ceramics under dielectric bolometer (DB) mode was investigated by dielectric and pyroelectric properties measurement. The variations of total, intrinsic, and induced pyroelectric coefficients (p tot , p int , p ind ) with temperatures and bias fields were analyzed. p int plays the dominant role to p tot through most of the temperature range and p ind will be slightly higher than p int above T 0 . The essence of the enhancing effect of DC bias field on pyroelectric coefficient can be attributed to the high value of p int . This mechanism is useful for the pyroelectric materials (DB mode) applications.

  11. Research opportunities with compact accelerator-driven neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, I.S. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Andreani, C., E-mail: carla.andreani@uniroma2.it [Università degli Studi di Roma “Tor Vergata”, Physics Department and NAST Centre, Via della Ricerca Scientifica 1, 00133 Roma (Italy); CNR-IPCF Sezione di Messina, Messina (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma (Italy); Carpenter, J.M. [Argonne National Laboratory, Argonne, IL (United States); Festa, G., E-mail: giulia.festa@uniroma2.it [Università degli Studi di Roma “Tor Vergata”, Physics Department and NAST Centre, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma (Italy); Gorini, G. [Università degli Studi di Milano—Bicocca, Milano (Italy); Loong, C.-K. [Università degli Studi di Roma “Tor Vergata”, Centro NAST, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Senesi, R. [Università degli Studi di Roma “Tor Vergata”, Physics Department and NAST Centre, Via della Ricerca Scientifica 1, 00133 Roma (Italy); CNR-IPCF Sezione di Messina, Messina (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma (Italy)

    2016-10-13

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target–moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  12. Research opportunities with compact accelerator-driven neutron sources

    International Nuclear Information System (INIS)

    Anderson, I.S.; Andreani, C.; Carpenter, J.M.; Festa, G.; Gorini, G.; Loong, C.-K.; Senesi, R.

    2016-01-01

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target–moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  13. Research opportunities with compact accelerator-driven neutron sources

    Science.gov (United States)

    Anderson, I. S.; Andreani, C.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C.-K.; Senesi, R.

    2016-10-01

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target-moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  14. Study of the growth and pyroelectric properties of TGS crystals doped with aniline-family dipolar molecules

    Science.gov (United States)

    Zhang, Kecong; Song, Jiancheng; Wang, Min; Fang, Changshui; Lu, Mengkai

    1987-04-01

    TGS crystals doped with aniline-family dipolar molecules (aniline, 2-aminobenzoic acid, 3-aminobenzoic acid, 3-aminobenzene-sulphonic acid, 4-aminobenzenesulphonic acid and 4-nitroraniline) have been grown by the slow-cooling solution method. The influence of these dopants on the growth habits, crystal morphology pyroelectric properties, and structure parameters of TGS crystals has been systematically investigated. The effects of the domain structure of the seed crystal on the pyroelectric properties of the doped crystals have been studied. It is found that the spontaneous polarization (P), pyroelectric coefficient (lambda), and internal bias field of the doped crystals are slightly higher than those of the pure TGS, and the larger the dipole moment of the dopant molecule, the higher the P and lambda of the doped TGS crystal.

  15. Electrostatic force microscopy as a broadly applicable method for characterizing pyroelectric materials

    International Nuclear Information System (INIS)

    Martin-Olmos, Cristina; Gimzewski, James K; Stieg, Adam Z

    2012-01-01

    A general method based on the combination of electrostatic force microscopy with thermal cycling of the substrate holder is presented for direct, nanoscale characterization of the pyroelectric effect in a range of materials and sample configurations using commercial atomic force microscope systems. To provide an example of its broad applicability, the technique was applied to the examination of natural tourmaline gemstones. The method was validated using thermal cycles similar to those experienced in ambient conditions, where the induced pyroelectric response produced localized electrostatic surface charges whose magnitude demonstrated a correlation with the iron content and heat dissipation of each gemstone variety. In addition, the surface charge was shown to persist even at thermal equilibrium. This behavior is attributed to constant, stochastic cooling of the gemstone surface through turbulent contact with the surrounding air and indicates a potential utility for energy harvesting in applications including environmental sensors and personal electronics. In contrast to previously reported methods, ours has a capacity to carry out such precise nanoscale measurements with little or no restriction on the sample of interest, and represents a powerful new tool for the characterization of pyroelectric materials and devices. (paper)

  16. Piezoelectric and pyroelectric properties of DL-alanine and L-lysine amino-acid polymer nanofibres

    Science.gov (United States)

    de Matos Gomes, Etelvina; Viseu, Teresa; Belsley, Michael; Almeida, Bernardo; Costa, Maria Margarida R.; Rodrigues, Vitor H.; Isakov, Dmitry

    2018-04-01

    The piezoelectric and pyroelectric properties of electrospun polyethylene oxide nanofibres embedded with polar amino acids DL-alanine and L-lysine hemihydrate are reported. A high pyroelectric coefficient of 150 μC m‑2 K‑1 was measured for L-lysine hemihydrate and piezoelectric current densities up to 7 μA m‑2 were obtained for the nanofibres. The study reveals a potential for polymer amino-acid nanofibres to be used as biocompatible energy harvesters for autonomous circuit applications like in implantable electronics.

  17. Pyroelectric properties and electrical conductivity in samarium doped BiFeO 3 ceramics

    KAUST Repository

    Yao, Yingbang

    2012-06-01

    Samarium (Sm 3+) doped BiFeO 3 (BFO) ceramics were prepared by a modified solid-state-reaction method which adopted a rapid heating as well as cooling during the sintering process. The pyroelectric coefficient increased from 93 to 137 μC/m 2 K as the Sm 3+ doping level increased from 1 mol% to 8 mol%. Temperature dependence of the pyroelectric coefficient showed an abrupt decrease above 80 °C in all samples, which was associated with the increase of electrical conductivity with temperature. This electrical conduction was attributed to oxygen vacancy existing in the samples. An activation energy of ∼0.7 eV for the conduction process was found to be irrespective of the Sm 3+ doping level. On the other hand, the magnetic Néel temperature (T N) decreased with increasing Sm 3+ doping level. On the basis of our results, the effects of Sm doping level on the pyroelectric and electrical properties of the BFO were revealed. © 2011 Elsevier Ltd. All rights reserved.

  18. Compact disposal of high-energy electron beams using passive or laser-driven plasma decelerating stage

    Energy Technology Data Exchange (ETDEWEB)

    Bonatto, A.; Schroeder, C. B.; Vay, J. -L.; Geddes, C. R.; Benedetti, C.; Esarey and, E.; Leemans, W. P.

    2014-07-13

    A plasma decelerating stage is investigated as a compact alternative for the disposal of high-energy beams (beam dumps). This could benefit the design of laser-driven plasma accelerator (LPA) applications that require transportability and or high-repetition-rate operation regimes. Passive and laser-driven (active) plasma-based beam dumps are studied analytically and with particle-in-cell (PIC) simulations in a 1D geometry. Analytical estimates for the beam energy loss are compared to and extended by the PIC simulations, showing that with the proposed schemes a beam can be efficiently decelerated in a centimeter-scale distance.

  19. A COMPACT GROUP OF GALAXIES AT Z = 2.48 HOSTING AN AGN-DRIVEN OUTFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Hsin-Yi [Gemini Observatory, 670 N Aohoku Place, Hilo, HI 96720 (United States); Stockton, Alan, E-mail: jshih@gemini.edu, E-mail: stockton@ifa.hawaii.edu [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2015-12-10

    We present observations of a remarkable compact group of galaxies at z = 2.48. Four galaxies, all within 40 kpc of each other, surround a powerful high-redshift radio source. This group comprises two compact red passive galaxies and a pair of merging galaxies. One of the red galaxies, with an apparent stellar mass of 3.6 × 10{sup 11}M{sub ⊙} and an effective radius of 470 pc, is one of the most extreme examples of a massive quiescent compact galaxy found so far. One of the pair of merging galaxies hosts the active galactic nucleus (AGN) producing the large powerful radio structure. The merger is massive and enriched, consistent with the mass–metallicity relation expected at this redshift. Close to the merging nuclei, the emission lines exhibit broad and asymmetric profiles that suggest outflows powered either by a very young expanding radio jet or by AGN radiation. At ≳50 kpc from the system, we found a fainter extended-emission region that may be a part of a radio-jet-driven outflow.

  20. DIELECTRIC AND PYROELECTRIC PROPERTIES OF THE COMPOSITES OF FERROELECTRIC CERAMIC AND POLY(VINYL CHLORIDE

    Directory of Open Access Journals (Sweden)

    M.Olszowy

    2003-01-01

    Full Text Available The dielectric and pyroelectric properties of lead zirconate titanate/poly(vinyl chloride [PZT/PVC] and barium titanate/poly(vinyl chloride [BaTiO3/ PVC] composites were studied. Flexible composites were fabricated in the thin films form (200-400 μm by hot-pressed method. Powders of PZT or BaTiO3 in the shape of ≤ 75 μm ceramics particles were dispersed in a PVC matrix, providing composites with 0-3} connectivity. Distribution of the ceramic particles in the polymer phase was examined by scanning electron microscopy. The analysis of the thermally stimulated currents (TSC have also been done. The changes of dielectric and pyroelectric data on composites with different contents of ceramics up to 40% volume were investigated. The dielectric constants were measured in the frequency range from 600 Hz to 6 MHz at room temperature. The pyroelectric coefficient for BaTiO3/PVC composite at 343 K is about 35 μC/m2K which is higher than that of β-PVDF (10 μC/m2 K.

  1. Graphene Ink Laminate Structures on Poly(vinylidene difluoride) (PVDF) for Pyroelectric Thermal Energy Harvesting and Waste Heat Recovery.

    Science.gov (United States)

    Zabek, Daniel; Seunarine, Kris; Spacie, Chris; Bowen, Chris

    2017-03-15

    Thermal energy can be effectively converted into electricity using pyroelectrics, which act as small scale power generator and energy harvesters providing nanowatts to milliwatts of electrical power. In this paper, a novel pyroelectric harvester based on free-standing poly(vinylidene difluoride) (PVDF) was manufactured that exploits the high thermal radiation absorbance of a screen printed graphene ink electrode structure to facilitate the conversion of the available thermal radiation energy into electrical energy. The use of interconnected graphene nanoplatelets (GNPs) as an electrode enable high thermal radiation absorbance and high electrical conductivity along with the ease of deposition using a screen print technique. For the asymmetric structure, the pyroelectric open-circuit voltage and closed-circuit current were measured, and the harvested electrical energy was stored in an external capacitor. For the graphene ink/PVDF/aluminum system the closed circuit pyroelectric current improves by 7.5 times, the open circuit voltage by 3.4 times, and the harvested energy by 25 times compared to a standard aluminum/PVDF/aluminum system electrode design, with a peak energy density of 1.13 μJ/cm 3 . For the pyroelectric device employed in this work, a complete manufacturing process and device characterization of these structures are reported along with the thermal conductivity of the graphene ink. The material combination presented here provides a new approach for delivering smart materials and structures, wireless technologies, and Internet of Things (IoT) devices.

  2. Thermally Stable, Piezoelectric and Pyroelectric Polymeric Substrates and Method Relating Thereto

    Science.gov (United States)

    Simpson, Joycelyn O. (Inventor); St.Clair, Terry L. (Inventor)

    1995-01-01

    Production of an electric voltage in response to mechanical excitation (piezoelectricity) or thermal excitation (pyroelectricity) requires a material to have a preferred dipole orientation in its structure. This preferred orientation or polarization occurs naturally in some crystals such as quartz and can be induced into some ceramic and polymeric materials by application of strong electric or mechanical fields. For some materials, a combination of mechanical and electrical orientation is necessary to completely polarize the material. The only commercially available piezoelectric polymer is poly(vinylidene fluoride) (PVF2). However, this polymer has material and process limitations which prohibit its use in numerous device applications where thermal stability is a requirement. By the present invention, thermally stable, piezoelectric and pyroelectric polymeric substrates were prepared from polymers having a softening temperature greater than 1000C. A metal electrode material is deposited onto the polymer substrate and several electrical leads are attached to it. The polymer substrate is heated in a low dielectric medium to enhance molecular mobility of the polymer chains. A voltage is then applied to the polymer substrate inducing polarization. The voltage is then maintained while the polymer substrate is cooled 'freezing in' the molecular orientation. The novelty of the invention resides in the process of preparing the piezoelectric and pyroelectric polymeric substrate. The nonobviousness of the invention is found in heating the polymeric substrate in a low dielectric medium while applying a voltage.

  3. A compact and continuously driven supersonic plasma and neutral source

    Energy Technology Data Exchange (ETDEWEB)

    Asai, T.; Itagaki, H.; Numasawa, H.; Terashima, Y.; Hirano, Y. [Department of Physics, College of Science and Technology, Nihon University, Tokyo 101-8308 (Japan); Hirose, A. [Plasma Physics Laboratory, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2 (Canada)

    2010-10-15

    A compact and repetitively driven plasma source has been developed by utilizing a magnetized coaxial plasma gun (MCPG) for diagnostics requiring deep penetration of a large amount of neutral flux. The system consists of a MCPG 95mm in length with a DN16 ConFlat connection port and an insulated gate bipolar transistor (IGBT) inverter power unit. The power supply consists of an array of eight IGBT units and is able to switch the discharge on and off at up to 10 kV and 600 A with a maximum repetitive frequency of 10 kHz. Multiple short duration discharge pulses maximize acceleration efficiency of the plasmoid. In the case of a 10 kHz operating frequency, helium-plasmoids in the velocity range of 20 km/s can be achieved.

  4. A compact and continuously driven supersonic plasma and neutral source.

    Science.gov (United States)

    Asai, T; Itagaki, H; Numasawa, H; Terashima, Y; Hirano, Y; Hirose, A

    2010-10-01

    A compact and repetitively driven plasma source has been developed by utilizing a magnetized coaxial plasma gun (MCPG) for diagnostics requiring deep penetration of a large amount of neutral flux. The system consists of a MCPG 95mm in length with a DN16 ConFlat connection port and an insulated gate bipolar transistor (IGBT) inverter power unit. The power supply consists of an array of eight IGBT units and is able to switch the discharge on and off at up to 10 kV and 600 A with a maximum repetitive frequency of 10 kHz. Multiple short duration discharge pulses maximize acceleration efficiency of the plasmoid. In the case of a 10 kHz operating frequency, helium-plasmoids in the velocity range of 20 km/s can be achieved.

  5. A compact broadband ion beam focusing device based on laser-driven megagauss thermoelectric magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Albertazzi, B., E-mail: bruno.albertazzi@polytechnique.edu [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); INRS-EMT, Varennes, Québec J3X 1S2 (Canada); Graduate School of Engineering, Osaka University, Suita, Osaka 565-087 (Japan); D' Humières, E. [CELIA, Universite de Bordeaux, Talence 33405 (France); Department of Physics, University of Nevada, Reno, Nevada 89557 (United States); Lancia, L.; Antici, P. [Dipartimento SBAI, Universita di Roma “La Sapienza,” Via A. Scarpa 16, 00161 Roma (Italy); Dervieux, V.; Nakatsutsumi, M.; Romagnani, L.; Fuchs, J., E-mail: Julien.fuchs@polytechnique.fr [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Böcker, J.; Swantusch, M.; Willi, O. [Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität, Düsseldorf D-40225 (Germany); Bonlie, J.; Cauble, B.; Shepherd, R. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Breil, J.; Feugeas, J. L.; Nicolaï, P.; Tikhonchuk, V. T. [CELIA, Universite de Bordeaux, Talence 33405 (France); Chen, S. N. [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Sentoku, Y. [Department of Physics, University of Nevada, Reno, Nevada 89557 (United States); and others

    2015-04-15

    Ultra-intense lasers can nowadays routinely accelerate kiloampere ion beams. These unique sources of particle beams could impact many societal (e.g., proton-therapy or fuel recycling) and fundamental (e.g., neutron probing) domains. However, this requires overcoming the beam angular divergence at the source. This has been attempted, either with large-scale conventional setups or with compact plasma techniques that however have the restriction of short (<1 mm) focusing distances or a chromatic behavior. Here, we show that exploiting laser-triggered, long-lasting (>50 ps), thermoelectric multi-megagauss surface magnetic (B)-fields, compact capturing, and focusing of a diverging laser-driven multi-MeV ion beam can be achieved over a wide range of ion energies in the limit of a 5° acceptance angle.

  6. Pyroelectric and dielectric energy conversion – A new view of the old problem

    International Nuclear Information System (INIS)

    Poprawski, W.; Gnutek, Z.; Radojewski, J.; Poprawski, R.

    2015-01-01

    The pyroelectric effect is commonly used to construct infrared radiation detectors. In this article we intend to pay attention to a possibility of the pyroelectric effect employment along with the temperature dependence of the dielectric permittivity into a direct conversion of the time-alternating heat flux and the electromagnetic radiation to the electric energy. Converters making use of the mentioned phenomena can be applied in the low-power electric energy generators mounted in autonomous electronic devices. Operation principles for pyroelectric and dielectric generators (PEG and DEG) of the electric energy are presented in this work together with a brief review on ferro- and antiferroelectric materials suitable for the generators. It was shown that for the ferroelectrics with the second-order phase transition the conversion efficiency of PEGs did not depend on temperature in a wide temperature range, and ferroelectrics showing an order–disorder phase transition together with composites and heterostructures based on these ferroelectrics had high conversion efficiency. For the first time ferro- and antiferroelectric materials were extensively reviewed with regard to their applicability in PEGs. It was also shown that ferro- and antiferroelectrics with translation-type phase transition, quantum ferroelectrics, ferro- and antiferroelectric relaxors were good materials for DEGs. Considering literature data the efficiency for the thermal-to-electrical energy conversion was estimated for a few typical material groups. Advantages and disadvantages of the individual groups were presented along with their possible limitations for PEG and DEG usage. - Highlights: • A direct conversion of the alternating heat flux to the electric energy is described. • Order–disorder-type ferroelectrics were found to be suitable for pyroelectric energy generators. • Certain ferro- and antiferroelectrics, quantum ones and relaxors were good for dielectric converters. • The

  7. Construction of a radiometer for pyroelectric detector and presentation of a model for detector design

    International Nuclear Information System (INIS)

    Siqueira, C.A. de.

    1987-01-01

    An expression has been developed for the pyroelectric voltage as a function of electric and thermal parameters of the detector. It has also been developed expressions for determination of unknown parameters from the experimentally obtained pyroelectric voltage curve as function of time and some other known information. It has also been shown figures of merit for characterization of the detectors, a study showing the detector performance dependence on each electric and thermal parameter and some illustrative experimental results. The radiometer designed and built for this work, is described. (author) [pt

  8. Materials preparation and fabrication of pyroelectric polymer/silicon MOSFET detector arrays. Final report

    International Nuclear Information System (INIS)

    Bloomfield, P.

    1992-01-01

    The authors have delivered several 64-element linear arrays of pyroelectric elements fully integrated on silicon wafers with MOS readout devices. They have delivered detailed drawings of the linear arrays to LANL. They have processed a series of two inch wafers per submitted design. Each two inch wafer contains two 64 element arrays. After spin-coating copolymer onto the arrays, vacuum depositing the top electrodes, and polarizing the copolymer films so as to make them pyroelectrically active, each wafer was split in half. The authors developed a thicker oxide coating separating the extended gate electrode (beneath the polymer detector) from the silicon. This should reduce its parasitic capacitance and hence improve the S/N. They provided LANL three processed 64 element sensor arrays. Each array was affixed to a connector panel and selected solder pads of the common ground, the common source voltage supply connections, the 64 individual drain connections, and the 64 drain connections (for direct pyroelectric sensing response rather than the MOSFET action) were wire bonded to the connector panel solder pads. This entails (64 + 64 + 1 + 1) = 130 possible bond connections per 64 element array. This report now details the processing steps and the progress of the individual wafers as they were carried through from beginning to end

  9. Pyroelectric and dielectric properties of lead-free ferroelectric Ba3Nb2O8 ceramic

    International Nuclear Information System (INIS)

    Pati, Biswajit; Choudhary, R.N.P.; Das, Piyush R.; Parida, B.N.; Padhee, R.

    2014-01-01

    Graphical abstract: - Highlights: • Barium orthoniobate (lead-free perovskite) crystallizes as palmierite with structural stability. • The material exhibits ferroelectric phase transition of diffuse-type suitable for devices. • The low values of ε r and tan δ at high frequencies makes it a potential candidate for microwave applications. • The material has very good pyroelectric properties for detector application. • The material exhibits smaller value of dc activation energy. - Abstract: The present study highlights ferroelectric phase transition, dielectric, pyroelectric properties and conduction mechanism of highly crystallized barium orthoniobate (Ba 3 Nb 2 O 8 ) ceramic, prepared by a solid-state reaction technique. X-ray diffraction studies show the formation of a single-phase compound in hexagonal crystal system. Detailed studies of dielectric parameters (ε r and tan δ) of the compound as a function of temperature and frequency reveal their independence over a wide range of temperature and frequency. An anomaly in ε r suggests the possible existence of a ferroelectric–paraelectric phase transition of diffuse-type in the material. The low dielectric loss and moderate relative permittivity make this material (with certain modification) a potential candidate for microwave applications. Studies of pyroelectric properties reveal that the materials have reasonably high figure of merit useful for fabrication of pyroelectric detectors. The low-leakage current and negative temperature coefficient of resistance (NTCR) behavior of the sample have been verified from J–E plots. The nature of variation of dc conductivity with temperature confirms the Arrhenius and NTCR behavior of the material

  10. Energy supply/demand structure development survey project / comprehensive survey on energy supply/demand development. FY1997 survey on techniques for pyroelectric power generation systems; Energy jukyu kozo kodoka chosa jigyo / energy jukyu kodoka sogo chosa. 1997 nendo shoden hatsuden system no gijutsu chosa seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    Pyroelectric conversion systems were surveyed as the techniques for effective utilization of low-temperature waste heat sources. Described herein are the principle of pyroelectric power generation, including pyroelectric phenomenon, origin of pyroelectricity in polymers, and pyroelectric polymers and copolymers; utilization of the pyroelectric phenomenon, including hysteresis of pyroelectric materials, general pyroelectric conversion principle, pyroelectric conversion cycle, analysis of power output by an Olsen cycle, comparison with a steam engine, and power outputting methods; pyroelectric conversion systems, including heat regeneration method, plate type pyroelectric conversion devices using the heat regeneration method, and voltage controlling methods; and pyroelectric conversion outputting, including calculations of power output and loss, conduction-caused loss, pumping loss, and pyroelectric converter efficiency. Other items described herein include conceptual designs of 1 and 100 kW pyroelectric converters for utilization of waste heat, and current status of pyroelectric converter development at CANMET Energy Technology Center. (NEDO)

  11. Sealed operation of a rf driven ion source for a compact neutron generator to be used for associated particle imaging.

    Science.gov (United States)

    Wu, Y; Hurley, J P; Ji, Q; Kwan, J W; Leung, K N

    2010-02-01

    We present the recent development of a prototype compact neutron generator to be used in conjunction with the method of associated particle imaging for the purpose of active neutron interrogation. In this paper, the performance and device specifications of these compact generators that employ rf driven ion sources will be discussed. Initial measurements of the generator performance include a beam spot size of 1 mm in diameter and a neutron yield of 2x10(5) n/s with air cooling.

  12. New shielding material development for compact accelerator-driven neutron source

    Directory of Open Access Journals (Sweden)

    Guang Hu

    2017-04-01

    Full Text Available The Compact Accelerator-driven Neutron Source (CANS, especially the transportable neutron source is longing for high effectiveness shielding material. For this reason, new shielding material is researched in this investigation. The component of shielding material is designed and many samples are manufactured. Then the attenuation detection experiments were carried out. In the detections, the dead time of the detector appeases when the proton beam is too strong. To grasp the linear range and nonlinear range of the detector, two currents of proton are employed in Pb attenuation detections. The transmission ratio of new shielding material, polyethylene (PE, PE + Pb, BPE + Pb is detected under suitable current of proton. Since the results of experimental neutrons and γ-rays appear as together, the MCNP and PHITS simulations are applied to assisting the analysis. The new shielding material could reduce of the weight and volume compared with BPE + Pb and PE + Pb.

  13. Realization of an integrated VDF/TrFE copolymer-on-silicon pyroelectric sensor

    NARCIS (Netherlands)

    Setiadi, D.; Setiadi, D.; Regtien, Paulus P.L.; Sarro, P.M.

    1995-01-01

    An integrated pyroelectric sensor based on a vinylidene fluoride trifluoroethylene (VDF/TrFE) copolymer is presented. A silicon substrate that contains FET readout electronics is coated with the VDF/TrFE copolymer film using a spin-coating technique. On-chip poling of the copolymer has been applied

  14. 3D-Printing of inverted pyramid suspending architecture for pyroelectric infrared detectors with inhibited microphonic effect

    Science.gov (United States)

    Xu, Qing; Zhao, Xiangyong; Li, Xiaobing; Deng, Hao; Yan, Hong; Yang, Linrong; Di, Wenning; Luo, Haosu; Neumann, Norbert

    2016-05-01

    A sensitive chip with ultralow dielectric loss based on Mn doped PMNT (71/29) has been proposed for high-end pyroelectric devices. The dielectric loss at 1 kHz is 0.005%, one order lower than the minimum value reported so far. The detective figure of merit (Fd) is up to 92.6 × 10-5 Pa-1/2 at 1 kHz and 53.5 × 10-5 Pa-1/2 at 10 Hz, respectively. In addition, an inverted pyramid suspending architecture for supporting the sensitive chip has been designed and manufactured by 3D printing technology. The combination of this sensitive chip and the proposed suspending architecture largely enhances the performance of the pyroelectric detectors. The responsivity and specific detectivity are 669,811 V/W and 3.32 × 109 cm Hz1/2/W at 10 Hz, respectively, 1.9 times and 1.5 times higher than those of the highest values in literature. Furthermore, the microphonic effect can be largely inhibited according to the theoretical and experimental analysis. This architecture will have promising applications in high-end and stable pyroelectric infrared detectors.

  15. Pyroelectric Properties of Potassium and Rubidium Titanyl-Arsenate Single Crystals in the Temperature Range of 4.2-300 K

    International Nuclear Information System (INIS)

    Shaldin, Yu. V.; Matyjasik, S.; Novikova, N. E.; Tseitlin, M.; Mozhaev, E.; Roth, M.

    2010-01-01

    The temperature dependences of the pyroelectric coefficients of KTiOAsO 4 and RbTiOAsO 4 single crystals grown by flux crystallization have been investigated in the temperature range of 4.2-300 K. With an increase in temperature, superionic conductivity first arises in KTiOAsO4 (at T > 200 K) and then (at T > 270 K) in RbTiOAsO 4 . This conductivity is much higher in the samples polarized at T = 4.2 K. An exponential change in the crystal resistivity along the polar direction is simultaneously observed. The results of measurements in the range of 4.2-200 K indicate larger values of pyroelectric coefficients when compared with potassium and rubidium titanyl-phosphate crystals. A correlation between the pyroelectric coefficients and a change in the lattice constants at isomorphic substitutions of K atoms for Rb and P atoms for As has been revealed within the symmetry approach.

  16. Pyroelectric Properties of Potassium and Rubidium Titanyl-Arsenate Single Crystals in the Temperature Range of 4.2-300 K

    Energy Technology Data Exchange (ETDEWEB)

    Shaldin, Yu. V., E-mail: yuri1999@rambler.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Matyjasik, S. [International Laboratory of Strong Magnetic Fields and Low Temperatures (Poland); Novikova, N. E. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Tseitlin, M.; Mozhaev, E. [Ariel University Center of Samaria (Israel); Roth, M. [Hebrew University, School of Applied Sciences (Israel)

    2010-11-15

    The temperature dependences of the pyroelectric coefficients of KTiOAsO{sub 4} and RbTiOAsO{sub 4} single crystals grown by flux crystallization have been investigated in the temperature range of 4.2-300 K. With an increase in temperature, superionic conductivity first arises in KTiOAsO4 (at T > 200 K) and then (at T > 270 K) in RbTiOAsO{sub 4}. This conductivity is much higher in the samples polarized at T = 4.2 K. An exponential change in the crystal resistivity along the polar direction is simultaneously observed. The results of measurements in the range of 4.2-200 K indicate larger values of pyroelectric coefficients when compared with potassium and rubidium titanyl-phosphate crystals. A correlation between the pyroelectric coefficients and a change in the lattice constants at isomorphic substitutions of K atoms for Rb and P atoms for As has been revealed within the symmetry approach.

  17. Performance of a thermal imager employing a hybrid pyroelectric detector array with MOSFET readout

    International Nuclear Information System (INIS)

    Watton, R.; Mansi, M.V.

    1988-01-01

    A thermal imager employing a two-dimensional hybrid array of pyroelectric detectors with MOSFET readout has been built. The design and theoretical performance of the detector are discussed, and the results of performance measurements are presented. 8 references

  18. Effect of dielectrophoretic structuring on piezoelectric and pyroelectric properties of lead titanate-epoxy composites

    NARCIS (Netherlands)

    Khanbareh, H.; Zwaag, S. van der; Groen, W.A.

    2014-01-01

    Functional granular composites of lead titanate particles in an epoxy matrix prepared by dielectrophoresis show enhanced dielectric, piezoelectric and pyroelectric properties compared to 0-3 composites for different ceramic volume content from 10% to 50%. Two structuring parameters, the

  19. A 3x1 integrated pyroelectric sensor based on VDF/TrFE copolymer

    NARCIS (Netherlands)

    Setiadi, D.; Setiadi, D.; Sarro, P.M.; Regtien, Paulus P.L.

    1996-01-01

    This paper presents an integrated pyroelectric sensor based on a vinylidene fluoride¿trifluoroethylene (VDF/TrFE) copolymer. A silicon substrate that contains field-effect transistor (FET) readout electronics is coated with the VDF/TrFE copolymer film using a spin-coating technique. On-chip poling

  20. Investigation of pyroelectric electron emission from monodomain lithium niobate single crystals

    International Nuclear Information System (INIS)

    Bourim, El Mostafa; Moon, Chang-Wook; Lee, Seung-Woon; Kyeong Yoo, In

    2006-01-01

    The behaviors of thermally stimulated electron emission from pyroelectric monodomain lithium niobate single crystal (LiNbO 3 ) were investigated by utilizing a Si p-n junction photodiode as electron detector and a receptive electron beam resist (E-beam resist) as electron collector. In high vacuum (10 -6 Torr), the pyroelectric electron emission (PEE) was found to depend on the exposed emitting polar crystal surface (+Z face or -Z face) and was significantly influenced by the emitter-electron receiver gap distances. Thus, the PEE from +Z face was detected during heating and was activated, in small gaps ( 2 mm) the emission was simply mastered by field emission effect. Whereas, The PEE from -Z face was detected during cooling and was solely due to the field ionization effect. Therewith, for small gaps ( 2 mm) PEE was governed by field ionization generating a soft and continuous plasma ambient atmosphere. Significant decrease of electron emission current was observed from +Z face after successive thermal cycles. A fast and fully emission recovery was established after a brief exposure of crystal to a poor air vacuum of 10 -1 Torr

  1. Ultrahigh pyroelectric figures of merit associated with distinct bistable dielectric phase transition in a new molecular compound: di-n-butylaminium trifluoroacetate.

    Science.gov (United States)

    Sun, Zhihua; Tang, Yuanyuan; Zhang, Shuquan; Ji, Chengmin; Chen, Tianliang; Luo, Junhua

    2015-08-26

    Ultrahigh pyroelectric figures of merit are achieved in a new phase-transition material, di-n-butylaminium trifluoroacetate, of which the peak values are an order of magnitude larger than those of their inorganic counterparts. Such an attractive behavior of pyroelectric detectivity is strongly related to its distinct bistable dielectric behavior, which recalls excellent thermoelectric response in organic molecular phase-transition systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Optical damage in reduced Z-cut LiNbO3 crystals caused by longitudinal photovoltaic and pyroelectric effects

    International Nuclear Information System (INIS)

    Kostritskii, S. M.; Aillerie, M.

    2012-01-01

    The marked optical damage was observed in thin Z-cut plates of the deeply reduced nominally pure LiNbO 3 crystals, when a 514.5-nm-laser beam with ordinary polarization was focused on the ±Z face. The longitudinal photovoltaic and pyroelectric effects are shown to be responsible for most of the important peculiarities of the optical damage dynamics. The anisotropy in the behavior between the +Z and -Z faces has been explained by interference of the different kinds of pyroelectric and photovoltaic effects to the space-charge field with an altering relative sign.

  3. Bulk characterization methods for non-centrosymmetric materials: second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity.

    Science.gov (United States)

    Ok, Kang Min; Chi, Eun Ok; Halasyamani, P Shiv

    2006-08-01

    Characterization methods for bulk non-centrosymmetric compounds are described. These methods include second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity. In this tutorial review with each phenomenon, details are given of the measurement techniques along with a brief history and background. Finally, data interpretation is discussed.

  4. Dynamic pyroelectric response of composite based on ferroelectric copolymer of poly(vinylidene fluoride-trifluoroethylene) and ferroelectric ceramics of barium lead zirconate titanate

    Energy Technology Data Exchange (ETDEWEB)

    Solnyshkin, A.V. [Tver State University, Department of Condensed Matter Physics, Tver (Russian Federation); National Research University ' ' MIET' ' , Department of Intellectual Technical Systems, Zelenograd, Moscow (Russian Federation); Morsakov, I.M.; Bogomolov, A.A. [Tver State University, Department of Condensed Matter Physics, Tver (Russian Federation); Belov, A.N.; Vorobiev, M.I.; Shevyakov, V.I.; Silibin, M.V. [National Research University ' ' MIET' ' , Department of Intellectual Technical Systems, Zelenograd, Moscow (Russian Federation); Shvartsman, V.V. [University of Duisburg-Essen, Institute for Materials Science, Essen (Germany)

    2015-10-15

    In this work, pyroelectric properties of composite films on the basis of poly(vinylidene fluoride-trifluoroethylene) copolymer with a various level of ferroelectric ceramics inclusions of barium lead zirconate titanate solid solution were investigated by the dynamic method. The composite films were prepared by the solvent cast method. The unusual spike-like dynamic response with a quasi-stationary component was observed. It is supposed that composite films may be effectively used for pyroelectric applications. (orig.)

  5. Optical damage in reduced Z-cut LiNbO{sub 3} crystals caused by longitudinal photovoltaic and pyroelectric effects

    Energy Technology Data Exchange (ETDEWEB)

    Kostritskii, S. M. [RPC Optolink, Sosnovaya al., d. 6 A, str.2, NPL-3-1, Zelenograd, Moscow, 124489 (Russian Federation); Aillerie, M. [LMOPS, University Paul Verlaine of Metz and Supelec, 2 rue E. Belin, 57070 Metz (France)

    2012-01-01

    The marked optical damage was observed in thin Z-cut plates of the deeply reduced nominally pure LiNbO{sub 3} crystals, when a 514.5-nm-laser beam with ordinary polarization was focused on the {+-}Z face. The longitudinal photovoltaic and pyroelectric effects are shown to be responsible for most of the important peculiarities of the optical damage dynamics. The anisotropy in the behavior between the +Z and -Z faces has been explained by interference of the different kinds of pyroelectric and photovoltaic effects to the space-charge field with an altering relative sign.

  6. Dielectric response and pyroelectric properties of lead-free ferroelectric Ba3(VO42

    Directory of Open Access Journals (Sweden)

    Biswajit Pati

    2015-03-01

    Full Text Available The current paper presents results of dielectric response, pyroelectric behavior and conductivity study of lead-free ferroelectric barium orthovanadate (Ba3(VO42 or Ba3V2O8 ceramic, for a wide range of temperature and frequency. An X-ray diffraction study suggests the formation of a single-phase compound in trigonal crystal system. The SEM micrograph of gold-coated pellet sample shows well-defined and homogeneous morphology. Detailed studies of dielectric parameters (εr and tan δ of the compound as a function of temperature and frequency reveal their independence over a wide range of temperature and frequency. The nature of Polarization versus electric field (P–E hysteresis loop of Ba3V2O8 at room temperature suggests its ferroelectric nature. The temperature dependence of pyroelectric coefficient and figure of merits of the sample support its dielectric response. The nature of variation of dc conductivity with temperature confirms the Arrhenius and negative temperature coefficient of resistance (NTCR behavior of the material.

  7. Piezoelectricity and pyroelectricity in polyvinylidene fluoride - Influence of the lattice structure

    Science.gov (United States)

    Purvis, C. K.; Taylor, P. L.

    1983-01-01

    Piezoelectric and pyroelectric responses of beta-phase (Phase I) polyvinylidene fluoride are predicted for a model system of polarizable point dipoles. The model incorporates the influence of the orthorhombic crystal structure by including the dependence of the internal electric field on the lattice parameters. Strong anisotropy in the piezoelectric response under uniaxial stress is predicted as a consequence of the orthorhombic lattice structure. Predictions are found to be in reasonable agreement with room-temperature experimental data.

  8. Photothermal Infrared Radiometry in Experimental Studies of the Pyroelectric Properties of Bulk Materials

    Science.gov (United States)

    Aleksandrov, S. E.; Gavrilov, G. A.; Kapralov, A. A.; Muratikov, K. L.; Sotnikova, G. Yu.

    2017-12-01

    A simple and efficient method for determining the pyrolelectric coefficients of ferroelectric and pyroelectric bulk materials by taking into account the heat exchange of a sample with the environment is proposed on the basis of the radiometric registration of the variation dynamics of the temperature of the surface when it is exposed to laser radiation in the form of a temporal step.

  9. Linear pinch driven by a moving compact torus

    International Nuclear Information System (INIS)

    Hartman, C.W.; Hammer, J.H.; Eddleman, J.L.

    1984-01-01

    In principle, a Z-pinch of sufficiently large aspect ratio can provide arbitrarily high magnetic field intensity for the confinement of plasma. In practice, however, achievable field intensities and timescales are limited by parasitic inductances, pulse driver power, current, voltage, and voltage standoff of nearby insulating surfaces or surrounding gas. Further, instabilities may dominate to prevent high fields (kink mode) or enhance them (sausage mode) but in a nonuniform and uncontrollable way. In this paper we discuss an approach to producing a high-field-intensity pinch using a moving compact torus. The moving torus can serve as a very high power driver and may be used to compress a pre-established pinch field, switch on an accelerating pinch field, or may itself be reconfigured to form an intense pinch. In any case, the high energy, high energy density, and high velocity possible with an accelerated compact torus can provide extremely high power to overcome, by a number of orders of magnitude, the limitations to pinch formation described earlier. In this paper we will consider in detail pinches formed by reconfiguration of the compact torus

  10. Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance.

    Science.gov (United States)

    Sassi, U; Parret, R; Nanot, S; Bruna, M; Borini, S; De Fazio, D; Zhao, Z; Lidorikis, E; Koppens, F H L; Ferrari, A C; Colli, A

    2017-01-31

    There is a growing number of applications demanding highly sensitive photodetectors in the mid-infrared. Thermal photodetectors, such as bolometers, have emerged as the technology of choice, because they do not need cooling. The performance of a bolometer is linked to its temperature coefficient of resistance (TCR, ∼2-4% K -1 for state-of-the-art materials). Graphene is ideally suited for optoelectronic applications, with a variety of reported photodetectors ranging from visible to THz frequencies. For the mid-infrared, graphene-based detectors with TCRs ∼4-11% K -1 have been demonstrated. Here we present an uncooled, mid-infrared photodetector, where the pyroelectric response of a LiNbO 3 crystal is transduced with high gain (up to 200) into resistivity modulation for graphene. This is achieved by fabricating a floating metallic structure that concentrates the pyroelectric charge on the top-gate capacitor of the graphene channel, leading to TCRs up to 900% K -1 , and the ability to resolve temperature variations down to 15 μK.

  11. Low-temperature phase transition in γ-glycine single crystal. Pyroelectric, piezoelectric, dielectric and elastic properties

    Energy Technology Data Exchange (ETDEWEB)

    Tylczyński, Zbigniew, E-mail: zbigtyl@amu.edu.pl [Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Busz, Piotr [Institute of Molecular Physics, Polish Academy of Science, Smoluchowskiego 17, 60-179 Poznań (Poland)

    2016-11-01

    Temperature changes in the pyroelectric, piezoelectric, elastic and dielectric properties of γ-glycine crystals were studied in the range 100 ÷ 385 K. The pyroelectric coefficient increases monotonically in this temperature range and its value at RT was compared with that of other crystals having glycine molecules. A big maximum in the d14 component of piezoelectric tensor compared by maximum in attenuation of the resonant face-shear mode were observed at 189 K. The components of the elastic stiffness tensor and other components of the piezoelectric tensor show anomalies at this temperature. The components of electromechanical coupling coefficient determined indicate that γ-glycine is a weak piezoelectric. The real and imaginary part of the dielectric constant measured in the direction perpendicular to the trigonal axis show the relaxation anomalies much before 198 K and the activation energies were calculated. These anomalies were interpreted as a result of changes in the NH{sub 3}{sup +} vibrations through electron-phonon coupling of the so called “dynamical transition”. The anomalies of dielectric constant ε*{sub 11} and piezoelectric tensor component d{sub 14} taking place at 335 K are associated with an increase in ac conductivity caused by charge transfer of protons. - Graphical abstract: Imaginary part of dielectric constant in [100] direction. - Highlights: • Piezoelectric, elastic and dielectric constants anomalies were discovered at 189 K. • These anomalies were interpreted as a result of so called “dynamical transition”. • Relaxational dielectric anomaly was explained by the dynamics of glycine molecules. • Pyroelectric coefficient of γ-glycine was determined in a wide temperature range. • Complex dielectric & piezoelectric anomalies at 335 K were caused by protons hopping.

  12. Recent advances in laser-driven neutron sources

    Science.gov (United States)

    Alejo, A.; Ahmed, H.; Green, A.; Mirfayzi, S. R.; Borghesi, M.; Kar, S.

    2016-11-01

    Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed, showing improvements in the directionality and flux of the laser-driven neutron beams.

  13. Pyroelectrically Induced Pyro-Electro-Chemical Catalytic Activity of BaTiO3 Nanofibers under Room-Temperature Cold–Hot Cycle Excitations

    Directory of Open Access Journals (Sweden)

    Yuntao Xia

    2017-04-01

    Full Text Available A pyro-electro-chemical catalytic dye decomposition using lead-free BaTiO3 nanofibers was realized under room-temperature cold–hot cycle excitation (30–47 °C with a high Rhodamine B (RhB decomposition efficiency ~99%, which should be ascribed to the product of pyro-electric effect and electrochemical redox reaction. Furthermore, the existence of intermediate product of hydroxyl radical in pyro-electro-chemical catalytic process was also observed. There is no significant decrease in pyro-electro-chemical catalysis activity after being recycled five times. The pyro-electrically induced pyro-electro-chemical catalysis provides a high-efficient, reusable and environmentally friendly technology to remove organic pollutants from water.

  14. Flexible Pb(Zr0.52Ti0.48)O3 Films for a Hybrid Piezoelectric-Pyroelectric Nanogenerator under Harsh Environments.

    Science.gov (United States)

    Ko, Young Joon; Kim, Dong Yeong; Won, Sung Sik; Ahn, Chang Won; Kim, Ill Won; Kingon, Angus I; Kim, Seung-Hyun; Ko, Jae-Hyeon; Jung, Jong Hoon

    2016-03-01

    In spite of extremely high piezoelectric and pyroelectric coefficients, there are few reports on flexible ferroelectric perovskite film based nanogenerators (NGs). Here, we report the successful growth of a flexible Pb(Zr0.52Ti0.48)O3 (PZT) film and its application to hybrid piezoelectric-pyroelectric NG. A highly flexible Ni-Cr metal foil substrate with a conductive LaNiO3 bottom electrode enables the growth of flexible PZT film having high piezoelectric (140 pC/N) and pyroelectric (50 nC/cm(2)K) coefficients at room temperature. The flexible PZT-based NG effectively scavenges mechanical vibration and thermal fluctuation from sources ranging from the human body to the surroundings such as wind. Furthermore, it stably generates electric current even at elevated temperatures of 100 °C, relative humidity of 70%, and pH of 13 by virtue of its high Curie temperature and strong resistance for water and base. As proof of power generation under harsh environments, we demonstrate the generation of extremely high current at the exhaust pipe of a car, where hot CO and CO2 gases are rapidly expelled to air. This work expands the application of flexible PZT film-based NG for the scavenging mechanical vibration and thermal fluctuation energies even at extreme conditions.

  15. Pyroelectric Study on Dipolar Alignment in 0.69Pb(Mg1/3Nb2/3)O3-0.31PbTiO3 Single Crystals

    Institute of Scientific and Technical Information of China (English)

    ZHAO Liang; SHEN Ming-Rong; CAO Wen-Wu

    2012-01-01

    Pyroelectric measurements are conducted during zero-Geld heating in [001], [110] and [111] poled 0.69Pb(Mg1/3 Nb2/3)O3-0.31PbTiO3 single crystals. Compared to the room-temperature-poled samples, the crystals poled by using the Rield cooling method show broad but well recognizable pyroelectric current peaks near 190℃, which is much higher than the Curie point (126℃) of the crystal. We propose that this peak of the crystals poled by field-cooling above the Curie point is ascribed to the order-disorder transition of the dipoles in polar nano-regions formed at the Burns temperature.%Pyroelectric measurements are conducted during zero-field heating in [001],[110] and [111] poled 0.69Pb(Mg1/3Nb2/3)O3-0.31PbTiO3 single crystals.Compared to the room-temperature-poled samples,the crystals poled by using the field cooling method show broad but well recognizable pyroelectric current peaks near 190℃,which is much higher than the Curie point (126℃) of the crystal.We propose that this peak of the crystals poled by field-cooling above the Curie point is ascribed to the order-disorder transition of the dipoles in polar nano-regions formed at the Burns temperature.

  16. Pyroelectric detectors with integrated operational amplifier for high modulation frequencies; Pyroelektrische Detektoren mit integriertem Operationsverstaerker fuer hohe Modulationsfrequenzen

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, N.; Saenze, H.; Heinze, M. [InfraTec GmbH Dresden (Germany)

    2006-02-01

    In order to use the advantages of the current mode operation a pyroelectric detector family with integrated transimpedance amplifier (TIA) was developed particularly for modulation frequencies up to the kHz range with a simplified external circuitry for new application fields, e.g. absorption spectroscopy using quantum-cascade-laser. The essential advantages of the TIA arise from the small electrical time constant {tau}{sub E} and the short-circuiting of the pyroelectric element. A flat amplitude response up to some kHz was aimed at for a sufficiently high response of 7500 V/W, appr., also at high modulation frequencies. This can be achieved through a electrical time constant of 1 ms or less and a wide bandwidth of the op amp. The article describes in detail how these demands were accomplished and which compromises had to be accepted. (orig.)

  17. Special issue on compact x-ray sources

    Science.gov (United States)

    Hooker, Simon; Midorikawa, Katsumi; Rosenzweig, James

    2014-04-01

    Journal of Physics B: Atomic, Molecular and Optical Physics is delighted to announce a forthcoming special issue on compact x-ray sources, to appear in the winter of 2014, and invites you to submit a paper. The potential for high-brilliance x- and gamma-ray sources driven by advanced, compact accelerators has gained increasing attention in recent years. These novel sources—sometimes dubbed 'fifth generation sources'—will build on the revolutionary advance of the x-ray free-electron laser (FEL). New radiation sources of this type have widespread applications, including in ultra-fast imaging, diagnostic and therapeutic medicine, and studies of matter under extreme conditions. Rapid advances in compact accelerators and in FEL techniques make this an opportune moment to consider the opportunities which could be realized by bringing these two fields together. Further, the successful development of compact radiation sources driven by compact accelerators will be a significant milestone on the road to the development of high-gradient colliders able to operate at the frontiers of particle physics. Thus the time is right to publish a peer-reviewed collection of contributions concerning the state-of-the-art in: advanced and novel acceleration techniques; sophisticated physics at the frontier of FELs; and the underlying and enabling techniques of high brightness electron beam physics. Interdisciplinary research connecting two or more of these fields is also increasingly represented, as exemplified by entirely new concepts such as plasma based electron beam sources, and coherent imaging with fs-class electron beams. We hope that in producing this special edition of Journal of Physics B: Atomic, Molecular and Optical Physics (iopscience.iop.org/0953-4075/) we may help further a challenging mission and ongoing intellectual adventure: the harnessing of newly emergent, compact advanced accelerators to the creation of new, agile light sources with unprecedented capabilities

  18. A Compact Group of Galaxies at z = 2.48 Hosting an AGN-driven Outflow

    Science.gov (United States)

    Shih, Hsin-Yi; Stockton, Alan

    2015-12-01

    We present observations of a remarkable compact group of galaxies at z = 2.48. Four galaxies, all within 40 kpc of each other, surround a powerful high-redshift radio source. This group comprises two compact red passive galaxies and a pair of merging galaxies. One of the red galaxies, with an apparent stellar mass of 3.6 × 1011M⊙ and an effective radius of 470 pc, is one of the most extreme examples of a massive quiescent compact galaxy found so far. One of the pair of merging galaxies hosts the active galactic nucleus (AGN) producing the large powerful radio structure. The merger is massive and enriched, consistent with the mass-metallicity relation expected at this redshift. Close to the merging nuclei, the emission lines exhibit broad and asymmetric profiles that suggest outflows powered either by a very young expanding radio jet or by AGN radiation. At ≳50 kpc from the system, we found a fainter extended-emission region that may be a part of a radio-jet-driven outflow. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The work is also based, in part, on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan, and on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  19. Compact FEL-driven inverse compton scattering gamma-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Placidi, M. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Di Mitri, S., E-mail: simone.dimitri@elettra.eu [Elettra - Sincrotrone Trieste S.C.p.A., 34149 Basovizza, Trieste (Italy); Pellegrini, C. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); University of California, Los Angeles, CA 90095 (United States); Penn, G. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2017-05-21

    Many research and applications areas require photon sources capable of producing gamma-ray beams in the multi-MeV energy range with reasonably high fluxes and compact footprints. Besides industrial, nuclear physics and security applications, a considerable interest comes from the possibility to assess the state of conservation of cultural assets like statues, columns etc., via visualization and analysis techniques using high energy photon beams. Computed Tomography scans, widely adopted in medicine at lower photon energies, presently provide high quality three-dimensional imaging in industry and museums. We explore the feasibility of a compact source of quasi-monochromatic, multi-MeV gamma-rays based on Inverse Compton Scattering (ICS) from a high intensity ultra-violet (UV) beam generated in a free-electron laser by the electron beam itself. This scheme introduces a stronger relationship between the energy of the scattered photons and that of the electron beam, resulting in a device much more compact than a classic ICS for a given scattered energy. The same electron beam is used to produce gamma-rays in the 10–20 MeV range and UV radiation in the 10–15 eV range, in a ~4×22 m{sup 2} footprint system.

  20. Evidence for neutron production in deuterium gas with a pyroelectric crystal without tip

    International Nuclear Information System (INIS)

    Tornow, W.; Shafroth, S. M.; Brownridge, J. D.

    2008-01-01

    We present evidence for the production of 2 H(d,n) 3 He neutrons in gaseous deuterium by using a pyroelectric crystal as positive ion accelerator. In contrast to previous studies, neutrons were generated without a tip attached to the crystal and without using a solid deuterated target. The deuterium gas provided both the projectile and target nuclei. On the average, 1 neutron/s was obtained in our ''hot fusion'' experimental setup. No neutrons were detected when a tip was used

  1. Effect of electrical conductivity on the polarization behaviour and pyroelectric, piezoelectric property prediction of 0-3 ferroelectric composites

    International Nuclear Information System (INIS)

    Wei Nian; Zhang Duanming; Yang Fengxia; Han Xiangyun; Zhong Zhicheng; Zheng Keyu

    2007-01-01

    We have investigated the effect of electrical conductivity of the constituents on the poling behaviour of the ceramic inclusions in 0-3 ferroelectric composites which comprise a dilute suspension of spherical particles uniformly distributed in the matrix material. A new model for the pyroelectric and piezoelectric properties in terms of the poling conditions (poling field and poling time) has been developed to include electrical conductivity. Simulated results show that conductivity plays an important role in the poling process. Properly increasing the conductivity of the matrix σ m can enhance the polarization in the ceramic inclusion of the composite P i , thereby making the poling of the composite more efficient. In contrast, higher conductivity of the ceramic inclusion σ i results in lower polarization P i , which is unfavourable to the poling of the composite. These results provide insights into the observed behaviour of 0-3 composites. The model predicts the pyroelectric and piezoelectric properties under different poling conditions, which agree well with the corresponding experimental data

  2. Electrical performances of pyroelectric bimetallic strip heat engines describing a Stirling cycle

    Science.gov (United States)

    Arnaud, A.; Boughaleb, J.; Monfray, S.; Boeuf, F.; Cugat, O.; Skotnicki, T.

    2015-12-01

    This paper deals with the analytical modeling of pyroelectric bimetallic strip heat engines. These devices are designed to exploit the snap-through of a thermo-mechanically bistable membrane to transform a part of the heat flowing through the membrane into mechanical energy and to convert it into electric energy by means of a piezoelectric layer deposited on the surface of the bistable membrane. In this paper, we describe the properties of these heat engines in the case when they complete a Stirling cycle, and we evaluate the performances (available energy, Carnot efficiency...) of these harvesters at the macro- and micro-scale.

  3. Pyroelectric composite for detection of X-ray intensity

    International Nuclear Information System (INIS)

    Sakamoto, Walter Katsumi; Estevam, Giuliano Pierre; Carvalho, Aparecido Augusto de; Pontes, Wesley; Paula, Mauro Henrique de

    2010-01-01

    Composite material obtained with modified lead titanate (Pz34) ferroelectric ceramic and polyether-ether-ketone (PEEK) polymer matrix was used as sensitive component to measure X-ray intensity in a novel detection system. The sensing element works as a thermal transducer, converting a non-quantified thermal flux into an output measurable quantity of electrical voltage. The samples were obtained up to 60 vol.% of ceramic, by hot pressing the mixture of Pz34 and PEEK powders at 368 deg C and applying 12 MPa pressure for 2.0 h. The sensor response varies from 2.70 V to 0.80 V in the energy fluence rate range of 6.30 to 37.20 W/m 2 . The absorbed incident energy was analyzed as a function of the ionizing energy. Furthermore, by measuring the pyroelectric activity of the composite film it was observed that there is no degradation of the sensor after the irradiation. (author)

  4. Project for surveying improvement in energy demand and supply structure (comprehensive survey on improvement in energy demand and supply). FY1998 report on achievements of Technical survey on pyroelectric power generation systems; Energy jukyu kozo kodoka chosa jigyo (energy jukyu kodoka sogo chosa). Shoden hatsuden system no gijutsu chosa 1998 nendo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    This paper reports the achievements on research of pyroelectric power generation systems in fiscal 1998. In the research, a small continuous pyroelectric conversion equipment was fabricated and experimented. The experiment using an aluminum foil electrode revealed that the foil melts during discharge opening holes, thus making it impossible to increase net conversion efficiency. The net conversion efficiency was derived in an experiment using foil evaporated with indium instead of the aluminum foil. Indium has inferior electric conductivity to aluminum, but is melting point is as low as 145.6 degrees C. Therefore, if a pyroelectric film had electric fatigue due to use over an extended period of time, indium may be melted to make recovering and reusing pyroelectric copolymer possible. Thus, the indium electrode was found suitable for pyroelectric conversion. Analysis of the experimental data indicated that the final possible net output can be 7.6 W/m{sup 2} if each operation variable considered possible in the future is superimposed on the pyroelectric film. This survey revealed that low-temperature waste heat can be converted to high voltage continually by using the pyroelectric conversion equipment at CANMET Energy Technology Centre. (NEDO)

  5. Systematic evaluation of a secondary method for measuring diagnostic-level medical ultrasound transducer output power based on a large-area pyroelectric sensor

    Science.gov (United States)

    Zeqiri, B.; Žauhar, G.; Rajagopal, S.; Pounder, A.

    2012-06-01

    A systematic study of the application of a novel pyroelectric technique to the measurement of diagnostic-level medical ultrasound output power is described. The method exploits the pyroelectric properties of a 0.028 mm thick membrane of polyvinylidene fluoride (PVDF), backed by an acoustic absorber whose ultrasonic absorption coefficient approaches 1000 dB cm-1 at 3 MHz. When exposed to an ultrasonic field, absorption of ultrasound adjacent to the PVDF-absorber interface results in heating and the generation of a pyroelectric output voltage across gold electrodes deposited on the membrane. For a sensor large enough to intercept the whole of the acoustic beam, the output voltage can be calibrated for the measurement of acoustic output power. A number of key performance properties of the method have been investigated. The technique is very sensitive, with a power to voltage conversion factor of typically 0.23 V W-1. The frequency response of a particular embodiment of the sensor in which acoustic power reflected at the absorber-PVDF interface is subsequently returned to the pyroelectric membrane to be absorbed, has been evaluated over the frequency range 1.5 MHz to 10 MHz. This has shown the frequency response to be flat to within ±4%, above 2.5 MHz. Below this frequency, the sensitivity falls by 20% at 1.5 MHz. Linearity of the technique has been demonstrated to within ±1.6% for applied acoustic power levels from 1 mW up to 120 mW. A number of other studies targeted at assessing the achievable measurement uncertainties are presented. These involve: the effects of soaking, the influence of the angle of incidence of the acoustic beam, measurement repeatability and sensitivity to transducer positioning. Additionally, over the range 20 °C to 30 °C, the rate of change in sensitivity with ambient temperature has been shown to be +0.5% °C-1. Implications of the work for the development of a sensitive, traceable, portable, secondary method of ultrasound output power

  6. Improved ferroelectric and pyroelectric properties of Pb-doped SrBi4Ti4O15 ceramics for high temperature applications

    International Nuclear Information System (INIS)

    Venkata Ramana, E.; Graça, M.P.F.; Valente, M.A.; Bhima Sankaram, T.

    2014-01-01

    Highlights: • Sr 1−x Pb x Bi 4 Ti 4 O 15 (SPBT, x = 0 − 0.4) ceramics were synthesized by soft chemical method. • X-ray diffraction analysis confirmed the formation of bismuth layered structure. • SEM images showed plate like grain morphology with random orientation of plate faces. • Pb-doping resulted in improved ferroelectricity of SrBi 4 Ti 4 O 15 ceramics. • Pb-doped SrBi 4 Ti 4 O 15 exhibited improved pyroelectric properties with high T C . -- Abstract: Ferroelectric properties of Pb-modified strontium bismuth titanate ceramics with chemical formula Sr 1−x Pb x Bi 4 Ti 4 O 15 (x = 0–0.4) were investigated. Polycrystalline ceramics were synthesized by soft chemical method to study the effect of Pb-doping on its physical properties. X-ray diffraction analysis revealed a bismuth layered structure for all the compounds. The doping resulted in an increased tetragonal strain and improved ferroelectric properties. Scanning electron microscope images showed plate like grain morphology with random orientation of platelets. The ferroelectric transition temperature of the ceramics increased systematically from 525 °C to 560 °C with the increase of doping concentration. The piezoelectric coefficient (d 33 ) of the ceramics was enhanced significantly with Pb doping, exhibiting a maximum value of 21.8 pC/N for 40 mol.% Pb-doped SBT. Pyroelectric studies carried out using the Byer–Roundy method indicated that the modified SBT ceramics are promising candidates for high temperature pyroelectric applications

  7. Effects of Ca-dopant on the pyroelectric, piezoelectric and dielectric properties of (Sr 0.6Ba 0.4) 4Na 2Nb 10O 30 ceramics

    KAUST Repository

    Yao, Yingbang

    2012-12-01

    Calcium-doped sodium strontium barium niobate (SBNN, (Sr 0.6Ba 0.4) 4-xCa xNa 2Nb 10O 30, 0 ≤ x ≤ 0.5) ceramics were prepared by a conventional solid-state reaction method. SBNN showed \\'filled\\' tetragonal tungsten-bronze structure with fully occupied A-sites. The tetragonal structure, as revealed by X-ray diffraction (XRD) and Raman spectroscopy, was not affected by the Ca-dopant. Effects of Ca-doping concentration on the phase transitions as well as ferroelectric, piezoelectric and pyroelectric properties of the SBNN ceramics were investigated. From the dielectric studies, two anomalies were observed, namely, a sharp normal ferroelectric transition at 260 °C and a broad maximum at round -110 °C. The later was affected by the Ca-doping concentration and its origin was discussed. At x = 0.3, the sample exhibited the highest pyroelectric coefficient of 168 μC/m 2 K and the largest piezoelectric coefficient (d 33) of 63 pC/N at room temperature. On the basis of our results, the pyroelectric properties of the SBNN were improved by Ca-doping. © 2012 Elsevier B.V. All rights reserved.

  8. Effects of Ca-dopant on the pyroelectric, piezoelectric and dielectric properties of (Sr 0.6Ba 0.4) 4Na 2Nb 10O 30 ceramics

    KAUST Repository

    Yao, Yingbang; Mak, C. L.

    2012-01-01

    Calcium-doped sodium strontium barium niobate (SBNN, (Sr 0.6Ba 0.4) 4-xCa xNa 2Nb 10O 30, 0 ≤ x ≤ 0.5) ceramics were prepared by a conventional solid-state reaction method. SBNN showed 'filled' tetragonal tungsten-bronze structure with fully occupied A-sites. The tetragonal structure, as revealed by X-ray diffraction (XRD) and Raman spectroscopy, was not affected by the Ca-dopant. Effects of Ca-doping concentration on the phase transitions as well as ferroelectric, piezoelectric and pyroelectric properties of the SBNN ceramics were investigated. From the dielectric studies, two anomalies were observed, namely, a sharp normal ferroelectric transition at 260 °C and a broad maximum at round -110 °C. The later was affected by the Ca-doping concentration and its origin was discussed. At x = 0.3, the sample exhibited the highest pyroelectric coefficient of 168 μC/m 2 K and the largest piezoelectric coefficient (d 33) of 63 pC/N at room temperature. On the basis of our results, the pyroelectric properties of the SBNN were improved by Ca-doping. © 2012 Elsevier B.V. All rights reserved.

  9. Abnormal Activity Detection Using Pyroelectric Infrared Sensors

    Directory of Open Access Journals (Sweden)

    Xiaomu Luo

    2016-06-01

    Full Text Available Healthy aging is one of the most important social issues. In this paper, we propose a method for abnormal activity detection without any manual labeling of the training samples. By leveraging the Field of View (FOV modulation, the spatio-temporal characteristic of human activity is encoded into low-dimension data stream generated by the ceiling-mounted Pyroelectric Infrared (PIR sensors. The similarity between normal training samples are measured based on Kullback-Leibler (KL divergence of each pair of them. The natural clustering of normal activities is discovered through a self-tuning spectral clustering algorithm with unsupervised model selection on the eigenvectors of a modified similarity matrix. Hidden Markov Models (HMMs are employed to model each cluster of normal activities and form feature vectors. One-Class Support Vector Machines (OSVMs are used to profile the normal activities and detect abnormal activities. To validate the efficacy of our method, we conducted experiments in real indoor environments. The encouraging results show that our method is able to detect abnormal activities given only the normal training samples, which aims to avoid the laborious and inconsistent data labeling process.

  10. Impact Compaction of a Granular Material

    Science.gov (United States)

    Fenton, Gregg; Asay, Blaine; Todd, Steve; Grady, Dennis

    2017-06-01

    The dynamic behavior of granular materials has importance to a variety of engineering applications. Although, the mechanical behavior of granular materials have been studied extensively for several decades, the dynamic behavior of these materials remains poorly understood. High-quality experimental data are needed to improve our general understanding of granular material compaction physics. This paper describes how an instrumented plunger impact system can be used to measure the compaction process for granular materials at high and controlled strain rates and subsequently used for computational modelling. The experimental technique relies on a gas-gun driven plunger system to generate a compaction wave through a volume of granular material. This volume of material has been redundantly instrumented along the bed length to track the progression of the compaction wave, and the piston displacement is measured with Photon Doppler Velocimetry (PDV). Using the gathered experimental data along with the initial material tap density, a granular material equation of state can be determined.

  11. Enhanced pyroelectric and piezoelectric properties of PZT with aligned porosity for energy harvesting applications† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7ta00967d Click here for additional data file.

    Science.gov (United States)

    Zhang, Yan; Xie, Mengying; Roscow, James; Bao, Yinxiang; Zhou, Kechao

    2017-01-01

    This paper demonstrates the significant benefits of exploiting highly aligned porosity in piezoelectric and pyroelectric materials for improved energy harvesting performance. Porous lead zirconate (PZT) ceramics with aligned pore channels and varying fractions of porosity were manufactured in a water-based suspension using freeze-casting. The aligned porous PZT ceramics were characterized in detail for both piezoelectric and pyroelectric properties and their energy harvesting performance figures of merit were assessed parallel and perpendicular to the freezing direction. As a result of the introduction of porosity into the ceramic microstructure, high piezoelectric and pyroelectric harvesting figures of merits were achieved for porous freeze-cast PZT compared to dense PZT due to the reduced permittivity and volume specific heat capacity. Experimental results were compared to parallel and series analytical models with good agreement and the PZT with porosity aligned parallel to the freezing direction exhibited the highest piezoelectric and pyroelectric harvesting response; this was a result of the enhanced interconnectivity of the ferroelectric material along the poling direction and reduced fraction of unpoled material that leads to a higher polarization. A complete thermal energy harvesting system, composed of a parallel-aligned PZT harvester element and an AC/DC converter, was successfully demonstrated by charging a storage capacitor. The maximum energy density generated by the 60 vol% porous parallel-connected PZT when subjected to thermal oscillations was 1653 μJ cm–3, which was 374% higher than that of the dense PZT with an energy density of 446 μJ cm–3. The results are beneficial for the design and manufacture of high performance porous pyroelectric and piezoelectric materials in devices for energy harvesting and sensor applications. PMID:28580142

  12. Development of an ultra-compact mid-infrared attenuated total reflectance spectrophotometer

    Science.gov (United States)

    Kim, Dong Soo; Lee, Tae-Ro; Yoon, Gilwon

    2014-07-01

    Mid-infrared spectroscopy has been an important tool widely used for qualitative analysis in various fields. However, portable or personal use is size and cost prohibitive for either Fourier transform infrared or attenuated total reflectance (ATR) spectrophotometers. In this study, we developed an ultra-compact ATR spectrophotometer whose frequency band was 5.5-11.0 μm. We used miniature components, such as a light source fabricated by semiconductor technology, a linear variable filter, and a pyro-electric array detector. There were no moving parts. Optimal design based on two light sources, a zippered configuration of the array detector and ATR optics could produce absorption spectra that might be used for qualitative analysis. A microprocessor synchronized the pulsed light sources and detector, and all the signals were processed digitally. The size was 13.5×8.5×3.5 cm3 and the weight was 300 grams. Due to its low cost, our spectrophotometer can replace many online monitoring devices. Another application could be for a u-healthcare system installed in the bathroom or attached to a smartphone for monitoring substances in body fluids.

  13. Understanding and Mitigating Reservoir Compaction: an Experimental Study on Sand Aggregates

    Science.gov (United States)

    Schimmel, M.; Hangx, S.; Spiers, C. J.

    2016-12-01

    Fossil fuels continue to provide a source for energy, fuels for transport and chemicals for everyday items. However, adverse effects of decades of hydrocarbons production are increasingly impacting society and the environment. Production-driven reduction in reservoir pore pressure leads to a poro-elastic response of the reservoir, and in many occasions to time-dependent compaction (creep) of the reservoir. In turn, reservoir compaction may lead to surface subsidence and could potentially result in induced (micro)seismicity. To predict and mitigate the impact of fluid extraction, we need to understand production-driven reservoir compaction in highly porous siliciclastic rocks and explore potential mitigation strategies, for example, by using compaction-inhibiting injection fluids. As a first step, we investigate the effect of chemical environment on the compaction behaviour of sand aggregates, comparable to poorly consolidated, highly porous sandstones. The sand samples consist of loose aggregates of Beaujean quartz sand, sieved into a grainsize fraction of 180-212 µm. Uniaxial compaction experiments are performed at an axial stress of 35 MPa and temperature of 80°C, mimicking conditions of reservoirs buried at three kilometres depth. The chemical environment during creep is either vacuum-dry or CO2-dry, or fluid-saturated, with fluids consisting of distilled water, acid solution (CO2-saturated water), alkaline solution (pH 9), aluminium solution (pH 3) and solution with surfactants (i.e., AMP). Preliminary results show that compaction of quartz sand aggregates is promoted in a wet environment compared to a dry environment. It is inferred that deformation is controlled by subcritical crack growth when dry and stress corrosion cracking when wet, both resulting in grain failure and subsequent grain rearrangement. Fluids inhibiting these processes, have the potential to inhibit aggregate compaction.

  14. High-explosive driven crowbar switch

    International Nuclear Information System (INIS)

    Dike, R.S.; Kewish, R.W. Jr.

    1976-01-01

    The disclosure relates to a compact explosive driven switch for use as a low resistance, low inductance crowbar switch. A high-explosive charge extrudes a deformable conductive metallic plate through a polyethylene insulating layer to achieve a hard current contact with a supportive annular conductor

  15. UV scale calibration transfer from an improved pyroelectric detector standard to field UV-A meters and 365 nm excitation sources

    Science.gov (United States)

    Eppeldauer, G. P.; Podobedov, V. B.; Cooksey, C. C.

    2017-05-01

    Calibration of the emitted radiation from UV sources peaking at 365 nm, is necessary to perform the ASTM required 1 mW/cm2 minimum irradiance in certain military material (ships, airplanes etc) tests. These UV "black lights" are applied for crack-recognition using fluorescent liquid penetrant inspection. At present, these nondestructive tests are performed using Hg-lamps. Lack of a proper standard and the different spectral responsivities of the available UV meters cause significant measurement errors even if the same UV-365 source is measured. A pyroelectric radiometer standard with spectrally flat (constant) response in the UV-VIS range has been developed to solve the problem. The response curve of this standard determined from spectral reflectance measurement, is converted into spectral irradiance responsivity with UV sources (with different peaks and distributions) without using any source standard. Using this broadband calibration method, yearly spectral calibrations for the reference UV (LED) sources and irradiance meters is not needed. Field UV sources and meters can be calibrated against the pyroelectric radiometer standard for broadband (integrated) irradiance and integrated responsivity. Using the broadband measurement procedure, the UV measurements give uniform results with significantly decreased uncertainties.

  16. Design of an electron-accelerator-driven compact neutron source for non-destructive assay

    Science.gov (United States)

    Murata, A.; Ikeda, S.; Hayashizaki, N.

    2017-09-01

    The threat of nuclear and radiological terrorism remains one of the greatest challenges to international security, and the threat is constantly evolving. In order to prevent nuclear terrorism, it is important to avoid unlawful import of nuclear materials, such as uranium and plutonium. Development of technologies for non-destructive measurement, detection and recognition of nuclear materials is essential for control at national borders. At Tokyo Institute of Technology, a compact neutron source system driven by an electron-accelerator has been designed for non-destructive assay (NDA). This system is composed of a combination of an S-band (2.856 GHz) RF-gun, a tungsten target to produce photons by bremsstrahlung, a beryllium target, which is suitable for use in generating neutrons because of the low threshold energy of photonuclear reactions, and a moderator to thermalize the fast neutrons. The advantage of this system can accelerate a short pulse beam with a pulse width less than 1 μs which is difficult to produce by neutron generators. The amounts of photons and neutron produced by electron beams were simulated using the Monte Carlo simulation code PHITS 2.82. When the RF-gun is operated with an average electron beam current of 0.1 mA, it is expected that the neutron intensities are 1.19 × 109 n/s and 9.94 × 109 n/s for incident electron beam energies of 5 MeV and 10 MeV, respectively.

  17. Compact compressive arc and beam switchyard for energy recovery linac-driven ultraviolet free electron lasers

    Science.gov (United States)

    Akkermans, J. A. G.; Di Mitri, S.; Douglas, D.; Setija, I. D.

    2017-08-01

    High gain free electron lasers (FELs) driven by high repetition rate recirculating accelerators have received considerable attention in the scientific and industrial communities in recent years. Cost-performance optimization of such facilities encourages limiting machine size and complexity, and a compact machine can be realized by combining bending and bunch length compression during the last stage of recirculation, just before lasing. The impact of coherent synchrotron radiation (CSR) on electron beam quality during compression can, however, limit FEL output power. When methods to counteract CSR are implemented, appropriate beam diagnostics become critical to ensure that the target beam parameters are met before lasing, as well as to guarantee reliable, predictable performance and rapid machine setup and recovery. This article describes a beam line for bunch compression and recirculation, and beam switchyard accessing a diagnostic line for EUV lasing at 1 GeV beam energy. The footprint is modest, with 12 m compressive arc diameter and ˜20 m diagnostic line length. The design limits beam quality degradation due to CSR both in the compressor and in the switchyard. Advantages and drawbacks of two switchyard lines providing, respectively, off-line and on-line measurements are discussed. The entire design is scalable to different beam energies and charges.

  18. Reversible pyroelectric and photogalvanic current in epitaxial Pb(Zr0.52Ti0.48)O3 thin films

    Science.gov (United States)

    Lee, J.; Esayan, S.; Prohaska, J.; Safari, A.

    1994-01-01

    The pyroelectric and photogalvanic effects have been studied in epitaxial Pb(Zr0.52Ti0.48)O3 (PZT) thin films. Photoinduced currents, which were completely reversible by electrical voltage, were observed. The photoinduced currents exhibited transient and steady state components. The transient component, in turn, consisted of two components with fast (<1 s) and slow (˜hours) relaxation times. The mechanisms of the photoinduced currents in PZT films and their possible applications in nondestructive readout ferroelectric memory are discussed.

  19. Compact and tunable focusing device for plasma wakefield acceleration

    Science.gov (United States)

    Pompili, R.; Anania, M. P.; Chiadroni, E.; Cianchi, A.; Ferrario, M.; Lollo, V.; Notargiacomo, A.; Picardi, L.; Ronsivalle, C.; Rosenzweig, J. B.; Shpakov, V.; Vannozzi, A.

    2018-03-01

    Plasma wakefield acceleration, either driven by ultra-short laser pulses or electron bunches, represents one of the most promising techniques able to overcome the limits of conventional RF technology and allows the development of compact accelerators. In the particle beam-driven scenario, ultra-short bunches with tiny spot sizes are required to enhance the accelerating gradient and preserve the emittance and energy spread of the accelerated bunch. To achieve such tight transverse beam sizes, a focusing system with short focal length is mandatory. Here we discuss the development of a compact and tunable system consisting of three small-bore permanent-magnet quadrupoles with 520 T/m field gradient. The device has been designed in view of the plasma acceleration experiments planned at the SPARC_LAB test-facility. Being the field gradient fixed, the focusing is adjusted by tuning the relative position of the three magnets with nanometer resolution. Details about its magnetic design, beam-dynamics simulations, and preliminary results are examined in the paper.

  20. Review of compact, alternate concepts for magnetic confinement fusion

    International Nuclear Information System (INIS)

    Nickerson, S.B.; Shmayda, W.T.; Dinner, P.J.; Gierszewski, P.

    1984-06-01

    This report documents a study of compact alternate magnetic confinement fusion experiments and conceptual reactor designs. The purpose of this study is to identify those devices with a potential to burn tritium in the near future. The bulk of the report is made up of a review of the following compact alternates: compact toroids, high power density tokamaks, linear magnetic systems, compact mirrors, reversed field pinches and some miscellaneous concepts. Bumpy toruses and stellarators were initially reviewed but were not pursued since no compact variations were found. Several of the concepts show promise of either burning tritium or evolving into tritium burning devices by the early 1990's: RIGGATRON, Ignitor, OHTE, Frascati Tokamak upgrade, several driven (low or negative net power) mirror experiments and several Reversed Field Pinch experiments that may begin operation around 1990. Of the above only the Frascati Tokamak Upgrade has had funds allocated. Also identified in this report are groups who may have tritium burning experiments in the mid to late 1990's. There is a discussion of the differences between the reviewed devices and the mainline tokamak experiments. This discussion forms the basis of recommendations for R and D aimed at the compact alternates and the applicability of the present CFFTP program to the needs of the compact alternates. These recommendations will be presented in a subsequent report

  1. Compaction-Driven Evolution of Pluto's Rocky Core: Implications for Water-Rock Interactions

    Science.gov (United States)

    Gabasova, L. R.; Tobie, G.; Choblet, G.

    2018-05-01

    We model the compaction of Pluto's rocky core after accretion and explore the potential for hydrothermal circulation within the porous layer, as well as examine its effect on core cooling and the persistence of a liquid internal ocean.

  2. How to Make Eccentricity Cycles in Stratigraphy: the Role of Compaction

    Science.gov (United States)

    Liu, W.; Hinnov, L.; Wu, H.; Pas, D.

    2017-12-01

    Milankovitch cycles from astronomically driven climate variations have been demonstrated as preserved in cyclostratigraphy throughout geologic time. These stratigraphic cycles have been identified in many types of proxies, e.g., gamma ray, magnetic susceptibility, oxygen isotopes, carbonate content, grayscale, etc. However, the commonly prominent spectral power of orbital eccentricity cycles in stratigraphy is paradoxical to insolation, which is dominated by precession index power. How is the spectral power transferred from precession to eccentricity in stratigraphy? Nonlinear sedimentation and bioturbation have long been identified as players in this transference. Here, we propose that in the absence of bioturbation differential compaction can generate the transference. Using insolation time series, we trace the steps by which insolation is transformed into stratigraphy, and how differential compaction of lithology acts to transfer spectral power from precession to eccentricity. Differential compaction is applied to unique values of insolation, which is assumed to control the type of deposited sediment. High compaction is applied to muds, and progressively lower compaction is applied to silts and sands, or carbonate. Linear differential compaction promotes eccentricity spectral power, but nonlinear differential compaction elevates eccentricity spectral power to dominance and precession spectral power to near collapse as is often observed in real stratigraphy. Keywords: differential compaction, cyclostratigraphy, insolation, eccentricity

  3. Lithium tantalate single crystal for pyroelectricity-based laser energy-meter: growth, application and phase transition study

    International Nuclear Information System (INIS)

    Bhaumik, Indranil; Ganesamoorthy, S.; Bhatt, R.; Karnal, A.K.; Gupta, P.K.

    2009-01-01

    Single crystals of lithium tantalate have been grown. Dielectric-spectroscopy study reveals phase transition in congruent lithium tantalate (CLT) single crystal is diffusive and frequency dependent in contrast to that in near stoichiometric lithium tantalate where it is sharper. The ac conductivity measurements show that the conductivity is lower for 0.5Mg-SLT as compared to 1.0Mg-SLT. This is explained in terms of a Li-vacancy model. Calculation of activation energy from the lnσ vs. 1000/T plot reveals that hopping of Li + ions becomes difficult for 0.5 Mg-SLT. The pyroelectric response of CLT for pulsed Nd:YAG laser output has been tested. (author)

  4. Compact toroid formation, compression, and acceleration

    International Nuclear Information System (INIS)

    Degnan, J.H.; Peterkin, R.E. Jr.; Baca, G.P.; Beason, J.D.; Bell, D.E.; Dearborn, M.E.; Dietz, D.; Douglas, M.R.; Englert, S.E.; Englert, T.J.; Hackett, K.E.; Holmes, J.H.; Hussey, T.W.; Kiuttu, G.F.; Lehr, F.M.; Marklin, G.J.; Mullins, B.W.; Price, D.W.; Roderick, N.F.; Ruden, E.L.; Sovinec, C.R.; Turchi, P.J.; Bird, G.; Coffey, S.K.; Seiler, S.W.; Chen, Y.G.; Gale, D.; Graham, J.D.; Scott, M.; Sommars, W.

    1993-01-01

    Research on forming, compressing, and accelerating milligram-range compact toroids using a meter diameter, two-stage, puffed gas, magnetic field embedded coaxial plasma gun is described. The compact toroids that are studied are similar to spheromaks, but they are threaded by an inner conductor. This research effort, named MARAUDER (Magnetically Accelerated Ring to Achieve Ultra-high Directed Energy and Radiation), is not a magnetic confinement fusion program like most spheromak efforts. Rather, the ultimate goal of the present program is to compress toroids to high mass density and magnetic field intensity, and to accelerate the toroids to high speed. There are a variety of applications for compressed, accelerated toroids including fast opening switches, x-radiation production, radio frequency (rf) compression, as well as charge-neutral ion beam and inertial confinement fusion studies. Experiments performed to date to form and accelerate toroids have been diagnosed with magnetic probe arrays, laser interferometry, time and space resolved optical spectroscopy, and fast photography. Parts of the experiment have been designed by, and experimental results are interpreted with, the help of two-dimensional (2-D), time-dependent magnetohydrodynamic (MHD) numerical simulations. When not driven by a second discharge, the toroids relax to a Woltjer--Taylor equilibrium state that compares favorably to the results of 2-D equilibrium calculations and to 2-D time-dependent MHD simulations. Current, voltage, and magnetic probe data from toroids that are driven by an acceleration discharge are compared to 2-D MHD and to circuit solver/slug model predictions. Results suggest that compact toroids are formed in 7--15 μsec, and can be accelerated intact with material species the same as injected gas species and entrained mass ≥1/2 the injected mass

  5. Trust and compactness in social network groups.

    Science.gov (United States)

    De Meo, Pasquale; Ferrara, Emilio; Rosaci, Domenico; Sarné, Giuseppe M L

    2015-02-01

    Understanding the dynamics behind group formation and evolution in social networks is considered an instrumental milestone to better describe how individuals gather and form communities, how they enjoy and share the platform contents, how they are driven by their preferences/tastes, and how their behaviors are influenced by peers. In this context, the notion of compactness of a social group is particularly relevant. While the literature usually refers to compactness as a measure to merely determine how much members of a group are similar among each other, we argue that the mutual trustworthiness between the members should be considered as an important factor in defining such a term. In fact, trust has profound effects on the dynamics of group formation and their evolution: individuals are more likely to join with and stay in a group if they can trust other group members. In this paper, we propose a quantitative measure of group compactness that takes into account both the similarity and the trustworthiness among users, and we present an algorithm to optimize such a measure. We provide empirical results, obtained from the real social networks EPINIONS and CIAO, that compare our notion of compactness versus the traditional notion of user similarity, clearly proving the advantages of our approach.

  6. Radiation profile measurements for edge transport barrier discharges in Compact Helical System using AXUV photodiode arrays

    International Nuclear Information System (INIS)

    Suzuki, C.; Okamura, S.; Minami, T.; Akiyama, T.; Fujisawa, A.; Ida, K.; Isobe, M.; Matsuoka, K.; Nagaoka, K.; Nishimura, S.; Peterson, B. J.; Shimizu, A.; Takahashi, C.; Toi, K.; Yoshimura, Y.

    2005-01-01

    The formation of edge transport barrier (ETB) has recently been found in Compact Helical System (CHS) plasmas heated by co-injected neutral beam injection (NBI) with strong gas puffing. This regime is characterized by the appearance of the steep gradient of the electron density near the edge following the abrupt drop of hydrogen Balmer alpha (H α ) line intensity. In addition to single channel pyroelectric detector as a conventional bolometer, we have employed unfiltered absolute extreme ultraviolet (AXUV) photodiode arrays as a simple and low-cost diagnostic to investigate spatial and temporal variations of radiation emissivity in the ETB discharges. A compact mounting module for a 20 channel AXUV photodiode array including an in-vacuum preamplifier for immediate current-voltage conversion has successfully been designed and fabricated. Two identical modules installed in the upper and lower viewports provide 40 lines of sight covering the inboard and outboard sides within the horizontally elongated cross section of the CHS plasma with wide viewing angle. Although spectral uniformity of the detector sensitivity of the AXUV photodiode is unsatisfied for photon energies lower than 200 eV, it has been confirmed that the signals of AXUV photodiode and pyroelectric detector in the ETB discharges show roughly the same behavior except for the very beginning and end of the discharges. The results of the measurements in typical ETB discharges show that the signals of all the channels of the AXUV photodiode arrays begin to increase more rapidly at the moment of the transition than before. The rate of the increase is larger for the edge viewing chords than for the center viewing ones, which indicates the flattening of the radiation profile following the change in the electron density profile after the formation of the ETB. However, the signals for the edge chords tend to saturate after several tens of milliseconds, while they still continue to increase for the central chords

  7. Compact scanning transmission x-ray microscope at the photon factory

    International Nuclear Information System (INIS)

    Takeichi, Yasuo; Inami, Nobuhito; Ono, Kanta; Suga, Hiroki; Takahashi, Yoshio

    2016-01-01

    We report the design and performance of a compact scanning transmission X-ray microscope developed at the Photon Factory. Piezo-driven linear stages are used as coarse stages of the microscope to realize excellent compactness, mobility, and vibrational and thermal stability. An X-ray beam with an intensity of ∼10 7 photons/s was focused to a diameter of ∼40 nm at the sample. At the soft X-ray undulator beamline used with the microscope, a wide range of photon energies (250–1600 eV) is available. The microscope has been used to research energy materials and in environmental sciences

  8. Photovoltaic-Pyroelectric Coupled Effect Induced Electricity for Self-Powered Photodetector System.

    Science.gov (United States)

    Ma, Nan; Zhang, Kewei; Yang, Ya

    2017-12-01

    Ferroelectric materials have demonstrated novel photovoltaic effect to scavenge solar energy. However, most of the ferroelectric materials with wide bandgaps (2.7-4 eV) suffer from low power conversion efficiency of less than 0.5% due to absorbing only 8-20% of solar spectrum. Instead of harvesting solar energy, these ferroelectric materials can be well suited for photodetector applications, especially for sensing near-UV irradiations. Here, a ferroelectric BaTiO 3 film-based photodetector is demonstrated that can be operated without using any external power source and a fast sensing of 405 nm light illumination is enabled. As compared with photovoltaic effect, both the responsivity and the specific detectivity of the photodetector can be dramatically enhanced by larger than 260% due to the light-induced photovoltaic-pyroelectric coupled effect. A self-powered photodetector array system can be utilized to achieve spatially resolved light intensity detection by recording the output voltage signals as a mapping figure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Pyroelectrically Induced Pyro-Electro-Chemical Catalytic Activity of BaTiO3 Nanofibers under Room-Temperature Cold–Hot Cycle Excitations

    OpenAIRE

    Yuntao Xia; Yanmin Jia; Weiqi Qian; Xiaoli Xu; Zheng Wu; Zichen Han; Yuanting Hong; Huilin You; Muhammad Ismail; Ge Bai; Liwei Wang

    2017-01-01

    A pyro-electro-chemical catalytic dye decomposition using lead-free BaTiO3 nanofibers was realized under room-temperature cold–hot cycle excitation (30–47 °C) with a high Rhodamine B (RhB) decomposition efficiency ~99%, which should be ascribed to the product of pyro-electric effect and electrochemical redox reaction. Furthermore, the existence of intermediate product of hydroxyl radical in pyro-electro-chemical catalytic process was also observed. There is no significant decrease in pyro-ele...

  10. Tracking and Recognition of Multiple Human Targets Moving in a Wireless Pyroelectric Infrared Sensor Network

    Directory of Open Access Journals (Sweden)

    Ji Xiong

    2014-04-01

    Full Text Available With characteristics of low-cost and easy deployment, the distributed wireless pyroelectric infrared sensor network has attracted extensive interest, which aims to make it an alternate infrared video sensor in thermal biometric applications for tracking and identifying human targets. In these applications, effectively processing signals collected from sensors and extracting the features of different human targets has become crucial. This paper proposes the application of empirical mode decomposition and the Hilbert-Huang transform to extract features of moving human targets both in the time domain and the frequency domain. Moreover, the support vector machine is selected as the classifier. The experimental results demonstrate that by using this method the identification rates of multiple moving human targets are around 90%.

  11. Engineering Prototype for a Compact Medical Dielectric Wall Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Zografos, Anthony; Hening, Andy; Joshkin, Vladimir; Leung, Kevin; Pearson, Dave; Pearce-Percy, Henry; Rougieri, Mario; Parker, Yoko; Weir, John [CPAC, Livermore, CA (United States); Blackfield, Donald; Chen, Yu-Jiuan; Falabella, Steven; Guethlein, Gary; Poole, Brian [Lawrence Livermore National Laboratory, Livermore, CA (United States); Hamm, Robert W. [R and M Technical Enterprises, Pleasanton, CA (United States); Becker, Reinard [Scientific Software Service, Gelnhausen (Germany)

    2011-12-13

    A compact accelerator system architecture based on the dielectric wall accelerator (DWA) for medical proton beam therapy has been developed by the Compact Particle Acceleration Corporation (CPAC). The major subsystems are a Radio Frequency Quadrupole (RFQ) injector linac, a pulsed kicker to select the desired proton bunches, and a DWA linear accelerator incorporating a high gradient insulator (HGI) with stacked Blumleins to produce the required acceleration energy. The Blumleins are switched with solid state laser-driven optical switches integrated into the Blumlein assemblies. Other subsystems include a high power pulsed laser, fiber optic distribution system, electrical charging system, and beam diagnostics. An engineering prototype has been constructed and characterized, and these results will be used within the next three years to develop an extremely compact 150 MeV system capable of modulating energy, beam current, and spot size on a shot-to-shot basis. This paper presents the details the engineering prototype, experimental results, and commercialization plans.

  12. Engineering Prototype for a Compact Medical Dielectric Wall Accelerator

    International Nuclear Information System (INIS)

    Zografos, Anthony; Hening, Andy; Joshkin, Vladimir; Leung, Kevin; Pearson, Dave; Pearce-Percy, Henry; Rougieri, Mario; Parker, Yoko; Weir, John; Blackfield, Donald; Chen, Yu-Jiuan; Falabella, Steven; Guethlein, Gary; Poole, Brian; Hamm, Robert W.; Becker, Reinard

    2011-01-01

    A compact accelerator system architecture based on the dielectric wall accelerator (DWA) for medical proton beam therapy has been developed by the Compact Particle Acceleration Corporation (CPAC). The major subsystems are a Radio Frequency Quadrupole (RFQ) injector linac, a pulsed kicker to select the desired proton bunches, and a DWA linear accelerator incorporating a high gradient insulator (HGI) with stacked Blumleins to produce the required acceleration energy. The Blumleins are switched with solid state laser-driven optical switches integrated into the Blumlein assemblies. Other subsystems include a high power pulsed laser, fiber optic distribution system, electrical charging system, and beam diagnostics. An engineering prototype has been constructed and characterized, and these results will be used within the next three years to develop an extremely compact 150 MeV system capable of modulating energy, beam current, and spot size on a shot-to-shot basis. This paper presents the details the engineering prototype, experimental results, and commercialization plans.

  13. Study of a compact reversed shear Tokamak reactor

    International Nuclear Information System (INIS)

    Okano, K.; Asaoka, Y.; Tomabechi, K.; Yoshida, T.; Hiwatari, R.; Ogawa, Y.; Tokimatsu, K.; Yamamoto, T.; Inoue, N.; Murakami, Y.

    1998-01-01

    A reversed shear configuration, which was observed recently in some tokamak experiments, might have a possibility to realize compact and cost-competitive tokamak reactors. In this study, a compact (low cost) commercial reactor based on the shear reversed high beta equilibrium with β N =5.5, is considered, namely the compact reversed shear tokamak, CREST-1. The CREST-1 is designed with a moderate aspect ratio (R/a=3.4), which will allow us to experimentally develop this CREST concept by ITER. This will be very advantageous with regard to the fusion development strategy. The current profile for the reversed shear operation is sustained and controlled in steady state by bootstrap (88%), beam and r driven currents, which are calculated by a neo-classical model code in 3D geometry. The MHD stability has been checked by an ideal MHD stability analysis code (ERATO) and it has been confirmed that the ideal low n kink, ballooning and Mercier modes are stable while a closed conductive shell is required for stability. Such a compact tokamak can be cost-competitive as an electric power source in the 21st century and it is one possible scenario in realizing a commercial fusion reactor beyond the ITER project. (orig.)

  14. Enhance the Pyroelectricity of Polyvinylidene Fluoride by Graphene-Oxide Doping

    Directory of Open Access Journals (Sweden)

    Yuh-Chung Hu

    2014-04-01

    Full Text Available The high quality properties and benefits of graphene-oxide have generated an active area of research where many investigations have shown potential applications in various technological fields. This paper proposes a methodology for enhancing the pyro-electricity of PVDF by graphene-oxide doping. The PVDF film with graphene-oxide is prepared by the sol-gel method. Firstly, PVDF and graphene-oxide powders are dispersed into dimethylformamide as solvent to form a sol solution. Secondly, the sol solution is deposited on a flexible ITO/PET substrate by spin-coating. Thirdly, the particles in the sol solution are polymerized through baking off the solvent to produce a gel in a state of a continuous network of PVDF and graphene-oxide. The final annealing process pyrolyzes the gel and form a β-phase PVDF film with graphene-oxide doping. A complete study on the process of the graphene oxide doping of PVDF is accomplished. Some key points about the process are addressed based on experiments. The solutions to some key issues are found in this work, such as the porosity of film, the annealing temperature limitation by the use of flexible PET substrate, and the concentrations of PVDF and graphene-oxide.

  15. Compact, self-regulating nuclear power source

    International Nuclear Information System (INIS)

    Peterson, Otis G.; Kimpland, Robert H.

    2008-01-01

    An inherently safe nuclear power source has been designed, that is self-stabilizing and requires no moving mechanical components. Unlike conventional designs, the proposed reactor is self-regulating through the inherent properties of uranium hydride, which serves as a combination fuel and moderator. The temperature driven mobility of the hydrogen contained in the hydride will control the nuclear activity. If the core temperature increases over the set point, the hydrogen is driven out of the core, the moderation drops and the power production decreases. If the temperature drops, the hydrogen returns and the process is reversed. Thus the design is inherently fail-safe and requires only minimal human oversight. The compact nature and inherent safety opens the possibility for low-cost mass production and operation of the reactors. This design has the capability to dramatically alter the manner in which nuclear energy is harnessed for commercial use. (author)

  16. High performance Bi0.5Na0.5TiO3-BiAlO3-K0.5Na0.5NbO3 lead-free pyroelectric ceramics for thermal detectors

    Science.gov (United States)

    Liu, Zhen; Ren, Weijun; Peng, Ping; Guo, Shaobo; Lu, Teng; Liu, Yun; Dong, Xianlin; Wang, Genshui

    2018-04-01

    Both high pyroelectric properties and good temperature stability of ferroelectric materials are desirable when used for applications in infrared thermal detectors. In this work, we report lead-free ternary 0.97(0.99Bi0.5Na0.5TiO3-0.01BiAlO3)-0.03K0.5Na0.5NbO3 (BNT-BA-KNN) ceramics, which not only exhibits a large pyroelectric coefficient (p ˜ 3.7 × 10-8 C cm-2 K-1) and figures of merit (Fi, Fv, and Fd) but also shows excellent thermal stable properties. At room temperature, Fi, Fv, and Fd are determined as high as 1.32 × 10-10 m/V, 2.89 × 10-2 m2/C, and 1.15 × 10-5 Pa-1/2 at 1 kHz and 1.32 × 10-10 m/V, 2.70 × 10-2 m2/C, and 1.09 × 10-5 Pa-1/2 at 20 Hz, respectively. During the temperature range of RT to 85 °C, the achieved p, Fi, Fv, and Fd do not vary too much. The high depolarization temperature and the undispersed ferroelectric-ergodic relaxor phase transition with a sharp pyroelectric coefficient peak value of ˜400 × 10-8 C cm-2 K-1 are suggested to be responsible for this thermal stability, which ensures reliable actual operation. The results reveal the BNT-BA-KNN ceramics as promising lead-free candidates for infrared thermal detector applications.

  17. Experimental and Numerical Investigation of Compact Dielectric Wakefield Accelerators

    Science.gov (United States)

    2016-03-01

    macroparticles. Additionally the laser is chosen to have a transverse rms spot size of σc = 0.8 mm and rms duration of σt = 1 ps. A solenoidal lens is...photocathode laser . . . . . . . . . . 24 3.3 Experimental realization of a linearly-ramped bunch with a multifrequency linac... laser . Our approach toward the development of a compact beam-driven accelerator consists of four main components depicted in Fig. 1. The production of

  18. Lattice dynamics and negative search for pyroelectricity in Sr.sub.(1-1.5x)./sub.La.sub.x./sub.TiO.sub.3./sub. ceramics

    Czech Academy of Sciences Publication Activity Database

    Almeida, A.; Chaves, M. R.; Gregora, Ivan; Muga, N.J.; Vilarinho, P. M.; Kholkin, A. L.; Costa, A.M.

    2005-01-01

    Roč. 318, - (2005), s. 147-153 ISSN 0015-0193 Grant - others:POCT/CTM(PT) 45284/2002; Programa FEDER/POCTI Fundacio para a Ciencia a Technologia(PT) n o = 155/94; Fundacio para a Ciencia a Technologia(PT) BICJ/247847/2001 Institutional research plan: CEZ:AV0Z10100520 Keywords : quantum paraelectricity * Raman spectra * pyroelectric current * relaxors Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.459, year: 2005

  19. Current driven wiggler

    Science.gov (United States)

    Tournes, C.; Aucouturier, J.; Arnaud, B.; Brasile, J. P.; Convert, G.; Simon, M.

    1992-07-01

    A current-driven wiggler is the cornerstone of an innovative, compact, high-efficiency, transportable tunable free-electron laser (FEL), the feasibility of which is currently being evaluated by Thomson-CSF. The salient advantages are: compactness of the FEL, along with the possibility to accelerate the beam through several successive passes through the accelerating section (the number of passes being defined by the final wavelength of the radiation; i.e. visible, MWIR, LWIR); the wiggler can be turned off and be transparent to the beam until the last pass. Wiggler periodicities as small as 5 mm can be achieved, hence contributing to FEL compactness. To achieve overall efficiencies in the range of 10% at visible wavelengths, not only the wiggler periodicity must be variable, but the strength of the magnetic field of each period can be adjusted separately and fine-tuned versus time during the macropulse, so as to take into account the growing contribution of the wave energy in the cavity to the total ponderomotive force. The salient theoretical point of this design is the optimization of the parameters defining each period of the wiggler for each micropacket of the macropulse. The salient technology point is the mechanical and thermal design of the wiggler which allows the required high currents to achieve magnetic fields up to 2T.

  20. Spectrometers for compact neutron sources

    Science.gov (United States)

    Voigt, J.; Böhm, S.; Dabruck, J. P.; Rücker, U.; Gutberlet, T.; Brückel, T.

    2018-03-01

    We discuss the potential for neutron spectrometers at novel accelerator driven compact neutron sources. Such a High Brilliance Source (HBS) relies on low energy nuclear reactions, which enable cryogenic moderators in very close proximity to the target and neutron optics at comparably short distances from the moderator compared to existing sources. While the first effect aims at increasing the phase space density of a moderator, the second allows the extraction of a large phase space volume, which is typically requested for spectrometer applications. We find that competitive spectrometers can be realized if (a) the neutron production rate can be synchronized with the experiment repetition rate and (b) the emission characteristics of the moderator can be matched to the phase space requirements of the experiment. MCNP simulations for protons or deuterons on a Beryllium target with a suitable target/moderator design yield a source brightness, from which we calculate the sample fluxes by phase space considerations for different types of spectrometers. These match closely the figures of todays spectrometers at medium flux sources. Hence we conclude that compact neutron sources might be a viable option for next generation neutron sources.

  1. Compact reversed-field pinch reactors (CRFPR)

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Hagenson, R.L.; Schnurr, N.M.; Copenhaver, C.; Bathke, C.G.; Miller, R.L.; Embrechts, M.J.

    1986-01-01

    The unique confinement properties of the poloidal-field-dominated Reversed-Field Pinch (RFP) are exploited to examine physics and technical issues related to a compact high-power-density fusion reactor. This resistive-coil, steady-state, toroidal device would use a dual-media (i.e., two separate coolants) power cycle that would be driven by a fusion power core (FPC, i.e., plasma chamber, first wall, blanket, shield, and coils) having a power density and mass approaching pressurized-water-fission reactor values. A 1000-MWe(net) base case is selected from a comprehensive trade-off study to examine technological issues related to operating a high-power-density FPC. A general rationale outlining the need for improved fusion concepts is given, followed by a description of the RFP principle, a detailed systems and trade-off analysis, and a conceptual FPC design for the ∝ 20-MW/m 2 (neutrons) compact RFP reactor, CRFPR(20). Key FPC components are quantified, and full power-balance, thermal, and mechanical FPC integrations are given. (orig.)

  2. Analysis of laboratory compaction methods of roller compacted concrete

    Science.gov (United States)

    Trtík, Tomáš; Chylík, Roman; Bílý, Petr; Fládr, Josef

    2017-09-01

    Roller-Compacted Concrete (RCC) is an ordinary concrete poured and compacted with machines typically used for laying of asphalt road layers. One of the problems connected with this technology is preparation of representative samples in the laboratory. The aim of this work was to analyse two methods of preparation of RCC laboratory samples with bulk density as the comparative parameter. The first method used dynamic compaction by pneumatic hammer. The second method of compaction had a static character. The specimens were loaded by precisely defined force in laboratory loading machine to create the same conditions as during static rolling (in the Czech Republic, only static rolling is commonly used). Bulk densities obtained by the two compaction methods were compared with core drills extracted from real RCC structure. The results have shown that the samples produced by pneumatic hammer tend to overestimate the bulk density of the material. For both compaction methods, immediate bearing index test was performed to verify the quality of compaction. A fundamental difference between static and dynamic compaction was identified. In static compaction, initial resistance to penetration of the mandrel was higher, after exceeding certain limit the resistance was constant. This means that the samples were well compacted just on the surface. Specimens made by pneumatic hammer actively resisted throughout the test, the whole volume was uniformly compacted.

  3. Pyroelectric detector study and realization measuring the plasma radiated power in a tokamak

    International Nuclear Information System (INIS)

    Simonet, F.

    1981-10-01

    The study of a additional heating method and the perfection of impurities rate control and reduction means are presently actively investigated. Petula experiment must demonstrate heating efficiency by high frequency oscillating electromagnetic fields. Impurities will probably dissipate an important part of the ohmic power and electromagnetic power left in plasma. In this report, experimental device is described, which has been realized, and introduced in the tokamak, to measure precisely the energy losses by radiation in the ionized medium. In a first part, tokomak Petula is presented and it is shown how different chemical species can introduce numerously in the discharge gas. In a second part, plasma cooling by photon and fast neutron strong emission is stressed on. In a third part, the measuring device is explained; the detector part is a pyroelectric crystal. In a fourth and last part, results are discussed, insisting on the signal temporal evolution and on the value of the following ratio: power lost by plasma towards the walls/ohmic power left in plasma [fr

  4. Progress of Laser-Driven Plasma Accelerators

    International Nuclear Information System (INIS)

    Nakajima, Kazuhisa

    2007-01-01

    There is a great interest worldwide in plasma accelerators driven by ultra-intense lasers which make it possible to generate ultra-high gradient acceleration and high quality particle beams in a much more compact size compared with conventional accelerators. A frontier research on laser and plasma accelerators is focused on high energy electron acceleration and ultra-short X-ray and Tera Hertz radiations as their applications. These achievements will provide not only a wide range of sciences with benefits of a table-top accelerator but also a basic science with a tool of ultrahigh energy accelerators probing an unknown extremely microscopic world.Harnessing the recent advance of ultra-intense ultra-short pulse lasers, the worldwide research has made a tremendous breakthrough in demonstrating high-energy high-quality particle beams in a compact scale, so called ''dream beams on a table top'', which represents monoenergetic electron beams from laser wakefield accelerators and GeV acceleration by capillary plasma-channel laser wakefield accelerators. This lecture reviews recent progress of results on laser-driven plasma based accelerator experiments to quest for particle acceleration physics in intense laser-plasma interactions and to present new outlook for the GeV-range high-energy laser plasma accelerators

  5. Crossover from Nonequilibrium Fractal Growth to Equilibrium Compact Growth

    DEFF Research Database (Denmark)

    Sørensen, Erik Schwartz; Fogedby, Hans C.; Mouritsen, Ole G.

    1988-01-01

    Solidification controlled by vacancy diffusion is studied by Monte Carlo simulations of a two-dimensional Ising model defined by a Hamiltonian which models a thermally driven fluid-solid phase transition. The nonequilibrium morphology of the growing solid is studied as a function of time as the s...... as the system relaxes into equilibrium described by a temperature. At low temperatures the model exhibits fractal growth at early times and crossover to compact solidification as equilibrium is approached....

  6. Design and optimization of a compact laser-driven proton beamline.

    Science.gov (United States)

    Scisciò, M; Migliorati, M; Palumbo, L; Antici, P

    2018-04-19

    Laser-accelerated protons, generated by irradiating a solid target with a short, energetic laser pulse at high intensity (I > 10 18  W·cm -2 ), represent a complementary if not outperforming source compared to conventional accelerators, due  to their intrinsic features, such as high beam charge and short bunch duration. However, the broadband energy spectrum of these proton sources is a bottleneck that precludes their use in applications requiring a more reduced energy spread. Consequently, in recent times strong effort has been put to overcome these limits and to develop laser-driven proton beamlines with low energy spread. In this paper, we report on beam dynamics simulations aiming at optimizing a laser-driven beamline - i.e. a laser-based proton source coupled to conventional magnetic beam manipulation devices - producing protons with a reduced energy spread, usable for applications. The energy range of investigation goes from 2 to 20 MeV, i.e. the typical proton energies that can be routinely obtained using commercial TW-power class laser systems. Our beamline design is capable of reducing the energy spread below 20%, still keeping the overall transmission efficiency around 1% and producing a proton spot-size in the range of 10 mm 2 . We briefly discuss the results in the context of applications in the domain of Cultural Heritage.

  7. EMD-Based Symbolic Dynamic Analysis for the Recognition of Human and Nonhuman Pyroelectric Infrared Signals

    Directory of Open Access Journals (Sweden)

    Jiaduo Zhao

    2016-01-01

    Full Text Available In this paper, we propose an effective human and nonhuman pyroelectric infrared (PIR signal recognition method to reduce PIR detector false alarms. First, using the mathematical model of the PIR detector, we analyze the physical characteristics of the human and nonhuman PIR signals; second, based on the analysis results, we propose an empirical mode decomposition (EMD-based symbolic dynamic analysis method for the recognition of human and nonhuman PIR signals. In the proposed method, first, we extract the detailed features of a PIR signal into five symbol sequences using an EMD-based symbolization method, then, we generate five feature descriptors for each PIR signal through constructing five probabilistic finite state automata with the symbol sequences. Finally, we use a weighted voting classification strategy to classify the PIR signals with their feature descriptors. Comparative experiments show that the proposed method can effectively classify the human and nonhuman PIR signals and reduce PIR detector’s false alarms.

  8. EMD-Based Symbolic Dynamic Analysis for the Recognition of Human and Nonhuman Pyroelectric Infrared Signals.

    Science.gov (United States)

    Zhao, Jiaduo; Gong, Weiguo; Tang, Yuzhen; Li, Weihong

    2016-01-20

    In this paper, we propose an effective human and nonhuman pyroelectric infrared (PIR) signal recognition method to reduce PIR detector false alarms. First, using the mathematical model of the PIR detector, we analyze the physical characteristics of the human and nonhuman PIR signals; second, based on the analysis results, we propose an empirical mode decomposition (EMD)-based symbolic dynamic analysis method for the recognition of human and nonhuman PIR signals. In the proposed method, first, we extract the detailed features of a PIR signal into five symbol sequences using an EMD-based symbolization method, then, we generate five feature descriptors for each PIR signal through constructing five probabilistic finite state automata with the symbol sequences. Finally, we use a weighted voting classification strategy to classify the PIR signals with their feature descriptors. Comparative experiments show that the proposed method can effectively classify the human and nonhuman PIR signals and reduce PIR detector's false alarms.

  9. Photonic laser-driven accelerator for GALAXIE

    Energy Technology Data Exchange (ETDEWEB)

    Naranjo, B.; Ho, M.; Hoang, P.; Putterman, S.; Valloni, A.; Rosenzweig, J. B. [UCLA Dept. of Physics and Astronomy Los Angeles, CA 90095-1547 (United States)

    2012-12-21

    We report on the design and development of an all-dielectric laser-driven accelerator to be used in the GALAXIE (GV-per-meter Acce Lerator And X-ray-source Integrated Experiment) project's compact free-electron laser. The approach of our working design is to construct eigenmodes, borrowing from the field of photonics, which yield the appropriate, highly demanding dynamics in a high-field, short wavelength accelerator. Topics discussed include transverse focusing, power coupling, bunching, and fabrication.

  10. Quasiequilibrium models for triaxially deformed rotating compact stars

    International Nuclear Information System (INIS)

    Huang Xing; Markakis, Charalampos; Sugiyama, Noriyuki; Uryu, Koji

    2008-01-01

    Quasiequilibrium models of rapidly rotating triaxially deformed stars are computed in general relativistic gravity, assuming a conformally flat spatial geometry (Isenberg-Wilson-Mathews formulation) and a polytropic equation of state. Highly deformed solutions are calculated on the initial slice covered by spherical coordinate grids, centered at the source, in all angular directions up to a large truncation radius. Constant rest mass sequences are calculated from nearly axisymmetric to maximally deformed triaxial configurations. Selected parameters are to model (proto-) neutron stars; the compactness is M/R=0.001, 0.1, 0.14, and 0.2 for polytropic index n=0.3 and M/R=0.001, 0.1, 0.12, and 0.14 for n=0.5, where M/R refers to that of a nonrotating spherical star having the same rest mass. We confirmed that the triaxial solutions exist for these parameters as in the case of Newtonian polytropes. However, it is also found that the triaxial sequences become shorter for higher compactness, and those disappear at a certain large compactness for the n=0.5 case. In the scenario of the contraction of proto-neutron stars being subject to strong viscosity and rapid cooling, it is plausible that, once the viscosity driven secular instability sets in during the contraction, the proto-neutron stars are always maximally deformed triaxial configurations, as long as the compactness and the equation of state parameters allow such triaxial sequences. Detection of gravitational waves from such sources may be used as another probe for the nuclear equation of state.

  11. Compact reversed-field pinch reactors (CRFPR)

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Miller, R.L.; Bathke, C.G.; Hagenson, R.L.; Copenhaver, C.; Werley, K.A.

    1986-01-01

    The unique confinement properties of the Reversed-Field Pinch (RFP) are exploited to examine physics and technical issues related to a compact, high-power-density fusion reactor. This resistive-coil, steady-state, toroidal device would use a dual-media power cycle driven by a fusion power core (FPC, i.e., plasma chamber, first wall, blanket, shield, and coils) with a power density and mass approaching values characteristic of pressurized-water fission rectors. A 1000-MWe(net) base case is selected from a comprehensive trade-off study to examine technological issues related to operating a high-power-density FPC. After describing the main physics and technology issues for this base-case reactor, directions for future study are suggested

  12. Compact Starburst Galaxies with Fast Outflows: Spatially Resolved Stellar Mass Profiles

    Science.gov (United States)

    Gottlieb, Sophia; Diamond-Stanic, Aleksandar; Lipscomb, Charles; Ohene, Senyo; Rines, Josh; Moustakas, John; Sell, Paul; Tremonti, Christy; Coil, Alison; Rudnick, Gregory; Hickox, Ryan C.; Geach, James; Kepley, Amanda

    2018-01-01

    Powerful galactic winds driven by stellar feedback and black hole accretion are thought to play an important role in regulating star formation in galaxies. In particular, strong stellar feedback from supernovae, stellar winds, radiation pressure, and cosmic rays is required by simulations of star-forming galaxies to prevent the vast majority of baryons from cooling and collapsing to form stars. However, it remains unclear whether these stellar processes play a significant role in expelling gas and shutting down star formation in massive progenitors of quiescent galaxies. What are the limits of stellar feedback? We present multi-band photometry with HST/WFC3 (F475W, F814W, F160W) for a dozen compact starburst galaxies at z~0.6 with half-light radii that suggest incredibly large central escape velocities. These massive galaxies are driving fast (>1000 km/s) outflows that have been previously attributed to stellar feedback associated with the compact (r~100 pc) starburst. But how compact is the stellar mass? In the context of the stellar feedback hypothesis, it is unclear whether these fast outflows are being driven at velocities comparable to the escape velocity of an incredibly dense stellar system (as predicted by some models of radiation-pressure winds) or at velocities that exceed the central escape velocity by large factor. Our spatially resolved measurements with HST show that the stellar mass is more extended than the light, and this requires that the physical mechanism responsible for driving the winds must be able to launch gas at velocities that are factors of 5-10 beyond the central escape velocity.

  13. Enhanced energy storage and pyroelectric properties of highly (100)-oriented (Pb1-x-yLaxCay)Ti1-x/4O3 thin films derived at low temperature

    Science.gov (United States)

    Zhu, Hanfei; Ma, Hongfang; Zhao, Yuyao

    2018-05-01

    Highly (100)-oriented (Pb1-x-yLaxCay)Ti1-x/4O3 (x = 0.15, y = 0.05; x = 0.1, y = 0.1; x = 0.05, y = 0.15) thin films were deposited on Pt/Ti/SiO2/Si substrates at a low temperature of 450 °C via a sol-gel route. It was found that all the (Pb1-x-yLaxCay)Ti1-x/4O3 thin films could be completely crystallized and the content of La/Ca showed a significant effect on the electrical properties of films. Among the three films, the (Pb1-x-yLaxCay)Ti1-x/4O3 (x = 0.1, y = 0.1) thin film exhibited the enhanced overall electrical properties, such as a low dielectric loss (tan ⁡ δ energy density (Wre ∼ 15 J/cm3), as well as a large pyroelectric coefficient (p ∼ 190 μC/m2K) and figure of merit (Fd‧∼ 77 μC /m2K). The findings suggest that the fabricated thin films with a good (100) orientation can be an attractive candidate for applications in Si-based energy storage and pyroelectric devices.

  14. Investigation of synthetic spider silk crystallinity and alignment via electrothermal, pyroelectric, literature XRD, and tensile techniques.

    Science.gov (United States)

    Munro, Troy; Putzeys, Tristan; Copeland, Cameron G; Xing, Changhu; Lewis, Randolph V; Ban, Heng; Glorieux, Christ; Wubbenhorst, Michael

    2017-04-01

    The processes used to create synthetic spider silk greatly affect the properties of the produced fibers. This paper investigates the effect of process variations during artificial spinning on the thermal and mechanical properties of the produced silk. Property values are also compared to the ones of the natural dragline silk of the N. clavipes spider, and to unprocessed (as-spun) synthetic silk. Structural characterization by scanning pyroelectric microscopy is employed to provide insight into the axial orientation of the crystalline regions of the fiber and is supported by XRD data. The results show that stretching and passage through liquid baths induce crystal formation and axial alignment in synthetic fibers, but with different structural organization than natural silks. Furthermore, an increase in thermal diffusivity and elastic modulus is observed with decreasing fiber diameter, trending towards properties of natural fiber. This effect seems to be related to silk fibers being subjected to a radial gradient during production.

  15. A brilliant sandwich type fluorescent nanostructure incorporating a compact quantum dot layer and versatile silica substrates.

    Science.gov (United States)

    Huang, Liang; Wu, Qiong; Wang, Jing; Foda, Mohamed; Liu, Jiawei; Cai, Kai; Han, Heyou

    2014-03-18

    A "hydrophobic layer in silica" structure was designed to integrate a compact quantum dot (QD) layer with high quantum yield into scalable silica hosts containing desired functionality. This was based on metal affinity driven assembly of hydrophobic QDs with versatile silica substrates and homogeneous encapsulation of organosilica/silica layers.

  16. Spontaneous polarization and pyroelectric effect in improper ferroelectrics-ferroelastics Gd2(MoO4)3 and Tb2(MoO4)3 at low temperature

    International Nuclear Information System (INIS)

    Matyjasik, S; Shaldin, Yu.V.

    2013-01-01

    Experimental dependencies for spontaneous polarization ΔP s (T) and pyroelectric coefficient γ s (T)for Gd 2 (MoO 4 ) 3 (GMO) and Tb 2 (MoO 4 ) 3 (TMO) reported here differs from those for intrinsic ferroelectrics. We found fundamental distinction in GMO and TMO samples behavior at their repolarization at the fixed temperatures 300 and 4.2 K. In TMO monodomainization temperature does not affect experimental data, while in GMO monodomainization at 4.2 K results in increase of ΔP s (T) by order of magnitude at 85 K and γ s (T) dependence shows well-defined anomalies, reaching a record magnitude of 3 centre dot 10 -4 C/(m 2 centre dot K) at T = 25 K. At T = 200 K the pyroelectric coefficients values are -1.45 centre dot 10 -6 C/(m 2 centre dot K) and-1.8 centre dot 10 -6 C/(m 2 centre dot K). Taking into account our data, results related to transformation of structure in (001) plane and symmetry reasons we suggested crystallographic model of GMO type improper ferroelectric. It is formed by four meso-tetrahedrons constructed of three coordination tetrahedrons MO 4 (a, b and c types). In the framework of this model we discuss the physical meaning of pseudodeviator Q 12 *, coefficient, that initiate the phase transition at T > 433 K from noncentrosymmetric phase (mm2) to another one (4-bar2m).

  17. Mouse Embryo Compaction.

    Science.gov (United States)

    White, M D; Bissiere, S; Alvarez, Y D; Plachta, N

    2016-01-01

    Compaction is a critical first morphological event in the preimplantation development of the mammalian embryo. Characterized by the transformation of the embryo from a loose cluster of spherical cells into a tightly packed mass, compaction is a key step in the establishment of the first tissue-like structures of the embryo. Although early investigation of the mechanisms driving compaction implicated changes in cell-cell adhesion, recent work has identified essential roles for cortical tension and a compaction-specific class of filopodia. During the transition from 8 to 16 cells, as the embryo is compacting, it must also make fundamental decisions regarding cell position, polarity, and fate. Understanding how these and other processes are integrated with compaction requires further investigation. Emerging imaging-based techniques that enable quantitative analysis from the level of cell-cell interactions down to the level of individual regulatory molecules will provide a greater understanding of how compaction shapes the early mammalian embryo. © 2016 Elsevier Inc. All rights reserved.

  18. Human Movement Detection and Identification Using Pyroelectric Infrared Sensors

    Directory of Open Access Journals (Sweden)

    Jaeseok Yun

    2014-05-01

    Full Text Available Pyroelectric infrared (PIR sensors are widely used as a presence trigger, but the analog output of PIR sensors depends on several other aspects, including the distance of the body from the PIR sensor, the direction and speed of movement, the body shape and gait. In this paper, we present an empirical study of human movement detection and identification using a set of PIR sensors. We have developed a data collection module having two pairs of PIR sensors orthogonally aligned and modified Fresnel lenses. We have placed three PIR-based modules in a hallway for monitoring people; one module on the ceiling; two modules on opposite walls facing each other. We have collected a data set from eight subjects when walking in three different conditions: two directions (back and forth, three distance intervals (close to one wall sensor, in the middle, close to the other wall sensor and three speed levels (slow, moderate, fast. We have used two types of feature sets: a raw data set and a reduced feature set composed of amplitude and time to peaks; and passage duration extracted from each PIR sensor. We have performed classification analysis with well-known machine learning algorithms, including instance-based learning and support vector machine. Our findings show that with the raw data set captured from a single PIR sensor of each of the three modules, we could achieve more than 92% accuracy in classifying the direction and speed of movement, the distance interval and identifying subjects. We could also achieve more than 94% accuracy in classifying the direction, speed and distance and identifying subjects using the reduced feature set extracted from two pairs of PIR sensors of each of the three modules.

  19. Experimental demonstration of a compact epithermal neutron source based on a high power laser

    Science.gov (United States)

    Mirfayzi, S. R.; Alejo, A.; Ahmed, H.; Raspino, D.; Ansell, S.; Wilson, L. A.; Armstrong, C.; Butler, N. M. H.; Clarke, R. J.; Higginson, A.; Kelleher, J.; Murphy, C. D.; Notley, M.; Rusby, D. R.; Schooneveld, E.; Borghesi, M.; McKenna, P.; Rhodes, N. J.; Neely, D.; Brenner, C. M.; Kar, S.

    2017-07-01

    Epithermal neutrons from pulsed-spallation sources have revolutionised neutron science allowing scientists to acquire new insight into the structure and properties of matter. Here, we demonstrate that laser driven fast (˜MeV) neutrons can be efficiently moderated to epithermal energies with intrinsically short burst durations. In a proof-of-principle experiment using a 100 TW laser, a significant epithermal neutron flux of the order of 105 n/sr/pulse in the energy range of 0.5-300 eV was measured, produced by a compact moderator deployed downstream of the laser-driven fast neutron source. The moderator used in the campaign was specifically designed, by the help of MCNPX simulations, for an efficient and directional moderation of the fast neutron spectrum produced by a laser driven source.

  20. Compact D-D Neutron Source-Driven Subcritical Multiplier and Beam-Shaping Assembly for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Ganda, Francesco; Vujic, Jasmina; Greenspan, Ehud; Leung, Ka-Ngo

    2010-01-01

    This work assesses the feasibility of using a small, safe, and inexpensive keff 0.98 subcritical fission assembly [subcritical neutron multiplier (SCM)] to amplify the treatment neutron beam intensity attainable from a compact deuterium-deuterium (D-D) fusion neutron source delivering [approximately]1012 n/s. The objective is to reduce the treatment time for deep-seated brain tumors to [approximately]1 h. The paper describes the optimal SCM design and two optimal beam-shaping assemblies (BSAs) - one designed to maximize the dose rate and the other designed to maximize the total dose that can be delivered to a deep-seated tumor. The neutron beam intensity amplification achieved with the optimized SCM and BSA results in an increase in the treatment dose rate by a factor of 18: from 0.56 Gy/h without the SCM to 10.1 Gy/h. The entire SCM is encased in an aluminum structure. The total amount of 20% enriched uranium required for the SCM is 8.5 kg, and the cost (not including fabrication) is estimated to be less than $60,000. The SCM power level is estimated at 400 W when driven by a 1012 n/s D-D neutron source. This translates into consumption of only [approximately]0.6% of the initially loaded 235U atoms during 50 years of continuous operation and implies that the SCM could operate continuously for the entire lifetime of the facility without refueling. Cooling the SCM does not pose a challenge; it may be accomplished by natural circulation as the maximum heat flux is only 0.034 W/cm2.

  1. Towards Product Lining Model-Driven Development Code Generators

    OpenAIRE

    Roth, Alexander; Rumpe, Bernhard

    2015-01-01

    A code generator systematically transforms compact models to detailed code. Today, code generation is regarded as an integral part of model-driven development (MDD). Despite its relevance, the development of code generators is an inherently complex task and common methodologies and architectures are lacking. Additionally, reuse and extension of existing code generators only exist on individual parts. A systematic development and reuse based on a code generator product line is still in its inf...

  2. Inverse modeling of geochemical and mechanical compaction in sedimentary basins

    Science.gov (United States)

    Colombo, Ivo; Porta, Giovanni Michele; Guadagnini, Alberto

    2015-04-01

    We study key phenomena driving the feedback between sediment compaction processes and fluid flow in stratified sedimentary basins formed through lithification of sand and clay sediments after deposition. Processes we consider are mechanic compaction of the host rock and the geochemical compaction due to quartz cementation in sandstones. Key objectives of our study include (i) the quantification of the influence of the uncertainty of the model input parameters on the model output and (ii) the application of an inverse modeling technique to field scale data. Proper accounting of the feedback between sediment compaction processes and fluid flow in the subsurface is key to quantify a wide set of environmentally and industrially relevant phenomena. These include, e.g., compaction-driven brine and/or saltwater flow at deep locations and its influence on (a) tracer concentrations observed in shallow sediments, (b) build up of fluid overpressure, (c) hydrocarbon generation and migration, (d) subsidence due to groundwater and/or hydrocarbons withdrawal, and (e) formation of ore deposits. Main processes driving the diagenesis of sediments after deposition are mechanical compaction due to overburden and precipitation/dissolution associated with reactive transport. The natural evolution of sedimentary basins is characterized by geological time scales, thus preventing direct and exhaustive measurement of the system dynamical changes. The outputs of compaction models are plagued by uncertainty because of the incomplete knowledge of the models and parameters governing diagenesis. Development of robust methodologies for inverse modeling and parameter estimation under uncertainty is therefore crucial to the quantification of natural compaction phenomena. We employ a numerical methodology based on three building blocks: (i) space-time discretization of the compaction process; (ii) representation of target output variables through a Polynomial Chaos Expansion (PCE); and (iii) model

  3. A Physical Model for Three-Phase Compaction in Silicic Magma Reservoirs

    Science.gov (United States)

    Huber, Christian; Parmigiani, Andrea

    2018-04-01

    We develop a model for phase separation in magma reservoirs containing a mixture of silicate melt, crystals, and fluids (exsolved volatiles). The interplay between the three phases controls the dynamics of phase separation and consequently the chemical and physical evolution of magma reservoirs. The model we propose is based on the two-phase damage theory approach of Bercovici et al. (2001, https://doi.org/10.1029/2000JB900430) and Bercovici and Ricard (2003, https://doi.org/10.1046/j.1365-246X.2003.01854.x) because it offers the leverage of considering interface (in the macroscopic limit) between phases that can deform depending on the mechanical work and phase changes taking place locally in the magma. Damage models also offer the advantage that pressure is defined uniquely to each phase and does not need to be equal among phases, which will enable us to consider, in future studies, the large capillary pressure at which fluids are mobilized in mature, crystal-rich, magma bodies. In this first analysis of three-phase compaction, we solve the three-phase compaction equations numerically for a simple 1-D problem where we focus on the effect of fluids on the efficiency of melt-crystal separation considering the competition between viscous and buoyancy stresses only. We contrast three sets of simulations to explore the behavior of three-phase compaction, a melt-crystal reference compaction scenario (two-phase compaction), a three-phase scenario without phase changes, and finally a three-phase scenario with a parameterized second boiling (crystallization-induced exsolution). The simulations show a dramatic difference between two-phase (melt crystals) and three-phase (melt-crystals-exsolved volatiles) compaction-driven phase separation. We find that the presence of a lighter, significantly less viscous fluid hinders melt-crystal separation.

  4. Formation of positive radial electric field by electron cyclotron heating in compact helical system

    International Nuclear Information System (INIS)

    Idei, H.; Ida, K.; Sanuki, H.

    1994-07-01

    The radial electric field is driven to positive value by off-axis second harmonic electron cyclotron heating (ECH) in the Compact Helical System. The observed positive electric field is associated with the outward particle flux enhanced with ECH. The enhanced particle flux triggered by the production of the electrons accelerated perpendicularly to the magnetic field with ECH results in the change of the electric field. (author)

  5. Radiation-driven winds in x-ray binaries

    International Nuclear Information System (INIS)

    Friend, D.B.; Castor, J.I.

    1982-01-01

    We discuss the properties of a radiation-driven stellar wind in an X-ray binary system. The Castor, Abbott, Klein line-driven wind model is used, but the effects of the compact companion (gravity and continuum radiation pressure) and the centrifugal force due to orbital motion are included. These forces destroy the spherical symmetry of the wind and can make the mass loss and accretion strong functions of the size of the primary relative to its critical potential lobe. We in most systems the wind alone could power the X-ray emission. It also appears that, in the evolution of these systems, there would be a continuous transition from wind accretion to critical potential lobe overflow. The model is also used to make a prediction about the nature of a suspected binary system which is not known to be an X-ray emitter

  6. Compact Polarimetry Potentials

    Science.gov (United States)

    Truong-Loi, My-Linh; Dubois-Fernandez, Pascale; Pottier, Eric

    2011-01-01

    The goal of this study is to show the potential of a compact-pol SAR system for vegetation applications. Compact-pol concept has been suggested to minimize the system design while maximize the information and is declined as the ?/4, ?/2 and hybrid modes. In this paper, the applications such as biomass and vegetation height estimates are first presented, then, the equivalence between compact-pol data simulated from full-pol data and compact-pol data processed from raw data as such is shown. Finally, a calibration procedure using external targets is proposed.

  7. Compaction of FGD-gypsum

    NARCIS (Netherlands)

    Stoop, B.T.J.; Larbi, J.A.; Heijnen, W.M.M.

    1996-01-01

    It is shown that it is possible to produce compacted gypsum with a low porosity and a high strength on a laboratory scale by uniaxial compaction of flue gas desulphurization (FGD-) gypsum powder. Compacted FGD-gypsum cylinders were produced at a compaction pres-sure between 50 and 500 MPa yielding

  8. (U) Influence of Compaction Model Form on Planar and Cylindrical Compaction Geometries

    Energy Technology Data Exchange (ETDEWEB)

    Fredenburg, David A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carney, Theodore Clayton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fichtl, Christopher Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ramsey, Scott D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-05

    The dynamic compaction response of CeO2 is examined within the frameworks of the Ramp and P-a compaction models. Hydrocode calculations simulating the dynamic response of CeO2 at several distinct pressures within the compaction region are investigated in both planar and cylindrically convergent geometries. Findings suggest additional validation of the compaction models is warranted under complex loading configurations.

  9. Pyroelectric field assisted ion migration induced by ultraviolet laser irradiation and its impact on ferroelectric domain inversion in lithium niobate crystals

    International Nuclear Information System (INIS)

    Ying, C. Y. J.; Mailis, S.; Daniell, G. J.; Steigerwald, H.; Soergel, E.

    2013-01-01

    The impact of UV laser irradiation on the distribution of lithium ions in ferroelectric lithium niobate single crystals has been numerically modelled. Strongly absorbed UV radiation at wavelengths of 244–305 nm produces steep temperature gradients which cause lithium ions to migrate and result in a local variation of the lithium concentration. In addition to the diffusion, here the pyroelectric effect is also taken into account which predicts a complex distribution of lithium concentration along the c-axis of the crystal: two separated lithium deficient regions on the surface and in depth. The modelling on the local lithium concentration and the subsequent variation of the coercive field are used to explain experimental results on the domain inversion of such UV treated lithium niobate crystals

  10. New applications of laser-driven neutron sources in the car industry

    International Nuclear Information System (INIS)

    Kakeno, Mitsutaka

    2015-01-01

    New applications of LDNS (Laser-Driven Neutron Sources) are described. One of them is ib-DATA (in-beam Double Activation Tracer Analysis) with which we can measure mean drift velocity and mass flow rate in a variety of fluid. In ib-DATA, LDNS with very light and compact beam-head will be constructed to shoot pulsed neutrons into the fluid in pinpoint. (author)

  11. Numerical study of multiscale compaction-initiated detonation

    Science.gov (United States)

    Gambino, J. R.; Schwendeman, D. W.; Kapila, A. K.

    2018-02-01

    A multiscale model of heterogeneous condensed-phase explosives is examined computationally to determine the course of transient events following the application of a piston-driven stimulus. The model is a modified version of that introduced by Gonthier (Combust Sci Technol 175(9):1679-1709, 2003. https://doi.org/10.1080/00102200302373) in which the explosive is treated as a porous, compacting medium at the macro-scale and a collection of closely packed spherical grains capable of undergoing reaction and diffusive heat transfer at the meso-scale. A separate continuum description is ascribed to each scale, and the two scales are coupled together in an energetically consistent manner. Following piston-induced compaction, localized energy deposition at the sites of intergranular contact creates hot spots where reaction begins preferentially. Reaction progress at the macro-scale is determined by the spatial average of that at the grain scale. A parametric study shows that combustion at the macro-scale produces an unsteady detonation with a cyclical character, in which the lead shock loses strength and is overtaken by a stronger secondary shock generated in the partially reacted material behind it. The secondary shock in turn becomes the new lead shock and the process repeats itself.

  12. Advances in pulsed-power-driven radiography system design

    International Nuclear Information System (INIS)

    Portillo, Salvador; Hinshelwood, David D.; Rovang, Dean Curtis; Cordova, Steve Ray; Oliver, Bryan Velten; Weber, Bruce V.; Welch, Dale Robert; Shelton, Bradley Allen; Sceiford, Matthew E.; Cooperstein, Gerald; Gignac, Raymond Edward; Puetz, Elizabeth A.; Rose, David Vincent; Barker, Dennis L.; Van De Valde, David M.; Droemer, Darryl W.; Wilkins, Frank Lee; Molina, Isidro; Jaramillo, Deanna M.; Swanekamp, Stephen Brian; Commisso, Robert J.; Bailey, Vernon Leslie; Maenchen, John Eric; Johnson, David Lee; Griffin, Fawn A.; Hahn, Kelly Denise; Smith, Ian

    2004-01-01

    Flash x-ray radiography has undergone a transformation in recent years with the resurgence of interest in compact, high intensity pulsed-power-driven electron beam sources. The radiographic requirements and the choice of a consistent x-ray source determine the accelerator parameters, which can be met by demonstrated Induction Voltage Adder technologies. This paper reviews the state of the art and the recent advances which have improved performance by over an order of magnitude in beam brightness and radiographic utility.

  13. Magnetic structure driven ferroelectricity and large magnetoelectric coupling in antiferromagnet Co4Nb2O9

    Science.gov (United States)

    Srivastava, P.; Chaudhary, S.; Maurya, V.; Saha, J.; Kaushik, S. D.; Siruguri, V.; Patnaik, S.

    2018-05-01

    Synthesis and extensive structural, pyroelectric, magnetic, dielectric and magneto-electric characterizations are reported for polycrystalline Co4Nb2O9 towards unraveling the multiferroic ground state. Magnetic measurements confirm that Co4Nb2O9 becomes an anti-ferromagnet at around 28 K. Associated with the magnetic phase transition, a sharp peak in pyroelectric current indicates the appearance of strong magneto-electric coupling below Neel temperature (TN) along with large coupling constant upto 17.8 μC/m2T. Using temperature oscillation technique, we establish Co4Nb2O9 to be a genuine multiferroic with spontaneous electric polarization in the anti-ferromagnetic state in the absence of magnetic field poling. This is in agreement with our low temperature neutron diffraction studies that show the magnetic structure of Co4Nb2O9 to be that of a non-collinear anti-ferromagnet with ferroelectric ground state.

  14. Accelerator-driven X-ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-09

    After an introduction which mentions x-ray tubes and storage rings and gives a brief review of special relativity, the subject is treated under the following topics and subtopics: synchrotron radiation (bending magnet radiation, wiggler radiation, undulator radiation, brightness and brilliance definition, synchrotron radiation facilities), x-ray free-electron lasers (linac-driven X-ray FEL, FEL interactions, self-amplified spontaneous emission (SASE), SASE self-seeding, fourth-generation light source facilities), and other X-ray sources (energy recovery linacs, Inverse Compton scattering, laser wakefield accelerator driven X-ray sources. In summary, accelerator-based light sources cover the entire electromagnetic spectrum. Synchrotron radiation (bending magnet, wiggler and undulator radiation) has unique properties that can be tailored to the users’ needs: bending magnet and wiggler radiation is broadband, undulator radiation has narrow spectral lines. X-ray FELs are the brightest coherent X-ray sources with high photon flux, femtosecond pulses, full transverse coherence, partial temporal coherence (SASE), and narrow spectral lines with seeding techniques. New developments in electron accelerators and radiation production can potentially lead to more compact sources of coherent X-rays.

  15. Diffusion through statically compacted clay

    International Nuclear Information System (INIS)

    Ho, C.L.; Shebl, M.A.A.

    1994-01-01

    This paper presents experimental work on the effect of compaction on contaminant flow through clay liners. The experimental program included evaluation of soil properties, compaction, permeability and solute diffusion. A permeameter was built of non reactive materials to test samples compacted at different water contents and compactive efforts. The flow of a permeating solute, LiCl, was monitored. Effluent samples were collected for solute concentration measurements. The concentrations were measured by performing atomic adsorption tests. The analyzed results showed different diffusion characteristics when compaction conditions changed. At each compactive effort, permeability decreased as molding water content increased. Consequently, transit time (measured at relative concentration 50%) increased and diffusivity decreased. As compactive effort increased for soils compacted dry of optimum, permeability and diffusion decreased. On the other hand, as compactive effort increased for soils compacted wet of optimum, permeability and diffusivity increased. Tortuosity factor was indirectly measured from the diffusion and retardation rate. Tortuosity factor also decreased as placement water content was increased from dry of optimum to wet of optimum. Then decreases were more pronounced for low compactive effort tests. 27 refs., 7 figs., 5 tabs

  16. Self-Compacting Concrete

    OpenAIRE

    Okamura, Hajime; Ouchi, Masahiro

    2003-01-01

    Self-compacting concrete was first developed in 1988 to achieve durable concrete structures. Since then, various investigations have been carried out and this type of concrete has been used in practical structures in Japan, mainly by large construction companies. Investigations for establishing a rational mix-design method and self-compactability testing methods have been carried out from the viewpoint of making self-compacting concrete a standard concrete.

  17. Compaction of Ti–6Al–4V powder using high velocity compaction technique

    International Nuclear Information System (INIS)

    Khan, Dil Faraz; Yin, Haiqing; Li, He; Qu, Xuanhui; Khan, Matiullah; Ali, Shujaat; Iqbal, M. Zubair

    2013-01-01

    Highlights: • We compacted Ti–6Al–4V powder by HVC technique. • As impact force rises up, the green density of the compacts increases gradually. • At impact force 1.857 kN relative sintered density of the compacts reaches 99.88%. • Spring back of the green compact’s decreases gradually with increasing impact force. • Mechanical properties of the samples increases with increasing impact force. - Abstract: High velocity compaction technique was applied to the compaction of pre-alloyed, hydride–dehydride Ti–6Al–4V powder. The powder was pressed in single stroke with a compaction speed of 7.10–8.70 ms −1 . When the speed was 8.70 ms −1 , the relative density of the compacts reaches up to 85.89% with a green density of 3.831 g cm −3 . The green samples were sintered at 1300 °C in Ar-gas atmosphere. Scanning electron microscope (SEM) was used to examine the surface of the sintered samples. Density and mechanical properties such as Vickers micro hardness and bending strength of the powder samples were investigated. Experimental results indicated that with the increase in impact force, the density and mechanical properties of the compacts increased. The sintered compacts exhibited a maximum relative density of 99.88% with a sintered density of 4.415 g cm −3 , hardness of 364–483 HV and the bending strength in the range of 103–126.78 MPa. The springback of the compacts decreased with increasing impact force

  18. Sobolev Spaces on Locally Compact Abelian Groups: Compact Embeddings and Local Spaces

    Directory of Open Access Journals (Sweden)

    Przemysław Górka

    2014-01-01

    Full Text Available We continue our research on Sobolev spaces on locally compact abelian (LCA groups motivated by our work on equations with infinitely many derivatives of interest for string theory and cosmology. In this paper, we focus on compact embedding results and we prove an analog for LCA groups of the classical Rellich lemma and of the Rellich-Kondrachov compactness theorem. Furthermore, we introduce Sobolev spaces on subsets of LCA groups and study its main properties, including the existence of compact embeddings into Lp-spaces.

  19. Stabilization of compactible waste

    International Nuclear Information System (INIS)

    Franz, E.M.; Heiser, J.H. III; Colombo, P.

    1990-09-01

    This report summarizes the results of series of experiments performed to determine the feasibility of stabilizing compacted or compactible waste with polymers. The need for this work arose from problems encountered at disposal sites attributed to the instability of this waste in disposal. These studies are part of an experimental program conducted at Brookhaven National Laboratory (BNL) investigating methods for the improved solidification/stabilization of DOE low-level wastes. The approach taken in this study was to perform a series of survey type experiments using various polymerization systems to find the most economical and practical method for further in-depth studies. Compactible dry bulk waste was stabilized with two different monomer systems: styrene-trimethylolpropane trimethacrylate (TMPTMA) and polyester-styrene, in laboratory-scale experiments. Stabilization was accomplished by wetting or soaking compactible waste (before or after compaction) with monomers, which were subsequently polymerized. Three stabilization methods are described. One involves the in-situ treatment of compacted waste with monomers in which a vacuum technique is used to introduce the binder into the waste. The second method involves the alternate placement and compaction of waste and binder into a disposal container. In the third method, the waste is treated before compaction by wetting the waste with the binder using a spraying technique. A series of samples stabilized at various binder-to-waste ratios were evaluated through water immersion and compression testing. Full-scale studies were conducted by stabilizing two 55-gallon drums of real compacted waste. The results of this preliminary study indicate that the integrity of compacted waste forms can be readily improved to ensure their long-term durability in disposal environments. 9 refs., 10 figs., 2 tabs

  20. Magnetohydodynamics stability of compact stellarators

    International Nuclear Information System (INIS)

    Fu, G.Y.; Ku, L.P.; Cooper, W.A.; Hirshman, S.H.

    2000-01-01

    Recent stability results of external kink modes and vertical modes in compact stellarators are presented. The vertical mode is found to be stabilized by externally generated poloidal flux. A simple stability criterion is derived in the limit of large aspect ratio and constant current density. For a wall at infinite distance from the plasma, the amount of external flux needed for stabilization is given by Fi = (k2 minus k)=(k2 + 1), where k is the axisymmetric elongation and Fi is the fraction of the external rotational transform. A systematic parameter study shows that the external kink mode in QAS can be stabilized at high beta (approximately 5%) without a conducting wall by magnetic shear via 3D shaping. It is found that external kinks are driven by both parallel current and pressure gradient. The pressure contributes significantly to the overall drive through the curvature term and the Pfirsch-Schluter current

  1. EVIDENCE FOR (AND AGAINST) PROGENITOR BIAS IN THE SIZE GROWTH OF COMPACT RED GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Keating, Stephanie K.; Abraham, Roberto G. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Schiavon, Ricardo [Gemini Observatory, 670 North A' ohoku Place, Hilo, HI 96720 (United States); Graves, Genevieve [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Damjanov, Ivana [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Yan, Renbin [Department of Physics and Astronomy, University of Kentucky, 505 Rose Street, Lexington, KY 40506-0055 (United States); Newman, Jeffrey [Department of Physics and Astronomy, University of Pittsburgh, 3941 O' Hara Street, Pittsburgh, PA 15260 (United States); Simard, Luc [National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada)

    2015-01-01

    Most massive, passive galaxies are compact at high redshifts, but similarly compact massive galaxies are rare in the local universe. The most common interpretation of this phenomenon is that massive galaxies have grown in size by a factor of about five since redshift z = 2. An alternative explanation is that recently quenched massive galaxies are larger (a {sup p}rogenitor bias{sup )}. In this paper, we explore the importance of progenitor bias by looking for systematic differences in the stellar populations of compact early-type galaxies in the DEEP2 survey as a function of size. Our analysis is based on applying the statistical technique of bootstrap resampling to constrain differences in the median ages of our samples and to begin to characterize the distribution of stellar populations in our co-added spectra. The light-weighted ages of compact early-type galaxies at redshifts 0.5 < z < 1.4 are compared to those of a control sample of larger galaxies at similar redshifts. We find that massive compact early-type galaxies selected on the basis of red color and high bulge-to-total ratio are younger than similarly selected larger galaxies, suggesting that size growth in these objects is not driven mainly by progenitor bias, and that individual galaxies grow as their stellar populations age. However, compact early-type galaxies selected on the basis of image smoothness and high bulge-to-total ratio are older than a control sample of larger galaxies. Progenitor bias will play a significant role in defining the apparent size changes of early-type galaxies if they are selected on the basis of the smoothness of their light distributions.

  2. Uniaxial backfill block compaction

    International Nuclear Information System (INIS)

    Koskinen, V.

    2012-05-01

    The main parts of the project were: to make a literature survey of the previous uniaxial compaction experiments; do uniaxial compaction tests in laboratory scale; and do industrial scale production tests. Object of the project was to sort out the different factors affecting the quality assurance chain of the backfill block uniaxial production and solve a material sticking to mould problem which appeared during manufacturing the blocks of bentonite and cruched rock mixture. The effect of mineralogical and chemical composition on the long term functionality of the backfill was excluded from the project. However, the used smectite-rich clays have been tested for mineralogical consistency. These tests were done in B and Tech OY according their SOPs. The objective of the Laboratory scale tests was to find right material- and compaction parameters for the industrial scale tests. Direct comparison between the laboratory scale tests and industrial scale tests is not possible because the mould geometry and compaction speed has a big influence for the compaction process. For this reason the selected material parameters were also affected by the previous compaction experiments. The industrial scale tests were done in summer of 2010 in southern Sweden. Blocks were done with uniaxial compaction. A 40 tons of the mixture of bentonite and crushed rock blocks and almost 50 tons of Friedland-clay blocks were compacted. (orig.)

  3. Characterization of ceramic powder compacts

    International Nuclear Information System (INIS)

    Yanai, K.; Ishimoto, S.; Kubo, T.; Ito, K.; Ishikawa, T.; Hayashi, H.

    1995-01-01

    UO 2 and Al 2 O 3 powder packing structures in cylindrical powder compacts are observed by scanning electron microscopy using polished cross sections of compacts fixed by low viscosity epoxy resin. Hard aggregates which are not destroyed during powder compaction are observed in some of the UO 2 powder compacts. A technique to measure local density in powder compacts is developed based on counting characteristic X-ray intensity by energy dispersive X-ray analysis (EDX). The local density of the corner portion of the powder compact fabricated by double-acting dry press is higher than that of the inner portion. ((orig.))

  4. MECHANICS OF DYNAMIC POWDER COMPACTION PROCESS

    OpenAIRE

    Nurettin YAVUZ

    1996-01-01

    In recent years, interest in dynamic compaction methods of metal powders has increased due to the need to improve compaction properties and to increase production rates of compacts. In this paper, review of dynamic and explosive compaction of metal powders are given. An attempt is made to get a better understanding of the compaction process with the mechanicis of powder compaction.

  5. The configuration-driven table CI method and comparison with integral-driven CI procedures

    International Nuclear Information System (INIS)

    Buenker, R.J.

    1980-01-01

    A new configuration-driven CI algorithm is outlined which eliminates the need for explicit comparison of pairs of Slater determinants through the use of a series of compact tables. In this scheme each pair of configurations is either shown to be non-interacting or to fall into one of nine cases, each of which is characterized fully once certain orbital permutations are determined. The program is divided into three parts: a case structure analysis step including integral label generation, a sort of the required electron repulsion integrals, and finally a procedure in which the foregoing information is combined with tabulated directions for the evaluation of the necessary Hamiltonian matrix elements over spin-adapted functions. Timing improvements of up to more than a factor of four have been achieved with the new algorithm

  6. Clastic compaction unit classification based on clay content and integrated compaction recovery using well and seismic data

    Directory of Open Access Journals (Sweden)

    Zhong Hong

    2016-11-01

    Full Text Available Abstract Compaction correction is a key part of paleo-geomorphic recovery methods. Yet, the influence of lithology on the porosity evolution is not usually taken into account. Present methods merely classify the lithologies as sandstone and mudstone to undertake separate porosity-depth compaction modeling. However, using just two lithologies is an oversimplification that cannot represent the compaction history. In such schemes, the precision of the compaction recovery is inadequate. To improve the precision of compaction recovery, a depth compaction model has been proposed that involves both porosity and clay content. A clastic lithological compaction unit classification method, based on clay content, has been designed to identify lithological boundaries and establish sets of compaction units. Also, on the basis of the clastic compaction unit classification, two methods of compaction recovery that integrate well and seismic data are employed to extrapolate well-based compaction information outward along seismic lines and recover the paleo-topography of the clastic strata in the region. The examples presented here show that a better understanding of paleo-geomorphology can be gained by applying the proposed compaction recovery technology.

  7. The diverse evolutionary paths of simulated high-z massive, compact galaxies to z = 0

    Science.gov (United States)

    Wellons, Sarah; Torrey, Paul; Ma, Chung-Pei; Rodriguez-Gomez, Vicente; Pillepich, Annalisa; Nelson, Dylan; Genel, Shy; Vogelsberger, Mark; Hernquist, Lars

    2016-02-01

    Massive quiescent galaxies have much smaller physical sizes at high redshift than today. The strong evolution of galaxy size may be caused by progenitor bias, major and minor mergers, adiabatic expansion, and/or renewed star formation, but it is difficult to test these theories observationally. Herein, we select a sample of 35 massive, compact galaxies (M* = 1-3 × 1011 M⊙, M*/R1.5 > 1010.5 M⊙/kpc1.5) at z = 2 in the cosmological hydrodynamical simulation Illustris and trace them forwards to z = 0 to uncover their evolution and identify their descendants. By z = 0, the original factor of 3 difference in stellar mass spreads to a factor of 20. The dark matter halo masses similarly spread from a factor of 5 to 40. The galaxies' evolutionary paths are diverse: about half acquire an ex situ envelope and are the core of a more massive descendant, a third survive undisturbed and gain very little mass, 15 per cent are consumed in a merger with a more massive galaxy, and a small remainder are thoroughly mixed by major mergers. The galaxies grow in size as well as mass, and only ˜10 per cent remain compact by z = 0. The majority of the size growth is driven by the acquisition of ex situ mass. The most massive galaxies at z = 0 are the most likely to have compact progenitors, but this trend possesses significant dispersion which precludes a direct linkage to compact galaxies at z = 2. The compact galaxies' merger rates are influenced by their z = 2 environments, so that isolated or satellite compact galaxies (which are protected from mergers) are the most likely to survive to the present day.

  8. Development task of compact reactor

    International Nuclear Information System (INIS)

    Kurushima, Morihiro

    1982-01-01

    In the Ministry of International Trade and Industry, studies proceed on the usage of compact medium and small LWRs. As such, the reactors from 100 to 200 MW may meet varieties of demands in scale and kind in view of the saving of petroleum and the economy of nuclear power. In this case, the technology of light water reactors with already established safety will be suitable for the development of compact reactors. The concept of ''nuclear power community'' using the compact reactors in local society and industrial zones was investigated. The following matters are described: need for the introduction of compact reactors, the survey on the compact reactor systems, and the present status and future problems for compact reactor usage. (J.P.N.)

  9. Roll and roll-to-roll process scaling through development of a compact flexo unit for printing of back electrodes

    DEFF Research Database (Denmark)

    Dam, Henrik Friis; Andersen, Thomas Rieks; Madsen, Morten Vesterager

    2015-01-01

    some of the most critical steps in the scaling process. We describe the development of such a machine that comprise web guiding, tension control and surface treatment in a compact desk size that is easily moved around and also detail the development of a small cassette based flexographic unit for back...... electrode printing that is parsimonious in terms of ink usage and more gentle than laboratory scale flexo units where the foil transport is either driven by the flexo unit or the flexo unit is driven by the foil transport. We demonstrate fully operational flexible polymer solar cell manufacture using...

  10. A compact x-ray free electron laser

    International Nuclear Information System (INIS)

    Barletta, W.; Attac, M.; Cline, D.B.

    1988-01-01

    We present a design concept and simulation of the performance of a compact x-ray, free electron laser driven by ultra-high gradient rf-linacs. The accelerator design is based on recent advances in high gradient technology by a LLNL/SLAC/LBL collaboration and on the development of bright, high current electron sources by BNL and LANL. The GeV electron beams generated with such accelerators can be concerted to soft x-rays in the range from 2--10 nm by passage through short period, high fields strength wigglers as are being designed at Rocketdyne. Linear light sources of this type can produce trains of picosecond (or shorter) pulses of extremely high spectral brilliance suitable for flash holography of biological specimens in vivo and for studies of fast chemical reactions. 12 refs., 8 figs., 4 tabs

  11. Compaction dynamics of crunchy granular material

    Directory of Open Access Journals (Sweden)

    Guillard François

    2017-01-01

    Full Text Available Compaction of brittle porous material leads to a wide variety of densification patterns. Static compaction bands occurs naturally in rocks or bones, and have important consequences in industry for the manufacturing of powder tablets or metallic foams for example. Recently, oscillatory compaction bands have been observed in brittle porous media like snow or cereals. We will discuss the great variety of densification patterns arising during the compaction of puffed rice, including erratic compaction at low velocity, one or several travelling compaction bands at medium velocity and homogeneous compaction at larger velocity. The conditions of existence of each pattern are studied thanks to a numerical spring lattice model undergoing breakage and is mapped to the phase diagram of the patterns based on dimensionless characteristic quantities. This also allows to rationalise the evolution of the compaction behaviour during a single test. Finally, the localisation of compaction bands is linked to the strain rate sensitivity of the material.

  12. Compaction dynamics of crunchy granular material

    Science.gov (United States)

    Guillard, François; Golshan, Pouya; Shen, Luming; Valdès, Julio R.; Einav, Itai

    2017-06-01

    Compaction of brittle porous material leads to a wide variety of densification patterns. Static compaction bands occurs naturally in rocks or bones, and have important consequences in industry for the manufacturing of powder tablets or metallic foams for example. Recently, oscillatory compaction bands have been observed in brittle porous media like snow or cereals. We will discuss the great variety of densification patterns arising during the compaction of puffed rice, including erratic compaction at low velocity, one or several travelling compaction bands at medium velocity and homogeneous compaction at larger velocity. The conditions of existence of each pattern are studied thanks to a numerical spring lattice model undergoing breakage and is mapped to the phase diagram of the patterns based on dimensionless characteristic quantities. This also allows to rationalise the evolution of the compaction behaviour during a single test. Finally, the localisation of compaction bands is linked to the strain rate sensitivity of the material.

  13. Summary of Self-compacting Concrete Workability

    OpenAIRE

    GUO Gui-xiang; Duan Hong-jun

    2015-01-01

    On the basis of a large number of domestic and foreign literature, situation and development of self-compacting concrete is introduced. Summary of the compacting theory of self-compacting concrete. And some of the factors affecting the workability of self-compacting concrete were discussed and summarized to a certain extent. Aims to further promote the application and research of self-compacting concrete

  14. Model Compaction Equation

    African Journals Online (AJOL)

    The currently proposed model compaction equation was derived from data sourced from the. Niger Delta and it relates porosity to depth for sandstones under hydrostatic pressure condition. The equation is useful in predicting porosity and compaction trend in hydrostatic sands of the. Niger Delta. GEOLOGICAL SETTING OF ...

  15. Urban sprawl and miles driven daily by teenagers in the United States.

    Science.gov (United States)

    Trowbridge, Matthew J; McDonald, Noreen C

    2008-03-01

    Urban sprawl's association with increased automobile reliance and daily mileage is well established among adults. However, sprawl's specific impact on teen driving exposure is unknown. Teen driver fatality rates per mile driven are significantly higher than adults, making the identification of environmental influences on travel behavior particularly important in this age group. Driving and demographic data for 4528 teens (weighted=10.5 million) aged 16-19 years were obtained from the 2001 National Household Transportation Survey (NHTS). County-level sprawl was measured using an index developed by Ewing et al. The association between daily miles driven by teens and sprawl, controlling for demographic characteristics, was modeled using ordinal logistic regression. The predicted probability of driving >20 miles in counties with varying degrees of sprawl also was calculated. Of the surveyed teens, 48% did not drive, 27% drove 20 miles/day. Of the 52% of teens who reported driving, the average distance driven was 15.6 miles/day. More-pronounced sprawl was associated with increased daily mileage (psprawling counties were more than twice as likely to drive >20 miles/day than teens in compact counties. This trend was most prominent among the youngest drivers. For example, the predicted probability of boys aged 16-17 years driving >20 miles per day varied from 9% to 24% in compact versus sprawling counties. Sprawl is associated with increased daily mileage by teen drivers. Given the stark relationship between driving exposure and fatality risk among teens, increased efforts to understand and modify the effects of sprawl on adolescent driving behavior are necessary.

  16. Compact Printed Arrays with Embedded Coupling Mitigation for Energy-Efficient Wireless Sensor Networking

    Directory of Open Access Journals (Sweden)

    Constantine G. Kakoyiannis

    2010-01-01

    Full Text Available Wireless sensors emerged as narrowband, resource-constrained devices to provide monitoring services over a wide life span. Future applications of sensor networks are multimedia-driven and include sensor mobility. Thus, sensors must combine small size, large bandwidth, and diversity capabilities. Compact arrays, offering transmit/receive diversity, suffer from strong mutual coupling (MC, which causes lower antenna efficiency, loss of bandwidth, and signal correlation. An efficient technique to reduce coupling in compact arrays is described herein: a defect was inserted in the ground plane (GNDP area between each pair of elements. The defect disturbed the GNDP currents and offered multidecibel coupling suppression, bandwidth recovery, and reduction of in-band correlation. Minimal pattern distortion was estimated. Computational results were supported by measurements. The bandwidth of unloaded arrays degraded gracefully from 38% to 28% with decreasing interelement distance (0.25 to 0.10. Defect-loaded arrays exhibited active impedance bandwidths 37–45%, respectively. Measured coupling was reduced by 15–20 dB.

  17. 3D Numerical Study of Velocity Profiles and Thermal Mixing in Passive, Infrared Suppression Devices for Gas Turbine Engine Driven Generators

    National Research Council Canada - National Science Library

    Blackwell, Neal E

    2002-01-01

    ...) suppression device for exhaust ducting. The results, for a gas turbine driven generator, yield a novel design that is more compact and allows for shorter duct lengths, hence enabling associated camouflage netting to be lower in height...

  18. Pharmaceutical powder compaction technology

    National Research Council Canada - National Science Library

    Çelik, Metin

    2011-01-01

    ... through the compaction formulation process and application. Compaction of powder constituents both active ingredient and excipients is examined to ensure consistent and reproducible disintegration and dispersion profiles...

  19. Compact wire array sources: power scaling and implosion physics.

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, Jason Dimitri; Chuvatin, Alexander S. (Laboratoire du Centre National de la Recherche Scientifique Ecole Polytechnique, Palaiseau, France); Jones, M. C.; Vesey, Roger Alan; Waisman, Eduardo M.; Ivanov, V. V. (University of Nevada - Reno, Reno, NV); Esaulov, Andrey A. (University of Nevada - Reno, Reno, NV); Ampleford, David J.; Cuneo, Michael Edward; Kantsyrev, Victor Leonidovich (University of Nevada - Reno, Reno, NV); Coverdale, Christine Anne; Rudakov, L. I. (Icarus Research, Bethesda, MD); Jones, Brent Manley; Safronova, Alla S. (University of Nevada - Reno, Reno, NV); Vigil, Marcelino Patricio

    2008-09-01

    A series of ten shots were performed on the Saturn generator in short pulse mode in order to study planar and small-diameter cylindrical tungsten wire arrays at {approx}5 MA current levels and 50-60 ns implosion times as candidates for compact z-pinch radiation sources. A new vacuum hohlraum configuration has been proposed in which multiple z pinches are driven in parallel by a pulsed power generator. Each pinch resides in a separate return current cage, serving also as a primary hohlraum. A collection of such radiation sources surround a compact secondary hohlraum, which may potentially provide an attractive Planckian radiation source or house an inertial confinement fusion fuel capsule. Prior to studying this concept experimentally or numerically, advanced compact wire array loads must be developed and their scaling behavior understood. The 2008 Saturn planar array experiments extend the data set presented in Ref. [1], which studied planar arrays at {approx}3 MA, 100 ns in Saturn long pulse mode. Planar wire array power and yield scaling studies now include current levels directly applicable to multi-pinch experiments that could be performed on the 25 MA Z machine. A maximum total x-ray power of 15 TW (250 kJ in the main pulse, 330 kJ total yield) was observed with a 12-mm-wide planar array at 5.3 MA, 52 ns. The full data set indicates power scaling that is sub-quadratic with load current, while total and main pulse yields are closer to quadratic; these trends are similar to observations of compact cylindrical tungsten arrays on Z. We continue the investigation of energy coupling in these short pulse Saturn experiments using zero-dimensional-type implosion modeling and pinhole imaging, indicating 16 cm/?s implosion velocity in a 12-mm-wide array. The same phenomena of significant trailing mass and evidence for resistive heating are observed at 5 MA as at 3 MA. 17 kJ of Al K-shell radiation was obtained in one Al planar array fielded at 5.5 MA, 57 ns and we

  20. Anisotropic Material Behavior of Uni-axially Compacted Graphite Matrix for HTGR Fuel Compact Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Woo; Yeo, Seunghwan; Yoon, Ji-Hae; Cho, Moon Sung [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In developing the fuel compact fabrication technology, and fuel graphite material to meet the required material properties, it is essential to investigate the relationship among the process parameters of the matrix graphite powder preparation, the fabrication parameters of fuel element green compact and the heat treatments conditions and the material properties of fuel element. It was observed, during this development, that the pressing technique employed for the compaction fabrication prior to the two successive heat treatments (carbonization and final high temperature heat treatment) was of extreme importance in determining the material properties of the final compact product. In this work, the material behavior of the uni-axially pressed graphite matrix during the carbonization and final heat treatment are evaluated and summarized along the different directions, viz., perpendicular and parallel directions to pressing direction. In this work, the dimensional variations and variations in thermal expansion, thermal conductivity and Vickers hardness of the graphite matrix compact samples in the axial and radial directions prepared by uni-axial pressing are evaluated, and compared with those of samples prepared by cold isostatic pressing with the available data. From this work, the followings are observed. 1) Dimensional changes of matrix graphite green compacts during carbonization show that the difference in radial and axial variations shows a large anisotropic behavior in shrinkage. The radial variation is very small while the axial variation is large. During carbonization, the stresses caused by the force would be released in to the axial direction together with the phenolic resin vapor. 2) Dimensional variation of compact samples in perpendicular and parallel directions during carbonization shows a large difference in behavior when compact sample is prepared by uni-axial pressing. However, when compact sample is prepared by cold isostatic pressing, there is

  1. Anisotropic Material Behavior of Uni-axially Compacted Graphite Matrix for HTGR Fuel Compact Fabrication

    International Nuclear Information System (INIS)

    Lee, Young-Woo; Yeo, Seunghwan; Yoon, Ji-Hae; Cho, Moon Sung

    2016-01-01

    In developing the fuel compact fabrication technology, and fuel graphite material to meet the required material properties, it is essential to investigate the relationship among the process parameters of the matrix graphite powder preparation, the fabrication parameters of fuel element green compact and the heat treatments conditions and the material properties of fuel element. It was observed, during this development, that the pressing technique employed for the compaction fabrication prior to the two successive heat treatments (carbonization and final high temperature heat treatment) was of extreme importance in determining the material properties of the final compact product. In this work, the material behavior of the uni-axially pressed graphite matrix during the carbonization and final heat treatment are evaluated and summarized along the different directions, viz., perpendicular and parallel directions to pressing direction. In this work, the dimensional variations and variations in thermal expansion, thermal conductivity and Vickers hardness of the graphite matrix compact samples in the axial and radial directions prepared by uni-axial pressing are evaluated, and compared with those of samples prepared by cold isostatic pressing with the available data. From this work, the followings are observed. 1) Dimensional changes of matrix graphite green compacts during carbonization show that the difference in radial and axial variations shows a large anisotropic behavior in shrinkage. The radial variation is very small while the axial variation is large. During carbonization, the stresses caused by the force would be released in to the axial direction together with the phenolic resin vapor. 2) Dimensional variation of compact samples in perpendicular and parallel directions during carbonization shows a large difference in behavior when compact sample is prepared by uni-axial pressing. However, when compact sample is prepared by cold isostatic pressing, there is

  2. Weakly compact operators and interpolation

    OpenAIRE

    Maligranda, Lech

    1992-01-01

    The class of weakly compact operators is, as well as the class of compact operators, a fundamental operator ideal. They were investigated strongly in the last twenty years. In this survey, we have collected and ordered some of this (partly very new) knowledge. We have also included some comments, remarks and examples. The class of weakly compact operators is, as well as the class of compact operators, a fundamental operator ideal. They were investigated strongly in the last twenty years. I...

  3. Scalable, Economical Fabrication Processes for Ultra-Compact Warm-White LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Lowes, Ted [Cree, Inc., Durham, NC (United States)

    2016-01-31

    Conventional warm-white LED component fabrication consists of a large number of sequential steps which are required to incorporate electrical, mechanical, and optical functionality into the component. Each of these steps presents cost and yield challenges which multiply throughout the entire process. Although there has been significant progress in LED fabrication over the last decade, significant advances are needed to enable further reductions in cost per lumen while not sacrificing efficacy or color quality. Cree conducted a focused 18-month program to develop a new low-cost, high-efficiency light emitting diode (LED) architecture enabled by novel large-area parallel processing technologies, reduced number of fabrication steps, and minimized raw materials use. This new scheme is expected to enable ultra-compact LED components exhibiting simultaneously high efficacy and high color quality. By the end of the program, Cree fabricated warm-white LEDs with a room-temperature “instant on” efficacy of >135 lm/W at ~3500K and 90 CRI (when driven at the DOE baseline current density of 35 A/cm2). Cree modified the conventional LED fabrication process flow in a manner that is expected to translate into simultaneously high throughput and yield for ultra-compact packages. Building on its deep expertise in LED wafer fabrication, Cree developed these ultra-compact LEDs to have no compromises in color quality or efficacy compared to their conventional counterparts. Despite their very small size, the LEDs will also be robustly electrically integrated into luminaire systems with the same attach yield as conventional packages. The versatility of the prototype high-efficacy LED architecture will likely benefit solid-state lighting (SSL) luminaire platforms ranging from bulbs to troffers. We anticipate that the prototype LEDs will particularly benefit luminaires with large numbers of distributed compact packages, such as linear and area luminaires (e.g. troffers). The fraction of

  4. Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas.

    Science.gov (United States)

    Gotchev, O V; Knauer, J P; Chang, P Y; Jang, N W; Shoup, M J; Meyerhofer, D D; Betti, R

    2009-04-01

    A compact, self-contained magnetic-seed-field generator (5 to 16 T) is the enabling technology for a novel laser-driven flux-compression scheme in laser-driven targets. A magnetized target is directly irradiated by a kilojoule or megajoule laser to compress the preseeded magnetic field to thousands of teslas. A fast (300 ns), 80 kA current pulse delivered by a portable pulsed-power system is discharged into a low-mass coil that surrounds the laser target. A >15 T target field has been demonstrated using a hot spot of a compressed target. This can lead to the ignition of massive shells imploded with low velocity-a way of reaching higher gains than is possible with conventional ICF.

  5. The Entropy of Co-Compact Open Covers

    Directory of Open Access Journals (Sweden)

    Steven Bourquin

    2013-06-01

    Full Text Available Co-compact entropy is introduced as an invariant of topological conjugation for perfect mappings defined on any Hausdorff space (compactness and metrizability are not necessarily required. This is achieved through the consideration of co-compact covers of the space. The advantages of co-compact entropy include: (1 it does not require the space to be compact and, thus, generalizes Adler, Konheim and McAndrew’s topological entropy of continuous mappings on compact dynamical systems; and (2 it is an invariant of topological conjugation, compared to Bowen’s entropy, which is metric-dependent. Other properties of co-compact entropy are investigated, e.g., the co-compact entropy of a subsystem does not exceed that of the whole system. For the linear system, (R; f, defined by f(x = 2x, the co-compact entropy is zero, while Bowen’s entropy for this system is at least log 2. More generally, it is found that co-compact entropy is a lower bound of Bowen’s entropies, and the proof of this result also generates the Lebesgue Covering Theorem to co-compact open covers of non-compact metric spaces.

  6. Stability and instability of axisymmetric droplets in thermocapillary-driven thin films

    Science.gov (United States)

    Nicolaou, Zachary G.

    2018-03-01

    The stability of compactly supported, axisymmetric droplet states is considered for driven thin viscous films evolving on two-dimensional surfaces. Stability is assessed using Lyapunov energy methods afforded by the Cahn-Hilliard variational form of the governing equation. For general driving forces, a criterion on the gradient of profiles at the boundary of their support (their contact slope) is shown to be a necessary condition for stability. Additional necessary and sufficient conditions for stability are established for a specific driving force corresponding to a thermocapillary-driven film. It is found that only droplets of sufficiently short height that satisfy the contact slope criterion are stable. This destabilization of droplets with increasing height is characterized as a saddle-node bifurcation between a branch of tall, unstable droplets and a branch of short, stable droplets.

  7. EAF Slag Aggregate in Roller-Compacted Concrete Pavement: Effects of Delay in Compaction

    Directory of Open Access Journals (Sweden)

    My Ngoc-Tra Lam

    2018-04-01

    Full Text Available This study investigates the effect of delay in compaction on the optimum moisture content and the mechanical propertie s (i.e., compressive strength, ultrasonic pulse velocity, splitting tensile strength, and modulus of elasticity of roller-compacted concrete pavement (RCCP made of electric arc furnace (EAF slag aggregate. EAF slag with size in the range of 4.75–19 mm was used to replace natural coarse aggregate in RCCP mixtures. A new mixing method was proposed for RCCP using EAF slag aggregate. The optimum moisture content of RCCP mixtures in this study was determined by a soil compaction method. The Proctor test assessed the optimum moisture content of mixtures at various time after mixing completion (i.e., 0, 15, 30, 60, and 90 min. Then, the effect of delay in compaction on the mechanical properties of RCCP mixtures at 28 days of age containing EAF slag aggregate was studied. The results presented that the negative effect on water content in the mixture caused by the higher water absorption characteristic of EAF slag was mitigated by the new mixing method. The optimum water content and maximum dry density of RCCP experience almost no effect from the delay in compaction. The compressive strength and splitting tensile strength of RCCP using EAF slag aggregate fulfilled the strength requirements for pavement with 90 min of delay in compaction.

  8. Laser-driven soft-X-ray undulator source

    International Nuclear Information System (INIS)

    Fuchs, Matthias

    2010-01-01

    The experimental results described in this thesis demonstrate the successful synergy between the research fields described above: the development of an undulator source driven by laser-plasma accelerated electron beams. First efforts in this new field have led to the production of radiation in the visible to infrared part of the electromagnetic spectrum [Schlenvoigt et al., 2008]. In contrast to these early achievements, the experiment described here shows the successful production of laser-driven undulator radiation in the soft-X-ray range with a remarkable reproducibility. The source produced tunable, collimated beams with a wavelength of ∝17 nm from a compact setup. Undulator spectra were detected in ∝70% of consecutive driver-laser shots, which is a remarkable reproducibility for a first proof-of-concept demonstration using ultra-high intensity laser systems. This can be attributed to a stable electron acceleration scheme as well as to the first application of miniature magnetic quadrupole lenses with laseraccelerated beams. The lenses significantly reduce the electron beam divergence and its angular shot-to-shot fluctuations The setup of this experiment is the foundation of potential university-laboratory-sized, highly-brilliant hard X-ray sources. By increasing the electron energy to about 1 GeV, X-ray pulses with an expected duration of ∝10 fs and a photon energy of 1 keV could be produced in an almost identical arrangement. It can also be used as a testbed for the development of a free-electron laser of significantly smaller dimension than facilities based on conventional accelerators [Gruener et al., 2007]. Such compact sources have the potential for application in many fields of science. In addition, these developments could lead to ideal sources for ultrafast pump-probe experiments due to the perfect synchronization of the X-ray beam to the driver laser. (orig.)

  9. Laser-driven soft-X-ray undulator source

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Matthias

    2010-08-04

    The experimental results described in this thesis demonstrate the successful synergy between the research fields described above: the development of an undulator source driven by laser-plasma accelerated electron beams. First efforts in this new field have led to the production of radiation in the visible to infrared part of the electromagnetic spectrum [Schlenvoigt et al., 2008]. In contrast to these early achievements, the experiment described here shows the successful production of laser-driven undulator radiation in the soft-X-ray range with a remarkable reproducibility. The source produced tunable, collimated beams with a wavelength of {proportional_to}17 nm from a compact setup. Undulator spectra were detected in {proportional_to}70% of consecutive driver-laser shots, which is a remarkable reproducibility for a first proof-of-concept demonstration using ultra-high intensity laser systems. This can be attributed to a stable electron acceleration scheme as well as to the first application of miniature magnetic quadrupole lenses with laseraccelerated beams. The lenses significantly reduce the electron beam divergence and its angular shot-to-shot fluctuations The setup of this experiment is the foundation of potential university-laboratory-sized, highly-brilliant hard X-ray sources. By increasing the electron energy to about 1 GeV, X-ray pulses with an expected duration of {proportional_to}10 fs and a photon energy of 1 keV could be produced in an almost identical arrangement. It can also be used as a testbed for the development of a free-electron laser of significantly smaller dimension than facilities based on conventional accelerators [Gruener et al., 2007]. Such compact sources have the potential for application in many fields of science. In addition, these developments could lead to ideal sources for ultrafast pump-probe experiments due to the perfect synchronization of the X-ray beam to the driver laser. (orig.)

  10. The Rapid Formation of Localized Compaction Bands Under Hydrostatic Load Leading to Pore-pressure Transients in Compacting Rocks

    Science.gov (United States)

    Faulkner, D.; Leclere, H.; Bedford, J. D.; Behnsen, J.; Wheeler, J.

    2017-12-01

    Compaction of porous rocks can occur uniformly or within localized deformation bands. The formation of compaction bands and their effects on deformation behaviour are poorly understood. Porosity may be primary and compaction can occur with burial, or it can be produced by metamorphic reactions with a solid volume reduction, that can then undergo collapse. We report results from hydrostatic compaction experiments on porous bassanite (CaSO4.0.5H2O) aggregates. Gypsum (CaSO4.2H2O) is first dehydrated under low effective pressure, 4 MPa, to produce a bassanite aggregate with a porosity of 27%. Compaction is induced by increasing confining pressure at rates from 0.001 MPa/s to 0.02 MPa/s while the sample is maintained at a temperature of 115°C. At slow compaction rates, porosity collapse proceeds smoothly. At higher compaction rates, sudden increases in the pore-fluid pressure occur with a magnitude of 5 MPa. Microstructural investigations using X-ray microtomography and SEM observations show that randomly oriented localized compaction features occur in all samples, where the bulk porosity of 18% outside the band is reduced to 5% inside the band. Previous work on deformation bands has suggested that localized compactive features only form under an elevated differential stress and not under a hydrostatic stress state. The magnitude of the pore-pressure pulses can be explained by the formation of compaction bands. The results indicate that the compaction bands can form by rapid (unstable) propagation across the sample above a critical strain rate, or quasi-statically at low compaction rates without pore-fluid pressure bursts. The absence of pore-fluid pressure bursts at slow compaction rates can be explained by viscous deformation of the bassanite aggregate around the tip of a propagating compaction band, relaxing stress, and promoting stable propagation. Conversely, at higher compaction rates, viscous deformation cannot relax the stress sufficiently and unstable

  11. Diverse Formation Mechanisms for Compact Galaxies

    Science.gov (United States)

    Kim, Jin-Ah; Paudel, Sanjaya; Yoon, Suk-Jin

    2018-01-01

    Compact, quenched galaxies such as M32 are unusual ones located off the mass - size scaling relation defined by normal galaxies. Still, their formation mechanisms remain unsolved. Here we investigate the evolution of ~100 compact, quenched galaxies at z = 0 identified in the Illustris cosmological simulation. We identify three ways for a galaxy to become a compact one and, often, multiple mechanisms operate in a combined manner. First, stripping is responsible for making about a third of compact galaxies. Stripping removes stars from galaxies, usually while keeping their sizes intact. About one third are galaxies that cease their growth early on after entering into more massive, gigantic halos. Finally, about half of compact galaxies, ~ 35 % of which turn out to undergo stripping, experience the compaction due to the highly centrally concentrated star formation. We discuss the evolutionary path of compact galaxies on the mass – size plane for each mechanism in a broader context of dwarf galaxy formation and evolution.

  12. Compact Process Development at Babcock & Wilcox

    Energy Technology Data Exchange (ETDEWEB)

    Eric Shaber; Jeffrey Phillips

    2012-03-01

    Multiple process approaches have been used historically to manufacture cylindrical nuclear fuel compacts. Scale-up of fuel compacting was required for the Next Generation Nuclear Plant (NGNP) project to achieve an economically viable automated production process capable of providing a minimum of 10 compacts/minute with high production yields. In addition, the scale-up effort was required to achieve matrix density equivalent to baseline historical production processes, and allow compacting at fuel packing fractions up to 46% by volume. The scale-up approach of jet milling, fluid-bed overcoating, and hot-press compacting adopted in the U.S. Advanced Gas Reactor (AGR) Fuel Development Program involves significant paradigm shifts to capitalize on distinct advantages in simplicity, yield, and elimination of mixed waste. A series of compaction trials have been completed to optimize compaction conditions of time, temperature, and forming pressure using natural uranium oxycarbide (NUCO) fuel at packing fractions exceeding 46% by volume. Results from these trials are included. The scale-up effort is nearing completion with the process installed and operable using nuclear fuel materials. Final process testing is in progress to certify the process for manufacture of qualification test fuel compacts in 2012.

  13. Compact magnetic confinement fusion: Spherical torus and compact torus

    Directory of Open Access Journals (Sweden)

    Zhe Gao

    2016-05-01

    Full Text Available The spherical torus (ST and compact torus (CT are two kinds of alternative magnetic confinement fusion concepts with compact geometry. The ST is actually a sub-category of tokamak with a low aspect ratio; while the CT is a toroidal magnetic configuration with a simply-connected geometry including spheromak and field reversed pinch. The ST and CT have potential advantages for ultimate fusion reactor; while at present they can also provide unique fusion science and technology contributions for mainstream fusion research. However, some critical scientific and technology issues should be extensively investigated.

  14. Compact stars

    Science.gov (United States)

    Estevez-Delgado, Gabino; Estevez-Delgado, Joaquin

    2018-05-01

    An analysis and construction is presented for a stellar model characterized by two parameters (w, n) associated with the compactness ratio and anisotropy, respectively. The reliability range for the parameter w ≤ 1.97981225149 corresponds with a compactness ratio u ≤ 0.2644959374, the density and pressures are positive, regular and monotonic decrescent functions, the radial and tangential speed of sound are lower than the light speed, moreover, than the plausible stability. The behavior of the speeds of sound are determinate for the anisotropy parameter n, admitting a subinterval where the speeds are monotonic crescent functions and other where we have monotonic decrescent functions for the same speeds, both cases describing a compact object that is also potentially stable. In the bigger value for the observational mass M = 2.05 M⊙ and radii R = 12.957 Km for the star PSR J0348+0432, the model indicates that the maximum central density ρc = 1.283820319 × 1018 Kg/m3 corresponds to the maximum value of the anisotropy parameter and the radial and tangential speed of the sound are monotonic decrescent functions.

  15. Roller-compacted concrete pavements.

    Science.gov (United States)

    2010-09-01

    Roller-compacted concrete (RCC) gets its name from the heavy vibratory steel drum and rubber-tired rollers used to help compact it into its final form. RCC has similar strength properties and consists of the same basic ingredients as conventional con...

  16. A Compact and Low-Cost MEMS Loudspeaker for Digital Hearing Aids.

    Science.gov (United States)

    Sang-Soo Je; Rivas, F; Diaz, R E; Jiuk Kwon; Jeonghwan Kim; Bakkaloglu, B; Kiaei, S; Junseok Chae

    2009-10-01

    A microelectromechanical-systems (MEMS)-based electromagnetically actuated loudspeaker to reduce form factor, cost, and power consumption, and increase energy efficiency in hearing-aid applications is presented. The MEMS loudspeaker has multilayer copper coils, an NiFe soft magnet on a thin polyimide diaphragm, and an NdFeB permanent magnet on the perimeter. The coil impedance is measured at 1.5 Omega, and the resonant frequency of the diaphragm is located far from the audio frequency range. The device is driven by a power-scalable, 0.25-mum complementary metal-oxide semiconductor class-D SigmaDelta amplifier stage. The class-D amplifier is formed by a differential H-bridge driven by a single bit, pulse-density-modulated SigmaDelta bitstream at a 1.2-MHz clock rate. The fabricated MEMS loudspeaker generates more than 0.8-mum displacement, equivalent to 106-dB sound pressure level (SPL), with 0.13-mW power consumption. Driven by the SigmaDelta class-D amplifier, the MEMS loudspeaker achieves measured 65-dB total harmonic distortion (THD) with a measurement uncertainty of less than 10%. Energy-efficient and cost-effective advanced hearing aids would benefit from further miniaturization via MEMS technology. The results from this study appear very promising for developing a compact, mass-producible, low-power loudspeaker with sufficient sound generation for hearing-aid applications.

  17. The Lω-Compactness in Lω-Spaces

    Directory of Open Access Journals (Sweden)

    Shui-Li Chen

    2013-01-01

    Full Text Available The concepts of αω-remote neighborhood family, γω-cover, and Lω-compactness are defined in Lω-spaces. The characterizations of Lω-compactness are systematically discussed. Some important properties of Lω-compactness such as ω-closed heredity, arbitrarily multiplicative property, and preserving invariance under ω-continuous mappings are obtained. Finally, the Alexander ω-subbase lemma and the Tychonoff product theorem with respect to Lω-compactness are given.

  18. UV written compact broadband optical couplers

    DEFF Research Database (Denmark)

    Olivero, Massimo; Svalgaard, Mikael

    2005-01-01

    In this paper the first demonstration of compact asymmetric directional couplers made by UV writing is presented. The combined performance in terms bandwidth, loss and compactness exceeds that reported using other, more elaborate fabrication techniques.......In this paper the first demonstration of compact asymmetric directional couplers made by UV writing is presented. The combined performance in terms bandwidth, loss and compactness exceeds that reported using other, more elaborate fabrication techniques....

  19. Prediction of reservoir compaction and surface subsidence

    Energy Technology Data Exchange (ETDEWEB)

    De Waal, J.A.; Smits, R.M.M.

    1988-06-01

    A new loading-rate-dependent compaction model for unconsolidated clastic reservoirs is presented that considerably improves the accuracy of predicting reservoir rock compaction and surface subsidence resulting from pressure depletion in oil and gas fields. The model has been developed on the basis of extensive laboratory studies and can be derived from a theory relating compaction to time-dependent intergranular friction. The procedure for calculating reservoir compaction from laboratory measurements with the new model is outlined. Both field and laboratory compaction behaviors appear to be described by one single normalized, nonlinear compaction curve. With the new model, the large discrepancies usually observed between predictions based on linear compaction models and actual (nonlinear) field behavior can be explained.

  20. A Compact Self-Driven Liquid Lithium Loop for Industrial Neutron Generation

    Science.gov (United States)

    Stemmley, Steven; Szott, Matt; Kalathiparambil, Kishor; Ahn, Chisung; Jurczyk, Brian; Ruzic, David

    2017-10-01

    A compact, closed liquid lithium loop has been developed at the University of Illinois to test and utilize the Li-7(d,n) reaction. The liquid metal loop is housed in a stainless steel trench module with embedded heating and cooling. The system was designed to handle large heat and particle fluxes for use in neutron generators as well as fusion devices, solely operating via thermo-electric MHD. The objectives of this project are two-fold, 1) produce a high energy, MeV-level, neutron source and 2) provide a self-healing, low Z, low recycling plasma facing component. The flowing volume will keep a fresh, clean, lithium surface allowing Li-7(d,n) reactions to occur as well as deuterium adsorption in the fluid, increasing the overall neutron output. Expected yields of this system are 107 n/s for 13.5 MeV neutrons and 108 n/s for 2.45 MeV neutrons. Previous work has shown that using a tapered trench design prevents dry out and allows for an increase in velocity of the fluid at the particle strike point. For heat fluxes on the order of 10's MW/m2, COMSOL models have shown that high enough velocities ( 70 cm/s) are attainable to prevent significant lithium evaporation. Future work will be aimed at addressing wettability issues of lithium in the trenches, experimentally determine the velocities required to prevent dry out, and determine the neutron output of the system. The preliminary results and discussion will be presented. DOE SBIR project DE-SC0013861.

  1. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences

    Science.gov (United States)

    NAKAJIMA, Kazuhisa

    2015-01-01

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker’s review article on “Laser Acceleration and its future” [Toshiki Tajima, (2010)],1) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated. PMID:26062737

  2. Compaction properties of isomalt

    NARCIS (Netherlands)

    Bolhuis, Gerad K.; Engelhart, Jeffrey J. P.; Eissens, Anko C.

    Although other polyols have been described extensively as filler-binders in direct compaction of tablets, the polyol isomalt is rather unknown as pharmaceutical excipient, in spite of its description in all the main pharmacopoeias. In this paper the compaction properties of different types of

  3. Phased array compaction cell for measurement of the transversely isotropic elastic properties of compacting sediments

    Energy Technology Data Exchange (ETDEWEB)

    Nihei, K.T.; Nakagawa, S.; Reverdy, F.; Meyer, L.R.; Duranti, L.; Ball, G.

    2010-12-15

    Sediments undergoing compaction typically exhibit transversely isotropic (TI) elastic properties. We present a new experimental apparatus, the phased array compaction cell, for measuring the TI elastic properties of clay-rich sediments during compaction. This apparatus uses matched sets of P- and S-wave ultrasonic transducers located along the sides of the sample and an ultrasonic P-wave phased array source, together with a miniature P-wave receiver on the top and bottom ends of the sample. The phased array measurements are used to form plane P-waves that provide estimates of the phase velocities over a range of angles. From these measurements, the five TI elastic constants can be recovered as the sediment is compacted, without the need for sample unloading, recoring, or reorienting. This paper provides descriptions of the apparatus, the data processing, and an application demonstrating recovery of the evolving TI properties of a compacting marine sediment sample.

  4. Large-scale dynamic compaction of natural salt

    International Nuclear Information System (INIS)

    Hansen, F.D.; Ahrens, E.H.

    1996-01-01

    A large-scale dynamic compaction demonstration of natural salt was successfully completed. About 40 m 3 of salt were compacted in three, 2-m lifts by dropping a 9,000-kg weight from a height of 15 m in a systematic pattern to achieve desired compaction energy. To enhance compaction, 1 wt% water was added to the relatively dry mine-run salt. The average compacted mass fractional density was 0.90 of natural intact salt, and in situ nitrogen permeabilities averaged 9X10 -14 m 2 . This established viability of dynamic compacting for placing salt shaft seal components. The demonstration also provided compacted salt parameters needed for shaft seal system design and performance assessments of the Waste Isolation Pilot Plant

  5. Active control of aircraft engine inlet noise using compact sound sources and distributed error sensors

    Science.gov (United States)

    Burdisso, Ricardo (Inventor); Fuller, Chris R. (Inventor); O'Brien, Walter F. (Inventor); Thomas, Russell H. (Inventor); Dungan, Mary E. (Inventor)

    1996-01-01

    An active noise control system using a compact sound source is effective to reduce aircraft engine duct noise. The fan noise from a turbofan engine is controlled using an adaptive filtered-x LMS algorithm. Single multi channel control systems are used to control the fan blade passage frequency (BPF) tone and the BPF tone and the first harmonic of the BPF tone for a plane wave excitation. A multi channel control system is used to control any spinning mode. The multi channel control system to control both fan tones and a high pressure compressor BPF tone simultaneously. In order to make active control of turbofan inlet noise a viable technology, a compact sound source is employed to generate the control field. This control field sound source consists of an array of identical thin, cylindrically curved panels with an inner radius of curvature corresponding to that of the engine inlet. These panels are flush mounted inside the inlet duct and sealed on all edges to prevent leakage around the panel and to minimize the aerodynamic losses created by the addition of the panels. Each panel is driven by one or more piezoelectric force transducers mounted on the surface of the panel. The response of the panel to excitation is maximized when it is driven at its resonance; therefore, the panel is designed such that its fundamental frequency is near the tone to be canceled, typically 2000-4000 Hz.

  6. Compact Commercial Tokamak Reactor (CCTR): a concept for a 500-MWe commercial-tokamak fusion system

    International Nuclear Information System (INIS)

    Gillen, T.J.

    1980-11-01

    A detailed set of self-consistent parameters and costs for the conceptual design of a Compact Commercial Tokamak Reactor (CCTR) is given. Several of the basic design features are the following: an ignited plasma with a major radius of 4.9 m and minor radius of 1.4 m; a net electrical output of 500 MW; a borated-water-cooled, stainless steel shield; and a toroidal field of 12 T at the coil. The design, which utilizes the Westinghouse computer code for the COsting And Sizing of D-T burning Tokamaks (COAST), mainly provides the sizes and geometries associated with the definition of the main component features for which a detailed engineering design can be effectively undertaken. Design study alternatives, including a neutral beam driven design option, a design option with a toroidal field of 13 T at the coil, and a tungsten-shielded option are considered for the CCTR. Also included is the conceptual design of a Compact Fusion Engineering Device

  7. Soil compaction and growth of woody plants

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, T.T. [Univ. of California, Berkeley (United States). Dept. of Environmental Science, Policy and Management

    1999-07-01

    Although soil compaction in the field may benefit or inhibit the growth of plants, the harmful effects are much more common. This paper emphasizes the deleterious effects of predominantly high levels of soil compaction on plant growth and yield. High levels of soil compaction are common in heavily used recreation areas, construction sites, urban areas, timber harvesting sites, fruit orchards, agroforestry systems and tree nurseries. Compaction can occur naturally by settling or slumping of soil or may be induced by tillage tools, heavy machinery, pedestrian traffic, trampling by animals and fire. Compaction typically alters soil structure and hydrology by increasing soil bulk density; breaking down soil aggregates; decreasing soil porosity, aeration and infiltration capacity; and by increasing soil strength, water runoff and soil erosion. Appreciable compaction of soil leads to physiological dysfunctions in plants. Often, but not always, reduced water absorption and leaf water deficits develop. Soil compaction also induces changes in the amounts and balances of growth hormones in plants, especially increases in abscisic acid and ethylene. Absorption of the major mineral nutrients is reduced by compaction of both surface soils and subsoils. The rate of photosynthesis of plants growing in very compacted soil is decreased by both stomatal and non-stomatal inhibition. Total photosynthesis is reduced as a result of smaller leaf areas. As soils become increasingly compacted respiration of roots shifts toward an anaerobic state. Severe soil compaction adversely influences regeneration of forest stands by inhibiting seed germination and growth of seedlings, and by inducing seedling mortality. Growth of woody plants beyond the seedling stage and yields of harvestable plant products also are greatly decreased by soil compaction because of the combined effects of high soil strength, decreased infiltration of water and poor soil aeration, all of which lead to a decreased

  8. Soil compaction and growth of woody plants

    International Nuclear Information System (INIS)

    Kozlowski, T.T.

    1999-01-01

    Although soil compaction in the field may benefit or inhibit the growth of plants, the harmful effects are much more common. This paper emphasizes the deleterious effects of predominantly high levels of soil compaction on plant growth and yield. High levels of soil compaction are common in heavily used recreation areas, construction sites, urban areas, timber harvesting sites, fruit orchards, agroforestry systems and tree nurseries. Compaction can occur naturally by settling or slumping of soil or may be induced by tillage tools, heavy machinery, pedestrian traffic, trampling by animals and fire. Compaction typically alters soil structure and hydrology by increasing soil bulk density; breaking down soil aggregates; decreasing soil porosity, aeration and infiltration capacity; and by increasing soil strength, water runoff and soil erosion. Appreciable compaction of soil leads to physiological dysfunctions in plants. Often, but not always, reduced water absorption and leaf water deficits develop. Soil compaction also induces changes in the amounts and balances of growth hormones in plants, especially increases in abscisic acid and ethylene. Absorption of the major mineral nutrients is reduced by compaction of both surface soils and subsoils. The rate of photosynthesis of plants growing in very compacted soil is decreased by both stomatal and non-stomatal inhibition. Total photosynthesis is reduced as a result of smaller leaf areas. As soils become increasingly compacted respiration of roots shifts toward an anaerobic state. Severe soil compaction adversely influences regeneration of forest stands by inhibiting seed germination and growth of seedlings, and by inducing seedling mortality. Growth of woody plants beyond the seedling stage and yields of harvestable plant products also are greatly decreased by soil compaction because of the combined effects of high soil strength, decreased infiltration of water and poor soil aeration, all of which lead to a decreased

  9. Small Valdivia compact spaces

    CERN Document Server

    Kubi's, W; Kubi\\'s, Wieslaw; Michalewski, Henryk

    2005-01-01

    We prove a preservation theorem for the class of Valdivia compact spaces, which involves inverse sequences of ``simple'' retractions. Consequently, a compact space of weight $\\loe\\aleph_1$ is Valdivia compact iff it is the limit of an inverse sequence of metric compacta whose bonding maps are retractions. As a corollary, we show that the class of Valdivia compacta of weight at most $\\aleph_1$ is preserved both under retractions and under open 0-dimensional images. Finally, we characterize the class of all Valdivia compacta in the language of category theory, which implies that this class is preserved under all continuous weight preserving functors.

  10. Clustering of near clusters versus cluster compactness

    International Nuclear Information System (INIS)

    Yu Gao; Yipeng Jing

    1989-01-01

    The clustering properties of near Zwicky clusters are studied by using the two-point angular correlation function. The angular correlation functions for compact and medium compact clusters, for open clusters, and for all near Zwicky clusters are estimated. The results show much stronger clustering for compact and medium compact clusters than for open clusters, and that open clusters have nearly the same clustering strength as galaxies. A detailed study of the compactness-dependence of correlation function strength is worth investigating. (author)

  11. Response Of Lowland Rice To Soil Compaction

    International Nuclear Information System (INIS)

    Idawati; Haryanto

    2000-01-01

    Soil compaction, as a new tillage practice for paddy soil, is to substitute pudding in order to reduce land preparation cost. To study response of lowland rice to soil compaction, a pot experiment has been conducted which took place in the greenhouse of P3TIR-BATAN. Soil for experiment was taken from pusakanegara. Two factors (degree of soil compaction and rice variety) were combined. Degree of compaction was split into 3 levels (DI = normal; D215% more compact than normal; 30 % more compact than normal), and rice variety into 2 levels (IR64 and Atomita IV). KH 2 32 PO 4 solution was injected into the soil surrounding rice clump to test the root activity at blooming stage of rice plant. Data resulted from this experiment is presented together with additional data from some other experiments of fertilization in the research s erie to study soil compaction. Some information's from experiment results are as following. Both rice varieties tested gave the same response to soil compaction. Root activity, according to data of 32 P absorbed by plant, was not harmed by soil compaction at the degree tested in the experiment. This prediction is supported by the growth by rice observed at generative growth stage, in pot experiment as well as in field experiment, which showed that soil compaction tested did not decrease rice yield but in opposite in tended to increase the yield. In practising soil compaction in land preparation, fertilizers should be applied by deep placement to have higher increasing is rice yield

  12. Formation and evolution of compact binaries

    NARCIS (Netherlands)

    Sluijs, Marcel Vincent van der

    2006-01-01

    In this thesis we investigate the formation and evolution of compact binaries. Chapters 2 through 4 deal with the formation of luminous, ultra-compact X-ray binaries in globular clusters. We show that the proposed scenario of magnetic capture produces too few ultra-compact X-ray binaries to explain

  13. Equationally Compact Acts : Coproducts / Peeter Normak

    Index Scriptorium Estoniae

    Normak, Peeter

    1998-01-01

    In this article equational compactness of acts and its generalizations are discussed. As equational compactness does not carry over to coproducts a slight generalization of c-equational campactness is introduced. It is proved that a coproduct of acts is c-equationally compact if and only if all components are c-equationally campact

  14. The United Nations Global Compact

    DEFF Research Database (Denmark)

    Rasche, Andreas; Waddock, Sandra; McIntosh, Malcolm

    2013-01-01

    This article reviews the interdisciplinary literature on the UN Global Compact. The review identifies three research perspectives, which scholars have used to study the UN Global Compact so far: a historical perspective discussing the Global Compact in the context of UN-business relations...... key empirical as well as conceptual scholarly contributions. The remainder of this article contains focused summaries of the articles selected for this Special Issue. All articles are introduced and evaluated against the background of the three research perspectives....

  15. Compaction of spent nuclear fuel cans

    International Nuclear Information System (INIS)

    Sullivan, H.

    1985-01-01

    Hydraulic press apparatus for compacting waste material eg. spent nuclear fuel cans comprises a fixed frame, a movable cross head, a press crown and three groups of piston/cylinder devices; having their pistons connected to the cross head and their cylinders secured to the press crown. A control means connects the first group of devices to hydraulic fluid in a reservoir which is pressurised initially by gas from gas accumulators to move the cross head and a quill secured thereto towards the frame base to compact the waste at a first high rate under a first high loading. Compaction then proceeds at a lower second rate at a lower second loading as the hydraulic fluid in the reservoir is pressurised by a pump. At two subsequent stages of compaction of the waste at which resistance increases causing a pressure rise in cylinders the control means causes hydraulic fluid to be passed to the second group of devices and thence to the third group of devices, the compaction rate reducing at each stage but the compaction force increasing. (author)

  16. Physically detached 'compact groups'

    Science.gov (United States)

    Hernquist, Lars; Katz, Neal; Weinberg, David H.

    1995-01-01

    A small fraction of galaxies appear to reside in dense compact groups, whose inferred crossing times are much shorter than a Hubble time. These short crossing times have led to considerable disagreement among researchers attempting to deduce the dynamical state of these systems. In this paper, we suggest that many of the observed groups are not physically bound but are chance projections of galaxies well separated along the line of sight. Unlike earlier similar proposals, ours does not require that the galaxies in the compact group be members of a more diffuse, but physically bound entity. The probability of physically separated galaxies projecting into an apparent compact group is nonnegligible if most galaxies are distributed in thin filaments. We illustrate this general point with a specific example: a simulation of a cold dark matter universe, in which hydrodynamic effects are included to identify galaxies. The simulated galaxy distribution is filamentary and end-on views of these filaments produce apparent galaxy associations that have sizes and velocity dispersions similar to those of observed compact groups. The frequency of such projections is sufficient, in principle, to explain the observed space density of groups in the Hickson catalog. We discuss the implications of our proposal for the formation and evolution of groups and elliptical galaxies. The proposal can be tested by using redshift-independent distance estimators to measure the line-of-sight spatial extent of nearby compact groups.

  17. Characterization of compact-toroid injection during formation, translation, and field penetration

    Science.gov (United States)

    Matsumoto, T.; Roche, T.; Allfrey, I.; Sekiguchi, J.; Asai, T.; Gota, H.; Cordero, M.; Garate, E.; Kinley, J.; Valentine, T.; Waggoner, W.; Binderbauer, M.; Tajima, T.

    2016-11-01

    We have developed a compact toroid (CT) injector system for particle refueling of the advanced beam-driven C-2U field-reversed configuration (FRC) plasma. The CT injector is a magnetized coaxial plasma gun (MCPG), and the produced CT must cross the perpendicular magnetic field surrounding the FRC for the refueling of C-2U. To simulate this environment, an experimental test stand has been constructed. A transverse magnetic field of ˜1 kG is established, which is comparable to the C-2U axial magnetic field in the confinement section, and CTs are fired across it. On the test stand we have been characterizing and studying CT formation, ejection/translation from the MCPG, and penetration into transverse magnetic fields.

  18. Characterization of compact-toroid injection during formation, translation, and field penetration

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, T., E-mail: cstd14003@g.nihon-u.ac.jp; Sekiguchi, J.; Asai, T. [Nihon University, Chiyoda-ku, Tokyo 101-8308 (Japan); Roche, T.; Allfrey, I.; Gota, H.; Cordero, M.; Garate, E.; Kinley, J.; Valentine, T.; Waggoner, W.; Binderbauer, M. [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States); Tajima, T. [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States); Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States)

    2016-11-15

    We have developed a compact toroid (CT) injector system for particle refueling of the advanced beam-driven C-2U field-reversed configuration (FRC) plasma. The CT injector is a magnetized coaxial plasma gun (MCPG), and the produced CT must cross the perpendicular magnetic field surrounding the FRC for the refueling of C-2U. To simulate this environment, an experimental test stand has been constructed. A transverse magnetic field of ∼1 kG is established, which is comparable to the C-2U axial magnetic field in the confinement section, and CTs are fired across it. On the test stand we have been characterizing and studying CT formation, ejection/translation from the MCPG, and penetration into transverse magnetic fields.

  19. Peculiarities of powder brittle media compaction

    International Nuclear Information System (INIS)

    Perel'nam, V.E.; Aristarkhov, A.I.

    1981-01-01

    The paper is concerned with theoretical and practical aspects of the compaction process for powders of almost unstrained materials. Consideration from the standpoint of compressible body strain mechanics shows that such porous media may have a certain ''threshold'' density. Ductile characteristics of the porous material compacted up to this extent are identical with properties of compacrat bodies, i.e. there is a theoretically substantiated ban on a possibility of their further compaction without changing the state of the powder particle material. Theoretical conclusions are confirmed by results of experimental studies in compaction of titanium- containing ceramics [ru

  20. Research on a compact adsorption room air conditioner

    International Nuclear Information System (INIS)

    Yang, G.Z.; Xia, Z.Z.; Wang, R.Z.; Keletigui, Daou; Wang, D.C.; Dong, Z.H.; Yang, X.

    2006-01-01

    A novel compact adsorption room air conditioner with a cooling capacity of 1 kW has been designed, and two prototypes have been built. A two bed, continuous adsorption refrigeration cycle with heat recovery and mass recovery is adopted. Micropore spherical silica gel and water are selected as the working pair. A gravity heat pipe with methanol as working medium is designed to output the cooling. Experimental investigations have indicated that under typical air conditioning conditions, for the first prototype, a cooling capacity of 687 W and a COP (coefficient of performance) of 0.307 can be obtained. However, for the improved one, a cooling capacity of 790 W and a COP of 0.446 can be reached. It is also proved that the operating temperatures have strong influences on the performance. The designed room air conditioner can be driven by a low grade heat source ( o C) and has small dimensions of 300 mm (depth), 500 mm (width) and 950 mm (height)

  1. EPRI compact analyzer: A compact, interactive and color-graphics based simulator for power plant analysis

    International Nuclear Information System (INIS)

    Ipakchi, A.; Khadem, M.; Chen, H.; Colley, R.W.

    1986-01-01

    This paper presents the results of an EPRI sponsored project (RP2395-2) for design and development of an interactive, and color graphics based simulator for power plant analysis. The system is called Compact Analyzer and can be applied to engineering and training applications in the utility industry. The Compact Analyzer's software and system design are described. Results of two demonstration system for a nuclear plant, and a fossil plant are presented, and the applications of the Compact Analyzer to operating procedures evaluation are discussed

  2. The Future Concrete: Self-Compacting Concrete

    OpenAIRE

    Iureş, Liana; Bob, Corneliu

    2010-01-01

    The paper presents the characteristics of the self-compacting concretes, their advantages and disadvantages when they are used in buildings. Due to its properties and composition, the self-compacting concrete is described here as being one of the future friendly enviromental material for buildings. Tests concerning to obtaining a self-compacting concrete, together with the specific fresh concrete properties tests, are described.

  3. Powder compaction in systems of bimodal distribution

    Science.gov (United States)

    Chattopadhyay, A. K.; Whittemore, O. J., Jr.

    1973-01-01

    The compaction of mixtures involving different particle sizes is discussed. The various stages of the compaction process include the rearrangement of particles, the filling of the interstices of the large particles by the smaller ones, and the change in particle size and shape upon further densification through the application of pressure. Experimental approaches and equipment used for compacting material are discussed together with the theoretical relations of the compacting process.

  4. Compact vortices

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Losano, L.; Marques, M.A.; Zafalan, I. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Menezes, R. [Universidade Federal da Paraiba, Departamento de Ciencias Exatas, Rio Tinto, PB (Brazil); Universidade Federal de Campina Grande, Departamento de Fisica, Campina Grande, PB (Brazil)

    2017-02-15

    We study a family of Maxwell-Higgs models, described by the inclusion of a function of the scalar field that represent generalized magnetic permeability. We search for vortex configurations which obey first-order differential equations that solve the equations of motion. We first deal with the asymptotic behavior of the field configurations, and then implement a numerical study of the solutions, the energy density and the magnetic field. We work with the generalized permeability having distinct profiles, giving rise to new models, and we investigate how the vortices behave, compared with the solutions of the corresponding standard models. In particular, we show how to build compact vortices, that is, vortex solutions with the energy density and magnetic field vanishing outside a compact region of the plane. (orig.)

  5. Compaction monitoring in the Ekofisk area Chalk Fields

    International Nuclear Information System (INIS)

    Menghini, M.L.

    1989-01-01

    In late Nov. 1984, the subsidence phenomenon was recognized in the Ekofisk field. To determine the magnitude and areal extent of the formation compaction, a program for measuring compaction with electric logging tools was initiated. Initial time-lapse surveys performed with cased-hole neutron tools indicated that reservoir compaction was occurring, but the accuracy of the determination of compaction rate was low. In addition to the cased-hole neutron survey, radioactive markers and a gamma ray (GR) detection tool were used to determine compaction rate in the reservoir more accurately and to determine whether compaction was occurring in the overburden. A program for implanting radioactive-marker bullets and subsequent monitoring with a four-detector GR tool was implemented. There are currently 13 wells equipped with radioactive markers in the compaction monitoring program. Compaction monitoring accuracy using the four-detector GR tool was found to depend on wellbore geometry, completion design, and radioactive-marker placement. This paper gives the results of the program to date and describes the operational procedures and analysis techniques used for compaction monitoring in the greater Ekofisk area chalk fields

  6. PROCESS DIAGRAMS FOR INSTALLATION OF DRIVEN PILES IN PENETRATED WELLS

    Directory of Open Access Journals (Sweden)

    Kovalev Vladimir Aleksandrovich

    2017-03-01

    Full Text Available This article presents the main options of improved and newly devised designs and process diagrams for installation of foundations made of driven, or jack, piles in the penetrated wells with expanded shoe, mainly in weak wet (waterlogged and water-saturated soils. The article presents six options of process diagrams for installation of driven piles in penetrated wells, listing the main procedures: for well-compacted weak soils, for the case when the water ingress is excluded, for the case when it is necessary to increase the load-bearing capacity of pile's bearing face in the waterlogged soils, for the case when the load-bearing capacity of the pile shall be increased both for the end and for the sides, for the case when peat or other biogenous water-saturated soils are present at the bottom of the well, and for the case when there is no contracted zone nor practical possibility to ensure the stability of the walls. The proposed six options of process diagrams for installation of the driven piles in penetrated wells provide expansion of their area of application regarding the soil conditions, increase of load-bearing capacity, and possibility of using jack systems for driving the piles under conditions of dense urban development.

  7. Does soil compaction increase floods? A review

    Science.gov (United States)

    Alaoui, Abdallah; Rogger, Magdalena; Peth, Stephan; Blöschl, Günter

    2018-02-01

    Europe has experienced a series of major floods in the past years which suggests that flood magnitudes may have increased. Land degradation due to soil compaction from crop farming or grazing intensification is one of the potential drivers of this increase. A literature review suggests that most of the experimental evidence was generated at plot and hillslope scales. At larger scales, most studies are based on models. There are three ways in which soil compaction affects floods at the catchment scale: (i) through an increase in the area affected by soil compaction; (ii) by exacerbating the effects of changes in rainfall, especially for highly degraded soils; and (iii) when soil compaction coincides with soils characterized by a fine texture and a low infiltration capacity. We suggest that future research should focus on better synthesising past research on soil compaction and runoff, tailored field experiments to obtain a mechanistic understanding of the coupled mechanical and hydraulic processes, new mapping methods of soil compaction that combine mechanical and remote sensing approaches, and an effort to bridge all disciplines relevant to soil compaction effects on floods.

  8. The Future Concrete: Self-Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Liana Iureş

    2010-01-01

    Full Text Available The paper presents the characteristics of the self-compacting concretes, their advantages and disadvantages when they are used in buildings. Due to its properties and composition, the self-compacting concrete is described here as being one of the future friendly enviromental material for buildings. Tests concerning to obtaining a self-compacting concrete, together with the specific fresh concrete properties tests, are described.

  9. Recent Progress in MHD Stability Calculations of Compact Stellarators

    International Nuclear Information System (INIS)

    Fu, G.Y.; Ku, L.P.; Redi, M.H.; Kessel, C.; Monticello, D.A.; Reiman, A.; Cooper, W.A.; Nuehrenberg, C.; Sanchez, R.; Ware, A.; Hirshman, S.P.; Spong, D.A.

    2000-01-01

    A key issue for compact stellarators is the stability of beta-limiting MHD modes, such as external kink modes driven by bootstrap current and pressure gradient. We report here recent progress in MHD stability studies for low-aspect-ratio Quasi-Axisymmetric Stellarators (QAS) and Quasi-Omnigeneous Stellarators (QOS). We find that the N = 0 periodicity-preserving vertical mode is significantly more stable in stellarators than in tokamaks because of the externally generated rotational transform. It is shown that both low-n external kink modes and high-n ballooning modes can be stabilized at high beta by appropriate 3D shaping without a conducting wall. The stabilization mechanism for external kink modes in QAS appears to be an enhancement of local magnetic shear due to 3D shaping. The stabilization of ballooning mode in QOS is related to a shortening of the normal curvature connection length

  10. Towards the final BSA modeling for the accelerator-driven BNCT facility at INFN LNL

    Energy Technology Data Exchange (ETDEWEB)

    Ceballos, C. [Centro de Aplicaciones Tecnlogicas y Desarrollo Nuclear, 5ta y30, Miramar, Playa, Ciudad Habana (Cuba); Esposito, J., E-mail: juan.esposito@lnl.infn.it [INFN, Laboratori Nazionali di Legnaro (LNL), via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Agosteo, S. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy); Colautti, P.; Conte, V.; Moro, D. [INFN, Laboratori Nazionali di Legnaro (LNL), via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Pola, A. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy)

    2011-12-15

    Some remarkable advances have been made in the last years on the SPES-BNCT project of the Istituto Nazionale di Fisica Nucleare (INFN) towards the development of the accelerator-driven thermal neutron beam facility at the Legnaro National Laboratories (LNL), aimed at the BNCT experimental treatment of extended skin melanoma. The compact neutron source will be produced via the {sup 9}Be(p,xn) reactions using the 5 MeV, 30 mA beam driven by the RFQ accelerator, whose modules construction has been recently completed, into a thick beryllium target prototype already available. The Beam Shaping Assembly (BSA) final modeling, using both neutron converter and the new, detailed, Be(p,xn) neutron yield spectra at 5 MeV energy recently measured at the CN Van de Graaff accelerator at LNL, is summarized here.

  11. Prediction for swelling characteristics of compacted bentonite

    International Nuclear Information System (INIS)

    Komine, H.; Ogata, N.

    1996-01-01

    Compacted bentonites are attracting greater attention as back-filling (buffer) materials for high-level nuclear waste repositories. For this purpose, it is very important to quantitatively evaluate the swelling characteristics of compacted bentonite. New equations for evaluating the relationship between the swelling deformation of compacted bentonite and the distance between two montmorillonite layers are derived. New equations for evaluating the ion concentration of pore water and the specific surface of bentonite, which significantly influence the swelling characteristics of compacted bentonite, are proposed. Furthermore, a prediction method for the swelling characteristics of compacted bentonite is presented by combining the new equations with the well-known theoretical equations of repulsive and attractive forces between two montmorillonite layers. The applicability of this method was investigated by comparing the predicted results with laboratory test results on the swelling deformation and swelling pressure of compacted bentonites. (author) 31 refs., 8 tabs., 12 figs

  12. Third-harmonic generation of a laser-driven quantum dot with impurity

    Science.gov (United States)

    Sakiroglu, S.; Kilic, D. Gul; Yesilgul, U.; Ungan, F.; Kasapoglu, E.; Sari, H.; Sokmen, I.

    2018-06-01

    The third-harmonic generation (THG) coefficient for a laser-driven quantum dot with an on-center Gaussian impurity under static magnetic field is theoretically investigated. Laser field effect is treated within the high-frequency Floquet approach and the analytical expression of the THG coefficient is deduced from the compact density-matrix approach. The numerical results demonstrate that the application of intense laser field causes substantial changes on the behavior of THG. In addition the position and magnitude of the resonant peak of THG coefficient is significantly affected by the magnetic field, quantum dot size and the characteristic parameters of the impurity potential.

  13. Deep Compaction Control of Sandy Soils

    Directory of Open Access Journals (Sweden)

    Bałachowski Lech

    2015-02-01

    Full Text Available Vibroflotation, vibratory compaction, micro-blasting or heavy tamping are typical improvement methods for the cohesionless deposits of high thickness. The complex mechanism of deep soil compaction is related to void ratio decrease with grain rearrangements, lateral stress increase, prestressing effect of certain number of load cycles, water pressure dissipation, aging and other effects. Calibration chamber based interpretation of CPTU/DMT can be used to take into account vertical and horizontal stress and void ratio effects. Some examples of interpretation of soundings in pre-treated and compacted sands are given. Some acceptance criteria for compaction control are discussed. The improvement factors are analysed including the normalised approach based on the soil behaviour type index.

  14. Algebraic Bethe ansatz for U(1) invariant integrable models: Compact and non-compact applications

    International Nuclear Information System (INIS)

    Martins, M.J.; Melo, C.S.

    2009-01-01

    We apply the algebraic Bethe ansatz developed in our previous paper [C.S. Melo, M.J. Martins, Nucl. Phys. B 806 (2009) 567] to three different families of U(1) integrable vertex models with arbitrary N bond states. These statistical mechanics systems are based on the higher spin representations of the quantum group U q [SU(2)] for both generic and non-generic values of q as well as on the non-compact discrete representation of the SL(2,R) algebra. We present for all these models the explicit expressions for both the on-shell and the off-shell properties associated to the respective transfer matrices eigenvalue problems. The amplitudes governing the vectors not parallel to the Bethe states are shown to factorize in terms of elementary building blocks functions. The results for the non-compact SL(2,R) model are argued to be derived from those obtained for the compact systems by taking suitable N→∞ limits. This permits us to study the properties of the non-compact SL(2,R) model starting from systems with finite degrees of freedom.

  15. Algebraic Bethe ansatz for U(1) invariant integrable models: Compact and non-compact applications

    Science.gov (United States)

    Martins, M. J.; Melo, C. S.

    2009-10-01

    We apply the algebraic Bethe ansatz developed in our previous paper [C.S. Melo, M.J. Martins, Nucl. Phys. B 806 (2009) 567] to three different families of U(1) integrable vertex models with arbitrary N bond states. These statistical mechanics systems are based on the higher spin representations of the quantum group U[SU(2)] for both generic and non-generic values of q as well as on the non-compact discrete representation of the SL(2,R) algebra. We present for all these models the explicit expressions for both the on-shell and the off-shell properties associated to the respective transfer matrices eigenvalue problems. The amplitudes governing the vectors not parallel to the Bethe states are shown to factorize in terms of elementary building blocks functions. The results for the non-compact SL(2,R) model are argued to be derived from those obtained for the compact systems by taking suitable N→∞ limits. This permits us to study the properties of the non-compact SL(2,R) model starting from systems with finite degrees of freedom.

  16. Starbursts in Blue compact dwarf galaxies

    International Nuclear Information System (INIS)

    Thuan, T.X.

    1987-01-01

    We summarize all the arguments for a bursting mode of star formation in blue compact dwarf galaxies. We show in particular how spectral synthesis of far ultraviolet spectra of Blue compact dwarf galaxy constitutes a powerful way for studying the star formation history in these galaxies. Blue compact dwarf galaxy luminosity functions show jumps and discontinuities. These jumps act like fossil records of the star-forming bursts, helping us to count and date the bursts

  17. Sustainment of spherical tokamak by means of repetitive injection of compact torus plasma

    International Nuclear Information System (INIS)

    Shimamura, Shin; Matsura, Ken; Takahashi, Tsutomu; Nogi, Yasuyuki

    2000-01-01

    Sustainment of spherical tokamak (S.T.) has been studied. A compact torus (C.T.) plasma was injected into confinement region by magnetized coaxial gun. For start-up and sustainment of large main spherical tokamak, single pulsed injection of small C.T. is not sufficient in many cases. C.T.plasma injection of high repetition rate is required. For this purpose magnetized coaxial gun was driven with high repetition rate current. The first injected C.T. plasma could start-up S.T. without other help. The repetitive C.T. injection grew and sustained the S.T. plasma. A CCD camera with fast gated image intensifier took a cross sectional view of S.T. during the repetitive C.T. injection. (author)

  18. Compact magnetic fusin reactor concepts

    International Nuclear Information System (INIS)

    Chung, K.M.

    1984-01-01

    Compact, high-power-density approaches to fusion power represent alternatives to main-line fusion concepts, Tokamaks and mirrors. If technological issues are resolved, theses approaches would yield small, low-cost fusion power plants. This survey reviews the principal physics and technology employed by leading compact magnetic fusion plants. (Author)

  19. Invariant subsets under compact quantum group actions

    OpenAIRE

    Huang, Huichi

    2012-01-01

    We investigate compact quantum group actions on unital $C^*$-algebras by analyzing invariant subsets and invariant states. In particular, we come up with the concept of compact quantum group orbits and use it to show that countable compact metrizable spaces with infinitely many points are not quantum homogeneous spaces.

  20. Highly Compact Accelerator-Driven Subcritical Assembly for Medical and Industrial Applications

    International Nuclear Information System (INIS)

    Jasmina Vujic; William Kastenberg; Ehud Greenspan; Ka-Ngo Leung

    2006-01-01

    A novel, highly compact, fusion neutron source (CNS) based on a coaxial electrostatic accelerator is under development at the Lawrence Berkeley National Laboratory. This source is designed to generate up to ∼1012 D-D n/s. This source intensity is an order of magnitude too small for Boron Neutron Capture Therapy (BNCT) applications. The objective of this project is to assess the feasibility of using a small, safe and inexpensive subcritical fission assembly to multiply the fusion neutrons by a factor of (ge)30. The overall design objective is to get a treatment time for deep seated rain tumors that does not significantly increase beyond one hour when the effective multiplication factor of the SCM is k eff = 0.98. There are two major parts to this study: the optimization of the Sub-Critical Multiplier (SCM) and the optimization of the Beam Shaping Assembly (BSA), including the reflector for both subsystems. The SCM optimization objective is to maximize the current of neutrons that leak out from the SCM in the direction of the patient, without exceeding the maximum permissible k eff . Minimizing the required uranium inventory is another objective. SCM design variables considered include the uranium enrichment level in the range not exceeding 20% 235U (for proliferation concerns), SCM geometry and dimensions, fuel thickness and moderator thickness. The objective of the BSA optimization is to maximize the tumor dose rate using the optimal SCM while maintaining a tumor-to-normal tissue dose ratio of at least 20 to 12.5 (corresponding to the tumor control dose and to the healthy tissue dose limit). The BSA design variables include its shape, dimensions and composition. The reflector optimization is, in fact, an integral part of the SCM optimization and of the BSA optimization. The reflector design variables are composition and thickness. The study concludes that it is not quite feasible to achieve the project objective. Nevertheless, it appears feasible to develop a

  1. Topological entropy of continuous actions of compactly generated groups

    OpenAIRE

    Schneider, Friedrich Martin

    2015-01-01

    We introduce a notion of topological entropy for continuous actions of compactly generated topological groups on compact Hausdorff spaces. It is shown that any continuous action of a compactly generated topological group on a compact Hausdorff space with vanishing topological entropy is amenable. Given an arbitrary compactly generated locally compact Hausdorff topological group $G$, we consider the canonical action of $G$ on the closed unit ball of $L^{1}(G)' \\cong L^{\\infty}(G)$ endowed with...

  2. Mappings with closed range and compactness

    International Nuclear Information System (INIS)

    Iyahen, S.O.; Umweni, I.

    1985-12-01

    The motivation for this note is the result of E.O. Thorp that a normed linear space E is finite dimensional if and only if every continuous linear map for E into any normed linear space has a closed range. Here, a class of Hausdorff topological groups is introduced; called r-compactifiable topological groups, they include compact groups, locally compact Abelian groups and locally convex linear topological spaces. It is proved that a group in this class which is separable, complete metrizable or locally compact, is necessarily compact if its image by a continuous group homomorphism is necessarily closed. It is deduced then that a Hausdorff locally convex is zero if its image by a continuous additive map is necessarily closed. (author)

  3. Controlled Compact High Voltage Power Lines

    Directory of Open Access Journals (Sweden)

    Postolati V.

    2016-04-01

    Full Text Available Nowadays modern overhead transmission lines (OHL constructions having several significant differences from conventional ones are being used in power grids more and more widely. Implementation of compact overhead lines equipped with FACTS devices, including phase angle regulator settings (compact controlled OHL, appears to be one of the most effective ways of power grid development. Compact controlled AC HV OHL represent a new generation of power transmission lines embodying recent advanced achievements in design solutions, including towers and insulation, together with interconnection schemes and control systems. Results of comprehensive research and development in relation to 110–500kV compact controlled power transmission lines together with theoretical basis, substantiation, and methodological approaches to their practical application are presented in the present paper.

  4. Compact approach to fusion power reactors

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.; Bathke, C.G.; Miller, R.L.

    1984-01-01

    The potential of the Reversed-Field Pinch (RFP) for development into an efficient, compact, copper-coil fusion reactor has been quantified by comprehensive parametric tradeoff studies. These compact systems promise to be competitive in size, power density, and cost to alternative energy sources. Conceptual engineering designs that largely substantiate these promising results have since been completed. This 1000-MWe(net) design is described along with a detailed rationale and physics/technology assessment for the compact approach to fusion

  5. Focusing and transport of high-intensity multi-MeV proton bunches from a compact laser-driven source

    Science.gov (United States)

    Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Frydrych, S.; Kroll, F.; Joost, M.; Al-Omari, H.; Blažević, A.; Zielbauer, B.; Hofmann, I.; Bagnoud, V.; Cowan, T. E.; Roth, M.

    2013-10-01

    Laser ion acceleration provides for compact, high-intensity ion sources in the multi-MeV range. Using a pulsed high-field solenoid, for the first time high-intensity laser-accelerated proton bunches could be selected from the continuous exponential spectrum and delivered to large distances, containing more than 109 particles in a narrow energy interval around a central energy of 9.4 MeV and showing ≤30mrad envelope divergence. The bunches of only a few nanoseconds bunch duration were characterized 2.2 m behind the laser-plasma source with respect to arrival time, energy width, and intensity as well as spatial and temporal bunch profile.

  6. Combustion driven NF3 chemical laser

    International Nuclear Information System (INIS)

    1975-01-01

    Stable, inert, non-corrosive nitrogen trifluoride gas and an inorganic source of hydrogen or deuterium gas are used as reactants in a compact combustion driven chemical laser. Nitrogen trifluoride is introduced into the combustion chamber of a chemical laser together with a hydrogen source selected from hydrogen, hydrazine, ammonia, acetylene, or benzene and the deuterated isotopes thereof and an optional inert diluent gas wherein the nitrogen trifluoride and the hydrogen- or deuterium-source gas hypergolically reacted upon heating to initiation temperature. Dissociated products from the reaction pass into a laser cavity at supersonic velocities where they are reacted with a source gas which is the isotopic opposite of the gas introduced into the combustor and which has been heated by regenerative cooling. Excited molecules of hydrogen fluoride or deuterium fluoride produce laser radiation which leaves the optical resonator cavity transversely to the flow of gases

  7. Heat transfer in large compacts of SYNROC powder

    International Nuclear Information System (INIS)

    Buykx, W.J.

    1984-01-01

    The parameters determining the time required to reach temperature uniformity in a shock heated cylindrical compact of SYNROC powder are identified as the dimensions of the compact and the thermal diffusivity of the material. The effect of shape and size of the compact are discussed, and an experimental study of the factors influencing the thermal diffusivity of compacted SYNROC powder is described

  8. Compact NMR

    Energy Technology Data Exchange (ETDEWEB)

    Bluemich, Bernhard; Haber-Pohlmeier, Sabina; Zia, Wasif [RWTH Aachen Univ. (Germany). Inst. fuer Technische und Makromolekulare Chemie (ITMC)

    2014-06-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is the most popular method for chemists to analyze molecular structures, while Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool for medical doctors that provides high-contrast images of biological tissue. In both applications, the sample (or patient) is positioned inside a large, superconducting magnet to magnetize the atomic nuclei. Interrogating radio-frequency pulses result in frequency spectra that provide the chemist with molecular information, the medical doctor with anatomic images, and materials scientist with NMR relaxation parameters. Recent advances in magnet technology have led to a variety of small permanent magnets to allow compact and low-cost instruments. The goal of this book is to provide an introduction to the practical use of compact NMR at a level nearly as basic as the operation of a smart phone.

  9. On compact galaxies in the UGC catalogue

    International Nuclear Information System (INIS)

    Kogoshvili, N.G.

    1980-01-01

    A problem of separation of compact galaxies in the UGC Catalogue is considered. Value of surface brightness equal to or less than 21sup(m) was used as compactness criterion from a square second of arc. 96 galaxies, which are brighter than 14sup(m)5 satisfy this criterion. Among compact galaxies discovered in the UGC Catalogue 7% are the Zwicky galaxies, 15% belong to the Markarian galaxies and 27% of galaxies are part of a galaxy list with high surface brightness. Considerable divergence in estimates of total share of compact galaxies in the B.A. Worontsov-Veljaminov Morphological Catalogue of Galaxies (MCG) and the UGC Catalogue is noted. This divergence results from systematical underestimation of visible sizes of compact galaxies in the MCG Catalogue as compared with the UGC Catalogue [ru

  10. Planar compaction of ceramic powders with mining explosives

    International Nuclear Information System (INIS)

    Stuivinga, M.; Verbeek, H.J.; Carton, E.P.

    2000-01-01

    Shock compaction experiments of B 4 C powders have been performed using a planar configuration. The powders were contained between metal plates. On top of the upper plate, having a thickness of about 10 mm, was a layer of mining explosives. For this configuration, computer simulations have been performed with use of the hydrocode Autodyn. In comparison with the cylindrical compaction process the planar compaction process appears to be quite different. The reason is the very low detonation velocity of the used mining explosives (2-4 km/s), which is much lower than the sound and shock speeds of the steel plate, in combination with the relatively large thickness of the metal layer. As a result, the nature of the compaction process of the powder initially more resembles a quasi-static compaction process than a shock compaction process. Due to the quasi-static nature of the compaction, the pressure release in the powder after compression is very gradual. Therefore, no strong rarefaction waves leading to high tensile stresses in the compact arise. Flat plates (10x10 cm, 0.6-0.8 cm thick) of Al (20-30 vol %) infiltrated B 4 C have been fabricated using this configuration

  11. Application of nanotechnology in self-compacting concrete design

    International Nuclear Information System (INIS)

    Maghsoudi, A. A.; Arabpour Dahooei, F.

    2009-01-01

    In this study, first, different mix design of four types of Self-Compacting Concrete, 1. Self-Compacting Concrete consisted of only nano silica, 2. Self-Compacting Concrete included only micro silica, 3. Self-Compacting Concrete consisted of both micro silica and nano silica and 4. Self-Compacting Concrete without micro silica and nano silica called as control mix, were casted and tested to find out the values of the Slump Flow, L-Box and 7 and 28 days compressive strength. Then, based on the results obtained and as yet there is no universally accepted standard for characterizing of Self-Compacting Concrete, the most suitable four concrete mixes were selected for further investigation of fresh and hardened concrete. For selected mixes, the fresh concrete properties such as values of the Slump Flow, L-Box, V-Funnel, J-Ring and hardened engineering properties such as compressive and flexural strength, shrinkage and swelling values were investigated for three curing conditions at short and long term. The results showed that the engineering properties of Self-Compacting Concrete mixes could not be improved by adding only nano silica. However, a satisfactory behavior can be achieved using micro silica in the Self-Compacting Concrete mixes. However, by adding both micro silica and nano silica to the Self-Compacting Concrete mixtures, the best effect on the engineering properties was reported while comparing to the control mixes.

  12. Post-acceleration of laser driven protons with a compact high field linac

    Science.gov (United States)

    Sinigardi, Stefano; Londrillo, Pasquale; Rossi, Francesco; Turchetti, Giorgio; Bolton, Paul R.

    2013-05-01

    We present a start-to-end 3D numerical simulation of a hybrid scheme for the acceleration of protons. The scheme is based on a first stage laser acceleration, followed by a transport line with a solenoid or a multiplet of quadrupoles, and then a post-acceleration section in a compact linac. Our simulations show that from a laser accelerated proton bunch with energy selection at ~ 30MeV, it is possible to obtain a high quality monochromatic beam of 60MeV with intensity at the threshold of interest for medical use. In the present day experiments using solid targets, the TNSA mechanism describes accelerated bunches with an exponential energy spectrum up to a cut-off value typically below ~ 60MeV and wide angular distribution. At the cut-off energy, the number of protons to be collimated and post-accelerated in a hybrid scheme are still too low. We investigate laser-plasma acceleration to improve the quality and number of the injected protons at ~ 30MeV in order to assure efficient post-acceleration in the hybrid scheme. The results are obtained with 3D PIC simulations using a code where optical acceleration with over-dense targets, transport and post-acceleration in a linac can all be investigated in an integrated framework. The high intensity experiments at Nara are taken as a reference benchmarks for our virtual laboratory. If experimentally confirmed, a hybrid scheme could be the core of a medium sized infrastructure for medical research, capable of producing protons for therapy and x-rays for diagnosis, which complements the development of all optical systems.

  13. Solid targetry for compact cyclotrons

    International Nuclear Information System (INIS)

    Comor, J.

    2004-01-01

    In this presentation authors present experimental results of solid targetry for compact cyclotrons. It is concluded: Solid targetry is not restricted to large accelerator centers anymore; Small and medium scale radioisotope production is feasible with compact cyclotrons; The availability of versatile solid target systems is expected to boost the radiochemistry of 'exotic' positron emitters

  14. Steady state compact toroidal plasma production

    Science.gov (United States)

    Turner, William C.

    1986-01-01

    Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.

  15. Where are compact groups in the local Universe?

    Science.gov (United States)

    Díaz-Giménez, Eugenia; Zandivarez, Ariel

    2015-06-01

    Aims: The purpose of this work is to perform a statistical analysis of the location of compact groups in the Universe from observational and semi-analytical points of view. Methods: We used the velocity-filtered compact group sample extracted from the Two Micron All Sky Survey for our analysis. We also used a new sample of galaxy groups identified in the 2M++ galaxy redshift catalogue as tracers of the large-scale structure. We defined a procedure to search in redshift space for compact groups that can be considered embedded in other overdense systems and applied this criterion to several possible combinations of different compact and galaxy group subsamples. We also performed similar analyses for simulated compact and galaxy groups identified in a 2M++ mock galaxy catalogue constructed from the Millennium Run Simulation I plus a semi-analytical model of galaxy formation. Results: We observed that only ~27% of the compact groups can be considered to be embedded in larger overdense systems, that is, most of the compact groups are more likely to be isolated systems. The embedded compact groups show statistically smaller sizes and brighter surface brightnesses than non-embedded systems. No evidence was found that embedded compact groups are more likely to inhabit galaxy groups with a given virial mass or with a particular dynamical state. We found very similar results when the analysis was performed using mock compact and galaxy groups. Based on the semi-analytical studies, we predict that 70% of the embedded compact groups probably are 3D physically dense systems. Finally, real space information allowed us to reveal the bimodal behaviour of the distribution of 3D minimum distances between compact and galaxy groups. Conclusions: The location of compact groups should be carefully taken into account when comparing properties of galaxies in environments that are a priori different. Appendices are available in electronic form at http://www.aanda.orgFull Tables B.1 and B.2

  16. Compact system for high-speed velocimetry using heterodyne techniques

    International Nuclear Information System (INIS)

    Strand, O. T.; Goosman, D. R.; Martinez, C.; Whitworth, T. L.; Kuhlow, W. W.

    2006-01-01

    We have built a high-speed velocimeter that has proven to be compact, simple to operate, and fairly inexpensive. This diagnostic is assembled using off-the-shelf components developed for the telecommunications industry. The main components are fiber lasers, high-bandwidth high-sample-rate digitizers, and fiber optic circulators. The laser is a 2 W cw fiber laser operating at 1550 nm. The digitizers have 8 GHz bandwidth and can digitize four channels simultaneously at 20 GS/s. The maximum velocity of this system is ∼5000 m/s and is limited by the bandwidth of the electrical components. For most applications, the recorded beat frequency is analyzed using Fourier transform methods, which determine the time response of the final velocity time history. Using the Fourier transform method of analysis allows multiple velocities to be observed simultaneously. We have obtained high-quality data on many experiments such as explosively driven surfaces and gas gun assemblies

  17. 77 FR 22805 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact; Correction

    Science.gov (United States)

    2012-04-17

    ... Compact Council (Council) created by the National Crime Prevention and Privacy Compact Act of 1998..., correct the hotel address line in ADDRESSES to read: 300 East Travis. Dated: April 10, 2012. Gary S...

  18. Machine for compacting solid residues

    International Nuclear Information System (INIS)

    Herzog, J.

    1981-11-01

    Machine for compacting solid residues, particularly bulky radioactive residues, constituted of a horizontally actuated punch and a fixed compression anvil, in which the residues are first compacted horizontally and then vertically. Its salient characteristic is that the punch and the compression anvil have embossments on the compression side and interpenetrating plates in the compression position [fr

  19. Soil compaction and fertilization in soybean productivity

    Directory of Open Access Journals (Sweden)

    Beutler Amauri Nelson

    2004-01-01

    Full Text Available Soil compaction and fertilization affect soybean development. This study evaluated the effects of soil compaction and fertilization on soybean (Glycine max cv. Embrapa 48 productivity in a Typic Haplustox under field conditions in Jaboticabal, SP, Brazil. A completely randomized design with a 5 x 2 factorial layout (compaction vs. fertilization, with four replications in each treatment, was employed. Each experimental unit (replicate consisted of a 3.6 m² useful area. After the soil was prepared by cultivation, an 11 Mg tractor passed over it a variable number of times to create five levels of compaction. Treatments were: T0= no compaction, T1= one tractor pass, T2= two, T4= four, and T6= six passes, and no fertilizer and fertilizer to give soybean yields of 2.5 to 2.9 Mg ha-1. Soil was sampled at depths of 0.02-0.05, 0.07-0.10, and 0.15-0.18 m to determine macro and microporosity, penetration resistance (PR, and bulk density (Db. After 120 days growing under these conditions, the plants were analyzed in terms of development (plant height, number of pods, shoot dry matter per plant and weight of 100 seeds and seed productivity per hectare. Soil compaction decreased soybean development and productivity, but this effect was decreased by soil fertilization, showing that such fertilization increased soybean tolerance to soil compaction.

  20. Prospect for application of compact accelerator-based neutron source to neutron engineering diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Yoshimasa, E-mail: yoshimasa.ikeda@riken.jp [Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198 (Japan); Taketani, Atsushi; Takamura, Masato; Sunaga, Hideyuki [Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198 (Japan); Kumagai, Masayoshi [Faculty of Engineering, Tokyo City University, Setagaya, Tokyo 158-8857 (Japan); Oba, Yojiro [Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494 (Japan); Otake, Yoshie [Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198 (Japan); Suzuki, Hiroshi [Materials Sciences Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2016-10-11

    A compact accelerator-based neutron source has been lately discussed on engineering applications such as transmission imaging and small angle scattering as well as reflectometry. However, nobody considers using it for neutron diffraction experiment because of its low neutron flux. In this study, therefore, the neutron diffraction experiments are carried out using Riken Accelerator-driven Compact Neutron Source (RANS), to clarify the capability of the compact neutron source for neutron engineering diffraction. The diffraction pattern from a ferritic steel was successfully measured by suitable arrangement of the optical system to reduce the background noise, and it was confirmed that the recognizable diffraction pattern can be measured by a large sampling volume with 10 mm in cubic for an acceptable measurement time, i.e. 10 min. The minimum resolution of the 110 reflection for RANS is approximately 2.5% at 8 μs of the proton pulse width, which is insufficient to perform the strain measurement by neutron diffraction. The moderation time width at the wavelength corresponding to the 110 reflection is estimated to be approximately 30 μs, which is the most dominant factor to determine the resolution. Therefore, refinements of the moderator system to decrease the moderation time by decreasing a thickness of the moderator or by applying the decoupler system or application of the angular dispersive neutron diffraction technique are important to improve the resolution of the diffraction experiment using the compact neutron source. In contrast, the texture evolution due to plastic deformation was successfully observed by measuring a change in the diffraction peak intensity by RANS. Furthermore, the volume fraction of the austenitic phase in the dual phase mock specimen was also successfully evaluated by fitting the diffraction pattern using a Rietveld code. Consequently, RANS has been proved to be capable for neutron engineering diffraction aiming for the easy access

  1. Aligning laboratory and field compaction practices for asphalt - the influence of compaction temperature on mechanical properties

    NARCIS (Netherlands)

    Bijleveld, Frank; Miller, Seirgei Rosario; de Bondt, A.H.; Doree, Andries G.

    2015-01-01

    The approach used to identify a compaction temperature in the laboratory, based on binder viscosity, provides a single compaction temperature whereas, on-site, a roller operates within a temperature window. The effect on the density and mechanical properties of rolling during a temperature window

  2. Roller compaction of moist pharmaceutical powders.

    Science.gov (United States)

    Wu, C-Y; Hung, W-L; Miguélez-Morán, A M; Gururajan, B; Seville, J P K

    2010-05-31

    The compression behaviour of powders during roller compaction is dominated by a number of factors, such as process conditions (roll speed, roll gap, feeding mechanisms and feeding speed) and powder properties (particle size, shape, moisture content). The moisture content affects the powder properties, such as the flowability and cohesion, but it is not clear how the moisture content will influence the powder compression behaviour during roller compaction. In this study, the effect of moisture contents on roller compaction behaviour of microcrystalline cellulose (MCC, Avicel PH102) was investigated experimentally. MCC samples of different moisture contents were prepared by mixing as-received MCC powder with different amount of water that was sprayed onto the powder bed being agitated in a rotary mixer. The flowability of these samples were evaluated in terms of the poured angle of repose and flow functions. The moist powders were then compacted using the instrumented roller compactor developed at the University of Birmingham. The flow and compression behaviour during roller compaction and the properties of produced ribbons were examined. It has been found that, as the moisture content increases, the flowability of moist MCC powders decreases and the powder becomes more cohesive. As a consequence of non-uniform flow of powder into the compaction zone induced by the friction between powder and side cheek plates, all produced ribbons have a higher density in the middle and lower densities at the edges. For the ribbons made of powders with high moisture contents, different hydration states across the ribbon width were also identified from SEM images. Moreover, it was interesting to find that these ribbons were split into two halves. This is attributed to the reduction in the mechanical strength of moist powder compacts with high moisture contents produced at high compression pressures. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  3. Bone compaction enhances fixation of weightbearing titanium implants

    DEFF Research Database (Denmark)

    Kold, Søren; Rahbek, Ole; Vestermark, Marianne

    2005-01-01

    are weightbearing, the effects of compaction on weightbearing implants were examined. The hypothesis was that compaction would increase implant fixation compared with conventional drilling. Porous-coated titanium implants were inserted bilaterally into the weightbearing portion of the femoral condyles of dogs....... In each dog, one knee had the implant cavity prepared with drilling, and the other knee was prepared with compaction. Eight dogs were euthanized after 2 weeks, and eight dogs were euthanized after 4 weeks. Femoral condyles from an additional eight dogs represented Time 0. Compacted specimens had higher...... bone-implant contact and periimplant bone density at 0 and 2 weeks, but not at 4 weeks. A biphasic response of compaction was found with a pushout test, as compaction increased ultimate shear strength and energy absorption at 0 and 4 weeks, but not at 2 weeks. This biphasic response indicates...

  4. A compact 3 T all HTS cryogen-free MRI system

    Science.gov (United States)

    Parkinson, B. J.; Bouloukakis, K.; Slade, R. A.

    2017-12-01

    We have designed and built a passively shielded, cryogen-free 3 T 160 mm bore bismuth strontium calcium copper oxide HTS magnet with shielded gradient coils suitable for use in small animal imaging applications. The magnet is cooled to approximately 16 K using a two-stage cryocooler and is operated at 200 A. The magnet has been passively shimmed so as to achieve ±10 parts per million (ppm) homogeneity over a 60 mm diameter imaging volume. We have demonstrated that B 0 temporal stability is fit-for-purpose despite the magnet operating in the driven mode. The system has produced good quality spin-echo and gradient echo images. This compact HTS-MRI system is emerging as a true alternative to conventional low temperature superconductor based cryogen-free MRI systems, with much more efficient cryogenics since it operates entirely from a single phase alternating current electrical supply.

  5. Gamma-Rays from Galactic Compact Sources

    Science.gov (United States)

    Kaaret, Philip

    2007-04-01

    Recent discoveries have revealed many sources of TeV photons in our Mikly Way galaxy powered by compact objects, either neutron stars or black holes. These objects must be powerful particle accelerators, some with peak energies of at least 100 TeV, and may be neutrino, as well as photon, sources. Future TeV observations will enable us to address key questions concerning particle acceleration by compact objects including the fraction of energy which accreting black holes channel into relativstic jet production, whether the compact object jets are leptonic or hadronic, and the mechanism by which pulsar winds accelerate relativistic particles. We report on work done related to compact Galactic objects in preparation of a White Paper on the status and future of ground-based gamma-ray astronomy requested by the Division of Astrophysics of the American Physical Society.

  6. Design and Analysis of a Bio-Inspired Wire-Driven Multi-Section Flexible Robot

    Directory of Open Access Journals (Sweden)

    Zheng Li

    2013-04-01

    Full Text Available This paper presents a bio-inspired wire-driven multi-section flexible robot. It is inspired by the snake skeleton and octopus arm muscle arrangements. The robot consists of three sections and each section is made up of several identical vertebras, which are articulated by both spherical joints and a flexible backbone. Each section is driven by two groups of wires, controlling the bending motion in X and Y directions. This design integrates the serpentine robots' structure and the continuum robots' actuation. As a result, it is more compact than traditional serpentine robots and has a higher positioning accuracy than typical continuum soft robots, such as OctArm V. A Kinematics model and a workspace model of the robot are developed based on the piece wise constant curvature assumption. To evaluate the design, a prototype is built and experiments are carried out. The average distal end positioning error is less than 4%. Characteristics of the wire-driven robot are also discussed, including the leverage effect and the manipulability under constraint. These features makes the proposed robot well suited to confined spaces, especially for working in minimally invasive surgery, nuclear reactor pipelines, disaster debris, etc.

  7. Focusing and transport of high-intensity multi-MeV proton bunches from a compact laser-driven source

    Directory of Open Access Journals (Sweden)

    S. Busold

    2013-10-01

    Full Text Available Laser ion acceleration provides for compact, high-intensity ion sources in the multi-MeV range. Using a pulsed high-field solenoid, for the first time high-intensity laser-accelerated proton bunches could be selected from the continuous exponential spectrum and delivered to large distances, containing more than 10^{9} particles in a narrow energy interval around a central energy of 9.4 MeV and showing ≤30  mrad envelope divergence. The bunches of only a few nanoseconds bunch duration were characterized 2.2 m behind the laser-plasma source with respect to arrival time, energy width, and intensity as well as spatial and temporal bunch profile.

  8. ELIMAIA: A Laser-Driven Ion Accelerator for Multidisciplinary Applications

    Directory of Open Access Journals (Sweden)

    Daniele Margarone

    2018-04-01

    Full Text Available The main direction proposed by the community of experts in the field of laser-driven ion acceleration is to improve particle beam features (maximum energy, charge, emittance, divergence, monochromaticity, shot-to-shot stability in order to demonstrate reliable and compact approaches to be used for multidisciplinary applications, thus, in principle, reducing the overall cost of a laser-based facility compared to a conventional accelerator one and, at the same time, demonstrating innovative and more effective sample irradiation geometries. The mission of the laser-driven ion target area at ELI-Beamlines (Extreme Light Infrastructure in Dolní Břežany, Czech Republic, called ELI Multidisciplinary Applications of laser-Ion Acceleration (ELIMAIA , is to provide stable, fully characterized and tuneable beams of particles accelerated by Petawatt-class lasers and to offer them to the user community for multidisciplinary applications. The ELIMAIA beamline has been designed and developed at the Institute of Physics of the Academy of Science of the Czech Republic (IoP-ASCR in Prague and at the National Laboratories of Southern Italy of the National Institute for Nuclear Physics (LNS-INFN in Catania (Italy. An international scientific network particularly interested in future applications of laser driven ions for hadrontherapy, ELI MEDical applications (ELIMED, has been established around the implementation of the ELIMAIA experimental system. The basic technology used for ELIMAIA research and development, along with envisioned parameters of such user beamline will be described and discussed.

  9. Tunable arrayed waveguide grating driven by surface acoustic waves

    Science.gov (United States)

    Crespo-Poveda, Antonio; Hernández-Mínguez, Alberto; Biermann, Klaus; Tahraoui, Abbes; Gargallo, Bernardo; Muñoz, Pascual; Santos, Paulo V.; Cantarero, Andrés.; de Lima, Maurício M.

    2016-03-01

    We present a design approach for compact reconfigurable phased-array wavelength-division multiplexing (WDM) devices with N access waveguides (WGs) based on multimode interference (MMI) couplers. The proposed devices comprise two MMI couplers which are employed as power splitters and combiners, respectively, linked by an array of N single-mode WGs. First, passive devices are explored. Taking advantage of the transfer phases between the access ports of the MMI couplers, we derive very simple phase relations between the arms that provide wavelength dispersion at the output plane of the devices. When the effective refractive index of the WGs is modulated with the proper relative optical phase difference, each wavelength component can switch paths between the preset output channel and the remaining output WGs. Moreover, very simple phase relations between the modulated WGs that enable the reconfiguration of the output channel distribution when the appropriated coupling lengths of the MMI couplers are chosen are also derived. In this way, a very compact expression to calculate the channel assignment of the devices as a function of the applied phase shift is derived for the general case of N access WGs. Finally, the experimental results corresponding to an acoustically driven phased-array WDM device with five access WGs fabricated on (Al,Ga)As are shown.

  10. Correlating particle hardness with powder compaction performance.

    Science.gov (United States)

    Cao, Xiaoping; Morganti, Mikayla; Hancock, Bruno C; Masterson, Victoria M

    2010-10-01

    Assessing particle mechanical properties of pharmaceutical materials quickly and with little material can be very important to early stages of pharmaceutical research. In this study, a wide range of pharmaceutical materials were studied using atomic force microscopy (AFM) nanoindentation. A significant amount of particle hardness and elastic modulus data were provided. Moreover, powder compact mechanical properties of these materials were investigated in order to build correlation between the particle hardness and powder compaction performance. It was found that the materials with very low or high particle hardness most likely exhibit poor compaction performance while the materials with medium particle hardness usually have good compaction behavior. Additionally, the results from this study enriched Hiestand's special case concept on particle hardness and powder compaction performance. This study suggests that the use of AFM nanoindentation can help to screen mechanical properties of pharmaceutical materials at early development stages of pharmaceutical research.

  11. Compacting biomass waste materials for use as fuel

    Science.gov (United States)

    Zhang, Ou

    Every year, biomass waste materials are produced in large quantity. The combustibles in biomass waste materials make up over 70% of the total waste. How to utilize these waste materials is important to the nation and the world. The purpose of this study is to test optimum processes and conditions of compacting a number of biomass waste materials to form a densified solid fuel for use at coal-fired power plants or ordinary commercial furnaces. Successful use of such fuel as a substitute for or in cofiring with coal not only solves a solid waste disposal problem but also reduces the release of some gases from burning coal which cause health problem, acid rain and global warming. The unique punch-and-die process developed at the Capsule Pipeline Research Center, University of Missouri-Columbia was used for compacting the solid wastes, including waste paper, plastics (both film and hard products), textiles, leaves, and wood. The compaction was performed to produce strong compacts (biomass logs) under room temperature without binder and without preheating. The compaction conditions important to the commercial production of densified biomass fuel logs, including compaction pressure, pressure holding time, back pressure, moisture content, particle size, binder effects, and mold conditions were studied and optimized. The properties of the biomass logs were evaluated in terms of physical, mechanical, and combustion characteristics. It was found that the compaction pressure and the initial moisture content of the biomass material play critical roles in producing high-quality biomass logs. Under optimized compaction conditions, biomass waste materials can be compacted into high-quality logs with a density of 0.8 to 1.2 g/cm3. The logs made from the combustible wastes have a heating value in the range 6,000 to 8,000 Btu/lb which is only slightly (10 to 30%) less than that of subbituminous coal. To evaluate the feasibility of cofiring biomass logs with coal, burn tests were

  12. Studies on Plasmoid Merging using Compact Toroid Injectors

    Science.gov (United States)

    Allfrey, Ian; Matsumoto, Tadafumi; Roche, Thomas; Gota, Hiroshi; Edo, Takahiro; Asai, Tomohiko; Sheftman, Daniel; Osin Team; Dima Team

    2017-10-01

    C-2 and C-2U experiments have used magnetized coaxial plasma guns (MCPG) to inject compact toroids (CTs) for refueling the long-lived advanced beam-driven field-reversed configuration (FRC) plasma. This refueling method will also be used for the C-2W experiment. To minimize momentum transfer from the CT to the FRC two CTs are injected radially, diametrically opposed and coincident in time. To improve understanding of the CT characteristics TAE has a dedicated test bed for the development of CT injectors (CTI), where plasmoid merging experiments are performed. The test bed has two CTIs on axis with both axial and transverse magnetic fields. The 1 kG magnetic fields, intended to approximate the magnetic field strength and injection angle on C-2W, allow studies of cross-field transport and merging. Both CTIs are capable of injecting multiple CTs at up to 1 kHz. The resulting merged CT lives >100 μs with a radius of 25 cm. More detailed results of CT parameters will be presented.

  13. Self-Compacting Concrete in Precast Elements Industry

    Directory of Open Access Journals (Sweden)

    Corneliu Bob

    2005-01-01

    Full Text Available In this paper the authors present information about the Self-Compacting Concrete and experimental results regarding the use of them into precast element industry. This type of concrete does not require vibration for placing and compaction; it is able to flow under its own weight, completely filling formwork and achieving full compaction, even in the presence of congested reinforcement. The experimental programme has take into account two prestressed beams which were prefabricated and tested on a special stands. The beams of Self-Compacting Concrete with the length of 24 m were prepared at „Beton-Star” Kft, Kecsekenet, Hungary, and used at the CASCO, Satu-Mare.

  14. Compact instrument for fluorescence image-guided surgery

    Science.gov (United States)

    Wang, Xinghua; Bhaumik, Srabani; Li, Qing; Staudinger, V. Paul; Yazdanfar, Siavash

    2010-03-01

    Fluorescence image-guided surgery (FIGS) is an emerging technique in oncology, neurology, and cardiology. To adapt intraoperative imaging for various surgical applications, increasingly flexible and compact FIGS instruments are necessary. We present a compact, portable FIGS system and demonstrate its use in cardiovascular mapping in a preclinical model of myocardial ischemia. Our system uses fiber optic delivery of laser diode excitation, custom optics with high collection efficiency, and compact consumer-grade cameras as a low-cost and compact alternative to open surgical FIGS systems. Dramatic size and weight reduction increases flexibility and access, and allows for handheld use or unobtrusive positioning over the surgical field.

  15. Effect of slash on forwarder soil compaction

    Science.gov (United States)

    Timothy P. McDonald; Fernando Seixas

    1997-01-01

    A study of the effect of slash on forwarder soil compaction was carried out. The level of soil compaction at two soil moisture contents, three slash densities (0, 10, and 20 kg/m2), and two levels of traffic (one and five passes) were measured. Results indicated that, on dry, loamy sand soils, the presence of slash did not decrease soil compaction after one forwarder...

  16. Compacted cancellous bone has a spring-back effect

    DEFF Research Database (Denmark)

    Kold, S; Bechtold, JE; Ding, Ming

    2003-01-01

    A new surgical technique, compaction, has been shown to improve implant fixation. It has been speculated that the enhanced implant fixation with compaction could be due to a spring-back effect of compacted bone. However, such an effect has yet to be shown. Therefore we investigated in a canine mo....... Thus we found a spring-back effect of compacted bone, which may be important for increasing implant fixation by reducing initial gaps between the implant and bone....

  17. Performance characteristics of a prompt gamma-ray activation analysis (PGAA) system equipped with a new compact D-D neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Joon; Song, Byung Chul; Im, Hee-Jung [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Dukjin-dong 150-1, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Jong-Yun [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Dukjin-dong 150-1, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)], E-mail: kjy@kaeri.re.kr

    2009-07-21

    A new prompt gamma-ray activation analysis (PGAA) system equipped with a compact deuterium-deuterium (D-D) neutron generator has been developed for fast detection of explosives and chemical warfare agents. The PGAA system was built based on a fully high-voltage-shielded, axial D-D neutron generator with a radio frequency (RF)-driven ion source. The ionic current of the compact neutron generator was determined as a function of the acceleration voltage at various RF powers. Monoenergetic neutrons (2.45 MeV) with a neutron yield of >1x10{sup 7} n/s were obtained at a deuterium pressure of 8.0 mTorr, an acceleration voltage of 80 kV, and an RF power of 1.1 kW. The performance of the PGAA system was examined by studying the dependence of a prompt gamma-ray count rate on crucial operating parameters.

  18. Effect of repeated compaction of tablets on tablet properties and work of compaction using an instrumented laboratory tablet press.

    Science.gov (United States)

    Gamlen, Michael John Desmond; Martini, Luigi G; Al Obaidy, Kais G

    2015-01-01

    The repeated compaction of Avicel PH101, dicalcium phosphate dihydrate (DCP) powder, 50:50 DCP/Avicel PH101 and Starch 1500 was studied using an instrumented laboratory tablet press which measures upper punch force, punch displacement and ejection force and operates using a V-shaped compression profile. The measurement of work compaction was demonstrated, and the test materials were ranked in order of compaction behaviour Avicel PH101 > DCP/Avicel PH101 > Starch > DCP. The behaviour of the DCP/Avicel PH101 mixture was distinctly non-linear compared with the pure components. Repeated compaction and precompression had no effect on the tensile fracture strength of Avicel PH101 tablets, although small effects on friability and disintegration time were seen. Repeated compaction and precompression reduced the tensile strength and the increased disintegration time of the DCP tablets, but improved the strength and friability of Starch 1500 tablets. Based on the data reported, routine laboratory measurement of tablet work of compaction may have potential as a critical quality attribute of a powder blend for compression. The instrumented press was suitable for student use with minimal supervisor input.

  19. Evaluation of automatic vacuum- assisted compaction solutions

    Directory of Open Access Journals (Sweden)

    M. Brzeziński

    2011-01-01

    Full Text Available Currently on the mould-making machines market the companies like: DiSA, KUENKEL WAGNER, HAFLINGER, HEINRICH WAGNER SINTO, HUNTER, SAVELLI AND TECHNICAL play significant role. These companies are the manufacturers of various solutions in machines and instalations applied in foundry engineering. Automatic foundry machines for compaction of green sand have the major role in mechanisation and automation processes of making the mould. The concept of operation of automatic machines is based on the static and dynamic methods of compacting the green sand. The method which gains the importance is the compacting method by using the energy of the air pressure. It's the initial stage or the supporting process of compacting the green sand. However in the automatic mould making machines using this method it's essential to use the additional compaction of the mass in order to receive the final parameters of the form. In the constructional solutions of the machines there is the additional division which concerns the method of putting the sand into the mould box. This division distinquishes the transport of the sand with simultaneous compaction or the putting of the sand without the pre-compaction. As the solutions of the major manufacturers are often the subject for application in various foundries, the authors of the paper would like/have the confidence to present their own evaluation process confirmed by their own researches and independent analysis of the producers' solutions.

  20. Compact Antenna Range

    Data.gov (United States)

    Federal Laboratory Consortium — Facility consists of a folded compact antenna range including a computer controlled three axis position table, parabolic reflector and RF sources for the measurement...

  1. Linear Shrinkage Behaviour of Compacted Loam Masonry Blocks

    Directory of Open Access Journals (Sweden)

    NAWAB ALI LAKHO

    2017-04-01

    Full Text Available Walls of wet loam, used in earthen houses, generally experience more shrinkage which results in cracks and less compressive strength. This paper presents a technique of producing loam masonry blocks that are compacted in drained state during casting process in order to minimize shrinkage. For this purpose, loam masonry blocks were cast and compacted at a pressure of 6 MPa and then dried in shade by covering them in plastic sheet. The results show that linear shrinkage of 2% occurred which is smaller when compared to un-compacted wet loam walls. This implies that the loam masonry blocks compacted in drained state is expected to perform better than un-compacted wet loam walls.

  2. Formation of a compact toroid for enhanced efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Mozgovoy, A. G. [P.N. Lebedev Physical Institute, Moscow 119991 (Russian Federation); Romadanov, I. V.; Ryzhkov, S. V., E-mail: ryzhkov@power.bmstu.ru [Bauman Moscow State Technical University, Moscow 105005 (Russian Federation)

    2014-02-15

    We report here our results on the formation of a plasma configuration with the generic name of compact toroid (CT). A method of compact toroid formation to confine, heat and compress a plasma is investigated. Formation of a compact torus using an additional toroidal magnetic field helps to increase the plasma current to a maintainable level of the original magnetic field. We design the Compact Toroid Challenge (CTC) experiment in order to improve the magnetic flux trapping during field reversal in the formation of a compact toroid. The level of the magnetic field immersed in the plasma about 70% of the primary field is achieved. The CTC device and scheme of high level capturing of magnetic flux are presented.

  3. Compactness in quasi-Banach function spaces and applications to compact embeddings of Besov-type spaces

    Czech Academy of Sciences Publication Activity Database

    Caetano, A.M.; Gogatishvili, Amiran; Opic, B.

    2016-01-01

    Roč. 146, č. 5 (2016), s. 905-927 ISSN 0308-2105 R&D Projects: GA ČR GA13-14743S Institutional support: RVO:67985840 Keywords : quasi-Banach function space * compactness * compact embedding Subject RIV: BA - General Mathematics Impact factor: 1.158, year: 2016 http:// journals .cambridge.org/action/displayAbstract?fromPage=online&aid=10379393&fileId=S0308210515000761

  4. Compaction of amorphous iron–boron powder

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Mørup, Steen; Koch, Christian

    1993-01-01

    Large scale practical use of bulk amorphous alloys requires the capability of molding the material to a desired design, for instance by compaction of an amorphous powder. This is a difficult task because the sintering temperature is limited by the crystallization temperature of the alloy.1 Here we......, should facilitate a compaction. The passivation layer, however, impedes a compaction. Isostatic pressing at 540 K at a pressure of 200 MPa clearly illustrated this; pellets pressed from passivated powder were much more brittle than pellets pressed from unpassivated powder. The density of the pellets...... was very low ([approximately-equal-to]25% of the density of bulk FeB). We have designed a die for uniaxial pressing in which the compaction can be performed without exposing the powder to air and have obtained densities larger than 60% of that of bulk FeB. We have reported studies of the dependence...

  5. Isometric coactions of compact quantum groups on compact ...

    Indian Academy of Sciences (India)

    a compact quantum metric space in the framework of Rieffel, where the ... This problem can be formulated and studied in various settings. ... The spaces we are interested in this paper are metric spaces, both classical and quantum. ... He has given a definition for a quantum symmetry of a classical ...... by the construction of I.

  6. An Active Black Hole in a Compact Dwarf

    Science.gov (United States)

    Kohler, Susanna

    2016-05-01

    A new type of galaxy has just been added to the galaxy zoo: a small, compact, and old elliptical galaxy that shows signs of a monster black hole actively accreting material in its center. What can this unusual discovery tell us about how compact elliptical galaxies form?A New Galactic BeastCompact elliptical galaxies are an extremely rare early-type dwarf galaxy. Consistent with their name, compact ellipticals are small, very compact collections of ancient stars; these galaxies exhibit a high surface brightness and arent actively forming stars.Optical view of the ancient compact elliptical galaxy SDSS J085431.18+173730.5 (center of image) in an SDSS color composite image. [Adapted from Paudel et al. 2016]Most compact ellipticals are found in dense environments, particularly around massive galaxies. This has led astronomers to believe that compact ellipticals might form via the tidal stripping of a once-large galaxy in interactions with another, massive galaxy. In this model, once the original galaxys outer layers are stripped away, the compact inner bulge component would be left behind as a compact elliptical galaxy. Recent discoveries of a few isolated compact ellipticals, however, have strained this model.Now a new galaxy has been found to confuse our classification schemes: the first-ever compact elliptical to also display signs of an active galactic nucleus. Led by Sanjaya Paudel (Korea Astronomy and Space Science Institute), a team of scientists discovered SDSS J085431.18+173730.5 serendipitously in Sloan Digital Sky Survey data. The team used SDSS images and spectroscopy in combination with data from the Canada-France-Hawaii Telescope to learn more about this unique galaxy.Puzzling CharacteristicsSDSS J085431.18+173730.5 presents an interesting conundrum. Ancient compact ellipticals are supposed to be devoid of gas, with no fuel left to trigger nuclear activity. Yet SDSS J085431.18+173730.5 clearly shows the emission lines that indicate active accretion onto

  7. Temperature evolution during compaction of pharmaceutical powders.

    Science.gov (United States)

    Zavaliangos, Antonios; Galen, Steve; Cunningham, John; Winstead, Denita

    2008-08-01

    A numerical approach to the prediction of temperature evolution in tablet compaction is presented here. It is based on a coupled thermomechanical finite element analysis and a calibrated Drucker-Prager Cap model. This approach is capable of predicting transient temperatures during compaction, which cannot be assessed by experimental techniques due to inherent test limitations. Model predictions are validated with infrared (IR) temperature measurements of the top tablet surface after ejection and match well with experiments. The dependence of temperature fields on speed and degree of compaction are naturally captured. The estimated transient temperatures are maximum at the end of compaction at the center of the tablet and close to the die wall next to the powder/die interface.

  8. 'Crescent'-shaped tokamak for compact ignition

    International Nuclear Information System (INIS)

    Yamazaki, K.; Reiersen, W.T.

    1985-12-01

    A compact high-beta tokamak configuration with ''crescent''-shaped (or ''boomerang''-shaped) cross-section is proposed as a next-generation ignition machine. This configuration with a small indentation but a large triangularity is more compact than the normal dee-shaped design because of its high-beta characteristics in the first-second transition regime of stability. This may also be a more reliable next-generation compact device than the bean-shaped design with large indentation and small triangularity, because this design dose not rely on the second stability and is easily extendable from the present dee-shaped design. (author)

  9. Generalised model for anisotropic compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Raj Kumar Goel Institute of Technology, Department of Mathematics, Ghaziabad, Uttar Pradesh (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Deb, Debabrata [Indian Institute of Engineering Science and Technology, Shibpur, Department of Physics, Howrah, West Bengal (India)

    2016-12-15

    In the present investigation an exact generalised model for anisotropic compact stars of embedding class 1 is sought with a general relativistic background. The generic solutions are verified by exploring different physical aspects, viz. energy conditions, mass-radius relation, stability of the models, in connection to their validity. It is observed that the model presented here for compact stars is compatible with all these physical tests and thus physically acceptable as far as the compact star candidates RXJ 1856-37, SAX J 1808.4-3658 (SS1) and SAX J 1808.4-3658 (SS2) are concerned. (orig.)

  10. 'Crescent'-shaped tokamak for compact ignition

    International Nuclear Information System (INIS)

    Yamazaki, K.; Reiersen, W.T.

    1986-01-01

    A compact high-beta tokamak configuration with ''crescent''-shaped (or ''boomerang''-shaped) cross section is proposed as a next-generation ignition machine. This configuration with a small indentation but a large triangularity is more compact than the normal dee-shaped design because of its high-beta characteristics in the first-second transition regime of stability. This may also be a more reliable next-generation compact device than the bean-shaped design with large indentation and small triangularity, because this design does not rely on the second stability and is easily extendable from the present dee-shaped design. (author)

  11. Quasistationary magnetic field generation with a laser-driven capacitor-coil assembly.

    Science.gov (United States)

    Tikhonchuk, V T; Bailly-Grandvaux, M; Santos, J J; Poyé, A

    2017-08-01

    Recent experiments are showing possibilities to generate strong magnetic fields on the excess of 500 T with high-energy nanosecond laser pulses in a compact setup of a capacitor connected to a single turn coil. Hot electrons ejected from the capacitor plate (cathode) are collected at the other plate (anode), thus providing the source of a current in the coil. However, the physical processes leading to generation of currents exceeding hundreds of kiloamperes in such a laser-driven diode are not sufficiently understood. Here we present a critical analysis of previous results and propose a self-consistent model for the high current generation in a laser-driven capacitor-coil assembly. It accounts for three major effects controlling the diode current: the space charge neutralization, the plasma magnetization between the capacitor plates, and the Ohmic heating of the external circuit-the coil-shaped connecting wire. The model provides the conditions necessary for transporting strongly super-Alfvenic currents through the diode on the time scale of a few nanoseconds. The model validity is confirmed by a comparison with the available experimental data.

  12. Development of compact toroids injector for direct plasma controls

    International Nuclear Information System (INIS)

    Azuma, K.; Oda, Y.; Onozuka, M.; Uyama, T.; Nagata, M.; Fukumoto, N.

    1995-01-01

    The application of the compact toroids injector for direct plasma controls has been investigated. The compact toroids injection can fuel particles directly into the core of the plasma and modify the plasma profiles at the desired locations. The acceleration tests of the compact toroids have been conducted at Himeji Institute of Technology. The tests showed that the hydrogen compact toroid was accelerated up to 80km/s and the plasma density of the compact toroid was compressed to 1.2 x 10 21 m -3 . (orig.)

  13. Compact sub-nanosecond pulse seed source with diode laser driven by a high-speed circuit

    Science.gov (United States)

    Wang, Xiaoqian; Wang, Bo; Wang, Junhua; Cheng, Wenyong

    2018-06-01

    A compact sub-nanosecond pulse seed source with 1550 nm diode laser (DL) was obtained by employing a high-speed circuit. The circuit mainly consisted of a short pulse generator and a short pulse driver. The short pulse generator, making up of a complex programmable logic device (CPLD), a level translator, two programmable delay chips and an AND gate chip, output a triggering signal to control metal-oxide-semiconductor field-effect transistor (MOSFET) switch of the short pulse driver. The MOSFET switch with fast rising time and falling time both shorter than 1 ns drove the DL to emit short optical pulses. Performances of the pulse seed source were tested. The results showed that continuously adjustable repetition frequency ranging from 500 kHz to 100 MHz and pulse duration in the range of 538 ps to 10 ns were obtained, respectively. 537 μW output was obtained at the highest repetition frequency of 100 MHz with the shortest pulse duration of 538 ps. These seed pulses were injected into an fiber amplifier, and no optical pulse distortions were found.

  14. Co-compact Gabor Systems on Locally Compact Abelian Groups

    DEFF Research Database (Denmark)

    Jakobsen, Mads Sielemann; Lemvig, Jakob

    2016-01-01

    In this work we extend classical structure and duality results in Gabor analysis on the euclidean space to the setting of second countable locally compact abelian (LCA) groups. We formulate the concept of rationally oversampling of Gabor systems in an LCA group and prove corresponding characteriz...

  15. Agglomeration of powders with a new-coupled vibration-compaction device

    Directory of Open Access Journals (Sweden)

    Serris Eric

    2017-01-01

    Full Text Available Inorganic powder recycling should be a crucial process for the “smart factories” in the future. A complex three-phase system (bauxite mixed with ordinary Portland cement and water with a new-coupled vibration-compaction device is studied. The compressive stress of compacts seems to be improved by using this device at low compaction pressure leaving the other characteristics unchanged. The tomographic study of macroscopic porosities shows differences in the pores repartitions inside vibrated and untreated compacts. Classic porosity repartition is shown in the classic compacted bauxite compacts whereas in the vibrated-compacted bauxite exhibits inhomogeneities. Despite this, we find these results quite promising for further investigations.

  16. Development of compact toroids injector for direct plasma controls

    Energy Technology Data Exchange (ETDEWEB)

    Azuma, K. [Mitsubishi Heavy Industries Ltd., Takasago (Japan); Oda, Y. [Mitsubishi Heavy Industries Ltd., Takasago (Japan); Onozuka, M. [Mitsubishi Heavy Industries Ltd., Takasago (Japan); Uyama, T. [Himeji Inst. of Tech. (Japan); Nagata, M. [Himeji Inst. of Tech. (Japan); Fukumoto, N. [Himeji Inst. of Tech. (Japan)

    1995-12-31

    The application of the compact toroids injector for direct plasma controls has been investigated. The compact toroids injection can fuel particles directly into the core of the plasma and modify the plasma profiles at the desired locations. The acceleration tests of the compact toroids have been conducted at Himeji Institute of Technology. The tests showed that the hydrogen compact toroid was accelerated up to 80km/s and the plasma density of the compact toroid was compressed to 1.2 x 10{sup 21}m{sup -3}. (orig.).

  17. Principles of control automation of soil compacting machine operating mechanism

    Science.gov (United States)

    Anatoly Fedorovich, Tikhonov; Drozdov, Anatoly

    2018-03-01

    The relevance of the qualitative compaction of soil bases in the erection of embankment and foundations in building and structure construction is given.The quality of the compactible gravel and sandy soils provides the bearing capability and, accordingly, the strength and durability of constructed buildings.It has been established that the compaction quality depends on many external actions, such as surface roughness and soil moisture; granulometry, chemical composition and degree of elasticity of originalfilled soil for compaction.The analysis of technological processes of soil bases compaction of foreign and domestic information sources showed that the solution of such important problem as a continuous monitoring of soil compaction actual degree in the process of machine operation carry out only with the use of modern means of automation. An effective vibrodynamic method of gravel and sand material sealing for the building structure foundations for various applications was justified and suggested.The method of continuous monitoring the soil compaction by measurement of the amplitudes and frequencies of harmonic oscillations on the compactible surface was determined, which allowed to determine the basic elements of facilities of soil compacting machine monitoring system of operating, etc. mechanisms: an accelerometer, a bandpass filter, a vibro-harmonics, an on-board microcontroller. Adjustable parameters have been established to improve the soil compaction degree and the soil compacting machine performance, and the adjustable parameter dependences on the overall indexhave been experimentally determined, which is the soil compaction degree.A structural scheme of automatic control of the soil compacting machine control mechanism and theoperation algorithm has been developed.

  18. FEM modeling on the compaction of Fe and Al composite powders

    Directory of Open Access Journals (Sweden)

    Han P.

    2015-01-01

    Full Text Available The compaction process of Fe and Al composite powders subjected to single action die compaction was numerically modeled by FEM method. The relationship between the overall relative density and compaction pressure of the compacts with various Al contents was firstly identified, and the influences of Al content on the local relative density, stress, and their distributions were studied. Then the compaction pressure effects on the above properties with fixed Al content were discussed. Furthermore, detailed flow behaviors of the composite powders during compaction and the relationship between the compaction pressure and the ejection force/spring back of the compact were analyzed. The results show that: (1 With each compaction pressure, higher relative density can be realized with the increase of Al content and the relative density distribution tends to be uniform; (2 When the Al content is fixed, higher compaction pressure can lead to composite compact with higher relative density, and the equivalent Von Mises stress in the central part of the compact increases gradually; (3 Convective flow occurs at the top and bottom parts of the compact close to the die wall, each indicates a different flow behavior; (4 The larger the compaction pressure for each case, the higher the residual elasticity, and the larger the ejection force needed.

  19. Mechanical and chemical compaction in fine-grained shallow-water limestones.

    Science.gov (United States)

    Shinn, E.A.; Robbin, D.M.

    1983-01-01

    Significant mechanical compaction resulted from pressures simulating less than 305 m of burial. Increasing loads to an equivalent of more than 3400 m did not significantly increase compaction or reduce sediment core length. Chemical compaction (pressure dissolution) was detected only in sediment cores compacted to pressures greater than 3400 m of burial. These short-term experiments suggest that chemical compaction would begin at much shallower depths given geologic time. Compaction experiments that caused chemical compaction lend support to the well-established hypothesis; that cement required to produce a low-porosity/low-permeability fine-grained limestone is derived internally. Dissolution, ion diffusion, and reprecipitation are considered the most likely processes for creating significant thicknesses of dense limestone in the geologic record. Continuation of chemical compaction after significant porosity reduction necessitates expulsion of connate fluids, possibly including hydrocarbons. -from Authors

  20. THz cavities and injectors for compact electron acceleration using laser-driven THz sources

    Directory of Open Access Journals (Sweden)

    Moein Fakhari

    2017-04-01

    Full Text Available We present a design methodology for developing ultrasmall electron injectors and accelerators based on cascaded cavities excited by short multicycle THz pulses obtained from laser-driven THz generation schemes. Based on the developed concept for optimal coupling of the THz pulse, a THz electron injector and two accelerating stages are designed. The designed electron gun consists of a four cell cavity operating at 300 GHz and a door-knob waveguide to coaxial coupler. Moreover, special designs are proposed to mitigate the problem of thermal heat flow and induced mechanical stress to achieve a stable device. We demonstrated a gun based on cascaded cavities that is powered by only 1.1 mJ of THz energy in 300 cycles to accelerate electron bunches up to 250 keV. An additional two linac sections can be added with five and four cell cavities both operating at 300 GHz boosting the bunch energy up to 1.2 MeV using a 4-mJ THz pulse.

  1. Bone compaction enhances implant fixation in a canine gap model

    DEFF Research Database (Denmark)

    Kold, Søren; Rahbek, Ole; Toft, Marianne

    2005-01-01

    A new bone preparation technique, compaction, has increased fixation of implants inserted with exact-fit or press-fit to bone. Furthermore, a demonstrated spring-back effect of compacted bone might be of potential value in reducing the initial gaps that often exist between clinical inserted...... implants and bone. However, it is unknown whether the compression and breakage of trabeculae during the compaction procedure results in impaired gap-healing of compacted bone. Therefore, we compared compaction with conventional drilling in a canine gap model. Grit-blasted titanium implants (diameter 6 mm...... that the beneficial effect of reduced gap size, as compacted bone springs back, is not eliminated by an impaired gap-healing of compacted bone....

  2. Modeling compaction-induced energy dissipation of granular HMX

    Energy Technology Data Exchange (ETDEWEB)

    Gonthier, K.A. [Lamar Univ., Beaumont, TX (US). Dept. of Mechanical Engineering; Menikoff, R.; Son, S.F.; Asay, B.W. [Los Alamos National Lab., NM (US)

    1998-12-31

    A thermodynamically consistent model is developed for the compaction of granular solids. The model is an extension of the single phase limit of two-phase continuum models used to describe Deflagration-to-Detonation Transition (DDT) experiments. The focus is on the energetics and dissipation of the compaction process. Changes in volume fraction are partitioned into reversible and irreversible components. Unlike conventional DDT models, the model is applicable from the quasi-static to dynamic compaction regimes for elastic, plastic, or brittle materials. When applied to the compaction of granular HMX (a brittle material), the model predicts results commensurate with experiments including stress relaxation, hysteresis, and energy dissipation. The model provides a suitable starting point for the development of thermal energy localization sub-scale models based on compaction-induced dissipation.

  3. Strategy Guideline. Compact Air Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Burdick, Arlan [IBACOS, Inc., Pittsburgh, PA (United States)

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  4. The use of compaction in the manufacture of tablets

    Directory of Open Access Journals (Sweden)

    O. V. Tryhubchak

    2016-08-01

    Full Text Available In the production of tablets direct compression method, wet and dry granulationare used. Dry granulation can be used if materials have sufficient cohesive properties to form granules. Scientific publications of recent years clearly demonstrate the prospects of roller compaction using in pharmaceutical industry. Aim. The aim of work is to generalize available data regarding to the use of compaction in the pharmaceutical industry. Materials and methods. We have studied and analyzed the available scientific sources in order to generalize the available literature on the use of compacting in the production of the tablets. During this study we used methods of observation and systematization analysis. Results. Materials for compaction characteristics of the process, its benefits and conditions of application have been collected and systematized, parameters of process have been selected, theories of compaction have been generalized, the characteristics and examples of compaction equipment have been adduced, and the key characteristics of the material used in the pharmaceutical industry have been demonstrated. Compacting is dry granulation technology in which powder containing active ingredients and excipients are compacted between two opposing spinning rollers by applying mechanical pressure. Compared with the original powder, granules after compression are characterized by much better fluidity and higher density by reducing the volume. The roller consolidation process substantially affects the particle size distribution, flowability, homogeneity, pressing, compaction substances and excipients, therefore, can affect dissolution, time of disintegration, resistance to crushing, abrasion of tablets. The main parameters of compacting are seal and method of its application, conditions and speed of the process. Conclusions. It has been established that the use of compacting decreases or increases particles size to form granules, which leads to improved

  5. Competition between reaction-induced expansion and creep compaction during gypsum formation: Experimental and numerical investigation

    Science.gov (United States)

    Skarbek, R. M.; Savage, H. M.; Spiegelman, M. W.; Kelemen, P. B.; Yancopoulos, D.

    2017-12-01

    Deformation and cracking caused by reaction-driven volume increase is an important process in many geological settings, however the conditions controlling these processes are poorly understood. The interaction of rocks with reactive fluids can change permeability and reactive surface area, leading to a large variety of feedbacks. Gypsum is an ideal material to study these processes. It forms rapidly at room temperature via bassanite hydration, and is commonly used as an analogue for rocks in high-temperature, high-pressure conditions. We conducted uniaxial strain experiments to study the effects of applied axial load on deformation and fluid flow during the formation of gypsum from bassanite. While hydration of bassanite to gypsum involves a solid volume increase, gypsum exhibits significant creep compaction when in contact with water. These two volume changing processes occur simultaneously during fluid flow through bassanite. We cold-pressed bassanite powder to form cylinders 2.5 cm in height and 1.2 cm in diameter. Samples were compressed with a static axial load of 0.01 to 4 MPa. Water infiltrated initially unsaturated samples through the bottom face and the height of the samples was recorded as a measure of the total volume change. We also performed experiments on pure gypsum samples to constrain the amount of creep observed in tests on bassanite hydration. At axial loads 1 MPa, creep in the gypsum dominates and samples exhibit monotonic compaction. At intermediate loads, samples exhibit alternating phases of compaction and expansion due to the interplay of the two volume changing processes. We observed a change from net compaction to net expansion at an axial load of 0.250 MPa. We explain this behavior with a simple model that predicts the strain evolution, but does not take fluid flow into account. We also implement a 1D poro-visco-elastic model of the imbibition process that includes the reaction and gypsum creep. We use the results of these models, with

  6. Land subsidence and hydrodynamic compaction of sedimentary basins

    Directory of Open Access Journals (Sweden)

    H. Kooi

    1998-01-01

    Full Text Available A one-dimensional model is used to investigate the relationship between land subsidence and compaction of basin sediments in response to sediment loading. Analysis of the model equations and numerical experiments demonstrate quasi-linear systems behaviour and show that rates of land subsidence due to compaction: (i can attain a significant fraction (>40% of the long-term sedimentation rate; (ii are hydrodynamically delayed with respect to sediment loading. The delay is controlled by a compaction response time τc that can reach values of 10-5-107 yr for thick shale sequences. Both the behaviour of single sediment layers and multiple-layer systems are analysed. Subsequently the model is applied to the coastal area of the Netherlands to illustrate that lateral variability in compaction-derived land subsidence in sedimentary basins largely reflects the spatial variability in both sediment loading and compaction response time. Typical rates of compaction-derived subsidence predicted by the model are of the order of 0.1 mm/yr but may reach values in excess of 1 mm/yr under favourable conditions.

  7. Design and performance of a compact scanning transmission X-ray microscope at the Photon Factory

    Energy Technology Data Exchange (ETDEWEB)

    Takeichi, Y., E-mail: yasuo.takeichi@kek.jp; Mase, K.; Ono, K. [Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801 (Japan); Department of Materials Structure Science, SOKENDAI (The Graduate University for Advanced Studies), 1-1 Oho, Tsukuba 305-0801 (Japan); Inami, N. [Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801 (Japan); Suga, H. [Department of Earth and Planetary Systems Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526 (Japan); Miyamoto, C. [Department of Earth and Planetary Systems Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 113-0033 (Japan); Ueno, T. [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Takahashi, Y. [Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801 (Japan); Department of Earth and Planetary Systems Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526 (Japan); Department of Earth and Planetary Systems Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 113-0033 (Japan)

    2016-01-15

    We present a new compact instrument designed for scanning transmission X-ray microscopy. It has piezo-driven linear stages, making it small and light. Optical components from the virtual source point to the detector are located on a single optical table, resulting in a portable instrument that can be operated at a general-purpose spectroscopy beamline without requiring any major reconstruction. Careful consideration has been given to solving the vibration problem common to high-resolution microscopy, so as not to affect the spatial resolution determined by the Fresnel zone plate. Results on bacteriogenic iron oxides, single particle aerosols, and rare-earth permanent magnets are presented as examples of its performance under diverse applications.

  8. DNA compaction by azobenzene-containing surfactant

    International Nuclear Information System (INIS)

    Zakrevskyy, Yuriy; Kopyshev, Alexey; Lomadze, Nino; Santer, Svetlana; Morozova, Elena; Lysyakova, Ludmila; Kasyanenko, Nina

    2011-01-01

    We report on the interaction of cationic azobenzene-containing surfactant with DNA investigated by absorption and fluorescence spectroscopy, dynamic light scattering, and atomic force microscopy. The properties of the surfactant can be controlled with light by reversible switching of the azobenzene unit, incorporated into the surfactant tail, between a hydrophobic trans (visible irradiation) and a hydrophilic cis (UV irradiation) configuration. The influence of the trans-cis isomerization of the azobenzene on the compaction process of DNA molecules and the role of both isomers in the formation and colloidal stability of DNA-surfactant complexes is discussed. It is shown that the trans isomer plays a major role in the DNA compaction process. The influence of the cis isomer on the DNA coil configuration is rather small. The construction of a phase diagram of the DNA concentration versus surfactant/DNA charge ratio allows distancing between three major phases: colloidally stable and unstable compacted globules, and extended coil conformation. There is a critical concentration of DNA above which the compacted globules can be hindered from aggregation and precipitation by adding an appropriate amount of the surfactant in the trans configuration. This is because of the compensation of hydrophobicity of the globules with an increasing amount of the surfactant. Below the critical DNA concentration, the compacted globules are colloidally stable and can be reversibly transferred with light to an extended coil state.

  9. Compact quasi-monoenergetic photon sources from laser-plasma accelerators for nuclear detection and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Geddes, Cameron G.R., E-mail: cgrgeddes@lbl.gov; Rykovanov, Sergey; Matlis, Nicholas H.; Steinke, Sven; Vay, Jean-Luc; Esarey, Eric H.; Ludewigt, Bernhard; Nakamura, Kei; Quiter, Brian J.; Schroeder, Carl B.; Toth, Csaba; Leemans, Wim P.

    2015-05-01

    Near-monoenergetic photon sources at MeV energies offer improved sensitivity at greatly reduced dose for active interrogation, and new capabilities in treaty verification, nondestructive assay of spent nuclear fuel and emergency response. Thomson (also referred to as Compton) scattering sources are an established method to produce appropriate photon beams. Applications are however restricted by the size of the required high-energy electron linac, scattering (photon production) system, and shielding for disposal of the high energy electron beam. Laser-plasma accelerators (LPAs) produce GeV electron beams in centimeters, using the plasma wave driven by the radiation pressure of an intense laser. Recent LPA experiments are presented which have greatly improved beam quality and efficiency, rendering them appropriate for compact high-quality photon sources based on Thomson scattering. Designs for MeV photon sources utilizing the unique properties of LPAs are presented. It is shown that control of the scattering laser, including plasma guiding, can increase photon production efficiency. This reduces scattering laser size and/or electron beam current requirements to scale compatible with the LPA. Lastly, the plasma structure can decelerate the electron beam after photon production, reducing the size of shielding required for beam disposal. Together, these techniques provide a path to a compact photon source system.

  10. Compact torsatron reactors

    International Nuclear Information System (INIS)

    Lyon, J.F.; Carreras, B.A.; Lynch, V.E.; Tolliver, J.S.; Sviatoslavsky, I.N.

    1988-05-01

    Low-aspect-ratio torsatron configurations could lead to compact stellarator reactors with R 0 = 8--11m, roughly one-half to one-third the size of more conventional stellarator reactor designs. Minimum-size torsatron reactors are found using various assumptions. Their size is relatively insensitive to the choice of the conductor parameters and depends mostly on geometrical constraints. The smallest size is obtained by eliminating the tritium breeding blanket under the helical winding on the inboard side and by reducing the radial depth of the superconducting coil. Engineering design issues and reactor performance are examined for three examples to illustrate the feasibility of this approach for compact reactors and for a medium-size (R 0 ≅ 4 m,/bar a/ /approx lt/ 1 m) copper-coil ignition experiment. 26 refs., 11 figs., 7 tabs

  11. Compact fusion reactors

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lawrenceville Plasma Physics and Lockheed Martin. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given.

  12. On compact multipliers of topological algebras

    International Nuclear Information System (INIS)

    Mohammad, N.

    1994-08-01

    It is shown that if the maximal ideal space Δ(A) of a semisimple commutative complete metrizable locally convex algebra contains no isolated points, then every compact multiplier is trivial. Particularly, compact multipliers on semisimple commutative Frechet algebras whose maximal ideal space has no isolated points are identically zero. (author). 5 refs

  13. The classification of 2-compact groups

    DEFF Research Database (Denmark)

    K. S. Andersen, Kasper; Grodal, Jesper

    2009-01-01

    with Moeller and Viruel for p odd, this establishes the full classification of p-compact groups, stating that, up to isomorphism, there is a one-to-one correspondence between connected p-compact groups and root data over the p-adic integers. As a consequence we prove the maximal torus conjecture, giving a one...

  14. Ultra high frequency induction welding of powder metal compacts

    Energy Technology Data Exchange (ETDEWEB)

    Cavdar, U.; Gulsahin, I.

    2014-10-01

    The application of the iron based Powder Metal (PM) compacts in Ultra High Frequency Induction Welding (UHFIW) were reviewed. These PM compacts are used to produce cogs. This study investigates the methods of joining PM materials enforceability with UHFIW in the industry application. Maximum stress and maximum strain of welded PM compacts were determined by three point bending and strength tests. Microhardness and microstructure of induction welded compacts were determined. (Author)

  15. Ultra high frequency induction welding of powder metal compacts

    International Nuclear Information System (INIS)

    Cavdar, U.; Gulsahin, I.

    2014-01-01

    The application of the iron based Powder Metal (PM) compacts in Ultra High Frequency Induction Welding (UHFIW) were reviewed. These PM compacts are used to produce cogs. This study investigates the methods of joining PM materials enforceability with UHFIW in the industry application. Maximum stress and maximum strain of welded PM compacts were determined by three point bending and strength tests. Microhardness and microstructure of induction welded compacts were determined. (Author)

  16. Compaction of an Oxisol and chemical composition of palisadegrass

    Directory of Open Access Journals (Sweden)

    Eurico Lucas de Sousa Neto

    2013-08-01

    Full Text Available Compaction is an important problem in soils under pastoral land use, and can make livestock systems unsustainable. The objective of this research was to study the impact of soil compaction on yield and quality of palisade (UROCHLOA BRIZANTHA cv. Marandu. The experiment was conducted on an Oxisol in the State of Mato Grosso, Brazil. Treatments consisted of four levels of soil compaction: no compaction (NC, slight compaction (SC, medium compaction (MC and high compaction (HC. The following soil properties were evaluated (layers 0-0.05 and 0.05-0.10 m: aggregate size distribution, bulk density (BD, macroporosity, microporosity, total porosity (TP, relative compaction (RC, and the characteristics of crude protein (CP, neutral detergent fiber (NDF, acid detergent fiber (ADF and dry matter yield (DMY of the forage. Highly compacted soil had high BD and RC, and low TP (0-0.05 m. Both DMY and CP were affected by HC, and both were strongly related to BD. Higher DMY (6.96 Mg ha-1 and CP (7.8 % were observed in the MC treatment (BD 1.57 Mg m-3 and RC 0.91 Mg m-3, in 0-0.05 m. A high BD of 1.57 Mg m-3 (0-0.05 m did not inhibit plant growth. The N concentration in the palisade biomass differed significantly among compaction treatments, and was 8.72, 11.20, 12.48 and 10.98 g kg-1 in NC, SC, MC and HC treatments, respectively. Increase in DMY and CP at the MC level may be attributed to more absorption of N in this coarse-textured soil.

  17. Free-electron laser driven by the LBNL laser-plasma accelerator

    International Nuclear Information System (INIS)

    Schroeder, C.B.; Fawley, W.M.; Gruner, F.; Bakeman, M.; Nakamura, K.; Robinson, K.E.; Toth, Cs.; Esarey, E.; Leemans, W.P.

    2008-01-01

    A design of a compact free-electron laser (FEL), generating ultra-fast, high-peak flux, XUV pulses is presented. The FEL is driven by ahigh-current, 0.5 GeV electron beam from the Lawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator, whose active acceleration length is only a few centimeters. The proposed ultra-fast source (∼10 fs) would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science. Owing to the high current (>10 kA) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially greater than 10 13 photons/pulse. Devices based both on self-amplified spontaneous emission and high-harmonic generated input seeds, to reduce undulator length and fluctuations, are considered.

  18. An $ep$ collider based on proton-driven plasma wakefield acceleration

    CERN Document Server

    Wing, M.; Mete, O.; Aimidula, A.; Welsch, C.; Chattopadhyay, S.; Mandry, S.

    2014-01-01

    Recent simulations have shown that a high-energy proton bunch can excite strong plasma wakefields and accelerate a bunch of electrons to the energy frontier in a single stage of acceleration. This scheme could lead to a future $ep$ collider using the LHC for the proton beam and a compact electron accelerator of length 170 m, producing electrons of energy up to 100 GeV. The parameters of such a collider are discussed as well as conceptual layouts within the CERN accelerator complex. The physics of plasma wakefield acceleration will also be introduced, with the AWAKE experiment, a proof of principle demonstration of proton-driven plasma wakefield acceleration, briefly reviewed, as well as the physics possibilities of such an $ep$ collider.

  19. Explaining compact groups as change alignments

    International Nuclear Information System (INIS)

    Mamon, G.A.

    1990-01-01

    The physical nature of the apparently densest groups of galaxies, known as compact groups is a topic of some recent controversy, despite the detailed observations of a well-defined catalog of 100 isolated compact groups compiled by Hickson (1982). Whereas many authors have espoused the view that compact groups are bound systems, typically as dense as they appear in projection on the sky (e.g., Williams ampersand Rood 1987; Sulentic 1987; Hickson ampersand Rood 1988), others see them as the result of chance configurations within larger systems, either in 1D (chance alignments: Mamon 1986; Walke ampersand Mamon 1989), or in 3D (transient cores: Rose 1979). As outlined in the companion review to this contribution (Mamon, in these proceedings), the implication of Hickson's compact groups (HCGs) being dense bound systems is that they would then constitute the densest isolated systems of galaxies in the Universe and the privileged site for galaxy interactions. In a previous paper (Mamon 1986), the author reviewed the arguments given for the different theories of compact groups. Since then, a dozen papers have been published on the subject, including a thorough and perceptive review by White (1990), thus more than doubling the amount written on the subject. Here, the author first enumerates the arguments that he brought up in 1986 substantiating the chance alignment hypothesis, then he reviews the current status of the numerous recent arguments arguing against chance alignments and/or for the bound dense group hypothesis (both for the majority of HCGs but not all of them), and finally he reconsiders each one of these anti-chance alignment arguments and shows that, rather than being discredited, the chance alignment hypothesis remains a fully consistent explanation for the nature of compact groups

  20. Analysis of the cold compaction behaviour of TiH2-316L nanocomposite powder blend using compaction models

    CSIR Research Space (South Africa)

    Machio, Christopher N

    2015-07-01

    Full Text Available The paper captures the effect of structure and the applicability of compaction models using the cold compaction of a TiH2-SS316L composite powder prepared by high energy mechanical milling. The composite blend was cold pressed uniaxially...

  1. Automorphisms of p-compact groups and their root data

    DEFF Research Database (Denmark)

    Andersen, Kasper K. S.; Grodal, Jesper Kragh

    2008-01-01

    We construct a model for the space of automorphisms of a connected p–compact group in terms of the space of automorphisms of its maximal torus normalizer and its root datum. As a consequence we show that any homomorphism to the outer automorphism group of a p–compact group can be lifted to a group...... action, analogous to   a classical theorem of de Siebenthal for compact Lie groups. The model of this paper is used in a crucial way in our paper `The classification of 2-compact groups' [arXiv:math.AT/0611437], where we prove the conjectured classification of 2–compact groups and determine...... their automorphism spaces....

  2. Design of compact piezoelectric transducers for shock wave applications

    Science.gov (United States)

    Dreyer, Thomas; Liebler, Marko; Riedlinger, Rainer E.; Ginter, Siegfried

    2003-10-01

    The application of focused intense sound pulses to treat several orthopedic diseases has gained in importance during the past years. Self-focusing piezoelectric transducers known from ESWL are not well suited for this purpose due to their size. Therefore compact transducers have to be designed. This implies an increase of the pressure pulse amplitude generated at the radiating surface. A stacked placement of two piezoelectric layers driven by two high-voltage pulses with an adjustable delay accomplishes this. Several designs are presented here representing transducers of different sizes. In principle piezoelectric transducers have the ability to vary the pressure pulse shape to a wider extent than other shock wave sources. Based on FEM simulations of the transducer the influence of some driving parameters, like a variation of the interpulse delay or shape of the driving voltage, on the resulting focal pressure signal is demonstrated. The results show the feasibility to control some parameters of the signal, for example the peak negative pressure amplitude. This possibility could provide new aspects in basic research as well as in clinical applications.

  3. Pharmaceutical powder compaction technology

    National Research Council Canada - National Science Library

    Çelik, Metin

    2011-01-01

    "Revised to reflect modern pharmaceutical compacting techniques, this Second Edition guides pharmaceutical engineers, formulation scientists, and product development and quality assurance personnel...

  4. Inhomogeneous compact extra dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Bronnikov, K.A. [Center of Gravity and Fundamental Metrology, VNIIMS, 46 Ozyornaya st., Moscow 119361 (Russian Federation); Budaev, R.I.; Grobov, A.V.; Dmitriev, A.E.; Rubin, Sergey G., E-mail: kb20@yandex.ru, E-mail: buday48@mail.ru, E-mail: alexey.grobov@gmail.com, E-mail: alexdintras@mail.ru, E-mail: sergeirubin@list.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow (Russian Federation)

    2017-10-01

    We show that an inhomogeneous compact extra space possesses two necessary features— their existence does not contradict the observable value of the cosmological constant Λ{sub 4} in pure f ( R ) theory, and the extra dimensions are stable relative to the 'radion mode' of perturbations, the only mode considered. For a two-dimensional extra space, both analytical and numerical solutions for the metric are found, able to provide a zero or arbitrarily small Λ{sub 4}. A no-go theorem has also been proved, that maximally symmetric compact extra spaces are inconsistent with 4D Minkowski space in the framework of pure f ( R ) gravity.

  5. Engineering aspects of compact stellarators

    International Nuclear Information System (INIS)

    Nelson, B.E.; Benson, R.D.; Brooks, A.

    2003-01-01

    Compact stellarators could combine the good confinement and high beta of a tokamak with the inherently steady state, disruption-free characteristics of a stellarator. Two U.S. compact stellarator facilities are now in the conceptual design phase: the National Compact Stellarator Experiment (NCSX) and the Quasi- Poloidal Stellarator (QPS). NCSX has a major radius of 1.4 m and a toroidal field up to 2 T. The primary feature of both NCSX and QPS is the set of modular coils that provide the basic magnetic configuration. These coils represent a major engineering challenge due to the complex shape, precise geometric accuracy, and high current density of the windings. The winding geometry is too complex for conventional hollow copper conductor construction. Instead, the modular coils will be wound with flexible, multi strand cable conductor that has been compacted to a 75% copper packing fraction. Inside the NCSX coil set and surrounding the plasma is a highly contoured vacuum vessel. The vessel consists of three identical, 120 deg. segments that are bolted together at double sealed joints. The QPS device has a major radius of 0.9 m, a toroidal field of 1 T, and an aspect ratio of only 2.7. Instead of an internal vacuum vessel, the QPS modular coils will operate in an external vacuum tank. (author)

  6. New compact hohlraum configuration research at the 1.7 MA Z-pinch generator

    Energy Technology Data Exchange (ETDEWEB)

    Kantsyrev, V. L., E-mail: victor@unr.edu; Shrestha, I. K.; Esaulov, A. A.; Safronova, A. S.; Shlyaptseva, V. V.; Osborne, G. C.; Astanovitsky, A. L.; Weller, M. E.; Stafford, A.; Schultz, K. A.; Cooper, M. C. [Physics Department, University of Nevada, Reno, NV 89557 (United States); Chuvatin, A. S. [Laboratorie de Physique des Plasmas, Ecole Polytechnique, 91128 Palaiseau (France); Rudakov, L. I. [Icarus Research Inc., P.O. Box 30780, Bethesda, MD 20824-0780 (United States); Velikovich, A. L. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States); Cuneo, M. E.; Jones, B.; Vesey, R. A. [Sandia National Laboratories, Albuquerque, NM 87110 (United States)

    2014-12-15

    A new compact Z-pinch x-ray hohlraum design with parallel-driven x-ray sources was experimentally demonstrated in a full configuration with a central target and tailored shine shields (to provide a symmetric temperature distribution on the target) at the 1.7 MA Zebra generator. This presentation reports on the joint success of two independent lines of research. One of these was the development of new sources – planar wire arrays (PWAs). PWAs turned out to be a prolific radiator. Another success was the drastic improvement in energy efficiency of pulsed-power systems, such as the Load Current Multiplier (LCM). The Zebra/LCM generator almost doubled the plasma load current to 1.7 MA. The two above-mentioned innovative approaches were used in combination to produce a new compact hohlraum design for ICF, as jointly proposed by SNL and UNR. Good agreement between simulated and measured radiation temperature of the central target is shown. Experimental comparison of PWAs with planar foil liners (PFL) - another viable alternative to wire array loads at multi-MA generators show promising data. Results of research at the University of Nevada Reno allowed for the study of hohlraum coupling physics at University-scale generators. The advantages of new hohlraum design applications for multi-MA facilities with W or Au double PWAs or PFL x-ray sources are discussed.

  7. Effect of Subsoil Compaction on Hydraulic Parameters

    DEFF Research Database (Denmark)

    Iversen, Bo Vangsø; Berisso, Feto Esimo; Schjønning, Per

    Soil compaction is a major threat to sustainable soil quality and is increasing since agricultural machinery is becoming heavier and is used more intensively. Compaction not only reduces pore volume, but also modifies the pore connectivity. The inter-Nordic research project POSEIDON (Persistent...... effects of subsoil compaction on soil ecological services and functions) put forward the hypothesis that due to a decrease in the hydraulic conductivity in the soil matrix, compaction increases the frequency of preferential flow events in macropores and therefore increases the leaching of otherwise....... In the field the near-saturated hydraulic conductivity was measured with a tension infiltrometer in the same treatments at a depth of 30 cm. In the laboratory saturated and near-saturated hydraulic conductivity and the bulk density were measured as well. Also, macropores in the large soil cores were made...

  8. Compact turbidity meter

    Science.gov (United States)

    Hirschberg, J. G.

    1979-01-01

    Proposed monitor that detects back-reflected infrared radiation makes in situ turbidity measurements of lakes, streams, and other bodies of water. Monitor is compact, works well in daylight as at night, and is easily operated in rough seas.

  9. Are distribution coefficients measured from batch experiments meaningful for quantifying retention in compacted material?

    Energy Technology Data Exchange (ETDEWEB)

    Goutelard, F.; Charles, Y.; Page, J. [CEA/DEN/DPC/SECR/L3MR batiment 450, 91191 Gif sur Yvette (France)

    2005-07-01

    Full text of publication follows: To quantify the ability of a clayey material to act as a barrier for radionuclides migration, reliable data on retention properties must be available. The most common method for determining the distribution coefficient, quantifying the radionuclide adsorption, is the batch technique applied to powdered solid. Are these data meaningful for highly compacted minerals? This question is still under debate in literature [1,2]. The aim of the present study is to compare distribution coefficient (KD) value for Cs and Ni onto compacted and dispersed for both Bentonite MX80 and Callovo-Oxfordian clayey material in a simulated site water. Firstly, classical batch sorption experiments are carried on dispersed materials pre-conditioned with the simulated site water at pH 7.3. Radiotracer {sup 137}Cs and {sup 58}Ni are used to investigate the constant-pH isotherm sorption. The bottleneck for measuring distribution coefficient onto highly compacted material lies in a careful monitoring of chemical conditions because they are driven by diffusion processes. For this study, we have chosen to use in-diffusion experiments [3]. Sample size is optimized to reach for high retention level (300 mL/g) the steady state in a reasonable time (3 to 6 month). In order to describe the response surface of compacted distribution coefficient on bentonite MX80, a 2 variables Doehlert matrix has been chosen. In this experimental design, the two variables are density and dispersed distribution coefficient. Bentonite is pre-conditioning before compaction to a density ranging from 1.2 to 1.85 kg/l. The pellet is confined in a cylindrical stainless steel filter (150 {mu}L) closed to both ends. The cell is placed in a tightly closed bottle containing the working solution. After a re-equilibration period (at least 3 weeks), {sup 133}Cs and {sup 59}Ni stable isotope are introduced for monitoring the KD level (between 150 mL/g to 330 mL/g). Radiotracer {sup 137}Cs and {sup 58

  10. Are distribution coefficients measured from batch experiments meaningful for quantifying retention in compacted material?

    International Nuclear Information System (INIS)

    Goutelard, F.; Charles, Y.; Page, J.

    2005-01-01

    Full text of publication follows: To quantify the ability of a clayey material to act as a barrier for radionuclides migration, reliable data on retention properties must be available. The most common method for determining the distribution coefficient, quantifying the radionuclide adsorption, is the batch technique applied to powdered solid. Are these data meaningful for highly compacted minerals? This question is still under debate in literature [1,2]. The aim of the present study is to compare distribution coefficient (KD) value for Cs and Ni onto compacted and dispersed for both Bentonite MX80 and Callovo-Oxfordian clayey material in a simulated site water. Firstly, classical batch sorption experiments are carried on dispersed materials pre-conditioned with the simulated site water at pH 7.3. Radiotracer 137 Cs and 58 Ni are used to investigate the constant-pH isotherm sorption. The bottleneck for measuring distribution coefficient onto highly compacted material lies in a careful monitoring of chemical conditions because they are driven by diffusion processes. For this study, we have chosen to use in-diffusion experiments [3]. Sample size is optimized to reach for high retention level (300 mL/g) the steady state in a reasonable time (3 to 6 month). In order to describe the response surface of compacted distribution coefficient on bentonite MX80, a 2 variables Doehlert matrix has been chosen. In this experimental design, the two variables are density and dispersed distribution coefficient. Bentonite is pre-conditioning before compaction to a density ranging from 1.2 to 1.85 kg/l. The pellet is confined in a cylindrical stainless steel filter (150 μL) closed to both ends. The cell is placed in a tightly closed bottle containing the working solution. After a re-equilibration period (at least 3 weeks), 133 Cs and 59 Ni stable isotope are introduced for monitoring the KD level (between 150 mL/g to 330 mL/g). Radiotracer 137 Cs and 58 Ni are used to quantify the

  11. Strategy Guideline: Compact Air Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Burdick, A.

    2013-06-01

    This Strategy Guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. Traditional systems sized by 'rule of thumb' (i.e., 1 ton of cooling per 400 ft2 of floor space) that 'wash' the exterior walls with conditioned air from floor registers cannot provide appropriate air mixing and moisture removal in low-load homes. A compact air distribution system locates the HVAC equipment centrally with shorter ducts run to interior walls, and ceiling supply outlets throw the air toward the exterior walls along the ceiling plane; alternatively, high sidewall supply outlets throw the air toward the exterior walls. Potential drawbacks include resistance from installing contractors or code officials who are unfamiliar with compact air distribution systems, as well as a lack of availability of low-cost high sidewall or ceiling supply outlets to meet the low air volumes with good throw characteristics. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  12. Siting actions in compacts and nonmember states

    International Nuclear Information System (INIS)

    Tullis, J.

    1986-05-01

    This paper examines the status of siting actions in those compacts and states currently progressing with siting studies. The efforts of the Central Compact Commission, Texas, California, Colorado and Illinois are highlighted to illustrate progress, methodology, and problems encountered

  13. 42 CFR 137.30 - What is a self-governance compact?

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false What is a self-governance compact? 137.30 Section... SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES TRIBAL SELF-GOVERNANCE Self-Governance compact § 137.30 What is a self-governance compact? A self-governance compact is a legally binding and mutually...

  14. 25 CFR 1000.161 - What is a self-governance compact?

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false What is a self-governance compact? 1000.161 Section 1000... EDUCATION ACT Negotiation Process for Annual Funding Agreements Negotiating A Self-Governance Compact § 1000.161 What is a self-governance compact? A self-governance compact is an executed document that affirms...

  15. Ultra-compact Ku band rectenna

    OpenAIRE

    Takacs , Alexandru; Aubert , Hervé; Charlot , Samuel

    2015-01-01

    International audience; This paper addresses an innovative and ultra-compact rectenna designed for energy harvesting or wireless power transfer applications. The presented rectenna uses a printed cross dipoles antenna array and a rectifier implemented with only one silicon Schottky diode. Experimental results show that 1.15 mW of DC power can be obtained for an optimal load impedance of 500 Ω using a compact rectenna (2.5 cm 2 or 0.6 square wavelength) illuminated by an electric field of 60 V...

  16. Rate type isotach compaction of consolidated sandstone

    NARCIS (Netherlands)

    Waal, J.A. de; Thienen-Visser, K. van; Pruiksma, J.P.

    2015-01-01

    Laboratory experiments on samples from a consolidated sandstone reservoir are presented that demonstrate rate type compaction behaviour similar to that observed on unconsolidated sands and soils. Such rate type behaviour can have large consequences for reservoir compaction, surface subsidence and

  17. COMPACTION OF FIBERBOARD IN A 9975 SHIPPING PACKAGE

    Energy Technology Data Exchange (ETDEWEB)

    Stefek, T.; Daugherty, W.; Estochen, E.; Leduc, D.

    2011-05-11

    Compaction of lower layers in the fiberboard overpack has been observed in 9975 packages that contain elevated moisture. Lab testing has resulted in a better understanding of (1) the relationship between the fiberboard moisture level and compaction of the lower fiberboard assembly, and (2) the behavior of the fiberboard during transport. In laboratory tests, higher moisture content has been shown to correspond to higher total compaction of fiberboard material, greater rate of compaction, and continued compaction over a longer period of time. In addition, laboratory tests have shown that the application of a dynamic load results in higher fiberboard compaction. The test conditions and sample geometric/loading configurations were chosen to simulate the regulatory requirements for 9975 package input dynamic loading. Dynamic testing was conducted over a period of several months to acquire immediate and cumulative changes in geometric data for various moisture levels. Currently, one sample set has undergone a complete dynamic test regimen, while testing of another set is still in-progress. The dynamic input, data acquisition, test effects on sample dynamic parameters, and interim results from this test program will be summarized and compared to regulatory specifications for dynamic loading. This will provide a basis from which to evaluate the impact of moisture and fiberboard compaction on the safety basis for transportation (Safety Analysis Report for Packaging) and storage (facility Documented Safety Analysis) at the Savannah River Site (SRS).

  18. Means, methods and performances of the AREVA's HTR compact controls

    International Nuclear Information System (INIS)

    Banchet, J.; Guillermier, P.; Tisseur, D.; Vitali, M. P.

    2008-01-01

    In the AREVA's HTR development program, the reactor plant is composed of a prismatic core containing graphite cylindrical fuel elements, called compacts, where TRISO particles are dispersed. Starting from its past compacting process, the latter being revamped through the use of state of the art equipments, CERCA, 100% AREVA NP's subsidiary, was able to recover the quality of past compacts production. The recovered compacting process is composed of the following manufacturing steps: graphite matrix granulation, mix between the obtained granulates and particles, compacting and calcining at low pressure and temperature. To adapt this past process to new manufacturing equipments, non destructive examination tests were carried out to assess the compact quality, the latter being assessed via in house developed equipments and methods at each step of the design of experiments. As for the manufacturing process, past quality control methods were revamped to measure compact dimensional features (diameter, perpendicularity and cone effect), visual aspect, SiC layer failure fraction (via anodic disintegration and burn leach test) and homogeneity via 2D radiography coupled to ceramography. Although meeting quality requirements, 2D radiography method could not provide a quantified specification for compact homogeneity characterization. This limitation yielded the replacement of this past technique by a method based on X-Ray tomography. Development was conducted on this new technique to enable the definition of a criterion to quantify compact homogeneity, as well as to provide information about the distances in between particles. This study also included a comparison between simulated and real compacts to evaluate the accuracy of the technique as well as the influence of particle packing fraction on compact homogeneity. The developed quality control methods and equipments guided the choices of manufacturing parameters adjustments at the development stage and are now applied for

  19. May compact storage facilities be licensed

    International Nuclear Information System (INIS)

    Gleim, A.; Winter, G.

    1980-01-01

    The authors examine as potential statements fo fact for licensing so-called compact storage facilities for spent fuel elements Sec. 6 to 9c of the German Atomic Energy Act and Sec. 4 of the German Radiation Protection Ordinance. They find that none of these provisions were applicable to compact stroage facilities. In particular, the storage of spent fuel elements was no storage of nuclear fuels licensable under Sec. 6 of the Atomic Energy Act, because Sec. 6 did not cover spent fuel elements. Also in the other wording of the Atomic Energy Act there was no provision, which could be used as a statement of fact for licensing compact storage facilities. Such facilities could not be licensed and, for that reason, were not permitted. (IVR) [de

  20. Assessment of soil compaction properties based on surface wave techniques

    Science.gov (United States)

    Jihan Syamimi Jafri, Nur; Rahim, Mohd Asri Ab; Zahid, Mohd Zulham Affandi Mohd; Faizah Bawadi, Nor; Munsif Ahmad, Muhammad; Faizal Mansor, Ahmad; Omar, Wan Mohd Sabki Wan

    2018-03-01

    Soil compaction plays an important role in every construction activities to reduce risks of any damage. Traditionally, methods of assessing compaction include field tests and invasive penetration tests for compacted areas have great limitations, which caused time-consuming in evaluating large areas. Thus, this study proposed the possibility of using non-invasive surface wave method like Multi-channel Analysis of Surface Wave (MASW) as a useful tool for assessing soil compaction. The aim of this study was to determine the shear wave velocity profiles and field density of compacted soils under varying compaction efforts by using MASW method. Pre and post compaction of MASW survey were conducted at Pauh Campus, UniMAP after applying rolling compaction with variation of passes (2, 6 and 10). Each seismic data was recorded by GEODE seismograph. Sand replacement test was conducted for each survey line to obtain the field density data. All seismic data were processed using SeisImager/SW software. The results show the shear wave velocity profiles increase with the number of passes from 0 to 6 passes, but decrease after 10 passes. This method could attract the interest of geotechnical community, as it can be an alternative tool to the standard test for assessing of soil compaction in the field operation.

  1. Compact toroid injection into C-2U

    Science.gov (United States)

    Roche, Thomas; Gota, H.; Garate, E.; Asai, T.; Matsumoto, T.; Sekiguchi, J.; Putvinski, S.; Allfrey, I.; Beall, M.; Cordero, M.; Granstedt, E.; Kinley, J.; Morehouse, M.; Sheftman, D.; Valentine, T.; Waggoner, W.; the TAE Team

    2015-11-01

    Sustainment of an advanced neutral beam-driven FRC for a period in excess of 5 ms is the primary goal of the C-2U machine at Tri Alpha Energy. In addition, a criteria for long-term global sustainment of any magnetically confined fusion reactor is particle refueling. To this end, a magnetized coaxial plasma-gun has been developed. Compact toroids (CT) are to be injected perpendicular to the axial magnetic field of C-2U. To simulate this environment, an experimental test-stand has been constructed. A transverse magnetic field of B ~ 1 kG is established (comparable to the C-2U axial field) and CTs are fired across it. As a minimal requirement, the CT must have energy density greater than that of the magnetic field it is to penetrate, i.e., 1/2 ρv2 >=B2 / 2μ0 . This criteria is easily met and indeed the CTs traverse the test-stand field. A preliminary experiment on C-2U shows the CT also capable of penetrating into FRC plasmas and refueling is observed resulting in a 20 - 30% increase in total particle number per single-pulsed CT injection. Results from test-stand and C-2U experiments will be presented.

  2. Compact accelerator for medical therapy

    Science.gov (United States)

    Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.

    2010-05-04

    A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.

  3. Observational properties of compact groups of galaxies

    International Nuclear Information System (INIS)

    Hickson, P.

    1990-01-01

    Compact groups are small, relatively isolated, systems of galaxies with projected separations comparable to the diameters of the galaxies themselves. Two well-known examples are Stephan's Quintet (Stephan, 1877) and Seyfert's Sextet (Seyfert 1948a,b). In groups such as these, the apparent space density of galaxies approaches 10(exp 6) Mpc(sub -3), denser even than the cores of rich clusters. The apparent unlikeliness of the chance occurrence of such tight groupings lead Ambartsumyan (1958, 1975) to conclude that compact groups must be physically dense systems. This view is supported by clear signs of galaxy interactions that are seen in many groups. Spectroscopic observations reveal that typical relative velocities of galaxies in the groups are comparable to their internal stellar velocities. This should be conducive to strong gravitational interactions - more so than in rich clusters, where galaxy velocities are typically much higher. This suggests that compact groups could be excellent laboratories in which to study galaxy interactions and their effects. Compact groups often contain one or more galaxies whose redshift differs greatly from those of the other group members. If these galaxies are at the same distance as the other members, either entire galaxies are being ejected at high velocities from these groups, or some new physical phenomena must be occurring. If their redshifts are cosmological, we must explain why so many discordant galaxies are found in compact groups. In recent years much progress has been made in addressing these questions. Here, the author discusses the current observational data on compact groups and their implications

  4. Materials needs for compact fusion reactors

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1983-01-01

    The economic prospects for magnetic fusion energy can be dramatically improved if for the same total power output the fusion neutron first-wall (FW) loading and the system power density can be increased by factors of 3 to 5 and 10 to 30, respectively. A number of compact fusion reactor embodiments have been proposed, all of which would operate with increased FW loadings, would use thin (0.5 to 0.6 m) blankets, and would confine quasi-steady-state plasma with resistive, water-cooled copper or aluminum coils. Increased system power density (5 to 15 MWt/m 3 versus 0.3 to 0.5 MW/m 3 ), considerably reduced physical size of the fusion power core (FPC), and appreciably reduced economic leverage exerted by the FPC and associated physics result. The unique materials requirements anticipated for these compact reactors are outlined against the well documented backdrop provided by similar needs for the mainline approaches. Surprisingly, no single materials need that is unique to the compact systems is identified; crucial uncertainties for the compact approaches must also be addressed by the mainline approaches, particularly for in-vacuum components (FWs, limiters, divertors, etc.)

  5. Considerations for evaluating proposed low-level radioactive waste compacts

    International Nuclear Information System (INIS)

    1985-02-01

    Thirty-nine States have enacted legislation related to this Act, and five compacts have been submitted to Congress for consent. Other compacts are being negotiated, one in the West and several in the Midwest and Northeast. The Department of Energy has identified a number of items, which if included in the congressional review of each compact, would be likely to increase the possibility that new disposal sites will be developed and properly supported. The Department is providing additional perspectives that have not been previously included in testimony or reports. By suggesting examination of several general elements of a compact proposal, the Department hopes to provide a common focus that may be useful to the Congress in integrating all available information. The Department believes that the Congress should consider the following key items when reviewing the compacts: Commitments that assure the provision of new disposal capacity in the form of a host-State and site selection process with schedules and a target date for new sites to be opened; Commitments that provide short-term measures for storage, treatment, or disposal during an interim period when such new capacity may not be available; Consistency of definitions with 10 CFR Part 61 to assure the compact plan presents a total solution for all low-level waste generated within the region; Periodic review of the compacts by the Congress to examine concerns that are more easily assessed after a compact becomes operational, e.g., economic viability and long-term institutional control; and Economic viability of a compact, when reviewed in the future, in terms of the benefits and the costs specific to that region

  6. An innovative plate heat exchanger of enhanced compactness

    International Nuclear Information System (INIS)

    Vitillo, Francesco; Cachon, Lionel; Reulet, Philippe; Laroche, Emmanuel; Millan, Pierre

    2015-01-01

    In the framework of CEA R&D program to develop the Advanced Sodium Technological Reactor for Industrial Demonstration (ASTRID), the present work aims to demonstrate the industrial interest of an innovative compact heat exchanger technology. In fact, one of the main innovations of the ASTRID reactor could be the use of a Brayton Gas-power conversion system, in order to avoid the energetic sodium–water interaction that might occur if a traditional Rankine cycle was used. The present work aims to study the thermal-hydraulic performance of the innovative compact heat exchanger concept. Hence, thanks to a trustful numerical model, friction factor and heat transfer correlations are obtained. Then, a global compactness comparison strategy is proposed, taking into account design constraints. Finally, it is demonstrated that the innovative heat exchanger concept is more compact then other already industrial technologies of interest, showing that is can be considered to warrant serious consideration for future ASTRID design as well as for any industrial application that needs very compact heat exchanger technologies. - Highlights: • We propose a new innovative compact heat exchanger technology. • We provide thermal-hydraulic correlations for designers. • We provide a comparison strategy with existing technologies. • We demonstrate the industrial interest of the innovative concept

  7. Quantification of the compactibility of pharmaceutical powders

    DEFF Research Database (Denmark)

    Sonnergaard, Jørn

    2006-01-01

    The purpose of this study is to investigate and to quantify the compactibility of pharmaceutical powders by a simple linear relationship between the diametral compressive strength of tablets and the applied compaction pressure. The mechanical strength of the tablets is characterized as the crushing...

  8. Compact stellarators as reactors

    International Nuclear Information System (INIS)

    Lyon, J.F.; Valanju, P.; Zarnstorff, M.C.; Hirshman, S.; Spong, D.A.; Strickler, D.; Williamson, D.E.; Ware, A.

    2001-01-01

    Two types of compact stellarators are examined as reactors: two- and three-field-period (M=2 and 3) quasi-axisymmetric devices with volume-average =4-5% and M=2 and 3 quasi-poloidal devices with =10-15%. These low-aspect-ratio stellarator-tokamak hybrids differ from conventional stellarators in their use of the plasma-generated bootstrap current to supplement the poloidal field from external coils. Using the ARIES-AT model with B max =12T on the coils gives Compact Stellarator reactors with R=7.3-8.2m, a factor of 2-3 smaller R than other stellarator reactors for the same assumptions, and neutron wall loadings up to 3.7MWm -2 . (author)

  9. Compact Spreader Schemes

    Energy Technology Data Exchange (ETDEWEB)

    Placidi, M.; Jung, J. -Y.; Ratti, A.; Sun, C.

    2014-07-25

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  10. Analysis of compaction shock interactions during DDT of low density HMX

    Science.gov (United States)

    Rao, Pratap T.; Gonthier, Keith A.

    2017-01-01

    Deflagration-to-Detonation Transition (DDT) in confined, low density granular HMX occurs by a complex mechanism that involves compaction shock interactions within the material. Piston driven DDT experiments indicate that detonation is abruptly triggered by the interaction of a strong combustion-supported secondary shock and a piston-supported primary (input) shock, where the nature of the interaction depends on initial packing density and primary shock strength. These interactions influence transition by affecting dissipative heating within the microstructure during pore collapse. Inert meso-scale simulations of successive shock loading of low density HMX are performed to examine how dissipation and hot-spot formation are affected by the initial density, and the primary and secondary shock strengths. This information is used to formulate an ignition and burn model for low density HMX that accounts for the effect of shock densensitization on burn. Preliminary DDT predictions are presented that illustrate how primary shock strength affects the transition mechanism.

  11. Methods of making high performance compacts and products

    International Nuclear Information System (INIS)

    Fey, M.G.; Iyer, N.C.; Male, A.T.; Lovic, W.R.

    1990-01-01

    This patent describes a method of forming a pressed, dense compact. It comprises: providing a compactable particulate combination of: Class 1 metals selected from the group consisting of Ag, Cu, Al, and mixtures thereof, with material selected from the class consisting of CdO, SnO, SnO 2 , C, Co, Ni, Fe, Cr, Cr 3 C 2 , Cr 7 C 3 , W, WC, W 2 C, WB, Mo, Mo 2 C, MoB, Mo 2 B, TiC, TiN, TiB 2 , Si, SiC, Si 3 N 4 , and mixtures thereof; uniaxially pressing the particulate combination to provide a compact; placing at least one compact in an open pan; evacuating air from the pan; sealing the open top portion of the pan; stacking the pans next to each other, with plates having a high electrical resistance disposed between each pan so that the pans and plates alternate with each other, where a layer of thermally conductive, granular, pressure transmitting material is disposed between each pan and plate, which granular material acts to provide heat transfer and uniform mechanical loading to the compacts in the pans upon subsequent pressing; placing the stack in a press, passing an electrical current through the pans and high electrical resistance plates to cause a heating effect on the compacts in the pans, and uniaxial pressing the alternating pans and plates; cooling and releasing pressure on the alternating pans and plates; and separating the pans from the plates and the compacts from the pans

  12. Note: Coincidence measurements of 3He and neutrons from a compact D-D neutron generator

    Science.gov (United States)

    Ji, Q.; Lin, C.-J.; Tindall, C.; Garcia-Sciveres, M.; Schenkel, T.; Ludewigt, B. A.

    2017-05-01

    Tagging of neutrons (2.45 MeV) with their associated 3He particles from deuterium-deuterium (D-D) fusion reactions has been demonstrated in a compact neutron generator setup enabled by a high brightness, microwave-driven ion source with a high fraction of deuterons. Energy spectra with well separated peaks of the D-D fusion reaction products, 3He, tritons, and protons, were measured with a silicon PIN diode. The neutrons were detected using a liquid scintillator detector with pulse shape discrimination. By correlating the 3He detection events with the neutron detection in time, we demonstrated the tagging of emitted neutrons with 3He particles detected with a Si PIN diode detector mounted inside the neutron generator vacuum vessel.

  13. Dissolution and compaction instabilities in geomaterials

    Science.gov (United States)

    Stefanou, I.; Sulem, J.; de Sauvage, J.

    2014-12-01

    Compaction bands play an important role in reservoir engineering and geological storage. Their presence in geological formations may also provide useful information on various geological processes. Several mechanisms can be involved at different scales and may be responsible for compaction band instabilities [1]. Compaction bands can be seen as a particular instability of the governing mathematical system leading to localization of deformation [2-4]. In a saturated porous rock, the progressive mechanical damage of the solid skeleton during compaction, results in the increase of the interface area of the reactants and consequently in the acceleration of the dissolution rate of the solid phase [2,5]. Thus, the solid skeleton is degraded more rapidly (mass removal because of dissolution), the overall mechanical properties of the system diminish (contraction of the elastic domain - chemical softening), deformations increase and the solid skeleton is further damaged (intergranular fractures, debonding, breakage of the porous network etc.). The stability of this positive feedback process is investigated analytically through linear stability analysis by considering the strong chemo-poro-mechanical coupling due to chemical dissolution. The post bifurcation behavior is then studied analytically and numerically revealing the compaction band thickness and periodicity. The effect of various parameters is studied as for instance the influence of the hydraulic diffusivity on the compaction band thickness. [1] P. Baud, S. Vinciguerra, C. David, A. Cavallo, E. Walker and T. Reuschlé (2009), Pure Appl. Geophys., 166(5-7), 869-898 [2] I. Stefanou and J. Sulem (2014), JGR: Solid Earth, 119(2), 880-899. doi:10.1002/2013JB010342I [3] J.W. Rudnicki and J.R. Rice (1975), Journal of the Mechanics and Physics of Solids 23(6),: 371-394 [4] K.A. Issen and J.W. Rudnicki (2000), JGR, 105(B9), 21529. doi:10.1029/2000JB900185 [5] R. Nova, R. Castellanza and C. Tamagnini (2003), International

  14. The classification of p-compact groups for p odd

    DEFF Research Database (Denmark)

    Andersen, Kasper K. S.; Grodal, Jesper Kragh; Møller, Jesper Michael

    2008-01-01

    A p-compact group, as defined by Dwyer and Wilkerson, is a purely homotopically defined p-local analog of a compact Lie group. It has long been the hope, and later the conjecture, that these objects should have a classification similar to the classification of compact Lie groups. In this paper we...... groups are uniquely determined as p-compact groups by their Weyl groups seen as finite reflection groups over the p-adic integers. Our approach in fact gives a largely self-contained proof of the entire classification theorem for p odd....

  15. Green strength of zirconium sponge and uranium dioxide powder compacts

    International Nuclear Information System (INIS)

    Balakrishna, Palanki; Murty, B. Narasimha; Sahoo, P.K.; Gopalakrishna, T.

    2008-01-01

    Zirconium metal sponge is compacted into rectangular or cylindrical shapes using hydraulic presses. These shapes are stacked and electron beam welded to form a long electrode suitable for vacuum arc melting and casting into solid ingots. The compact electrodes should be sufficiently strong to prevent breakage in handling as well as during vacuum arc melting. Usually, the welds are strong and the electrode strength is limited by the green strength of the compacts, which constitute the electrode. Green strength is also required in uranium dioxide (UO 2 ) powder compacts, to withstand stresses during de-tensioning after compaction as well as during ejection from the die and for subsequent handling by man and machine. The strengths of zirconium sponge and UO 2 powder compacts have been determined by bending and crushing respectively, and Weibul moduli evaluated. The green density of coarse sponge compact was found to be larger than that from finer sponge. The green density of compacts from lightly attrited UO 2 powder was higher than that from unattrited category, accompanied by an improvement in UO 2 green crushing strength. The factors governing green strength have been examined in the light of published literature and experimental evidence. The methodology and results provide a basis for quality control in metal sponge and ceramic powder compaction in the manufacture of nuclear fuel

  16. Computing Decoupled Residuals for Compact Disc Players

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Andersen, Palle

    2006-01-01

    a pair of residuals generated by Compact Disc Player. However, these residuals depend on the performance of position servos in the Compact Disc Player. In other publications of the same authors a pair of decoupled residuals is derived. However, the computation of these alternative residuals has been...

  17. Professional Windows Embedded Compact 7

    CERN Document Server

    Phung, Samuel; Joubert, Thierry; Hall, Mike

    2011-01-01

    Learn to program an array of customized devices and solutions As a compact, highly efficient, scalable operating system, Windows Embedded Compact 7 (WEC7) is one of the best options for developing a new generation of network-enabled, media-rich, and service-oriented devices. This in-depth resource takes you through the benefits and capabilities of WEC7 so that you can start using this performance development platform today. Divided into several major sections, the book begins with an introduction and then moves on to coverage of OS design, application development, advanced application developm

  18. Modeling of compact loop antennas

    International Nuclear Information System (INIS)

    Baity, F.W.

    1987-01-01

    A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively-tuned resonant double loop (RDL) antennas the model treats stub-tuned resonant double loop antennas. Calculations using the model have been compared with measurements on full-scale mockups of resonant double loop antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and for the Compact Ignition Tokamak

  19. Challenges: a state and compact perspective

    International Nuclear Information System (INIS)

    Brown, H.

    1987-01-01

    The challenges facing states and compacts in their efforts to implement the Low-Level Waste Policy Amendments Act are described. Institutional challenges include: small-volume sites; compact maintenance; shifting agencies and changing personnel; and timing of progress. The technical challenge lies in the enormous number of plans, procedures, and regulations that have to be developed over the next four years. There are two main fiscal challenges: funding of day-to-day operations of compact commissions; and financing the siting and construction of new disposal sites. There are also two main regulatory challenges: host states must develop regulations for siting and selection of technology; and all states have to await federal regulations to be completed. The final challenge is political: whether a region can overcome public opposition and actually site a facility

  20. Design study of the compact ERL

    International Nuclear Information System (INIS)

    Hajima, Ryoichi; Nakamura, Norio; Sakanaka, Shogo; Kobayashi, Yukinori

    2008-02-01

    Energy-recovery linac (ERL) is a promising device for future X-ray light sources, which can produce coherent X-rays and femto-second X-ray pulses. In Japan, we have organized a collaboration team, consisting of the members of KEK, JAEA, ISSP and other laboratories, toward realization of future ERL light sources, and started R and D efforts to establish accelerator technologies relevant to the ERL light source. In order to demonstrate all the accelerator technologies working together, we have decided to build a small facility, the Compact ERL. This report presents a design study of the Compact ERL, which includes R and D issues for each accelerator component, studies on the beam dynamics, performance of the Compact ERL as a light source of THz and X-ray. (author)

  1. {theta}-Compactness in L-topological spaces

    Energy Technology Data Exchange (ETDEWEB)

    Hanafy, I.M. [Department of Mathematics, Faculty of Education, Suez Canal University, El-Arish (Egypt)], E-mail: ihanafy@hotmail.com

    2009-12-15

    Recently, El-Naschie has shown that the notion of fuzzy topology may be relevant to quantum particle physics in connection with string theory and e{sup {infinity}} theory. In 2005, Caldas and Jafari have introduced {theta}-compact fuzzy topological spaces. In this paper, the concepts of{theta}-compactness, countable{theta}-compactness and the{theta}-Lindeloef property are introduced and studied in L-topological spaces, where L is a complete de Morgan algebra. They are defined by means of{theta}-openL-sets and their inequalities. They does not rely on the structure of basis lattice L and no distributivity in L is required. They can also be characterized by{theta}-closedL-sets and their inequalities. When L is a completely de Morgan algebra, their many characterizations are presented.

  2. Rapid solidification and dynamic compaction of Ni-base superalloy powders

    Science.gov (United States)

    Field, R. D.; Hales, S. J.; Powers, W. O.; Fraser, H. L.

    1984-01-01

    A Ni-base superalloy containing 13Al-9Mo-2Ta (in at. percent) has been characterized in both the rapidly solidified condition and after dynamic compaction. Dynamically compacted specimens were examined in the as-compacted condition and observations related to current theories of interparticle bonding. In addition, the recrystallization behavior of the compacted material at relatively low temperature (about 0.5-0.75 Tm) was investigated.

  3. New geometrical compactness measures for zones design

    Directory of Open Access Journals (Sweden)

    Eric Alfredo Rincón-García

    2012-07-01

    Full Text Available The design of compact zones has been studied because of its influence in the creation of zones with regular forms, which are easier to analyze, to investigate or to administer. This paper propose a new method to measure compactness,by means of the transformation of the original geographical spaces, into figures formed with square cells, which are used to measure the similarity between the original zone and an ideal zone with straight forms. The proposed method was applied to design electoral zones, which must satisfy constraints of compactness, contiguity and population balance, in a topographical configuration that favors the creation of twisted and diffuse shapes. The results show that the new method favors the creation of zones with straight forms, without an important effect to the population balance, which are considered zones of high quality. Keywords: Redistricting, compactness, simulated annealing, GIS. Mathematics Subject Classification: 90C59, 90C29, 68T20.

  4. Non-compact left ventricle/hypertrabeculated left ventricle

    International Nuclear Information System (INIS)

    Restrepo, Gustavo; Castano, Rafael; Marmol, Alejandro

    2005-01-01

    Non-compact left ventricle/hypertrabeculated left ventricle is a myocardiopatie produced by an arrest of the normal left ventricular compaction process during the early embryogenesis. It is associated to cardiac anomalies (congenital cardiopaties) as well as to extracardial conditions (neurological, facial, hematologic, cutaneous, skeletal and endocrinological anomalies). This entity is frequently unnoticed, being diagnosed only in centers with great experience in the diagnosis and treatment of myocardiopathies. Many cases of non-compact left ventricle have been initially misdiagnosed as hypertrophic myocardiopatie, endocardial fibroelastosis, dilated cardiomyopatie, restrictive cardiomyopathy and endocardial fibrosis. It is reported the case of a 74 years old man with a history of chronic arterial hypertension and diabetes mellitus, prechordial chest pain and mild dyspnoea. An echocardiogram showed signs of non-compact left ventricle with prominent trabeculations and deep inter-trabecular recesses involving left ventricular apical segment and extending to the lateral and inferior walls. Literature on this topic is reviewed

  5. Immersed boundary method combined with a high order compact scheme on half-staggered meshes

    International Nuclear Information System (INIS)

    Księżyk, M; Tyliszczak, A

    2014-01-01

    This paper presents the results of computations of incompressible flows performed with a high-order compact scheme and the immersed boundary method. The solution algorithm is based on the projection method implemented using the half-staggered grid arrangement in which the velocity components are stored in the same locations while the pressure nodes are shifted half a cell size. The time discretization is performed using the predictor-corrector method in which the forcing terms used in the immersed boundary method acts in both steps. The solution algorithm is verified based on 2D flow problems (flow in a lid-driven skewed cavity, flow over a backward facing step) and turns out to be very accurate on computational meshes comparable with ones used in the classical approaches, i.e. not based on the immersed boundary method.

  6. Compaction and relaxation of biofilms

    KAUST Repository

    Valladares Linares, R.

    2015-06-18

    Operation of membrane systems for water treatment can be seriously hampered by biofouling. A better characterization of biofilms in membrane systems and their impact on membrane performance may help to develop effective biofouling control strategies. The objective of this study was to determine the occurrence, extent and timescale of biofilm compaction and relaxation (decompaction), caused by permeate flux variations. The impact of permeate flux changes on biofilm thickness, structure and stiffness was investigated in situ and non-destructively with optical coherence tomography using membrane fouling monitors operated at a constant crossflow velocity of 0.1 m s−1 with permeate production. The permeate flux was varied sequentially from 20 to 60 and back to 20 L m−2 h−1. The study showed that the average biofilm thickness on the membrane decreased after elevating the permeate flux from 20 to 60 L m−2 h−1 while the biofilm thickness increased again after restoring the original flux of 20 L m−2 h−1, indicating the occurrence of biofilm compaction and relaxation. Within a few seconds after the flux change, the biofilm thickness was changed and stabilized, biofilm compaction occurred faster than the relaxation after restoring the original permeate flux. The initial biofilm parameters were not fully reinstated: the biofilm thickness was reduced by 21%, biofilm stiffness had increased and the hydraulic biofilm resistance was elevated by 16%. Biofilm thickness was related to the hydraulic biofilm resistance. Membrane performance losses are related to the biofilm thickness, density and morphology, which are influenced by (variations in) hydraulic conditions. A (temporarily) permeate flux increase caused biofilm compaction, together with membrane performance losses. The impact of biofilms on membrane performance can be influenced (increased and reduced) by operational parameters. The article shows that a (temporary) pressure increase leads to more

  7. Mechanical compaction of Waste Isolation Pilot Plant simulated waste

    International Nuclear Information System (INIS)

    Butcher, B.M.; Thompson, T.W.; VanBuskirk, R.G.; Patti, N.C.

    1991-06-01

    The investigation described in this report acquired experimental information about how materials simulating transuranic (TRU) waste compact under axial compressive stress, and used these data to define a model for use in the Waste Isolation Pilot Plant (WIPP) disposal room analyses. The first step was to determine compaction curves for various simultant materials characteristic of TRU waste. Stress-volume compaction curves for various combinations of these materials were than derived to represent the combustible, metallic, and sludge waste categories. Prediction of compaction response in this manner is considered essential for the WIPP program because of the difficulties inherent in working with real (radioactive) waste. Next, full-sized 55-gallon drums of simulated combustible, metallic, and sludge waste were axially compacted. These results provided data that can be directly applied to room consolidation and data for comparison with the predictions obtained in Part 1 of the investigation. Compaction curves, which represent the combustible, metallic, and sludge waste categories, were determined, and a curve for the averaged waste inventory of the entire repository was derived. 9 refs., 31 figs., 12 tabs

  8. Characterization of Compaction Process on UO2 Powder Pelletisation

    International Nuclear Information System (INIS)

    Rachmawati, M; Langenati, R; Saputra, T.T; Mahpudin, A; Histori; Sutarya, D; Zahedi

    1998-01-01

    Determination of compaction pressure of pelletization which is based on density characterization in conjunction with satisfactory green strength of the UO 2 pellet, is carried out in this experiment. Cameco UO 2 powder has been mixed up with Zn-stearate lubricant prior to compaction process. The compaction pressure is varied from the range of 2 Mp up to 6 Mp. The mechanical strength is determined using diametral compression strength with the speed of loading of 0.1 mm.min 1 . The density measurement and compression strength test are performed on each of the applied pressure. The result shows that compaction at 5 Mp gives the maximum green strength of UO 2 pellet, while the maximum density is achieved at 5.7 Mp. The maximum green strength and green density of UO 2 (+ TiO 2 ) pellets is achieved at the addition of 0.25% and 0.125% TiO 2 respectively. The compaction pressure which is showing the maximum pellet green strength but still having the required density, is chosen to be the determinant compaction pressure in condition of pelletization

  9. Duality results for co-compact Gabor systems

    DEFF Research Database (Denmark)

    Jakobsen, Mads Sielemann; Lemvig, Jakob

    2015-01-01

    In this paper we give an account of recent developments in the duality theory of Gabor frames. We prove the Wexler-Raz biorthogonality relations and the duality principle for co-compact Gabor systems on second countable, locally compact abelian groups G. Our presentation does not rely on the exis...

  10. Fracture toughness measurements with subsize disk compact specimens

    International Nuclear Information System (INIS)

    Alexander, D.J.

    1992-01-01

    Special fixtures and test methods are necessary to facilitate the fracture toughness testing of small disk compact specimens of irradiated candidate materials for first-wall fusion applications. New methods have been developed for both the unloading compliance and potential drop techniques of monitoring crack growth. Provisions have been made to allow the necessary probes and instrumentation to be installed remotely using manipulators for testing of irradiated specimens in a hot cell. Laboratory trials showed that both unloading compliance and potential drop gave useful results. Both techniques gave similar data, and predicted the final crack extension within allowable limits. The results from the small disk compact specimens were similar to results from conventional compact specimen 12.7 mm thick. However, the slopes of the J-R curves from the larger specimens were lower, suggesting that the smaller disk compact specimens may have lost some constraint due to their size. The testing shows that it should be possible to generate useful J-R curve fracture toughness data from the small disk compact specimens

  11. Fracture toughness measurements with subsize disk compact specimens

    International Nuclear Information System (INIS)

    Alexander, D.J.

    1992-01-01

    Special fixtures and test methods have been developed for testing small disk compact specimens (12.5 mm diam by 4.6 mm thick). Both unloading compliance and potential drop methods have been used to monitor crack extension during the J-integral resistance (J-R) curve testing. Provisions have been made to allow the necessary probes and instrumentation to be installed remotely using manipulators for testing of irradiated specimens in a hat cell. Laboratory trials showed that both unloading compliance and potential drop gave useful results. Both techniques gave similar data, and predicted the final crack extension within allowable limits. The results from the small disk compact specimens were similar to results from conventional compact specimens 12.7-mm thick. However, the slopes of the J-R curves from the larger specimens were lower, suggesting that the smaller disk compact specimens may have lost some constraint due to their size. The testing shows that it should be possible to generate useful J-R curve fracture toughness data from the small disk compact specimens

  12. Development of anthropomorphic robotic hand driven by Pneumatic Artificial Muscles for robotic applications

    Science.gov (United States)

    Farag, Mohannad; Zainul Azlan, Norsinnira; Hayyan Alsibai, Mohammed

    2018-04-01

    This paper presents the design and fabrication of a three-fingered anthropomorphic robotic hand. The fingers are driven by tendons and actuated by human muscle-like actuators known as Pneumatic Artificial Muscle (PAM). The proposed design allows the actuators to be mounted outside the hand where each finger can be driven by one PAM actuator and six indirectly interlinked tendons. With this design, the three-fingered hand has a compact size and a lightweight with a mass of 150.25 grams imitating the human being hand in terms of size and weight. The hand also successfully grasped objects with different shapes and weights up to 500 g. Even though the number of PAM actuators equals the number of Degrees of Freedom (DOF), the design guarantees driving of three joints by only one actuator reducing the number of required actuators from 3 to 1. Therefore, this hand is suitable for researches of robotic applications in terms of design, cost and ability to be equipped with several types of sensors.

  13. Gun-generated compact tori at Los Alamos

    International Nuclear Information System (INIS)

    Jarboe, T.R.; Henins, I.; Hoida, H.W.; Linford, R.K.; Marshall, J.; Platts, D.A.; Sherwood, A.R.

    1982-01-01

    We have generated compact toroids which can be made to come to rest in a cylindrical resistive flux conserver. They are observed to rotate so that their major axis is perpendicular to the axis of the flux conserver. Subsequently they appear to remain stationary and decay with a time constant of about 100 μs. We have also generated compact toroids in an oblate geometry which remain aligned with the axis of the flux conserver and decay with a time constant of 150 μs. The magnetic field reconnection time for compact toroid formation is measured in the latter case to be much shorter than the decay time

  14. Strange matter in compact stars

    Directory of Open Access Journals (Sweden)

    Klähn Thomas

    2018-01-01

    Full Text Available We discuss possible scenarios for the existence of strange matter in compact stars. The appearance of hyperons leads to a hyperon puzzle in ab-initio approaches based on effective baryon-baryon potentials but is not a severe problem in relativistic mean field models. In general, the puzzle can be resolved in a natural way if hadronic matter gets stiffened at supersaturation densities, an effect based on the quark Pauli quenching between hadrons. We explain the conflict between the necessity to implement dynamical chiral symmetry breaking into a model description and the conditions for the appearance of absolutely stable strange quark matter that require both, approximately masslessness of quarks and a mechanism of confinement. The role of strangeness in compact stars (hadronic or quark matter realizations remains unsettled. It is not excluded that strangeness plays no role in compact stars at all. To answer the question whether the case of absolutely stable strange quark matter can be excluded on theoretical grounds requires an understanding of dense matter that we have not yet reached.

  15. Strange matter in compact stars

    Science.gov (United States)

    Klähn, Thomas; Blaschke, David B.

    2018-02-01

    We discuss possible scenarios for the existence of strange matter in compact stars. The appearance of hyperons leads to a hyperon puzzle in ab-initio approaches based on effective baryon-baryon potentials but is not a severe problem in relativistic mean field models. In general, the puzzle can be resolved in a natural way if hadronic matter gets stiffened at supersaturation densities, an effect based on the quark Pauli quenching between hadrons. We explain the conflict between the necessity to implement dynamical chiral symmetry breaking into a model description and the conditions for the appearance of absolutely stable strange quark matter that require both, approximately masslessness of quarks and a mechanism of confinement. The role of strangeness in compact stars (hadronic or quark matter realizations) remains unsettled. It is not excluded that strangeness plays no role in compact stars at all. To answer the question whether the case of absolutely stable strange quark matter can be excluded on theoretical grounds requires an understanding of dense matter that we have not yet reached.

  16. Durability of Self Compacting Concrete

    International Nuclear Information System (INIS)

    Benmarce, A.; Boudjehem, H.; Bendjhaiche, R.

    2011-01-01

    Self compacting concrete (SCC) seem to be a very promising materials for construction thanks to their properties in a fresh state. Studying of the influence of the parameters of specific designed mixes to their mechanical, physical and chemical characteristics in a state hardened is an important stage so that it can be useful for new-to-the-field researchers and designers (worldwide) beginning studies and work involving self compacting concrete. The objective of this research is to study the durability of self compacting concrete. The durability of concrete depends very much on the porosity; the latter determines the intensity of interactions with aggressive agents. The pores inside of concrete facilitate the process of damage, which began generally on the surface. We are interested to measure the porosity of concrete on five SCC with different compositions (w/c, additives) and vibrated concrete to highlight the influence of the latter on the porosity, thereafter on the compressive strength and the transfer properties (oxygen permeability, chloride ion diffusion, capillary absorption). (author)

  17. Compaction Characteristics of Igumale Shale | Iorliam | Global ...

    African Journals Online (AJOL)

    This paper reports the outcome of an investigation into the effect of different compactive energies on the compaction characteristics of Igumale shale, to ascertain its suitability as fill material in highway ... The study showed that Igumale shale is not suitable for use as base, subbase and filling materials in road construction.

  18. Dynamic compaction with high energy of sandy hydraulic fills

    Directory of Open Access Journals (Sweden)

    Khelalfa Houssam

    2017-09-01

    Full Text Available A case study about the adoption of the dynamic compaction technique with high energy in a sandy hydraulic fill is presented. The feasibility of this technique to ensure the stability of the caisson workshop and to minimize the risk of liquefaction during manufacture. This Article is interested to establish diagnostic of dynamic compaction test, basing on the results of SPT tests and quality control as well as the details of work of compaction and the properties of filling materials. A theory of soil response to a high-energy impact during dynamic compaction is proposed.

  19. COSMIC probes into compact binary formation and evolution

    Science.gov (United States)

    Breivik, Katelyn

    2018-01-01

    The population of compact binaries in the galaxy represents the final state of all binaries that have lived up to the present epoch. Compact binaries present a unique opportunity to probe binary evolution since many of the interactions binaries experience can be imprinted on the compact binary population. By combining binary evolution simulations with catalogs of observable compact binary systems, we can distill the dominant physical processes that govern binary star evolution, as well as predict the abundance and variety of their end products.The next decades herald a previously unseen opportunity to study compact binaries. Multi-messenger observations from telescopes across all wavelengths and gravitational-wave observatories spanning several decades of frequency will give an unprecedented view into the structure of these systems and the composition of their components. Observations will not always be coincident and in some cases may be separated by several years, providing an avenue for simulations to better constrain binary evolution models in preparation for future observations.I will present the results of three population synthesis studies of compact binary populations carried out with the Compact Object Synthesis and Monte Carlo Investigation Code (COSMIC). I will first show how binary-black-hole formation channels can be understood with LISA observations. I will then show how the population of double white dwarfs observed with LISA and Gaia could provide a detailed view of mass transfer and accretion. Finally, I will show that Gaia could discover thousands black holes in the Milky Way through astrometric observations, yielding view into black-hole astrophysics that is complementary to and independent from both X-ray and gravitational-wave astronomy.

  20. Effect of material parameters on the compactibility of backfill materials

    International Nuclear Information System (INIS)

    Keto, P.; Kuula-Vaeisaenen, P.; Ruuskanen, J.

    2006-05-01

    The effect of different parameters on compactibility of mixture of bentonite and ballast as well as Friedland-clay was studied in laboratory with two different types of compaction tests. The material parameters varied were grain size distribution of the ballast material, grain shape, water ratio and bentonite content (15/30%). The other parameters varied were salinity of the mixing water, mixing process and compaction method and energy. Ballast materials with varying grain size distributions were produced from Olkiluoto mica-gneiss with different type of crushing processes. In addition, sand was chosen for ballast material due to its uniform grain size distribution and rounded grain shape. The maximum grain size of the ballast materials was between 5-10 mm. When comparing the compactibility of ballast materials, the highest dry densities were gained for ballast materials with graded grain size distribution. The compaction behaviour of the tested bentonite ballast mixtures is dominated by the bentonite content. The other parameters varied did not have significant effect on the compactibility of the mixtures with bentonite content of 30%. This can be explained with the amount of bentonite that is higher than what is needed to fill up the volume between the ballast grains. The results gained with the two different compaction tests are comparable. Both the bentonite/ballast mixtures and the Friedland clay behaved similarly when compacted with three different compaction pressures (180, 540 and 980 kPa). (orig.)

  1. Compactibility of atomized high-speed steel and steel 3 powders

    International Nuclear Information System (INIS)

    Kulak, L.D.; Gavrilenko, A.P.; Pikozh, A.P.; Kuz'menko, N.N.

    1985-01-01

    Spherical powders and powders of lammellar-scaly shape of high-speed R6M5K5 steel and steel 3 produced by the method of centrifugal atomization of a rotating billet under conditions of cold pressing in steel moulds are studied for thier compactability. Compacting pressure dependnences are establsihed for density of cold-pressed compacts of spherical and scaly powders. The powders of lammellar-scaly shape both of high-speed steel and steel 3 are found to possess better compactibility within a wide range of pressures as compared to powders of spherical shape. Compacts of the lammellar-scaly powders possess also higher mechanical strength

  2. Variability aware compact model characterization for statistical circuit design optimization

    Science.gov (United States)

    Qiao, Ying; Qian, Kun; Spanos, Costas J.

    2012-03-01

    Variability modeling at the compact transistor model level can enable statistically optimized designs in view of limitations imposed by the fabrication technology. In this work we propose an efficient variabilityaware compact model characterization methodology based on the linear propagation of variance. Hierarchical spatial variability patterns of selected compact model parameters are directly calculated from transistor array test structures. This methodology has been implemented and tested using transistor I-V measurements and the EKV-EPFL compact model. Calculation results compare well to full-wafer direct model parameter extractions. Further studies are done on the proper selection of both compact model parameters and electrical measurement metrics used in the method.

  3. The influence of crushed rock salt particle gradation on compaction

    International Nuclear Information System (INIS)

    Ran, C.; Daemen, J.J.K.

    1994-01-01

    This paper presents results of laboratory compaction testing to determine the influence of particle size, size gradation and moisture-content on compaction of crushed rock salt. Included is a theoretical analysis of the optimum size gradation. The objective is to evaluate the relative densities that can be achieved with tamping techniques. Initial results indicate that compaction increases with maximum particle size and compaction energy, and varies significantly with article size gradation and water content

  4. Coherent states for quantum compact groups

    CERN Document Server

    Jurco, B

    1996-01-01

    Coherent states are introduced and their properties are discussed for all simple quantum compact groups. The multiplicative form of the canonical element for the quantum double is used to introduce the holomorphic coordinates on a general quantum dressing orbit and interpret the coherent state as a holomorphic function on this orbit with values in the carrier Hilbert space of an irreducible representation of the corresponding quantized enveloping algebra. Using Gauss decomposition, the commutation relations for the holomorphic coordinates on the dressing orbit are derived explicitly and given in a compact R--matrix formulation (generalizing this way the q--deformed Grassmann and flag manifolds). The antiholomorphic realization of the irreducible representations of a compact quantum group (the analogue of the Borel--Weil construction) are described using the concept of coherent state. The relation between representation theory and non--commutative differential geometry is suggested.}

  5. Effects of compaction pressure and particle shape on the porosity and compression mechanical properties of sintered Ti6Al4V powder compacts for hard tissue implantation.

    Science.gov (United States)

    Güden, Mustafa; Celik, Emrah; Hizal, Alpay; Altindiş, Mustafa; Cetiner, Sinan

    2008-05-01

    Sintered Ti6Al4V powder compacts potentially to be used in implant applications were prepared using commercially available spherical and angular powders (100-200 mum) within the porosity range of 34-54%. Cylindrical green powder compacts were cold compacted at various pressures and then sintered at 1200 degrees C for 2 h. The final percent porosity and mean pore sizes were determined as functions of the applied compaction pressure and powder type. The mechanical properties were investigated through compression testing. Results have shown that yield strength of the powder compacts of 40-42% porosity was comparable with that of human cortical bone. As compared with previously investigated Ti powder compacts, Ti6Al4V powder compacts showed higher strength at similar porosity range. Microscopic observations on the failed compact samples revealed that failure occurred primarily by the separation of interparticle bond regions in the planes 45 degrees to the loading axis. Copyright 2007 Wiley Periodicals, Inc.

  6. Feature Based Control of Compact Disc Players

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh

    Two servo control loops are used to keep the Optical Pick-up Unit focused and radially on the information track of the Compact Disc. These control servos have problems handling surface faults on the Compact Disc. In this Ph.D thesis a method is proposed to improve the handling of these surface...

  7. Novel compact sorption generators for car air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Tamainot-Telto, Z.; Metcalf, S.J.; Critoph, R.E. [School of Engineering, University of Warwick, Gibet Hill Road, Coventry CV4 7AL (United Kingdom)

    2009-06-15

    A prototype compact generator using the activated carbon-ammonia pair based on the plate heat exchanger concept has been designed and built at Warwick University. The novel generator has low thermal mass and good heat transfer. The heat exchanger uses nickel-brazed shims and spacers to create adsorbent layers only 4 mm thick between pairs of liquid flow channels of very low thermal mass. The prototype sorption generator manufactured was evaluated under EU car air conditioning test conditions. The prototype sorption generator is described and its experimental performance reported. While driven with waste heat from the engine coolant water (at 90 C), a pair of the current prototype generators (loaded with about 1 kg of activated carbon) operating out of phase has produced an average cooling power 1.6 kW with about 2 kW peaks. The typical average COP obtained is 0.22. (author) [French] Un prototype du generateur compact, base sur le concept des echangeurs de chaleur a plaques et utilisant la paire charbon actif-ammoniac, a ete concu et construit a l'Universite de Warwick. Le nouveau generateur a une faible inertie thermique et un excellent transfert de chaleur. L' echangeur utilise des plaques ayant des micro-canaux et des intercalaires brases au Nickel pour creer des couches d'adsorbant de 4 mm d'epaisseur entre les paires de plaques a l'interieur desquelles circule le fluide liquide. Le prototype du generateur a sorption ainsi fabrique a ete teste suivant des conditions prescrites par la Norme Europeenne de la Climatisation Automobile. Le prototype du generateur a sorption est decrit et ses performances experimentales presentees. Une paire dudit prototype (contenant chacun 1 kg the charbon actif), operant avec dephasage et ulisant des pertes thermiques en provenance de l'eau de refroidissement de moteur (a 90 C), a produit une puissance frigorifique moyenne de 1.6 kW avec une valeur maximum de 2 kW. La valeur typique du COP moyen est de

  8. Multiple reinjections and crystal mush compaction in the solidification evolution of the Karaj Dam basement Sill, Northern Iran

    Science.gov (United States)

    Maghdour-Mashhour, Reza; Shabani, Amir Ali Tabbakh

    2017-07-01

    The Karaj Dam basement Sill is a 460 m-thick saucer shaped sill, situated in the Alborz Magmatic Belt, Northern Iran. The results of geochemical, textural and field relations reveal characteristics of a sill with a well-developed S-shaped compositional profile which could be subdivided into distinct parts and suggest that the sill was repeatedly split and reinjected with fresh magma in the upper half of the previous emplacements (over- to partly intra-accretion). Whole rock and mineral compositional profiles have recorded five to six discrete injections of magma, each of which individually show an upward increase in terms of primitivity which represents partial crystallization in feeder conduits. The first three small successive pulses of magma, emplaced in the basal 150 m of the floor sequence, were followed by voluminous fourth and fifth pulses in the upper portion of the sill. During final two pulses the system acts as a closed system for each independently, and evolves through compositional convection or compaction aided in-situ crystallization. Theoretical models for convection and compaction shows the significance of both processes. Considering the final porosity of 0.1 rate of the basal 150 m and upper portion of the sill (Va = 1 and 0.1 m/year), when the crystal mush varies between 1 to 0.01 m with the liquid viscosity ranging from 85 to 15 Pa·s. Our calculations further indicate that compaction driven velocity of liquid expulsion (ω - w) hardly exceeds the Va in the basal 150 m of the floor sequence. The highest velocity is reached (ω - w = 1 m/year) only if the crystal mush thickness is no less than 240 m with the porosity of 0.6 and the liquid viscosity of no more than 15 Pa·s. On the other hand, compaction is highly effective in the upper portion of the sill. Transfer of residual liquid from the compacting lower solidification front to the dilating upper solidification front resulted in characteristic chemical and mineralogical effects, such as the

  9. Status and prospects of a compact FIR FEL driven by a magnetron-based microtron

    International Nuclear Information System (INIS)

    Jeong, Young Uk; Kazakevitch, Grigori M.; Lee, Byung Cheol; Kim, Sun Kook; Cho, Sung Oh; Gavrilov, Nicolai G.; Lee, Jongmin

    2002-01-01

    A magnetron-based microtron as a driver of FIR FEL has several prominent advantages in cost, size, beam quality and operation convenience. However, it has some disadvantages due to the instability of the RF frequency and a low current. In order to overcome these disadvantages, the frequency stability of the magnetron was improved, and the interaction between the electron beam and the FIR radiation was enhanced by using a high-performance undulator and a low-loss waveguide-mode optical resonator. The FEL is now under upgrade in order to extend the wavelength range to cover 90-300 μm, which can be done by increasing the energy range of electron beam to 4.3-7 MeV. In this paper, we report the results of investigations on output characteristics of the FEL depending on cavity detuning, electron beam matching, and RF instability. Based on the results, we discuss the prospects of wide-band FIR FELs driven by magnetron-based microtrons as potent sources of radiation for scientific applications

  10. Compact toroid refueling of reactors

    International Nuclear Information System (INIS)

    Gouge, M.J.; Hogan, J.T.; Milora, S.L.; Thomas, C.E.

    1988-04-01

    The feasibility of refueling fusion reactors and devices such as the International Thermonuclear Engineering Reactor (ITER) with high-velocity compact toroids is investigated. For reactors with reasonable limits on recirculating power, it is concluded that the concept is not economically feasible. For typical ITER designs, the compact toroid fueling requires about 15 MW of electrical power, with about 5 MW of thermal power deposited in the plasma. At these power levels, ideal ignition (Q = ∞) is not possible, even for short-pulse burns. The pulsed power requirements for this technology are substantial. 6 ref., 1 figs

  11. Investigation of HMA compactability using GPR technique

    Science.gov (United States)

    Plati, Christina; Georgiou, Panos; Loizos, Andreas

    2014-05-01

    In-situ field density is often regarded as one of the most important controls used to ensure that an asphalt pavement being placed is of high quality. The achieved density results from the effectiveness of the applied compaction mode on the Hot Mix Asphalt (HMA) layer. It is worthwhile mentioning that the proper compaction of HMA increases pavement fatigue life, decreases the amount of permanent deformation or rutting, reduces the amount of oxidation or aging, decreases moisture damage or stripping, increases strength and internal stability, and may decrease slightly the amount of low-temperature cracking that may occur in the mix. Conventionally, the HMA density in the field is assessed by direct destructive methods, including through the cutting of samples or drilling cores. These methods are characterized by a high accuracy, although they are intrusive and time consuming. In addition, they provide local information, i.e. information only for the exact test location. To overcome these limitations, the use of non-intrusive techniques is often recommended. The Ground Penetrating Radar (GPR) technique is an example of a non-intrusive technique that has been increasingly used for pavement investigations over the years. GPR technology is practical and application-oriented with the overall design concept, as well as the hardware, usually dependent on the target type and the material composing the target and its surroundings. As the sophistication of operating practices increases, the technology matures and GPR becomes an intelligent sensor system. The intelligent sensing deals with the expanded range of GPR applications in pavements such as determining layer thickness, detecting subsurface distresses, estimating moisture content, detecting voids and others. In addition, the practice of using GPR to predict in-situ field density of compacted asphalt mixture material is still under development and research; however the related research findings seem to be promising

  12. Explosive compaction of aluminum oxide modified by multiwall carbon nanotubes

    Science.gov (United States)

    Buzyurkin, A. E.; Kraus, E. I.; Lukyanov, Ya L.

    2018-04-01

    This paper presents experiments and numerical research on explosive compaction of aluminum oxide powder modified by multiwall carbon nanotubes (MWCNT) and modeling of the stress state behind the shock front at shock loading. The aim of this study was to obtain a durable low-porosity compact sample. The explosive compaction technology is used in this problem because the aluminum oxide is an extremely hard and refractory material. Therefore, its compaction by traditional methods requires special equipment and considerable expenses.

  13. The physical properties and compaction characteristics of swelling soils

    International Nuclear Information System (INIS)

    Komine, Hideo; Ogata, Nobuhide

    1990-01-01

    Expansive soils have recently attracted increasing attention as the back filling material for the repositories of high level nuclear wastes or as the material for improving extremely soft grounds. However, since very little has been known concerning the physical and mechanical properties of such materials, it is necessary to clarify the swelling, compaction and thermal characteristics of expansive soils. For this purpose, various kinds of index tests and a series of static compaction tests were performed using several kinds of swelling soils in order to investigate the relationship between the fundamental physical properties and the compaction characteristics. Since the ordinary testing method stipulated in JIS is difficult to perform for such expansive soils, the new method was proposed to obtained the reliable values of specific gravity, grain size distribution and liquid/plastic limits. By this method, some representative values were presented for various kinds of clay including bentonite. As the results of static compaction tests, the compaction characteristics of clay were strongly dependent on the plastic limit of clay. The maximum dry density and optimum water content were strongly dependent on both plastic limit and compaction pressure. (K.I.)

  14. Filtration behavior of organic substance through a compacted bentonite

    International Nuclear Information System (INIS)

    Kanaji, Mariko; Kuno, Yoshio; Yui, Mikazu

    1999-07-01

    Filtration behavior of organic substance through a compacted bentonite was investigated. Na-type bentonite containing 30wt% of quartz sand was compacted in a column and the dry density was adjusted to be 1.6 g/cm 3 . Polyacrylic acid solution (including three types of polyacrylic acid, average molecular weight 2,100, 15,000 and 450,000) was prepared and was passed through the compacted bentonite. Molecular weight distributions of polyacrylic acid in the effluent solution were analysed by GPC (Gel Permeation Chromatography). A batch type experiment was also carried out in order to examine a sorption behavior of these organic substances onto the surfaces of grains of the bentonite. The results indicated that the smaller size polyacrylic acid (molecular weight < 100,000) was passed through the compacted bentonite. On the other hand, the larger size polyacrylic acid (molecular weight ≥100,000) was mostly filtrated by the compacted bentonite. The batch type sorption tests clarified that the polyacrylic acid did not sorb onto the surfaces of minerals constituting the bentonite. Therefore it was suggested that the larger size molecules (≥100,000) of organic substances could be predominantly filtrated by the microstructure of the compacted bentonite. (author)

  15. Keck-I MOSFIRE spectroscopy of compact star-forming galaxies at z ≳ 2: high velocity dispersions in progenitors of compact quiescent galaxies

    International Nuclear Information System (INIS)

    Barro, Guillermo; Koo, David C.; Faber, Sandra M.; Guo, Yicheng; Toloba, Elisa; Fang, Jerome J.; Trump, Jonathan R.; Dekel, Avishai; Kassin, Susan A.; Koekemoer, Anton M.; Kocevski, Dale D.; Van der Wel, Arjen; Pérez-González, Pablo G.; Pacifici, Camilla; Simons, Raymond; Campbell, Randy D.; Goodrich, Bob; Kassis, Marc; Ceverino, Daniel; Finkelstein, Steven L.

    2014-01-01

    We present Keck-I MOSFIRE near-infrared spectroscopy for a sample of 13 compact star-forming galaxies (SFGs) at redshift 2 ≤ z ≤ 2.5 with star formation rates of SFR ∼ 100 M ☉ yr –1 and masses of log(M/M ☉ ) ∼10.8. Their high integrated gas velocity dispersions of σ int =230 −30 +40 km s –1 , as measured from emission lines of Hα and [O III], and the resultant M * -σ int relation and M * -M dyn all match well to those of compact quiescent galaxies at z ∼ 2, as measured from stellar absorption lines. Since log(M * /M dyn ) =–0.06 ± 0.2 dex, these compact SFGs appear to be dynamically relaxed and evolved, i.e., depleted in gas and dark matter (<13 −13 +17 %), and present larger σ int than their non-compact SFG counterparts at the same epoch. Without infusion of external gas, depletion timescales are short, less than ∼300 Myr. This discovery adds another link to our new dynamical chain of evidence that compact SFGs at z ≳ 2 are already losing gas to become the immediate progenitors of compact quiescent galaxies by z ∼ 2.

  16. Update on low-level waste compacts and state agencies

    International Nuclear Information System (INIS)

    Tenan, M.; Rabbe, D.; Thompson, P.

    1995-01-01

    This article updates information on the following agencies involved in low-level radioactive wastes: Appalachian States Low-Level Radioactive Waste Commission; Central Interstate Low-Level radioactive Waste Commission; Central Midwest Interstate Low-Level radioactive Waste Compact; Massachusetts Low-Level radioactive Waste Management Board; Michigan Low-Level Radioactive Waste Authority; Midwest Interstate Low-Level Radioactive Waste Commission; New York State Low-Level Radioactive Waste Siting Commission; Northeast Interstate Low-Level Radioactive Waste Compact; Northwest Interstate Compact on Low-Level Radioactive Waste Management; Rocky Mountain Low-Level Radioactive Waste Board; Southeast Compact Commission for Low-Level Radioactive Waste Management;Southwest Low-Level Radioactive Waste Commission; Texas Low-Level Radioactive Waste Disposal Authority

  17. CMS (Compact Muon Solenoid)

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The milestone workshops on LHC experiments in Aachen in 1990 and at Evian in 1992 provided the first sketches of how LHC detectors might look. The concept of a compact general-purpose LHC experiment based on a solenoid to provide the magnetic field was first discussed at Aachen, and the formal Expression of Interest was aired at Evian. It was here that the Compact Muon Solenoid (CMS) name first became public. Optimizing first the muon detection system is a natural starting point for a high luminosity (interaction rate) proton-proton collider experiment. The compact CMS design called for a strong magnetic field, of some 4 Tesla, using a superconducting solenoid, originally about 14 metres long and 6 metres bore. (By LHC standards, this warrants the adjective 'compact'.) The main design goals of CMS are: 1 - a very good muon system providing many possibilities for momentum measurement (physicists call this a 'highly redundant' system); 2 - the best possible electromagnetic calorimeter consistent with the above; 3 - high quality central tracking to achieve both the above; and 4 - an affordable detector. Overall, CMS aims to detect cleanly the diverse signatures of new physics by identifying and precisely measuring muons, electrons and photons over a large energy range at very high collision rates, while also exploiting the lower luminosity initial running. As well as proton-proton collisions, CMS will also be able to look at the muons emerging from LHC heavy ion beam collisions. The Evian CMS conceptual design foresaw the full calorimetry inside the solenoid, with emphasis on precision electromagnetic calorimetry for picking up photons. (A light Higgs particle will probably be seen via its decay into photon pairs.) The muon system now foresaw four stations. Inner tracking would use silicon microstrips and microstrip gas chambers, with over 10 7 channels offering high track finding efficiency. In the central CMS barrel, the tracking elements are

  18. Computed tomography scanner applied to soil compaction studies

    International Nuclear Information System (INIS)

    Vaz, C.M.P.

    1989-11-01

    The soil compaction problem was studied using a first generation computed tomography scanner (CT). This apparatus gets images of soil cross sections samples, with resolution of a few millimeters. We performed the following laboratory and field experiments: basic experiments of equipment calibrations and resolutions studies; measurements of compacted soil thin layers; measurements of soil compaction caused by agricultural tools; stress-strain modelling in confined soil sample, with several moisture degree; characterizations of soil bulk density profile with samples collected in a hole (trench), comparing with a cone penetrometer technique. (author)

  19. Coherent states for quantum compact groups

    International Nuclear Information System (INIS)

    Jurco, B.; Stovicek, P.; CTU, Prague

    1996-01-01

    Coherent states are introduced and their properties are discussed for simple quantum compact groups A l , B l , C l and D l . The multiplicative form of the canonical element for the quantum double is used to introduce the holomorphic coordinates on a general quantum dressing orbit. The coherent state is interpreted as a holomorphic function on this orbit with values in the carrier Hilbert space of an irreducible representation of the corresponding quantized enveloping algebra. Using Gauss decomposition, the commutation relations for the holomorphic coordinates on the dressing orbit are derived explicitly and given in a compact R-matrix formulation (generalizing this way the q-deformed Grassmann and flag manifolds). The antiholomorphic realization of the irreducible representations of a compact quantum group (the analogue of the Borel-Weil construction) is described using the concept of coherent state. The relation between representation theory and non-commutative differential geometry is suggested. (orig.)

  20. Compact space-like hypersurfaces in de Sitter space

    OpenAIRE

    Lv, Jinchi

    2005-01-01

    We present some integral formulas for compact space-like hypersurfaces in de Sitter space and some equivalent characterizations for totally umbilical compact space-like hypersurfaces in de Sitter space in terms of mean curvature and higher-order mean curvatures.

  1. Study of nuclear fuel powders forming by axial compaction

    International Nuclear Information System (INIS)

    Fourcade, J.

    2002-12-01

    Nuclear fuel powders forming, although perfectly dominated, fail to make compacts without density gradients. Density heterogeneities induce diametric deformations during firing which force manufacturers to adjust shape with a high cost machining stage. Manufacturing process improvement is a major project to obtain perfectly shaped pellets and reduce their cost. One way of investigation of this project is the study of powders compaction mechanisms to understand and improve their behaviour. The goal of this study is to identify the main mechanisms linked with powder properties that act on pressing. An empirical model is developed to predict pellet deformations from a single compaction test. This model has to link powder properties with their compaction behaviour. Then, compaction tests identify the main mechanisms whereas a contact dynamic program is used to explain them. These works, done to improve the understanding in powders behaviour, focus on powders agglomeration state and macroscopic particles arrangement during the die filling stage. Actually, for granulated powders, granules cohesion act on the powder bed behaviour under pressure. The first particles arrangement is responsible for the first transfer directions into the powder and so for its transfer homogeneity and isotropy. As a consequence, the knowledge of all the macroscopic powder properties is essential to understand and improve the manufacturing process. Moreover, tests on UO 2 powders have shown that it is better to use granulated powders with spherical granules, short size distribution and granules cohesion according with compaction pressure to improve compact homogeneity of densification. (author)

  2. Electrical properties of the potassium polytitanate compacts

    International Nuclear Information System (INIS)

    Goffman, V.G.; Gorokhovsky, A.V.; Kompan, M.M.; Tretyachenko, E.V.; Telegina, O.S.; Kovnev, A.V.; Fedorov, F.S.

    2014-01-01

    Highlights: • Quasi-static permittivity of potassium polytitanates compacts achieves 10 4 –10 5 . • Observed Maxwell–Wagner polarization attributes to layered structure of polytitanates. • The conductivity varies from 5 × 10 −2 to 10 −6 –10 −7 Sm/m in a wide range of temperatures. - Abstract: Titanates of alkali metals are widely applied materials as they are relatively low in cost and might be easily synthesized. They are utilized as adsorbents, catalysts, solid state electrolytes, superconductors. Here we report our results on electrical properties of the compacted amorphous potassium polytitanates powders. The electrical properties of the compacts were studied by means of complex impedance spectroscopy in a wide range of frequencies at different temperatures using two-electrode configuration. The frequency dependences of conductivity for the investigated potassium polytitanates compacts varies in the range from 5 × 10 −2 Sm/m (high frequencies, ion conductivity) up to 10 −6 –10 −7 Sm/m (low frequencies, electron conductivity) for a wide range of temperatures (19–150 °C). According to the results, at low frequencies quasi-static permittivity of the stabilized PPT compacts achieves high values of 10 4 –10 5 . This might be explained by Maxwell–Wagner polarization attributed to the layered structure of the potassium polytitanates particles containing potassium and hydronium ions together with crystallization water in the interlayer and is very promising for solid state electrolyte applications for moderate temperatures

  3. Hydrodynamic modeling and explosive compaction of ceramics

    International Nuclear Information System (INIS)

    Hoenig, C.; Holt, A.; Finger, M.; Kuhl, W.

    1977-01-01

    High-density ceramics with high-strength microstructure were achieved by explosive compaction. Well-characterized Al 2 O 3 , AlN, and boron powders were explosively compacted in both cylindrical and flat plate geometries. In cylindrical geometries compacted densities between 91 and 98 percent of theoretical were achieved. Microhardness measurements indicated that the strength and integrity of the microstructure were comparable to conventionally fabricated ceramics, even though all samples with densities greater than 90 percent theoretical contained macrocracks. Fractured surfaces evaluated by SEM showed evidence of boundary melting. Equation of state data for porous Al 2 O 3 were used to calculate the irreversible work done on the sample as a function of pressure. This was expressed as a percentage of the total sample which could be melted. Calculations show that very little melting can be expected in samples shocked to less than 3 GPa. Significant melting and grain boundary fusion can be expected in samples shocked to pressures greater than 8 GPa. Hydrodynamic modeling of right cylinder compaction with detonation at one end was attempted by using a two-dimensional computer code. The complications of this analysis led to experiments using plane shock waves. Flat-plate compaction assemblies were designed and analyzed by 2-D hydrodynamic codes. The use of porous shock attenuators was evaluated. Experiments were performed on aluminum oxide powders in plane wave geometry. Microstructure evaluations were made as a function of location in the flat plate samples. 11 figures, 1 table

  4. Compact Reversed-Field Pinch Reactors (CRFPR): preliminary engineering considerations

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.; Bathke, C.G.; Miller, R.L.; Embrechts, M.J.; Schnurr, N.M.; Battat, M.E.; LaBauve, R.J.; Davidson, J.W.

    1984-08-01

    The unique confinement physics of the Reversed-Field Pinch (RFP) projects to a compact, high-power-density fusion reactor that promises a significant reduction in the cost of electricity. The compact reactor also promises a factor-of-two reduction in the fraction of total cost devoted to the reactor plant equipment [i.e., fusion power core (FPC) plus support systems]. In addition to operational and developmental benefits, these physically smaller systems can operate economically over a range of total power output. After giving an extended background and rationale for the compact fusion approaches, key FPC subsystems for the Compact RFP Reactor (CRFPR) are developed, designed, and integrated for a minimum-cost, 1000-MWe(net) system. Both the problems and promise of the compact, high-power-density fusion reactor are quantitatively evaluated on the basis of this conceptual design. The material presented in this report both forms a framework for a broader, more expanded conceptual design as well as suggests directions and emphases for related research and development

  5. A utility perspective on the proposed Northeast interstate compact

    International Nuclear Information System (INIS)

    Keating, W.R.

    1984-01-01

    The proposed Northeast Compact on Low-Level Radioactive Waste appears to be stalled in its present form. The Low-Level Waste Policy Act of 1980 encourages states to enter into regional waste compacts where practicable. The Northeast Region, which includes eleven states made up of the six New England states plus New York, New Jersey, Pennsylvania, Delaware, and Maryland, is the largest proposed compact region from the standpoint of low-level radioactive waste volumes. There is also wide variation in volumes among the states. Four states in the region have ratified the Northeast Compact, but the remaining seven states, including the three largest generating states, have not ratified to date. The large states are pivotal in determining whether the compact will move forward. The prime concerns of these large volume generating states appear to be host state selection and responsibility issues, as well as some of the proposed powers and authority of the Regional Commission

  6. Modelling of anisotropic compact stars of embedding class one

    Energy Technology Data Exchange (ETDEWEB)

    Bhar, Piyali [Government General Degree College, Department of Mathematics, Singur, Hooghly, West Bengal (India); Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Raj Kumar Goel Institute of Technology, Department of Mathematics, Ghaziabad, U.P. (India); Manna, Tuhina [St. Xavier' s College, Department of Commerce (Evening), Kolkata, West Bengal (India)

    2016-10-15

    In the present article, we have constructed static anisotropic compact star models of Einstein field equations for the spherical symmetric metric of embedding class one. By assuming the particular form of the metric function ν, we have solved the Einstein field equations for anisotropic matter distribution. The anisotropic models represent the realistic compact objects such as SAX J 1808.4-3658 (SS1), Her X-1, Vela X-12, PSR J1614-2230 and Cen X-3. We have reported our results in details for the compact star Her X-1 on the ground of physical properties such as pressure, density, velocity of sound, energy conditions, TOV equation and red-shift etc. Along with these, we have also discussed about the stability of the compact star models. Finally we made a comparison between our anisotropic stars with the realistic objects on the key aspects as central density, central pressure, compactness and surface red-shift. (orig.)

  7. Self-compacting geopolymer concrete-a review

    Science.gov (United States)

    Ukesh Praveen, P.; Srinivasan, K.

    2017-11-01

    In this construction world, Geopolymer concrete is a special concrete which doesn’t requires the Ordinary Portland Cement and also reduces the emission of carbon-dioxide. The Geopolymer Concrete is made up of industrial by-products (which contains more Silica and Alumina) and activated with the help of Alkaline solution (combination of sodium hydroxide & sodium silicate or potassium hydroxide & potassium silicate). The high viscosity nature of Geopolymer Concrete had the ability to fail due to lack of compaction. In improvising the issue, Self Compacting Geopolymer Concrete has been introduced. The SCGC doesn’t require any additional compaction it will flow and compacted by its own weight. This concrete is made up of industrial by-products like Fly ash, GGBFS and Silica Fume and activated with alkaline solution. The earlier research was mostly on Fly ash based SCGC. In few research works Fly ash was partially replaced with GGBS and Silica Fume. They evaluated the compressive strength of concrete with varying molarities of NaOH; curing time and curing temperature. The flexural behaviour of the concrete also examined. The Fly ash based SCGC was got high compressive strength in heat curing as well as low compressive strength in ambient curing. The presence of GGBS improves the strength in ambient curing. For aiming the high strength in ambient curing Fly ash will be completely replace and examine with different mineral admixtures.

  8. Nonlinear momentum compaction and coherent synchrotron radiation at the metrology light source. Low-α commissioning and development

    International Nuclear Information System (INIS)

    Ries, Markus

    2014-01-01

    Short pulses of synchrotron radiation are becoming an increasingly demanded tool in various fields of science. The generation of short synchrotron radiation pulses can be accomplished by different accelerator-based approaches such as free electron lasers, energy recovery linacs or electron storage rings. Linear accelerator driven free electron lasers are capable of generating intense pulses in the femtosecond regime at moderate repetition rates. In comparison, electron storage rings generate pulses of lower intensity with the advantage of large repetition rates. However, electron storage rings rely on radiation emitted by the same bunch(es) every turn, which are present in an equilibrium state. Thus making the electron storage ring a yet unchallenged source of short synchrotron radiation pulses in terms of stability and reproducibility. In addition, storage rings are capable to serve a large number of users simultaneously. In general, it is possible to distinguish the user community of short pulses at electron storage rings. The first user group is interested in time-resolution applying incoherent synchrotron radiation up to the X-ray regime. The second user group makes use of coherent synchrotron radiation emitted by short bunches at wavelengths large compared to the bunch dimensions, which commonly applies up to the THz-regime. Both user groups are interested in the high average power and stability available at electron storage rings. However, there is a current limitation for stable short bunch operation of electron storage rings, which is due to an instability driven by the emission of coherent synchrotron radiation. The subject of this thesis is the operation of an electron storage ring at a low momentum compaction to generate short electron bunches as a source for coherent synchrotron radiation. For this purpose the Metrology Light Source is ideally suited, as it is the first light source designed with the ability to adjust the three leading orders of the

  9. DIRECT IMAGING OF A COMPACT MOLECULAR OUTFLOW FROM A VERY LOW LUMINOSITY OBJECT: L1521F-IRS

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Satoko [Joint ALMA Observatory, Alonso de Cordova 3107, Vitacura, Santiago (Chile); Ohashi, Nagayoshi [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Bourke, Tyler L., E-mail: satoko.takahashi@nao.ac.jp [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-09-01

    Studying the physical conditions of very low luminosity objects (VeLLOs; L{sub bol} < 0.1 L{sub Sun }) is important for understanding the earliest evolutionary stage of protostars and brown dwarfs. We report interferometric observations of the VeLLO L1521F-IRS, in {sup 12}CO (2-1) line emission and the 1.3 mm continuum emission, using the Submillimeter Array. With the {sup 12}CO (2-1) high-resolution observations, we have spatially resolved a compact but poorly collimated molecular outflow associated with L1521F-IRS for the first time. The blueshifted and redshifted lobes are aligned along the east and west side of L1521F-IRS with a lobe size of Almost-Equal-To 1000 AU. The estimated outflow mass, maximum outflow velocity, and outflow force are (9.0-80) Multiplication-Sign 10{sup -4} M{sub Sun }, 7.2 km s{sup -1}, and (7.4-66) Multiplication-Sign 10{sup -7} M{sub Sun} km s{sup -1} yr{sup -1}, respectively. The estimated outflow parameters such as size, mass, and momentum rate are similar to values derived for other VeLLOs, and are located at the lower end of values compared to previously studied outflows associated with low- to high-mass star-forming regions. Low-velocity less collimated (1.5 km s{sup -1}/1200 AU) and higher-velocity compact (4.0 km s{sup -1}/920 AU) outflow components are suggested by the data. These velocity structures are not consistent with those expected in the jet-driven or wind-driven outflow models, perhaps suggesting a remnant outflow from the first hydrostatic core as well as an undeveloped outflow from the protostar. Detection of an infrared source and compact millimeter continuum emission suggests the presence of the protostar, while its low bolometric luminosity (0.034-0.07 L{sub Sun }) and small outflow suggests that L1521F is in the earliest protostellar stage (<10{sup 4} yr) and contains a substellar mass object. The bolometric (or internal) luminosity of L1521F-IRS suggests that the current mass accretion rate is an order of

  10. Comminution circuits for compact itabirites

    Directory of Open Access Journals (Sweden)

    Pedro Ferreira Pinto

    Full Text Available Abstract In the beneficiation of compact Itabirites, crushing and grinding account for major operational and capital costs. As such, the study and development of comminution circuits have a fundamental importance for feasibility and optimization of compact Itabirite beneficiation. This work makes a comparison between comminution circuits for compact Itabirites from the Iron Quadrangle. The circuits developed are: a crushing and ball mill circuit (CB, a SAG mill and ball mill circuit (SAB and a single stage SAG mill circuit (SSSAG. For the SAB circuit, the use of pebble crushing is analyzed (SABC. An industrial circuit for 25 million tons of run of mine was developed for each route from tests on a pilot scale (grinding and industrial scale. The energy consumption obtained for grinding in the pilot tests was compared with that reported by Donda and Bond. The SSSAG route had the lowest energy consumption, 11.8kWh/t and the SAB route had the highest energy consumption, 15.8kWh/t. The CB and SABC routes had a similar energy consumption of 14.4 kWh/t and 14.5 kWh/t respectively.

  11. Gas migration characteristics of highly compacted bentonite ore

    International Nuclear Information System (INIS)

    Tanaka, Yukihisa; Hironaga, Michihiko

    2010-01-01

    In the current concept of repository for radioactive waste disposal, compacted bentonite will be used as an engineered barrier mainly for inhibiting migration of radioactive nuclides. Hydrogen gas can be generated inside the engineered barrier by anaerobic corrosion of metals used for containers, etc. If the gas generation rate exceeds the diffusion rate of dissolved gas inside of the engineered barrier, gas will accumulate in the void space inside of the engineered barrier until its pressure becomes large enough for it to enter the bentonite as a discrete gaseous phase. It is expected to be not easy for gas to entering into the bentonite as a discrete gaseous phase because the pore of compacted bentonite is so minute. Gas migration characteristics of highly compacted powdered bentonite are already reported by CRIEPI. In this report, gas migration characteristics of bentonite ore, which is a candidate for construction material of repository for radioactive waste, is investigated. The following conclusions are obtained through the results of the gas migration tests which are conducted in this study: 1) When the total gas pressure exceeds the initial total axial stress, the total axial stress is always equal to the total gas pressure because specimens shrink in the axial direction with causing the clearance between the end of the specimen and porous metal. By increasing the gas pressure more, gas breakthrough, which defined as a sudden and sharp increase in gas flow rate out of the specimen, occurs. Therefore gas migration mechanism of compacted bentonite ore is basically identical to that of compacted powdered bentonite. 2) Hydraulic conductivity measured after the gas breakthrough is somewhat smaller than that measured before the gas migration test. This fact means that it might be possible to neglect decline of the function of bentonite as engineered barrier caused by the gas breakthrough. These characteristics of compacted bentonite ore are identical to those of

  12. Preparation of bulk superhard B-C-N nanocomposite compact

    Science.gov (United States)

    Zhao, Yusheng [Los Alamos, NM; He, Duanwei [Sichuan, CN

    2011-05-10

    Bulk, superhard, B--C--N nanocomposite compacts were prepared by ball milling a mixture of graphite and hexagonal boron nitride, encapsulating the ball-milled mixture at a pressure in a range of from about 15 GPa to about 25 GPa, and sintering the pressurized encapsulated ball-milled mixture at a temperature in a range of from about 1800-2500 K. The product bulk, superhard, nanocomposite compacts were well sintered compacts with nanocrystalline grains of at least one high-pressure phase of B--C--N surrounded by amorphous diamond-like carbon grain boundaries. The bulk compacts had a measured Vicker's hardness in a range of from about 41 GPa to about 68 GPa.

  13. Modeling of charged anisotropic compact stars in general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Dayanandan, Baiju; Maurya, S.K.; T, Smitha T. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman)

    2017-06-15

    A charged compact star model has been determined for anisotropic fluid distribution. We have solved the Einstein-Maxwell field equations to construct the charged compact star model by using the radial pressure, the metric function e{sup λ} and the electric charge function. The generic charged anisotropic solution is verified by exploring different physical conditions like causality condition, mass-radius relation and stability of the solution (via the adiabatic index, TOV equations and the Herrera cracking concept). It is observed that the present charged anisotropic compact star model is compatible with the star PSR 1937+21. Moreover, we also presented the EOS ρ = f(p) for the present charged compact star model. (orig.)

  14. Influence of Compacting Rate on the Properties of Compressed Earth Blocks

    Directory of Open Access Journals (Sweden)

    Humphrey Danso

    2016-01-01

    Full Text Available Compaction of blocks contributes significantly to the strength properties of compressed earth blocks. This paper investigates the influence of compacting rates on the properties of compressed earth blocks. Experiments were conducted to determine the density, compressive strength, splitting tensile strength, and erosion properties of compressed earth blocks produced with different rates of compacting speed. The study concludes that although the low rate of compaction achieved slightly better performance characteristics, there is no statistically significant difference between the soil blocks produced with low compacting rate and high compacting rate. The study demonstrates that there is not much influence on the properties of compressed earth blocks produced with low and high compacting rates. It was further found that there are strong linear correlations between the compressive strength test and density, and density and the erosion. However, a weak linear correlation was found between tensile strength and compressive strength, and tensile strength and density.

  15. Ultra high-speed x-ray imaging of laser-driven shock compression using synchrotron light

    Science.gov (United States)

    Olbinado, Margie P.; Cantelli, Valentina; Mathon, Olivier; Pascarelli, Sakura; Grenzer, Joerg; Pelka, Alexander; Roedel, Melanie; Prencipe, Irene; Laso Garcia, Alejandro; Helbig, Uwe; Kraus, Dominik; Schramm, Ulrich; Cowan, Tom; Scheel, Mario; Pradel, Pierre; De Resseguier, Thibaut; Rack, Alexander

    2018-02-01

    A high-power, nanosecond pulsed laser impacting the surface of a material can generate an ablation plasma that drives a shock wave into it; while in situ x-ray imaging can provide a time-resolved probe of the shock-induced material behaviour on macroscopic length scales. Here, we report on an investigation into laser-driven shock compression of a polyurethane foam and a graphite rod by means of single-pulse synchrotron x-ray phase-contrast imaging with MHz frame rate. A 6 J, 10 ns pulsed laser was used to generate shock compression. Physical processes governing the laser-induced dynamic response such as elastic compression, compaction, pore collapse, fracture, and fragmentation have been imaged; and the advantage of exploiting the partial spatial coherence of a synchrotron source for studying low-density, carbon-based materials is emphasized. The successful combination of a high-energy laser and ultra high-speed x-ray imaging using synchrotron light demonstrates the potentiality of accessing complementary information from scientific studies of laser-driven shock compression.

  16. Testing the Binary Black Hole Nature of a Compact Binary Coalescence.

    Science.gov (United States)

    Krishnendu, N V; Arun, K G; Mishra, Chandra Kant

    2017-09-01

    We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.

  17. Acoustic emission during the compaction of brittle UO2 particles

    International Nuclear Information System (INIS)

    Hegron, Lise

    2014-01-01

    One of the options considered for recycling minor actinides is to incorporate about 10% to UO 2 matrix. The presence of open pores interconnected within this fuel should allow the evacuation of helium and fission gases to prevent swelling of the pellet and ultimately its interaction with the fuel clad surrounding it. Implementation of minor actinides requires working in shielded cell, reducing their retention and outlawing additions of organic products. The use of fragmentable particles of several hundred micrometers seems a good solution to control the microstructure of the green compacts and thus control the open porosity after sintering. The goal of this study is to monitor the compaction of brittle UO 2 particles by acoustic emission and to link the particle characteristics to the open porosity obtained after the compact sintering. The signals acquired during tensile strength tests on individual granules and compacts show that the acoustic emission allows the detection of the mechanism of fragmentation and enables identification of a characteristic waveform of this fragmentation. The influences of compaction stress, of the initial particle size distribution and of the internal cohesion of the granules, on the mechanical strength of the compact and on the microstructure and open porosity of the sintered pellets, are analyzed. By its ability to identify the range of fragmentation of the granules during compaction, acoustic emission appears as a promising technique for monitoring the compaction of brittle particles in the manufacture of a controlled porosity fuel. (author) [fr

  18. Keck-I MOSFIRE spectroscopy of compact star-forming galaxies at z ≳ 2: high velocity dispersions in progenitors of compact quiescent galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Barro, Guillermo; Koo, David C.; Faber, Sandra M.; Guo, Yicheng; Toloba, Elisa; Fang, Jerome J. [University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Trump, Jonathan R. [Pennsylvania State University, University Park, State College, PA 16802 (United States); Dekel, Avishai [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Kassin, Susan A.; Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Kocevski, Dale D. [University of Kentucky, Lexington, KY 40506 (United States); Van der Wel, Arjen [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Pérez-González, Pablo G. [Universidad Complutense de Madrid, Avda. de Sneca, 2 Ciudad Universitaria, E-28040 Madrid (Spain); Pacifici, Camilla [Yonsei University Observatory, Yonsei University 50, Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Simons, Raymond [Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2683 (United States); Campbell, Randy D.; Goodrich, Bob; Kassis, Marc [W. M. Keck Observatory, California Association for Research in Astronomy, 65-1120 Mamalahoa Highway, Kamuela, HI 96743 (United States); Ceverino, Daniel [Universidad Autonoma de Madrid, Ciudad Universitaria de Cantoblanco, E-28049 Madrid (Spain); Finkelstein, Steven L. [The University of Texas at Austin, Austin, TX 78712 (United States); and others

    2014-11-10

    We present Keck-I MOSFIRE near-infrared spectroscopy for a sample of 13 compact star-forming galaxies (SFGs) at redshift 2 ≤ z ≤ 2.5 with star formation rates of SFR ∼ 100 M {sub ☉} yr{sup –1} and masses of log(M/M {sub ☉}) ∼10.8. Their high integrated gas velocity dispersions of σ{sub int} =230{sub −30}{sup +40} km s{sup –1}, as measured from emission lines of Hα and [O III], and the resultant M {sub *}-σ{sub int} relation and M {sub *}-M {sub dyn} all match well to those of compact quiescent galaxies at z ∼ 2, as measured from stellar absorption lines. Since log(M {sub *}/M {sub dyn}) =–0.06 ± 0.2 dex, these compact SFGs appear to be dynamically relaxed and evolved, i.e., depleted in gas and dark matter (<13{sub −13}{sup +17}%), and present larger σ{sub int} than their non-compact SFG counterparts at the same epoch. Without infusion of external gas, depletion timescales are short, less than ∼300 Myr. This discovery adds another link to our new dynamical chain of evidence that compact SFGs at z ≳ 2 are already losing gas to become the immediate progenitors of compact quiescent galaxies by z ∼ 2.

  19. Industrial production of insulators using isostatic compaction method

    Energy Technology Data Exchange (ETDEWEB)

    Drugoveiko, O.P.; Ermolaeva, L.V.; Koren' , M.G.; Kreimer, B.D.; Panichev, G.I.; Ponomarev, A.P.; Rutkovskii, V.N.

    1985-07-01

    The process of shaping ceramic products from powders using isostatic compaction method is finding increasing industrial application. The production of electrical-engineering porcelain using isostatic compaction method is, according to the authors, a promising direction since this method permits one to obtain large and complex shaped products having uniform density distribution. The authors introduce an automatic isostatic compaction line at the ''Proletarii'' Factory for the production of the IOS-110-20000UKhL, T1 type insulators having the described dimensions. According to the technological process developed at the ''Elektrokeramika'' Production Complex, insulators were manufactured on the isostatic compaction line from the G-33 mass. Presspowder having a moisture content of 0.3-0.6% and a particle size of 90-160 micrometers was obtained in a spray dryer using disk spraying. The authors studied saturability by moisture of the powder obtained.

  20. Creating interstate compacts for low level waste management

    International Nuclear Information System (INIS)

    Marcus, A.A.

    1986-01-01

    The implementation of the 1980 Low-level Radioactive Waste Policy Act (LLRWPA) depends on the creation of interstate compacts. Compact formation is a public goods problem. Formation may be impeded by opposition from elements in the federal government, the inability of state governments to resolve problems of conflicting political interests, and the possiblity of extensive and unfruitful negotiations. These obstacles my be overcome if fortuitous circumstances exist and entrepreneurial behavior is applied. Guidelines that entrepreneurs may use to facilitate compact formation are relying on the exclusive character of incentives, forming compacts with a small number of members, taking advantage of inequality of interests among prospective members, using solidary incentives to promote cooperation, relying on existing regional organizations to build support, employing a game metaphor to understand the stakes of the participants, and making each party subject to an agreement feel as if it were a winner. (author)

  1. Compact fuel storage rack for fuel pools

    International Nuclear Information System (INIS)

    Parras, F.; Louvat, J.P.

    1986-01-01

    ETS LEMER and FRAMATOME propose a new compact storage rack. This rack permits a considerable increase of the storage capacity of cooling pools. A short description of the structure and the components is presented, to propose racks that are: . Inalterable, . Compact, . Insensitive to earthquakes. Installation in pools already in operation is simplified by their light structure and the bearing device [fr

  2. Are soils in urban ecosystems compacted? A citywide analysis.

    Science.gov (United States)

    Edmondson, Jill L; Davies, Zoe G; McCormack, Sarah A; Gaston, Kevin J; Leake, Jonathan R

    2011-10-23

    Soil compaction adversely influences most terrestrial ecosystem services on which humans depend. This global problem, affecting over 68 million ha of agricultural land alone, is a major driver of soil erosion, increases flood frequency and reduces groundwater recharge. Agricultural soil compaction has been intensively studied, but there are no systematic studies investigating the extent of compaction in urban ecosystems, despite the repercussions for ecosystem function. Urban areas are the fastest growing land-use type globally, and are often assumed to have highly compacted soils with compromised functionality. Here, we use bulk density (BD) measurements, taken to 14 cm depth at a citywide scale, to compare the extent of surface soil compaction between different urban greenspace classes and agricultural soils. Urban soils had a wider BD range than agricultural soils, but were significantly less compacted, with 12 per cent lower mean BD to 7 cm depth. Urban soil BD was lowest under trees and shrubs and highest under herbaceous vegetation (e.g. lawns). BD values were similar to many semi-natural habitats, particularly those underlying woody vegetation. These results establish that, across a typical UK city, urban soils were in better physical condition than agricultural soils and can contribute to ecosystem service provision.

  3. Sintering studies on iron-carbon-copper compacts

    Directory of Open Access Journals (Sweden)

    Perianayagam Philomen-D-Anand Raj

    2016-01-01

    Full Text Available Sintered Iron-Carbon-Copper parts are among the most widely used powder metallurgy product in automobile. In this paper, studies have been carried out to find out the sintering characteristics of iron-carbon-copper compacts when sintered in nitrogen atmosphere. The effects of various processing parameters on the sintering characteristics were studied. The various processing parameters considered were compaction pressure, green density and sintering temperature. The sintering characteristics determined were sintered density, porosity, dimensional change, micro hardness and radial crush strength. The results obtained have been discussed on the basis of micro structural observations. The characteristics of SEM fractography were also used to determine the mechanism of fracture. The fracture energy is strongly dependent on density of the compact.

  4. Activation analysis of the compact ignition tokamak

    International Nuclear Information System (INIS)

    Selcow, E.C.

    1986-01-01

    The US fusion program has completed the conceptual design of a compact tokamak device that achieves ignition. The high neutron wall loadings associated with this compact deuterium-tritium-burning device indicate that radiation-related issues may be significant considerations in the overall system design. Sufficient shielding will be requied for the radiation protection of both reactor components and occupational personnel. A close-in igloo shield has been designed around the periphery of the tokamak structure to permit personnel access into the test cell after shutdown and limit the total activation of the test cell components. This paper describes the conceptual design of the igloo shield system and discusses the major neutronic concerns related to the design of the Compact Ignition Tokamak

  5. Coherent states for quantum compact groups

    Energy Technology Data Exchange (ETDEWEB)

    Jurco, B. [European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; Stovicek, P. [Ceske Vysoke Uceni Technicke, Prague (Czech Republic). Dept. of Mathematics]|[CTU, Prague (Czech Republic). Doppler Inst.

    1996-12-01

    Coherent states are introduced and their properties are discussed for simple quantum compact groups A{sub l}, B{sub l}, C{sub l} and D{sub l}. The multiplicative form of the canonical element for the quantum double is used to introduce the holomorphic coordinates on a general quantum dressing orbit. The coherent state is interpreted as a holomorphic function on this orbit with values in the carrier Hilbert space of an irreducible representation of the corresponding quantized enveloping algebra. Using Gauss decomposition, the commutation relations for the holomorphic coordinates on the dressing orbit are derived explicitly and given in a compact R-matrix formulation (generalizing this way the q-deformed Grassmann and flag manifolds). The antiholomorphic realization of the irreducible representations of a compact quantum group (the analogue of the Borel-Weil construction) is described using the concept of coherent state. The relation between representation theory and non-commutative differential geometry is suggested. (orig.)

  6. New forms of -compactness with respect to hereditary classes

    Directory of Open Access Journals (Sweden)

    Abdo Mohammed Qahis

    2019-01-01

    Full Text Available A hereditary class on a set X is a nonempty collection of subsets closed under heredity. The aim of this paper is to introduce and study strong forms of u-compactness in generalized topological spaces with respect to a hereditary class, called  SuH-compactness and S- SuH-compactness. Also several of their properties are presented. Finally some eects of various kinds of functions on them are studied.

  7. Studies on the sintering of copper powder compacts

    International Nuclear Information System (INIS)

    Elmasry, M.A.A.; Abadir, M.F.; Mahdy, A.N.; Elkinawy, W.S.

    1995-01-01

    Solid state sintering behavior of cylindrical compacts, (1 cm diameter and 1 cm height), made of copper powder was studied within a range of compacting pressure of 75 up to 300 MPa, sintering temperature of 600 up to to 900 degree C, and sintering time of 5 up to 60 min in a reducing atmosphere composed of H2 and N 2 gases with a volumetric ratio 3:1. The green and the sintered densities were found to to increase with the compacting pressure. Higher sintering temperature, and time favour increased sintered density. probable mechanisms during the initial stage of sintering were disclosed. It was found that low pressures cause dilation of closed pores, and vice versa. At low pressures and temperatures the surface diffusion mechanism is favoured, While high temperatures favour lattice diffusion mechanism. at high pressures, the lattice diffusion mechanism is suppressed while surface diffusion predominates. Density and hence shrinkage were also found to increase with the increase of sintering time, While its rate increases with the increase of sintering temperature. the influence of sintering conditions on the hardness of the compacts was studied. An increase in hardness, When higher compacting pressures and higher sintering temperatures were adopted, has bee obtained. 11 figs

  8. Effect of surface energy on powder compactibility.

    Science.gov (United States)

    Fichtner, Frauke; Mahlin, Denny; Welch, Ken; Gaisford, Simon; Alderborn, Göran

    2008-12-01

    The influence of surface energy on the compactibility of lactose particles has been investigated. Three powders were prepared by spray drying lactose solutions without or with low proportions of the surfactant polysorbate 80. Various powder and tablet characterisation procedures were applied. The surface energy of the powders was characterized by Inverse Gas Chromatography and the compressibility of the powders was described by the relationship between tablet porosity and compression pressure. The compactibility of the powders was analyzed by studying the evolution of tablet tensile strength with increasing compaction pressure and porosity. All powders were amorphous and similar in particle size, shape, and surface area. The compressibility of the powders and the microstructure of the formed tablets were equal. However, the compactibility and dispersive surface energy was dependent of the composition of the powders. The decrease in tablet strength correlated to the decrease in powder surface energy at constant tablet porosities. This supports the idea that tablet strength is controlled by formation of intermolecular forces over the areas of contact between the particles and that the strength of these bonding forces is controlled by surface energy which, in turn, can be altered by the presence of surfactants.

  9. Compact stars in f(R, T) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Das, Amit; Guha, B.K. [Indian Institute of Engineering Science and Technology, Department of Physics, Howrah, West Bengal (India); Rahaman, Farook [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India)

    2016-12-15

    In the present paper we generate a set of solutions describing the interior of a compact star under f(R, T) theory of gravity which admits conformal motion. An extension of general relativity, the f(R, T) gravity is associated to Ricci scalar R and the trace of the energy-momentum tensor T. To handle the Einstein field equations in the form of differential equations of second order, first of all we adopt the Lie algebra with conformal Killing vectors (CKV) which enable one to get a solvable form of such equations and second we consider the equation of state (EOS) p = ωρ with 0 < ω < 1 for the fluid distribution consisting of normal matter, ω being the EOS parameter. We therefore analytically explore several physical aspects of the model to represent behavior of the compact stars such as - energy conditions, TOV equation, stability of the system, Buchdahl condition, compactness and redshift. It is checked that the physical validity and the acceptability of the present model within the specified observational constraint in connection to a dozen of the compact star candidates are quite satisfactory. (orig.)

  10. ZnTiO3 ceramic nanopowder microstructure changes during compaction

    Directory of Open Access Journals (Sweden)

    Labus N.

    2013-01-01

    Full Text Available ZnTiO3 nanopowder as a constitutive component in compact production was primarily characterized. Scanning electron micrographs of as received powder were recorded. Mercury porosimetry and nitrogen adsorption were also performed on loose powder. Particle size distribution in a water powder suspension was determined with a laser particle size analyser. Compaction was performed on different pressures in a range from 100 to 400 MPa using the uniaxial double sided compaction technique without binder and lubricant. Micrographs of compacted specimens were obtained using scanning electron microscopy and atomic force microscopy. Pore size distribution was also determined by mercury porosimetry and nitrogen adsorption. Results revealed that with increasing pressure during compaction interagglomerate pores diminish in size until they reach some critical diameter related to the intra-agglomerate pore size.

  11. Effect of Compaction on Compressive Strength of Unfired Clay Blocks

    International Nuclear Information System (INIS)

    Lakho, N.A.; Zardari, M.A.; Pathan, A.A.

    2016-01-01

    This study investigates the possible use of unfired compacted clay blocks as a substitute of CSEB (Compressed Stabilized Earth Blocks) for the construction of economical houses. Cubes of 150 mm size were cut from the clay blocks which were compacted at various intensities of pressure during the casting. The results show that the compressive strength of the clay cubes increased with the compacting pressure to which the blocks were subjected during casting. The average crushing strength of the cubes, sawed from clay blocks that were subjected to compacting pressure of 7.2 MPa, was found to be 4.4 MPa. This value of compressive strength is about 50 percent more than that of normal CSEB. This study shows that the compacted clay blocks could be used as economical walling material as replacement of CSEB. (author)

  12. Compact nuclear fuel storage

    International Nuclear Information System (INIS)

    Kiselev, V.V.; Churakov, Yu.A.; Danchenko, Yu.V.; Bylkin, B.K.; Tsvetkov, S.V.

    1983-01-01

    Different constructions of racks for compact storage of spent fuel assemblies (FA) in ''coolin''g pools (CP) of NPPs with the BWR and PWR type reactors are described. Problems concerning nuclear and radiation safety and provision of necessary thermal conditions arising in such rack design are discussed. It is concluded that the problem of prolonged fuel storage at NPPs became Very actual for many countries because of retapdation of the rates of fuel reprocessing centers building. Application of compact storage racks is a promising solution of the problem of intermediate FA storage at NPPs. Such racks of stainless boron steel and with neutron absorbers in the from of boron carbide panels enable to increase the capacity of the present CP 2-2.6 times, and the period of FA storage in them up to 5-10 years

  13. [Effect of compaction pressure on the properties of dental machinable zirconia ceramic].

    Science.gov (United States)

    Huang, Hui; Wei, Bin; Zhang, Fu-qiang; Sun, Jing; Gao, Lian

    2010-10-01

    To investigate the effect of compaction pressure on the linear shrinkage, sintering property and machinability of the dental zirconia ceramic. The nano-size zirconia powder was compacted at different isostatic pressure and sintered at different temperature. The linear shrinkage of sintered body was measured and the relative density was tested using the Archimedes method. The cylindrical surface of pre-sintering blanks was traversed using a hard metal tool. Surface and edge quality were checked visually using light stereo microscopy. The sintering behaviour depended on the compaction pressure. Increasing compaction pressure led to higher sintering rate and lower sintering temperature. Increasing compaction pressure also led to decreasing linear shrinkage of the sintered bodies, from 24.54% of 50 MPa to 20.9% of 400 MPa. Compaction pressure showed only a weak influence on machinability of zirconia blanks, but the higher compaction pressure resulted in the poor surface quality. The better sintering property and machinability of dental zirconia ceramic is found for 200-300 MPa compaction pressure.

  14. Electrical properties of the potassium polytitanate compacts

    Energy Technology Data Exchange (ETDEWEB)

    Goffman, V.G.; Gorokhovsky, A.V. [NanoTechProm Ltd., Saratov (Russian Federation); Saratov State Technical University, Saratov (Russian Federation); Kompan, M.M. [Physico-Technical Institute of the Russian Academy of Science, St. Petersburg (Russian Federation); Tretyachenko, E.V.; Telegina, O.S.; Kovnev, A.V. [NanoTechProm Ltd., Saratov (Russian Federation); Saratov State Technical University, Saratov (Russian Federation); Fedorov, F.S., E-mail: fedorov_fs@daad-alumni.de [NanoTechProm Ltd., Saratov (Russian Federation); Saratov State Technical University, Saratov (Russian Federation)

    2014-12-05

    Highlights: • Quasi-static permittivity of potassium polytitanates compacts achieves 10{sup 4}–10{sup 5}. • Observed Maxwell–Wagner polarization attributes to layered structure of polytitanates. • The conductivity varies from 5 × 10{sup −2} to 10{sup −6}–10{sup −7} Sm/m in a wide range of temperatures. - Abstract: Titanates of alkali metals are widely applied materials as they are relatively low in cost and might be easily synthesized. They are utilized as adsorbents, catalysts, solid state electrolytes, superconductors. Here we report our results on electrical properties of the compacted amorphous potassium polytitanates powders. The electrical properties of the compacts were studied by means of complex impedance spectroscopy in a wide range of frequencies at different temperatures using two-electrode configuration. The frequency dependences of conductivity for the investigated potassium polytitanates compacts varies in the range from 5 × 10{sup −2} Sm/m (high frequencies, ion conductivity) up to 10{sup −6}–10{sup −7} Sm/m (low frequencies, electron conductivity) for a wide range of temperatures (19–150 °C). According to the results, at low frequencies quasi-static permittivity of the stabilized PPT compacts achieves high values of 10{sup 4}–10{sup 5}. This might be explained by Maxwell–Wagner polarization attributed to the layered structure of the potassium polytitanates particles containing potassium and hydronium ions together with crystallization water in the interlayer and is very promising for solid state electrolyte applications for moderate temperatures.

  15. An innovative ultra-capacitor driven shape memory alloy actuator with an embedded control system

    International Nuclear Information System (INIS)

    Li, Peng; Song, Gangbing

    2014-01-01

    In this paper, an innovative ultra-capacitor driven shape memory alloy (SMA) actuator with an embedded control system is proposed targeting high power high-duty cycle SMA applications. The ultra-capacitor, which is capable of delivering massive amounts of instantaneous current in a compact dimension for high power applications, is chosen as the main component of the power supply. A specialized embedded system is designed from the ground up to control the ultra-capacitor driven SMA system. The control of the ultra-capacitor driven SMA is different from that of a regular constant voltage powered SMA system in that the energy and the voltage of the ultra-capacitor decrease as the system load increases. The embedded control system is also different from a computer-based control system in that it has limited computational power, and the control algorithm has to be designed to be simple while effective so that it can fit into the embedded system environment. The problem of a variable voltage power source induced by the use of the ultra-capacitor is solved by using a fuzzy PID (proportional integral and derivative) control. The method of using an ultra-capacitor to drive SMA actuators enabled SMA as a good candidate for high power high-duty cycle applications. The proposed embedded control system provides a good and ready-to-use solution for SMA high power applications. (paper)

  16. Investigation of pressing of molybdenum powder compacts

    International Nuclear Information System (INIS)

    Mymrin, S.A.; Kuznetsov, V.Eh.; Yampol'skij, M.L.; Leonov, S.A.; Mikhridinov, R.M.; Korzukhin, V.A.

    1990-01-01

    Results of an experimental investigation into pressing of compacts of MCh type molybdenum powders using the industrial equipment are presented. To measure the density of powder molybdenum billets a radioisotopic density meter with cesium-137 is used as radioactive gamma radiation source. The dependence of the produced billet density on the specific compacting pressure at different values of the powder bulk density is ascertained

  17. Compact type mutants in apple and sour cherries

    International Nuclear Information System (INIS)

    Zagaja, S.W.; Przybyla, A.

    1976-01-01

    Induction of mutations in deciduous fruits is considered complementary to the conventional breeding methods. Several promissing mutants, particularly in apples, were described and some of them were introduced to commercial orchards. Studies described herein are aimed at developing compact type mutants in apple cultivars, apple rootstocks and in sour cherry cultivars. Data obtained so far confirm the results of the other authors, who developed compact type mutants in apples and sweet cherries. Physiological studies have shown that the leaves of spontaneous apple mutants of compact type are more efficient in photosynthesis than the leaves of respective standards. In spite of this, using branch ringing techniques, it was found that the leaves of compacts and those of standards do not differ in their productivity. There seem to be several advantages in employing tissue culture technique in mutation breeding. That is why a project was started to work out a method of growing apple shoots from adventitious buds developed on sections of roots. (author)

  18. Definably compact groups definable in real closed fields. I

    OpenAIRE

    Barriga, Eliana

    2017-01-01

    We study definably compact definably connected groups definable in a sufficiently saturated real closed field $R$. We introduce the notion of group-generic point for $\\bigvee$-definable groups and show the existence of group-generic points for definably compact groups definable in a sufficiently saturated o-minimal expansion of a real closed field. We use this notion along with some properties of generic sets to prove that for every definably compact definably connected group $G$ definable in...

  19. Equivariant volumes of non-compact quotients and instanton counting

    OpenAIRE

    Martens, Johan

    2006-01-01

    Motivated by Nekrasov's instanton counting, we discuss a method for calculating equivariant volumes of non-compact quotients in symplectic and hyper-K\\"ahler geometry by means of the Jeffrey-Kirwan residue-formula of non-abelian localization. In order to overcome the non-compactness, we use varying symplectic cuts to reduce the problem to a compact setting, and study what happens in the limit that recovers the original problem. We implement this method for the ADHM construction of the moduli ...

  20. Study of radial die-wall pressure changes during pharmaceutical powder compaction.

    Science.gov (United States)

    Abdel-Hamid, Sameh; Betz, Gabriele

    2011-04-01

    In tablet manufacturing, less attention is paid to the measurement of die-wall pressure than to force-displacement diagrams. Therefore, the aim of this study was to investigate radial stress change during pharmaceutical compaction. The Presster(TM), a tablet-press replicator, was used to characterize compaction behavior of microcrystalline cellulose (viscoelastic), calcium hydrogen phosphate dihydrate (brittle), direct compressible mannitol (plastic), pre-gelatinized starch (plastic/elastic), and spray dried lactose monohydrate (plastic/brittle) by measuring radial die-wall pressure; therefore powders were compacted at different (pre) compaction pressures as well as different speeds. Residual die-wall pressure (RDP) and maximum die-wall pressure (MDP) were measured. Various tablet physical properties were correlated to radial die-wall pressure. With increasing compaction pressure, RDP and MDP (P compaction behavior of materials and detecting friction phenomena in the early stage of development.

  1. Collective bads: The case of low-level radioactive waste compacts

    International Nuclear Information System (INIS)

    McGinnis, M.V.

    1994-01-01

    In low-level radioactive waste (LLW) compact development, policy gridlock and intergovernmental conflict between states has been the norm. In addition to the not-in-my-backyard (NIMBY) phenomenon, LLW compacts must content with myriad political and ethical dilemmas endemic to a particular collective bad. This paper characterizes the epistemology of collective bads, and reviews how LLW compacts deal with such bads. In addition, using data from survey questionnaires and interviews, this paper assesses the cooperative nature of LLW compacts in terms of their levels of regional autonomy, regional efficacy, allocation of costs and benefits, and their technocentric orientation

  2. Compaction of Chemically Prepared Amorphous Fe-B nanoparticles

    DEFF Research Database (Denmark)

    Hendriksen, P.V.; Bødker, Franz; Mørup, Steen

    1997-01-01

    We report on attempts to compact chemically prepared amorphous iron-boron particles. The praticles have a size of about 100 nm and are pyrophoric. We have made a special die for uniaxial pressing in which the compaction can be performed at elevated temperature without exposing the powder to air...

  3. Compact green-diode-based lasers for biophotonic bioimaging

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Hansen, Anders Kragh; Petersen, Paul Michael

    2014-01-01

    Diode lasers simultaneously offer tunability, high-power emission, and compact size at fairly low cost and are increasingly preferred for pumping titanium:sapphire lasers.......Diode lasers simultaneously offer tunability, high-power emission, and compact size at fairly low cost and are increasingly preferred for pumping titanium:sapphire lasers....

  4. The Compact Muon Solenoid Experiment at the Large Hadron Collider The Compact Muon Solenoid Experiment at the Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    David Delepine

    2012-02-01

    Full Text Available The Compact Muon Solenoid experiment at the CERN Large Hadron Collider will study protonproton collisions at unprecedented energies and luminosities. In this article we providefi rst a brief general introduction to particle physics. We then explain what CERN is. Thenwe describe the Large Hadron Collider at CERN, the most powerful particle acceleratorever built. Finally we describe the Compact Muon Solenoid experiment, its physics goals,construction details, and current status.El experimento Compact Muon Solenoid en el Large Hadron Collider del CERN estudiarácolisiones protón protón a energías y luminosidades sin precedente. En este artículo presentamos primero una breve introducción general a la física de partículas. Despuésexplicamos lo que es el CERN. Luego describimos el Large Hadron Collider, el más potente acelerador de partículas construido por el hombre, en el CERN. Finalmente describimos el experimento Compact Muon Solenoid, sus objetivos en física, los detalles de su construcción,y su situación presente.

  5. Analysis of compaction initiation in human embryos by using time-lapse cinematography.

    Science.gov (United States)

    Iwata, Kyoko; Yumoto, Keitaro; Sugishima, Minako; Mizoguchi, Chizuru; Kai, Yoshiteru; Iba, Yumiko; Mio, Yasuyuki

    2014-04-01

    To analyze the initiation of compaction in human embryos in vitro by using time-lapse cinematography (TLC), with the goal of determining the precise timing of compaction and clarifying the morphological changes underlying the compaction process. One hundred and fifteen embryos donated by couples with no further need for embryo-transfer were used in this study. Donated embryos were thawed and processed, and then their morphological behavior during the initiation of compaction was dynamically observed via time-lapse cinematography (TLC) for 5 days. Although the initiation of compaction occurred throughout the period from the 4-cell to 16-cell stage, 99 (86.1 %) embryos initiated compaction at the 8-cell stage or later, with initiation at the 8-cell stage being most frequent (22.6 %). Of these 99 embryos, 49.5 % developed into good-quality blastocysts. In contrast, of the 16 (13.9 %) embryos that initiated compaction prior to the 8-cell stage, only 18.8 % developed into good-quality blastocysts. Embryos that initiated compaction before the 8-cell stage showed significantly higher numbers of multinucleated blastomeres, due to asynchronism in nuclear division at the third mitotic division resulting from cytokinetic failure. The initiation of compaction primarily occurs at the third mitotic division or later in human embryos. Embryos that initiate compaction before the 8-cell stage are usually associated with aberrant embryonic development (i.e., cytokinetic failure accompanied by karyokinesis).

  6. Influence of compaction and surface roughness on low-energy ion scattering signals

    NARCIS (Netherlands)

    Jansen, W.P.A.; Knoester, A.; Maas, A.J.H.; Schmit, P.; Kytökivi, A.; Denier van der Gon, A.W.; Brongersma, H.H.

    2004-01-01

    Investigation of the surface composition of powders often requires compaction. To study the effect of compaction on surface analysis, samples have been compacted at various pressures ranging from 0 Pa (i.e. no compaction) up to 2000 MPa (2 × 104 kg cm-2) Low-energy ion scattering (LEIS) was used to

  7. Placement of pre-compacted and in situ compacted dense backfill materials in shaft seals

    International Nuclear Information System (INIS)

    Martino, J.; Dixon, D.; Kim, C.S.

    2010-01-01

    Document available in extended abstract form only. In 2003, a decision was made to discontinue operation of Atomic Energy of Canada Limited's (AECL's) Underground Research Laboratory (URL) and ultimately to decommission and permanently close the underground portion of this facility. As part of the Nuclear Legacy Liability Program (NLLP) being funded by Natural Resources Canada (NRCan), an ongoing program of work is being undertaken to decommission and deal with facilities that are no longer part of AECL's mandate or operations. The URL is included in these facilities. Part of this work is the installation of seals at the intersection of the access and ventilation shafts and an ancient thrust fault, Fracture Zone 2 (FZ2), approximately 275 m below surface. These seals are being installed in order to limit the potential for mixing of deeper saline and shallower, less saline groundwater. The seal design in each shaft is similar with a heavily reinforced lower concrete component, a central bentonite clay-sand component and an upper un-reinforced concrete component. The main shaft at the URL at the location of the seal is circular (∼5-m diameter), and was excavated using careful drill and blast techniques. The seal itself consists of two keyed, conical sectioned, 3-m-thick by 5 to 6-m diameter concrete segments that confine a 6-m-thick swelling clay section. The ventilation shaft at the URL is 1.8 m in diameter and was excavated using raise-boring. The ventilation shaft will consist of two keyed, conical sectioned, 2-m-thick concrete by 1.8 to 2.8 m diameter concrete segments confining a 5-m-thick assembly of pre-compacted clay-sand blocks. The concrete is a low pH concrete designed for repository use, which can develop a 70 MPa unconfined compressive strength after 28 days. It has a pH of less than 11 achieved by substitution of 75% of the cement powder with silica fume and ground silica so the likelihood of free calcium and an alkaline plume is

  8. Recovery of severely compacted soils in the Mojave Desert, California, USA

    Science.gov (United States)

    Webb, R.H.

    2002-01-01

    Often as a result of large-scale military maneuvers in the past, many soils in the Mojave Desert are highly vulnerable to soil compaction, particularly when wet. Previous studies indicate that natural recovery of severely compacted desert soils is extremely slow, and some researchers have suggested that subsurface compaction may not recover. Poorly sorted soils, particularly those with a loamy sand texture, are most vulnerable to soil compaction, and these soils are the most common in alluvial fans of the Mojave Desert. Recovery of compacted soil is expected to vary as a function of precipitation amounts, wetting-and-drying cycles, freeze-thaw cycles, and bioturbation, particularly root growth. Compaction recovery, as estimated using penetration depth and bulk density, was measured at 19 sites with 32 site-time combinations, including the former World War II Army sites of Camps Ibis, Granite, Iron Mountain, Clipper, and Essex. Although compaction at these sites was caused by a wide variety of forces, ranging from human trampling to tank traffic, the data do not allow segregation of differences in recovery rates for different compaction forces. The recovery rate appears to be logarithmic, with the highest rate of change occurring in the first few decades following abandonment. Some higher-elevation sites have completely recovered from soil compaction after 70 years. Using a linear model of recovery, the full recovery time ranges from 92 to 100 years; using a logarithmic model, which asymptotically approaches full recovery, the time required for 85% recovery ranges from 105-124 years.

  9. Influence of ambient moisture on the compaction behavior of microcrystalline cellulose powder undergoing uni-axial compression and roller-compaction: a comparative study using near-infrared spectroscopy.

    Science.gov (United States)

    Gupta, Abhay; Peck, Garnet E; Miller, Ronald W; Morris, Kenneth R

    2005-10-01

    This study evaluates the effect of variation in the ambient moisture on the compaction behavior of microcrystalline cellulose (MCC) powder. The study was conducted by comparing the physico-mechanical properties of, and the near infrared (NIR) spectra collected on, compacts prepared by roller compaction with those collected on simulated ribbons, that is, compacts prepared under uni-axial compression. Relative density, moisture content, tensile strength (TS), and Young modulus were used as key sample attributes for comparison. Samples prepared at constant roller compactor settings and feed mass showed constant density and a decrease in TS with increasing moisture content. Compacts prepared under uni-axial compression at constant pressure and compact mass showed the opposite effect, that is, density increased while TS remained almost constant with increasing moisture content. This suggests difference in the influence of moisture on the material under roller compaction, in which the roll gap (i.e., thickness and therefore density) remains almost constant, vs. under uni-axial compression, in which the thickness is free to change in response to the applied pressure. Key sample attributes were also related to the NIR spectra using multivariate data analysis by the partial least squares projection to latent structures (PLS). Good agreement was observed between the measured and the NIR-PLS predicted values for all key attributes for both, the roller compacted samples as well as the simulated ribbons. Copyright (c) 2005 Wiley-Liss, Inc. and the American Pharmacists Association

  10. Selecting the recommended waste management system for the midwest compact

    International Nuclear Information System (INIS)

    Sutherland, A.A.; Robertson, B.C.; Drobny, N.L.

    1987-01-01

    One of the early important steps in the evolution of a low-level waste Compact is the development of a Regional Management Plan. Part of the Regional Management Plan is a description of the waste management system that indicates what kinds of facilities that will be available within the compact's region. The facilities in the waste management system can include those for storage, treatment and disposal of low-level radioactive waste. The Regional Management Plan also describes the number of facilities that will be operated simultaneously. This paper outlines the development of the recommended waste management system for the Midwest Compact. It describes the way a data base on low-level radioactive waste from the Compact was collected and placed into a computerized data base management system, and how that data base was subsequently used to analyze various options for treatment and disposal of low-level radioactive waste within the Midwest Compact. The paper indicates the thought process that led to the definition of four recommended waste management systems. Six methods for reducing the volume of waste to be disposed of in the Midwest Compact were considered. Major attention was focused on the use of regional compaction or incineration facilities. Seven disposal technologies, all different from the shallow land burial currently practiced, were also considered for the waste management system. After evaluating the options available, the Compact Commissioners recommended four waste disposal technologies--above-ground vaults, below-ground vaults, concrete canisters placed above ground, and concrete canisters placed below ground--to the host state that will be chosen in 1987. The Commissioners did not recommend use of a regional waste treatment facility

  11. A survivability model for ejection of green compacts in powder metallurgy technology

    Directory of Open Access Journals (Sweden)

    Payman Ahi

    2012-01-01

    Full Text Available Reliability and quality assurance have become major considerations in the design and manufacture of today’s parts and products. Survivability of green compact using powder metallurgy technology is considered as one of the major quality attributes in manufacturing systems today. During powder metallurgy (PM production, the compaction conditions and behavior of the metal powder dictate the stress and density distribution in the green compact prior to sintering. These parameters greatly influence the mechanical properties and overall strength of the final component. In order to improve these properties, higher compaction pressures are usually employed, which make unloading and ejection of green compacts more challenging, especially for the powder-compacted parts with relatively complicated shapes. This study looked at a mathematical survivability model concerning green compact characteristics in PM technology and the stress-strength failure model in reliability engineering. This model depicts the relationship between mechanical loads (stress during ejection, experimentally determined green strength and survivability of green compact. The resulting survivability is the probability that a green compact survives during and after ejection. This survivability model can be used as an efficient tool for selecting the appropriate parameters for the process planning stage in PM technology. A case study is presented here in order to demonstrate the application of the proposed survivability model.

  12. Effective data compaction algorithm for vector scan EB writing system

    Science.gov (United States)

    Ueki, Shinichi; Ashida, Isao; Kawahira, Hiroichi

    2001-01-01

    We have developed a new mask data compaction algorithm dedicated to vector scan electron beam (EB) writing systems for 0.13 μm device generation. Large mask data size has become a significant problem at mask data processing for which data compaction is an important technique. In our new mask data compaction, 'array' representation and 'cell' representation are used. The mask data format for the EB writing system with vector scan supports these representations. The array representation has a pitch and a number of repetitions in both X and Y direction. The cell representation has a definition of figure group and its reference. The new data compaction method has the following three steps. (1) Search arrays of figures by selecting pitches of array so that a number of figures are included. (2) Find out same arrays that have same repetitive pitch and number of figures. (3) Search cells of figures, where the figures in each cell take identical positional relationship. By this new method for the mask data of a 4M-DRAM block gate layer with peripheral circuits, 202 Mbytes without compaction was highly compacted to 6.7 Mbytes in 20 minutes on a 500 MHz PC.

  13. A compact electron gun using field emitter array

    International Nuclear Information System (INIS)

    Asakawa, M.R.; Ikeda, A.; Miyabe, N.; Yamaguchi, S.; Kusaba, M.; Tsunawaki, Y.

    2008-01-01

    A compact electron gun using field emitter array has been developed. With a simple triode configuration consisting of FEA, mid-electrode and anode electrode, the electron gun produces a parallel beam with a diameter of 0.5 mm. This electron gun is applicable for compact radiation sources such as Cherenkov free-electron lasers

  14. Baking process of thin plate carbonaceous compact

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yoshio; Shimada, Toyokazu

    1987-06-27

    As a production process of a thin plate carbonaceous compact for separator of phosphoric acid fuel cell, there is a process to knead carbonaceous powder and thermosetting resin solution, to form and harden the kneaded material and then to bake, carbonize and graphitize it. However in this baking and carbonization treatment, many thin plate compacts are set in a compiled manner within a heating furnace and receive a heat treatment from their circumference. Since the above compacts to be heated tend generally to be heated from their peripheries, their baked conditions are not homogeneous easily causing the formation of cracks, etc.. As a process to heat and bake homogeneously by removing the above problematical points, this invention offers a process to set in a heating furnace a laminate consisting of the lamination of thin plate carbonaceous compacts and the heat resistant soaking plates which hold the upper and lower ends of the above lamination, to fill the upper and under peripheries of the laminate above with high heat conductive packing material and its side periphery with low heat conductive packing material respectively and to heat and sinter it. In addition, the invention specifies the high and low heat conductive packing materials respectively. (1 fig, 2 tabs)

  15. Permeability response of oil-contaminated compacted clays

    International Nuclear Information System (INIS)

    Silvestri, V.; Mikhail, N.; Soulie, M.

    1997-01-01

    This paper presents the results of a laboratory investigation on the behavior of motor oil-contaminated, partially saturated compacted clays. For the study, both a natural clay and an artificially purified kaolinite, contaminated with 0 to 8% of motor oil, were firstly compacted following the ASTM standard procedure. Secondly, permeability tests were carried out in a triaxial cell on 10 cm-diameter compacted clay specimens. The results of the investigation indicate that increasing percentages of motor oil decrease both the optimum water content and the optimum dry density of the two clays. However, whereas the optimum water content on the average decreases by about 6% when the percentage contamination increases from 0 to 8%, the corresponding decrease in the optimum dry density is less than 3%. Even though the optimum dry density decreases as the percentage of oil increases from 0 to 8%, there is, however, a range in oil content varying between 2 and 4% for which the optimum dry density is slightly greater than that of the untreated soils. As far as the permeability tests are concerned, the results indicate that as the percentage of oil increases, the coefficient of permeability decreases substantially, especially for clay specimens which were initially compacted on the dry side of optimum

  16. Design of a free-electron laser driven by the LBNL laser-plasma-accelerator

    International Nuclear Information System (INIS)

    Schroeder, C.B.; Fawley, W.M.; Montgomery, A.L.; Robinson, K.E.; Gruner, F.; Bakeman, M.; Leemans, W.P.

    2007-01-01

    We discuss the design and current status of a compact free-electron laser (FEL), generating ultra-fast, high-peak flux, VUV pulses driven by a high-current, GeV electron beam from the existing Lawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator, whose active acceleration length is only a few cm. The proposed ultra-fast source would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science with pulse lengths of tens of fs. Owing to the high current ( and 10 kA) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially greater than 1013 photons/pulse. Devices based both on SASE and high-harmonic generated input seeds, to reduce undulator length and fluctuations, are considered

  17. A Compact MIMO Antenna with Inverted C-Shaped Ground Branches for Mobile Terminals

    Directory of Open Access Journals (Sweden)

    Zixian Yang

    2016-01-01

    Full Text Available A compact printed MIMO antenna for mobile terminals is presented. With two planar antenna elements, the −6 dB impedance bandwidth of 2.32 GHz (1.48–3.8 GHz is obtained, which covers GSM 1800/1900, UMTS, WLAN, Wimax, S-band, and most of LTE bands. Each antenna element with a small occupation of 15 × 20 mm2 consists of a driven strip and a shorted strip. Two inverted C-shaped ground branches are introduced between two elements to improve the isolation. The simulated results are studied and the measured results show that high isolation of more than 18 dB at the entire operating band is achieved. Meanwhile, the impedance performance is also improved by adding the branches. Furthermore, the measured radiation performances and envelope correlation coefficient also demonstrate that the proposed antenna could be a good candidate for mobile terminals.

  18. More on θ-compact fuzzy topological spaces

    International Nuclear Information System (INIS)

    Ekici, Erdal

    2006-01-01

    Recently, El-Naschie has shown that the notion of fuzzy topology may be relevant to quantum particle physics in connection with string theory and ε ∞ theory. In 2005, Caldas and Jafari have introduced θ-compact fuzzy topological spaces. The purpose of this paper is to investigate further properties of θ-compact fuzzy topological spaces. Moreover, the notion of θ-closed fuzzy topological spaces is introduced and properties of it are obtained

  19. A high-power compact regenerative amplifier FEL

    International Nuclear Information System (INIS)

    Nguyen, D.C.; Sheffield, R.L.; Fortgang, C.M.; Kinross-Wright, J.M.; Ebrahim, N.A.; Goldstein, J.C.

    1997-01-01

    The Regenerative Amplifier FEL (RAFEL) is a new FEL approach aimed at achieving the highest optical power from a compact rf-linac FEL. The key idea is to feed back a small fraction ( 5 in single pass) wiggler to enable the FEL to reach saturation in a few passes. This paper summarizes the design of a high-power compact regenerative amplifier FEL and describes the first experimental demonstration of the RAFEL concept

  20. Numerical simulation of mechanical compaction of deepwater shallow sediments

    Science.gov (United States)

    Sun, Jin; Wu, Shiguo; Deng, Jingen; Lin, Hai; Zhang, Hanyu; Wang, Jiliang; Gao, Jinwei

    2018-02-01

    To study the compaction law and overpressure evolution in deepwater shallow sediments, a large-strain compaction model that considers material nonlinearity and moving boundary is formulated. The model considers the dependence of permeability and material properties on void ratio. The modified Cam-Clay model is selected as the constitutive relations of the sediments, and the deactivation/reactivation method is used to capture the moving top surface during the deposition process. A one-dimensional model is used to study the compaction law of the shallow sediments. Results show that the settlement of the shallow sediments is large under their own weight during compaction. The void ratio decreases strictly with burial depth and decreases more quickly near the seafloor than in the deeper layers. The generation of abnormal pressure in the shallow flow sands is closely related to the compaction law of shallow sediments. The two main factors that affect the generation of overpressure in the sands are deposition rate and permeability of overlying clay sediments. Overpressure increases with an increase in deposition rate and a decrease in the permeability of the overlying clay sediment. Moreover, an upper limit for the overpressure exists. A two-dimensional model is used to study the differential compaction of the shallow sediments. The pore pressure will still increase due to the inflow of the pore fluid from the neighboring clay sediment even though the deposition process is interrupted.