WorldWideScience

Sample records for compact muon telescope

  1. A Compact 6D Muon Cooling Ring

    CERN Document Server

    Kirk, Harold G; Garren, Albert A; Kahn, Stephen A; Mills, Frederick E

    2005-01-01

    We discuss a conceptual design for a compact muon cooling system based on a weak-focusing ring loaded with high-pressure Hydrogen gas. We demonstrate that such a ring will be capable of cooling a circulating muon beam in each of the three spatial dimensions so that 6d cooling of the muon beam phase space is achieved.

  2. Buried plastic scintillator muon telescope

    Science.gov (United States)

    Sanchez, F.; Medina-Tanco, G.A.; D'Olivo, J.C.; Paic, G.; Patino Salazar, M.E.; Nahmad-Achar, E.; Valdes Galicia, J.F.; Sandoval, A.; Alfaro Molina, R.; Salazar Ibarguen, H.; Diozcora Vargas Trevino, M.A.; Vergara Limon, S.; Villasenor, L.M.

    Muon telescopes can have several applications, ranging from astrophysical to solar-terrestrial interaction studies, and fundamental particle physics. We show the design parameters, characterization and end-to-end simulations of a detector composed by a set of three parallel dual-layer scintillator planes, buried at fix depths ranging from 0.30 m to 3 m. Each layer is 4 m2 and is composed by 50 rectangular pixels of 4cm x 2 m, oriented at a 90 deg angle with respect to its companion layer. The scintillators are MINOS extruded polystyrene strips with two Bicron wavelength shifting fibers mounted on machined grooves. Scintillation light is collected by multi-anode PMTs of 64 pixels, accommodating two fibers per pixel. The front-end electronics has a time resolution of 7.5 nsec. Any strip signal above threshold opens a GPS-tagged 2 micro-seconds data collection window. All data, including signal and background, are saved to hard disk. Separation of extensive air shower signals from secondary cosmic-ray background muons and electrons is done offline using the GPS-tagged threefold coincidence signal from surface water cerenkov detectors located nearby in a triangular array. Cosmic-ray showers above 6 PeV are selected. The data acquisition system is designed to keep both, background and signals from extensive air showers for a detailed offline data.

  3. Muon imaging of volcanoes with Cherenkov telescopes

    Science.gov (United States)

    Carbone, Daniele; Catalano, Osvaldo; Cusumano, Giancarlo; Del Santo, Melania; La Parola, Valentina; La Rosa, Giovanni; Maccarone, Maria Concetta; Mineo, Teresa; Pareschi, Giovanni; Sottile, Giuseppe; Zuccarello, Luciano

    2017-04-01

    The quantitative understanding of the inner structure of a volcano is a key feature to model the processes leading to paroxysmal activity and, hence, to mitigate volcanic hazards. To pursue this aim, different geophysical techniques are utilized, that are sensitive to different properties of the rocks (elastic, electrical, density). In most cases, these techniques do not allow to achieve the spatial resolution needed to characterize the shallowest part of the plumbing system and may require dense measurements in active zones, implying a high level of risk. Volcano imaging through cosmic-ray muons is a promising technique that allows to overcome the above shortcomings. Muons constantly bombard the Earth's surface and can travel through large thicknesses of rock, with an energy loss depending on the amount of crossed matter. By measuring the absorption of muons through a solid body, one can deduce the density distribution inside the target. To date, muon imaging of volcanic structures has been mainly achieved with scintillation detectors. They are sensitive to noise sourced from (i) the accidental coincidence of vertical EM shower particles, (ii) the fake tracks initiated from horizontal high-energy electrons and low-energy muons (not crossing the target) and (iii) the flux of upward going muons. A possible alternative to scintillation detectors is given by Cherenkov telescopes. They exploit the Cherenkov light emitted when charged particles (like muons) travel through a dielectric medium, with velocity higher than the speed of light. Cherenkov detectors are not significantly affected by the above noise sources. Furthermore, contrarily to scintillator-based detectors, Cherenkov telescopes permit a measurement of the energy spectrum of the incident muon flux at the installation site, an issue that is indeed relevant for deducing the density distribution inside the target. In 2014, a prototype Cherenkov telescope was installed at the Astrophysical Observatory of Serra

  4. A compact muon tracking system for didactic and outreach activities

    Energy Technology Data Exchange (ETDEWEB)

    Antolini, R.; Candela, A.; Conicella, V.; De Deo, M.; D' Incecco, M.; Sablone, D. [INFN Gran Sasso National Laboratory – Assergi (AQ) (Italy); Arneodo, F.; Benabderrahmane, M.L.; Di Giovanni, A. [New York University Abu Dhabi - Abu Dhabi (United Arab Emirates); Pazos Clemens, L., E-mail: luis.pazclem@nyu.edu [New York University Abu Dhabi - Abu Dhabi (United Arab Emirates); Franchi, G.; D' Inzeo, M. [Age Scientific srl – Capezzano Pianore (Italy)

    2016-07-11

    We present a cosmic ray telescope based on the use of plastic scintillator bars coupled to ASD-RGB1S-M Advansid Silicon Photomultipliers (SiPM) through wavelength shifter fibers. The system is comprised of 200 electronic channels organized into 10 couples of orthogonal planes allowing the 3D reconstruction of crossing muons. Two monolithic PCB boards have been designed to bias, readout all the SiPMs enclosed in the system, to monitor the working parameters and to remotely connect the detector. To make easier the display of muon tracks to non-expert users, two LED matrices, triggered by particle interactions, have been implemented. To improve the usability of the muon telescope, a controller board unit permits to select different levels of trigger and allows data acquisition for refined analyses for the more proficient user. A first prototype, funded by INFN and deployed in collaboration with NYUAD, is operating at the Toledo Metro station of Naples, while two further detectors will be developed and installed in Abu Dhabi in the next few months. - Highlights: • A compact system for real time displaying of muon tracks is presented. • The system is based on scintillating plates composed of doped polystyrene bars. • By using SiPMs and corresponding LEDs the muon paths can be visualized. • The purpose of this system is to introduce the public to sub-nuclear particles.

  5. Volcanoes muon imaging using Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, O. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Del Santo, M., E-mail: melania@ifc.inaf.it [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Mineo, T.; Cusumano, G.; Maccarone, M.C. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Pareschi, G. [INAF Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807, Merate (Italy)

    2016-01-21

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  6. CMS - The Compact Muon Solenoid

    CERN Multimedia

    Bergauer, T; Waltenberger, W; Kratschmer, I; Treberer-treberspurg, W; Escalante del valle, A; Andreeva, I; Innocente, V; Camporesi, T; Malgeri, L; Marchioro, A; Moneta, L; Weingarten, W; Beni, N T; Cimmino, A; Rovere, M; Jafari, A; Lange, C G; Gilbert, A J; Pantaleo, F; Reis, T; Cucciati, G; Alipour tehrani, N; Stakia, A; Fallavollita, F; Pizzichemi, M; Pinna, D; Rauco, G; Zhang, S; Hu, T; Yazgan, E; Zhang, H; Thomas-wilsker, J; Reithler, H K V; Philipps, B; Merschmeyer, M K; Heidemann, C A; Mukherjee, S; Geenen, H; Kuessel, Y; Weingarten, S; Nehrkorn, A; Gallo, E; Schwanenberger, C; Walsh bastos rangel, R; Beernaert, K S; De wit, A M; Elwood, A C; Connor, P; Lelek, A A; Wichmann, K H; Myronenko, V; Kovalchuk, N; Bein, S L; Dreyer, T; Scharf, C; Quast, G; Dierlamm, A H; Barth, C; Mol, X; Kudella, S; Schafer, D; Schimassek, R R; Matorras, F; Calderon tazon, A; Garcia ferrero, J; Bercher, M J; Sirois, Y; Jo, M; Antropov, I; Callier, S; Depasse, P; Laktineh, I B; Grenier, G; Boudoul, G; Heath, G P; Brooke, J J; Hartley, D A; Quinton, S; Tomalin, I R; Harder, K; Francis, V B; Thea, A; Zhang, Z; Loukas, D; Hernath, S T; Naskar, K; Colaleo, A; Maggi, G P; Maggi, M; Loddo, F; Calabria, C; Campanini, R; Cuffiani, M; D'antone, I; Grandi, C; Navarria, F; Guiducci, L; Battilana, C; Tosi, N; Gulmini, M; Meola, S; Longo, E; Marzocchi, B; Gelli, S; Schizzi, A; Cho, S; Ha, S; Kim, D H; Kim, G N; Md halid, M F B; Yusli, M N B; Dominik, W M; Bunkowski, K; Olszewski, M; Byszuk, A P; Rasteiro da silva, J C; Varela, J; Leong, Q; Sulimov, V; Vorobyev, A; Denisov, A; Murzin, V; Egorov, A; Lukyanenko, S; Postoev, V; Pashenkov, A; Solovey, A; Rubakov, V; Troitsky, S; Kirpichnikov, D; Lychkovskaya, N; Safronov, G; Fedotov, A; Toms, M; Barniakov, M; Olimov, K; Fazilov, M; Umaraliev, A; Dumanoglu, I; Bakirci, N M; Dozen, C; Demiroglu, Z S; Oglakci, M; Isik, C; Zeyrek, M; Yalvac, M; Ozkorucuklu, S; Chang, Y; Dolgopolov, A; Gottschalk, E E; Maeshima, K; Heavey, A E; Kramer, T; Kwan, S W L; Taylor, L; Tkaczyk, S M; Mokhov, N; Marraffino, J M; Mrenna, S; Yarba, V; Banerjee, B; Elvira, V D; Gray, L A; Holzman, B; Dagenhart, W; Canepa, A; Ryu, S C; Strobbe, N C; Adelman-mc carthy, J K; Contescu, A C; Andre, J O; Wu, J; Dittmer, S J; Bucinskaite, I; Zhang, J; Karchin, P E; Thapa, P; Zaleski, S G; Gran, J L; Wang, S; Patterson, A S; Zilizi, G; Raics, P P; Bhardwaj, A; Smiljkovic, N; Stojanovic, M; Brandao malbouisson, H; De oliveira martins, C P; Tonelli manganote, E J; Medina jaime, M; Thiel, M; Laurila, S H; Wu, X; Graehling, P; Tonon, N; Blekman, F; De bruyn, I H J; Postiau, N J S; Leroux, P J; Van remortel, N; Janssen, X J; Di croce, D; Aleksandrov, A; Shopova, M F; Dogra, S M; Shinoda, A A; Arce, P; Daniel, M; Navarrete marin, J J; Redondo fernandez, I; Guirao elias, A; Cela ruiz, J M; Lottin, J; Gras, P; Kircher, F; Levesy, B; Payn, A; Guilloux, F; Negro, G; Leloup, C; Pasztor, G; Panwar, L; Bhatnagar, V; Maity, M; Bruzzi, M; Sciortino, S; Starodubtsev, O; Azzi, P; Conti, E; Lacaprara, S; Margoni, M; Rossin, R; Tosi, M; Fano', L; Lucaroni, A; Biino, C; Dattola, D; Rotondo, F; Ballestrero, A; Obertino, M M; Kiani, M B; Paterno, A; Magana villalba, R; Ramirez garcia, M; Reyes almanza, R; Gorski, M; Wrochna, G; Bluj, M J; Zarubin, A; Nozdrin, M; Ladygin, V; Malakhov, A; Golunov, A; Skrypnik, A; Sotnikov, A; Evdokimov, N; Tiurin, V; Lokhtin, I; Ershov, A; Platonova, M; Tyurin, N; Slabospitskii, S; Talov, V; Belikov, N; Ryazanov, A; Chao, Y; Tsai, J; Foord, A; Wood, D R; Orimoto, T J; Luckey, P D; Gomez ceballos retuerto, G; Jaditz, S H; Stephans, G S; Darlea, G L; Di matteo, L; Maier, B; Trovato, M; Bhattacharya, S; Roberts, J B; Padley, P B; Tu, Z; Rorie, J T; Clarida, W J; Tiras, E; Khristenko, V; Cerizza, G; Pieri, M; Krutelyov, V; Saiz santos, M D; Klein, D S; Derdzinski, M; Murray, M J; Gray, J A; Minafra, N; Forthomme, L; Castle, J R; Bowen, J L S; Buterbaugh, K; Morrow, S I; Bunn, J; Newman, H; Spiropulu, M; Balcas, J; Lawhorn, J M; Thomas, S D; Panwalkar, S M; Kyriacou, S; Xie, Z; Ojalvo, I R; Laird, E M; Wimpenny, S J; Yates, B R; Perry, T M; Schiber, C C; Uniyal, R; Mesic, B; Kolosova, M; Snow, G R; Lundstedt, C; Johnston, D; Zvada, M; Weitzel, D J; Damgov, J V; Giammanco, A; David, P N Y; Zobec, J; Cabrera jamoulle, J B; Daubie, E; Batinkov, A I; Nash, J A; Evans, L; Hall, G; Nikitenko, A; Ryan, M J; Matsushita, T; Huffman, M A J; Styliaris, E; Evangelou, I; Sharan, M K; Roy, A; Rout, P K; Kalbhor, P N; Bagliesi, G; Braccini, P L; Ligabue, F; Boccali, T; Rizzi, A; Minuti, M; Oh, S; Kim, J; Sen, S; Boz evinay, M; Xiao, M; Hung, W T; Jensen, F O; Mulholland, T D; Kumar, A; Jones, M; Roozbahani, B H; Neu, C C; Thacker, H B; Wolfe, E M; Jabeen, S; Gilmore, J; Winer, B L; Rush, C J; Luo, W; Alimena, J M; Lefeld, A J; Ko, W; Lander, R; Broadley, W H; Shi, M; Low, J F; Mei, H; Alexander, J P; Zientek, M E; Conway, J V; Padilla fuentes, Y L; Florent, A H; Bravo, C B; Crotty, I M; Wenman, D L; Sarangi, T R; Ghabrous larrea, C; Gomber, B; Smith, N C; Long, K D; Roberts, J M; Kalafut, S T; Hildreth, M D; Jessop, C P; Karmgard, D J; Loukas, N; Ferbel, T; Zielinski, M A; Cooper, S I; Jung, A; Fagot, A; Vermassen, B; Valchkova-georgieva, F K; Dimitrov, D S; Roumenin, T S; Podrasky, V; Re, V; Zucca, S; De canio, F; Romaniuk, R; Teodorescu, L; Krofcheck, D; Anderson, N G; Bell, S T; Salazar ibarguen, H A; Kudinov, V; Onishchenko, S; Naujikas, R; Lyubynskiy, V; Sobolev, O; Khan, M S; Adeel-ur-rehman, A; Hassan, Q U; Ali, I; Kreuzer, P K; Robson, A J; Gadrat, S G; Ivanov, A; Mendis, D; Da silva di calafiori, D R; Zeinali, M; Behnamian, H; Moroni, L; Malvezzi, S; Park, I; Pastika, N J; Oropeza barrera, C; Elkhateeb, E A A; Elmetenawee, W; Mohammed, Y; Tayel, E S A; Mcclatchey, R H; Kovacs, Z; Liaquat, S; Munir, K; Odeh, M; Rao, A M; Magradze, E; Oikashvili, B; Shingade, P; Shukla, R A; Banerjee, S; Kumar, S; Jashal, B K; Kundu, T K; Adam, W; Ero, J; Fabjan, C; Jeitler, M; Rad, N K; Auffray hillemanns, E; Charkiewicz, A; Fartoukh, S; Garcia de enterria adan, D; Girone, M; Glege, F; Lasseur, C; Loos, R; Mannelli, M; Meijers, F; Sciaba, A; Tsesmelis, E; Meschi, E; Ricci, D; Petrucciani, G; Daguin, J; Vazquez velez, C; Karavakis, E; Nourbakhsh, S; Rabady, D S; Chaze, O; Ceresa, D; Karacheban, O; Beguin, M; Kilminster, B J; Ke, Z; Meng, X; Zhang, Y; Tao, J; Romeo, F; Spiezia, A; Cheng, L; Zhukov, V; Feld, L W; Autermann, C T; Fischer, R; Kress, T H; Dziwok, C; Hansen, K; Schoerner-sadenius, T M; Marfin, I; Keaveney, J M; Diez pardos, C; Muhl, C W; Asawatangtrakuldee, C; Defranchis, M M; Asmuss, J P; Poehlsen, J A; Stober, F M H; Vormwald, B R; Kripas, V; Gonzalez vazquez, D; Kurz, S T; Niemeyer, C; Rieger, J O; Shvetsov, I; Sieber, G; Caspart, R; Iqbal, M A; Sander, O; Metzler, M B; Ardila perez, L E; Ruiz jimeno, A; Fernandez garcia, M; Scodellaro, L; Gonzalez sanchez, J F; Curras rivera, E; Semeniouk, I; Ochando, C; Bedjidian, M; Giraud, N A; Mathez, H; Zoccarato, Y D; Ianigro, J; Galbit, G C; Flacher, H U; Shepherd-themistocleous, C H; French, M J; Jones, L L; Markou, A; Bencze, G L; Mishra, D K; Netrakanti, P K; Jha, V; Chudasama, R; Katta, S; Venditti, R; Cristella, L; Braibant-giacomelli, S; Dallavalle, G; Fabbri, F; Codispoti, G; Borgonovi, L; Caponero, M A; Berti, L; Fienga, F; Dafinei, I; Organtini, G; Del re, D; Pettinacci, V; Preiato, F; Park, S K; Lee, K S; Kang, M; Kim, B; Park, H K; Kong, D J; Lee, S; Pak, S I; Zolkapli, Z B; Konecki, M A; Walczak, M B; Brona, G K; Bargassa, P; Viegas guerreiro leonardo, N T; Levchenko, P; Orishchin, E; Suvorov, V; Uvarov, L; Gruzinskii, N; Pristavka, A; Kozlov, V; Radovskaia, A; Solovey, A; Kolosov, V; Vlassov, E; Parygin, P; Tumasyan, A; Topakli, H; Boran, F; Akin, I V; Oz, C; Gulmez, E; Atakisi, I O; Jain, S; Bakken, J A; Govi, G M; Lewis, J D; Shaw, T M; Bailleux, D; Stoynev, S E; Sexton-kennedy, E M; Huang, C; Lincoln, D W; Roser, R; Ito, A; Adams, M R; Apanasevich, L; Varelas, N; Sandoval gonzalez, I D; Hangal, D A; Yoo, J H; Ovcharova, A K; Bradmiller-feld, J W; Amin, N J; Miller, M P; Sharma, R K; Santoro, A; Lassila-perini, K M; Tuominiemi, J; Voutilainen, M A; Jarvinen, T T; Gross, L O; Le bihan, A; Fuks, B; Kieffer, E; Pansanel, J; Jansova, M; D'hondt, J; Van parijs, I M; Abuzeid hassan, S A; Bilin, B; Beghin, D; Soultanov, G; Vankov, I D; Konstantinov, P B; Marra da silva, J; De souza santos, A; Arruda ramalho, L; Renker, D; Erdmann, W; Molinero vela, A; Fernandez bedoya, C; Bachiller perea, I; Chipaux, R; Faure, J D; Hamel de monchenault, G; Mandjavidze, I; Rander, J; Ferri, F; Leroy, C L; Machet, M; Nagy, M I; Felcini, M; Kaur, S; Saizu, M A; Civinini, C; Latino, G; Chatterjee, K; Checchia, P; Ronchese, P; Vanini, S; Fantinel, S; Cecchi, C; Leonardi, R; Arneodo, M; Ruspa, M; Pacher, L; Rabadan trejo, R I; Mondragon herrera, C A; Golutvin, I; Zhiltsov, V; Melnichenko, I; Mjavia, D; Cheremukhin, A; Zubarev, E; Kalagin, V; Alexakhin, V; Mitsyn, V; Shulha, S; Vishnevskiy, A; Gavrilenko, M; Boos, E E; Obraztsov, S; Dubinin, M; Demiyanov, A; Dudko, L; Volkov, V; Azhgirey, I; Chikilev, O; Turchanovich, L; Rurua, L; Gao, Z; Hou, G W; Wang, M; Chang, P; Kumar, A; Liau, J; Lazic, D; Lawson, P D; Zou, D; Wisecarver, A L; Sumorok, K C; Klute, M; Lee, Y; Iiyama, Y; Velicanu, D A; Mc ginn, C; Abercrombie, D R; Tatar, K; Hahn, K A; Nussbaum, T W; Southwick, D C; Riley, G V; Cittolin, S; Martin, T; Welke, C V; Wilson, G W; Baringer, P S; Sanders, S J; Mcbrayer, W J; Engh, D J; Gurrola, A; Velkovska, J A; Melo, A M; Padeken, K O; Johnson, C N; Ni, H; Kcira, D; Hendricks, T W; Heindl, M D; Ferguson, T; Vogel, H; Mudholkar, T K; Elmer, P; Tully, C; Luo, J; Hanson, G; Kennedy, E; Jandir, P S; Askew, A W; Kadija, K; Dimovasili, E; Attikis, A; Vasilas, I; Chen, G; Bockelman, B P; Kamalieddin, R; Barrefors, B P; Farleigh, B S; Akchurin, N; Demin, P; Musich, M; Pavlov, B A; Petkov, P S; Goranova, R; Tomsa, J; Lyons, L; Rand, D T; Buchmuller, O; Magnan, A; Laner ogilvy, C; Di maria, R; Dutta, S; Dey, S; Thakur, S; Bettarini, S; Bosi, F; Giassi, A; Massa, M; Calzolari, F; Androsov, K; Lee, H; Komurcu, Y; Kim, D W; Wagner, S R; Rappoccio, S R; Harrington, C I; Baden, A R; Ricci-tam, F; Kamon, T; Rathjens, D; Pernie, L; Larsen, D; Ji, W; Pellett, D E; Smith, J; Acosta, D E; Field, R D; Kotov, K; Wang, S; Smolenski, K W; Mc coll, N W; Dasu, S R; Lanaro, A; Feyzi, F; Cook, J R; Gorski, T A; Buchanan, J J; Musienko, Y; Taroni, S; Meng, H; Siddireddy, P K; Tan, P; Lo, K H; Xie, W; Rott, C; Benedetti, D; Everett, A A; Schulte, J; Mahakud, B; Ryckbosch, D D E; Crucy, S; Cornelis, T G M; Betev, B; Dimov, H; Raykov, P A; Uzunova, D G; Mihovski, K T; Mechinsky, V; Makarenko, V; Yermak, D; Yevarouskaya, U; Salvini, P; Manghisoni, M; Fontaine, J; Agram, J; Palinkas, J; Bell, A J; Clyne, M N; Zavodchikov, S; Veelken, C; Kannike, K; Dewanjee, R K; Skarupelov, V; Piibeleht, M; Ehataht, K; Chang, S; Kuchinski, P; Bukauskas, L; Zhmurin, P; Kamal, A; Mubarak, M; Asghar, M I; Ahmad, N; Muhammad, S; Mansoor-ul-islam, S; Saddique, A; Waqas, M; Irshad, A; Veckalns, V; Toda, S; Choi, Y K; Yu, I; Hwang, C; Yumiceva, F X; Djambazov, L; Meinhard, M T; Becker, R J U; Grimm, O; Wallny, R S; Tavolaro, V R; Marionneau, M P; Eller, P D; Meister, D; Paktinat mehdiabadi, S; Chenarani, S; Dini, P; Leporini, R; Dinardo, M; Brianza, L; Hakkarainen, U T; Chaparro sierra, L F; Parashar, N; Malik, S; Ramirez vargas, J E; Dharmaratna, W; Noh, S; Uang, A J; Kim, J H; Lee, J S H; Jeon, D; You, Z; Assran, Y; Elgammal, S; Ellithi kamel, A Y; Nayak, A K; Dash, D; Koca, N; Ahmad, M K H; Kothekar, K K; Karnam, R; Patil, M R; Hoch, M; Schieck, J R; Valentan, M; Spitzbart, D; Lucio alves, F L; Blanchot, G; Gill, K A; Orsini, L; Petrilli, A; Sharma, A; Szoncso, F; Tsirou, A; Hudson, D A; Gutleber, J; Folch, R; Tropea, P; Cerminara, G; Vichoudis, P; Pardo, T; Sabba, H; Selvaggi, M; Verzetti, M; Kornmayer, A; Aarrestad, T K; He, K; Li, B; Huang, Q; Shaheen, S M; Pierschel, G; Esch, T; Louis, D; Nowack, A S; Beissel, F; Borras, K A; Mankel, R; Pitzl, D D; Kemp, Y; Meyer, A B; Krucker, D B; Mittag, G; Burgmeier, A; Lenz, T; Arndt, T M; Pflitsch, S K; Danilov, V; Dominguez damiani, D; Kogler, R; Troendle, D C; Aggleton, R C; Lange, J; Reimers, A C; De boer, W; Weber, M M; Theel, A; Weiler, T; Mozer, M U; Wayand, S; Harrendorf, M A; Harbaum, T R; El morabit, K; Floeh, K M; Marco, J; Rodrigo, T; Vila alvarez, I; Lopez garcia, A; Rembser, J; Baffioni, S; Mathieu, A; Kurca, T; Mirabito, L; Verdier, P; Combaret, C; Newbold, D M; Smith, V; Metson, S; Ball, F A; Coughlan, J A; Torbet, M J; Belyaev, A; Harper, S J; Kyriakis, A; Horvath, D; Veszpremi, V; Topkar, A; Selvaggi-maggi, G; Nuzzo, S V; Romano, F; Marangelli, B; Spinoso, V; Lezki, S; Castro, A; Rovelli, T; Brigliadori, L; Chhibra, S S; Bianco, S; Fabbricatore, P; Farinon, S; Musenich, R; Ferro, F; Gozzelino, A; Buontempo, S; Casolaro, P; Paramatti, R; Vignati, M; Belforte, S; Hong, B; Roh, Y J; Choi, S Y; Son, D; Yang, Y C; Butanov, K; Kotobi, A; Krolikowski, J; Pozniak, K T; Misiura, M; Seixas, J C; Jain, A K; Lloret iglesias, L; Nemallapudi, M V; Shchipunov, L; Lebedev, V; Skorobogatov, V; Klimenko, K; Terkulov, A; Kirakosyan, M; Azarkin, M; Krasnikov, N; Stepanova, L; Gavrilov, V; Spiridonov, A; Semenov, S; Krokhotin, A; Rusinov, V; Chistov, R; Zhemchugov, E; Nishonov, M; Hmayakyan, G; Khachatryan, V; Ozdemir, K; Ozturk, S; Tali, B; Kangal, E E; Turkcapar, S; Zorbakir, I S; Aliyev, T; Demir, D A; Liu, W; Apollinari, G; Osborne, I; Lammel, S; Whitmore, J; Mommsen, R; Apyan, A; Badgett jr, W F; Atac, M; Joshi, U P; Vidal, R A; Giacchetti, L A; Merkel, P; Johnson, M E; Soha, A L; Tran, N V; Rapsevicius, V; Hirschauer, J F; Voirin, E; Altunay cheung, M; Liu, T T; Mosquera morales, J F; Gerber, C E; Chen, X; Clarke, C J; Stuart, D D; Franco sevilla, M; Marsh, B J; Shivpuri, R K; Adzic, P; De almeida pacheco, M A; Matos figueiredo, D; De queiroz franco, A B; Melo de almeida, M; Bernardo valadao, R; Linden, T; Tuovinen, E V; Siikonen, H J L; Ripp-baudot, I L; Richer, M; Vander velde, C; Randle-conde, A S; Dong, J; Van haevermaet, H J H; Dimitrov, L; De paula bianchini, C; Muller cascadan, A; Kotlinski, B; Alcaraz maestre, J; Josa mutuberria, M I; Gonzalez lopez, O; Marin munoz, J; Puerta pelayo, J; Rodriguez vazquez, J J; Denegri, D; Jarry, P; Rosowsky, A; Tsipolitis, G; Grunewald, M; Singh, J; Chawla, R; Gupta, R; Giordano, F; Parrini, G; Russo, L; Mazzucato, M; Verlato, M; Wulzer, A; Traldi, S; Bortolato, D; Biasini, M; Bilei, G M; Movileanu, M; Santocchia, A; Mariani, V; Mariotti, C; Monaco, V; Accomando, E; Pinna angioni, G L; Boimska, B; Nawrocki, K; Yuldashev, B; Kamenev, A; Belotelov, I; Filozova, I; Bunin, P; Golovanov, G; Gribushin, A; Kaminskiy, A; Volkov, P; Vorotnikov, G; Bityukov, S; Kryshkin, V; Petrov, V; Volkov, A; Troshin, S; Levin, A; Sumaneev, O V; Kalinin, A; Kulagin, N; Mandrik, P; Lin, C; Kovalskyi, D; Demiragli, Z; Hsu, D G; Michlin, B A; Fountain, M; Debbins, P A; Durgut, S; Tadel, M; White, A; Molina-perez, J A; Dost, J M; Boren, S S; Klein, A; Bhatti, A; Mesropian, C; Wilkinson, R; Xie, S; Agapitos, A; Marlow, D R; Jindal, P; Narain, M; Berry, E A; Korotkov, A L; Strossman, W; Burt, K F; Saha, A; Starodumov, A; Mavromanolakis, G; Nicolaou, C; Mao, Y; Claes, D R; Sill, A F; Lamichhane, K; Antunovic, Z; Piotrzkowski, K; Bondu, O; Dimitrov, A A; Albajar, C; Torga teixeira, R F; Iles, G M; Borg, J; Cripps, N A; Uchida, K; Fayer, S W; Wright, J C; Kokkas, P; Manthos, N; Bhattacharya, S; Nandan, S; Bellazzini, R; Carboni, A; Arezzini, S; Yang, U K; Roskes, J; Corcodilos, L A; Nauenberg, U; Johnson, D; Kharchilava, A; Cox, B B; Hirosky, R J; Skuja, A; Bard, R L; Mueller, R D; Puigh, D M; Chertok, M B; Calderon de la barca sanchez, M; Gunion, J F; Vogt, R; Conway, R T; Gearhart, J W; Band, R E; Kukral, O; Korytov, A; Furic, I K; Fu, Y; Madorsky, A; Brinkerhoff, A W; Rinkevicius, A; Mirman, N E; Chaves, J E; Mcdermott, K P; Tao, Z; Bellis, M; Gronberg, J B; Hauser, J; Bachtis, M; Kubic, J; Greenler, L S; Caillol, C S; Woods, N; De jesus pardal vicente, M; Trembath-reichert, S; Singovski, A; Wolf, M; Smith, G N; Bucci, R E; Reinsvold, A C; Sultana, M; Taus, R A; Buccilli, A T; Kroeger, R S; Reidy, J J; Barnes, V E; Kress, M K; Thieman, J R; Mccartin, J W; Gul, M; Khvastunov, I; Georgiev, I G; Biselli, A; Berzano, U; Vai, I; Braghieri, A; Cardoso lopes, R; Cuevas maestro, J F; Palencia cortezon, J E; Reucroft, S; Bheesette, S; Butler, A; Ivanov, A; Mizelkov, M; Kashpydai, O; Kim, J; Janulis, M; Zemleris, V; Ali, A; Ahmed, U S; Awan, M I; Lee, J; Dissertori, G; Howard, A S; Pauss, F; Musella, P; Pigazzini, S; Vesterbacka olsson, M L; Klijnsma, T; Khakzad, M; Arfaei, H; Bonesini, M; Gomez moreno, B; Linares garcia, L E; Bae, S; Hatakeyama, K; Mahmoud mohammed, M A; Aly, A; Ahmad, A; Mohammed, W M; Bahinipati, S; Kim, T J; Goh, J; Fang, W; Massonnat, S; Kemularia, O; Melkadze, A; Sharma, S; Rane, A P; Ayala amaya, E R; Akle, B; Palomo pinto, F R; Rahbaran, B; Madlener, T; Spanring, M; Pol, M E; Alda junior, W L; Rodrigues simoes moreira, P; Kloukinas, K; Onnela, A T O; Passardi, G; Perez, E F; Postema, W J; Petagna, P; Gaddi, A; Vieira de castro ferreira da silva, P M; Gastal, M; Dabrowski, A E; Mersi, S; Bianco, M; Alandes pradillo, M; Chen, Y; Kieseler, J; Murphy, S M; Bawej, T A; Roedne, L T; Hugo, G; Baschiera, M; Loiseau, T L; Donato, S; Wang, Y; Liu, Z; Yue, X; Teng, C; Wang, Z; Liao, H; Zhang, X; Chen, Y; Ahmad, M; Zhao, H; Qi, F; Li, B; Raupach, F; Tonutti, M P; Radziej, M; Fluegge, G; Haj ahmad, W; Kunsken, A; Roy, D M; Ziemons, T; Behrens, U; Henschel, H M; Kleinwort, C H; Dammann, D J; Van onsem, G P; Contreras campana, C J; Penno, M; Haranko, M; Singh, A; Turkot, O; Schleper, P; Schwandt, J; Schwarz, D; Hartmann, F; Muller, T; Mallows, S; Funke, D; Baselga bacardit, M; Mitra, S; Martinez rivero, C; Moya martin, D; Hidalgo villena, S; Chazin quero, B; Mine, P M G; Poilleux, P R; Salerno, R A; Martin perez, C; Amendola, C; Caponetto, L; Pugnere, D Y; Giraud, Y A N; Sordini, V; Grimes, M A; Burns, D J P; Hajdu, C; Vami, T A; Dutta, D; Pant, L M; Kumar, V; Sarin, P; Errico, F; Di florio, A; Giacomelli, P; Montanari, A; Siroli, G P; Robutti, E; Maron, G; Fabozzi, F; Galati, G; Rovelli, C I; Cipriani, M; Della ricca, G; Vazzoler, F; Oh, Y D; Park, W H; Kwon, K H; Choi, J; Kalinowski, A; Santos amaral, L C; Di francesco, A; Velichko, G; Smirnov, I; Kozlov, V; Vavilov, S; Kirianov, A; Dremin, I; Rusakov, S; Nechitaylo, V; Kovzelev, A; Toropin, A; Anisimov, A; Golubev, V; Barniakov, A; Gasanov, E; Eskut, E; Polatoz, A; Karaman, T; Zorbilmez, C; Bat, A; Tok, U G; Dag, H; Kaya, O; Tekten, S; Lin, T; Abdoulline, S; Bauerdick, L; Denisov, D; Gingu, C; Green, D; Nahn, S C; Prokofiev, O E; Strait, J B; Los, S; Bowden, M; Tanenbaum, W M; Guo, Y; Dykstra, D W; Mason, D A; Chlebana, F; Cooper, W E; Anderson, J M K; Weber, H A; Christian, D C; Alyari, M F; Diaz cruz, J A; Wang, M; Berry, D R; Jung, K E; Siehl, K F; Poudyal, N; Kyre, S A; Mullin, S D; George, C; Trocsanyi, Z L; Szabo, Z; Malhotra, S; Milosevic, J; Prado da silva, W L; Martins mundim filho, L; Sanchez rosas, L J; Karimaki, V J; Toor, S Z; Karadzhinova, A G; Maazouzi, C; Van hove, P J; Hosselet, J; Goorens, R; Luetic, J; Kalsi, A K; Wang, Q; Vannerom, D; Antchev, G; Iaydjiev, P S; Mitev, G M; Amadio, G; Langenegger, U; Kaestli, H C; Meier, B; Fernandez ramos, J P; Besancon, M; Fabbro, B; Ganjour, S; Locci, E; Gevin, O; Suranyi, O; Bansal, S; Kumar, R; Sharma, S; Tuve, C N; Tricomi, A; Meschini, M; Paoletti, S; Sguazzoni, G; Gori, V; Carlin, R; Dal corso, F; Simonetto, F; Torassa, E; Zumerle, G; Borsato, E; Gonella, F; Dorigo, A; Lazzizzera, I; Larsen, H; Peroni, C; Trapani, P P; Buarque franzosi, D; Tamponi, U; Mejia guisao, J A; Zepeda fernandez, C H; Szleper, M; Zalewski, P D; Rybka, D K; Gorbunov, I; Perelygin, V; Kozlov, G; Semenov, R; Khvedelidze, A; Kodolova, O; Klyukhin, V; Snigirev, A; Kryukov, A; Ukhanov, M; Sobol, A; Bayshev, I; Akimenko, S; Lei, Y; Chang, Y; Kao, K; Lin, S; Li, Y; Fantasia, C; Gastler, D E; Paus, C; Wyslouch, B; Knuteson, B O; Azzolini, V; Goncharov, M; Brandt, S; Chen, Z; Liu, J; Chen, Z; Freed, S M; Zhang, A; Nachtman, J M; Penzo, A; Akgun, U; Yi, K; Rahmat, R; Gandrajula, R P; Dilsiz, K; Letts, J; Sharma, V A; Holzner, A G; Wuerthwein, F K; Padhi, S; Suarez silva, I M; Tapia takaki, D J; Stringer, R W; Kropivnitskaya, A; Majumder, D; Al-bataineh, A A; Gabella, W E; Johns, W E; Mora, J G; Shi, Z; Ciesielski, R A; Bornheim, A; Bartz, E H; Doroshenko, J; Halkiadakis, E; Salur, S; Robles, J A; Gray, R C; Saka, H; Sheffield, D; Osherson, M A; Hughes, E J; Paulini, M G; Russ, J S; Jang, D W; Piroue, P; Olsen, J D; Sands, W; Saluja, S; Cutts, D; Hadley, M H; Hakala, J C; Clare, R; Luthra, A P; Paneva, M I; Seto, R K; Mac intire, D A; Tentindo, S; Wahl, H; Chokheli, D; Micanovic, S; Razis, P; Mousa, J; Ioannou, A; Pantelides, S; Qian, S; Li, W; Gonzalez suarez, R; Stieger, B B; Lee, S W; Michotte de welle, D; De favereau de jeneret, J; Bakhshiansohi, H; Krintiras, G; Caputo, C; Sabev, C; Zenz, S C; Pesaresi, M F; James, T O; Summers, S P; Ghosh, S; Castaldi, R; Dell'orso, R; Palmonari, F; Rolandi, L; Moggi, A; Coscetti, S; Seo, S H; Cankocak, K; Feng, L; Cumalat, J P; Leontsinis, S; Smith, J G; Iashvili, I; Gallo, S M; Parker, A M; Ledovskoy, A; Hung, P Q; Vaman, D; Goodell, J D; Gomez, J A; Perloff, A S; Celik, A; Luo, S; Hill, C S; Francis, B P; Tripathi, S M; Squires, M K; Thomson, J A; Brainerd, C; Tuli, S; Bourilkov, D; Mitselmakher, G; Yelton, J M; Carnes, A M; Sayeb, M; Patterson, J R; Kuznetsov, V Y; Tan, S M; Strohman, C R; Rebassoo, F O; Valouev, V; Zelepukin, S; Lusin, S; Vuosalo, C O U; Ruggles, T H; Rusack, R; Woodard, A E; Meng, F; Dev, N; Vishnevskiy, D; Cremaldi, L M; Oliveros tautiva, S J; Jones, T M; Wang, F; Zaganidis, N; Tytgat, M G; Fedorov, A; Korjik, M; Panov, V; Montagna, P; Vitulo, P; Traversi, G; Gonzalez caballero, I; Pedraza morales, M I; Eysermans, J; Logatchev, O; Orlov, A; Tikhomirov, A; Kulikova, T; Strumia, A; Nam, S K; Soric, I; Kaselis, R; Padimanskas, M; Siddiqi, H M; Hussain, I; Qazi, S F; Ahmad, M; Makouski, M; Chakaberia, I; Mitchell, T B; Baarmand, M; Hits, D; Theofilatos, K; Mohr, N; Jimenez estupinan, R; Micheli, F; Pata, J; Corrodi, S; Mohammadi najafabadi, M; Menasce, D L; Pedrini, D; Malberti, M; Linn, S L; Mesa, D; Tuuva, T; Carrillo montoya, C A; Roque romero, G A; Suwonjandee, N; Kim, H; Khalil ibrahim, S S; Mahrous mohamed kassem, A M; Trojman, L; Gattaz, O; Bhattacharya, S; Babaev, A; Okhotnikov, V; Nakad, Z S; Fruhwirth, R; Majerotto, W; Mikulec, I; Rohringer, H; Strauss, J; Krammer, N; Hartl, C; Pree, E; Rebello teles, P; Ball, A; Bialas, W; Brachet, S B; Gerwig, H; Lourenco, C; Mulders, M P; Vasey, F; Wilhelmsson, M; Dobson, M; Botta, C; Dunser, M F; Pol, A A; Suthakar, U; Takahashi, Y; De cosa, A; Hreus, T; Chen, G; Chen, H; Jiang, C; Yu, T; Klein, K; Schulz, J; Preuten, M; Millet, P N; Erdweg, S; Keller, H C; Pistone, C; Eckerlin, G; Jung, J; Mnich, J; Jansen, H; Wissing, C; Savitskyi, M; Eichhorn, T V; Harb, A; Botta, V; Martens, I; Knolle, J; Eren, E; Reichelt, O; Schutze, P J; Saibel, A; Schettler, H H; Marconi, D; Schumann, S; Kutzner, V G; Husemann, U; Giffels, M; Heindl, S M; Akbiyik, M; Friese, R M; Baur, S S; Faltermann, N; Kuhn, E; Gottmann, A I D; Muller, D; Balzer, M N; Maier, S; Schnepf, M J; Wassmer, M; Renner, C W; Tcherniakhovski, D; Piedra gomez, J; Vilar cortabitarte, R; Trevisani, N; Boudry, V; Charlot, C P; Tran, T H; Thiant, F; Lethuillier, M M; Perries, S O; Morrissey, Q; Brummitt, A J; Lahiff, A D; Bell, S J; Assiouras, P; Sikler, F; De palma, M; Fiore, L; Pompili, A; Marzocca, C; Verwilligen, P O J; Soldani, E; Cavallo, F R; Rossi, A M; Torromeo, G; Masetti, G; Virgilio, S; Thyssen, F D M; Iorio, A O M; Montecchi, M; Meridiani, P; Santanastasio, F; Bulfon, C; Zanetti, A M; Casarsa, M; Han, D; Song, J; Ibrahim, Z A B; Faccioli, P; Gallinaro, M; Beirao da cruz e silva, C; Kuznetsova, E; Levchuk, L; Andreev, V; Toropin, A; Dermenev, A; Karpikov, I; Epshteyn, V; Uliyanov, A; Polikarpov, S; Markin, O; Cagil, A; Karapinar, G; Isildak, B; Yu, S; Banicz, K B; Cheung, H W K; Butler, J N; Quigg, D E; Hufnagel, D; Rakness, G L; Spalding, W J; Bhat, P; Kreis, B J; Jensen, H B; Chetluru, V; Albert, M; Hu, Z; Mishra, K; Vernieri, C; Larson, K E; Zejdl, P; Matulik, M; Cremonesi, M; Doualot, N; Ye, Z; Wu, Z; Geffert, P B; Dutta, V; Heller, R E; Dorsett, A L; Choudhary, B C; Arora, S; Ranjeet, R; Devetak, D; Melo da costa, E; Torres da silva de araujo, F; Da silveira, G G; Alves coelho, E; Belchior batista das chagas, E; Buss, N H; Luukka, P R; Tuominen, E M; Havukainen, J J; Tigerstedt, U B S; Goerlach, U; Patois, Y; Collard, C; Mathieu, C; Lowette, S R J; Python, Q P; Moortgat, S; Vanlaer, P; De lentdecker, G W P; Rugovac, S; Tavernier, F F; Beaumont, W; Van de klundert, M; Vankov, P H; Verguilov, V Z; Hadjiiska, R M; De moraes gregores, E; Iope, R L; Ruiz vargas, J C; Barcala riveira, M J; Hernandez calama, J M; Oller, J C; Flix molina, J; Navarro tobar, A; Sastre alvaro, J; Redondo ferrero, D D; Bredy, P; Titov, M; Bausson, P; Major, P; Bala, S; Dhingra, N; Kumari, P; Costa, S; Pelli, S; Meneguzzo, A T; Passaseo, M; Pegoraro, M; Montecassiano, F; Dorigo, T; Silvestrin, L; Del duca, V; Demaria, N; Ferrero, M I; Mussa, R; Cartiglia, N; Mazza, G; Maina, E; Dellacasa, G; Covarelli, R; Cotto, G; Sola, V; Monteil, E; Castilla-valdez, H; De la cruz burelo, E; Kazana, M; Gorbunov, N; Kosarev, I; Smirnov, V; Korenkov, V; Savina, M; Lanev, A; Semenyushkin, I; Kashunin, I; Krouglov, N; Markina, A; Bunichev, V; Zotov, N; Miagkov, I; Nazarova, E; Uzunyan, A; Riutin, R; Tsverava, N; Paganis, E; Chen, K; Lu, R; Psallidas, A; Gorodetzky, P P; Hazen, E S; Avetisyan, A; Richardson, C A; Busza, W; Roland, C E; Cali, I A; Marini, A C; Wang, T; Schmitt, M H; Geurts, F; Ecklund, K M; Repond, J O; Schmidt, I; Norbeck, J E; George, N; Ingram, F D; Wetzel, J W; Ogul, H; Spanier, S M; Heideman, J N; Sani, M; Mrak tadel, A; Zevi della porta, G J; Maguire, C F; Janjam, R K; Chevtchenko, S; Zhu, R; Voicu, B R; Mao, J; Stone, R L; Schnetzer, S R; Nash, K C; Kunnawalkam elayavalli, R; Laflotte, I; Weinberg, M G; Mc cracken, M E; Kalogeropoulos, A; Raval, A H; Cooperstein, S B; Landsberg, G; Kwok, K H M; Ellison, J A; Gary, J W; Si, W; Hagopian, V; Hagopian, S L; Bertoldi, M; Sharma, V; Brigljevic, V; Ptochos, F; Ather, M W; Konstantinou, S; Cai, J; Yang, D; Li, Q; Attebury, G; Siado castaneda, J E; Lemaitre, V; Brochet, S; Magitteri, A; Caebergs, T P M; Litov, L B; Fernandez de troconiz, J; Colling, D J; Davies, G J; Raymond, D M; Virdee, T S; Bainbridge, R J; Lewis, P; Rose, A W; Bauer, D U; Shtipliyski, A M; Sotiropoulos, S; Papadopoulos, I; Triantis, F; Aslanoglou, X; Majumdar, N; Devadula, S; Ciocci, M A; Messineo, A; Palla, F; Grippo, M T; Yu, G B; Willemse, T; Lamsa, J; Blumenfeld, B J; Maksimovic, P; Gritsan, A; Fehling jr, D K; Cocoros, A A; Arnold, P; Wang, Y; Tonwar, S C; Eno, S C; Mignerey, A L C; Dalchenko, M; Maghrbi, Y; Huang, T; Sheharyar, A; Durkin, L S; Hart, A E; Wang, Z; Tos, K M; Kim, B J; Snowball, M A; Guo, Y; Ma, P; Ojika, D N; Rosenzweig, D J; Reeder, D D; Smith, W; Surkov, A; Mohapatra, A K; Maurisset, A; Mans, J M; Kubota, Y; Frahm, E J; Chatterjee, R M; Ruchti, R; Mc cauley, T P; Ivie, P A; Rupprecht, N C; Betchart, B A; Hindrichs, O H; Henderson, C; Sanders, D; Summers, D; Perera, L; Miller, D H; Miyamoto, J; Sun, J; Peng, C; Zahariev, R Z; Peynekov, M M; Ratti, L; Ressegotti, M; Czellar, S; Molnar, J; Khan, A; Morton, A; Vizan garcia, J M; Vischia, P; Erice cid, C F; Carpinteyro bernardino, S; Chmelev, D; Smetannikov, V; Hektor, A; Kadastik, M; Godinovic, N; Simelevicius, D; Alvi, O I; Hoorani, H U R; Shahzad, H; Shah, M A; Shoaib, M; Rao, M A S; Sidwell, R; Roettger, T J; Corkill, S; Lustermann, W; Roeser, U H; Backhaus, M; Heidegger, C; Perrin, G L; Naseri, M; Rapuano, F; Redaelli, N; Carbone, L; Spiga, F; Brivio, F; Monti, F; Markowitz, P E; Rodriguez, J L; Morelos pineda, A; Casallas leon, J H; Norberg, S R; Ryu, M S; Jeng, Y G; Esteban lallana, M C; Trabelsi, A; Dittmann, J R; Elsayed, E; Khan, Z A; Soomro, K; Arshad, B; Janikashvili, M; Kapoor, A; Rastogi, A; Wickramage, N M; Remnev, G; Hrubec, J; Wulz, C; Fichtinger, S K; Abbaneo, D; Harvey, J; Janot, P; Racz, A; Roche, J; Ryjov, V; Sphicas, P; Treille, D; Wertelaers, P; Cure, B R; Fulcher, J R; Moortgat, F W; Bocci, A; Giordano, D; Hegeman, J G; Hegner, B; Gallrapp, C; Cepeda hermida, M L; Riahi, H; Chapon, E; Peruzzi, M; Orfanelli, S; Guilbaud, M R J; Seidel, M; Merlin, J A; Schneider, M A; Robmann, P W; Salerno, D N; Galloni, C; Neutelings, I W; Shi, J; Li, J; Zhao, J; Pandoulas, D; Rauch, M P; Schael, S; Hoepfner, K; Weber, M K; Teyssier, D F; Thuer, S; Rieger, M; Albert, A; Muller, T; Sert, H; Lohmann, W F; Ntomari, E; Grohsjean, A J; Wen, Y; Ron alvarez, E; Hampe, J; Bin anuar, A A; Blobel, V; Mattig, S; Haller, J; Sonneveld, J M; Malara, A; Rabbertz, K H; Freund, B; Schell, D B; Savoiu, D; Geerebaert, Y; Becheva, E L; Nguyen, M A; Stahl leiton, A G; Magniette, F B; Fay, J; Gascon-shotkin, S M; Ille, B; Viret, S; Brown, R; Cockerill, D; Williams, T S; Markou, C; Anagnostou, G; Mohanty, A K; Creanza, D M; De robertis, G; Perrotta, A; Fanfani, A; Ciocca, C; Ravera, F; Toniolo, N; Badoer, S; Paolucci, P; Khan, W A; Voevodina, E; De iorio, A; Cavallari, F; Bellini, F; Cossutti, F; La licata, C; Da rold, A; Lee, K; Go, Y; Park, J; Kim, M S; Wan abdullah, W; Toldaiev, O; Golovtcov, V; Oreshkin, V; Sosnov, D; Soroka, D; Gninenko, S; Pivovarov, G; Erofeeva, M; Pozdnyakov, I; Danilov, M; Tarkovskii, E; Chadeeva, M; Philippov, D; Bychkova, O; Kardapoltsev, L; Onengut, G; Cerci, S; Vergili, M; Dolek, F; Sever, R; Gamsizkan, H; Ocalan, K; Dogan, H; Kaya, M; Kuo, C; Chang, Y; Albrow, M G; Banerjee, S; Berryhill, J W; Chevenier, G; Freeman, J E; Green, C H; O'dell, V R; Wenzel, H; Lukhanin, G; Di luca, S; Spiegel, L G; Deptuch, G W; Ratnikova, N; Paterno, M F; Burkett, K A; Jones, C D; Klima, B; Fagan, D; Hasegawa, S; Thompson, R; Gecse, Z; Liu, M; Pedro, K J; Jindariani, S; Zimmerman, T; Skirvin, T M; Hofman, D J; Evdokimov, O; Trauger, H C; Gouskos, L; Dishaw, A L; Karancsi, J; Kumar, A; Garg, R B; Keshri, S; Nogima, H; Sznajder, A; Vilela pereira, A; Eerola, P A; Pekkanen, J T K; Guldmyr, J H; Gele, D; Charles, L; Bonnin, C; Bourgatte, G; Van lancker, L; De clercq, J T; Favart, L; Grebenyuk, A; Yang, Y; Allard, Y; Genchev, V I; Galli mercadante, P; Tomei fernandez, T R; Ahuja, S; Ingram, Q; Rohe, T V; Colino, N; Ferrando, A; Garcia-abia, P; Calvo alamillo, E; Goy lopez, S; Delgado peris, A; Alvarez fernandez, A; Couderc, F; Moudden, Y; Csanad, M; Potenza, R; D'alessandro, R; Landi, G; Viliani, L; Bisello, D; Gasparini, F; Michelotto, M; Benettoni, M; Bellato, M A; Fanzago, F; De castro manzano, P; Mantovani, G; Menichelli, M; Passeri, D; Placidi, P; Manoni, E; Storchi, L; Cirio, R; Romero, A; Staiano, A; Pastrone, N; Solano, A M; Argiro, S; Bellan, R; Duran osuna, M C; Ershov, Y; Zamyatin, N; Palchik, V; Afanasyev, S; Nikonov, E; Miller, M; Baranov, A; Ivanov, V; Petrushanko, S; Perfilov, M; Eyyubova, G; Baskakov, A; Kachanov, V; Korablev, A; Konstantinov, D; Bordanovskiy, A; Kepuladze, Z; Hsiung, Y B; Liu, Y; Wu, S; Rankin, D S; Jacob, C J; Alverson, G; Hortiangtham, A; Roland, G M; Innocenti, G M; Allen, B L; Baty, A A; Narayanan, S M; Hu, M; Bi, R; Sung, K K H; Gunter, T K; Bueghly, J D; Yepes stork, P P; Mestvirishvili, A; Miller, M J; Snyder, C M; Branson, J G; Sfiligoi, I; Rogan, C S; Edwards-bruner, C R; Young, R W; Verweij, M; Goulianos, K; Galvez, P D; Zhu, K; Lapadatescu, V; Dutta, I; Somalwar, S V; Park, M; Gomez espinosa, T A; Kaplan, S M; Feld, D B; Vorobiev, I; Zuranski, A M; Mei, K; Knight iii, R R; Spencer, E; Hogan, J M; Syarif, R; Olmedo negrete, M A; Ghiasi shirazi, S; Erodotou, E; Ban, Y; Xue, Z; Kravchenko, I; Keller, J D; Knowlton, D P; Wigmans, M E J; Volobouev, I; Peltola, T H T; Kovac, M; Bruno, G L; Gregoire, G; Delaere, C; Bodlak, M; Della negra, M J; Tziaferi, E; Karageorgos, V W; Fountas, K; Mukhopadhyay, S; Basti, A; Raffaelli, F; Spandre, G; Mazzoni, E; Mandorli, G; Yoo, H D; Aerts, A; Eminizer, N C; Amram, O; Stenson, K M; Ford, W T; Johnson, A A; Green, M L; Godshalk, A P; Li, H; Kellogg, R; Jeng, G; Kunkle, J M; Baron, O; Feng, Y; Wong, K; Toufique, Y; Sehgal, V; Flowers, S C; Breedon, R E; Cox, P T; Mulhearn, M J; Gerhard, R M; Konigsberg, J; Sperka, D M; Quach, D M; Li, T; Andreev, V; Herve, L A M; Klabbers, P R; Svetek, A; Hussain, U; Evans, A C; Lannon, K P; Fedorov, S; Bodek, A; Demina, R; Khukhunaishvili, A; West, C A; Godang, R; Meier, M; Neumeister, N; Zagurski, K B; Prosolovich, V; Kuhn, J; Ratti, S P; Riccardi, C M; Vacchi, C; Szekely, G; Hobson, P R; Fernandez menendez, J; Rodriguez bouza, V; Butler, P; Barakat, N; Sakharov, V; Druzhkin, D; Lavrenov, P; Ahmed, I; Kim, T Y; Pac, M Y; Sculac, T; Gajdosik, T; Tamosiunas, K; Juodagalvis, A; Dudenas, V; Barannik, S; Bashir, A; Khan, F; Saeed, F; Khan, M T; Maravin, Y; Mohammadi, A; Noonan, D C; Bhopatkar, V S; Saunders, M D; Dittmar, M; Donega, M; Perrozzi, L; Nageli, C; Dorfer, C; Zhu, D H; Spirig, Y A; Ruini, D; Alishahiha, M; Ardalan, F; Saramad, S; Mansouri, R; Eskandari tadavani, E; Ragazzi, S; Tabarelli de fatis, T; Govoni, P; Ghezzi, A; Stringhini, G; Sevilla moreno, A C; Smith, C J; Abdelalim, A A; Hassan, A F A; Swain, S K; Sahoo, D K; Carrera jarrin, E F; Chauhan, S; Munoz chavero, F; Brondolin, E; Grossmann, J; Ambrogi, F; Hensel, C; Alves, G A; Baechler, J; Campi, D; Christiansen, J; De roeck, A; Gayde, J; Hansen, M; Kienzle, W; Reynaud, S; Schwick, C; Troska, J; Zeuner, W D; Osborne, J A; Moll, M; Franzoni, G; Tinoco mendes, A D; Milenovic, P; Garai, Z; Bendavid, J L; Dupont, N A; Gulhan, D C; Daponte, V; Martinez turtos, R; Giuffredi, R; Rapacz, K J; Otiougova, P; Zhu, G; Leggat, D A; Kiesel, M K; Lipinski, M; Wallraff, W; Meyer, A; Pook, T; Pooth, O; Behnke, O; Eckstein, D; Fischer, D J; Garay garcia, J; Vagnerini, A; Klanner, R; Stadie, H; Perieanu, A; Nowatschin, D S; Benecke, A; Abbas, S M; Schroeder, M; Lobelle pardo, P; Chwalek, T; Heidecker, C; Gomez, G; Cabrillo bartolome, I J; Orviz fernandez, P; Duarte campderros, J; Busson, P; Dobrzynski, L; Fontaine, G R R; Granier de cassagnac, R; Paganini, P R J; Arleo, F P; Balagura, V; Martin blanco, J; Ortona, G; Kucher, I; Contardo, D C; Lumb, N; Baulieu, G; Lagarde, F; Figueiredo marques, B E; Heath, H F; Kreczko, L; Clement, E J; Paramesvaran, S; Bologna, S; Bell, K W; Petyt, D A; Moretti, S; Hill, J A; Durkin, T J; Daskalakis, G; Kataria, S K; Iaselli, G; Pugliese, G; My, S; Sharma, A; Abbiendi, G; Taneja, S; Benussi, L; Fabbri, F; Calvelli, V; Frizziero, E; Barone, L M; De notaristefani, F; D'imperio, G; Gobbo, B; Jo, Y; Gyun, D; Yusupov, H; Liew, C S; Zabolotny, W M; Sobolev, S; Gavrikov, Y; Kozlov, I; Golubev, N; Andreev, Y; Tlisov, D; Zaytsev, V; Stepennov, A; Popova, E; Kolchanova, A; Shtol, D; Sirunyan, A; Gokbulut, G; Kara, O; Damarseckin, S; Guler, A M; Ozpineci, A; Hayreter, A; Li, S; Gruenendahl, S; Yarba, J; Para, A; Ristori, L F; Ronzhin, A I; Rubinov, P M; Reichanadter, M A; Churin, I; Beretvas, A; Muzaffar, S M; Lykken, J D; Gutsche, O; Baldin, B; Uplegger, L A; Lei, C M; Wu, W; Derylo, G E; Ruschman, M K; Lipton, R J; Whitbeck, A J; Schmitt, R; Contreras pasuy, L C; Olsen, J T; Cavanaugh, R J; Betts, R R; Wang, H; Sturdy, J T; Gutierrez jr, A; Campagnari, C F; White, D T; Brewer, F D; Qu, H; Ranjan, K; Naimuddin, M; Lalwani, K; Md, H; Shah, A H; Fonseca de souza, S; De jesus damiao, D; Revoredo, E A; Chinellato, J A; Amadei marques da costa, C; Lampen, P T; Wendland, L A; Brom, J; Andrea, J; Tavernier, S; Van doninck, W K; Van mulders, P K A; Clerbaux, B; Brun, H L; Rougny, R; Lauwers, J G E; Rashevski, G D; Rodozov, M N; Padula, S; Bernardes, C A; Dias maciel, C; Deiters, K; Feichtinger, D; Wiederkehr, S A; Cerrada, M; Fouz iglesias, M; Senghi soares, M; Pasquetto, E; Ferry, S C; Georgette, Z; Malcles, J; Lal, M K; Walia, G; Kaur, A; Ciulli, V; Lenzi, P; Dosselli, U; Zanetti, M; Costa, M; Dughera, G; Bartosik, N; Frueboes, T M; Karjavine, V; Skachkov, N; Litvinenko, A; Petrosyan, A; Teryaev, O; Trofimov, V; Makankin, A; Golunov, A; Savrin, V; Korotkikh, V; Vardanyan, I; Lukina, O; Belyaev, A; Korneeva, N; Petukhov, V; Skvortsov, V; Efremov, V; Smirnov, N; Shiu, J; Chen, P; Rohlf, J; Sulak, L R; St john, J M; Morse, D M; Krajczar, K F; Mironov, C M; Niu, X; Wang, J; Charaf, O; Matveev, M; Eppley, G W; Mccliment, E R; Ozok, F; Bilki, B; Zieser, A J; Olivito, D J; Vartak, A; Wood, J G; Hashemi, B T; Bean, A L; Wang, Q; Sheldon, P D; Tuo, S; Xu, Q; Roberts, J W; Pena herrera, C I; Anderson, D J; Lath, A; Jacques, P; Thomassen, P; Sun, M; Andrews, M B; Svyatkovskiy, A; Heintz, U; Lee, J; Wei, H; Wang, L; Prosper, H B; Adams, J R; Liu, S; Wang, D; Swanson, D; Thiltges, J F; Cowden, C S; Undleeb, S; Francois, B A L; Finger, M; Beuselinck, R; Tapper, A D; Malik, S A; Haddad, Y; Lane, R C; Panagiotou, A; Diamantopoulou, M; Mallios, S; Mondal, K; Bhattacharya, R; Bhowmik, D; Libby, J F; Azzurri, P; Foa, L; Tenchini, R; Verdini, P G; Ciampa, A; Manca, E; Radburn-smith, B C; Park, J; Swartz, M L; Sarica, U; Borcherding, F O; Barria, P; Goadhouse, S D; Xia, F; Joyce, M L; Belloni, A; Bouhali, O; Toback, D; Osipenkov, I L; Almes, G T; Walker, J W; Bylsma, B G; Conway, J S; Mc lean, C A; Stolp, D; Flores, C S; Avery, P R; Terentyev, N; Barashko, V; Ryd, A P E; Tucker, J M; Heltsley, B K; Wittich, P; Riley, D S; Skinnari, L A; Chu, J Y; Ignatenko, M; Lindgren, M A; Saltzberg, D P; Peck, A N; Herve, A A M; Loveless, R; Savin, A; Herndon, M F; Mason, W P; Martirosyan, S; Grahl, J; Hansen, P D; Saradhy, R; Mueller, C N; Planer, M D; Suh, I S; Hurtado anampa, K P; De barbaro, P J; Garcia-bellido alvarez de miranda, A A; Korjenevski, S K; Moolekamp, F E; Fallon, C T; Acosta castillo, J G; Gutay, L; Barker, A W; Gough, E; Poyraz, D; Van driessche, W G M; Verbeke, W L M; Beniozef, I S; Krasteva, R L; Winn, D R; Fenyvesi, A C; Makovec, A; Munro, C G; Sanchez cruz, S; Bernardino rodrigues, N A; Lokhovitskiy, A; Uribe estrada, C; Rivera martinez, R C; Rebane, L; Racioppi, A; Kim, H; Kim, T; Puljak, I; Rupeika, E A; Boyaryntsev, A; Saeed, M; Tanwir, S; Butt, U; Hussain, A; Nawaz, A; Khurshid, T; Imran, M; Sultan, A; Naeem, M; Kaadze, K; Modak, A; Taylor, R D; Kim, D; Grab, C; Nessi-tedaldi, F; Fischer, J; Manzoni, R A; Zagozdzinska-bochenek, A A; Berger, P; Reichmann, M P; Hashemi, M; Rezaei hosseinabadi, F; Mehrabpour, H; Paganoni, M; Farina, F M; Ciriolo, V; Joshi, Y R; Avila bernal, C A; Cabrera mora, A L; Segura delgado, M A; Gonzalez hernandez, C F; Asavapibhop, B; U-ruekolan, S; Kim, G; Choi, M; Aly, S; Sawy, F H; El sawy, M; Castaneda hernandez, A M; Branson, A B; Shamdasani, J; Martin, F; Tavkhelidze, D; Hegde, V; Aziz, T; Sur, N; Sutar, B J; Sarkar, T; Karmakar, S; Ghete, V M; Dragicevic, M G; Brandstetter, J; Marques moraes, A; Molina insfran, J A; Aspell, P; Baillon, P; Barney, D; Delikaris, D; Honma, A; Pape, L; Sakulin, H; Macpherson, A L; Bangert, N; Guida, R; Steggemann, J; Voutsinas, G G; Da silva gomes, D; Ben mimoun bel hadj, F; Bonnaud, J Y R; Canelli, F M; Bai, J; Qiu, J; Bian, J; Cheng, Y; Kukulies, C; Teroerde, M; Erdmann, M; Hebbeker, T; Zantis, F; Scheuch, F; Erdogan, Y; Campbell, A J; Kasemann, M; Lange, W; Raspiareza, A; Melzer-pellmann, I; Aldaya martin, M; Lewendel, B; Schmidt, R S; Lipka, E; Missiroli, M; Grados luyando, J M; Shevchenko, R; Babounikau, I; Steinbrueck, G; Vanhoefer, A; Ebrahimi, A; Pena rodriguez, K J; Stover, M; Niedziela, M A; Froehlich, A; Simonis, H J; Katkov, I; Wozniewski, S; Marco de lucas, R J; Lopez virto, A M; Jaramillo echeverria, R W; Hennion, P; Zghiche, A; Chiron, A; Romanteau, T; Beaudette, F; Lobanov, A; Grasseau, G J; Pigard, P; Pierre-emile, T B; El mamouni, H; Gouzevitch, M; Goldstein, J; Cussans, D G; Seif el nasr, S A; Smith, D; Titterton, A S; Ford, P J W; Olaiya, E O; Salisbury, J G; Paspalaki, G; Asenov, P; Hidas, P; Kiss, T N; Zalan, P; Bartok, M; Shukla, P; Abbrescia, M; De filippis, N; Donvito, G; Radogna, R; Miniello, G; Gelmi, A; Capiluppi, P; Marcellini, S; Odorici, F; Bonacorsi, D; Genta, C; Ferri, G; Saviano, G; Ferrini, M; Minutoli, S; Tosi, S; Lista, L; Passeggio, G; Breglio, G; Merola, M; Diemoz, M; Rahatlou, S; Baccaro, S; Bartoloni, A; Margaroli, F; Talamo, I G; Kim, J Y; Oh, G; Lim, J H; Lee, J; Mohamad idris, F B; Gani, A B; Cwiok, M; Doroba, K; Pyskir, A D; Martins galinhas, B E; Kim, V; Krivshich, A; Vorobyev, A; Ivanov, Y; Tarakanov, V; Lobodenko, A; Obikhod, T; Isayev, O; Kurov, O; Leonidov, A; Lvova, N; Kirsanov, M; Suvorova, O; Karneyeu, A; Demidov, S; Konoplyannikov, A; Popov, V; Pakhlov, P; Vinogradov, S; Klemin, S; Blinov, V; Skovpen, I; Chatrchyan, S; Grigorian, N; Kayis topaksu, A; Sunar cerci, D; Hos, I; Girgis chyla, S; Guler, Y; Kiminsu, U; Serin, M; Deniz, M; Turan, I; Eryol, F; Pozdnyakov, A; Liu, Z; Doan, T H; Genser, K; Hanlon, J E; Mcbride, P L; Pal, I; Verzocchi, M; Garren, L; Oleynik, G; Harris, R M; Bolla, G; Kowalkowski, J B; Evans, D E; Vaandering, E W; Patrick, J F; Rechenmacher, R; Prosser, A G; Messer, T A; Tiradani, A R; Rivera, R A; Jayatilaka, B A; Duarte, J M; Todri, A; Harr, R F; Richman, J D; Bhandari, R; Dordevic, M; Cirkovic, P; Mora herrera, C; Rosa lopes zachi, A; De paula carvalho, W; Kinnunen, R L A; Lehti, S T; Maeenpaeae, T H; Bloch, D; Chabert, E C; Rudolf, N G; Devroede, O; Skovpen, K; Moreels, L; Lontkovskyi, D; De wolf, E A; Van mechelen, P; Van spilbeeck, A B E; Georgiev, L S; Novaes, S F; Costa, M A; Costa leal, B; Horisberger, R P; De la cruz, B; Willmott, C; Perez-calero yzquierdo, A M; Dejardin, M M; Mehta, A; Barbagli, G; Focardi, E; Bacchetta, N; Gasparini, U; Pantano, D; Sgaravatto, M; Ventura, S; Zotto, P; Candelori, A; Pozzobon, N; Boletti, A; Servoli, L; Postolache, V; Rossi, A; Ciangottini, D; Alunni solestizi, L; Maselli, S; Migliore, E; Amapane, N C; Shchelina, K; Lopez fernandez, R; Sanchez hernandez, A; Heredia de la cruz, I; Ramirez sanchez, G; Matveev, V; Kracikova, T; Shmatov, S; Vasilev, S; Kurenkov, A; Oleynik, D; Verkheev, A; Voytishin, N; Proskuryakov, A; Bogdanova, G; Petrova, E; Bagaturia, I; Tsamalaidze, Z; Zhao, Z; Arcaro, D J; Barberis, E; Wamorkar, T; Wang, B; Ralph, D K; Velasco, M M; Odell, N J; Sevova, S; Li, W; Merlo, J; Onel, Y; Mermerkaya, H; Moeller, A R; Haytmyradov, M; Dong, R; Bugg, W M; Ragghianti, G C; Delannoy sotomayor, A G; Thapa, K; Yagil, A; Gerosa, R A; Masciovecchio, M; Schmitz, E J; Kapustinsky, J S; Greene, S V; Zhang, L; Vlimant, J V; Mughal, A; Cury siqueira, S; Gershtein, Y; Arora, S R R; Lin, W X; Stickland, D P; Mc donald, K T; Pivarski, J M C; Lucchini, M T; Higginbotham, S L; Rosenfield, M; Long, O R; Johnson, K F; Adams, T; Susa, T; Rykaczewski, H; Ge, Y; Li, J; Li, L; Bloom, K A; Monroy montanez, J A; Kunori, S; Wang, Z; Favart, D; Maltoni, F; Vidal marono, M; Delcourt, M; Markov, S I; Seez, C; Richards, A J; Ferguson, W; Saoulidou, N; Chatziangelou, M; Karathanasis, G; Kontaxakis, P; Jones, J A; Strologas, J; Katsoulis, P; Dutt, S; Roy chowdhury, S; Bhardwaj, R; Purohit, A; Singh, B; Behera, P K; Sharma, A; Spagnolo, P; Tonelli, G E; Fedi, G; Giannini, L; Poulios, S; Groote, J F; Untuc, B; Oztirpan, F O; Koseoglu, I; Luiggi lopez, E E; Krohn, M D; Hadley, N J; Shin, Y H; Safonov, A; Eusebi, R; Rose, A K; Overton, D A; Erbacher, R D; Funk, G N; Pilot, J R; Regnery, B J; Klimenko, S; Matchev, K; Gleyzer, S; Wang, J; Bortignon, P; Curry, D A; Sun, W M; Soffi, L; Lantz, S R; Wright, D; Cline, D; Cousins jr, R D; Erhan, S; Yang, X; Schnaible, C J; Dasgupta, A; Bradley, D C; Lazaridis, C; Monzat, D; Dodd, L M; Tikalsky, J L; Kapusta, J; Gilbert, W J; Lesko, Z J; Marinelli, N; Wayne, M R; Heering, A H; Galanti, M; Han, J Y; Duh, Y; Roy, A; Arabgol, M; Hacker, T J; Salva, S; Petrov, V; Barychevski, V; Drobychev, G; Lobko, A; Gabusi, M; Fabris, L; Conte, E R E; Kasprowicz, G H; Kyberd, P; Cole, J E; Reid, I D; Lopez, J M; Salazar gonzalez, C A; Benzon, A M; Pelagio, L; Walsh, M F; Postnov, A; Lelas, D; Vaitkus, J V; Jurciukonis, D; Sulmanas, B; Ahmad, A; Ahmed, W; Jalil, S H; Kahl, W E; Taylor, D R; Choi, Y I; Jeong, Y; Roy, T; Guerrero ibarra, D F; Schoenenberger, M A; Khateri, P; Etesami, S M; Fiorini, E; Pullia, A; Magni, S; Gennai, S; Fiorendi, S; Zuolo, D; Sanabria arenas, J C; Florez bustos, C A; Holguin coral, A; Mendez, H; Srimanobhas, N; Jaikar, A H; Arteche gonzalez, F J; Call, K R; Vazquez valencia, E F; Calderon monroy, M A; Aly mohamed mahmoud mohamed, R; Elkafrawy, T; Abdelmaguid, A; Mal, P K; Yuan, L; Lomidze, I; Prangishvili, I; Adamov, G; Dube, S S; Dugad, S; Mohanty, G B; Bhat, M A; Bheesette, S; Abou kors, D J

    CMS is a general purpose proton-proton detector designed to run at the highest luminosity at the LHC. It is also well adapted for studies at the initially lower luminosities. The CMS Collaboration consists of over 1800 scientists and engineers from 151 institutes in 31 countries. The main design goals of CMS are: \\begin{enumerate} \\item a highly performant muon system, \\item the best possible electromagnetic calorimeter \\item high quality central tracking \\item hermetic calorimetry \\item a detector costing less than 475 MCHF. \\end{enumerate} All detector sub-systems have started construction. Engineering Design Reviews of parts of these sub-systems have been successfully carried-out. These are held prior to granting authorization for purchase. The schedule for the LHC machine and the experiments has been revised and CMS will be ready for first collisions now expected in April 2006. \\\\\\\\ ~~~~$\\bullet$ Magnet \\\\ The detector (see Figure) will be built around a long (13~m) and large bore ($\\phi$=5.9~m) high...

  7. Receiving vectors of muon telescope of cosmic ray station "Novosibirsk"

    Science.gov (United States)

    Yanchukovskiy, Valeriy; Grigoryev, Vladislav; Krimsky, Germogen; Kuzmenko, Vasiliy; Molchanov, Anton

    2016-03-01

    The method of receiving vectors allows us to determine cosmic ray anisotropy at each moment. Also, the method makes it possible to study fast anisotropy fluctuations related to the interplanetary medium dynamics. Receiving vectors have been calculated earlier for neutron monitors and muon telescopes. However, the most of muon telescopes of the network of cosmic ray stations for which calculations were made does not operate now. In recent years, new improved detectors appeared. Unfortunately, the use of them is limited because of absence of receiving coefficients. These detectors include the matrix telescope in Novosibirsk. Therefore, components of receiving vector for muon telescopes of observation cosmic ray station "Novosibirsk" have been defined. Besides, design features of the facility, its orientation, and directional diagram depending on zenith and azimuth angles were taken into account. Also, for the system of telescopes, we allowed for coupling coefficients found experimentally using the test detector.

  8. The Compact Muon Solenoid Detector Control System

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The Compact Muon Solenoid (CMS) is a CERN multi-purpose experiment that exploits the physics of the Large Hadron Collider (LHC). The Detector Control System (DCS) ensures a safe, correct and efficient experiment operation, contributing to the recording of high quality physics data. The DCS is programmed to automatically react to the LHC changes. CMS sub-detector’s bias voltages are set depending on the machine mode and particle beam conditions. A protection mechanism ensures that the sub-detectors are locked in a safe mode whenever a potentially dangerous situation exists. The system is supervised from the experiment control room by a single operator. A small set of screens summarizes the status of the detector from the approximately 6M monitored parameters. Using the experience of nearly two years of operation with beam the DCS automation software has been enhanced to increase the system efficiency. The automation allows now for configuration commands that can be used to automatically pre-configure hardwar...

  9. Muon tomography of rock density using Micromegas-TPC telescope

    Science.gov (United States)

    Hivert, Fanny; Busto, José; Gaffet, Stéphane; Ernenwein, Jean-Pierre; Brunner, Jurgen; Salin, Pierre; Decitre, Jean-Baptiste; Lázaro Roche, Ignacio; Martin, Xavier

    2014-05-01

    The knowledge of the subsurface properties is essentially obtained by geophysical methods, e.g., seismic imaging, electric prospection or gravimetry. The current work is based on a recently developed method to investigate in situ the density of rocks using a measurement of the muon flux, whose attenuation depends on the quantity of matter the particles travel through and hence on the rock density and thickness. The present project (T2DM2) aims at performing underground muon flux measurements in order to characterize spatial and temporal rock massif density variations above the LSBB underground research facility in Rustrel (France). The muon flux will be measured with a new muon telescope device using Micromegas-Time Projection Chamber (TPC) detectors. The first step of the work presented covers the muon flux simulation based on the Gaisser model (Gaisser T., 1990), for the muon flux at the ground level, and on the MUSIC code (Kudryavtsev V. A., 2008) for the propagation of muons through the rock. The results show that the muon flux distortion caused by density variations is enough significant to be observed at 500 m depth for measurement times of about one month. This time-scale is compatible with the duration of the water transfer processes within the unsaturated Karst zone where LSBB is located. The work now focuses on the optimization of the detector layout along the LSBB galleries in order to achieve the best sensitivity.

  10. Portable cosmic muon telescope for environmental applications

    Science.gov (United States)

    Barnaföldi, Gergely Gábor; Hamar, Gergő; Melegh, Hunor Gergely; Oláh, László; Surányi, Gergely; Varga, Dezső

    2012-10-01

    A portable, low power consumption cosmic muon tracking system based on Close Cathode MWPC technology is presented, which is designed for operation in highly humid environmental conditions such as underground caves, tunnels, or cellars. The system measures the angular distribution of cosmic muons with resolution of 10 mrad, allowing for a tomographic mapping of the soil density above the detector unit. The size of the detector, 0.1 m2 of total sensitive surface, was designed to fulfill the requirement of transport through humanly passable natural cave tunnels. First results from the Ariadne Cave System in Pilis Mountains, Hungary are shown, which constrains the necessary data taking time for meaningful tomographic mapping.

  11. The Compact Muon Solenoid Experiment at the Large Hadron Collider The Compact Muon Solenoid Experiment at the Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    David Delepine

    2012-02-01

    Full Text Available The Compact Muon Solenoid experiment at the CERN Large Hadron Collider will study protonproton collisions at unprecedented energies and luminosities. In this article we providefi rst a brief general introduction to particle physics. We then explain what CERN is. Thenwe describe the Large Hadron Collider at CERN, the most powerful particle acceleratorever built. Finally we describe the Compact Muon Solenoid experiment, its physics goals,construction details, and current status.El experimento Compact Muon Solenoid en el Large Hadron Collider del CERN estudiarácolisiones protón protón a energías y luminosidades sin precedente. En este artículo presentamos primero una breve introducción general a la física de partículas. Despuésexplicamos lo que es el CERN. Luego describimos el Large Hadron Collider, el más potente acelerador de partículas construido por el hombre, en el CERN. Finalmente describimos el experimento Compact Muon Solenoid, sus objetivos en física, los detalles de su construcción,y su situación presente.

  12. Muon telescope based on Micromegas detectors: From design to data acquisition

    OpenAIRE

    Lázaro Ignacio; Hivert Fanny; Decitre Jean-Baptiste; Oliveira Rui; Pizzirusso Olivier; Muller Hans; Jeanneau Fabien; Giomataris Ioannis; Gaffet Stéphane

    2014-01-01

    We describe the basis of the muon telescope used within the Temporal Tomography Densitometric by the Measure of Muons (T2DM2) project developed in the LSBB URL facilities. The telescope allows measuring the flux of muons, as well as their energy and origin for the characterization of spatial and temporal rock density variations.

  13. Muon telescope based on Micromegas detectors: From design to data acquisition

    Directory of Open Access Journals (Sweden)

    Lázaro Ignacio

    2014-01-01

    Full Text Available We describe the basis of the muon telescope used within the Temporal Tomography Densitometric by the Measure of Muons (T2DM2 project developed in the LSBB URL facilities. The telescope allows measuring the flux of muons, as well as their energy and origin for the characterization of spatial and temporal rock density variations.

  14. An analysis of the performance of the Compact Muon Solenoid Endcap Muon Chambers

    CERN Document Server

    Ippolito, Nicole M

    2008-01-01

    In the fall of 2006, the Compact Muon Solenoid, one of the two multi-purpose detectors built along the Large Hadron Collider ring, was used to collect data in a full magnetic field of 4 Tesla. This series of runs was the so-named Magnet Test-Cosmic Challenge (or MTCC). For the first time, some sector of all sub-detectors were included in the data chain. Many terabytes of data was collected during this approximately month-long endeavor. The analysis of some subset of this data is considered herein. All work focused on the achievements made by the Cathode-Strip Chambers, which are part of the Endcap Muon system. Two major areas were considered: the resolution being achieved by the CSC's using the reconstruction software at the time of the MTCC, and the possibility of momentum reconstruction from the local tracks within the CSC's, removed from other parts of the detector. This thesis is divided into a number of different chapters. In chapter 1, the physics which the LHC hopes to achieve is discussed in some gene...

  15. Compact muon source with electron accelerator for a mobile muSR facility

    Energy Technology Data Exchange (ETDEWEB)

    Nagamine, K., E-mail: kanetada.nagamine@ucr.ed [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Muon Science Laboratory, IMSS, KEK, Oho, Tsukuba, Ibaraki 305-0801 (Japan); Atomic Physics Laboratory, RIKEN, Wako, Saitama 351-0191 (Japan); Miyadera, H.; Jason, A. [AOT-ABS, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Seki, R. [Department of Physics, State University of California, Northridge, CA 91330-8268 (United States)

    2009-04-15

    In order to increase accessibility to the muSR spectroscopy for people in various fields of science and engineering, a conceptual design study was made to realize a compact and inexpensive muon source by using 300 MeV electron microtron and a large-acceptance muon-capture. Advanced radiography imaging with muon spin probes will become possible for bio-medical studies, inspection of re-enforced architectures, etc.

  16. Compact storage ring to search for the muon electric dipole moment

    NARCIS (Netherlands)

    Adelmann, A.; Kirch, K.; Onderwater, C. J. G.; Schietinger, T.

    We present the concept of a compact storage ring of less than 0.5 m orbit radius to search for the electric dipole moment (EDM) of the muon (d(mu)) by adapting the 'frozen spin' method. At existing muon facilities a statistics limited sensitivity of d(mu) similar to 7 x 10(-23) e cm can be achieved

  17. Pre-selecting muon events in the camera server of the ASTRI telescopes for the Cherenkov Telescope Array

    Science.gov (United States)

    Maccarone, Maria C.; Mineo, Teresa; Capalbi, Milvia; Conforti, Vito; Coffaro, Martina

    2016-08-01

    The Cherenkov Telescope Array (CTA) represents the next generation of ground based observatories for very high energy gamma ray astronomy. The CTA will consist of two arrays at two different sites, one in the northern and one in the southern hemisphere. The current CTA design foresees, in the southern site, the installation of many tens of imaging atmospheric Cherenkov telescopes of three different classes, namely large, medium, and small, so defined in relation to their mirror area; the northern hemisphere array would consist of few tens of the two larger telescope types. The telescopes will be equipped with cameras composed either of photomultipliers or silicon photomultipliers, and with different trigger and read-out electronics. In such a scenario, several different methods will be used for the telescopes' calibration. Nevertheless, the optical throughput of any CTA telescope, independently of its type, can be calibrated analyzing the characteristic image produced by local atmospheric highly energetic muons that induce the emission of Cherenkov light which is imaged as a ring onto the focal plane if their impact point is relatively close to the telescope optical axis. Large sized telescopes would be able to detect useful muon events under stereo coincidence and such stereo muon events will be directly addressed to the central CTA array data acquisition pipeline to be analyzed. For the medium and small sized telescopes, due to their smaller mirror area and large inter-telescope distance, the stereo coincidence rate will tend to zero; nevertheless, muon events will be detected by single telescopes that must therefore be able to identify them as possible useful calibration candidates, even if no stereo coincidence is available. This is the case for the ASTRI telescopes, proposed as pre-production units of the small size array of the CTA, which are able to detect muon events during regular data taking without requiring any dedicated trigger. We present two fast

  18. The EEE Project: a sparse array of telescopes for the measurement of cosmic ray muons

    Science.gov (United States)

    La Rocca, P.; Abbrescia, M.; Avanzini, C.; Baldini, L.; Baldini Ferroli, R.; Batignani, G.; Bencivenni, G.; Bossini, E.; Chiavassa, A.; Cicalò, C.; Cifarelli, L.; Coccetti, F.; Coccia, E.; Corvaglia, A.; De Gruttola, D.; De Pasquale, S.; Di Giovanni, A.; D'Incecco, M.; Dreucci, M.; Fabbri, F. L.; Fattibene, E.; Ferraro, A.; Frolov, V.; Galeotti, P.; Garbini, M.; Gemme, G.; Gnesi, I.; Grazzi, S.; Gustavino, C.; Hatzifotiadou, D.; Liciulli, F.; Maggiora, A.; Maragoto Rodriguez, O.; Maron, G.; Martelli, B.; Mazziotta, M. N.; Miozzi, S.; Nania, R.; Noferini, F.; Nozzoli, F.; Panareo, M.; Panetta, M.; Paoletti, R.; Park, W.; Perasso, L.; Pilo, F.; Piragino, G.; Riggi, F.; Righini, G. C.; Rizzi, M.; Sartorelli, G.; Scapparone, E.; Schioppa, M.; Scribano, A.; Selvi, M.; Serci, S.; Siddi, E.; Squarcia, S.; Stori, L.; Taiuti, M.; Terreni, G.; Visnyei, O. B.; Vistoli, M. C.; Votano, L.; Williams, M. C. S.; Zani, S.; Zichichi, A.; Zuyeuski, R.

    2016-12-01

    The Extreme Energy Events (EEE) Project is meant to be the most extensive experiment to detect secondary cosmic particles in Italy. To this aim, more than 50 telescopes have been built at CERN and installed in high schools distributed all over the Italian territory. Each EEE telescope comprises three large area Multigap Resistive Plate Chambers (MRPCs) and is capable of reconstructing the trajectories of the charged particles traversing it with a good angular resolution. The excellent performance of the EEE telescopes allows a large variety of studies, from measuring the local muon flux in a single telescope, to detecting extensive air showers producing time correlations in the same metropolitan area, to searching for large-scale correlations between showers detected in telescopes tens, hundreds or thousands of kilometers apart. In addition to its scientific goal, the EEE Project also has an educational and outreach objective, its aim being to motivate young people by involving them directly in a real experiment. High school students and teachers are involved in the construction, testing and start-up of the EEE telescope in their school, then in its maintenance and data-acquisition, and later in the analysis of the data. During the last couple of years a great boost has been given to the EEE Project through the organization of simultaneous and centralized data taking with the whole telescope array. The raw data from all telescopes are transferred to CNAF (Bologna), where they are reconstructed and stored. The data are currently being analyzed, looking at various topics: variation of the rate of cosmic muons with time, upward going muons, muon lifetime, search for anisotropies in the muon angular distribution and for time coincidences between stations. In this paper an overall description of the experiment is given, including the design, construction and performance of the telescopes. The operation of the whole array is also presented by showing the most recent

  19. Time calibration with atmospheric muon tracks in the ANTARES neutrino telescope

    OpenAIRE

    Adrián Martínez, Silvia; Albert, A.; André, M.; Anton, G.; Ardid Ramírez, Miguel; Aubert, J.-J.; Baret, B.; Barrios Martí, J.; Basa, S.; Bertin, V.; Bou Cabo, Manuel; FELIS ENGUIX, IVÁN; Herrero Debón, Alicia; Martínez Mora, Juan Antonio; Saldaña-Coscollar, María

    2016-01-01

    The ANTARES experiment consists of an array of photomultipliers distributed along 12 lines and located deep underwater in the Mediterranean Sea. It searches for astrophysical neutrinos collecting the Cherenkov light induced by the charged particles, mainly muons, produced in neutrino interactions around the detector. Since at energies of ∼10 TeV the muon and the incident neutrino are almost collinear, it is possible to use the ANTARES detector as a neutrino telescope and identify a sour...

  20. Calibration and performance of the STAR Muon Telescope Detector using cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C. [University of Science and Technology of China, Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics (IHEP and USTC), USTC, Hefei 230026 (China); Huang, X.J., E-mail: huangxj12@mails.tsinghua.edu.cn [Tsinghua University, Beijing 100084 (China); Du, C.M. [Institute of Modern Physics, Lanzhou 730000 (China); Huang, B.C. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Ahammed, Z.; Banerjee, A. [Variable Energy Cyclotron Centre, West Bengal 700064 (India); Bhattarari, P. [University of Texas at Austin, Austin, TX 78712 (United States); Biswas, S. [Variable Energy Cyclotron Centre, West Bengal 700064 (India); Bowen, B. [University of Texas at Austin, Austin, TX 78712 (United States); Butterworth, J. [Rice University, Houston, TX 77005 (United States); Calderón de la Barca Sánchez, M. [University of California, Davis, CA 95616 (United States); Carson, H. [Texas A and M University, College Station, TX 77843 (United States); Chattopadhyay, S. [Variable Energy Cyclotron Centre, West Bengal 700064 (India); Cebra, D. [University of California, Davis, CA 95616 (United States); Chen, H.F. [University of Science and Technology of China, Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics (IHEP and USTC), USTC, Hefei 230026 (China); Cheng, J.P. [Tsinghua University, Beijing 100084 (China); Codrington, M. [University of Texas at Austin, Austin, TX 78712 (United States); Eppley, G. [Rice University, Houston, TX 77005 (United States); Flores, C. [University of California, Davis, CA 95616 (United States); Geurts, F. [Rice University, Houston, TX 77005 (United States); and others

    2014-10-21

    We report the timing and spatial resolution from the Muon Telescope Detector (MTD) installed in the STAR experiment at RHIC. Cosmic ray muons traversing the STAR detector have an average transverse momentum of 6 GeV/c. Due to their very small multiple scattering, these cosmic muons provide an ideal tool to calibrate the detectors and measure their timing and spatial resolution. The values obtained were ∼100 ps and ∼1–2 cm. These values are comparable to those obtained from cosmic-ray bench tests and test beams.

  1. Compact Muon Solenoid Experimental Discovery Potential for Supersymmetry is Same-Charge Di-Lepton Events

    CERN Document Server

    Pakhotin, Yuriy Aleksandrovich

    2010-01-01

    Same-charge di-lepton events provide a very clean experimental signature for Supersymmetry (SUSY) search. This work studies the Compact Muon Solenoid (CMS) experiment search potential for new physics with same-charge, isolated di-leptons accompanied by jets and large missing transverse energy. The results show that CMS sensitivity for new physics at 7 TeV with integrated luminosity 100 pb$^{−1}$ will exceed current Tevatron limits. Muon detection for SUSY discovery in the forward direction is accomplished using cathode strip chambers (CSC). These detectors identify muons, provide a fast muon trigger, and give a precise measurement of the muon trajectory. There are 468 six-plane CSCs in the system. The efficiency of finding muon trigger primitives (muon track segments) was studied using 36 CMS CSCs and cosmic ray muons during the Magnet Test and Cosmic Challenge (MTCC) exercise conducted by the CMS experiment in 2006. The efficiency of finding 2-dimensional trigger primitives within 6-layer chambers was foun...

  2. Time calibration with atmospheric muon tracks in the ANTARES neutrino telescope

    CERN Document Server

    Adrián-Martínez, S.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bogazzi, C.; Bormuth, R.; Bou-Cabo, M.; Bouwhuis, M.C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Dumas, A.; Eberl, T.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fermani, P.; Flaminio, V.; Folger, F.; Fusco, L.A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Gracia-Ruiz, R.; Gómez-González, J.P.; Graf, K.; van Haren, H.; Heijboer, A.J.; Hello, Y.; Hernández-Rey, J.J.; Herrero, A.; Hößl, J.; Hofestädt, J.; Hugon, C.; James, C.W.; de Jong, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kooijman, P.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, G.; Lattuada, D.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J.A.; Martini, S.; Mathieu, A.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Neff, M.; Nezri, E.; Păvălaş, G.E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Roensch, K.; Rostovtsev, A.; Saldaña, M.; Samtleben, D.F.E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schulte, S.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Steijger, J.J.M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Trovato, A.; Tselengidou, M.; Tönnis, C.; Turpin, D.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Visser, E.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J.D.; Zúñiga, J.

    The ANTARES experiment consists of an array of photomultipliers distributed along 12 lines and located deep underwater in the Mediterranean Sea. It searches for astrophysical neutrinos collecting the Cherenkov light induced by the charged particles, mainly muons, produced in neutrino interactions around the detector. Since at energies of $\\sim$10 TeV the muon and the incident neutrino are almost collinear, it is possible to use the ANTARES detector as a neutrino telescope and identify a source of neutrinos in the sky starting from a precise reconstruction of the muon trajectory. To get this result, the arrival times of the Cherenkov photons must be accurately measured. A to perform time calibrations with the precision required to have optimal performances of the instrument is described. The reconstructed tracks of the atmospheric muons in the ANTARES detector are used to determine the relative time offsets between photomultipliers. Currently, this method is used to obtain the time calibration constants for ph...

  3. Muon Telescope (MuTe): A first study using Geant4

    Science.gov (United States)

    Asorey, H.; Balaguera-Rojas, A.; Calderon-Ardila, R.; Núñez, L. A.; Sanabria-Gómez, J. D.; Súarez-Durán, M.; Tapia, A.

    2017-07-01

    Muon tomography is based on recording the difference of absorption of muons by matter, as ordinary radiography does for using X-rays. The interaction of cosmic rays with the atmosphere produces extensive air showers which provides an abundant source for atmospheric muons, benefiting various applications of muon tomography, particularly the study of the inner structure of volcanoes. The MuTe (for Muon Telescope) is a hybrid detector composed of scintillation bars and a water Cherenkov detector designed to measure cosmic muon flux crossing volcanic edifices. This detector consists of two scintillator plates (1.44 m2 with 30 x 30 pixels), with a maximum distance of 2.0m of separation. In this work we report the first simulation of the MuTe using GEANT4 -set of simulation tools, based in C++ - that provides information about the interaction between radiation and matter. This computational tool allows us to know the energy deposited by the muons and modeling the response of the scintillators and the water cherenkov detector to the passage of radiation which is crucial to compare to our data analysis.

  4. Hubble Space Telescope imaging of compact steep spectrum radio sources

    NARCIS (Netherlands)

    deVries, WH; ODea, CP; Baum, SA; Sparks, WB; Biretta, J; deKoff, S; Golombek, D; Lehnert, MD; Macchetto, F; McCarthy, P; Miley, GK

    We present Hubble Space Telescope WFPC2 images taken through a broad red filter (F702W) of 30 Third Cambridge Catalog compact steep spectrum (CSS) radio sources. We have overlaid radio maps taken from the literature on the optical images to determine the radio-optical alignment and to study detailed

  5. The EEE Project: An extended network of muon telescopes for the study of cosmic rays

    Science.gov (United States)

    Panetta, M. P.; EEE Collaboration

    2016-07-01

    The EEE (Extreme Energy Event) Project's goal is the study of high energy Extensive Air Showers (EAS) over a very large area, using an array of muon telescopes, based on position-sensitive Multigap Resistive Plate Chambers (MRPCs). Young students are directly involved in assembling and monitoring the telescopes, with the aim to introduce them to advanced physics research. At present the array is composed of more than 40 stations, distributed on a total area of 3 ×105km2. Most of them are independently taking data since several years. A new combined run (RUN-1) has started in February 2015, with 35 telescopes taking data simultaneously for a collected statistics larger than 4 ×109 reconstructed events. An overview of the experiment and some results from studies on correlated muons from the same EAS, and on solar events as Forbush decreases, will be shown.

  6. Compact Muon Solenoid: largest physics experiment to be held in 2007

    CERN Multimedia

    Atkins, William

    2007-01-01

    "over the last fifteen years about 2'300 engineers and scientists from over 150 scientific institutions in 37 countries around the world have worked together to design and build a gigantic general-purpose particle detector, what is called the Compact Muon Solenoid (CMS)." (1 page)

  7. TESTING OF FRAMED STRUCTURE PARTS OF COMPACT MUON SOLENOID BY NONDESTRUCTIVE METHOD

    Directory of Open Access Journals (Sweden)

    L. Larchenkov

    2013-01-01

    Full Text Available Suspension parts of a compact muon solenoid for Large Hadron Collider have been tested in the paper. The paper describes a steady-state and cyclic “tension-compression” load created by superconducting electromagnet with energy of 3 GJ and magnetic induction of 4 tesla. A nondestructive testing method has been applied in the paper.

  8. A Micromegas-based telescope for muon tomography: The WatTo experiment

    Science.gov (United States)

    Bouteille, S.; Attié, D.; Baron, P.; Calvet, D.; Magnier, P.; Mandjavidze, I.; Procureur, S.; Riallot, M.; Winkler, M.

    2016-10-01

    This paper reports about the first Micromegas-based telescope built for applications in muon tomography. The telescope consists of four, 50×50 cm2 resistive multiplexed Micromegas with a 2D layout and a self-triggering electronics based on the Dream chip. Thanks to the multiplexing, the four detectors were readout with a single Front-End Unit. The high voltages were provided by a dedicated card using low consumption CAEN miniaturized modules. A nano-PC (Hummingboard) ensured the HV control and monitoring coupled with a temperature feedback as well as the data acquisition and storage. The overall consumption of the instrument yielded 30 W only, i.e. the equivalent of a standard bulb. The telescope was operated outside during 3.5 months to image the water tower of the CEA-Saclay research center, including a 1.5-month campaign with solar panels. The development of autonomous, low consumption muon telescopes with unprecedented accuracy opens new applications in imaging as well as in the field of muon metrology.

  9. A Micromegas-based telescope for muon tomography: The WatTo experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bouteille, S. [CEA, Centre de Saclay, Irfu/SPhN, 91191 Gif sur Yvette (France); Attié, D.; Baron, P.; Calvet, D.; Magnier, P.; Mandjavidze, I. [CEA, Centre de Saclay, Irfu/Sedi, 91191 Gif sur Yvette (France); Procureur, S., E-mail: Sebastien.Procureur@cea.fr [CEA, Centre de Saclay, Irfu/SPhN, 91191 Gif sur Yvette (France); Riallot, M.; Winkler, M. [CEA, Centre de Saclay, Irfu/Sedi, 91191 Gif sur Yvette (France)

    2016-10-21

    This paper reports about the first Micromegas-based telescope built for applications in muon tomography. The telescope consists of four, 50×50 cm{sup 2} resistive multiplexed Micromegas with a 2D layout and a self-triggering electronics based on the Dream chip. Thanks to the multiplexing, the four detectors were readout with a single Front-End Unit. The high voltages were provided by a dedicated card using low consumption CAEN miniaturized modules. A nano-PC (Hummingboard) ensured the HV control and monitoring coupled with a temperature feedback as well as the data acquisition and storage. The overall consumption of the instrument yielded 30 W only, i.e. the equivalent of a standard bulb. The telescope was operated outside during 3.5 months to image the water tower of the CEA-Saclay research center, including a 1.5-month campaign with solar panels. The development of autonomous, low consumption muon telescopes with unprecedented accuracy opens new applications in imaging as well as in the field of muon metrology.

  10. The Hadron Calorimeter of the compact muon solenoid (CMS)

    Science.gov (United States)

    Hagopian, Vasken; CMS Collaboration

    1998-02-01

    The Hadron Calorimeter of CMS is about 1,000 tons of copper and scintillator sandwich in a 4 tesla magnetic field. It will be built in three segments, the barrel surrounding the central portion and the two end caps. The scintillators will use a tower structure made of grooved megatiles with wavelength shifting (WLS) fibers imbedded inside the grooves. The coverage extends to η = 3.0 and is hermetic with very few gaps. The 1995 test beam data was taken inside a 3 tesla magnet showed that it will work in a magnetic field, but will require a tail catcher inside the muon system.

  11. Atmospheric MUons from PArametric formulas: a fast GEnerator for neutrino telescopes (MUPAGE)

    Science.gov (United States)

    Carminati, G.; Bazzotti, M.; Margiotta, A.; Spurio, M.

    2008-12-01

    Neutrino telescopes will open, in the next years, new opportunities in observational high energy astrophysics. In these detectors, atmospheric muons from primary cosmic ray interactions in the atmosphere play an important role, because they provide the most abundant source of events for calibration and test. On the other side, they represent the major background source. In this paper a fast Monte Carlo generator (called MUPAGE) of bundles of atmospheric muons for underwater/ice neutrino telescopes is presented. MUPAGE is based on parametric formulas [Y. Becherini, A. Margiotta, M. Sioli, M. Spurio, Astrop. Phys. 25 (2006) 1] obtained from a full Monte Carlo simulation of cosmic ray showers generating muons in bundle, which are propagated down to 5 km w.e. It produces the event kinematics on the surface of a user-defined cylinder, surrounding the virtual detector. The multiplicity of the muons in the bundle, the muon lateral distribution and energy spectrum are simulated according to a specific model of primary cosmic ray flux, with constraints from measurements of the muon flux with underground experiments. As an example of application, the result of the generation of events on a cylindrical surface of ˜1.4 km2 at a depth of 2450 m of water is presented. Catalogue identifier: AEBT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3534 No. of bytes in distributed program, including test data, etc.: 61 383 Distribution format: tar.gz Programming language: C++ Computer: Pentium M, 2.0 GHz; 2x Intel Xeon Quad Core, 2.33 GHz Operating system: Scientific Linux 3.x; Scientific Linux 4.x; Slackware 12.0.0 RAM: 50 MB Word size: 32 bits Classification: 1.1, 11.3 External routines: The ROOT system (http

  12. A propose for a counting and recording system for cosmic ray (muon) telescopes

    Science.gov (United States)

    Braga, Carlos Roberto; Schuch, Nelson Jorge; Dal Lago, Alisson; Campos, Alexandre

    2012-07-01

    A multidirecional high energy cosmic ray (muon) telescope is operational at the Southern Space Observatory, in Sao Martinho da Serra, RS, Brazil. This telescope is part of the Global Muon Detector Network (GMDN) and aims to study and forecast Space Weather. This paper proposes a new counting, correlation and recording solution based on an embedded system able to interface observational data by internet for remote monitoring. It is built around a Rabbit 3000 microcontroller with TCP/IP Ethernet 10Base-T connectivity. It is able to detect and count the 200ns pulses generated by the sensor system (scintillator plastics coupled with photomultipliers) during a specified period of time (generally one second). A preliminary version of a monitoring web page was developed and it is able to show the cosmic ray (muon) data of one detector in real time. The current system is an attempt to improve the reliability of the telescope when comparing to the recording system based on a personal computer, currently under operation. One advantage is the easy maintenance, since all the counting and correlation boards currently under operation can be replaced by an embedded system. Besides, as the hardware is of-the-shelf, it is only necessary to develop software routines, which is based on royalty-free libraries.

  13. Resistive plate chamber online data quality monitoring for the Compact Muon Solenoid at the European Center for Nuclear Research

    CERN Document Server

    Whitaker, William David

    2008-01-01

    A comprehensive, online, data quality monitoring software package has been developed for the muon system at the European Center for Nuclear Research's (CERN's) Compact Muon Solenoid (CMS) experiment. The package was written in Java, C++, and HTML. It provides real-time, RPC performance feedback in an easy to use graphic user interface (GUI).

  14. Data filtering and expected muon and neutrino event rates in the KM3NeT neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Shanidze, Rezo [ECAP, University of Erlangen-Nuremberg, Erwin-Rommel-Str.1, 91058 Erlangen (Germany); Collaboration: ANTARES-KM3NeT-Erlangen-Collaboration

    2011-07-01

    KM3NeT is a future Mediterranean deep sea neutrino telescope with an instrumented volume of several cubic kilometres. The neutrino and muon events in KM3NeT will be reconstructed from the signals collected from the telescope's photo detectors. However, in the deep sea the dominant source of photon signals are the decays of K40 nuclei and bioluminescence. The selection of neutrino and muon events requires the implementation of fast and efficient data filtering algorithms for the reduction of accidental background event rates. Possible data filtering and triggering schemes for the KM3NeT neutrino telescope and expected muon and neutrino event rates are discussed.

  15. A compact grism spectrometer for small optical telescopes

    Science.gov (United States)

    Ludovici, Dominic A.; Mutel, Robert L.

    2017-11-01

    We describe a low-cost compact grism spectrometer for use with small astronomical telescopes. The system can be used with existing charge-coupled device (CCD) cameras and filter wheels. The optical design consists of two prisms, a transmission grating, a collimating lens, and a focusing lens, all enclosed in a 3D-printed housing. The system can be placed inline, typically in an unused filter wheel slot. Unlike conventional spectrometers, it does not require the target to be precisely positioned on a narrow slit. The mean resolving power ( R ≈ 300) is sufficient to resolve the spectral lines of many astronomical objects discussed in undergraduate astronomy labs, such as stellar absorption lines along the main-sequence, emission lines of early type hot stars and galactic novae, and redshifts of bright quasars and supernovae.

  16. The upgrade and re-validation of the Compact Muon Solenoid Electromagnetic Calorimeter Control System

    CERN Document Server

    Holme, Oliver; Calafiori, D Di; Dissertori, G; Djambazov, L; Jovanovic, D; Lustermann, W; Zelepoukine, S

    The Electromagnetic Calorimeter (ECAL) is one of the sub-detectors of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) at CERN. The Detector Control System (DCS) that had been developed and implemented for the CMS ECAL was deployed in accordance with the LHC schedule and has been supporting the CMS data-taking since LHC physics runs started in 2009. During these years, the control system has been regularly adapted according to operational experience and new requirements, always respecting the constraints imposed on significant changes to a running system. Several hardware and software upgrades and system extensions were therefore deferred to the first LHC Long Shutdown (LS1). This paper presents the main architectural differences between the system that supported the CMS ECAL during its first years and the new design for the coming physics runs after LS1. Details on the upgrade planning, including the certification methods performed in the CMS ECAL DCS laboratory facilities, repor...

  17. The upgrade and re-validation of the Compact Muon Solenoid Electromagnetic Calorimeter Control System

    CERN Multimedia

    Holme, Oliver; Di Calafiori, Diogo; Dissertori, Günther; Djambazov, Lubomir; Jovanovic, Dragoslav; Lustermann, Werner; Zelepoukine, Serguei

    2013-01-01

    The Electromagnetic Calorimeter (ECAL) is one of the sub-detectors of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) at CERN. The Detector Control System (DCS) that has been developed and implemented for the CMS ECAL was deployed in accordance with the LHC schedule and has been supporting the CMS data-taking since LHC physics runs started in 2009. During these years, the control system has been regularly adapted according to operational experience and new requirements, always respecting the constraints imposed on significant changes to a running system. Several hardware and software upgrades and system extensions were therefore deferred to the first LHC Long Shutdown (LS1). This paper presents the main architectural differences between the system that supported the CMS ECAL during its first years and the new design for the coming physics runs after LS1. Details on the upgrade planning, including the certification methods performed in the CMS ECAL DCS laboratory facilities, repor...

  18. Improving Code Quality of the Compact Muon Solenoid Electromagnetic Calorimeter Control Software to Increase System Maintainability

    CERN Multimedia

    Holme, Oliver; Dissertori, Günther; Djambazov, Lubomir; Lustermann, Werner; Zelepoukine, Serguei

    2013-01-01

    The Detector Control System (DCS) software of the Electromagnetic Calorimeter (ECAL) of the Compact Muon Solenoid (CMS) experiment at CERN is designed primarily to enable safe and efficient operation of the detector during Large Hadron Collider (LHC) data-taking periods. Through a manual analysis of the code and the adoption of ConQAT [1], a software quality assessment toolkit, the CMS ECAL DCS team has made significant progress in reducing complexity and improving code quality, with observable results in terms of a reduction in the effort dedicated to software maintenance. This paper explains the methodology followed, including the motivation to adopt ConQAT, the specific details of how this toolkit was used and the outcomes that have been achieved. [1] ConQAT, Continuous Quality Assessment Toolkit; https://www.conqat.org/

  19. Study of a microstrip gas detector for the Compact Muon Solenoid experiment; Etude d`un detecteur a micropistes pour l`experience Compact Muon Solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Clergeau, J. F. [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire

    1997-06-19

    The micro-strip gas chambers (MSGC) were realized due to the technological advances in the field of micro-electronics. The wire of usual gas counters is replaced in these detectors by metallic stripes as a periodic sequence of electrodes (anodes and cathodes) spaced by around 200 {mu}m. At a distance of 3 mm above the strip containing substrate, a metallic plane is placed, thus defining the gaseous room where the passage of a charged particle produces by ionization a primary electron signal collected by the detector anodes. Due to its granularity a MSGC can operate under very high particle fluxes since charge can be collected very rapidly. Also, the impact parameters can be determined with high accuracy due to the high space and time resolutions. The Compact Muon Solenoid (CMS) or the MSGC detectors planned to equip one of the experiments proposed for LHC should detect, in extreme operational conditions, the particle impacts in a 4 Tesla magnetic field, for around ten years and for a particle flux of around 10{sup 4} Hz/mm{sup 2}. The CMS detector is described in chapter 2. The operation principle and the problems encountered in the development of MSGC detectors are summarized in chapter 3. The chapter 4 is dedicated to the study of the performances of MSGCs in magnetic fields. In the chapters 5 to 7 the processing of the signal from detectors of this type is described, particularly, the performances of various ways of treat the signal in terms of detection efficiency and counting loads are presented.The chapter 8 presents the results obtained with the prototype obtained at IPNL while the chapter 9 gives the conclusions of the performed works. (author) 55 refs.

  20. Hubble space telescope spectroscopy of four luminous compact blue galaxies at intermediate redshift

    OpenAIRE

    Hoyos, C.; Guzmán, R.; Bershady, M. A.; D. C. Koo; Díaz, Angeles I.

    2004-01-01

    This is an electronic version of an article published in The Astronomical Journal. Hoyos, C. et al. Hubble space telescope spectroscopy of four luminous compact blue galaxies at intermediate redshift. The Astronomical Journal 128 (2004): 1541-1551

  1. Multitaper spectral analysis of cosmic rays Sao Martinho da Serra's muon telescope and Newark's neutron monitor data

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marlos Rockenbach da; Alarcon, Walter Demetrio Gonzalez; Echer, Ezequiel; Lago, Alisson dal; Lucas, Aline de [National Institute for Space Research - INPE-MCT, Sao Jose dos Campos, SP (Brazil); Vieira, Luis Eduardo Antunes; Guarnieri, Fernando Luis [Universidade do Vale do Paraiba - UNIVAP, Sao Jose dos Campos, SP (Brazil); Schuch, Nelson Jorge [Southern Regional Space Research Center - CRSPE/INPE-MCT, Santa Maria, RS (Brazil); Munakata, Kazuoki, E-mail: marlos@dge.inpe.br, E-mail: gonzalez@dge.inpe.br, E-mail: eecher@dge.inpe.br, E-mail: dallago@dge.inpe.br, E-mail: delucas@dge.inpe.br, E-mail: levieira@univap.br, E-mail: guarnieri@univap.br, E-mail: njschuch@lacesm.ufsm.br, E-mail: kmuna00@gipac.shinshu-u.ac.jp [Physics Department, Shinshu University, Matsumoto (Japan)

    2007-07-01

    In this work we present an analysis on the correction efficiency of atmospheric effects on cosmic ray Sao Martinho da Serra's muon telescope and Newark's neutron monitor data. We use a Multitaper spectral analysis of cosmic rays time series to show the main periodicities present in the corrected and uncorrected data for the atmospheric effects. This kind of correction is very important when intends to study cosmic rays variations of extra-terrestrial origin. (author)

  2. Looking at the sub-TeV sky with cosmic muons detected in the EEE MRPC telescopes

    Science.gov (United States)

    Abbrescia, M.; Avanzini, C.; Baldini, L.; Baldini Ferroli, R.; Batignani, G.; Bencivenni, G.; Bossini, E.; Bressan, E.; Chiavassa, A.; Cicalo, C.; Cifarelli, L.; Coccia, E.; Corvaglia, A.; De Gruttola, D.; De Pasquale, S.; Di Giovanni, A.; D'Incecco, M.; Dreucci, M.; Fabbri, F. L.; Fattibene, E.; Ferraro, A.; Forster, R.; Frolov, V.; Galeotti, P.; Garbini, M.; Gemme, G.; Gnesi, I.; Grazzi, S.; Gustavino, C.; Hatzifotiadou, D.; La Rocca, P.; Maggiora, A.; Maron, G.; Mazziotta, M. N.; Miozzi, S.; Nozzoli, F.; Panareo, M.; Panetta, M. P.; Paoletti, R.; Perasso, L.; Pilo, F.; Piragino, G.; Riggi, F.; Righini, G. C.; Rodriguez Rodriguez, A.; Sartorelli, G.; Scapparone, E.; Schioppa, M.; Scribano, A.; Selvi, M.; Serci, S.; Siddi, E.; Squarcia, S.; Taiuti, M.; Terreni, G.; Vistoli, M. C.; Votano, L.; Williams, M. C. S.; Zani, S.; Zichichi, A.; Zuyeuski, R.

    2015-09-01

    Distributions of secondary cosmic muons were measured by the Multigap Resistive Plate Chambers (MRPC) telescopes of the Extreme Energy Events (EEE) Project, spanning a large angular and temporal acceptance through its sparse sites, to test the possibility to search for any anomaly over long runs. After correcting for the time exposure and geometrical acceptance of the telescopes, data were transformed into equatorial coordinates, and equatorial sky maps were obtained from different sites on a preliminary dataset of 110M events in the energy range at sub-TeV scale.

  3. External meeting - Geneva University: Proposal to measure the muon electric dipole moment with a compact storage ring at PSI

    CERN Multimedia

    2007-01-01

    GENEVA UNIVERSITY ECOLE DE PHYSIQUE Département de physique nucléaire et corspusculaire 24, Quai Ernest-Ansermet 1211 GENEVE 4 ? Tél : 022 379 62 73 - Fax: 022 379 69 92 Wednesday 16th May  2007 PARTICLE PHYSICS SEMINAR at 17:00 - Stückelberg Auditorium Proposal to measure the muon electric dipole moment with a compact storage ring at PSI by Dr. Thomas Schietinger, PSI - Villigen In the Standard Model, lepton electric dipole moments (EDM) arise from the CP-violating phase in the CKM matrix at the three-loop level only, resulting in values that are many orders of magnitude below the sensitivity of current and future experiments. Lepton EDMs therefore offer an excellent opportunity to discover unambiguous evidence for new CP-violating phases, as called for by the baryon-antibaryon asymmetry of the universe. The muon EDM is one of the least constrained fundamental properties in elementary particle physics. We propose to utilize the large available flux of polarized muons at PSI to search for a muon EDM ...

  4. Low Cost, Low Power, Passive Muon Telescope for Interrogating Martian Sub-Surface

    Science.gov (United States)

    Kedar, Sharon; Tanaka, Hirukui; Naudet, Charles; Plaut, Jeffrey J.; Jones, Cathleen E.; Webb, Frank H.

    2012-01-01

    It has been demonstrated on Earth that a low power, passive muon detector can penetrate deep into geological structures up to several kilometers in size providing high density images of their interiors. Muon tomography is an entirely new class of planetary instrumentation that is ideally suited to address key areas in Mars Science, such as: the search for life and habitable environments, the distribution and state of water and ice and the level of geologic activity on Mars today.

  5. New Physics Search in Dijet Mass Spectrum with Compact Muon Solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chiyoung [Texas Tech Univ., Lubbock, TX (United States)

    2011-01-01

    Many extensions of the SM predict the existence of new massive objects that couple to quarks and gluons and result in resonances in the dijet mass spectrum. In this thesis we present a search for narrow resonances in the dijet mass spectrum using data corresponding to an integrated luminosity of 1 fb$^{-1}$ collected by the CMS experiment at the LHC, at a proton-proton collision energy of $\\sqrt{s}=7$ $TeV$. %This dijet analysis is searching for new particles in the dijet mass spectrum decaying to dijets. These new particles are predicted by new physics beyond Standard Model. This thesis presents a dijet analysis performed at the Compact Muon Solenoid (CMS) in pp collisions at $\\sqrt{s}=7$ $TeV$ for an integrated luminosities of 1.0 fb$^{-1}$. The dijet mass distribution of two leading jets is measured and compared to QCD predictions, simulated by PYTHIA with the CMS detector simulation. We select events which have two leading jets with $\\mid \\Delta\\eta \\mid < 1.3$ and $\\mid \\eta \\mid < 2.5$. We fit the dijet mass spectrum with QCD parameters. Since no evidence of new physics was found, we set upper limits at 95\\% CL on the resonance cross section and compare to the theoretical prediction for several models of new particles: string resonances, axigluons, colorons, excited quarks, $E_{6}$ diquarks, Randall-Sundrum gravitons, W' and Z'. We exclude at 95\\% CL string resonances in the mass range $1.0 < M(S) < 4.00$ TeV, excited quarks in the mass range $1.0

  6. Effects of SF$_{6}$ on the avalanche mode operation of a real-sized double-gap resistive plate chamber for the Compact Muon Solenoid experiment

    CERN Document Server

    Ahn Sung Hwan; Hong, B; Hong, S J; Ito, M; Kim, B I; Kim, J H; Kim, Y J; Kim, Y U; Koo, D G; Lee, H W; Lee, K B; Lee, K S; Lee, S J; Lim, J K; Moon, D H; Nam, S K; Park, S; Park, W J; Rhee, J T; Ryu, M S; Shim, H H; Sim, K S; Kang, T I

    2005-01-01

    We present the design and the test, results for a real-sized prototype resistive plate chamber by using cosmic-ray muons for the forward region of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC). In particular, we investigate the effects of adding SF/sub 6/ to the gas mixture for the avalanche mode operation of a resistive plate chamber. A small fraction of SF/sub 6/ is very effective in suppressing streamer signals in a resistive plate chamber. The shapes of the muon detection efficiency and the muon cluster size remain similar, but are shifted to higher operating voltage by SF/sub 6/. The noise cluster rate and size are not influenced by SF/sub 6/.

  7. Re-integration and Consolidation of the Detector Control System for the Compact Muon Solenoid Electromagnetic Calorimeter

    CERN Multimedia

    Holme, Oliver; Dissertori, Günther; Djambazov, Lubomir; Lustermann, Werner; Zelepoukine, Serguei

    2013-01-01

    The current shutdown of the Large Hadron Collider (LHC), following three successful years of physics data-taking, provides an opportunity for major upgrades to be performed on the Detector Control System (DCS) of the Electromagnetic Calorimeter (ECAL) of the Compact Muon Solenoid (CMS) experiment. The upgrades involve changes to both hardware and software, with particular emphasis on taking advantage of more powerful servers and updating third-party software to the latest supported versions. The considerable increase in available processing power enables a reduction from fifteen to three or four servers. To host the control system on fewer machines and to ensure that previously independent software components could run side-by-side without incompatibilities, significant changes in the software and databases were required. Additional work was undertaken to modernise and concentrate I/O interfaces. The challenges to prepare and validate the hardware and software upgrades are described along with details of the ...

  8. The Hadron Calorimeter of the Compact Muon Solenoid (CMS) (Proceedings to be published Nuclear Physics B)

    CERN Document Server

    Hagopian, V

    1997-01-01

    The Hadron Calorimeter of CMS is about 1,000 tons of copper and scintillator sandwich in a 4 tesla magnetic field. It will be built in three segments, the barrel surrounding the central portion and the two end caps. The scintillators will use a tower structure made of grooved megatiles with wavelength shifting ( WLS) fibers imbedded inside the grooves. The coverage extends to "eta" = 3.0 and is hermetic with very few gaps. The 1995 test beam data, taken inside a 3 tesla magnet, showed that it will work in a magnetic field and will require a tail catcher inside the muon system.

  9. Cosmic Muon Detection for Geophysical Applications

    Directory of Open Access Journals (Sweden)

    László Oláh

    2013-01-01

    Full Text Available A portable cosmic muon detector has been developed for environmental, geophysical, or industrial applications. The device is a tracking detector based on the Close Cathode Chamber, an MWPC-like technology, allowing operation in natural underground caves or artificial tunnels, far from laboratory conditions. The compact, low power consumption system with sensitive surface of 0.1 m2 measures the angular distribution of cosmic muons with a resolution of 10 mrad, allowing for a detailed mapping of the rock thickness above the muon detector. Demonstration of applicability of the muon telescope (REGARD Muontomograph for civil engineering and measurements in artificial underground tunnels or caverns are presented.

  10. Search for muon neutrinos from Gamma-Ray Bursts with the IceCube neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    IceCube Collaboration; Abbasi, R

    2010-01-19

    We present the results of searches for high-energy muon neutrinos from 41 gamma- ray bursts (GRBs) in the northern sky with the IceCube detector in its 22-string con-figuration active in 2007/2008. The searches cover both the prompt and a possible precursor emission as well as a model-independent, wide time window of -1 h to +3 haround each GRB. In contrast to previous searches with a large GRB population, we do not utilize a standard Waxman?Bahcall GRB flux for the prompt emission but calcu- late individual neutrino spectra for all 41 GRBs from the burst parameters measured by satellites. For all three time windows the best estimate for the number of signal events is zero. Therefore, we place 90percent CL upper limits on the fluence from the prompt phase of 3.7 x 10-3 erg cm-2 (72TeV - 6.5 PeV) and on the fluence from the precursor phase of 2.3 x 10-3 erg cm-2 (2.2TeV - 55TeV), where the quoted energy ranges contain 90percent of the expected signal events in the detector. The 90percent CL upper limit for the wide time window is 2.7 x 10-3 erg cm-2 (3TeV - 2.8 PeV) assuming an E-2 flux.

  11. CHEC: a Compact High Energy Camera for the Cherenkov Telescope Array

    Science.gov (United States)

    White, R.

    2017-12-01

    The Cherenkov Telescope Array will provide unprecedented sensitivity and angular resolution to gamma rays across orders of magnitude in energy. Above 1 TeV up to around 300 TeV an array of Small-Sized Telescopes (SSTs) will cover several kilometres on the ground. The Compact High-Energy Camera (CHEC) is a proposed option for the camera of the SSTs. CHEC contains 2048 pixels of physical size about 6 mm×6 mm, leading to a field of view of over 8 degrees. Electronics based on custom ASICs (TARGET) and FPGAs sample incoming signals at a gigasample per second and provide a flexible triggering scheme. Waveforms for every pixel in every event are read out without loss at over 600 events per second. A telescope prototype in Meudon, Paris, saw first Cherenkov light from air showers in late 2015, using the first CHEC prototype. Research and development for CHEC is currently focussed on taking advantage of the latest generation of silicon photomultipliers (SiPMs).

  12. Design of a scintillator tile hadronic calorimeter for the compact muon solenoid (CMS) experiment for LHC

    Science.gov (United States)

    Bénichou, J.-L.; Gerwig, H.; Hauviller, C.; Hervé, A.; Sun, Z.; Waurick, G.

    1995-02-01

    The design of a large hadron scintillator tile calorimeter for the CMS experiment has led to novel solutions to maximize compactness. Taking into account important constraints like minimizing space for bindings and clearances, finishing all heavy work before inserting any scintillator tray, reducing installation time, a solution based on self-supporting rings has been preferred. The copper absorber plates are fully electron beam welded, creating a rigid self-supporting structure without any external frame. This concept has been qualified through prototype manufacturing and tests, and a thorough structural analysis. These test results and the finite element analysis will be presented. The latter has been performed to a high degree of accuracy despite the high granularity of the ring structure, using a non-standard approach.

  13. Compact forceps manipulator with a spherical-coordinate linear and circular telescopic rail mechanism for endoscopic surgery.

    Science.gov (United States)

    Kawai, Toshikazu; Hayashi, Hiroyuki; Nishizawa, Yuji; Nishikawa, Atsushi; Nakamura, Ryoichi; Kawahira, Hiroshi; Ito, Masaaki; Nakamura, Tatsuo

    2017-08-01

    By integrating locally operated small surgical robots in a sterilized area, a surgeon can perform safe and accurate robotically assisted laparoscopic surgery. At present, there is no locally operated compact forceps robot that can operate within a small space while providing a wide working area on the abdominal wall. In the present study, a new spherical-coordinate manipulator with a linear telescopic rail and two circular telescopic rails that can act as a third arm for the surgeon has been developed. A compact locally operated detachable end-effector manipulator (LODEM) was developed. This manipulator uses circular telescopic rails with linkage mechanisms for the yaw and pitch axes, and a linear telescopic rail for the insertion/extraction axis is attached to forceps. The dimensions of the manipulator are [Formula: see text] when contracted and [Formula: see text] when expanded. The positional accuracy, mechanical deflection, and backlash of the prototype were evaluated while performing simulated in vivo laparoscopic surgery. The positional accuracy, deflection, and backlash of the telescopic rail mechanism were 2.1, 1.8, and 5.1 mm, respectively. The manipulator could successfully handle the target and maintain stability, while the arms of the endoscope specialist were free from collisions with the manipulator during an in vivo laparoscopic surgery. A compact LODEM was designed to facilitate minimally invasive, robotically assisted laparoscopic surgery by a doctor working near the patient. This device could be used for such applications.

  14. The Evolution of the Control System for the Electromagnetic Calorimeter of the Compact Muon Solenoid Experiment at the Large Hadron Collider

    CERN Multimedia

    Holme, Oliver; Dissertori, Günther; Lustermann, Werner; Zelepoukine, Serguei

    2011-01-01

    This paper discusses the evolution of the Detector Control System (DCS) designed and implemented for the Electromagnetic Calorimeter (ECAL) of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) as well as the operational experience acquired during the LHC physics data taking periods of 2010 and 2011. The current implementation in terms of functionality and planned hardware upgrades are presented. Furthermore, a project for reducing the long-term software maintenance, including a year-long detailed analysis of the existing applications, is put forward and the current outcomes which have informed the design decisions for the next CMS ECAL DCS software generation are described. The main goals for the new version are to minimize external dependencies enabling smooth migration to new hardware and software platforms and to maintain the existing functionality whilst substantially reducing support and maintenance effort through homogenization, simplification and standardization of the contr...

  15. An improved billet on billet extrusion process of continuous aluminium alloy shapes for cryogenic applications in the Compact Muon Solenoid experiment

    CERN Document Server

    Tavares, S S

    2003-01-01

    The Compact Muon Solenoid (CMS) is one of the experiments being designed in the framework of the Large Hadron Collider accelerator at CERN. CMS will contain the largest and the most powerful superconducting solenoid magnet ever built in terms of stored energy. It will work at 4.2 K, will have a magnetic length of 12.5 m, with a free bore of 6m and will be manufactured as a layered and modular structure of NbTi cables embedded in a high purity (99.998%) Al- stabiliser. Each layer consists of a wound continuous length of 2.55 km. In order to withstand the high electromagnetic forces, two external aluminium alloy reinforcing sections are foreseen. These reinforcements, of 24 mm multiplied by 18 mm cross-section, will be continuously electron beam (EB) welded to the pure Al-stabiliser. The alloy EN AW-6082 has been selected for the reinforcements due to its excellent extrudability, high strength in the precipitation hardened state, high toughness and strength at cryogenic temperatures and ready EB weldability. Ea...

  16. A Web-based application for the collection, management and release of Alignment and Calibration configurations used in data processing at the Compact Muon Solenoid experiment

    Science.gov (United States)

    Mecionis, Audrius; Di Guida, Salvatore; Franzoni, Giovanni; Musich, Marco; Cerminara, Gianluca; Pfeiffer, Andreas; Govi, Giacomo; CMS Collaboration

    2017-10-01

    The Compact Muon Solenoid (CMS) experiment makes a vast use of alignment and calibration measurements in several data processing workflows: in the High Level Trigger, in the processing of the recorded collisions and in the production of simulated events for data analysis and studies of detector upgrades. A complete alignment and calibration scenario is factored in approximately three-hundred records, which are updated independently and can have a time-dependent content, to reflect the evolution of the detector and data taking conditions. Given the complexity of the CMS condition scenarios and the large number (50) of experts who actively measure and release calibration data, in 2015 a novel web-based service has been developed to structure and streamline their management. The cmsDbBrowser provides an intuitive and easily accessible entry point for the navigation of existing conditions by any CMS member, for the bookkeeping of record updates and for the actual composition of complete calibration scenarios. This paper describes the design, choice of technologies and the first year of usage in production of the cmsDbBrowser.

  17. Reconstruction of missing transverse energy and prospect of searching for Higgs boson produced via vector boson fusion in Compact Muon Solenoid experiment

    CERN Document Server

    Pi, Haifeng

    2005-01-01

    We performed full detector simulation studies of missing transverse energy (Emiss T ) reconstruction and correction, and the prospects for searching for a low mass Higgs Boson (120 < mH < 250 GeV/c 2 ) produced via the vector boson fusion (VBF) process through the decay of H → W+W− → `νjj at Compact Muon Solenoid (CMS) experiment in Large Hadron Collider (LHC). We developed a new jet energy correction algorithm by parameterizing the jet energy distribution around the jet axis. The jet energy resolution is improved by calibrating the jet energy scale and by reducing the variance of the measurement error. Correction functions showed good performance in restoring the jet transverse momentum (pT) spectrum. The methods provide a good framework to study jet quantities and optimize jet reconstruction and correction techniques. We evaluated the performance of the CMS detector for measuring the Emiss T using QCD events. We also studied the contributions from detector resolution, minimum bias pileup, event...

  18. A Compact Cosmic Ray Telescope using Silicon Photomultipliers for use in High Schools

    Science.gov (United States)

    Castro, Luis; Elizondo, Leonardo; Shelor, Mark; Cervantes, Omar; Fan, Sewan; Ritt, Stefan

    2016-03-01

    Over the years, the QuarkNet and the LBL Cosmic Ray Project have helped trained thousands of high school students and teachers to explore cosmic ray physics. To get high school students in the Salinas, CA area also excited about cosmic rays, we constructed a cosmic ray telescope as a physics outreach apparatus. Our apparatus includes a pair of plastic scintillators coupled to silicon photomultipliers (SiPM) and a coincidence circuit board. We designed and constructed custom circuit boards for mounting the SiPM detectors, the high voltage power supplies and coincidence AND circuit. The AND logic signals can be used for triggering data acquisition devices including an oscilloscope, a waveform digitizer or an Arduino microcontroller. To properly route the circuit wire traces, the circuit boards were layout in Eagle and fabricated in-house using a circuit board maker from LPKF LASER, model Protomat E33. We used a Raspberry Pi computer to control a fast waveform sampler, the DRS4 to digitize the SiPM signal waveforms. The CERN PAW software package was used to analyze the amplitude and time distributions of SiPM detector signals. At this conference, we present our SiPM experimental setup, circuit board fabrication procedures and the data analysis work flow. AIP Megger's Award, Dept. of Ed. Title V Grant PO31S090007.

  19. Search for high-energy muon neutrinos from the "naked-eye" GRB 080319B with the IceCube neutrino telescope

    DEFF Research Database (Denmark)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.

    2009-01-01

    We report on a search with the IceCube detector for high-energy muon neutrinos from GRB 080319B, one of the brightest gamma-ray bursts (GRBs) ever observed. The fireball model predicts that a mean of 0.1 events should be detected by IceCube for a bulk Lorentz boost of the jet of 300. In both...

  20. Search for high-energy muon neutrinos from the"naked-eye" GRB080319B with the IceCube neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    IceCube Collaboration; R. Abbasi

    2009-02-01

    We report on a search with the IceCube detector for high-energy muon neutrinos from GRB080319B, one of the brightest gamma-ray bursts (GRBs) ever observed. The fireball model predicts that a mean of 0.12 events should be detected by IceCube for a bulk Lorentz boost of the jet of 300. In both the direct on-time window of 66 s and an extended window of about 300 s around the GRB, there was no excess found above the background. The 90% C.L. upper limit on the number of track-like events from the GRB is 2.7, corresponding to a muon neutrino fluence limit of 9.0 x 10{sup -3} erg cm{sup -2} in the energy range between 145 TeV and 2.1 PeV, which contains 90% of the expected events.

  1. Muon muon collider: Feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-18

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup {minus}2} s{sup {minus}1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice--the authors believe--to allow them to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring which has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design.

  2. Neutrino Factory and Muon Collider Fellow

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Gail G. [Univ. of California, Riverside, CA (United States); Snopak, Pavel [Univ. of California, Riverside, CA (United States); Bao, Yu [Univ. of California, Riverside, CA (United States)

    2015-03-20

    Muons are fundamental particles like electrons but much more massive. Muon accelerators can provide physics opportunities similar to those of electron accelerators, but because of the larger mass muons lose less energy to radiation, allowing more compact facilities with lower operating costs. The way muon beams are produced makes them too large to fit into the vacuum chamber of a cost-effective accelerator, and the short muon lifetime means that the beams must be reduced in size rather quickly, without losing too many of the muons. This reduction in size is called "cooling." Ionization cooling is a new technique that can accomplish such cooling. Intense muon beams can then be accelerated and injected into a storage ring, where they can be used to produce neutrino beams through their decays or collided with muons of the opposite charge to produce a muon collider, similar to an electron-positron collider. We report on the research carried out at the University of California, Riverside, towards producing such muon accelerators, as part of the Muon Accelerator Program based at Fermilab. Since this research was carried out in a university environment, we were able to involve both undergraduate and graduate students.

  3. FACT. Multivariate extraction of muon ring images

    Energy Technology Data Exchange (ETDEWEB)

    Noethe, Maximilian; Temme, Fabian; Buss, Jens [Experimentelle Physik 5b, TU Dortmund, Dortmund (Germany); Collaboration: FACT-Collaboration

    2016-07-01

    In ground-based gamma-ray astronomy, muon ring images are an important event class for instrument calibration and monitoring of its properties. In this talk, a multivariate approach will be presented, that is well suited for real time extraction of muons from data streams of Imaging Atmospheric Cherenkov Telescopes (IACT). FACT, the First G-APD Cherenkov Telescope is located on the Canary Island of La Palma and is the first IACT to use Silicon Photomultipliers for detecting the Cherenkov photons of extensive air showers. In case of FACT, the extracted muon events are used to calculate the time resolution of the camera. In addition, the effect of the mirror alignment in May 2014 on properties of detected muons is investigated. Muon candidates are identified with a random forest classification algorithm. The performance of the classifier is evaluated for different sets of image parameters in order to compare the gain in performance with the computational costs of their calculation.

  4. Maintaining an effective and efficient control system for the Electromagnetic Calorimeter of the Compact Muon Solenoid experiment during Long-Term Operations of CERN�??s Large Hadron Collider

    CERN Document Server

    Holme, Oliver

    2012-01-01

    The sub-detectors of the Compact Muon Solenoid (CMS) multi-purpose particle detector at the CERN Large Hadron Collider (LHC) have been collecting physics data from particle collisions for almost three years. During this period, the CMS Electromagnetic Calorimeter (ECAL) Detector Control System (DCS) has contributed to the high level of availability of the experiment. This paper presents the current architecture of this distributed and heterogeneous control system alongside plans and developments for future improvements. To ensure that the system can efficiently operate and adapt to changes throughout the required operation lifetime of more than a decade, the potential legacy aspects of this kind of control system must be carefully managed. Such issues include evolving system requirements, turnover of staff members, potential benefits from new technologies and the need to follow release schedules of external software dependencies. The techniques and results of the work to continually maintain, improve and stre...

  5. Muon Muon Collider: Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, J.C.; Palmer, R.B.; /Brookhaven; Tollestrup, A.V.; /Fermilab; Sessler, A.M.; /LBL, Berkeley; Skrinsky, A.N.; /Novosibirsk, IYF; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. /Fermilab /Brookhaven /Wisconsin U., Madison /Tel Aviv U. /Indiana U. /UCLA /LBL, Berkeley /SLAC /Argonne /Sobolev IM, Novosibirsk /UC, Davis /Munich, Tech. U. /Virginia U. /KEK, Tsukuba /DESY /Novosibirsk, IYF /Jefferson Lab /Mississippi U. /SUNY, Stony Brook /MIT /Columbia U. /Fairfield U. /UC, Berkeley

    2012-04-05

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup -2}s{sup -1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice - we believe - to allow us to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring wich has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design. Muons because of their large mass compared to an electron, do not produce significant synchrotron radiation. As a result there is negligible beamstrahlung and high energy collisions are not limited by this phenomena. In addition, muons can be accelerated in circular devices which will be considerably smaller than two full-energy linacs as required in an e{sup +} - e{sup -} collider. A hadron collider would require a CM energy 5 to 10 times higher than 4 TeV to have an equivalent energy reach. Since the accelerator size is limited by the strength of bending magnets, the hadron collider for the same physics reach would have to be much larger than the muon collider. In addition, muon collisions should be cleaner than hadron collisions. There are many detailed particle

  6. Search for muon-neutrino emission from GeV and TeV gamma-ray flaring blazars using five years of data of the ANTARES telescope

    NARCIS (Netherlands)

    Adrian-Martinez, S.; van Haren, H.; Antares Collaboration

    2015-01-01

    The ANTARES telescope is well-suited for detecting astrophysical transient neutrinosources as it can observe a full hemisphere of the sky at all times with a high duty cycle.The background due to atmospheric particles can be drastically reduced, and the point-sourcesensitivity improved, by selecting

  7. Search for muon-neutrino emission from GeV and TeV gamma-ray flaring blazars using five years of data of the ANTARES telescope

    NARCIS (Netherlands)

    Adrián-Martínez, S.; et al., [Unknown; Bruijn, R.; Kooijman, P.

    2015-01-01

    The ANTARES telescope is well-suited for detecting astrophysical transient neutrino sources as it can observe a full hemisphere of the sky at all times with a high duty cycle. The background due to atmospheric particles can be drastically reduced, and the point-source sensitivity improved, by

  8. Muon colliders

    CERN Document Server

    AUTHOR|(CDS)2108556; Blondel, Alain; CERN. Geneva. Audiovisual Unit

    1999-01-01

    Muon Colliders - Prospective Physics (J. Ellis). Muon storage rings can address fundamental issues in neutrino physics, enable precision Higgs physics, and advance the high-energy frontier in lepton-antilepton collisions. In this lecture, the principa with particular emphasis on neutrino and Higgs factories. Muon Colliders (D. Neuffer). In these lectures the concept of a high-energy high-luminosity µ+ - µ- collider is developed. A µ+ - µ- colliderwould provide heavy lepton collisions, with uniqu of Higgs bosons at 100-180 GeV energies, and it could be extended to multi-TeV energies.A µ+-µ- collider requires a high-intensity proton source for ¼-production, a high-acceptance decay channel to collect µ?s from ¼-decay, a µ-cooling system, a r system, and a high-luminosity collider ring for the collisions of short, intense µ+-µ- bunches. Critical problems exist in each of the collider concept components, and in the interaction-region detectors needed to analyze the collisions. These pro within the curr...

  9. MUON DETECTOR

    CERN Multimedia

    F. Gasparini

    Barrel Muons The last CMS week was dominated by the lowering of YB0. The date of lowering was fixed in January for February 28th. RPC and DT cabling of YB0 had to be done on the surface to allow a complete check of the status of the chambers before lowering. When the decision of the date was taken, the wheel cabling, planned to start at end of December, was not yet started for several “muon independent” reasons. Cabling and DT /RPC test started on Jan 22nd and ended on Feb 19th. Several teams worked on the surface of the wheel in parallel on the three different items, finishing just in time for lowering. This was a real challenge and a significant result. So by the end of the CMS Week, all the positive part of CMS plus YB0 were in the cavern. YB+2 had been lowered in January 19th, and YB+1 on February 1st. The vertical chambers of sectors 1 and 7 (8 DT/RPC packs), whose space was taken by the lowering machinery, had to be installed after lowering. This was done from Jan 24 to Jan 26 for...

  10. Effects of upward-going cosmic muons on density radiography of volcanoes

    OpenAIRE

    Jourde, K.; D. Gibert; Marteau, J.; de Bremond d?Ars, Jean; Gardien, S.; Girerd, C.; Ianigro, J.-C.; Carbone, D.

    2013-01-01

    submitted to Geophysical Journal International; Muon tomography aims at deriving the density structure of geological bodies from their screening attenuation produced on the natural cosmic muons flux. Because of their open-sky exposure, muons telescopes are subject to noise fluxes with large intensities relative to the tiny flux of interest. A recognized source of noise flux comes from fake tracks caused by particles that fortuitously trigger the telescope detectors at the same time. Such a fl...

  11. Hubble Space Telescope Imaging of the Ultra-compact High Velocity Cloud AGC 226067: A Stripped Remnant in the Virgo Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Sand, D. J.; Crnojević, D. [Texas Tech University, Physics and Astronomy Department, Box 41051, Lubbock, TX 79409-1051 (United States); Seth, A. C. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Spekkens, K. [Royal Military College of Canada, Department of Physics, P.O. Box 17000, Station Forces, Kingston, Ontario, K7K 7B4 (Canada); Strader, J. [Center for Data Intensive and Time Domain Astronomy, Department of Physics and Astronomy, Michigan State University, 567 Wilson Road, East Lansing, MI 48824 (United States); Adams, E. A. K. [ASTRON, Netherlands Institute for Radio Astronomy, Postbus 2, 7900 AA Dwingeloo (Netherlands); Caldwell, N.; Randall, S. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Guhathakurta, P. [UCO/Lick Observatory, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Kenney, J. [Yale University Astronomy Department, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Simon, J. D. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Toloba, E. [Department of Physics, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211 (United States); Willman, B., E-mail: david.sand@ttu.edu [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2017-07-10

    We analyze the optical counterpart to the ultra-compact high velocity cloud AGC 226067, utilizing imaging taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope . The color–magnitude diagram of the main body of AGC 226067 reveals an exclusively young stellar population, with an age of ∼7–50 Myr, and is consistent with a metallicity of [Fe/H] ∼ −0.3 as previous work has measured via H ii region spectroscopy. Additionally, the color–magnitude diagram is consistent with a distance of D ≈ 17 Mpc, suggesting an association with the Virgo cluster. A secondary stellar system located ∼1.′6 (∼8 kpc) away in projection has a similar stellar population. The lack of an old red giant branch (≳5 Gyr) is contrasted with a serendipitously discovered Virgo dwarf in the ACS field of view (Dw J122147+132853), and the total diffuse light from AGC 226067 is consistent with the luminosity function of the resolved ∼7–50 Myr stellar population. The main body of AGC 226067 has a M {sub V} = −11.3 ± 0.3, or M {sub stars} = 5.4 ± 1.3 × 10{sup 4} M {sub ⊙} given the stellar population. We searched 20 deg{sup 2} of imaging data adjacent to AGC 226067 in the Virgo Cluster, and found two similar stellar systems dominated by a blue stellar population, far from any massive galaxy counterpart—if this population has star-formation properties that are similar to those of AGC 226067, it implies ∼0.1 M {sub ⊙} yr{sup −1} in Virgo intracluster star formation. Given its unusual stellar population, AGC 226067 is likely a stripped remnant and is plausibly the result of compressed gas from the ram pressure stripped M86 subgroup (∼350 kpc away in projection) as it falls into the Virgo Cluster.

  12. Hubble Space Telescope Imaging of the Ultra-compact High Velocity Cloud AGC 226067: A Stripped Remnant in the Virgo Cluster

    Science.gov (United States)

    Sand, D. J.; Seth, A. C.; Crnojević, D.; Spekkens, K.; Strader, J.; Adams, E. A. K.; Caldwell, N.; Guhathakurta, P.; Kenney, J.; Randall, S.; Simon, J. D.; Toloba, E.; Willman, B.

    2017-07-01

    We analyze the optical counterpart to the ultra-compact high velocity cloud AGC 226067, utilizing imaging taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope. The color-magnitude diagram of the main body of AGC 226067 reveals an exclusively young stellar population, with an age of ˜7-50 Myr, and is consistent with a metallicity of [Fe/H] ˜ -0.3 as previous work has measured via H ii region spectroscopy. Additionally, the color-magnitude diagram is consistent with a distance of D ≈ 17 Mpc, suggesting an association with the Virgo cluster. A secondary stellar system located ˜1.‧6 (˜8 kpc) away in projection has a similar stellar population. The lack of an old red giant branch (≳5 Gyr) is contrasted with a serendipitously discovered Virgo dwarf in the ACS field of view (Dw J122147+132853), and the total diffuse light from AGC 226067 is consistent with the luminosity function of the resolved ˜7-50 Myr stellar population. The main body of AGC 226067 has a M V = -11.3 ± 0.3, or M stars = 5.4 ± 1.3 × 104 M ⊙ given the stellar population. We searched 20 deg2 of imaging data adjacent to AGC 226067 in the Virgo Cluster, and found two similar stellar systems dominated by a blue stellar population, far from any massive galaxy counterpart—if this population has star-formation properties that are similar to those of AGC 226067, it implies ˜0.1 M ⊙ yr-1 in Virgo intracluster star formation. Given its unusual stellar population, AGC 226067 is likely a stripped remnant and is plausibly the result of compressed gas from the ram pressure stripped M86 subgroup (˜350 kpc away in projection) as it falls into the Virgo Cluster.

  13. The muon tomography Diaphane project : recent upgrades and measurements

    Science.gov (United States)

    Jourde, Kevin; Gibert, Dominique; Marteau, Jacques; de Bremond d'Ars, Jean; Gardien, Serge; Girerd, Claude; Ianigro, Jean-Christophe; Carbone, Daniele

    2014-05-01

    Muon tomography measures the flux of cosmic muons crossing geological bodies to determine their density. Large density heterogeneities were detected on la Soufrière de Guadeloupe revealing its very active phreatic system. These measurements were made possible thanks to electronic and signal processing developments. Indeed the telescopes used to perform these measurements are exposed to noise fluxes with high intensities relative to the tiny flux of interest. A high precision clock permitted to measure upward-going particles coming from the rear of the telescope that used to mix with the volcano signal. Also the particles energy deposit inside the telescope shows that other particles than muons take part to the noise. We present data acquired on la Soufrière, mount Etna in Italy, and in the Mont Terri tunnel in Switzerland. Biases produced on density muon radiographies are quantified and correction procedures are applied.

  14. Athermal laser launch telescopes

    NARCIS (Netherlands)

    Kamphues, F.G.; Henselmans, R.; Rijnveld, N.; Lemmen, M.H.J.; Doelman, N.J.; Nijkerk, M.D.

    2011-01-01

    ESO has developed a concept for a compact laser guide star unit for use in future Adaptive Optics (AO) systems. A small powerful laser is combined with a telescope that launches the beam, creating a single modular unit that can be mounted directly on a large telescope. This approach solves several

  15. MUON DETECTOR

    CERN Multimedia

    F. Gasparini

    DT Commissioning of the two negative wheels was done on the surface to gain time; YB-1 was completed in June and that of YB-2 on October 3. A new test is ongoing following their lowering into the experiment cavern (UX). In the UX cavern, YB0 and YB+1 testing was completed by the end of August, and the two last sectors of YB+2 will be finished by the end of November. The two negative wheels were lowered at the beginning of October and the installation of the chambers in the vertical sectors was done immediately. Three important events took place at the end of October: the last of the 250 DT +RPC packs was installed in Sector 7 of YB-2; full power was switched on for the first time in a full wheel (on YB0, albeit with temporary power distribution) and 50,000 events of cosmic muons, including many spectacular showers crossing the fully active YB0 (50 chambers), were recorded in about 15 minutes. Other crucial tests were achieved, in difficult conditions, to prove the performance of the DT DAQ. The DAQ ha...

  16. The new Global Muon Trigger of the CMS experiment

    CERN Document Server

    Fulcher, Jonathan Richard; Rabady, Dinyar Sebastian; Reis, Thomas; Sakulin, Hannes

    2016-01-01

    For the 2016 physics data runs the L1 trigger system of the Compact Muon Solenoid (CMS) experiment underwent a major upgrade to cope with the increasing instantaneous luminosity of the CERN LHC whilst maintaining a high event selection efficiency for the CMS physics program. Most subsystem specific trigger processor boards were replaced with powerful general purpose processor boards, conforming to the MicroTCA standard, whose tasks are performed by firmware on an FPGA of the Xilinx Virtex 7 family. Furthermore, the muon trigger system moved from a subsystem centered approach, where each of the three muon detector systems provides muon candidates to the Global Muon Trigger (GMT), to a region based system, where muon track finders (TFs) combine information from the subsystems to generate muon candidates in three detector regions, that are then sent to the upgraded GMT. The upgraded GMT receives up to 108 muons from the processors of the muon TFs in the barrel, overlap, and endcap detector regions. The muons are...

  17. Muon catalyzed fusion

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, K. [Advanced Meson Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Nagamine, K. [Muon Science Laboratory, IMSS-KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Matsuzaki, T. [Advanced Meson Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kawamura, N. [Muon Science Laboratory, IMSS-KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2005-12-15

    The latest progress of muon catalyzed fusion study at the RIKEN-RAL muon facility (and partly at TRIUMF) is reported. The topics covered are magnetic field effect, muon transfer to {sup 3}He in solid D/T and ortho-para effect in dd{mu} formation.

  18. Recent progress in neutrino factory and muon collider research within the Muon Collaboration

    Directory of Open Access Journals (Sweden)

    Mohammad M. Alsharo’a

    2003-08-01

    Full Text Available We describe the status of our effort to realize a first neutrino factory and the progress made in understanding the problems associated with the collection and cooling of muons towards that end. We summarize the physics that can be done with neutrino factories as well as with intense cold beams of muons. The physics potential of muon colliders is reviewed, both as Higgs factories and compact high-energy lepton colliders. The status and time scale of our research and development effort is reviewed as well as the latest designs in cooling channels including the promise of ring coolers in achieving longitudinal and transverse cooling simultaneously. We detail the efforts being made to mount an international cooling experiment to demonstrate the ionization cooling of muons.

  19. Development of a Portable Muon Witness System

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Orrell, John L.

    2011-01-01

    Since understanding and quantifying cosmic ray induced radioactive backgrounds in copper and germanium are important to the MAJORANA DEMONSTRATOR, methods are needed for monitoring the levels of such backgrounds produced in materials being transported and processed for the experiment. This report focuses on work conducted at Pacific Northwest National Laboratory to develop a muon witness system as a one way of monitoring induced activities. The operational goal of this apparatus is to characterize cosmic ray exposure of materials. The cosmic ray flux at the Earth’s surface is composed of several types of particles, including neutrons, muons, gamma rays and protons. These particles induce nuclear reactions, generating isotopes that contribute to the radiological background. Underground, the main mechanism of activation is by muon produced spallation neutrons since the hadron component of cosmic rays is removed at depths greater than a few tens of meters. This is a sub-dominant contributor above ground, but muons become predominant in underground experiments. For low-background experiments cosmogenic production of certain isotopes, such as 68Ge and 60Co, must be accounted for in the background budgets. Muons act as minimum ionizing particles, depositing a fixed amount of energy per unit length in a material, and have a very high penetrating power. Using muon flux measurements as a “witness” for the hadron flux, the cosmogenic induced activity can be quantified by correlating the measured muon flux and known hadronic production rates. A publicly available coincident muon cosmic ray detector design, the Berkeley Lab Cosmic Ray Detector (BLCRD), assembled by Juniata College, is evaluated in this work. The performance of the prototype is characterized by assessing its muon flux measurements. This evaluation is done by comparing data taken in identical scenarios with other cosmic ray telescopes. The prototype is made of two plastic scintillator paddles with

  20. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    2011-01-01

    The Muon Alignment work now focuses on producing a new track-based alignment with higher track statistics, making systematic studies between the results of the hardware and track-based alignment methods and aligning the barrel using standalone muon tracks. Currently, the muon track reconstruction software uses a hardware-based alignment in the barrel (DT) and a track-based alignment in the endcaps (CSC). An important task is to assess the muon momentum resolution that can be achieved using the current muon alignment, especially for highly energetic muons. For this purpose, cosmic ray muons are used, since the rate of high-energy muons from collisions is very low and the event statistics are still limited. Cosmics have the advantage of higher statistics in the pT region above 100 GeV/c, but they have the disadvantage of having a mostly vertical topology, resulting in a very few global endcap muons. Only the barrel alignment has therefore been tested so far. Cosmic muons traversing CMS from top to bottom are s...

  1. Muon reconstruction performance using cosmic rays in CMS

    CERN Document Server

    Calderon, Alicia

    2009-01-01

    After the incident with the Large Hadron Collider (LHC) in September 2008, the Compact Muon Solenoid (CMS) collaboration invested a considerable effort in further refining the understanding of the detector using cosmic muon data. About 300 million cosmic events were recorded with the CMS detector fully operational and the central solenoid switched on at the nominal value of 3.8 Tesla. The resulting data set provides ample statistics to study in great detail the detector performance and allows to analyze properties of cosmic rays. We present recent results on detector performance from the cosmic muon analysis activities and compare cosmic data to dedicated cosmic Monte Carlo samples. These results demonstrate the readiness of the CMS detector to do physics analysis with muons, and the study of cosmic muon properties provides interesting links to astrophysics.

  2. The first muon spin rotation experiment

    CERN Document Server

    Garwin, Richard L

    2003-01-01

    The February 15, 1957 issue of Physical Review Letters shows the first muon precession curve resulting from the stopping of `85 MeV' muons in graphite, and the resulting counting rate in a gate of fixed delay, duration, and orientation, as a function of an applied vertical magnetic field. The purpose of the four-day experiment was to test the conservation of parity in the weak interactions. It involved the sudden recognition that existing muon beams would be polarized if parity were not conserved, together with the appreciation that the angular distribution of decay electrons from the population of stopped muons could be observed (much more reliably and sensitively) by the variation with time or current of the detections in a fixed counter telescope than by the measurement of the decay asymmetry of nominally fixed muon spins. This retrospective paper explains the context, the state of the art at the time, and what we expected as a consequence of this experiment. We went on to study more accurately the magneti...

  3. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    2011-01-01

    A new set of muon alignment constants was approved in August. The relative position between muon chambers is essentially unchanged, indicating good detector stability. The main changes concern the global positioning of the barrel and of the endcap rings to match the new Tracker geometry. Detailed studies of the differences between track-based and optical alignment of DTs have proven to be a valuable tool for constraining Tracker alignment weak modes, and this information is now being used as part of the alignment procedure. In addition to the “split-cosmic” analysis used to investigate the muon momentum resolution at high momentum, a new procedure based on reconstructing the invariant mass of di-muons from boosted Zs is under development. Both procedures show an improvement in the momentum precision of Global Muons with respect to Tracker-only Muons. Recent developments in track-based alignment include a better treatment of the tails of residual distributions and accounting for correla...

  4. CNGS Muon Monitors

    CERN Document Server

    Marsili, A; Ferioli, G; Gschwendtner, E; Holzer, E B; Kramer, Daniel; CERN. Geneva. AB Department

    2008-01-01

    The CERN Neutrinos to Gran Sasso (CNGS) beam facility uses two muon detector stations as on-line feed back for the quality control of the neutrino beam. The muon detector stations are assembled in a cross-shaped array to provide the muon intensity and the vertical and horizontal muon profiles. Each station is equipped with 42 ionisation chambers, which are originally designed as Beam Loss Monitors (BLMs) for the Large Hadron Collider(LHC). The response of the muon detectors during the CNGS run 2007 and possible reasons for a non-linear behaviour with respect to the beam intensity are discussed. Results of the CNGS run 2008 are shown: The modifications done during the shutdown 2007/08 were successful and resulted in the expected linear behaviour of the muon detector response.

  5. The CMS Barrel Muon Trigger Upgrade

    CERN Document Server

    Triossi, Andrea

    2017-01-01

    ABSTRACT: The increase of luminosity expected by LHC during Phase 1 will impose several constrains for rate reduction while maintaining high efficiency in the CMS Level 1 trigger system. The TwinMux system is the early layer of the muon barrel region that concentrates the information from different subdetectors DT, RPC and HO. It arranges and fan-out the slow optical trigger links from the detector chambers into faster links (10 Gbps) that are sent to the track finders. Results, from collision runs, that confirm the satisfactory operation of the trigger system up to the output of the barrel track finder, will be shown. SUMMARY: In view of the increase of luminosity during phase 1 upgrade of LHC, the muon trigger chain of the Compact Muon Solenoid (CMS) experiment underwent considerable improvements. The muon detector was designed for preserving the complementarity and redundancy of three separate muon detection systems, Cathode Strip Chambers (CSC), Drift Tubes (DT) and Resistive Plate Chambers (RPC), until ...

  6. Muon Track Matching

    CERN Document Server

    Benvenuti, Alberto C; Genchev, V; Khanov, A I; Stepanov, N; Vankov, P

    2000-01-01

    For most physical processes the tracks observed in the muon stations must be matched with the corresponding tracks in the inner tracker, the external muon system providing muon identification and triggering but the tracker points giving the precise momentum measurement at lower momenta. For high momenta the momentum resolution is much improved by the interconnection of inner and outer measurements. The matching of outer and inner measurements is more delicate in case of muons embedded in jets. A study of the matching procedure was carried out using samples of (b, anti b) jets at high Pt, requiring (b, anti b) -> mu decays.

  7. Muon Collider Design

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Pisin

    2003-06-02

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity {mu}{sup +}{mu}{sup -} colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Detector background, polarization, and nonstandard operating conditions are discussed.

  8. Telecommunication using muon beams

    Science.gov (United States)

    Arnold, Richard C.

    1976-01-01

    Telecommunication is effected by generating a beam of mu mesons or muons, varying a property of the beam at a modulating rate to generate a modulated beam of muons, and detecting the information in the modulated beam at a remote location.

  9. Precision Muon Physics

    CERN Document Server

    Gorringe, T P

    2015-01-01

    The muon is playing a unique role in sub-atomic physics. Studies of muon decay both determine the overall strength and establish the chiral structure of weak interactions, as well as setting extraordinary limits on charged-lepton-flavor-violating processes. Measurements of the muon's anomalous magnetic moment offer singular sensitivity to the completeness of the standard model and the predictions of many speculative theories. Spectroscopy of muonium and muonic atoms gives unmatched determinations of fundamental quantities including the magnetic moment ratio $\\mu_\\mu / \\mu_p$, lepton mass ratio $m_{\\mu} / m_e$, and proton charge radius $r_p$. Also, muon capture experiments are exploring elusive features of weak interactions involving nucleons and nuclei. We will review the experimental landscape of contemporary high-precision and high-sensitivity experiments with muons. One focus is the novel methods and ingenious techniques that achieve such precision and sensitivity in recent, present, and planned experiment...

  10. Observation of the February 2011 Forbush decrease by the EEE telescopes

    Science.gov (United States)

    Abbrescia, M.; Aiola, S.; Antolini, R.; Avanzini, C.; Baldini Ferroli, R.; Bencivenni, G.; Bossini, E.; Bressan, E.; Chiavassa, A.; Cicalo, C.; Cifarelli, L.; Coccetti, F.; Coccia, E.; de Gruttola, D.; de Pasquale, S.; di Giovanni, A.; D'Incecco, M.; Doroud, K.; Dreucci, M.; Fabbri, F. L.; Frolov, V.; Garbini, M.; Gemme, G.; Gnesi, I.; Gustavino, C.; Hatzifotiadou, D.; La Rocca, P.; Li, S.; Librizzi, F.; Maggiora, A.; Massai, M.; Menghetti, H.; Miozzi, S.; Moro, R.; Panareo, M.; Paoletti, R.; Perasso, L.; Pilo, F.; Piragino, G.; Regano, A.; Riggi, F.; Romano, F.; Sartorelli, G.; Scapparone, E.; Scribano, A.; Selvi, M.; Serci, S.; Siddi, E.; Spandre, G.; Squarcia, S.; Taiuti, M.; Tosello, F.; Votano, L.; Williams, M. C. S.; Zichichi, A.; Zouyevski, R.

    2011-07-01

    The Forbush decrease following the large X2 solar flare on mid-February 2011 has been observed by the muon telescopes of the EEE Project, which are located in several Italian sites and at CERN. Data from two different telescopes of the EEE network have been analyzed and compared to those measured by neutron monitor stations. The variation of the muon counting rate during the Forbush decrease was also extracted for different intervals of the azimuthal angle of the incoming muons.

  11. Observation of the February 2011 Forbush decrease by the EEE telescopes

    CERN Document Server

    Abbrescia, M; Antolini, R; Avanzini, C; Baldini Ferroli, R; Bencivenni, G; Bossini, E; Bressan, E; Chiavassa, A; Cicalo, C; Cifarelli, L; Coccetti, F; Coccia, E; De Gruttola, D; De Pasquale, S; Di Giovanni, A; D'Incecco, M; Doroud, K; Dreucci, M; Fabbri, F.L; Frolov, V; Garbini, M; Gemme, G; Gnesi, I; Gustavino, C; Hatzifotiadou, D; La Rocca, P; Li, S; Librizzi, F; Maggiora, A; Massai, M; Menghetti, H; Miozzi, S; Moro, R; Panareo, M; Paoletti, R; Perasso, L; Pilo, F; Piragino, G; Regano, A; Riggi, F; Romano, F; Sartorelli, G; Scapparone, E; Scribano, A; Selvi, M; Serci, S; Siddi, E; Spandre, G; Squarcia, S; Taiuti, M; Tosello, F; Votano, L; Williams, M.C.S; Zichichi, A; Zouyevski, R

    2011-01-01

    The Forbush decrease following the large X2 solar flare on mid-February 2011 has been observed by the muon telescopes of the EEE Project, which are located in several Italian sites and at CERN. Data from two different telescopes of the EEE network have been analyzed and compared to those measured by neutron monitor stations. The variation of the muon counting rate during the Forbush decrease was also extracted for different intervals of the azimuthal angle of the incoming muons.

  12. Z to Muon Muon Collision Event Animation

    CERN Multimedia

    ATLAS experiment

    2010-01-01

    This animation was created of an actual ATLAS collision event in 2010. This animation shows from the particle view the race through the LHC, ending in the detector where the particle collision occurs. Candidate for an event with a Z boson decaying to two muons.

  13. ATLAS muon detector

    CERN Multimedia

    Muon detectors from the outer layer of the ATLAS experiment at the Large Hadron Collider. Over a million individual detectors combine to make up the outer layer of ATLAS. All of this is exclusively to track the muons, the only detectable particles to make it out so far from the collision point. How the muon’s path curves in the magnetic field depends on how fast it is travelling. A fast muon curves only a very little, a slower one curves a lot. Together with the calorimeters, the muon detectors play an essential role in deciding which collisions to store and which to ignore. Certain signals from muons are a sure sign of exciting discoveries. To make sure the data from these collisions is not lost, some of the muon detectors react very quickly and trigger the electronics to record. The other detectors take a little longer, but are much more precise. Their job is to measure exactly where the muons have passed, calculating the curvature of their tracks in the magnetic field to the nearest five hundredths of a ...

  14. ATLAS Muon Reconstruction Efficiency

    CERN Document Server

    Spearman, W; The ATLAS collaboration

    2012-01-01

    In 2012 the LHC will be operated in a mode leading to up to 40 inelastic pp collisions per bunch crossing, so-called "pile-up". The reconstruction and identification of muons produced in a hard collisions is difficult in this challenging environment. Di-muon decays of J/ψ mesons and Z bosons have been used to study the muon reconstruction and identification efficiency of the ATLAS detector as a function of the muon transverse momentum from pT=4 GeV to pT=100 GeV and the number of inelastic collisions per event. The results show a steep efficiency turn-on curve reaching its plateau value of 100% at pT ~ 6 GeV and no dependence of the muon reconstruction efficiency on the amount pile-up. The studies also reveal that the use of inner detector tracks allows us to distinguish between isolated muons and non-isolated muons produced in jets with high separation power even at the highest pile-up levels.

  15. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez and Y. Pakhotin

    2012-01-01

      A new track-based alignment for the DT chambers is ready for deployment: an offline tag has already been produced which will become part of the 52X Global Tag. This alignment was validated within the muon alignment group both at low and high momentum using a W/Z skim sample. It shows an improved mass resolution for pairs of stand-alone muons, improved curvature resolution at high momentum, and improved DT segment extrapolation residuals. The validation workflow for high-momentum muons used to depend solely on the “split cosmics” method, looking at the curvature difference between muon tracks reconstructed in the upper or lower half of CMS. The validation has now been extended to include energetic muons decaying from heavily boosted Zs: the di-muon invariant mass for global and stand-alone muons is reconstructed, and the invariant mass resolution is compared for different alignments. The main areas of development over the next few months will be preparing a new track-based C...

  16. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    M. Dallavalle

    2013-01-01

    A new Muon misalignment scenario for 2011 (7 TeV) Monte Carlo re-processing was re-leased. The scenario is based on running of standard track-based reference-target algorithm (exactly as in data) using single-muon simulated sample (with the transverse-momentum spectrum matching data). It used statistics similar to what was used for alignment with 2011 data, starting from an initially misaligned Muon geometry from uncertainties of hardware measurements and using the latest Tracker misalignment geometry. Validation of the scenario (with muons from Z decay and high-pT simulated muons) shows that it describes data well. The study of systematic uncertainties (dominant by now due to huge amount of data collected by CMS and used for muon alignment) is finalised. Realistic alignment position errors are being obtained from the estimated uncertainties and are expected to improve the muon reconstruction performance. Concerning the Hardware Alignment System, the upgrade of the Barrel Alignment is in progress. By now, d...

  17. The Active Muon Shield

    CERN Document Server

    Bezshyiko, Iaroslava

    2016-01-01

    In the SHiP beam-dump of the order of 1011 muons will be produced per second. An active muon-shield is used to magnetically deflect these muons out of the acceptance of the spectrom- eter. This note describes how this shield is modelled and optimized. The SHiP spectrometer is being re-optimized using a conical decay-vessel, and utilizing the possibility to magnetize part of the beam-dump shielding iron. A shield adapted to these new conditions is presented which is significantly shorter and lighter than the shield used in the Technical Proposal (TP), while showing a similar performance.

  18. Muon track reconstruction and data selection techniques in AMANDA

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, J.; Bai, X.; Bay, R.; Barwick, S.W.; Becka, T.; Becker, J.K.; Becker, K.-H.; Bernardini, E.; Bertrand, D.; Biron, A.; Boersma, D.J.; Boeser, S.; Botner, O.; Bouchta, A.; Bouhali, O.; Burgess, T.; Carius, S.; Castermans, T.; Chirkin, D.; Collin, B.; Conrad, J.; Cooley, J.; Cowen, D.F.; Davour, A.; De Clercq, C.; DeYoung, T.; Desiati, P.; Dewulf, J.-P.; Ekstroem, P.; Feser, T.; Gaug, M.; Gaisser, T.K.; Ganugapati, R.; Geenen, H.; Gerhardt, L.; Gross, A.; Goldschmidt, A.; Hallgren, A.; Halzen, F.; Hanson, K.; Hardtke, R.; Harenberg, T.; Hauschildt, T.; Helbing, K.; Hellwig, M.; Herquet, P.; Hill, G.C.; Hubert, D.; Hughey, B.; Hulth, P.O.; Hultqvist, K.; Hundertmark, S.; Jacobsen, J.; Karle, A.; Kestel, M.; Koepke, L.; Kowalski, M.; Kuehn, K.; Lamoureux, J.I.; Leich, H.; Leuthold, M.; Lindahl, P.; Liubarsky, I.; Madsen, J.; Marciniewski, P.; Matis, H.S.; McParland, C.P.; Messarius, T.; Minaeva, Y.; Miocinovic, P.; Mock, P.C.; Morse, R.; Muenich, K.S.; Nam, J.; Nahnhauer, R.; Neunhoeffer, T.; Niessen, P.; Nygren, D.R.; Oegelman, H.; Olbrechts, Ph.; Perez de los Heros, C.; Pohl, A.C.; Porrata, R.; Price, P.B.; Przybylski, G.T.; Rawlins, K.; Resconi, E.; Rhode, W.; Ribordy, M.; Richter, S.; Rodriguez Martino, J.; Ross, D.; Sander, H.-G.; Schinarakis, K.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Schwarz, R.; Silvestri, A.; Solarz, M.; Spiczak, G.M.; Spiering, C.; Stamatikos, M.; Steele, D.; Steffen, P.; Stokstad, R.G.; Sulanke, K.-H.; Streicher, O.; Taboada, I.; Thollander, L.; Tilav, S.; Wagner, W.; Walck, C.; Wang, Y.-R.; Wiebusch, C.H. E-mail: wiebusch@physik.uni-wuppertal.de; Wiedemann, C.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Yodh, G

    2004-05-21

    The Antarctic Muon And Neutrino Detector Array (AMANDA) is a high-energy neutrino telescope operating at the geographic South Pole. It is a lattice of photo-multiplier tubes buried deep in the polar ice between 1500 and 2000 m. The primary goal of this detector is to discover astrophysical sources of high-energy neutrinos. A high-energy muon neutrino coming through the earth from the Northern Hemisphere can be identified by the secondary muon moving upward through the detector. The muon tracks are reconstructed with a maximum likelihood method. It models the arrival times and amplitudes of Cherenkov photons registered by the photo-multipliers. This paper describes the different methods of reconstruction, which have been successfully implemented within AMANDA. Strategies for optimizing the reconstruction performance and rejecting background are presented. For a typical analysis procedure the direction of tracks are reconstructed with about 2 deg. accurac000.

  19. Determination of density of temperature coefficients for the Earth's atmosphere muons

    Science.gov (United States)

    Yanchukovskiy, Valeriy; Kuzmenko, Vasiliy

    2015-06-01

    When studying variations of cosmic ray intensity, by the use of muon telescopes located deep in the atmosphere it is necessary to take into account changes in atmospheric parameters, mainly pressure and temperature. The density distribution of temperature coefficients of the atmosphere muon intensity needs to be estimated from observations. To this purpose, the method of principal components regression and methods of projection to latent structures (PLS-1 and PLS-2). We used data of continuous recording of muons, as well as Novosibirsk 2004-2010 aerological data. As shown by comparing results, PLS-2 method allows us to estimate the density distribution of muon intensity temperature coefficients with minimal errors.

  20. A novel muon detector for borehole density tomography

    Science.gov (United States)

    Bonneville, Alain; Kouzes, Richard T.; Yamaoka, Jared; Rowe, Charlotte; Guardincerri, Elena; Durham, J. Matthew; Morris, Christopher L.; Poulson, Daniel C.; Plaud-Ramos, Kenie; Morley, Deborah J.; Bacon, Jeffrey D.; Bynes, James; Cercillieux, Julien; Ketter, Chris; Le, Khanh; Mostafanezhad, Isar; Varner, Gary; Flygare, Joshua; Lintereur, Azaree T.

    2017-04-01

    Muons can be used to image the density of materials through which they pass, including geological structures. Subsurface applications of the technology include tracking fluid migration during injection or production, with increasing concern regarding such timely issues as induced seismicity or chemical leakage into aquifers. Current density monitoring options include gravimetric data collection and active or passive seismic surveys. One alternative, or complement, to these methods is the development of a muon detector that is sufficiently compact and robust for deployment in a borehole. Such a muon detector can enable imaging of density structure to monitor small changes in density - a proxy for fluid migration - at depths up to 1500 m. Such a detector has been developed, and Monte Carlo modeling methods applied to simulate the anticipated detector response. Testing and measurements using a prototype detector in the laboratory and shallow underground laboratory demonstrated robust response. A satisfactory comparison with a large drift tube-based muon detector is also presented.

  1. Muon ionization cooling experiment

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    A neutrino factory based on a muon storage ring is the ultimate tool for studies of neutrino oscillations, including possibly leptonic CP violation. It is also the first step towards muon colliders. The performance of this new and promising line of accelerators relies heavily on the concept of ionisation cooling of minimum ionising muons, for which much R&D is required. The concept of a muon ionisation cooling experiment has been extensively studied and first steps are now being taken towards its realisation by a joint international team of accelerator and particle physicists. The aim of the workshop is to to explore at least two versions of an experiment based on existing cooling channel designs. If such an experiment is feasible, one shall then select, on the basis of effectiveness, simplicity, availability of components and overall cost, a design for the proposed experiment, and assemble the elements necessary to the presentation of a proposal. Please see workshop website.

  2. Measurement of the Forward-Backward Asymmetry in $\\gamma/Z$ boson to Dilepton Events in Compact Muon Solenoid at a Center-of-mass Energy of 7 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Youn Jung [Texas Tech Univ., Lubbock, TX (United States)

    2011-12-01

    The forward-backward asymmetry parameter (AFB) as a function of dilepton invariant mass in Z/γ* →l+l- (l=e or μ) at √s=7 TeV is measured using 2.2 fb-1 of pp collision data in 2011. The forward-backward asymmetry measurement is performed using muons within |η| < 2.1 and electrons within |η| < 2.4 in a wide mass range between 40 GeV/c2 to 1000 GeV/c2. The forward-backward asymmetry is also measured for the first time in a large rapidity range of |η| < 5 with electrons using the CMS forward calorimeters and results in a less diluted AFB measurement, as expected. The forward-backward asymmetry parameters are unfolded in three stages, limited pre-FSR, full pre-FSR, and non-diluted stage in order to obtain parton level AFB. The muon and electron results are combined, and the individual and combined results are found to be consistent with the Standard Model prediction within statistical and systematic uncertainties.

  3. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    Gervasio Gomez

    2012-01-01

      The new alignment for the DT chambers has been successfully used in physics analysis starting with the 52X Global Tag. The remaining main areas of development over the next few months will be preparing a new track-based CSC alignment and producing realistic APEs (alignment position errors) and MC misalignment scenarios to match the latest muon alignment constants. Work on these items has been delayed from the intended timeline, mostly due to a large involvement of the muon alignment man-power in physics analyses over the first half of this year. As CMS keeps probing higher and higher energies, special attention must be paid to the reconstruction of very-high-energy muons. Recent muon POG reports from mid-June show a φ-dependence in curvature bias in Monte Carlo samples. This bias is observed already at the tracker level, where it is constant with muon pT, while it grows with pT as muon chamber information is added to the tracks. Similar studies show a much smaller effect in data, at le...

  4. Polarization of Prompt Muons

    Energy Technology Data Exchange (ETDEWEB)

    Lauterbach, Michael J. [Yale U.

    1977-12-01

    This paper presents measurements of the polarization of muons produced very near the point of proton - nucleon interaction" The experiment utilized a 400 GeV proton beam available in the Proton Central area of Fermilab. Muons were produced by the interaction of these protons with a variable density copper target" Extrapolation to infinite target density allowed elilp.ination of contributions due to muons from meson decay" Measurements were made upon muons produced in the forward direction with energies near 185 GeV and upon muons produced with transverse momenta near 1. 9 Ge V / c and an energy of 54 Ge V" In the first case only the longitudinal polarization was measured: P = - 0.01 ± 0.14. Under the second set of kinematic conditions both the longitudinal and transverse polarization were measured: $P_L$ = - 0.06 ± 0.16, $P_T$ = - 0.01 ± O.11 These null measurements suggest that an electromagnetic process is the dominant mechanism for prompt muon production" The measurements also indicate an upper limit of $B_{\\mu} ( D^0) \\sigma_{D^0} + B_{\\mu} ( D^+) \\sigma_{D^+} < 6.7 x 10^{-8}$ barns may be placed upon the production cross section for D particles

  5. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    2012-01-01

      A new muon alignment has been produced for 2012 A+B data reconstruction. It uses the latest Tracker alignment and single-muon data samples to align both DTs and CSCs. Physics validation has been performed and shows a modest improvement in stand-alone muon momentum resolution in the barrel, where the alignment is essentially unchanged from the previous version. The reference-target track-based algorithm using only collision muons is employed for the first time to align the CSCs, and a substantial improvement in resolution is observed in the endcap and overlap regions for stand-alone muons. This new alignment is undergoing the approval process and is expected to be deployed as part of a new global tag in the beginning of December. The pT dependence of the φ-bias in curvature observed in Monte Carlo was traced to a relative vertical misalignment between the Tracker and barrel muon systems. Moving the barrel as a whole to match the Tracker cures this pT dependence, leaving only the &phi...

  6. Electromagnetic Interactions of Muons

    CERN Multimedia

    2002-01-01

    This experiment was the first in a programme of physics experiments with high-energy muons using a large spectrometer facility. The aim of this experiment is to study the inelastic scattering of muons with various targets to try to understand better the physics of virtual photon interactions over a wide range of four-momentum transfer (q$^{2}$).\\\\ \\\\ The spectrometer includes a large aperture dipole magnet (2m x 1m) of bending power $\\simeq$5 T.m and a magnetized iron filter to distinguish the scattered muons from hadrons. Drift chambers and MWPC are used before and after the magnet to detect charged products of the interaction and to allow a momentum determination of the scattered muon to an accuracy of $\\simeq$at 100 GeV/c, and an angular definition of $\\pm$ 0.1 mrad. The triggering on scattered muons relies on three planes of scintillation counter hodoscopes before and after the magnetized iron, whose magnetic field serves to eliminate triggers from low momentum muons which are produced copiously by pion d...

  7. The Case for a Muon Collider Higgs Factory

    CERN Document Server

    Alexahin, Yuri; Cline, David B.; Conway, Alexander; Cummings, Mary Anne; Di Benedetto, Vito; Eichten, Estia; Delahaye, Jean-Pierre; Gatto, Corrado; Grinstein, Benjamin; Gunion, Jack; Han, Tao; Hanson, Gail; Hill, Christopher T.; Ignatov, Fedor; Johnson, Rolland P.; Lebedev, Valeri; Lederman, Leon M.; Lipton, Ron; Liu, Zhen; Markiewicz, Tom; Mazzacane, Anna; Mokhov, Nikolai; Nagaitsev, Sergei; Neuffer, David; Palmer, Mark; Purohit, Milind V.; Raja, Rajendran; Rubbia, Carlo; Striganov, Sergei; Summers, Don; Terentiev, Nikolai; Wenzel, Hans

    2013-01-01

    We propose the construction of a compact Muon Collider Higgs Factory. Such a machine can produce up to \\sim 14,000 at 8\\times 10^{31} cm^-2 sec^-1 clean Higgs events per year, enabling the most precise possible measurement of the mass, width and Higgs-Yukawa coupling constants.

  8. Space Telescope.

    Science.gov (United States)

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    This pamphlet describes the Space Telescope, an unmanned multi-purpose telescope observatory planned for launch into orbit by the Space Shuttle in the 1980s. The unique capabilities of this telescope are detailed, the major elements of the telescope are described, and its proposed mission operations are outlined. (CS)

  9. Narrow muon bundles from muon pair production in rock

    CERN Document Server

    Kudryavtsev, V A; Spooner, N J C

    1999-01-01

    We revise the process of muon pair production by high-energy muons in rock using the recently published cross-section. The three- dimensional Monte Carlo code MUSIC has been used to obtain the characteristics of the muon bundles initiated via this process. We have compared them with those of conventional muon bundles initiated in the atmosphere and shown that large underground detectors, capable of collecting hundreds of thousands of multiple muon events, can discriminate statistically muon induced bundles from conventional ones. However, we find that the enhancement of the measured muon decoherence function over that predicted at small distances, recently reported by the MACRO experiment, cannot be explained by the effect of muon pair production alone, unless its cross-section is underestimated by a factor of 3. (20 refs).

  10. Measurement of the Forward-Backward Asymmetry in $\\gamma/Z$ boson to Dilepton Events in Compact Muon Solenoid at a Center-of-mass Energy of 7 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Youn Jung [Texas Tech Univ., Lubbock, TX (United States)

    2011-12-01

    The forward-backward asymmetry parameter ($A_{\\rm FB}$) as a function of dilepton invariant mass in $Z / \\gamma^* \\rightarrow l^+l^-$ ($l$=$e$ or $\\mu$) at $\\sqrt{s}$=7 TeV is measured using 2.2 fb$^{-1}$ of $pp$ collision data in 2011. The uncorrected (raw) $A_{\\rm FB}$ and the corrected (unfolded) $A_{\\rm FB}$ is performed in a wide mass range between 40 GeV/$c^{2}$ to 1000 GeV/$c^{2}$, and comparative studies and correction techniques with simulation are described in detail. We measure raw $A_{\\rm FB}$ for the first time in a large rapidity range of 3 $<|\\eta| <$ 5 with electrons using the forward calorimeters and achieve almost non-diluted $A_{\\rm FB}$ result. The $A_{\\rm FB}$ measurements with muons and electrons and their combination are consistent with the Standard Model (SM) prediction within uncertainties.

  11. The LHCb Muon Sistem

    CERN Document Server

    Brusa, Simone

    2008-01-01

    In this paper is described the LHCb muon detector, which plays a fundamental role in the Level-0 (L0) trigger and muon identification for the high-level trigger (HLT) and offline analysis. After a short review of the detector structure and of the required performances, we will describe, with some detail, the construction procedures and the relative quality control tests of the single chambers. The results of the quality control tests performed in the production centers, and the tests with fully equipped chambers performed at CERN before the installation on the experiment site, will also be reported.

  12. A Search for WW$\\gamma$ and WZ$\\gamma$ Triboson Production and Anomalous Quartic Gauge Couplings at $\\sqrt{s}$ = 8 and 13~TeV within the Compact Muon Solenoid

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00354953

    2016-01-01

    An analysis probing for the standard model production of three electroweak vector bosons, WV$\\gamma$ with V = W or Z gauge boson, is presented. The W boson decays leptonically to an electron or muon, or their respective antiparticle, paired with the appropriate neutrino. The second boson V decays hadronically into two jets, and additionally a photon is required in the event. The data analyzed correspond to an integrated luminosity of 19.6~fb$^{-1}$ and 2.3~fb$^{-1}$ from proton-proton collisions at $\\sqrt{s}$ = 8~TeV and 13~TeV, respectively, collected in 2012 and 2015 by the CMS detector at the Large Hadron Collider. The event selection criteria used in these analyses yields 322 and 46 observed events in data in 2012 and 2015, respectively, while the estimated background yield from theoretical predictions is 342.1~$\\pm$~22.2 and 54.3~$\\pm$~17.7. These observations are consistent with the standard model next-to-leading order QCD predictions. Given the limitation in statistics to measure the cross section for...

  13. Muon Astronomy with LVD Detector

    CERN Document Server

    Aglietta, M; Antonioli, P; Badino, G; Bari, G; Basile, M; Berezinsky, Veniamin Sergeevich; Bersani, F; Bertaina, M; Bertoni, R; Bruni, G; Cara Romeo, G; Castagnoli, C; Castellina, A; Chiavassa, A; Chinellato, J A; Cifarelli, Luisa; Cindolo, F; Contin, A; Dadykin, V L; Dos Santos, L G; Enikeev, R I; Fulgione, W; Galeotti, P; Ghia, P; Giusti, P; Gómez, F; Granella, R; Grianti, F; Gurentsov, V I; Iacobucci, G; Inoue, N; Kemp, E; Khalchukov, F F; Korolkova, E V; Korchaguin, P V; Korchaguin, V B; Kudryavtsev, V A; Luvisetto, Marisa L; Malguin, A S; Massam, Thomas; Mengotti-Silva, N; Morello, C; Nania, R; Navarra, G; Periale, L; Pesci, A; Picchi, P; Pless, I A; Ryasny, V G; Ryazhskaya, O G; Saavedra, O; Saitoh, K; Sartorelli, G; Selvi, M; Taborgna, N; Talochkin, V P; Trinchero, G C; Tsuji, S; Turtelli, A; Vallania, P; Vernetto, S; Vigorito, C; Votano, L; Wada, T; Weinstein, R; Widgoff, M; Yakushev, V F; Yamamoto, I; Zatsepin, G T; Zichichi, Antonino

    1999-01-01

    We analysed the arrival directions of single muons detected by the first LVD tower from November, 1994 till January, 1998. The moon shadowing effect has been observed. To search for point sources of high energy photons we have analysed muons crossing the rock thickness greater than 3, 5 and 7 km w.e., which corresponds to the mean muon energies 1.6, 3.9 and 8.4 TeV at the surface, respectively. Upper limits on steady muon fluxes for selected astrophysical sources for different muon energies are presented.

  14. Bridging nations through muons

    CERN Multimedia

    2006-01-01

    From America to Israel and Japan, a team of international technicians and scientists are working together to build the ATLAS endcap muon chambers. The Israeli and Pakistani teams stand in front of part of the ATLAS endcap muon spectrometer. They are working on the project along with...... a team from American universities and research institutions. It's a small world; at least you might think so after a visit to Building 180. Inside, about 30 engineers and physicists weld, measure and hammer away, many of whom are miles from their homes and families. They hail from Pakistan, Israel, Japan, China, Russia and the United States. Coordinated by a group of CERN engineers, the team represents an international collaboration in every sense. Whether they've been here for years or months, CERN is their temporary home as they work toward one common goal: the completion of the ATLAS muon chamber endcaps. When finished, the ATLAS muon spectrometer will include four moving 'big wheel'structures on each end of the detecto...

  15. Atmospheric muons reconstruction with Antares; Reconstruction de muons atmospheriques avec ANTARES

    Energy Technology Data Exchange (ETDEWEB)

    Melissas, M

    2007-09-15

    The ANTARES collaboration is building a neutrino telescope in the Mediterranean Sea. This detector contains 900 photomultiplier tubes, dispatched on 12 lines, in order to detect Cerenkov light from muon induced by neutrino interactions in the the vicinity of the detector. Currently the first 5 lines have been deployed. A first task consists in studying the stability of the detector calibration, which is a necessary step to understand the detector response. Then we studied optical properties of water, for this we developed a reconstruction method dedicated to LED Beacon. The extracted parameters are compatible with earlier measurements. A quality criteria to reject badly reconstructed track has been developed based on the likelihood of the tracks fit versus point fit. This has been applied to real data and a preliminary analysis of atmospheric muons with a 5-lines detector is performed. (author)

  16. The LVD Core Facility: a study of LVD as muon veto and active shielding for dark matter experiments

    CERN Document Server

    Selvi, Marco

    2008-01-01

    In this study we explore the possibility of using the existing structure of a running experiment, the LVD supernova observatory at the INFN Gran Sasso National Laboratory, as an active shield and veto for the muon-induced background. In our vision LVD could become (without affecting in any way its main purpose of SN neutrino telescope) a host for a relatively compact but massive experiment looking for rare events. The empty volume that can be obtained removing 2 modules from the most internal part of the detector is 2.1m x 6.2m x 2.8m; we will call it LVD Core Facility (LVD-CF). We have evaluated the active vetoing and shielding power of LVD, with a detailed MC simulation (based on Geant4) of the detector and the rock that surrounds it. The results show that the flux of neutrons that are not associated with a visible muon in LVD is very low; it results reduced by a factor 50, equivalent to the one present in a much deeper underground laboratory, i.e. Sudbury. Moreover we present the results of on-going measur...

  17. Borehole Muon Detector Development

    Science.gov (United States)

    Bonneville, A.; Flygare, J.; Kouzes, R.; Lintereur, A.; Yamaoka, J. A. K.; Varner, G. S.

    2015-12-01

    Increasing atmospheric CO2 concentrations have spurred investigation into carbon sequestration methods. One of the possibilities being considered, storing super-critical CO2 in underground reservoirs, has drawn more attention and pilot projects are being supported worldwide. Monitoring of the post-injection fate of CO2 is of utmost importance. Generally, monitoring options are active methods, such as 4D seismic reflection or pressure measurements in monitoring wells. We propose here to develop a 4-D density tomography of subsurface CO2 reservoirs using cosmic-ray muon detectors deployed in a borehole. Muon detection is a relatively mature field of particle physics and there are many muon detector designs, though most are quite large and not designed for subsurface measurements. The primary technical challenge preventing deployment of this technology in the subsurface is the lack of miniaturized muon-tracking detectors capable of fitting in standard boreholes and that will resist the harsh underground conditions. A detector with these capabilities is being developed by a collaboration supported by the U.S. Department of Energy. Current simulations based on a Monte Carlo modeling code predict that the incoming muon angle can be resolved with an error of approximately two degrees, using either underground or sea level spectra. The robustness of the design comes primarily from the use of scintillating rods as opposed to drift tubes. The rods are arrayed in alternating layers to provide a coordinate scheme. Preliminary testing and measurements are currently being performed to test and enhance the performance of the scintillating rods, in both a laboratory and a shallow underground facility. The simulation predictions and data from the experiments will be presented.

  18. Composition from high pT muons in IceCube

    Directory of Open Access Journals (Sweden)

    Soldin Dennis

    2015-01-01

    Full Text Available Cosmic rays with energies up to 1011 GeV enter the atmosphere and produce showers of secondary particles. Inside these showers muons with high transverse momentum (pT ≳ 2 GeV are produced from the decay of heavy hadrons, or from high pT pions and kaons very early in the shower development. These isolated muons can have large transverse separations from the shower core up to several hundred meters, together with the muon bundle forming a double or triple track signature in IceCube. The separation from the core is a measure of the transverse momentum of the muon's parent particle. Assuming the validity of perturbative quantum chromodynamics (pQCD the muon lateral distribution depends on the composition of the incident nuclei, thus the composition of high energy cosmic rays can be determined from muon separation measurements. Vice versa these muons can help to understand uncertainties due to phenomenological models as well as test pQCD predictions of high energy interactions involving heavy nuclei. After introducing the physics scenario of high pT muons in kilometer-scale neutrino telescopes we will review results from IceCube in its 59-string configuration as a starting point and discuss recent studies on composition using laterally separated muons in the final detector configuration.

  19. A Search for WW$\\gamma$ and WZ$\\gamma$ Triboson Production and Anomalous Quartic Gauge Couplings at $\\sqrt{s}$ = 8 and 13~TeV within the Compact Muon Solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Faulkner, James [Texas Tech Univ., Lubbock, TX (United States)

    2016-01-01

    An analysis probing for the standard model production of three electroweak vector bosons, WV$\\gamma$ with V = W or Z gauge boson, is presented. The W boson decays leptonically to an electron or muon, or their respective antiparticle, paired with the appropriate neutrino. The second boson V decays hadronically into two jets, and additionally a photon is required in the event. The data analyzed correspond to an integrated luminosity of 19.6~fb$^{-1}$ and 2.3~fb$^{-1}$ from proton-proton collisions at $\\sqrt{s}$ = 8~TeV and 13~TeV, respectively, collected in 2012 and 2015 by the CMS detector at the Large Hadron Collider. The event selection criteria used in these analyses yields 322 and 46 observed events in data in 2012 and 2015, respectively, while the estimated background yield from theoretical predictions is 342.1~$\\pm$~22.2 and 54.3~$\\pm$~17.7. These observations are consistent with the standard model next-to-leading order QCD predictions. Given the limitation in statistics to measure the cross section for this production process, an upper limit of 3.4 times the standard model predictions is made at a 95\\% confidence level for WV$\\gamma$ with photon $p_{T}$ greater than 30~GeV and absolute pseudorapidity less than 1.44. Physics beyond the standard model, such as anomalous couplings between the gauge bosons at the quartic vertex, may lead to enhancement in the number of WV$\\gamma$ events produced within high energy collisions. Such enhancements can be observed in kinematic distributions, particularly in the higher energy regions. No evidence of anomalous WW$\\gamma\\gamma$ and WWZ$\\gamma$ quartic gauge boson couplings is found, while 95\\% confidence level upper limits are obtained for various couplings.

  20. Design and development of a vertex reconstruction for the CMS (Compact Muon Solenoid) data. Study of gaseous and silicon micro-strips detectors (MSGC); Conception d'un algorithme de reconstruction de vertex pour les donnees de CMS. Etude de detecteurs gazeux (MSGC) et silicium a micropistes

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, St

    2002-12-01

    The work presented in this thesis has contributed to the development of the Compact Muon Solenoid detector (CMS) that will be installed at the future Large Hadron Collider (LHC) which will start running in summer 2007. This report is organised in three parts: the study of gaseous detectors and silicon micro-strips detectors, and a development of a software for the reconstruction and analysis of CMS data in the framework of ORCA. First, the micro-strips gaseous detectors (MSGC) study was on the ultimate critical irradiation test before their substitution in the CMS tracker. This test showed a really small number of lost anodes and a stable signal to noise ratio. This test proved that the described MSGC fulfill all the requirements to be integrated in the CMS tracker. The following contribution described a study of silicon micro-strips detectors and its electronics exposed to a 40 MHz bunched LHC like beam. These tests indicated a good behaviour of the data acquisition and control system. The signal to noise ratio, the bunch crossing identification and the cluster finding efficiency had also be analysed. The last study concern the design and the development of an ORCA algorithm dedicates to secondary vertex reconstruction. This iterative algorithm aims to be use for b tagging. This part analyse also primary vertex reconstruction in events without and with pile up. (author)

  1. Chromaticity correction for a muon collider optics

    Energy Technology Data Exchange (ETDEWEB)

    Alexahin, Y.; Gianfelice-Wendt, E.; Kapin, V.; /Fermilab

    2011-03-01

    Muon Collider (MC) is a promising candidate for the next energy frontier machine. However, in order to obtain peak luminosity in the 10{sup 34} cm{sup 2}s{sup -1} range the collider lattice designmust satisfy a number of stringent requirements. In particular the expected large momentum spread of the muon beam and the very small {beta}* call for a careful correction of the chromatic effects. Here we present a particular solution for the interaction region (IR) optics whose distinctive feature is a three-sextupole local chromatic correction scheme. The scheme may be applied to other future machines where chromatic effects are expected to be large. The expected large muon energy spread requires the optics to be stable over a wide range of momenta whereas the required luminosity calls for {beta}* in the mm range. To avoid luminosity degradation due to hour-glass effect, the bunch length must be comparatively small. To keep the needed RF voltage within feasible limits the momentum compaction factor must be small over the wide range of momenta. A low {beta}* means high sensitivity to alignment and field errors of the Interaction Region (IR) quadrupoles and large chromatic effects which limit the momentum range of optics stability and require strong correction sextupoles, which eventually limit the Dynamic Aperture (DA). Finally, the ring circumference should be as small as possible, luminosity being inversely proportional to the collider length. A promising solution for a 1.5 TeV center of mass energy MC with {beta}* = 1 m in both planes has been proposed. This {beta}* value has been chosen as a compromise between luminosity and feasibility based on the magnet design and energy deposition considerations. The proposed solution for the IR optics together with a new flexible momentum compaction arc cell design allows to satisfy all requirements and is relatively insensitive to the beam-beam effect.

  2. Theoretical Expectations for the Muon's Electric Dipole Moment

    CERN Document Server

    Feng, J L; Shadmi, Y; Feng, Jonathan L; Matchev, Konstantin T.; Shadmi, Yael

    2001-01-01

    We examine the muon's electric dipole moment $\\dmu$ from a variety of theoretical perspectives. We point out that the reported deviation in the muon's g-2 can be due partially or even entirely to a new physics contribution to the muon's {\\em electric} dipole moment. In fact, the recent g-2 measurement provides the most stringent bound on $\\dmu$ to date. This ambiguity could be definitively resolved by the dedicated search for $\\dmu$ recently proposed. We then consider both model-independent and supersymmetric frameworks. Under the assumptions of scalar degeneracy, proportionality, and flavor conservation, the theoretical expectations for $\\dmu$ in supersymmetry fall just below the proposed sensitivity. However, non-degeneracy can give an order of magnitude enhancement, and lepton flavor violation can lead to $\\dmu$ of order $10^{-22}$ e cm, two orders of magnitude above the sensitivity of the $\\dmu$ experiment. We present compact expressions for leptonic dipole moments and lepton flavor violating amplitudes. ...

  3. Air shower simulation for background estimation in muon tomography of volcanoes

    OpenAIRE

    Béné, S.; Boivin, P.; Busato, E.; Cârloganu, C.; Combaret, C.; P. Dupieux; Fehr, F.; Gay, P.; Labazuy, P; Laktineh, I.; Lénat, J.-F.; Miallier, D.; Mirabito, L.; Niess, V.; Portal, A.

    2013-01-01

    International audience; One of the main sources of background for the radiography of volcanoes using atmospheric muons comes from the accidental coincidences produced in the muon telescopes by charged particles belonging to the air shower generated by the primary cosmic ray. In order to quantify this background effect, Monte Carlo simulations of the showers and of the detector are developed by the TOMUVOL collaboration. As a first step, the atmospheric showers were simulated and investigated ...

  4. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    Z. Szillasi and G. Gomez.

    2013-01-01

    When CMS is opened up, major components of the Link and Barrel Alignment systems will be removed. This operation, besides allowing for maintenance of the detector underneath, is needed for making interventions that will reinforce the alignment measurements and make the operation of the alignment system more reliable. For that purpose and also for their general maintenance and recalibration, the alignment components will be transferred to the Alignment Lab situated in the ISR area. For the track-based alignment, attention is focused on the determination of systematic uncertainties, which have become dominant, since now there is a large statistics of muon tracks. This will allow for an improved Monte Carlo misalignment scenario and updated alignment position errors, crucial for high-momentum muon analysis such as Z′ searches.

  5. The LHCb Muon Upgrade

    CERN Multimedia

    Cardini, A

    2013-01-01

    The LHCb collaboration is currently working on the upgrade of the experiment to allow, after 2018, an efficient data collection while running at an instantaneous luminosity of 2x10$^{33}$/cm$^{-2}$s$^{-1}$. The upgrade will allow 40 MHz detector readout, and events will be selected by means of a very flexible software-based trigger. The muon system will be upgraded in two phases. In the first phase, the off-detector readout electronics will be redesigned to allow complete event readout at 40 MHz. Also, part of the channel logical-ORs, used to reduce the total readout channel count, will be removed to reduce dead-time in critical regions. In a second phase, higher-granularity detectors will replace the ones installed in highly irradiated regions, to guarantee efficient muon system performances in the upgrade data taking conditions.

  6. Muon collider progress

    Energy Technology Data Exchange (ETDEWEB)

    Noble, Robert J. FNAL

    1998-08-01

    Recent progress in the study of muon colliders is presented. An international collaboration consisting of over 100 individuals is involved in calculations and experiments to demonstrate the feasibility of this new type of lepton collider. Theoretical efforts are now concentrated on low-energy colliders in the 100 to 500 GeV center-of-mass energy range. Credible machine designs are emerging for much of a hypothetical complex from proton source to the final collider. Ionization cooling has been the most difficult part of the concept, and more powerful simulation tools are now in place to develop workable schemes. A collaboration proposal for a muon cooling experiment has been presented to the Fermilab Physics Advisory Committee, and a proposal for a targetry and pion collection channel experiment at Brookhaven National Laboratory is in preparation. Initial proton bunching and space-charge compensation experiments at existing hadron facilities have occurred to demonstrate proton driver feasibility.

  7. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez.

    Since June of 2009, the muon alignment group has focused on providing new alignment constants and on finalizing the hardware alignment reconstruction. Alignment constants for DTs and CSCs were provided for CRAFT09 data reprocessing. For DT chambers, the track-based alignment was repeated using CRAFT09 cosmic ray muons and validated using segment extrapolation and split cosmic tools. One difference with respect to the previous alignment is that only five degrees of freedom were aligned, leaving the rotation around the local x-axis to be better determined by the hardware system. Similarly, DT chambers poorly aligned by tracks (due to limited statistics) were aligned by a combination of photogrammetry and hardware-based alignment. For the CSC chambers, the hardware system provided alignment in global z and rotations about local x. Entire muon endcap rings were further corrected in the transverse plane (global x and y) by the track-based alignment. Single chamber track-based alignment suffers from poor statistic...

  8. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    2010-01-01

    The main developments in muon alignment since March 2010 have been the production, approval and deployment of alignment constants for the ICHEP data reprocessing. In the barrel, a new geometry, combining information from both hardware and track-based alignment systems, has been developed for the first time. The hardware alignment provides an initial DT geometry, which is then anchored as a rigid solid, using the link alignment system, to a reference frame common to the tracker. The “GlobalPositionRecords” for both the Tracker and Muon systems are being used for the first time, and the initial tracker-muon relative positioning, based on the link alignment, yields good results within the photogrammetry uncertainties of the Tracker and alignment ring positions. For the first time, the optical and track-based alignments show good agreement between them; the optical alignment being refined by the track-based alignment. The resulting geometry is the most complete to date, aligning all 250 DTs, ...

  9. The US Muon Accelerator Program

    Energy Technology Data Exchange (ETDEWEB)

    Torun, Y.; /IIT, Chicago; Kirk, H.; /Brookhaven; Bross, A.; Geer, Steve; Shiltsev, Vladimir; /Fermilab; Zisman, M.; /LBL, Berkeley

    2010-05-01

    An accelerator complex that can produce ultra-intense beams of muons presents many opportunities to explore new physics. A facility of this type is unique in that, in a relatively straightforward way, it can present a physics program that can be staged and thus move forward incrementally, addressing exciting new physics at each step. At the request of the US Department of Energy's Office of High Energy Physics, the Neutrino Factory and Muon Collider Collaboration (NFMCC) and the Fermilab Muon Collider Task Force (MCTF) have recently submitted a proposal to create a Muon Accelerator Program that will have, as a primary goal, to deliver a Design Feasibility Study for an energy-frontier Muon Collider by the end of a 7 year R&D program. This paper presents a description of a Muon Collider facility and gives an overview of the proposal.

  10. Muon radiography in Russia with emulsion technique. First experiments future perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Aleksandrov, A. B.; Bagulya, A. V.; Chernyavsky, M. M.; Konovalova, N. S.; Polukhina, N. G.; Shchedrina, T. V.; Starkov, N. I.; Tioukov, V. E.; Vladymyrov, M. S. [Lebedev Physical Institute, Russian Academy of Sciences, Moscow (Russian Federation); Managadze, A. K.; Roganova, T. M. [Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow (Russian Federation); Orurk, O. I. [Research Institute of Tire Industry, Moscow (Russian Federation); Zemskova, S. G. [Lebedev Physical Institute, Russian Academy of Sciences, Moscow (Russian Federation); Joint Institute for Nuclear Research, Dubna, Moscow Region (Russian Federation)

    2015-12-31

    Cosmic ray muon radiography is a novel technique for imaging the internal structures of massive objects. It exploits the capability of high energy muons from cosmic-rays in order to obtain a density map of investigated object and trying to guess information on the variation in the density distribution. Nuclear emulsions are tracking detectors well suited to be employed in this context since they have an excellent angular resolution (few mrad), they are cheap, compact and robust, easily transportable, able to work in harsh environments, and do not require power supply. This work presents the first successful results in the field of muon radiography in Russia with nuclear emulsions.

  11. From Neutrino Factory to Muon Collider

    Energy Technology Data Exchange (ETDEWEB)

    Geer, S.; /Fermilab

    2010-01-01

    Both Muon Colliders and Neutrino Factories require a muon source capable of producing and capturing {Omicron}(10{sup 21}) muons/year. This paper reviews the similarities and differences between Neutrino Factory and Muon Collider accelerator complexes, the ongoing R&D needed for a Muon Collider that goes beyond Neutrino Factory R&D, and some thoughts about how a Neutrino Factory on the CERN site might eventually be upgraded to a Muon Collider.

  12. Electron-Muon Ranger: performance in the MICE Muon Beam

    CERN Document Server

    Adams, D; Vankova-Kirilova, G.; Bertoni, R.; Bonesini, M.; Chignoli, F.; Mazza, R.; Palladino, V.; de Bari, A.; Cecchet, G.; Capponi, M.; Iaciofano, A.; Orestano, D.; Pastore, F.; Tortora, L.; Kuno, Y.; Sakamoto, H.; Ishimoto, S.; Filthaut, F.; Hansen, O.M.; Ramberger, S.; Vretenar, M.; Asfandiyarov, R.; Bene, P.; Blondel, A.; Cadoux, F.; Debieux, S.; Drielsma, F.; Graulich, J.S.; Husi, C.; Karadzhov, Y.; Masciocchi, F.; Nicola, L.; Messomo, E.Noah; Rothenfusser, K.; Sandstrom, R.; Wisting, H.; Charnley, G.; Collomb, N.; Gallagher, A.; Grant, A.; Griffiths, S.; Hartnett, T.; Martlew, B.; Moss, A.; Muir, A.; Mullacrane, I.; Oates, A.; Owens, P.; Stokes, G.; Warburton, P.; White, C.; Adams, D.; Barclay, P.; Bayliss, V.; Bradshaw, T.W.; Courthold, M.; Francis, V.; Fry, L.; Hayler, T.; Hills, M.; Lintern, A.; Macwaters, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rogers, C.; Stanley, T.; Tarrant, J.; Watson, S.; Wilson, A.; Bayes, R.; Nugent, J.C.; Soler, F.J.P.; Cooke, P.; Gamet, R.; Alekou, A.; Apollonio, M.; Barber, G.; Colling, D.; Dobbs, A.; Dornan, P.; Hunt, C.; Lagrange, J-B.; Long, K.; Martyniak, J.; Middleton, S.; Pasternak, J.; Santos, E.; Savidge, T.; Uchida, M.A.; Blackmore, V.J.; Carlisle, T.; Cobb, J.H.; Lau, W.; Rayner, M.A.; Tunnell, C.D.; Booth, C.N.; Hodgson, P.; Langlands, J.; Nicholson, R.; Overton, E.; Robinson, M.; Smith, P.J.; Dick, A.; Ronald, K.; Speirs, D.; Whyte, C.G.; Young, A.; Boyd, S.; Franchini, P.; Greis, J.; Pidcott, C.; Taylor, I.; Gardener, R.; Kyberd, P.; Littlefield, M.; Nebrensky, J.J.; Bross, A.D.; Fitzpatrick, T.; Leonova, M.; Moretti, A.; Neuffer, D.; Popovic, M.; Rubinov, P.; Rucinski, R.; Roberts, T.J.; Bowring, D.; DeMello, A.; Gourlay, S.; Li, D.; Prestemon, S.; Virostek, S.; Zisman, M.; Hanlet, P.; Kafka, G.; Kaplan, D.M.; Rajaram, D.; Snopok, P.; Torun, Y.; Blot, S.; Kim, Y.K.; Bravar, U.; Onel, Y.; Cremaldi, L.M.; Hart, T.L.; Luo, T.; Sanders, D.A.; Summers, D.J.; Cline, D.; Yang, X.; Coney, L.; Hanson, G.G.; Heidt, C.

    2015-01-01

    The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. The EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range 100-280 MeV/$c$.

  13. Electron-Muon Ranger: performance in the MICE Muon Beam

    CERN Document Server

    Adams, D.; Vankova-Kirilova, G.; Bertoni, R.; Bonesini, M.; Chignoli, F.; Mazza, R.; Palladino, V.; de Bari, A.; Cecchet, G.; Capponi, M.; Iaciofano, A.; Orestano, D.; Pastore, F.; Tortora, L.; Kuno, Y.; Sakamoto, H.; Ishimoto, S.; Filthaut, F.; Hansen, O.M.; Ramberger, S.; Vretenar, M.; Asfandiyarov, R.; Bene, P.; Blondel, A.; Cadoux, F.; Debieux, S.; Drielsma, F.; Graulich, J.S.; Husi, C.; Karadzhov, Y.; Masciocchi, F.; Nicola, L.; Messomo, E.Noah; Rothenfusser, K.; Sandstrom, R.; Wisting, H.; Charnley, G.; Collomb, N.; Gallagher, A.; Grant, A.; Griffiths, S.; Hartnett, T.; Martlew, B.; Moss, A.; Muir, A.; Mullacrane, I.; Oates, A.; Owens, P.; Stokes, G.; Warburton, P.; White, C.; Adams, D.; Barclay, P.; Bayliss, V.; Bradshaw, T.W.; Courthold, M.; Francis, V.; Fry, L.; Hayler, T.; Hills, M.; Lintern, A.; Macwaters, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rogers, C.; Stanley, T.; Tarrant, J.; Watson, S.; Wilson, A.; Bayes, R.; Nugent, J.C.; Soler, F.J.P.; Cooke, P.; Gamet, R.; Alekou, A.; Apollonio, M.; Barber, G.; Colling, D.; Dobbs, A.; Dornan, P.; Hunt, C.; Lagrange, J-B.; Long, K.; Martyniak, J.; Middleton, S.; Pasternak, J.; Santos, E.; Savidge, T.; Uchida, M.A.; Blackmore, V.J.; Carlisle, T.; Cobb, J.H.; Lau, W.; Rayner, M.A.; Tunnell, C.D.; Booth, C.N.; Hodgson, P.; Langlands, J.; Nicholson, R.; Overton, E.; Robinson, M.; Smith, P.J.; Dick, A.; Ronald, K.; Speirs, D.; Whyte, C.G.; Young, A.; Boyd, S.; Franchini, P.; Greis, J.; Pidcott, C.; Taylor, I.; Gardener, R.; Kyberd, P.; Littlefield, M.; Nebrensky, J.J.; Bross, A.D.; Fitzpatrick, T.; Leonova, M.; Moretti, A.; Neuffer, D.; Popovic, M.; Rubinov, P.; Rucinski, R.; Roberts, T.J.; Bowring, D.; DeMello, A.; Gourlay, S.; Li, D.; Prestemon, S.; Virostek, S.; Zisman, M.; Hanlet, P.; Kafka, G.; Kaplan, D.M.; Rajaram, D.; Snopok, P.; Torun, Y.; Blot, S.; Kim, Y.K.; Bravar, U.; Onel, Y.; Cremaldi, L.M.; Hart, T.L.; Luo, T.; Sanders, D.A.; Summers, D.J.; Cline, D.; Yang, X.; Coney, L.; Hanson, G.G.; Heidt, C.

    2015-12-16

    The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. The EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range 100-280 MeV/$c$.

  14. Precision muon lifetime at PSI

    Energy Technology Data Exchange (ETDEWEB)

    Mulhauser, Francoise [University of Illinois at Urbana-Champaign (United States) and Paul Scherrer Institute (Switzerland)

    2006-05-15

    The goal of MuLan, positive muon lifetime measurement, is the measurement of the positive muon lifetime to 1 ppm, which will in turn determine the Fermi coupling constant G {sub F} to 0.5 ppm precision. We will describe our experimental efforts and latest achievements.

  15. CMS tracker observes muons

    CERN Multimedia

    2006-01-01

    A computer image of a cosmic ray traversing the many layers of the TEC+ silicon sensors. The first cosmic muon tracks have been observed in one of the CMS tracker endcaps. On 14 March, a sector on one of the two large tracker endcaps underwent a cosmic muon run. Since then, thousands of tracks have been recorded. These data will be used not only to study the tracking, but also to exercise various track alignment algorithms The endcap tested, called the TEC+, is under construction at RWTH Aachen in Germany. The endcaps have a modular design, with silicon strip modules mounted onto wedge-shaped carbon fibre support plates, so-called petals. Up to 28 modules are arranged in radial rings on both sides of these plates. One eighth of an endcap is populated with 18 petals and called a sector. The next major step is a test of the first sector at CMS operating conditions, with the silicon modules at a temperature below -10°C. Afterwards, the remaining seven sectors have to be integrated. In autumn 2006, TEC+ wil...

  16. MUON DETECTORS: CSC

    CERN Multimedia

    Jay Hauser

    2013-01-01

    Great progress has been made on the CSC improvement projects during LS1, the construction of the new ME4/2 muon station, and the refurbishing of the electronics in the high-rate inner ME1/1 muon station. CSC participated successfully in the Global Run in November (GRiN) cosmic ray test, but with just stations +2 and +3, due to the large amount of work going on. The test suite used for commissioning chambers is more comprehensive than the previous tests, and should lead to smoother running in the future. The chamber factory at Prevessin’s building 904 has just finished assembling all the new ME4/2 chambers, which number 67 to be installed plus five spares, and is now finishing up the long-term HV training and testing of the last chambers. At Point 5, installation of the new chambers on the positive endcap went well, and they are now all working well. Gas leak rates are very low. Services are in good shape, except for the HV system, which will be installed during the coming month. We will then be w...

  17. MUON DETECTORS: CSC

    CERN Multimedia

    R. Breedon

    During the ongoing period before beam operation resumes, the Endcap Muon system is dedicated to bringing all components of the system up to the best possible performance condition. As CMS was opened, starting with the +Endcap side, electronic boards, cables, and connectors of the Cathode Strip Chamber (CSC) system were replaced or repaired as necessary as access became possible. Due to scheduling constraints, on the –Endcap side this effort has been delayed until the muon stations are each briefly accessible as the experiment is closed again. The CSC gas mixture includes 10% CF4 (carbon tetrafluoride) to reduce aging of the chambers when subjected to high levels of charged particle fluxes during LHC running. CF4, however, is the most expensive component of the gas mixture, and since it is not necessary to protect against aging during chamber commissioning with cosmic rays, the amount of CF4 was temporarily reduced by half to realize a substantial cost saving. Additional filters have been added to ...

  18. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    Since December, the muon alignment community has focused on analyzing the data recorded so far in order to produce new DT and CSC Alignment Records for the second reprocessing of CRAFT data. Two independent algorithms were developed which align the DT chambers using global tracks, thus providing, for the first time, a relative alignment of the barrel with respect to the tracker. These results are an important ingredient for the second CRAFT reprocessing and allow, for example, a more detailed study of any possible mis-modelling of the magnetic field in the muon spectrometer. Both algorithms are constructed in such a way that the resulting alignment constants are not affected, to first order, by any such mis-modelling. The CSC chambers have not yet been included in this global track-based alignment due to a lack of statistics, since only a few cosmics go through the tracker and the CSCs. A strategy exists to align the CSCs using the barrel as a reference until collision tracks become available. Aligning the ...

  19. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2011-01-01

    During data-taking in 2010 the RPC system behaviour was very satisfactory for both the detector and trigger performances. Most of the data analyses are now completed and many results and plots have been approved in order to be published in the muon detector paper. A very detailed analysis of the detector efficiency has been performed using 60 million muon events taken with the dedicated RPC monitor stream. The results have shown that the 96.3% of the system was working properly with an average efficiency of 95.4% at 9.35 kV in the Barrel region and 94.9% at 9.55 kV in the Endcap. Cluster size goes from 1.6 to 2.2 showing a clear and well-known correlation with the strip pitch. Average noise in the Barrel is less than 0.4 Hz/cm2 and about 98% of full system has averaged noise less then 1 Hz/cm2. A linear dependence of the noise versus the luminosity has been preliminary observed and is now under study. Detailed chamber efficiency maps have shown a few percent of chambers with a non-uniform efficiency distribu...

  20. SNAP telescope

    Energy Technology Data Exchange (ETDEWEB)

    Lampton, Michael L.; Akerlof, C.W.; Aldering, G.; Amanullah, R.; Astier, P.; Barrelet, E.; Bebek, C.; Bergstrom, L.; Bercovitz, J.; Bernstein, G.; Bester, M.; Bonissent, A.; Bower, C.; Carithers Jr., W.C.; Commins, E.D.; Day, C.; Deustua, S.E.; DiGennaro, R.; Ealet, A.; Ellis,R.S.; Eriksson, M.; Fruchter, A.; Genat, J.-F.; Goldhaber, G.; Goobar,A.; Groom, D.; Harris, S.E.; Harvey, P.R.; Heetderks, H.D.; Holland,S.E.; Huterer, D.; Karcher, A.; Kim, A.G.; Kolbe, W.; Krieger, B.; Lafever, R.; Lamoureux, J.; Levi, M.E.; Levin, D.S.; Linder, E.V.; Loken,S.C.; Malina, R.; Massey, R.; McKay, T.; McKee, S.P.; Miquel, R.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Nugent, P.; Oluseyi,H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Pratt, R.; Prieto,E.; Refregier, A.; Rhodes, J.; Robinson, K.; Roe, N.; Sholl, M.; Schubnell, M.; Smadja, G.; Smoot, G.; Spadafora, A.; Tarle, G.; Tomasch,A.; von der Lippe, H.; Vincent, R.; Walder, J.-P.; Wang, G.; Wang, G.

    2002-07-29

    The SuperNova/Acceleration Probe (SNAP) mission will require a two-meter class telescope delivering diffraction limited images spanning a one degree field in the visible and near infrared wavelength regime. This requirement, equivalent to nearly one billion pixel resolution, places stringent demands on its optical system in terms of field flatness, image quality, and freedom from chromatic aberration. We discuss the advantages of annular-field three-mirror anastigmat (TMA) telescopes for applications such as SNAP, and describe the features of the specific optical configuration that we have baselined for the SNAP mission. We discuss the mechanical design and choice of materials for the telescope. Then we present detailed ray traces and diffraction calculations for our baseline optical design. We briefly discuss stray light and tolerance issues, and present a preliminary wavefront error budget for the SNAP Telescope. We conclude by describing some of tasks to be carried out during the upcoming SNAP research and development phase.

  1. Space Telescopes

    Science.gov (United States)

    Rigby, Jane R.

    2011-01-01

    The science of astronomy depends on modern-day temples called telescopes. Astronomers make pilgrimages to remote mountaintops where these large, intricate, precise machines gather light that rains down from the Universe. Bit, since Earth is a bright, turbulent planet, our finest telescopes are those that have been launched into the dark stillness of space. These space telescopes, named after heroes of astronomy (Hubble, Chandra, Spitzer, Herschel), are some of the best ideas our species has ever had. They show us, over 13 billion years of cosmic history, how galaxies and quasars evolve. They study planets orbiting other stars. They've helped us determine that 95% of the Universe is of unknown composition. In short, they tell us about our place in the Universe. The next step in this journey is the James Webb Space Telescope, being built by NASA, Europe, and Canada for a 2018 launch; Webb will reveal the first galaxies that ever formed.

  2. Space Telescopes

    Science.gov (United States)

    2010-01-01

    Proc 6317:OT1–OT9 Serlemitsos PJ, Jahota L, Soong Y (plus 14 authors) (1995) The X-ray telescope on board ASCA. Pub Astron Soc Jap 47:105–114...Serlemitsos PJ, Soong Y, Chan K-W (plus 31 authors) (2007) The X-ray telescope on board Suzaku. Pub Astron Soc Jap 59:9–21 Shimizu T (2004) Solar-B solar

  3. Muon Colliders and Neutrino Factories

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Daniel M. [IIT, Chicago

    2015-05-29

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of Higgs boson and neutrino mixing matrix parameters. The facility performance and cost depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities could be built starting in the coming decade. The status of the key technologies and their various demonstration experiments is summarized. Prospects "post-P5" are also discussed.

  4. DELPHI Barrel Muon Chamber Module

    CERN Multimedia

    1989-01-01

    The module was used as part of the muon identification system on the barrel of the DELPHI detector at LEP, and was in active use from 1989 to 2000. The module consists of 7 individual muons chambers arranged in 2 layers. Chambers in the upper layer are staggered by half a chamber width with respect to the lower layer. Each individual chamber is a drift chamber consisting of an anode wire, 47 microns in diameter, and a wrapped copper delay line. Each chamber provided 3 signal for each muon passing through the chamber, from which a 3D space-point could be reconstructed.

  5. Production of selected cosmogenic radionuclides by muons; 1, Fast muons

    CERN Document Server

    Heisinger, B; Jull, A J T; Kubik, P W; Ivy-Ochs, S; Neumaier, S; Knie, K; Lazarev, V A; Nolte, E

    2002-01-01

    To investigate muon-induced nuclear reactions leading to the production of radionuclides, targets made of C/sub 9/H/sub 12/, SiO /sub 2/, Al/sub 2/O/sub 3/, Al, S, CaCO/sub 3/, Fe, Ni, Cu, Gd, Yb and Tl were irradiated with 100 and 190 GeV muons in the NA54 experimental setup at CERN. The radionuclide concentrations were measured with accelerator mass spectrometry and gamma -spectroscopy. Results are presented for the corresponding partial formation cross- sections. Several of the long-lived and short-lived radionuclides studied are also produced by fast cosmic ray muons in the atmosphere and at depths underground. Because of their importance to Earth sciences investigations, calculations of the depth dependence of production rates by fast cosmic ray muons have been made. (48 refs).

  6. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    Since September, the muon alignment system shifted from a mode of hardware installation and commissioning to operation and data taking. All three optical subsystems (Barrel, Endcap and Link alignment) have recorded data before, during and after CRAFT, at different magnetic fields and during ramps of the magnet. This first data taking experience has several interesting goals: •    study detector deformations and movements under the influence of the huge magnetic forces; •    study the stability of detector structures and of the alignment system over long periods, •    study geometry reproducibility at equal fields (specially at 0T and 3.8T); •    reconstruct B=0T geometry and compare to nominal/survey geometries; •    reconstruct B=3.8T geometry and provide DT and CSC alignment records for CMSSW. However, the main goal is to recons...

  7. Beta and muon decays

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, A.; Pascual, P.

    1967-07-01

    These notes represent a series of lectures delivered by the authors in the Junta de Energia Nuclear, during the Spring term of 1965. They were devoted to graduate students interested in the Theory of Elementary Particles. Special emphasis was focussed into the computational problems. Chapter I is a review of basic principles (Dirac equation, transition probabilities, final state interactions.) which will be needed later. In Chapter II the four-fermion punctual Interaction is discussed, Chapter III is devoted to the study of beta-decay; the main emphasis is given to the deduction of the formulae corresponding to electron-antineutrino correlation, electron energy spectrum, lifetimes, asymmetry of electrons emitted from polarized nuclei, electron and neutrino polarization and time reversal invariance in beta decay. In Chapter IV we deal with the decay of polarized muons with radiative corrections. Chapter V is devoted to an introduction to C.V.C. theory. (Author)

  8. Muon front end for the neutrino factory

    Directory of Open Access Journals (Sweden)

    C. T. Rogers

    2013-04-01

    Full Text Available In the neutrino factory, muons are produced by firing high-energy protons onto a target to produce pions. The pions decay to muons and pass through a capture channel known as the muon front end, before acceleration to 12.6 GeV. The muon front end comprises a variable frequency rf system for longitudinal capture and an ionization cooling channel. In this paper we detail recent improvements in the design of the muon front end.

  9. Delivering the world's most intense muon beam

    Science.gov (United States)

    Cook, S.; D'Arcy, R.; Edmonds, A.; Fukuda, M.; Hatanaka, K.; Hino, Y.; Kuno, Y.; Lancaster, M.; Mori, Y.; Ogitsu, T.; Sakamoto, H.; Sato, A.; Tran, N. H.; Truong, N. M.; Wing, M.; Yamamoto, A.; Yoshida, M.

    2017-03-01

    A new muon beam line, the muon science innovative channel, was set up at the Research Center for Nuclear Physics, Osaka University, in Osaka, Japan, using the 392 MeV proton beam impinging on a target. The production of an intense muon beam relies on the efficient capture of pions, which subsequently decay to muons, using a novel superconducting solenoid magnet system. After the pion-capture solenoid, the first 36° of the curved muon transport line was commissioned and the muon flux was measured. In order to detect muons, a target of either copper or magnesium was placed to stop muons at the end of the muon beam line. Two stations of plastic scintillators located upstream and downstream from the muon target were used to reconstruct the decay spectrum of muons. In a complementary method to detect negatively charged muons, the x-ray spectrum yielded by muonic atoms in the target was measured in a germanium detector. Measurements, at a proton beam current of 6 pA, yielded (10.4 ±2.7 )×1 05 muons per watt of proton beam power (μ+ and μ-), far in excess of other facilities. At full beam power (400 W), this implies a rate of muons of (4.2 ±1.1 )×1 08 muons s-1 , among the highest in the world. The number of μ- measured was about a factor of 10 lower, again by far the most efficient muon beam produced. The setup is a prototype for future experiments requiring a high-intensity muon beam, such as a muon collider or neutrino factory, or the search for rare muon decays which would be a signature for phenomena beyond the Standard Model of particle physics. Such a muon beam can also be used in other branches of physics, nuclear and condensed matter, as well as other areas of scientific research.

  10. Simulation of Underground Muon Flux with Application to Muon Tomography

    Science.gov (United States)

    Yamaoka, J. A. K.; Bonneville, A.; Flygare, J.; Lintereur, A.; Kouzes, R.

    2015-12-01

    Muon tomography uses highly energetic muons, produced by cosmic rays interacting within the upper atmosphere, to image dense materials. Like x-rays, an image can be constructed from the negative of the absorbed (or scattered) muons. Unlike x-rays, these muons can penetrate thousands of meters of earth. Muon tomography has been shown to be useful across a wide range of applications (such as imaging of the interior of volcanoes and cargo containers). This work estimates the sensitivity of muon tomography for various underground applications. We use simulations to estimate the change in flux as well as the spatial resolution when imaging static objects, such as mine shafts, and dynamic objects, such as a CO2 reservoir filling over time. We present a framework where we import ground density data from other sources, such as wells, gravity and seismic data, to generate an expected muon flux distribution at specified underground locations. This information can further be fed into a detector simulation to estimate a final experimental sensitivity. There are many applications of this method. We explore its use to image underground nuclear test sites, both the deformation from the explosion as well as the supporting infrastructure (access tunnels and shafts). We also made estimates for imaging a CO2 sequestration site similar to Futuregen 2.0 in Illinois and for imaging magma chambers beneath the Cascade Range volcanoes. This work may also be useful to basic science, such as underground dark matter experiments, where increasing experimental sensitivity requires, amongst other factors, a precise knowledge of the muon background.

  11. Search for muon-electron and muon-positron conversion

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, S.; Azuelos, G.; Blecher, M.; Bryman, D.A.; Burnham, R.A.; Clifford, E.T.H.; Depommier, P.; Dixit, M.S.; Gotow, K.; Hargrove, C.K.

    1988-06-01

    Muon-electron conversion, ..mu../sup /minus// + Z ..-->.. e/sup /minus // + Z, where Z is a nucleus of atomic number Z, is a lepton flavor violating reaction which may be enhanced by the coherent action of the nuclear quarks. In muon-positron conversion, ..mu../sup /minus// + Z ..-->.. e/sup /plus//(Z - 2), a double charge changing current is required and neither lepton flavor nor lepton number are conserved. In this paper, searches for muon-electron and muon-positron conversion in titanium and lead targets performed using the TRIUMF time projection chamber (TPC) are described. The experimental signature of ..mu../sup /minus// ..-->.. e/sup /minus// conversion is a monoenergetic electron with kinetic energy determined by the muon mass, electron mass, and the muonic atom binding energy. However, for muon-positron conversion, where nuclear excitation and breakup are likely, the expected positron spectrum covers a range of kinetic energies depending also on the mass difference between initial and final nuclear states. 3 refs., 6 figs.

  12. A novel muon detector for borehole density tomography

    Energy Technology Data Exchange (ETDEWEB)

    Bonneville, Alain; Kouzes, Richard T.; Yamaoka, Jared; Rowe, Charlotte; Guardincerri, Elena; Durham, J. Matthew; Morris, Christopher L.; Poulson, Daniel C.; Plaud-Ramos, Kenie; Morley, Deborah J.; Bacon, Jeffrey D.; Bynes, James; Cercillieux, Julien; Ketter, Chris; Le, Khanh; Mostafanezhad, Isar; Varner, Gary; Flygare, Joshua; Lintereur, Azaree T.

    2017-04-01

    Muons can be used to image the density of materials through which they pass, including geological structures. Subsurface applications of the technology include tracking fluid migration during injection or production, with increasing concern regarding such timely issues as induced seismicity or chemical leakage into aquifers. Geological carbon storage, natural gas storage, enhanced oil recovery, compressed air storage, aquifer storage and recovery, waste water storage and oil and gas production are examples of application areas. It is thus crucial to monitor in quasi-real time the behavior of these fluids, and several monitoring techniques can be used. Among them, those that track density changes in the subsurface are the most relevant. Current density monitoring options include gravimetric data collection and active or passive seismic surveys. One alternative, or complement, to these methods is the development of a muon detector that is sufficiently compact and robust for deployment in a borehole. Such a muon detector can enable tomographic imaging of density structure to monitor small changes in density – a proxy for fluid migration – at depths up to 1500 m. Such a detector has been developed, and Monte Carlo modeling methods applied to simulate the anticipated detector response. The robustness of the detector design comes primarily from the use of polystyrene scintillating rods arrayed in alternating layers to provide a coordinate scheme. Testing and measurements using a prototype detector in the laboratory and shallow underground facilities demonstrated robust response. A satisfactory comparison with a large drift tube-based muon detector is also presented.

  13. Active optics for next generation space telescopes

    Science.gov (United States)

    Costes, V.; Perret, L.; Laubier, D.; Delvit, J. M.; Imbert, C.; Cadiergues, L.; Faure, C.

    2017-09-01

    High resolution observation systems need bigger and bigger telescopes. The design of such telescopes is a key issue for the whole satellite. In order to improve the imaging resolution with minimum impact on the satellite, a big effort must be made to improve the telescope compactness. Compactness is also important for the agility of the satellite and for the size and cost of the launcher. This paper shows how compact a high resolution telescope can be. A diffraction limited telescope can be less than ten times shorter than its focal length. But the compactness impacts drastically the opto-mechanical sensitivity and the optical performances. Typically, a gain of a factor of 2 leads to a mechanical tolerance budget 6 times more difficult. The need to implement active optics for positioning requirements raises very quickly. Moreover, the capability to compensate shape defaults of the primary mirror is the way to simplify the mirror manufacture, to mitigate the development risks and to minimize the cost. The larger the primary mirror is, the more interesting it is to implement active optics for shape compensations. CNES is preparing next generation of earth observation satellite in the frame of OTOS (Observation de la Terre Optique Super-Résolue; High resolution earth observing optical system). OTOS is a technology program. In particular, optical technological developments and breadboards dedicated to active optics are on-going. The aim is to achieve TRL 5 to TRL6 for these new technologies and to validate the global performances of such an active telescope.

  14. Energy Spectra, Altitude Profiles and Charge Ratios of Atmospheric Muons

    CERN Document Server

    Coutu, S; Duvernois, M A; Barwick, S W; Schneider, E; Bhattacharya, A; Bower, C; Musser, J A; Labrador, A W; Müller, D; Swordy, S P; Torbet, E; Chaput, C; McKee, S; Tarle, G; Tomasch, A D; Nutter, S L; De Nolfo, G A

    2000-01-01

    We present a new measurement of air shower muons made during atmospheric ascent of the High Energy Antimatter Telescope balloon experiment. The muon charge ratio mu+ / mu- is presented as a function of atmospheric depth in the momentum interval 0.3-0.9 GeV/c. The differential mu- momentum spectra are presented between 0.3 and about 50 GeV/c at atmospheric depths between 13 and 960 g/cm^2. We compare our measurements with other recent data and with Monte Carlo calculations of the same type as those used in predicting atmospheric neutrino fluxes. We find that our measured mu- fluxes are smaller than the predictions by as much as 70% at shallow atmospheric depths, by about 20% at the depth of shower maximum, and are in good agreement with the predictions at greater depths. We explore the consequences of this on the question of atmospheric neutrino production.

  15. The analysis of VERITAS muon images using convolutional neural networks

    Science.gov (United States)

    Feng, Qi; Lin, Tony T. Y.; VERITAS Collaboration

    2017-06-01

    Imaging atmospheric Cherenkov telescopes (IACTs) are sensitive to rare gamma-ray photons, buried in the background of charged cosmic-ray (CR) particles, the flux of which is several orders of magnitude greater. The ability to separate gamma rays from CR particles is important, as it is directly related to the sensitivity of the instrument. This gamma-ray/CR-particle classification problem in IACT data analysis can be treated with the rapidly-advancing machine learning algorithms, which have the potential to outperform the traditional box-cut methods on image parameters. We present preliminary results of a precise classification of a small set of muon events using a convolutional neural networks model with the raw images as input features. We also show the possibility of using the convolutional neural networks model for regression problems, such as the radius and brightness measurement of muon events, which can be used to calibrate the throughput efficiency of IACTs.

  16. Endcap Muon Chamber Calibration and Monitoring Procedures in CMS

    CERN Document Server

    Vickey Boeriu, Oana

    2009-01-01

    The cathode strip chamber (CSC) system is one of the three types of muon detectors used in the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC). It consists of 468 chambers, with a total of $\\sim$218k strips and $\\sim$183k wires, placed onto two endcaps. Calibration tests which monitor the system stability, measure configuration constants that will be downloaded to electronics and calculate the calibration constants needed in the offline reconstruction - like crosstalk, gains, noise and connectivity - are performed regularly. The full chain of acquiring, analyzing and applying the calibration constants was successfully tested recently for the first time on the CSC system, using cosmic-ray data recorded during the Magnet Test and Cosmic Challenge (MTCC).

  17. Radiation Testing of Electronics for the CMS Endcap Muon System

    CERN Document Server

    INSPIRE-00070357; Celik, A.; Durkin, L.S.; Gilmore, J.; Haley, J.; Khotilovich, V.; Lakdawala, S.; Liu, J.; Matveev, M.; Padley, B.P.; Roberts, J.; Roe, J.; Safonov, A.; Suarez, I.; Wood, D.; Zawisza, I.

    2013-01-01

    The electronics used in the data readout and triggering system for the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) particle accelerator at CERN are exposed to high radiation levels. This radiation can cause permanent damage to the electronic circuitry, as well as temporary effects such as data corruption induced by Single Event Upsets. Once the High Luminosity LHC (HL-LHC) accelerator upgrades are completed it will have five times higher instantaneous luminosity than LHC, allowing for detection of rare physics processes, new particles and interactions. Tests have been performed to determine the effects of radiation on the electronic components to be used for the Endcap Muon electronics project currently being designed for installation in the CMS experiment in 2013. During these tests the digital components on the test boards were operating with active data readout while being irradiated with 55 MeV protons. In reactor tests, components were exposed to 30 years equivalent levels o...

  18. Jet Quenching in the Compact Muon Solenoid at the LHC

    CERN Document Server

    David Lopez Mateos

    In this thesis we perform analyses on simulated data that allow us to demonstrate thesensitivity of the CMS experiment to certain jet quenching observables. In particular,two theoretical scenarios which mimic RHIC data at low pT and which show eitherno quenching or BDMPS-based quenching at high pT are formulated. The differencebetween these two scenarios is analyzed for RAA , RCP at different centralities andjet-specific observables such as jet energy spectra, fragmentation functions and jetprofiles. We show how these analyses indicate that the large acceptance of the CMSdetector, combined with the high granularity in the energy resolution of the calorimeter will be essential tools in studying the phenomenon of jet quenching. Finally, wepropose extensions to this work in preparation to analyzing the data from P b-P b runsat the LHC.Disclaimer: The work on this thesis does not model the CMS detector geometrywith the accuracy required for official analyses, which are fully representative of theCMS detector ...

  19. Large hadron collider physics program: Compact muon solenoid ...

    Indian Academy of Sciences (India)

    The LHC physics program at CERN addresses some of the fundamental issues in particle physics and CMS experiment would concentrate on them. The CMS detector is designed for the search of Standard Model Higgs boson in the whole possible mass range. Also it will be sensitive to Higgs bosons in the minimal ...

  20. Quasi-isochronous muon collection channels

    Energy Technology Data Exchange (ETDEWEB)

    Ankenbrandt, Charles M. [Muons, Inc., Batavia, IL (United States); Neuffer, David [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Johnson, Rolland P. [Muons, Inc., Batavia, IL (United States)

    2015-04-26

    Intense muon beams have many potential commercial and scientific applications, ranging from low-energy investigations of the basic properties of matter using spin resonance to large energy-frontier muon colliders. However, muons originate from a tertiary process that produces a diffuse swarm. To make useful beams, the swarm must be rapidly captured and cooled before the muons decay. In this STTR project a promising new concept for the collection and cooling of muon beams to increase their intensity and reduce their emittances was investigated, namely, the use of a nearly isochronous helical cooling channel (HCC) to facilitate capture of the muons into RF bunches. The muon beam can then be cooled quickly and coalesced efficiently to optimize the luminosity of a muon collider, or could provide compressed muon beams for other applications. Optimal ways to integrate such a subsystem into the rest of a muon collection and cooling system, for collider and other applications, were developed by analysis and simulation. The application of quasi-isochronous helical cooling channels (QIHCC) for RF capture of muon beams was developed. Innovative design concepts for a channel incorporating straight solenoids, a matching section, and an HCC, including RF and absorber, were developed, and its subsystems were simulated. Additionally, a procedure that uses an HCC to combine bunches for a muon collider was invented and simulated. Difficult design aspects such as matching sections between subsystems and intensity-dependent effects were addressed. The bunch recombination procedure was developed into a complete design with 3-D simulations. Bright muon beams are needed for many commercial and scientific reasons. Potential commercial applications include low-dose radiography, muon catalyzed fusion, and the use of muon beams to screen cargo containers for homeland security. Scientific uses include low energy beams for rare process searches, muon spin resonance applications, muon beams for

  1. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2011-01-01

    The RPC muon detector and trigger are working very well, contributing positively to the high quality of CMS data. Most of 2011 has been used to improve the stability of our system and the monitoring tools used online and offline by the shifters and experts. The high-voltage working point is corrected, chamber-by-chamber, for pressure variation since July 2011. Corrections are applied at PVSS level during the stand-by mode (no collision) and are not changed until the next fill. The single detector calibration, HV scan, of February and the P-correction described before were very important steps towards fine-tuning the stability of the RPC performances. A very detailed analysis of the RPC performances is now ongoing and from preliminary results we observe an important improvements of the cluster size stability in time. The maximum oscillation of the cluster size run by run is now about 1%. At the same time we are not observing the same stability in the detection efficiency that shows an oscillation of about ...

  2. MUON DETECTORS: CSC

    CERN Multimedia

    J. Hauser

    2012-01-01

      During the current Technical Stop many “under the hood” improvements to the CSC system are being implemented. The system is currently up and running well with cosmic rays, etc. as evidenced by DQM plots of recent cosmic ray runs, one of which is shown below (Figure 1). With the start of 2012, our new Operations Manager is Misha Ignatenko, assisted by Deputy Evaldas Juska. During 2011 data-taking after 1st September, a 4% efficiency loss for endcap muons was traced to a problem of lost data blocks due to DDC-DCC event number synchronisation when the front-end readout rate exceeds 70 kHz. The problem was easily reproduced with high rate and/or data acquisition backpressure, and two firmware fixes have been identified and implemented in the CSC readout electronics, and additional diagnostics have been added to quickly flag and quantify this type of error. Firmware to allow zero-suppression of anode data has been downloaded to the ALCT boards and promises to reduce the CSC data...

  3. MUON DETECTORS: DT

    CERN Multimedia

    C. Fernandez Bedoya

    2011-01-01

    The DT system has behaved highly satisfactorily throughout the LHC 2010 data-taking period, with more than 99% of the system operational and very few downtime periods. This includes operation with heavy ions collisions in which the rate of muons was low and no impact was observed in the buffer occupancies. An unexpected out-of-time high occupancy was observed in the outermost chambers (MB4) and its origin is under investigation. During the winter technical shutdown many interventions took place with the main goal of optimising the system. One of the main improvements is in the slow control mechanism through the DTTF boards: the problem that was preventing us from monitoring the OptoRX modules properly has been fixed satisfactorily. Other main changes include the installation of a new VME PCI controller to minimise the downtime in case of crate power cycle and the reduction from 10 to the design 5 FEDs, that became possible thanks to the good agreement of the event size with our expectations during LHC operat...

  4. MUON DETECTORS: DT

    CERN Multimedia

    M. Dallavalle.

    The DT system is ready for the LHC start up. The status of detector hardware, control and safety, of the software for calibration and monitoring and of people has been reviewed at several meetings, starting with the CMS Action Matrix Review and with the Muon Barrel Workshop (October 5 to 7). The disconnected HV channels are at a level of about 0.1%. The loss in detector acceptance because of failures in the Read-Out and Trigger electronics is about 0.5%. The electronics failure rate has been lower this year: next year will tell us whether the rate has stabilised and hopefully will confirm that the number of spares is adequate for ten years operation. Although the detector safety control is very accurate and robust, incidents have happened. In particular the DT system suffered from a significant water leak, originated in the top part of YE+1, that generated HV trips in eighteen chambers going transversely down from the top sector in YB+2 to the bottom sector in YB-2. All chambers recovered and all t...

  5. MUON DETECTORS: CSC

    CERN Multimedia

    J. Hauser

    2011-01-01

    The CSC system ran well during the June-November 2011 period as the luminosity climbed. After new firmware was loaded on 21st July onto the CSC readout boards, there have been very few synchronisation-lost “draining” errors. This has reduced the CSC contribution to CMS downtime from 1% to less than 0.2% since the change. A new issue has arisen in the data taken since 1st September with an apparent 4% efficiency loss for endcap muons. This may be a problem of lost data blocks when the front-end readout rate exceeds 70 kHz, and work to resolve the problem is foreseen during the upcoming Year-End Technical Stop. We also see evidence of SEUs: hard-to-explain occurrences that may corrupt data or stop data-taking but are always recoverable with a hard reset. Numerous “under-the-hood” improvements have been made or will be made soon. The procedure followed by the CSC DQM (Data Quality Monitoring) shift personnel has been changed to additionally check CSC Track Finder histog...

  6. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    2010-01-01

    For the last three months, the Muon Alignment group has focussed on providing a new, improved set of alignment constants for the end-of-year data reprocessing. These constants were delivered on time and approved by the CMS physics validation team on November 17. The new alignment incorporates several improvements over the previous one from March for nearly all sub-systems. Motivated by the loss of information from a hardware failure in May (an entire MAB was lost), the optical barrel alignment has moved from a modular, super-plane reconstruction, to a full, single loop calculation of the entire geometry for all DTs in stations 1, 2 and 3. This makes better use of the system redundancy, mitigating the effect of the information loss. Station 4 is factorised and added afterwards to make the system smaller (and therefore faster to run), and also because the MAB calibration at the MB4 zone is less precise. This new alignment procedure was tested at 0 T against photogrammetry resulting in precisions of the order...

  7. MUON DETECTORS: CSC

    CERN Multimedia

    Jay Hauser

    2012-01-01

    The CSC muon system has run well thus far during the 2012 run, coping well with the ever-increasing luminosity. Periodic hard resets, currently issued every 30 minutes, have greatly decreased the frequency of SEU-related problems. Near the end of 2011 a significant readout data loss at high Level-1 trigger rates was uncovered; before the collisions in 2012 several firmware and software fixes were made to eliminate this problem, and diagnostics were added to quickly identify this problem related to trigger number (L1A) mismatches if it were to occur in the future. Online trigger and offline reconstructed timing of the CSC chambers has not changed in 2012, even at the nanosecond level, relative to the well-adjusted timing of 2011. Removal of CASTOR has nearly equalised the background rate between the two endcaps except for station –2, where a gap in the inner ring shielding is suspected. From 2011 to 2012 the number of chambers that were inoperable due to loss of low-voltage power has grown from 9...

  8. MUON DETECTORS: CSC

    CERN Multimedia

    J. Hauser

    2012-01-01

      The CSC muon system has run well and very stably during the 2012 run. Problems with the delivery of low voltage to 10–15% of the ME1/1 chambers were mitigated in the trigger by triggering modes that make use of coincidences between stations 2, 3, and 4. Attention now focuses on the ambitious upgrade program in LS1. Simulation and reconstruction code has been prepared for the post-LS1 era, for which the CSC system will have a full set of 72 ME4/2 chambers installed, and the 3:1 ganging of strips in the inner section of ME1/1 (pseudorapidity 2.1–2.4) will be replaced by flash digitisation of each strip. Several improvements were made to the CSC system during the course of the year. Zero-suppression of the anode readout reduced 15% from the CSC data volume. The response to single-event upsets (SEUs) that cause downstream FED readout problems was improved in two ways: first, the FED monitoring software now detects FEDs that are stuck in a warning state and resets within about 4 ...

  9. MUON DETECTORS: DT

    CERN Multimedia

    Marco Dallavalle

    The April Muon Barrel Workshop marked the boundary between DT maintenance work and preparation for the LHC run. The thrust of the DT group was then directed, on one side, towards system safety and reliability, and, on the other side, towards enlarging the pool of experts and shifters. Analysis of the 2008 CRAFT data has provided details on the performance and a first set of calibration constants. Improvements to the safety system (both DSS and DCS) have been made: flow-meters inserted in the cooling system provide on-line information; an interlock signal is available from the gas racks; electronics racks have thermostats and fire detection systems; power to the mini-crates is cut when DCS communication is lost. Water leak detection cables were installed on the wheels: they provide an early warning before the HV trips and help in localizing the leak. On April 28, a short circuit in an opto-receiver board recently installed and cabled in USC caused a minor rack fire. This was satisfactorily mastered by the DS...

  10. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    2010-01-01

    Most of the work in muon alignment since December 2009 has focused on the geometry reconstruction from the optical systems and improvements in the internal alignment of the DT chambers. The barrel optical alignment system has progressively evolved from reconstruction of single active planes to super-planes (December 09) to a new, full barrel reconstruction. Initial validation studies comparing this full barrel alignment at 0T with photogrammetry provide promising results. In addition, the method has been applied to CRAFT09 data, and the resulting alignment at 3.8T yields residuals from tracks (extrapolated from the tracker) which look smooth, suggesting a good internal barrel alignment with a small overall offset with respect to the tracker. This is a significant improvement, which should allow the optical system to provide a start-up alignment for 2010. The end-cap optical alignment has made considerable progress in the analysis of transfer line data. The next set of alignment constants for CSCs will there...

  11. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    Gervasio Gomez

    The main progress of the muon alignment group since March has been in the refinement of both the track-based alignment for the DTs and the hardware-based alignment for the CSCs. For DT track-based alignment, there has been significant improvement in the internal alignment of the superlayers inside the DTs. In particular, the distance between superlayers is now corrected, eliminating the residual dependence on track impact angles, and good agreement is found between survey and track-based corrections. The new internal geometry has been approved to be included in the forthcoming reprocessing of CRAFT samples. The alignment of DTs with respect to the tracker using global tracks has also improved significantly, since the algorithms use the latest B-field mapping, better run selection criteria, optimized momentum cuts, and an alignment is now obtained for all six degrees of freedom (three spatial coordinates and three rotations) of the aligned DTs. This work is ongoing and at a stage where we are trying to unders...

  12. MUON DETECTORS: CSC

    CERN Multimedia

    J. Hauser

    2013-01-01

      The CSC muon system ran with no downtime during the early-2013 heavy-ion run. The CSC group has now embarked on the ambitious upgrade programme during LS1, i.e. installation of 72 large ME4/2 chambers, and replacement of the current analogue electronics in ME1/1 by flash digitisation as well as undoing of the 3:1 ganging of strips in the inner section of ME1/1 (pseudorapidity 2.1–2.4). The CSC group’s internal organisational structure has been changed to add working groups that better reflect this work. The ME4/2 chamber factory at Prevessin’s building 904 has produced 39 of the needed 67 chambers, well into the second endcap, and continues to turn out at least the anticipated one chamber per week. Production of electronics and cables, and detailed plans for ME4/2 installation are going well. One change from earlier plans is that each endcap will be completely installed in one go, with only a minor delay following installation of the back chambers to ensure connec...

  13. MUON DETECTORS: DT

    CERN Multimedia

    Marco Dallavalle

    2012-01-01

      Although the year 2012 is the third year without access to the chambers and the Front-End electronics, the fraction of good channels is still very high at 99.1% thanks also to the constant care provided by the on-site operation team. The downtime caused to CMS as a consequence of DT failures is to-date <2%. The intervention on the LV power supplies, which required a large number of CAEN modules (137 A3050, 13 A3100, and 3 MAO) to be removed from the detector, reworked and tested during this Year-End Technical Stop, can now, after a few months of stable operation of the LV, be declared to have solved once-and-for-all the persistent problem with the overheating LV Anderson connectors. Another piece of very good news is that measurements of the noise from single-hit rate outside the drift-time box as a function of the LHC luminosity show that the noise rate and distribution are consistent with expectations of the simulations in the Muon TDR, which have guided the detector design and constru...

  14. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2011-01-01

    RPC detector calibration, HV scan Thanks to the high LHC luminosity and to the corresponding high number of muons created in the first part of the 2011 the RPC community had, for the first time, the possibility to calibrate every single detector element (roll).The RPC steering committee provided the guidelines for both data-taking and data analysis and a dedicated task force worked from March to April on this specific issue. The main goal of the RPC calibration was to study the detector efficiency as a function of high-voltage working points, fit the obtained “plateau curve” with a sigmoid function and determine the “best” high-voltage working point of every single roll. On 18th and 19th March, we had eight runs at different voltages. On 27th March, the full analysis was completed, showing that 60% of the rolls had already a very good fit with an average efficiency greater than 93% in the plateau region. To improve the fit we decided to take three more runs (15th April...

  15. MUON DETECTORS: CSC

    CERN Multimedia

    J. Hauser

    2013-01-01

    The ambitious CSC upgrade programme during Long Shutdown 1 (LS1) includes the installation of 67 new ME4/2 chambers, and replacement of the cathode electronics in ME1/1 to use flash ADCs and undo the 3:1 ganging of strips in the inner section that covers pseudorapidity 2.1–2.4. The ME1/1 project passed a follow-up (MPR) review on 14 June and is now proceeding rapidly. A programme to eliminate a tin-gold interface in the low voltage connectors in our 60 peripheral crates is well underway. Meanwhile, a combined muon system (CSC+DT+RPC) performance paper has been submitted to JINST and arXiv at the end of June. The ME4/2 chamber factory at Prevessin’s building 904 has produced 51 of the needed 67 chambers, and continues to turn out at least the anticipated one chamber per week. Cathode (CFEB) boards are now being recuperated from ME1/1 for use on the ME4/2 chambers. Installation of associated infrastructure including cooling, low-voltage and cabling are going well. High-voltage boards are ...

  16. MUON DETECTORS: CSC

    CERN Multimedia

    J. Hauser

    2011-01-01

    The earliest collision data in 2011 already show that the CSC detector performance is very similar to that seen in 2010. That is discussed in the DPG write-up elsewhere in this Bulletin. This report focuses on a few operational developments, the ME1/1 electronics replacement project, and the preparations at CERN for building the fourth station of CSC chambers ME4/2. During the 2010 LHC run, the CSC detector ran smoothly for the most part and yielded muon triggers and data of excellent quality. Moreover, no major operational problems were found that needed to be fixed during the Extended Technical Stop. Several improvements to software and configuration were however made. One such improvement is the automation of recovery from chamber high-voltage trips. The algorithm, defined by chamber experts, uses the so-called "Expert System" to analyse the trip signals sent from DCS and, based on the frequency and the timing of the signals, respond appropriately. This will make the central DCS shifters...

  17. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2012-01-01

      Since the start of data-taking in 2012, the RPCs have been operating in a stable manner with average chamber efficiencies above 95%. At present, the number of missing electronic channels is 1.2%; the number of disconnected chambers is 9, while 34 chambers are in single-gap mode. All those numbers are stable since the 2011 run. So far in 2012 no luminosity has been lost due to RPCs. During the winter shutdown, link board protections have been installed everywhere and are working properly, which makes the system more robust than before. A new “gas resistance” measurement campaign showed a clear stability of this parameter, which is proportional to the gap resistivity. No differences with respect to 2011 were found. A new efficiency calculation method has been validated, where now only DT/CSC segments of high quality that are associated with a stand-alone muon track are used to reduce the effect of punch-through segments. With this method, the observed oscillations in the RPC e...

  18. Compact Multiantenna

    Directory of Open Access Journals (Sweden)

    L. Rudant

    2012-01-01

    Full Text Available Planar inverted-f antenna (PIFA and notch antenna are combined within a compact 2-port MIMO antenna. Electrical and magnetic duality of the two antennas avoids a critical coupling and best performances can be expected for multiple-input multiple-output (MIMO communication. When excitation of notch antenna is optimized properly, the notch length can be short enough so that the two antennas can be colocated in a single compact volume. This compact multiantenna design is suitable for integration in MIMO handheld terminals. A prototype for broadband network application in 3.4–3.8’GHz frequency band has been characterized in anechoic chamber.

  19. Muon Tomography for Geological Repositories.

    Science.gov (United States)

    Woodward, D.; Kudryavtsev, V.; Gluyas, J.; Clark, S. J.; Thompson, L. F.; Klinger, J.; Spooner, N. J.; Blackwell, T. B.; Pal, S.; Lincoln, D. L.; Paling, S. M.; Mitchell, C. N.; Benton, C.; Coleman, M. L.; Telfer, S.; Cole, A.; Nolan, S.; Chadwick, P.

    2015-12-01

    Cosmic-ray muons are subatomic particles produced in the upper atmosphere in collisions of primary cosmic rays with atoms in air. Due to their high penetrating power these muons can be used to image the content (primarily density) of matter they pass through. They have already been used to image the structure of pyramids, volcanoes and other objects. Their applications can be extended to investigating the structure of, and monitoring changes in geological formations and repositories, in particular deep subsurface sites with stored CO2. Current methods of monitoring subsurface CO2, such as repeat seismic surveys, are episodic and require highly skilled personnel to operate. Our simulations based on simplified models have previously shown that muon tomography could be used to continuously monitor CO2 injection and migration and complement existing technologies. Here we present a simulation of the monitoring of CO2 plume evolution in a geological reservoir using muon tomography. The stratigraphy in the vicinity of the reservoir is modelled using geological data, and a numerical fluid flow model is used to describe the time evolution of the CO2 plume. A planar detection region with a surface area of 1000 m2 is considered, at a vertical depth of 776 m below the seabed. We find that one year of constant CO2 injection leads to changes in the column density of about 1%, and that the CO2 plume is already resolvable with an exposure time of less than 50 days. The attached figure show a map of CO2 plume in angular coordinates as reconstructed from observed muons. In parallel with simulation efforts, a small prototype muon detector has been designed, built and tested in a deep subsurface laboratory. Initial calibrations of the detector have shown that it can reach the required angular resolution for muon detection. Stable operation in a small borehole within a few months has been demonstrated.

  20. Characterization of the Interior Density Structure of Near Earth Objects with Muons

    Science.gov (United States)

    Prettyman, T. H.; Sykes, M. V.; Miller, R. S.; Pinsky, L. S.; Empl, A.; Nolan, M. C.; Koontz, S. L.; Lawrence, D. J.; Mittlefehldt, D. W.; Reddell, B. D.

    2015-12-01

    Near Earth Objects (NEOs) are a diverse population of short-lived asteroids originating from the main belt and Jupiter family comets. Some have orbits that are easy to access from Earth, making them attractive as targets for science and exploration as well as a potential resource. Some pose a potential impact threat. NEOs have undergone extensive collisional processing, fragmenting and re-accreting to form rubble piles, which may be compositionally heterogeneous (e.g., like 2008 TC3, the precursor to Almahata Sitta). At present, little is known about their interior structure or how these objects are held together. The wide range of inferred NEO macroporosities hint at complex interiors. Information about their density structure would aid in understanding their formation and collisional histories, the risks they pose to human interactions with their surfaces, the constraints on industrial processing of NEO resources, and the selection of hazard mitigation strategies (e.g., kinetic impactor vs nuclear burst). Several methods have been proposed to characterize asteroid interiors, including radar imaging, seismic tomography, and muon imaging (muon radiography and tomography). Of these, only muon imaging has the potential to determine interior density structure, including the relative density of constituent fragments. Muons are produced by galactic cosmic ray showers within the top meter of asteroid surfaces. High-energy muons can traverse large distances through rock with little deflection. Muons transmitted through an Itokawa-sized asteroid can be imaged using a compact hodoscope placed on or near the surface. Challenges include background rejection and correction for variations in muon production with surface density. The former is being addressed by hodoscope design. Surface density variations can be determined via radar or muon limb imaging. The performance of muon imaging is evaluated for prospective NEO interior-mapping missions.

  1. Using Muons to Image the Subsurface.

    Energy Technology Data Exchange (ETDEWEB)

    Bonal, Nedra [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cashion, Avery Ted [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cieslewski, Grzegorz [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dorsey, Daniel J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Foris, Adam [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Timothy J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Barry L [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Su, Jiann-Cherng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dreesen, Wendi [NSTec, Livermore, CA (United States); Green, J. Andrew [NSTec, Livermore, CA (United States); Schwellenbach, David [NSTec, Livermore, CA (United States)

    2016-11-01

    Muons are subatomic particles that can penetrate the earth 's crust several kilometers and may be useful for subsurface characterization . The absorption rate of muons depends on the density of the materials through which they pass. Muons are more sensitive to density variation than other phenomena, including gravity, making them beneficial for subsurface investigation . Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and the detector, much like a CAT scan. Currently, muon tomography can resolve features to the sub-meter scale. This work consists of three parts to address the use of muons for subsurface characterization : 1) assess the use of muon scattering for estimating density differences of common rock types, 2 ) using muon flux to detect a void in rock, 3) measure muon direction by designing a new detector. Results from this project lay the groundwork for future directions in this field. Low-density objects can be detected by muons even when enclosed in high-density material like lead, and even small changes in density (e.g. changes due to fracturing of material) can be detected. Rock density has a linear relationship with muon scattering density per rock volume when this ratio is greater than 0.10 . Limitations on using muon scattering to assess density changes among common rock types have been identified. However, other analysis methods may show improved results for these relatively low density materials. Simulations show that muons can be used to image void space (e.g. tunnels) within rock but experimental results have been ambiguous. Improvements are suggested to improve imaging voids such as tunnels through rocks. Finally, a muon detector has been designed and tested to measure muon direction, which will improve signal-to-noise ratio and help address fundamental questions about the source of upgoing muons .

  2. Muon-muon and other high energy colliders

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, R.B.; Gallardo, J.C. [Brookhaven National Lab., Upton, NY (United States). Center for Accelerator Physics

    1997-02-01

    The first section looks at the high energy physics advantages, disadvantages and luminosity requirements of hadron, of lepton and photon-photon colliders for comparison. The second section discusses the physics considerations for the muon collider. The third section covers muon collider components. The fourth section is about the intersection region and detectors. In the fifth section, the authors discuss modifications to enhance the muon polarization`s operating parameters with very small momentum spreads, operations at energies other than the maximum for which the machine is designed, and designs of machines for different maximum energies. The final section discusses a Research and Development plan aimed at the operation of a 0.5 TeV demonstration machine by the year 2010, and of the 4 TeV machine by the year 2020.

  3. Search for muon-electron and muon-positron conversion

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, S.; Azuelos, G.; Blecher, M.; Bryman, D.A.; Burnham, R.A.; Clifford, E.T.H.; Depommier, P.; Dixit, M.S.; Gotow, K.; Hargrove, C.K.; and others

    1988-11-20

    Limits on the lepton flavor violating reactions ..mu../sup -/+Z..-->..e/sup -/+Z and ..mu../sup -/+Z..-->..e/sup +/+(Z-2), muon-electron and muon-position conversion, have been obtained. Upper limits (90% C.L.) for the branching ratios compared to ordinary muon capture are: R/sub -/(Ti) = GAMMA(..mu../sup -/Ti..-->..e/sup -/Ti)/GAMMA(..mu../sup -/Ti capture)<4.6 x 10/sup -12/, R/sub +/(Ti) = GAMMA(..mu../sup -/Ti..-->..d/sup +/Ca*)/GAMMA(..mu../sup -/Ti capture)<1.7 x 10/sup -10/ and R/sub -/(Pb)<4.9 x 10/sup -10/.

  4. Search for muon-electron and muon-positron conversion

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, S.; Azuelos, G.; Blecher, M.; Bryman, D.A.; Burnham, R.A.; Clifford, E.T.H.; Depommier, P.; Dixit, M.S.; Gotow, K.; Hargrove, C.K.; and others

    1988-10-01

    Limits on the lepton-flavor-violating reactions ..mu../sup -/+Z..-->..e/sup -/+Z and ..mu../sup -/+Z..-->..e/sup +/+(Z-2), muon-electron and muon-positron conversion, have been obtained from a search performed at TRIUMF using a time-projection chamber. Upper limits (90% C.L.) for the branching ratios compared to ordinary muon capture for a titanium target are R: (Ti) = GAMMA(..mu../sup -/Ti..-->..e/sup -/Ti)/GAMMA(..mu../sup -/Ti capture)<4.6 x 10/sup -12/ and R/sub +/(Ti) = GAMMA(..mu../sup -/Ti..-->..e/sup +/Ca*)/GAMMA(..mu../sup -/Ti capture)<.1.7 x 10/sup -10/ A smaller data set obtained using a lead target yielded R/sub -/(Pb)<4.9 x 10/sup -10/. The implications of these results for extensions of the standard model which allow lepton-flavor violation are discussed.

  5. A demonstration device for cosmic rays telescopes

    Science.gov (United States)

    Esposito, Salvatore

    2018-01-01

    We describe a hands-on accurate demonstrator for cosmic rays realized by six high school students. The main aim is to show the relevance and the functioning of the principal parts of a cosmic ray telescope (muon detector), with the help of two large sized wooden artefacts. The first one points out how cosmic rays can be tracked in a muon telescope, while the other one shows the key avalanche process of electronic ionization that effectively allows muon detection through a photomultiplier. Incoming cosmic rays are visualized in terms of laser beams, whose 3D trajectory is highlighted by turning on LEDs on two orthogonal matrices. Instead the avalanche ionization process is demonstrated through the avalanche falling off glass marbles on an inclined plane, finally turning on a LED. A pictured poster accompanying the demonstrator is as effective in assisting cosmic ray demonstration and its detection. The success of the demonstrator has been fully proven by the general public during a science festival, in which the corresponding project won the Honorable Mention in a dedicated competition.

  6. Tile Calorimeter Muon Trigger Signal

    CERN Document Server

    Cerqueira, A S; Usai, G L

    2002-01-01

    The Tile Calorimeter contributes to the first level trigger with the fast analog signal coming from the trigger summing boards, so-called analog adder. The adders provide two kinds of output: the total energy sum in a trigger tower and the signal from the respective cell of the last radial calorimeter layer, which can be used for identifying muons, thus making the muon first level trigger more robust. This note reviews the adder specifications and laboratory tests, whereas the main focus is put on the data analysis from the testbeam periods in~2001. Several improvements achieved by tuning the read-out are described. Using the testbeam results, the ability to identify muons in the last radial Tilecal layer is discussed. The experimental results obtained at the testbeams are completed with the Monte Carlo simulations.

  7. The CMS Muon System Alignment

    CERN Document Server

    Martinez Ruiz-Del-Arbol, P

    2009-01-01

    The alignment of the muon system of CMS is performed using different techniques: photogrammetry measurements, optical alignment and alignment with tracks. For track-based alignment, several methods are employed, ranging from a hit and impact point (HIP) algorithm and a procedure exploiting chamber overlaps to a global fit method based on the Millepede approach. For start-up alignment as long as available integrated luminosity is still significantly limiting the size of the muon sample from collisions, cosmic muon and beam halo signatures play a very strong role. During the last commissioning runs in 2008 the first aligned geometries have been produced and validated with data. The CMS offline computing infrastructure has been used in order to perform improved reconstructions. We present the computational aspects related to the calculation of alignment constants at the CERN Analysis Facility (CAF), the production and population of databases and the validation and performance in the official reconstruction. Also...

  8. Muons as hyperfine interaction probes in chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ghandi, Khashayar, E-mail: kghandi@triumf.ca; MacLean, Amy [Mount Allison University, Department of Chemistry & Biochemistry (Canada)

    2015-04-15

    Spin polarized positive muons injected in matter serve as magnetic probes for the investigation of physical and chemical properties of free radicals, mechanisms of free radical reactions and their formations, and radiation effects. All muon techniques rely on the evolution of spin polarization (of the muon) and in that respect are similar to conventional magnetic resonance techniques. The applications of the muon as a hyperfine probe in several fields in chemistry are described.

  9. Muon Dipole Moment Experiments Interpretation and Prospects

    CERN Document Server

    Feng, J L; Shadmi, Y; Feng, Jonathan L; Matchev, Konstantin T.; Shadmi, Yael

    2001-01-01

    We examine the prospects for discovering new physics through muon dipole moments. The current deviation in $g_{\\mu}-2$ may be due entirely to the muon's {\\em electric} dipole moment. We note that the precession frequency in the proposed BNL muon EDM experiment is also subject to a similar ambiguity, but this can be resolved by up-down asymmetry measurements. We then review the theoretical expectations for the muon's electric dipole moment in supersymmetric models.

  10. Fast Fourier transform to measure pressure coefficient of muons in the GRAPES-3 experiment

    Science.gov (United States)

    Mohanty, P. K.; Ahmad, S.; Antia, H. M.; Arunbabu, K. P.; Chandra, A.; Dugad, S. R.; Gupta, S. K.; Hariharan, B.; Hayashi, Y.; Jagadeesan, P.; Jain, A.; Kawakami, S.; Kojima, H.; Morris, S. D.; Nayak, P. K.; Oshima, A.; Rao, B. S.; Reddy, L. V.; Shibata, S.

    2016-06-01

    The GRAPES-3 large area (560 m2) tracking muon telescope is operating at Ooty in India since 2001. It records 4 × 109 muons of energy ≥ 1 GeV every day. These high statistics data have enabled extremely sensitive measurements of solar phenomena, including the solar anisotropies, Forbush decreases, coronal mass ejections etc. to be made. However, prior to such studies, the variation in observed muon rate caused by changes in atmospheric pressure needs to be corrected. Traditionally, the pressure coefficient (β) for the muon rate was derived from the observed data. But the influence of various solar effects makes the measurement of β somewhat difficult. In the present work, a different approach to circumvent this difficulty was used to measure β, almost independent of the solar activity. This approach exploits a small amplitude (∼1 hPa) periodic (12 h) variation of atmospheric pressure at Ooty that introduces a synchronous variation in the muon rate. By using the fast Fourier transform technique the spectral power distributions at 12 h from the atmospheric pressure, and muon rate were used to measure β. The value of pressure coefficient was found to be β =(- 0.128 ± 0.005) % hPa-1.

  11. First trial of the muon acceleration for J-PARC muon g-2/EDM experiment

    Science.gov (United States)

    Kitamura, R.; Otani, M.; Fukao, Y.; Kawamura, N.; Mibe, T.; Miyake, Y.; Shimomura, K.; Kondo, Y.; Hasegawa, K.; Bae, S.; Kim, B.; Razuvaev, G.; Iinuma, H.; Ishida, K.; Saito, N.

    2017-07-01

    Muon acceleration is an important technique in exploring the new frontier of physics. A new measurement of the muon dipole moments is planned in J-PARC using the muon linear accelerator. The low-energy (LE) muon source using the thin metal foil target and beam diagnostic system were developed for the world’s first muon acceleration. Negative muonium ions from the thin metal foil target as the LE muon source was successfully observed. Also the beam profile of the LE positive muon was measured by the LE-dedicated beam profile monitor. The muon acceleration test using a Radio-Frequency Quadrupole linac (RFQ) is being prepared as the first step of the muon accelerator development. In this paper, the latest status of the first muon acceleration test is described.

  12. Lost Muon Study for the Muon G-2 Experiment at Fermilab*

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Crnkovic, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Morse, W. M. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-05-19

    The Fermilab Muon g-2 Experiment has a goal of measuring the muon anomalous magnetic moment to a precision of 140 ppb - a fourfold improvement over the 540 ppb precision obtained by the BNL Muon g-2 Experiment. Some muons in the storage ring will interact with material and undergo bremsstrahlung, emitting radiation and loosing energy. These so called lost muons will curl in towards the center of the ring and be lost, but some of them will be detected by the calorimeters. A systematic error will arise if the lost muons have a different average spin phase than the stored muons. Algorithms are being developed to estimate the relative number of lost muons, so as to optimize the stored muon beam. This study presents initial testing of algorithms that can be used to estimate the lost muons by using either double or triple detection coincidences in the calorimeters.

  13. The Level-0 Muon Trigger for the LHCb Experiment

    CERN Document Server

    Aslanides, E; Cogan, J; Dinkespiler, B; Favard, S; Duval, P Y; Le Gac, R; Leroy, O; Liotard, P -L; Marin, F; Menouni, M; Roche, A; Tsaregorodtsev, A

    2007-01-01

    A very compact architecture has been developed for the first level Muon Trigger of the LHCb experiment that processes 40 millions of proton-proton collisions per second. For each collision, it receives 3.2 kBytes of data and it finds straight tracks within a 1.2 microseconds latency. The trigger implementation is massively parallel, pipelined and fully synchronous with the LHC clock. It relies on 248 high density Field Programable Gate arrays and on the massive use of multigigabit serial link transceivers embedded inside FPGAs.

  14. A Highly intense DC muon source, MuSIC and muon CLFV search

    Energy Technology Data Exchange (ETDEWEB)

    Hino, Y.; Kuno, Y.; Sato, A. [Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Sakamoto, H. [Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Research Center of Nuclear Physics, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Matsumoto, Y.; Tran, N.H.; Hashim, I.H. [Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Fukuda, M.; Hayashida, Y. [Research Center of Nuclear Physics, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Ogitsu, T.; Yamamoto, A.; Yoshida, M. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2014-08-15

    MuSIC is a new muon facility, which provides the world's highest intense muon beam with continuous time structure at Research Center of Nuclear Physics (RCNP), Osaka University. It's intensity is designed to be 10{sup 8} muons per second with only 0.4 kW proton beam. Such a high intense muon beam is very important for searches of rare decay processes, for example search for the muon to electron conversion.

  15. Commissioning and Performance of the CMS Pixel Tracker with Cosmic Ray Muons

    CERN Document Server

    Chatrchyan, S; Abbaneo, D; Abbiendi, G; Abbrescia, M; Abdullin, S; Abelev, B; Acosta, D; Acosta, J G; Actis, O; Adam, N; Adams, M R; Adams, T; Adam, W; Adiguzel, A; Adler, V; Adolphi, R; Adzic, P; Afaq, M A; Agostino, L; Agram, J L; Aguilar-Benitez, M; Ahmad, M; Ahmed, I; Ahmed, W; Ahuja, S; Aisa, D; Aisa, S; Akchurin, N; Akgun, B; Akgun, U; Akimenko, S; Akin, I V; Alagoz, E; Alampi, G; Albajar, C; Albayrak, E A; Alberdi, J; Albergo, S; Albert, E; Albrow, M; Alcaraz Maestre, J; Aldaya Martin, M; Alexander, J; Alidra, M; Aliev, T; Allfrey, P; Almeida, N; Altenhöfer, G; Altsybeev, I; Alver, B; Alverson, G; Alves, G A; Amaglobeli, N; Amapane, N; Ambroglini, F; Amsler, C; Anagnostou, G; Ananthan, B; Anastassov, A; Andelin, D; Anderson, M; Andrea, J; Andreev, V; Andreev, Yu; Anghel, I M; Anguelov, T; Anisimov, A; Antillon, E; Antipov, P; Antonelli, L; Anttila, E; Antunes Pedro, L; Antunovic, Z; Apanasevich, L; Apollinari, G; Apresyan, A; Arce, P; Arcidiacono, R; Arenton, M W; Arfaei, H; Argiro, S; Arisaka, K; Arneodo, M; Arnold, B; Arora, S; Artamonov, A; Asaadi, J; Asghar, M I; Ashby, S; Askew, A; Atac, M; Atramentov, O; Auffray, E; Aurisano, A; Autermann, C; Avery, P; Avetisyan, A; Avila, C; Awan, M I M; Ayan, A S; Ayhan, A; Azhgirey, I; Aziz, T; Azman Gokce, A; Azzi, P; Azzurri, P; Baarmand, M M; Babb, J; Babucci, E; Baccaro, S; Bacchetta, N; Bacchi, W; Bachtis, M; Baden, D; Badgett, W; Baechler, J; Baer, H; Baesso, P; Baffioni, S; Bagby, L; Bagliesi, G; Bahk, S Y; Bailleux, D; Baillon, P; Bainbridge, R; Bakhshiansohi, H; Bakirci, M N; Bakken, J A; Balazs, M; Baldin, B; Ball, A H; Ball, G; Ballin, J; Bally, S L; Bandurin, D; Banerjee, S; Banerjee, S; Banicz, K; Bansal, S; Ban, Y; Banzuzi, K; Baquero Ruiz, M; Barashko, V; Barbagli, G; Barberis, E; Barbone, L; Barcala, J M; Barcellan, L; Bard, R; Bargassa, P; Baringer, P; Barnes, V E; Barnett, B A; Barney, D; Barone, L; Bartalini, P; Bartoloni, A; Bartz, E; Basegmez, S; Battilana, C; Baty, C; Baud, A; Bauerdick, L A T; Bauer, G; Bauer, J; Baur, U; Bawa, H S; Bazterra, V E; Bean, A; Beauceron, S; Beaudette, F; Beaumont, W; Bechtel, F; Bedjidian, M; Beetz, C P; Behrens, U; Belforte, S; Beliy, N; Bellan, P; Bellan, R; Bellato, M; Bellinger, J N; Bell, K W; Belotelov, I; Benaglia, A; Bencze, G; Bendavid, J; Bender, W; Benedetti, D; Benelli, G; Benettoni, M; Beni, N; Benucci, L; Benussi, L; Benvenuti, A C; Beretvas, A; Bergauer, H; Bergauer, T; Beri, S B; Bernardini, J; Bernardino Rodrigues, N; Bernet, C; Berntzon, L; Berretta, L; Berry, D; Berry, E; Berryhill, J; Bertani, M; Bertl, W; Bertoldi, M; Berzano, U; Besancon, M; Besson, A; Betchart, B; Betev, B; Betts, R R; Beuselinck, R; Bhatnagar, V; Bhat, P C; Bhattacharya, S; Bhattacharya, S; Bhatti, A; Biallass, P; Bianchini, L; Bianco, S; Biasini, M; Biasotto, M; Biery, K; Biino, C; Bilei, G M; Bilki, B; Bilmis, S; Binkley, M; Bisello, D; Bitioukov, S; Blaha, J; Blanco Otano, M; Blekman, F; Bloch, D; Bloch, I; Bloch, P; Bloom, K; Bluj, M; Blumenfeld, B; Blüm, P; Blyweert, S; Boccali, T; Bocci, A; Bockelman, B; Bodek, A; Bodin, D; Boeriu, O; Boldini, M; Boldizsar, L; Bolla, G; Bolognesi, S; Bolton, T; Bonacorsi, D; Bona, M; Bonato, A; Bondar, N; Bonnett Del Alamo, M; Bontenackels, M; Boos, E; Borcherding, F; Borgia, M A; Bornheim, A; Borras, K; Borrello, L; Borsato, E; Bortoletto, D; Bose, M; Bose, S; Bose, T; Bosi, F; Bos, J; Bostock, F; Botta, C; Boudoul, G; Bouhali, O; Bourgeois, N; Bourilkov, D; Bourrel, T; Boutemeur, M; Boutle, S; Braibant-Giacomelli, S; Branca, A; Branson, J G; Brauer, R; Braunschweig, W; Breedon, R; Brett, A M; Breuker, H; Brew, C; Bricola, S; Briggs, R; Brigljevic, V; Broccolo, G; Brom, J M; Brooke, J J; Brown, R M; Brun, H; Bruno, G; Buchmuller, O; Budd, H; Buege, V; Buehler, M; Bunin, P; Bunkowski, K; Bunn, J; Buontempo, S; Burgos Lazaro, C; Burkett, K; Burtovoy, V; Busson, P; Busza, W; Butler, J N; Butler, P H; Butt, J; Butz, E; Bylsma, B; Caballero Bejar, J; Cabrillo, I J; Cafaro, V D; Caiazza, S S; Cai, J; Cakir, A; Calderon, A; Calderon De La Barca Sanchez, M; Cali, I A; Callner, J; Calloni, M; Calvo, E; Calzolari, F; Camanzi, B; Caminada, L; Campagnari, C; Campbell, A; Campi, D; Camporesi, T; Cankocak, K; Cano, E; Capiluppi, P; Caponeri, B; Cardaci, M; Cardenas Montes, M; Carleton, M; Carlin, R; Carlsmith, D; Carrillo Montoya, C A; Carrillo Moreno, S; Carroll, R; Cartiglia, N; Carvalho, W; Case, M; Cassel, D; Castaldi, R; Castellani, L; Castello, R; Castilla Valdez, H; Castro, A; Castro, E; Castro, M A; Cattai, A; Caudron, J; Cavallari, F; Cavallo, F R; Cavallo, N; Cavanaugh, R; Cebra, D; Cepeda, M; Cerati, G B; Cerci, S; Cerizza, G; Cerminara, G; Ceron, C; Cerrada, M; Chabert, E C; Chamizo Llatas, M; Chandra, A; Chang, P; Chang, S; Chang, Y H; Chan, M; Chanon, N; Chao, Y; Charaf, O; Charlot, C; Chatelain, J P; Chatterjee, A; Chauhan, S; Chauvey, M; Checchia, P; Checcucci, B; Chekhovsky, V; Chen, E A; Chen, G M; Cheng, T L; Chen, H S; Chen, J; Chen, K F; Chen, M; Chen, W T; Chen, Z; Chertok, M; Chetluru, V; Cheung, H W K; Chien, C Y; Chierici, R; Chiochia, V; Chiorboli, M; Chipaux, R; Chiumarulo, F; Chlebana, F; Choi, M; Choi, S; Choi, Y; Choudhary, B C; Choudhury, R K; Chou, J P; Christian, G; Christiansen, T; Chtchipounov, L; Chuang, S H; Chung, J; Chung, K; Chung, Y S; Churin, I; Chwalek, T; Cihangir, S; Cimmino, A; Cirino, G; Cittolin, S; Ciulli, V; Civinini, C; Claes, D R; Clare, R; Clarida, W; Clemente, A; Clemente, F; Clerbaux, B; Cline, D; Coarasa Perez, J A; Cockerill, D J A; Codispoti, G; Colafranceschi, S; Colaleo, A; Cole, J E; Colino, N; Colling, D; Colonna, D; Conde Garcia, A; Conetti, S; Contardo, D; Conte, E; Conti, E; Conway, J; Cooper, S I; Cossutti, F; Costa, M; Costa, S; Coughlan, J A; Cousins, R; Covarelli, R; Cox, B; Cox, P T; Crawford, M; Creanza, D; Cremaldi, L M; Cripps, N; Crotty, I; Cuevas, J; Cuffiani, M; Cumalat, J P; Cuplov, V; Curé, B; Cuscela, G; Cushman, P; Cussans, D; Cutts, D; Cwiok, M; Czellar, S; Dabrowski, R; Dafinei, I; Dagenhart, W; Dahmes, B; Dal Corso, F; D'Alessandro, R; D'Alfonso, M; Dallavalle, G M; Dambach, S; Damgov, J; Dammann, D; D'Angelo, P; Daniel, M; Danielson, T; D'Antone, I; Darmenov, N; Da Silva Di Calafiori, D R; Daskalakis, G; Das, S; Dasu, S; Dattola, D; Daubie, E; David, A; Davids, M; Davies, G; de Barbaro, P; Debbins, P; De Benedetti, A; De Boer, W; Debreczeni, G; De Filippis, N; De Gruttola, M; De Guio, F; Deiters, K; Dejardin, M; De Jesus Damiao, D; Delachenal, V; De La Cruz, B; Delaere, C; De Lentdecker, G; Delgado Peris, A; Deliomeroglu, M; Dellacasa, G; Della Negra, M; Della Ricca, G; Dell'Orso, R; Delmeire, E; Del Re, D; Demaria, N; Demarteau, M; De Mattia, M; Demina, R; Demin, P; Demir, D; Demortier, L; Denegri, D; Denisov, A; Deniz, M; D'Enterria, D; De Oliveira Martins, C; De Palma, M; Depasse, P; Dermenev, A; De Robertis, G; De Roeck, A; Dero, V; Derylo, G; Descamps, J; de Trocóniz, J F; De Visscher, S; Devroede, O; De Weirdt, S; De Wolf, E A; Deyrail, D; Dharmaratna, W G D; D'Hondt, J; Diaz Merino, I; Diemoz, M; Dierlamm, A; Diez Gonzalez, C; Diez Pardos, C; Di Giovanni, G P; Di Marco, E; Dimitrov, A; Dimitrov, L; Dinardo, M E; Dinu, N; Dirkes, G; Dissertori, G; Dittmar, M; Di Vincenzo, S; Djaoshvili, N; Djordjevic, M; Dobrzynski, L; Dobur, D; Dolen, J; Dolgopolov, A; Dominguez, A; Dominik, W; Donvito, G; Dorigo, T; Doroba, K; Dos Santos, S; Dosselli, U; Draeger, J; Dragicevic, M; Dragoiu, C; Drell, B R; Dremin, I; Drouhin, F; Drozdetskiy, A; Druzhkin, D; Duarte Campderros, J; Dubinin, M; Duda, M; Dudero, P R; Dudko, L; Dugad, S; Dughera, G; Dumanoglu, I; Dumitrache, F; Dupasquier, T; Dupont, T; Duric, S; Durkin, L S; Duru, F; Dusinberre, E; Dutta, D; Dutta, S; Dvornikov, O; Dykstra, D; Dyulendarova, M; Dzelalija, M; Eads, M; Eartly, D P; Eckerlin, G; Ecklund, K M; Eckstein, D; Edelhoff, M; Edera, L M; Efron, J; Egeland, R; Eggel, C; Eichberger, M; Elgammal, S; Elias, J E; Elliott-Peisert, A; Ellison, J A; El Mamouni, H; Elmer, P; Elvira, V D; Emeliantchik, I; Engh, D; Eno, S C; Eppard, M; Epshteyn, V; Erbacher, R; Erdmann, M; Erdmann, W; Erhan, S; Erö, J; Ershov, A; Ershov, Y; Esen, S; Eskut, E; Esser, H; Eugster, J; Eulisse, G; Eusebi, R; Evangelou, I; Evans, D; Evans, D; Everaerts, P; Everett, A; Fabbricatore, P; Fabbri, F; Fabbri, F; Fabbro, B; Faber, G; Fabozzi, F; Faccioli, P; Fahim, A; Fanfani, A; Fanò, L; Fanzago, F; Farina, F M; Farnesini, L; Fasanella, D; Fassi, F; Faure, J L; Favart, D; Favre, M; Fay, J; Fedele, F; Fedorov, A; Fehling, D; Feindt, M; Felcini, M; Feld, L; Felzmann, U; Feng, L; Ferencek, D; Fereos, R; Ferguson, T; Fernandez Bedoya, C; Fernandez Menendez, J; Fernandez, M; Fernandez Perez Tomei, T R; Fernández Ramos, J P; Ferrando, A; Ferreira Dias, M A; Ferreira Parracho, P G; Ferri, F; Fetchenhauer, G; Feyzi, F; Field, R D; Filozova, I; Finger, M.; Finger Jr., M.; Fiore, L; Fiori, F; Fischler, M; Fisk, I; Flacher, H; Flix, J; Flood, K; Florez, C; Flossdorf, A; Flucke, G; Flügge, G; Foà, L; Focardi, E; Fonseca De Souza, S; Fontaine, J C; Ford, W T; Foudas, C; Foulkes, S; Fouz, M C; Franci, D; Franco, M; Frangenheim, J; Frank, N; Franzoni, G; Frazier, R; Freeman, J; Freitas Ferreira, M; Freudenreich, K; Frey, M; Friedl, M; Friis, E; Frosali, S; Frueboes, T; Frühwirth, R; Fulcher, J; Funk, W; Furgeri, A; Furic, I K; Futyan, D; Fu, Y; Gabathuler, K; Gaddi, A; Galanti, M; Gallinaro, M; Gallo, E; Gamsizkan, H; Ganjour, S; Garberson, J; Garcia-Abia, P; Garcia-Bonilla, A C; Garcia Raboso, A; Garcia-Solis, E J; Garfinkel, A F; Garmash, A; Gartner, J; Gartung, P; Gary, J W; Gascon, S; Gasparini, F; Gasparini, U; Gastal, M; Gataullin, M; Gateau, M; Gaultney, V; Gavrikov, Y; Gavrilov, G; Gavrilov, V; Gay, A P R; Gebbert, U; Gecse, Z; Geddes, N I; Geenen, H; Geiser, A; Gelé, D; Genchev, V; Gennai, S; Genta, C; Gentit, F X; Geralis, T; Gerbaudo, D; Gerber, C E; Gershtein, Y; Gerwig, H; Geurts, F J M; Ge, Y; Ghete, V M; Ghezzi, A; Giacomelli, P; Giammanco, A; Giardoni, M; Giassi, A; Gibbons, L K; Giffels, M; Gigi, D; Gill, K; Gilmore, J; Giordano, D; Giordano, V; Girgis, S; Girod, J P; Giubilato, P; Giunta, M; Giurgiu, G; Givernaud, A; Glege, F; Gleyzer, S V; Gninenko, S; Go, A; Gobbi, B; Gobbo, B; Godang, R; Godinovic, N; Goerlach, U; Goh, J; Goitom, I; Gokieli, R; Goldstein, J; Golf, F; Gollapinni, S; Golovtsov, V; Golubev, N; Golunov, A; Golutvin, I; Golyash, A; Gomez, A; Gomez Ceballos, G; Gomez, G; Gomez Moreno, B; Gomez-Reino Garrido, R; Gonella, F; Gonzalez Caballero, I; Gonzalez Lopez, O; Gonzalez Sanchez, J; Gonzalez Suarez, R; Gorbounov, N; Górski, M; Goscilo, L; Gotra, Y; Gottschalk, E; Goudard, R; Goulianos, K; Gouskos, L; Govi, G; Govoni, P; Gowdy, S; Goy Lopez, S; Grab, C; Grachov, O; Grandi, C; Granier de Cassagnac, R; Grant, N; Gras, P; Grassi, T; Gray, L; Gray, R N C; Graziano, A; Green, D; Grégoire, G; Gregores, E M; Gresele, A; Gribushin, A; Grishin, V; Gritsan, A V; Grogg, K S; Gronberg, J; Gross, L; Grothe, M; Grunewald, M; Gruschke, J; Guan, W; Guchait, M; Guerra Jordao, M; Guerzoni, M; Guida, R; Guiducci, L; Gu, J; Guler, A M; Gülmez, E; Gulmini, M; Gumus, K; Gunthoti, K; Guo, S; Guo, Y; Guo, Z J; Gupta, P; Guragain, S; Gurpinar, E; Gurrola, A; Gurtu, A; Gutay, L; Gutleber, J; Gutsche, O; Haas, J; Hackstein, C; Hadley, N J; Hagopian, S; Hagopian, V; Haguenauer, M; Hahn, A; Hahn, G; Hahn, K A; Haj Ahmad, W; Hajdu, C; Halkiadakis, E; Hall, G; Hall-Wilton, R; Halu, A; Halyo, V; Hamel de Monchenault, G; Hammad, G H; Hammer, J; Hanlon, J; Hänsel, S; Hansen, M; Hansen, M; Hanson, G; Harder, K; Harel, A; Härkönen, J; Harper, S; Harris, P; Harris, R M; Harr, R; Hartl, C; Hartmann, F; Harvey, J; Hashemi, M; Hatakeyama, K; Hatton, D; Hauk, J; Haupt, J; Hauser, J; Hays, J; Hazen, E; Heath, G P; Heath, H F; Hebbeker, T; Heering, A H; Hegner, B; Heier, S; Heikkinen, A; Heinrich, M; Heister, A; Hektor, A; Held, H; Heltsley, B; Hermanns, T; Hernandez, J M; Hernath, S; Hervé, A; Heyburn, B; Heydhausen, D; Heyninck, J; Hidas, P; Hildreth, M; Hilgers, G; Hill, C; Hintz, W; Hinzmann, A; Hirosky, R; Hirschbuehl, D; Hits, D; Hobson, P R; Hoch, M; Hoepfner, K; Hof, C; Hoffmann, H F; Hoffmann, K H; Hofman, D J; Hohlmann, M; Hollar, J; Hollingsworth, M; Holmes, D; Holzman, B; Holzner, A; Honc, S; Hong, B; Honma, A; Hoorani, H R; Hopkins, W; Horisberger, R; Hörmann, N; Horvath, D; Hos, I; Hou, W S; Howell, J; Hrubec, J; Hsiung, Y; Huang, X T; Huckvale, B; Hufnagel, D; Huhtinen, M; Hunt, A; Hussain, I; Hu, Z; Iaselli, G; Iashvili, I; Iaydjiev, P; Ignatenko, M; Iles, G; Ilina, N; Ille, B; Imrek, J; Incandela, J; Ingram, F D; Ingram, Q; Innocente, V; Inyakin, A; Iorio, A O M; Ippolito, N; Isildak, B; Ivanov, Y; Jackson, J; Jaditz, S; Jafari, A; Jain, S; James, E; Jang, D W; Janot, P; Janssen, X; Janulis, M; Jarry, P; Jarvis, C; Jaworski, M; Jeitler, M; Jeng, G Y; Jenkins, M; Jensen, H; Jeong, C; Jeong, H; Jessop, C; Jha, M; Jiang, C H; Jindal, M; Jindal, P; John, J St; Johnson, K F; Johnson, M; Johns, W; Jones, C D; Jones, J; Jones, M; Jorda, C; Josa, M I; Joshi, U; Jovanovic, D; Juillot, P; Jung, C; Jung, H; Jung, S Y; Jun, S Y; Juska, E; Justus, C; Kaadze, K; Kachanov, V; Kadastik, M; Kadija, K; Kaestli, H C; Kaftanov, V; Kailas, S; Kaiser, J; Kalagin, V; Kalakhety, H; Kalavase, P; Kalinin, S; Kalogeropoulos, A; Kamenev, A; Kaminskiy, A; Kamon, T; Kannike, K; Kao, S C; Kapusi, A; Karafasoulis, K; Karaman, T; Karapostoli, G; Karchin, P E; Karimäki, V; Karjavin, V; Karmgard, D J; Karneyeu, A; Karpinski, W; Kaschube, K; Kasemann, M; Kasieczka, G; Kastner, K; Kataria, S K; Katkov, I; Katsas, P; Kaur, M; Kaur, R; Kaussen, G; Kaya, M; Kaya, O; Kayis Topaksu, A; Kazana, M; Kcira, D; Keller, J; Kelley, R; Kellogg, R G; Kelly, T; Kennedy, B W; Khachatryan, V; Khalatian, S; Khan, A; Khan, W A; Kharchilava, A; Khomich, A; Khukhunaishvili, A; Khurshid, T; Killewald, P; Kim, B; Kim, D H; Kim, G N; Kim, H; Kim, H; Kim, J H; Kim, J; Kim, T J; Kim, V; Kim, Y; Kinnunen, R; Kirakosyan, M; Kirn, M; Kirsanov, M; Kirsch, M; Klabbers, P; Klanner, R; Klapoetke, K; Klein, B; Klein, K; Kleinwort, C; Klem, J; Klima, B; Klimenko, S; Klimkovich, T; Kluge, H; Klukas, J; Klute, M; Klyukhin, V; Knutsson, A; Koay, S A; Kodolova, O; Kohli, J M; Kokkas, P; Kolberg, T; Kolosov, V; Konecki, M; Kong, D J; Konigsberg, J; König, S; Konoplyanikov, V; Konovalova, N; Konstantinov, D; Kopecky, A; Korenkov, V; Korjenevski, S; Korpela, A; Kortelainen, M J; Korytov, A; Korzhik, M; Kossiakov, S; Kossov, M; Kotlinski, D; Kotov, K; Kousouris, K; Kovalskyi, D; Ko, W; Koybasi, O; Kozhuharov, V; Kozlov, G; Kozlov, V; Kraan, A; Krajczar, K; Kramer, L; Krammer, M; Krasnikov, N; Kravchenko, I; Kreis, B; Kress, T; Kreuzer, P; Kroeger, R; Krofcheck, D; Krokhotin, A; Krolikowski, J; Kropivnitskaya, A; Krpic, D; Krutelyov, V; Krychkine, V; Kubik, A; Kubota, Y; Kuchinsky, P; Kuhr, T; Kukartsev, G; Kuleshov, S; Kumar, A; Kumar, A; Kunori, S; Kuo, C M; Kurca, T; Kurenkov, A; Kurt, P; Kuznetsova, E; Kuznetsov, V; Kwan, S; Kyberd, P; Kypreos, T; Kyriakis, A; Laasanen, A T; Lacalamita, N; Lacaprara, S; Lae, C K; Laird, E; Lamb, J; Lampén, T; Lanaro, A; Lander, R; Landi, G; Landsberg, G; Lanev, A; Lange, D; Langenegger, U; Lange, W; Lannon, K; Lanske, D; Lariccia, P; Lassila-Perini, K; Laszlo, A; Lath, A; Lawson, P; Lazaridis, C; Lazic, D; Lazo-Flores, J; Lazzizzera, I; Le Bihan, A C; Lebolo, L M; Lebourgeois, M; Lecomte, P; Lecoq, P; Ledovskoy, A; Lee, J; Lee, K S; Lee, S; Lee, S W; Lee, Y J; Le Godec, G; Le Grand, T; Lehti, S; Lei, C M; Lei, Y J; Lelas, K; Lemaire, M C; Lemaitre, V; Lenzi, P; Leonard, J; Leonardo, N; Leonidopoulos, C; Leslie, D; Lethuillier, M; Letts, J; Levchenko, P; Levchuk, L; Levine, A; Liamsuwan, T; Liang, D; Ligabue, F; Liko, D; Limon, P; Lindén, T; Ling, T Y; Linn, A; Linn, S; Lin, S W; Lin, W; Lipeles, E; Lista, L; Lister, A; Li, S W; Litomin, A; Litov, L; Litvine, V; Liu, A; Liu, B; Liu, C; Liu, F; Liu, H; Liu, H; Liu, J H; Li, W; Lloret Iglesias, L; Lobelle Pardo, P; Lobov, I; Locci, E; Loddo, F; Lohmann, W; Loizides, C; Lokhtin, I; Lomidze, D; Lomtadze, T; Longo, E; Loos, R; Lopez, A; Lopez Berengueres, J O; Lopez Perez, J A; Lopez Virto, A; Los, S; Loukas, D; Lourenço, C; Loveless, R; Lowette, S; Lucaroni, A; Luckey, P D; Lueking, L; Luiggi Lopez, E; Lukanin, V; Lukhanin, G; Lukyanenko, S; Lumb, N; Lundstedt, C; Lungu, G; Lu, R S; Lusin, S; Lusito, L; Lustermann, W; Luthra, A; Luukka, P; Lykken, J; Lynch, S; Lyonnet, A; MacEvoy, B C; Mackay, C K; Macpherson, A; Madorsky, A; Mäenpää, T; Maeshima, K; Maes, J; Maes, M; Maes, T; Maggi, G; Maggi, M; Magini, N; Magnan, A M; Magrans de Abril, I; Magrans de Abril, M; Maillefaud, J D; Maire, G; Maity, M; Majumder, D; Majumder, G; Makankin, A; Makarenko, V; Mäki, T; Maksimovic, P; Malberti, M; Malbouisson, H; Malcles, J; Maletic, D; Malgeri, L; Malik, S; Malvezzi, S; Mangano, B; Mankel, R; Manna, N; Mannelli, M; Mans, J; Manthos, N; Mantovani, G; Mao, Y; Marage, P E; Marangelli, B; Maravin, Y; Marcellini, S; Marchica, C; Marco, J; Marco, R; Marfin, I; Margoni, M; Marian, G; Mariani, F; Marienfeld, M; Marinelli, N; Marin, J; Marinova, E; Marinov, A; Marionneau, M; Mariotti, C; Markou, A; Markou, C; Markowitz, P; Marlow, D; Maronde, D; Marone, M; Maron, G; Maroussov, V; Marraffino, J M; Marrouche, J; Martelli, A; Martinez, G; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Martini, L; Martins, P; Martisiute, D; Martschei, D; Maruyama, S; Maselli, S; Masetti, G; Masetti, L; Mason, D; Massa, M; Matchev, K; Mateev, M; Matorras, F; Mattiazzo, S; Mattson, M; Ma, T; Matveev, M; Matveev, V; Mavrommatis, C; Ma, Y; Mazumdar, K; Mazzucato, M; McBride, P; McCauley, T; McCliment, E; Medvedeva, T; Mehta, M Z; Meier, F; Meijers, F; Mel'nik, Y; Menasce, D; Mendez, H; Meneghelli, M; Meneguzzo, A T; Meng, X; Meridiani, P; Merino, G; Merkel, P; Merlo, J P; Mermerkaya, H; Merschmeyer, M; Mersi, S; Meschi, E; Meschini, M; Mesropian, C; Messineo, A; Mestvirishvili, A; Metson, S; Meyer, A B; Meyer, A; Meynet Cordonnier, A; Miao, T; Miccio, V; Miceli, T; Michelotto, M; Miglioranzi, S; Migliore, E; Mikulec, I; Mila, G; Milenovic, P; Militaru, O; Miller, D H; Miller, M J; Miller, M; Millischer, L; Miné, P; Miner, D C; Mini, G; Mirabito, L; Mirman, N; Mironov, C; Mishra, K; Mitselmakher, G; Mitsyn, V V; Mittermayr, F; Mnich, J; Moccia, S; Moeller, A; Moggi, A; Mohammadi Najafabadi, M; Mohanty, A K; Mohapatra, A; Mohr, N; Moisenz, P; Molina, J; Molinero, A; Molnar, J; Mommsen, R; Monaco, V; Mondal, N K; Montanari, A; Montecassiano, F; Moon, D H; Mooney, M; Moortgat, F; Morelos Pineda, A; Moroni, L; Morovic, S; Morse, D M; Moser, R; Moshaii, A; Mossolov, V; Mousa, J; Mozer, M U; Mrenna, S; Mucibello, L; Mueller, S; Muelmenstaedt, J; Muhammad, A S; Muhammad, S; Mulders, M; Müller, Th; Mulon, J; Mumford, J; Mundim, L; Munro, C; Müntel, M; Mura, B; Murray, M; Murray, P; Musella, P; Musenich, R; Musich, M; Musienko, Y; Muzaffar, S; My, S; Nachtman, J; Nahn, S; Nappi, A; Narain, M; Nardulli, A; Nash, J; Natali, S; Nauenberg, U; Naumann-Emme, S; Navarrete, J J; Navarria, F L; Naves Sordo, H; Nawrocki, K; Nayak, A; Necchi, M M; Nedelec, P; Negri, P; Nervo, M; Nespolo, M; Nessi-Tedaldi, F; Neu, C; Neuherz, B; Neuland, M B; Neumeister, N; Newbold, D M; Newman, H B; Newman-Holmes, C; Newsom, C R; Nguyen, C N; Nguyen, D; Nguyen, H; Niegel, M; Nikitenko, A; Nikolic, M; Nikonov, E; Nirunpong, K; Nishu, N; Noeding, C; Noli, P; Norbeck, E; Norman, M; Novaes, S F; Novak, D; Nowack, A; Nowak, F; Noy, M; Nuzzo, S; Nysten, J; Oberegger, M; Oberst, O; Obertino, M M; Obrant, G; Öcalan, K; Ocampo Rios, A A; Ochesanu, S; O'Dell, V; Odorici, F; Oehler, A; Ofierzynski, R A; Oggero, S; Oguri, V; Oh, A; Ohlerich, M; Olesen, G; Oleynik, D; Oliveros, S; Oller, J C; Olsen, J; Olson, J; Olzem, J; Onel, Y; Önengüt Gökbulut, G; Önengüt, G; Onnela, A; Onoprienko, D; Orbaker, D; Organtini, G; Orimoto, T; Orishchin, E; Orsini, L; Osborne, D; Osborne, I; Osorio Oliveros, A F; Ostaptchouk, A; Ott, G; Ott, J; Oulianov, A; Ovyn, S; Ozdemir, K; Ozkorucuklu, S; Ozok, F; Ozturk, S; Padhi, S; Padley, B P; Padrta, M; Paganini, P; Pagano, D; Paganoni, M; Pakhotin, Y; Paktinat Mehdiabadi, S; Palichik, V; Palinkas, J; Palla, F; Palma, A; Palmonari, F; Panagiotou, A; Pandolfi, F; Pandoulas, D; Panero, R; Panov, V; Pant, L M; Paoletti, S; Paolucci, P; Papadakis, A; Papadopoulos, I; Papageorgiou, A; Papagni, G; Pape, L; Paramatti, R; Parashar, N; Parenti, A; Park, H; Park, I C; Park, S K; Parsons, J; Pashenkov, A; Passamonti, L; Passaseo, M; Pastrone, N; Pasztor, G; Patay, G; Pathak, S; Patois, Y; Patras, V; Patterson, J R; Paulini, M; Paul, T; Paus, C; Pauss, F; Pavlov, B; Pavlunin, V; Pedrini, D; Pegoraro, M; Peiffer, T; Pein, U; Pela, J; Pellegrini, G; Pellegrino, F; Pellett, D; Pelliccioni, M; Penzo, A; Perchalla, L; Perelygin, V; Perera, L; Perez, E; Perinic, G; Pernicka, M; Pernot, J F; Perries, S; Perrotta, A; Perrozzi, L; Pesaresi, M; Petagna, P; Petiot, P; Petkov, P; Petragnani, G; Petrakou, E; Petridis, K; Petrilli, A; Petrillo, G; Petrosyan, A; Petrov, P; Petrov, V; Petrucciani, G; Petrucci, A; Petrunin, A; Petrushanko, S; Petyt, D; Pfeiffer, A; Philipps, B; Phillips II, D; Piccolo, D; Piccolomo, S; Piedra Gomez, J; Pieri, M; Pierini, M; Pierluigi, D; Pierro, G A; Pierschel, G; Pieta, H; Pi, H; Piluso, A; Pimiä, M; Pinto, C; Pintus, R; Pioppi, M; Piotrzkowski, K; Piparo, D; Piperov, S; Pirollet, B; Piroué, P; Pivarski, J; Plager, C; Plestina, R; Poettgens, M; Polatöz, A; Polese, G; Polic, D; Pol, M E; Pompili, A; Ponzio, B; Pooth, O; Popescu, S; Postema, H; Postoev, V E; Postolache, V; Potenza, R; Pozdnyakov, A; Pozniak, K; Pozzobon, N; Prescott, C; Prettner, E; Prokofyev, O; Prosper, H; Ptochos, F; Puerta Pelayo, J; Pugliese, G; Puigh, D; Puljak, I; Pullia, A; Punz, T; Puzovic, J; Qazi, S; Qian, S J; Quast, G; Quertenmont, L; Rabbertz, K; Racz, A; Radicci, V; Raffaelli, F; Ragazzi, S; Rahatlou, S; Rahmat, R; Raics, P; Raidal, M; Rajan, R; Rakness, G; Ralich, R; Ramirez Vargas, J E; Rander, J; Ranieri, A; Ranieri, R; Ranjan, K; Raposo, L; Rappoccio, S; Rapsevicius, V; Ratnikova, N; Ratnikov, F; Ratti, S P; Raupach, F; Ravat, S; Raymond, D M; Razis, P A; Rebane, L; Rebassoo, F; Redaelli, N; Redjimi, R; Reeder, D; Regenfus, C; Reid, I D; Reithler, H; Rekovic, V; Remington, R; Renker, D; Renz, M; Reucroft, S; Rew, S B; Reyes Romero, D; Rhee, H B; Ribeiro, P Q; Ribnik, J; Riccardi, C; Richman, J; Rivera, R; Rivetta, C H; Rizzi, A; Roberts, J; Robles, J; Robmann, P; Rodrigo, T; Rodrigues Antunes, J; Rodriguez, J L; Rogan, C; Rohe, T; Rohlf, J; Rohringer, H; Roh, Y; Roinishvili, N; Roinishvili, V; Roland, C; Roland, G; Rolandi, G.; Romaniuk, Ryszard; Romano, F; Romero, A; Romero, L; Rommerskirchen, T; Rompotis, N; Ronchese, P; Ronga, F J; Ronquest, M; Ronzhin, A; Rose, A; Rose, K; Roselli, G; Rosemann, C; Rosowsky, A; Rossato, K; Rossi, A M; Rossin, R; Rossman, P; Rougny, R; Rouhani, S; Rousseau, D; Rovelli, C; Rovelli, T; Rovere, M; Ruchti, R; Rudolph, M; Rugovac, S; Ruiz Jimeno, A; Rumerio, P; Rusack, R; Rusakov, S V; Ruspa, M; Russ, J; Russo, A; Ryan, M J; Ryckbosch, D; Ryd, A; Ryjov, V; Ryu, S; Ryutin, R; Sabbatini, L; Sabonis, T; Sacchi, R; Safarzadeh, B; Safonov, A; Safronov, G; Saha, A; Saini, L K; Sakharov, A; Sakulin, H; Sala, L; Sala, S; Salerno, R; Sampaio, S; Samyn, D; Sanabria, J C; Sanchez, A K; Sánchez Hernández, A; Sander, C; Sanders, D A; Sanders, S; Sani, M; Santacruz, N; Santanastasio, F; Santaolalla, J; Santocchia, A; Santoro, A; Sanzeni, C; Saout, C; Sarkar, S; Sartisohn, G; Sarycheva, L; Satpathy, A; Sauce, H; Sauerland, P; Savin, A; Savrin, V; Sawley, M C; Schael, S; Schäfer, C; Scheurer, A; Schieferdecker, P; Schilling, F P; Schlatter, W D; Schlein, P; Schleper, P; Schmid, S; Schmidt, A; Schmidt, I; Schmidt, R; Schmitt, M; Schmitt, M; Schmitz, S A; Schnetzer, S; Schoerner-Sadenius, T; Schöfbeck, R; Schott, G; Schreiner, T; Schröder, M; Schroeder, M; Schul, N; Schultz von Dratzig, A; Schümann, J; Schum, T; Schwering, G; Schwick, C; Sciaba, A; Sciacca, C; Scodellaro, L; Scurlock, B; Searle, M; Sedov, A; Seez, C; Segneri, G; Segoni, I; Seixas, J; Sekhri, V; Sekmen, S; Selvaggi, G; Selvaggi, M; Semenov, R; Semenov, S; Sengupta, S; Sen, S; Serban, A T; Serin, M; Servoli, L; Sever, R; Sexton-Kennedy, E; Sfiligoi, I; Sguazzoni, G; Shabalina, E; Shahzad, H; Sharma, A; Sharma, A; Sharma, S; Sharma, V; Sharp, P; Shaw, T M; Shcheglov, Y; Shchetkovskiy, A; Sheldon, P; Shen, B C; Shepherd-Themistocleous, C H; Shinde, Y; Shipsey, I; Shiu, J G; Shivpuri, R K; Shi, X; Shmatov, S; Shpakov, D; Shreyber, I; Shukla, P; Shumeiko, N; Siamitros, C; Sibille, J; Sidiropoulos, G; Siegrist, N; Siegrist, P; Signal, T; Sikler, F; Sill, A; Sillou, D; Silva Do Amaral, S M; Silva, J; Silva, P; Silvestris, L; Sim, K S; Simonetto, F; Simonis, H J; Simon, S; Sinanis, N; Singh, A; Singh, J B; Singh, S P; Singovsky, A; Sirois, Y; Siroli, G; Sirunyan, A M; Sknar, V; Skuja, A; Skup, E; Slabospitsky, S; Slaunwhite, J; Smiljkovic, N; Smirnov, I; Smirnov, V; Smith, J; Smith, K; Smith, R P; Smith, V J; Smith, W H; Smolin, D; Smoron, A; Snigirev, A; Snow, G R; Soares, D; Sobol, A; Sobrier, T; Sobron Sanudo, M; Sogut, K; Soha, A; Solano, A; Solin, A; Solovey, A; Somalwar, S; Son, D C; Song, S; Sonmez, N; Sonnek, P; Sonnenschein, L; Sordini, V; Soroka, D; Sourkov, A; Sousa, M; Souza, M H G; Sowa, M; Spagnolo, P; Spalding, W J; Spanier, S; Speck, J; Speer, T; Sphicas, P; Spiegel, L; Spiga, D; Spiropulu, M; Sprenger, D; Squires, M; Srivastava, A K; Stadie, H; Stahl, A; Staiano, A; Stark, R; Starodumov, A; Stefanovitch, R; Steggemann, J; Steinbrück, G; Steininger, H; Stenson, K; Stephans, G; Stettler, M; Stickland, D; Stieger, B; Stilley, J; Stober, F M; Stöckli, F; Stolin, V; Stone, R; Stoye, M; Stoykova, S; Stoynev, S; Strang, M; Strauss, J; Stringer, R; Stroiney, S; Stuart, D; Sturdy, J; Sturm, P; Suarez Gonzalez, J; Sudhakar, K; Sulak, L; Sulimov, V; Sultanov, G; Summers, D; Sumorok, K; Sung, K; Sun, W; Surat, U E; Suzuki, I; Svintradze, I; Swain, J; Swanson, J; Swartz, M; Sytine, A; Sytnik, V; Szabo, Z; Szczesny, H; Szekely, G; Szillasi, Z; Szleper, M; Sznajder, A; Tabarelli de Fatis, T; Takahashi, M; Tali, B; Tancini, V; Tanenbaum, W; Tan, P; Tao, J; Tapper, A; Tarakanov, V; Taroni, S; Taurok, A; Tauscher, L; Tavernier, S; Taylor, L; Taylor, R; Teischinger, F; Temple, J; Tenchini, R; Teng, H; Teodorescu, L; Teo, W D; Terentyev, N; Teyssier, D; Thea, A; Themel, T; Theofilatos, K; Thiebaux, C; Thomas, M; Thomas, S; Thom, J; Thomsen, J; Thyssen, F; Tikhonenko, E; Tikhonov, A; Timciuc, V; Timlin, C; Titov, M; Tkaczyk, S; Toback, D; Tokesi, K; Tolaini, S; Tomalin, I R; Tonelli, G; Toniolo, N; Tonjes, M B; Tonoiu, D; Tonwar, S C; Toole, T; Topakli, H; Topkar, A; Torassa, E; Tornier, D; Toropin, A; Torre, P; Torromeo, G; Tosi, M; Toteva, Z; Toth, N; Tourneur, S; Tourtchanovitch, L; To, W; Traczyk, P; Tran, N V; Trapani, P P; Travaglini, R; Trayanov, R; Treille, D; Trentadue, R; Triantis, F A; Tricomi, A; Triossi, A; Tripathi, M; Trocino, D; Trocsanyi, Z L; Troendle, D; Troitsky, S; Tropea, P; Tropiano, A; Troshin, S; Troska, J; Trüb, P; Trunov, A; Tsang, K V; Tsiakkouri, D; Tsirigkas, D; Tsirou, A; Tucker, J; Tully, C; Tumanov, A; Tuominen, E; Tuominiemi, J; Tupputi, S; Tuura, L; Tuuva, T; Tuve, C; Twedt, E; Tytgat, M; Tyurin, N; Tzeng, Y M; Ueno, K; Uhl, D; Ujvari, B; Ulmer, K; Ungaro, D; Uplegger, L; Uvarov, L; Uzun, D; Uzunian, A; Vaandering, E W; Valuev, V; Vander Donckt, M; Vander Velde, C; Van Doninck, W; Vanelderen, L; Van Haevermaet, H; Van Hove, P; Vanini, S; Vankov, I; Vanlaer, P; Van Mechelen, P; Van Mulders, P; Van Remortel, N; Vardanyan, I; Varela, J; Varelas, N; Vasil'ev, S; Vasquez Sierra, R; Vaughan, J; Vaurynovich, S; Vavilov, S; Vazquez Acosta, M; Vedaee, A; Veelken, C; Veillet, L; Velasco, M; Velichko, G; Velikzhanin, Y; Velthuis, J; Ventura, S; Venturi, A; Verdier, P; Verdini, P G; Veres, G I; Vergili, L N; Vergili, M; Verrecchia, P; Verwilligen, P; Veszpremi, V; Vesztergombi, G; Veverka, J; Vicini, A; Vidal, R; Vila, I; Vilar Cortabitarte, R; Vilela Pereira, A; Villanueva Munoz, C; Villella, I; Vinogradov, A; Virdee, T; Visca, L; Vishnevskiy, A; Vishnevskiy, D; Vitulo, P; Viviani, C; Vizan Garcia, J M; Vlasov, E; Vlimant, J R; Vodopiyanov, I; Vogel, H; Volkov, A; Volkov, S; Volobouev, I; Volodko, A; Volpe, R; Volyanskyy, D; Vorobiev, I; Vorobyev, A; Voutilainen, M; Wagner-Kuhr, J; Wagner, P; Wagner, S R; Wagner, W; Wakefield, S; Wallny, R; Waltenberger, W; Walton, R; Walzel, G; Wang, C C; Wang, D; Wang, J; Wang, M; Wang, Z; Wan, Z; Warchol, J; Wardrope, D; Washington, E; Watts, T L; Wayne, M; Weber, M; Weber, M; Wehrli, L; Weinberger, M; Weinberg, M; Wendland, L; Wenger, E A; Weng, J; Weng, Y; Wenman, D; Wensveen, M; Werner, J S; Wertelaers, P; Wetzel, J; White, A; Whitmore, J; Whyntie, T; Wickens, J; Wicklund, E; Widl, E; Wigmans, R; Wildish, T; Wilke, L; Wilken, R; Wilkinson, R; Williams, G; Williams, J C; Williams, J H; Willmott, C; Wimpenny, S; Wingham, M; Winn, D; Wissing, C; Witherell, M; Wittich, P; Wittmer, B; Wlochal, M; Wöhri, H K; Wolf, R; Womersley, W J; Won, S; Wood, J S; Worm, S D; Wright, D; Wrochna, G; Wulz, C E; Würthwein, F; Wu, S; Wu, W; Wyslouch, B; Xie, S; Xie, Z; Xue, Z; Yagil, A; Yang, X; Yang, Y; Yang, Z C; Yan, M; Yarba, J; Yaselli, I; Yazgan, E; Yelton, J; Yetkin, T; Yi, K; Yilmaz, Y; Yohay, R; Yoo, H D; Yoon, A S; York, A; Yumiceva, F; Yun, J C; Yuste, C; Zabi, A; Zabolotny, W; Zachariadou, A; Zalewski, P; Zampieri, A; Zanetti, M; Zang, S L; Zarubin, A; Zatzerklyany, A; Zeidler, C; Zeinali, M; Zeise, M; Zelepoukine, S; Zeuner, W D; Zeyrek, M; Zhang, J; Zhang, L; Zhang, Y; Zhang, Z; Zheng, Y; Zhiltsov, V; Zhokin, A; Zhu, B; Zhukova, V; Zhukov, V; Zhu, K; Zhu, R Y; Ziebarth, E B; Zielinski, M; Zilizi, G; Zinonos, Z; Zito, G; Zoeller, M H; Zotto, P; Zub, S; Zumerle, G; Zuranski, A; Zuyeuski, R; Zych, P

    2010-01-01

    The pixel detector of the Compact Muon Solenoid experiment consists of three barrel layers and two disks for each endcap. The detector was installed in summer 2008, commissioned with charge injections, and operated in the 3.8 T magnetic field during cosmic ray data taking. This paper reports on the first running experience and presents results on the pixel tracker performance, which are found to be in line with the design specifications of this detector. The transverse impact parameter resolution measured in a sample of high momentum muons is 18 microns.

  16. Analysis of geomagnetic storm variations and count-rate of cosmic ray muons recorded at the Brazilian southern space observatory

    Energy Technology Data Exchange (ETDEWEB)

    Frigo, Everton [University of Sao Paulo, USP, Institute of Astronomy, Geophysics and Atmospheric Sciences, IAG/USP, Department of Geophysics, Sao Paulo, SP (Brazil); Savian, Jairo Francisco [Space Science Laboratory of Santa Maria, LACESM/CT, Southern Regional Space Research Center, CRS/INPE, MCT, Santa Maria, RS (Brazil); Silva, Marlos Rockenbach da; Lago, Alisson dal; Trivedi, Nalin Babulal [National Institute for Space Research, INPE/MCT, Division of Space Geophysics, DGE, Sao Jose dos Campos, SP (Brazil); Schuch, Nelson Jorge, E-mail: efrigo@iag.usp.br, E-mail: savian@lacesm.ufsm.br, E-mail: njschuch@lacesm.ufsm.br, E-mail: marlos@dge.inpe.br, E-mail: dallago@dge.inpe.br, E-mail: trivedi@dge.inpe.br [Southern Regional Space Research Center, CRS/INPE, MCT, Santa Maria, RS (Brazil)

    2007-07-01

    An analysis of geomagnetic storm variations and the count rate of cosmic ray muons recorded at the Brazilian Southern Space Observatory -OES/CRS/INPE-MCT, in Sao Martinho da Serra, RS during the month of November 2004, is presented in this paper. The geomagnetic measurements are done by a three component low noise fluxgate magnetometer and the count rates of cosmic ray muons are recorded by a muon scintillator telescope - MST, both instruments installed at the Observatory. The fluxgate magnetometer measures variations in the three orthogonal components of Earth magnetic field, H (North-South), D (East-West) and Z (Vertical), with data sampling rate of 0.5 Hz. The muon scintillator telescope records hourly count rates. The arrival of a solar disturbance can be identified by observing the decrease in the muon count rate. The goal of this work is to describe the physical morphology and phenomenology observed during the geomagnetic storm of November 2004, using the H component of the geomagnetic field and vertical channel V of the multi-directional muon detector in South of Brazil. (author)

  17. Physics with a millimole of muons

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, C.

    1998-03-01

    The eventual prospect of muon colliders reaching several TeV encourages us to consider the experimental opportunities presented by very copious stores of muons, approaching 10{sup 21} per year. I summarize and comment upon some highlights of the Fermilab Workshop on Physics at the First Muon Collider and at the Front End of a Muon Collider. Topics include various varieties of {mu}{mu} colliders, {mu}p colliders, and applications of the intense neutrino beams that can be generated in muon storage rings.

  18. Multivariate Methods for Muon Identification at LHCb

    CERN Document Server

    Assis-Jesus, A C S; Polycarpo, E; Landim, F

    2001-01-01

    The best possible identification of a muon by LHCb will be obtained by combining the available information from all the relevant subdetectors. We present a comparison among three multivariate methods, applying them to the muon identification. A neural network method and two parametric statistical approaches (one Bayesian and one classical) were studied in the context of separating muons from other particles using a simulation of eventswith the maximum background hit rate in the muon chambers. For a muon efficiency of 90% the pion misidentification is ~1%. The Bayesian and the neural network methods gave the best performance.

  19. Radiation testing of electronics for the CMS endcap muon system

    Science.gov (United States)

    Bylsma, B.; Cady, D.; Celik, A.; Durkin, L. S.; Gilmore, J.; Haley, J.; Khotilovich, V.; Lakdawala, S.; Liu, J.; Matveev, M.; Padley, B. P.; Roberts, J.; Roe, J.; Safonov, A.; Suarez, I.; Wood, D.; Zawisza, I.

    2013-01-01

    The electronics used in the data readout and triggering system for the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) particle accelerator at CERN are exposed to high radiation levels. This radiation can cause permanent damage to the electronic circuitry, as well as temporary effects such as data corruption induced by Single Event Upsets. Once the High Luminosity LHC (HL-LHC) accelerator upgrades are completed it will have five times higher instantaneous luminosity than LHC, allowing for detection of rare physics processes, new particles and interactions. Tests have been performed to determine the effects of radiation on the electronic components to be used for the Endcap Muon electronics project currently being designed for installation in the CMS experiment in 2013. During these tests the digital components on the test boards were operating with active data readout while being irradiated with 55 MeV protons. In reactor tests, components were exposed to 30 years equivalent levels of neutron radiation expected at the HL-LHC. The highest total ionizing dose (TID) for the muon system is expected at the innermost portion of the CMS detector, with 8900 rad over 10 years. Our results show that Commercial Off-The-Shelf (COTS) components selected for the new electronics will operate reliably in the CMS radiation environment.

  20. Quantifying the Effectiveness of Muon Detector Purification Systems

    Science.gov (United States)

    Mburu, Naomi; Guida, Roberto; Mandelli, Beatrice

    The experiments along the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) were developed to study the fundamental particles that govern our universe. These experiments utilize gaseous detectors to track muons in the outermost portion of the experiment. For example, in the Compact Muon Solenoid (CMS) experiment three types of gaseous detectors are used as muon trackers: Resistive Plate Chambers (RPCs), Drift Tubes (DTs) and Cathode Strip Chambers (CSCs). RPCs use a gas mixture of Freon (C2H2F4) , sulfur hexafluoride (SF6) and isobutane (iC4H10) . The components of this gas mixture are both expensive and have high global warming potentials, so most of the gas mixture must be recycled and purified through a gas recirculation system. For this reason, RPCs employ purification systems that remove impurities due to the contamination and irradiation of the gas mixture that occur during normal operation of the LHC. Ion selective electrodes, gas chromatography, and mass spectrometry are set up and employed to study impurities produced in the RPCs and to quantify the ability of the purification systems to remove these impurities. National Science Foundation.

  1. Physicist makes muon chamber sing

    CERN Multimedia

    2007-01-01

    1. This Monitored Drift Tube detector, consisting of argon-CO2-filled aluminium tubes with a wire down the centre of each, will track muons in ATLAS; Tiecke used a single tube from one of these detectors to create the pipes in his organ.

  2. Muon Detection Based on a Hadronic Calorimeter

    CERN Document Server

    Ciodaro, T; Abreu, R; Achenbach, R; Adragna, P; Aharrouche, M; Aielli, G; Al-Shabibi, A; Aleksandrov, I; Alexandrov, E; Aloisio, A; Alviggi, M G; Amorim, A; Amram, N; Andrei, V; Anduaga, X; Angelaszek, D; Anjos, N; Annovi, A; Antonelli, S; Anulli, F; Apolle, R; Aracena, I; Ask, S; Åsman, B; Avolio, G; Baak, M; Backes, M; Backlund, S; Badescu, E; Baines, J; Ballestrero, S; Banerjee, S; Bansil, H S; Barnett, B M; Bartoldus, R; Bartsch, V; Batraneanu, S; Battaglia, A; Bauss, B; Beauchemin, P; Beck, H P; Bee, C; Begel, M; Behera, P K; Bell, P; Bell, W H; Bellagamba, L; Bellomo, M; Ben Ami, S; Bendel, M; Benhammou, Y; Benslama, K; Berge, D; Bernius, C; Berry, T; Bianco, M; Biglietti, M; Blair, R E; Bogaerts, A; Bohm, C; Boisvert, V; Bold, T; Bondioli, M; Borer, C; Boscherini, D; Bosman, M; Bossini, E; Boveia, A; Bracinik, J; Brandt, A G; Brawn, I P; Brelier, B; Brenner, R; Bressler, S; Brock, R; Brooks, W K; Brown, G; Brunet, S; Bruni, A; Bruni, G; Bucci, F; Buda, S; Burckhart-Chromek, D; Buscher, V; Buttinger, W; Calvet, S; Camarri, P; Campanelli, M; Canale, V; Canelli, F; Capasso, L; Caprini, M; Caracinha, D; Caramarcu, C; Cardarelli, R; Carlino, G; Casadei, D; Casado, M P; Cattani, G; Cerri, A; Cerrito, L; Chapleau, B; Childers, J T; Chiodini, G; Christidi, I; Ciapetti, G; Cimino, D; Ciobotaru, M; Coccaro, A; Cogan, J; Collins, N J; Conde Muino, P; Conidi, C; Conventi, F; Corradi, M; Corso-Radu, A; Coura Torres, R; Cranmer, K; Crescioli, F; Crone, G; Crupi, R; Cuenca Almenar, C; Cummings, J T; Curtis, C J; Czyczula, Z; Dam, M; Damazio, D; Dao, V; Darlea, G L; Davis, A O; De Asmundis, R; De Pedis, D; De Santo, A; de Seixas, J M; Degenhardt, J; Della Pietra, M; Della Volpe, D; Demers, S; Demirkoz, B; Di Ciaccio, A; Di Mattia, A; Di Nardo, R; Di Simone, A; Diaz, M A; Dietzsch, T A; Dionisi, C; Dobson, E; Dobson, M; dos Anjos, A; Dotti, A; Dova, M T; Drake, G; Dufour, M-A; Dumitru, I; Eckweiler, S; Ehrenfeld, W; Eifert, T; Eisenhandler, E; Ellis, K V; Ellis, N; Emeliyanov, D; Enoque Ferreira de Lima, D; Ermoline, Y; Ernst, J; Etzion, E; Falciano, S; Farrington, S; Farthouat, P; Faulkner , P J W; Fedorko, W; Fellmann, D; Feng, E; Ferrag, S; Ferrari, R; Ferrer, M L; Fiorini, L; Fischer, G; Flowerdew, M J; Fonseca Martin, T; Francis, D; Fratina, S; French, S T; Front, D; Fukunaga, C; Gadomski, S; Garelli, N; Garitaonandia Elejabarrieta, H; Gaudio, G; Gee, C N P; George, S; Giagu, S; Giannetti, P; Gillman, A R; Giorgi, M; Giunta, M; Giusti, P; Goebel, M; Gonçalo, R; Gonzalez Silva, L; Göringer, C; Gorini, B; Gorini, E; Grabowska-Bold, I; Green, B; Groll, M; Guida, A; Guler, H; Haas, S; Hadavand, H; Hadley, D R; Haller, J; Hamilton, A; Hanke, P; Hansen, J R; Hasegawa, S; Hasegawa, Y; Hauser, R; Hayakawa, T; Hayden, D; Head, S; Heim, S; Hellman, S; Henke, M; Hershenhorn, A; Hidvégi, A; Hillert, S; Hillier, S J; Hirayama, S; Hod, N; Hoffmann, D; Hong, T M; Hryn'ova, T; Huston, J; Iacobucci, G; Igonkina, O; Ikeno, M; Ilchenko, Y; Ishikawa, A; Ishino, M; Iwasaki, H; Izzo, V; Jez, P; Jimenez Otero, S; Johansen, M; Johns, K; Jones, G; Joos, M; Kadlecik, P; Kajomovitz, E; Kanaya, N; Kanega, F; Kanno, T; Kapliy, A; Kaushik, V; Kawagoe, K; Kawamoto, T; Kazarov, A; Kehoe, R; Kessoku, K; Khomich, A; Khoriauli, G; Kieft, G; Kirk, J; Klemetti, M; Klofver, P; Klous, S; Kluge, E-E; Kobayashi, T; Koeneke, K; Koletsou, I; Koll, J D; Kolos, S; Kono, T; Konoplich, R; Konstantinidis, N; Korcyl, K; Kordas, K; Kotov, V; Kowalewski, R V; Krasznahorkay, A; Kraus, J; Kreisel, A; Kubota, T; Kugel, A; Kunkle, J; Kurashige, H; Kuze, M; Kwee, R; Laforge, B; Landon, M; Lane, J; Lankford, A J; Laranjeira Lima, S M; Larner, A; Leahu, L; Lehmann Miotto, G; Lei, X; Lellouch, D; Levinson, L; Li, S; Liberti, B; Lilley, J N; Linnemann, J T; Lipeles, E; Lohse, T; Losada, M; Lowe, A; Luci, C; Luminari, L; Lundberg, J; Lupu, N; Machado Miguéns, J; Mackeprang, R; Maettig, S; Magnoni, L; Maiani, C; Maltrana, D; Mangeard, P-S; Männer, R; Mapelli, L; Marchese, F; Marino, C; Martin, B; Martin, B T; Martin, T; Martyniuk, A; Marzano, F; Masik, J; Mastrandrea, P; Matsushita, T; McCarn, A; Mechnich, J; Medinnis, M; Meier, K; Melachrinos, C; Mendoza Nava, L M; Merola, L; Messina, A; Meyer, C P; Middleton, R P; Mikenberg, G; Mills, C M; Mincer, A; Mineev, M; Misiejuk, A; Moa, T; Moenig, K; Monk, J; Monticelli, F; Mora Herrera, C; Morettini, P; Morris, J D; Müller, F; Munwes, Y; Murillo Garcia, R; Nagano, K; Nagasaka, Y; Navarro, G A; Negri, A; Nelson, S; Nemethy, P; Neubauer, M S; Neusiedl, A; Newman, P; Nisati, A; Nomoto, H; Nozaki, M; Nozicka, M; Nurse, E; Ochando, C; Ochi, A; Oda, S; Oh, A; Ohm, C; Okumura, Y; Olivito, D; Omachi, C; Osculati, B; Oshita, H; Ospanov, R; Owen, M A; Özcan, V E; Ozone, K; Padilla, C; Panes, B; Panikashvili, N; Paramonov, A; Parodi, F; Pasqualucci, E; Pastore, F; Patricelli, S; Pauly, T; Perera, V J O; Perez, E; Petcu, M; Petersen, B A; Petersen, J; Petrolo, E; Phan, A; Piegaia, R; Pilkington, A; Pinder, A; Poddar, S; Polini, A; Pope, B G; Potter, C T; Primavera, M; Prokoshin, F; Ptacek, E; Qian, W; Quinonez, F; Rajagopalan, S; Ramos Dos Santos Neves, R; Reinherz-Aronis, E; Reinsch, A; Renkel, P; Rescigno, M; Rieke, S; Riu, I; Robertson, S H; Robinson, M; Rodriguez, D; Roich, A; Romeo, G; Romero, R; Roos, L; Ruiz Martinez, A; Ryabov, Y; Ryan, P; Saavedra, A; Safai Tehrani, F; Sakamoto, H; Salamanna, G; Salamon, A; Saland, J; Salnikov, A; Salvatore, F; Sankey, D P C; Santamarina, C; Santonico, R; Sarkisyan-Grinbaum, E; Sasaki, O; Savu, D; Scannicchio, D A; Schäfer, U; Scharf, V L; Scheirich, D; Schiavi, C; Schlereth, J; Schmitt, K; Schroder, C; Schroer, N; Schultz-Coulon, H-C; Schwienhorst, R; Sekhniaidze, G; Sfyrla, A; Shamim, M; Sherman, D; Shimojima, M; Shochet, M; Shooltz, D; Sidoti, A; Silbert, O; Silverstein, S; Sinev, N; Siragusa, G; Sivoklokov, S; Sjoen, R; Sjölin, J; Slagle, K; Sloper, J E; Smith, B C; Soffer, A; Soloviev, I; Spagnolo, S; Spiwoks, R; Staley, R J; Stamen, R; Stancu, S; Steinberg, P; Stelzer, J; Stockton, M C; Straessner, A; Strauss, E A; Strom, D; Su, D; Sugaya, Y; Sugimoto, T; Sushkov, S; Sutton, M R; Suzuki, Y; Taffard, A; Taiblum, N; Takahashi, Y; Takeda, H; Takeshita, T; Tamsett, M; Tan, C L A; Tanaka, S; Tapprogge, S; Tarem, S; Tarem, Z; Taylor, C; Teixeira-Dias, P; Thomas, J P; Thompson, P D; Thomson, M A; Tokushuku, K; Tollefson, K; Tomoto, M; Topfel, C; Torrence, E; Touchard, F; Traynor, D; Tremblet, L; Tricoli, A; Tripiana, M; Triplett, N; True, P; Tsiakiris, M; Tsuno, S; Tuggle, J; Ünel, G; Urquijo, P; Urrejola, P; Usai, G; Vachon, B; Vallecorsa, S; Valsan, L; Vandelli, W; Vari, R; Vaz Gil Lopes, L; Veneziano, S; Ventura, A; Venturi, N; Vercesi, V; Vermeulen, J C; Volpi, G; Vorwerk, V; Wagner, P; Wang, M; Warburton, A; Watkins, P M; Watson, A T; Watson, M; Weber, P; Weidberg, A R; Wengler, T; Werner, P; Werth, M; Wessels, M; White, M; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Winklmeier, F; Woods, K S; Wu, S-L; Wu, X; Xaplanteris Karampatsos, L; Xella, S; Yakovlev, A; Yamazaki, Y; Yang, U; Yasu, Y; Yuan, L; Zaitsev, A; Zanello, L; Zhang, H; Zhang, J; Zhao, L; Zobernig, H; zur Nedden, M

    2010-01-01

    The ATLAS Tile hadronic calorimeter (TileCal) provides highly-segmented energy measurements of incoming particles. The information from TileCal's last segmentation layer can assist in muon tagging and it is being considered for a near future upgrade of the level-one trigger, mainly for rejecting triggers due to cavern background at the barrel region. A muon receiver for the TileCal muon signals is being designed in order to interface with the ATLAS level-one trigger. This paper addresses the preliminary studies concerning the muon discrimination capability for the muon receiver. Monte Carlo simulations for single muons from the interaction point were used to study the effectiveness of hadronic calorimeter information on muon detection.

  3. Pion contamination in the MICE muon beam

    CERN Document Server

    Bogomilov, M.; Vankova-Kirilova, G.; Bertoni, R.; Bonesini, M.; Chignoli, F.; Mazza, R.; Palladino, V.; de Bari, A.; Cecchet, G.; Capponi, M.; Iaciofano, A.; Orestano, D.; Pastore, F.; Tortora, L.; Kuno, Y.; Sakamoto, H.; Ishimoto, S.; Japan, Ibaraki; Filthaut, F.; Hansen, O.M.; Ramberger, S.; Vretenar, M.; Asfandiyarov, R.; Blondel, A.; Drielsma, F.; Karadzhov, Y.; Charnley, G.; Collomb, N.; Gallagher, A.; Grant, A.; Griffiths, S.; Hartnett, T.; Martlew, B.; Moss, A.; Muir, A.; Mullacrane, I.; Oates, A.; Owens, P.; Stokes, G.; Warburton, P.; White, C.; Adams, D.; Barclay, P.; Bayliss, V.; Bradshaw, T.W.; Courthold, M.; Francis, V.; Fry, L.; Hayler, T.; Hills, M.; Lintern, A.; Macwaters, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rogers, C.; Stanley, T.; Tarrant, J.; Watson, S.; Wilson, A.; Bayes, R.; Nugent, J.C.; Soler, F.J.P.; Cooke, P.; Gamet, R.; Alekou, A.; Apollonio, M.; Barber, G.; Colling, D.; Dobbs, A.; Dornan, P.; Hunt, C.; Lagrange, J-B.; Long, K.; Martyniak, J.; Middleton, S.; Pasternak, J.; Santos, E.; Savidge, T.; Uchida, M.A.; Blackmore, V.J.; Carlisle, T.; Cobb, J.H.; Lau, W.; Rayner, M.A.; Tunnell, C.D.; Booth, C.N.; Hodgson, P.; Langlands, J.; Nicholson, R.; Overton, E.; Robinson, M.; Smith, P.J.; Dick, A.; Ronald, K.; Speirs, D.; Whyte, C.G.; Young, A.; Boyd, S.; Franchini, P.; Greis, J.R.; Pidcott, C.; Taylor, I.; Gardener, R.; Kyberd, P.; Littlefield, M.; Nebrensky, J.J.; Bross, A.D.; Fitzpatrick, T.; Leonova, M.; Moretti, A.; Neuffer, D.; Popovic, M.; Rubinov, P.; Rucinski, R.; Roberts, T.J.; Bowring, D.; DeMello, A.; Gourlay, S.; Li, D.; Prestemon, S.; Virostek, S.; Zisman, M.; Drews, M.; Hanlet, P.; Kafka, G.; Kaplan, D.M.; Rajaram, D.; Snopok, P.; Torun, Y.; Winter, M.; Blot, S.; Kim, Y.K.; Bravar, U.; Onel, Y.; Cremaldi, L.M.; Hart, T.L.; Luo, T.; Sanders, D.A.; Summers, D.J.; Cline, D.; Yang, X.; Coney, L.; Hanson, G.G.; Heidt, C.

    2016-01-01

    The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240\\,MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than $\\sim$1\\% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is $f_\\pi < 1.4\\%$ at 90\\% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.

  4. Final Cooling for a Muon Collider

    Energy Technology Data Exchange (ETDEWEB)

    Acosta Castillo, John Gabriel [Univ. of Mississippi, Oxford, MS (United States)

    2017-05-01

    To explore the new energy frontier, a new generation of particle accelerators is needed. Muon colliders are a promising alternative, if muon cooling can be made to work. Muons are 200 times heavier than electrons, so they produce less synchrotron radiation, and they behave like point particles. However, they have a short lifetime of 2.2 $\\mathrm{\\mu s}$ and the beam is more difficult to cool than an electron beam. The Muon Accelerator Program (MAP) was created to develop concepts and technologies required by a muon collider. An important effort has been made in the program to design and optimize a muon beam cooling system. The goal is to achieve the small beam emittance required by a muon collider. This work explores a final ionization cooling system using magnetic quadrupole lattices with a low enough $\\beta^{\\star} $ region to cool the beam to the required limit with available low Z absorbers.

  5. Air shower simulation for background estimation in muon tomography of volcanoes

    Directory of Open Access Journals (Sweden)

    S. Béné

    2013-01-01

    Full Text Available One of the main sources of background for the radiography of volcanoes using atmospheric muons comes from the accidental coincidences produced in the muon telescopes by charged particles belonging to the air shower generated by the primary cosmic ray. In order to quantify this background effect, Monte Carlo simulations of the showers and of the detector are developed by the TOMUVOL collaboration. As a first step, the atmospheric showers were simulated and investigated using two Monte Carlo packages, CORSIKA and GEANT4. We compared the results provided by the two programs for the muonic component of vertical proton-induced showers at three energies: 1, 10 and 100 TeV. We found that the spatial distribution and energy spectrum of the muons were in good agreement for the two codes.

  6. Holographic telescope

    Science.gov (United States)

    Odhner, Jefferson E.

    2016-07-01

    Holographic optical elements (HOEs) work on the principal of diffraction and can in some cases replace conventional optical elements that work on the principal of refraction. An HOE can be thinner, lighter, can have more functionality, and can be lower cost than conventional optics. An HOE can serve as a beam splitter, spectral filter, mirror, and lens all at the same time. For a single wavelength system, an HOE can be an ideal solution but they have not been widely accepted for multispectral systems because they suffer from severe chromatic aberration. A refractive optical system also suffers from chromatic aberration but it is generally not as severe. To color correct a conventional refractive optical system, a flint glass and a crown glass are placed together such that the color dispersion of the flint and the crown cancel each other out making an achromatic lens (achromat) and the wavelengths all focus to the same point. The color dispersion of refractive lenses and holographic lenses are opposite from each other. In a diffractive optical system, long wavelengths focus closer (remember for HOEs: RBM "red bends more") than nominal focus while shorter wavelengths focus further out. In a refractive optical system, it is just the opposite. For this reason, diffractives can be incorporated into a refractive system to do the color correction and often cut down on the number of optical elements used [1.]. Color correction can also be achieved with an all-diffractive system by combining a holographic optical element with its conjugate. In this way the color dispersion of the first holographic optical element can be cancelled by the color dispersion of the second holographic optic. It is this technique that will be exploited in this paper to design a telescope made entirely of holographic optical elements. This telescope could be more portable (for field operations) the same technique could be used to make optics light enough for incorporation into a UAV.

  7. SOAR Telescope Progress Report

    Science.gov (United States)

    Sebring, T.; Cecil, G.; Krabbendam, V.

    1999-12-01

    The 4.3m SOAR telescope is fully funded and under construction. A partnership between the country of Brazil, NOAO, Michigan State University, and the University of North Carolina at Chapel Hill, SOAR is being designed for high-quality imaging and imaging spectroscopy in the optical and near-IR over a field of view up to 12' diameter. US astronomers outside MSU and UNC will access 30% of the observing time through the standard NOAO TAC process. The telescope is being designed to support remote and synoptic observations. First light is scheduled for July 2002 at Cerro Pachon in Chile, a site with median seeing of 2/3" at 500 nm. The telescope will be operated by CTIO. Corning Inc. has fused the mirror blanks from boules of ULE glass. RSI in Richardson, Texas and Raytheon Optical Systems Inc. in Danbury, Conn. are designing and will fabricate the mount and active optics systems, respectively. The mount supports an instrument payload in excess of 5000 kg, at 2 Nasmyth locations and 3 bent Cass. ports. The mount and facility building have space for a laser to generate an artificial AO guide star. LabVIEW running under the Linux OS on compactPCI hardware has been adopted to control all telescope, detector, and instrument systems. The primary mirror is 10 cm thick and will be mounted on 120 electro-mechanical actuators to maintain its ideal optical figure at all elevations. The position of the light-weighted secondary mirror is adjusted to maintain collimation through use of a Shack-Hartmann wavefront sensor. The tertiary mirror feeds instruments and also jitters at up to 50 Hz to compensate for telescope shake and atmosphere wavefront tilt. The dome is a steel framework, with fiberglass panels. Air in the observing volume will be exchanged with that outside every few minutes by using large fans under computer control. All systems will be assembled and checked at the manufacturer's facility, then shipped to Chile. A short integration period is planned, and limited science

  8. Development of RE1/1 RPCs for the CMS muon trigger system

    CERN Document Server

    Park, S; Akimenko, S; Anan, P S; Bahk, S Y; Ban, Y; Cai, J; Cho, S W; Crotty, I; Ge, Y C; Hong, B; Hong, S J; Iaselli, G; Ito, M; Jonalegedda, S; Kang, T I; Kim, B I; Kim, H C; Kim, J H; Kim, T J; Kim, Y J; Kim, Y U; Koo, D G; Kuo, R; Lee, H S; Lee, K B; Lee, K S; Lee, S J; Lim, J K; Liu, H; Marinov, A; Nam, S K; Qian, S J; Rhee, H B; Rhee, J T; Ryu, M S; Sharma, A; Sim, K S; Van Doninck,W; Xue, Z H

    2009-01-01

    The first six Resistive Plate Chambers (RPCs) of RE1/1 in the forward region of the Compact Muon Solenoid (CMS) detector were constructed and are being tested. These RPCs cover the pseudo-rapidity region from 1.6 to 2.1 and will serve as the base detector for the CMS RPC muon trigger. We report that these six RPCs are being tested with the CMS RPC quality certification procedures and that a full measurement of a chamber efficiency of 95±4% has been achieved at an operating voltage of 9.4 kV. This performance demonstrates that the RPC is qualified to be tested at the closest distance to the beam pipe as the muon trigger detector at the full LHC design luminosity.

  9. Compact vortices

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Losano, L.; Marques, M.A.; Zafalan, I. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Menezes, R. [Universidade Federal da Paraiba, Departamento de Ciencias Exatas, Rio Tinto, PB (Brazil); Universidade Federal de Campina Grande, Departamento de Fisica, Campina Grande, PB (Brazil)

    2017-02-15

    We study a family of Maxwell-Higgs models, described by the inclusion of a function of the scalar field that represent generalized magnetic permeability. We search for vortex configurations which obey first-order differential equations that solve the equations of motion. We first deal with the asymptotic behavior of the field configurations, and then implement a numerical study of the solutions, the energy density and the magnetic field. We work with the generalized permeability having distinct profiles, giving rise to new models, and we investigate how the vortices behave, compared with the solutions of the corresponding standard models. In particular, we show how to build compact vortices, that is, vortex solutions with the energy density and magnetic field vanishing outside a compact region of the plane. (orig.)

  10. Fermilab Muon g-2 Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gorringe, Tim [Kentucky U.

    2017-12-22

    The Fermilab muon g-2 experiment will measure the muon anomalous magnetic moment $a_{\\mu}$ to 140 ppb – a four-fold improvement over the earlier Brookhaven experiment. The measurement of $a_{\\mu}$ is well known as a unique test of the standard model with broad sensitivity to new interactions, particles and phenomena. The goal of 140 ppb is commensurate with ongoing improvements in the SM prediction of the anomalous moment and addresses the longstanding 3.5$\\sigma$ discrepancy between the BNL result and the SM prediction. In this article I discuss the physics motivation and experimental technique for measuring $a_{\\mu}$, and the current status and the future work for the project.

  11. Study of data filtering algorithms for the KM3NeT neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Herold, B., E-mail: Bjoern.Herold@physik.uni-erlangen.d [Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Seitz, T., E-mail: Thomas.Seitz@physik.uni-erlangen.d [Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Shanidze, R., E-mail: shanidze@physik.uni-erlangen.d [Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany)

    2011-01-21

    The photomultiplier signals above a defined threshold (hits) are the main data collected from the KM3NeT neutrino telescope. The neutrino and muon events will be reconstructed from these signals. However, in the deep sea the dominant source of hits are the decays of {sup 40}K isotope and marine fauna bioluminescence. The selection of neutrino and muon events requires the implementation of fast and efficient data filtering algorithms for the reduction of accidental background event rates. A possible data filtering scheme for the KM3NeT neutrino telescope is discussed in the paper.

  12. Muon bundles from the Universe

    Directory of Open Access Journals (Sweden)

    Kankiewicz P.

    2018-01-01

    Full Text Available Recently the CERN ALICE experiment, in its dedicated cosmic ray run, observed muon bundles of very high multiplicities, thereby confirming similar findings from the LEP era at CERN (in the CosmoLEP project. Significant evidence for anisotropy of arrival directions of the observed high multiplicity muonic bundles is found. Estimated directionality suggests their possible extragalactic provenance. We argue that muonic bundles of highest multiplicity are produced by strangelets, hypothetical stable lumps of strange quark matter infiltrating our Universe.

  13. The Muon Portal Project: A large-area tracking detector for muon tomography

    National Research Council Canada - National Science Library

    F Riggi

    2016-01-01

      The Muon Portal Project [1] is a joint initiative between research and industrial partners, aimed at the construction of a real size detector protoype to search for hidden high-Z fissile materials inside containers by the muon...

  14. The first muon beam from a new highly-intense DC muon source, MuSIC

    Science.gov (United States)

    Tran, Nam Hoai; MuSIC Collaboration

    2012-09-01

    A new DC muon source, MuSIC, is now under construction at Research Center for Nuclear Physics (RCNP), Osaka University, Japan. The MuSIC adopts a new pion/muon collection system and a curved transport solenoid. These techniques are important in realization of future muon programs such as the muon to electron conversion experiments (COMET/Mu2e), neutrino factories, and muon colliders. The pion capture magnet and a part of the transport solenoid have been built and beam tests were carried out to assess the MuSIC's performance. Muon lifetime measurements and muonic X-ray measurements have been used for estimation of muon yield of the MuSIC. The result indicates that the MuSIC would be one of the most intense DC muon beams in the world.

  15. Muon Detection Based on a Hadronic Calorimeter

    CERN Document Server

    Ciodaro, Thiago; Abreu, R; Achenbach, R; Adragna, P; Aharrouche, M; Aielli, G; Al-Shabibi, A; Aleksandrov, I; Alexandrov, E; Aloisio, A; Alviggi, M G; Amorim, A; Amram, N; Andrei, V; Anduaga, X; Angelaszek, D; Anjos, N; Annovi, A; Antonelli, S; Anulli, F; Apolle, R; Aracena, I; Ask, S; Åsman, B; Avolio, G; Baak, M; Backes, M; Backlund, S; Badescu, E; Baines, J; Ballestrero, S; Banerjee, S; Bansil, H S; Barnett, B M; Bartoldus, R; Bartsch, V; Batraneanu, S; Battaglia, A; Bauss, B; Beauchemin, P; Beck, H P; Bee, C; Begel, M; Behera, P K; Bell, P; Bell, W H; Bellagamba, L; Bellomo, M; Ben Ami, S; Bendel, M; Benhammou, Y; Benslama, K; Berge, D; Bernius, C; Berry, T; Bianco, M; Biglietti, M; Blair, R E; Bogaerts, A; Bohm, C; Boisvert, V; Bold, T; Bondioli, M; Borer, C; Boscherini, D; Bosman, M; Bossini, E; Boveia, A; Bracinik, J; Brandt, A G; Brawn, I P; Brelier, B; Brenner, R; Bressler, S; Brock, R; Brooks, W K; Brown, G; Brunet, S; Bruni, A; Bruni, G; Bucci, F; Buda, S; Burckhart-Chromek, D; Buscher, V; Buttinger, W; Calvet, S; Camarri, P; Campanelli, M; Canale, V; Canelli, F; Capasso, L; Caprini, M; Caracinha, D; Caramarcu, C; Cardarelli, R; Carlino, G; Casadei, D; Casado, M P; Cattani, G; Cerri, A; Cerrito, L; Chapleau, B; Childers, J T; Chiodini, G; Christidi, I; Ciapetti, G; Cimino, D; Ciobotaru, M; Coccaro, A; Cogan, J; Collins, N J; Conde Muino, P; Conidi, C; Conventi, F; Corradi, M; Corso-Radu, A; Coura Torres, R; Cranmer, K; Crescioli, F; Crone, G; Crupi, R; Cuenca Almenar, C; Cummings, J T; Curtis, C J; Czyczula, Z; Dam, M; Damazio, D; Dao, V; Darlea, G L; Davis, A O; De Asmundis, R; De Pedis, D; De Santo, A; de Seixas, J M; Degenhardt, J; Della Pietra, M; Della Volpe, D; Demers, S; Demirkoz, B; Di Ciaccio, A; Di Mattia, A; Di Nardo, R; Di Simone, A; Diaz, M A; Dietzsch, T A; Dionisi, C; Dobson, E; Dobson, M; dos Anjos, A; Dotti, A; Dova, M T; Drake, G; Dufour, M-A; Dumitru, I; Eckweiler, S; Ehrenfeld, W; Eifert, T; Eisenhandler, E; Ellis, K V; Ellis, N; Emeliyanov, D; Enoque Ferreira de Lima, D; Ermoline, Y; Ernst, J; Etzion, E; Falciano, S; Farrington, S; Farthouat, P; Faulkner, P J W; Fedorko, W; Fellmann, D; Feng, E; Ferrag, S; Ferrari, R; Ferrer, M L; Fiorini, L; Fischer, G; Flowerdew, M J; Fonseca Martin, T; Francis, D; Fratina, S; French, S T; Front, D; Fukunaga, C; Gadomski, S; Garelli, N; Garitaonandia Elejabarrieta, H; Gaudio, G; Gee, C N P; George, S; Giagu, S; Giannetti, P; Gillman, A R; Giorgi, M; Giunta, M; Giusti, P; Goebel, M; Gonçalo, R; Gonzalez Silva, L; Göringer, C; Gorini, B; Gorini, E; Grabowska-Bold, I; Green, B; Groll, M; Guida, A; Guler, H; Haas, S; Hadavand, H; Hadley, D R; Haller, J; Hamilton, A; Hanke, P; Hansen, J R; Hasegawa, S; Hasegawa, Y; Hauser, R; Hayakawa, T; Hayden, D; Head, S; Heim, S; Hellman, S; Henke, M; Hershenhorn, A; Hidvégi, A; Hillert, S; Hillier, S J; Hirayama, S; Hod, N; Hoffmann, D; Hong, T M; Hryn'ova, T; Huston, J; Iacobucci, G; Igonkina, O; Ikeno, M; Ilchenko, Y; Ishikawa, A; Ishino, M; Iwasaki, H; Izzo, V; Jez, P; Jimenez Otero, S; Johansen, M; Johns, K; Jones, G; Joos, M; Kadlecik, P; Kajomovitz, E; Kanaya, N; Kanega, F; Kanno, T; Kapliy, A; Kaushik, V; Kawagoe, K; Kawamoto, T; Kazarov, A; Kehoe, R; Kessoku, K; Khomich, A; Khoriauli, G; Kieft, G; Kirk, J; Klemetti, M; Klofver, P; Klous, S; Kluge, E-E; Kobayashi, T; Koeneke, K; Koletsou, I; Koll, J D; Kolos, S; Kono, T; Konoplich, R; Konstantinidis, N; Korcyl, K; Kordas, K; Kotov, V; Kowalewski, R V; Krasznahorkay, A; Kraus, J; Kreisel, A; Kubota, T; Kugel, A; Kunkle, J; Kurashige, H; Kuze, M; Kwee, R; Laforge, B; Landon, M; Lane, J; Lankford, A J; Laranjeira Lima, S M; Larner, A; Leahu, L; Lehmann Miotto, G; Lei, X; Lellouch, D; Levinson, L; Li, S; Liberti, B; Lilley, J N; Linnemann, J T; Lipeles, E; Lohse, T; Losada, M; Lowe, A; Luci, C; Luminari, L; Lundberg, J; Lupu, N; Machado Miguéns, J; Mackeprang, R; Maettig, S; Magnoni, L; Maiani, C; Maltrana, D; Mangeard, P-S; Männer, R; Mapelli, L; Marchese, F; Marino, C; Martin, B; Martin, B T; Martin, T; Martyniuk, A; Marzano, F; Masik, J; Mastrandrea, P; Matsushita, T; McCarn, A; Mechnich, J; Medinnis, M; Meier, K; Melachrinos, C; Mendoza Nava, L M; Merola, L; Messina, A; Meyer, C P; Middleton, R P; Mikenberg, G; Mills, C M; Mincer, A; Mineev, M; Misiejuk, A; Moa, T; Moenig, K; Monk, J; Monticelli, F; Mora Herrera, C; Morettini, P; Morris, J D; Müller, F; Munwes, Y; Murillo Garcia, R; Nagano, K; Nagasaka, Y; Navarro, G A; Negri, A; Nelson, S; Nemethy, P; Neubauer, M S; Neusiedl, A; Newman, P; Nisati, A; Nomoto, H; Nozaki, M; Nozicka, M; Nurse, E; Ochando, C; Ochi, A; Oda, S; Oh, A; Ohm, C; Okumura, Y; Olivito, D; Omachi, C; Osculati, B; Oshita, H; Ospanov, R; Owen, M A; Özcan, V E; Ozone, K; Padilla, C; Panes, B; Panikashvili, N; Paramonov, A; Parodi, F; Pasqualucci, E; Pastore, F; Patricelli, S; Pauly, T; Perera, V J O; Perez, E; Petcu, M; Petersen, B A; Petersen, J; Petrolo, E; Phan, A; Piegaia, R; Pilkington, A; Pinder, A; Poddar, S; Polini, A; Pope, B G; Potter, C T; Primavera, M; Prokoshin, F; Ptacek, E; Qian, W; Quinonez, F; Rajagopalan, S; Ramos Dos Santos Neves, R; Reinherz-Aronis, E; Reinsch, A; Renkel, P; Rescigno, M; Rieke, S; Riu, I; Robertson, S H; Robinson, M; Rodriguez, D; Roich, A; Romeo, G; Romero, R; Roos, L; Ruiz Martinez, A; Ryabov, Y; Ryan, P; Saavedra, A; Safai Tehrani, F; Sakamoto, H; Salamanna, G; Salamon, A; Saland, J; Salnikov, A; Salvatore, F; Sankey, D P C; Santamarina, C; Santonico, R; Sarkisyan-Grinbaum, E; Sasaki, O; Savu, D; Scannicchio, D A; Schäfer, U; Scharf, V L; Scheirich, D; Schiavi, C; Schlereth, J; Schmitt, K; Schroder, C; Schroer, N; Schultz-Coulon, H-C; Schwienhorst, R; Sekhniaidze, G; Sfyrla, A; Shamim, M; Sherman, D; Shimojima, M; Shochet, M; Shooltz, D; Sidoti, A; Silbert, O; Silverstein, S; Sinev, N; Siragusa, G; Sivoklokov, S; Sjoen, R; Sjölin, J; Slagle, K; Sloper, J E; Smith, B C; Soffer, A; Soloviev, I; Spagnolo, S; Spiwoks, R; Staley, R J; Stamen, R; Stancu, S; Steinberg, P; Stelzer, J; Stockton, M C; Straessner, A; Strauss, E A; Strom, D; Su, D; Sugaya, Y; Sugimoto, T; Sushkov, S; Sutton, M R; Suzuki, Y; Taffard, A; Taiblum, N; Takahashi, Y; Takeda, H; Takeshita, T; Tamsett, M; Tan, C L A; Tanaka, S; Tapprogge, S; Tarem, S; Tarem, Z; Taylor, C; Teixeira-Dias, P; Thomas, J P; Thompson, P D; Thomson, M A; Tokushuku, K; Tollefson, K; Tomoto, M; Topfel, C; Torrence, E; Touchard, F; Traynor, D; Tremblet, L; Tricoli, A; Tripiana, M; Triplett, N; True, P; Tsiakiris, M; Tsuno, S; Tuggle, J; Ünel, G; Urquijo, P; Urrejola, P; Usai, G; Vachon, B; Vallecorsa, S; Valsan, L; Vandelli, W; Vari, R; Vaz Gil Lopes, L; Veneziano, S; Ventura, A; Venturi, N; Vercesi, V; Vermeulen, J C; Volpi, G; Vorwerk, V; Wagner, P; Wang, M; Warburton, A; Watkins, P M; Watson, A T; Watson, M; Weber, P; Weidberg, A R; Wengler, T; Werner, P; Werth, M; Wessels, M; White, M; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Winklmeier, F; Woods, K S; Wu, S-L; Wu, X; Xaplanteris Karampatsos, L; Xella, S; Yakovlev, A; Yamazaki, Y; Yang, U; Yasu, Y; Yuan, L; Zaitsev, A; Zanello, L; Zhang, H; Zhang, J; Zhao, L; Zobernig, H; zur Nedden, M

    2010-01-01

    The TileCal hadronic calorimeter provides a muon signal which can be used to assist in muon tagging at the ATLAS level-one trigger. Originally, the muon signal was conceived to be combined with the RPC trigger in order to reduce unforeseen high trigger rates due to cavern background. Nevertheless, the combined trigger cannot significantly deteriorate the muon detection performance at the barrel region. This paper presents preliminary studies concerning the impact in muon identification at the ATLAS level-one trigger, through the use of Monte Carlo simulations with single muons with 40 GeV/c momentum. Further, different trigger scenarios were proposed, together with an approach for matching both TileCal and RPC geometries.

  16. Extending the search for high-energy muon neutrinos from GRBs with ANTARES

    CERN Multimedia

    2017-01-01

    Gamma-ray bursts (GRBs) are transient sources, potential sites of cosmic-rays acceleration: they are expected to produce high-energy neutrinos in pγ interactions through the decay of charged mesons, thus they constitute promising targets for neutrino telescopes. A search for muon neutrinos from GRBs using 9 years of ANTARES data is here presented, assuming particle acceleration at internal shocks, as expected in the fireball model.

  17. Muon Intensity Increase by Wedge Absorbers for Low-E Muon Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, D. V. [Fermilab; Stratakis, D. [Fermilab; Bradley, J. [Fermilab

    2017-09-01

    Low energy muon experiments such as mu2e and g-2 have a limited energy spread acceptance. Following techniques developed in muon cooling studies and the MICE experiment, the number of muons within the desired energy spread can be increased by the matched use of wedge absorbers. More generally, the phase space of muon beams can be manipulated by absorbers in beam transport lines. Applications with simulation results are presented.

  18. Muon tomography applied to active volcanoes

    OpenAIRE

    Marteau, Jacques; Carlus, Bruno; Gibert, Dominique; Ianigro, Jean-Christophe; Jourde, Kevin; Kergosien, Bruno; Rolland, Pascal

    2015-01-01

    Muon tomography is a generic imaging method using the differential absorption of cosmic muons by matter. The measured contrast in the muons flux reflects the matter density contrast as it does in conventional medical imaging. The applications to volcanology present may advantadges induced by the features of the target itself: limited access to dangerous zones, impossible use of standard boreholes information, harsh environmental conditions etc. The Diaphane project is one of the largest and l...

  19. Muon Reconstruction Performance of the ATLAS detector

    CERN Document Server

    Marchese, Luigi; The ATLAS collaboration

    2017-01-01

    Muons are of key importance to study some of the most interesting physics topics at the LHC. We show the status of the performance of the muon reconstruction in the analysis of proton-proton collisions at the LHC, recorded by the ATLAS detector in 2016. Reconstruction efficiency and momentum resolution have been measured using J/Psi and Z decays for different classes of reconstructed muons.

  20. Upgrade of the CMS muon trigger system in the barrel region

    CERN Document Server

    AUTHOR|(CDS)2080489; Flouris, Gianis; Fulcher, Jonathan; Loukas, Nikitas; Paradas, Evangelos; Reis,Thomas; Sakulin, Hannes; Wulz, Claudia-Elisabeth

    2016-01-01

    To maintain the excellent performance shown during the LHCs Run-1 the Level-1 Trigger of the Compact Muon Solenoid experiment underwent a significant upgrade. One part of this upgrade is the re-organization of the muon trigger path from a subsystem-centric view in which hits in the drift tubes (DT), the cathode strip chambers (CSC), and the resistive plate chambers (RPC) were treated separately in dedicated track-finding systems to one in which complementary detector systems for a given region (barrel, overlap, and endcap) are merged at the track-finding level. This fundamental restructuring of the muon trigger system required the development of a system to receive track candidates from the track-finding layer, remove potential duplicate tracks, and forward the best candidates to the global decision layer.An overview will be given of the new track-finder system for the barrel region, the Barrel Muon Track Finder (BMTF) as well as the cancel-out and sorting layer, the upgraded Global Muon Trigger ($\\mu$GMT). B...

  1. Upgrade of the CMS muon trigger system in the barrel region

    CERN Document Server

    Rabady, Dinyar; Carlin, Roberto; Codispoti, Giuseppe; Dallavalle, Marco; Erö, Janos; Flouris, Giannis; Foudas, Costas; Fulcher, Jonathan; Guiducci, Luigi; Loukas, Nikitas; Mallios, Stavros; Manthos, Nikos; Papadopoulos, Ioannis; Paradas, Evangelos; Reis, Thomas; Sakulin, Hannes; Sphicas, Paris; Triossi, Andrea; Venturi, Andrea; Wulz, Claudia-Elisabeth

    2016-01-01

    To maintain the excellent performance of the LHC during its Run-1 also in Run-2, the Level-1 Trigger of the Compact Muon Solenoid experiment underwent a significant upgrade. One part of this upgrade was the re-organisation of the muon trigger path from a subsystem-centric view in which hits in the drift tubes, the cathode strip chambers, and the resistive plate chambers were treated separately in dedicated track-finding systems, to one in which complementary detector systems for a given region (barrel, overlap, and endcap) are merged already at the track-finding level. This also required the development of a new system to sort as well as cancel-out the muon tracks found by each system. An overview will be given of the new track-finder system for the barrel region, the Barrel Muon Track Finder (BMTF) as well as the cancel-out and sorting layer, the upgraded Global Muon Trigger (µGMT). While the BMTF improves on the proven and well-tested algorithms used in the Drift Tube Track Finder during Run-1, the µGMT i...

  2. CMS Muon System Phase 2 Upgrade with triple-GEM detectors

    CERN Document Server

    Salva Diblen, Sinem

    2015-01-01

    The Compact Muon Solenoid (CMS) detector installed at the CERN Large Hadron Collider (LHC) has an extensive muon system which provides information simultaneously for identification, track reconstruction and triggering of muons. As a consequence of the extreme particle rate and high integrated charge, the essentiality to upgrade the LHC has given rise to the High Luminosity phase of the LHC (HL-LHC) project so that the CMS muon system will be upgraded with superior technological challenges. The CMS GEM collaboration offers a solution to equip the high-eta region of the muon system for Phase 2 (after the year 2017) with large-area triple-layer Gas Electron Multiplier (GEM) detectors, since GEMs have the ability to provide robust and redundant tracking and triggering functions with an excellent spatial resolution of order 100 micron and a high particle rate capability, with a close to 100pct detection efficiency. In this contribution, the present status of the triple-GEM project will be reviewed, and the signifi...

  3. Upgrade of the CMS muon trigger system in the barrel region

    CERN Document Server

    Battilana, Carlo; Codispoti, Giuseppe; Dallavalle, Gaetano-Marco; Ero, Janos; Flouris, Giannis; Fountas, Konstantinos; Fulcher, Jonathan Richard; Guiducci, Luigi; Loukas, Nikitas; Mallios, Stavros; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Rabady, Dinyar Sebastian; Reis, Thomas; Sakulin, Hannes; Sphicas, Paraskevas; Triossi, Andrea; Venturi, Andrea; Wulz, Claudia

    2016-01-01

    To maintain the excellent performance of the LHC during its Run-1 also in Run-2, the Level-1 Trigger of the Compact Muon Solenoid experiment underwent a significant upgrade. One part of this upgrade was the re-organisation of the muon trigger path from a subsystem-centric view in which hits in the drift tubes, the cathode strip chambers, and the resistive plate chambers were treated separately in dedicated track-finding systems, to one in which complementary detector systems for a given region (barrel, overlap, and endcap) are merged already at the track-finding level. This also required the development of a new system to sort as well as cancel-out the muon tracks found by each system. An overview will be given of the new track-finder system for the barrel region, the Barrel Muon Track Finder (BMTF) as well as the cancel-out and sorting layer, the upgraded Global Muon Trigger ($\\mu$GMT). While the BMTF improves on the proven and well-tested algorithms used in the Drift Tube Track Finder during Run-1, the $\\m...

  4. Status and future prospects of the Muon Drift Tubes system of CMS

    CERN Document Server

    Masetti, Gianni

    2016-01-01

    A key component of the CMS (Compact Muon Solenoid) experiment is its muon system. The tracking and triggering of muons in the central part relies on Drift Tube (DT) chambers. During the first Long Shutdown of LHC (LS1) a number of improvements and upgrades were implemented, in particular concerning the readout and trigger electronics. The increase of luminosity expected by LHC during phase 1 will impose several constraints for rate reduction while maintaining high efficiency in the CMS Level 1 trigger system.In order to exploit the muon detector redundancy, a new trigger system has been designed. The TwinMux system is the early layer of the muon barrel region that combines the primitives information from different subdetectors DT, Resistive Plate Chambers (RPC) and Outer Hadron Calorimeter (HO).Regarding the long term operation of the DT system, in order to cope with up to a factor 2 nominal LHC luminosity, several improvements will be implemented. The in-chamber local electronics will be modified to cope wi...

  5. Elsevier Overview of large area triple-GEM detectors for the CMS forward muon upgrade

    CERN Document Server

    Abbaneo, D; Abbrescia, M; Abi Akl, M; Aboamer, O; Acosta, D; Ahmad, A; Ahmed, W; Aleksandrov, A; Altieri, P; Asawatangtrakuldee, C; Aspell, P; Assran, Y; Awan, I; Bally, S; Ban, Y; Banerjee, S; Barashko, V; Barria, P; Bencze, G; Beni, N; Benussi, L; Bhopatkar, V; Bianco, S; Bos, J; Bouhali, O; Braghieri, A; Braibant, S; Buontempo, S; Calabria, C; Caponero, M; Caputo, C; Cassese, F; Castaneda, A; Cauwenbergh, S; Cavallo, F R; Celik, A; Choi, M; Choi, S; Christiansen, J; Cimmino, A; Colafranceschi, S; Colaleo, A; Conde Garcia, A; Czellar, S; Dabrowski, M M; De Lentdecker, G; De Oliveira, R; de Robertis, G; Dildick, S; Dorney, B; Endroczi, G; Errico, F; Fenyvesi, A; Ferry, S; Furic, I; Giacomelli, P; Gilmore, J; Golovtsov, V; Guiducci, L; Guilloux, F; Gutierrez, A; Hadjiiska, R M; Hauser, J; Hoepfner, K; Hohlmann, M; Hoorani, H; Iaydjiev, P; Jeng, Y G; Kamon, T; Karchin, P; Korytov, A; Krutelyov, S; Kumar, A; Kim, H; Lee, J; Lenzi, T; Litov, L; Loddo, F; Madorsky, A; Maerschalk, T; Maggi, M; Magnani, A; Mal, P K; Mandal, K; Marchioro, A; Marinov, A; Majumdar, N; Merlin, J A; Mitselmakher, G; Mohanty, A K; Mohapatra, A; Molnar, J; Muhammad, S; Mukhopadhyay, S; Naimuddin, M; Nuzzo, S; Oliveri, E; Pant, L M; Paolucci, P; Park, I; Passeggio, G; Pavlov, B; Philipps, B; Piccolo, D; Postema, H; Puig Baranac, A; Radi, A; Radogna, R; Raffone, G; Ranieri, A; Rashevski, G; Riccardi, C; Rodozov, M; Rodrigues, A; Ropelewski, L; RoyChowdhury, S; Ryu, G; Ryu, M S; Safonov, A; Salva, S; Saviano, G; Sharma, A; Sharma, A; Sharma, R; Shah, A H; Shopova, M; Sturdy, J; Sultanov, G; Swain, S K; Szillasi, Z; Talvitie, J; Tatarinov, A; Tuuva, T; Tytgat, M; Vai, I; Van Stenis, M; Venditti, R; Verhagen, E; Verwilligen, P; Vitulo, P; Volkov, S; Vorobyev, A; Wang, D; Wang, M; Yang, U; Yang, Y; Yonamine, R; Zaganidis, N; Zenoni, F; Zhang, A

    2017-01-01

    We report on the status of the project to install large-area triple-foil gas electron multiplier (GEM) detectors in the end-cap muon system of the Compact Muon Solenoid (CMS) experiment at the LHC operating at the high luminosity planned after the current period of data-taking (run 2). In the pseudo-rapidity region $1.6 < \\lvert\\eta\\rvert < 2.4$, the GEM detectors will suppress the rate of background triggers while maintaining high trigger efficiency for low transverse momentum muons, and enhancing the robustness of muon detection in the high-flux environment of the end-cap region. GEM detectors will also be used to extend the range of muon identification up to about $\\lvert\\eta\\rvert = 3.0$. We describe the design of the GEM chambers, readout electronics, and data acquisition system for the three stations in each endcap, located at increasing distances from the interaction point. For the intermediate station, the design is fixed and we describe plans to install several of the intermediate station dete...

  6. Magnets for Muon 6D Cooling Channels

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland [Muons, Inc.; Flanagan, Gene [Muons, Inc.

    2014-09-10

    The Helical Cooling Channel (HCC), an innovative technique for six-dimensional (6D) cooling of muon beams using a continuous absorber inside superconducting magnets, has shown considerable promise based on analytic and simulation studies. The implementation of this revolutionary method of muon cooling requires high field superconducting magnets that provide superimposed solenoid, helical dipole, and helical quadrupole fields. Novel magnet design concepts are required to provide HCC magnet systems with the desired fields for 6D muon beam cooling. New designs feature simple coil configurations that produce these complex fields with the required characteristics, where new high field conductor materials are particularly advantageous. The object of the program was to develop designs and construction methods for HCC magnets and design a magnet system for a 6D muon beam cooling channel. If successful the program would develop the magnet technologies needed to create bright muon beams for many applications ranging from scientific accelerators and storage rings to beams to study material properties and new sources of energy. Examples of these applications include energy frontier muon colliders, Higgs and neutrino factories, stopping muon beams for studies of rare fundamental interactions and muon catalyzed fusion, and muon sources for cargo screening for homeland security.

  7. A proposal of a counting and recording system for cosmic ray muon detectors

    Science.gov (United States)

    Braga, C. R.; Campos, A.; Schuch, N. J.; Dal Lago, A.

    2013-02-01

    A multidirecional high energy cosmic ray (muon) telescope is operational at the Southern Space Observatory, in Sao Martinho da Serra, RS, Brazil. This telescope is part of the Global Muon Detector Network (GMDN) and aims to study and forecast Space Weather. This paper proposes a new counting, correlation and recording solution based on an embedded system able to interface observational data by internet for remote monitoring. It is built around a Rabbit 3000 microcontroller with TCP/IP Ethernet 10Base-T connectivity. It is able to detect and count 200 ns pulses generated by the sensor system (scintillator plastics coupled with photomultipliers) during a specified period of time (generally one second). A preliminary version of a monitoring web page was developed and it is able to show the cosmic ray (muon) data of one detector in real time. The current system is an attempt to improve the reliability of the telescope when comparing to the recording system based on a personal computer, currently under operation. One advantage is the easy maintenance, since all the counting and correlation boards currently under operation can be replaced by an embedded system. Besides, as the hardware is off-the-shelf, it is only necessary to develop software routines, which is based on royalty-free libraries.

  8. Imaging the Subsurface with Upgoing Muons

    Science.gov (United States)

    Bonal, N.; Preston, L. A.; Schwellenbach, D.; Dreesen, W.; Green, A.

    2014-12-01

    We assess the feasibility of imaging the subsurface using upgoing muons. Traditional muon imaging focuses on more-prevalent downgoing muons. Muons are subatomic particles capable of penetrating the earth's crust several kilometers. Downgoing muons have been used to image the Pyramid of Khafre of Giza, various volcanoes, and smaller targets like cargo. Unfortunately, utilizing downgoing muons requires below-target detectors. For aboveground objects like a volcano, the detector is placed at the volcano's base and the top portion of the volcano is imaged. For underground targets like tunnels, the detector would have to be placed below the tunnel in a deeper tunnel or adjacent borehole, which can be costly and impractical for some locations. Additionally, detecting and characterizing subsurface features like voids from tunnels can be difficult. Typical characterization methods like sonar, seismic, and ground penetrating radar have shown mixed success. Voids have a marked density contrast with surrounding materials, so using methods sensitive to density variations would be ideal. High-energy cosmic ray muons are more sensitive to density variation than other phenomena, including gravity. Their absorption rate depends on the density of the materials through which they pass. Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and detector, much like a CAT scan. Currently, tomography using downgoing muons can resolve features to the sub-meter scale. We present results of exploratory work, which demonstrates that upgoing muon fluxes appear sufficient to achieve target detection within a few months. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Hadronic interactions and EAS muon pseudorapidities investigated with the Muon Tracking Detector in KASCADE-Grande

    Energy Technology Data Exchange (ETDEWEB)

    Zabierowski, J., E-mail: janzab@zpk.u.lodz.p [Soltan Institute for Nuclear Studies, P.O. Box 447, 90950 Lodz (Poland); Apel, W.D. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Arteaga, J.C. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe D-76021 Karlsruhe (Germany); Badea, F.; Bekk, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Bertaina, M. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy); Bluemer, H. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe D-76021 Karlsruhe (Germany); Institut fuer Kernphysik, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Bozdog, H. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Brancus, I.M. [National Institute of Physics and Nuclear Engineering, 7690 Bucharest (Romania); Brueggemann, M.; Buchholz, P. [Fachbereich Physik, Universitaet Siegen, 57068 Siegen (Germany); Cantoni, E. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy); Istituto di Fisica dello Spazio Interplanetario, INAF, 10133 Torino (Italy); Chiavassa, A. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy); Cossavella, F. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe D-76021 Karlsruhe (Germany); Daumiller, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Souza, V. de [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe D-76021 Karlsruhe (Germany); Di Pierro, F. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy); Doll, P.; Engel, R.; Engler, J. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany)

    2009-12-15

    The Muon Tracking Detector in the KASCADE-Grande EAS experiment allows the precise measurement of shower muon directions up to 700 m distance from the shower center. This directional information is used to study the pseudorapidity of muons in EAS, closely related to the pseudorapidity of their parent mesons. Moreover, the mean value of muon pseudorapidity in a registered shower reflects the longitudinal development of its hadronic component. All of this makes it a good tool for testing hadronic interaction models. The possibilities of such tests given by the KASCADE-Grande experimental setup are discussed and an example of the obtained muon pseudorapidity spectrum is shown.

  10. A plastic scintillator-based muon tomography system with an integrated muon spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Anghel, V. [Canadian Nuclear Laboratories Ltd (former Atomic Energy of Canada Ltd), Chalk River Laboratories, Chalk River, Canada K0J 1P0 (Canada); Armitage, J. [Department of Physics, Room 3302 Herzberg Laboratories, Carleton University, 1125 Colonel By Drive, Ottawa, Canada K1S 5B6 (Canada); Baig, F.; Boniface, K. [Canadian Nuclear Laboratories Ltd (former Atomic Energy of Canada Ltd), Chalk River Laboratories, Chalk River, Canada K0J 1P0 (Canada); Boudjemline, K. [Department of Physics, Room 3302 Herzberg Laboratories, Carleton University, 1125 Colonel By Drive, Ottawa, Canada K1S 5B6 (Canada); Bueno, J. [Advanced Applied Physics Solutions Inc., 4004 Wesbrook Mall, Vancouver, Canada V6T 2A3 (Canada); Charles, E. [Canada Border Services Agency, 79 Bentley Avenue, Ottawa, Canada K1A 0L8 (Canada); Drouin, P-L. [Defence Research and Development Canada, 3701 Carling Avenue, Ottawa, Canada K1A 0Z4 (Canada); Erlandson, A., E-mail: Andrew.Erlandson@cnl.ca [Department of Physics, Room 3302 Herzberg Laboratories, Carleton University, 1125 Colonel By Drive, Ottawa, Canada K1S 5B6 (Canada); Canadian Nuclear Laboratories Ltd (former Atomic Energy of Canada Ltd), Chalk River Laboratories, Chalk River, Canada K0J 1P0 (Canada); Gallant, G. [Canada Border Services Agency, 79 Bentley Avenue, Ottawa, Canada K1A 0L8 (Canada); Gazit, R. [Advanced Applied Physics Solutions Inc., 4004 Wesbrook Mall, Vancouver, Canada V6T 2A3 (Canada); Godin, D.; Golovko, V.V. [Canadian Nuclear Laboratories Ltd (former Atomic Energy of Canada Ltd), Chalk River Laboratories, Chalk River, Canada K0J 1P0 (Canada); Howard, C. [Defence Research and Development Canada, 3701 Carling Avenue, Ottawa, Canada K1A 0Z4 (Canada); Hydomako, R. [Advanced Applied Physics Solutions Inc., 4004 Wesbrook Mall, Vancouver, Canada V6T 2A3 (Canada); Defence Research and Development Canada, 3701 Carling Avenue, Ottawa, Canada K1A 0Z4 (Canada); and others

    2015-10-21

    A muon scattering tomography system which uses extruded plastic scintillator bars for muon tracking and a dedicated muon spectrometer that measures scattering through steel slabs has been constructed and successfully tested. The atmospheric muon detection efficiency is measured to be 97% per plane on average and the average intrinsic hit resolution is 2.5 mm. In addition to creating a variety of three-dimensional images of objects of interest, a quantitative study has been carried out to investigate the impact of including muon momentum measurements when attempting to detect high-density, high-Z material. As expected, the addition of momentum information improves the performance of the system. For a fixed data-taking time of 60 s and a fixed false positive fraction, the probability to detect a target increases when momentum information is used. This is the first demonstration of the use of muon momentum information from dedicated spectrometer measurements in muon scattering tomography.

  11. A plastic scintillator-based muon tomography system with an integrated muon spectrometer

    Science.gov (United States)

    Anghel, V.; Armitage, J.; Baig, F.; Boniface, K.; Boudjemline, K.; Bueno, J.; Charles, E.; Drouin, P.-L.; Erlandson, A.; Gallant, G.; Gazit, R.; Godin, D.; Golovko, V. V.; Howard, C.; Hydomako, R.; Jewett, C.; Jonkmans, G.; Liu, Z.; Robichaud, A.; Stocki, T. J.; Thompson, M.; Waller, D.

    2015-10-01

    A muon scattering tomography system which uses extruded plastic scintillator bars for muon tracking and a dedicated muon spectrometer that measures scattering through steel slabs has been constructed and successfully tested. The atmospheric muon detection efficiency is measured to be 97% per plane on average and the average intrinsic hit resolution is 2.5 mm. In addition to creating a variety of three-dimensional images of objects of interest, a quantitative study has been carried out to investigate the impact of including muon momentum measurements when attempting to detect high-density, high-Z material. As expected, the addition of momentum information improves the performance of the system. For a fixed data-taking time of 60 s and a fixed false positive fraction, the probability to detect a target increases when momentum information is used. This is the first demonstration of the use of muon momentum information from dedicated spectrometer measurements in muon scattering tomography.

  12. Compact torus

    Energy Technology Data Exchange (ETDEWEB)

    Furth, H.P.

    1980-10-01

    The objective of the compact torus approach is to provide toroidal magnetic-field configurations that are based primarily on plasma currents and can be freed from closely surrounding mechanical structures. Some familiar examples are the current-carrying plasma rings of reversed-field theta pinches and relativistic-electron smoke ring experiments. The spheromak concept adds an internal toroidal magnetic field component, in order to enhance MHD stability. In recent experiments, three different approaches have been used to generate spheromak plasmas: (1) the reversed-field theta pinch; (2) the coaxial plasma gun; (3) a new quasi-static method, based on the initial formation of a toroidal plasma sleeve around a mechanical ring that generates poloidal and toroidal fluxes, followed by field-line reconnection to form a detached spheromak plasma. The theoretical and experimental MHD stability results for the spheromak configuration are found to have common features.

  13. Muon radiography for exploration of Mars geology

    Directory of Open Access Journals (Sweden)

    S. Kedar

    2013-06-01

    Full Text Available Muon radiography is a technique that uses naturally occurring showers of muons (penetrating particles generated by cosmic rays to image the interior of large-scale geological structures in much the same way as standard X-ray radiography is used to image the interior of smaller objects. Recent developments and application of the technique to terrestrial volcanoes have demonstrated that a low-power, passive muon detector can peer deep into geological structures up to several kilometers in size, and provide crisp density profile images of their interior at ten meter scale resolution. Preliminary estimates of muon production on Mars indicate that the near horizontal Martian muon flux, which could be used for muon radiography, is as strong or stronger than that on Earth, making the technique suitable for exploration of numerous high priority geological targets on Mars. The high spatial resolution of muon radiography also makes the technique particularly suited for the discovery and delineation of Martian caverns, the most likely planetary environment for biological activity. As a passive imaging technique, muon radiography uses the perpetually present background cosmic ray radiation as the energy source for probing the interior of structures from the surface of the planet. The passive nature of the measurements provides an opportunity for a low power and low data rate instrument for planetary exploration that could operate as a scientifically valuable primary or secondary instrument in a variety of settings, with minimal impact on the mission's other instruments and operation.

  14. The external muon identifier (EMI) for BEBC

    CERN Multimedia

    1977-01-01

    This detector identifies muons produced in neutrino interactions in BEBC. Whereas hadrons are absorbed in the iron shield around BEBC, muons penetrate and are detected in a 150 m2 layer of proportional chambers, each equipped with three sensitive planes, i.e. two anode wire and one cathode plane.

  15. Alignment of the CMS muon detectors

    CERN Document Server

    Duarte Campderros, Jordi

    2013-01-01

    The CMS Muon system consists of 250 drift tube (DT) chambers in the central region and 468 cathode strip chambers (CSC) in the forward region, complimented by 480 fasts-response resistive plate chambers distributed in both regions for triggering purposes. The muon system provides fast muon trigger, muon identification, and muon trajectory measurements. The performance of the muon system depends on the precise knowledge of the positions and orientations of all its elements within the CMS detector. We present two alignment techniques, track-based and hardware-based. The track-based technique uses muon tracks from pp collision data at the LHC to align the muon system elements relative to the CMS inner silicon tracker. A complimentary hardware-based technique consists of two separate optical systems in the central and forward regions linked by a third system to the inner tracker. The hardware systems are designed to perform well in an environment of large radiation flux and high magnetic field. We discuss the ali...

  16. Experimental measurement of muon (g-2)

    CERN Document Server

    Gray, F E

    2003-01-01

    The muon (g-2) experiment at Brookhaven National Laboratory has measured the anomalous magnetic moment of the positive muon with a precision of 0.7 ppm. This paper presents that result, concentrating on some of the important experimental issues that arise in extracting the anomalous precession frequency from the data.

  17. Muon (g-2) Technical Design Report

    NARCIS (Netherlands)

    Grange, J.; Jungmann, K.; Onderwater, C.J.G.

    2015-01-01

    The Muon (g-2) Experiment, E989 at Fermilab, will measure the muon anomalous magnetic moment a factor-of-four more precisely than was done in E821 at the Brookhaven National Laboratory AGS. The E821 result appears to be greater than the Standard-Model prediction by more than three standard

  18. The ATLAS Muon and Tau Trigger

    CERN Document Server

    Dell'Asta, L; The ATLAS collaboration

    2013-01-01

    [Muon] The ATLAS experiment at CERN's Large Hadron Collider (LHC) deploys a three-levels processing scheme for the trigger system. The level-1 muon trigger system gets its input from fast muon trigger detectors. Fast sector logic boards select muon candidates, which are passed via an interface board to the central trigger processor and then to the High Level Trigger (HLT). The muon HLT is purely software based and encompasses a level-2 (L2) trigger followed by an event filter (EF) for a staged trigger approach. It has access to the data of the precision muon detectors and other detector elements to refine the muon hypothesis. Trigger-specific algorithms were developed and are used for the L2 to increase processing speed for instance by making use of look-up tables and simpler algorithms, while the EF muon triggers mostly benefit from offline reconstruction software to obtain most precise determination of the track parameters. There are two algorithms with different approaches, namely inside-out and outside-in...

  19. ATLAS detector records its first curved muon

    CERN Multimedia

    2007-01-01

    The barrel muon spectrometer of the ATLAS detector has acquired its first cosmic event in a magnetic field produced by the barrel toroid magnet. This was an important test of the chambers in their final configurations, and marked the first triggering and measurement of curved cosmic ray muons in ATLAS.

  20. Time correlation measurements from extensive air showers detected by the EEE telescopes

    Science.gov (United States)

    Abbrescia, M.; Agocs, A.; Aiola, S.; Antolini, R.; Avanzini, C.; Baldini Ferroli, R.; Bencivenni, G.; Bossini, E.; Bressan, E.; Chiavassa, A.; Cicalò, C.; Cifarelli, L.; Coccia, E.; De Gruttola, D.; De Pasquale, S.; Di Giovanni, A.; D'Incecco, M.; Dreucci, M.; Fabbri, F. L.; Frolov, V.; Garbini, M.; Gemme, G.; Gnesi, I.; Gustavino, C.; Hatzifotiadou, D.; La Rocca, P.; Li, S.; Librizzi, F.; Maggiora, A.; Massai, M.; Miozzi, S.; Panareo, M.; Paoletti, R.; Perasso, L.; Pilo, F.; Piragino, G.; Regano, A.; Riggi, F.; Righini, G. C.; Sartorelli, G.; Scapparone, E.; Scribano, A.; Selvi, M.; Serci, S.; Siddi, E.; Spandre, G.; Squarcia, S.; Taiuti, M.; Tosello, F.; Votano, L.; Williams, M. C. S.; Yanez, G.; Zichichi, A.; Zouyevski, R.

    2013-12-01

    Time correlated events due to cosmic muons from extensive air showers have been detected by means of telescope pairs of the EEE (Extreme Energy Events) Project array. The coincidence rate, properly normalized for detector acceptance, efficiency and altitude location, has been extracted as a function of the relative distance between the telescopes. The results have been also compared with additional measurements carried out by small scintillator detectors at various distances.

  1. Time correlation measurements from extensive air showers detected by the EEE telescopes

    CERN Document Server

    Abbrescia, M; Fabbri, F L; Gnesi, I; Bressan, E; Tosello, F; Librizzi, F; Coccia, E; Paoletti, R; Yanez, G; Li, S; Votano, L; Scribano, A; Avanzini, C; Piragino, G; Perasso, L; Regano, A; Ferroli, R Baldini; De Gruttola, D; Sartorelli, G; Siddi, E; Cifarelli, L; Di Giovanni, A; Frolov, V; Serci, S; Selvi, M; Zouyevski, R; Dreucci, M; Squarcia, S; Righini, G C; Agocs, A; Zichichi, A; La Rocca, P; Pilo, F; Miozzi, S; Massai, M; Cicalo, C; D'Incecco, M; Panareo, M; Gemme, G; Garbini, M; Aiola, S; Riggi, F; Hatzifotiadou, D; Scapparone, E; Chiavassa, A; Maggiora, A; Bencivenni, G; Gustavino, C; Spandre, G; Taiuti, M; Williams, M C S; Bossini, E; De Pasquale, S

    2013-01-01

    Time correlated events due to cosmic muons from extensive air showers have been detected by means of telescope pairs of the EEE (Extreme Energy Events) Project array. The coincidence rate, properly normalized for detector acceptance, efficiency and altitude location, has been extracted as a function of the relative distance between the telescopes. The results have been also compared with additional measurements carried out by small scintillator detectors at various distances.

  2. Muon Tomography of Deep Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Bonneville, Alain H.; Kouzes, Richard T.

    2016-12-31

    Imaging subsurface geological formations, oil and gas reservoirs, mineral deposits, cavities or magma chambers under active volcanoes has been for many years a major quest of geophysicists and geologists. Since these objects cannot be observed directly, different indirect geophysical methods have been developed. They are all based on variations of certain physical properties of the subsurface that can be detected from the ground surface or from boreholes. Electrical resistivity, seismic wave’s velocities and density are certainly the most used properties. If we look at density, indirect estimates of density distributions are performed currently by seismic reflection methods - since the velocity of seismic waves depend also on density - but they are expensive and discontinuous in time. Direct estimates of density are performed using gravimetric data looking at variations of the gravity field induced by the density variations at depth but this is not sufficiently accurate. A new imaging technique using cosmic-ray muon detectors has emerged during the last decade and muon tomography - or muography - promises to provide, for the first time, a complete and precise image of the density distribution in the subsurface. Further, this novel approach has the potential to become a direct, real-time, and low-cost method for monitoring fluid displacement in subsurface reservoirs.

  3. Physicist makes muon chamber sing

    CERN Document Server

    2007-01-01

    This Monitored Drift Tube detector, consisting of argon-CO2-filled aluminium tubes with a wire down the centre of each, will track muons in ATLAS; Tiecke used a single tube from one of these detectors to create the pipes in his organ. Particle physicists can make good musicians; but did you know particle detectors can make good music? That's what NIKHEF physicist Henk Tiecke learned when he used pipes cut from the ATLAS Monitored Drift Tube detector (MDT) to build his own working Dutch-style barrel organ in the autumn of 2005. 'I like to work with my hands,' said Tiecke, who worked as a senior physicist at NIKHEF, Amsterdam, on ZEUS until his retirement last summer. Tiecke had already constructed his barrel organ when he visited some colleagues in the ATLAS muon chambers production area at Nikhef in 2005. He noticed that the aluminium tubes they were using to build the chambers were about three centimetres in diameter-just the right size for a pipe in a barrel organ. 'The sound is not as nice as from wooden...

  4. Muons and electrons in general

    Energy Technology Data Exchange (ETDEWEB)

    Nodulman, L.; Bensinger, J.

    1983-01-01

    We address the problem of simultaneously identifying electrons and muons in a general-purpose detector at a luminosity of 10/sup 33/ cm/sup -2/sec/sup -1/. Those discoveries and important measurements which are reasonably well predicted now are under way and likely to be fairly complete before turn on. The signatures of new effects to be found at high rates are not well predicted, and for flexibility it may be necessary to look simultaneously for some combination of jets, missing E/sub T/, electrons, and muons. This leads immediately to an open geometry with magnetic tracking and calorimetry. At high luminosity, getting out trigger informtion quickly is a prime concern. Note that if a given signature requires isolating individual events then even for an optimistic integration time of 20 ns, the optimal luminosity is about 2x10/sup 32/cm/sup -2/sec/sup -1/. We have not had the opportunity to be very specific in design or to consider the extended momentum range implied by 10 to 20 TeV collisions.

  5. Upgrade of the CMS muon trigger system in the barrel region

    Energy Technology Data Exchange (ETDEWEB)

    Rabady, Dinyar, E-mail: dinyar.rabady@cern.ch [Institute of High Energy Physics Vienna (HEPHY), Nikolsdorfer Gasse 18, 1050 Wien (Austria); Ero, Janos [Institute of High Energy Physics Vienna (HEPHY), Nikolsdorfer Gasse 18, 1050 Wien (Austria); Flouris, Giannis [University of Ioannina, 45110 Ioannina (Greece); Fulcher, Jonathan [CERN, 1211 Geneve 23 (Switzerland); Loukas, Nikitas; Paradas, Evangelos [University of Ioannina, 45110 Ioannina (Greece); Reis, Thomas; Sakulin, Hannes; Wulz, Claudia-Elisabeth [CERN, 1211 Geneve 23 (Switzerland)

    2017-02-11

    To maintain the excellent performance shown during the LHC's Run-1 the Level-1 Trigger of the Compact Muon Solenoid experiment underwent a significant upgrade. One part of this upgrade is the re-organization of the muon trigger path from a subsystem-centric view in which hits in the drift tubes (DT), the cathode strip chambers (CSC), and the resistive plate chambers (RPC) were treated separately in dedicated track-finding systems to one in which complementary detector systems for a given region (barrel, overlap, and endcap) are merged at the track-finding level. This fundamental restructuring of the muon trigger system required the development of a system to receive track candidates from the track-finding layer, remove potential duplicate tracks, and forward the best candidates to the global decision layer. An overview will be given of the new track-finder system for the barrel region, the Barrel Muon Track Finder (BMTF), as well as the cancel-out and sorting layer: the upgraded Global Muon Trigger (μGMT). Both the BMTF and μGMT have been implemented in a Xilinx Virtex-7 card utilizing the microTCA architecture. While the BMTF improves on the proven and well-tested algorithms used in the Drift Tube Track Finder during Run-1, the μGMT is an almost complete re-development due to the re-organization of the underlying systems from track-finders for a specific detector to regional track finders covering a given area of the whole detector. Additionally the μGMT calculates a muon's isolation using energy information received from the calorimeter trigger. This information is added to the muon objects forwarded to the global decision layer, the so-called Global Trigger. - Highlights: • Presented upgraded Global Muon Trigger and Barrel Muon Track Finder systems. • Upgraded system moves from sub-detector centric view to geometric-view. • To improve trigger performance. • Common hardware improves maintainability and increases development speed. • Use of

  6. SST-GATE telescope: an innovative dual-mirror prototype for the Cherenkov Telescope Array

    Science.gov (United States)

    Dumas, Delphine; Huet, Jean-Michel; Dournaux, Jean-Laurent; Laporte, Philippe; Amans, Jean-Philippe; Fasola, Gilles; Zech, Andreas; Rulten, Cameron; Sol, Hélène; Blake, Simon; Schmoll, Jurgen

    2014-07-01

    The Observatoire de Paris is involved in the Cherenkov Telescope Array (CTA) project by designing and constructing on the site of Meudon a Small Size Telescope prototype, named SST-GATE, in collaboration with the CHEC team (Compact High Energy Camera) which is providing the camera. The telescope structure is based on the Schwarzschild- Couder optical design which has never been adopted before in the design of a ground-based telescope. This concept allows a larger field of view and cheaper and smaller telescope and camera design with improved performance compared to the Davies-Cotton design traditionally used in very high energy gamma-ray telescopes. The SST-GATE telescope has been designed with the prime objectives of being light, versatile and simple to assemble with a minimal maintenance cost. This papers aims at reviewing the SST-GATE telescope structure from mechanics to optics along with the control command architecture; several innovative developments implemented within the design are discussed. Updates of the project status and perspectives are made.

  7. The program in muon and neutrino physics: Superbeams, cold muon beams, neutrino factory and the muon collider

    Energy Technology Data Exchange (ETDEWEB)

    R. Raja et al.

    2001-08-08

    The concept of a Muon Collider was first proposed by Budker [10] and by Skrinsky [11] in the 60s and early 70s. However, there was little substance to the concept until the idea of ionization cooling was developed by Skrinsky and Parkhomchuk [12]. The ionization cooling approach was expanded by Neufer [13] and then by Palmer [14], whose work led to the formation of the Neutrino Factory and Muon Collider Collaboration (MC) [3] in 1995. The concept of a neutrino source based on a pion storage ring was originally considered by Koshkarev [18]. However, the intensity of the muons created within the ring from pion decay was too low to provide a useful neutrino source. The Muon Collider concept provided a way to produce a very intense muon source. The physics potential of neutrino beams produced by muon storage rings was investigated by Geer in 1997 at a Fermilab workshop [19, 20] where it became evident that the neutrino beams produced by muon storage rings needed for the muon collider were exciting on their own merit. The neutrino factory concept quickly captured the imagination of the particle physics community, driven in large part by the exciting atmospheric neutrino deficit results from the SuperKamiokande experiment. As a result, the MC realized that a Neutrino Factory could be an important first step toward a Muon Collider and the physics that could be addressed by a Neutrino Factory was interesting in its own right. With this in mind, the MC has shifted its primary emphasis toward the issues relevant to a Neutrino Factory. There is also considerable international activity on Neutrino Factories, with international conferences held at Lyon in 1999, Monterey in 2000 [21], Tsukuba in 2001 [22], and another planned for London in 2002.

  8. Developing a cosmic ray muon sampling capability for muon tomography and monitoring applications

    Energy Technology Data Exchange (ETDEWEB)

    Chatzidakis, S., E-mail: schatzid@purdue.edu; Chrysikopoulou, S.; Tsoukalas, L.H.

    2015-12-21

    In this study, a cosmic ray muon sampling capability using a phenomenological model that captures the main characteristics of the experimentally measured spectrum coupled with a set of statistical algorithms is developed. The “muon generator” produces muons with zenith angles in the range 0–90° and energies in the range 1–100 GeV and is suitable for Monte Carlo simulations with emphasis on muon tomographic and monitoring applications. The muon energy distribution is described by the Smith and Duller (1959) [35] phenomenological model. Statistical algorithms are then employed for generating random samples. The inverse transform provides a means to generate samples from the muon angular distribution, whereas the Acceptance–Rejection and Metropolis–Hastings algorithms are employed to provide the energy component. The predictions for muon energies 1–60 GeV and zenith angles 0–90° are validated with a series of actual spectrum measurements and with estimates from the software library CRY. The results confirm the validity of the phenomenological model and the applicability of the statistical algorithms to generate polyenergetic–polydirectional muons. The response of the algorithms and the impact of critical parameters on computation time and computed results were investigated. Final output from the proposed “muon generator” is a look-up table that contains the sampled muon angles and energies and can be easily integrated into Monte Carlo particle simulation codes such as Geant4 and MCNP.

  9. Developing a cosmic ray muon sampling capability for muon tomography and monitoring applications

    Science.gov (United States)

    Chatzidakis, S.; Chrysikopoulou, S.; Tsoukalas, L. H.

    2015-12-01

    In this study, a cosmic ray muon sampling capability using a phenomenological model that captures the main characteristics of the experimentally measured spectrum coupled with a set of statistical algorithms is developed. The "muon generator" produces muons with zenith angles in the range 0-90° and energies in the range 1-100 GeV and is suitable for Monte Carlo simulations with emphasis on muon tomographic and monitoring applications. The muon energy distribution is described by the Smith and Duller (1959) [35] phenomenological model. Statistical algorithms are then employed for generating random samples. The inverse transform provides a means to generate samples from the muon angular distribution, whereas the Acceptance-Rejection and Metropolis-Hastings algorithms are employed to provide the energy component. The predictions for muon energies 1-60 GeV and zenith angles 0-90° are validated with a series of actual spectrum measurements and with estimates from the software library CRY. The results confirm the validity of the phenomenological model and the applicability of the statistical algorithms to generate polyenergetic-polydirectional muons. The response of the algorithms and the impact of critical parameters on computation time and computed results were investigated. Final output from the proposed "muon generator" is a look-up table that contains the sampled muon angles and energies and can be easily integrated into Monte Carlo particle simulation codes such as Geant4 and MCNP.

  10. Limits on dark matter annihilation in the sun using the ANTARES neutrino telescope

    NARCIS (Netherlands)

    Adrián-Martínez, S.; Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bouwhuis, M.C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fusco, L.A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A.J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C.W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J.A.; Mathieu, A.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Păvălaş, G.E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Roensch, K.; Saldaña, M.; Samtleben, D.F.E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schnabel, J.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Stolarczyk, T.; Taiuti, M.; Tönnis, C.; Trovato, A.; Tselengidou, M.; Turpin, D.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J.D.; Zúñiga, J.

    A search for muon neutrinos originating from dark matter annihilations in the Sun is performed using the data recorded by the ANTARES neutrino telescope from 2007 to 2012. In order to obtain the best possible sensitivities to dark matter signals, an optimisation of the event selection criteria is

  11. The ANTARES Deep-Sea Neutrino Telescope: Status and First Results

    OpenAIRE

    Coyle, Paschal

    2010-01-01

    Various aspects of the construction, operation and calibration of the recently completed deep-sea ANTARES neutrino telescope are described. Some first results obtained with a partial five line configuration are presented, including depth dependence of the atmospheric muon rate, the search for point-like cosmic neutrino sources and the search for dark matter annihilation in the Sun.

  12. High-Energy Neutrino Flux Studied in the ANTARES Deep-Sea Telescope

    NARCIS (Netherlands)

    Löhner, Herbert; Steadman, SG; Stephans, GSF; Taylor, FE

    2012-01-01

    High-energy neutrinos from cosmic origin appear to be ideal probes for long-distance astronomy and may provide insight into cosmic particle acceleration mechanisms. The ANTARES deep-sea neutrino telescope, fully operational since May 2008, aims at the detection of upgoing muon tracks caused by high

  13. Muon reconstruction performance in ATLAS at Run 2

    CERN Document Server

    Lesage, Arthur; The ATLAS collaboration

    2015-01-01

    The ATLAS muon reconstruction performance in early 2015 data at $\\sqrt{s} = 13 \\mbox{ TeV}$ is presented. The muon reconstruction and isolation efficiencies are measured using dimuon resonances ($Z\\rightarrow\\mu^{+}\\mu^{-}$ and $J/\\psi\\rightarrow\\mu^{+}\\mu^{-}$) as a function of the muon transverse momentum and pseudorapidity. The muon momentum corrections are also evaluated using the same dataset.

  14. Design of a Magnet System for a Muon Cooling Ring

    CERN Document Server

    Kahn, Stephen A; Garren, Albert A; Kirk, Harold G; Mills, Frederick E

    2005-01-01

    A hydrogen gas filled muon cooling ring appears to be a promising approach to reducing the emittance of a muon beam for use in a neutrino factory or a muon collider. A small muon cooling ring is being studied to test the feasibility of cooling by this method. This paper describes the magnet system to circulate the muons. The magnet design is optimized to produce a large dynamic aperture to contain the muon beam with minimum losses. Muons are tracked through the field to verify the design.

  15. Muon density spectra as a probe of the muon component predicted by air shower simulations

    Energy Technology Data Exchange (ETDEWEB)

    Haungs, A. E-mail: andreas.haungs@ik.fzk.de; Antoni, T.; Apel, W.D.; Badea, F.; Bekk, K.; Bercuci, A.; Bluemer, H.; Bozdog, H.; Brancus, I.M.; Buettner, C.; Chilingarian, A.; Daumiller, K.; Doll, P.; Engler, J.; Fessler, F.; Gils, H.J.; Glasstetter, R.; Haeusler, R.; Heck, D.; Hoerandel, J.R.; Iwan, A.; Kampert, K.-H.; Klages, H.O.; Maier, G.; Mathes, H.J.; Mayer, H.J.; Milke, J.; Mueller, M.; Obenland, R.; Oehlschlaeger, J.; Ostapchenko, S.; Petcu, M.; Rebel, H.; Risse, M.; Roth, M.; Schatz, G.; Schieler, H.; Scholz, J.; Thouw, T.; Ulrich, H.; Weber, J.H.; Weindl, A.; Wentz, J.; Wochele, J.; Zabierowski, J

    2003-07-01

    The KASCADE experiment measures local muon densities of air-showers in the knee region at various core distances for two different muon energy thresholds. Muon density spectra have been reconstructed for the total EAS sample, as well as for particular subsamples with enhanced light and heavy induced EAS, classified on the basis of the shower size ratio N{sub {mu}}/N{sub e}. By comparing these spectra for different muon energy detection thresholds and core distances with detailed Monte Carlo simulations each spectrum should result in the same primary energy spectrum. This allows a comprehensive test of the simulation procedures of the muon lateral distribution and the muon energy spectrum by various Monte Carlo codes. Different combinations of high-energy and low-energy interaction models in the frame of the CORSIKA code are used for comparisons.

  16. Development of Muon Accelerators for Neutrino Experiments

    Science.gov (United States)

    Rajaram, D.

    2017-09-01

    High-brilliance muon beams offer a unique potential for precision neutrino studies by providing intense neutrino beams with well-defined flavor content and energy spectrum. They also offer a path to improved precision searches for charged lepton flavor violation, and provide a basis for a next generation lepton-antilepton collider. The R&D for these muon facilities involves several technologies of which cooling the muon beam is a critical component. This talk will review progress on the development of the key technologies and their demonstration experiments.

  17. Systematic muon capture rates in PQRPA

    Energy Technology Data Exchange (ETDEWEB)

    Samana, A. R. [Departamento de Ciências Exatas e Tecnológicas, UESC-Br (Brazil); Sande, D. [Instituto de Geociências, UFBA-Br (Brazil); Krmpotić, F. [Instituto de Física La Plata, CONICET-Ar and Fac. de Cs. Astronómicas y Geofísicas, UNLP-Ar (Argentina)

    2015-05-15

    In this work we performed a systematic study of the inclusive muon capture rates for several nuclei with A < 60 using the Projected Random Quasi-particle Phase Approximation (PQRPA) as nuclear model, because it is the only RPA model that treats the Pauli Principle correctly. We reckon that the comparison between theory and data for the inclusive muon capture is not a fully satisfactory test on the nuclear model that is used. The exclusive muon transitions are more robust for such a purpose.

  18. On LHCb muon MWPC grounding

    CERN Document Server

    Kashchuk, A

    2006-01-01

    My goal is to study how a big MWPC system, in particular the LHCb muon system, can be protected against unstable operation and multiple spurious hits, produced by incorrect or imperfect grounding in the severe EM environment of the LHCb experiment. A mechanism of penetration of parasitic current from the ground loop to the input of the front-end amplifier is discussed. A new model of the detector cell as the electrical bridge is considered. As shown, unbalance of the bridge makes detector to be sensitive to the noise in ground loop. Resonances in ground loop are specified. Tests of multiple-point and single-point grounding conceptions made on mock-up are presented.

  19. Ionization cooling ring for muons

    Directory of Open Access Journals (Sweden)

    R. Palmer

    2005-06-01

    Full Text Available Practical ionization cooling rings could lead to lower cost or improved performance in neutrino factory or muon collider designs. The ring modeled here uses realistic three-dimensional fields. The performance of the ring compares favorably with the linear cooling channel used in the second U.S. Neutrino Factory Study. The normalized 6D emittance of an ideal ring is decreased by a factor of approximately 240, compared with a factor of only 15 for the linear channel. We also examine such real-world effects as windows on the absorbers and rf cavities and leaving empty lattice cells for injection and extraction. For realistic conditions the ring decreases the normalized 6D emittance by a factor of 49.

  20. Multiplicity spectrum of muon bundles and primary CR composition in the range 1 – 10000 TeV

    Directory of Open Access Journals (Sweden)

    Alikhanov I.

    2013-06-01

    Full Text Available Multiplicity spectrum of muon bundles underground, with Eμ ≥ few × 100 GeV, is an effective tool for study of primary Cosmic Ray spectrum and composition in wide range of the primary energies. In this paper we study integral muon number distribution measured at the Baksan Underground Scintillation Telescope (BUST. The analyzed range of the number of muon tracks crossing BUST (1 - 170 approximately corresponds to the primary energy range 1 – 104 TeV. The analysis shows that non-power law primary spectra are preferable below the knee. Such a spectrum can be obtained as superposition of the basic power law primary spectrum and an additional component from nearby supernova remnant in the Galaxy.

  1. Development of a 3D muon disappearance algorithm for muon scattering tomography

    Science.gov (United States)

    Blackwell, T. B.; Kudryavtsev, V. A.

    2015-05-01

    Upon passing through a material, muons lose energy, scatter off nuclei and atomic electrons, and can stop in the material. Muons will more readily lose energy in higher density materials. Therefore multiple muon disappearances within a localized volume may signal the presence of high-density materials. We have developed a new technique that improves the sensitivity of standard muon scattering tomography. This technique exploits these muon disappearances to perform non-destructive assay of an inspected volume. Muons that disappear have their track evaluated using a 3D line extrapolation algorithm, which is in turn used to construct a 3D tomographic image of the inspected volume. Results of Monte Carlo simulations that measure muon disappearance in different types of target materials are presented. The ability to differentiate between different density materials using the 3D line extrapolation algorithm is established. Finally the capability of this new muon disappearance technique to enhance muon scattering tomography techniques in detecting shielded HEU in cargo containers has been demonstrated.

  2. Alignment of the CMS Muon System with Cosmic-Ray and Beam-Halo Muons

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M., Jr.; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G.; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    The CMS muon system has been aligned using cosmic-ray muons collected in 2008 and beam-halo muons from the 2008 LHC circulating beam tests. After alignment, the resolution of the most sensitive coordinate is 80 microns for the relative positions of superlayers in the same barrel chamber and 270 microns for the relative positions ofendcap chambers in the same ring structure. The resolution on the position of the central barrel chambers relative to the tracker is comprised between two extreme estimates, 200 and 700 microns, provided by two complementary studies. With minor modifications, the alignment procedures can be applied using muons from LHC collisions, leading to additional significant improvements.

  3. ATST telescope mount: telescope of machine tool

    Science.gov (United States)

    Jeffers, Paul; Stolz, Günter; Bonomi, Giovanni; Dreyer, Oliver; Kärcher, Hans

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) will be the largest solar telescope in the world, and will be able to provide the sharpest views ever taken of the solar surface. The telescope has a 4m aperture primary mirror, however due to the off axis nature of the optical layout, the telescope mount has proportions similar to an 8 meter class telescope. The technology normally used in this class of telescope is well understood in the telescope community and has been successfully implemented in numerous projects. The world of large machine tools has developed in a separate realm with similar levels of performance requirement but different boundary conditions. In addition the competitive nature of private industry has encouraged development and usage of more cost effective solutions both in initial capital cost and thru-life operating cost. Telescope mounts move relatively slowly with requirements for high stability under external environmental influences such as wind buffeting. Large machine tools operate under high speed requirements coupled with high application of force through the machine but with little or no external environmental influences. The benefits of these parallel development paths and the ATST system requirements are being combined in the ATST Telescope Mount Assembly (TMA). The process of balancing the system requirements with new technologies is based on the experience of the ATST project team, Ingersoll Machine Tools who are the main contractor for the TMA and MT Mechatronics who are their design subcontractors. This paper highlights a number of these proven technologies from the commercially driven machine tool world that are being introduced to the TMA design. Also the challenges of integrating and ensuring that the differences in application requirements are accounted for in the design are discussed.

  4. The new versatile general purpose surface-muon instrument (GPS) based on silicon photomultipliers for μSR measurements on a continuous-wave beam

    Science.gov (United States)

    Amato, A.; Luetkens, H.; Sedlak, K.; Stoykov, A.; Scheuermann, R.; Elender, M.; Raselli, A.; Graf, D.

    2017-09-01

    We report on the design and commissioning of a new spectrometer for muon-spin relaxation/rotation studies installed at the Swiss Muon Source (SμS) of the Paul Scherrer Institute (PSI, Switzerland). This new instrument is essentially a new design and replaces the old general-purpose surface-muon (GPS) instrument that has been for long the workhorse of the μSR user facility at PSI. By making use of muon and positron detectors made of plastic scintillators read out by silicon photomultipliers, a time resolution of the complete instrument of about 160 ps (standard deviation) could be achieved. In addition, the absence of light guides, which are needed in traditionally built μSR instrument to deliver the scintillation light to photomultiplier tubes located outside magnetic fields applied, allowed us to design a compact instrument with a detector set covering an increased solid angle compared with the old GPS.

  5. Statistical reconstruction for cosmic ray muon tomography.

    Science.gov (United States)

    Schultz, Larry J; Blanpied, Gary S; Borozdin, Konstantin N; Fraser, Andrew M; Hengartner, Nicolas W; Klimenko, Alexei V; Morris, Christopher L; Orum, Chris; Sossong, Michael J

    2007-08-01

    Highly penetrating cosmic ray muons constantly shower the earth at a rate of about 1 muon per cm2 per minute. We have developed a technique which exploits the multiple Coulomb scattering of these particles to perform nondestructive inspection without the use of artificial radiation. In prior work [1]-[3], we have described heuristic methods for processing muon data to create reconstructed images. In this paper, we present a maximum likelihood/expectation maximization tomographic reconstruction algorithm designed for the technique. This algorithm borrows much from techniques used in medical imaging, particularly emission tomography, but the statistics of muon scattering dictates differences. We describe the statistical model for multiple scattering, derive the reconstruction algorithm, and present simulated examples. We also propose methods to improve the robustness of the algorithm to experimental errors and events departing from the statistical model.

  6. The "g-2" Muon Storage Ring

    CERN Document Server

    CERN PhotoLab

    1974-01-01

    The "g-2" muon storage ring, shortly before completion in June 1974. Bursts of pions (from a target, hit by a proton beam from the 26 GeV PS) are injected and polarized muons from their decay are captured on a stable orbit. When the muons decay too, their precession in the magnetic field of the storage ring causes a modulation of the decay-electron counting rate, from which the muon's anomalous magnetic moment can be determined. In 1977, the "g-2" magnets were modified to build ICE (Initial Cooling Experiment), a proton and antiproton storage ring for testing stochastic and electron cooling. Later on, the magnets had a 3rd life, when the ion storage ring CELSIUS was built from them in Uppsala. For later use as ICE, see 7711282, 7802099, 7809081,7908242.

  7. ATLAS event containing two muon pairs

    CERN Multimedia

    ATLAS

    2011-01-01

    An event with four identified muons from a proton-proton collision in ATLAS. This event is consistent with coming from two Z particles decaying: both Z particles decay to two muons each. Such events are produced by Standard Model processes without Higgs particles. They are also a possible signature for Higgs particle production, but many events must be analysed together in order to tell if there is a Higgs signal.

  8. ATLAS: Simulated Higgs decaying into four muons

    CERN Multimedia

    1995-01-01

    This track is an example of simulated data modelled for the ATLAS detector on the Large Hadron Collider (LHC) at CERN, which will begin taking data in 2008. The Higgs boson is produced in the collision of two protons at 14 TeV and quickly decays into four muons, a type of heavy electron that is not absorbed by the detector. The tracks of the muons are shown in yellow.

  9. Resolution and Efficiency of the ATLAS Muon Drift-Tube Chambers at High Background Rates

    CERN Document Server

    Deile, M.; Horvat, S.; Kortner, O.; Kroha, H.; Manz, A.; Mohrdieck-Mock, S.; Rauscher, F.; Richter, Robert; Staude, A.; Stiller, W.

    2016-01-01

    The resolution and efficiency of a precision drift-tube chamber for the ATLAS muon spectrometer with final read-out electronics was tested at the Gamma Irradiation Facility at CERN in a 100 GeV muon beam and at photon irradiation rates of up to 990 Hz/square cm which corresponds to twice the highest background rate expected in ATLAS. A silicon strip detector telescope was used as external reference in the beam. The pulse-height measurement of the read-out electronics was used to perform time-slewing corrections which lead to an improvement of the average drift-tube resolution from 104 microns to 82 microns without irradiation and from 128 microns to 108 microns at the maximum expected rate. The measured drift-tube efficiency agrees with the expectation from the dead time of the read-out electronics up to the maximum expected rate.

  10. Upgrade of the CMS Global Muon Trigger

    CERN Document Server

    Jeitler, Manfred; Rabady, Dinyar; Sakulin, Hannes; Stahl, Achim

    2015-01-01

    The increase in center-of-mass energy and luminosity for Run-II of the Large Hadron Collider poses new challenges for the trigger systems of the experiments. To keep triggering with a similar performance as in Run-I, the CMS muon trigger is currently being upgraded. The new algorithms will provide higher resolution, especially for the muon transverse momentum and will make use of isolation criteria that combine calorimeter with muon information already in the level-1 trigger. The demands of the new algorithms can only be met by upgrading the level-1 trigger system to new powerful FPGAs with high bandwidth I/O. The processing boards will be based on the new μTCA standard. We report on the planned algorithms for the upgraded Global Muon Trigger (μGMT) which sorts and removes duplicates from boundaries of the muon trigger sub-systems. Furthermore, it determines how isolated the muon candidates are based on calorimetric energy deposits. The μGMT will be implemented using a processing board that features a larg...

  11. Muon Emittance Exchange with a Potato Slicer

    Energy Technology Data Exchange (ETDEWEB)

    Summers, D. J. [Univ. of Mississippi, Oxford, MS (United States); Hart, T. L. [Univ. of Mississippi, Oxford, MS (United States); Acosta, J. G. [Univ. of Mississippi, Oxford, MS (United States); Cremaldi, L. M. [Univ. of Mississippi, Oxford, MS (United States); Oliveros, S. J. [Univ. of Mississippi, Oxford, MS (United States); Perera, L. P. [Univ. of Mississippi, Oxford, MS (United States); Neuffer, D. V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-04-15

    We propose a novel scheme for final muon ionization cooling with quadrupole doublets followed by emittance exchange in vacuum to achieve the small beam sizes needed by a muon collider. A flat muon beam with a series of quadrupole doublet half cells appears to provide the strong focusing required for final cooling. Each quadrupole doublet has a low beta region occupied by a dense, low Z absorber. After final cooling, normalized transverse, longitudinal, and angular momentum emittances of 0.100, 2.5, and 0.200 mm-rad are exchanged into 0.025, 70, and 0.0 mm-rad. A skew quadrupole triplet transforms a round muon bunch with modest angular momentum into a flat bunch with no angular momentum. Thin electrostatic septa efficiently slice the flat bunch into 17 parts. The 17 bunches are interleaved into a 3.7 meter long train with RF deflector cavities. Snap bunch coalescence combines the muon bunch train longitudinally in a 21 GeV ring in 55 µs, one quarter of a synchrotron oscillation period. A linear long wavelength RF bucket gives each bunch a different energy causing the bunches to drift in the ring until they merge into one bunch and can be captured in a short wavelength RF bucket with a 13% muon decay loss and a packing fraction as high as 87 %.

  12. The MICE Demonstration of Muon Ionization Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lagrange, Jean-Baptiste [Imperial Coll., London; Hunt, Christopher [Imperial Coll., London; Palladino, Vittorio [INFN, Naples; Pasternak, Jaroslaw [Imperial Coll., London

    2016-06-01

    Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams necessary to elucidate the physics of flavour at the Neutrino Factory and to provide lepton-antilepton collisions up to several TeV at the Muon Collider. The international Muon Ionization Cooling Experiment (MICE) will demonstrate muon ionization cooling, the technique proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization-cooling channel, the muon beam traverses a material (the absorber) loosing energy, which is replaced using RF cavities. The combined effect is to reduce the transverse emittance of the beam (transverse cooling). The configuration of MICE required to deliver the demonstration of ionization cooling is being prepared in parallel to the execution of a programme designed to measure the cooling properties of liquid-hydrogen and lithium hydride. The design of the cooling-demonstration experiment will be presented together with a summary of the performance of each of its components and the cooling performance of the experiment.

  13. Impurity Trapping of Positive Muons in Metals

    CERN Multimedia

    2002-01-01

    Polarized positive muons are implanted into metal samples. In an applied magnetic field the muon spin precession is studied. The line width in the precession frequency spectrum gives information about the static and dynamic properties of muons in a metal lattice. At temperatures where the muon is immobile within its lifetime the line width gives information about the site of location. At temperatures where the muon is mobile, the line width gives information on the diffusion process. It is known from experiments on quasi-elastic neutron scattering on hydrogen in niobium that interstitial impurities like nitrogen tend to act as traps for hydrogen. These trapping effects have now been studied systematically for muons in both f.c.c. metals (aluminium and copper) and b.c.c. metals (mainly niobium). Direct information on the trapping rates and the nature of the diffusion processes can be obtained since the muonic lifetime covers a time range where many of these processes occur.\\\\ \\\\ Mathematical models are set up ...

  14. CMS RPC muon detector performance with 2010-2012 LHC data

    CERN Document Server

    INSPIRE-00316302; Ban, Y.; Cai, J.; Li, Q.; Liu, S.; Qian, S.; Wang, D.; Xu, Z.; Zhang, F.; Choi, Y.; Kim, D.; Goh, J.; Choi, S.; Hong, B.; Kang, J.W.; Kang, M.; Kwon, J.H.; Lee, K.S.; Lee, S.K.; Park, S.K.; Pant, L.M.; Mohanty, A.K.; Chudasama, R.; Singh, J.B.; Bhatnagar, V.; Mehta, A.; Kumar, R.; Cauwenbergh, S.; Costantini, S.; Cimmino, A.; Crucy, S.; Fagot, A.; Garcia, G.; Ocampo, A.; Poyraz, D.; Salva, S.; Thyssen, F.; Tytgat, M.; Zaganidis, N.; Doninck, W.V.; Cabrera, A.; Chaparro, L.; Gomez, J.P.; Gomez, B.; Sanabria, J.C.; Avila, C.; Ahmad, A.; Muhammad, S.; Shoaib, M.; Hoorani, H.; Awan, I.; Ali, I.; Ahmed, W.; Asghar, M.I.; Shahzad, H.; Sayed, A.; Ibrahim, A.; Aly, S.; Assran, Y.; Radi, A.; Elkafrawy, T.; Sharma, A.; Colafranceschi, S.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Iaselli, G.; Loddo, F.; Maggi, M.; Nuzzo, S.; Radogna, R.; Venditti, R.; Verwilligen, P.; Benussi, L.; Bianco, S.; Piccolo, D.; Paolucci, P.; Buontempo, S.; Cavallo, N.; Merola, M.; Fabozzi, F.; Iorio, O.M.; Braghieri, A.; Montagna, P.; Riccardi, C.; Salvini, P.; Vitulo, P.; Vai, I.; Magnani, A.; Dimitrov, A.; Litov, L.; Pavlov, B.; Petkov, P.; Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Rodozov, M.; Sultanov, G.; Vutova, M.; Stoykova, S.; Hadjiiska, R.; Ibargüen, H.S.; Morales, M.I.P.; Bernardino, S.C.; Bagaturia, I.; Tsamalaidze, Z.; Crotty, I.; Kim, M.S.

    2014-12-05

    The muon spectrometer of the CMS (Compact Muon Solenoid) experiment at the Large Hadron Collider (LHC) is equipped with a redundant system made of Resistive Plate Chambers and Drift Tube in barrel and RPC and Cathode Strip Chamber in endcap region. In this paper, the operations and performance of the RPC system during the first three years of LHC activity will be reported. The integrated charge was about 2 mC/cm$^{2}$, for the most exposed detectors. The stability of RPC performance, with particular attention on the stability of detector performance such as efficiency, cluster size and noise, will be reported. Finally, the radiation background levels on the RPC system have been measured as a function of the LHC luminosity. Extrapolations to the LHC design conditions and HL-LHC are also discussed.

  15. Transient Beam Loading Effects in Gas-filled RF Cavities for a Muon Collider

    Energy Technology Data Exchange (ETDEWEB)

    Chung, M. [Fermilab; Tollestrup, A. [Fermilab; Yonehara, K. [Fermilab; Freemire, B. [IIT, Chicago

    2013-06-01

    A gas-filled RF cavity can be an effective solution for the development of a compact muon ionization cooling channel. One possible problem expected in this type of cavity is the dissipation of significant RF power through the beam-induced plasmas accumulated inside the cavity (plasma loading). In addition, for the higher muon beam intensity, the effects of the beam itself on the cavity accelerating mode are non-negligible (beam loading). These beam- cavity interactions induce a transient phase which may be very harmful to the beam quality [1]. In this study, we estimate the transient voltage in a gas-filled RF cavity with both the plasma and conventional beam loading and discuss their compensation methods.

  16. Triggering and measuring bent cosmic muon tracks with the Muon Spectrometer barrel for the first time

    CERN Multimedia

    Fabio Cerutti

    During the ATLAS barrel toroid stability test, bent cosmic muon tracks were seen for the first time in the ATLAS cavern by means of the ATLAS muon spectrometer. The barrel toroid has been powered at its nominal current (20.5 thousand Amperes) and kept in steady state for more than one day during the weekend of 18-19 November (see a report on this test in the Magnet section). During this test one large sector and part of a small sector of the barrel muon spectrometer were readout and used to detect the cosmic muons tracks bent by the toroidal magnetic field. Thirteen muon stations in the feet sectors (sectors 13 and 14) have been used in this test. The muon stations are formed of Resistive Plate Chambers (RPC) that were providing the muon trigger, and Monitored Drift Tubes that were used to measure with high accuracy the muon curvature hence their momentum. The Level-1 Barrel trigger chain was based on the Barrel Middle Large chambers equipped with final production modules on both the on-detector and the o...

  17. Free Muons and Muonium - Some Achievements and Possibilities in Low Energy Muon Physics

    NARCIS (Netherlands)

    Jungmann, K.P.

    2002-01-01

    Published in: Nucl. Phys. News 12 (2002) no. 3, pp.23 citations recorded in [Science Citation Index] Abstract: Some recent precision experiments in low energy muon physics are discussed. Spectroscopy on the muonium atom, the bound state of a positve muon and an electron, has provided precise tests

  18. Density Imaging of Puy de Dôme Volcano with Atmospheric Muons in French Massif Central as a Case Study for Volcano Muography

    Science.gov (United States)

    Carloganu, Cristina; Le Ménédeu, Eve

    2016-04-01

    High energy atmospheric muons have high penetration power that renders them appropriate for geophysical studies. Provided the topography is known, the measurement of the muon flux transmittance leads in an univoque way to 2D density mapping (so called radiographic images) revealing spatial and possibly also temporal variations. Obviously, several radiographic images could be combined into 3D tomographies, though the inverse 3D problem is generally ill-posed. The muography has a high potential for imaging remotely (from kilometers away) and with high resolution (better than 100 mrad2) volcanoes. The experimental and methodological task is however not straightforward since atmospheric muons have non trivial spectra that fall rapidly with muon energy. As shown in [Ambrosino 2015] successfully imaging km-scale volcanoes remotely requires state-of-the art, high-resolution and large-scale muon detectors. This contribution presents the geophysical motivation for muon imaging as well as the first quantitative density radiographies of Puy de Dôme volcano obtained by the TOMUVOL collaboration using a highly segmented muon telescope based on Glass Resistive Plate Chambers. In parallel with the muographic studies, the volcano was imaged through standard geophysical methods (gravimetry, electrical resistivity) [Portal 2013] allowing in depth comparisons of the different methods. Ambrosino, F., et al. (2015), Joint measurement of the atmospheric muon flux through the Puy de Dôme volcano with plastic scintillators and Resistive Plate Chambers detectors, J. Geophys. Res. Solid Earth, 120, doi:10.1002/2015JB011969 A. Portal et al (2013) , "Inner structure of the Puy de Dme volcano: cross-comparison of geophysical models (ERT, gravimetry, muon imaging)", Geosci. Instrum. Method. Data Syst., 2, 47-54, 2013

  19. Muon Trigger for Mobile Phones

    Science.gov (United States)

    Borisyak, M.; Usvyatsov, M.; Mulhearn, M.; Shimmin, C.; Ustyuzhanin, A.

    2017-10-01

    The CRAYFIS experiment proposes to use privately owned mobile phones as a ground detector array for Ultra High Energy Cosmic Rays. Upon interacting with Earth’s atmosphere, these events produce extensive particle showers which can be detected by cameras on mobile phones. A typical shower contains minimally-ionizing particles such as muons. As these particles interact with CMOS image sensors, they may leave tracks of faintly-activated pixels that are sometimes hard to distinguish from random detector noise. Triggers that rely on the presence of very bright pixels within an image frame are not efficient in this case. We present a trigger algorithm based on Convolutional Neural Networks which selects images containing such tracks and are evaluated in a lazy manner: the response of each successive layer is computed only if activation of the current layer satisfies a continuation criterion. Usage of neural networks increases the sensitivity considerably comparable with image thresholding, while the lazy evaluation allows for execution of the trigger under the limited computational power of mobile phones.

  20. The Level-0 muon trigger for the LHCb experiment

    CERN Document Server

    Cachemiche, Jean Pierre; Cogan, J; Duval, P Y; Le Gac, R; Leroy, O; Liotard, P L; Marin, F; Favard, S; Tsaregorodtsev, A

    2007-01-01

    The Level-0 Muon Trigger looks for straight tracks crossing the five muon stations of the LHCb muon detector and measures their transverse momentum. The tracking uses a road algorithm relying on the projectivity of the muon detector. The architecture of the Level-0 muon trigger is pipeline and massively parallel. Receiving 130 GBytes/s of input data, it reconstructs muon candidates for each bunch crossing (25 ns) in less than 1.2 μs. It relies on an intensive use of high speed multigigabit serial links where high speed serializers/deserializers are embedded in Field Programmable Gate Arrays (FPGAs).

  1. Muon colliders, frictional cooling and universal extra dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Greenwald, Daniel E.

    2011-07-20

    A muon collider combines the advantages of proton-proton and electron-positron colliders, sidestepping many of their disadvantages, and has the potential to make discoveries and precision measurements at high energies. However, muons bring their own technical challenges, largely relating to their instability. We present a summary of the motivations and R and D efforts for a muon collider. We detail a scheme for preparing high-luminosity muon beams on timescales shorter than the muon lifetime, and an experiment to demonstrate aspects of this scheme at the Max Planck Institute for Physics. We also investigate the potentials to discover physics beyond the standard model at a muon collider. (orig.)

  2. Results of the Analysis of the August 1998 Material Runs with Silicon Telescope

    CERN Document Server

    Kortner, O; Hartmann, M; Hessey, N P; Staude, A; Ostapchuk, A Ya

    1999-01-01

    The muons produced at LHC will pass through a large amount of matter before they enter the muon chambers. On their way through the \\mbox{ATLAS} inner detector, calorimeter and support structures, they can produce electromagnetic showers. In order to study the influence of the shower production on the chamber performance, three runs were taken in August 1998; one run with no absorber in front of the MDT chamber BOS; one with an iron absorber of 5~cm thickness 27~cm in front of BOS; and one with the iron absorber 47~cm distance from the chamber. A silicon telescope in front of BOS was used to determine a reference muon track. The presence of the iron absorber reduces the tracking efficiency by 1\\% at a muon energy of 180~GeV. The analysis of the data verifies the reliability of a GEANT Monte-Carlo simulation at the muon energy of 180~GeV. The comparison of Monte-Carlo and data is difficult due to the lack of precise knowledge of the impurities of the H8 muon beam. The Monte-Carlo simulation, however, provides r...

  3. Proceedings of the International Workshop on Low Energy Muon Science: LEMS`93

    Energy Technology Data Exchange (ETDEWEB)

    Leon, M. [comp.

    1994-01-01

    This report contains papers on research with low energy muons. Topics cover fundamental electroweak physics; muonic atoms and molecules, and muon catalyzed fusion; muon spin research; and muon facilities. These papers have been indexed and cataloged separately.

  4. Optical Design for a Survey X-Ray Telescope

    Science.gov (United States)

    Saha, Timo T.; Zhang, William W.; McClelland, Ryan S.

    2014-01-01

    Optical design trades are underway at the Goddard Space Flight Center to define a telescope for an x-ray survey mission. Top-level science objectives of the mission include the study of x-ray transients, surveying and long-term monitoring of compact objects in nearby galaxies, as well as both deep and wide-field x-ray surveys. In this paper we consider Wolter, Wolter-Schwarzschild, and modified Wolter-Schwarzschild telescope designs as basic building blocks for the tightly nested survey telescope. Design principles and dominating aberrations of individual telescopes and nested telescopes are discussed and we compare the off-axis optical performance at 1.0 KeV and 4.0 KeV across a 1.0-degree full field-of-view.

  5. Monitoring the Galactic Centre with the Australia Telescope Compact Array

    Czech Academy of Sciences Publication Activity Database

    Borkar, A.; Eckart, A.; Straubmeier, C.; Kunneriath, Devaky; Jalali, B.; Sabha, N.; Shahzamanian, B.; García-Marín, M.; Valencia-S, M.; Sjouwerman, L.; Britzen, S.; Karas, Vladimír; Dovčiak, Michal; Donea, A.; Zensus, A.

    2016-01-01

    Roč. 458, č. 3 (2016), s. 2336-2349 ISSN 0035-8711 R&D Projects: GA ČR(CZ) GC13-00070J Institutional support: RVO:67985815 Keywords : galactic Centre * black hole Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.961, year: 2016

  6. Zenith distribution and flux of atmospheric muons measured with the 5-line ANTARES detector

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, J.A. [Inst. de Fisica Corpuscular, Edificios Investigacion de Paterna, CSIC - Univ. de Valencia, Valencia (Spain); Albert, A. [GRPHE - Inst. univ. de technologie de Colmar, Colmar (France); Anton, G. [Friedrich-Alexander-Univ. Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Anvar, S.; Lamare, P.; Lo Presti, D. [Direction des Sciences de la Matiere - Inst. de recherche sur les lois fondamentales de l' Univers - Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, Gif-sur-Yvette (France); Ardid, M. [Univ. Politecnica de Valencia, Gandia (Spain); Assis Jesus, A.C. [FOM Inst. voor Subatomaire Fysica Nikhef, Amsterdam (Netherlands); Aubert, J.J.; Brown, A.M.; Brunner, J.; Carr, J.; Coyle, P.; Curtil, C.; Lambard, G.; Lelaizant, G.; Melissas, M.; Payre, P.; Picot-Clemente, N.; Reed, C.; Zaborov, D. [Centre de Physique des Particules de Marseille, CNRS/IN2P3 et Univ. de la Mediterranee, Marseille (France); Kouchner, A.; Moscoso, L.; Van Elewyck, V. [Lab. AstroParticule et Cosmologie, UMR 7164, CNRS, Univ. Paris 7 Diderot, CEA, Observatoire de Paris, Paris (France); Tasca, L. [Lab. d' Astrophysique de Marseille, Marseille (France); Charvis, Ph.; Pillet, R. [Geoazur - Univ. de Nice Sophia-Antipolis, CNRS/INSU, IRD, Observatoire de la Cote d' Azur and Univ. Pierre et Marie Curie, Villefranche-sur-mer (France); Cottini, N.; Loucatos, S.; Maurin, G.; Naumann, C.; Picq, C.; Schuller, J.P.; Stolarczyk, Th.; Vallage, B.; Vernin, P. [Inst. de recherche sur les lois fondamentales de l' Univers, Service de Physique des Particules, CEA Saclay, Gif-sur-Yvette (France); Dekeyser, I.; Lefevre, D.; Tamburini, C. [Centre d' Oceanologie de Marseille, CNRS/INSU et Universite de la Mediterranee, Marseille (France); Univ. Paris-Sud 11, Dept. de Physique, Orsay (France); Guillard, G.; Lyons, K.; Pradier, T. [Institut Pluridisciplinaire Hubert Curien, Univ. de Strasbourg et CNRS/IN2P3, Strasbourg (France)

    2010-07-01

    The ANTARES high-energy neutrino telescope is a three-dimensional array of about 900 photomultipliers distributed over 12 mooring lines installed in the Mediterranean Sea. Between February and November 2007 it acquired data in a 5-line configuration. The zenith angular distribution of the atmospheric muon flux and the associated depth-intensity relation are measured and compared with previous measurements and Monte Carlo expectations. An evaluation of the systematic effects due to uncertainties on environmental and detector parameters is presented. (authors)

  7. Atmospheric Muons as IceCube Signal

    Directory of Open Access Journals (Sweden)

    Berghaus Patrick

    2013-06-01

    Full Text Available Muons of energies above 1 TeV produced in cosmic ray induced air showers account for the vast majority of events in IceCube. Its enormous size compared to previous volume detectors translates into an unprecedented amount of statistics for high-energy atmospheric muons. This offers a wide range of opportunities for original cosmic ray and particle physics. By identifying highly energetic stochastic losses within the detector volume, the single muon spectrum can be measured up to PeV energies. The result is sensitive to the cosmic ray composition around the knee and the contribution to atmospheric lepton fluxes from prompt hadron decays. The multiplicity spectrum of muon bundles relates to the cosmic ray primary flux and composition. Clear features are visible, which can be used to constrain phenomenological models. Investigation of high-pT muons at previously inaccessible lateral separations point to shortcomings in current hadronic interaction models. Furthermore, the large event statistics allow detailed investigation of anisotropies in the arrival direction of cosmic rays for primary energies in excess of 1 PeV.

  8. Muons reveal the interior of volcanoes

    CERN Document Server

    Francesco Poppi

    2010-01-01

    The MU-RAY project has the very challenging aim of providing a “muon X-ray” of the Vesuvius volcano (Italy) using a detector that records the muons hitting it after traversing the rock structures of the volcano. This technique was used for the first time in 1971 by the Nobel Prize-winner Louis Alvarez, who was searching for unknown burial chambers in the Chephren pyramid.   The location of the muon detector on the slopes of the Vesuvius volcano. Like X-ray scans of the human body, muon radiography allows researchers to obtain an image of the internal structures of the upper levels of volcanoes. Although such an image cannot help to predict ‘when’ an eruption might occur, it can, if combined with other observations, help to foresee ‘how’ it could develop and serves as a powerful tool for the study of geological structures. Muons come from the interaction of cosmic rays with the Earth's atmosphere. They are able to traverse layers of ro...

  9. Detection of atmospheric muons with ALICE detectors

    Energy Technology Data Exchange (ETDEWEB)

    Alessandro, B. [Istituto Nazionale di Fisica Nucleare and Dep. di Fisica Universita di Torino, Torino (Italy); Cortes Maldonado, I. [Fac. Ciencias Fisico Mat. and Fac. Ciencias Electronica, Benemerita Universidad Autonoma de Puebla (Mexico); Cuautle, E. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (Mexico); Fernandez Tellez, A. [Fac. Ciencias Fisico Mat. and Fac. Ciencias Electronica, Benemerita Universidad Autonoma de Puebla (Mexico); Gomez Jimenez, R. [Dpto. de Fisica, Centro de Investigacion y Estudios Avanzados (Mexico); Gonzalez Santos, H. [Fac. Ciencias Fisico Mat. and Fac. Ciencias Electronica, Benemerita Universidad Autonoma de Puebla (Mexico); Herrera Corral, G. [Escuela de Fisica, Universidad Autonoma de Sinaloa, Culiacan, Sinaloa (Mexico); Leon, I. [Dpto. de Fisica, Centro de Investigacion y Estudios Avanzados (Mexico); Martinez, M.I.; Munoz Mata, J.L. [Fac. Ciencias Fisico Mat. and Fac. Ciencias Electronica, Benemerita Universidad Autonoma de Puebla (Mexico); Podesta, P. [Dpto. de Fisica, Centro de Investigacion y Estudios Avanzados (Mexico); Ramirez Reyes, A. [Escuela de Fisica, Universidad Autonoma de Sinaloa, Culiacan, Sinaloa (Mexico); Rodriguez Cahuantzi, M., E-mail: mrodrigu@mail.cern.c [Fac. Ciencias Fisico Mat. and Fac. Ciencias Electronica, Benemerita Universidad Autonoma de Puebla (Mexico); Sitta, M. [Universita Piemonte Orientale, Alessandria (Italy); Subieta, M. [Istituto Nazionale di Fisica Nucleare and Dep. di Fisica Universita di Torino, Torino (Italy); Tejeda Munoz, G.; Vargas, A.; Vergara, S. [Fac. Ciencias Fisico Mat. and Fac. Ciencias Electronica, Benemerita Universidad Autonoma de Puebla (Mexico)

    2010-05-21

    The calibration, alignment and commissioning of most of the ALICE (A Large Ion Collider Experiment at the CERN LHC) detectors have required a large amount of cosmic events during 2008. In particular two types of cosmic triggers have been implemented to record the atmospheric muons passing through ALICE. The first trigger, called ACORDE trigger, is performed by 60 scintillators located on the top of three sides of the large L3 magnet surrounding the central detectors, and selects atmospheric muons. The Silicon Pixel Detector (SPD) installed on the first two layers of the Inner Tracking System (ITS) gives the second trigger, called SPD trigger. This trigger selects mainly events with a single atmospheric muon crossing the SPD. Some particular events, in which the atmospheric muon interacts with the iron of the L3 magnet and creates a shower of particles crossing the SPD, are also selected. In this work the reconstruction of events with these two triggers will be presented. In particular, the performance of the ACORDE detector will be discussed by the analysis of multi-muon events. Some physical distributions are also shown.

  10. Local tracking in the ATLAS muon spectrometer

    CERN Document Server

    Primor, David; Mikenberg, Giora

    2007-01-01

    The LHC, the largest hadron collider accelerator ever built, presents new challenges for scientists and engineers. With the anticipated luminosity of the LHC, it is expected to have as many as one billion total collisions per second, of which at most 10 to 100 per second might be of potential scientific interest. One of the two major, general-purpose experiments at LHC is called ATLAS. Since muons are one of the important signs of new physics, the need of their detection has lead to the construction of a stand- alone Muon Spectrometer. This system is located in a high radiation background environment (mostly neutrons and photons) which makes the muon tracking a very challenging task. The Muon Spectrometer consists of two types of precision chambers, the Monitor Drift Tube (MDT) chambers, and the Cathode Strip Chambers (CSC). In order to detect the muon and estimate its track parameters, it is very important to detect and precisely estimate its local tracks within the CSC and MDT chambers. Using advanced signa...

  11. ATLAS Muon DCS Upgrades and Optimizations

    CERN Document Server

    Bakalis, Christos; The ATLAS collaboration

    2017-01-01

    The Muon subsystem is comprised of four detector types: Resistive Plate Chambers (RPC) and Thin Gap Chambers (TGC) for trigger purposes, and Cathode Strip Chambers (CSC) and Muon Drift Tubes (MDT) for muon track reconstruction. The MDTs cover a large area at the outer part of the detector. In total, there are over a 1’000 MDT chambers, which are made of about 350’000 tubes. The luminosity upgrade of the HL-LHC is expected to pose a serious challenge to the MDTs. The expected increase of particle flux will set new, higher standards regarding the operation and control of the chambers. A step towards optimizing the ATLAS Muon Detector Control System (DCS) was to develop several DCS tools, namely a High Luminosity vs Trip Limit panel with its accompanying scripts and managers. The ultimate goal of this tool is to protect the MDT chambers from the rising particle flux and its associated increase in chamber current. In addition to optimizing the ATLAS Muon DCS, several tasks to accommodate the newly installed B...

  12. Inclusive deep-inelastic muon scattering

    CERN Multimedia

    This experiment aims at measuring deep-inelastic inclusive muon scattering to the highest energy and Q$^{2}$ made available by the high intensity muon beam M$^{2}$ and at investigating events in which several muons are simultaneously produced. The momentum of the incident beam is measured with momentum hodoscopes, its time and space coordinates at several positions along the target with additional hodoscopes. The beam halo is detected by an array of anticounters. The target has a length of 40 m of either graphite or liquid hydrogen or liquid deuterium and is surrounded by a magnetized torus which acts as a spectrometer for scattered muons. \\\\ \\\\This magnet has a diameter of 2.75 m and is divided into 10 separate supermodules, 8 of which are presently in use. Each supermodule consists of 8 modules (each module contains 0.44 m of steel), 8 planes of (3m x 3m) MWPC, and 2 planes of circular trigger counters subdivided in rings. The first 6 supermodules are equipped each with a 5 m long target. Muons scattered i...

  13. Performance of the ATLAS Muon Trigger in Run 2

    CERN Document Server

    Morgenstern, Marcus; The ATLAS collaboration

    2018-01-01

    Events containing muons in the final state are an important signature for many analyses being carried out at the Large Hadron Collider (LHC), including both standard model measurements and searches for new physics. To be able to study such events, it is required to have an efficient and well-understood muon trigger. The ATLAS muon trigger consists of a hardware based system (Level 1), as well as a software based reconstruction (High Level Trigger). Due to high luminosity and pile up conditions in Run 2, several improvements have been implemented to keep the trigger rate low while still maintaining a high efficiency. Some examples of recent improvements include requiring coincidence hits between different layers of the muon spectrometer, improvements for handling overlapping muons, and optimised muon isolation. We will present an overview of how we trigger on muons, recent improvements, and the performance of the muon trigger in Run 2 data.

  14. Muon production heights determined in the KASCADE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, C. E-mail: Claudia.Buettner@ik.fzk.de; Antoni, T.; Apel, W.D.; Badea, F.; Bekk, K.; Bercuci, A.; Bluemer, H.; Bozdog, H.; Brancus, I.M.; Chilingarian, A.; Daumiller, K.; Doll, P.; Engler, J.; Fessler, F.; Gils, H.J.; Glasstetter, R.; Haeusler, R.; Haungs, A.; Heck, D.; Hoerandel, J.R.; Iwana, A.; Kampert, K.-H.; Klages, H.O.; Maier, G.; Mathes, H.J.; Mayer, H.J.; Milke, J.; Mueller, M.; Obenland, R.; Oehlschlaeger, J.; Ostapchenko, S.; Petcu, M.; Rebel, H.; Risse, M.; Roth, M.; Schatz, G.; Schieler, H.; Scholz, J.; Thouw, T.; Ulrich, H.; Weber, J.H.; Weindl, A.; Wentz, J.; Wochele, J.; Zabierowski, J

    2003-07-01

    Muon production heights in EAS provide a specific tool to investigate the longitudinal development of EAS, since muons are little affected by subsequent interactions in the atmosphere. Multiplicity of muons presents also a unique tool to investigate hadronic interaction models. The capability of the Muon Tracking Detector to measure radial and tangential angles of muon tracks in EAS, in combination with the shower direction determined by the Array of the KASCADE experiment, has been investigated. Due to different characteristics in shower development of light and heavy primary cosmic ray particles the radial angle and therefore the related production height is sensitive to the mass of them. Muon production height (MPH) and muon production depth (MPD) were studied in different bins of the muon shower size for measured data and MC simulations, which have been performed using the Monte Carlo program CORSIKA with the hadronic interaction models QGSJet and NEXUS. First composition studies on the basis of MPD distributions have been carried out.

  15. Polarizer mechanism for the space telescope faint object spectrograph

    Science.gov (United States)

    Thulson, M. D.

    1983-01-01

    The polarizer mechanism for the Space Telescope Faint Object Spectrograph is described. This device will allow spectropolarimetric measurements of faint astronomical objects. The mechanism employs a unique arrangement to meet functional requirements in a compact package and with only one actuator. Detailed tolerance analysis and a variety of tests indicate that the polarizer is capable of accurate and reliable performance.

  16. Searches for Point-like and extended neutrino sources close to the Galactic Centre using the ANTARES neutrino Telescope

    NARCIS (Netherlands)

    Adrián-Martínez, S.; et al., [Unknown; Kooijman, P.; Palioselitis, D.; de Wolf, E.

    2014-01-01

    A search for cosmic neutrino sources using six years of data collected by the ANTARES neutrino telescope has been performed. Clusters of muon neutrinos over the expected atmospheric background have been looked for. No clear signal has been found. The most signal-like accumulation of events is

  17. Model Compaction Equation

    African Journals Online (AJOL)

    compaction are two parameters that indicate the degree of compaction in sandstones. When the values are low, the sands are undercompacted, but when they are high the sands are compacted. A number of equations relating porosity and depth in sandstones have been published (Athy,. 1930; Hubbert and Rubey, 1959; ...

  18. THE POTENTIAL FOR NEUTRINO PHYSICS AT MUON COLLIDERS AND DEDICATED HIGH CURRENT MUON STORAGE RINGS

    Energy Technology Data Exchange (ETDEWEB)

    BIGI,I.; BOLTON,T.; FORMAGGIO,J.; HARRIS,D.; MORFIN,J.; SPENTZOURIS,P.; YU,J.; KAYSER,B.; KING,B.J.; MCFARLAND,K.; PETROV,A.; SCHELLMAN,H.; VELASCO,M.; SHROCK,R.

    2000-05-11

    Conceptual design studies are underway for both muon colliders and high-current non-colliding muon storage rings that have the potential to become the first true neutrino factories. Muon decays in long straight sections of the storage rings would produce uniquely intense and precisely characterized two-component neutrino beams--muon neutrinos plus electron antineutrinos from negative muon decays and electron neutrinos plus muon antineutrinos from positive muons. This article presents a long-term overview of the prospects for these facilities to greatly extend the capabilities for accelerator-based neutrino physics studies for both high rate and long baseline neutrino experiments. As the first major physics topic, recent experimental results involving neutrino oscillations have motivated a vigorous design effort towards dedicated neutrino factories that would store muon beams of energies 50 GeV or below. These facilities hold the promise of neutrino oscillation experiments with baselines up to intercontinental distances and utilizing well understood beams that contain, for the first time, a substantial component of multi-GeV electron-flavored neutrinos. In deference to the active and fast-moving nature of neutrino oscillation studies, the discussion of long baseline physics at neutrino factories has been limited to a concise general overview of the relevant theory, detector technologies, beam properties, experimental goals and potential physics capabilities. The remainder of the article is devoted to the complementary high rate neutrino experiments that would study neutrino-nucleon and neutrino-electron scattering and would be performed at high performance detectors placed as close as is practical to the neutrino production straight section of muon storage rings in order to exploit beams with transverse dimensions as small as a few tens of centimeters.

  19. Muon trackers for imaging a nuclear reactor

    Science.gov (United States)

    Kume, N.; Miyadera, H.; Morris, C. L.; Bacon, J.; Borozdin, K. N.; Durham, J. M.; Fuzita, K.; Guardincerri, E.; Izumi, M.; Nakayama, K.; Saltus, M.; Sugita, T.; Takakura, K.; Yoshioka, K.

    2016-09-01

    A detector system for assessing damage to the cores of the Fukushima Daiichi nuclear reactors by using cosmic-ray muon tomography was developed. The system consists of a pair of drift-tube tracking detectors of 7.2× 7.2-m2 area. Each muon tracker consists of 6 x-layer and 6 y-layer drift-tube detectors. Each tracker is capable of measuring muon tracks with 12 mrad angular resolutions, and is capable of operating under 50-μ Sv/h radiation environment by removing gamma induced background with a novel time-coincidence logic. An estimated resolution to observe nuclear fuel debris at Fukushima Daiichi is 0.3 m when the core is imaged from outside the reactor building.

  20. The anomalous magnetic moment of the muon

    CERN Document Server

    Jegerlehner, Friedrich

    2017-01-01

    This research monograph covers extensively the theory of the muon anomalous magnetic moment and provides estimates of the theoretical uncertainties. The muon anomalous magnetic moment is one of the most precisely measured quantities in elementary particle physics and provides one of the most stringent tests of relativistic quantum field theory as a fundamental theoretical framework. It allows for an extremely precise check of the standard model of elementary particles and of its limitations. This book reviews the present state of knowledge of the anomalous magnetic moment a=(g-2)/2 of the muon. Recent experiments at the Brookhaven National Laboratory now reach the unbelievable precision of 0.5 parts per million, improving the accuracy of previous g-2 experiments at CERN by a factor of 14. In addition, quantum electrodynamics and electroweak and hadronic effects are reviewed. Since non-perturbative hadronic effects play a key role for the precision test, their evaluation is described in detail. Perspectives fo...

  1. Muon (g-2) Technical Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Grange, J. [Argonne National Lab. (ANL), Argonne, IL (United States); et al.

    2015-01-27

    The Muon (g-2) Experiment, E989 at Fermilab, will measure the muon anomalous magnetic moment a factor-of-four more precisely than was done in E821 at the Brookhaven National Laboratory AGS. The E821 result appears to be greater than the Standard-Model prediction by more than three standard deviations. When combined with expected improvement in the Standard-Model hadronic contributions, E989 should be able to determine definitively whether or not the E821 result is evidence for physics beyond the Standard Model. After a review of the physics motivation and the basic technique, which will use the muon storage ring built at BNL and now relocated to Fermilab, the design of the new experiment is presented. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2/3 approval.

  2. Muon Fluence Measurements for Homeland Security Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ankney, Austin S.; Berguson, Timothy J.; Borgardt, James D.; Kouzes, Richard T.

    2010-08-10

    This report focuses on work conducted at Pacific Northwest National Laboratory to better characterize aspects of backgrounds in RPMs deployed for homeland security purposes. Two polyvinyl toluene scintillators were utilized with supporting NIM electronics to measure the muon coincidence rate. Muon spallation is one mechanism by which background neutrons are produced. The measurements performed concentrated on a broad investigation of the dependence of the muon flux on a) variations in solid angle subtended by the detector; b) the detector inclination with the horizontal; c) depth underground; and d) diurnal effects. These tests were conducted inside at Building 318/133, outdoors at Building 331G, and underground at Building 3425 at Pacific Northwest National Laboratory.

  3. Muon (g-2) Technical Design Report

    CERN Document Server

    Grange, J; Winter, P; Wood, K; Zhao, H; Carey, R M; Gastler, D; Hazen, E; Kinnaird, N; Miller, J P; Mott, J; Roberts, B L; Benante, J; Crnkovic, J; Morse, W M; Sayed, H; Tishchenko, V; Druzhinin, V P; Khazin, B I; Koop, I A; Logashenko, I; Shatunov, Y M; Solodov, E; Korostelev, M; Newton, D; Wolski, A; Bjorkquist, R; Eggert, N; Frankenthal, A; Gibbons, L; Kim, S; Mikhailichenko, A; Orlov, Y; Rubin, D; Sweigart, D; Allspach, D; Annala, G; Barzi, E; Bourland, K; Brown, G; Casey, B C K; Chappa, S; Convery, M E; Drendel, B; Friedsam, H; Gadfort, T; Hardin, K; Hawke, S; Hayes, S; Jaskierny, W; Johnstone, C; Johnstone, J; Kashikhin, V; Kendziora, C; Kiburg, B; Klebaner, A; Kourbanis, I; Kyle, J; Larson, N; Leveling, A; Lyon, A L; Markley, D; McArthur, D; Merritt, K W; Mokhov, N; Morgan, J P; Nguyen, H; Ostiguy, J-F; Para, A; Popovic, C C Polly M; Ramberg, E; Rominsky, M; Schoo, D; Schultz, R; Still, D; Soha, A K; Strigonov, S; Tassotto, G; Turrioni, D; Villegas, E; Voirin, E; Velev, G; Wolff, D; Worel, C; Wu, J-Y; Zifko, R

    2015-01-01

    The Muon (g-2) Experiment, E989 at Fermilab, will measure the muon anomalous magnetic moment a factor-of-four more precisely than was done in E821 at the Brookhaven National Laboratory AGS. The E821 result appears to be greater than the Standard-Model prediction by more than three standard deviations. When combined with expected improvement in the Standard-Model hadronic contributions, E989 should be able to determine definitively whether or not the E821 result is evidence for physics beyond the Standard Model. After a review of the physics motivation and the basic technique, which will use the muon storage ring built at BNL and now relocated to Fermilab, the design of the new experiment is presented. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2/3 approval.

  4. Perspectives with the GCT end-to-end prototype of the small-sized telescope proposed for the Cherenkov telescope array

    Science.gov (United States)

    Costantini, H.; Dournaux, J.-L.; Ernenwein, J.-P.; Laporte, P.; Sol, H.

    2017-01-01

    In the framework of the Cherenkov Telescope Array (CTA), the GCT (Gamma-ray Cherenkov Telescope) team is building a dual-mirror telescope as one of the proposed prototypes for the CTA small size class of telescopes. The telescope is based on a Schwarzschild-Couder (SC) optical design, an innovative solution for ground-based Cherenkov astronomy, which allows a compact telescope structure, a lightweight large Field of View (FoV) camera and enables good angular resolution across the entire FoV. We review the different mechanical and optical components of the telescope. In order to characterise them, the Paris prototype will be operated during several weeks in 2016. In this framework, an estimate of the expected performance of this prototype has been made, based on Monte Carlo simulations. In particular the observability of the Crab Nebula in the context of high Night Sky Background (NSB) is presented.

  5. Aligning the CMS Muon Chambers with the Muon Alignment System during an Extended Cosmic Ray Run

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M., Jr.; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    The alignment system for the muon spectrometer of the CMS detector comprises three independent subsystems of optical and analog position sensors. It aligns muon chambers with respect to each other and to the central silicon tracker. System commissioning at full magnetic field began in 2008 during an extended cosmic ray run. The system succeeded in tracking muon detector movements of up to 18 mm and rotations of several milliradians under magnetic forces. Depending on coordinate and subsystem, the system achieved chamber alignment precisions of 140-350 microns and 30-200 microradians. Systematic errors on displacements are estimated to be 340-590 microns based on comparisons with independent photogrammetry measurements.

  6. Searches for muon-electron and muon-positron conversion in titanium

    Science.gov (United States)

    Ahmad, S.; Azuelos, G.; Blecher, M.; Bryman, D.; Burnham, R. A.; Clifford, E. T.; Depommier, P.; Dixit, M. S.; Gotow, K.; Hargrove, C. K.; Hasinoff, M.; MacDonald, J. A.; Mes, H.; Numao, T.; Poutissou, J.-M.; Poutissou, R.; Spuller, J.; Summhammer, J.

    1987-08-01

    Searches have been performed for neutrinoless muon-electron conversion and muon-positron conversion using a time projection chamber. An upper limit on the branching ratio for the coherent reaction R(μ- +Ti-->e-+Ti)e++Ca no events were observed for positron momenta p>96 MeV/c leading to an upper limit on the partial branching ratio relative to ordinary muon capture Γp>96(μ-+Ti-->e+ +Ca)/Γ(μ-+Ti-->capture) e++Ca)/Γ(μ- +Ti-->capture)<1.7×10-10 (90% C.L.).

  7. Characterisation of the Muon Beams for the Muon Ionisation Cooling Experiment

    CERN Document Server

    Adams, D.; Alekou, A.; Apollonio, M.; Asfandiyarov, R.; Back, J.; Barber, G.; Barclay, P.; de Bari, A.; Bayes, R.; Bayliss, V.; Bertoni, R.; Blackmore, V.J.; Blondel, A.; Blot, S.; Bogomilov, M.; Bonesini, M.; Booth, C.N.; Bowring, D.; Boyd, S.; Bradshaw, T.W.; Bravar, U.; Bross, A.D.; Capponi, M.; Carlisle, T.; Cecchet, G.; Charnley, G.; Cobb, J.H.; Colling, D.; Collomb, N.; Coney, L.; Cooke, P.; Courthold, M.; Cremaldi, L.M.; DeMello, A.; Dick, A.; Dobbs, A.; Dornan, P.; Fayer, S.; Filthaut, F.; Fish, A.; Fitzpatrick, T.; Fletcher, R.; Forrest, D.; Francis, V.; Freemire, B.; Fry, L.; Gallagher, A.; Gamet, R.; Gourlay, S.; Grant, A.; Graulich, J.S.; Griffiths, S.; Hanlet, P.; Hansen, O.M.; Hanson, G.G.; Harrison, P.; Hart, T.L.; Hartnett, T.; Hayler, T.; Heidt, C.; Hills, M.; Hodgson, P.; Iaciofano, A.; Ishimoto, S.; Kafka, G.; Kaplan, D.M.; Karadzhov, Y.; Kim, Y.K.; Kolev, D.; Kuno, Y.; Kyberd, P.; Lau, W.; Leaver, J.; Leonova, M.; Li, D.; Lintern, A.; Littlefield, M.; Long, K.; Lucchini, G.; Luo, T.; Macwaters, C.; Martlew, B.; Martyniak, J.; Middleton, S.; Moretti, A.; Moss, A.; Muir, A.; Mullacrane, I.; Nebrensky, J.J.; Neuffer, D.; Nichols, A.; Nicholson, R.; Nugent, J.C.; Onel, Y.; Orestano, D.; Overton, E.; Owens, P.; Palladino, V.; Palmer, R.B.; Pasternak, J.; Pastore, F.; Pidcott, C.; Popovic, M.; Preece, R.; Prestemon, S.; Rajaram, D.; Ramberger, S.; Rayner, M.A.; Ricciardi, S.; Richards, A.; Roberts, T.J.; Robinson, M.; Rogers, C.; Ronald, K.; Rubinov, P.; Rucinski, R.; Rusinov, I.; Sakamoto, H.; Sanders, D.A.; Santos, E.; Savidge, T.; Smith, P.J.; Snopok, P.; Soler, F.J.P.; Stanley, T.; Summers, D.J.; Takahashi, M.; Tarrant, J.; Taylor, I.; Tortora, L.; Torun, Y.; Tsenov, R.; Tunnell, C.D.; Vankova, G.; Verguilov, V.; Virostek, S.; Vretenar, M.; Walaron, K.; Watson, S.; White, C.; Whyte, C.G.; Wilson, A.; Wisting, H.; Zisman, M.

    2013-01-01

    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.5--2.3 \\pi mm-rad horizontally and 0.6--1.0 \\pi mm-rad vertically, a horizontal dispersion of 90--190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE.

  8. Characterisation of the muon beams for the Muon Ionisation Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.; Barclay, P.; Bayliss, V.; Bradshaw, T.W.; Courthold, M.; Francis, V.; Fry, L.; Hayler, T.; Hills, M.; Lintern, A.; Macwaters, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rogers, C.; Stanley, T.; Tarrant, J.; Watson, S.; Wilson, A. [Harwell Oxford, STFC Rutherford Appleton Laboratory, Didcot (United Kingdom); Adey, D.; Back, J.; Boyd, S.; Harrison, P.; Pidcott, C.; Taylor, I. [University of Warwick, Department of Physics, Coventry (United Kingdom); Alekou, A.; Apollonio, M.; Barber, G.; Colling, D.; Dobbs, A.; Dornan, P.; Fayer, S.; Fish, A.; Hunt, C.; Leaver, J.; Long, K.; Martyniak, J.; Middleton, S.; Pasternak, J.; Richards, A.; Santos, E.; Savidge, T.; Takahashi, M. [Imperial College London, Department of Physics, Blackett Laboratory, London (United Kingdom); Asfandiyarov, R.; Blondel, A.; Graulich, J.S.; Karadzhov, Y.; Verguilov, V.; Wisting, H. [Universite de Geneve, DPNC, Section de Physique, Geneva (Switzerland); De Bari, A.; Cecchet, G. [Sezione INFN Pavia (Italy); Dipartimento di Fisica Nucleare e Teorica, Pavia (Italy); Bayes, R.; Forrest, D.; Nugent, J.C.; Soler, F.J.P.; Walaron, K. [The University of Glasgow, School of Physics and Astronomy, Glasgow (United Kingdom); Bertoni, R.; Bonesini, M.; Lucchini, G. [Sezione INFN Milano Bicocca (Italy); Dipartimento di Fisica G. Occhialini, Milano (Italy); Blackmore, V.J.; Carlisle, T.; Cobb, J.H.; Lau, W.; Rayner, M.A.; Tunnell, C.D. [University of Oxford, Department of Physics, Oxford (United Kingdom); Blot, S.; Kim, Y.K. [University of Chicago, Enrico Fermi Institute, Chicago, IL (United States); Bogomilov, M.; Kolev, D.; Rusinov, I.; Tsenov, R.; Vankova, G. [St. Kliment Ohridski University of Sofia, Department of Atomic Physics, Sofia (Bulgaria); Booth, C.N.; Hodgson, P.; Nicholson, R.; Overton, E.; Robinson, M.; Smith, P.J. [University of Sheffield, Department of Physics and Astronomy, Sheffield (United Kingdom); Bowring, D.; DeMello, A.; Gourlay, S.; Li, D.; Prestemon, S.; Virostek, S.P.; Zisman, M.S. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Bravar, U. [University of New Hampshire, Durham, NH (United States); Bross, A.D.; Fitzpatrick, T.; Leonova, M.; Moretti, A.; Neuffer, D.; Popovic, M.; Rubinov, P.; Rucinski, R. [Fermilab, Batavia, IL (United States); Capponi, M.; Iaciofano, A.; Orestano, D.; Pastore, F.; Tortora, L. [Sezione INFN Roma Tre e Dipartimento di Fisica, Roma (Italy); Charnley, G.; Collomb, N.; Gallagher, A.; Grant, A.; Griffiths, S.; Hartnett, T.; Martlew, B.; Moss, A.; Muir, A.; Mullacrane, I.; Owens, P.; White, C. [STFC Daresbury Laboratory, Cheshire (United Kingdom); Coney, L.; Fletcher, R.; Hanson, G.G.; Heidt, C. [University of California, Riverside, CA (United States); Cooke, P.; Gamet, R. [University of Liverpool, Department of Physics, Liverpool (United Kingdom); Cremaldi, L.M.; Hart, T.L.; Luo, T.; Sanders, D.A.; Summers, D.J. [University of Mississippi, Oxford, MS (United States); Dick, A.J.; Ronald, K.; Whyte, C.G. [University of Strathclyde, Department of Physics, Glasgow (United Kingdom); Filthaut, F. [NIKHEF, Amsterdam (Netherlands); Freemire, B.; Hanlet, P.; Kafka, G.; Kaplan, D.M.; Rajaram, D.; Snopok, P.; Torun, Y. [Illinois Institute of Technology, Chicago, IL (United States); Hansen, O.M.; Ramberger, S.; Vretenar, M. [CERN, Geneva (Switzerland); Ishimoto, S. [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Kuno, Y.; Sakamoto, H. [Osaka University, Graduate School of Science, Department of Physics, Toyonaka, Osaka (Japan); Kyberd, P.; Littlefield, M.; Nebrensky, J.J. [Brunel University, Uxbridge (United Kingdom); Onel, Y. [University of Iowa, Department of Physics and Astronomy, Iowa City, IA (United States); Palladino, V. [Universita Federico II, Sezione INFN Napoli (Italy); Dipartimento di Fisica, Napoli (Italy); Palmer, R.B. [Brookhaven National Laboratory, Upton, NY (US); Roberts, T.J. [Muons, Inc., Batavia, IL (US); Collaboration: The MICE Collaboration

    2013-10-15

    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.2-2.3 {pi} mm-rad horizontally and 0.6-1.0 {pi} mm-rad vertically, a horizontal dispersion of 90-190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE. (orig.)

  9. Characterisation of the muon beams for the Muon Ionisation Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.; et al.,

    2013-10-01

    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.5--2.3 \\pi mm-rad horizontally and 0.6--1.0 \\pi mm-rad vertically, a horizontal dispersion of 90--190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE.

  10. Noninvasive Reactor Imaging Using Cosmic-Ray Muons

    Science.gov (United States)

    Miyadera, H.; Fujita, K.; Karino, Y.; Kume, N.; Nakayama, K.; Sano, Y.; Sugita, T.; Yoshioka, K.; Morris, C. L.; Bacon, J. D.; Borozdin, K. N.; Perry, J. O.; Mizokami, S.; Otsuka, Y.; Yamada, D.

    2015-10-01

    Cosmic-ray-muon imaging is proposed to assess the damages to the Fukushima Daiichi reactors. Simulation studies showed capability of muon imaging to reveal the core conditions.The muon-imaging technique was demonstrated at Toshiba Nuclear Critical Assembly, where the uranium-dioxide fuel assembly was imaged with 3-cm spatial resolution after 1 month of measurement.

  11. Progress in absorber R&D for muon cooling

    Science.gov (United States)

    Kaplan, D. M.; Black, E. L.; Boghosian, M.; Cassel, K. W.; Johnson, R. P.; Geer, S.; Johnstone, C. J.; Popovic, M.; Ishimoto, S.; Yoshimura, K.; Bandura, L.; Cummings, M. A.; Dyshkant, A.; Hedin, D.; Kubik, D.; Darve, C.; Kuno, Y.; Errede, D.; Haney, M.; Majewski, S.; Reep, M.; Summers, D.

    2003-05-01

    A stored-muon-beam neutrino factory may require transverse ionization cooling of the muon beam. We describe recent progress in research and development on energy absorbers for muon-beam cooling carried out by a collaboration of university and laboratory groups.

  12. Progress in absorber R and D for muon cooling

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, D.M. E-mail: kaplan@fnal.gov; Black, E.L.; Boghosian, M.; Cassel, K.W.; Johnson, R.P.; Geer, S.; Johnstone, C.J.; Popovic, M.; Ishimoto, S.; Yoshimura, K.; Bandura, L.; Cummings, M.A.; Dyshkant, A.; Hedin, D.; Kubik, D.; Darve, C.; Kuno, Y.; Errede, D.; Haney, M.; Majewski, S.; Reep, M.; Summers, D

    2003-05-01

    A stored-muon-beam neutrino factory may require transverse ionization cooling of the muon beam. We describe recent progress in research and development on energy absorbers for muon-beam cooling carried out by a collaboration of university and laboratory groups.

  13. FFAG Designs for Muon Collider Acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J. Scott [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-01-13

    I estimate FFAG parameters for a muon collider with a 70mm longitudinal emittance. I do not discuss the lower emittance beam for a Higgs factory. I produce some example designs, giving only parameters relevant to estimating cost and performance. The designs would not track well, but the parameters of a good design will be close to those described. I compare these cost estimates to those for a fast-ramping synchrotron and a recirculating linear accelerator. I conclude that FFAGs do not appear to be cost-effective for the large longitudinal emittance in a high-energy muon collider.

  14. Future Muon Source Possibilities at the SNS

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Travis J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); MacDougall, Prof. Gregory J. [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2017-06-01

    The workshop “Future Muon Source Possibilities at the SNS” was held September 1-2, 2016 at Oak Ridge National Laboratory. The workshop aimed to examine the technical feasibility and scientific need to construct a μSR and/or β-NMR facility at the SNS. During the course of the workshop it became evident that recently developed technology could enable the development of a world leading pulsed muon source at SNS, without impacting the neutron science missions of the SNS. The details are discussed below.

  15. Rare kaon, muon, and pion decay

    Energy Technology Data Exchange (ETDEWEB)

    Littenberg, L.

    1998-12-01

    The author discusses the status of and prospects for the study of rare decays of kaons, muons, and pions. Studies of rare kaon decays are entering an interesting new phase wherein they can deliver important short-distance information. It should be possible to construct an alternative unitarity triangle to that determined in the B sector, and thus perform a critical check of the Standard Model by comparing the two. Rare muon decays are beginning to constrain supersymmetric models in a significant way, and future experiments should reach sensitivities which this kind of model must show effects, or become far less appealing.

  16. The Muon Ionization Cooling Experiment User Software

    Science.gov (United States)

    Dobbs, A.; Rajaram, D.; MICE Collaboration

    2017-10-01

    The Muon Ionization Cooling Experiment (MICE) is a proof-of-principle experiment designed to demonstrate muon ionization cooling for the first time. MICE is currently on Step IV of its data taking programme, where transverse emittance reduction will be demonstrated. The MICE Analysis User Software (MAUS) is the reconstruction, simulation and analysis framework for the MICE experiment. MAUS is used for both offline data analysis and fast online data reconstruction and visualization to serve MICE data taking. This paper provides an introduction to MAUS, describing the central Python and C++ based framework, the data structure and and the code management and testing procedures.

  17. A COMPLETE SCHEME FOR A MUON COLLIDER.

    Energy Technology Data Exchange (ETDEWEB)

    PALMER,R.B.; BERG, J.S.; FERNOW, R.C.; GALLARDO, J.C.; KIRK, H.G.; ALEXAHIN, Y.; NEUFFER, D.; KAHN, S.A.; SUMMERS, D.

    2007-09-01

    A complete scheme for production, cooling, acceleration, and ring for a 1.5 TeV center of mass muon collider is presented, together with parameters for two higher energy machines. The schemes starts with the front end of a proposed neutrino factory that yields bunch trains of both muon signs. Six dimensional cooling in long-period helical lattices reduces the longitudinal emittance until it becomes possible to merge the trains into single bunches, one of each sign. Further cooling in all dimensions is applied to the single bunches in further helical lattices. Final transverse cooling to the required parameters is achieved in 50 T solenoids.

  18. Japanese radio telescopes

    Science.gov (United States)

    Kawaguchi, Noriyuki

    Japanese principal radio telescopes available for Very Long Baseline Interferometry (VLBI) observations are overviewed, and their characteristics and performances are summarized. Three fixed stations, Usuda, Nobeyama, and Kashima, and one 5-m mobile station use a hydrogen master-frequency standard, while other stations use an ultrastable X'tal oscillator locked to a cesium frequency standard. The 64-m telescope in Usuda developed for tracking satellites of deep-space missions is outlined, as well as the Kashima 34-m telescope covering a frequency range from 300 MHz to 49 GHz with 11 receivers. Attention is given to the Nobeyama 45-m telescope as a major telescope in Japan working in an international mm-VLBI network.

  19. Observing the Sun with Coronado telescopes telescopes

    CERN Document Server

    Pugh, Philip

    2007-01-01

    The Sun provides amateur astronomers with one of the few opportunities for daytime astronomy. In order to see the major features of our nearest star, special telescopes that have a very narrow visible bandwidth are essential. The bandwidth has to be as narrow as 1 A- 10-10 m (1 Angstrom) and centred on the absorption line of neutral hydrogen. This makes many major features of the Suna (TM)s chromosphere visible to the observer. Such narrow-band "Fabry-Perot etalon filters" are high technology, and until the introduction of the Coronado range of solar telescopes, were too expensive for amateur use. The entry-level Coronado telescope, the PST (Personal Solar Telescope) costs under 500. Solar prominences (vast columns of plasma, best seen at the edge of the solar disk), filaments, flares, sunspots, plage and active regions are all visible and can be imaged to produce spectacular solar photographs. Philip Pugh has assembled a team of contributors who show just how much solar work can be done with Coronado telesco...

  20. Ice Cube- a Telescope to Map the Neutrino Sky

    Energy Technology Data Exchange (ETDEWEB)

    Stokstad, R. [for the IceCube Collaboration, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2007-12-15

    Ice Cube is a neutrino telescope under construction at the South Pole. When finished it will encompass a cubic kilometer of ice residing 1500 m below the surface of the Antarctic ice sheet. It is designed to discover and map the sources of high-energy neutrinos in the northern hemisphere. By February 2007, shortly after the Conference in Cocoyoc, there were 22 strings (of the 70+ envisioned), each with 60 photomultiplier tubes, working in the deep ice. The performance of the Ice Cube array with up to nine strings and some results from Ice Cube's predecessor, AMANDA (the Antarctic Muon and Neutrino Detector Array), are described here. (Author)

  1. PREFACE: Muon spin rotation, relaxation or resonance

    Science.gov (United States)

    Heffner, Robert H.; Nagamine, Kanetada

    2004-10-01

    To a particle physicist a muon is a member of the lepton family, a heavy electron possessing a mass of about 1/9 that of a proton and a spin of 1/2, which interacts with surrounding atoms and molecules electromagnetically. Since its discovery in 1937, the muon has been put to many uses, from tests of special relativity to deep inelastic scattering, from studies of nuclei to tests of weak interactions and quantum electrodynamics, and most recently, as a radiographic tool to see inside heavy objects and volcanoes. In 1957 Richard Garwin and collaborators, while conducting experiments at the Columbia University cyclotron to search for parity violation, discovered that spin-polarized muons injected into materials might be useful to probe internal magnetic fields. This eventually gave birth to the modern field of muSR, which stands for muon spin rotation, relaxation or resonance, and is the subject of this special issue of Journal of Physics: Condensed Matter. Muons are produced in accelerators when high energy protons (generally >500 MeV) strike a target like graphite, producing pions which subsequently decay into muons. Most experiments carried out today use relatively low-energy (~4 MeV), positively-charged muons coming from pions decaying at rest in the skin of the production target. These muons have 100% spin polarization, a range in typical materials of about 180 mg cm-2, and are ideal for experiments in condensed matter physics and chemistry. Negatively-charged muons are also occasionally used to study such things as muonic atoms and muon-catalysed fusion. The muSR technique provides a local probe of internal magnetic fields and is highly complementary to inelastic neutron scattering and nuclear magnetic resonance, for example. There are four primary muSR facilities in the world today: ISIS (Didcot, UK), KEK (Tsukuba, Japan), PSI (Villigen, Switzerland) and TRIUMF (Vancouver, Canada), serving about 500 researchers world-wide. A new facility, JPARC (Tokai, Japan

  2. Calibration of muon reconstruction algorithms using an external muon tracking system at the Sudbury Neutrino Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Sonley, T.J. [Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Department of Physics, Queen' s University, Kingston, Ontario, Canada K7L 3N6 (Canada); Abruzzio, R. [Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Chan, Y.D.; Currat, C.A. [Institute for Nuclear and Particle Astrophysics and Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Duncan, F.A. [SNOLAB, Sudbury, ON, P3Y 1M3 (Canada); Department of Physics, Queen' s University, Kingston, Ontario, K7L 3N6 (Canada); Farine, J. [Department of Physics and Astronomy, Laurentian University, Sudbury, Ontario, P3E 2C6 (Canada); Ford, R.J. [SNOLAB, Sudbury, ON, P3Y 1M3 (Canada); Formaggio, J.A., E-mail: josephf@mit.edu [Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA 98195 (United States); Gagnon, N. [Institute for Nuclear and Particle Astrophysics and Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Department of Physics, Queen' s University, Kingston, Ontario, K7L 3N6 (Canada); Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA 98195 (United States); Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hallin, A.L. [Department of Physics, Queen' s University, Kingston, Ontario, K7L 3N6 (Canada); Department of Physics, University of Alberta, Edmonton, Alberta, T6G 2R3 (Canada)

    2011-08-21

    To help constrain the algorithms used in reconstructing high-energy muon events incident on the Sudbury Neutrino Observatory (SNO), a muon tracking system was installed. The system consisted of four planes of wire chambers, which were triggered by scintillator panels. The system was integrated with SNO's main data acquisition system and took data for a total of 95 live days. Using cosmic-ray events reconstructed in both the wire chambers and in SNO's water Cherenkov detector, the external muon tracking system was able to constrain the uncertainty on the muon direction to better than 0.6{sup o}. - Highlights: > This paper describes a novel technique for calibrating tracking algorithms. > The experimental accuracy achieved by this system was better than 1{sup o}. > The principle behind the technique can be used in future underground experiments.

  3. Setup of a drift tube muon tracker and calibration of muon tracking in Borexino

    Energy Technology Data Exchange (ETDEWEB)

    Bick, Daniel

    2011-04-15

    In this work the setup and commissioning of a drift tube based 3D muon tracking detector are described and its use for the solar neutrino experiment Borexino is presented. After a brief introduction to neutrino physics, the general layout of the detector is presented. It is followed by the description of the reconstruction and calibration algorithms. The performance of the muon tracker is presented and results from the commissioning in Hamburg are shown. The detector is currently operated in the LNGS underground laboratory in Italy at the Borexino experiment. After an introduction to Borexino, the modifications of the muon tracker for its setup at LNGS are described. The setup is used as a reference system to determine the resolution of the Borexino muon tracking which is essential for the tagging of cosmogenic induced {sup 11}C background. Finally, first results are presented. (orig.)

  4. Gemini telescope structure design

    Science.gov (United States)

    Raybould, Keith; Gillett, Paul E.; Hatton, Peter; Pentland, Gordon; Sheehan, Mike; Warner, Mark

    1994-06-01

    The Gemini project is an international collaboration to design, fabricate, and assemble two 8 M telescopes, one on Mauna Kea in Hawaii, the other on Cerro Pachon in Chile. The telescopes will be national facilities designed to meet the Gemini Science Requirements (GSR), a document developed by the Gemini Science Committee (GSC) and the national project scientists. The Gemini telescope group, based on Tucson, has developed a telescope structure to meet the GSR. This paper describes the science requirements that have technically driven the design, and the features that have been incorporated to meet these requirements. This is followed by a brief description of the telescope design. Finally, analyses that have been performed and development programs that have been undertaken are described briefly. Only the designs that have been performed by the Gemini Telescope Structure, Building and Enclosure Group are presented here; control, optical systems, acquisition and guiding, active and adaptive optics, Cassegrain rotator and instrumentation issues are designed and managed by others and will not be discussed here, except for a brief description of the telescope configurations to aid subsequent discussions.

  5. Measurement of muon charge ratio with the Large Volume Detector

    CERN Document Server

    Agafonova, N.Yu.; Antonioli, P.; Bari, G.; Bertoni, R.; Boyarkin, V.V.; Bressan, E.; Bruno, G.; Dadykin, V.L.; Dobrynina, E.A.; Enikeev, R.I.; Fulgione, W.; Galeotti, P.; Garbini, M.; Ghia, P.L.; Giusti, P.; Kemp, E.; Malgin, A.S.; Miguez, B.; Molinario, A.; Persiani, R.; Pless, I.A.; Ryasny, V.G.; Ryazhskaya, O.G.; Saavedra, O.; Sartorelli, G.; Selvi, M.; Trinchero, G.C.; Vigorito, C.; Yakushev, V.F.; Zichichi, A.

    2013-01-01

    The value of ${\\mu^+/\\mu^-}$ ratio for atmospheric muons has been measured with the Large Volume Detector, (LVD) at the INFN Gran Sasso National Laboratory, Italy (minimal depth is 3000 m w.e.). To reach this depth muons should have an energy at the sea level higher than 1.3 TeV. The muon charge is determined studying the decay of stopping positive muons in the LVD iron structure and the decay of stopping positive and negative muons in scintillator. We obtain a ratio ${R = 1.26 \\pm 0.04(stat) \\pm 0.11(sys)}$.

  6. Performance and Future Upgrades of the CMS Drift Tube Muon Detector

    CERN Document Server

    Redondo Ferrero, David Daniel

    2017-01-01

    A key component of the CMS (Compact Muon Solenoid) experiment is its muon system. The tracking and triggering of muons in the central part relies on Drift Tube (DT) chambers. The DT system keeps evolving in order to cope with long term operational challenges, as well as future constraints for rate reduction imposed by future increases of LHC luminosity, maintaining the highest possible efficiency. During the first long LHC shutdown (LS1) a significant number of improvements and upgrades started being implemented, in particular concerning the readout and trigger electronics. Ever since LS1, each LHC winter shutdown is used to install and test these new developments towards HL-LHC.Regarding the long term operation of the DT system, in order to cope with up to a factor 2 nominal LHC luminosity, several modifications will be required. The in-chamber local electronics will be modified to cope with the new environment. Also the second level of the readout system needs to be redesigned to minimize event processing ...

  7. Electronics for the CMS muon drift tube chambers the read-out minicrate

    CERN Document Server

    Fernandez Bedoya, Cristina; Oller, Juan Carlos; Willmott, Carlos

    2005-01-01

    On the Compact Muon Solenoid (CMS) experimentat the Large Hadron Collider (LHC) at the CERN laboratory, the drift tube chambers are responsible for muon detection and precise momentum measurement. In this paper the first level of the read out electronics for these drift tube chambers is described. These drift tube chambers will be located inside the muon barrel detector in the so-called minicrates (MCs), attached to the chambers. The read out boards (ROBs) are the main component of this first level data acquisition system, and they are responsible for the time digitalization related to Level 1 Accept (L1A) trigger of the incoming signals from the front-end electronics, followed by a consequent data merging to the next stages of the data acquisition system. ROBs' architecture and functionality have been exhaustively tested, as well as their capability of operation beyond the expected environmental conditions inside the CMS detector. Due to the satisfactory results obtained, final production of ROBs and their a...

  8. Image characterization metrics for muon tomography

    Science.gov (United States)

    Luo, Weidong; Lehovich, Andre; Anashkin, Edward; Bai, Chuanyong; Kindem, Joel; Sossong, Michael; Steiger, Matt

    2014-05-01

    Muon tomography uses naturally occurring cosmic rays to detect nuclear threats in containers. Currently there are no systematic image characterization metrics for muon tomography. We propose a set of image characterization methods to quantify the imaging performance of muon tomography. These methods include tests of spatial resolution, uniformity, contrast, signal to noise ratio (SNR) and vertical smearing. Simulated phantom data and analysis methods were developed to evaluate metric applicability. Spatial resolution was determined as the FWHM of the point spread functions in X, Y and Z axis for 2.5cm tungsten cubes. Uniformity was measured by drawing a volume of interest (VOI) within a large water phantom and defined as the standard deviation of voxel values divided by the mean voxel value. Contrast was defined as the peak signals of a set of tungsten cubes divided by the mean voxel value of the water background. SNR was defined as the peak signals of cubes divided by the standard deviation (noise) of the water background. Vertical smearing, i.e. vertical thickness blurring along the zenith axis for a set of 2 cm thick tungsten plates, was defined as the FWHM of vertical spread function for the plate. These image metrics provided a useful tool to quantify the basic imaging properties for muon tomography.

  9. Muon Collider Machine-Detector Interface

    Energy Technology Data Exchange (ETDEWEB)

    Mokhov, Nikolai V.; /Fermilab

    2011-08-01

    In order to realize the high physics potential of a Muon Collider (MC) a high luminosity of {mu}{sup +}{mu}{sup -}-collisions at the Interaction Point (IP) in the TeV range must be achieved ({approx}10{sup 34} cm{sup -2}s{sup -1}). To reach this goal, a number of demanding requirements on the collider optics and the IR hardware - arising from the short muon lifetime and from relatively large values of the transverse emittance and momentum spread in muon beams that can realistically be obtained with ionization cooling should be satisfied. These requirements are aggravated by limitations on the quadrupole gradients as well as by the necessity to protect superconducting magnets and collider detectors from muon decay products. The overall detector performance in this domain is strongly dependent on the background particle rates in various sub-detectors. The deleterious effects of the background and radiation environment produced by the beam in the ring are very important issues in the Interaction Region (IR), detector and Machine-Detector Interface (MDI) designs. This report is based on studies presented very recently.

  10. Charge order, superconducting correlations, and positive muons

    Energy Technology Data Exchange (ETDEWEB)

    Sonier, J.E., E-mail: jsonier@sfu.ca

    2015-02-15

    The recent discoveries of short-range charge-density wave order in the normal state of several hole-doped cuprate superconductors constitute a significant addition to the known intrinsic properties of these materials. Besides likely being associated with the normal-state pseudogap, the charge-density wave order presumably influences the build-up of known superconducting correlations as the temperature is lowered toward the superconducting state. As a pure magnetic probe, muon spin rotation (μ SR) is not directly sensitive to charge order, but may sense its presence via the effect it has on the magnetic dipolar coupling of the muon with the host nuclei at zero or low magnetic field. At higher field where μ SR is completely blind to the effects of charge order, experiments have revealed a universal inhomogeneous normal-state response extending to temperatures well above T{sub c}. The measured inhomogeneous line broadening has been attributed to regions of superconducting correlations that exhibit varying degrees of fluctuation diamagnetism. Here, the compatibility of these results with other measurements showing charge order correlations or superconducting fluctuations above T{sub c} is discussed. - Highlights: • Superconducting fluctuations in high-T cuprates probed by positive muons are discussed. • Superconducting fluctuations are detected at higher temperatures than by other methods. • The muon experiments indicate that the superconducting fluctuations are inhomogeneous. • The compatibility with short-range charge order in the normal state is considered.

  11. Going to the school of muons

    CERN Multimedia

    2005-01-01

    Italian secondary school pupils will be given the opportunity to take part in a large-scale experiment looking at cosmic muons thanks to the EEE Project. Two Italian pupils building an MRPC muon chamber in CERN's Building 29. For several months, Italian secondary school pupils have been coming to CERN each week and heading for Building 29. They are not just visiting. They are participating in the EEE (Extreme Energy Events) Project, the aim of which is to carry out a real-life experiment in search of large atmospheric showers using muon detectors located in their schools. In this hall at CERN they are helping to build and test muon chambers - MRPCs (Multigap Resistive Plate Chambers). These chambers, which were invented several years ago by Crispin Williams as part of the LAA Project led by Professor Antonino Zichichi, are similar to those that will be used for ALICE's TOF (Time of Flight) detector at the LHC. In this way, the pupils are receiving a direct, practical and effective initiation to particle phy...

  12. ATLAS muon drift tube production in Seattle

    CERN Document Server

    Zhao, T; Kuykendall, W; Davisson, R

    2004-01-01

    The drift tube production facility that we developed for producing precision drift tubes of the ATLAS forward muon system in our laboratory is described in this paper. The results of quality assurance for approximately 30,000 tube produced are given. Our experience shows that this production facility is very efficient and the quality of produced drift tubes is very high. (2 refs).

  13. The Fermilab Muon g-2 Experiment

    NARCIS (Netherlands)

    Venanzoni, G.; Jungmann, Klaus-Peter; Onderwater, Cornelis

    2015-01-01

    There is a long standing discrepancy between the Standard Model prediction for the muon g-2 and the value measured by the Brookhaven E821 Experiment. At present the discrepancy stands at about three standard deviations, with a comparable accuracy between experiment and theory. Two new proposals – at

  14. Telescopic vision contact lens

    Science.gov (United States)

    Tremblay, Eric J.; Beer, R. Dirk; Arianpour, Ashkan; Ford, Joseph E.

    2011-03-01

    We present the concept, optical design, and first proof of principle experimental results for a telescopic contact lens intended to become a visual aid for age-related macular degeneration (AMD), providing magnification to the user without surgery or external head-mounted optics. Our contact lens optical system can provide a combination of telescopic and non-magnified vision through two independent optical paths through the contact lens. The magnified optical path incorporates a telescopic arrangement of positive and negative annular concentric reflectors to achieve 2.8x - 3x magnification on the eye, while light passing through a central clear aperture provides unmagnified vision.

  15. Hubble Space Telescope

    Science.gov (United States)

    1990-01-01

    An overview of the mission of the Hubble Space Telescope, a joint project between NASA and the European Space Agency which will be used to study deep space, as well as our solar system is presented. The video contains animations depicting the Hubble Space Telescope in orbit, as well as footage of scientists at the Space Telescope Science Institute making real time observations. The images Hubble acquires will be downloaded into a database that contains images of over 19,000,000 celestial objects called the Star Catalog.

  16. Ritchey-Chretien Telescope

    Science.gov (United States)

    Rosin, S.; Amon, M. (Inventor)

    1973-01-01

    A Ritchey-Chretien telescope is described which was designed to respond to images located off the optical axis by using two transparent flat plates positioned in the ray path of the image. The flat plates have a tilt angle relative to the ray path to compensate for astigmatism introduced by the telescope. The tilt angle of the plates is directly proportional to the off axis angle of the image. The plates have opposite inclination angles relative to the ray paths. A detector which is responsive to the optical image as transmitted through the plates is positioned approximately on the sagittal focus of the telescope.

  17. Muon identification in the Belle experiment at KEKB

    CERN Document Server

    Abashian, Alexander; Abe, K; Behera, P K; Handa, F; Iijima, T; Inoue, Y; Miyake, H; Nagamine, T; Nakano, E; Narita, S; Piilonen, L; Schrenk, S; Teramoto, Y; Trabelsi, K; Wang, J G; Yamaga, M; Yamaguchi, A; Yusa, Y

    2002-01-01

    This paper describes the muon identification method and its performance in the Belle experiment at KEKB. Muon and hadron likelihood are calculated for each track using its range and transverse scattering in the K sub L -and-muon detector (KLM). We apply a cut on the normalized muon likelihood L submu to identify the track as a muon. Above the detection threshold of 0.6 GeV/c, the measured muon detection efficiency and pion fake rate are approximately constant for momenta greater than 1.0 and 1.5 GeV/c, respectively. Between 1.0 and 3.0 GeV/c, the averaged muon detection efficiency is 89% and the pion fake rate per track is 1.4% over the KLM acceptance, using the standard selection criterion L submu>0.9.

  18. Measurements of Beam Cooling in Muon Ionization Cooling Experiment

    Science.gov (United States)

    Mohayai, Tanaz; Snopok, Pavel; Rogers, Chris; Neuffer, David; Muon Ionization Cooling Experiment Collaboration

    2017-01-01

    Cooled muon beams are essential for production of high-flux neutrino beams at the Neutrino Factory and high luminosity muon beams at the Muon Collider. The international Muon Ionization Cooling Experiment, MICE aims to demonstrate muon beam cooling through ionization energy loss of muons in material. The standard figure of merit for cooling in MICE is the transverse RMS emittance reduction and to measure this, the individual muon positions and momenta are reconstructed using scintillating-fiber tracking detectors, before and after a low-Z absorbing material. In this study, in addition to a preview on the standard measurement technique, an alternative technique is described, which is the measurement of phase-space density using the novel Kernel Density Estimation method. Work supported by the U.S. Department of Energy under contract No. DE - AC05 - 06OR23100.

  19. Muon g-2 Calorimeter Prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Polly, Chris; /Fermilab

    2010-05-03

    The proposed design is a tungsten-scintillating fiber calorimeter with 35 segments, each read out by a separate PMT. Tungsten, which is significantly denser than lead, produces compact showers. This is necessary, in order to improve shower separation in analysis and to fully contain the showers within a calorimeter that satisfies the strict space constraints of the experiment. A single calorimeter segment (4 x 6 x 15 cm{sup 3}) has been constructed in order establish the feasibility of the new design and study its properties. Initial tests of the detector segment at the Paul Scherrer Institute were conducted with a low energy < 400 MeV/c electron beam. A higher-energy test with electrons up to a few GeV/c was performed at the Test Beam Facility under the experimental number T-967. All data from that test have been analyzed and published, and the tungsten-scintillating fiber calorimeter still appears to be a viable candidate. For this test beam run, a larger calorimeter (15 x 15 x 11 cm{sup 3}) has been constructed and an emphasis will be placed on understanding shower leakage and the ability to separate pileup events with a more granular readout. The experimenters will measure the energy resolution, linearity, and shower size of the calorimeter segment. This will provide important information for finalizing decisions on the angle of the fibers relative to the incoming electrons and the optimal granularity of the readout.

  20. Maximizng the sensitivity of a low threshold VHE gamma ray telescope by the use of neural nets and other methods

    Energy Technology Data Exchange (ETDEWEB)

    Kertzman, M.P. (Department of Physics and Astronomy, DePauw University Greencastle, Indiana 46135 (USA)); Sembroski, G.H. (Department of Physcis, Purdue University West Lafayette, Indiana 47907 (USA))

    1991-04-05

    Detailed 3-dimensional Monte-Carlo computer simulations of the Cherenkov photons produced by VHE (10 GeV to 10 TeV) gamma ray and proton induced air shower cascades are used to calculate the sensitivity and threshold of a ground-based, single-mount, multi-mirror, single photo-electron sensitive gamma ray telescope. Such a telescope is designed to have the lowest possible energy threshold for gamma ray induced air showers for a given light collection area. The sensitivity and energy threshold of this design are determined for various triggering configurations, and the sources and properties of background triggers are investigated. In particular, it is found that up to 40% of the background triggers are due to single muons produced by proton induced showers with primary energies in the 25 to 75 GeV range. Two methods for increasing the sensitivity of such a telescope by discrimination against the single muon induced triggers are investigated. The first uses small outrider telescopes triggering in coincidence with the main telescope. The second uses software implemented neural nets trained to identify muon induced triggers by use of the temporal shape of the Cherenkov light pulse.

  1. Delivering the world’s most intense muon beam

    Directory of Open Access Journals (Sweden)

    S. Cook

    2017-03-01

    Full Text Available A new muon beam line, the muon science innovative channel, was set up at the Research Center for Nuclear Physics, Osaka University, in Osaka, Japan, using the 392 MeV proton beam impinging on a target. The production of an intense muon beam relies on the efficient capture of pions, which subsequently decay to muons, using a novel superconducting solenoid magnet system. After the pion-capture solenoid, the first 36° of the curved muon transport line was commissioned and the muon flux was measured. In order to detect muons, a target of either copper or magnesium was placed to stop muons at the end of the muon beam line. Two stations of plastic scintillators located upstream and downstream from the muon target were used to reconstruct the decay spectrum of muons. In a complementary method to detect negatively charged muons, the x-ray spectrum yielded by muonic atoms in the target was measured in a germanium detector. Measurements, at a proton beam current of 6 pA, yielded (10.4±2.7×10^{5}  muons per watt of proton beam power (μ^{+} and μ^{-}, far in excess of other facilities. At full beam power (400 W, this implies a rate of muons of (4.2±1.1×10^{8}  muons s^{−1}, among the highest in the world. The number of μ^{-} measured was about a factor of 10 lower, again by far the most efficient muon beam produced. The setup is a prototype for future experiments requiring a high-intensity muon beam, such as a muon collider or neutrino factory, or the search for rare muon decays which would be a signature for phenomena beyond the Standard Model of particle physics. Such a muon beam can also be used in other branches of physics, nuclear and condensed matter, as well as other areas of scientific research.

  2. Goddard Robotic Telescope (GRT)

    Data.gov (United States)

    National Aeronautics and Space Administration — Since it is not possible to predict when a Gamma-Ray Burst (GRB) occurs, the follow-up ground telescopes must be distributed as uniform as possible all over the...

  3. Commissioning of the CMS muon detector and development of generic search strategies for new physics

    Energy Technology Data Exchange (ETDEWEB)

    Biallass, Philipp Alexander

    2009-03-27

    The detection and reconstruction of cosmic muon rays is important for the commissioning phase and alignment of the Compact Muon Solenoid experiment (CMS), in particular during the early phases of operation with physics collisions. In this context the Magnet Test/Cosmic Challenge (MTCC) with its comprehensive cosmic data taking periods including the presence of the magnetic field has been like a dress rehearsal of detector hardware and software for the upcoming start-up of the CMS detector. In addition to data taking also the comparison with simulated events is a crucial part of physics analyses. The first part of this thesis introduces a new cosmic muon generator, CMSCGEN, and it presents its validation by comparing its predictions with data from MTCC. As an example, results from a reconstruction study using the barrel muon system are shown, comparing data and Monte Carlo prediction at the level of single chambers up to reconstructed tracks including momentum measurements. Since leptons (electrons, muons) constitute very clean signatures for signals of new physics these commissioning and alignment procedures are also vital to most physics analyses. In the second part of this thesis a model independent search approach for new physics within CMS is presented, utilizing events with leptons and relying only on the knowledge of the Standard Model simulation. Such an analysis can contribute to the understanding of the detector and the tuning of the event generators. Due to the absence of a theoretical bias this approach is sensitive to a variety of models, including those not yet thought of. Within this feasibility study events are classified according to their particle content (muons, electrons, photons, jets, missing energy) into so called event classes. A broad scan of various distributions is performed, identifying significant deviations from the SM Monte Carlo simulation. The importance of systematic uncertainties is outlined, which are taken into account rigorously

  4. LISA Telescope Sensitivity Analysis

    Science.gov (United States)

    Waluschka, Eugene; Krebs, Carolyn (Technical Monitor)

    2002-01-01

    The Laser Interferometer Space Antenna (LISA) for the detection of Gravitational Waves is a very long baseline interferometer which will measure the changes in the distance of a five million kilometer arm to picometer accuracies. As with any optical system, even one with such very large separations between the transmitting and receiving, telescopes, a sensitivity analysis should be performed to see how, in this case, the far field phase varies when the telescope parameters change as a result of small temperature changes.

  5. Compaction behaviour of soils

    OpenAIRE

    Kurucuk, Nurses

    2017-01-01

    Soil compaction is widely applied in geotechnical engineering practice. It is used to maximise the dry density of soils to reduce subsequent settlement under working loads or to reduce the permeability of soils. The durability and stability of structures are highly related to the appropriate compaction achievement. The structural failure of roads and airfields, and the damage caused by foundation settlement can often be traced back to the failure in achieving adequate compaction. For that rea...

  6. Self-Compacting Concrete

    OpenAIRE

    Okamura, Hajime; Ouchi, Masahiro

    2003-01-01

    Self-compacting concrete was first developed in 1988 to achieve durable concrete structures. Since then, various investigations have been carried out and this type of concrete has been used in practical structures in Japan, mainly by large construction companies. Investigations for establishing a rational mix-design method and self-compactability testing methods have been carried out from the viewpoint of making self-compacting concrete a standard concrete.

  7. Study of muon triggers and momentum reconstruction in a strong magnetic field for a muon detector at LHC

    CERN Document Server

    Della Negra, Michel; Eggert, Karsten; Hervé, A; Wittgenstein, F; Karimäki, V; Kinnunen, Ritva; Pimiä, M; Tuominiemi, Jorma; Dau, D; Ferrando, A; Torrente-Lujan, E; Bettini, A; Centro, Sandro; Martinelli, R; Meneguzzo, Anna Teresa; Zotto, P L; Bacci, Cesare; Ceradini, F; Ciapetti, G; Lacava, F; Nisati, A; Petrolo, E; Pontecorvo, L; Veneziano, Stefano; Zanello, L; Cardarelli, R; Di Ciaccio, Anna; Santonico, R; Cline, D; Lazic, S; Mohammadi, M; Park, J; Szoncsó, F; Walzel, G; Wulz, Claudia Elisabeth; CERN. Geneva. Detector Research and Development Committee

    1990-01-01

    We propose to construct a small fraction of a muon detector in a strong magnetic field, for possible use in an LHC experiment, and to test it in a beam containing hadrons and muons. Properties of muons from hadron decays and of hadron punch-through, i.e. angle, momentum and timing distributions of the outgoing particles, will be measured for various absorber thicknesses, including the effect of strong magnetization of the absorber. The efficiency of different muon triggers and the rejection against hadron punch-through and decay muons will be studied. Reconstruction of muons and their momentum measurement in magnetized iron will be investigated, including the effect of catastrophic energy losses of high momentum muons. The performance of resistive plate chambers (RPC) as fast trigger hodoscopes will be studied.

  8. Eclipse telescope design factors

    Science.gov (United States)

    Hull, Tony; Trauger, John T.; Macenka, Steven A.; Moody, Dwight; Olarte, Guillermo; Sepulveda, Cesar; Tsuha, Walter; Cohen, David

    2003-02-01

    Very high contrast imagery, required for exoplanet image acquisition, imposes significantly different criteria upon telescope architecture than do the requirements imposed upon most spaceborne telescopes. For the Eclipse Mission, the fundamental figure-of-merit is a stellar contrast, or brightness reduction ratio, reaching a factor of 10-9 or better at star-planet distances as close as the 4th Airy ring. Factors necessary to achieve such contrast ratios are both irrelevant and largely ignored in contemporary telescope design. Although contemporary telescoeps now meet Hubble Space Telescope performance at substantially lower mass and cost than HST, control of mid-spatial-frequency (MSF) errors, crucial to coronagraphy, has not been emphasized. Accordingly, roughness at MSF has advanced little since HST. Fortunately, HST primary mirror smoothness would nearly satisfy Eclipse requirements, although other aspects of HST are undesirable for stellar coronagraphy. Conversely, the narrow field required for Eclipse eases other drivers of traditional telescope design. A systematic approach to telescope definition, with primary and sub-tier figures-of-merit, will be discussed in the context of the Eclipse Mission.

  9. Compact Antenna Range

    Data.gov (United States)

    Federal Laboratory Consortium — Facility consists of a folded compact antenna range including a computer controlled three axis position table, parabolic reflector and RF sources for the measurement...

  10. Compact Polarimetry Potentials

    Science.gov (United States)

    Truong-Loi, My-Linh; Dubois-Fernandez, Pascale; Pottier, Eric

    2011-01-01

    The goal of this study is to show the potential of a compact-pol SAR system for vegetation applications. Compact-pol concept has been suggested to minimize the system design while maximize the information and is declined as the ?/4, ?/2 and hybrid modes. In this paper, the applications such as biomass and vegetation height estimates are first presented, then, the equivalence between compact-pol data simulated from full-pol data and compact-pol data processed from raw data as such is shown. Finally, a calibration procedure using external targets is proposed.

  11. Upgrade of the global muon trigger at the CMS experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00282545; Sakulin, Hannes

    2016-09-14

    The Compact Muon Solenoid (CMS) experiment is one of two general purpose detectors at the Large Hadron Collider (LHC) at the particle physics research laboratory in Geneva (CERN). As such it allows a broad array of physics analyses from precision measurements of the standard model of particle physics to searches for exotic new particles. A series of upgrades and maintenance procedures took place in the first shut down from 2013 to 2015. The aim was to prepare the LHC for the collision energy of 13 TeV and further increase its luminosity. During this shut down also upgrades of the CMS experiment were installed.Due to the high rate of collisions at the LHC, it is impossible to record all such events. In order to reduce the event rate to a manageable level, a trigger system is deployed that selects interesting events. At the CMS experiment this system is divided into two levels: A first hardware based system that is optimised for speed and a second that is software based and applies more time consuming and preci...

  12. Online full two-dimensional imaging of pulsed muon beams at J-PARC MUSE using a gated image intensifier

    Science.gov (United States)

    Ito, T. U.; Toyoda, A.; Higemoto, W.; Tajima, M.; Matsuda, Y.; Shimomura, K.

    2014-08-01

    A new muon beam profile monitor (MBPM) was developed to diagnose pulsed muon beams at J-PARC MUSE, mainly composed of a scintillation screen, a gated image intensifier (II), and a cooled CCD camera. The MBPM was designed to be compact so that it could be inserted into the bore of the μSR spectrometer in the D1 area and used concurrently. The spatial resolution of the MBPM was evaluated to be better than 1.4 mm, depending on the II gain. Such high-resolution muon beam profiles were obtained online for a positive muon beam with a kinetic energy of approximately 4 MeV. The contribution from the decay positrons to beam profiles was significantly reduced owing to the II gating. The linearity of the MBPM was evaluated on the basis of the number of decay positrons monitored by the μSR spectrometer. A linear response within a deviation of ±5% was confirmed over more than two orders of magnitude. In addition, a 3D imaging capability, used in vacuum, and immunity against moderate magnetic fields were demonstrated.

  13. Development of the DAQ System of Triple-GEM Detectors for the CMS Muon Spectrometer Upgrade at LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00387583

    The Gas Electron Multiplier (GEM) upgrade project aims at improving the performance of the muon spectrometer of the Compact Muon Solenoid (CMS) experiment which will suffer from the increase in luminosity of the Large Hadron Collider (LHC). After a long technical stop in 2019-2020, the LHC will restart and run at a luminosity of 2 × 1034 cm−2 s−1, twice its nominal value. This will in turn increase the rate of particles to which detectors in CMS will be exposed and affect their performance. The muon spectrometer in particular will suffer from a degraded detection efficiency due to the lack of redundancy in its most forward region. To solve this issue, the GEM collaboration proposes to instrument the first muon station with Triple-GEM detectors, a technology which has proven to be resistant to high fluxes of particles. Within the GEM collaboration, the Data Acquisition (DAQ) subgroup is in charge of the development of the electronics and software of the DAQ system of the detectors. This thesis presents th...

  14. A study of upward going particles with the Extreme Energy Events telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Abbrescia, M. [Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, Roma (Italy); INFN and Dipartimento di Fisica, Università di Bari, Bari (Italy); Avanzini, C.; Baldini, L. [Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, Roma (Italy); INFN and Dipartimento di Fisica, Università di Pisa, Pisa (Italy); Ferroli, R. Baldini [Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, Roma (Italy); INFN Laboratori Nazionali di Frascati, Frascati (RM) (Italy); Batignani, G. [Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, Roma (Italy); INFN and Dipartimento di Fisica, Università di Pisa, Pisa (Italy); Bencivenni, G. [INFN Laboratori Nazionali di Frascati, Frascati (RM) (Italy); Bossini, E. [Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, Roma (Italy); INFN Gruppo Collegato di Siena and Dipartimento di Fisica, Università di Siena, Siena (Italy); Chiavassa, A. [INFN and Dipartimento di Fisica, Università di Torino, Torino (Italy); Cicalo, C. [Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, Roma (Italy); INFN and Dipartimento di Fisica, Università di Cagliari, Cagliari (Italy); Cifarelli, L. [Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, Roma (Italy); INFN and Dipartimento di Fisica, Università di Bologna, Bologna (Italy); Coccia, E. [INFN and Dipartimento di Fisica, Università di Roma Tor Vergata, Roma (Italy); Corvaglia, A. [Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, Roma (Italy); INFN and Dipartimento di Matematica e Fisica, Università del Salento, Lecce (Italy); and others

    2016-04-21

    In this paper the first study of the upward going events detected by the telescopes of the Extreme Energy Event (EEE) project is reported. The EEE project consists of a detector array of Multigap Resistive Plate Chambers located at selected sites on the Italian territory. During autumn 2014 the first coordinated data taking period took place and around one billion candidate tracks were collected. Among them, of particular interest is the sample of particles which cross the telescopes from below. The results obtained demonstrate that the EEE telescopes can distinguish the electrons produced as decay products of cosmic muons stopped in the ground, or in the last chamber of the telescopes themselves, confirming the excellent performance of the system for the investigation of intriguing cosmic phenomena.

  15. CrossRef A study of upward going particles with the Extreme Energy Events telescopes

    CERN Document Server

    Abbrescia, M; Baldini, L; Ferroli, R Baldini; Batignani, G; Bencivenni, G; Bossini, E; Chiavassa, A; Cicalo, C; Cifarelli, L; Coccia, E; Corvaglia, A; De Gruttola, D; De Pasquale, S; Di Giovanni, A; D׳Incecco, M; Dreucci, M; Fabbri, F L; Fattibene, E; Ferraro, A; Forster, R; Frolov, V; Galeotti, P; Garbini, M; Gemme, G; Gnesi, I; Grazzi, S; Gustavino, C; Hatzifotiadu, D; La Rocca, P; Maggiora, A; Maron, G; Mazziotta, M N; Miozzi, S; Nania, R; Noferini, F; Nozzoli, F; Panareo, M; Panetta, M P; Paoletti, R; Perasso, L; Pilo, F; Piragino, G; Riggi, F; Righini, G C; Rodriguez, A R; Sartorelli, G; Scapparone, E; Schioppa, M; Scribano, A; Selvi, M; Serci, S; Siddi, E; Squarcia, S; Stori, L; Taiuti, M; Terreni, G; Vistoli, M C; Votano, L; Williams, M C S; Zani, S; Zichichi, A; Zuyeuski, R

    2016-01-01

    In this paper the first study of the upward going events detected by the telescopes of the Extreme Energy Event (EEE) project is reported. The EEE project consists of a detector array of Multigap Resistive Plate Chambers located at selected sites on the Italian territory. During autumn 2014 the first coordinated data taking period took place and around one billion candidate tracks were collected. Among them, of particular interest is the sample of particles which cross the telescopes from below. The results obtained demonstrate that the EEE telescopes can distinguish the electrons produced as decay products of cosmic muons stopped in the ground, or in the last chamber of the telescopes themselves, confirming the excellent performance of the system for the investigation of intriguing cosmic phenomena.

  16. VARIATIONS OF THE MUON FLUX AT SEA LEVEL ASSOCIATED WITH INTERPLANETARY ICMEs AND COROTATING INTERACTION REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Augusto, C. R. A.; Kopenkin, V.; Navia, C. E.; Tsui, K. H.; Shigueoka, H. [Instituto de Fisica, Universidade Federal Fluminense, 24210-346, Niteroi, RJ (Brazil); Fauth, A. C.; Kemp, E.; Manganote, E. J. T. [Instituto de Fisica Gleb Wathagin, Universidade Estadual de Campinas, Campinas, SP (Brazil); Leigui de Oliveira, M. A. [Centro de Ciencias Naturais e Humanas da Universidade Federal do ABC, Santo Andre, SP (Brazil); Miranda, P.; Ticona, R.; Velarde, A. [Instituto de Investigaciones Fisicas, UMSA, La Paz Bolivia (United States)

    2012-11-10

    We present the results of an ongoing survey on the association between the muon flux variation at ground level (3 m above sea level) registered by the Tupi telescopes (Niteri-Brazil, 22.{sup 0}9S, 43.{sup 0}2W, 3 m) and the Earth-directed transient disturbances in the interplanetary medium propagating from the Sun (such as coronal mass ejections (CME), and corotating interaction regions (CIRs)). Their location inside the South Atlantic Anomaly region enables the muon telescopes to achieve a low rigidity of response to primary and secondary charged particles. The present study is primarily based on experimental events obtained by the Tupi telescopes in the period from 2010 August to 2011 December. This time period corresponds to the rising phase of solar cycle 24. The Tupi events are studied in correlation with data obtained by space-borne detectors (SOHO, ACE, GOES). Identification of interplanetary structures and associated solar activity was based on the nomenclature and definitions given by the satellite observations, including an incomplete list of possible interplanetary shocks observed by the CELIAS/MTOF Proton Monitor on the Solar and Heliospheric Observatory (SOHO) spacecraft. Among 29 experimental events reported in the present analysis, there are 15 possibly associated with the CMEs and sheaths, and 3 events with the CIRs (forward or reverse shocks); the origin of the remaining 11 events has not been determined by the satellite detectors. We compare the observed time (delayed or anticipated) of the muon excess (positive or negative) signal on Earth (the Tupi telescopes) with the trigger time of the interplanetary disturbances registered by the satellites located at Lagrange point L1 (SOHO and ACE). The temporal correlation of the observed ground-based events with solar transient events detected by spacecraft suggests a real physical connection between them. We found that the majority of observed events detected by the Tupi experiment were delayed in

  17. Studies on muon tomography for archaeological internal structures scanning

    Science.gov (United States)

    Gómez, H.; Carloganu, C.; Gibert, D.; Jacquemier, J.; Karyotakis, Y.; Marteau, J.; Niess, V.; Katsanevas, S.; Tonazzo, A.

    2016-05-01

    Muon tomography is a potential non-invasive technique for internal structure scanning. It has already interesting applications in geophysics and can be used for archaeological purposes. Muon tomography is based on the measurement of the muon flux after crossing the structure studied. Differences on the mean density of these structures imply differences on the detected muon rate for a given direction. Based on this principle, Monte Carlo simulations represent a useful tool to provide a model of the expected muon rate and angular distribution depending on the composition of the studied object, being useful to estimate the expected detected muons and to better understand the experimental results. These simulations are mainly dependent on the geometry and composition of the studied object and on the modelling of the initial muon flux at surface. In this work, the potential of muon tomography in archaeology is presented and evaluated with Monte Carlo simulations by estimating the differences on the muon rate due to the presence of internal structures and its composition. The influence of the chosen muon model at surface in terms of energy and angular distributions in the final result has been also studied.

  18. Imaging a vertical shaft from a tunnel using muons

    Science.gov (United States)

    Bonal, N.; Preston, L. A.; Dorsey, D. J.; Schwellenbach, D.; Green, A.; Smalley, D.

    2015-12-01

    We use muon technology to image a vertical shaft from a tunnel. The density of the materials through which cosmic ray muons pass influences the flux of muons because muons are more attenuated by higher density material. Additionally, muons can travel several kilometers allowing measurements through deep rock. Density maps are generated from muon flux measurements to locate subsurface features like tunnel structures and ore bodies. Additionally, muon data can be jointly inverted with other data such as gravity and seismic to produce higher quality earth models than produced from a single method. We collected several weeks of data in a tunnel to image a vertical shaft. The minimum length of rock between the vertical shaft and the detector is 120 meters and the diameter of the vertical shaft is 4.6 meters. The rock the muons traveled through consists of Tertiary age volcanic tuff and steeply dipping, small-displacement faults. Results will be presented for muon flux in the tunnel and Monte-Carlo simulations of this experiment. Simulations from both GEANT4 (Geometry And Tracking version 4) and MCNP6 (Monte-Carlo N-Particle version 6) models will be compared. The tunnel overburden from muon measurements is also estimated and compared with actual the overburden. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. Geant4 Muon Digitization in the ATHENA Framework

    CERN Document Server

    Rebuzzi, D; Di Simone, A; Hasegawa, Y; Van Eldik, N

    2007-01-01

    The aim of this note is to describe the Muon Digitization software packages, completely re-written to run in the Athena framework and to interface with the Geant4 Muon Spectrometer simulation. The Muon Digitization is the simulation of the Raw Data Objects (RDO), or the electronic output, of the Muon Spectrometer. It consists of two steps: in the first step, the output of the detector simulation, the Muon Hits, is converted to Muon Digits, namely intermediate objects that can be fed into the reconstruction. In the second step, the Muon Digits are converted into RDO, the transient representation of raw data byte stream. We describe the detailed implementation of the first step of the Muon Digitization, where the detector simulation output is â€ワdigitized” into Muon Digits. We describe the fundamentals of the Muon Digitization algorithms, outlining their global structure and the infrastructure for the simulation of piled-up events. We also describe the details of the digitization validation procedures ...

  20. Calibration of the Multi-Spectral Solar Telescope Array multilayer mirrors and XUV filters

    Science.gov (United States)

    Allen, Maxwell J.; Willis, Thomas D.; Kankelborg, Charles C.; O'Neal, Ray H.; Martinez-Galarce, Dennis S.; Deforest, Craig E.; Jackson, Lisa; Lindblom, Joakim; Walker, Arthur B. C., Jr.; Barbee, Troy W., Jr.

    1993-01-01

    The Multi-Spectral Solar Telescope Array (MSSTA), a rocket-borne solar observatory, was successfully flown in May, 1991, obtaining solar images in eight XUV and FUV bands with 12 compact multilayer telescopes. Extensive measurements have recently been carried out on the multilayer telescopes and thin film filters at the Stanford Synchrotron Radiation Laboratory. These measurements are the first high spectral resolution calibrations of the MSSTA instruments. Previous measurements and/or calculations of telescope throughputs have been confirmed with greater accuracy. Results are presented on Mo/Si multilayer bandpass changes with time and experimental potassium bromide and tellurium filters.

  1. Telescopes in education

    Science.gov (United States)

    Yessayian, Rick

    Imagine sitting in your classroom with your students and controlling a Research Grade 24 inch telescope. You control where it points, you control the duration of the exposure of a high grade CCD camera, and you control all of this within your school day, on a camera half way around the globe, in real time. You can hear the telescope moving, talk to the operator sitting atop historic Mt. Wilson Observatory in California. You might be looking at comets, asteroids, galaxies, nebulas or a host of other interesting celestial objects. Perhaps you have students that are up to a real challenge -- doing real science! Students in our program have contributed the discovery of a new variable star, to the Pluto Express project, to the search for supernovas, and the collection of images of intersecting galaxies. These are among the many possible projects you might choose from. The age and ability of your students are taken into account when you choose your project. Students from Kindergarten through Grade 12 have participated in this free program. A new robotic telescope was added at Mount Wilson in 1999. The telescope is a Celestron 14" SCT mounted on a Bisque Paramount GT-1100 with an Apogee AP-7 CCD camera (512X512 pixels). In the Spring of 2001, we duplicated the 14" robotic telescope configuration and placed it at the Las Campanas Observatory, Chile (operated by the Carnegie Observatories). I installed the system in late September, 2001, and we began testing. The system requires one more upgrade and some hardware adjustments, which I will complete in June, 2002. We duplicated another 14" robotic telescope, and sent it to Brisbane Australia in January, 2002. The grand opening of the telescope will be in August 2002.

  2. Innovative relocation system for enclosures for MROI array telescopes

    Science.gov (United States)

    Busatta, A.; Ghedin, L.; Marchiori, G.; Mian, S.; Payne, I.; Pozzobon, M.

    2010-07-01

    Magdalena Ridge Observatory Interferometer (MROI) comprises an array of up to ten (10) 1.4m diameter mirror telescopes. Each of these ten telescopes will be housed inside a Unit Telescope Enclosure (UTE) which can be relocated, with the telescope inside, to any of 28 stations arranged in a "Y" configuration. These stations comprise fixed foundations with utility and data connections. There are four standard array configurations, the most compact of which one has less than 350 mm of space between the enclosures. This paper describes the relocation systems that were evaluated, including a rail based system, wheels or trolley fixed to the bottom of the enclosure, and various lifting mechanisms, all of which were analyzed to determine their performances related to the requirements. Eventually a relocation system utilizing a modified reachstacker (a transporter used to handle freight containers) has been selected. The reachstacker is capable of manoeuvring between and around the enclosures, is capable of lifting the combined weight of the enclosure with the telescope (40tons), and can manoeuvre the enclosure with minimal vibrations. A rigorous testing procedure has been performed to determine the vibrations induced in a dummy load in order to guarantee the safety of optics that must remain on the nasmyth table during the relocation. Finally we describe the lifting system, constituted by hydraulic jacks and locating pins, designed to lift and lower the enclosure and telescope during the precise positioning of the telescopes in the various stations.

  3. Chemical Abundances of Compact Planetary Nebulae

    Science.gov (United States)

    Lee, Ting-Hui; Shaw, Richard A.; Stanghellini, letizia; Riley, Ben

    2015-08-01

    We present preliminary results from an optical spectroscopic survey of compact planetary nebulae (PNe) in the Galactic disk. This is an ongoing optical+infrared spectral survey of 150 compact PNe to build a deep sample of PN chemical abundances. We obtained optical spectra of PNe with the Southern Astrophysical Research (SOAR) Telescope and Goodman High-Throughput Spectrograph between 2012 and 2015. These data were used to calculate the nebulae diagnostics such as electron temperature and density for each PN, and to derive the elemental abundances of He, N, O Ne, S and Ar. These abundances are vital to understanding the nature of the PNe, and their low- to intermediate-mass progenitor stars.

  4. Measurement of the atmospheric muon neutrino energy spectrum with IceCube in the 79- and 86-String configuration

    Directory of Open Access Journals (Sweden)

    Ruhe T.

    2016-01-01

    Full Text Available IceCube is a neutrino telescope with an instrumented volume of one cubic kilometer. A total of 5160 Digital Optical Modules (DOMs is deployed on 86 strings forming a three dimensional detector array. Although primarily designed for the detection of neutrinos from astrophysical sources, the detector can be used for spectral measurements of atmospheric neutrinos. These spectral measurements are hindered by a dominant background of atmospheric muons. State-of-the-art techniques from Machine Learning and Data Mining are required to select a high-purity sample of atmospheric neutrino candidates. The energy spectrum of muon neutrinos is obtained from energy-dependent input variables by utilizing regularized unfolding. The results obtained using IceCube in the 79- and 86-string configuration are presented in this paper.

  5. Model Compaction Equation

    African Journals Online (AJOL)

    exponential loss of porosity with depth (Ramm et al., 1997). Compaction coefficient and percentage compaction are two .... distribution of overpressure zones in the Niger. Delta in order to further investigate the overpressure. ..... light of the theory of continental drift. Geology Magazine, 105: 385 - 397. Weber, K.J. And E.M. ...

  6. The Muon $g$-$2$ Experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Gohn, Wesley [Kentucky U.

    2017-12-29

    A new measurement of the anomalous magnetic moment of the muon, $a_{\\mu} \\equiv (g-2)/2$, will be performed at the Fermi National Accelerator Laboratory with data taking beginning in 2017. The most recent measurement, performed at Brookhaven National Laboratory (BNL) and completed in 2001, shows a 3.5 standard deviation discrepancy with the standard model value of $a_\\mu$. The new measurement will accumulate 21 times the BNL statistics using upgraded magnet, detector, and storage ring systems, enabling a measurement of $a_\\mu$ to 140 ppb, a factor of 4 improvement in the uncertainty the previous measurement. This improvement in precision, combined with recent improvements in our understanding of the QCD contributions to the muon $g$-$2$, could provide a discrepancy from the standard model greater than 7$\\sigma$ if the central value is the same as that measured by the BNL experiment, which would be a clear indication of new physics.

  7. COmBined muon reconstruction for Atlas

    CERN Document Server

    Lavrijsen, W T L P; Kittel, E.W.

    2002-01-01

    The Atlas detector, which is being built for the LHC collider experiment at CERN, near Geneva, has as primary objective the discovery or exclusion of the Higgs boson. This boson is an important ingredient of the Standard Model of elementary particles, but has not yet been experimentally established. Atlas contains two tracking subdetectors, separated by a calorimeter, capable of detecting muon trajectories. The best measurement of the parameters of those particles, mostly muons with a large enough energy, that traverse the calorimeter are obtained by a global fit that includes both tracking subdetectors. A software package, COBRA, which implements an abstraction that allows for the application of the same track fit to either subdetector, the global fit, or any arbitrary detector configuration has been developed. The COBRA method and studies of its performance, based on single-track Monte Carlo simulation, are presented. The COBRA package is then used to assess the effect of combined reconstruction on the disc...

  8. The Muon g-2 experiment at Fermilab

    Directory of Open Access Journals (Sweden)

    Anastasi A.

    2015-01-01

    Full Text Available There is a long standing discrepancy between the Standard Model prediction for the muon g-2 and the value measured by the Brookhaven E821 Experiment. At present the discrepancy stands at about three standard deviations, with a comparable accuracy between experiment and theory. Two new proposals – at Fermilab and J-PARC – plan to improve the experimental uncertainty by a factor of 4, and it is expected that there will be a significant reduction in the uncertainty of the Standard Model prediction. I will review the status of the planned experiment at Fermilab, E989, which will analyse 21 times more muons than the BNL experiment and discuss how the systematic uncertainty will be reduced by a factor of 3 such that a precision of 0.14 ppm can be achieved.

  9. Muon Neutrino Disappearance and Tau Neutrino Appearance

    CERN Document Server

    Sanchez, M C

    2011-01-01

    Since evidence for neutrino oscillations was first observed in 1998, the study of muon neutrino oscillations has been aggressively pursued. In doing so, atmospheric and accelerator-based neutrino experiments have measured with the highest precision two fundamental neutrino parameters: the mass-square difference and the large mixing angle in the atmospheric neutrino sector. Furthermore, the dominant mode of these oscillations has recently been established to be from muon to tau neutrinos with both direct and indirect observations. Also, for the first time the anti-neutrino counterparts to these oscillation parameters are being studied. While a consistent picture of the mu-tau sector is thus emerging, a new generation of accelerator-based experiments using off-axis neutrino beams to access this sector could lead to new discoveries.

  10. SuperB Muon Detector Prototype

    Energy Technology Data Exchange (ETDEWEB)

    2010-11-01

    The test objective is to optimize the muon identification in an experiment at a Super B Factory. To accomplish this, experimenters will study the muon identification capability of a detector with different iron configurations at different beam energies. The detector is a full scale prototype, composed of a stack of iron tiles. The segmentation of the iron allows the study of different configurations. Between the tiles, one or two extruded scintillator slabs can be inserted to test two different readout options; a Binary Readout and a Time Readout. In the Binary Readout option the two coordinates are given by the two orthogonal scintillator bars, and the spatial resolution is driven by the bar width. In the Time Readout option one coordinate is determined by the scintillator position and the other by the arrival time of the signal read with a TDC.

  11. Data analysis challenges for the Einstein Telescope

    Science.gov (United States)

    Bosi, Leone; Porter, Edward K.

    2011-02-01

    The Einstein Telescope is a proposed third generation gravitational wave detector that will operate in the region of 1 Hz to a few kHz. As well as the inspiral of compact binaries composed of neutron stars or black holes, the lower frequency cut-off of the detector will open the window to a number of new sources. These will include the end stage of inspirals, plus merger and ringdown of intermediate mass black holes, where the masses of the component bodies are on the order of a few hundred solar masses. There is also the possibility of observing intermediate mass ratio inspirals, where a stellar mass compact object inspirals into a black hole which is a few hundred to a few thousand times more massive. In this article, we investigate some of the data analysis challenges for the Einstein Telescope such as the effects of increased source number, the need for more accurate waveform models and the some of the computational issues that a data analysis strategy might face.

  12. Robotic and Survey Telescopes

    Science.gov (United States)

    Woźniak, Przemysław

    Robotic telescopes are revolutionizing the way astronomers collect their dataand conduct sky surveys. This chapter begins with a discussion of principles thatguide the process of designing, constructing, and operating telescopes andobservatories that offer a varying degree of automation, from instruments remotelycontrolled by observers to fully autonomous systems requiring no humansupervision during their normal operations. Emphasis is placed on designtrade-offs involved in building end-to-end systems intended for a wide range ofscience applications. The second part of the chapter contains descriptions ofseveral projects and instruments, both existing and currently under development.It is an attempt to provide a representative selection of actual systems thatillustrates state of the art in technology, as well as important ideas and milestonesin the development of the field. The list of presented instruments spans the fullrange in size starting from small all-sky monitors, through midrange robotic andsurvey telescopes, and finishing with large robotic instruments and surveys.Explosive growth of telescope networking is enabling entirely new modesof interaction between the survey and follow-up observing. Increasingimportance of standardized communication protocols and software is stressed.These developments are driven by the fusion of robotic telescope hardware,massive storage and databases, real-time knowledge extraction, and datacross-correlation on a global scale. The chapter concludes with examplesof major science results enabled by these new technologies and futureprospects.

  13. The Travelling Telescope

    Science.gov (United States)

    Murabona Oduori, Susan

    2015-08-01

    The telescope has been around for more than 400 years, and through good use of it scientists have made many astonishing discoveries and begun to understand our place in the universe. Most people, however, have never looked through one. Yet it is a great tool for cool science and observation especially in a continent and country with beautifully dark skies. The Travelling Telescope project aims to invite people outside under the stars to learn about those curious lights in the sky.The Travelling Telescope aims to promote science learning to a wide range of Kenyan schools in various locations exchanging knowledge about the sky through direct observations of celestial bodies using state of the art telescopes. In addition to direct observing we also teach science using various hands-on activities and astronomy software, ideal for explaining concepts which are hard to understand, and for a better grasp of the sights visible through the telescope. We are dedicated to promoting science using astronomy especially in schools, targeting children from as young as 3 years to the youth, teachers, their parents and members of the public. Our presentation focuses on the OAD funded project in rural coastal Kenya.

  14. Radio Telescope Reflectors

    Science.gov (United States)

    Baars, Jacob W. M.; Kärcher, Hans J.

    2017-11-01

    This book demonstrates how progress in radio astronomy is intimately linked to the development of reflector antennas of increasing size and precision. The authors describe the design and construction of major radio telescopes as those in Dwingeloo, Jodrell Bank, Parkes, Effelsberg and Green Bank since 1950 up to the present as well as millimeter wavelength telescopes as the 30m MRT of IRAM in Spain, the 50m LMT in Mexico and the ALMA submillimeter instrument. The advances in methods of structural design and coping with environmental influences (wind, temperature, gravity) as well as application of new materials are explained in a non-mathematical, descriptive and graphical way along with the story of the telescopes. Emphasis is placed on the interplay between astronomical and electromagnetic requirements and structural, mechanical and control solutions. A chapter on management aspects of large telescope projects closes the book. The authors address a readership with interest in the progress of engineering solutions applied to the development of radio telescope reflectors and ground station antennas for satellite communication and space research. The book will also be of interest to historians of science and engineering with an inclination to astronomy.

  15. The South Pole Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ruhl, J.E.; Ade, P.A.R.; Carlstrom, J.E.; Cho, H.M.; Crawford,T.; Dobbs, M.; Greer, C.H.; Halverson, N.W.; Holzapfel, W.L.; Lanting,T.M.; Lee, A.T.; Leitch, E.M.; Leong, J.; Lu, W.; Lueker, M.; Mehl, J.; Meyer, S.S.; Mohr, J.J.; Padin, S.; Plagge, T.; Pryke, C.; Runyan, M.C.; Schwan, D.; Sharp, M.K.; Spieler, H.; Staniszewski, Z.; Stark, A.A.

    2004-11-04

    A new 10 meter diameter telescope is being constructed for deployment at the NSF South Pole research station. The telescope is designed for conducting large-area millimeter and sub-millimeter wave surveys of faint, low contrast emission, as required to map primary and secondary anisotropies in the cosmic microwave background. To achieve the required sensitivity and resolution, the telescope design employs an off-axis primary with a 10 m diameter clear aperture. The full aperture and the associated optics will have a combined surface accuracy of better than 20 microns rms to allow precision operation in the submillimeter atmospheric windows. The telescope will be surrounded with a large reflecting ground screen to reduce sensitivity to thermal emission from the ground and local interference. The optics of the telescope will support a square degree field of view at 2mm wavelength and will feed a new 1000-element micro-lithographed planar bolometric array with superconducting transition-edge sensors and frequency-multiplexed readouts. The first key project will be to conduct a survey over 4000 degrees for galaxy clusters using the Sunyaev-Zeldovich Effect. This survey should find many thousands of clusters with a mass selection criteria that is remarkably uniform with redshift. Armed with redshifts obtained from optical and infrared follow-up observations, it is expected that the survey will enable significant constraints to be placed on the equation of state of the dark energy.

  16. RF separator for cloud muons at TRIUMF

    Energy Technology Data Exchange (ETDEWEB)

    Blackmore, E.W.; Bryman, D.A.; Cresswell, J.V.; Doornbos, J.; Erdman, K.L.; MacDonald, J.A.; Poirier, R.L.; Pearce, R.M.; Poutissou, J.M.; Spuller, J. (British Columbia Univ., Vancouver (Canada). TRIUMF Facility)

    1985-02-01

    A particle separator utilizing crossed magnetic and RF electric fields has been incorporated into the TRIUMF M9 secondary channel to produce a clean negative muon beam at 77 MeV/c+-5%. The separator is driven at the main cyclotron frequency (23 MHz) and phase locked to the primary proton beam. The pion and electron contaminants in the beam are suppressed to <0.1% and <1%, respectively.

  17. RF separator for cloud muons at TRIUMF

    Energy Technology Data Exchange (ETDEWEB)

    Blackmore, E.W.; Bryman, D.A.; Cresswell, J.V.; Doornbos, J.; Erdman, K.L.; MacDonald, J.A.; Poirier, R.L.; Pearce, R.M.; Poutissou, J.M.; Spuller, J.

    1985-02-01

    A particle separator utilizing crossed magnetic and RF electric fields has been incorporated into the TRIUMF M9 secondary channel to produce a clean negative muon beam at 77 MeV/c +- 5%. The separator is driven at the main cyclotron frequency (23 MHz) and phase locked to the primary proton beam. The pion and electron contaminants in the beam are suppressed to <0.1% and <1%, respectively. (orig.).

  18. Applications of Cosmic Ray Muon Radiography

    Science.gov (United States)

    Guardincerri, E.; Durham, J. M.; Morris, C. L.; Rowe, C. A.; Poulson, D. C.; Bacon, J. D.; Plaud-Ramos, K.; Morley, D. J.

    2015-12-01

    The Dome of Santa Maria del Fiore, Florence Cathedral, was built between 1420 and 1436 by architect Filippo Brunelleschi and it is now cracking under its own weight. Engineering efforts are underway to model the dome's structure and reinforce it against further deterioration. According to some scholars, Brunelleschi might have built reinforcement structures into the dome itself; however, the only confirmed known subsurface reinforcement is a chain of iron and stone around the dome's base. Tomography with cosmic ray muons is a non-destructive imaging method that can be used to image the interior of the wall and therefore ascertain the layout and status of any iron substructure in the dome. We will show the results from a muon tomography measurement of iron hidden in a mockup of the dome's wall performed at Los Alamos National Lab in 2015. The sensitivity of this technique, and the status of this project will be also discussed. At last, we will show results on muon attenuation radiography of larger shallow targets.

  19. Performance Validation of the ATLAS Muon Spectrometer

    CERN Document Server

    Mair, Katharina

    ATLAS (A Toroidal LHC ApparatuS) is a general-purpose experiment for the future Large Hadron Collider (LHC) at CERN, which is scheduled to begin operation in the year 2007, providing experiments with proton-proton collisions. The center-of-mass energy of 14TeV and the design luminosity of 1034 cm−2s−1 will allow to explore many new aspects of fundamental physics. The ATLAS Muon Spectrometer aims at a momentum resolution better than 10% for transverse momentum values ranging from pT = 6 GeV to pT = 1TeV. Precision tracking will be performed by Ar-CO2-gas filled Monitored Drift Tube chambers (MDTs), with a single wire resolution of < 100 μm. In total, about 1 200 chambers, arranged in a large structure, will allow muon track measurements over distances up to 15m in a magnetic field of 0.5 T. Given the large size of the spectrometer it is impossible to keep the shape of the muon chambers and their positions stable within the requested tracking accuracy of 50 μm. Therefore the concept of an optical alig...

  20. Integration Tests of the Muon System

    CERN Multimedia

    Cerutti, F; Palestini, S

    A complex large-size prototype of the Muon system is installed in the test area H8B in Prévessin; the set-up includes chambers belonging to the three layers of the Barrel Spectrometer (on the right in Figure 1), and chambers belonging to one octant of the End Cap Spectrometer (center and left side of Figure 1). Figure 1: Set-up of the Muon spectrometer integration test. The installation accurately reproduces the geometry of regions of the ATLAS Muon Spectrometer, with the H8 beam-line crossing the detectors at positions/angles corresponding to particles with polar angle of 75 ± 4 and 15 ± 4 degrees, respectively for the Barrel and the End Cap. A comprehensive test program is being carried out with this set-up, ranging from tests of support frames (octant of the MDT BigWheel and of the SmallWheel) and of handling/installation of tracking chambers, to real-size tests of the alignment systems, together with accurate studies of performance and calibration of the precision chambers, and with develo...

  1. Muon Beam Helical Cooling Channel Design

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland; Ankenbrandt, Charles; Flanagan, G; Kazakevich, G M; Marhauser, Frank; Neubauer, Michael; Roberts, T; Yoshikawa, C; Derbenev, Yaroslav; Morozov, Vasiliy; Kashikhin, V S; Lopes, Mattlock; Tollestrup, A; Yonehara, Katsuya; Zloblin, A

    2013-06-01

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet.

  2. Advances in Beam Cooling for Muon Colliders

    Energy Technology Data Exchange (ETDEWEB)

    R.P. Johnson, Y.S. Derbenev

    2006-09-01

    A six-dimensional (6D) ionization cooling channel based on helical magnets surrounding RF cavities filled with dense hydrogen gas is the basis for the latest plans for muon colliders. This helical cooling channel (HCC) has solenoidal, helical dipole, and helical quadrupole magnetic fields, where emittance exchange is achieved by using a continuous homogeneous absorber. Momentum-dependent path length differences in the dense hydrogen energy absorber provide the required correlation between momentum and ionization loss to accomplish longitudinal cooling. Recent studies of an 800 MHz RF cavity pressurized with hydrogen, as would be used in this application, show that the maximum gradient is not limited by a large external magnetic field, unlike vacuum cavities. Two new cooling ideas, Parametric-resonance Ionization Cooling and Reverse Emittance Exchange, will be employed to further reduce transverse emittances to a few mm-mr, which allows high luminosity with fewer muons than previously imagined. We describe these new ideas as well as a new precooling idea based on a HCC with z dependent fields that is being developed for an exceptional 6D cooling demonstration experiment. The status of the designs, simulations, and tests of the cooling components for a high luminosity, low emittance muon collider will be reviewed.

  3. Muon Elastic Scattering with MUSE at PSI

    Directory of Open Access Journals (Sweden)

    Kohl M.

    2014-03-01

    Full Text Available The proton radius puzzle is the disagreement between the much more precise radius determined from muonic hydrogen spectroscopy and the numerous atomic hydrogen and electron scattering determinations. The puzzle has several possible resolutions, including physics beyond the Standard Model, missing conventional physics, and errors or underestimated uncertainties in the extraction of the radius from the data. New experiments are needed to confirm and / or resolve the puzzle. The MUon Scattering Experiment (MUSE recently approved at PSI has been designed to help resolve the puzzle by measuring the radius in a way not yet done. Similar to electron scattering, the radius will be extracted from the observed change of the charge form factor with momentum transfer. The experiment uses the πM1 beamline to provide a mixed secondary muon and electron (and pion beam of either positive or negative charge. The comparison of muon and electron scattering measured simultaneously determines the consistency of the form factors in the two cases with high precision. Comparison of yields from both charge signs will at the same time disentangle the effect of two-photon exchange. The proton charge radius can be extracted from each set of scattering data. The physics case and status of MUSE will be discussed.

  4. Muons and Muonium in Molecular Physics

    CERN Multimedia

    2002-01-01

    The aim of this experiment is to gain some insight on the most fundamental processes involved in the reaction of muons and muonium with organic molecules. Two components of the @mSR signal in an organic sample can be identified: a diamagnetic fraction precessing at (or very close to) the Larmor frequency and a paramagnetic fraction giving rise to frequencies characteristic of the muon's coupling with an unpaired electron spin.\\\\ \\\\ .uc 1) diamagnetic fraction \\\\ \\\\ We intend to study the occurence of an acid-base reaction of the type: .ce @m|+ + B @A (MuB)|+ and its competition with reactions that produce muonium. The best suited model systems for this process are aqueous solutions in which muon and electron scavengers, or anionic bases, in high concentration can be added. In order to further distinguish between different types of (MuB)|+ species the chemical shifts of these products will be studied.\\\\ \\\\ .uc 2) paramagnetic fraction \\\\ \\\\ Work will continue on muonic radicals formed by muonium addition at a ...

  5. Next Generation Muon g-2 Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hertzog, David W. [Washington U., Seattle

    2015-12-02

    I report on the progress of two new muon anomalous magnetic moment experiments, which are in advanced design and construction phases. The goal of Fermilab E989 is to reduce the experimental uncertainty of $a_\\mu$ from Brookhaven E821 by a factor of 4; that is, $\\delta a_\\mu \\sim 16 \\times 10^{-11}$, a relative uncertainty of 140~ppb. The method follows the same magic-momentum storage ring concept used at BNL, and pioneered previously at CERN, but muon beam preparation, storage ring internal hardware, field measuring equipment, and detector and electronics systems are all new or upgraded significantly. In contrast, J-PARC E34 will employ a novel approach based on injection of an ultra-cold, low-energy, muon beam injected into a small, but highly uniform magnet. Only a small magnetic focusing field is needed to maintain storage, which distinguishes it from CERN, BNL and Fermilab. E34 aims to roughly match the previous BNL precision in their Phase~1 installation.

  6. Muon astronomy with the MACRO detector

    CERN Document Server

    Ahlen, S P; Antolini, R; Auriemma, G; Baldini, A; Bam, B B; Barbarino, G C; Barish, B C; Battistoni, G; Bellotti, R; Bemporad, C; Bernardini, P; Bilokon, H; Bisi, V; Bloise, C; Bussino, S; Cafagna, F; Calicchio, M; Campana, P; Campana, D; Carboni, M; Cecchini, S; Cei, F; Chiarella, V; Chiera, C; Cobis, A; Cormack, R; Corona, A; Coutu, S; De Cataldo, G; Dekhissi, H; De Marzo, C; De Vincenzi, M; Di Credico, A; Diehl, E; Erriquez, O; Favuzzi, C; Ficenec, D; Forti, C; Foti, L; Fusco, P; Giacomelli, G; Giannini, G; Giglietto, N; Giubellino, P; Grassi, M; Green, P; Grillo, A; Guarino, F; Gustavino, C; Habig, A; Heinz, R; Hong, J T; Iarocci, Enzo; Katsavounidis, E; Kearns, E T; Klein, S; Kyriazopoulou, S; Lamanna, E; Lane, C; Lee, C; Levin, D S; Lipari, P; Liu, G; Liu, R; Longo, M J; Ludlam, G; Mancarella, G; Mandrioli, G; Margiotta-Neri, A; Marin, A; Marini, A; Martello, D; Martellotti, G; Marzari-Chiesa, A; Masera, M; Matteuzzi, P; Michael, D; Miller, L; Monacelli, P; Monteno, M; Mufson, S L; Musser, J; Nutter, S L; Okada, C; Osteria, G; Palamara, O; Parlati, S; Patera, V; Patrizii, L; Pazzi, R; Peck, C W; Petrakis, J; Petrera, S; Pignatano, N D; Pistilli, P; Predieri, F; Ramello, L; Reynoldson, J; Ronga, F; Rosa, G; Satriano, C; Satta, L; Scapparone, E; Scholberg, K; Sciubba, A; Serra-Lugaresi, P; Severi, M; Sitta, M; Spinelli, P; Spinetti, M; Spurio, M; Steele, J V; Steinberg, R; Stone, J L; Sulak, Lawrence R; Surdo, A; Tarlé, G; Togo, V; Valente, V; Verdone, G R; Walter, C W; Webb, R; Worstell, W

    1993-01-01

    Summary form only given. An all-sky survey for cosmic point sources yielding a DC excess of cosmic ray muons above the expected background has been performed using the single plus double muon events collected between June 1991 and 20 September 2000 by the streamer tube system of MACRO. A total of 45.192 million selected muons, single plus double, were collected in 60775.5 h of effective livetime. No statistically significant DC excess has been found. For selected sources we made a search for DC excesses, and upper flux limits were established; they are at the level of 10/sup -13/cm/sup -2/S/sup -1/. Periodicity (AC) analyses have been performed for Cygnus X-3 and Hercules X-1; the AC limits are at the level of 10/sup -13/cm/sup -2/S/sup -1/. Searches for bursts were made for CygX-3, Mrk 421, Mrk 501 and the Crab. (1 refs).

  7. LHCb - Novel Muon Identification Algorithms for the LHCb Upgrade

    CERN Multimedia

    Cogoni, Violetta

    2016-01-01

    The present LHCb Muon Identification procedure was optimised to guarantee high muon detection efficiency at the istantaneous luminosity $\\mathcal{L}$ of $2\\cdot10^{32}$~cm$^{-2}$~s$^{-1}$. In the current data taking conditions, the luminosity is higher than foreseen and the low energy background contribution to the visible rate in the muon system is larger than expected. A worse situation is expected for Run III when LHCb will operate at $\\mathcal{L} = 2\\cdot10^{33}$~cm$^{-2}$~s$^{-1}$ causing the high particle fluxes to deteriorate the muon detection efficiency, because of the increased dead time of the electronics, and in particular to worsen the muon identification capabilities, due to the increased contribution of the background, with deleterious consequences especially for the analyses requiring high purity signal. In this context, possible new algorithms for the muon identification will be illustrated. In particular, the performance on combinatorial background rejection will be shown, together with the ...

  8. A Receiver System for the TileCal Muon Signals

    CERN Document Server

    Ciodaro, T

    2009-01-01

    The muon signals of the hadronic calorimeter of ATLAS (TileCal) have successfully been used to trigger on cosmic rays. These muon signals provided by the trigger tower adder system is currently not used by ATLAS level-one muon trigger, as it has been foreseen for a near-future upgrade. Studies showed that the signal-to-noise ratio is increased if muon signals from the same cell of the last TileCal segmentation layer are summed up together. This work presents a receiver system design for the TileCal muon signals, which is based on the analog sum of both readout signals of the last TileCal detection layer. The receiver system interfaces to ATLAS level-one trigger system aiming at improving overall muon detection.

  9. Accelerator performance analysis of the Fermilab Muon Campus

    Science.gov (United States)

    Stratakis, Diktys; Convery, Mary E.; Johnstone, Carol; Johnstone, John; Morgan, James P.; Still, Dean; Crnkovic, Jason D.; Tishchenko, Vladimir; Morse, William M.; Syphers, Michael J.

    2017-11-01

    Fermilab is dedicated to hosting world-class experiments in search of new physics that will operate in the coming years. The Muon g-2 Experiment is one such experiment that will determine with unprecedented precision the muon anomalous magnetic moment, which offers an important test of the Standard Model. We describe in this study the accelerator facility that will deliver a muon beam to this experiment. We first present the lattice design that allows for efficient capture, transport, and delivery of polarized muon beams. We then numerically examine its performance by simulating pion production in the target, muon collection by the downstream beam line optics, as well as transport of muon polarization. We finally establish the conditions required for the safe removal of unwanted secondary particles that minimizes contamination of the final beam.

  10. Telescopes and Techniques

    CERN Document Server

    Kitchin, C R

    2013-01-01

    Telescopes and Techniques has proved itself in its first two editions, having become probably one of the most widely used astronomy texts, both for amateur astronomers and astronomy and astrophysics undergraduates. Both earlier editions of the book were widely used for introductory practical astronomy courses in many universities. In this Third Edition the author guides the reader through the mathematics, physics and practical techniques needed to use today's telescopes (from the smaller models to the larger instruments installed in many colleges) and how to find objects in the sky. Most of the physics and engineering involved is described fully and requires little prior knowledge or experience. Both visual and electronic imaging techniques are covered, together with an introduction to how data (measurements) should be processed and analyzed. A simple introduction to radio telescopes is also included. Brief coverage of the more advanced topics of photometry and spectroscopy are included, but mainly to enable ...

  11. Corot telescope (COROTEL)

    Science.gov (United States)

    Viard, Thierry; Mathieu, Jean-Claude; Fer, Yann; Bouzou, Nathalie; Spalinger, Etienne; Chataigner, Bruno; Bodin, Pierre; Magnan, Alain; Baglin, Annie

    2017-11-01

    COROTEL is the telescope of the COROT Satellite which aims at measuring stellar flux variations very accurately. To perform this mission, COROTEL has to be very well protected against straylight (from Sun and Earth) and must be very stable with time. Thanks to its high experience in this field, Alcatel Alenia Space has proposed, manufactured and tested an original telescope concept associated with a high baffling performance. Since its delivery to LAM (Laboratoire d'Astrophysique de Marseille, CNRS) the telescope has passed successfully the qualification tests at instrument level performed by CNES. Now, the instrument is mounted on a Proteus platform and should be launched end of 2006. The satellite should bring to scientific community for the first time precious data coming from stars and their possible companions.

  12. Configurable Aperture Space Telescope

    Science.gov (United States)

    Ennico, Kimberly; Vassigh, Kenny; Bendek, Selman; Young, Zion W; Lynch, Dana H.

    2015-01-01

    In December 2014, we were awarded Center Innovation Fund to evaluate an optical and mechanical concept for a novel implementation of a segmented telescope based on modular, interconnected small sats (satlets). The concept is called CAST, a Configurable Aperture Space Telescope. With a current TRL is 2 we will aim to reach TLR 3 in Sept 2015 by demonstrating a 2x2 mirror system to validate our optical model and error budget, provide strawman mechanical architecture and structural damping analyses, and derive future satlet-based observatory performance requirements. CAST provides an alternative access to visible andor UV wavelength space telescope with 1-meter or larger aperture for NASA SMD Astrophysics and Planetary Science community after the retirement of HST.

  13. Muon Sources for Particle Physics - Accomplishments of the Muon Accelerator Program

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Stratakis, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Palmer, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Delahaye, J.-P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Summers, D. [Univ. of Mississippi, Oxford, MS (United States); Ryne, R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cummings, M. A. [Muons, Inc., Batavia, IL(United States)

    2017-05-01

    The Muon Accelerator Program (MAP) completed a four-year study on the feasibility of muon colliders and on using stored muon beams for neutrinos. That study was broadly successful in its goals, establishing the feasibility of lepton colliders from the 125 GeV Higgs Factory to more than 10 TeV, as well as exploring using a μ storage ring (MSR) for neutrinos, and establishing that MSRs could provide factory-level intensities of νe (ν$\\bar{e}$) and ν$\\bar{μ}$) (νμ) beams. The key components of the collider and neutrino factory systems were identified. Feasible designs and detailed simulations of all of these components were obtained, including some initial hardware component tests, setting the stage for future implementation where resources are available and clearly associated physics goals become apparent

  14. ATLAS Muon Reconstruction Performance in LHC Run 2

    CERN Document Server

    Koehler, Nicolas Maximilian; The ATLAS collaboration

    2015-01-01

    The performance measurements of the new muon reconstruction algorithm during the early data taking of the LHC in 2015 at a centre-of-mass energy of $\\sqrt{s}=13\\,$TeV are discussed. The muon reconstruction efficiency, transverse momentum resolution and scale has been measured in the different detector regions and for muon transverse momenta between 4 and 110~GeV using datasets containing $J/\\psi\\rightarrow\\mu^{+}\\mu^{-}$ and $Z\\rightarrow\\mu^{+}\\mu^{-}$ decays.

  15. A realistic algorithm for the level 0 muon trigger

    CERN Document Server

    Aslanides, Elie; Derue, F; Dinkespiler, B; Duval, P Y; Le Gac, R; Leroy, o; Liotard, P L; Menouni, M; Tsaregorodtsev, A Yu

    2003-01-01

    The LHCb level zero muon trigger is a hardware processor selecting high transverse momentum muons. The algorithm used to perform this selection has been refined since the Technical Proposal. The simulation of this algorithm is now very close to the foreseen hardware implementation. In this note, we give all the details of this algorithm, corresponding to the C++ package L0Muon/v6r5 used for the trigger TDR.

  16. Muon reconstruction performance of the ATLAS detector in 2016

    CERN Document Server

    Marchese, Luigi; The ATLAS collaboration

    2017-01-01

    Muons are of key importance to study some of the most interesting physics topics at the LHC. We show the status of the performance of the muon reconstruction in the analysis of proton-proton collisions at the LHC, recorded by the ATLAS detector in 2016. Reconstruction efficiency and momentum resolution have been measured using "$J/\\psi$" and "$Z$" decays for different classes of reconstructed muons.

  17. Challenging the Standard Model with the muon g − 2

    Indian Academy of Sciences (India)

    The first of these two options has been widely discussed in [2]; we will focus on the second one and analyse some of its implications. But first, let us review the muon g−2 status. 2. The Standard Model prediction of the muon g−2. The SM prediction of the anomalous magnetic moment of the muon, aSM. µ , is usually split into ...

  18. The Muon Portal Project: A large-area tracking detector for muon tomography

    Science.gov (United States)

    Riggi, F.

    2016-05-01

    The Muon Portal Project [1] is a joint initiative between research and industrial partners, aimed at the construction of a real size detector protoype to search for hidden high-Z fissile materials inside containers by the muon scattering technique. The detector is based on a set of 48 detection modules (1 m × 3 m), so as to provide four X-Y detection planes, two placed above and two below the container to be inspected. After a research and development phase, which led to the choice and test of the individual components, the construction of the full size detector has already started and will be completed in a few months.

  19. Muon g-2 Reconstruction and Analysis Framework for the Muon Anomalous Precession Frequency

    Energy Technology Data Exchange (ETDEWEB)

    Khaw, Kim Siang [Washington U., Seattle

    2017-10-21

    The Muon g-2 experiment at Fermilab, with the aim to measure the muon anomalous magnetic moment to an unprecedented level of 140~ppb, has started beam and detector commissioning in Summer 2017. To deal with incoming data projected to be around tens of petabytes, a robust data reconstruction and analysis chain based on Fermilab's \\textit{art} event-processing framework is developed. Herein, I report the current status of the framework, together with its novel features such as multi-threaded algorithms for online data quality monitor (DQM) and fast-turnaround operation (nearline). Performance of the framework during the commissioning run is also discussed.

  20. Time correlations of high energy muons in an underground detector

    CERN Document Server

    Becherini, Y; Chiarusi, T; Cozzi, M; Dekhissi, H; Derkaoui, J; Esposito, L S; Giacomelli, G; Giglietto, N; Giorgini, M; Maaroufi, F; Mandrioli, G; Manzoor, S; Margiotta, A; Moussa, A

    2005-01-01

    We present the result of a search for correlations in the arrival times of high energy muons collected from 1995 till 2000 with the streamer tube system of the complete MACRO detector at the underground Gran Sasso Lab. Large samples of single muons (8.6 million), double muons (0.46 million) and multiple muons with multiplicities from 3 to 6 (0.08 million) were selected. These samples were used to search for time correlations of cosmic ray particles coming from the whole upper hemisphere or from selected space cones. The results of our analyses confirm with high statistics a random arrival time distribution of high energy cosmic rays.

  1. The Muon system of the run II D0 detector

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V.M.; Acharya, B.S.; Alexeev, G.D.; Alkhazov, G.; Anosov, V.A.; Baldin, B.; Banerjee, S.; Bardon, O.; Bartlett, J.F.; Baturitsky, M.A.; Beutel, D.; Bezzubov,; Bodyagin, V.; Butler, J.M.; Cease, H.; Chi, E.; Denisov, D.; Denisov, S.P.; Diehl, H.T.; Doulas, S.; Dugad, S.R.; /Beijing, Inst. High Energy Phys. /Charles U. /Prague, Tech.

    2005-03-01

    The authors describe the design, construction and performance of the upgraded D0 muon system for Run II of the Fermilab Tevatron collider. Significant improvements have been made to the major subsystems of the D0 muon detector: trigger scintillation counters, tracking detectors, and electronics. The Run II central muon detector has a new scintillation counter system inside the iron toroid and an improved scintillation counter system outside the iron toroid. In the forward region, new scintillation counter and tracking systems have been installed. Extensive shielding has been added in the forward region. A large fraction of the muon system electronics is also new.

  2. A COMPLETE SCHEME FOR IONIZATION COOLING FOR A MUON COLLIDER.

    Energy Technology Data Exchange (ETDEWEB)

    PALMER,R.B.; BERG, J.S.; FERNOW, R.C.; GALLARDO, J.C.; KIRK, H.G.; ALEXAHIN, Y.; NEUFFER, D.; KAHN, S.A.; SUMMERS, D.

    2007-06-25

    A complete scheme for production and cooling a muon beam for three specified muon colliders is presented. Parameters for these muon colliders are given. The scheme starts with the front end of a proposed neutrino factory that yields bunch trains of both muon signs. Emittance exchange cooling in slow helical lattices reduces the longitudinal emittance until it becomes possible to merge the trains into single bunches, one of each sign. Further cooling in all dimensions is applied to the single bunches in further slow helical lattices. Final transverse cooling to the required parameters is achieved in 50 T solenoids using high TC superconductor at 4 K. Preliminary simulations of each element are presented.

  3. Small Valdivia compact spaces

    CERN Document Server

    Kubi's, W; Kubi\\'s, Wieslaw; Michalewski, Henryk

    2005-01-01

    We prove a preservation theorem for the class of Valdivia compact spaces, which involves inverse sequences of ``simple'' retractions. Consequently, a compact space of weight $\\loe\\aleph_1$ is Valdivia compact iff it is the limit of an inverse sequence of metric compacta whose bonding maps are retractions. As a corollary, we show that the class of Valdivia compacta of weight at most $\\aleph_1$ is preserved both under retractions and under open 0-dimensional images. Finally, we characterize the class of all Valdivia compacta in the language of category theory, which implies that this class is preserved under all continuous weight preserving functors.

  4. Compact boson stars

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Betti [School of Engineering and Science, Jacobs University, Postfach 750 561, D-28725 Bremen (Germany); Kleihaus, Burkhard; Kunz, Jutta [Institut fuer Physik, Universitaet Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Schaffer, Isabell, E-mail: i.schaffer@jacobs-university.de [School of Engineering and Science, Jacobs University, Postfach 750 561, D-28725 Bremen (Germany)

    2012-07-24

    We consider compact boson stars that arise for a V-shaped scalar field potential. They represent a one parameter family of solutions of the scaled Einstein-Gordon equations. We analyze the physical properties of these solutions and determine their domain of existence. Along their physically relevant branch emerging from the compact Q-ball solution, their mass increases with increasing radius. Employing arguments from catastrophe theory we argue that this branch is stable, until the maximal value of the mass is reached. There the mass and size are on the order of magnitude of the Schwarzschild limit, and thus the spiraling respectively oscillating behaviour, well known for compact stars, sets in.

  5. The Liverpool Telescope

    Science.gov (United States)

    Smith, Robert J.; Bates, S. D.; Clay, Neil R.; Fraser, Stephen N.; Marchant, J. M.; Mottram, C. J.; Steele, I. A.; Tomlinson, M. D.

    2011-03-01

    The Liverpool Telescope (LT) is a fully robotic 2m optical telescope at a world-class observatory site. It runs autonomously without direct human control either on site or remotely. It is not operated primarily for a single science project, but rather is a common-user facility, time allocated by an open, peer-review process and conducting a variety of optical and IR imaging, spectroscopic and polarimetric programs. This paper describes some of aspects of the site infrastructure and instrument suite designed specifically to support robust and reliable unsupervised operations. Aside from the telescope hardware, the other aspect of robotic operations is the mechanisms whereby users interact with the telescope and its automated scheduler. We describe how these have been implemented for the LT. Observing routinely since 2004, the LT has demonstrated it is possible to operate a large, common-user robotic observatory. Making the most of the flexibility afforded by fully robotic operations, development continues in collaboration with both observers and other observatories to develop observing modes to enable new science across the broad discipline of time-domain astrophysics.

  6. Exploring Galileo's Telescope

    Science.gov (United States)

    Straulino, Samuele; Terzuoli, Alessandra

    2010-01-01

    In the first months of 2009, the International Year of Astronomy, the authors developed an educational project for middle-level students connected with the first astronomical discoveries that Galileo Galilei (1564-1642) made 400 years ago. The project included the construction of a basic telescope and the observation of the Moon. The project, if…

  7. Taiwan Automated Telescope Network

    Directory of Open Access Journals (Sweden)

    Dean-Yi Chou

    2010-01-01

    can be operated either interactively or fully automatically. In the interactive mode, it can be controlled through the Internet. In the fully automatic mode, the telescope operates with preset parameters without any human care, including taking dark frames and flat frames. The network can also be used for studies that require continuous observations for selected objects.

  8. Design and Construction of a First Prototype Muon Tomography System with GEM Detectors for the Detection of Nuclear Contraband

    CERN Document Server

    AUTHOR|(CDS)2074269; Grasso, L; Locke, J B; Quintero, A; Mitra, D

    2009-01-01

    Current radiation portal monitors at sea ports and international borders that employ standard radiation detection techniques are not very sensitive to nuclear contraband that is well shielded to absorb emanating radiation. Muon Tomography (MT) based on the measurement of multiple scattering of atmospheric cosmic ray muons traversing cargo or vehicles that contain high-Z material is a promising passive interrogation technique for solving this problem. We report on the design and construction of compact Micro-Pattern Gas Detectors for a small prototype MT station. This station will employ 10 tracking stations based on 30cm x 30cm low-mass triple-GEM detectors with 2D readout. Due to the excellent spatial resolution of GEMs it is sufficient to use a gap of only a few cm between tracking stations. Together with the compact size of the GEM detectors this allows the GEM MT station to be an order of magnitude more compact than MT stations using traditional drift tubes. We present details of the production and assemb...

  9. Giant Magellan Telescope: overview

    Science.gov (United States)

    Johns, Matt; McCarthy, Patrick; Raybould, Keith; Bouchez, Antonin; Farahani, Arash; Filgueira, Jose; Jacoby, George; Shectman, Steve; Sheehan, Michael

    2012-09-01

    The Giant Magellan Telescope (GMT) is a 25-meter optical/infrared extremely large telescope that is being built by an international consortium of universities and research institutions. It will be located at the Las Campanas Observatory, Chile. The GMT primary mirror consists of seven 8.4-m borosilicate honeycomb mirror segments made at the Steward Observatory Mirror Lab (SOML). Six identical off-axis segments and one on-axis segment are arranged on a single nearly-paraboloidal parent surface having an overall focal ratio of f/0.7. The fabrication, testing and verification procedures required to produce the closely-matched off-axis mirror segments were developed during the production of the first mirror. Production of the second and third off-axis segments is underway. GMT incorporates a seven-segment Gregorian adaptive secondary to implement three modes of adaptive-optics operation: natural-guide star AO, laser-tomography AO, and ground-layer AO. A wide-field corrector/ADC is available for use in seeing-limited mode over a 20-arcmin diameter field of view. Up to seven instruments can be mounted simultaneously on the telescope in a large Gregorian Instrument Rotator. Conceptual design studies were completed for six AO and seeing-limited instruments, plus a multi-object fiber feed, and a roadmap for phased deployment of the GMT instrument suite is being developed. The partner institutions have made firm commitments for approximately 45% of the funds required to build the telescope. Project Office efforts are currently focused on advancing the telescope and enclosure design in preparation for subsystem- and system-level preliminary design reviews which are scheduled to be completed in the first half of 2013.

  10. Compost Compaction Evaluation.

    Science.gov (United States)

    1993-10-01

    aerated static pile composting ) has been shown to be most effective at reducing the explosives levels in the soils (4). As a result, it is anticipated...y ■,... tiiii silsis H-ifjfe Compost Compaction Evaluation Report No. ENAEC-TS-CR-93110 Contract No. DACA31-9-D-0079 Task Order No. 01...Leave blank) 2. REPORT DATE October 1993 3. REPORT TYPE AND DATES COVERED Final Report 4. TITLE AND SUBTITLE Compost Compaction Evaluation 6

  11. Signatures of compact halos of sterile-neutrino dark matter

    Science.gov (United States)

    Kühnel, Florian; Ohlsson, Tommy

    2017-11-01

    We investigate compact halos of sterile-neutrino dark matter and examine observable signatures with respect to neutrino and photon emission. Primarily, we consider two cases: primordial black-hole halos and ultracompact minihalos. In both cases, we find that there exists a broad range of possible parameter choices such that detection in the near future with x-ray and gamma-ray telescopes might be well possible. In fact, for energies above 10 TeV, the neutrino telescope IceCube would be a splendid detection machine for such macroscopic dark-matter candidates.

  12. The Muon Portal Project: Design and construction of a scanning portal based on muon tomography

    Science.gov (United States)

    Antonuccio, V.; Bandieramonte, M.; Becciani, U.; Bonanno, D. L.; Bonanno, G.; Bongiovanni, D.; Fallica, P. G.; Garozzo, S.; Grillo, A.; La Rocca, P.; Leonora, E.; Longhitano, F.; Lo Presti, D.; Marano, D.; Parasole, O.; Pugliatti, C.; Randazzo, N.; Riggi, F.; Riggi, S.; Romeo, G.; Romeo, M.; Russo, G. V.; Santagati, G.; Timpanaro, M. C.; Valvo, G.

    2017-02-01

    Cosmic ray tomography is a technique which exploits the multiple Coulomb scattering of highly penetrating cosmic ray-produced muons to perform non-destructive inspection of high-Z materials without the use of artificial radiation. A muon tomography detection system can be used as a portal monitor at border crossing points for detecting illegal targeted objects. The Muon Portal Project is a joint initiative between Italian research and industrial partners, aimed at the construction of a real size detector prototype (6×3×7 m3) for the inspection of cargo containers by the muon scattering technique. The detector consists of four XY tracking planes, two placed above and two below the container to be inspected. After a research and development phase, which led to the choice and test of the individual components, the construction and installation of the detection modules is almost completed. In this paper the present status of the Project is reported, focusing on the design and construction phase, as well as on the preliminary results obtained with the first detection planes.

  13. submitter The Muon Portal Project: Design and construction of a scanning portal based on muon tomography

    CERN Document Server

    Antonuccio, V; Becciani, U; Bonanno, D L; Bonanno, G; Bongiovanni, D; Fallica, P G; Garozzo, S; Grillo, A; La Rocca, P; Leonora, E; Longhitano, F; Lo Presti, D; Marano, D; Parasole, O; Pugliatti, C; Randazzo, N; Riggi, F; Riggi, S; Romeo, G; Romeo, M; Russo, G V; Santagati, G; Timpanaro, M C; Valvo, G

    2016-01-01

    Cosmic ray tomography is a technique which exploits the multiple Coulomb scattering of highly penetrating cosmic ray-produced muons to perform non-destructive inspection of high-Z materials without the use of artificial radiation. A muon tomography detection system can be used as a portal monitor at border crossing points for detecting illegal targeted objects. The Muon Portal Project is a joint initiative between Italian research and industrial partners, aimed at the construction of a real size detector prototype $(6×3×7 m^3)$ for the inspection of cargo containers by the muon scattering technique. The detector consists of four XY tracking planes, two placed above and two below the container to be inspected. After a research and development phase, which led to the choice and test of the individual components, the construction and installation of the detection modules is almost completed. In this paper the present status of the Project is reported, focusing on the design and construction phase, as well as o...

  14. Level-1 muon trigger performance in 2017 data and comparison with the legacy muon trigger system

    CERN Document Server

    CMS Collaboration

    2017-01-01

    This document describes the performance of the CMS Level-1 muon trigger using data collected during 2017. The efficiency is greater than 90\\% for the dataset considered. This document includes a comparison of the performance of the upgrade and the legacy systems, showing a large reduction in trigger rate for similar efficiency.

  15. Searches for muon-electron and muon-positron conversion in titanium

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, S.; Azuelos, G.; Blecher, M.; Bryman, D.; Burnham, R.A.; Clifford, E.T.H.; Depommier, P.; Dixit, M.S.; Gotow, K.; Hargrove, C.K.; and others

    1987-08-31

    Searches have been performed for neutrinoless muon-electron conversion and muon-positron conversion using a time projection chamber. An upper limit on the branching ratio for the coherent reaction R(..mu../sup -/ +Ti..-->..e/sup -/+Ti)<4.6 x 1 0/sup -12/ (90% confidence level (C.L.)) relative to ordinary muon capture was obtained. For the process ..mu../sup -/+Ti..-->..e/sup +/+Ca no events were observed for positron momenta p>96 MeV/c leading to an upper limit on the partial branching ratio relative to ordinary muon capture GAMMA/sub p//sub >//sub 96/(..mu../sup -/+Ti..-->..e/sup +/ +Ca)/GAMMA(..mu../sup -/+Ti..-->..capture) <9 x 10/sup -12/ (90% C.L.). With the assumption of a giant-resonance-excitation model the integrated limit would be GAMMA(..mu../sup -/+Ti..-->..e/sup +/+Ca)/GAMMA(..mu../sup -/ +Ti..-->..capture)<1.7 x 10/sup -10/ (90% C.L.).

  16. Recent progress in neutrino factory and muon collider research within the Muon Collaboration

    NARCIS (Netherlands)

    Alsharo'a, MM; Ankenbrandt, CM; Atac, M; Autin, BR; Balbekov, VI; Barger, VD; Benary, O; Bennett, JRJ; Berger, MS; Berg, JS; Berz, M; Black, EL; Blondel, A; Bogacz, SA; Bonesini, M; Bracker, SB; Bross, AD; Bruno, L; Buckley-Geer, EJ; Caldwell, AC; Campanelli, M; Cassel, KW; Catanesi, MG; Chattopadhyay, S; Chou, WR; Cline, DB; Coney, LR; Conrad, JM; Corlett, JN; Cremaldi, L; Cummings, MA; Darve, C; DeJongh, F; Drozhdin, A; Drumm, P; Elvira, VD; Errede, D; Fabich, A; Fawley, WM; Fernow, RC; Ferrario, M; Finley, DA; Fisch, NJ; Fukui, Y; Furman, MA; Gabriel, TA; Galea, R; Gallardo, JC; Garoby, R; Garren, AA; Geer, SH; Gilardoni, S; Van Ginneken, AJ; Ginzburg, IF; Godang, R; Goodman, M; Gosz, MR; Green, MA; Gruber, P; Gunion, JF; Gupta, R; Haines, JR; Hanke, K; Hanson, GG; Han, T; Haney, M; Hartill, D; Hartline, RE; Haseroth, HD; Hassanein, A; Hoffman, K; Holtkamp, N; Holzer, EB; Johnson, C; Johnson, RP; Johnstone, C; Jungmann, K; Kahn, SA; Kaplan, DM; Keil, EK; Kim, ES; Kim, KJ; King, BJ; Kirk, HG; Kuno, Y; Ladran, TS; Lau, WW; Learned, JG; Lebedev, V; Lebrun, P; Lee, K; Lettry, JA; Laveder, M; Li, DR; Lombardi, A; Lu, CG; Makino, K; Malkin, V; Marfatia, D; McDonald, KT; Mezzetto, M; Miller, [No Value; Mills, FE; Mocioiu, I; Mokhov, NV; Monroe, J; Moretti, A; Mori, Y; Neuffer, DV; Ng, KY; Norem, JH; Onel, Y; Oreglia, M; Ozaki, S; Padamsee, H; Pakvasa, S; Palmer, RB; Parker, B; Parsa, Z; Penn, G; Pischalnikov, Y; Qian, ZB; Radicioni, E; Raja, R; Ravn, HL; Reed, CB; Reginato, LL; Rehak, P; Rimmer, RA; Roberts, TJ; Roser, T; Rossmanith, R; Samulyak, RV; Scanlan, RM; Schlenstedt, S; Schwandt, P; Sessler, AM; Shaevitz, MH; Shrock, R; Sievers, P; Silvestrov, GI; Simos, N; Skrinsky, AN; Solomey, N; Spampinato, PT; Spentzouris, P; Stefanski, R; Stoltz, P; Stumer, I; Summers, DJ; Teng, LC; Thieberger, PA; Tigner, M; Todosow, M; Tollestrup, AV; Torun, Y; Trbojevic, D; Usubov, ZU; Vsevolozhskaya, TA; Wah, Y; Wang, CX; Wang, HP; Weggel, RJ; Whisnant, K; Willen, EH; Winn, DR; Wurtele, JS; Wu, V; Yokoi, T; Yoon, M; York, R; Yu, S; Zeller, A; Zhao, YX; Zisman, MS; Popovic, Milorad B.; Wilson, Edmund J.N.

    We describe the status of our effort to realize a first neutrino factory and the progress made in understanding the problems associated with the collection and cooling of muons towards that end. We summarize the physics that can be done with neutrino factories as well as with intense cold beams of

  17. Optical Space Telescope Assembly Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Optical Space Telescope Assembly (OSTA) task is to demonstrate the technology readiness of assembling large space telescopes on orbit in 2015. This task is an...

  18. Improved Probe for Evaluating Compaction of Mold Sand

    Science.gov (United States)

    Overfelt, Ruel A.; Bakhtiyarov, Sayavur I.

    2008-01-01

    A nominally stationary tubular probe denoted a telescopic probe has been developed as an improved alternative to a prior movable probe used to evaluate the local degree of compaction of mold sand. The probe is inserted vertically to a desired depth in a sand-filled molding flask and the back pressure at the given rate of flow of air is recorded as a measure of the degree of partial impermeability and, hence, of the degree of compaction of sand in the vicinity of the probe tip.

  19. Uzaybimer Radio Telescope Control System

    Science.gov (United States)

    Balbay, R.; Öz, G. K.; Arslan, Ö.; Özeren, F. F.; Küçük, İ.

    2016-12-01

    A 13 meters former NATO radar is being converted into a radio telescope. The radio telescope is controlled by a system which has been developed at UZAYBİMER. The Telescope Control System(TCS) has been designed using modern industrial systems. TCS has been developed in LabView platform in which works Windows embedded OS. The position feedback used on radio telescopes is an industrial EtherCAT standard. ASCOM library is used for astronomical calculations.

  20. The 45 Years of Muon g-2

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit; Farley, Francis J M

    2002-01-01

    In their first announcement of muon polarization Garwin, Lederman and Weinrich (1957) used the g-2 principle to put limits on the g-factor. The progress since then will be reviewed, the three experiments at CERN leading up to the new Brookhaven measurement to 0.7 ppm disagreeing with current predictions by 3.0 sigma. Recent advances in the theory (hadronic light-by-light, e+e- and tau decay data) will be covered and a CERN film from 1967 will be shown.

  1. CMS: Higgs boson decays to four muons

    CERN Multimedia

    Taylor, Lucas

    1997-01-01

    This track is an example of simulated data modelled for the CMS detector on the Large Hadron Collider (LHC) at CERN, which will begin taking data in 2008. The Higgs boson is produced in the collision of two protons at 14 TeV and quickly decays into four muons, a type of heavy electron which is not absorbed by the detector. The tracks of the other products of the collision are shown by lines and the energy deposited in the detector is shown in blue. Image creator : Lucas Taylor.

  2. Upward-going muons and neutrino oscillations

    Science.gov (United States)

    Fogli, G. L.; Lisi, E.; Marrone, A.

    1998-05-01

    The available upward-going muon data from the Kamiokande, Baksan, MACRO, IMB, and SuperKamiokande experiments are reviewed and combined. Bounds on the neutrino mass and mixing parameters are derived for oscillations in two and three flavors. These bounds are not in significant conflict with the oscillation solution to the atmospheric neutrino flavor anomaly observed in the sub-GeV and multi-GeV energy range. The combination of all the available atmospheric data tends to favor the νμνe channel with respect to the νμντ channel, and to disfavor the threefold maximal mixing scenario.

  3. ATLAS- lowering the muon small wheel

    CERN Multimedia

    CERN Audiovisual Service

    2008-01-01

    ATLAS - the two muon small wheels lowered into the cavern Like briefly separated twin sisters, ATLAS’s small wheels were once again united at the experiment’s surface building at Point 1 on St Valentine’s Day. The lowering of the small wheels into the tunnel will mark the end of the installation of detector components for the experiment. At around 15.40 on Friday 29th February the ATLAS collaboration cracked open the champagne as the second of the small wheels was lowered into the cavern.

  4. CMS muon system upgrade during LS1

    CERN Document Server

    Giannini, Leonardo

    2014-01-01

    The aim of this report is sharing my experience as a Summer Student at CERN. It is addressed mainly to future Summer Students and young people interested in science. In the introduction a brief description of the CMS muon system is given. The next two paragraphs provide more details about the two type of detectors I could work on and about my work as a Summer Student. The main activities I was involved in were Quality Control in RPC production and starting a DCS for the new GEM production facility. Finally an evaluation of the whole experience is made.

  5. The Muon g-2 experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Chapelain, Antoine [Cornell U., Phys. Dept.

    2017-01-01

    The upcoming Fermilab E989 experiment will measure the muon anomalous magnetic moment aμ. This measurement is motivated by the previous measurement performed in 2001 by the BNL E821 experiment that reported a 3-4 standard deviation discrepancy between the measured value and the Standard Model prediction. The new measurement at Fermilab aims to improve the precision by a factor of four reducing the total uncertainty from 540 parts per billion (BNL E821) to 140 parts per billion (Fermilab E989). This paper gives the status of the experiment.

  6. Muons and seismic: a dynamic duo for the shallow subsurface?

    Energy Technology Data Exchange (ETDEWEB)

    Mellors, Robert; Chapline, George; Bonneville, Alain H.; Kouzes, Richard T.; Bonal, Nedra; Rowe, Charlotte; Guardincerri, Elena

    2016-12-31

    Measurements of muon flux and direction at depth provides constraints on density distribution, both spatially and as a function of time. Combination of muon measurements and seismic data provide the potential for improved density estimation and the resolution of elastic parameters.

  7. The muon chambers take centre stage at CMS

    CERN Multimedia

    2003-01-01

    The CMS muon chambers are now starting to arrive at CERN in significant numbers. All in all, the muon system of the CMS detector will comprise some 1400 of these chambers. Twenty percent of those for the endcaps have already been installed, while the assembly of those for the barrel will start in December.

  8. Search for Muon to electron conversion at J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration: Chen Wu on behalf of the COMET Collaboration

    2016-12-15

    This article introduces the search for muon to electron conversion at J-PARC, namely COMET (COherent Muon Electron Transition) experiment, including a brief introduction of its physics motivation, a detailed description of COMET experiment and its staged approach, and an overview of its current status.

  9. Quantum diffusion of muon and muonium in solids

    Energy Technology Data Exchange (ETDEWEB)

    Kadono, Ryosuke [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    1998-10-01

    The quantum tunneling diffusion of muon and muonium in crystalline solids is discussed with emphasis on the effects of disorder and superconductivity. The complex effect of disorder on muonium diffusion in inhomogeneous crystal is scrutinized. The enhanced muon diffusion in the superconducting state of high-purity tantalum establishes the predominant influence of conduction electrons on the quantum diffusion in metals. (author)

  10. Horizontal muon flux measured with the LVD detector at LNGS

    Energy Technology Data Exchange (ETDEWEB)

    Garbini, Marco, E-mail: garbini@bo.infn.it [Museo Storico della Fisica e Centro Studi e Ricerche ' E. Fermi' Roma and INFN Bologna (Italy)

    2011-12-15

    We report the measure of underground horizontal (cos({theta})<0.3) muon flux with the Large Volume Detector (LVD) at the I.N.F.N. Gran Sasso National Laboratory. The analysis is based on the whole muon data collected by LVD since start of data taking in 1992.

  11. The Muon (g — 2) Experiments at CERN

    CERN Document Server

    Picasso, Emilio

    1983-01-01

    In this lecture I shall discuss measurements of the dipole moments of free electrons and muons, and the lifetime of free muons. I shall discuss these experiments in terms of physical principle rather than technical details; full accounts of the experimental methods may be found in the original papers to which reference is made in some of the review articles given below

  12. Muon 2 measurements and non-commutative geometry of quantum ...

    Indian Academy of Sciences (India)

    Abstract. We discuss a completely quantum mechanical treatment of the measurement of the anomalous magnetic moment of the muon. A beam of muons move in a strong uniform magnetic field and a weak focusing electrostatic field. Errors in the classical beam analysis are exposed. In the Dirac quantum beam analysis, ...

  13. ATLAS Muon Performance in the Presence of Pile-up

    CERN Document Server

    Vanadia, M; The ATLAS collaboration

    2012-01-01

    Muons are a key ingredient for many physics analyses in ATLAS. A measurement of the performance of the muon reconstruction and identification on LHC collision recorded in 2011 is presented, with a particular focus on the effects of pile-up and a comparison with Monte-Carlo simulations.

  14. Compaction of FGD-gypsum

    NARCIS (Netherlands)

    Stoop, B.T.J.; Larbi, J.A.; Heijnen, W.M.M.

    1996-01-01

    It is shown that it is possible to produce compacted gypsum with a low porosity and a high strength on a laboratory scale by uniaxial compaction of flue gas desulphurization (FGD-) gypsum powder. Compacted FGD-gypsum cylinders were produced at a compaction pres-sure between 50 and 500 MPa yielding

  15. Review of possible applications of cosmic muon tomography

    Science.gov (United States)

    Checchia, P.

    2016-12-01

    Muon radiographic methods can be used to explore inaccessible volumes profiting of the property of muons to penetrate thick materials. An extension of the muon radiographic methods, the muon scattering tomography, was proposed for the first time in 2003 and it is based on the measurement of the multiple Coulomb scattering of muons crossing the volume under investigation. In this talk, the principles of tomographic image reconstruction are first outlined and then the experimental setup and the most adequate detectors are described. A review of the possible applications of this technique is reported, with specific reference to security in transports and monitoring of industrial processes. The technique can also be used to provide precise measurements of the properties of various materials. The experimental challenge related to this activity is discussed.

  16. Cosmic multi-muon bundles measured at DELPHI

    CERN Document Server

    Travnicek, Petr

    2002-01-01

    The DELPHI detector at LEP, located 100 $m$ underground, has been used to detect the multi-muon bundles by cathode readout of its hadron calorimeter and its tracking detectors (TPC, muon chambers). The experimental apparatus allows us to study muon bundles originating from primary cosmic particles with energies in the interval $10^{14}$ - $10^{17} eV$. The cosmic events registered during the years 1999 and 2000 correspond roughly to $1.6 10^6 s$ of effective run time. The aim of the work is to compare the measured muon multiplicity distributions and predictions of high energy interaction models for different types of primary particles and also to determine the absolute flux of events in certain muon multiplicity range. The presentation describes the current status of the analysis.

  17. Performance of CMS Muon Reconstruction in Cosmic-Ray Events

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M., Jr.; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G.; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    The performance of muon reconstruction in CMS is evaluated using a large data sample of cosmic-ray muons recorded in 2008. Efficiencies of various high-level trigger, identification, and reconstruction algorithms have been measured for a broad range of muon momenta, and were found to be in good agreement with expectations from Monte Carlo simulation. The relative momentum resolution for muons crossing the barrel part of the detector is better than 1% at 10 GeV/c and is about 8% at 500 GeV/c, the latter being only a factor of two worse than expected with ideal alignment conditions. Muon charge misassignment ranges from less than 0.01% at 10 GeV/c to about 1% at 500 GeV/c.

  18. CMS: Cosmic muons in simulation and measured data

    CERN Document Server

    Sonnenschein, Lars

    A dedicated cosmic muon Monte-Carlo event generator CMSCGEN has been developed for the CMS experiment. The simulation relies on parameterisations of the muon energy and the incidence angle, based on measured and simulated data of the cosmic muon flux. The geometry and material density of the CMS infrastructure underground and surrounding geological layers are also taken into account. The event generator is integrated into the CMS detector simulation chain of the existing software framework. Cosmic muons can be generated on earth's surface as well as for the detector located 90 m underground. Many million cosmic muon events have been generated and compared to measured data, taken with the CMS detector at its nominal magnetic field of 3.8 T.

  19. Atmospheric neutrino-induced muons in the MACRO detector

    CERN Document Server

    Ronga, F

    1999-01-01

    A measurement of the flux of neutrino-induced muons using the MACRO detector is presented. Different event topologies, corresponding to different neutrino parent energies can be detected. The upward throughgoing muon sample is the larger event sample. The observed upward-throughgoing muons are 26% fewer than expected and the zenith angle distribution does not fit with the expected one. Assuming neutrino oscillations, both measurements suggest maximum mixing and Dm2 of a few times 10-3 eV2. The other samples are due to the internally produced events and to upward-going stopping muons. These data show a regular deficit of observed events in each angular bin, as expected assuming neutrino oscillations with maximum mixing, in agreement with the analysis of the upward-throughgoing muon sample.

  20. Concepts for a Muon Accelerator Front-End

    Energy Technology Data Exchange (ETDEWEB)

    Stratakis, Diktys [Fermilab; Berg, Scott [Brookhaven; Neuffer, David [Fermilab

    2017-03-16

    We present a muon capture front-end scheme for muon based applications. In this Front-End design, a proton bunch strikes a target and creates secondary pions that drift into a capture channel, decaying into muons. A series of rf cavities forms the resulting muon beams into a series of bunches of differerent energies, aligns the bunches to equal central energies, and initiates ionization cooling. We also discuss the design of a chicane system for the removal of unwanted secondary particles from the muon capture region and thus reduce activation of the machine. With the aid of numerical simulations we evaluate the performance of this Front-End scheme as well as study its sensitivity against key parameters such as the type of target, the number of rf cavities and the gas pressure of the channel.

  1. Noise reduction in muon tomography for detecting high density objects

    Science.gov (United States)

    Benettoni, M.; Bettella, G.; Bonomi, G.; Calvagno, G.; Calvini, P.; Checchia, P.; Cortelazzo, G.; Cossutta, L.; Donzella, A.; Furlan, M.; Gonella, F.; Pegoraro, M.; Rigoni Garola, A.; Ronchese, P.; Squarcia, S.; Subieta, M.; Vanini, S.; Viesti, G.; Zanuttigh, P.; Zenoni, A.; Zumerle, G.

    2013-12-01

    The muon tomography technique, based on multiple Coulomb scattering of cosmic ray muons, has been proposed as a tool to detect the presence of high density objects inside closed volumes. In this paper a new and innovative method is presented to handle the density fluctuations (noise) of reconstructed images, a well known problem of this technique. The effectiveness of our method is evaluated using experimental data obtained with a muon tomography prototype located at the Legnaro National Laboratories (LNL) of the Istituto Nazionale di Fisica Nucleare (INFN). The results reported in this paper, obtained with real cosmic ray data, show that with appropriate image filtering and muon momentum classification, the muon tomography technique can detect high density materials, such as lead, albeit surrounded by light or medium density material, in short times. A comparison with algorithms published in literature is also presented.

  2. Generating Low Beta Regions with Quadrupoles for Final Muon Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Acosta, J. G. [Mississippi U.; Cremaldi, L. M. [Mississippi U.; Hart, T. L. [Mississippi U.; Oliveros, S. J. [Mississippi U.; Summers, D. J. [Mississippi U.; Neuffer, D. V. [Fermilab

    2017-05-01

    Muon beams and colliders are rich sources of new physics, if muons can be cooled. A normalized rms transverse muon emittance of 280 microns has been achieved in simulation with short solenoids and a betatron function of 3 cm. Here we use ICOOL, G4beamline, and MAD-X to explore using a 400 MeV/c muon beam and strong focusing quadrupoles to approach a normalized transverse emittance of 100 microns and finish 6D muon cooling. The low beta regions produced by the quadrupoles are occupied by dense, low Z absorbers, such as lithium hydride or beryllium, that cool the beam. Equilibrium transverse emittance is linearly proportional to the beta function. Reverse emittance exchange with septa and/or wedges is then used to decrease transverse emittance from 100 to 25 microns at the expense of longitudinal emittance for a high energy lepton collider. Work remains to be done on chromaticity correction.

  3. Galileo's wondrous telescope

    Science.gov (United States)

    Cartlidge, Edwin

    2008-06-01

    If you need reminding of just how wrong the great and the good can be, take a trip to the Museum of the History of Science in Florence, Italy. The museum is staging an exhibition entitled "Galileo's telescope - the instrument that changed the world" to mark the 400th anniversary this year of Galileo Galilei's revolutionary astronomical discoveries, which were made possible by the invention of the telescope. At the start of the 17th century, astronomers assumed that all the planets and the stars in the heavens had been identified and that there was nothing new for them to discover, as the exhibition's curator, Giorgio Strano, points out. "No-one could have imagined what wondrous new things were about to be revealed by an instrument created by inserting two eyeglass lenses into the ends of a tube," he adds.

  4. The Bionic Telescope

    Science.gov (United States)

    Woolf, Neville

    2009-05-01

    Four hundred years after children in a spectacle makers workshop accidentally discovered the telescope, the development of this device has been a continuous replacement of the ``natural'' by the deliberate. The human eye is gone. The lens is gone. The tube is gone. The dome is on the verge of going. The size of the optics are ceasing to be set by transportation limits. Adaptive optics are preferred to stable optics. We deliberately break the Lagrange invariant. We focus on lasers instead of stars, and natural observing environments are being replaced by adaptive environments. The goals for the new ground based telescope encompass the oldest and newest ideas, to find signs of life elsewhere, and to find how all the universe developed.

  5. Calibrating the Athena telescope

    Science.gov (United States)

    de Bruijne, J.; Guainazzi, M.; den Herder, J.; Bavdaz, M.; Burwitz, V.; Ferrando, P.; Lumb, D.; Natalucci, L.; Pajot, F.; Pareschi, G.

    2017-10-01

    Athena is ESA's upcoming X-ray mission, currently set for launch in 2028. With two nationally-funded, state-of-the-art instruments (a high-resolution spectrograph named X-IFU and a wide-field imager named WFI), and a telescope collecting area of 1.4-2 m^2 at 1 keV, the calibration of the spacecraft is a challenge in itself. This poster presents the current (spring 2017) plan of how to calibrate the Athena telescope. It is based on a hybrid approach, using bulk manufacturing and integration data as well as dedicated calibration measurements combined with a refined software model to simulate the full response of the optics.

  6. Everyday Radio Telescope

    CERN Document Server

    Mandal, Pranshu; Kumar, Pratik; Yelikar, Anjali; Soni, Kanchan; T, Vineeth Krishna

    2016-01-01

    We have developed an affordable, portable college level radio telescope for amateur radio astronomy which can be used to provide hands-on experience with the fundamentals of a radio telescope and an insight into the realm of radio astronomy. With our set-up one can measure brightness temperature and flux of the Sun at 11.2 GHz and calculate the beam width of the antenna. The set-up uses commercially available satellite television receiving system and parabolic dish antenna. We report the detection of point sources like Saturn and extended sources like the galactic arm of the Milky way. We have also developed python pipeline, which are available for free download, for data acquisition and visualization.

  7. [Galileo and his telescope].

    Science.gov (United States)

    Strebel, Christoph

    2006-01-01

    Galileo's publication of observations made with his newly reinvented telescope provoked a fierce debate. In April 1610 Martinus Horky, a young Bohemian astronomer, had an opportunity to make his own observations with Galileo's telescope in the presence of Antonio Magini and other astronomers. Horky and the other witnesses denied the adequacy of Galileo's telescope and therefore the bona fides of his discoveries. Kepler conjectured Horky as well as all his witnesses to be myopic. But Kepler's objection could not stop the publication of Horky's Peregrinatio contra nuncium sidereum (Modena, 1610), the first printed refutation of Galileo's Sidereus nuncius. In his treatise, Horky adresses four questions: 1) Do the four newly observed heavenly bodies actually exist? Horky denies their existence on various grounds: a) God, as every astronomer teaches, has created only seven moveable heavenly bodies and astronomical knowledge originates in God, too. b) Heavenly bodies are either stars or planets. Galileo's moveable heavenly bodies fit into neither category. c) If they do exist, why have they not already been observed by other scholars? Horky concludes that there are no such heavenly bodies. 2) What are these phenomena? They are purely artefactual, and produced by Galileo's telescope. 3) How are they like? Galileo's "stars" are so small as to be almost invisible. Galileo claims that he has measured their distances from each other. This however is impossible due to their diminutive size and other observational problems. Hence, Galileo's claim is a further proof that he is a fraud. 4) Why are they? For Galileo they are a chance to earn money but for astronomers like Horky they are a reason to offer thanks and honour to God. Horky's treatise was favourably received by the enemies of Galileo. But Kepler's critique was devastating. After calling on Kepler in Prague, Horky had to revoke the contents of his book.

  8. Design and characterization of a small muon tomography system

    Science.gov (United States)

    Jo, Woo Jin; An, Su Jung; Kim, Hyun-Il; Lee, Chae Young; Chung, Heejun; Chung, Yong Hyun

    2015-02-01

    Muon tomography is a useful method for monitoring special nuclear materials (SNMs) because it can provide effective information on the presence of high-Z materials, has a high enough energy to deeply penetrate large amounts of shielding, and does not lead to any health risks and danger above background. We developed a 2-D muon detector and designed a muon tomography system employing four detector modules. Two top and two bottom detectors are, respectively, employed to record the incident and the scattered muon trajectories. The detector module for the muon tomography system consists of a plastic scintillator, wavelength-shifting (WLS) fiber arrays placed orthogonally on the top and the bottom of the scintillator, and a position-sensitive photomultiplier (PSPMT). The WLS fiber arrays absorb light photons emitted by the plastic scintillator and re-emit green lights guided to the PSPMT. The light distribution among the WLS fiber arrays determines the position of the muon interaction; consequently, 3-D tomographic images can be obtained by extracting the crossing points of the individual muon trajectories by using a point-of-closest-approach algorithm. The goal of this study is to optimize the design parameters of a muon tomography system by using the Geant4 code and to experimentally evaluate the performance of the prototype detector. Images obtained by the prototype detector with a 420-nm laser light source showed good agreement with the simulation results. This indicates that the proposed detector is feasible for use in a muon tomography system and can be used to verify the Z-discrimination capability of the muon tomography system.

  9. Muon background studies for shallow depth Double - Chooz near detector

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, H. [Laboratoire Astroparticule et Cosmologie (APC) - Université Paris 7. Paris (France)

    2015-08-17

    Muon events are one of the main concerns regarding background in neutrino experiments. The placement of experimental set-ups in deep underground facilities reduce considerably their impact on the research of the expected signals. But in the cases where the detector is installed on surface or at shallow depth, muon flux remains high, being necessary their precise identification for further rejection. Total flux, mean energy or angular distributions are some of the parameters that can help to characterize the muons. Empirically, the muon rate can be measured in an experiment by a number of methods. Nevertheless, the capability to determine the muons angular distribution strongly depends on the detector features, while the measurement of the muon energy is quite difficult. Also considering that on-site measurements can not be extrapolated to other sites due to the difference on the overburden and its profile, it is necessary to find an adequate solution to perform the muon characterization. The method described in this work to obtain the main features of the muons reaching the experimental set-up, is based on the muon transport simulation by the MUSIC software, combined with a dedicated sampling algorithm for shallow depth installations based on a modified Gaisser parametrization. This method provides all the required information about the muons for any shallow depth installation if the corresponding overburden profile is implemented. In this work, the method has been applied for the recently commissioned Double - Chooz near detector, which will allow the cross-check between the simulation and the experimental data, as it has been done for the far detector.

  10. Performance of the ATLAS Precision Muon Chambers under LHC Operating Conditions

    CERN Document Server

    AUTHOR|(CDS)2067746; Dubbert, J; Horvat, S; Kortner, O; Kroha, H; Manz, A; Mohrdieck, S; Rauscher, F; Richter, R; Staude, A

    2004-01-01

    For the muon spectrometer of the ATLAS detector at the large hadron collider (LHC), large drift chambers consisting of 6 to 8 layers of pressurized drift tubes are used for precision tracking covering an active area of 5000 m2 in the toroidal ?eld of superconducting air core magnets. The chambers have to provide a spatial resolution of 41 microns with Ar:CO2 (93:7) gas mixture at an absolute pressure of 3 bar and gas gain of 2?104. The environment in which the chambers will be operated is characterized by high neutron and background with counting rates of up to 100 per square cm and second. The resolution and efficiency of a chamber from the serial production for ATLAS has been investigated in a 100 GeV muon beam at photon irradiation rates as expected during LHC operation. A silicon strip detector telescope was used as external reference in the beam. The spatial resolution of a chamber is degraded by 4 ?m at the highest background rate. The detection e?ciency of the drift tubes is unchanged under irradiation...

  11. Study of Muon Triggers and Momentum Reconstruction in a Strong Magnetic Field for a Muon Detector at LHC

    CERN Multimedia

    2002-01-01

    % RD-5 \\\\ \\\\ A small fraction of a muon detector for possible use in an LHC experiment is installed in the SPS H2 beam. It consists of a 3T superconducting solenoid enclosing a 10$\\lambda$ deep calorimeter made of stainless steel plates interleaved with Honeycomb strip chambers. Behind this magnet are located 3 muon stations for triggering and momentum measurement. These stations, consisting of UA1 muon chambers backed up with Resistive Plate Chambers (RPC), are inserted in a 1.5~T absorber magnet of 20$\\lambda$ total thickness, station 2 being located after 10$\\lambda$. \\\\ \\\\During the data taking period (1991-1994) 10$^{7}$ muon and hadron events were recorded. Beams of negative muons and pions and of positive muons and hadrons $ (\\pi^+, K ^+ $ and protons) were used with a momentum ranging from 10~to~300~GeV/c. \\\\ \\\\The RD-5 program has covered several topics related to muon detection at LHC: \\\\ \\\\\\begin{description} \\item[(i)]~~study of the behaviour of muons from hadron punchthrough and decays, and also ...

  12. Essentials of the muon g-2

    Energy Technology Data Exchange (ETDEWEB)

    Jegerlehner, F. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik]|[Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2007-03-15

    The muon anomalous magnetic moment is one of the most precisely measured quantities in particle physics. Recent high precision measurements (0.54 ppm) at Brookhaven reveal a ''discrepancy'' by 3 standard deviations from the electroweak Standard Model which could be a hint for an unknown contribution from physics beyond the Standard Model. This triggered numerous speculations about the possible origin of the ''missing piece''. The remarkable 14-fold improvement of the previous CERN experiment, actually animated a multitude of new theoretical efforts which lead to a substantial improvement of the prediction of a{sub {mu}}. The dominating uncertainty of the prediction, caused by strong interaction effects, could be reduced substantially, due to new hadronic cross section measurements in electron-positron annihilation at low energies. After an introduction and a brief description of the principle of the experiment, I present a major update and review the status of the theoretical prediction and discuss the role of the hadronic vacuum polarization effects and the hadronic light-by-light scattering contribution. Prospects for the future are briefly discussed. As, in electroweak precision physics, the muon g-2 shows the largest established deviation between theory and experiment at present, it will remain one of the hot topics for further investigations. (orig.)

  13. New results on muon radiative decay

    Science.gov (United States)

    Pocanic, Dinko

    2012-10-01

    The PIBETA and PEN experiments, a series of precise measurements of rare pion and muon decays at PSI, have acquired a substantial set of &+circ;->e^+ νν γ, radiative muon decay (RMD), events. The measurements were made using a stopped pion beam decaying in an active target, and positron and photon detection in a segmented spherical pure-CsI electromagnetic shower calorimeter covering δφ˜3π sr, with MWPC central tracking and particle identification. The present RMD study has resulted in approximately 30-fold improvement in the precision of the decay branching ratio for (Eγ> 10 MeV, and θγ-e> 30^o), compared to previous work. Our 1% result is in excellent agreement with standard model theoretical predictions. Focusing on a narrower range of phase space, we were able to improve significantly the upper limit on the Michel paramter η, which is sensitive to non-(V-A) admixtures in the weak lagrangian.

  14. Active Muon Shield - Preliminary Design Report

    CERN Document Server

    Bayliss, Victoria; Rawlings, T

    2015-01-01

    This report summarises the initial design study which was carried out for the SHiP magnetic muon shield – which is proposed to consist of a 40m beamline of seven magnets generating a 1.8T By field over defined cross-section. This is intended to sweep unwanted muons off the beamline to prevent them reaching the detector. The magnetic shield is an alternative to a passive tungsten shield. This work was carried out in three sections. Initially the magnets were considered in isolation to establish whether they were theoretically feasible to build and the impact of the iron yoke shape and material was considered. Next the beamline was considered as a whole; this included issues such as the impact of neighbouring magnets and the hadrons stopper, and also building a model of the complete beamline whose magnetic fields could be exported for use in particle modelling. Finally, some consideration was given to the manufacture and operational issues, including costs.

  15. Design, development, and calibration of a high energy proton telescope for space radiation studies

    CERN Document Server

    Redus, R H; Oberhardt, M R; McGarity, J O; Dalcolmo, J; Woolf, S; Huber, A C; Pantazis, J A

    2002-01-01

    A compact particle telescope has been developed to measure highly penetrating protons in space, measuring the differential energy spectrum of protons between 25 and 440 MeV and the integral flux above 440 MeV. This instrument combines new detector materials, an innovative sensor geometry, and a combination of active and passive shielding to obtain accurate measurements of highly penetrating protons in an instrument compact and light weight enough for space flight.

  16. Compaction of poultry litter.

    Science.gov (United States)

    Bernhart, M; Fasina, O O; Fulton, J; Wood, C W

    2010-01-01

    Poultry litter, a combination of accumulated chicken manure, feathers and bedding materials, is a potential feedstock for bioenergy and other value-added applications. The use of this waste product has been historically limited to within few miles of the place of generation because of its inherent low density. Compaction is one possible way to enhance the storage and transportation of the litter. This study therefore investigates the effect of moisture content (19.8-70.7%, d.b.) and pressure (0.8-8.4 MPa) on the compaction characteristics of poultry litter. Results obtained showed that the initial density of densified poultry litter, energy required for compaction and the strength of the densified material after 2 months of storage were significantly (Ppoultry litter.

  17. Overview of the Compact Muon Solenoid Phase 1 Forward Pixel Upgrade

    CERN Document Server

    Gonzalez, Irving

    2016-01-01

    During Run II of the LHC, the instantaneous luminosity will increase to near 2.5×1034cm−2 s −1 . This increase in luminosity will create a high-pileup environment with a large charged particle flux near the interaction point. Operating in such challenging conditions requires high-efficiency tracking and vertexing in order to maintain the physics performance of Run I. The Phase 1 Pixel Upgrade will meet these challenges by incorporating new digital readout chips and front-end electronics for higher data rates, DC-DC powering, and dual-phase CO2 cooling, which will achieve performance exceeding that of the present detector with a lower material budget. The upgraded detector will be installed during the extended technical stop between 2016 and 2017, and it will increase the number of barrel layers from 3 to 4 and the number of forward disks from 2 to 3. The design of the new forward detector will be presented along with status of system tests, module assembly, and module qualification.

  18. Beam-induced radiation in the compact muon solenoid tracker at the ...

    Indian Academy of Sciences (India)

    This will lead to very high particle fluxes and energy deposition in detector components which may cause serious damage, especially in the silicon tracker that is physically very close to ... residual gas in the beam pipe vacuum. We have formally divided the machine- induced backgrounds according to the source of its origin.

  19. Beam-induced radiation in the compact muon solenoid tracker at the ...

    Indian Academy of Sciences (India)

    The silicon trackers are crucial for the physics at the LHC experiments, and the inner layers, being situated only a few centimeters from the interaction point, are most vulnerable to beam-induced radiation. We have recently carried out extensive Monte Carlo simulation studies using MARS program to estimate particle fluxes ...

  20. Jet Physics in Heavy Ion Collisions with Compact Muon Solenoid detector at the LHC

    CERN Document Server

    Lokhtin, I P

    2006-01-01

    The status of CMS jet simulations and physics analysis in heavy ion collisions is presented. Jet reconstruction and high transverse momentum particle tracking in the high multiplicity environment of heavy ion collisions at the LHC using the CMS calorimetry and tracking system are described. The Monte Carlo tools used to simulate jet quenching are discussed.

  1. A search for excited electrons with the Compact Muon Solenoid detector

    CERN Document Server

    Dusinberre Sudano, Elizabeth Jane

    2012-01-01

    A search for excited electrons using the CMS detector at the LHC with 36 pb$^{-1}$ of proton-proton collision data recorded at $\\sqrt{s}$ = 7 TeV is presented. The search is performed for associated production of an electron and an excited electron followed by the decay of the excited electron to an electron and a photon for a final state of $ e e \\gamma$. No excess of events above the standard model expectation is observed. Interpreting the results in the context of production via novel four-fermion contact interactions and the subsequent decay via electroweak processes, upper limits on the production cross section are set. The exclusion region in the compositeness scale, $\\Lambda$, and excited electron mass, $M_{e^*}$ , parameter space is extended beyond previously established limits. For $\\Lambda$ = 2 TeV, excited electron masses below 760 GeV/c$^2$ are excluded at the 95% confidence level. The cross sections for masses between 200 and 1500 GeV/c$^2$ are limited to be less than 0.21 - 0.16 pb.

  2. A Search for New Resonances with the Dijet Angular Ratio Using the Compact Muon Solenoid Experiment

    Energy Technology Data Exchange (ETDEWEB)

    John, Jason Michael [Boston Univ., MA (United States)

    2012-01-01

    A search for dijet resonances is performed using 2.2 fb$^{-1}$ of proton-proton collision data at $\\sqrt{s}$ = 7 TeV recorded by the CMS detector at CERN. The study is based on the dijet angular ratio, the ratio of the number of events with the two leading jets having pseudorapidity difference |delta eta| < 1.3 to the number of events with 1.3 < |delta eta| < 3.0. Models of new resonances which decay into two jets typically predict dijet angular distributions and hence, values of the dijet angular ratio which differ from standard model processes. We thus use the measurement of the angular ratio as a function of mass to set limits on the cross sections of new spin -1/2 quark-gluon resonances. We exclude excited quarks of mass less than 3.2 TeV at 95% confidence level, where a limit of 2.8 TeV is expected.

  3. The Hadron Calorimeter of the Compact Muon Solenoid (CMS) (Proceedings to be published Nuclear Physics B)

    OpenAIRE

    Hagopian, V

    1997-01-01

    The Hadron Calorimeter of CMS is about 1,000 tons of copper and scintillator sandwich in a 4 tesla magnetic field. It will be built in three segments, the barrel surrounding the central portion and the two end caps. The scintillators will use a tower structure made of grooved megatiles with wavelength shifting ( WLS) fibers imbedded inside the grooves. The coverage extends to "eta" = 3.0 and is hermetic with very few gaps. The 1995 test beam data, taken inside a 3 tesla magnet, showed that it...

  4. Optimization Of Cms Endcap Muon Electronics For Major Physics Goals At Lhc

    CERN Document Server

    Vasilev, A

    2000-01-01

    A Large Hadron Collider (LHC) is expected to discover the Higgs particle(s) and will search for new physics beyond Standard Model (SM). However, the LHC environment is the most challenging one in High Energy Physics (HEP) with respect to the range of physics events and their expected rates. An optimized per major LHC physics goals approach to Compact Muon Solenoid (CMS) endcap front-end and readout electronics is investigated. This electronics is based on a low-noise Logarithmic Charge-to-Time and Time- to-Digital Converters that have very low readout latency. Extensive measurements and simulations were conducted not only to prove fulfillment of the design objectives but also to justify a radical change from the baseline approach. Far more superior performance of these circuits allows for digital readout architecture that will solve readout of Cathode Strip Chambers (CSC) problems such as event rate capability, resolution, integration density, radiation hardness and can potentially greatly simplify search for...

  5. Analysis of the longitudinal collective behavior in a 50GeV×50GeV muon collider ring

    Directory of Open Access Journals (Sweden)

    Eun-San Kim

    1999-05-01

    Full Text Available Simulations of the longitudinal instability in the 50GeV×50GeV muon collider ring have been performed. Operation of the ring close to the slippage factor η_{1}≃10^{-6}, such that synchrotron motion is frozen, minimizes the need for rf to maintain the bunch length. However, there is still an energy spread due to the bunch wake. For design parameters of the ring, this induced energy is too large and must be controlled. This paper demonstrates that the bunch wake may be compensated for by two rf cavities with low rf voltages. These studies were made at the nominal design point, and sensitivities to errors were explored. It is seen t