WorldWideScience

Sample records for compact multiphoton systems

  1. Design and development of compact multiphoton microscopes

    Science.gov (United States)

    Mehravar, SeyedSoroush

    A compact multi-photon microscope (MPM) was designed and developed with the use of low-cost mode-locked fiber lasers operating at 1040nm and 1560nm. The MPM was assembled in-house and the system aberration was investigated using the optical design software: Zemax. A novel characterization methodology based on 'nonlinear knife-edge' technique was also introduced to measure the axial, lateral resolution, and the field curvature of the multi-photon microscope's image plane. The field curvature was then post-corrected using data processing in MATLAB. A customized laser scanning software based on LabVIEW was developed for data acquisition, image display and controlling peripheral electronics. Finally, different modalities of multi-photon excitation such as second- and third harmonic generation, two- and three-photon fluorescence were utilized to study a wide variety of samples from cancerous cells to 2D-layered materials.

  2. Multiphoton imaging with a novel compact diode-pumped Ti:sapphire oscillator

    DEFF Research Database (Denmark)

    König, Karsten; Andersen, Peter E.; Le, Tuan

    2015-01-01

    Multiphoton laser scanning microscopy commonly relies on bulky and expensive femtosecond lasers. We integrated a novel minimal-footprint Ti:sapphire oscillator, pumped by a frequency-doubled distributed Bragg reflector tapered diode laser, into a clinical multiphoton tomograph and evaluated its...... imaging capability using different biological samples, i.e. cell monolayers, corneal tissue, and human skin. With the novel laser, the realization of very compact Ti:sapphire-based systems for high-quality multiphoton imaging at a significantly size and weight compared to current systems will become...

  3. Compact magnetic fusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Linford, R.K.

    1983-12-01

    If the core (first wall, blanket, shield, and magnet coils) of fusion reactor systems could be made smaller in mass and volume for a given net electric power output than is usually predicted for the mainline tokamak/sup 1/ and mirror concepts, the cost of the technological development of the core and the construction of power plants might be significantly reduced. Although progress in plasma physics and engineering approaches should continue to yield improvements in reactor designs, certain physics features of the mainline concepts may prevent major reductions in the size of the core without straining the limits of technology. However, more than a factor of ten reduction in volume and mass of the core, at constant output power, may be possible for a class of toroidal confinement concepts in which the confining magnetic fields are supported more by currents flowing in the plasma than those in the external coils. In spite of this dramatic increase in power density (ratio of total thermal output power to the volume of the core), the design of compact systems need not rely on any materials requirements that are qualitatively more difficult than those proposed for the lower-power-density mainline fusion concepts. In some respects compact systems require less of an extension of existing technology, e.g. magnetics.

  4. Compact magnetic fusion systems

    International Nuclear Information System (INIS)

    Linford, R.K.

    1983-01-01

    If the core (first wall, blanket, shield, and magnet coils) of fusion reactor systems could be made smaller in mass and volume for a given net electric power output than is usually predicted for the mainline tokamak 1 and mirror concepts, the cost of the technological development of the core and the construction of power plants might be significantly reduced. Although progress in plasma physics and engineering approaches should continue to yield improvements in reactor designs, certain physics features of the mainline concepts may prevent major reductions in the size of the core without straining the limits of technology. However, more than a factor of ten reduction in volume and mass of the core, at constant output power, may be possible for a class of toroidal confinement concepts in which the confining magnetic fields are supported more by currents flowing in the plasma than those in the external coils. In spite of this dramatic increase in power density (ratio of total thermal output power to the volume of the core), the design of compact systems need not rely on any materials requirements that are qualitatively more difficult than those proposed for the lower-power-density mainline fusion concepts. In some respects compact systems require less of an extension of existing technology, e.g. magnetics

  5. Development of resonance-enhanced multiphoton ionization system

    International Nuclear Information System (INIS)

    Naik, P.D.; Upadhyaya, Hari P.; Kumar, Awadhesh; Bajaj, P.N.; Sinha, A.K.; Bhatt, S.; Gupta, M.D.P.

    2009-05-01

    Radiation and Photochemistry Division has developed a Molecular Beam-Resonance Enhanced Multiphoton Ionization-Time-of-Flight spectrometer, a highly sensitive and selective analytical detection system, for investigation of photodissociation dynamics of isolated molecules. In this system, the molecular beam is intersected in the extraction region of a Wiley-McLaren type Time-of-Flight mass spectrometer by the photolysis laser beam, propagating perpendicular to both the molecular beams and the Time-of-Flight tube. The probe (ionization) laser beam counter propagating to the photolysis beam, ionizes the stable products and the radicals produced on photodissociation. The important features of the system, namely, the resolution and the detection limit, have been determined from the studies of aniline molecular beam, generated by seeding 1% aniline in helium. For the present configuration, using one metre long flight tube, the resolution has been found to be about 400, and detection limit is better than 106 species per cm 3 . The integrity of the set-up is obtained from the photodissociation dynamics studies of bromoform. (author)

  6. Miniature fiber-optic multiphoton microscopy system using frequency-doubled femtosecond Er-doped fiber laser.

    Science.gov (United States)

    Huang, Lin; Mills, Arthur K; Zhao, Yuan; Jones, David J; Tang, Shuo

    2016-05-01

    We report on a miniature fiber-optic multiphoton microscopy (MPM) system based on a frequency-doubled femtosecond Er-doped fiber laser. The femtosecond pulses from the laser source are delivered to the miniature fiber-optic probe at 1.58 µm wavelength, where a standard single mode fiber is used for delivery without the need of free-space dispersion compensation components. The beam is frequency-doubled inside the probe by a periodically poled MgO:LiNbO3 crystal. Frequency-doubled pulses at 786 nm with a maximum power of 80 mW and a pulsewidth of 150 fs are obtained and applied to excite intrinsic signals from tissues. A MEMS scanner, a miniature objective, and a multimode collection fiber are further used to make the probe compact. The miniature fiber-optic MPM system is highly portable and robust. Ex vivo multiphoton imaging of mammalian skins demonstrates the capability of the system in imaging biological tissues. The results show that the miniature fiber-optic MPM system using frequency-doubled femtosecond fiber laser can potentially bring the MPM imaging for clinical applications.

  7. Current developments in clinical multiphoton tomography

    Science.gov (United States)

    König, Karsten; Weinigel, Martin; Breunig, Hans Georg; Gregory, Axel; Fischer, Peter; Kellner-Höfer, Marcel; Bückle, Rainer

    2010-02-01

    Two-photon microscopy has been introduced in 1990 [1]. 13 years later, CE-marked clinical multiphoton systems for 3D imaging of human skin with subcellular resolution have been launched by the JenLab company with the tomograph DermaInspectTM. In 2010, the second generation of clinical multiphoton tomographs was introduced. The novel mobile multiphoton tomograph MPTflexTM, equipped with a flexible articulated optical arm, provides an increased flexibility and accessibility especially for clinical and cosmetical examinations. The multiphoton excitation of fluorescent biomolecules like NAD(P)H, flavins, porphyrins, elastin, and melanin as well as the second harmonic generation of collagen is induced by picojoule femtosecond laser pulses from an tunable turn-key near infrared laser system. The ability for rapid highquality image acquisition, the user-friendly operation of the system, and the compact and flexible design qualifies this system to be used for melanoma detection, diagnostics of dermatological disorders, cosmetic research, and skin aging measurements as well as in situ drug monitoring and animal research. So far, more than 1,000 patients and volunteers have been investigated with the multiphoton tomographs in Europe, Asia, and Australia.

  8. Structure of multiphoton quantum optics. II. Bipartite systems, physical processes, and heterodyne squeezed states

    Science.gov (United States)

    dell'Anno, Fabio; de Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper [F. Dell’Anno, S. De Siena, and F. Illuminati, Phys. Rev. A 69, 033812 (2004)], we introduce two-mode nonlinear canonical transformations depending on two heterodyne mixing angles. They are defined in terms of Hermitian nonlinear functions that realize heterodyne superpositions of conjugate quadratures of bipartite systems. The canonical transformations diagonalize a class of Hamiltonians describing nondegenerate and degenerate multiphoton processes. We determine the coherent states associated with the canonical transformations, which generalize the nondegenerate two-photon squeezed states. Such heterodyne multiphoton squeezed states are defined as the simultaneous eigenstates of the transformed, coupled annihilation operators. They are generated by nonlinear unitary evolutions acting on two-mode squeezed states. They are non-Gaussian, highly nonclassical, entangled states. For a quadratic nonlinearity the heterodyne multiphoton squeezed states define two-mode cubic phase states. The statistical properties of these states can be widely adjusted by tuning the heterodyne mixing angles, the phases of the nonlinear couplings, as well as the strength of the nonlinearity. For quadratic nonlinearity, we study the higher-order contributions to the susceptibility in nonlinear media and we suggest possible experimental realizations of multiphoton conversion processes generating the cubic-phase heterodyne squeezed states.

  9. Structure of multiphoton quantum optics. II. Bipartite systems, physical processes, and heterodyne squeezed states

    International Nuclear Information System (INIS)

    Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2004-01-01

    Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper [F. Dell'Anno, S. De Siena, and F. Illuminati, Phys. Rev. A 69, 033812 (2004)], we introduce two-mode nonlinear canonical transformations depending on two heterodyne mixing angles. They are defined in terms of Hermitian nonlinear functions that realize heterodyne superpositions of conjugate quadratures of bipartite systems. The canonical transformations diagonalize a class of Hamiltonians describing nondegenerate and degenerate multiphoton processes. We determine the coherent states associated with the canonical transformations, which generalize the nondegenerate two-photon squeezed states. Such heterodyne multiphoton squeezed states are defined as the simultaneous eigenstates of the transformed, coupled annihilation operators. They are generated by nonlinear unitary evolutions acting on two-mode squeezed states. They are non-Gaussian, highly nonclassical, entangled states. For a quadratic nonlinearity the heterodyne multiphoton squeezed states define two-mode cubic phase states. The statistical properties of these states can be widely adjusted by tuning the heterodyne mixing angles, the phases of the nonlinear couplings, as well as the strength of the nonlinearity. For quadratic nonlinearity, we study the higher-order contributions to the susceptibility in nonlinear media and we suggest possible experimental realizations of multiphoton conversion processes generating the cubic-phase heterodyne squeezed states

  10. Multiphoton processes

    International Nuclear Information System (INIS)

    Manus, C.; Mainfray, G.

    1980-01-01

    The main features of multiphoton processes are described on a somewhat elementary basis. The emphasis is put on multiphoton ionization of atoms where the influence of resonance effects is given through typical examples. The important role played by the coherence of light is shown to produce a very dramatic influence on multiphoton absorption. Different observations concerning molecules, electrons, as well as solid surfaces illustrate the generality of these very non linear interaction between light and matter

  11. Compact autonomous navigation system (CANS)

    Science.gov (United States)

    Hao, Y. C.; Ying, L.; Xiong, K.; Cheng, H. Y.; Qiao, G. D.

    2017-11-01

    Autonomous navigation of Satellite and constellation has series of benefits, such as to reduce operation cost and ground station workload, to avoid the event of crises of war and natural disaster, to increase spacecraft autonomy, and so on. Autonomous navigation satellite is independent of ground station support. Many systems are developed for autonomous navigation of satellite in the past 20 years. Along them American MANS (Microcosm Autonomous Navigation System) [1] of Microcosm Inc. and ERADS [2] [3] (Earth Reference Attitude Determination System) of Honeywell Inc. are well known. The systems anticipate a series of good features of autonomous navigation and aim low cost, integrated structure, low power consumption and compact layout. The ERADS is an integrated small 3-axis attitude sensor system with low cost and small volume. It has the Earth center measurement accuracy higher than the common IR sensor because the detected ultraviolet radiation zone of the atmosphere has a brightness gradient larger than that of the IR zone. But the ERADS is still a complex system because it has to eliminate many problems such as making of the sapphire sphere lens, birefringence effect of sapphire, high precision image transfer optical fiber flattener, ultraviolet intensifier noise, and so on. The marginal sphere FOV of the sphere lens of the ERADS is used to star imaging that may be bring some disadvantages., i.e. , the image energy and attitude measurements accuracy may be reduced due to the tilt image acceptance end of the fiber flattener in the FOV. Besides Japan, Germany and Russia developed visible earth sensor for GEO [4] [5]. Do we have a way to develop a cheaper/easier and more accurate autonomous navigation system that can be used to all LEO spacecraft, especially, to LEO small and micro satellites? To return this problem we provide a new type of the system—CANS (Compact Autonomous Navigation System) [6].

  12. Co-compact Gabor Systems on Locally Compact Abelian Groups

    DEFF Research Database (Denmark)

    Jakobsen, Mads Sielemann; Lemvig, Jakob

    2016-01-01

    In this work we extend classical structure and duality results in Gabor analysis on the euclidean space to the setting of second countable locally compact abelian (LCA) groups. We formulate the concept of rationally oversampling of Gabor systems in an LCA group and prove corresponding characteriz...

  13. Effects of multi-photon interferences from internally generated fields in strongly resonant systems

    International Nuclear Information System (INIS)

    Deng, Lu; Payne, Marvin G.; Garrett, William R.

    2006-01-01

    In studies of various nonlinear optical phenomena, strong resonant features in the atomic or molecular response to multi-photon driven processes have been used to greatly enhance the visibility of otherwise weak higher-order processes. However, there are well defined circumstances where a multi-photon-resonant response of a target system leads to the generation of one or more new electromagnetic fields that can drastically change the overall system response from what would be expected from the imposed laser fields alone. New effects can occur and dominate some aspects of the nonlinear optical response because of the constructive or destructive interference between transition amplitudes along multiple excitation pathways between a given set of optically coupled states, where one of the pathways involve internally generated field(s). Under destructive interference some resonant enhancements can become completely canceled (suppressed). This review focuses on the class of optical interference effects associated with internally generated fields, that have been found to be capable of influencing a very significant number of basic physical phenomena in gas or vapor phase systems. It provides a historical overview of experimental and theoretical developments and a modern understanding of the underlying physics and its various manifestations that include: suppression of multi-photon excitation processes, suppression of stimulated emissions (Raman, hyper-Raman, and optically pumped stimulated emissions), saturation of parametric wave-mixing, pressure and beam-geometry dependent shifting of multi-photon-resonant absorption lines, and the suppression of Autler-Townes splitting and ac-stark shifts. Additionally, optical interference effects in some modern contexts, such as achieving multi-photon induced transparency, establishing single-photon self-interference based induced transparency, and generating entangled single photon states, are reviewed

  14. Strategy Guideline. Compact Air Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Burdick, Arlan [IBACOS, Inc., Pittsburgh, PA (United States)

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  15. Multiphoton bibliography

    International Nuclear Information System (INIS)

    Eberly, J.H.; Gallagher, J.W.

    1981-12-01

    A bibliography is presented of approximately 275 references from literature published since 1980 on multiphoton research. A subject list is provided which divides the references into four subdivisions, i.e., ionization, bound-bound transitions, dissociation, and free-free transitions. An author index is included

  16. Generalized Multiphoton Quantum Interference

    Directory of Open Access Journals (Sweden)

    Max Tillmann

    2015-10-01

    Full Text Available Nonclassical interference of photons lies at the heart of optical quantum information processing. Here, we exploit tunable distinguishability to reveal the full spectrum of multiphoton nonclassical interference. We investigate this in theory and experiment by controlling the delay times of three photons injected into an integrated interferometric network. We derive the entire coincidence landscape and identify transition matrix immanants as ideally suited functions to describe the generalized case of input photons with arbitrary distinguishability. We introduce a compact description by utilizing a natural basis that decouples the input state from the interferometric network, thereby providing a useful tool for even larger photon numbers.

  17. Strategy Guideline: Compact Air Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Burdick, A.

    2013-06-01

    This Strategy Guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. Traditional systems sized by 'rule of thumb' (i.e., 1 ton of cooling per 400 ft2 of floor space) that 'wash' the exterior walls with conditioned air from floor registers cannot provide appropriate air mixing and moisture removal in low-load homes. A compact air distribution system locates the HVAC equipment centrally with shorter ducts run to interior walls, and ceiling supply outlets throw the air toward the exterior walls along the ceiling plane; alternatively, high sidewall supply outlets throw the air toward the exterior walls. Potential drawbacks include resistance from installing contractors or code officials who are unfamiliar with compact air distribution systems, as well as a lack of availability of low-cost high sidewall or ceiling supply outlets to meet the low air volumes with good throw characteristics. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  18. Multiphoton resonances

    International Nuclear Information System (INIS)

    Shore, B.W.

    1977-01-01

    The long-time average of level populations in a coherently-excited anharmonic sequence of energy levels (e.g., an anharmonic oscillator) exhibits sharp resonances as a function of laser frequency. For simple linearly-increasing anharmonicity, each resonance is a superposition of various multiphoton resonances (e.g., a superposition of 3, 5, 7, . . . photon resonances), each having its own characteristic width predictable from perturbation theory

  19. Compact Hybrid Automotive Propulsion System

    Science.gov (United States)

    Lupo, G.

    1986-01-01

    Power train proposed for experimental vehicle powered by internal combustion engine and electric motor. Intended for front-wheel drive automobile, power train mass produced using existing technology. System includes internal-combustion engine, electric motor, continuously variable transmission, torque converter, differential, and control and adjustment systems for electric motor and transmission. Continuously variable transmission integrated into hydraulic system that also handles power steering and power brakes. Batteries for electric motor mounted elsewhere in vehicle.

  20. Open-ended response theory with polarizable embedding: multiphoton absorption in biomolecular systems.

    Science.gov (United States)

    Steindal, Arnfinn Hykkerud; Beerepoot, Maarten T P; Ringholm, Magnus; List, Nanna Holmgaard; Ruud, Kenneth; Kongsted, Jacob; Olsen, Jógvan Magnus Haugaard

    2016-10-12

    We present the theory and implementation of an open-ended framework for electric response properties at the level of Hartree-Fock and Kohn-Sham density functional theory that includes effects from the molecular environment modeled by the polarizable embedding (PE) model. With this new state-of-the-art multiscale functionality, electric response properties to any order can be calculated for molecules embedded in polarizable atomistic molecular environments ranging from solvents to complex heterogeneous macromolecules such as proteins. In addition, environmental effects on multiphoton absorption (MPA) properties can be studied by evaluating single residues of the response functions. The PE approach includes mutual polarization effects between the quantum and classical parts of the system through induced dipoles that are determined self-consistently with respect to the electronic density. The applicability of our approach is demonstrated by calculating MPA strengths up to four-photon absorption for the green fluorescent protein. We show how the size of the quantum region, as well as the treatment of the border between the quantum and classical regions, is crucial in order to obtain reliable MPA predictions.

  1. Compactly Supported Curvelet-Type Systems

    DEFF Research Database (Denmark)

    Rasmussen, Kenneth Niemann; Nielsen, Morten

    2012-01-01

    We study a flexible method for constructing curvelet-type frames. These curvelet-type systems have the same sparse representation properties as curvelets for appropriate classes of smooth functions, and the flexibility of the method allows us to give a constructive description of how to construct...... curvelet-type systems with a prescribed nature such as compact support in direct space. The method consists of using the machinery of almost diagonal matrices to show that a system of curvelet molecules which is sufficiently close to curvelets constitutes a frame for curvelet-type spaces. Such a system...

  2. Iterative solution of high order compact systems

    Energy Technology Data Exchange (ETDEWEB)

    Spotz, W.F.; Carey, G.F. [Univ. of Texas, Austin, TX (United States)

    1996-12-31

    We have recently developed a class of finite difference methods which provide higher accuracy and greater stability than standard central or upwind difference methods, but still reside on a compact patch of grid cells. In the present study we investigate the performance of several gradient-type iterative methods for solving the associated sparse systems. Both serial and parallel performance studies have been made. Representative examples are taken from elliptic PDE`s for diffusion, convection-diffusion, and viscous flow applications.

  3. An Automated System for the Control of, and Data Acquisition from Multiphoton Ionization and Fluorescence Lifetime Measurements.

    Science.gov (United States)

    1986-09-01

    Quanta- Ray company , which also supplied the laser used for the multiphoton work. The, burner was mounted on a translator stage from Velmex, Inc...and no longer exists as a process in the system. When the user analysis program has completed, the lifetime program is again automatically re-started...KCHAR) RETURN 100 FORMAT(I3) 101 FORMAT(F7.2) END SUBROUTINE LAB4 FODA SE"oteD C This routine puts the label "INTEGRAL FROM DATA SET" on the MDP C screen

  4. Multiphoton processes: conference proceedings

    International Nuclear Information System (INIS)

    Lambropoulos, P.; Smith, S.J.

    1984-01-01

    The chapters of this volume represent the invited papers delivered at the conference. They are arranged according to thermatic proximity beginning with atoms and continuing with molecules and surfaces. Section headings include multiphoton processes in atoms, field fluctuations and collisions in multiphoton process, and multiphoton processes in molecules and surfaces. Abstracts of individual items from the conference were prepared separately for the data base

  5. Powder compaction in systems of bimodal distribution

    Science.gov (United States)

    Chattopadhyay, A. K.; Whittemore, O. J., Jr.

    1973-01-01

    The compaction of mixtures involving different particle sizes is discussed. The various stages of the compaction process include the rearrangement of particles, the filling of the interstices of the large particles by the smaller ones, and the change in particle size and shape upon further densification through the application of pressure. Experimental approaches and equipment used for compacting material are discussed together with the theoretical relations of the compacting process.

  6. Multiphoton quantum optics and quantum state engineering

    Energy Technology Data Exchange (ETDEWEB)

    Dell' Anno, Fabio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (Saudi Arabia) (Italy)]. E-mail: dellanno@sa.infn.it; De Siena, Silvio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (SA) (Italy)]. E-mail: desiena@sa.infn.it; Illuminati, Fabrizio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (SA) (Italy)]. E-mail: illuminati@sa.infn.it

    2006-05-15

    We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms that are relevant for the conceptual investigations as well as for the practical applications of forefront aspects of modern quantum mechanics. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states, macroscopic superposition states, and multiphoton generalized coherent states. We introduce and discuss the structure of canonical multiphoton quantum optics and the associated one- and two-mode canonical multiphoton squeezed states. This framework provides a consistent multiphoton generalization of two-photon quantum optics and a consistent Hamiltonian description of multiphoton processes associated to higher-order nonlinearities. Finally, we discuss very recent advances that by combining linear and nonlinear optical devices allow to realize multiphoton entangled states of the electromagnetic field, either in discrete or in continuous variables, that are relevant for applications to efficient quantum computation, quantum teleportation, and related problems in quantum communication and information.

  7. Multiphoton quantum optics and quantum state engineering

    International Nuclear Information System (INIS)

    Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2006-01-01

    We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms that are relevant for the conceptual investigations as well as for the practical applications of forefront aspects of modern quantum mechanics. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states, macroscopic superposition states, and multiphoton generalized coherent states. We introduce and discuss the structure of canonical multiphoton quantum optics and the associated one- and two-mode canonical multiphoton squeezed states. This framework provides a consistent multiphoton generalization of two-photon quantum optics and a consistent Hamiltonian description of multiphoton processes associated to higher-order nonlinearities. Finally, we discuss very recent advances that by combining linear and nonlinear optical devices allow to realize multiphoton entangled states of the electromagnetic field, either in discrete or in continuous variables, that are relevant for applications to efficient quantum computation, quantum teleportation, and related problems in quantum communication and information

  8. A Gimbal-Stabilized Compact Hyperspectral Imaging System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Gimbal-stabilized Compact Hyperspectral Imaging System (GCHIS) fully integrates multi-sensor spectral imaging, stereovision, GPS and inertial measurement,...

  9. Compact, open-architecture computed radiography system

    International Nuclear Information System (INIS)

    Huang, H.K.; Lim, A.; Kangarloo, H.; Eldredge, S.; Loloyan, M.; Chuang, K.S.

    1990-01-01

    Computed radiography (CR) was introduced in 1982, and its basic system design has not changed. Current CR systems have certain limitations: spatial resolution and signal-to-noise ratios are lower than those of screen-film systems, they are complicated and expensive to build, and they have a closed architecture. The authors of this paper designed and implemented a simpler, lower-cost, compact, open-architecture CR system to overcome some of these limitations. The open-architecture system is a manual-load-single-plate reader that can fit on a desk top. Phosphor images are stored in a local disk and can be sent to any other computer through standard interfaces. Any manufacturer's plate can be read with a scanning time of 90 second for a 35 x 43-cm plate. The standard pixel size is 174 μm and can be adjusted for higher spatial resolution. The data resolution is 12 bits/pixel over an x-ray exposure range of 0.01-100 mR

  10. Multiphoton processes: conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lambropoulos, P.; Smith, S.J. (eds.)

    1984-01-01

    The chapters of this volume represent the invited papers delivered at the conference. They are arranged according to thermatic proximity beginning with atoms and continuing with molecules and surfaces. Section headings include multiphoton processes in atoms, field fluctuations and collisions in multiphoton process, and multiphoton processes in molecules and surfaces. Abstracts of individual items from the conference were prepared separately for the data base. (GHT)

  11. The Compact Muon Solenoid Detector Control System

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The Compact Muon Solenoid (CMS) is a CERN multi-purpose experiment that exploits the physics of the Large Hadron Collider (LHC). The Detector Control System (DCS) ensures a safe, correct and efficient experiment operation, contributing to the recording of high quality physics data. The DCS is programmed to automatically react to the LHC changes. CMS sub-detector’s bias voltages are set depending on the machine mode and particle beam conditions. A protection mechanism ensures that the sub-detectors are locked in a safe mode whenever a potentially dangerous situation exists. The system is supervised from the experiment control room by a single operator. A small set of screens summarizes the status of the detector from the approximately 6M monitored parameters. Using the experience of nearly two years of operation with beam the DCS automation software has been enhanced to increase the system efficiency. The automation allows now for configuration commands that can be used to automatically pre-configure hardwar...

  12. System studies of compact ignition tokamaks

    International Nuclear Information System (INIS)

    Galambos, J.D.; Peng, Y.K.M.; Blackfield, D.T.

    1986-01-01

    A new version of the FEDC Tokamak System Code (TSC) has been developed to analyze the Compact Ignition Tokamak (CIT). These proposed experiments have small (major radius F 1.5m) and high magnetic fields (B J 10T), and are characterized by reduced cost. Key design constraints of CIT include limits to the high stress levels in the magnetic coils, limits to the large temperature rises in the coils and on the first wall or divertor plate, minimizing power supply requirements, and assuring adequate plasma performance in fusion ignition and burn time consistent with the latest physics understanding. We present systems code level studies of CIT parameter space here for a range of design options with various design constraints. The present version of the TSC incorporates new models for key components of CIT. For example, new algorithms have been incorporated for calculating stress levels in the TFC and ohmic solenoid, temperature rise in the magnetic coils, peak power requirements, plasma MHD equilibrium and volt-second capability. The code also incorporates a numerical optimizer to find combinations of engineering quantities (device size, coil sizes, coil current densities etc.) and physics quantities (plasma density temperature, and beta, etc.) which satisfy all the constraints and can minimize or maximize a figure of merit (e.g., the major radius). This method was recently used in a mirror reactor system code (3) for the Minimara concept development

  13. MULTI-PHOTON PHOSPHOR FEASIBILITY RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    R. Graham; W. Chow

    2003-05-01

    Development of multi-photon phosphor materials for discharge lamps represents a goal that would achieve up to a doubling of discharge (fluorescent) lamp efficacy. This report reviews the existing literature on multi-photon phosphors, identifies obstacles in developing such phosphors, and recommends directions for future research to address these obstacles. To critically examine issues involved in developing a multi-photon phosphor, the project brought together a team of experts from universities, national laboratories, and an industrial lamp manufacturer. Results and findings are organized into three categories: (1) Multi-Photon Systems and Processes, (2) Chemistry and Materials Issues, and (3) Concepts and Models. Multi-Photon Systems and Processes: This category focuses on how to use our current understanding of multi-photon phosphor systems to design new phosphor systems for application in fluorescent lamps. The quickest way to develop multi-photon lamp phosphors lies in finding sensitizer ions for Gd{sup 3+} and identifying activator ions to red shift the blue emission from Pr{sup 3+} due to the {sup 1}S{sub 0} {yields} {sup 1}I{sub 6} transition associated with the first cascading step. Success in either of these developments would lead to more efficient fluorescent lamps. Chemistry and Materials Issues: The most promising multi-photon phosphors are found in fluoride hosts. However, stability of fluorides in environments typically found in fluorescent lamps needs to be greatly improved. Experimental investigation of fluorides in actual lamp environments needs to be undertaken while working on oxide and oxyfluoride alternative systems for backup. Concepts and Models: Successful design of a multi-photon phosphor system based on cascading transitions of Gd{sup 3+} and Pr{sup 3+} depends critically on how the former can be sensitized and the latter can sensitize an activator ion. Methods to predict energy level diagrams and Judd-Ofelt parameters of multi-photon

  14. Study of potential applications of compact ECRIS to analytical system

    International Nuclear Information System (INIS)

    Kidera, M.; Takahashi, K.; Seto, Y.; Kishi, S.; Enomoto, S.; Nagamatsu, T.; Tanaka, T.

    2012-01-01

    The objective of this study is to develop a desktop-sized system of element mass analysis (element analysis system) with a compact electron cyclotron resonance (ECR) ion source in the ionization section. This system is different from other element analysis systems in terms of the effective use of ionization by ECR plasma. A compact ECR ion source is required to fit in the desktop-sized element analysis system. This paper reporting the development of the compact ECR ion source, is followed by the associated poster. (authors)

  15. Duality results for co-compact Gabor systems

    DEFF Research Database (Denmark)

    Jakobsen, Mads Sielemann; Lemvig, Jakob

    2015-01-01

    In this paper we give an account of recent developments in the duality theory of Gabor frames. We prove the Wexler-Raz biorthogonality relations and the duality principle for co-compact Gabor systems on second countable, locally compact abelian groups G. Our presentation does not rely on the exis...

  16. Roll compaction and granulation system for nuclear fuel material

    International Nuclear Information System (INIS)

    Goldmann, L.H. Jr.; Holley, C.C.

    1981-01-01

    A roll compaction and roll granulation system has been designed and fabricated to replace conventional preslugging and crushing operations typically used in the fabrication of mixed oxide nuclear fuel pellets. This equipment will be of maintenance advantage with only the compaction and granulation rolls inside containment. The prototype is being tested and the results will be reported within a year

  17. Controlling the optical bistability beyond the multi-photon resonance condition in a three-level closed-loop atomic system

    International Nuclear Information System (INIS)

    Mahmoudi, Mohammad; Nozari, Narges; Vafafard, Azar; Sahrai, Mostafa

    2012-01-01

    We investigate the optical bistability behavior of a three-level closed-loop atomic system beyond the multi-photon resonance condition. Using the Floquet decomposition, we solve the time-dependent equations of motion, beyond the multi-photon resonance condition. By identifying the different scattering processes contributing to the medium response, it is shown that in general the optical bistability behavior of the system is not phase-dependent. The phase dependence is due to the scattering of the driving and coupling fields into the probe field at a frequency, which, in general, differs from the probe field frequency. - Highlights: → We investigate optical bistability of a three-level closed-loop atomic system, beyond the multi-photon resonance condition. → By applying Floquet decomposition to the equation of motion, the different scattering processes contributing to the medium response are determined. → It is shown that the phase dependence of optical bistability arises from the scattering of the driving and coupling fields into the probe field frequency.

  18. Selecting the recommended waste management system for the midwest compact

    International Nuclear Information System (INIS)

    Sutherland, A.A.; Robertson, B.C.; Drobny, N.L.

    1987-01-01

    One of the early important steps in the evolution of a low-level waste Compact is the development of a Regional Management Plan. Part of the Regional Management Plan is a description of the waste management system that indicates what kinds of facilities that will be available within the compact's region. The facilities in the waste management system can include those for storage, treatment and disposal of low-level radioactive waste. The Regional Management Plan also describes the number of facilities that will be operated simultaneously. This paper outlines the development of the recommended waste management system for the Midwest Compact. It describes the way a data base on low-level radioactive waste from the Compact was collected and placed into a computerized data base management system, and how that data base was subsequently used to analyze various options for treatment and disposal of low-level radioactive waste within the Midwest Compact. The paper indicates the thought process that led to the definition of four recommended waste management systems. Six methods for reducing the volume of waste to be disposed of in the Midwest Compact were considered. Major attention was focused on the use of regional compaction or incineration facilities. Seven disposal technologies, all different from the shallow land burial currently practiced, were also considered for the waste management system. After evaluating the options available, the Compact Commissioners recommended four waste disposal technologies--above-ground vaults, below-ground vaults, concrete canisters placed above ground, and concrete canisters placed below ground--to the host state that will be chosen in 1987. The Commissioners did not recommend use of a regional waste treatment facility

  19. A compact, coherent light source system architecture

    Science.gov (United States)

    Biedron, S. G.; Dattoli, G.; DiPalma, E.; Einstein, J.; Milton, S. V.; Petrillo, V.; Rau, J. V.; Sabia, E.; Spassovsky, I. P.; van der Slot, P. J. M.

    2016-09-01

    Our team has been examining several architectures for short-wavelength, coherent light sources. We are presently exploring the use and role of advanced, high-peak power lasers for both accelerating the electrons and generating a compact light source with the same laser. Our overall goal is to devise light sources that are more accessible by industry and in smaller laboratory settings. Although we cannot and do not want to compete directly with sources such as third-generation light sources or that of national-laboratory-based free-electron lasers, we have several interesting schemes that could bring useful and more coherent, short-wavelength light source to more researchers. Here, we present and discuss several results of recent simulations and our future steps for such dissemination.

  20. Tritium system for compact high field devices

    International Nuclear Information System (INIS)

    Roccella, M.; Bonizzoni, G.; Chiesa, P.; Ghezzi, F.; Nassi, M.; Pavesi, U.; Amedeo, P.; Boschetti, G.; Giffanti, F.; Moriggio, A.

    1988-01-01

    Some theoretical results and the current status of the work on a prototype plant for the Tritium cycle of compact high-field tokamaks (such as, Ignitor, CIT, etc.), using the SAES Getter St 707 getter material, are described in this report. The schematics and present status of the main subplants of the cycle are reported together with some experimental results demostrating the possibility of utilizing the St 707 material to purify the inert atmosphere of the glove-boxes and the secondary containment of the double-containment metal canalization which is to eventually house the various parts of the plant. Finally, as an example, the FTU machine, under construction at ENEA Frascati, has been taken as a reference, and theoretical evaluations are given for the inventory, permeation and release of the Tritium from the first wall and the thermal shieldes of such a tokamak

  1. Effective data compaction algorithm for vector scan EB writing system

    Science.gov (United States)

    Ueki, Shinichi; Ashida, Isao; Kawahira, Hiroichi

    2001-01-01

    We have developed a new mask data compaction algorithm dedicated to vector scan electron beam (EB) writing systems for 0.13 μm device generation. Large mask data size has become a significant problem at mask data processing for which data compaction is an important technique. In our new mask data compaction, 'array' representation and 'cell' representation are used. The mask data format for the EB writing system with vector scan supports these representations. The array representation has a pitch and a number of repetitions in both X and Y direction. The cell representation has a definition of figure group and its reference. The new data compaction method has the following three steps. (1) Search arrays of figures by selecting pitches of array so that a number of figures are included. (2) Find out same arrays that have same repetitive pitch and number of figures. (3) Search cells of figures, where the figures in each cell take identical positional relationship. By this new method for the mask data of a 4M-DRAM block gate layer with peripheral circuits, 202 Mbytes without compaction was highly compacted to 6.7 Mbytes in 20 minutes on a 500 MHz PC.

  2. An inexpensive compact automatic camera system for wildlife research

    Science.gov (United States)

    William R. Danielson; Richard M. DeGraaf; Todd K. Fuller

    1996-01-01

    This paper describes the design, conversion, and deployment of a reliable, compact, automatic multiple-exposure photographic system that was used to photograph nest predation events. This system may be the most versatile yet described in the literature because of its simplicity, portability, and dependability. The system was very reliable because it was designed around...

  3. Limits of commutative triangular systems on locally compact groups

    Indian Academy of Sciences (India)

    Commutative triangular systems of probability measures on locally compact groups have been studied extensively and ... in [S3,S4], we extend our earlier result to some particular triangular systems on algebraic groups. We also discuss ..... Now G can be embedded as a closed subgroup in. G2 ¼ G1=D and G0. 2 ¼ ًG0 آ ...

  4. A pragmatic guide to multiphoton microscope design

    Science.gov (United States)

    Young, Michael D.; Field, Jeffrey J.; Sheetz, Kraig E.; Bartels, Randy A.; Squier, Jeff

    2016-01-01

    Multiphoton microscopy has emerged as a ubiquitous tool for studying microscopic structure and function across a broad range of disciplines. As such, the intent of this paper is to present a comprehensive resource for the construction and performance evaluation of a multiphoton microscope that will be understandable to the broad range of scientific fields that presently exploit, or wish to begin exploiting, this powerful technology. With this in mind, we have developed a guide to aid in the design of a multiphoton microscope. We discuss source selection, optical management of dispersion, image-relay systems with scan optics, objective-lens selection, single-element light-collection theory, photon-counting detection, image rendering, and finally, an illustrated guide for building an example microscope. PMID:27182429

  5. Development of a compaction system for solid waste

    International Nuclear Information System (INIS)

    Nair, J.S.; Roy, P.R.

    1990-01-01

    The Bhabha Atomic Research Centre has set up a Beryllium Pilot Plant at Vashi, New Bombay, which is in operation for nearly a decade now. In view of the high toxicity of beryllium and its compounds, the plant has a specially designed ventilation system with a bank of pre and absolute HEPA filters to prevent the escape of any toxic material into the outside atmosphere. The filters are periodically replaced to maintain efficiency. The used filters are sealed in cardboard cartons and stored in RCC containers. In order to minimise the expenditure on waste disposal, a solid waste compaction system with suitable toolings has been designed and fabricated in the plant. The compaction trials carried out using this system on non-toxic HEPA filters have shown that a reduction by a factor of 3 could be achieved in the overall volume of the filter. It is interesting to note that the actual volume reduction is limited by spring-back effects of the filter media. The paper gives details of the compaction system and presents some of the important results obtained in the trials using non-toxic filters. Efforts are presently being made to incorporate pneumatically operated robot in the place of the existing electromechanical devices for compaction. (author). 2 refs., 6 tabs

  6. New developments in multimodal clinical multiphoton tomography

    Science.gov (United States)

    König, Karsten

    2011-03-01

    80 years ago, the PhD student Maria Goeppert predicted in her thesis in Goettingen, Germany, two-photon effects. It took 30 years to prove her theory, and another three decades to realize the first two-photon microscope. With the beginning of this millennium, first clinical multiphoton tomographs started operation in research institutions, hospitals, and in the cosmetic industry. The multiphoton tomograph MPTflexTM with its miniaturized flexible scan head became the Prism-Award 2010 winner in the category Life Sciences. Multiphoton tomographs with its superior submicron spatial resolution can be upgraded to 5D imaging tools by adding spectral time-correlated single photon counting units. Furthermore, multimodal hybrid tomographs provide chemical fingerprinting and fast wide-field imaging. The world's first clinical CARS studies have been performed with a hybrid multimodal multiphoton tomograph in spring 2010. In particular, nonfluorescent lipids and water as well as mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen have been imaged in patients with dermatological disorders. Further multimodal approaches include the combination of multiphoton tomographs with low-resolution imaging tools such as ultrasound, optoacoustic, OCT, and dermoscopy systems. Multiphoton tomographs are currently employed in Australia, Japan, the US, and in several European countries for early diagnosis of skin cancer (malignant melanoma), optimization of treatment strategies (wound healing, dermatitis), and cosmetic research including long-term biosafety tests of ZnO sunscreen nanoparticles and the measurement of the stimulated biosynthesis of collagen by anti-ageing products.

  7. Compact solar heating systems - back on the way up

    International Nuclear Information System (INIS)

    Lainsecq, M. de

    2001-01-01

    This article discusses the upward trend being noted in the installation of compact solar heating systems in Switzerland. The contribution of these complete, easy-to-install systems to the increasing number of solar heating units on the market is discussed and the role played by the Solar Collector and Systems Testing Facility at the Institute of Solar Technology in Rapperswil, Switzerland, is emphasised. One of this institute's important publications is a list of certified compact solar heating systems. The high technical standards of the systems and the current price situation are discussed. The article is rounded off by an interview with a four-person family on their motivation to install such a hot-water system and their experience with its operation. Finally, future trends in the area are discussed

  8. Overview of tritium systems for the Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Bartlit, J.R.; Gruetzmacher, K.M.; Fleming, R.B.

    1987-01-01

    The Compact Ignition Tokamak (CIT) is being designed at several laboratories to produce and study fully ignited plasma discharges. The tritium systems which will be needed for CIT include fueling systems and radiation monitoring and safety systems. Design of the tritium systems is the responsibility of the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. Major new tritium systems for CIT include a pellet injector, an air detritiation system and a glovebox atmosphere detritiation system. The pellet injector is being developed at Oak Ridge National Laboratory. 7 refs., 2 figs

  9. Self-compacting paste system using secondary raw materials

    International Nuclear Information System (INIS)

    Rizwan, S.A.

    2008-01-01

    A study has been carried out on self-compacting paste (SCP) systems using various cements and secondary raw materials (SRM's) including rice husk ash (RHA) and Silica Fume (SF). These systems were characterized by: SRM particle size, powder water demand (WD) and setting times, flow, strength, microstructure and early volume stability. The result show that WD increased by adding SRM's due to their smaller particle size, higher surface area and internal porosity. Inclusion of SRM's in SCP systems as cement replacements also increase strength of SCP systems due to filler, hydration and pozzolanic actions which translate into pore refinement. It is demonstrated that the resultant properties of self-compacting cementitious. System (SCCS) depend upon the nature of SRM used. (author)

  10. A novel flexible clinical multiphoton tomograph for early melanoma detection, skin analysis, testing of anti-age products, and in situ nanoparticle tracking

    Science.gov (United States)

    Weinigel, Martin; Breunig, Hans Georg; Gregory, Axel; Fischer, Peter; Kellner-Höfer, Marcel; Bückle, Rainer; König, Karsten

    2010-02-01

    High-resolution 3D microscopy based on multiphoton induced autofluorescence and second harmonic generation have been introduced in 1990. 13 years later, CE-marked clinical multiphoton systems for 3D imaging of human skin with subcellular resolution have first been launched by JenLab company with the tomography DermaInspect®. This year, the second generation of clinical multiphoton tomographs was introduced. The novel multiphoton tomograph MPTflex, equipped with a flexible articulated optical arm, provides an increased flexibility and accessibility especially for clinical and cosmetical examinations. Improved image quality and signal to noise ratio (SNR) are achieved by a very short source-drain spacing, by larger active areas of the detectors and by single photon counting (SPC) technology. Shorter image acquisition time due to improved image quality reduces artifacts and simplifies the operation of the system. The compact folded optical design and the light-weight structure of the optical head eases the handling. Dual channel detectors enable to distinguish between intratissue elastic fibers and collagenous structures simultaneously. Through the use of piezo-driven optics a stack of optical cross-sections (optical sectioning) can be acquired and 3D imaging can be performed. The multiphoton excitation of biomolecules like NAD(P)H, flavins, porphyrins, elastin, and melanin is done by picojoule femtosecond laser pulses from an tunable turn-key femtosescond near infrared laser system. The ability for rapid high-quality image acquisition, the user-friendly operation of the system and the compact and flexible design qualifies this system to be used for melanoma detection, diagnostics of dermatological disorders, cosmetic research and skin aging measurements as well as in situ drug monitoring and animal research.

  11. Multiphoton microscopy in every lab: the promise of ultrafast semiconductor disk lasers

    Science.gov (United States)

    Emaury, Florian; Voigt, Fabian F.; Bethge, Philipp; Waldburger, Dominik; Link, Sandro M.; Carta, Stefano; van der Bourg, Alexander; Helmchen, Fritjof; Keller, Ursula

    2017-07-01

    We use an ultrafast diode-pumped semiconductor disk laser (SDL) to demonstrate several applications in multiphoton microscopy. The ultrafast SDL is based on an optically pumped Vertical External Cavity Surface Emitting Laser (VECSEL) passively mode-locked with a semiconductor saturable absorber mirror (SESAM) and generates 170-fs pulses at a center wavelength of 1027 nm with a repetition rate of 1.63 GHz. We demonstrate the suitability of this laser for structural and functional multiphoton in vivo imaging in both Drosophila larvae and mice for a variety of fluorophores (including mKate2, tdTomato, Texas Red, OGB-1, and R-CaMP1.07) and for endogenous second-harmonic generation in muscle cell sarcomeres. We can demonstrate equivalent signal levels compared to a standard 80-MHz Ti:Sapphire laser when we increase the average power by a factor of 4.5 as predicted by theory. In addition, we compare the bleaching properties of both laser systems in fixed Drosophila larvae and find similar bleaching kinetics despite the large difference in pulse repetition rates. Our results highlight the great potential of ultrafast diode-pumped SDLs for creating a cost-efficient and compact alternative light source compared to standard Ti:Sapphire lasers for multiphoton imaging.

  12. Compact open cathode feed system for PEMFCs

    International Nuclear Information System (INIS)

    Ling, C.Y.; Cao, H.; Chen, Y.; Han, M.; Birgersson, E.

    2016-01-01

    Highlights: • Two different modes of feeding air into an open cathode PEMFC stack were studied. • Drawing air, as opposed to blowing air, into the stack results in more uniform air velocities entering the stack. • The uniform inlet velocities help maintain a more even temperature distribution field. • A 16% increase in power output is observed by drawing air into the stack. - Abstract: The open cathode design is commonly adopted for small sized proton exchange membrane fuel cells (PEMFCs) as it allows for smaller footprint and thus, higher power density. Axial fans are typically used to supply oxygen in these PEMFC systems. Apart from controlling stoichiometry, they also play a critical role in regulating internal temperature. This suggests that its location could have significant impact on fuel cell performance. In this work, the location of the fan is varied from the front to the rear in order to blow air or draw air into the stack respectively. The latter configuration reduces the non-uniformity in temperature and velocity by around 2 and 4 times respectively, resulting in a 16% increase in overall stack performance.

  13. Multi-Photon Entanglement and Quantum Teleportation

    National Research Council Canada - National Science Library

    Shih, Yanhua

    1999-01-01

    The project 'Multi-Photon Entanglement and Quantum Teleportation' concerns a series of experimental and theoretical investigations on multi-photon entangled states and the applications, for example...

  14. QED theory of multiphoton transitions in atoms and ions

    Science.gov (United States)

    Zalialiutdinov, Timur A.; Solovyev, Dmitry A.; Labzowsky, Leonti N.; Plunien, Günter

    2018-03-01

    This review surveys the quantum theory of electromagnetic radiation for atomic systems. In particular, a review of current theoretical studies of multiphoton processes in one and two-electron atoms and highly charged ions is provided. Grounded on the quantum electrodynamics description the multiphoton transitions in presence of cascades, spin-statistic behaviour of equivalent photons and influence of external electric fields on multiphoton in atoms and anti-atoms are discussed. Finally, the nonresonant corrections which define the validity of the concept of the excited state energy levels are introduced.

  15. Clinical multiphoton FLIM tomography

    Science.gov (United States)

    König, Karsten

    2012-03-01

    This paper gives an overview on current clinical high resolution multiphoton fluorescence lifetime imaging in volunteers and patients. Fluorescence lifetime imaging (FLIM) in Life Sciences was introduced in Jena/Germany in 1988/89 based on a ZEISS confocal picosecond dye laser scanning microscope equipped with a single photon counting unit. The porphyrin distribution in living cells and living tumor-bearing mice was studied with high spatial, temporal, and spectral resolution. Ten years later, time-gated cameras were employed to detect dental caries in volunteers based on one-photon excitation of autofluorescent bacteria with long fluorescence lifetimes. Nowadays, one-photon FLIM based on picosecond VIS laser diodes are used to study ocular diseases in humans. Already one decade ago, first clinical twophoton FLIM images in humans were taken with the certified clinical multiphoton femtosecond laser tomograph DermaInspectTM. Multiphoton tomographs with FLIM modules are now operating in hospitals at Brisbane, Tokyo, Berlin, Paris, London, Modena and other European cities. Multiple FLIM detectors allow spectral FLIM with a temporal resolution down to 20 ps (MCP) / 250 ps (PMT) and a spectral resolution of 10 nm. Major FLIM applications include the detection of intradermal sunscreen and tattoo nanoparticles, the detection of different melanin types, the early diagnosis of dermatitis and malignant melanoma, as well as the measurement of therapeutic effects in pateints suffering from dermatitis. So far, more than 1,000 patients and volunteers have been investigated with the clinical multiphoton FLIM tomographs DermaInspectTM and MPTflexTM.

  16. Performance of a compact solar absorption cooling system

    International Nuclear Information System (INIS)

    Mulyanef; Kamaruzzaman Sopian

    2006-01-01

    This paper describes the performance of a compact solar absorption system. Purpose of compact solar is collector, generator and condenser in one unit. At present, two types of absorption cooling systems are marketed: the lithium bromide-water system and the ammonia-water system. In the lithium bromide-water system, water vapor is the refrigerant and ammonia water system where ammonia is the refrigerant. In addition, the ammonia-water system requires higher generator temperature 120 o C to 150 o C than a flat-plate solar collector can provide without special techniques. The lithium bromide-water system operates satisfactorily at a generator temperature of 75 o C to 100 o C, achievable by a flat-plate collector. The lithium bromide-water system also has a higher COP than the ammonia-water system. The disadvantage of the lithium bromide-water systems is that the evaporators cannot operate at temperature below 0 o C since the refrigerant is water. The Coefficient of Performance (COP) system is 0.62 and the concentration of LiBr-H 2 O is 50%

  17. A new compact AMS system at Peking University

    International Nuclear Information System (INIS)

    Liu Kexin; Ding Xingfang; Fu Dongpo; Pan Yan; Wu Xiaohong; Guo Zhiyu; Zhou Liping

    2007-01-01

    A compact 14 C AMS system manufactured by the National Electrostatics Corporation has been installed at the Institute of Heavy Ion Physics, Peking University. The system is based on a Model 1.5SDH-1 Pelletron accelerator with a maximum terminal voltage of 0.6 MV. The 14 C measurement accuracy with this system is better than 0.4% and the machine background is lower than 0.03 pMC. The performance of the new system, especially the background and the δ 13 C measurements, is presented. Several important applications are also described briefly

  18. Design study of electrostatic inflector in compact cyclotron injection system

    International Nuclear Information System (INIS)

    Zhang Tianjue; Fan Mingwu

    1996-01-01

    The beam dynamics behaviour in electrostatic inflector is investigated for a vertical type injection system to a compact cyclotron. The computer aided design and matching of the inflector are based on the simulation of computed beam orbit. Modeling and simulation are done on PC-486 to form a software package. The software package can be used to develop a new type cyclotron design combining with the software package CYCCAE developed by China Institute of Atomic Energy three years ago

  19. Compact hydrogen production systems for solid polymer fuel cells

    Science.gov (United States)

    Ledjeff-Hey, K.; Formanski, V.; Kalk, Th.; Roes, J.

    Generally there are several ways to produce hydrogen gas from carbonaceous fuels like natural gas, oil or alcohols. Most of these processes are designed for large-scale industrial production and are not suitable for a compact hydrogen production system (CHYPS) in the power range of 1 kW. In order to supply solid polymer fuel cells (SPFC) with hydrogen, a compact fuel processor is required for mobile applications. The produced hydrogen-rich gas has to have a low level of harmful impurities; in particular the carbon monoxide content has to be lower than 20 ppmv. Integrating the reaction step, the gas purification and the heat supply leads to small-scale hydrogen production systems. The steam reforming of methanol is feasible at copper catalysts in a low temperature range of 200-350°C. The combination of a small-scale methanol reformer and a metal membrane as purification step forms a compact system producing high-purity hydrogen. The generation of a SPFC hydrogen fuel gas can also be performed by thermal or catalytic cracking of liquid hydrocarbons such as propane. At a temperature of 900°C the decomposition of propane into carbon and hydrogen takes place. A fuel processor based on this simple concept produces a gas stream with a hydrogen content of more than 90 vol.% and without CO and CO2.

  20. Compact 250-kV injector system for PIGMI

    International Nuclear Information System (INIS)

    Hamm, R.W.; Stevens, R.R. Jr.; Mueller, D.W.; Lederer, H.M.

    1978-01-01

    A 250-kV proton injector to be used in the development of a linac suitable for medical applications has been constructed. This injector utilizes a spherical Pierce geometry to produce a converging beam. A gas insulated accelerating column is cantilevered on a grounded vacuum system, with a separate high voltage equipment dome connected to a 300-kV Cockcroft-Walton power supply. The injector can be operated locally or remotely, with the remote control accomplished by a microprocessor system linked to a central control minicomputer. This injector has been designed as a low-cost compact system. The design details and the data obtained during initial operation are presented

  1. Vacuum system for the NIJI-III compact storage ring

    International Nuclear Information System (INIS)

    Miura, F.; Tsutsui, Y.; Takada, H.

    1990-01-01

    The NIJI-III is a compact storage ring measuring about 15 m in circumference with four superconducting bending magnets. It is under development as a synchrotron light source for X-ray lithography with a stored beam current of 200 mA at a stored beam current of 200 mA at a stored energy level of 615 MeV. The vacuum system is designed to attain a pressure of less than 1 x 10 -9 Torr at beam storage. The compact ring design makes it difficult to install a large number of pumps able to satisfy the required pumping speed. For the purpose of realizing a high pumping speed, a cryopump as a result of cooling the superconducting magnet duct wall to the liquid helium (LHe) temperature is adopted, as a result the total pumping speed to 2.8 x 10 4 l/s is obtained. (author)

  2. Development of hull compaction system for nuclear recycle facility

    International Nuclear Information System (INIS)

    Manole, A.A.; Karkhanis, P.P.; Agarwal, Kailash; Basu, Sekhar

    2013-01-01

    India has adopted closed fuel cycle strategy for efficient management of available resources to meet long term energy requirements. Nuclear Recycle Facility (NRF) provides a vital link in three-stage Indian nuclear power programme. In a NRF for PHWR fuel cycle, reprocessing of spent fuel bundles from PHWRs is carried out using a chop-leach process where the spent fuel bundles are chopped into small pieces using a spent fuel chopper and the contents inside the zircaloy clad are dissolved using concentric nitric acid. This process generates empty zircaloy shells called 'hulls'. The present practice followed for management of hulls is to transfer them into SS drums and store these drums in underground RCC tile holes at a Waste Management Facility (WMF). This waste needs to be stored in an engineered WMF for at least 30-60 years before transferred to a final repository. The storage volumes required for this hull waste will keep increasing as the reprocessing capacity is being enhanced multi-folds. Compaction of hull waste has been employed internationally to reduce the volume required for storage. Hence indigenous development of hull compaction system was initiated by NRB to meet the future requirements. This is being achieved through a set of experiments and analysis with the available resources within the country. This paper describes the process of compaction, conceptualization of the system and benefits accrued from it. (author)

  3. Multiphoton amplitude in a constant background field

    Science.gov (United States)

    Ahmad, Aftab; Ahmadiniaz, Naser; Corradini, Olindo; Kim, Sang Pyo; Schubert, Christian

    2018-01-01

    In this contribution, we present our recent compact master formulas for the multiphoton amplitudes of a scalar propagator in a constant background field using the worldline fomulation of quantum field theory. The constant field has been included nonperturbatively, which is crucial for strong external fields. A possible application is the scattering of photons by electrons in a strong magnetic field, a process that has been a subject of great interest since the discovery of astrophysical objects like radio pulsars, which provide evidence that magnetic fields of the order of 1012G are present in nature. The presence of a strong external field leads to a strong deviation from the classical scattering amplitudes. We explicitly work out the Compton scattering amplitude in a magnetic field, which is a process of potential relevance for astrophysics. Our final result is compact and suitable for numerical integration.

  4. A paramagnetic nearly isodynamic compact magnetic confinement system

    International Nuclear Information System (INIS)

    Cooper, W.A.; Antonietti, J.M.; Todd, T.N.

    2001-01-01

    A coreless compact magnetic confinement system that consists of sets of helical windings and vertical magnetic field coils is investigated. The helical coils produce a small toroidal translation of the magnetic field lines and seed paramagnetism. The force-free component of the toroidal current strongly enhances the paramagnetism such that isodynamic conditions near the plasma centre can be approached. At β 5%, the configuration is stable to local MHD modes. Global MHD modes limit the toroidal current 2πJ to about 60kA for peaked J. Bootstrap-like hollow current profiles generate quasiaxisymmetric systems that require a close fitting conducting shell to satisfy external kink stability. (author)

  5. New concept for a compact tape transport system

    International Nuclear Information System (INIS)

    Mlekodaj, R.L.; Zganjar, E.F.; Cole, J.D.

    1980-01-01

    A new concept in tape transport systems for the collection and counting of radioactive samples from an on-line isotope separator has been developed. This new compact design was motivated by space limitations but important additional improvements over previous designs were made in cost, simplicity and vacuum quality. The system is based on a continuous loop of 6.5 millimeter wide recording tape 116 meters long with a conducting coating on one side for beam current monitoring. One small stepping motor is required for operation

  6. A new concept for a compact tape transport system

    International Nuclear Information System (INIS)

    Mlekodaj, R.L.; Zganjar, E.F.; Cole, J.D.

    1981-01-01

    A new concept in tape transport systems for the collection and counting of radioactive samples from an on-line isotope separator has been developed. This new compact design was motivated by space limitations but important additional improvements over previous designs were made in cost, simplicity and vacuum quality. The system is based on a continuous loop of 6.5 mm wide recording tape 116 m long with a conducting coating on one side for beam current monitoring. One small stepping motor is required for operation. (orig.)

  7. Ultra-compact silicon nitride grating coupler for microscopy systems

    OpenAIRE

    Zhu, Yunpeng; Wang, Jie; Xie, Weiqiang; Tian, Bin; Li, Yanlu; Brainis, Edouard; Jiao, Yuqing; Van Thourhout, Dries

    2017-01-01

    Grating couplers have been widely used for coupling light between photonic chips and optical fibers. For various quantum-optics and bio-optics experiments, on the other hand, there is a need to achieve good light coupling between photonic chips and microscopy systems. Here, we propose an ultra-compact silicon nitride (SiN) grating coupler optimized for coupling light from a waveguide to a microscopy system. The grating coupler is about 4 by 2 mu m(2) in size and a 116 nm 1 dB bandwidth can be...

  8. Compact Water Vapor Exchanger for Regenerative Life Support Systems

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Anderson, Molly; Hodgson, Edward

    2012-01-01

    Thermal and environmental control systems for future exploration spacecraft must meet challenging requirements for efficient operation and conservation of resources. Regenerative CO2 removal systems are attractive for these missions because they do not use consumable CO2 absorbers. However, these systems also absorb and vent water to space along with carbon dioxide. This paper describes an innovative device designed to minimize water lost from regenerative CO2 control systems. Design studies and proof-of-concept testing have shown the feasibility of a compact, efficient membrane water vapor exchanger (WVX) that will conserve water while meeting challenging requirements for operation on future spacecraft. Compared to conventional WVX designs, the innovative membrane WVX described here has the potential for high water recovery efficiency, compact size, and very low pressure losses. The key innovation is a method for maintaining highly uniform flow channels in a WVX core built from water-permeable membranes. The proof-of-concept WVX incorporates all the key design features of a prototypical unit, except that it is relatively small scale (1/23 relative to a unit sized for a crew of six) and some components were fabricated using non-prototypical methods. The proof-of-concept WVX achieved over 90% water recovery efficiency in a compact core in good agreement with analysis models. Furthermore the overall pressure drop is very small (less than 0.5 in. H2O, total for both flow streams) and meets requirements for service in environmental control and life support systems on future spacecraft. These results show that the WVX provides very uniform flow through flow channels for both the humid and dry streams. Measurements also show that CO2 diffusion through the water-permeable membranes will have negligible effect on the CO2 partial pressure in the spacecraft atmosphere.

  9. Microphotonic devices for compact planar lightwave circuits and sensor systems

    Science.gov (United States)

    Cardenas Gonzalez, Jaime

    2005-07-01

    Higher levels of integration in planar lightwave circuits and sensor systems can reduce fabrication costs and broaden viable applications for optical network and sensor systems. For example, increased integration and functionality can lead to sensor systems that are compact enough for easy transport, rugged enough for field applications, and sensitive enough even for laboratory applications. On the other hand, more functional and compact planar lightwave circuits can make optical networks components less expensive for the metro and access markets in urban areas and allow penetration of fiber to the home. Thus, there is an important area of opportunity for increased integration to provide low cost, compact solutions in both network components and sensor systems. In this dissertation, a novel splitting structure for microcantilever deflection detection is introduced. The splitting structure is designed so that its splitting ratio is dependent on the vertical position of the microcantilever. With this structure, microcantilevers sensitized to detect different analytes or biological agents can be integrated into an array on a single chip. Additionally, the integration of a depolarizer into the optoelectronic integrated circuit in an interferometric fiber optic gyroscope is presented as a means for cost reduction. The savings come in avoiding labor intensive fiber pigtailing steps by permitting batch fabrication of these components. In particular, this dissertation focuses on the design of the waveguides and polarization rotator, and the impact of imperfect components on the performance of the depolarizer. In the area of planar lightwave circuits, this dissertation presents the development of a fabrication process for single air interface bends (SAIBs). SAIBs can increase integration by reducing the area necessary to make a waveguide bend. Fabrication and measurement of a 45° SAIB with a bend efficiency of 93.4% for TM polarization and 92.7% for TE polarization are

  10. Doubly resonant multiphoton ionization

    International Nuclear Information System (INIS)

    Crance, M.

    1978-01-01

    A particular case of doubly resonant multiphoton ionization is theoretically investigated. More precisely, two levels quasi-resonant with two successive harmonics of the field frequency are considered. The method used is based on the effective operator formalism first introduced for this problem by Armstrong, Beers and Feneuille. The main result is to show the possibility of observing large interference effects on the width of the resonances. Moreover this treatment allows us to make more precise the connection between effective operator formalism and standard perturbation theory

  11. Multiphoton processes in isolated atoms and molecules

    International Nuclear Information System (INIS)

    Sudbo, A.S.

    1979-11-01

    The theory of coherent excitation of a multilevel quantum mechanical system is developed. Damping of the system is taken into account by the use of a density matrix formalism. General properties of the wave function and/or the density matrix are discussed. The physical implications for the behavior of the system are described, together with possible applications of the formalism, including the infrared multiphoton excitation of molecules, and optical pumping in alkali atoms. Experimental results are presented on the infrared multiphoton dissociation of molecules, followed by a discussion of the general features of this process. The experimental results were obtained using a crossed laser and molecular beam method, and the emphasis is on determining the properties of the dissociating molecule and the dissociation products. The dissociation process is shown to be described very well by the standard statistical theory (RRKM theory) of unimolecular reactions, a brief presentation of which is also included

  12. Development of compact tritium confinement system using gas separation membrane

    International Nuclear Information System (INIS)

    Hayashi, Takumi; Okuno, Kenji

    1994-01-01

    In order to develop more compact and cost-effective tritium confinement system for fusion reactor, a new system using gas separation membranes has been studied at the Tritium Process Laboratory in the Japan Atomic Energy Research Institute. The preliminary result showed that the gas separation membrane system could reduce processing volume of tritium contaminated gas to more than one order of magnitude compared with the conventional system, and that most of tritiated water vapor (humidity) could be directly recovered by water condenser before passing through dryer such as molecular sieves. More detail investigations of gas separation characteristics of membrane were started to design ITER Atmospheric Detritiation System (ADS). Furthermore, a scaled polyimide membrane module (hollow-filament type) loop was just installed to investigate the actual tritium confinement performance under various ITER-ADS conditions. (author)

  13. A compact readout system for multi-pixel hybrid photodiodes

    International Nuclear Information System (INIS)

    Datema, C.P.; Meng, L.J.; Ramsden, D.

    1999-01-01

    Although the first Multi-pixel Hybrid Photodiode (M-HPD) was developed in the early 1990s by Delft Electronic Products, the main obstacle to its application has been the lack of availability of a compact read-out system. A fast, parallel readout system has been constructed for use with the earlier 25-pixel tube with High-energy Physics applications in mind. The excellent properties of the recently developed multi-pixel hybrid photodiodes (M-HPD) will be easier to exploit following the development of the new hybrid read-out circuits described in this paper. This system will enable all of the required read-out functions to be accommodate on a single board into which the M-HPD is plugged. The design and performance of a versatile system is described in which a trigger-signal, derived from the common-side of the silicon anode in the M-HPD, is used to trigger the readout of the 60-anode pixels in the M-HPD. The multi-channel amplifier section is based on the use of a new, commercial VLSI chip, whilst the read-out sequencer uses a chip of its own design. The common anode signal is processed by a fast amplifier and discriminator to provide a trigger signal when a single event is detected. In the prototype version, the serial analogue output data-stream is processed using a PC-mounted, high speed ADC. Results obtained using the new read-out system in a compact gamma-camera and with a small muon tracking-chamber demonstrate the low-noise performance of the system. The application of this read-out system in other position-sensitive or multi-anode photomultiplier tube applications are also described

  14. Cryogenic system design for a compact tokamak reactor

    International Nuclear Information System (INIS)

    Slack, D.S.; Kerns, J.A.; Miller, J.R.

    1988-01-01

    The International Tokamak Engineering Reactor (ITER) is a program presently underway to design a next-generation tokamak reactor. The cryogenic system for this reactor must meet unusual and new requirements. Unusually high heat loads (100 kW at 4.5 K) must be handled because neutron shielding has been limited to save space in the reactor core. Also, large variations in the cryogenics loads occur over short periods of time because of the pulsed nature of some of the operating scenarios. This paper describes a workable cryogenic system design for a compact tokamak reactor such as ITER. A design analysis is presented dealing with a system that handles transient loads, coil quenches, reactor cool-down and the effect of variations in helium-supply temperatures on the cryogenic stability of the coils. 5 refs., 4 figs., 1 tab

  15. An integrated compact airborne multispectral imaging system using embedded computer

    Science.gov (United States)

    Zhang, Yuedong; Wang, Li; Zhang, Xuguo

    2015-08-01

    An integrated compact airborne multispectral imaging system using embedded computer based control system was developed for small aircraft multispectral imaging application. The multispectral imaging system integrates CMOS camera, filter wheel with eight filters, two-axis stabilized platform, miniature POS (position and orientation system) and embedded computer. The embedded computer has excellent universality and expansibility, and has advantages in volume and weight for airborne platform, so it can meet the requirements of control system of the integrated airborne multispectral imaging system. The embedded computer controls the camera parameters setting, filter wheel and stabilized platform working, image and POS data acquisition, and stores the image and data. The airborne multispectral imaging system can connect peripheral device use the ports of the embedded computer, so the system operation and the stored image data management are easy. This airborne multispectral imaging system has advantages of small volume, multi-function, and good expansibility. The imaging experiment results show that this system has potential for multispectral remote sensing in applications such as resource investigation and environmental monitoring.

  16. A compact multiparameter acquisition system for radon concentration studies

    Science.gov (United States)

    Pugliese; Baiano; Boiano; D'Onofrio; Roca; Sabbarese; Vollaro

    2000-07-01

    A compact device suitable to acquire and display, at the same time, radon concentrations in a given atmosphere, and the environmental parameters characterising the atmosphere, is presented and described. It consists of two main blocks: (i) a detection section including a set of sensors for measuring pressure, humidity and temperature, and a set of silicon surface barrier detectors mounted in electrostatic cells collecting the ionised radon daughters; (ii) a single NIM module featuring an eight channel 12 bit ADC and the linear electronics to shape the signals from the silicon detectors. The system is controlled by a computer via a RS232 port. The software, implemented in Visual Basic, allows to display the energy distribution of the pulses coming from the alpha detectors and to initialise and control all phases of the acquisition. The results of preliminary tests show the high reliability of the system.

  17. A compact multiparameter acquisition system for radon concentration studies

    International Nuclear Information System (INIS)

    Pugliese, M.; Baiano, G.; Boiano, A.; D'Onofrio, A.; Roca, V.; Sabbarese, C.; Vollaro, P.

    2000-01-01

    A compact device suitable to acquire and display, at the same time, radon concentrations in a given atmosphere, and the environmental parameters characterising the atmosphere, is presented and described. It consists of two main blocks: (i) a detection section including a set of sensors for measuring pressure, humidity and temperature, and a set of silicon surface barrier detectors mounted in electrostatic cells collecting the ionised radon daughters; (ii) a single NIM module featuring an eight channel 12 bit ADC and the linear electronics to shape the signals from the silicon detectors. The system is controlled by a computer via a RS232 port. The software, implemented in Visual Basic, allows to display the energy distribution of the pulses coming from the alpha detectors and to initialise and control all phases of the acquisition. The results of preliminary tests show the high reliability of the system

  18. Transverse correlations in multiphoton entanglement

    International Nuclear Information System (INIS)

    Wen Jianming; Rubin, Morton H.; Shih Yanhua

    2007-01-01

    We have analyzed the transverse correlation in multiphoton entanglement. The generalization of quantum ghost imaging is extended to the N-photon state. The Klyshko's two-photon advanced-wave picture is generalized to the N-photon case

  19. Video-rate resonant scanning multiphoton microscopy

    Science.gov (United States)

    Kirkpatrick, Nathaniel D.; Chung, Euiheon; Cook, Daniel C.; Han, Xiaoxing; Gruionu, Gabriel; Liao, Shan; Munn, Lance L.; Padera, Timothy P.; Fukumura, Dai; Jain, Rakesh K.

    2013-01-01

    The abnormal tumor microenvironment fuels tumor progression, metastasis, immune suppression, and treatment resistance. Over last several decades, developments in and applications of intravital microscopy have provided unprecedented insights into the dynamics of the tumor microenvironment. In particular, intravital multiphoton microscopy has revealed the abnormal structure and function of tumor-associated blood and lymphatic vessels, the role of aberrant tumor matrix in drug delivery, invasion and metastasis of tumor cells, the dynamics of immune cell trafficking to and within tumors, and gene expression in tumors. However, traditional multiphoton microscopy suffers from inherently slow imaging rates—only a few frames per second, thus unable to capture more rapid events such as blood flow, lymphatic flow, and cell movement within vessels. Here, we report the development and implementation of a video-rate multiphoton microscope (VR-MPLSM) based on resonant galvanometer mirror scanning that is capable of recording at 30 frames per second and acquiring intravital multispectral images. We show that the design of the system can be readily implemented and is adaptable to various experimental models. As examples, we demonstrate the utility of the system to directly measure flow within tumors, capture metastatic cancer cells moving within the brain vasculature and cells in lymphatic vessels, and image acute responses to changes in a vascular network. VR-MPLSM thus has the potential to further advance intravital imaging and provide new insight into the biology of the tumor microenvironment. PMID:24353926

  20. Multiphoton Processes and Attosecond Physics

    CERN Document Server

    Midorikawa, Katsumi; 12th International Conference on Multiphoton Processes; 3rd International Conference on Attosecond Physics

    2012-01-01

    Recent advances in ultrashort pulsed laser technology have opened new frontiers in atomic, molecular and optical sciences. The 12th International Conference on Multiphoton Processes (ICOMP12) and the 3rd International Conference on Attosecond Physics (ATTO3), held jointly in Sapporo, Japan, during July 3-8, showcased studies at the forefront of research on multiphoton processes and attosecond physics. This book summarizes presentations and discussions from these two conferences.

  1. Laser-induced multiphoton transitions

    International Nuclear Information System (INIS)

    Stenholm, S.

    1978-06-01

    Laser induced multiphoton processes are reviewed. The effects of strong fields on atoms are discussed. The perturbation treatment is presented and also its generalization to treat intermediate resonances. The influence of atomic coherence is discussed heuristically and the relation between quantal and classical descriptions of the field is elucidated by reference to the dressed atom description. Atomic ionization experiments are reviewed and the present understanding of multiphoton dissociation of molecules is explained. Finally some prospects for the future are discussed. (author)

  2. Spin Multiphoton Antiresonance at Finite Temperatures

    Science.gov (United States)

    Hicke, Christian; Dykman, Mark

    2007-03-01

    Weakly anisotropic S>1 spin systems display multiphoton antiresonance. It occurs when an Nth overtone of the radiation frequency coincides with the distance between the ground and the Nth excited energy level (divided by ). The coherent response of the spin displays a sharp minimum or maximum as a function of frequency, depending on which state was initially occupied. We find the spectral shape of the response dips/peaks. We also study the stationary response for zero and finite temperatures. The response changes dramatically with increasing temperature, when excited states become occupied even in the absence of radiation. The change is due primarily to the increasing role of single-photon resonances between excited states, which occur at the same frequencies as multiphoton resonances. Single-photon resonances are broad, because the single-photon Rabi frequencies largely exceed the multi-photon ones. This allows us to separate different resonances and to study their spectral shape. We also study the change of the spectrum due to relaxational broadening of the peaks, with account taken of both decay and phase modulation.

  3. Edge transport barrier formation in compact helical system

    International Nuclear Information System (INIS)

    Okamura, S; Minami, T; Oishi, T; Suzuki, C; Ida, K; Isobe, M; Yoshimura, Y; Nagaoka, K; Toi, K; Fujisawa, A; Akiyama, T; Iguchi, H; Ikeda, R; Kado, S; Matsuoka, K; Matsushita, H; Nakamura, K; Nakano, H; Nishimura, S; Nishiura, M; Ohshima, S; Shimizu, A; Takagi, S; Takahashi, C; Takeuchi, M; Yoshinuma, M

    2004-01-01

    The edge transport barrier (ETB) for particle transport is formed in the neutral beam (NB) heated hydrogen discharges in compact helical system (CHS). The transition to the ETB formation and the back transition are controlled by the heating power. The existence of the heating power threshold is confirmed and it is roughly proportional to the density. The Hα emission signal shows a clear drop at the transition (the timescale of signal decrease is ∼1 ms for the high heating power case). The ETB formation continues for the full duration of NB injection (100 ms) with a moderate level of radiation power loss. Local density profile measurement shows increase of the edge density and the movement of the density gradient region towards the edge

  4. Compact system for high-speed velocimetry using heterodyne techniques

    International Nuclear Information System (INIS)

    Strand, O. T.; Goosman, D. R.; Martinez, C.; Whitworth, T. L.; Kuhlow, W. W.

    2006-01-01

    We have built a high-speed velocimeter that has proven to be compact, simple to operate, and fairly inexpensive. This diagnostic is assembled using off-the-shelf components developed for the telecommunications industry. The main components are fiber lasers, high-bandwidth high-sample-rate digitizers, and fiber optic circulators. The laser is a 2 W cw fiber laser operating at 1550 nm. The digitizers have 8 GHz bandwidth and can digitize four channels simultaneously at 20 GS/s. The maximum velocity of this system is ∼5000 m/s and is limited by the bandwidth of the electrical components. For most applications, the recorded beat frequency is analyzed using Fourier transform methods, which determine the time response of the final velocity time history. Using the Fourier transform method of analysis allows multiple velocities to be observed simultaneously. We have obtained high-quality data on many experiments such as explosively driven surfaces and gas gun assemblies

  5. Measurements of Beam Ion Loss from the Compact Helical System

    International Nuclear Information System (INIS)

    Darrow, D.S.; Isobe, M.; Kondo, Takashi; Sasao, M.

    2010-01-01

    Beam ion loss from the Compact Helical System (CHS) has been measured with a scintillator-type probe. The total loss to the probe, and the pitch angle and gyroradius distributions of that loss, have been measured as various plasma parameters were scanned. Three classes of beam ion loss were observed at the probe position: passing ions with pitch angles within 10o of those of transition orbits, ions on transition orbits, and ions on trapped orbits, typically 15o or more from transition orbits. Some orbit calculations in this geometry have been performed in order to understand the characteristics of the loss. Simulation of the detector signal based upon the following of orbits from realistic beam deposition profiles is not able to reproduce the pitch angle distribution of the losses measured. Consequently it is inferred that internal plasma processes, whether magnetohydrodynamic modes, radial electric fields, or plasma turbulence, move previously confined beam ions to transition orbits, resulting in their loss.

  6. Relocatable cargo x-ray inspection systems utilizing compact linacs

    International Nuclear Information System (INIS)

    Sapp, W. Wade; Adams, William L.; Callerame, Joseph; Grodzins, Lee; Rothschild, Peter J.; Schueller, Richard; Mishin, Andrey V.; Smith, Gerald J.

    2001-01-01

    Magnetron-powered, X-band linacs with 3-4 MeV capability are compact enough to be readily utilized in relocatable high energy cargo inspection systems. Just such a system is currently under development at AS and E trade mark sign using the commercially available ISOSearch trade mark sign cargo inspection system as the base platform. The architecture permits the retention of backscatter imaging, which has proven to be an extremely valuable complement to the more usual transmission images. The linac and its associated segmented detector will provide an additional view with superior penetration and spatial resolution. The complete system, which is housed in two standard 40 ' ISO containers, is briefly described with emphasis on the installation and operating characteristics of the portable linac. The average rf power delivered by the magnetron to the accelerator section can be varied up to the maximum of about 1 kW. The projected system performance, including radiation dose to the environment, will be discussed and compared with other high energy systems

  7. Evaluation of a Compact Hybrid Brain-Computer Interface System

    Directory of Open Access Journals (Sweden)

    Jaeyoung Shin

    2017-01-01

    Full Text Available We realized a compact hybrid brain-computer interface (BCI system by integrating a portable near-infrared spectroscopy (NIRS device with an economical electroencephalography (EEG system. The NIRS array was located on the subjects’ forehead, covering the prefrontal area. The EEG electrodes were distributed over the frontal, motor/temporal, and parietal areas. The experimental paradigm involved a Stroop word-picture matching test in combination with mental arithmetic (MA and baseline (BL tasks, in which the subjects were asked to perform either MA or BL in response to congruent or incongruent conditions, respectively. We compared the classification accuracies of each of the modalities (NIRS or EEG with that of the hybrid system. We showed that the hybrid system outperforms the unimodal EEG and NIRS systems by 6.2% and 2.5%, respectively. Since the proposed hybrid system is based on portable platforms, it is not confined to a laboratory environment and has the potential to be used in real-life situations, such as in neurorehabilitation.

  8. Compact toroid injection system for JFT-2M

    Energy Technology Data Exchange (ETDEWEB)

    Fukumoto, N. [University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan)]. E-mail: fukumotn@eng.u-hyogo.ac.jp; Ogawa, H. [Japan Atomic Energy Agency (JAEA), 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Nagata, M. [University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Uyama, T. [University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Shibata, T. [Japan Atomic Energy Agency (JAEA), 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Kashiwa, Y. [Japan Atomic Energy Agency (JAEA), 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Suzuki, S. [Japan Atomic Energy Agency (JAEA), 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Kusama, Y. [Japan Atomic Energy Agency (JAEA), 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)

    2006-11-15

    The compact toroid (CT) injection system for JFT-2M is composed of a CT injector, a gas delivery and vacuum system, a power supply system, and a diagnostics system. In particular, the power supply system delivers high performance for CT formation and acceleration. The CT formation capacitor bank unit achieved a formation current of 350 kA with a rise time less than 10 {mu}s. Although the CT acceleration bank units are equipped with 14 ignitron switches instead of gap switches to attenuate the discharge noise level, an acceleration current of 400 kA with a short rise time of 9 {mu}s is controlled within a jitter of much less than 1 {mu}s. The resulting CT velocity and mass density satisfy the requirements for CT penetration into the tokamak plasma core at a toroidal field of 1 T. This CT injection system is thus suitable for CT injection in a middle-sized tokamak plasma such as the JFT-2M tokamak.

  9. Compact toroid injection system for JFT-2M

    International Nuclear Information System (INIS)

    Fukumoto, N.; Ogawa, H.; Nagata, M.; Uyama, T.; Shibata, T.; Kashiwa, Y.; Suzuki, S.; Kusama, Y.

    2006-01-01

    The compact toroid (CT) injection system for JFT-2M is composed of a CT injector, a gas delivery and vacuum system, a power supply system, and a diagnostics system. In particular, the power supply system delivers high performance for CT formation and acceleration. The CT formation capacitor bank unit achieved a formation current of 350 kA with a rise time less than 10 μs. Although the CT acceleration bank units are equipped with 14 ignitron switches instead of gap switches to attenuate the discharge noise level, an acceleration current of 400 kA with a short rise time of 9 μs is controlled within a jitter of much less than 1 μs. The resulting CT velocity and mass density satisfy the requirements for CT penetration into the tokamak plasma core at a toroidal field of 1 T. This CT injection system is thus suitable for CT injection in a middle-sized tokamak plasma such as the JFT-2M tokamak

  10. A compact muon tracking system for didactic and outreach activities

    Energy Technology Data Exchange (ETDEWEB)

    Antolini, R.; Candela, A.; Conicella, V.; De Deo, M.; D' Incecco, M.; Sablone, D. [INFN Gran Sasso National Laboratory – Assergi (AQ) (Italy); Arneodo, F.; Benabderrahmane, M.L.; Di Giovanni, A. [New York University Abu Dhabi - Abu Dhabi (United Arab Emirates); Pazos Clemens, L., E-mail: luis.pazclem@nyu.edu [New York University Abu Dhabi - Abu Dhabi (United Arab Emirates); Franchi, G.; D' Inzeo, M. [Age Scientific srl – Capezzano Pianore (Italy)

    2016-07-11

    We present a cosmic ray telescope based on the use of plastic scintillator bars coupled to ASD-RGB1S-M Advansid Silicon Photomultipliers (SiPM) through wavelength shifter fibers. The system is comprised of 200 electronic channels organized into 10 couples of orthogonal planes allowing the 3D reconstruction of crossing muons. Two monolithic PCB boards have been designed to bias, readout all the SiPMs enclosed in the system, to monitor the working parameters and to remotely connect the detector. To make easier the display of muon tracks to non-expert users, two LED matrices, triggered by particle interactions, have been implemented. To improve the usability of the muon telescope, a controller board unit permits to select different levels of trigger and allows data acquisition for refined analyses for the more proficient user. A first prototype, funded by INFN and deployed in collaboration with NYUAD, is operating at the Toledo Metro station of Naples, while two further detectors will be developed and installed in Abu Dhabi in the next few months. - Highlights: • A compact system for real time displaying of muon tracks is presented. • The system is based on scintillating plates composed of doped polystyrene bars. • By using SiPMs and corresponding LEDs the muon paths can be visualized. • The purpose of this system is to introduce the public to sub-nuclear particles.

  11. A compact muon tracking system for didactic and outreach activities

    International Nuclear Information System (INIS)

    Antolini, R.; Candela, A.; Conicella, V.; De Deo, M.; D' Incecco, M.; Sablone, D.; Arneodo, F.; Benabderrahmane, M.L.; Di Giovanni, A.; Pazos Clemens, L.; Franchi, G.; D'Inzeo, M.

    2016-01-01

    We present a cosmic ray telescope based on the use of plastic scintillator bars coupled to ASD-RGB1S-M Advansid Silicon Photomultipliers (SiPM) through wavelength shifter fibers. The system is comprised of 200 electronic channels organized into 10 couples of orthogonal planes allowing the 3D reconstruction of crossing muons. Two monolithic PCB boards have been designed to bias, readout all the SiPMs enclosed in the system, to monitor the working parameters and to remotely connect the detector. To make easier the display of muon tracks to non-expert users, two LED matrices, triggered by particle interactions, have been implemented. To improve the usability of the muon telescope, a controller board unit permits to select different levels of trigger and allows data acquisition for refined analyses for the more proficient user. A first prototype, funded by INFN and deployed in collaboration with NYUAD, is operating at the Toledo Metro station of Naples, while two further detectors will be developed and installed in Abu Dhabi in the next few months. - Highlights: • A compact system for real time displaying of muon tracks is presented. • The system is based on scintillating plates composed of doped polystyrene bars. • By using SiPMs and corresponding LEDs the muon paths can be visualized. • The purpose of this system is to introduce the public to sub-nuclear particles.

  12. Highly Compact MIMO Antenna System for LTE/ISM Applications

    Directory of Open Access Journals (Sweden)

    Lingsheng Yang

    2015-01-01

    Full Text Available Planar monopole antenna is proposed as the antenna element to form a compact dual-element multiple-input-multiple-output (MIMO antenna system for LTE2300 (used in Asia and Africa and ISM band operation. The system can cover a 310 MHz (2.20–2.51 GHz operating bandwidth, with the total size of 15.5 mm × 18 mm × 1.6 mm. Measured isolation higher than 16 dB is obtained without any specially designed decoupling structures, while the edge-to-edge element spacing is only 7.8 mm (0.08λ at 2.20 GHz. Radiation characteristics, correlation coefficient, and the performance of the whole system with a metal sheet and a plastic housing show this system is competitive for practical MIMO applications. The antenna element is further used to build an eight-element MIMO antenna system; also good results are achieved.

  13. Systems Analysis of a Compact Next Step Burning Plasma Experiment

    International Nuclear Information System (INIS)

    Jardin, S.C.; Kessel, C.E.; Meade, D.; Neumeyer, C.

    2002-01-01

    A new burning plasma systems code (BPSC) has been developed for analysis of a next step compact burning plasma experiment with copper-alloy magnet technology. We consider two classes of configurations: Type A, with the toroidal field (TF) coils and ohmic heating (OH) coils unlinked, and Type B, with the TF and OH coils linked. We obtain curves of the minimizing major radius as a function of aspect ratio R(A) for each configuration type for typical parameters. These curves represent, to first order, cost minimizing curves, assuming that device cost is a function of major radius. The Type B curves always lie below the Type A curves for the same physics parameters, indicating that they lead to a more compact design. This follows from that fact that a high fraction of the inner region, r < R-a, contains electrical conductor material. However, the fact that the Type A OH and TF magnets are not linked presents fewer engineering challenges and should lead to a more reliable design. Both the Type A and Type B curves have a minimum in major radius R at a minimizing aspect ratio A typically above 2.8 and at high values of magnetic field B above 10 T. The minimizing A occurs at larger values for longer pulse and higher performance devices. The larger A and higher B design points also have the feature that the ratio of the discharge time to the current redistribution time is largest so that steady-state operation can be more realistically prototyped. A sensitivity study is presented for the baseline Type A configuration showing the dependence of the results on the parameters held fixed for the minimization study

  14. The design and implementation of on-line monitoring system for UHV compact shunt capacitors

    Science.gov (United States)

    Tao, Weiliang; Ni, Xuefeng; Lin, Hao; Jiang, Shengbao

    2017-08-01

    Because of the large capacity and compact structure of the UHV compact shunt capacitor, it is difficult to take effective measures to detect and prevent the faults. If the fault capacitor fails to take timely maintenance, it will pose a threat to the safe operation of the system and the life safety of the maintenance personnel. The development of UHV compact shunt capacitor on-line monitoring system can detect and record the on-line operation information of UHV compact shunt capacitors, analyze and evaluate the early fault warning signs, find out the fault capacitor or the capacitor with fault symptom, to ensure safe and reliable operation of the system.

  15. A 16 MJ compact pulsed power system for electromagnetic launch

    Science.gov (United States)

    Dai, Ling; Zhang, Qin; Zhong, Heqing; Lin, Fuchang; Li, Hua; Wang, Yan; Su, Cheng; Huang, Qinghua; Chen, Xu

    2015-07-01

    This paper has established a compact pulsed power system (PPS) of 16 MJ for electromagnetic rail gun. The PPS consists of pulsed forming network (PFN), chargers, monitoring system, and current junction. The PFN is composed of 156 pulse forming units (PFUs). Every PFU can be triggered simultaneously or sequentially in order to obtain different total current waveforms. The whole device except general control table is divided into two frameworks with size of 7.5 m × 2.2 m × 2.3 m. It is important to estimate the discharge current of PFU accurately for the design of the whole electromagnetic launch system. In this paper, the on-state characteristics of pulse thyristor have been researched to improve the estimation accuracy. The on-state characteristics of pulse thyristor are expressed as a logarithmic function based on experimental data. The circuit current waveform of the single PFU agrees with the simulating one. On the other hand, the coaxial discharge cable is a quick wear part in PFU because the discharge current will be up to dozens of kA even hundreds of kA. In this article, the electromagnetic field existing in the coaxial cable is calculated by finite element method. On basis of the calculation results, the structure of cable is optimized in order to improve the limit current value of the cable. At the end of the paper, the experiment current wave of the PPS with the load of rail gun is provided.

  16. Development of Compact Surveillance and Monitoring System `COSMOS`

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Hironobu; Mukaiyama, Takehiko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-03-01

    The Compact Surveillance and Monitoring System (COSMOS) was developed by the Japan Atomic Energy Research Institute (JAERI) for the International Atomic Energy Agency (IAEA) as a safeguards surveillance system under the JASPAS (Japan Support Programme for Agency Safeguards) with the collaboration of the Sony Corporation. It was intended as a direct replacement to the Twin Minolta film camera system. The COSMOS system can operate with a self-contained battery, record 30,000 scenes with an 8 mm video cassette tape and operate continuously for three months without human intervention. It can also operate by AC power supply for more than three months, and record 45,000 scenes in an 8 mm video cassette tape. The COSMOS system consists of two units, one is the Recording Unit and the other is the Setup/Review Unit. The Recording Unit consists of a main frame, four modules and a tamperproof housing. The four modules are a small CCD (Charge Coupled Device) camera with an auto-iris lens and a specific VTR (Video Tape Recorder), a video frame memory module, a system control module, and a DC or an AC power module. Currently, the COSMOS is the only safeguards video surveillance system without the need of external power supply for three months. In 1992 thirteen COSMOS units were successfully tested for the reliability by both the IAEA and the JAERI. None of mechanical failure was observed. On the one hand, the battery operation tests using four units were successfully carried out with 5 minutes time interval for three months. Three units were also tested in the field and no failure was observed. The COSMOS was accepted as the routine-use device for international safeguards by the IAEA in August 1993. The total of 90 units were purchased by the IAEA from the manufacturer, SONY, and also several units were purchased by the Science and Technology Agency (STA) of Japan for the STA/IAEA joint-use in Japan. (author)

  17. Development of Compact Surveillance and Monitoring System 'COSMOS'

    International Nuclear Information System (INIS)

    Ogawa, Hironobu; Mukaiyama, Takehiko

    1999-03-01

    The Compact Surveillance and Monitoring System (COSMOS) was developed by the Japan Atomic Energy Research Institute (JAERI) for the International Atomic Energy Agency (IAEA) as a safeguards surveillance system under the JASPAS (Japan Support Programme for Agency Safeguards) with the collaboration of the Sony Corporation. It was intended as a direct replacement to the Twin Minolta film camera system. The COSMOS system can operate with a self-contained battery, record 30,000 scenes with an 8 mm video cassette tape and operate continuously for three months without human intervention. It can also operate by AC power supply for more than three months, and record 45,000 scenes in an 8 mm video cassette tape. The COSMOS system consists of two units, one is the Recording Unit and the other is the Setup/Review Unit. The Recording Unit consists of a main frame, four modules and a tamperproof housing. The four modules are a small CCD (Charge Coupled Device) camera with an auto-iris lens and a specific VTR (Video Tape Recorder), a video frame memory module, a system control module, and a DC or an AC power module. Currently, the COSMOS is the only safeguards video surveillance system without the need of external power supply for three months. In 1992 thirteen COSMOS units were successfully tested for the reliability by both the IAEA and the JAERI. None of mechanical failure was observed. On the one hand, the battery operation tests using four units were successfully carried out with 5 minutes time interval for three months. Three units were also tested in the field and no failure was observed. The COSMOS was accepted as the routine-use device for international safeguards by the IAEA in August 1993. The total of 90 units were purchased by the IAEA from the manufacturer, SONY, and also several units were purchased by the Science and Technology Agency (STA) of Japan for the STA/IAEA joint-use in Japan. (author)

  18. Compact PCI/Linux platform in FTU slow control system

    International Nuclear Information System (INIS)

    Iannone, F.; Centioli, C.; Panella, M.; Mazza, G.; Vitale, V.; Wang, L.

    2004-01-01

    In large fusion experiments, such as tokamak devices, there is a common trend for slow control systems. Because of complexity of the plants, the so-called 'Standard Model' (SM) in slow control has been adopted on several tokamak machines. This model is based on a three-level hierarchical control: 1) High-Level Control (HLC) with a supervisory function; 2) Medium-Level Control (MLC) to interface and concentrate I/O field equipment; 3) Low-Level Control (LLC) with hard real-time I/O function, often managed by PLCs. FTU (Frascati Tokamak Upgrade) control system designed with SM concepts has underwent several stages of developments in its fifteen years duration of runs. The latest evolution was inevitable, due to the obsolescence of the MLC CPUs, based on VME-MOTOROLA 68030 with OS9 operating system. A large amount of C code was developed for that platform to route the data flow from LLC, which is constituted by 24 Westinghouse Numalogic PC-700 PLCs with about 8000 field-points, to HLC, based on a commercial Object-Oriented Real-Time database on Alpha/CompaqTru64 platform. Therefore, authors have to look for cost-effective solutions and finally a CompactPCI-Intel x86 platform with Linux operating system was chosen. A software porting has been done, taking into account the differences between OS9 and Linux operating system in terms of Inter/Network Processes Communications and I/O multi-ports serial driver. This paper describes the hardware/software architecture of the new MLC system, emphasizing the reliability and the low costs of the open source solutions. Moreover, a huge amount of software packages available in open source environment will assure a less painful maintenance, and will open the way to further improvements of the system itself. (authors)

  19. High-resolution multimodal clinical multiphoton tomography of skin

    Science.gov (United States)

    König, Karsten

    2011-03-01

    This review focuses on multimodal multiphoton tomography based on near infrared femtosecond lasers. Clinical multiphoton tomographs for 3D high-resolution in vivo imaging have been placed into the market several years ago. The second generation of this Prism-Award winning High-Tech skin imaging tool (MPTflex) was introduced in 2010. The same year, the world's first clinical CARS studies have been performed with a hybrid multimodal multiphoton tomograph. In particular, non-fluorescent lipids and water as well as mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen has been imaged with submicron resolution in patients suffering from psoriasis. Further multimodal approaches include the combination of multiphoton tomographs with low-resolution wide-field systems such as ultrasound, optoacoustical, OCT, and dermoscopy systems. Multiphoton tomographs are currently employed in Australia, Japan, the US, and in several European countries for early diagnosis of skin cancer, optimization of treatment strategies, and cosmetic research including long-term testing of sunscreen nanoparticles as well as anti-aging products.

  20. Proximal design for a multimodality endoscope with multiphoton microscopy, optical coherence microscopy and visual modalities

    Science.gov (United States)

    Kiekens, Kelli C.; Talarico, Olivia; Barton, Jennifer K.

    2018-02-01

    A multimodality endoscope system has been designed for early detection of ovarian cancer. Multiple illumination and detection systems must be integrated in a compact, stable, transportable configuration to meet the requirements of a clinical setting. The proximal configuration presented here supports visible light navigation with a large field of view and low resolution, high resolution multiphoton microscopy (MPM), and high resolution optical coherence microscopy (OCM). All modalities are integrated into a single optical system in the endoscope. The system requires two light sources: a green laser for visible light navigation and a compact fiber based femtosecond laser for MPM and OCM. Using an inline wavelength division multiplexer, the two sources are combined into a single mode fiber. To accomplish OCM, a fiber coupler is used to separate the femtosecond laser into a reference arm and signal arm. The reflected reference arm and the signal from the sample are interfered and wavelength separated by a reflection grating and detected using a linear array. The MPM signal is collimated and goes through a series of filters to separate the 2nd and 3rd harmonics as well as twophoton excitation florescence (2PEF) and 3PEF. Each signal is independently detected on a photo multiplier tube and amplified. The visible light is collected by multiple high numerical aperture fibers at the endoscope tip which are bundled into one SMA adapter at the proximal end and connected to a photodetector. This integrated system design is compact, efficient and meets both optical and mechanical requirements for clinical applications.

  1. Quantitative multiphoton imaging

    Science.gov (United States)

    König, Karsten; Weinigel, Martin; Breunig, Hans Georg; Uchugonova, Aisada

    2014-02-01

    Certified clinical multiphoton tomographs for label-free multidimensional high-resolution in vivo imaging have been introduced to the market several years ago. Novel tomographs include a flexible 360° scan head attached to a mechanooptical arm for autofluorescence and SHG imaging as well as a CARS module. Non-fluorescent lipids and water, mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen can be imaged in vivo with submicron resolution in human skin. Sensitive and rapid detectors allow single photon counting and the construction of 3D maps where the number of detected photons per voxel is depicted. Intratissue concentration profiles from endogenous as well exogenous substances can be generated when the number of detected photons can be correlated with the number of molecules with respect to binding and scattering behavior. Furthermore, the skin ageing index SAAID based on the ratio elastin/collagen as well as the epidermis depth based on the onset of SHG generation can be determined.

  2. Multiphoton tomography of astronauts

    Science.gov (United States)

    König, Karsten; Weinigel, Martin; Pietruszka, Anna; Bückle, Rainer; Gerlach, Nicole; Heinrich, Ulrike

    2015-03-01

    Weightlessness may impair the astronaut's health conditions. Skin impairments belong to the most frequent health problems during space missions. Within the Skin B project, skin physiological changes during long duration space flights are currently investigated on three European astronauts that work for nearly half a year at the ISS. Measurements on the hydration, the transepidermal water loss, the surface structure, elasticity and the tissue density by ultrasound are conducted. Furthermore, high-resolution in vivo histology is performed by multiphoton tomography with 300 nm spatial and 200 ps temporal resolution. The mobile certified medical tomograph with a flexible 360° scan head attached to a mechano-optical arm is employed to measure two-photon autofluorescence and SHG in the volar forearm of the astronauts. Modification of the tissue architecture and of the fluorescent biomolecules NAD(P)H, keratin, melanin and elastin are detected as well as of SHG-active collagen. Thinning of the vital epidermis, a decrease of the autofluoresence intensity, an increase in the long fluorescence lifetime, and a reduced skin ageing index SAAID based on an increased collagen level in the upper dermis have been found. Current studies focus on recovery effects.

  3. Research on Real-Time Supervisory System for Compaction Quality in Face Rockfill Dam Engineering

    Directory of Open Access Journals (Sweden)

    Shengxiang Huang

    2018-01-01

    Full Text Available Compaction quality control in filling construction is of great significance to the stability and durability of the face rockfill dam. The conventional method of quality control mainly relies on manual process control and inspection for a limited number of test holes, which cannot meet the high requirements of modern mechanized construction and schedule anymore, with increasing of scale of face rockfill dams. There is an urgent need to propose a new quality control method of face rockfill dams during the entire compaction process. In this paper, a supervisory system based on GNSS (Global Navigation Satellite System technology, wireless data communication technology, Internet of things technology, and computer technology is developed to supervise the real-time roller compaction parameters of the working surface including rolling track, rolling times, rolling speed, thickness, and smoothness. The system obtains continuous and high-precision spatial position information of roller compaction machines through GNSS technology and then calculates the roller compaction parameter information. The compaction quality control for the face rockfill dam is achieved through the supervision of roller compaction parameters. The feasibility and robustness of the developed supervisory system are validated by a case study in the face rockfill dam of Shuibuya project in China. The practice shows that the system provides a new and effective method of process control for the construction quality of the roller compaction in dam engineering and realizes real-time, precision, and automatic supervising of roller compaction parameters and ensures better construction quality.

  4. A high energy photon detector system in compact form

    International Nuclear Information System (INIS)

    Kato, Sadayuki; Sugano, Katsuhito; Yoshioka, Masakazu.

    1975-01-01

    The development of a high energy photon detector system in compact form for use in experiments of high energy physics is described, and the results of its characteristics calibrated using converted electron beams and a pair spectrometer are reported. This system consists of a total absorption lead glass Cerenkov counter, twenty hodoscope arrays for the vertical and the horizontal directions respectively, a lead plate for the conversion of γ-rays into electron-positron pairs, veto counters, photon hardener, and lead blocks for shieldings and collimation. The spatial resolution of the hodoscope is 15 mm for each direction, covering 301 x 301 mm 2 area. The energy resolution of the total absorption lead glass Cerenkov counter, whose volume is 30 x 30 x 30 cm 3 , is typically 18 % (FWHM) for the incident electron energy of 500 MeV, and it can be expressed with a relation of ΔE/E = 3.94 Esup(-1/2). (E in MeV). (auth.)

  5. Evolution of highly compact binary stellar systems in globular clusters

    International Nuclear Information System (INIS)

    Krolik, J.H.; Meiksin, A.; Joss, P.C.

    1984-01-01

    We have calculated the secular evolution of a highly compact binary stellar system, composed of a collapsed object and a low-mass secondary star, in the core of a globular cluster. The binary evolves under the combined influences of (i) gravitational radiation losses from the system, (ii) the evolution of the secondary star, (iii) the resultant gradual mass transfer, if any, from the secondary to the collapsed object, and (iv) occasional encounters with passing field stars. We calculate all these effects in detail, utilizing some simplifying approximations appropriate to low-mass secondaries. The times of encounters with field stars, and the initial parameter specifying those encounters, were chosen by use of a Monte Carlo technique; the subsequent gravitational interactions were calculated utilzing a three-body integrator, and the changes in the binary orbital parmeters were thereby determined. We carried out a total of 20 such evolutionary calculations for each of two cluster core densities (1 and 3 x 10 3 stars pc -3 ). Each calculation was continued until the binary was disrupted or until 2 x 10 10 yr had elapsed

  6. Final focus system tuning studies towards Compact Linear Collider feasibility

    Science.gov (United States)

    Marin, E.; Latina, A.; Tomás, R.; Schulte, D.

    2018-01-01

    In this paper we present the latest results regarding the tuning study of the baseline design of the final focus system of the Compact Linear Collider (CLIC-FFS). CLIC aims to provide collisions to the experiments at a luminosity above 1034 c m-2 s-1 . In order to deliver such luminosity in a single pass machine, the vertical beam size at the interaction point (IP) is reduced to about 1 nm, which imposes unprecedented tuning difficulties to the system. In previous studies, 90% of the machines reached 90% of the nominal luminosity at the expense of 18 000 luminosity measurements, when considering beam position monitor errors and transverse misalignments of magnets for a single beam case. In the present study, additional static imperfections as, roll misalignments, strength v2.epss are included. Moreover both e- and e+ beamlines are properly simulated. A new tuning procedure based on linear and nonlinear knobs is implemented to effectively cure the most relevant beam size aberrations at the IP. The obtained results for single and double beam studies under solely static imperfections are presented.

  7. Evaluation of multiphoton effects in down-conversion

    International Nuclear Information System (INIS)

    Yoshimi, Kazuyoshi; Koshino, Kazuki

    2010-01-01

    Multiphoton effects in down-conversion are investigated based on the full-quantum multimode formalism by considering a three-level system as a prototype nonlinear system. We analytically derive the three-photon output wave function for two input photons, where one of the two input photons is down-converted and the other one is not. Using this output wave function, we calculate the down-conversion probability, the purity, and the fidelity to evaluate the entanglement between a down-converted photon pair and a non-down-converted photon. It is shown that the saturation effect occurs by multiphoton input and that it affects both the down-conversion probability and the quantum correlation between the down-converted photon pair and the non-down-converted photon. We also reveal the necessary conditions for multiphoton effects to be strong.

  8. Compact all-fiber interferometer system for shock acceleration measurement

    Science.gov (United States)

    Zhao, Jiang; Pi, Shaohua; Hong, Guangwei; Zhao, Dong; Jia, Bo

    2013-08-01

    Acceleration measurement plays an important role in a variety of fields in science and engineering. In particular, the accurate, continuous and non-contact recording of the shock acceleration profiles of the free target surfaces is considered as a critical technique in shock physics. Various kinds of optical interferometers have been developed to monitor the motion of the surfaces of shocked targets since the 1960s, for instance, the velocity interferometer system for any reflector, the fiber optic accelerometer, the photonic Doppler velocimetry system and the displacement interferometer. However, most of such systems rely on the coherent quasi-monochromatic illumination and discrete optic elements, which are costly in setting-up and maintenance. In 1996, L. Levin et al reported an interferometric fiber-optic Doppler velocimeter with high-dynamic range, in which fiber-coupled components were used to replace the discrete optic elements. However, the fringe visibility of the Levin's system is low because of the coupled components, which greatly limits the reliability and accuracy in the shock measurement. In this paper, a compact all-fiber interferometer system for measuring the shock acceleration is developed and tested. The advantage of the system is that not only removes the non-interfering light and enhances the fringe visibility, but also reduces polarization induced signal fading and the polarization induced phase shift. Moreover, it also does not require a source of long coherence length. The system bases entirely on single-mode fiber optics and mainly consists of a polarization beam splitter, a faraday rotator, a depolarizer and a 3×3 single-mode fiber coupler which work at 1310 nm wavelength. The optical systems of the interferometer are described and the experimental results compared with a shock acceleration calibration system with a pneumatic exciter (PneuShockTM Model 9525C by The Modal Shop) are reported. In the shock acceleration test, the

  9. Remote maintenance of Compact Ignition Tokamak ex-vessel systems

    International Nuclear Information System (INIS)

    DePew, R.E.; Macdonald, D.

    1989-01-01

    The use of deuterium-tritium (D-T) fuel in the Compact Ignition Tokamak (CIT) will require applying remote handling technology for ex-vessel maintenance and replacement of machine components. Highly activated and contaminated components of the fusion device's auxiliary systems, such as diagnostics and RF heating, must be replaced using remotely operated maintenance equipment in the test cell. Throughout the CIT remote maintenance (RM) studies conducted to date, computer modeling has been used extensively to investigate manipulator access in these complex, tightly packed, and cluttered surroundings. A recent refinement of computer modeling involves the use of an intelligent engineering work station for realtime interactive display of task simulations. This paper discusses the use of three-dimensional (3-D) kinematic computer models of the CIT machines that are proving to be powerful tools in our efforts to evaluate RM requirements. This presentation includes a video-taped simulation of remote replacement of a plasma viewing assembly. The simulation illustrates some of the constraints associated with typical RM activities and the ways in which computer modeling enhances the design process. 1 ref., 3 figs

  10. A compact electroencephalogram recording device with integrated audio stimulation system

    Science.gov (United States)

    Paukkunen, Antti K. O.; Kurttio, Anttu A.; Leminen, Miika M.; Sepponen, Raimo E.

    2010-06-01

    A compact (96×128×32 mm3, 374 g), battery-powered, eight-channel electroencephalogram recording device with an integrated audio stimulation system and a wireless interface is presented. The recording device is capable of producing high-quality data, while the operating time is also reasonable for evoked potential studies. The effective measurement resolution is about 4 nV at 200 Hz sample rate, typical noise level is below 0.7 μVrms at 0.16-70 Hz, and the estimated operating time is 1.5 h. An embedded audio decoder circuit reads and plays wave sound files stored on a memory card. The activities are controlled by an 8 bit main control unit which allows accurate timing of the stimuli. The interstimulus interval jitter measured is less than 1 ms. Wireless communication is made through bluetooth and the data recorded are transmitted to an external personal computer (PC) interface in real time. The PC interface is implemented with LABVIEW® and in addition to data acquisition it also allows online signal processing, data storage, and control of measurement activities such as contact impedance measurement, for example. The practical application of the device is demonstrated in mismatch negativity experiment with three test subjects.

  11. Compact turnkey focussing neutron guide system for inelastic scattering investigations

    Energy Technology Data Exchange (ETDEWEB)

    Brandl, G., E-mail: g.brandl@fz-juelich.de [Heinz Maier-Leibnitz Zentrum (MLZ) and Physik Department E21, Technische Universität München, 85748 Garching, Germany and Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum - MLZ, Forschungszentrum Jülich GmbH, 85748 Garching (Germany); Georgii, R. [Heinz Maier-Leibnitz Zentrum (MLZ) and Physik Department E21, Technische Universität München, 85748 Garching (Germany); Dunsiger, S. R. [Physik Department E21, Technische Universität München, 85748 Garching, Germany and Center for Emergent Materials, Ohio State University, Columbus, Ohio 43210-1117 (United States); Tsurkan, V. [Experimental Physics V, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86159 Augsburg, Germany and Institute of Applied Physics, Academy of Sciences of Moldova, MD 2028 Chisinau, Republic of Moldova (Germany); Loidl, A. [Experimental Physics V, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86159 Augsburg (Germany); Adams, T.; Pfleiderer, C.; Böni, P. [Physik Department E21, Technische Universität München, 85748 Garching (Germany)

    2015-12-21

    We demonstrate the performance of a compact neutron guide module which boosts the intensity in inelastic neutron scattering experiments by approximately a factor of 40. The module consists of two housings containing truly curved elliptic focussing guide elements, positioned before and after the sample. The advantage of the module lies in the ease with which it may be reproducibly mounted on a spectrometer within a few hours, on the same timescale as conventional sample environments. It is particularly well suited for samples with a volume of a few mm{sup 3}, thus enabling the investigation of materials which to date would have been considered prohibitively small or samples exposed to extreme environments, where there are space constraints. We benchmark the excellent performance of the module by measurements of the structural and magnetic excitations in single crystals of model systems. In particular, we report the phonon dispersion in the simple element lead. We also determine the magnon dispersion in the spinel ZnCr{sub 2}Se{sub 4} (V = 12.5 mm{sup 3}), where strong magnetic diffuse scattering at low temperatures evolves into distinct helical order.

  12. Vacuum system of the compact Energy Recovery Linac

    Energy Technology Data Exchange (ETDEWEB)

    Honda, T., E-mail: tohru.honda@kek.jp; Tanimoto, Y.; Nogami, T.; Takai, R.; Obina, T.; Asaoka, S.; Uchiyama, T.; Nakamura, N. [High Energy Accelerator Research Organization (KEK) (1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan) (Japan)

    2016-07-27

    The compact Energy Recovery Linac (cERL), a test accelerator to establish important technologies demanded for future ERL-based light sources, was constructed in late 2013 at KEK. The accelerator was successfully commissioned in early 2014, and demonstrated beam circulation with energy recovery. In the cERL vacuum system, low-impedance vacuum components are required to circulate high-intensity, low-emittance and short-bunch electron beams. We therefore developed ultra-high-vacuum (UHV)-compatible flanges that can connect beam tubes seamlessly, and employed retractable beam monitors, namely, a movable Faraday cup and screen monitors. In most parts of the accelerator, pressures below 1×10{sup −7} Pa are required to mitigate beam-gas interactions. Particularly, near the photocathode electron gun and the superconducting (SC) cavities, pressures below 1×10{sup −8} Pa are required. The beam tubes in the sections adjoining the SC cavities were coated with non-evaporable getter (NEG) materials, to reduce gas condensation on the cryo-surfaces. During the accelerator commissioning, stray magnetic fields from the permanent magnets of some cold cathode gauges (CCGs) were identified as a source of the disturbance to the beam orbit. Magnetic shielding was specially designed as a remedy for this issue.

  13. Magnetospheres of accreting compact objects in binary systems

    International Nuclear Information System (INIS)

    Aly, J.J.

    1985-09-01

    Bright pulsating X-ray sources (X-ray pulsars, AM Her stars,...) have been identified as strongly magnetized compact objects accreting matter from a binary companion. We give here a summary of some of the work which has been recently done to try to understand the interaction between the magnetic field of the compact object and the matter around. We examine in turn the models describing the interaction of the field with: i) a spherically symmetric accretion flow; ii) a thin keplerian accretion disk; iii) the companion itself. In all these cases, we pay particular attention to the following problems: i) how the external plasma interacting with the magnetosphere can get mixed with the field; ii) by which mechanism the magnetic field controls the mass-momentum-energy exchanges between the two stars. In conclusion, we compare the magnetosphere of an accreting compact object with that one of a planet [fr

  14. Development of space heating and domestic hot water systems with compact thermal energy storage. Compact thermal energy storage: Material development for System Integration

    NARCIS (Netherlands)

    Davidson, J.H.; Quinnell, J.; Burch, J.; Zondag, H.A.; Boer, R. de; Finck, C.J.; Cuypers, R.; Cabeza, L.F.; Heinz, A.; Jahnig, D.; Furbo, S.; Bertsch, F.

    2013-01-01

    Long-term, compact thermal energy storage (TES) is essential to the development of cost-effective solar and passive building-integrated space heating systems and may enhance the annual technical and economic performance of solar domestic hot water (DHW) systems. Systems should provide high energy

  15. Foldable Compactly Stowable Extremely High Power Solar Array System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Deployable Space Systems, Inc. (DSS) has developed a high performance solar array system that has game-changing performance metrics in terms of ultra-compact stowage...

  16. The surfaces of compact systems: from nuclei to stars

    Science.gov (United States)

    Broglia, R. A.

    2002-03-01

    While providing information from worlds separated by five-to-six orders of magnitude in dimensions and in energy, the pairing properties (electrical resistance and viscosity), the electromagnetic response (spectrum of colours), the resilience to stress (elasticity), the ability to deform (plasticity), etc., associated with clusters of atoms and with atomic nuclei have surprisingly similar properties, once the proper scalings are done, and demonstrate the many analogies that can be drawn between different finite many-body systems. These analogies can be further extended to cosmic and to customer tailored nanometre materials. Femtometre materials, like the inner crust of a neutron star (pulsar), are made out of the same protons and neutrons which make infinite nuclear matter. However in pulsars, protons and neutrons are arranged in the form of finite nuclei immersed in a sea of free neutrons. This is the reason why these celestial objects rotate, conduct heat, emit neutrinos, etc., very differently from infinite nuclear matter. In fact, these phenomena reflect the properties of the corresponding atomic nuclei which form the pulsar. Among these properties, those associated with the nuclear surface are most important. Nanostructured materials are made out of atoms as their more common forms, but the atoms are arranged in nanometre or sub-nanometre-size clusters, which become the constituent grains, or building blocks, of new materials like, e.g., C60 fullerene. Because these tiny grains respond to light, mechanical stress and electricity quite differently from micron- or millimetre-sized grains, nanostructured materials display an array of novel attributes. At the basis of the new phenomena we find again the surface of the building blocks used to produce the new materials. A proper understanding of the interweaving of the single-particle motion with the static and dynamic deformations of the surface of finite many-body systems is likely to provide the key to open a

  17. Improved confinement and related physics study in Compact Helical System

    International Nuclear Information System (INIS)

    Okamura, S.; Akiyama, T.; Fujisawa, A.; Ida, K.; Iguchi, H.; Isobe, M.; Minami, T.; Nagaoka, K.; Nakamura, K.; Nishimura, S.; Matsuoka, K.; Matsushita, H.; Nakano, H.; Ohshima, S.; Shimizu, A.; Suzuki, C.; Takahashi, C.; Toi, K.; Yoshimura, Y.; Yoshinuma, M.; Oishi, T.; Kado, S.

    2005-01-01

    Recent experimental results in Compact Helical System (CHS) will be presented focusing on the improved confinement and physics study of electric field and turbulence in helical plasmas. Among various improved confinement modes found in CHS experiments, the edge transport barrier (ETB) formation is an important topic, which we have been studying intensively for these years. The discharges of CHS with ETB have characteristics very similar to H-mode discharges in tokamaks and W7-AS stellarator. We observe a sharp drop of Hα emission signal, increase of plasma density together with an increase of local density gradient at the plasma edge, so we call our ETB discharges as H-mode. The power threshold for the transition is clearly observed which is again similar to standard H-mode discharges, i.e., the threshold increases with the density and magnetic field. Unique feature of CHS H-mode is the dependence on the magnetic field configuration. We examined H-mode discharges for the configurations with magnetic axis shift and the magnetic quadrupole control. The transition appeared for a wide range of configurations with the rotational transform at the plasma edge (iota(a)) below and above unity. There is a general dependence of power threshold: higher power needed for the inward shifted configuration (with lower value of iota(a)) and lower power for outward shift. The absolute power threshold of CHS H-mode for the outward shifted configuration is very close to the tokamak H-mode with a divertor configuration. Other topics of confinement studies in CHS will be also presented. We have a unique diagnostic system of two heavy ion beam probes. It is unique in stellarator research and also for all toroidal confinement research including many tokamaks in the world. As well as fruitful result of electric field measurements, that is one of key elements for stellarator physics, this diagnostic measures turbulence in the plasma, which gives essential information for the study of

  18. Compact Wireless BioMetric Monitoring and Real Time Processing System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — BioWATCH is a modular ambulatory compact wireless biomedical data acquisition system. More specifically, it is a data acquisition unit for acquiring signals from...

  19. On the absence of order in 2-dimensional systems with compact symmetry

    International Nuclear Information System (INIS)

    Bruschi, M.L.; Garcia, A.A.; Masperi, L.; Garcia Canal, C.A.

    1984-01-01

    An alternative proof for the generalization to any compact Lie group of the absence of an ordered phase in one and two dimensional classical systems is provided using the original Bogoliubov inequality. (Author) [pt

  20. Non-destructive system to evaluate critical properties of asphalt compaction : [research brief].

    Science.gov (United States)

    2013-12-01

    The Wisconsin Highway Research Program sponsored a two-stage investigation to develop a non-destructive system to evaluate critical compaction properties and characteristics of asphalt pavements during the densification process. Stage One activities ...

  1. Development of a high-pressure compaction system for non-combustible solid waste

    International Nuclear Information System (INIS)

    Yogo, S.; Hata, T.; Torita, K.; Yamamoto, K.; Karita, Y.

    1989-01-01

    In recent years, nuclear power plants in Japan have been in search of a means to reduce the volume of non-combustible solid wastes and therefore the application of a high-pressure compaction system has been in demand. Most non-combustible solid wastes have been packed in 200-litre drums for storage and the situation requires a high-pressure compaction system designed exclusively for 200-litre drums. The authors have developed a high-pressure compaction system which compresses 200-litre drums filled with non-combustible solid wastes and packs them into new woo-litre drums efficiently. This paper reports the outline of this high-pressure compaction system and the results of the full-scale verification tests

  2. Edge plasma diagnostics in the compact helical system (CHS) device using fast neutral lithium beam

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Mario

    1992-05-01

    This paper reports the research activities of the author on using fast neutral lithium beam edge plasma diagnostic, at the Japanese National Institute for Fusion Science compact helical system (CHS). (author). 20 figs.

  3. Block preconditioners for linear systems arising from multiscale collocation with compactly supported RBFs

    KAUST Repository

    Farrell, Patricio; Pestana, Jennifer

    2015-01-01

    . However, the benefit of a guaranteed symmetric positive definite block system comes at a high computational cost. This cost can be alleviated somewhat by considering compactly supported RBFs and a multiscale technique. But the condition number and sparsity

  4. Multifocal multiphoton microscopy with adaptive optical correction

    Science.gov (United States)

    Coelho, Simao; Poland, Simon; Krstajic, Nikola; Li, David; Monypenny, James; Walker, Richard; Tyndall, David; Ng, Tony; Henderson, Robert; Ameer-Beg, Simon

    2013-02-01

    Fluorescence lifetime imaging microscopy (FLIM) is a well established approach for measuring dynamic signalling events inside living cells, including detection of protein-protein interactions. The improvement in optical penetration of infrared light compared with linear excitation due to Rayleigh scattering and low absorption have provided imaging depths of up to 1mm in brain tissue but significant image degradation occurs as samples distort (aberrate) the infrared excitation beam. Multiphoton time-correlated single photon counting (TCSPC) FLIM is a method for obtaining functional, high resolution images of biological structures. In order to achieve good statistical accuracy TCSPC typically requires long acquisition times. We report the development of a multifocal multiphoton microscope (MMM), titled MegaFLI. Beam parallelization performed via a 3D Gerchberg-Saxton (GS) algorithm using a Spatial Light Modulator (SLM), increases TCSPC count rate proportional to the number of beamlets produced. A weighted 3D GS algorithm is employed to improve homogeneity. An added benefit is the implementation of flexible and adaptive optical correction. Adaptive optics performed by means of Zernike polynomials are used to correct for system induced aberrations. Here we present results with significant improvement in throughput obtained using a novel complementary metal-oxide-semiconductor (CMOS) 1024 pixel single-photon avalanche diode (SPAD) array, opening the way to truly high-throughput FLIM.

  5. Improvement of Cooling Performance of a Compact Thermoelectric Air Conditioner Using a Direct Evaporative Cooling System

    Science.gov (United States)

    Tipsaenporm, W.; Lertsatitthanakorn, C.; Bubphachot, B.; Rungsiyopas, M.; Soponronnarit, S.

    2012-06-01

    This paper presents the results of tests carried out to investigate the potential application of a direct evaporative cooling (DEC) system for improving the performance of a compact thermoelectric (TE) air conditioner. The compact TE air conditioner is composed of three TE modules. The cold and hot sides of the TE modules were fixed to rectangular fin heat sinks. The DEC system produced cooling air that was used to assist the release of heat from the heat sinks at the hot side of the TE modules. The results showed that the cooling air dry bulb temperature from the DEC system achieved drops of about 5.9°C in parallel with about a 33.4% rise in relative humidity. The cooling efficiency of the DEC system varies between 72.1% and 81.5%. It increases the cooling capacity of the compact TE air conditioner from 53.0 W to 74.5 W. The 21.5 W (40.6%) increase represents the difference between the compact air conditioner operating with ambient air flowing through the TE module's heat sinks, and the compact air conditioner operating with the cooler air from the DEC system flowing through the TE module's heat sinks. In both scenarios, electric current of 4.5 A was supplied to the TE modules. It also has been experimentally proven that the coefficient of performance (COP) of the compact TE air conditioner can be improved by up to 20.9% by incorporating the DEC system.

  6. 35-We polymer electrolyte membrane fuel cell system for notebook computer using a compact fuel processor

    Science.gov (United States)

    Son, In-Hyuk; Shin, Woo-Cheol; Lee, Yong-Kul; Lee, Sung-Chul; Ahn, Jin-Gu; Han, Sang-Il; kweon, Ho-Jin; Kim, Ju-Yong; Kim, Moon-Chan; Park, Jun-Yong

    A polymer electrolyte membrane fuel cell (PEMFC) system is developed to power a notebook computer. The system consists of a compact methanol-reforming system with a CO preferential oxidation unit, a 16-cell PEMFC stack, and a control unit for the management of the system with a d.c.-d.c. converter. The compact fuel-processor system (260 cm 3) generates about 1.2 L min -1 of reformate, which corresponds to 35 We, with a low CO concentration (notebook computers.

  7. 35-We polymer electrolyte membrane fuel cell system for notebook computer using a compact fuel processor

    Energy Technology Data Exchange (ETDEWEB)

    Son, In-Hyuk; Shin, Woo-Cheol; Lee, Sung-Chul; Ahn, Jin-Gu; Han, Sang-Il; kweon, Ho-Jin; Kim, Ju-Yong; Park, Jun-Yong [Energy 1 Group, Energy Laboratory at Corporate R and D Center in Samsung SDI Co., Ltd., 575, Shin-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-731 (Korea); Lee, Yong-Kul [Department of Chemical Engineering, Dankook University, Youngin 448-701 (Korea); Kim, Moon-Chan [Department of Environmental Engineering, Chongju University, Chongju 360-764 (Korea)

    2008-10-15

    A polymer electrolyte membrane fuel cell (PEMFC) system is developed to power a notebook computer. The system consists of a compact methanol-reforming system with a CO preferential oxidation unit, a 16-cell PEMFC stack, and a control unit for the management of the system with a d.c.-d.c. converter. The compact fuel-processor system (260 cm{sup 3}) generates about 1.2 L min{sup -1} of reformate, which corresponds to 35 We, with a low CO concentration (<30 ppm, typically 0 ppm), and is thus proven to be capable of being targetted at notebook computers. (author)

  8. Analysis of Fringe Field Formed Inside LDA Measurement Volume Using Compact Two Hololens Imaging Systems

    Science.gov (United States)

    Ghosh, Abhijit; Nirala, A. K.; Yadav, H. L.

    2018-03-01

    We have designed and fabricated four LDA optical setups consisting of aberration compensated four different compact two hololens imaging systems. We have experimentally investigated and realized a hololens recording geometry which is interferogram of converging spherical wavefront with mutually coherent planar wavefront. Proposed real time monitoring and actual fringe field analysis techniques allow complete characterizations of fringes formed at measurement volume and permit to evaluate beam quality, alignment and fringe uniformity with greater precision. After experimentally analyzing the fringes formed at measurement volume by all four imaging systems, it is found that fringes obtained using compact two hololens imaging systems get improved both qualitatively and quantitatively compared to that obtained using conventional imaging system. Results indicate qualitative improvement of non-uniformity in fringe thickness and micro intensity variations perpendicular to the fringes, and quantitative improvement of 39.25% in overall average normalized standard deviations of fringe width formed by compact two hololens imaging systems compare to that of conventional imaging system.

  9. Multiphoton microscopy imaging of developing tooth germs

    Directory of Open Access Journals (Sweden)

    Pei-Yu Pan

    2014-01-01

    Conclusion: In this study, a novel multiphoton microscopy database of images from developing tooth germs in mice was set up. We confirmed that multiphoton laser microscopy is a powerful tool for investigating the development of tooth germ and is worthy for further application in the study of tooth regeneration.

  10. Compact TXRF system using doubly curved crystal optics

    International Nuclear Information System (INIS)

    Chen, Z.W.

    2000-01-01

    Doubly curved crystal optics can provide large collection solid angle from a small x-ray source but were difficult to be fabricated in the past. The recent innovative doubly curved crystal optic technology provides accurate bending figure of thin crystal and produces high performance doubly curved crystal optics. The high quality doubly curved crystal can increase the intensity of the primary beam significantly for total reflection x-ray fluorescence application based on a low power x-ray source. In this report, toroidal Si(220) crystals are used to focused Cu Kα and Mo Kα x-rays from low power compact x-ray tubes that have maximum power setting at 50 kV and 1 mA. With a slit aperture to control the convergent angle, a fan Cu Kα1 beam with 15 degree x 0.2 degree convergent angles is obtained for TXRF excitation. Similarly, a fan Mo Kα1 beam with 6 degree x 0.1 degree convergent angles is used for high energy excitation. Si wafer based TXRF samples will be prepared and measured using this technique and the experimental data. (author)

  11. Design of a Compact Dump Resistor System for LCD Magnet

    CERN Document Server

    Gaddi, A

    2010-01-01

    In this technical note we suggest a possible solution for the choice of the detector magnet dump resistor. The push-pull scenario for Linear Collider Detectors imposes new solutions for magnet powering and protection lines, else than what developed for LHC detectors. The magnet dump resistor is the protecting equipment that has the function of extracting a significant amount of magnetic stored energy, from the coil winding to a dump. The LCD magnet has to move with the experiment from the garage to the beam position, so it has to be compact and reliable at the same time. We make here a proposal for a passive water-cooled dumper, we calculate the minimum amount of water required, the resistor hot-spot temperature, the overall mechanical design. The electrical part is not covered by this note, as it can be assumed that the solutions adopted by LHC detector magnets, in terms of quench instrumentation, energy extraction and maximum voltage, are not significantly affected by the push-pull scenario.

  12. Multiphoton Microscopy for Ophthalmic Imaging

    Directory of Open Access Journals (Sweden)

    Emily A. Gibson

    2011-01-01

    Full Text Available We review multiphoton microscopy (MPM including two-photon autofluorescence (2PAF, second harmonic generation (SHG, third harmonic generation (THG, fluorescence lifetime (FLIM, and coherent anti-Stokes Raman Scattering (CARS with relevance to clinical applications in ophthalmology. The different imaging modalities are discussed highlighting the particular strength that each has for functional tissue imaging. MPM is compared with current clinical ophthalmological imaging techniques such as reflectance confocal microscopy, optical coherence tomography, and fluorescence imaging. In addition, we discuss the future prospects for MPM in disease detection and clinical monitoring of disease progression, understanding fundamental disease mechanisms, and real-time monitoring of drug delivery.

  13. Universal localizing bounds for compact invariant sets of natural polynomial Hamiltonian systems

    International Nuclear Information System (INIS)

    Starkov, Konstantin E.

    2008-01-01

    In this Letter we study the localization problem of compact invariant sets of natural Hamiltonian systems with a polynomial Hamiltonian. Our results are based on applying the first order extremum conditions. We compute universal localizing bounds for some domain containing all compact invariant sets of a Hamiltonian system by using one quadratic function of a simple form. These bounds depend on the value of the total energy of the system, degree and some coefficients of a potential and, in addition, some positive number got as a result of a solution of one maximization problem. Besides, under some quasihomogeneity condition(s) we generalize our construction of the localization set

  14. Universal localizing bounds for compact invariant sets of natural polynomial Hamiltonian systems

    Energy Technology Data Exchange (ETDEWEB)

    Starkov, Konstantin E. [CITEDI-IPN, Av. del Parque 1310, Mesa de Otay, Tijuana, BC (Mexico)], E-mail: konst@citedi.mx

    2008-10-06

    In this Letter we study the localization problem of compact invariant sets of natural Hamiltonian systems with a polynomial Hamiltonian. Our results are based on applying the first order extremum conditions. We compute universal localizing bounds for some domain containing all compact invariant sets of a Hamiltonian system by using one quadratic function of a simple form. These bounds depend on the value of the total energy of the system, degree and some coefficients of a potential and, in addition, some positive number got as a result of a solution of one maximization problem. Besides, under some quasihomogeneity condition(s) we generalize our construction of the localization set.

  15. Storing Fresh Produce for Fast Retrieval in an Automated Compact Cross-dock System

    NARCIS (Netherlands)

    Zaerpour, N.; Yu, Y.; de Koster, R.B.M.

    2015-01-01

    We study temporary storage of fresh produce in a cross-dock center. In order to minimize cooling cost, compact storage systems are used. A major disadvantage of these systems is that additional retrieval time is needed, caused by necessary reshuffles due to the improper storage sequence of unit

  16. CHEMODYNAMICS OF COMPACT STELLAR SYSTEMS IN NGC 5128: HOW SIMILAR ARE GLOBULAR CLUSTERS, ULTRA-COMPACT DWARFS, AND DWARF GALAXIES?

    International Nuclear Information System (INIS)

    Taylor, Matthew A.; Puzia, Thomas H.; Harris, Gretchen L.; Harris, William E.; Kissler-Patig, Markus; Hilker, Michael

    2010-01-01

    Velocity dispersion measurements are presented for several of the most luminous globular clusters (GCs) in NGC 5128 (Centaurus A) derived from high-resolution spectra obtained with the UVES echelle spectrograph on the 8.2 m ESO/Very Large Telescope. The measurements are made utilizing a penalized pixel-fitting method that parametrically recovers line-of-sight velocity dispersions. Combining the measured velocity dispersions with surface photometry and structural parameter data from the Hubble Space Telescope enables both dynamical masses and mass-to-light ratios to be derived. The properties of these massive stellar systems are similar to those of both massive GCs contained within the Local Group and nuclear star clusters and ultra-compact dwarf galaxies (UCDs). The fundamental plane relations of these clusters are investigated in order to fill the apparent gap between the relations of Local Group GCs and more massive early-type galaxies. It is found that the properties of these massive stellar systems match those of nuclear clusters in dwarf elliptical galaxies and UCDs better than those of Local Group GCs, and that all objects share similarly old (∼>8 Gyr) ages, suggesting a possible link between the formation and evolution of nuclear star clusters in dwarf elliptical galaxies (dE,Ns), UCDs, and massive GCs. We find a very steep correlation between dynamical mass-to-light ratio and dynamical mass of the form Υ V dyn ∝ M dyn 0.24±0.02 above M dyn ∼ 2x10 6 M sun . Formation scenarios are investigated with a chemical abundance analysis using absorption-line strengths calibrated to the Lick/IDS index system. The results lend support to two scenarios contained within a single general formation scheme. Old, massive, super-solar [α/Fe] systems are formed on short (∼ 13 -10 15 M sun potential wells of massive galaxies and galaxy clusters.

  17. Multiphoton dissociation of polyatomic molecules

    International Nuclear Information System (INIS)

    Schulz, P.A.

    1979-10-01

    The dynamics of infrared multiphoton excitation and dissociation of SF 6 was investigated under collision free conditions by a crossed laser-molecular beam method. In order to understand the excitation mechanism and to elucidate the requirements of laser intensity and energy fluence, a series of experiments were carried out to measure the dissociation yield dependences on energy fluence, vibrational temperature of SF 6 , the pulse duration of the CO 2 laser and the frequency in both one and two laser experiments. Translational energy distributions of the SF 5 dissociation product measured by time of flight and angular distributions and the dissociation lifetime of excited SF 6 as inferred from the observation of secondary dissociation of SF 5 into SF 4 and F during the laser pulse suggest that the dynamics of dissociation of excited molecules is dominated by complete energy randomization and rapid intramolecular energy transfer on a nanosecond timescale, and can be adequately described by RRKM theory. An improved phenomenological model including the initial intensity dependent excitation, a rate equation describing the absorption and stimulated emission of single photons, and the unimolecular dissociation of excited molecules is constructed based on available experimental results. The model shows that the energy fluence of the laser determines the excitation of molecules in the quasi-continuum and the excess energy with which molecules dissociate after the laser pulse. The role played by the laser intensity in multiphoton dissociation is more significant than just that of overcoming the intensity dependent absorption in the lowest levels. 63 references

  18. Approach to compact terawatt CO2 laser system for particle acceleration

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.; Kimura, W.D.; Fisher, C.H.; Kannari, F.

    1994-01-01

    A compact table-top 20-GW 50-ps CO 2 laser system is in operation for strong-field physics studies at the ATF. We propose scaling up of the picosecond CO 2 laser to a terawatt peak power level to meet the requirements of advanced laser accelerators. Computer modeling shows that a relatively compact single-beam picosecond CO 2 laser system with a high-pressure x-ray picosecond amplifier of a 10-cm aperture is potentially scalable to the ∼1-TW peak power level

  19. Control system for compact SR light source 'AURORA'

    International Nuclear Information System (INIS)

    Fukami, Nobutaka; Kariya, Hiroyuki; Yamada, Hironari

    1991-01-01

    The computer control system developed for 'AURORA' has a three level hierarchical architecture. The top level is Central Intelligence System (CIS), and the second one is Autonomic Control System (ACS). The bottom one is an assembly of distributed local controllers linked to the ACS level through optical fibers. This system provides fully automated operation, and a powerful machine study capability through the associated man-machine console and an interpretive operation language. (author)

  20. CORRTEX: a compact and versatile system for time domain reflectometry

    International Nuclear Information System (INIS)

    Deupree, R.G.; Eilers, D.D.; McKown, T.O.; Storey, W.H.

    1981-01-01

    The CORRTEX (COntinuous Reflectometry for Radius versus Time EXperiments) system was designed to be an adaptable and versatile unit for performing time domain reflectometry (TDR). The system consists of a coaxial cable, a digital TDR, which uses a Motorola 6800 microprocessor, a power source or battery pack, and an output terminal or recording driver. Desirable criteria for the system are discussed as well as the operation of the CORRTEX system. The types of present applications of the CORRTEX system are summarized and data presented

  1. Design of compact system with wide electron beam for radiation technologies

    International Nuclear Information System (INIS)

    Korolyov, A.N.; Simonov, K.G.; Pirozhenko, V.M.

    2001-01-01

    Design of a compact system for radiation processing of products and materials has been developed. The system provides two modes of irradiation, i.e. irradiation of continuously moving tapes and fixed samples. The irradiation is performed in a hermetically sealed chamber filled by nitrogen. This ecologically pure system includes the radiation protection,autonomous water cooling system and automated PC-control. It can be placed in any production or clinical room

  2. Design of compact system with wide electron beam for radiation technologies

    CERN Document Server

    Korolyov, A N; Pirozhenko, Vitaly M

    2001-01-01

    Design of a compact system for radiation processing of products and materials has been developed. The system provides two modes of irradiation, i.e. irradiation of continuously moving tapes and fixed samples. The irradiation is performed in a hermetically sealed chamber filled by nitrogen. This ecologically pure system includes the radiation protection,autonomous water cooling system and automated PC-control. It can be placed in any production or clinical room.

  3. Compact Fuel-Cell System Would Consume Neat Methanol

    Science.gov (United States)

    Narayanan, Sekharipuram; Kindler, Andrew; Valdez, Thomas

    2007-01-01

    In a proposed direct methanol fuel-cell electric-power-generating system, the fuel cells would consume neat methanol, in contradistinction to the dilute aqueous methanol solutions consumed in prior direct methanol fuel-cell systems. The design concept of the proposed fuel-cell system takes advantage of (1) electro-osmotic drag and diffusion processes to manage the flows of hydrogen and water between the anode and the cathode and (2) evaporative cooling for regulating temperature. The design concept provides for supplying enough water to the anodes to enable the use of neat methanol while ensuring conservation of water for the whole fuel-cell system.

  4. An Application for the Improvement of the Transportation System of the Flour in a Grain Mill using "PID Compact"

    Directory of Open Access Journals (Sweden)

    Eugen Răduca

    2016-10-01

    Full Text Available The paper presents an application based on a PLC Simatic S7-1200, using the "PID_Compact" logical function, which can be used for the improvement of control systems. We also present a practical application: a system for the improvement of the transportation system of the flour in a grain mill using "PID Compact" .

  5. Proceedings of the international workshop on mechanistic understanding of radionuclide migration in compacted/intact systems

    International Nuclear Information System (INIS)

    Tachi, Yukio; Yui, Mikazu

    2010-03-01

    The international workshop on mechanistic understanding of radionuclide migration in compacted / intact systems was held at ENTRY, JAEA, Tokai on 21st - 23rd January, 2009. This workshop was hosted by Japan Atomic Energy Agency (JAEA) as part of the project on the mechanistic model/database development for radionuclide sorption and diffusion behavior in compacted / intact systems. The overall goal of the project is to develop the mechanistic model / database for a consistent understanding and prediction of migration parameters and its uncertainties for performance assessment of geological disposal of radioactive waste. The objective of the workshop is to integrate the state-of-the-art of mechanistic sorption and diffusion model in compacted / intact systems, especially in bentonite / clay systems, and discuss the JAEA's mechanistic approaches and future challenges, especially the following discussions points; 1) What's the status and difficulties for mechanistic model/database development? 2) What's the status and difficulties for applicability of mechanistic model to the compacted/intact system? 3) What's the status and difficulties for obtaining evidences for mechanistic model? 4) What's the status and difficulties for standardization of experimental methodology for batch sorption and diffusion? 5) What's the uncertainties of transport parameters in radionuclides migration analysis due to a lack of understanding/experimental methodologies, and how do we derive them? This report includes workshop program, overview and materials of each presentation, summary of discussions. (author)

  6. Development of a new compact intraoperative magnetic resonance imaging system: concept and initial experience.

    Science.gov (United States)

    Morita, Akio; Sameshima, Tetsuro; Sora, Shigeo; Kimura, Toshikazu; Nishimura, Kengo; Itoh, Hirotaka; Shibahashi, Keita; Shono, Naoyuki; Machida, Toru; Hara, Naoko; Mikami, Nozomi; Harihara, Yasushi; Kawate, Ryoichi; Ochiai, Chikayuki; Wang, Weimin; Oguro, Toshiki

    2014-06-01

    Magnetic resonance imaging (MRI) during surgery has been shown to improve surgical outcomes, but the current intraoperative MRI systems are too large to install in standard operating suites. Although 1 compact system is available, its imaging quality is not ideal. We developed a new compact intraoperative MRI system and evaluated its use for safety and efficacy. This new system has a magnetic gantry: a permanent magnet of 0.23 T and an interpolar distance of 32 cm. The gantry system weighs 2.8 tons and the 5-G line is within the circle of 2.6 m. We created a new field-of-view head coil and a canopy-style radiofrequency shield for this system. A clinical trial was initiated, and the system has been used in 44 patients. This system is significantly smaller than previous intraoperative MRI systems. High-quality T2 images could discriminate tumor from normal brain tissue and identify anatomic landmarks for accurate surgery. The average imaging time was 45.5 minutes, and no clinical complications or MRI system failures occurred. Floating organisms or particles were minimal (1/200 L maximum). This intraoperative, compact, low-magnetic-field MRI system can be installed in standard operating suites to provide relatively high-quality images without sacrificing safety. We believe that such a system facilitates the introduction of the intraoperative MRI.

  7. Characteristics of subgingival calculus detection by multiphoton fluorescence microscopy

    Science.gov (United States)

    Tung, Oi-Hong; Lee, Shyh-Yuan; Lai, Yu-Lin; Chen, How-Foo

    2011-06-01

    Subgingival calculus has been recognized as a major cause of periodontitis, which is one of the main chronic infectious diseases of oral cavities and a principal cause of tooth loss in humans. Bacteria deposited in subgingival calculus or plaque cause gingival inflammation, function deterioration, and then periodontitis. However, subgingival calculus within the periodontal pocket is a complicated and potentially delicate structure to be detected with current dental armamentaria, namely dental x-rays and dental probes. Consequently, complete removal of subgingival calculus remains a challenge to periodontal therapies. In this study, the detection of subgingival calculus employing a multiphoton autofluorescence imaging method was characterized in comparison with a one-photon confocal fluorescence imaging technique. Feasibility of such a system was studied based on fluorescence response of gingiva, healthy teeth, and calculus with and without gingiva covered. The multiphoton fluorescence technology perceived the tissue-covered subgingival calculus that cannot be observed by the one-photon confocal fluorescence method.

  8. Improvement of computer complex and interface system for compact nuclear simulator

    International Nuclear Information System (INIS)

    Lee, D. Y.; Park, W. M.; Cha, K. H.; Jung, C. H.; Park, J. C.

    1999-01-01

    CNS(Compact Nuclear Simulator) was developed at the end of 1980s, and have been used as training simulator for staffs of KAERI during 10 years. The operator panel interface cards and the graphic interface cards were designed with special purpose only for CNS. As these interface cards were worn out for 10 years, it was very difficult to get spare parts and to repair them. And the interface cards were damaged by over current happened by shortage of lamp in the operator panel. To solve these problem, the project 'Improvement of Compact Nuclear Simulator' was started from 1997. This paper only introduces about the improvement of computer complex and interface system

  9. Evaluation of a novel compact shearography system with DOE configuration

    Science.gov (United States)

    da Silva, Fabio Aparecido Alves; Willemann, Daniel Pedro; Fantin, Analucia Vieira; Benedet, Mauro Eduardo; Gonçalves, Armando Albertazzi

    2018-05-01

    The most common optical configuration used to produce the lateral shifted images, in a Shearography system, is the Modified Michelson interferometer, because of its simple configuration. Tests carried out in recent years have shown that the modified interferometer of Michelson is a device that presents good results in a laboratory environment, but still presents difficulties in the field. These difficulties were the main motivation for the development of a more robust system, able to operate in unstable environments. This paper presents a new shearography configuration based on Diffractive Optical Element (DOE). Different from the diffractive common-path setups found in literature, in the proposed configuration, the DOE is positioned between the image sensor and the objective lens and mounted on a flexible holder, which has an important function to promote the system's robustness. Another advantage of the proposed system is in respect to phase shifting, since it is insensitive to wavelength variations. The lateral movement of the DOE produces a phase shifting in the shearography system. Since the pitch of the diffractive grating used is about 60 times greater than the wavelength of a green laser, the DOE configuration becomes much more robust to external influences compared to the Michelson Interferometer configuration. This work also presents an evaluation of the proposed shearography system designed, and some comparative results regarding a classical shearography system.

  10. A Compact, Low Power Pulsed Optical Communication System for Spacecraft

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to reduce the power required for high bandwidth, deep space laser communications systems. Our concept will encode data in the time delay...

  11. Hydraulic Yaw System for Wind Turbines with New Compact Hydraulic Motor Principle

    DEFF Research Database (Denmark)

    Sørensen, Rasmus Mørk; Hansen, Michael Rygaard; Mouritsen, Ole Ø.

    2011-01-01

    This paper presents a new hydraulic yaw system for wind turbines. The basic component is a new type of hydraulic motor characterized by an extraordinary high specific displacement yielding high output torque in a compact form. The focus in the paper is the volumetric efficiency of the motor, which...

  12. A Compact Closed-Loop Optogenetics System Based on Artifact-Free Transparent Graphene Electrodes

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2018-03-01

    Full Text Available Electrophysiology is a decades-old technique widely used for monitoring activity of individual neurons and local field potentials. Optogenetics has revolutionized neuroscience studies by offering selective and fast control of targeted neurons and neuron populations. The combination of these two techniques is crucial for causal investigation of neural circuits and understanding their functional connectivity. However, electrical artifacts generated by light stimulation interfere with neural recordings and hinder the development of compact closed-loop systems for precise control of neural activity. Here, we demonstrate that transparent graphene micro-electrodes fabricated on a clear polyethylene terephthalate film eliminate the light-induced artifact problem and allow development of a compact battery-powered closed-loop optogenetics system. We extensively investigate light-induced artifacts for graphene electrodes in comparison to metal control electrodes. We then design optical stimulation module using micro-LED chips coupled to optical fibers to deliver light to intended depth for optogenetic stimulation. For artifact-free integration of graphene micro-electrode recordings with optogenetic stimulation, we design and develop a compact closed-loop system and validate it for different frequencies of interest for neural recordings. This compact closed-loop optogenetics system can be used for various applications involving optogenetic stimulation and electrophysiological recordings.

  13. A note on biorthogonal systems in weakly compactly generated Banach spaces

    Czech Academy of Sciences Publication Activity Database

    Fabian, Marián; Gonzáles, A.; Montesinos, V.

    2009-01-01

    Roč. 34, č. 2 (2009), s. 555-564 ISSN 1239-629X R&D Projects: GA AV ČR(CZ) IAA100190610 Institutional research plan: CEZ:AV0Z10190503 Keywords : weakly compactly generated (sub)space * projectional resolution * fundamental biorthogonal system Subject RIV: BA - General Mathematics Impact factor: 0.539, year: 2009

  14. Adaptive control of the radial servo system of a compact disc player

    NARCIS (Netherlands)

    Draijer, W.; Steinbuch, M.; Bosgra, O.H.

    1992-01-01

    The radial servo system of a compact disc player has to cope with large gain variations which are due to disc dependent optical characteristics, tolerances in mechanical and electrical components and nonlinearity in the generation of the position index. In current players this problem has been

  15. A compact human-powered energy harvesting system

    International Nuclear Information System (INIS)

    Rao, Yuan; McEachern, Kelly M; Arnold, David P

    2013-01-01

    This paper presents a fully functional, self-sufficient body-worn energy harvesting system for passively capturing energy from human motion, with the long-term vision of supplying power to portable, wearable, or even implanted electronic devices. The system requires no external power supplies and can bootstrap from zero-state-of-charge to generate electrical energy from walking, jogging and cycling; convert the induced ac voltage to a dc voltage; and then boost and regulate the dc voltage to charge a Li-ion-polymer battery. Tested under normal human activities (walking, jogging, cycling) when worn on different parts of the body, the 70 cm 3 system is shown to charge a 3.7 V rechargeable battery at charge rates ranging from 33 μW to 234 μW

  16. Formation of TRAPPIST-1 and other compact systems

    NARCIS (Netherlands)

    Ormel, C.W.; Liu, B.; Schoonenberg, D.

    TRAPPIST-1 is a nearby 0.08 M⊙ M-star that was recentlyfound to harbor a planetary system of at least seven Earth-sizedplanets, all within 0.1 au. The configuration confounds theorists as theplanets are not easily explained by either in situ or migration models.In this paper we present a scenario

  17. Compact stars and the evolution of binary systems

    NARCIS (Netherlands)

    van den Heuvel, E.P.J.

    2011-01-01

    The Chandrasekhar limit is of key importance for the evolution of white dwarfs in binary systems and for the formation of neutron stars and black holes in binaries. Mass transfer can drive a white dwarf in a binary over the Chandrasekhar limit, which may lead to a Type Ia supernova (in case of a CO

  18. Control of noise - systems for compact HVAC units

    DEFF Research Database (Denmark)

    Pedersen, Steffen; Møller, Henrik

    2012-01-01

    systems affect the performance of implementations. The source pressure and the impedance of a centrifugal fan were measured, and a number of configurations for noise control were investigated. The performance of a simple analogue feedback control was tested in a physical prototype. An adaptive digital...

  19. Tests of in situ formation scenarios for compact multiplanet systems

    Energy Technology Data Exchange (ETDEWEB)

    Schlaufman, Kevin C., E-mail: kschlauf@mit.edu [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2014-08-01

    Kepler has identified over 600 multiplanet systems, many of which have several planets with orbital distances smaller than that of Mercury. Because these systems may be difficult to explain in the paradigm of core accretion and disk migration, it has been suggested that they formed in situ within protoplanetary disks with high solid surface densities. The strong connection between giant planet occurrence and stellar metallicity is thought to be linked to enhanced solid surface densities in disks around metal-rich stars, so the presence of a giant planet can be a sign of planet formation in a high solid surface density disk. I formulate quantitative predictions for the frequency of long-period giant planets in these in situ models by translating the proposed increase in disk mass into an equivalent metallicity enhancement. I rederive the scaling of giant planet occurrence with metallicity as P{sub gp}=0.05{sub −0.02}{sup +0.02}×10{sup (2.1±0.4)[M/H]}=0.08{sub −0.03}{sup +0.02}×10{sup (2.3±0.4)[Fe/H]} and show that there is significant tension between the frequency of giant planets suggested by the minimum mass extrasolar nebula scenario and the observational upper limits. Consequently, high-mass disks alone cannot explain the observed properties of the close-in Kepler multiplanet systems and therefore migration is still important. More speculatively, I combine the metallicity scaling of giant planet occurrence with small planet occurrence rates to estimate the number of solar system analogs in the Galaxy. I find that in the Milky Way there are perhaps 4 × 10{sup 6} true solar system analogs with an FGK star hosting both a terrestrial planet in the habitable zone and a long-period giant planet companion.

  20. The Nano-X Linear Accelerator: A Compact and Economical Cancer Radiotherapy System Incorporating Patient Rotation.

    Science.gov (United States)

    Eslick, Enid M; Keall, Paul J

    2015-10-01

    Rapid technological improvements in radiotherapy delivery results in improved outcomes to patients, yet current commercial systems with these technologies on board are costly. The aim of this study was to develop a state-of-the-art cancer radiotherapy system that is economical and space efficient fitting with current world demands. The Nano-X system is a compact design that is light weight combining a patient rotation system with a vertical 6 MV fixed beam. In this paper, we present the Nano-X system design configuration, an estimate of the system dimensions and its potential impact on shielding cost reductions. We provide an assessment of implementing such a radiotherapy system clinically, its advantages and disadvantages compared to a compact conventional gantry rotating linac. The Nano-X system has several differentiating features from current radiotherapy systems, it is [1] compact and therefore can fit into small vaults, [2] light weight, and [3] engineering efficient, i.e., it rotates a relatively light component and the main treatment delivery components are not under rotation (e.g., DMLCs). All these features can have an impact on reducing the costs of the system. In terms of shielding requirements, leakage radiation was found to be the dominant contributor to the Nano-X vault and as such no primary shielding was necessary. For a low leakage design, the Nano-X vault footprint and concrete volume required is 17 m2 and 35 m3 respectively, compared to 54 m2 and 102 m3 for a conventional compact linac vault, resulting in decreased costs in shielding. Key issues to be investigated in future work are the possible patient comfort concerns associated with the patient rotation system, as well as the magnitude of deformation and subsequent adaptation requirements. © The Author(s) 2014.

  1. Structure of multiphoton quantum optics. I. Canonical formalism and homodyne squeezed states

    Science.gov (United States)

    dell'Anno, Fabio; de Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    We introduce a formalism of nonlinear canonical transformations for general systems of multiphoton quantum optics. For single-mode systems the transformations depend on a tunable free parameter, the homodyne local-oscillator angle; for n -mode systems they depend on n heterodyne mixing angles. The canonical formalism realizes nontrivial mixing of pairs of conjugate quadratures of the electromagnetic field in terms of homodyne variables for single-mode systems, and in terms of heterodyne variables for multimode systems. In the first instance the transformations yield nonquadratic model Hamiltonians of degenerate multiphoton processes and define a class of non-Gaussian, nonclassical multiphoton states that exhibit properties of coherence and squeezing. We show that such homodyne multiphoton squeezed states are generated by unitary operators with a nonlinear time evolution that realizes the homodyne mixing of a pair of conjugate quadratures. Tuning of the local-oscillator angle allows us to vary at will the statistical properties of such states. We discuss the relevance of the formalism for the study of degenerate (up-)down-conversion processes. In a companion paper [ F. Dell’Anno, S. De Siena, and F. Illuminati, 69, 033813 (2004) ], we provide the extension of the nonlinear canonical formalism to multimode systems, we introduce the associated heterodyne multiphoton squeezed states, and we discuss their possible experimental realization.

  2. Structure of multiphoton quantum optics. I. Canonical formalism and homodyne squeezed states

    International Nuclear Information System (INIS)

    Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2004-01-01

    We introduce a formalism of nonlinear canonical transformations for general systems of multiphoton quantum optics. For single-mode systems the transformations depend on a tunable free parameter, the homodyne local-oscillator angle; for n-mode systems they depend on n heterodyne mixing angles. The canonical formalism realizes nontrivial mixing of pairs of conjugate quadratures of the electromagnetic field in terms of homodyne variables for single-mode systems, and in terms of heterodyne variables for multimode systems. In the first instance the transformations yield nonquadratic model Hamiltonians of degenerate multiphoton processes and define a class of non-Gaussian, nonclassical multiphoton states that exhibit properties of coherence and squeezing. We show that such homodyne multiphoton squeezed states are generated by unitary operators with a nonlinear time evolution that realizes the homodyne mixing of a pair of conjugate quadratures. Tuning of the local-oscillator angle allows us to vary at will the statistical properties of such states. We discuss the relevance of the formalism for the study of degenerate (up-)down-conversion processes. In a companion paper [F. Dell'Anno, S. De Siena, and F. Illuminati, 69, 033813 (2004)], we provide the extension of the nonlinear canonical formalism to multimode systems, we introduce the associated heterodyne multiphoton squeezed states, and we discuss their possible experimental realization

  3. The Effect of Mutual Coupling on a High Altitude Platform Diversity System Using Compact Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Tommy Hult

    2010-01-01

    Full Text Available We analyze the destructive effects of mutual coupling and spatial correlation between the separate antenna elements on a combined diversity system consisting of multiple HAPs (High-Altitude Platforms employing various compact MIMO (Multiple-Input Multiple-Output antenna array configurations, in order to enhance the mutual information in HAP communication links. In addition, we assess the influence of the separation angle between HAPs on system performance, and determine the optimal separation angles that maximize the total mutual information of the system for various compact MIMO antennas. Simulation results show that although the mutual information is degraded by mutual coupling and spatial correlation, the proposed HAP diversity system still provides better performance compared to a nondiversity system for all tested scenarios.

  4. Unbounded dynamics and compact invariant sets of one Hamiltonian system defined by the minimally coupled field

    Energy Technology Data Exchange (ETDEWEB)

    Starkov, Konstantin E., E-mail: kstarkov@ipn.mx

    2015-06-12

    In this paper we study some features of global dynamics for one Hamiltonian system arisen in cosmology which is formed by the minimally coupled field; this system was introduced by Maciejewski et al. in 2007. We establish that under some simple conditions imposed on parameters of this system all trajectories are unbounded in both of time directions. Further, we present other conditions for system parameters under which we localize the domain with unbounded dynamics; this domain is defined with help of bounds for values of the Hamiltonian level surface parameter. We describe the case when our system possesses periodic orbits which are found explicitly. In the rest of the cases we get some localization bounds for compact invariant sets. - Highlights: • Domain with unbounded dynamics is localized. • Equations for periodic orbits are given in one level set. • Localizations for compact invariant sets are got.

  5. Compact Superconducting Power Systems for Airborne Applications (Postprint)

    Science.gov (United States)

    2009-01-01

    rotating machin- ery such as motors and alternators, is to maximize the magnet- ic flux density. This can be achieved by using a higher current...future systems could be driven to much higher power ratios, since the initial machine configuration was a homopolar inductor alternator‡ (HIA). A... Homopolar inductor alternator is an electrically symmetrical synchro- nous generator with a field winding that has a fixed magnetic position in relation to

  6. Bounds for a domain containing all compact invariant sets of the system describing the laser-plasma interaction

    Energy Technology Data Exchange (ETDEWEB)

    Starkov, Konstantin E. [CITEDI-IPN, Avenue del Parque 1310, Mesa de Otay, Tijuana, BC (Mexico)], E-mail: konst@citedi.mx

    2009-02-28

    In this paper we consider the localization problem of compact invariant sets of the system describing the laser-plasma interaction. We establish that this system has an ellipsoidal localization for simple restrictions imposed on its parameters. Then we improve this localization by applying other localizing functions. In addition, we give sufficient conditions under which the origin is the unique compact invariant set.

  7. Bounds for a domain containing all compact invariant sets of the system describing the laser-plasma interaction

    International Nuclear Information System (INIS)

    Starkov, Konstantin E.

    2009-01-01

    In this paper we consider the localization problem of compact invariant sets of the system describing the laser-plasma interaction. We establish that this system has an ellipsoidal localization for simple restrictions imposed on its parameters. Then we improve this localization by applying other localizing functions. In addition, we give sufficient conditions under which the origin is the unique compact invariant set.

  8. Handbook of sensor networks compact wireless and wired sensing systems

    CERN Document Server

    Ilyas, Mohammad

    2004-01-01

    INTRODUCTION Opportunities and Challenges in Wireless Sensor Networks, M. Haenggi, Next Generation Technologies to Enable Sensor Networks, J. I.  Goodman, A. I. Reuther, and D. R. Martinez Sensor Networks Management, L. B. Ruiz, J. M. Nogueira, and A. A. F. Loureiro Models for Programmability in Sensor Networks, A. Boulis Miniaturizing Sensor Networks with MEMS, Brett Warneke A Taxonomy of Routing Techniques in Wireless Sensor Networks, J. N. Al-Karaki and A. E. Kamal Artificial Perceptual Systems, A. Loutfi, M. Lindquist, and P. Wide APPLICATIONS Sensor Network Architecture and Appl

  9. Compact seasonal PCM heat storage for solar heating systems

    DEFF Research Database (Denmark)

    Dannemand, Mark

    Space heating of buildings and preparation of domestic hot water accounts for a large part of the society’s energy consumption. Solar radiation is an abundant and renewable energy source which can be harvested by solar collectors and used to cover heating demands in the built environment....... The seasonal availability of solar energy does however not match with the heating demands in buildings which typically are large in winter periods when limited solar energy is available. Heat can be stored over a few days in water stores but continuous heat losses limits the storage periods. The possibility...... of storing heat from summer where solar energy is widely available to winter periods where the heating demands are large, allows for implementing more renewable energy in our energy system. The phase change material (PCM) sodium acetate trihydrate (SAT) melts at 58 °C. The melting process requires...

  10. A new compact, high sensitivity neutron imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Caillaud, T.; Landoas, O.; Briat, M.; Rosse, B.; Thfoin, I.; Philippe, F.; Casner, A.; Bourgade, J. L.; Disdier, L. [CEA, DAM, DIF,F-91297 Arpajon (France); Glebov, V. Yu.; Marshall, F. J.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Park, H. S.; Robey, H. F.; Amendt, P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2012-10-15

    We have developed a new small neutron imaging system (SNIS) diagnostic for the OMEGA laser facility. The SNIS uses a penumbral coded aperture and has been designed to record images from low yield (10{sup 9}-10{sup 10} neutrons) implosions such as those using deuterium as the fuel. This camera was tested at OMEGA in 2009 on a rugby hohlraum energetics experiment where it recorded an image at a yield of 1.4 Multiplication-Sign 10{sup 10}. The resolution of this image was 54 {mu}m and the camera was located only 4 meters from target chamber centre. We recently improved the instrument by adding a cooled CCD camera. The sensitivity of the new camera has been fully characterized using a linear accelerator and a {sup 60}Co {gamma}-ray source. The calibration showed that the signal-to-noise ratio could be improved by using raw binning detection.

  11. A new compact, high sensitivity neutron imaging system

    International Nuclear Information System (INIS)

    Caillaud, T.; Landoas, O.; Briat, M.; Rossé, B.; Thfoin, I.; Philippe, F.; Casner, A.; Bourgade, J. L.; Disdier, L.; Glebov, V. Yu.; Marshall, F. J.; Sangster, T. C.; Park, H. S.; Robey, H. F.; Amendt, P.

    2012-01-01

    We have developed a new small neutron imaging system (SNIS) diagnostic for the OMEGA laser facility. The SNIS uses a penumbral coded aperture and has been designed to record images from low yield (10 9 –10 10 neutrons) implosions such as those using deuterium as the fuel. This camera was tested at OMEGA in 2009 on a rugby hohlraum energetics experiment where it recorded an image at a yield of 1.4 × 10 10 . The resolution of this image was 54 μm and the camera was located only 4 meters from target chamber centre. We recently improved the instrument by adding a cooled CCD camera. The sensitivity of the new camera has been fully characterized using a linear accelerator and a 60 Co γ-ray source. The calibration showed that the signal-to-noise ratio could be improved by using raw binning detection.

  12. Compact invariant sets of the Bianchi VIII and Bianchi IX Hamiltonian systems

    International Nuclear Information System (INIS)

    Starkov, Konstantin E.

    2011-01-01

    In this Letter we prove that all compact invariant sets of the Bianchi VIII Hamiltonian system are contained in the set described by several simple linear equalities and inequalities. Moreover, we describe invariant domains in which the phase flow of this system has no recurrence property and show that there are no periodic orbits and neither homoclinic, nor heteroclinic orbits contained in the zero level set of its Hamiltonian. Similar results are obtained for the Bianchi IX Hamiltonian system. -- Highlights: → Zero level set of Hamiltonian of Bianchi VIII/IX systems contains no periodic orbits. → Similar conditions for homoclinic/heteroclinic orbits are given. → General nonexistence conditions of compact invariant sets are got.

  13. Compact invariant sets of the Bianchi VIII and Bianchi IX Hamiltonian systems

    Energy Technology Data Exchange (ETDEWEB)

    Starkov, Konstantin E., E-mail: konst@citedi.mx [CITEDI-IPN, Av. del Parque 1310, Mesa de Otay, Tijuana, BC (Mexico)

    2011-08-22

    In this Letter we prove that all compact invariant sets of the Bianchi VIII Hamiltonian system are contained in the set described by several simple linear equalities and inequalities. Moreover, we describe invariant domains in which the phase flow of this system has no recurrence property and show that there are no periodic orbits and neither homoclinic, nor heteroclinic orbits contained in the zero level set of its Hamiltonian. Similar results are obtained for the Bianchi IX Hamiltonian system. -- Highlights: → Zero level set of Hamiltonian of Bianchi VIII/IX systems contains no periodic orbits. → Similar conditions for homoclinic/heteroclinic orbits are given. → General nonexistence conditions of compact invariant sets are got.

  14. Compact field color schlieren system for use in microgravity materials processing

    Science.gov (United States)

    Poteet, W. M.; Owen, R. B.

    1986-01-01

    A compact color schlieren system designed for field measurement of materials processing parameters has been built and tested in a microgravity environment. Improvements in the color filter design and a compact optical arrangement allowed the system described here to retain the traditional advantages of schlieren, such as simplicity, sensitivity, and ease of data interpretation. Testing was accomplished by successfully flying the instrument on a series of parabolic trajectories on the NASA KC-135 microgravity simulation aircraft. A variety of samples of interest in materials processing were examined. Although the present system was designed for aircraft use, the technique is well suited to space flight experimentation. A major goal of this effort was to accommodate the main optical system within a volume approximately equal to that of a Space Shuttle middeck locker. Future plans include the development of an automated space-qualified facility for use on the Shuttle and Space Station.

  15. Compact and air-transportable ultrasonic turbine disc bore inspection system

    International Nuclear Information System (INIS)

    Larsen, R.E.; Leon-Salamanca, T.

    1990-01-01

    A compact, lightweight, air-transportable ultrasonic inspection system for bore and keyway regions of shrunk-on turbine discs has been developed. The system utilizes a proprietary ultrasound liquid coupling technique in conjunction with a single pair of gimballed search units to achieve rapid and thorough coverage of bores and keyways in both heavy nuclear and standard fossil discs of nearly any size and having any conceivable web surface contour. Search unit positioning and angulation parameter settings are established in near real-time through a computation algorithm based on a compact vector ray tracing protocol. Modular construction and the use of lightweight, stiff materials throughout facilitates air shipment of the system and its rapid deployment at continental and overseas field sites. Mechanical and ultrasonic features of the system are described. Development and application of the computation algorithm to the ultrasonic inspection of heavy discs at an overseas power station is discussed

  16. Compact three-dimensional super-resolution system based on fluorescence emission difference microscopy

    Science.gov (United States)

    Zhu, Dazhao; Chen, Youhua; Fang, Yue; Hussain, Anwar; Kuang, Cuifang; Zhou, Xiaoxu; Xu, Yingke; Liu, Xu

    2017-12-01

    A compact microscope system for three-dimensional (3-D) super-resolution imaging is presented. The super-resolution capability of the system is based on a size-reduced effective 3-D point spread function generated through the fluorescence emission difference (FED) method. The appropriate polarization direction distribution and manipulation allows the panel active area of the spatial light modulator to be fully utilized. This allows simultaneous modulation of the incident light by two kinds of phase masks to be performed with a single spatial light modulator in order to generate a 3-D negative spot. The system is more compact than standard 3-D FED systems while maintaining all the advantages of 3-D FED microscopy. The experimental results demonstrated the improvement in 3-D resolution by nearly 1.7 times and 1.6 times compared to the classic confocal resolution in the lateral and axial directions, respectively.

  17. Computational code in atomic and nuclear quantum optics: Advanced computing multiphoton resonance parameters for atoms in a strong laser field

    Science.gov (United States)

    Glushkov, A. V.; Gurskaya, M. Yu; Ignatenko, A. V.; Smirnov, A. V.; Serga, I. N.; Svinarenko, A. A.; Ternovsky, E. V.

    2017-10-01

    The consistent relativistic energy approach to the finite Fermi-systems (atoms and nuclei) in a strong realistic laser field is presented and applied to computing the multiphoton resonances parameters in some atoms and nuclei. The approach is based on the Gell-Mann and Low S-matrix formalism, multiphoton resonance lines moments technique and advanced Ivanov-Ivanova algorithm of calculating the Green’s function of the Dirac equation. The data for multiphoton resonance width and shift for the Cs atom and the 57Fe nucleus in dependence upon the laser intensity are listed.

  18. Machine Learning Algorithms For Predicting the Instability Timescales of Compact Planetary Systems

    Science.gov (United States)

    Tamayo, Daniel; Ali-Dib, Mohamad; Cloutier, Ryan; Huang, Chelsea; Van Laerhoven, Christa L.; Leblanc, Rejean; Menou, Kristen; Murray, Norman; Obertas, Alysa; Paradise, Adiv; Petrovich, Cristobal; Rachkov, Aleksandar; Rein, Hanno; Silburt, Ari; Tacik, Nick; Valencia, Diana

    2016-10-01

    The Kepler mission has uncovered hundreds of compact multi-planet systems. The dynamical pathways to instability in these compact systems and their associated timescales are not well understood theoretically. However, long-term stability is often used as a constraint to narrow down the space of orbital solutions from the transit data. This requires a large suite of N-body integrations that can each take several weeks to complete. This computational bottleneck is therefore an important limitation in our ability to characterize compact multi-planet systems.From suites of numerical simulations, previous studies have fit simple scaling relations between the instability timescale and various system parameters. However, the numerically simulated systems can deviate strongly from these empirical fits.We present a new approach to the problem using machine learning algorithms that have enjoyed success across a broad range of high-dimensional industry applications. In particular, we have generated large training sets of direct N-body integrations of synthetic compact planetary systems to train several regression models (support vector machine, gradient boost) that predict the instability timescale. We find that ensembling these models predicts the instability timescale of planetary systems better than previous approaches using the simple scaling relations mentioned above.Finally, we will discuss how these models provide a powerful tool for not only understanding the current Kepler multi-planet sample, but also for characterizing and shaping the radial-velocity follow-up strategies of multi-planet systems from the upcoming Transiting Exoplanet Survey Satellite (TESS) mission, given its shorter observation baselines.

  19. Active trajectory control for a heavy ion beam probe on the compact helical system

    International Nuclear Information System (INIS)

    Fujisawa, A.; Iguchi, H.; Lee, S.; Crowley, T.P.; Hamada, Y.; Hidekuma, S.; Kojima, M.

    1996-05-01

    A 200 keV heavy ion beam probe (HIBP) on the Compact Helical System torsatron/heliotron uses a newly proposed method in order to control complicated beam trajectories in non-axisymmetrical devices. As a result, the HIBP has successfully measured potential profiles of the toroidal helical plasma. The article will describe the results of the potential profile measurements, together with the HIBP hardware system and procedures to realize the method. (author)

  20. Compact rf polarizer and its application to pulse compression systems

    Directory of Open Access Journals (Sweden)

    Matthew Franzi

    2016-06-01

    Full Text Available We present a novel method of reducing the footprint and increasing the efficiency of the modern multi-MW rf pulse compressor. This system utilizes a high power rf polarizer to couple two circular waveguide modes in quadrature to a single resonant cavity in order to replicate the response of a traditional two cavity configuration using a 4-port hybrid. The 11.424 GHz, high-Q, spherical cavity has a 5.875 cm radius and is fed by the circularly polarized signal to simultaneously excite the degenerate TE_{114} modes. The overcoupled spherical cavity has a Q_{0} of 9.4×10^{4} and coupling factor (β of 7.69 thus providing a loaded quality factor Q_{L} of 1.06×10^{4} with a fill time of 150 ns. Cold tests of the polarizer demonstrated good agreement with the numerical design, showing transmission of -0.05  dB and reflection back to the input rectangular WR 90 waveguide less than -40  dB over a 100 MHz bandwidth. This novel rf pulse compressor was tested at SLAC using XL-4 Klystron that provided rf power up to 32 MW and generated peak output power of 205 MW and an average of 135 MW over the discharged signal. A general network analysis of the polarizer is discussed as well as the design and high power test of the rf pulse compressor.

  1. Design of a Loose Part Monitoring System Test-bed using CompactRIO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-seok; Lee, Kwang-Dae; Lee, Eui-Jong [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    A loose part monitoring system (LPMS) is included in the NSSS integrity monitoring system (NIMS), which serves to detect loose parts in reactor coolant systems (RCS). LPMSs at Nuclear Power Plants (NPPs) in Korea follow the ASME OM standard and acquire data from 18 sensors simultaneously. Data acquisition requires a sampling rate of more than 50KHz along with a 12bit A/D converter. Existing LPMS equipment is composed of several different platforms, such as a digital signal processor (DSP), a field-programmable gate array (FPGA), a micro control unit (MCU), and electric circuit cards. These systems have vulnerabilities, such as discontinuance due to aging and incompatibility issues between different pieces of equipment. This paper suggests CompactRIO as a new platform. We devised a Test-bed using CompactRIO and demonstrate that the proposed method meets the criteria required by the standard. The LPMS provides an alert when an impact event occurs and provides information with which to analyze the location, energy, and mass of the loose parts. LPMSs in NPPs in Korea operate on a variety of platforms. Thus, these systems are vulnerable to discontinuances due to aging and incompatibilities arising from the use of different type of equipment. In order to solve these problems, this paper suggests CompactRIO as a new platform. It is a rugged, reconfigurable, high-performance industrial embedded system. The results of performance tests meet the criteria set by the current standard.

  2. Hydrogen at the Rooftop: Compact CPV-Hydrogen system to Convert Sunlight to Hydrogen

    KAUST Repository

    Burhan, Muhammad

    2017-12-27

    Despite being highest potential energy source, solar intermittency and low power density make it difficult for solar energy to compete with the conventional power plants. Highly efficient concentrated photovoltaic (CPV) system provides best technology to be paired with the electrolytic hydrogen production, as a sustainable energy source with long term energy storage. However, the conventional gigantic design of CPV system limits its market and application to the open desert fields without any rooftop installation scope, unlike conventional PV. This makes CPV less popular among solar energy customers. This paper discusses the development of compact CPV-Hydrogen system for the rooftop application in the urban region. The in-house built compact CPV system works with hybrid solar tracking of 0.1° accuracy, ensured through proposed double lens collimator based solar tracking sensor. With PEM based electrolyser, the compact CPV-hydrogen system showed 28% CPV efficiency and 18% sunlight to hydrogen (STH) efficiency, for rooftop operation in tropical region of Singapore. For plant designers, the solar to hydrogen production rating of 217 kWh/kg has been presented with 15% STH daily average efficiency, recorded from the long term field operation of the system.

  3. Hydrogen at the Rooftop: Compact CPV-Hydrogen system to Convert Sunlight to Hydrogen

    KAUST Repository

    Burhan, Muhammad; Wakil Shahzad, Muhammad; Ng, Kim Choon

    2017-01-01

    Despite being highest potential energy source, solar intermittency and low power density make it difficult for solar energy to compete with the conventional power plants. Highly efficient concentrated photovoltaic (CPV) system provides best technology to be paired with the electrolytic hydrogen production, as a sustainable energy source with long term energy storage. However, the conventional gigantic design of CPV system limits its market and application to the open desert fields without any rooftop installation scope, unlike conventional PV. This makes CPV less popular among solar energy customers. This paper discusses the development of compact CPV-Hydrogen system for the rooftop application in the urban region. The in-house built compact CPV system works with hybrid solar tracking of 0.1° accuracy, ensured through proposed double lens collimator based solar tracking sensor. With PEM based electrolyser, the compact CPV-hydrogen system showed 28% CPV efficiency and 18% sunlight to hydrogen (STH) efficiency, for rooftop operation in tropical region of Singapore. For plant designers, the solar to hydrogen production rating of 217 kWh/kg has been presented with 15% STH daily average efficiency, recorded from the long term field operation of the system.

  4. The planetary system to KIC 11442793: A compact analogue to the solar system

    International Nuclear Information System (INIS)

    Cabrera, J.; Csizmadia, Sz.; Rauer, H.; Erikson, A.; Dreyer, C.; Eigmüller, Ph.; Lehmann, H.; Hatzes, A.; Dvorak, R.; Gandolfi, D.

    2014-01-01

    We announce the discovery of a planetary system with seven transiting planets around a Kepler target, a current record for transiting systems. Planets b, c, e, and f are reported for the first time in this work. Planets d, g, and h were previously reported in the literature, although here we revise their orbital parameters and validate their planetary nature. Planets h and g are gas giants and show strong dynamical interactions. The orbit of planet g is perturbed in such a way that its orbital period changes by 25.7 hr between two consecutive transits during the length of the observations, which is the largest such perturbation found so far. The rest of the planets also show mutual interactions: planets d, e, and f are super-Earths close to a mean motion resonance chain (2:3:4), and planets b and c, with sizes below 2 Earth radii, are within 0.5% of the 4:5 mean motion resonance. This complex system presents some similarities to our solar system, with small planets in inner orbits and gas giants in outer orbits. It is, however, more compact. The outer planet has an orbital distance around 1 AU, and the relative position of the gas giants is opposite to that of Jupiter and Saturn, which is closer to the expected result of planet formation theories. The dynamical interactions between planets are also much richer.

  5. A compact neutron beam generator system designed for prompt gamma nuclear activation analysis.

    Science.gov (United States)

    Ghassoun, J; Mostacci, D

    2011-08-01

    In this work a compact system was designed for bulk sample analysis using the technique of PGNAA. The system consists of (252)Cf fission neutron source, a moderator/reflector/filter assembly, and a suitable enclosure to delimit the resulting neutron beam. The moderator/reflector/filter arrangement has been optimised to maximise the thermal neutron component useful for samples analysis with a suitably low level of beam contamination. The neutron beam delivered by this compact system is used to irradiate the sample and the prompt gamma rays produced by neutron reactions within the sample elements are detected by appropriate gamma rays detector. Neutron and gamma rays transport calculations have been performed using the Monte Carlo N-Particle transport code (MCNP5). 2010 Elsevier Ltd. All rights reserved.

  6. Growth of ZnO heterostructures in an ultra compact MBE system

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Marcel [University of Duisburg-Essen, Institute of Experimental Physics, Duisburg (Germany); University of Paderborn (Germany). Group Nanophotonics and Nanomaterials; Meier, Cedrik [University of Paderborn (Germany). Group Nanophotonics and Nanomaterials

    2009-07-01

    Due to its unique properties such as the large direct bandgap of 3.37 eV and its high exciton binding energy, zinc oxide (ZnO) is a very promising semiconductor for optoelectronic and photonic applications even at room temperature. By adding cadmium (Cd) or magnesium (Mg) the bandgap can be tuned between 3.0 eV and 4.0 eV. It has already been shown that plasma assisted molecular beam epitaxy (PA-MBE) is a very suitable technique for growing high-quality epilayers of ZnO. Especially for research issues small samples are often sufficient. By using ultra compact MBE-systems the running costs can be kept down. However, the special system geometry and the very compact design lead to high requirements on the system. It is not trivial that in such a system stoichiometric and homogeneous growth conditions be achieved anyway. Furthermore, very high growth-rates can be obtained. By working in the zinc- (Zn) or oxygen-rich (O) regime completely different surface morphologies free of any metallic clusters are created. We present a systematic study on the growth conditions in such a compact system. Especially, the determination of the flux is discussed, and the grown heterostructures are characterised for their usability for nanophotonic devices.

  7. Optical Magnetometry Using Multiphoton Transitions

    Science.gov (United States)

    Degenkolb, Skyler M.

    Optical magnetometry plays a critical role in low-energy precision measurements and numerous other applications. In particular, permanent electric dipole moment (EDM) searches impose strict requirements on magnetic field sensitivity of the underlying atomic or molecular species. Other magnetometer properties - such as chemical reactivity, dielectric strength, and interaction cross-sections with other species - also impose limitations on experimental conditions. Here, we explore a novel approach to optical magnetometry, using multiphoton transitions of diamagnetic atoms to detect Larmor precession of polarized nuclei. Resonant probes are possible at moderate ultraviolet wavelengths, and hyperfine structure couples spin precession to fluorescence transitions with negligible backgrounds; paramagnetic rotation due to intensity-dependent dispersion may also be detectable. Nuclear spins and nonlinear optical excitation introduce new degrees of freedom, and evade limitations arising from rapid electronic decoherence. This dissertation reports progress towards two-photon optical magnetometry using ytterbium, rubidium, and xenon. We characterize the influence of probe polarization and magnetic fields on fluorescence spectra, for one- and two-photon continuous-wave (cw) excitation of ytterbium. Resolved hyperfine and isotope structure allow us to use spin-zero isotopes for diagnostics and normalization, and we develop analysis for overlapping two-photon resonances. We also report measurements of two-photon excitation in ytterbium and rubidium using picosecond laser pulses, and in xenon using a cw laser. Although hyperfine structure is unresolved, the rubidium measurements are sensitive to probe field polarization. Fluorescence spectra from two-photon excitation of ytterbium with femtosecond pulses show modulation when the repetition rate changes. Although techniques for polarizing noble gas nuclei are mature, existing cell designs are incompatible with two

  8. A Tunable Mid-Infrared Solid-State Laser with a Compact Thermal Control System

    Directory of Open Access Journals (Sweden)

    Deyang Yu

    2018-05-01

    Full Text Available Tunable mid-infrared lasers are widely used in laser spectroscopy, gas sensing and many other related areas. In order to solve heat dissipation problems and improve the environmental temperature adaptability of solid-state laser sources, a tunable all-fiber laser pumped optical parametric oscillator (OPO was established, and a compact thermal control system based on thermoelectric coolers, an automatic temperature control circuit, cooling fins, fans and heat pipes was integrated and designed for the laser. This system is compact, light and air-cooling which satisfies the demand for miniaturization of lasers. A mathematical model and method was established to estimate the cooling capacity of this thermal control system under different ambient environments. A finite-element model was built and simulated to analyze the thermal transfer process. Experiments in room and high temperature environments were carried out and showed that the substrate temperature of a pump module could be maintained at a stable value with controlled precision to 0.2 degrees, while the output power stability of the laser was within ±1%. The experimental results indicate that this compact air-cooling thermal control system could effectively solve the heat dissipation problem of mid-infrared solid-state lasers with a one hundred watts level pump module in room and high temperature environments.

  9. Design of an ion cyclotron resonance heating system for the Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Yugo, J.J.; Goranson, P.L.; Swain, D.W.; Baity, F.W.; Vesey, R.

    1987-01-01

    The Compact Ignition Tokamak (CIT) requires 10-20 MW of ion cyclotron resonance heating (ICRH) power to raise the plasma temperature to ignition. The initial ICRH system will provide 10 MW of power to the plasma, utilizing a total of six rf power units feeding six current straps in three ports. The systems may be expanded to 20 MW with additional rf power units, antennas, and ports. Plasma heating will be achieved through coupling to the fundamental ion cyclotron resonance of a 3 He minority species (also the second harmonic of tritium). The proposed antenna is a resonant double loop (RDL) structure with vacuum, shorted stubs at each end for tuning and impedance matching. The antennas are of modular, compact construction for installation and removal through the midplane port. Remote maintainability and the reactorlike operating environment have a major impact on the design of the launcher for this machine. 6 refs., 7 figs., 5 tabs

  10. Development and verification of a compact TDC-based data acquisition system for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Losekamm, Martin [Physics Department E18, Technische Universitaet Muenchen (Germany); Institute of Astronautics, Technische Universitaet Muenchen (Germany); Gaisbauer, Dominic; Konorov, Igor; Paul, Stephan; Poeschl, Thomas [Physics Department E18, Technische Universitaet Muenchen (Germany)

    2015-07-01

    The advances of solid-state detectors and in particular those for the detection of photons have made their application in space systems increasingly attractive in recent years. The use of, for example, silicon photomultipliers (SiPM) paired with a suitable scintillating material allows the development of compact and lightweight particle detectors. The Antiproton Flux in Space experiment (AFIS) intends to measure the flux of antiprotons trapped in Earth's magnetosphere aboard a nanosatellite using an active target tracking detector, consisting of plastic scintillating fibers read out by SiPMs. In order to implement a large number of detector channels while adhering to the given space, mass and power constraints, the development of a compact TDC-based data acquisition system was proposed. This talk presents a current prototype featuring 900 channels, real-time multi-channel temperature measurement and bias regulation. Possible alternative applications as well as the next steps in the development are also discussed.

  11. Open and Closed Loop Parametric System Identification in Compact Disk Players

    DEFF Research Database (Denmark)

    Vidal, Enrique Sanchez; Stoustrup, Jakob; Andersen, Palle

    2001-01-01

    By measuring the current through the coil of the actuators in the optical pick-up in a compact disk player, open loop parametric system identification can be performed. The parameters are identified by minimizing the least-squares loss function of the ARX model. The only parameter which cannot be...... be identified in open loop is the optical gain. This is therefore estimated in closed loop. Practical results are analyzed and show very accurate estimates of the real parameters.......By measuring the current through the coil of the actuators in the optical pick-up in a compact disk player, open loop parametric system identification can be performed. The parameters are identified by minimizing the least-squares loss function of the ARX model. The only parameter which cannot...

  12. Formation of positive radial electric field by electron cyclotron heating in compact helical system

    International Nuclear Information System (INIS)

    Idei, H.; Ida, K.; Sanuki, H.

    1994-07-01

    The radial electric field is driven to positive value by off-axis second harmonic electron cyclotron heating (ECH) in the Compact Helical System. The observed positive electric field is associated with the outward particle flux enhanced with ECH. The enhanced particle flux triggered by the production of the electrons accelerated perpendicularly to the magnetic field with ECH results in the change of the electric field. (author)

  13. Multiphoton ionization of atomic cesium

    International Nuclear Information System (INIS)

    Compton, R.N.; Klots, C.E.; Stockdale, J.A.D.; Cooper, C.D.

    1984-01-01

    We describe experimental studies of resonantly enhanced multi-photon ionization (MPI) of cesium atoms in the presence and absence of an external electric field. In the zero-field studies, photo-electron angular distributions for one- and two-photon resonantly enhanced MPI are compared with the theory of Tang and Lambropoulos. Deviations of experiment from theory are attributed to hyperfine coupling effects in the resonant intermediate state. The agreement between theory and experiment is excellent. In the absence of an external electric field, signal due to two-photon resonant three-photon ionization of cesium via np states is undetectable. Application of an electric field mixes nearby nd and ns levels, thereby inducing excitation and subsequent ionization. Signal due to two-photon excitation of ns levels in field-free experiments is weak due to their small photoionization cross section. An electric field mixes nearby np levels which again allows detectable photo-ionization signal. For both ns and np states the ''field induced'' MPI signal increases as the square of the electric field for a given principal quantum number and increases rapidly with n for a given field strength

  14. Infrared multiphoton absorption and decomposition

    International Nuclear Information System (INIS)

    Evans, D.K.; McAlpine, R.D.

    1984-01-01

    The discovery of infrared laser induced multiphoton absorption (IRMPA) and decomposition (IRMPD) by Isenor and Richardson in 1971 generated a great deal of interest in these phenomena. This interest was increased with the discovery by Ambartzumian, Letokhov, Ryadbov and Chekalin that isotopically selective IRMPD was possible. One of the first speculations about these phenomena was that it might be possible to excite a particular mode of a molecule with the intense infrared laser beam and cause decomposition or chemical reaction by channels which do not predominate thermally, thus providing new synthetic routes for complex chemicals. The potential applications to isotope separation and novel chemistry stimulated efforts to understand the underlying physics and chemistry of these processes. At ICOMP I, in 1977 and at ICOMP II in 1980, several authors reviewed the current understandings of IRMPA and IRMPD as well as the particular aspect of isotope separation. There continues to be a great deal of effort into understanding IRMPA and IRMPD and we will briefly review some aspects of these efforts with particular emphasis on progress since ICOMP II. 31 references

  15. Multiphoton ionization of atomic cesium

    International Nuclear Information System (INIS)

    Compton, R.N.; Klots, C.E.; Stockdale, J.A.D.; Cooper, C.D.

    1984-01-01

    We describe experimental studies of resonantly enhanced multiphoton ionization (MPI) of cesium atoms in the presence and absence of an external electric field. In the zero-field studies, photoelectron angular distributions for one- and two-photon resonantly enhanced MPI are compared with the theory of Tang and Lambropoulos. Deviations of experiment from theory are attributed to hyperfine coupling effects in the resonant intermediate state. The agreement between theory and experiment is excellent. In the absence of an external electric field, signal due to two-photon resonant three-photon ionization of cesium via np states is undetectable. Application of an electric field mixes nearby nd and ns levels, thereby inducing excitation and subsequent ionization. Signal due to two-photon excitation of ns levels in field-free experiments is weak due to their small photoionization cross section. An electric field mixes nearby np levels which again allows detectable photoionization signal. For both ns and np states the field induced MPI signal increases as the square of the electric field for a given principal quantum number and increases rapidly with n for a given field strength. Finally, we note that the classical two-photon field-ionization threshold is lower for the case in which the laser polarization and the electric field are parallel than it is when they are perpendicular. 22 references, 11 figures

  16. Multiphoton states and amplitude k-th power squeezing

    International Nuclear Information System (INIS)

    Buzek, V.; Jex, I.

    1991-01-01

    On the basis of the work of d'Ariano and coworkers a new type of multiphoton states is introduced. Amplitude k-th power squeezing of the multiphoton states are analysed. In particular, it is shown that even if the multiphoton states do not exhibit ordinary squeezing they can be amplitude k-th power squeezed

  17. Compact Modbus TCP/IP protocol for data acquisition systems based on limited hardware resources

    Science.gov (United States)

    Bai, Q.; Jin, B.; Wang, D.; Wang, Y.; Liu, X.

    2018-04-01

    The Modbus TCP/IP has been a standard industry communication protocol and widely utilized for establishing sensor-cloud platforms on the Internet. However, numerous existing data acquisition systems built on traditional single-chip microcontrollers without sufficient resources cannot support it, because the complete Modbus TCP/IP protocol always works dependent on a full operating system which occupies abundant hardware resources. Hence, a compact Modbus TCP/IP protocol is proposed in this work to make it run efficiently and stably even on a resource-limited hardware platform. Firstly, the Modbus TCP/IP protocol stack is analyzed and the refined protocol suite is rebuilt by streamlining the typical TCP/IP suite. Then, specific implementation of every hierarchical layer is respectively presented in detail according to the protocol structure. Besides, the compact protocol is implemented in a traditional microprocessor to validate the feasibility of the scheme. Finally, the performance of the proposed scenario is assessed. The experimental results demonstrate that message packets match the frame format of Modbus TCP/IP protocol and the average bandwidth reaches to 1.15 Mbps. The compact protocol operates stably even based on a traditional microcontroller with only 4-kB RAM and 12-MHz system clock, and no communication congestion or frequent packet loss occurs.

  18. Concept of automated system for spent fuel utilization ('Reburning') from compact nuclear reactors

    International Nuclear Information System (INIS)

    Ianovski, V.V.; Lozhkin, O.V.; Nesterov, M.M.; Tarasov, N.A.; Uvarov, V.I.

    1997-01-01

    On the basic concept of an automated system of nuclear power installation safety is developed the utilization project of spent fuel from compact nuclear reactors. The main features of this project are: 1. design and creation of the mobile model-industrial installation; 2. development of the utilization and storage diagram of the spent fuel from compact nuclear reactors, with the specific recommendation for the natatorial means using both for the nuclear fuel reburning, for its transportation in places of the storage; 3. research of an opportunity during the utilization process to obtain additional power resources, ozone and others to increase of justifying expenses at the utilization; 4. creation of new generation engineering for the automation of remote control processes in the high radiation background conditions. 7 refs., 1 fig

  19. Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness

    CERN Document Server

    Hervé, Loïc

    2001-01-01

    This book shows how techniques from the perturbation theory of operators, applied to a quasi-compact positive kernel, may be used to obtain limit theorems for Markov chains or to describe stochastic properties of dynamical systems. A general framework for this method is given and then applied to treat several specific cases. An essential element of this work is the description of the peripheral spectra of a quasi-compact Markov kernel and of its Fourier-Laplace perturbations. This is first done in the ergodic but non-mixing case. This work is extended by the second author to the non-ergodic case. The only prerequisites for this book are a knowledge of the basic techniques of probability theory and of notions of elementary functional analysis.

  20. Multi-photon microscope driven by novel green laser pump

    Science.gov (United States)

    Marti, Dominik; Djurhuus, Martin; Jensen, Ole Bjarlin; Andersen, Peter E.

    2016-03-01

    Multi-photon microscopy is extensively used in research due to its superior possibilities when compared to other microscopy modalities. The technique also has the possibility to advance diagnostics in clinical applications, due to its capabilities complementing existing technology in a multimodal system. However, translation is hindered due to the high cost, high training demand and large footprint of a standard setup. We show in this article that minification of the setup, while also reducing cost and complexity, is indeed possible without compromising on image quality, by using a novel diode laser replacing the commonly used conventional solid state laser as the pump for the femtosecond system driving the imaging.

  1. Human bladder cancer diagnosis using multiphoton microscopy

    Science.gov (United States)

    Mukherjee, Sushmita; Wysock, James S.; Ng, Casey K.; Akhtar, Mohammed; Perner, Sven; Lee, Ming-Ming; Rubin, Mark A.; Maxfield, Frederick R.; Webb, Watt W.; Scherr, Douglas S.

    2009-02-01

    At the time of diagnosis, approximately 75% of bladder cancers are non-muscle invasive. Appropriate diagnosis and surgical resection at this stage improves prognosis dramatically. However, these lesions, being small and/or flat, are often missed by conventional white-light cystoscopes. Furthermore, it is difficult to assess the surgical margin for negativity using conventional cystoscopes. Resultantly, the recurrence rates in patients with early bladder cancer are very high. This is currently addressed by repeat cystoscopies and biopsies, which can last throughout the life of a patient, increasing cost and patient morbidity. Multiphoton endoscopes offer a potential solution, allowing real time, noninvasive biopsies of the human bladder, as well as an up-close assessment of the resection margin. While miniaturization of the Multiphoton microscope into an endoscopic format is currently in progress, we present results here indicating that Multiphoton imaging (using a bench-top Multiphoton microscope) can indeed identify cancers in fresh, unfixed human bladder biopsies. Multiphoton images are acquired in two channels: (1) broadband autofluorescence from cells, and (2) second harmonic generation (SHG), mostly by tissue collagen. These images are then compared with gold standard hematoxylin/eosin (H&E) stained histopathology slides from the same specimen. Based on a "training set" and a very small "blinded set" of samples, we have found excellent correlation between the Multiphoton and histopathological diagnoses. A larger blinded analysis by two independent uropathologists is currently in progress. We expect that the conclusion of this phase will provide us with diagnostic accuracy estimates, as well as the degree of inter-observer heterogeneity.

  2. Performance analysis of a compact and low-cost mapping-grade mobile laser scanning system

    Science.gov (United States)

    Julge, Kalev; Vajakas, Toivo; Ellmann, Artu

    2017-10-01

    The performance of a low-cost, self-contained, compact, and easy to deploy mapping-grade mobile laser scanning (MLS) system, which is composed of a light detection and ranging sensor Velodyne VLP-16 and a dual antenna global navigation satellite system/inertial navigation system SBG Systems Ellipse-D, is analyzed. The field tests were carried out in car-mounted and backpack modes for surveying road engineering structures (such as roads, parking lots, underpasses, and tunnels) and coastal erosion zones, respectively. The impact of applied calculation principles on trajectory postprocessing, direct georeferencing, and the theoretical accuracy of the system is analyzed. A calibration method, based on Bound Optimization BY Quadratic Approximation, for finding the boresight angles of an MLS system is proposed. The resulting MLS point clouds are compared with high-accuracy static terrestrial laser scanning data and survey-grade MLS data from a commercially manufactured MLS system. The vertical, horizontal, and relative accuracy are assessed-the root-mean-square error (RMSE) values were determined to be 8, 15, and 3 cm, respectively. Thus, the achieved mapping-grade accuracy demonstrates that this relatively compact and inexpensive self-assembled MLS can be successfully used for surveying the geometry and deformations of terrain, buildings, road, and other engineering structures.

  3. Weak hydrogen bonding interactions influence slip system activity and compaction behavior of pharmaceutical powders.

    Science.gov (United States)

    Khomane, Kailas S; Bansal, Arvind K

    2013-12-01

    Markedly different mechanical behavior of powders of polymorphs, cocrystals, hydrate/anhydrate pairs, or structurally similar molecules has been attributed to the presence of active slip planes system in their crystal structures. Presence of slip planes in the crystal lattice allows easier slip under the applied compaction pressure. This allows greater plastic deformation of the powder and results into increased interparticulate bonding area and greater tensile strength of the compacts. Thus, based on this crystallographic feature, tableting performance of the active pharmaceutical ingredients can be predicted. Recently, we encountered a case where larger numbers of CH···O type interactions across the proposed slip planes hinder the slip and thus resist plastic deformation of the powder under the applied compaction pressure. Hence, attention must be given to these types of interactions while identifying slip planes by visualization method. Generally, slip planes are visualized as flat layers often strengthened by a two-dimensional hydrogen-bonding network within the layers or planes. No hydrogen bonding should exist between these layers to consider them as slip planes. Moreover, one should also check the presence of CH···O type interactions across these planes. Mercury software provides an option for visualization of these weak hydrogen bonding interactions. Hence, caution must be exercised while selecting appropriate solid form based on this crystallographic feature. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  4. Investigation and development of a non-destructive system to evaluate critical properties of asphalt pavements during the compaction process.

    Science.gov (United States)

    2013-10-01

    The purpose of this report is to present findings from a two-stage investigation to develop a non-destructive system to : evaluate critical properties and characteristics of asphalt pavements during the compaction process. The first stage aligned : c...

  5. Phase II, Compact AMS System for Biological Tracer Detection Final Report CRADA No. TSV-1533-96

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hamm, R. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-01

    The objective of this collaboration between LLNL and AccSys Technology, Inc. of Pleasanton, California was to build and demonstrate a low cost, compact tritium (3H) Accelerator Mass Spectrometer (AMS) system matched to the requirements of biomedical research.

  6. Compact Representation for Specific Heat of Interacting Fermion Systems in Terms of Fully Renormalized Matsubara Green Function

    OpenAIRE

    Miyake, Kazumasa; Tsuruta, Atsushi

    2015-01-01

    On the basis of the Luttinger-Ward formalism for the thermodynamic potential, the specific heat of single-component interacting fermion systems with fixed chemical potential is compactly expressed in terms of the fully renormalized Matsubara Green function.

  7. COMPACT HYPERSPECTRAL IMAGING SYSTEM (COSI FOR SMALL REMOTELY PILOTED AIRCRAFT SYSTEMS (RPAS – SYSTEM OVERVIEW AND FIRST PERFORMANCE EVALUATION RESULTS

    Directory of Open Access Journals (Sweden)

    A. A. Sima

    2016-06-01

    Full Text Available This paper gives an overview of the new COmpact hyperSpectral Imaging (COSI system recently developed at the Flemish Institute for Technological Research (VITO, Belgium and suitable for remotely piloted aircraft systems. A hyperspectral dataset captured from a multirotor platform over a strawberry field is presented and explored in order to assess spectral bands co-registration quality. Thanks to application of line based interference filters deposited directly on the detector wafer the COSI camera is compact and lightweight (total mass of 500g, and captures 72 narrow (FWHM: 5nm to 10 nm bands in the spectral range of 600-900 nm. Covering the region of red edge (680 nm to 730 nm allows for deriving plant chlorophyll content, biomass and hydric status indicators, making the camera suitable for agriculture purposes. Additionally to the orthorectified hypercube digital terrain model can be derived enabling various analyses requiring object height, e.g. plant height in vegetation growth monitoring. Geometric data quality assessment proves that the COSI camera and the dedicated data processing chain are capable to deliver very high resolution data (centimetre level where spectral information can be correctly derived. Obtained results are comparable or better than results reported in similar studies for an alternative system based on the Fabry–Pérot interferometer.

  8. Plans for the CIT [Compact Ignition Tokamak] instrumentation and control system

    International Nuclear Information System (INIS)

    Preckshot, G.G.

    1987-01-01

    Extensive experience with previous fusion experiments (TFTR, MFTF-B and others) is driving the design of the Instrumentation and Control System (I and C) for the Compact Ignition Tokamak (CIT) to be built at Princeton. The new design will reuse much equipment from TFTR and will be subdivided into six major parts: machine control, machine data acquisition, plasma diagnostic instrument control and instrument data acquisition, the database, shot sequencing and safety interlocks. In a major departure from previous fusion experiment control systems, the CIT machine control system will be a commercial process control system. Since the machine control system will be purchased as a completely functional product, we will be able to concentrate development manpower in plasma diagnostic instrument control, data acquisition, data processing and analysis, and database systems. We will discuss the issues driving the design, give a design overview and state the requirements upon any prospective commercial process control system

  9. INITIAL TESTS AND ACCURACY ASSESMENT OF A COMPACT MOBILE LASER SCANNING SYSTEM

    Directory of Open Access Journals (Sweden)

    K. Julge

    2016-06-01

    Full Text Available Mobile laser scanning (MLS is a faster and cost-effective alternative to static laser scanning, even though there is a slight trade-off in accuracy. This contribution describes a compact mobile laser scanning system mounted on a vehicle. The technical parameters of the used system components, i.e. a small LIDAR sensor Velodyne VLP-16 and a dual antenna GNSS/INS system Advanced Navigation Spatial Dual, are reviewed, along with the integration of these components for spatial data acquisition. Calculation principles of 3D coordinates from the real-time data of all the involved sensors are discussed. The field tests were carried out in a controlled environment of a parking lot and at different velocities. Experiments were carried out to test the ability of the GNSS/INS system to cope with difficult conditions, e.g. sudden movements due to cornering or swerving. The accuracy of the resulting MLS point cloud is evaluated with respect to high-accuracy static terrestrial laser scanning data. Problems regarding combining LIDAR, GNSS and INS sensors are outlined, as well as the initial accuracy assessments. Initial tests revealed errors related to insufficient quality of inertial data and a need for the trajectory post-processing calculations. Although this study was carried out while the system was mounted on a car, there is potential for operating the system on an unmanned aerial vehicle, all-terrain vehicle or in a backpack mode due to its relatively compact size.

  10. Initial Tests and Accuracy Assesment of a Compact Mobile Laser Scanning System

    Science.gov (United States)

    Julge, K.; Ellmann, A.; Vajakas, T.; Kolka, R.

    2016-06-01

    Mobile laser scanning (MLS) is a faster and cost-effective alternative to static laser scanning, even though there is a slight trade-off in accuracy. This contribution describes a compact mobile laser scanning system mounted on a vehicle. The technical parameters of the used system components, i.e. a small LIDAR sensor Velodyne VLP-16 and a dual antenna GNSS/INS system Advanced Navigation Spatial Dual, are reviewed, along with the integration of these components for spatial data acquisition. Calculation principles of 3D coordinates from the real-time data of all the involved sensors are discussed. The field tests were carried out in a controlled environment of a parking lot and at different velocities. Experiments were carried out to test the ability of the GNSS/INS system to cope with difficult conditions, e.g. sudden movements due to cornering or swerving. The accuracy of the resulting MLS point cloud is evaluated with respect to high-accuracy static terrestrial laser scanning data. Problems regarding combining LIDAR, GNSS and INS sensors are outlined, as well as the initial accuracy assessments. Initial tests revealed errors related to insufficient quality of inertial data and a need for the trajectory post-processing calculations. Although this study was carried out while the system was mounted on a car, there is potential for operating the system on an unmanned aerial vehicle, all-terrain vehicle or in a backpack mode due to its relatively compact size.

  11. Microstructure imaging of human rectal mucosa using multiphoton microscopy

    Science.gov (United States)

    Liu, N. R.; Chen, G.; Chen, J. X.; Yan, J.; Zhuo, S. M.; Zheng, L. Q.; Jiang, X. S.

    2011-01-01

    Multiphoton microscopy (MPM) has high resolution and sensitivity. In this study, MPM was used to image microstructure of human rectal mucosa. The morphology and distribution of the main components in mucosa layer, absorptive cells and goblet cells in the epithelium, abundant intestinal glands in the lamina propria and smooth muscle fibers in the muscularis mucosa were clearly monitored. The variations of these components were tightly relevant to the pathology in gastrointestine system, especially early rectal cancer. The obtained images will be helpful for the diagnosis of early colorectal cancer.

  12. Development of a compact and user-friendly ion irradiation system controlled remotely through the internet

    International Nuclear Information System (INIS)

    Ishikawa, Ippei; Kada, Wataru; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki; Tanaka, Teruya; Yamamoto, Junji

    2007-01-01

    A compact and user-friendly ion irradiation system controlled remotely through the Internet was developed for the execution of collaboration experiments together with researchers at remote sites. Several hardware instruments and software programs were constructed and provided for the remote control of the system and for its connection to the Internet. Surface modification and analysis experiments with this system were remotely performed through the Internet. It was confirmed from the experiments that the present ion irradiation system was precisely controlled through the Internet and could be easily and safely used for the surface modification and analysis, that the normal communication speed of around 10 Mbps for the Internet was fast enough for the execution of such typical remote-controlled experiments, and also that an access to the system by a mobile phone was convenient and useful enough to check the condition of the system and experimental data. (author)

  13. Inertial confinement fusion driver enhancements: Final focusing systems and compact heavy-ion driver designs

    International Nuclear Information System (INIS)

    Bieri, R.L.

    1991-01-01

    Required elements of an inertial confinement fusion power plant are modeled and discussed. A detailed analysis of two critical elements of candidate drivers is done, and new component designs are proposed to increase the credibility and feasibility of each driver system. An analysis of neutron damage to the final elements of a laser focusing system is presented, and multilayer -- dielectric mirrors are shown to have damage lifetimes which axe too short to be useful in a commercial power plant. A new final-focusing system using grazing incidence metal mirrors to protect sensitive laser optics is designed and shown to be effective in extending the lifetime of the final focusing system. The reflectivities and damage limits of grazing incidence metal mirrors are examined in detail, and the required mirror sizes are shown to be compatible with the beam sizes and illumination geometries currently envisioned for laser drivers. A detailed design and analysis is also done for compact arrays of superconducting magnetic quadrupoles, which are needed in a multi-beam heavy-ion driver. The new array model is developed in more detail than some previous conceptual designs and models arrays which are more compact than arrays scaled from existing single -- quadrupole designs. The improved integrated model for compact arrays is used to compare the effects of various quadrupole array design choices on the size and cost of a heavy-ion driver. Array design choices which significantly affect the cost of a heavy-ion driver include the choice of superconducting material and the thickness of the collar used to support the winding stresses. The effect of these array design choices on driver size and cost is examined and the array model is used to estimate driver cost savings and performance improvements attainable with aggressive quadrupole array designs with high-performance superconductors

  14. Compact Hip-Force Sensor for a Gait-Assistance Exoskeleton System.

    Science.gov (United States)

    Choi, Hyundo; Seo, Keehong; Hyung, Seungyong; Shim, Youngbo; Lim, Soo-Chul

    2018-02-13

    In this paper, we propose a compact force sensor system for a hip-mounted exoskeleton for seniors with difficulties in walking due to muscle weakness. It senses and monitors the delivered force and power of the exoskeleton for motion control and taking urgent safety action. Two FSR (force-sensitive resistors) sensors are used to measure the assistance force when the user is walking. The sensor system directly measures the interaction force between the exoskeleton and the lower limb of the user instead of a previously reported force-sensing method, which estimated the hip assistance force from the current of the motor and lookup tables. Furthermore, the sensor system has the advantage of generating torque in the walking-assistant actuator based on directly measuring the hip-assistance force. Thus, the gait-assistance exoskeleton system can control the delivered power and torque to the user. The force sensing structure is designed to decouple the force caused by hip motion from other directional forces to the sensor so as to only measure that force. We confirmed that the hip-assistance force could be measured with the proposed prototype compact force sensor attached to a thigh frame through an experiment with a real system.

  15. Compact Hip-Force Sensor for a Gait-Assistance Exoskeleton System

    Directory of Open Access Journals (Sweden)

    Hyundo Choi

    2018-02-01

    Full Text Available In this paper, we propose a compact force sensor system for a hip-mounted exoskeleton for seniors with difficulties in walking due to muscle weakness. It senses and monitors the delivered force and power of the exoskeleton for motion control and taking urgent safety action. Two FSR (force-sensitive resistors sensors are used to measure the assistance force when the user is walking. The sensor system directly measures the interaction force between the exoskeleton and the lower limb of the user instead of a previously reported force-sensing method, which estimated the hip assistance force from the current of the motor and lookup tables. Furthermore, the sensor system has the advantage of generating torque in the walking-assistant actuator based on directly measuring the hip-assistance force. Thus, the gait-assistance exoskeleton system can control the delivered power and torque to the user. The force sensing structure is designed to decouple the force caused by hip motion from other directional forces to the sensor so as to only measure that force. We confirmed that the hip-assistance force could be measured with the proposed prototype compact force sensor attached to a thigh frame through an experiment with a real system.

  16. Compact teleoperated laparoendoscopic single-site robotic surgical system: Kinematics, control, and operation.

    Science.gov (United States)

    Isaac-Lowry, Oran Jacob; Okamoto, Steele; Pedram, Sahba Aghajani; Woo, Russell; Berkelman, Peter

    2017-12-01

    To date a variety of teleoperated surgical robotic systems have been developed to improve a surgeon's ability to perform demanding single-port procedures. However typical large systems are bulky, expensive, and afford limited angular motion, while smaller designs suffer complications arising from limited motion range, speed, and force generation. This work was to develop and validate a simple, compact, low cost single site teleoperated laparoendoscopic surgical robotic system, with demonstrated capability to carry out basic surgical procedures. This system builds upon previous work done at the University of Hawaii at Manoa and includes instrument and endoscope manipulators as well as compact articulated instruments designed to overcome single incision geometry complications. A robotic endoscope holder was used for the base, with an added support frame for teleoperated manipulators and instruments fabricated mostly from 3D printed parts. Kinematics and control methods were formulated for the novel manipulator configuration. Trajectory following results from an optical motion tracker and sample task performance results are presented. Results indicate that the system has successfully met the goal of basic surgical functionality while minimizing physical size, complexity, and cost. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Theory of multiphoton ionization of atoms

    International Nuclear Information System (INIS)

    Szoeke, A.

    1986-03-01

    A non-perturbative approach to the theory of multiphoton ionization is reviewed. Adiabatic Floquet theory is its first approximation. It explains qualitatively the energy and angular distribution of photoelectrons. In many-electron atoms it predicts collective and inner shell excitation. 14 refs

  18. The upgrade and re-validation of the Compact Muon Solenoid Electromagnetic Calorimeter Control System

    CERN Multimedia

    Holme, Oliver; Di Calafiori, Diogo; Dissertori, Günther; Djambazov, Lubomir; Jovanovic, Dragoslav; Lustermann, Werner; Zelepoukine, Serguei

    2013-01-01

    The Electromagnetic Calorimeter (ECAL) is one of the sub-detectors of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) at CERN. The Detector Control System (DCS) that has been developed and implemented for the CMS ECAL was deployed in accordance with the LHC schedule and has been supporting the CMS data-taking since LHC physics runs started in 2009. During these years, the control system has been regularly adapted according to operational experience and new requirements, always respecting the constraints imposed on significant changes to a running system. Several hardware and software upgrades and system extensions were therefore deferred to the first LHC Long Shutdown (LS1). This paper presents the main architectural differences between the system that supported the CMS ECAL during its first years and the new design for the coming physics runs after LS1. Details on the upgrade planning, including the certification methods performed in the CMS ECAL DCS laboratory facilities, repor...

  19. A compact ESQ system for transport and focusing of H- beam from ion source to RFQ

    International Nuclear Information System (INIS)

    Guharay, S.K.; Allen, C.K.; Reiser, M.; Saadatmand, K.; Chang, C.R.

    1992-01-01

    A compact, 6-lens electrostatic quadrupole (ESQ) LEBT (low energy beam transport) system has been constructed at the University of Maryland to transport a 30 mA, 35 kV H - beam over a distance of about 30 cm. A short einzel lens section is included at the end of the ESQ LEBT to establish a good matching of the beam to the radio frequency quadrupole (RFQ) accelerator, and to meet the emittance requirements of the linac in the Super-conducting Super Collider. Computer code predictions on the beam dynamics through the LEBT with experimentally measured input beam data are discussed. (Author) 5 figs., 6 refs

  20. A compact system for large-area thermal nanoimprint lithography using smart stamps

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Haugstrup; Hansen, Ole; Kristensen, Anders

    2008-01-01

    We present a simple apparatus for thermal nanoimprint lithography. In this work, the stamp is designed to significantly reduce the requirements for pressure application on the external imprint system. By MEMS-based processing, an air cavity inside the stamp is created, and the required pressure...... for successful imprint is reduced. Additionally, the stamp is capable of performing controlled demolding after imprint. Due to the complexity of the stamp, a compact and cost-effective imprint apparatus can be constructed. The design and fabrication of the advanced stamp as well as the simple imprint equipment...

  1. Current status of the Compact AMS system at Paleo Labo Co., Ltd., 2012

    International Nuclear Information System (INIS)

    Sato, Masanori; Itoh, Shigeru; Ahn, Sohyeon; Kobayashi, Koichi; Hirota, Masashi; Yamagata, Hideki; Lomtatidze, Zaur; Jorjoliani, Ineza; Fujine, Hisashi

    2013-01-01

    In November 2004, Paleo Labo Co., Ltd., which conducts scientific researches in a variety of fields of archaeology, geology, etc., installed a compact AMS system dedicated to 14 C concentration measurement. We had measured 2,663 unknown samples and 990 standard and test samples through 2012. Since its installation, a total of 25,002 samples (18,954 unknown samples and 6,048 standard and test samples) have been measured until the end of March 2013. The long term stability of measurement is demonstrated by the results obtained for IAEA reference materials, measured routinely and regularly. (author)

  2. A compact led lidar system fitted for a mars rover - design and ground experiment

    Science.gov (United States)

    Ong, Prane Mariel B.; Shiina, Tatsuo; Manago, Naohiro; Kuze, Hiroaki; Senshu, Hiroki; Otobe, Naohito; Hashimoto, George; Kawabata, Yasuhiro

    2018-04-01

    A compact LED lidar was constructed and fieldtested with the aim to observe the Mars' dust devils. To be able to fit it on the Mars rover, a specialized Cassegrain telescope was designed to be within a 10 cm-cube, with a field of view of 3mrad. The transmitter has 385 nm LED light source with 3 cmϕ opening, 70mrad divergence, 0.75W (7.5nJ/10ns) pulse power, and 500 kHz repetition frequency. The configuration of the optical system is biaxial to easily configure the overlap between their optical axes.

  3. A compact led lidar system fitted for a mars rover – design and ground experiment

    Directory of Open Access Journals (Sweden)

    Ong Prane Mariel B.

    2018-01-01

    Full Text Available A compact LED lidar was constructed and fieldtested with the aim to observe the Mars’ dust devils. To be able to fit it on the Mars rover, a specialized Cassegrain telescope was designed to be within a 10 cm-cube, with a field of view of 3mrad. The transmitter has 385 nm LED light source with 3 cmϕ opening, 70mrad divergence, 0.75W (7.5nJ/10ns pulse power, and 500 kHz repetition frequency. The configuration of the optical system is biaxial to easily configure the overlap between their optical axes.

  4. A Compact Magnetic Field-Based Obstacle Detection and Avoidance System for Miniature Spherical Robots

    Directory of Open Access Journals (Sweden)

    Fang Wu

    2017-05-01

    Full Text Available Due to their efficient locomotion and natural tolerance to hazardous environments, spherical robots have wide applications in security surveillance, exploration of unknown territory and emergency response. Numerous studies have been conducted on the driving mechanism, motion planning and trajectory tracking methods of spherical robots, yet very limited studies have been conducted regarding the obstacle avoidance capability of spherical robots. Most of the existing spherical robots rely on the “hit and run” technique, which has been argued to be a reasonable strategy because spherical robots have an inherent ability to recover from collisions. Without protruding components, they will not become stuck and can simply roll back after running into bstacles. However, for small scale spherical robots that contain sensitive surveillance sensors and cannot afford to utilize heavy protective shells, the absence of obstacle avoidance solutions would leave the robot at the mercy of potentially dangerous obstacles. In this paper, a compact magnetic field-based obstacle detection and avoidance system has been developed for miniature spherical robots. It utilizes a passive magnetic field so that the system is both compact and power efficient. The proposed system can detect not only the presence, but also the approaching direction of a ferromagnetic obstacle, therefore, an intelligent avoidance behavior can be generated by adapting the trajectory tracking method with the detection information. Design optimization is conducted to enhance the obstacle detection performance and detailed avoidance strategies are devised. Experimental results are also presented for validation purposes.

  5. R and D of control system of compact self-bunching RF gun test facility

    International Nuclear Information System (INIS)

    Pang Jian; Pei Yuanji; Huang Guirong; Wang Jinxiang

    2010-01-01

    An experimental device was recently constructed for testing the beam characteristics of a compact self-bunching RF gun at the National Synchrotron Radiation Laboratory. It designs an independent monitor and control system for the experimental device so as not to disturb the operation of 200MeV LINAC. According to the three-level architecture of a general control scheme, the proposed system consists of circuits that execute kernel control, photosignal emission/reception, and switch values input/output, respectively. It performs timing control, device status monitoring as well as interlock protection, and it can be remotely operated with the assistance of PC software. Testing results show that our system achieves the specified performance and meets the requirement of experimental device stably and reliably. Our proposed system can also be applied to control other small-scale accelerators. (authors)

  6. Multiphoton absorption probabilities in strong laser fields with application to H-

    International Nuclear Information System (INIS)

    Mu, X.; University of Oregon, Eugene, OR

    1990-01-01

    The commonly used Keldysh multiphoton ionization rate is shown to follow from the zeroth-order approximation of an exact expression, based on the formal time-independent theory of scattering. The formulation is applied to the loosely bound H - system; good agreement is obtained with a recent experimental measurement

  7. Exact results for emission from one and two atoms in an ideal cavity at multiphoton resonance

    International Nuclear Information System (INIS)

    Fam Le Kien; Shumovskij, A.S.; Tran Quang.

    1987-01-01

    The emission from the system of one or two two-level atoms in an ideal cavity with one mode at mutiphoton resonance is examined. Exact results for the two-time dipole correlation function and the time-dependent spectra of multiphoton-induced fluorescence are presented

  8. Investigations of multiphoton excitation and ionization in a short range potential

    International Nuclear Information System (INIS)

    Susskind, S.M.; Cowley, S.C.; Valeo, E.J.

    1989-02-01

    We introduce an approach to the study of excitation and ionization for a system with a short range potential. In particular, analytical and numerical results are presented for the multiphoton ionization rate, under strong field conditions, of an electron confined by a δ-function potential. 9 refs., 3 figs

  9. Investigations of multiphoton excitation and ionization in a short range potential

    Energy Technology Data Exchange (ETDEWEB)

    Susskind, S.M.; Cowley, S.C.; Valeo, E.J.

    1989-02-01

    We introduce an approach to the study of excitation and ionization for a system with a short range potential. In particular, analytical and numerical results are presented for the multiphoton ionization rate, under strong field conditions, of an electron confined by a delta-function potential. 9 refs., 3 figs.

  10. Compact mode-locked diode laser system for high precision frequency comparisons in microgravity

    Science.gov (United States)

    Christopher, H.; Kovalchuk, E. V.; Wicht, A.; Erbert, G.; Tränkle, G.; Peters, A.

    2017-11-01

    Nowadays cold atom-based quantum sensors such as atom interferometers start leaving optical labs to put e.g. fundamental physics under test in space. One of such intriguing applications is the test of the Weak Equivalence Principle, the Universality of Free Fall (UFF), using different quantum objects such as rubidium (Rb) and potassium (K) ultra-cold quantum gases. The corresponding atom interferometers are implemented with light pulses from narrow linewidth lasers emitting near 767 nm (K) and 780 nm (Rb). To determine any relative acceleration of the K and Rb quantum ensembles during free fall, the frequency difference between the K and Rb lasers has to be measured very accurately by means of an optical frequency comb. Micro-gravity applications not only require good electro-optical characteristics but are also stringent in their demand for compactness, robustness and efficiency. For frequency comparison experiments the rather complex fiber laser-based frequency comb system may be replaced by one semiconductor laser chip and some passive components. Here we present an important step towards this direction, i.e. we report on the development of a compact mode-locked diode laser system designed to generate a highly stable frequency comb in the wavelength range of 780 nm.

  11. Design of a Compact Actuation and Control System for Flexible Medical Robots.

    Science.gov (United States)

    Morimoto, Tania K; Hawkes, Elliot Wright; Okamura, Allison M

    2017-07-01

    Flexible medical robots can improve surgical procedures by decreasing invasiveness and increasing accessibility within the body. Using preoperative images, these robots can be designed to optimize a procedure for a particular patient. To minimize invasiveness and maximize biocompatibility, the actuation units of flexible medical robots should be placed fully outside the patient's body. In this letter, we present a novel, compact, lightweight, modular actuation, and control system for driving a class of these flexible robots, known as concentric tube robots. A key feature of the design is the use of three-dimensional printed waffle gears to enable compact control of two degrees of freedom within each module. We measure the precision and accuracy of a single actuation module and demonstrate the ability of an integrated set of three actuation modules to control six degrees of freedom. The integrated system drives a three-tube concentric tube robot to reach a final tip position that is on average less than 2 mm from a given target. In addition, we show a handheld manifestation of the device and present its potential applications.

  12. A compact 3 T all HTS cryogen-free MRI system

    Science.gov (United States)

    Parkinson, B. J.; Bouloukakis, K.; Slade, R. A.

    2017-12-01

    We have designed and built a passively shielded, cryogen-free 3 T 160 mm bore bismuth strontium calcium copper oxide HTS magnet with shielded gradient coils suitable for use in small animal imaging applications. The magnet is cooled to approximately 16 K using a two-stage cryocooler and is operated at 200 A. The magnet has been passively shimmed so as to achieve ±10 parts per million (ppm) homogeneity over a 60 mm diameter imaging volume. We have demonstrated that B 0 temporal stability is fit-for-purpose despite the magnet operating in the driven mode. The system has produced good quality spin-echo and gradient echo images. This compact HTS-MRI system is emerging as a true alternative to conventional low temperature superconductor based cryogen-free MRI systems, with much more efficient cryogenics since it operates entirely from a single phase alternating current electrical supply.

  13. Study on vortex cavitation in a compact fast reactor. Effects of system pressure on inception condition

    International Nuclear Information System (INIS)

    Hiroyuki Sato; Toshiki Ezure; Hideki Kamide

    2005-01-01

    A compact sodium reactor is designed as a commercialized fast reactor cycle system. A 1/10 scaled water experiment was performed to optimize flow in an upper plenum of the reactor vessel, because of high flow velocity resulted from the compacted vessel. In the experiment, vortex cavitation was found at the hot leg inlet because of high velocity in the hot leg pipe (9.4m/s in the design). To evaluate cavitation inception condition of the commercialized reactor, we use the cavitation number k in order to consider the difference of system pressures (0.1MPa in the experiment and 0.3MPa in the design). The minimum pressure at the vortex center will depend on vortex core radius (size of forced vortex region). It is related to axial velocity gradient and fluid viscosity in theory of the Burger's stretched vortex model. We carried out a basic water experiment to investigate the influence of system pressure and fluid viscosity on the vortex cavitation. The cavitation number at the inception of vortex cavitation slightly increased according to the increase of the system pressure. It means that the vortex cavitation occurs easily under higher pressure condition as compared with the similar condition of cavitation number with lower pressure. However the increase was less than 30% when the system pressure was varied from 0.1 to 0.3MPa. The influence of fluid viscosity was examined by change of fluid temperature. Velocity distribution around the vortex was also measured to see the structure of vortex. (authors)

  14. Design and research of RF system for 10 MeV compact cyclotron

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A 10 MeV compact cyclotron (CYCHU-10) has been developing in Huazhong University of Science and Technology (HUST). The RF system includes a 10 kW RF power generator and a resonance cavity. There is no automatic frequency tuning equipment in the cavity due to space limitations, so the generator must search and track the cavity resonant frequency. AD9850 synthesizer is used to generate RF signal in the experimental prototype, and a fine sinusoidal waveform around 99 MHz is obtained with the method of picking up a special aliased signal from the synthesizer’s output, and the output power level can be set by regulating the resistor connected to the Pin ’Rset’. The final stage amplifier based on tetrode operates in the grounded cathode configuration, and the schematic of the tetrode circuit is illustrated. The method of searching the resonant frequency is discussed in detail. For the sake of a compact and robust structure, the resonance cavity will adopt non-uniform characteristic impedance coaxial structure, and the magnet surface electroplated with copper will be used as dummy Dees. The precise shapes and dimensions of the cavity are designed and simulation results are carried out in this paper. The distributions of electromagnetic field are illustrated by means of numerical calculation analysis, and the wooden model test is preformed as well.

  15. A compact self-flowing lithium system for use in an industrial neutron source

    Science.gov (United States)

    Kalathiparambil, Kishor Kumar; Szott, Matthew; Jurczyk, Brian; Ahn, Chisung; Ruzic, David

    2016-10-01

    A compact trench module to flow liquid lithium in closed loops for handling high heat and particle flux have been fabricated and tested at UIUC. The module was designed to demonstrate the proof of concept in utilizing liquid metals for two principal objectives: i) as self-healing low Z plasma facing components, which is expected to solve the issues facing the current high Z components and ii) using flowing lithium as an MeV-level neutron source. A continuously flowing lithium loop ensures a fresh lithium interface and also accommodate a higher concentration of D, enabling advanced D-Li reactions without using any radioactive tritium. Such a system is expected to have a base yield of 10e7 n/s. For both the applications, the key success factor of the module is attaining the necessary high flow velocity of the lithium especially over the impact area, which will be the disruptive plasma events in fusion reactors and the incident ion beam for the neutron beam source. This was achieved by the efficient shaping of the trenches to exploit the nozzle effect in liquid flow. The compactness of the module, which can also be scaled as desired, was fulfilled by the use of high Tc permanent magnets and air cooled channels attained the necessary temperature gradient for driving the lithium. The design considerations and parameters, experimental arrangements involving lithium filling and attaining flow, data and results obtained will be elaborated. DOE SBIR project DE-SC0013861.

  16. Calculation of density and permeability of compacted crushed salt within an engineered shaft sealing system

    International Nuclear Information System (INIS)

    Loken, M.; Statham, W.

    1997-01-01

    Crushed salt from the host Salado Formation is proposed as a sealing material in one component of a multicomponent seal system design for the shafts of the Waste Isolation Pilot Plant (WIPP), a mined geological repository for storage and disposal of transuranic radioactive wastes located near Carlsbad, New Mexico. The crushed salt will be compacted and placed at a density approaching 90% of the intact density of the host Salado salt. Creep closure of the shaft will further compact the crushed salt over time, thereby reducing the crushed-salt permeability from the initial state and creating an effective long-term seal. A structural model and a fluid flow model have been developed to provide an estimate of crushed-salt reconsolidation rate as a function of depth, time, and pore pressure. Model results are obtained in terms of crushed-salt permeability as a function of time and depth within the salt column. Model results indicate that average salt column permeability will be reduced to 3.3 x 10 -20 m 2 in about 100 years, which provides for an acceptable long-term seal component

  17. Compact tunable silicon photonic differential-equation solver for general linear time-invariant systems.

    Science.gov (United States)

    Wu, Jiayang; Cao, Pan; Hu, Xiaofeng; Jiang, Xinhong; Pan, Ting; Yang, Yuxing; Qiu, Ciyuan; Tremblay, Christine; Su, Yikai

    2014-10-20

    We propose and experimentally demonstrate an all-optical temporal differential-equation solver that can be used to solve ordinary differential equations (ODEs) characterizing general linear time-invariant (LTI) systems. The photonic device implemented by an add-drop microring resonator (MRR) with two tunable interferometric couplers is monolithically integrated on a silicon-on-insulator (SOI) wafer with a compact footprint of ~60 μm × 120 μm. By thermally tuning the phase shifts along the bus arms of the two interferometric couplers, the proposed device is capable of solving first-order ODEs with two variable coefficients. The operation principle is theoretically analyzed, and system testing of solving ODE with tunable coefficients is carried out for 10-Gb/s optical Gaussian-like pulses. The experimental results verify the effectiveness of the fabricated device as a tunable photonic ODE solver.

  18. Beam delivery system tuning and luminosity monitoring in the Compact Linear Collider

    Directory of Open Access Journals (Sweden)

    B. Dalena

    2012-05-01

    Full Text Available Emittance preservation in the beam delivery system (BDS is one of the major challenges in the Compact Linear Collider (CLIC. The fast detuning of the final focus optics requires an on-line tuning procedure in order to keep luminosity close to the maximum. In this paper we discuss different tuning techniques to mitigate the displacement of magnets in the CLIC BDS and in particular in the final focus system. Some of them require a fast luminosity measurement. Here we study the possibility to use beam-beam background processes at CLIC 3 TeV c.m. energy as a fast luminosity signal. In particular, the hadron multiplicity in the detector region is investigated.

  19. Adaptive Optics System with Deformable Composite Mirror and High Speed, Ultra-Compact Electronics

    Science.gov (United States)

    Chen, Peter C.; Knowles, G. J.; Shea, B. G.

    2006-06-01

    We report development of a novel adaptive optics system for optical astronomy. Key components are very thin Deformable Mirrors (DM) made of fiber reinforced polymer resins, subminiature PMN-PT actuators, and low power, high bandwidth electronics drive system with compact packaging and minimal wiring. By using specific formulations of fibers, resins, and laminate construction, we are able to fabricate mirror face sheets that are thin (2 KHz. By utilizing QorTek’s proprietary synthetic impendence power supply technology, all the power, control, and signal extraction for many hundreds to 1000s of actuators and sensors can be implemented on a single matrix controller printed circuit board co-mounted with the DM. The matrix controller, in turn requires only a single serial bus interface, thereby obviating the need for massive wiring harnesses. The technology can be scaled up to multi-meter aperture DMs with >100K actuators.

  20. Testing of a compact 10-Gbps Lasercomm system for maritime platforms

    Science.gov (United States)

    Juarez, Juan C.; Souza, Katherine T.; Nicholes, Dustin D.; Riggins, James L.; Tomey, Hala J.; Venkat, Radha A.

    2017-08-01

    Lasercomm technology continues to be of interest for many applications both in the commercial and defense sectors because of its potential to provide high bandwidth communications that are secure without the need for RF spectrum management. Over the last decade, terrestrial Lasercomm development has progressed from initial experiments in the lab through field demonstrations in airborne and maritime environments. While these demonstrations have shown high capability levels, the complexity, size, weight, and power of the systems has slowed transition into fielded systems. This paper presents field test results of a recently developed maritime Lasercomm terminal and modem architecture with a compact form factor for enabling robust, 10-Gbps class data transport over highly scintillated links as found in terrestrial applications such as air-to-air, air-to-surface, and surface-to-surface links.

  1. Research and Development of Landmine Detection System by a Compact Fusion Neutron Source

    International Nuclear Information System (INIS)

    Yoshikawa, Kiyoshi; Masuda, Kai; Toku, Hisayuki; Nagasaki, Kazunobu; Mizutani, Toshiyuki; Takamatsu, Teruhisa; Imoto, Masaki; Yamamoto, Yasushi; Ohnishi, Masami; Osawa, Hodaka; Hotta, Eiki; Kohno, Toshiyuki; Okino, Akitoshi; Watanabe, Masato; Yamauchi, Kunihito; Yuura, Morimasa; Shiroya, Seiji; Misawa, Tsuyoshi; Mori, Takamasa

    2005-01-01

    Current results are described on the research and development of an advanced anti-personnel landmine detection system by using a compact discharge-type fusion neutron source called IECF (Inertial-Electrostatic Confinement Fusion). Landmines are to be identified through backscattering of neutrons, and specific-energy capture γ-rays by hydrogen and nitrogen atoms in the landmine explosives.For this purpose, improvements in the IECF were made by various methods to achieve a drastic enhancement of neutron yields of more than 10 8 n/s in pulsed operation. This required R and D on the power source, as well as analysis of envisaged detection systems with multi-sensors. The results suggest promising and practical features for humanitarian landmine detection, particularly, in Afghanistan

  2. The CIT [compact ignition tokamak] pellet injection system: Description and supporting research and development

    International Nuclear Information System (INIS)

    Gouge, M.J.; Combs, S.K.; Fisher, P.W.; Milora, S.L.

    1989-01-01

    The Compact Ignition Tokamak (CIT) will use an advance, high-velocity pellet injection system to achieve and maintain ignited plasmas. Two pellet injectors are provided: a moderate-velocity (1-to 1.5-km/s), single-stage pneumatic injector with high reliability and a high-velocity (4- to 5-km/s), two-stage pellet injector that uses frozen hydrogenic pellets encased in sabots. Both pellet injectors are qualified for operation with tritium feed gas. Issues such as performance, neutron activation of injector components, maintenance, design of the pellet injection vacuum line, gas loads to the reprocessing system, and equipment layout are discussed. Results and plans for supporting research and development (R and D) in the areas of tritium pellet fabrication and high-velocity, repetitive two-stage pneumatic injectors are presented. 7 refs., 4 figs., 2 tabs

  3. Structural design concept and static analysis of CANDU spent fuel compact dry storage system

    International Nuclear Information System (INIS)

    Choi, K. S.; Yang, K. H.; Paek, C. R.; Jung, J. S.; Lee, H. Y.

    2003-01-01

    In this study, an structural design concept on CANDU spent fuel compact dry storage system MACSTOR/KN-400 module has been established with a view to optimally design the structural members of the system. Design loads, loading combination and structural safety criteria of the module were reviewed assuming W olsung Site. The static analysis of the module showed that compressive stress concentration due to dead load and live load occurred around the center of roof slab. Maximum stress resulted from dead load is about twice as much as the stress from live load, and structural behavior of module caused by wind load was not significant. The static analysis results will have influence on the reinforcement bar design of structural members with other structural analyses

  4. A compact perspiration meter system with capacitive humidity sensor for wearable health-care applications

    Science.gov (United States)

    Mitani, Yusuke; Miyaji, Kousuke; Kaneko, Satoshi; Uekura, Takaharu; Momose, Hideya; Johguchi, Koh

    2018-04-01

    This paper presents a compact wearable perspiration meter system using a 180-nm CMOS technology. With custom chip and board design, the proposed perspiration meter, which can measure a qualitative sweating rate, is integrated into 15 × 20 mm2. From the experimental results, the capacitances of the humidity sensors with analog-to-digital converter and band-gap reference circuits can operate accurately without hysteresis. In addition, a demonstration with simulated human skin is carried out to investigate the sensor’s performance under real environments. The proposed perspiration meter can output values equivalent to a conventional meter. As a result, it is verified that the proposed system can be used as a human sweat sensor for wearable application.

  5. Compact and portable system for evaluation of individual exposure at aerosol particle in urban area

    International Nuclear Information System (INIS)

    De Zaiacomo, T.

    1995-01-01

    A compact and portable system for real-time acquisition of aerosol concentration data in urban and extra-urban area is presented. It is based on two optical type aerosol monitors integrated by aerosol particle separating and collecting devices, assembled into a carrying case together with temperature and relative humidity sensors and a programmable analog data logger; data output is addressed to a dedicated printer or personal computer. Further data about particle size, morphological aspect and particle mass concentration are obtainable by weighing supports used to concurrently collect aerosol particles and/or by means of microanalytical techniques. System performances are evaluated from the point of view of portability, possibility of use as stationary sampler for long-term monitoring purposes and coherence between optical response and ponderal mass. Some tests are finally carried out, to investigate the effect of relative humidity on the optical response of this type of instruments

  6. Preliminary study on development of 300 Kv compact focused gaseous ion beam system

    Energy Technology Data Exchange (ETDEWEB)

    Ohkubo, T.; Ishii, Y.; Kamiya, T. [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA) 1233 Watanuki-machi, Takasaki, Gunma, 370-1292 (Japan); Miyake, Y. [Beam Seiko Instruments Inc., 2-10-1 Kamata, Ohta-ku, Tokyo, 144-0052 (Japan)

    2013-04-19

    A new 300 kV compact focused gaseous ion beam (gas-FIB) system with three-stage acceleration lens was constructed at JAEA. The preliminary experiments of formation of the focused gaseous ion beams were carried out to show the availability of the gas-FIB system as a writing tool for 3D proton lithography. As a result of the experiments, it was proved that the focal point was kept at the same position under changing the kinetic energy but with keeping the kinetic energy ratio constant, which was defined as the ratio of kinetic energy in object side to that in image side for the third acceleration lens. This characteristic of the gas-FIB is a good point to advance the 3D proton lithography changing penetration depth in a sample by varying the beam energy.

  7. Preliminary study on development of 300 Kv compact focused gaseous ion beam system

    International Nuclear Information System (INIS)

    Ohkubo, T.; Ishii, Y.; Kamiya, T.; Miyake, Y.

    2013-01-01

    A new 300 kV compact focused gaseous ion beam (gas-FIB) system with three-stage acceleration lens was constructed at JAEA. The preliminary experiments of formation of the focused gaseous ion beams were carried out to show the availability of the gas-FIB system as a writing tool for 3D proton lithography. As a result of the experiments, it was proved that the focal point was kept at the same position under changing the kinetic energy but with keeping the kinetic energy ratio constant, which was defined as the ratio of kinetic energy in object side to that in image side for the third acceleration lens. This characteristic of the gas-FIB is a good point to advance the 3D proton lithography changing penetration depth in a sample by varying the beam energy.

  8. Mitigation of ground motion effects via feedback systems in the Compact Linear Collider

    CERN Document Server

    Pfingstner, Jürgen; Schmickler, Hermann; Schulte, Daniel

    The Compact Linear Collider (CLIC) is a future multi-TeV electron positron collider, which is currently being designed at CERN. To achieve its ambitious goals, CLIC has to produce particle beams of the highest quality, which makes the accelerator very sensitive to ground motion. Four mitigation methods have been foreseen by the CLIC design group to cope with the feasibility issue of ground motion. This thesis is concerned with the design of one of these mitigation methods, named linac feedback (L-FB), but also with the simultaneous simulation and validation of all mitigation methods. Additionally, a technique to improve the quality of the indispensable system knowledge has been developed. The L-FB suppresses beam oscillations along the accelerator. Its design is based on the decoupling of the overall accelerator system into independent channels. For each channel an individual compensator is found with the help of a semi- automatic control synthesis procedure. This technique allows the designer to incorporate ...

  9. Compact Multipurpose Mobile Laser Scanning System — Initial Tests and Results

    Directory of Open Access Journals (Sweden)

    Craig Glennie

    2013-01-01

    Full Text Available We describe a prototype compact mobile laser scanning system that may be operated from a backpack or unmanned aerial vehicle. The system is small, self-contained, relatively inexpensive, and easy to deploy. A description of system components is presented, along with the initial calibration of the multi-sensor platform. The first field tests of the system, both in backpack mode and mounted on a helium balloon for real-world applications are presented. For both field tests, the acquired kinematic LiDAR data are compared with highly accurate static terrestrial laser scanning point clouds. These initial results show that the vertical accuracy of the point cloud for the prototype system is approximately 4 cm (1σ in balloon mode, and 3 cm (1σ in backpack mode while horizontal accuracy was approximately 17 cm (1σ for the balloon tests. Results from selected study areas on the Sacramento River Delta and San Andreas Fault in California demonstrate system performance, deployment agility and flexibility, and potential for operational production of high density and highly accurate point cloud data. Cost and production rate trade-offs place this system in the niche between existing airborne and tripod mounted LiDAR systems.

  10. Multiphoton tomography of intratissue tattoo nanoparticles

    Science.gov (United States)

    König, Karsten

    2012-02-01

    Most of today's intratissue tattoo pigments are unknown nanoparticles. So far, there was no real control of their use due to the absence of regulations. Some of the tattoo pigments contain carcinogenic amines e.g. azo pigment Red 22. Nowadays, the European Union starts to control the administration of tattoo pigments. There is an interest to obtain information on the intratissue distribution, their interaction with living cells and the extracellular matrix, and the mechanisms behind laser tattoo removal. Multiphoton tomographs are novel biosafety and imaging tools that can provide such information non-invasively and without further labeling. When using the spectral FLIM module, spatially-resolved emission spectra, excitation spectra, and fluorescence lifetimes can pr provided. Multiphoton tomographs are used by all major cosmetic comapanies to test the biosafety of sunscreen nanoparticles.

  11. Multiphoton ionization/dissociation of osmium tetroxide

    International Nuclear Information System (INIS)

    Ding, D.; Puretzky, A.A.; Compton, R.N.

    1993-01-01

    The mechanisms leading to laser multiphoton ionization and dissociation (MPI/MPD) of osmium tetroxide (OsO 4 ) have been investigated from measurements of the kinetic energies of product ions (Os + , Os 2+ , OsO + , O 2 + , O + ) and photoelectrons as a function of the laser wavelength. Neutral channels, intermediate to the dominant Os + ionization channel, such as OsO 4 →OsO 4-n +nO are examined using resonance-enhanced multiphoton ionization (REMPI) of the fast O atoms. Equipartition of the available photon energy among the fragments is observed. The wavelength dependence of the Os + ion signal suggests that one or more of the steps leading to Os + ions involve molecular ions and/or excited neutral atoms. The observed preponderance of very slow ( 2+ is shown to result primarily from REMPI of Os +

  12. Multiphoton tomography to detect chemo- and biohazards

    Science.gov (United States)

    König, Karsten

    2015-03-01

    In vivo high-resolution multiphoton/CARS tomography provides optical biopsies with 300 nm lateral resolution with chemical fingerprints. Thousands of volunteers and patients have been investigated for early cancer diagnosis, evaluation of anti-ageing cosmetic products, and changes of cellular metabolism by UV exposure and decreased oxygen supply. The skin as the outermost and largest organ is also the major target of CB agents. Current UV-based sensors are useful for bio-aerosol sensing but not for evaluating exposed in vivo skin. Here we evaluate the use of 4D multiphoton/CARS tomographs based on near infrared femtosecond laser radiation, time-correlated single photon counting (FLIM) and white light generation by photonic crystal fibers to detect bio- and chemohazards in human in vivo skin using twophoton fluorescence, SHG, and Raman signals.

  13. Design and assessment of compact optical systems towards special effects imaging

    Science.gov (United States)

    Shaoulov, Vesselin Iossifov

    A main challenge in the field of special effects is to create special effects in real time in a way that the user can preview the effect before taking the actual picture or movie sequence. There are many techniques currently used to create computer-simulated special effects, however current techniques in computer graphics do not provide the option for the creation of real-time texture synthesis. Thus, while computer graphics is a powerful tool in the field of special effects, it is neither portable nor does it provide work in real-time capabilities. Real-time special effects may, however, be created optically. Such approach will provide not only real-time image processing at the speed of light but also a preview option, allowing the user or the artist to preview the effect on various parts of the object in order to optimize the outcome. The work presented in this dissertation was inspired by the idea of optically created special effects, such as painterly effects, encoded in images captured by photographic or motion picture cameras. As part of the presented work, compact relay optics was assessed, developed, and a working prototype was built. It was concluded that even though compact relay optics can be achieved, further push for compactness and cost-effectiveness was impossible in the paradigm of bulk macro-optics systems. Thus, a paradigm for imaging with multi-aperture micro-optics was proposed and demonstrated for the first time, which constitutes one of the key contributions of this work. This new paradigm was further extended to the most general case of magnifying multi-aperture micro-optical systems. Such paradigm allows an extreme reduction in size of the imaging optics by a factor of about 10 and a reduction in weight by a factor of about 500. Furthermore, an experimental quantification of the feasibility of optically created special effects was completed, and consequently raytracing software was developed, which was later commercialized by Sm

  14. Multiphoton spectroscopy of human skin in vivo

    Science.gov (United States)

    Breunig, Hans G.; Weinigel, Martin; König, Karsten

    2012-03-01

    In vivo multiphoton-intensity images and emission spectra of human skin are reported. Optical sections from different depths of the epidermis and dermis have been measured with near-infrared laser-pulse excitation. While the intensity images reveal information on the morphology, the spectra show emission characteristics of main endogenous skin fluorophores like keratin, NAD(P)H, melanin, elastin and collagen as well as of second harmonic generation induced by the excitation-light interaction with the dermal collagen network.

  15. Dressing effect in multiphoton unimolecular dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Diaz, P.F.; Garcia-Fernandez, P.

    1986-03-01

    On the basis of a quantum-statistical model recently discussed, we deal in this paper with the perturbations induced by the intense field of a CO/sub 2/ laser on the levels of the vibrational pattern of a molecule undergoing multiphoton unimolecular dissociation. This perturbational correction is investigated by using a displacement operator technique and the results are interpreted according to the statistical model.

  16. Multiphoton ionization processes in strong laser

    International Nuclear Information System (INIS)

    Krstic, P.

    1982-01-01

    Multiphoton ionization of hydrogen in ultrastrong laser fields is studied. The previous calculations of this process yield differing result for the transition rate. We show the relations between them and difficulties with each of them. One difficulty is that the finite spatial and time extent of the laser field has been omitted. It is also found that a laser field, which is sufficiently intense to be labeled ultrastrong, makes the electron move relativistically so that it becomes necessary to use Volkov states to describe the electron in the laser field. The transition rate is obtained, using a CO laser as an example, and it is found that the transition rate rises as the laser intensity rises. This is a consequence of the use of relativistic kinematics and is not true nonrelativistically. We also discuss the multiple peaks observed in the energy spectrum of electrons resulting from multiphoton ionization of atoms by lasers. When the laser intensity is large enough for the ponderomotive force to result in appreciable broading of the peaks we show the shape of the broadened peaks contains useful information. We show that the multiphoton ionization probability as a function of laser intensity can be obtained but that the free-free cross sections, which are in principle also obtainable, are probably not obtainable in practice. Finally, we describe the theory of the absorption of more than minimum numbers of photons needed to ionize an atom by an intense laser. The basic approximation used is that the atom is adiabatically deformed by the laser and an impulsive interaction then results in multiphoton absorption. In our first calculation we allow only one resonant excited state to be included in the adiabatic deformation. In our second we also allow the lowest energy continuum to be included. The two results are then compared

  17. Fundamental studies of molecular multiphoton ionization

    International Nuclear Information System (INIS)

    Miller, J.C.; Compton, R.N.

    1984-04-01

    For several years the authors have performed fundamental studies of molecular multiphoton ionization (MPI). We will present a potpourri of techniques and results chosen to illustrate the interesting complexities of molecular MPI. Techniques used include time-of-flight mass spectroscopy, photoelectron spectroscopy, supersonic expansion cooling of molecular beams, harmonic generation, two-color laser MPI, and polarization spectroscopy. Whenever possible the relevance of these results to resonance ionization spectroscopy schemes will be delineated. 23 references, 10 figures

  18. Design and development of a compact lidar/DIAL system for aerial surveillance of urban areas

    Science.gov (United States)

    Gaudio, P.; Gelfusa, M.; Malizia, A.; Richetta, M.; Antonucci, A.; Ventura, P.; Murari, A.; Vega, J.

    2013-10-01

    Recently surveying large areas in an automatic way, for early detection of harmful chemical agents, has become a strategic objective of defence and public health organisations. The Lidar-Dial techniques are widely recognized as a cost-effective alternative to monitor large portions of the atmosphere but, up to now, they have been mainly deployed as ground based stations. The design reported in this paper concerns the development of a Lidar-Dial system compact enough to be carried by a small airplane and capable of detecting sudden releases in air of harmful and/or polluting substances. The proposed approach consists of continuous monitoring of the area under surveillance with a Lidar type measurement. Once a significant increase in the density of backscattering substances is revealed, it is intended to switch to the Dial technique to identify the released chemicals and to determine its concentration. In this paper, the design of the proposed system is described and the simulations carried out to determine its performances are reported. For the Lidar measurements, commercially available Nd- YAG laser sources have already been tested and their performances, in combination with avalanche photodiodes, have been experimentally verified to meet the required specifications. With regard to the DIAL measurements, new compact CO2 laser sources are being investigated. The most promising candidate presents an energy per pulse of about 50 mJ typical, sufficient for a range of at least 500m. The laser also provides the so called "agile tuning" option that allows to quickly tune the wavelength. To guarantee continuous, automatic surveying of large areas, innovative solutions are required for the data acquisition, self monitoring of the system and data analysis. The results of the design, the simulations and some preliminary tests illustrate the potential of the chosen, integrated approach.

  19. A compact to revitalise large-scale irrigation systems: A ‘theory of change’ approach

    Directory of Open Access Journals (Sweden)

    Bruce A. Lankford

    2016-02-01

    Full Text Available In countries with transitional economies such as those found in South Asia, large-scale irrigation systems (LSIS with a history of public ownership account for about 115 million ha (Mha or approximately 45% of their total area under irrigation. In terms of the global area of irrigation (320 Mha for all countries, LSIS are estimated at 130 Mha or 40% of irrigated land. These systems can potentially deliver significant local, regional and global benefits in terms of food, water and energy security, employment, economic growth and ecosystem services. For example, primary crop production is conservatively valued at about US$355 billion. However, efforts to enhance these benefits and reform the sector have been costly and outcomes have been underwhelming and short-lived. We propose the application of a 'theory of change' (ToC as a foundation for promoting transformational change in large-scale irrigation centred upon a 'global irrigation compact' that promotes new forms of leadership, partnership and ownership (LPO. The compact argues that LSIS can change by switching away from the current channelling of aid finances controlled by government irrigation agencies. Instead it is for irrigators, closely partnered by private, public and NGO advisory and regulatory services, to develop strong leadership models and to find new compensatory partnerships with cities and other river basin neighbours. The paper summarises key assumptions for change in the LSIS sector including the need to initially test this change via a handful of volunteer systems. Our other key purpose is to demonstrate a ToC template by which large-scale irrigation policy can be better elaborated and discussed.

  20. Implementation of KoHLT-EB DAQ System using compact RIO with EPICS

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Dae-Sik; Kim, Suk-Kwon; Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    EPICS (Experimental Physics and Industrial Control System) is a collection of software tools collaboratively developed which can be integrated to provide a comprehensive and scalable control system. Currently there is an increase in use of such systems in large Physics experiments like KSTAR, ITER and DAIC (Daejeon Accelerator Ion Complex). The Korean heat load test facility (KoHLT-EB) was installed at KAERI. This facility is utilized for a qualification test of the plasma facing component (PFC) for the ITER first wall and DEMO divertor, and the thermo-hydraulic experiments. The existing data acquisition device was Agilent 34980A multifunction switch and measurement unit and controlled by Agilent VEE. In the present paper, we report the EPICS based newly upgraded KoHLT-EB DAQ system which is the advanced data acquisition system using FPGA-based reconfigurable DAQ devices like compact RIO. The operator interface of KoHLT-EB DAQ system is composed of Control-System Studio (CSS) and another server is able to archive the related data using the standalone archive tool and the archiveviewer can retrieve that data at any time in the infra-network.

  1. CompactPCI/Linux platform for medium level control system on FTU

    International Nuclear Information System (INIS)

    Wang, L.; Centioli, C.; Iannone, F.; Panella, M.; Mazza, G.; Vitale, V.

    2004-01-01

    In large fusion experiments, such as tokamak devices, there are common trends for slow control systems. Because of complexity of the plants, several tokamaks adopt the so-called 'standard model' (SM) based on a three levels hierarchical control: (i) high level control (HLC) - the supervisor; (ii) medium level control (MLC) - I/O field equipments interface and concentration units and (iii) low level control (LLC) - the programmable logic controllers (PLC). FTU control system was designed with SM concepts and, in its 15 years life cycle, it underwent several developments. The latest evolution was mandatory, due to the obsolescence of the MLC CPUs, based on VME/Motorola 68030 with OS9 operating system. Therefore, we had to look for cost-effective solutions and we chose a CompactPCI-Intel x86 platform with Linux operating system. A software porting has been done taking into account the differences between OS9 and Linux operating system in terms of inter/network processes communications and I/O multi-ports serial driver. This paper describes the hardware/software architecture of the new MLC system emphasising the reliability and the low costs of the open source solutions. Moreover, the huge amount of software packages available in open source environment will assure a less painful maintenance, and will open the way to further improvements of the system itself

  2. Multiphotonic resonance processes in potassium vapor

    International Nuclear Information System (INIS)

    Bensoussan, Paul.

    1975-01-01

    Despite several theoretical and experimental investigations, the phenomena of resonance multiphotonic ionization are still not completely understood. The following lines of investigation were undertaken to try and elucidate certain aspects of the resonance processes. The first line of investigation aims at finding the processes which can compete with ionization. Resonance ionization processes can be considered as taking place in two stages: absorption induced excitation of a bound state, followed by photoionization from the excited level. The problem is now to determine what are the processes which compete with the ionization processes starting from a level selectively populated by the absorption of one or two photons. The second line aims at finding the influence of the polarization of the radiation on resonance multiphotonic ionization for the second photon and to check the validity of the selection rules on the magnetic quantic number of the resonance bound linked states. The last study therefore relates to the development of a method of multiphotonic spectrometry which could determine the energy levels in the alcaline f series [fr

  3. Self-referenced axial chromatic dispersion measurement in multiphoton microscopy through 2-color THG imaging.

    Science.gov (United States)

    Du, Yu; Zhuang, Ziwei; He, Jiexing; Liu, Hongji; Qiu, Ping; Wang, Ke

    2018-05-16

    With tunable excitation light, multiphoton microscopy (MPM) is widely used for imaging biological structures at subcellular resolution. Axial chromatic dispersion, present in virtually every transmissive optical system including the multiphoton microscope, leads to focal (and the resultant image) plane separation. Here we demonstrate experimentally a technique to measure the axial chromatic dispersion in a multiphoton microscope, using simultaneous 2-color third-harmonic generation (THG) imaging excited by a 2-color soliton source with tunable wavelength separation. Our technique is self-referenced, eliminating potential measurement error when 1-color tunable excitation light is used which necessitates reciprocating motion of the mechanical translation stage. Using this technique, we demonstrate measured axial chromatic dispersion with 2 different objective lenses in a multiphoton microscope. Further measurement in a biological sample also indicates that this axial chromatic dispersion, in combination with 2-color imaging, may open up opportunity for simultaneous imaging of two different axial planes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. A compact light-sheet microscope for the study of the mammalian central nervous system

    Science.gov (United States)

    Yang, Zhengyi; Haslehurst, Peter; Scott, Suzanne; Emptage, Nigel; Dholakia, Kishan

    2016-01-01

    Investigation of the transient processes integral to neuronal function demands rapid and high-resolution imaging techniques over a large field of view, which cannot be achieved with conventional scanning microscopes. Here we describe a compact light sheet fluorescence microscope, featuring a 45° inverted geometry and an integrated photolysis laser, that is optimized for applications in neuroscience, in particular fast imaging of sub-neuronal structures in mammalian brain slices. We demonstrate the utility of this design for three-dimensional morphological reconstruction, activation of a single synapse with localized photolysis, and fast imaging of neuronal Ca2+ signalling across a large field of view. The developed system opens up a host of novel applications for the neuroscience community. PMID:27215692

  5. Study of an edge transport barrier by Langmuir probes in the compact helical system

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, M [Department of Energy Engineering and Science, Nagoya University, Nagoya 464-8603 (Japan); Toi, K [National Institute of Fusion Science, Toki 509-5292 (Japan); Nagaoka, K [National Institute of Fusion Science, Toki 509-5292 (Japan); Suzuki, C [National Institute of Fusion Science, Toki 509-5292 (Japan); Minami, T [National Institute of Fusion Science, Toki 509-5292 (Japan); Akiyama, T [National Institute of Fusion Science, Toki 509-5292 (Japan); Isobe, M [National Institute of Fusion Science, Toki 509-5292 (Japan); Yoshimura, Y [National Institute of Fusion Science, Toki 509-5292 (Japan); Nishimura, S [National Institute of Fusion Science, Toki 509-5292 (Japan); Shimizu, A [National Institute of Fusion Science, Toki 509-5292 (Japan); Takahashi, C [National Institute of Fusion Science, Toki 509-5292 (Japan); Matsuoka, K [National Institute of Fusion Science, Toki 509-5292 (Japan); Okamura, S [National Institute of Fusion Science, Toki 509-5292 (Japan)

    2006-05-15

    The edge transport barrier (ETB) produced by the L-H transition was measured by a triple Langmuir probe (LP) at two toroidal sections of the compact helical system (CHS), of which diagnostic method has good time and spatial resolutions. The radial profiles of electron density (n{sub e}), electron temperature (T{sub e}) and space potential (V{sub s}) in the ETB region have different shapes at two different toroidal sections. These profiles are deformed inside the ETB region at one location and are formed with rather smooth variations at the other. These deformations gradually disappear in the deep H-phase (after {approx}15 ms from the transition) and the profiles inside the ETB become similar at both sections. The deformation seems linked to the presence of a non-rotating magnetic island at the rational surface of the rotational transform {iota}/2{pi} = 1.

  6. Nondestructive Imaging of an Object Using the Compact Continuous-Wave Sub-Terahertz Imaging System

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jin Seok; Kwon, Il Bub; Yoon, Dong Jin; Seo, Dae Cheol [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2010-08-15

    This paper presented compact CW sub-THz imaging system using the terahertz transmitter(Tx) that generating 0.34 THz electromagnetic wave on based electronic device. Using 0.34 THz electromagnetic wave generated by Tx, we transmitted to sample by point by point scan method and measured transmitting terahertz wave magnitude and phase information respectively with terahertz receiver(Rx) based on sub harmonic mixer. This paper measured and compared images of several samples to obtain better imaging results by changing time delay and step distance of scanning stage which affect image resolution. Also, through the imaging measurement of various samples, we were able to assure possibility of application of terahertz wave

  7. Nondestructive Imaging of an Object Using the Compact Continuous-Wave Sub-Terahertz Imaging System

    International Nuclear Information System (INIS)

    Jang, Jin Seok; Kwon, Il Bub; Yoon, Dong Jin; Seo, Dae Cheol

    2010-01-01

    This paper presented compact CW sub-THz imaging system using the terahertz transmitter(Tx) that generating 0.34 THz electromagnetic wave on based electronic device. Using 0.34 THz electromagnetic wave generated by Tx, we transmitted to sample by point by point scan method and measured transmitting terahertz wave magnitude and phase information respectively with terahertz receiver(Rx) based on sub harmonic mixer. This paper measured and compared images of several samples to obtain better imaging results by changing time delay and step distance of scanning stage which affect image resolution. Also, through the imaging measurement of various samples, we were able to assure possibility of application of terahertz wave

  8. Electron cyclotron emission from optically thin plasma in compact helical system

    International Nuclear Information System (INIS)

    Idei, Hiroshi; Kubo, Shin; Hosokawa, Minoru; Iguchi, Harukazu; Ohkubo, Kunizo; Sato, Teruyuki.

    1994-01-01

    A frequency spectrum of second harmonic electron cyclotron emission was observed for an optically thin plasma produced by fundamental electron cyclotron heating in a compact helical system. A radial electron temperature profile deduced from this spectrum neglecting the multiple reflections effect shows a clear difference from that measured by Thomson scattering. We relate the spectrum with the electron temperature profile by the modified emission model including the scrambling effect. The scrambling effect results from both mode conversion and change in the trajectory due to multiple reflections of the emitting ray at the vessel wall. The difference between the two temperature profiles is explained well by using the modified emission model. Reconstruction of the electron temperature profile from the spectrum using this model is also discussed. (author)

  9. Dynamic analysis of compact helical system power supply and designs of its upgrade

    International Nuclear Information System (INIS)

    Tanahashi, S.; Yamada, S.

    1991-09-01

    Computed dynamic waveforms are compared with measured ones for the power supply of the Compact Helical System (CHS) during 1.5T operation and found to be in good agreement. On the basis of these results, designs for the upgraded power supply for 2T operation are discussed in the two cases, with and without power consumption for additional heating. In the former case, the additional heating power is supplied from the ac generator that powers the CHS coils. Electric voltages and currents in the electric circuit are shown for both cases. These designs show the possibility for 2T operation by addition of some components without changing the ratings of existing components. (author)

  10. A compact ultra-clean system for deploying radioactive sources inside the KamLAND detector

    Science.gov (United States)

    Banks, T. I.; Freedman, S. J.; Wallig, J.; Ybarrolaza, N.; Gando, A.; Gando, Y.; Ikeda, H.; Inoue, K.; Kishimoto, Y.; Koga, M.; Mitsui, T.; Nakamura, K.; Shimizu, I.; Shirai, J.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Yoshida, H.; Yoshida, S.; Kozlov, A.; Grant, C.; Keefer, G.; Piepke, A.; Bloxham, T.; Fujikawa, B. K.; Han, K.; Ichimura, K.; Murayama, H.; O`Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D. A.; McKeown, R. D.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Sakai, M.; Horton-Smith, G. A.; Downum, K. E.; Gratta, G.; Efremenko, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Heeger, K. M.; Detwiler, J. A.; Enomoto, S.; Decowski, M. P.

    2015-01-01

    We describe a compact, ultra-clean device used to deploy radioactive sources along the vertical axis of the KamLAND liquid-scintillator neutrino detector for purposes of calibration. The device worked by paying out and reeling in precise lengths of a hanging, small-gauge wire rope (cable); an assortment of interchangeable radioactive sources could be attached to a weight at the end of the cable. All components exposed to the radiopure liquid scintillator were made of chemically compatible UHV-cleaned materials, primarily stainless steel, in order to avoid contaminating or degrading the scintillator. To prevent radon intrusion, the apparatus was enclosed in a hermetically sealed housing inside a glove box, and both volumes were regularly flushed with purified nitrogen gas. An infrared camera attached to the side of the housing permitted real-time visual monitoring of the cable's motion, and the system was controlled via a graphical user interface.

  11. Skeletal age assessment in children using an open compact MRI system.

    Science.gov (United States)

    Terada, Yasuhiko; Kono, Saki; Tamada, Daiki; Uchiumi, Tomomi; Kose, Katsumi; Miyagi, Ryo; Yamabe, Eiko; Yoshioka, Hiroshi

    2013-06-01

    MRI may be a noninvasive and alternative tool for skeletal age assessment in children, although few studies have reported on this topic. In this article, skeletal age was assessed over a wide range of ages using an open, compact MRI optimized for the imaging of a child's hand and wrist, and its validity was evaluated. MR images and their three-dimensional segmentation visualized detailed skeletal features of each bone in the hand and wrist. Skeletal age was then independently scored from the MR images by two raters, according to the Tanner-Whitehouse Japan system. The skeletal age assessed by MR rating demonstrated a strong positive correlation with chronological age. The intrarater and inter-rater reproducibilities were significantly high. These results demonstrate the validity and reliability of skeletal age assessment using MRI. Copyright © 2012 Wiley Periodicals, Inc.

  12. Block preconditioners for linear systems arising from multiscale collocation with compactly supported RBFs

    KAUST Repository

    Farrell, Patricio

    2015-04-30

    © 2015John Wiley & Sons, Ltd. Symmetric collocation methods with RBFs allow approximation of the solution of a partial differential equation, even if the right-hand side is only known at scattered data points, without needing to generate a grid. However, the benefit of a guaranteed symmetric positive definite block system comes at a high computational cost. This cost can be alleviated somewhat by considering compactly supported RBFs and a multiscale technique. But the condition number and sparsity will still deteriorate with the number of data points. Therefore, we study certain block diagonal and triangular preconditioners. We investigate ideal preconditioners and determine the spectra of the preconditioned matrices before proposing more practical preconditioners based on a restricted additive Schwarz method with coarse grid correction. Numerical results verify the effectiveness of the preconditioners.

  13. Improving Code Quality of the Compact Muon Solenoid Electromagnetic Calorimeter Control Software to Increase System Maintainability

    CERN Multimedia

    Holme, Oliver; Dissertori, Günther; Djambazov, Lubomir; Lustermann, Werner; Zelepoukine, Serguei

    2013-01-01

    The Detector Control System (DCS) software of the Electromagnetic Calorimeter (ECAL) of the Compact Muon Solenoid (CMS) experiment at CERN is designed primarily to enable safe and efficient operation of the detector during Large Hadron Collider (LHC) data-taking periods. Through a manual analysis of the code and the adoption of ConQAT [1], a software quality assessment toolkit, the CMS ECAL DCS team has made significant progress in reducing complexity and improving code quality, with observable results in terms of a reduction in the effort dedicated to software maintenance. This paper explains the methodology followed, including the motivation to adopt ConQAT, the specific details of how this toolkit was used and the outcomes that have been achieved. [1] ConQAT, Continuous Quality Assessment Toolkit; https://www.conqat.org/

  14. A compact system for large-area thermal nanoimprint lithography using smart stamps

    International Nuclear Information System (INIS)

    Pedersen, R H; Hansen, O; Kristensen, A

    2008-01-01

    We present a simple apparatus for thermal nanoimprint lithography. In this work, the stamp is designed to significantly reduce the requirements for pressure application on the external imprint system. By MEMS-based processing, an air cavity inside the stamp is created, and the required pressure for successful imprint is reduced. Additionally, the stamp is capable of performing controlled demolding after imprint. Due to the complexity of the stamp, a compact and cost-effective imprint apparatus can be constructed. The design and fabrication of the advanced stamp as well as the simple imprint equipment is presented. Test imprints of micrometer- and nanometer-scale structures are performed and characterized with respect to uniformity across a large area (35 mm radius). State-of-the-art uniformity for µm-scale features is demonstrated

  15. Space potential fluctuations during MHD activities in the Compact Helical System (CHS)

    International Nuclear Information System (INIS)

    Iguchi, H.; Fujisawa, A.; Crowley, T.P.

    1998-02-01

    Local space potential fluctuations have been measured during MHD activities in a low-beta NBI heated plasma in the Compact Helical System (CHS) by the use of a heavy ion beam probe (HIBP). Two types of MHD modes with accompanying potential oscillations are observed. One appears in periodic bursts with relatively low frequency (< 40 kHz) and large amplitude (20-40 volts), and is localized around the q=2 surface (average minor radius ρ ∼ 0.7). The other appears in continuous and coherent oscillation with higher frequency (105-125 kHz) and smaller amplitude (∼5 volts). This oscillation also has spatial structure. Possible interpretation for the space potential oscillations is presented. (author)

  16. Local existence of solutions to the Euler-Poisson system, including densities without compact support

    Science.gov (United States)

    Brauer, Uwe; Karp, Lavi

    2018-01-01

    Local existence and well posedness for a class of solutions for the Euler Poisson system is shown. These solutions have a density ρ which either falls off at infinity or has compact support. The solutions have finite mass, finite energy functional and include the static spherical solutions for γ = 6/5. The result is achieved by using weighted Sobolev spaces of fractional order and a new non-linear estimate which allows to estimate the physical density by the regularised non-linear matter variable. Gamblin also has studied this setting but using very different functional spaces. However we believe that the functional setting we use is more appropriate to describe a physical isolated body and more suitable to study the Newtonian limit.

  17. A compact ultra-clean system for deploying radioactive sources inside the KamLAND detector

    Energy Technology Data Exchange (ETDEWEB)

    Banks, T.I., E-mail: tbanks@berkeley.edu [Physics Department, University of California, Berkeley, CA 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Freedman, S.J. [Physics Department, University of California, Berkeley, CA 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Wallig, J.; Ybarrolaza, N. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Gando, A.; Gando, Y.; Ikeda, H. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Inoue, K. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Kishimoto, Y. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Koga, M. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Mitsui, T. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Nakamura, K. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Shimizu, I.; Shirai, J.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B.D. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); and others

    2015-01-01

    We describe a compact, ultra-clean device used to deploy radioactive sources along the vertical axis of the KamLAND liquid-scintillator neutrino detector for purposes of calibration. The device worked by paying out and reeling in precise lengths of a hanging, small-gauge wire rope (cable); an assortment of interchangeable radioactive sources could be attached to a weight at the end of the cable. All components exposed to the radiopure liquid scintillator were made of chemically compatible UHV-cleaned materials, primarily stainless steel, in order to avoid contaminating or degrading the scintillator. To prevent radon intrusion, the apparatus was enclosed in a hermetically sealed housing inside a glove box, and both volumes were regularly flushed with purified nitrogen gas. An infrared camera attached to the side of the housing permitted real-time visual monitoring of the cable's motion, and the system was controlled via a graphical user interface.

  18. Energetic and exergetic analysis of a new compact trigeneration system run with liquefied petroleum gas

    International Nuclear Information System (INIS)

    Proenza Pérez, Nestor; Titosse Sadamitsu, Marlene; Luz Silveira, Jose; Santana Antunes, Julio; Eduardo Tuna, Celso; Erazo Valle, Atilio; Faria Silva, Natalia

    2015-01-01

    In this study, the first and second laws of thermodynamics are used to analyze the quantity and quality of energy in a small compact trigeneration system. This combined cycle is composed of a little reciprocating ICE model GM, 1.0 CORSA (internal combustion engine), using LPG (liquefied petroleum gas) as fuel, HE1 and HE2 (two heat exchangers) and an AM (absorption machine) using ammonia–water as working fluid mixture. The mass and energy balance equations of the engine and subsystems are reviewed in detail. Exergy of each involved stream is calculated and the exergetic balance of each subsystem is presented, as well as the global system, identifying where and why losses and irreversibilities occurs. Efficiencies based on the second law of thermodynamics are calculated for each subsystem and compared. Special attention is given to identification and quantification of second law efficiencies and the irreversibilities of various processes and subsystems. The determination of the irreversibilities in each subsystem is particularly important since they are not identified in traditional first law analysis. Furthermore, this study revealed that the combustion was the most important contributor to the system inefficiency representing 36.0% of the total exergy input and 73% of the total exergy destruction. The exergetic efficiency of the trigeneration system is determined to be 51.19%. - Highlights: • The energetic and exergetic performance of trigeneration system was studied. • The engine is the main exergetic destruction equipment. • The exergetic efficiency of the trigeneration system was 51.19%.

  19. Compact Polarimetry Potentials

    Science.gov (United States)

    Truong-Loi, My-Linh; Dubois-Fernandez, Pascale; Pottier, Eric

    2011-01-01

    The goal of this study is to show the potential of a compact-pol SAR system for vegetation applications. Compact-pol concept has been suggested to minimize the system design while maximize the information and is declined as the ?/4, ?/2 and hybrid modes. In this paper, the applications such as biomass and vegetation height estimates are first presented, then, the equivalence between compact-pol data simulated from full-pol data and compact-pol data processed from raw data as such is shown. Finally, a calibration procedure using external targets is proposed.

  20. A pathway for sustainable conversion of sunlight to hydrogen using proposed compact CPV system

    KAUST Repository

    Burhan, Muhammad

    2018-03-22

    Solar energy being intermittent in nature, can provide a sustainable, steady and high density energy source when converted into electrolytic hydrogen. However, in current photovoltaic market trend with 99% conventional single junction PV panels, this cannot be achieved efficiently and economically. The advent of the multi-junction solar cells (MJCs), with cell-efficiency exceeding 46%, has yet to receive wide spread acceptance in the current PV market in form of concentrated photovoltaic (CPV) system, because of its system design complexity, limiting its application scope and customers. The objective of this paper is to develop a low cost compact CPV system that will not only eliminate its application and installation related restrictions but it is also introducing a highly efficient and sustainable photovoltaic system for common consumer, to convert intermittent sunlight into green hydrogen. The developed CPV system negates the common conviction by showing two times more power output than the flat plate PV, in tropical region. In addition, sunlight to hydrogen conversion efficiency of 18% is recorded for CPV, which is two times higher than alone electricity production efficiency of flat plate PV.

  1. Compact battery-less information terminal (CoBIT) for location-based support systems

    Science.gov (United States)

    Nishimura, Takuichi; Itoh, Hideo; Yamamoto, Yoshinobu; Nakashima, Hideyuki

    2002-06-01

    The target of ubiquitous computing environment is to support users to get necessary information and services in a situation-dependent form. Therefore, we propose a location-based information support system by using Compact Battery-less Information Terminal (CoBIT). A CoBIT can communicate with the environmental system and with the user by only the energy supply from the environment. It has a solar cell and get a modulated light from an environmental optical beam transmitter. The current from the solar cell is directly (or through passive circuit) introduced into an earphone, which generates sound for the user. The current is also used to make vibration, LED signal or electrical stimulus on the skin. The sizes of CoBITs are about 2cm in diameter, 3cm in length, which can be hanged on ears conveniently. The cost of it would be only about 1 dollar if produced massively. The CoBIT also has sheet type corner reflector, which reflect optical beam back in the direction of the light source. Therefore the environmental system can easily detect the terminal position and direction as well as some simple signs from the user by multiple cameras with infra-red LEDs. The system identifies the sign by the modulated patterns of the reflected light, which the user makes by occluding the reflector by hand. The environmental system also recognizes other objects using other sensors and displays video information on a nearby monitor in order to realize situated support.

  2. A pathway for sustainable conversion of sunlight to hydrogen using proposed compact CPV system

    KAUST Repository

    Burhan, Muhammad; Shahzad, Muhammad Wakil; Oh, Seung Jin; Ng, Kim Choon

    2018-01-01

    Solar energy being intermittent in nature, can provide a sustainable, steady and high density energy source when converted into electrolytic hydrogen. However, in current photovoltaic market trend with 99% conventional single junction PV panels, this cannot be achieved efficiently and economically. The advent of the multi-junction solar cells (MJCs), with cell-efficiency exceeding 46%, has yet to receive wide spread acceptance in the current PV market in form of concentrated photovoltaic (CPV) system, because of its system design complexity, limiting its application scope and customers. The objective of this paper is to develop a low cost compact CPV system that will not only eliminate its application and installation related restrictions but it is also introducing a highly efficient and sustainable photovoltaic system for common consumer, to convert intermittent sunlight into green hydrogen. The developed CPV system negates the common conviction by showing two times more power output than the flat plate PV, in tropical region. In addition, sunlight to hydrogen conversion efficiency of 18% is recorded for CPV, which is two times higher than alone electricity production efficiency of flat plate PV.

  3. Compact interior heat exchangers for CO{sub 2} mobile heat pumping systems

    Energy Technology Data Exchange (ETDEWEB)

    Hafner, Armin

    2003-07-01

    The natural refrigerant carbon dioxide (CO{sub 2}) offers new possibilities for design of flexible, efficient and environmentally safe mobile heat pumping systems. As high-efficient car engines with less waste heat are developed, extra heating of the passenger compartment is needed in the cold season. A reversible transcritical CO{sub 2} system with gliding temperature heat rejection can give high air delivery temperature which results in rapid heating of the passenger compartment and rapid defogging or defrosting of windows. When operated in cooling mode, the efficiency of transcritical CO{sub 2} systems is higher compared to common (HFC) air conditioning systems, at most dominant operating conditions. Several issues were identified for the design of compact interior heat exchangers for automotive reversible CO{sub 2} heat pumping systems. Among theses issues are: (1) Refrigerant flow distribution, (2) Heat exchanger fluid flow circuiting, (3) Air temperature uniformity downstream of the heat exchanger, (4) Minimization of temperature approach, (5) Windshield flash fogging due to retained water inside the heat exchanger, (6) Internal beat conduction in heating mode operation, and (7) Refrigerant side pressure drop In order to provide a basis for understanding these issues, the author developed a calculation model and set up a test facility and investigated different prototype heat exchangers experimentally.

  4. Optoacoustic diagnostic modality: from idea to clinical studies with highly compact laser diode-based systems

    Science.gov (United States)

    Esenaliev, Rinat O.

    2017-09-01

    Optoacoustic (photoacoustic) diagnostic modality is a technique that combines high optical contrast and ultrasound spatial resolution. We proposed using the optoacoustic technique for a number of applications, including cancer detection, monitoring of thermotherapy (hyperthermia, coagulation, and freezing), monitoring of cerebral blood oxygenation in patients with traumatic brain injury, neonatal patients, fetuses during late-stage labor, central venous oxygenation monitoring, and total hemoglobin concentration monitoring as well as hematoma detection and characterization. We developed and built optical parametric oscillator-based systems and multiwavelength, fiber-coupled highly compact, laser diode-based systems for optoacoustic imaging, monitoring, and sensing. To provide sufficient output pulse energy, a specially designed fiber-optic system was built and incorporated in ultrasensitive, wideband optoacoustic probes. We performed preclinical and clinical tests of the systems and the optoacoustic probes in backward mode for most of the applications and in forward mode for the breast cancer and cerebral applications. The high pulse energy and repetition rate allowed for rapid data acquisition with high signal-to-noise ratio from cerebral blood vessels, such as the superior sagittal sinus, central veins, and peripheral veins and arteries, as well as from intracranial hematomas. The optoacoustic systems were capable of automatic, real-time, continuous measurements of blood oxygenation in these blood vessels.

  5. Performance investigation of a cogeneration plant with the efficient and compact heat recovery system

    KAUST Repository

    Myat, Aung

    2011-10-03

    This paper presents the performance investigation of a cogeneration plant equipped with an efficient waste heat recovery system. The proposed cogeneration system produces four types of useful energy namely: (i) electricity, (ii) steam, (iii) cooling and (iv) dehumidification. The proposed plant comprises a Capstone C30 micro-turbine which generates 24 kW of electricity, a compact and efficient waste heat recovery system and a host of waste heat activated devices namely (i) a steam generator, (ii) an absorption chiller, (iii) an adsorption chiller and (iv) a multi-bed desiccant dehumidifier. The numerical analysis for the host of waste heat recovery system and thermally activated devices using FORTRAN power station linked to powerful IMSL library is performed to investigate the performance of the overall system. A set of experiments, both part load and full load, of micro-turbine is conducted to examine the electricity generation and the exhaust gas temperature. It is observed that energy utilization factor (EUF) could achieve as high as 70% while Fuel Energy Saving Ratio (FESR) is found to be 28%.

  6. Modelling of the Optical Detector System in a Compact Disc Player

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Andersen, Palle

    2003-01-01

    The cross-couplings between focus and radial tracking servos in compact disc players are important, but the optical cross couplings are not well described in the literature. In this paper an optical model of a compact disc player based on the three beam single foucault detector principle is found...

  7. A compact x-ray system for two-phase flow measurement

    Science.gov (United States)

    Song, Kyle; Liu, Yang

    2018-02-01

    In this paper, a compact x-ray densitometry system consisting of a 50 kV, 1 mA x-ray tube and several linear detector arrays is developed for two-phase flow measurement. The system is capable of measuring void fraction and velocity distributions with a spatial resolution of 0.4 mm per pixel and a frequency of 1000 Hz. A novel measurement model has been established for the system which takes account of the energy spectrum of x-ray photons and the beam hardening effect. An improved measurement accuracy has been achieved with this model compared with the conventional log model that has been widely used in the literature. Using this system, void fraction and velocity distributions are measured for a bubbly and a slug flow in a 25.4 mm I.D. air-water two-phase flow test loop. The measured superficial gas velocities show an error within  ±4% when compared with the gas flowmeter for both conditions.

  8. Design and development of a Compact Aerial Radiation Monitoring System (CARMS)

    International Nuclear Information System (INIS)

    Raman, N.; Chaudhury, Probal; Padmanabhan, N.; Pradeepkumar, K.S.; Sharma, D.N.

    2005-01-01

    Operation of nuclear facilities, increasing usage of radioisotopes in industrial, scientific and medical applications and transport of nuclear and radioactive materials may have impact on the surrounding environment. There is thus a need to periodically monitor the environmental radiation background all over the country and particularly around the nuclear facilities for assessing any possible impact on the environment. Preparedness required for response to emergencies caused due to radiological/nuclear incidents/ accidents or due to radiological/nuclear terrorism also demands state of the art systems and methodology for quick assessment of radiological impact over large affected areas. In order to meet these requirements, a Compact Aerial Radiation Monitoring System (CARMS) has been designed and developed. This system is battery operated, portable and rugged for mobile radiation monitoring and can be placed in aerial platforms like helicopters or Unmanned Aerial Vehicles (UAVs) for unattended operation. CARMS uses energy compensated multiple GM detectors for enhancing sensitivity and is attached with commercially available Global Positioning System (GPS) for online acquisition of positional coordinates with time. The AT89LV52 microcontroller used in the system tags the dose rate data with time and positional information and stores contiguously in a serial data memory for radiological mapping of the area surveyed using any mobile platform such as aircraft/train/boat/road vehicle. The system consumes ∼150 mA including the GPS at 12 V DC enabling ∼50 hours of continuous monitoring with a 7 Ah battery source. The system has been used in aerial, rail and road based environmental radiation surveys carried out at various places of the country. With PC support, the system can map the radiological status online onto the map of the area being surveyed to help decision-making on countermeasures during the survey. (author)

  9. Two-step design method for highly compact three-dimensional freeform optical system for LED surface light source.

    Science.gov (United States)

    Mao, Xianglong; Li, Hongtao; Han, Yanjun; Luo, Yi

    2014-10-20

    Designing an illumination system for a surface light source with a strict compactness requirement is quite challenging, especially for the general three-dimensional (3D) case. In accordance with the two key features of an expected illumination distribution, i.e., a well-controlled boundary and a precise illumination pattern, a two-step design method is proposed in this paper for highly compact 3D freeform illumination systems. In the first step, a target shape scaling strategy is combined with an iterative feedback modification algorithm to generate an optimized freeform optical system with a well-controlled boundary of the target distribution. In the second step, a set of selected radii of the system obtained in the first step are optimized to further improve the illuminating quality within the target region. The method is quite flexible and effective to design highly compact optical systems with almost no restriction on the shape of the desired target field. As examples, three highly compact freeform lenses with ratio of center height h of the lens and the maximum dimension D of the source ≤ 2.5:1 are designed for LED surface light sources to form a uniform illumination distribution on a rectangular, a cross-shaped and a complex cross pierced target plane respectively. High light control efficiency of η > 0.7 as well as low relative standard illumination deviation of RSD < 0.07 is obtained simultaneously for all the three design examples.

  10. A compact imaging spectroscopic system for biomolecular detections on plasmonic chips.

    Science.gov (United States)

    Lo, Shu-Cheng; Lin, En-Hung; Wei, Pei-Kuen; Tsai, Wan-Shao

    2016-10-17

    In this study, we demonstrate a compact imaging spectroscopic system for high-throughput detection of biomolecular interactions on plasmonic chips, based on a curved grating as the key element of light diffraction and light focusing. Both the curved grating and the plasmonic chips are fabricated on flexible plastic substrates using a gas-assisted thermal-embossing method. A fiber-coupled broadband light source and a camera are included in the system. Spectral resolution within 1 nm is achieved in sensing environmental index solutions and protein bindings. The detected sensitivities of the plasmonic chip are comparable with a commercial spectrometer. An extra one-dimensional scanning stage enables high-throughput detection of protein binding on a designed plasmonic chip consisting of several nanoslit arrays with different periods. The detected resonance wavelengths match well with the grating equation under an air environment. Wavelength shifts between 1 and 9 nm are detected for antigens of various concentrations binding with antibodies. A simple, mass-productive and cost-effective method has been demonstrated on the imaging spectroscopic system for real-time, label-free, highly sensitive and high-throughput screening of biomolecular interactions.

  11. A Compact VLSI System for Bio-Inspired Visual Motion Estimation.

    Science.gov (United States)

    Shi, Cong; Luo, Gang

    2018-04-01

    This paper proposes a bio-inspired visual motion estimation algorithm based on motion energy, along with its compact very-large-scale integration (VLSI) architecture using low-cost embedded systems. The algorithm mimics motion perception functions of retina, V1, and MT neurons in a primate visual system. It involves operations of ternary edge extraction, spatiotemporal filtering, motion energy extraction, and velocity integration. Moreover, we propose the concept of confidence map to indicate the reliability of estimation results on each probing location. Our algorithm involves only additions and multiplications during runtime, which is suitable for low-cost hardware implementation. The proposed VLSI architecture employs multiple (frame, pixel, and operation) levels of pipeline and massively parallel processing arrays to boost the system performance. The array unit circuits are optimized to minimize hardware resource consumption. We have prototyped the proposed architecture on a low-cost field-programmable gate array platform (Zynq 7020) running at 53-MHz clock frequency. It achieved 30-frame/s real-time performance for velocity estimation on 160 × 120 probing locations. A comprehensive evaluation experiment showed that the estimated velocity by our prototype has relatively small errors (average endpoint error < 0.5 pixel and angular error < 10°) for most motion cases.

  12. A compact wideband precision impedance measurement system based on digital auto-balancing bridge

    International Nuclear Information System (INIS)

    Hu, Binxin; Wang, Jinyu; Song, Guangdong; Zhang, Faxiang

    2016-01-01

    The ac impedance spectroscopy measurements are predominantly taken by using impedance analyzers based on analog auto-balancing bridge. However, those bench-top analyzers are generally complicated, bulky and expensive, thus limiting their usage in industrial field applications. This paper presents the development of a compact wideband precision measurement system based on digital auto-balancing bridge. The methods of digital auto-balancing bridge and digital lock-in amplifier are analyzed theoretically. The overall design and several key sections including null detector, direct digital synthesizer-based sampling clock, and digital control unit are introduced in detail. The results show that the system achieves a basic measurement accuracy of 0.05% with a frequency range of 20 Hz–2 MHz. The advantages of versatile measurement capacity, fast measurement speed, small size and low cost make it quite suitable for industrial field applications. It is demonstrated that this system is practical and effective by applying in determining the impedance-temperature characteristic of a motor starter PTC thermistor. (paper)

  13. Construction, characterization and applications of a compact mass-resolved low-energy ion beam system

    International Nuclear Information System (INIS)

    Lau, W.M.; Feng, X.; Bello, I.; Sant, S.; Foo, K.K.; Lawson, R.P.W.

    1991-01-01

    A compact mass-resolved low-energy ion beam system has been constructed in which ions are extracted from a Colutron ion source, focused by an einzel lens, mass-selected by a Wien filter, refocused by a second einzel lens into an ultrahigh vacuum target chamber, and finally decelerated with a five-electrode lens. The design of the deceleration lens was assisted by computer simulation including space-charge effects with an ion trajectory software (CHDEN). The system performance has been characterized with a quadrupole mass spectrometer and an energy analyzer along the beam axis. For example, argon ions can be transported at keV and decelerated to 10 eV with an energy spread of ±0.5 eV. The total current measured by a Faraday cage at the exit of the deceleration lens in the energy range of 10-200 eV is about 1-5 μA. The ion current density was higher than 100 μA/cm 2 at 50 eV but decreased to 10-20 μA/cm 2 at 10 eV. The mass resolution was estimated to be 40 under the present operation configuration. The system has been used to produce interesting results in both ion beam etching and deposition. (orig.)

  14. Study and development of a laser based alignment system for the compact linear collider

    CERN Document Server

    AUTHOR|(CDS)2083149

    The first objective of the PhD thesis is to develop a new type of positioning sensor to align components at micrometre level over 200 m with respect to a laser beam as straight line reference. The second objective is to estimate the measurement accuracy of the total alignment system over 200 m. The context of the PhD thesis is the Compact Linear Collider project, which is a study for a future particle accelerator. The proposed positioning sensor is made of a camera and an open/close shutter. The sensor can measure the position of the laser beam with respect to its own coordinate system. To do a measurement, the shutter closes, a laser spot appears on it, the camera captures a picture of the laser spot and the coordinates of the laser spot centre are reconstructed in the sensor coordinate system with image processing. Such a measurement requires reference targets on the positioning sensor. To reach the rst objective of the PhD thesis, we used laser theory...

  15. A novel and compact spectral imaging system based on two curved prisms

    Science.gov (United States)

    Nie, Yunfeng; Bin, Xiangli; Zhou, Jinsong; Li, Yang

    2013-09-01

    As a novel detection approach which simultaneously acquires two-dimensional visual picture and one-dimensional spectral information, spectral imaging offers promising applications on biomedical imaging, conservation and identification of artworks, surveillance of food safety, and so forth. A novel moderate-resolution spectral imaging system consisting of merely two optical elements is illustrated in this paper. It can realize the function of a relay imaging system as well as a 10nm spectral resolution spectroscopy. Compared to conventional prismatic imaging spectrometers, this design is compact and concise with only two special curved prisms by utilizing two reflective surfaces. In contrast to spectral imagers based on diffractive grating, the usage of compound-prism possesses characteristics of higher energy utilization and wider free spectral range. The seidel aberration theory and dispersive principle of this special prism are analyzed at first. According to the results, the optical system of this design is simulated, and the performance evaluation including spot diagram, MTF and distortion, is presented. In the end, considering the difficulty and particularity of manufacture and alignment, an available method for fabrication and measurement is proposed.

  16. Compact multichannel high-resolution micro-electro-mechanical systems-based interrogator for Fiber Bragg grating sensing

    DEFF Research Database (Denmark)

    Ganziy, Denis; Rose, Bjarke; Bang, Ole

    2017-01-01

    We propose a novel type of compact high-resolution multichannel micro-electro-mechanical systems (MEMS)-based interrogator, where we replace the linear detector with a digital micromirror device (DMD). The DMD is typically cheaper and has better pixel sampling than an InGaAs detector used...

  17. The production of radionuclides for nuclear medicine from a compact, low-energy accelerator system.

    Science.gov (United States)

    Webster, William D; Parks, Geoffrey T; Titov, Dmitry; Beasley, Paul

    2014-05-01

    The field of nuclear medicine is reliant on radionuclides for medical imaging procedures and radioimmunotherapy (RIT). The recent shut-downs of key radionuclide producers have highlighted the fragility of the current radionuclide supply network, however. To ensure that nuclear medicine can continue to grow, adding new diagnostic and therapy options to healthcare, novel and reliable production methods are required. Siemens are developing a low-energy, high-current - up to 10 MeV and 1 mA respectively - accelerator. The capability of this low-cost, compact system for radionuclide production, for use in nuclear medicine procedures, has been considered. The production of three medically important radionuclides - (89)Zr, (64)Cu, and (103)Pd - has been considered, via the (89)Y(p,n), (64)Ni(p,n) and (103)Rh(p,n) reactions, respectively. Theoretical cross-sections were generated using TALYS and compared to experimental data available from EXFOR. Stopping power values generated by SRIM have been used, with the TALYS-generated excitation functions, to calculate potential yields and isotopic purity in different irradiation regimes. The TALYS excitation functions were found to have a good agreement with the experimental data available from the EXFOR database. It was found that both (89)Zr and (64)Cu could be produced with high isotopic purity (over 99%), with activity yields suitable for medical diagnostics and therapy, at a proton energy of 10MeV. At 10MeV, the irradiation of (103)Rh produced appreciable quantities of (102)Pd, reducing the isotopic purity. A reduction in beam energy to 9.5MeV increased the radioisotopic purity to 99% with only a small reduction in activity yield. This work demonstrates that the low-energy, compact accelerator system under development by Siemens would be capable of providing sufficient quantities of (89)Zr, (64)Cu, and (103)Pd for use in medical diagnostics and therapy. It is suggested that the system could be used to produce many other

  18. A compact mechatronic system for 3D ultrasound guided prostate interventions

    International Nuclear Information System (INIS)

    Bax, Jeffrey; Smith, David; Bartha, Laura; Montreuil, Jacques; Sherebrin, Shi; Gardi, Lori; Edirisinghe, Chandima; Fenster, Aaron

    2011-01-01

    Purpose: Ultrasound imaging has improved the treatment of prostate cancer by producing increasingly higher quality images and influencing sophisticated targeting procedures for the insertion of radioactive seeds during brachytherapy. However, it is critical that the needles be placed accurately within the prostate to deliver the therapy to the planned location and avoid complications of damaging surrounding tissues. Methods: The authors have developed a compact mechatronic system, as well as an effective method for guiding and controlling the insertion of transperineal needles into the prostate. This system has been designed to allow guidance of a needle obliquely in 3D space into the prostate, thereby reducing pubic arch interference. The choice of needle trajectory and location in the prostate can be adjusted manually or with computer control. Results: To validate the system, a series of experiments were performed on phantoms. The 3D scan of the string phantom produced minimal geometric error, which was less than 0.4 mm. Needle guidance accuracy tests in agar prostate phantoms showed that the mean error of bead placement was less then 1.6 mm along parallel needle paths that were within 1.2 mm of the intended target and 1 deg. from the preplanned trajectory. At oblique angles of up to 15 deg. relative to the probe axis, beads were placed to within 3.0 mm along a trajectory that were within 2.0 mm of the target with an angular error less than 2 deg. Conclusions: By combining 3D TRUS imaging system to a needle tracking linkage, this system should improve the physician's ability to target and accurately guide a needle to selected targets without the need for the computer to directly manipulate and insert the needle. This would be beneficial as the physician has complete control of the system and can safely maneuver the needle guide around obstacles such as previously placed needles.

  19. Evaluation of a Compact Coaxial Underground Coal Gasification System Inside an Artificial Coal Seam

    Directory of Open Access Journals (Sweden)

    Fa-qiang Su

    2018-04-01

    Full Text Available The Underground Coal Gasification (UCG system is a clean technology for obtaining energy from coal. The coaxial UCG system is supposed to be compact and flexible in order to adapt to complicated geological conditions caused by the existence of faults and folds in the ground. In this study, the application of a coaxial UCG system with a horizontal well is discussed, by means of an ex situ model UCG experiment in a large-scale simulated coal seam with dimensions of 550 × 600 × 2740 mm. A horizontal well with a 45-mm diameter and a 2600-mm length was used as an injection/production well. During the experiment, changes in temperature field and product gas compositions were observed when changing the outlet position of the injection pipe. It was found that the UCG reactor is unstable and expands continuously due to fracturing activity caused by coal crack initiation and extension under the influence of thermal stress. Therefore, acoustic emission (AE is considered an effective tool to monitor fracturing activities and visualize the gasification zone of coal. The results gathered from monitoring of AEs agree with the measured data of temperatures; the source location of AE was detected around the region where temperature increased. The average calorific value of the produced gas was 6.85 MJ/Nm3, and the gasification efficiency, defined as the conversion efficiency of the gasified coal to syngas, was 65.43%, in the whole experimental process. The study results suggest that the recovered coal energy from a coaxial UCG system is comparable to that of a conventional UCG system. Therefore, a coaxial UCG system may be a feasible option to utilize abandoned underground coal resources without mining.

  20. One-dimensional MHD simulations of MTF systems with compact toroid targets and spherical liners

    Science.gov (United States)

    Khalzov, Ivan; Zindler, Ryan; Barsky, Sandra; Delage, Michael; Laberge, Michel

    2017-10-01

    One-dimensional (1D) MHD code is developed in General Fusion (GF) for coupled plasma-liner simulations in magnetized target fusion (MTF) systems. The main goal of these simulations is to search for optimal parameters of MTF reactor, in which spherical liquid metal liner compresses compact toroid plasma. The code uses Lagrangian description for both liner and plasma. The liner is represented as a set of spherical shells with fixed masses while plasma is discretized as a set of nested tori with circular cross sections and fixed number of particles between them. All physical fields are 1D functions of either spherical (liner) or small toroidal (plasma) radius. Motion of liner and plasma shells is calculated self-consistently based on applied forces and equations of state. Magnetic field is determined by 1D profiles of poloidal and toroidal fluxes - they are advected with shells and diffuse according to local resistivity, this also accounts for flux leakage into the liner. Different plasma transport models are implemented, this allows for comparison with ongoing GF experiments. Fusion power calculation is included into the code. We performed a series of parameter scans in order to establish the underlying dependencies of the MTF system and find the optimal reactor design point.

  1. A compact linear accelerator based on a scalable microelectromechanical-system RF-structure

    Science.gov (United States)

    Persaud, A.; Ji, Q.; Feinberg, E.; Seidl, P. A.; Waldron, W. L.; Schenkel, T.; Lal, A.; Vinayakumar, K. B.; Ardanuc, S.; Hammer, D. A.

    2017-06-01

    A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.

  2. A compact linear accelerator based on a scalable microelectromechanical-system RF-structure.

    Science.gov (United States)

    Persaud, A; Ji, Q; Feinberg, E; Seidl, P A; Waldron, W L; Schenkel, T; Lal, A; Vinayakumar, K B; Ardanuc, S; Hammer, D A

    2017-06-01

    A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.

  3. Ponderomotive effects in multiphoton pair production

    Science.gov (United States)

    Kohlfürst, Christian; Alkofer, Reinhard

    2018-02-01

    The Dirac-Heisenberg-Wigner formalism is employed to investigate electron-positron pair production in cylindrically symmetric but otherwise spatially inhomogeneous, oscillating electric fields. The oscillation frequencies are hereby tuned to obtain multiphoton pair production in the nonperturbative threshold regime. An effective mass, as well as a trajectory-based semiclassical analysis, is introduced in order to interpret the numerical results for the distribution functions as well as for the particle yields and spectra. The results, including the asymptotic particle spectra, display clear signatures of ponderomotive forces.

  4. Permutational symmetries for coincidence rates in multimode multiphotonic interferometry

    Science.gov (United States)

    Khalid, Abdullah; Spivak, Dylan; Sanders, Barry C.; de Guise, Hubert

    2018-06-01

    We obtain coincidence rates for passive optical interferometry by exploiting the permutational symmetries of partially distinguishable input photons, and our approach elucidates qualitative features of multiphoton coincidence landscapes. We treat the interferometer input as a product state of any number of photons in each input mode with photons distinguished by their arrival time. Detectors at the output of the interferometer count photons from each output mode over a long integration time. We generalize and prove the claim of Tillmann et al. [Phys. Rev. X 5, 041015 (2015), 10.1103/PhysRevX.5.041015] that coincidence rates can be elegantly expressed in terms of immanants. Immanants are functions of matrices that exhibit permutational symmetries and the immanants appearing in our coincidence-rate expressions share permutational symmetries with the input state. Our results are obtained by employing representation theory of the symmetric group to analyze systems of an arbitrary number of photons in arbitrarily sized interferometers.

  5. Monitoring wound healing by multiphoton tomography/endoscopy

    Science.gov (United States)

    König, Karsten; Weinigel, Martin; Bückle, Rainer; Kaatz, Martin; Hipler, Christina; Zens, Katharina; Schneider, Stefan W.; Huck, Volker

    2015-02-01

    Certified clinical multiphoton tomographs are employed to perform rapid label-free high-resolution in vivo histology. Novel tomographs include a flexible 360° scan head attached to a mechano-optical arm for autofluorescence and SHG imaging as well as rigid two-photon GRIN microendoscope. Mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen can be imaged with submicron resolution in human skin. The system was employed to study the healing of chronic wounds (venous leg ulcer) and acute wounds (curettage of actinic or seborrheic keratosis) on a subcellular level. Furthermore, a flexible sterile foil as interface between wound and focusing optic was tested.

  6. Variational methods for high-order multiphoton processes

    International Nuclear Information System (INIS)

    Gao, B.; Pan, C.; Liu, C.; Starace, A.F.

    1990-01-01

    Methods for applying the variationally stable procedure for Nth-order perturbative transition matrix elements of Gao and Starace [Phys. Rev. Lett. 61, 404 (1988); Phys. Rev. A 39, 4550 (1989)] to multiphoton processes involving systems other than atomic H are presented. Three specific cases are discussed: one-electron ions or atoms in which the electron--ion interaction is described by a central potential; two-electron ions or atoms in which the electronic states are described by the adiabatic hyperspherical representation; and closed-shell ions or atoms in which the electronic states are described by the multiconfiguration Hartree--Fock representation. Applications are made to the dynamic polarizability of He and the two-photon ionization cross section of Ar

  7. In vivo multiphoton imaging of bile duct ligation

    Science.gov (United States)

    Liu, Yuan; Li, Feng-Chieh; Chen, Hsiao-Chin; Chang, Po-shou; Yang, Shu-Mei; Lee, Hsuan-Shu; Dong, Chen-Yuan

    2008-02-01

    Bile is the exocrine secretion of liver and synthesized by hepatocytes. It is drained into duodenum for the function of digestion or drained into gallbladder for of storage. Bile duct obstruction is a blockage in the tubes that carry bile to the gallbladder and small intestine. However, Bile duct ligation results in the changes of bile acids in serum, liver, urine, and feces1, 2. In this work, we demonstrate a novel technique to image this pathological condition by using a newly developed in vivo imaging system, which includes multiphoton microscopy and intravital hepatic imaging chamber. The images we acquired demonstrate the uptake, processing of 6-CFDA in hepatocytes and excretion of CF in the bile canaliculi. In addition to imaging, we can also measure kinetics of the green fluorescence intensity.

  8. Clinical multiphoton tomography and clinical two-photon microendoscopy

    Science.gov (United States)

    König, Karsten; Bückle, Rainer; Weinigel, Martin; Elsner, Peter; Kaatz, Martin

    2009-02-01

    We report on applications of high-resolution clinical multiphoton tomography based on the femtosecond laser system DermaInspectTM with its flexible mirror arm in Australia, Asia, and Europe. Applications include early detection of melanoma, in situ tracing of pharmacological and cosmetical compounds including ZnO nanoparticles in the epidermis and upper dermis, the determination of the skin aging index SAAID as well as the study of the effects of anti-aging products. In addition, first clinical studies with novel rigid high-NA two-photon 1.6 mm GRIN microendoscopes have been conducted to study the effect of wound healing in chronic wounds (ulcus ulcera) as well as to perform intrabody imaging with subcellular resolution in small animals.

  9. Compact, readily deployable reactor systems for secure power for civilian and defense applications

    International Nuclear Information System (INIS)

    Powell, J.R.; Farrell, J.P.

    2008-01-01

    The U.S. electricity system is a very complex, highly interdependent network of large power plants and long transmission lines that requires constant and precise control. Disruption can rapidly propagate through the infrastructure, causing major portions to fail, as seen in the past. Such events have been triggered by natural causes. Global terrorism raises the possibility of deliberate physical attacks on the system against power plants, transmission lines, sub-stations, etc. - or cyber attacks against computers and controls to shut it down for long periods. Domestic military bases that depend on the civilian electric grid cannot function if it goes down for extended times. Natural disasters like hurricanes Katrina and Rita have shown the need for secure emergency power. If nuclear, biological, or chemical attacks on cities were to occur, panic and evacuations would shut down much of the U.S. electric system for many months. A new reactor system, DEER (Deployable Electric Energy Reactor) can provide secure emergency power for civilian and defense needs. The DEER system is compact and quickly deployable using existing types of transport vehicles. The DEER reactors have integral gamma shields, and can be transported from their deployment site after shutdown, with very low and acceptable radiation doses to handling and transport personnel. Two DEER system concepts are described with detailed neutronic and thermal hydraulic analyses of 10 and 50 MW(e) designs for each concept. The baseline DEER-1 system uses commercial TRIGA fuel, with water coolant at standard PWR conditions. The sealed DEER-1 reactor operates for several years without refueling. After shutdown, it is removed to appropriate site for refueling or disposal. If needed, a new DEER-1 reactor can be installed at the location. The advanced DEER-2 system uses existing TRISO fuel particles in porous fuel elements with direct water cooling of the particles. After shutdown, the spent TRISO fuel particles are

  10. Examination of excited state populations in sputtering using Multiphoton Resonance Ionization

    International Nuclear Information System (INIS)

    Kimock, F.M.; Baxter, J.P.; Pappas, D.L.; Kobrin, P.H.; Winograd, N.

    1984-01-01

    Multiphoton Resonance Ionization has been employed to study the populations of excited state atoms ejected from ion bombarded metal surfaces. Preliminary investigations have focused on three model systems: aluminum, indium and cobalt. In this paper the authors examine the effect of primary ion energy (2 to 12 keV Ar + ) on excited state yields for these three systems. The influence of the sample matrix on excited state populations of sputtered atoms is also discussed

  11. Examination of excited state populations in sputtering using multiphoton resonance ionization

    International Nuclear Information System (INIS)

    Kimock, F.M.; Baxter, J.P.; Pappas, D.L.; Kobrin, P.H.; Winograd, N.

    1984-01-01

    Multiphoton Resonance Ionization has been employed to study the populations of excited state atoms ejected from ion bombarded metal surfaces. Preliminary investigations have focused on three model systems: aluminum, indium and cobalt. In this paper we examine the effect of primary ion energy (2 to 12 keV Ar + ) on excited state yields for these three systems. The influence of the sample matrix on excited state populations of sputtered atoms is also discussed. 8 refs., 4 figs

  12. Compact Low-Power Driver for Deformable Mirror Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Boston Micromachines Corporation (BMC), a leading developer of unique, high-resolution micromachined deformable mirrors (DMs), will develop a compact, low-power,...

  13. Pump-Fed, Compact, High Performance Green Propulsion System for Secondary Payloads, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Flight Works is proposing to expand its micropump-fed propulsion technology to the development of a low cost, compact, low tank pressure, high performance LPM-103S...

  14. The scenario of two families of compact stars. Pt. 1. Equations of state, mass-radius relations and binary systems

    Energy Technology Data Exchange (ETDEWEB)

    Drago, Alessandro; Pagliara, Giuseppe [Ferrara Univ. (Italy). Dipt. di Fisica e Scienze della Terra; INFN, Ferrara (Italy); Lavagno, Andrea; Pigato, Daniele [Politecnico di Torino (Italy). Dept. of Applied Science and Technology; INFN, Torino (Italy)

    2016-02-15

    We present several arguments which favor the scenario of two coexisting families of compact stars: hadronic stars and quark stars. Besides the well-known hyperon puzzle of the physics of compact stars, a similar puzzle exists also when considering delta resonances. We show that these particles appear at densities close to twice saturation density and must be therefore included in the calculations of the hadronic equation of state. Such an early appearance is strictly related to the value of the L parameter of the symmetry energy that has been found, in recent phenomenological studies, to lie in the range 40 < L < 62 MeV. We discuss also the threshold for the formation of deltas and hyperons for hot and lepton-rich hadronic matter. Similarly to the case of hyperons, also delta resonances cause a softening of the equation of state, which makes it difficult to obtain massive hadronic stars. Quark stars, on the other hand, can reach masses up to 2.75M {sub CircleDot} as predicted by perturbative QCD calculations. We then discuss the observational constraints on the masses and the radii of compact stars. The tension between the precise measurements of high masses and the indications of the existence of very compact stellar objects (with radii of the order of 10 km) is relieved when assuming that very massive compact stars are quark stars and very compact stars are hadronic stars. Finally, we discuss recent interesting measurements of the eccentricities of the orbits of millisecond pulsars in low mass X-ray binaries. The high values of the eccentricities found in some cases could be explained by assuming that the hadronic star, initially present in the binary system, converts to a quark star due to the increase of its central density. (orig.)

  15. A multichannel compact readout system for single photon detection: Design and performances

    Energy Technology Data Exchange (ETDEWEB)

    Argentieri, A.G. [Istituto Nazionale di Fisica Nucleare, via E. Orabona 4, 70126 Bari (Italy); Cisbani, E.; Colilli, S.; Cusanno, F. [Istituto Superiore di Sanita, viale Regina Elena 299, 00161 Roma (Italy); De Leo, R. [Istituto Nazionale di Fisica Nucleare, via E. Orabona 4, 70126 Bari (Italy); Fratoni, R.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M. [Istituto Superiore di Sanita, viale Regina Elena 299, 00161 Roma (Italy); Marra, M. [Istituto Nazionale di Fisica Nucleare, via E. Orabona 4, 70126 Bari (Italy); Musico, Paolo, E-mail: Paolo.Musico@ge.infn.i [Istituto Nazionale di Fisica Nucleare, via Dodecaneso 33, 16146 Genova (Italy); Santavenere, F.; Torrioli, S. [Istituto Superiore di Sanita, viale Regina Elena 299, 00161 Roma (Italy)

    2010-05-21

    Optimal exploitation of Multi Anode PhotoMultiplier Tubes (MAPMT) as imaging devices requires the acquisition of a large number of independent channels; despite the rather wide demand, on-the-shelf electronics for this purpose does not exist. A compact independent channel readout system for an array of MAPMTs has been developed and tested . The system can handle up to 4096 independent channels, covering an area of about 20x20cm{sup 2} with pixel size of 3x3mm{sup 2}, using Hamamatsu H-9500 devices. The front-end is based on a 64 channels VLSI custom chip called MAROC, developed by IN2P3 Orsay (France) group, controlled by means of a Field Programmable Gate Array (FPGA) which implements configuration, triggering and data conversion controls. Up to 64 front-end cards can be housed in four backplanes and a central unit collects data from all of them, communicating with a control Personal Computer (PC) using an high speed USB 2.0 connection. A complete system has been built and tested. Eight Flat MAPMTs (256 anodes Hamamatsu H-9500) have been arranged on a boundary of a 3x3 matrix for a grand total of 2048 channels. This detector has been used to verify the performances of a focusing aerogel RICH prototype using an electron beam at the Frascati (Rome) INFN National Laboratory Beam Test Facility (BTF) during the last week of January 2009. Data analysis is ongoing: the first results are encouraging, showing that the Cherenkov rings are well identified by this system.

  16. A multichannel compact readout system for single photon detection: Design and performances

    Science.gov (United States)

    Argentieri, A. G.; Cisbani, E.; Colilli, S.; Cusanno, F.; De Leo, R.; Fratoni, R.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Marra, M.; Musico, Paolo; Santavenere, F.; Torrioli, S.

    2010-05-01

    Optimal exploitation of Multi Anode PhotoMultiplier Tubes (MAPMT) as imaging devices requires the acquisition of a large number of independent channels; despite the rather wide demand, on-the-shelf electronics for this purpose does not exist. A compact independent channel readout system for an array of MAPMTs has been developed and tested [1,2]. The system can handle up to 4096 independent channels, covering an area of about 20×20 cm2 with pixel size of 3×3 mm2, using Hamamatsu H-9500 devices. The front-end is based on a 64 channels VLSI custom chip called MAROC, developed by IN2P3 Orsay (France) group, controlled by means of a Field Programmable Gate Array (FPGA) which implements configuration, triggering and data conversion controls. Up to 64 front-end cards can be housed in four backplanes and a central unit collects data from all of them, communicating with a control Personal Computer (PC) using an high speed USB 2.0 connection. A complete system has been built and tested. Eight Flat MAPMTs (256 anodes Hamamatsu H-9500) have been arranged on a boundary of a 3×3 matrix for a grand total of 2048 channels. This detector has been used to verify the performances of a focusing aerogel RICH prototype using an electron beam at the Frascati (Rome) INFN National Laboratory Beam Test Facility (BTF) during the last week of January 2009. Data analysis is ongoing: the first results are encouraging, showing that the Cherenkov rings are well identified by this system.

  17. Radiation profile measurements for edge transport barrier discharges in Compact Helical System using AXUV photodiode arrays

    International Nuclear Information System (INIS)

    Suzuki, C.; Okamura, S.; Minami, T.; Akiyama, T.; Fujisawa, A.; Ida, K.; Isobe, M.; Matsuoka, K.; Nagaoka, K.; Nishimura, S.; Peterson, B. J.; Shimizu, A.; Takahashi, C.; Toi, K.; Yoshimura, Y.

    2005-01-01

    The formation of edge transport barrier (ETB) has recently been found in Compact Helical System (CHS) plasmas heated by co-injected neutral beam injection (NBI) with strong gas puffing. This regime is characterized by the appearance of the steep gradient of the electron density near the edge following the abrupt drop of hydrogen Balmer alpha (H α ) line intensity. In addition to single channel pyroelectric detector as a conventional bolometer, we have employed unfiltered absolute extreme ultraviolet (AXUV) photodiode arrays as a simple and low-cost diagnostic to investigate spatial and temporal variations of radiation emissivity in the ETB discharges. A compact mounting module for a 20 channel AXUV photodiode array including an in-vacuum preamplifier for immediate current-voltage conversion has successfully been designed and fabricated. Two identical modules installed in the upper and lower viewports provide 40 lines of sight covering the inboard and outboard sides within the horizontally elongated cross section of the CHS plasma with wide viewing angle. Although spectral uniformity of the detector sensitivity of the AXUV photodiode is unsatisfied for photon energies lower than 200 eV, it has been confirmed that the signals of AXUV photodiode and pyroelectric detector in the ETB discharges show roughly the same behavior except for the very beginning and end of the discharges. The results of the measurements in typical ETB discharges show that the signals of all the channels of the AXUV photodiode arrays begin to increase more rapidly at the moment of the transition than before. The rate of the increase is larger for the edge viewing chords than for the center viewing ones, which indicates the flattening of the radiation profile following the change in the electron density profile after the formation of the ETB. However, the signals for the edge chords tend to saturate after several tens of milliseconds, while they still continue to increase for the central chords

  18. High Resolution Multiphoton Ionization/Dissociation of Molecular Beam of Acetone from 582.60 to 585.80 nm

    Science.gov (United States)

    Mejia-Ospino, Enrique; Garcia, Gladis; Guerrero, Alfonso; Alvarez, Ignacio; Cisneros, Carmen

    2003-05-01

    Multiphoton ionization and dissociation of a jet supersonic of acetone at wavelength from 582.60 to 585.80 nm is studied using a Nd:YAG-OPO (optical parametric oscillator) system coupled to time-of-flight mass spectrometer. We present high-resolution (1.5 cm-1) three-photon resonance multiphoton spectra of the acetone 3s CH3CO+), (CH3+) and (COH+), being CH3COCH3+ ---> CH3CO+ + CH3 the more likely channel. The molecular and acetyl ions are observed practically in overall wavelength range.

  19. Compact printed multiband antenna with independent setting suitable for fixed and reconfigurable wireless communication systems

    KAUST Repository

    Abutarboush, Hattan

    2012-08-01

    This paper presents the design of a low-profile compact printed antenna for fixed frequency and reconfigurable frequency bands. The antenna consists of a main patch, four sub-patches, and a ground plane to generate five frequency bands, at 0.92, 1.73, 1.98, 2.4, and 2.9 GHz, for different wireless systems. For the fixed-frequency design, the five individual frequency bands can be adjusted and set independently over the wide ranges of 18.78%, 22.75%, 4.51%, 11%, and 8.21%, respectively, using just one parameter of the antenna. By putting a varactor (diode) at each of the sub-patch inputs, four of the frequency bands can be controlled independently over wide ranges and the antenna has a reconfigurable design. The tunability ranges for the four bands of 0.92, 1.73, 1.98, and 2.9 GHz are 23.5%, 10.30%, 13.5%, and 3%, respectively. The fixed and reconfigurable designs are studied using computer simulation. For verification of simulation results, the two designs are fabricated and the prototypes are measured. The results show a good agreement between simulated and measured results. © 1963-2012 IEEE.

  20. Detection of mitochondrial DNA with the compact bead array sensor system (cBASS)

    Science.gov (United States)

    Mulvaney, Shawn P.; Ibe, Carol N.; Caldwell, Jane M.; Levine, Jay F.; Whitman, Lloyd J.; Tamanaha, Cy R.

    2009-02-01

    Enteric pathogens are a significant contaminant in surface waters used for recreation, fish and shellfish harvesting, crop irrigation, and human consumption. The need for water monitoring becomes more pronounced when industrial, agricultural, and residential lands are found in close proximity. Fecal contamination is particularly problematic and identification of the pollution source essential to remediation efforts. Standard monitoring for fecal contamination relies on indicator organisms, but the technique is too broad to identify the source of contamination. Instead, real-time PCR of mitochondrial DNA (mtDNA) is an emerging method for identification of the contamination source. Presented herein, we evaluate an alternative technology, the compact Bead Array Sensor System (cBASS®) and its assay approach Fluidic Force Discrimination (FFD), for the detection of mtDNA. Previously, we achieved multiplexed, attomolar detection of toxins and femtomolar detection of nucleic acids in minutes with FFD assays. More importantly, FFD assays are compatible with a variety of complex matrices and therefore potentially applicable for samples where the matrix would interfere with PCR amplification. We have designed a triplex assay for the NADH gene found in human, swine, and bovine mtDNA and demonstrated the specific detection of human mtDNA spiked into a waste water sample.

  1. Hydrogen from methanol for fuel cells in mobile systems: development of a compact reformer

    Energy Technology Data Exchange (ETDEWEB)

    Hoehlein, B [Forschungszentrum Juelich GmbH (Germany); Boe, M [H. Topsoee A/S, Lyngby (Denmark); Boegild-Hansen, J [H. Topsoee A/S, Lyngby (Denmark); Broeckerhoff, P [Forschungszentrum Juelich GmbH (Germany); Colsman, G [Forschungszentrum Juelich GmbH (Germany); Emonts, B [Forschungszentrum Juelich GmbH (Germany); Menzer, R [Forschungszentrum Juelich GmbH (Germany); Riedel, E

    1996-07-01

    On-board generation of hydrogen from methanol with a reformer in connection with the use of a proton-exchange membrane fuel cell (PEMFC) is an attractive option for a passenger car drive. Special considerations are required to obtain low weight and volume. Furthermore, the PEMFC of today cannot tolerate more than 10 ppm of carbon monoxide in the fuel. Therefore a gas conditioning step is needed after the methanol reformer. Our main research activities focus on the conceptual design of a drive system for a passenger car with methanol reformer and PEMFC: Engineering studies with regard to different aspects of this design including reformer, catalytic burner, gas conditioning, balances of the fuel cycles and basic design of a compact methanol reformer. The work described here was carried out within the framework of a JOULE II project of the European Union (1993-1995). Extensive experimental studies have been carried out at the Forschungszentrum Juelich GmbH (KFA) in Germany and at Haldor Topsoee A/S in Denmark. (orig.)

  2. A compact pre-processor system for the ATLAS level-1 calorimeter trigger

    CERN Document Server

    Pfeiffer, U

    1999-01-01

    This thesis describ es the researc h whose aim is to dev elop a compact Pre-Pro cessor system for the A TLAS Lev el-1 Calorimeter T rigger. Con tributions to the p erformance and the arc hitecture of the Pre-Pro cessor w ere made. A demonstrator Multi-Chip Mo dule (PPrD- MCM) w as dev elop ed and assem bled whic h p erforms most of the prepro cessing of four analogue trigger-to w er signals. The prepro cessing includes digitisation to 8-bit precision, iden ti cation of the corresp onding bunc h-crossing in time (BCID), calibration of the transv erse energy , readout of ra w trigger data, and high-sp eed serial data transmission to the trigger pro cessors. The demonstrator Multi-Chip Mo dule has a size of 15.9 cm 2 and it consists of 9 dies. The MCM w as designed with a smallest feature size of 100 m and it w as fabricated in a laminated MCM-L pro cess o ered b yW urth Elektronik. A Flip-Chip in terconnection ASIC (Finco) w as dev elop ed for the PPrD-MCM and fabricated in a 0.8 m BiCMOS- pro cess o ered b ...

  3. Compact printed multiband antenna with independent setting suitable for fixed and reconfigurable wireless communication systems

    KAUST Repository

    Abutarboush, Hattan; Nilavalan, Rajagopal; Cheung, Sing Wai; Nasr, Karim Medhat A

    2012-01-01

    This paper presents the design of a low-profile compact printed antenna for fixed frequency and reconfigurable frequency bands. The antenna consists of a main patch, four sub-patches, and a ground plane to generate five frequency bands, at 0.92, 1.73, 1.98, 2.4, and 2.9 GHz, for different wireless systems. For the fixed-frequency design, the five individual frequency bands can be adjusted and set independently over the wide ranges of 18.78%, 22.75%, 4.51%, 11%, and 8.21%, respectively, using just one parameter of the antenna. By putting a varactor (diode) at each of the sub-patch inputs, four of the frequency bands can be controlled independently over wide ranges and the antenna has a reconfigurable design. The tunability ranges for the four bands of 0.92, 1.73, 1.98, and 2.9 GHz are 23.5%, 10.30%, 13.5%, and 3%, respectively. The fixed and reconfigurable designs are studied using computer simulation. For verification of simulation results, the two designs are fabricated and the prototypes are measured. The results show a good agreement between simulated and measured results. © 1963-2012 IEEE.

  4. The driving and controlling techniques of compactPCI bus in VxWorks real-time operating system

    International Nuclear Information System (INIS)

    Li Anzong; Ju Xiaodong; Qiao Wenxiao

    2005-01-01

    CompactPCI bus and interface featuring, the content and function of PCI configuration register are introduced herein. The driving and controlling techniques of CompactPCI bus in VxWorks real-time operating system are detailed. Hardware interrupt handling is one of key significance in real-time systems, because it is usually through interrupts that the system is informed of external events. VxWorks allows C functions to be connected to any interrupt. A routine connected to an interrupt in this way is called an interrupt service routine (ISR). For response of interrupt, interrupt control/status register of PCI 9054 interface chip needs to be set. The general-purpose binary semaphore used in ISR is capable of addressing the requirements of both forms of task coordination: mutual exclusion and synchronization. Therefore, the system runs stably and reliably. (authors)

  5. Multiphoton tomography of the human eye

    Science.gov (United States)

    König, Karsten; Batista, Ana; Hager, Tobias; Seitz, Berthold

    2017-02-01

    Multiphoton tomography (MPT) is a novel label-free clinical imaging method for non-invasive tissue imaging with high spatial (300 nm) and temporal (100 ps) resolutions. In vivo optical histology can be realized due to the nonlinear excitation of endogenous fluorophores and second-harmonic generation (SHG) of collagen. Furthermore, optical metabolic imaging (OMI) is performed by two-photon autofluorescence lifetime imaging (FLIM). So far, applications of the multiphoton tomographs DermaInspect and MPTflex were limited to dermatology. Novel applications include intraoperative brain tumor imaging as well as cornea imaging. In this work we describe two-photon imaging of ex vivo human corneas unsuitable for transplantation. Furthermore, the cross-linking (CXL) process of corneal collagen based on UVA exposure and 0.1 % riboflavin was studied. The pharmacokinetics of the photosensitizer could be detected with high spatial resolution. Interestingly, an increase in the stromal autofluorescence intensity and modifications of the autofluorescence lifetimes were observed in the human corneal samples within a few days following CXL.

  6. Efficient Multiphoton Generation in Waveguide Quantum Electrodynamics

    Science.gov (United States)

    González-Tudela, A.; Paulisch, V.; Kimble, H. J.; Cirac, J. I.

    2017-05-01

    Engineering quantum states of light is at the basis of many quantum technologies such as quantum cryptography, teleportation, or metrology among others. Though, single photons can be generated in many scenarios, the efficient and reliable generation of complex single-mode multiphoton states is still a long-standing goal in the field, as current methods either suffer from low fidelities or small probabilities. Here we discuss several protocols which harness the strong and long-range atomic interactions induced by waveguide QED to efficiently load excitations in a collection of atoms, which can then be triggered to produce the desired multiphoton state. In order to boost the success probability and fidelity of each excitation process, atoms are used to both generate the excitations in the rest, as well as to herald the successful generation. Furthermore, to overcome the exponential scaling of the probability of success with the number of excitations, we design a protocol to merge excitations that are present in different internal atomic levels with a polynomial scaling.

  7. Multiphoton excitation and high-harmonics generation in topological insulator.

    Science.gov (United States)

    Avetissian, H K; Avetissian, A K; Avchyan, B R; Mkrtchian, G F

    2018-05-10

    Multiphoton interaction of coherent electromagnetic radiation with 2D metallic carriers confined on the surface of the 3D topological insulator is considered. A microscopic theory describing the nonlinear interaction of a strong wave and metallic carriers with many-body Coulomb interaction is developed. The set of integrodifferential equations for the interband polarization and carrier occupation distribution is solved numerically. Multiphoton excitation of Fermi-Dirac sea of 2D massless carriers is considered for a THz pump wave. It is shown that in the moderately strong pump wave field along with multiphoton interband/intraband transitions the intense radiation of high harmonics takes place.

  8. Multiphoton excitation and high-harmonics generation in topological insulator

    Science.gov (United States)

    Avetissian, H. K.; Avetissian, A. K.; Avchyan, B. R.; Mkrtchian, G. F.

    2018-05-01

    Multiphoton interaction of coherent electromagnetic radiation with 2D metallic carriers confined on the surface of the 3D topological insulator is considered. A microscopic theory describing the nonlinear interaction of a strong wave and metallic carriers with many-body Coulomb interaction is developed. The set of integrodifferential equations for the interband polarization and carrier occupation distribution is solved numerically. Multiphoton excitation of Fermi–Dirac sea of 2D massless carriers is considered for a THz pump wave. It is shown that in the moderately strong pump wave field along with multiphoton interband/intraband transitions the intense radiation of high harmonics takes place.

  9. High β experiment and confinement regimes in a compact helical system

    International Nuclear Information System (INIS)

    Matsuoka, K.; Okamura, S.; Nishimura, K.; Tsumori, K.; Akiyama, R.; Yamada, H.; Sakakibara, S.; Lazaros, A.; Xu, J.; Ida, K.; Tanaka, K.; Morisaki, T.; Morita, S.; Arimoto, H.; Fujiwara, M.; Idei, H.; Iguchi, H.; Kaneko, O.; Kawamoto, T.; Kubo, S.; Kuroda, T.; Motojima, O.; Ozaki, T.; Pustovitov, V.D.; Sagara, A.; Takahashi, C.; Toi, K.; Watari, T.; Yamada, I.

    1995-01-01

    A volume-averaged equilibrium β value left angle β eq right angle of 2.14% is achieved in a compact helical system using two neutral beam lines with balanced injection and intense wall conditioning with Ti gettering. This value is the highest β value realized so far in helical systems. Reheat mode, where the stored energy increases after turn-off of a strong gas puff, is employed in the experiment. Discharge conditions are as follows: B t =0.61T; beam power through the port, 1.1MW (coinjection) and 0.8MW (counterinjection); line-averaged electron density n e =6.5x10 13 cm -3 . Amplitudes of magnetic fluctuations integrated over the frequency range from 3kHz to 100kHz become saturated at left angle β eq right angle higher than 1%. Dominant coherent modes are m/n=2/1 and 1/1 when left angle β eq right angle is lower and higher respectively than 1%. Dependence of the energy confinement time τ E on n e (up to 8x10 13 cm -3 ) and B t (from 0.6 to 1.8T) is also studied in this high β experiment. When the density increases τ E degrades compared with the LHD scaling; the density dependence exhibits Bohm-like behaviour. On the contrary, τ E scales as B ∼0.75 t , which is rather close to the LHD scaling (gyro-Bohm-like behaviour). ((orig.))

  10. Quasi-disjoint pentadiagonal matrix systems for the parallelization of compact finite-difference schemes and filters

    Science.gov (United States)

    Kim, Jae Wook

    2013-05-01

    This paper proposes a novel systematic approach for the parallelization of pentadiagonal compact finite-difference schemes and filters based on domain decomposition. The proposed approach allows a pentadiagonal banded matrix system to be split into quasi-disjoint subsystems by using a linear-algebraic transformation technique. As a result the inversion of pentadiagonal matrices can be implemented within each subdomain in an independent manner subject to a conventional halo-exchange process. The proposed matrix transformation leads to new subdomain boundary (SB) compact schemes and filters that require three halo terms to exchange with neighboring subdomains. The internode communication overhead in the present approach is equivalent to that of standard explicit schemes and filters based on seven-point discretization stencils. The new SB compact schemes and filters demand additional arithmetic operations compared to the original serial ones. However, it is shown that the additional cost becomes sufficiently low by choosing optimal sizes of their discretization stencils. Compared to earlier published results, the proposed SB compact schemes and filters successfully reduce parallelization artifacts arising from subdomain boundaries to a level sufficiently negligible for sophisticated aeroacoustic simulations without degrading parallel efficiency. The overall performance and parallel efficiency of the proposed approach are demonstrated by stringent benchmark tests.

  11. A Compact Ionic Polymer Metal Composite (IPMC System with Inductive Sensor for Closed Loop Feedback

    Directory of Open Access Journals (Sweden)

    Jiaqi Wang

    2015-05-01

    Full Text Available Ionic polymer metal composite (IPMC, of which a low actuating voltage (<5 V, high power efficiency and biocompatibility makes it a proven candidate for low power devices. However, due to its inherent nonlinear behaviour and time-variance, feedback control, as well as reliable sensing means, are required for accurate operations. This paper presents an IPMC actuator implemented with an inductive sensor to enhance the reliability and compactness of the overall device. A practical, low cost and importantly, compact inductive sensor fabricated on a printed circuit board (PCB is proposed here. Target material selections and coil design considerations are discussed. It is experimentally determined that the inductive sensor has comparable performance to a laser sensor. Based on a proportional-integral-derivative (PID control results the inductive sensor has demonstrated to be an alternative to a laser sensor allowing devices using IPMC actuators to be compact.

  12. Stabilization of compactible waste

    International Nuclear Information System (INIS)

    Franz, E.M.; Heiser, J.H. III; Colombo, P.

    1990-09-01

    This report summarizes the results of series of experiments performed to determine the feasibility of stabilizing compacted or compactible waste with polymers. The need for this work arose from problems encountered at disposal sites attributed to the instability of this waste in disposal. These studies are part of an experimental program conducted at Brookhaven National Laboratory (BNL) investigating methods for the improved solidification/stabilization of DOE low-level wastes. The approach taken in this study was to perform a series of survey type experiments using various polymerization systems to find the most economical and practical method for further in-depth studies. Compactible dry bulk waste was stabilized with two different monomer systems: styrene-trimethylolpropane trimethacrylate (TMPTMA) and polyester-styrene, in laboratory-scale experiments. Stabilization was accomplished by wetting or soaking compactible waste (before or after compaction) with monomers, which were subsequently polymerized. Three stabilization methods are described. One involves the in-situ treatment of compacted waste with monomers in which a vacuum technique is used to introduce the binder into the waste. The second method involves the alternate placement and compaction of waste and binder into a disposal container. In the third method, the waste is treated before compaction by wetting the waste with the binder using a spraying technique. A series of samples stabilized at various binder-to-waste ratios were evaluated through water immersion and compression testing. Full-scale studies were conducted by stabilizing two 55-gallon drums of real compacted waste. The results of this preliminary study indicate that the integrity of compacted waste forms can be readily improved to ensure their long-term durability in disposal environments. 9 refs., 10 figs., 2 tabs

  13. A Compact, Portable, Reduced-Cost, Gamma Ray Spectroscopic System for Nuclear Verification Final Report CRADA No. TSB-1551-98

    Energy Technology Data Exchange (ETDEWEB)

    Lavietes, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kalkhoran, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-19

    The overall goal of this project was to demonstrate a compact gamma-ray spectroscopic system with better energy resolution and lower costs than scintillator-based detector systems for uranium enrichment analysis applications.

  14. Monitoring cirrus cloud and tropopause height over Hanoi using a compact lidar system

    International Nuclear Information System (INIS)

    Bui Van Hai; Dinh Van Trung; Nguyen Xuan Tuan; Dao Duy Thang; Nguyen Thanh Binh

    2012-01-01

    Cirrus clouds in the upper troposphere and the lower stratosphere have attracted great attention due to their important role and impact on the atmospheric radioactive balance. Because cirrus clouds are located high in the atmosphere, their study requires a high resolution remote sensing technique not only for detection but also for the characterization of their properties. The lidar technique with its inherent high sensitivity and resolution has become an indispensable tool for studying and improving our understanding of cirrus cloud. Using lidar technique we can simultaneously measure the cloud height, thickness and follow its temporal evolution. In this paper we describe the development of a compact and highly sensitive lidar system with the aim to remotely monitor for the first time the cirrus clouds over Hanoi (2101:42 N, 10551:12 W). From the lidar data collected during the year 2011. We derive the mean cloud height, location of cloud top, the cloud mean thickness and their temporal evolution. We then compare the location of the cloud top with the position of the tropopause determined the radiosonde data and found good that the distance between cloud top and tropopause remains fairly stable, indicating that generally the top of cirrus clouds is the good tracer of the tropopause. We found that the cirrus clouds are generally located at height between 11.2 to 15 km with average height of 13.4 km. Their thickness is between 0.3 and 3.8 km with average value of 1.7 km. We also compare the properties of cirrus cloud with that observed at other locations around the world based on lidar technique. (author)

  15. HIDING IN PLAIN SIGHT: RECORD-BREAKING COMPACT STELLAR SYSTEMS IN THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Sandoval, Michael A.; Vo, Richard P.; Romanowsky, Aaron J.; Strader, Jay; Choi, Jieun; Conroy, Charlie; Jennings, Zachary G.; Villaume, Alexa; Brodie, Jean P.; Foster, Caroline; Norris, Mark A.; Janz, Joachim; Forbes, Duncan A.

    2015-01-01

    Motivated by the recent, serendipitous discovery of the densest known galaxy, M60-UCD1, we present two initial findings from a follow-up search, using the Sloan Digital Sky Survey, Subaru/Suprime-Cam, and Hubble Space Telescope imaging, and SOuthern Astrophysical Research (SOAR)/Goodman spectroscopy. The first object discovered, M59-UCD3, has a similar size to M60-UCD1 (half-light radius of r h ∼ 20 pc) but is 40% more luminous (M V ∼ −14.6), making it the new densest-known galaxy. The second, M85-HCC1, has a size like a typical globular cluster (GC; r h ∼ 1.8 pc) but is much more luminous (M V ∼ −12.5). This hypercompact cluster is by far the densest confirmed free-floating stellar system, and is equivalent to the densest known nuclear star clusters. From spectroscopy, we find that both objects are relatively young (∼9 and ∼3 Gyr, respectively), with metal-abundances that resemble those of galaxy centers. Their host galaxies show clear signs of large-scale disturbances, and we conclude that these dense objects are the remnant nuclei of recently accreted galaxies. M59-UCD3 is an ideal target for follow-up with high-resolution imaging and spectroscopy to search for an overweight central supermassive black hole as was discovered in M60-UCD1. These findings also emphasize the potential value of ultra-compact dwarfs and massive GCs as tracers of the assembly histories of galaxies

  16. HIDING IN PLAIN SIGHT: RECORD-BREAKING COMPACT STELLAR SYSTEMS IN THE SLOAN DIGITAL SKY SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval, Michael A.; Vo, Richard P.; Romanowsky, Aaron J. [Department of Physics and Astronomy, San José State University, One Washington Square, San Jose, CA 95192 (United States); Strader, Jay [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Choi, Jieun; Conroy, Charlie [Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Jennings, Zachary G.; Villaume, Alexa [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Brodie, Jean P. [University of California Observatories, 1156 High Street, Santa Cruz, CA 95064 (United States); Foster, Caroline [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia); Norris, Mark A. [Max Planck Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); Janz, Joachim; Forbes, Duncan A. [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122 (Australia)

    2015-07-20

    Motivated by the recent, serendipitous discovery of the densest known galaxy, M60-UCD1, we present two initial findings from a follow-up search, using the Sloan Digital Sky Survey, Subaru/Suprime-Cam, and Hubble Space Telescope imaging, and SOuthern Astrophysical Research (SOAR)/Goodman spectroscopy. The first object discovered, M59-UCD3, has a similar size to M60-UCD1 (half-light radius of r{sub h} ∼ 20 pc) but is 40% more luminous (M{sub V} ∼ −14.6), making it the new densest-known galaxy. The second, M85-HCC1, has a size like a typical globular cluster (GC; r{sub h} ∼ 1.8 pc) but is much more luminous (M{sub V} ∼ −12.5). This hypercompact cluster is by far the densest confirmed free-floating stellar system, and is equivalent to the densest known nuclear star clusters. From spectroscopy, we find that both objects are relatively young (∼9 and ∼3 Gyr, respectively), with metal-abundances that resemble those of galaxy centers. Their host galaxies show clear signs of large-scale disturbances, and we conclude that these dense objects are the remnant nuclei of recently accreted galaxies. M59-UCD3 is an ideal target for follow-up with high-resolution imaging and spectroscopy to search for an overweight central supermassive black hole as was discovered in M60-UCD1. These findings also emphasize the potential value of ultra-compact dwarfs and massive GCs as tracers of the assembly histories of galaxies.

  17. Amplitudes for multiphoton quantum processes in linear optics

    International Nuclear Information System (INIS)

    UrIas, Jesus

    2011-01-01

    The prominent role that linear optical networks have acquired in the engineering of photon states calls for physically intuitive and automatic methods to compute the probability amplitudes for the multiphoton quantum processes occurring in linear optics. A version of Wick's theorem for the expectation value, on any vector state, of products of linear operators, in general, is proved. We use it to extract the combinatorics of any multiphoton quantum processes in linear optics. The result is presented as a concise rule to write down directly explicit formulae for the probability amplitude of any multiphoton process in linear optics. The rule achieves a considerable simplification and provides an intuitive physical insight about quantum multiphoton processes. The methodology is applied to the generation of high-photon-number entangled states by interferometrically mixing coherent light with spontaneously down-converted light.

  18. Amplitudes for multiphoton quantum processes in linear optics

    Science.gov (United States)

    Urías, Jesús

    2011-07-01

    The prominent role that linear optical networks have acquired in the engineering of photon states calls for physically intuitive and automatic methods to compute the probability amplitudes for the multiphoton quantum processes occurring in linear optics. A version of Wick's theorem for the expectation value, on any vector state, of products of linear operators, in general, is proved. We use it to extract the combinatorics of any multiphoton quantum processes in linear optics. The result is presented as a concise rule to write down directly explicit formulae for the probability amplitude of any multiphoton process in linear optics. The rule achieves a considerable simplification and provides an intuitive physical insight about quantum multiphoton processes. The methodology is applied to the generation of high-photon-number entangled states by interferometrically mixing coherent light with spontaneously down-converted light.

  19. Multi-photon transitions and Rabi resonance in continuous wave EPR.

    Science.gov (United States)

    Saiko, Alexander P; Fedaruk, Ryhor; Markevich, Siarhei A

    2015-10-01

    The study of microwave-radiofrequency multi-photon transitions in continuous wave (CW) EPR spectroscopy is extended to a Rabi resonance condition, when the radio frequency of the magnetic-field modulation matches the Rabi frequency of a spin system in the microwave field. Using the non-secular perturbation theory based on the Bogoliubov averaging method, the analytical description of the response of the spin system is derived for all modulation frequency harmonics. When the modulation frequency exceeds the EPR linewidth, multi-photon transitions result in sidebands in absorption EPR spectra measured with phase-sensitive detection at any harmonic. The saturation of different-order multi-photon transitions is shown to be significantly different and to be sensitive to the Rabi resonance. The noticeable frequency shifts of sidebands are found to be the signatures of this resonance. The inversion of two-photon lines in some spectral intervals of the out-of-phase first-harmonic signal is predicted under passage through the Rabi resonance. The inversion indicates the transition from absorption to stimulated emission or vice versa, depending on the sideband. The manifestation of the primary and secondary Rabi resonance is also demonstrated in the time evolution of steady-state EPR signals formed by all harmonics of the modulation frequency. Our results provide a theoretical framework for future developments in multi-photon CW EPR spectroscopy, which can be useful for samples with long spin relaxation times and extremely narrow EPR lines. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Rotational averaging of multiphoton absorption cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Friese, Daniel H., E-mail: daniel.h.friese@uit.no; Beerepoot, Maarten T. P.; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, University of Tromsø — The Arctic University of Norway, N-9037 Tromsø (Norway)

    2014-11-28

    Rotational averaging of tensors is a crucial step in the calculation of molecular properties in isotropic media. We present a scheme for the rotational averaging of multiphoton absorption cross sections. We extend existing literature on rotational averaging to even-rank tensors of arbitrary order and derive equations that require only the number of photons as input. In particular, we derive the first explicit expressions for the rotational average of five-, six-, and seven-photon absorption cross sections. This work is one of the required steps in making the calculation of these higher-order absorption properties possible. The results can be applied to any even-rank tensor provided linearly polarized light is used.

  1. A compact ultra-clean system for deploying radioactive sources inside the KamLAND detector

    NARCIS (Netherlands)

    Banks, T.I.; Freedman, S.J.; Wallig, J.; Ybarrolaza, N.; Gando, A.; Gando, Y.; Ikeda, H.; Inoue, K.; Kishimoto, Y.; Koga, M.; Mitsui, T.; Nakamura, K.; Shimizu, I.; Shirai, J.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B.D.; Yoshida, H.; Yoshida, S.; Kozlov, A.; Grant, C.; Keefer, G.; Piepke, A.; Bloxham, T.; Fujikawa, B.K.; Han, K.; Ichimura, K.; Murayama, H.; O'Donnell, T.; Steiner, H.M.; Winslow, L.A.; Dwyer, D.A.; McKeown, R.D.; Zhang, C.; Berger, B.E.; Lane, C.E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J.G.; Matsuno, S.; Sakai, M.; Horton-Smith, G.A.; Downum, K.E.; Gratta, G.; Efremenko, Y.; Perevozchikov, O.; Karwowski, H.J.; Markoff, D.M.; Tornow, W.; Heeger, K.M.; Detwiler, J.A.; Enomoto, S.; Decowski, M.P.

    2015-01-01

    We describe a compact, ultra-clean device used to deploy radioactive sources along the vertical axis of the KamLAND liquid-scintillator neutrino detector for purposes of calibration. The device worked by paying out and reeling in precise lengths of a hanging, small-gauge wire rope (cable); an

  2. Limiting energy loss distributions for multiphoton channeling radiation

    International Nuclear Information System (INIS)

    Bondarenco, M.V.

    2015-01-01

    Recent results in the theory of multiphoton spectra for coherent radiation sources are overviewed, with the emphasis on channeling radiation. For the latter case, the importance of the order of resummation and averaging is emphasized. Limiting shapes of multiphoton spectra at high intensity are discussed for different channeling regimes. In some spectral regions, there emerges a correspondence between the radiative energy loss and the electron integrals of motion

  3. Studies of atmospheric molecules by multiphoton spectroscopy

    International Nuclear Information System (INIS)

    Johnson, P.M.

    1990-12-01

    Resonance ionization processes can play an important role in understanding molecules important in combustion processes. They are a reflection of the dynamic as well as the static properties of atomic and molecular species. Due to the sequential or quasisequential nature of photon absorption in resonant multiphoton events, the lifetimes of the intermediate states play an essential role in the overall cross-sections if they are short enough to be competitive with subsequent photon interactions. In molecules this is particularly important because there are many dissociative and other radiationless pathways which can contribute to a competitive channel. Under those conditions it should be possible to obtain information about the nature of the dynamics of the intermediate state form the multiphoton ionization process. This will involve looking at not only the ionization cross-section but also other observables such as the kinetic energy of the ejected electrons and possibly the distribution of fragment ions produced in the ionization event. Whether the ionization amplitude is affected or not, the time scales of the dynamic events which alter the ionization path can vary over a large range from the femtoseconds of dissociation to the microseconds of some radiationless transitions in large molecules. When the competing channel has a time scale shorter than the laser pulse length, the kinetics of the ionization are intimately tied into the precise nature of the laser pulse. For time scales longer than the laser pulse, pump-probe ionization schemes in which one laser prepares a state while another does the ionization provide a particularly simple method for investigating the dynamics of the intermediate state. Here the author discusses examples from each of these regimes. CO 2 and pyrazine are examined. 6 refs., 6 figs

  4. Smearing of mass accretion rate variation by viscous processes in accretion disks in compact binary systems

    Science.gov (United States)

    Ghosh, A.; Chakrabarti, Sandip K.

    2016-09-01

    Variation of mass supply rate from the companion can be smeared out by viscous processes inside an accretion disk. Hence, by the time the flow reaches the inner edge, the variation in X-rays need not reflect the true variation of the mass supply rate at the outer edge. However, if the viscosity fluctuates around a mean value, one would expect the viscous time scale t_{{visc}} also to spread around a mean value. In high mass X-ray binaries, which are thought to be primarily wind-fed, the size of the viscous Keplerian disk is smaller and thus such a spread could be lower as compared to the low mass X-ray binaries which are primarily fed by Roche lobe overflow. If there is an increasing or decreasing trend in viscosity, the interval between enhanced emission would be modified systematically. In the absence of a detailed knowledge about the variation of mass supply rates at the outer edge, we study ideal circumstances where modulation must take place exactly in orbital time scales, such as when there is an ellipticity in the orbit. We study a few compact binaries using long term All Sky monitor (ASM) data (1.5-12 keV) of Rossi X-ray Timing Explorer (RXTE) and all sky survey data (15-50 keV) of Swift satellites by different methods to look for such smearing effects and to infer what these results can tell us about the viscous processes inside the respective disks. We employ three different methods to seek imprints of periodicity on the X-ray variation and found that in all the cases, the location of the peak in the power density spectra is consistent with the orbital frequencies. Interestingly, in high mass X-ray binaries the peaks are sharp with high rms values, consistent with a small Keplerian disk in a wind fed system. However, in low mass X-ray binaries with larger Keplerian disk component, the peaks are spreaded out with much lower rms values. X-ray reflections, or superhump phenomena which may also cause such X-ray modulations would not be affected by the size of

  5. SU-E-T-188: Commission of World 1st Commercial Compact PBS Proton System

    Energy Technology Data Exchange (ETDEWEB)

    Ding, X; Patel, B; Song, X; Syh, J; Syh, J; Zhang, J; Freund, D; Rosen, L; Wu, H [Willis-Knighton Medical Center, Shreveport, LA (United States)

    2015-06-15

    Purpose: ProteusONE is the 1st commercial compact PBS proton system with an upstream scanning gantry and C230 cyclotron. We commissioned XiO and Raystation TPS simultaneously. This is a summary of beam data collection, modeling, and verification and comparison without range shiter for this unique system with both TPS. Methods: Both Raystation and XiO requires the same measurements data: (i) integral depth dose(IDDs) of single central spot measured in water tank; (ii) absolute dose calibration measured at 2cm depth of water with mono-energetic 10×10 cm2 field with spot spacing 4mm, 1MU per spot; and (iii) beam spot characteristics in air at 0cm and ± 20cm away from ISO. To verify the beam model for both TPS, same 15 cube plans were created to simulate different treatment sites, target volumes and positions. PDDs of each plan were measured using a Multi-layer Ionization Chamber(MLIC), absolute point dose verification were measured using PPC05 in water tank and patient-specific QA were measured using MatriXX PT, a 2D ion chamber array. Results: All the point dose measurements at midSOBP were within 2% for both XiO and Raystation. However, up to 5% deviations were observed in XiO’s plans at shallow depth while within 2% in Raystation plans. 100% of the ranges measured were within 1 mm with maximum deviation of 0.5 mm. 20 patient specific plan were generated and measured in 3 planes (distal, proximal and midSOBP) in Raystation. The average of gamma index is 98.7%±3% with minimum 94% Conclusions: Both TPS were successfully commissioned and can be safely deployed for clinical use for ProteusONE. Based on our clinical experience in PBS planning, user interface, function and workflow, we preferably use Raystation as our main clinical TPS. Gamma Index >95% at 3%/3 mm criteria is our institution action level for patient specific plan QAs.

  6. Development of a Deep-Penetrating, Compact Geothermal Heat Flow System for Robotic Lunar Geophysical Missions

    Science.gov (United States)

    Nagihara, Seiichi; Zacny, Kris; Hedlund, Magnus; Taylor, Patrick T.

    2012-01-01

    Geothermal heat flow measurements are a high priority for the future lunar geophysical network missions recommended by the latest Decadal Survey of the National Academy. Geothermal heat flow is obtained as a product of two separate measurements of geothermal gradient and thermal conductivity of the regolith/soil interval penetrated by the instrument. The Apollo 15 and 17 astronauts deployed their heat flow probes down to 1.4-m and 2.3-m depths, respectively, using a rotary-percussive drill. However, recent studies show that the heat flow instrument for a lunar mission should be capable of excavating a 3-m deep hole to avoid the effect of potential long-term changes of the surface thermal environment. For a future robotic geophysical mission, a system that utilizes a rotary/percussive drill would far exceed the limited payload and power capacities of the lander/rover. Therefore, we are currently developing a more compact heat flow system that is capable of 3-m penetration. Because the grains of lunar regolith are cohesive and densely packed, the previously proposed lightweight, internal hammering systems (the so-called moles ) are not likely to achieve the desired deep penetration. The excavation system for our new heat flow instrumentation utilizes a stem which winds out of a pneumatically driven reel and pushes its conical tip into the regolith. Simultaneously, gas jets, emitted from the cone tip, loosen and blow away the soil. Lab tests have demonstrated that this proboscis system has much greater excavation capability than a mole-based heat flow system, while it weighs about the same. Thermal sensors are attached along the stem and at the tip of the penetrating cone. Thermal conductivity is measured at the cone tip with a short (1- to 1.5-cm long) needle sensor containing a resistance temperature detector (RTD) and a heater wire. When it is inserted into the soil, the heater is activated. Thermal conductivity of the soil is obtained from the rate of temperature

  7. miniPixD : a compact sample analysis system which combines X-ray imaging and diffraction

    International Nuclear Information System (INIS)

    Moss, Robert; Crews, Chiaki; Speller, Robert; Wilson, Matthew

    2017-01-01

    This paper introduces miniPixD : a new, compact system that utilises transmission X-ray imaging and X-ray diffraction (XRD) to locate and identify materials of interest within an otherwise opaque volume. The system and the embodied techniques have utility in security screening, medical diagnostics, non-destructive testing (NDT) and quality assurance (QA). This paper outlines the design of the system including discussion on the choice of components and presents some data from relevant samples which are compared to other energy dispersive and angular dispersive XRD techniques.

  8. A preliminary feasibility study of passive in-core thermionic reactors for highly compact space nuclear power systems

    International Nuclear Information System (INIS)

    Parlos, A.G.; Khan, E.U.; Frymire, R.; Negron, S.; Thomas, J.K.; Peddicord, K.L.

    1991-01-01

    Results of a preliminary feasibility study on a new concept for a highly compact space reactor power systems are presented. Notwithstanding the preliminary nature of the present study, the results which include a new space reactor configuration and its associated technologies indicate promising avenues for the devleopment of highly compact space reactors. The calculations reported in this study include a neutronic design trade-off study using a two-dimensioinal neutron transport model, as well as a simplified one-dimensional thermal analysis of the reactor core. In arriving at the most desirable configuration, various options have been considered and analyzed, and their advantages/disadvantages have been compared. However, because of space limitation, only the most favorable reactor configuration is presented in this summary

  9. PAVENET OS: A Compact Hard Real-Time Operating System for Precise Sampling in Wireless Sensor Networks

    Science.gov (United States)

    Saruwatari, Shunsuke; Suzuki, Makoto; Morikawa, Hiroyuki

    The paper shows a compact hard real-time operating system for wireless sensor nodes called PAVENET OS. PAVENET OS provides hybrid multithreading: preemptive multithreading and cooperative multithreading. Both of the multithreading are optimized for two kinds of tasks on wireless sensor networks, and those are real-time tasks and best-effort ones. PAVENET OS can efficiently perform hard real-time tasks that cannot be performed by TinyOS. The paper demonstrates the hybrid multithreading realizes compactness and low overheads, which are comparable to those of TinyOS, through quantitative evaluation. The evaluation results show PAVENET OS performs 100 Hz sensor sampling with 0.01% jitter while performing wireless communication tasks, whereas optimized TinyOS has 0.62% jitter. In addition, PAVENET OS has a small footprint and low overheads (minimum RAM size: 29 bytes, minimum ROM size: 490 bytes, minimum task switch time: 23 cycles).

  10. Thermal and economic analyses of a compact waste heat recovering system for the marine diesel engine using transcritical Rankine cycle

    International Nuclear Information System (INIS)

    Yang, Min-Hsiung

    2015-01-01

    Graphical abstract: Schematic diagram of the CWHRS for a marine diesel engine. - Highlights: • The economic optimization of a CWHRS of a marine engine is investigated. • The environmental protection refrigerant, R1234yf is used as the working fluid of the TRC system. • The optimal analysis and comparison of three models for waste heat recovering have been carried out. • The optimization of payback periods, CO_2 emission reducing and diesel oil saving are reported. - Abstract: The aim of this study is to investigate the economic performance of a novel compact waste heat recovering system for the marine diesel engine. The transcritical Rankine cycle is employed to convert the waste heat resources to useful work with R1234yf. To evaluate the utilizing efficiency and economic performance of waste heat resources, which are exhaust gas, cylinder cooling water and scavenge air cooling water, three operating models of the system are investigated and compared. The levelized energy cost, which represents the total cost per kilo-watt power, is employed to evaluate the economic performance of the system. The economic optimization and its corresponding optimal parameters of each operating model in the compact waste heat recovering system are obtained theoretically. The results show that the minimal levelized energy cost of the proposed system operated in Model I is the lowest of the three models, and then are Model II and Model III, which are 2.96% and 9.36% lower for, respectively. Similarly, the CO_2 emission reduction is the highest for Model I of the three models, and 21.6% and 30.1% lower are obtained for Model II and Model III, respectively. The compact waste heat recovering system operated in Model I has superiority on the payback periods and heavy diesel oil saving over the others. Finally, the correlations using specific work of working fluid and condensation temperature as parameters are proposed to assess the optimal conditions in economic performance

  11. Clinical optical coherence tomography combined with multiphoton tomography for evaluation of several skin disorders

    Science.gov (United States)

    König, Karsten; Speicher, Marco; Bückle, Rainer; Reckfort, Julia; McKenzie, Gordon; Welzel, Julia; Koehler, Martin J.; Elsner, Peter; Kaatz, Martin

    2010-02-01

    The first clinical trial of optical coherence tomography (OCT) combined with multiphoton tomography (MPT) and dermoscopy is reported. State-of-the-art (i) OCT systems for dermatology (e.g. multibeam swept source OCT), (ii) the femtosecond laser multiphoton tomograph DermaInspectTM, and (iii) digital dermoscopes were applied to 47 patients with a diversity of skin diseases and disorders such as skin cancer, psoriasis, hemangioma, connective tissue diseases, pigmented lesions, and autoimmune bullous skin diseases. Dermoscopy, also called 'epiluminescent microscopy', provides two-dimensional color images of the skin surface. OCT imaging is based on the detection of optical reflections within the tissue measured interferometrically whereas nonlinear excitation of endogenous fluorophores and the second harmonic generation are the bases of MPT images. OCT cross sectional "wide field" image provides a typical field of view of 5 x 2 mm2 and offers fast information on the depth and the volume of the investigated lesion. In comparison, multiphoton tomography presents 0.36 x 0.36 mm2 horizontal or diagonal sections of the region of interest within seconds with submicron resolution and down to a tissue depth of 200 μm. The combination of OCT and MPT provides a synergistic optical imaging modality for early detection of skin cancer and other skin diseases.

  12. MARBLE (Multiple Antenna Radio-interferometry for Baseline Length Evaluation): Development of a Compact VLBI System for Calibrating GNSS and Electronic Distance Measurement Devices

    Science.gov (United States)

    Ichikawa, R.; Ishii, A.; Takiguchi, H.; Kimura, M.; Sekido, M.; Takefuji, K.; Ujihara, H.; Hanado, Y.; Koyama, Y.; Kondo, T.; Kurihara, S.; Kokado, K.; Kawabata, R.; Nozawa, K.; Mukai, Y.; Kuroda, J.; Ishihara, M.; Matsuzaka, S.

    2012-12-01

    We are developing a compact VLBI system with a 1.6-m diameter aperture dish in order to provide reference baseline lengths for calibration. The reference baselines are used to validate surveying instruments such as GPS and EDM and is maintained by the Geospatial Information Authority of Japan (GSI). The compact VLBI system will be installed at both ends of the reference baseline. Since the system is not sensitive enough to detect fringes between the two small dishes, we have designed a new observation concept including one large dish station. We can detect two group delays between each compact VLBI system and the large dish station based on conventional VLBI measurement. A group delay between the two compact dishes can be indirectly calculated using a simple equation. We named the idea "Multiple Antenna Radio-interferometry for Baseline Length Evaluation", or MARBLE system. The compact VLBI system is easy transportable and consists of the compact dish, a new wide-band front-end system, azimuth and elevation drive units, an IF down-converter unit, an antenna control unit (ACU), a counterweight, and a monument pillar. Each drive unit is equipped with a zero-backlash harmonic drive gearing component. A monument pillar is designed to mount typical geodetic GNSS antennas easily and an offset between the GNSS antenna reference point. The location of the azimuth-elevation crossing point of the VLBI system is precisely determined with an uncertainty of less than 0.2 mm. We have carried out seven geodetic VLBI experiments on the Kashima-Tsukuba baseline (about 54 km) using the two prototypes of the compact VLBI system between December 2009 and December 2010. The average baseline length and repeatability of the experiments is 54184874.0 ± 2.4 mm. The results are well consistent with those obtained by GPS measurements. In addition, we are now planning to use the compact VLBI system for precise time and frequency comparison between separated locations.

  13. DESIGN AND LAYOUT CONCEPTS FOR COMPACT, FACTORY-PRODUCED, TRANSPORTABLE, GENERATION IV REACTOR SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Mynatt Fred R.; Townsend, L.W.; Williamson, Martin; Williams, Wesley; Miller, Laurence W.; Khan, M. Khurram; McConn, Joe; Kadak, Andrew C.; Berte, Marc V.; Sawhney, Rapinder; Fife, Jacob; Sedler, Todd L.; Conway, Larry E.; Felde, Dave K.

    2003-11-12

    The purpose of this research project is to develop compact (100 to 400 MWe) Generation IV nuclear power plant design and layout concepts that maximize the benefits of factory-based fabrication and optimal packaging, transportation and siting. The reactor concepts selected were compact designs under development in the 2000 to 2001 period. This interdisciplinary project was comprised of three university-led nuclear engineering teams identified by reactor coolant type (water, gas, and liquid metal) and a fourth Industrial Engineering team. The reactors included a Modular Pebble Bed helium-cooled concept being developed at MIT, the IRIS water-cooled concept being developed by a team led by Westinghouse Electric Company, and a Lead-Bismuth-cooled concept developed by UT. In addition to the design and layout concepts this report includes a section on heat exchanger manufacturing simulations and a section on construction and cost impacts of proposed modular designs.

  14. DESIGN AND LAYOUT CONCEPTS FOR COMPACT, FACTORY-PRODUCED, TRANSPORTABLE, GENERATION IV REACTOR SYSTEMS

    International Nuclear Information System (INIS)

    Mynatt, Fred R.; Townsend, L.W.; Williamson, Martin; Williams, Wesley; Miller, Laurence W.; Khan, M. Khurram; McConn, Joe; Kadak, Andrew C.; Berte, Marc V.; Sawhney, Rapinder; Fife, Jacob; Sedler, Todd L.; Conway, Larry E.; Felde, Dave K.

    2003-01-01

    The purpose of this research project is to develop compact (100 to 400 MWe) Generation IV nuclear power plant design and layout concepts that maximize the benefits of factory-based fabrication and optimal packaging, transportation and siting. The reactor concepts selected were compact designs under development in the 2000 to 2001 period. This interdisciplinary project was comprised of three university-led nuclear engineering teams identified by reactor coolant type (water, gas, and liquid metal) and a fourth Industrial Engineering team. The reactors included a Modular Pebble Bed helium-cooled concept being developed at MIT, the IRIS water-cooled concept being developed by a team led by Westinghouse Electric Company, and a Lead-Bismuth-cooled concept developed by UT. In addition to the design and layout concepts this report includes a section on heat exchanger manufacturing simulations and a section on construction and cost impacts of proposed modular designs

  15. Development of the compact proton beam therapy system dedicated to spot scanning with real-time tumor-tracking technology

    Science.gov (United States)

    Umezawa, Masumi; Fujimoto, Rintaro; Umekawa, Tooru; Fujii, Yuusuke; Takayanagi, Taisuke; Ebina, Futaro; Aoki, Takamichi; Nagamine, Yoshihiko; Matsuda, Koji; Hiramoto, Kazuo; Matsuura, Taeko; Miyamoto, Naoki; Nihongi, Hideaki; Umegaki, Kikuo; Shirato, Hiroki

    2013-04-01

    Hokkaido University and Hitachi Ltd. have started joint development of the Gated Spot Scanning Proton Therapy with Real-Time Tumor-Tracking System by integrating real-time tumor tracking technology (RTRT) and the proton therapy system dedicated to discrete spot scanning techniques under the "Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program)". In this development, we have designed the synchrotron-based accelerator system by using the advantages of the spot scanning technique in order to realize a more compact and lower cost proton therapy system than the conventional system. In the gated irradiation, we have focused on the issues to maximize irradiation efficiency and minimize the dose errors caused by organ motion. In order to understand the interplay effect between scanning beam delivery and target motion, we conducted a simulation study. The newly designed system consists of the synchrotron, beam transport system, one compact rotating gantry treatment room with robotic couch, and one experimental room for future research. To improve the irradiation efficiency, the new control function which enables multiple gated irradiations per synchrotron cycle has been applied and its efficacy was confirmed by the irradiation time estimation. As for the interplay effect, we confirmed that the selection of a strict gating width and scan direction enables formation of the uniform dose distribution.

  16. Rearranging the lenslet array of the compact passive interference imaging system with high resolution

    Science.gov (United States)

    Liu, Gang; Wen, Desheng; Song, Zongxi

    2017-10-01

    With the development of aeronautics and astronautics, higher resolution requirement of the telescope was necessary. However, the increase in resolution of conventional telescope required larger apertures, whose size, weight and power consumption could be prohibitively expensive. This limited the further development of the telescope. This paper introduced a new imaging technology using interference—Compact Passive Interference Imaging Technology with High Resolution, and proposed a rearranging method for the arrangement of the lenslet array to obtain continuously object spatial frequency.

  17. Reconstruction of compact diagnostic and therapeutic systems of electron and X-ray

    International Nuclear Information System (INIS)

    Uesaka, Mitsuru

    2003-01-01

    This paper describes the state of the reconstruction study in the title by the Tokyo University in the project (organized by National Institute of Radiological Sciences) by the Ministry of Education, Culture, Sports Science and Technology, toward the development of advanced compact accelerators. The review of the accelerator development from the global aspect concludes that, at present, the medical linacs' are those of S-band, 6 MW Klystron with high energy (-20 Mev) and of X-band (9.3 GHz), 1 MW Magnetron with low energy (-6 Mev). A more compact, hard X-ray source (X-band 11.424 GHz, 2.4 cm wavelength) is proposed by the authors and is under development, where collision of accelerated electron and laser generates the X-ray (33 keV). This enables the volume-size to be reduced to 1/64. Globally, novel, advanced accelerators of C-W band (90 GHz), and laser/plasma (THz) are being developed. Problems in Japanese state of medical physics involving manpower are described together with idea of space-time control of Chemo-radiotherapy' composing from utilization of advanced compact accelerators, control of space and of time. (N.I.)

  18. Estimation of the domain containing all compact invariant sets of a system modelling the amplitude of a plasma instability

    International Nuclear Information System (INIS)

    Krishchenko, Alexander; Starkov, Konstantin

    2007-01-01

    In this Letter we describe localization results of all compact invariant sets of a system modelling the amplitude of a plasma instability proposed by Pikovski, Rabinovich and Trakhtengerts. We derive ellipsoidal and polytopic localization sets for a number of domains in the 4-dimensional parametrical space of this system. Other localization sets have been obtained by using paraboloids of a revolution, a circular cylinder and an elliptic paraboloid. Our approach is based on the solution of the first order extremum problem. A comparison of our method with the method of semipermeable surfaces is presented as well

  19. Estimation of the domain containing all compact invariant sets of a system modelling the amplitude of a plasma instability

    Energy Technology Data Exchange (ETDEWEB)

    Krishchenko, Alexander [Bauman Moscow State Technical University, 2nd Baumanskaya str., 5, Moscow 105005 (Russian Federation)]. E-mail: apkri@bmstu.ru; Starkov, Konstantin [CITEDI-IPN, Av. del Parque 1310, Mesa de Otay, Tijuana, BC (Mexico)]. E-mail: konst@citedi.mx

    2007-07-16

    In this Letter we describe localization results of all compact invariant sets of a system modelling the amplitude of a plasma instability proposed by Pikovski, Rabinovich and Trakhtengerts. We derive ellipsoidal and polytopic localization sets for a number of domains in the 4-dimensional parametrical space of this system. Other localization sets have been obtained by using paraboloids of a revolution, a circular cylinder and an elliptic paraboloid. Our approach is based on the solution of the first order extremum problem. A comparison of our method with the method of semipermeable surfaces is presented as well.

  20. Compact PEM fuel cell system combined with all-in-one hydrogen generator using chemical hydride as a hydrogen source

    International Nuclear Information System (INIS)

    Kim, Jincheol; Kim, Taegyu

    2015-01-01

    Highlights: • Compact fuel cell system was developed for a portable power generator. • Novel concept using an all-in-one reactor for hydrogen generation was proposed. • Catalytic reactor, hydrogen chamber and separator were combined in a volume. • The system can be used to drive fuel cell-powered unmanned autonomous systems. - Abstract: Compact fuel cell system was developed for a portable power generator. The power generator features a polymer electrolyte membrane fuel cell (PEMFC) using a chemical hydride as a hydrogen source. The hydrogen generator extracted hydrogen using a catalytic hydrolysis from a sodium borohydride alkaline solution. A novel concept using an all-in-one reactor was proposed in which a catalyst, hydrogen chamber and byproduct separator were combined in a volume. In addition, the reactor as well as a pump, cooling fans, valves and controller was integrated in a single module. A 100 W PEMFC stack was connected with the hydrogen generator and was evaluated at various load conditions. It was verified that the stable hydrogen supply was achieved and the developed system can be used to drive fuel cell-powered unmanned autonomous systems.

  1. A Discovery of a Compact High Velocity Cloud-Galactic Supershell System

    Science.gov (United States)

    Park, Geumsook; Koo, Bon-Chul; Kang, Ji-hyun; Gibson, Steven J.; Peek, Joshua Eli Goldston; Douglas, Kevin A.; Korpela, Eric J.; Heiles, Carl E.

    2017-01-01

    High velocity clouds (HVCs) are neutral hydrogen (HI) gas clouds having very different radial velocities from those of the Galactic disk material. While some large HVC complexes are known to be gas streams tidally stripped from satellite galaxies of the Milky Way, there are relatively isolated and small angular-sized HVCs, so called “compact HVCs (CHVCs)”, the origin of which remains controversial. There are about 300 known CHVCs in the Milky Way, and many of them show a head-tail structure, implying a ram pressure interaction with the diffuse Galactic halo gas. It is, however, not clear whether CHVCs are completely dissipated in the Galactic halo to feed the multi-phase circumgalactic medium or they can survive their trip through the halo and collide with the Galactic disk. The colliding CHVCs may leave a gigantic trail in the disk, and it had been suggested that some of HI supershells that require ≧ 3 x 1052 erg may be produced by the collision of such HVCs.Here we report the detection of a kiloparsec (kpc)-size supershell in the outskirts of the Milky Way with the compact HVC 040+01-282 (hereafter, CHVC040) at its geometrical center using the “Inner-Galaxy Arecibo L-band Feed Array” HI 21 cm survey data. The morphological and physical properties of both objects suggest that CHVC040, which is either a fragment of a nearby disrupted galaxy or a cloud that originated from an intergalactic accreting flow, collided with the disk ˜5 Myr ago to form the supershell. Our results show that some compact HVCs can survive their trip through the Galactic halo and inject energy and momentum into the Milky Way disk.

  2. Laboratory Testing of Solar Combi System with Compact Long Term PCM Heat Storage

    DEFF Research Database (Denmark)

    Johansen, Jakob Berg; Englmair, Gerald; Dannemand, Mark

    2016-01-01

    To enable the transition from fossil fuels as a primary heat source for domestic hot water preparation and space heating solar thermal energy has great potential. The heat from the sun has the disadvantage that it is not always available when there is a demand. To solve this mismatch a thermal...... seasonal storage can be used to store excess heat from the summer to the winter when the demand is higher than the supply. Installing a long term thermal storage in a one family house it needs to be compact and sensible heat storages are not suitable. A latent heat storage with a phase change material (PCM...

  3. Geometrical optics design of a compact range Gregorian subreflector system by the principle of the central ray

    Science.gov (United States)

    Clerici, Giancarlo; Burnside, Walter D.

    1989-01-01

    In recent years, the compact range has become very popular for measuring Radar Cross Section (RCS) and antenna patterns. The compact range, in fact, offers several advantages due to reduced size, a controlled environment, and privacy. On the other hand, it has some problems of its own, which must be solved properly in order to achieve high quality measurement results. For example, diffraction from the edges of the main reflector corrupts the plane wave in the target zone and creates spurious scattering centers in RCS measurements. While diffraction can be minimized by using rolled edges, the field of an offset single reflector compact range is corrupted by three other errors: the taper of the reflected field, the cross polarization introduced by the tilt of the feed and the aperture blockage introduced by the feed itself. These three errors can be eliminated by the use of a subreflector system. A properly designed subreflector system offers very little aperture blockage, no cross-polarization introduced and a minimization of the taper of the reflected field. A Gregorian configuration has been adopted in order to enclose the feed and the ellipsoidal subreflector in a lower chamber, which is isolated by absorbers from the upper chamber, where the main parabolic reflector and the target zone are enclosed. The coupling between the two rooms is performed through a coupling aperture. The first cut design for such a subreflector system is performed through Geometrical Optics ray tracing techniques (GO), and is greatly simplified by the use of the concept of the central ray introduced by Dragone. The purpose of the GO design is to establish the basic dimensions of the main reflector and subreflector, the size of the primary and secondary illuminating surfaces, the tilt angles of the subreflector and feed, and estimate the feed beamwidth. At the same time, the shape of the coupling aperture is initially determined.

  4. Development of a compact, fiber-coupled, six degree-of-freedom measurement system for precision linear stage metrology

    International Nuclear Information System (INIS)

    Yu, Xiangzhi; Gillmer, Steven R.; Woody, Shane C.; Ellis, Jonathan D.

    2016-01-01

    A compact, fiber-coupled, six degree-of-freedom measurement system which enables fast, accurate calibration, and error mapping of precision linear stages is presented. The novel design has the advantages of simplicity, compactness, and relatively low cost. This proposed sensor can simultaneously measure displacement, two straightness errors, and changes in pitch, yaw, and roll using a single optical beam traveling between the measurement system and a small target. The optical configuration of the system and the working principle for all degrees-of-freedom are presented along with the influence and compensation of crosstalk motions in roll and straightness measurements. Several comparison experiments are conducted to investigate the feasibility and performance of the proposed system in each degree-of-freedom independently. Comparison experiments to a commercial interferometer demonstrate error standard deviations of 0.33 μm in straightness, 0.14 μrad in pitch, 0.44 μradin yaw, and 45.8 μrad in roll.

  5. Development of a compact, fiber-coupled, six degree-of-freedom measurement system for precision linear stage metrology

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiangzhi, E-mail: xiangzhi.yu@rochester.edu; Gillmer, Steven R. [Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627 (United States); Woody, Shane C. [InSituTec Incorporated, 7140 Weddington Road, Concord, North Carolina 28027 (United States); Ellis, Jonathan D. [Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627 (United States); The Institute of Optics, University of Rochester, Rochester, New York 14627 (United States)

    2016-06-15

    A compact, fiber-coupled, six degree-of-freedom measurement system which enables fast, accurate calibration, and error mapping of precision linear stages is presented. The novel design has the advantages of simplicity, compactness, and relatively low cost. This proposed sensor can simultaneously measure displacement, two straightness errors, and changes in pitch, yaw, and roll using a single optical beam traveling between the measurement system and a small target. The optical configuration of the system and the working principle for all degrees-of-freedom are presented along with the influence and compensation of crosstalk motions in roll and straightness measurements. Several comparison experiments are conducted to investigate the feasibility and performance of the proposed system in each degree-of-freedom independently. Comparison experiments to a commercial interferometer demonstrate error standard deviations of 0.33 μm in straightness, 0.14 μrad in pitch, 0.44 μradin yaw, and 45.8 μrad in roll.

  6. Initial testing of a Compact Crystal Positioning System for the TOPAZ Single-Crystal Diffractometer at the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Frost, Matthew J.; Austin, Michael D.; Viola, Robert; Thomison, Jack; Carmen, Peter; Hoffmann, Christina; Miller, Echo M.; Mosier, Lisa B.; Overbay, Mark A.

    2009-01-01

    A precise, versatile, and automated method of orienting a sub-millimeter crystal in a focused neutron beam is required for e cient operation of the TOPAZ Single Crystal Di ractometer at the Spallation Neutron Source at Oak Ridge National Laboratory. To ful ll this need, a Compact Crystal Positioning System (CCPS) has been developed in collaboration with Square One Systems Design in Jackson, Wyoming. The system incorporates a tripod design with six vacuum-compatible piezoelectric linear motors capable of < 1 m resolution. National Instruments LabVIEW provides a means of system automation while at the same time accommodating the modular nature of the SNS sample environment control software for straightforward system integration. Initial results in a cryogenic test environment will be presented, as well as results from ambient tests performed at the Advanced Photon Source at Argonne National Laboratory.

  7. Design and development of a MLS based compact active suspension system, featuring air spring and energy harvesting capabilities

    DEFF Research Database (Denmark)

    Berg, Nick Ilsø; Holm, Rasmus Koldborg; Rasmussen, Peter Omand

    2016-01-01

    This paper describes the design and development of an novel Magnetic Lead Screw based active suspension system for passenger vehicles, using a new MLS topology. The design is based on performance specifications found from ISO road profiles, with a maximum harvested energy approach. By integrating...... the PMSM motor with the MLS, it possible to construct a very compact design with an integrated air spring. The prototype is build and frictional losses and efficiency for the MLS damper unit are measured. Additional the stall force and stall torque are measured for the build prototype to validate...

  8. Real-time high-resolution PC-based system for measurement of errors on compact disks

    Science.gov (United States)

    Tehranchi, Babak; Howe, Dennis G.

    1994-10-01

    Hardware and software utilities are developed to directly monitor the Eight-to-Fourteen (EFM) demodulated data bytes at the input of a CD player's Cross-Interleaved Reed-Solomon Code (CIRC) block decoder. The hardware is capable of identifying erroneous data with single-byte resolution in the serial data stream read from a Compact Disc by a CDD 461 Philips CD-ROM drive. In addition, the system produces graphical maps that show the physical location of the measured errors on the entire disc, or via a zooming and planning feature, on user selectable local disc regions.

  9. The multiphoton ionization of uranium hexafluoride

    International Nuclear Information System (INIS)

    Armstrong, D.P.

    1992-05-01

    Multiphoton ionization (MPI) time-of-flight mass spectroscopy and photoelectron spectroscopy studies of UF 6 have been conducted using focused light from the Nd:YAG laser fundamental (λ=1064 nm) and its harmonics (λ=532, 355, or 266 nm), as well as other wavelengths provided by a tunable dye laser. The MPI mass spectra are dominated by the singly and multiply charged uranium ions rather than by the UF x + fragment ions even at the lowest laser power densities at which signal could be detected. The laser power dependence of U n+ ions signals indicates that saturation can occur for many of the steps required for their ionization. In general, the doubly-charged uranium ion (U 2+ ) intensity is much greater than that of the singly-charged uranium ion (U + ). For the case of the tunable dye laser experiments, the U n+ (n = 1- 4) wavelength dependence is relatively unstructured and does not show observable resonance enhancement at known atomic uranium excitation wavelengths. The dominance of the U 2+ ion and the absence or very small intensities of UF x + fragments, along with the unsaturated wavelength dependence, indicate that mechanisms may exist other than ionization of bare U atoms after the stepwise photodissociation of F atoms from the parent molecule

  10. Assessment of the performance of a compact concentric spectrometer system for Atmospheric Differential Optical Absorption Spectroscopy

    Science.gov (United States)

    Whyte, C.; Leigh, R. J.; Lobb, D.; Williams, T.; Remedios, J. J.; Cutter, M.; Monks, P. S.

    2009-12-01

    A breadboard demonstrator of a novel UV/VIS grating spectrometer has been developed based upon a concentric arrangement of a spherical meniscus lens, concave spherical mirror and curved diffraction grating suitable for a range of atmospheric remote sensing applications from the ground or space. The spectrometer is compact and provides high optical efficiency and performance benefits over traditional instruments. The concentric design is capable of handling high relative apertures, owing to spherical aberration and comma being near zero at all surfaces. The design also provides correction for transverse chromatic aberration and distortion, in addition to correcting for the distortion called "smile", the curvature of the slit image formed at each wavelength. These properties render this design capable of superior spectral and spatial performance with size and weight budgets significantly lower than standard configurations. This form of spectrometer design offers the potential for exceptionally compact instrument for differential optical absorption spectroscopy (DOAS) applications from LEO, GEO, HAP or ground-based platforms. The breadboard demonstrator has been shown to offer high throughput and a stable Gaussian line shape with a spectral range from 300 to 450 nm at 0.5 nm resolution, suitable for a number of typical DOAS applications.

  11. Assessment of the performance of a compact concentric spectrometer system for Atmospheric Differential Optical Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    C. Whyte

    2009-12-01

    Full Text Available A breadboard demonstrator of a novel UV/VIS grating spectrometer has been developed based upon a concentric arrangement of a spherical meniscus lens, concave spherical mirror and curved diffraction grating suitable for a range of atmospheric remote sensing applications from the ground or space. The spectrometer is compact and provides high optical efficiency and performance benefits over traditional instruments. The concentric design is capable of handling high relative apertures, owing to spherical aberration and comma being near zero at all surfaces. The design also provides correction for transverse chromatic aberration and distortion, in addition to correcting for the distortion called "smile", the curvature of the slit image formed at each wavelength. These properties render this design capable of superior spectral and spatial performance with size and weight budgets significantly lower than standard configurations. This form of spectrometer design offers the potential for exceptionally compact instrument for differential optical absorption spectroscopy (DOAS applications from LEO, GEO, HAP or ground-based platforms. The breadboard demonstrator has been shown to offer high throughput and a stable Gaussian line shape with a spectral range from 300 to 450 nm at 0.5 nm resolution, suitable for a number of typical DOAS applications.

  12. Compact Commercial Tokamak Reactor (CCTR): a concept for a 500-MWe commercial-tokamak fusion system

    International Nuclear Information System (INIS)

    Gillen, T.J.

    1980-11-01

    A detailed set of self-consistent parameters and costs for the conceptual design of a Compact Commercial Tokamak Reactor (CCTR) is given. Several of the basic design features are the following: an ignited plasma with a major radius of 4.9 m and minor radius of 1.4 m; a net electrical output of 500 MW; a borated-water-cooled, stainless steel shield; and a toroidal field of 12 T at the coil. The design, which utilizes the Westinghouse computer code for the COsting And Sizing of D-T burning Tokamaks (COAST), mainly provides the sizes and geometries associated with the definition of the main component features for which a detailed engineering design can be effectively undertaken. Design study alternatives, including a neutral beam driven design option, a design option with a toroidal field of 13 T at the coil, and a tungsten-shielded option are considered for the CCTR. Also included is the conceptual design of a Compact Fusion Engineering Device

  13. Controlling the transmitted information of a multi-photon interacting with a single-Cooper pair box

    Energy Technology Data Exchange (ETDEWEB)

    Kadry, Heba, E-mail: hkadry1@yahoo.com; Abdel-Aty, Abdel-Haleem, E-mail: hkadry1@yahoo.com; Zakaria, Nordin, E-mail: hkadry1@yahoo.com [Computer and Information Science Department, Universiti Teknologi Petronas, Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Cheong, Lee Yen [Fundamental and Applied Science Department, Universiti Teknologi Petronas, Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2014-10-24

    We study a model of a multi-photon interaction of a single Cooper pair box with a cavity field. The exchange of the information using this system is studied. We quantify the fidelity of the transmitted information. The effect of the system parameters (detuning parameter, field photons, state density and mean photon number) in the fidelity of the transmitted information is investigated. We found that the fidelity of the transmitted information can be controlled using the system parameters.

  14. Controlling the transmitted information of a multi-photon interacting with a single-Cooper pair box

    International Nuclear Information System (INIS)

    Kadry, Heba; Abdel-Aty, Abdel-Haleem; Zakaria, Nordin; Cheong, Lee Yen

    2014-01-01

    We study a model of a multi-photon interaction of a single Cooper pair box with a cavity field. The exchange of the information using this system is studied. We quantify the fidelity of the transmitted information. The effect of the system parameters (detuning parameter, field photons, state density and mean photon number) in the fidelity of the transmitted information is investigated. We found that the fidelity of the transmitted information can be controlled using the system parameters

  15. Compact point-detection fluorescence spectroscopy system for quantifying intrinsic fluorescence redox ratio in brain cancer diagnostics

    Science.gov (United States)

    Liu, Quan; Grant, Gerald; Li, Jianjun; Zhang, Yan; Hu, Fangyao; Li, Shuqin; Wilson, Christy; Chen, Kui; Bigner, Darell; Vo-Dinh, Tuan

    2011-03-01

    We report the development of a compact point-detection fluorescence spectroscopy system and two data analysis methods to quantify the intrinsic fluorescence redox ratio and diagnose brain cancer in an orthotopic brain tumor rat model. Our system employs one compact cw diode laser (407 nm) to excite two primary endogenous fluorophores, reduced nicotinamide adenine dinucleotide, and flavin adenine dinucleotide. The spectra were first analyzed using a spectral filtering modulation method developed previously to derive the intrinsic fluorescence redox ratio, which has the advantages of insensitivty to optical coupling and rapid data acquisition and analysis. This method represents a convenient and rapid alternative for achieving intrinsic fluorescence-based redox measurements as compared to those complicated model-based methods. It is worth noting that the method can also extract total hemoglobin concentration at the same time but only if the emission path length of fluorescence light, which depends on the illumination and collection geometry of the optical probe, is long enough so that the effect of absorption on fluorescence intensity due to hemoglobin is significant. Then a multivariate method was used to statistically classify normal tissues and tumors. Although the first method offers quantitative tissue metabolism information, the second method provides high overall classification accuracy. The two methods provide complementary capabilities for understanding cancer development and noninvasively diagnosing brain cancer. The results of our study suggest that this portable system can be potentially used to demarcate the elusive boundary between a brain tumor and the surrounding normal tissue during surgical resection.

  16. Performance evaluation of a compact PET/SPECT/CT tri-modality system for small animal imaging applications

    International Nuclear Information System (INIS)

    Wei, Qingyang; Wang, Shi; Ma, Tianyu; Wu, Jing; Liu, Hui; Xu, Tianpeng; Xia, Yan; Fan, Peng; Lyu, Zhenlei; Liu, Yaqiang

    2015-01-01

    PET, SPECT and CT imaging techniques are widely used in preclinical small animal imaging applications. In this paper, we present a compact small animal PET/SPECT/CT tri-modality system. A dual-functional, shared detector design is implemented which enables PET and SPECT imaging with a same LYSO ring detector. A multi-pinhole collimator is mounted on the system and inserted into the detector ring in SPECT imaging mode. A cone-beam CT consisting of a micro focus X-ray tube and a CMOS detector is implemented. The detailed design and the performance evaluations are reported in this paper. In PET imaging mode, the measured NEMA based spatial resolution is 2.12 mm (FWHM), and the sensitivity at the central field of view (CFOV) is 3.2%. The FOV size is 50 mm (∅)×100 mm (L). The SPECT has a spatial resolution of 1.32 mm (FWHM) and an average sensitivity of 0.031% at the center axial, and a 30 mm (∅)×90 mm (L) FOV. The CT spatial resolution is 8.32 lp/mm @10%MTF, and the contrast discrimination function value is 2.06% with 1.5 mm size cubic box object. In conclusion, a compact, tri-modality PET/SPECT/CT system was successfully built with low cost and high performance

  17. Multiphoton gonioscopy to image the trabecular meshwork of porcine eyes

    Science.gov (United States)

    Masihzadeh, Omid; Ammar, David A.; Kahook, Malik Y.; Gibson, Emily A.; Lei, Tim C.

    2013-03-01

    The aqueous outflow system (AOS), including the trabecular meshwork (TM), the collector channels (CC) and the Schlemm's canal (SC), regulates intraocular pressure (IOP) through the drainage of the aqueous humor (AH). Abnormal IOP elevation leads to increased pressure stress to retinal ganglion cells, resulting in cell loss that can ultimately lead to complete loss of eyesight. Therefore, development of imaging tools to detect abnormal structural and functional changes of the AOS is important in early diagnosis and prevention of glaucoma. Multiphoton microscopy (MPM), including twophoton autofluorescence (TPAF) and second harmonic generation (SHG), is a label-free microscopic technique that allows molecular specific imaging of biological tissues like the TM. Since the TM and other AOS structures are located behind the highly scattering scleral tissue, transscleral imaging of the TM does not provide enough optical resolution. In this work, a gonioscopic lens is used to allow direct optical access of the TM through the cornea for MPM imaging. Compared to transscleral imaging, the acquired MPM images show improved resolution as individual collagen fiber bundles of the TM can be observed. MPM gonioscopy may have the potential to be developed as a future clinical imaging tool for glaucoma diagnostics.

  18. Direct trabecular meshwork imaging in porcine eyes through multiphoton gonioscopy

    Science.gov (United States)

    Masihzadeh, Omid; Ammar, David A.; Kahook, Malik Y.; Gibson, Emily A.; Lei, Tim C.

    2013-03-01

    The development of technologies to characterize the ocular aqueous outflow system (AOS) is important for the understanding of the pathophysiology of glaucoma. Multiphoton microscopy (MPM) offers the advantage of high-resolution, label-free imaging with intrinsic image contrast because the emitted signals result from the specific biomolecular content of the tissue. Previous attempts to use MPM to image the murine irido-corneal region directly through the sclera have suffered from degradation in image resolution due to scattering of the focused laser light. As a result, transscleral MPM has limited ability to observe fine structures in the AOS. In this work, the porcine irido-corneal angle was successfully imaged through the transparent cornea using a gonioscopic lens to circumvent the highly scattering scleral tissue. The resulting high-resolution images allowed the detailed structures in the trabecular meshwork (TM) to be observed. Multimodal imaging by two-photon autofluorescence and second harmonic generation allowed visualization of different features in the TM without labels and without disruption of the TM or surrounding tissues. MPM gonioscopy is a promising noninvasive imaging tool for high-resolution studies of the AOS, and research continues to explore the potential for future clinical applications in humans.

  19. Adaptive optics improves multiphoton super-resolution imaging

    Science.gov (United States)

    Zheng, Wei; Wu, Yicong; Winter, Peter; Shroff, Hari

    2018-02-01

    Three dimensional (3D) fluorescence microscopy has been essential for biological studies. It allows interrogation of structure and function at spatial scales spanning the macromolecular, cellular, and tissue levels. Critical factors to consider in 3D microscopy include spatial resolution, signal-to-noise (SNR), signal-to-background (SBR), and temporal resolution. Maintaining high quality imaging becomes progressively more difficult at increasing depth (where optical aberrations, induced by inhomogeneities of refractive index in the sample, degrade resolution and SNR), and in thick or densely labeled samples (where out-of-focus background can swamp the valuable, in-focus-signal from each plane). In this report, we introduce our new instrumentation to address these problems. A multiphoton structured illumination microscope was simply modified to integrate an adpative optics system for optical aberrations correction. Firstly, the optical aberrations are determined using direct wavefront sensing with a nonlinear guide star and subsequently corrected using a deformable mirror, restoring super-resolution information. We demonstrate the flexibility of our adaptive optics approach on a variety of semi-transparent samples, including bead phantoms, cultured cells in collagen gels and biological tissues. The performance of our super-resolution microscope is improved in all of these samples, as peak intensity is increased (up to 40-fold) and resolution recovered (up to 176+/-10 nm laterally and 729+/-39 nm axially) at depths up to 250 μm from the coverslip surface.

  20. A review of biomedical multiphoton microscopy and its laser sources

    International Nuclear Information System (INIS)

    Lefort, Claire

    2017-01-01

    Multiphoton microscopy (MPM) has been the subject of major development efforts for about 25 years for imaging biological specimens at micron scale and presented as an elegant alternative to classical fluorescence methods such as confocal microscopy. In this topical review, the main interests and technical requirements of MPM are addressed with a focus on the crucial role of excitation source for optimization of multiphoton processes. Then, an overview of the different sources successfully demonstrated in literature for MPM is presented, and their physical parameters are inventoried. A classification of these sources in function with their ability to optimize multiphoton processes is proposed, following a protocol found in literature. Starting from these considerations, a suggestion of a possible identikit of the ideal laser source for MPM concludes this topical review. (topical review)

  1. Characterizing lamina propria of human gastric mucosa by multiphoton microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y C; Yang, H Q; Zhuo, S M [Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou 350007 (China); Chen, G; Chen, J X [Department of Pathology, Fujian Provincial Tumor Hospital, Fuzhou, 350014 (China); Yan, J, E-mail: chenjianxin@fjnu.edu.cn, E-mail: ynjun@yahoo.com [Department of Surgery, Fujian Provincial Tumor Hospital, Fuzhou, 350014 (China)

    2011-01-01

    Lamina propria (LP) of gastric mucosa plays an important role in progression of gastric cancer because of the site at where inflammatory reactions occur. Multiphoton imaging has been recently employed for microscopic examination of intact tissue. In this paper, using multiphoton microscopy (MPM) based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG), high resolution multiphoton microscopic images of lamina propria (LP) are obtained in normal human gastric mucosa at excitation wavelength {lambda}{sub ex} = 800 nm. The main source of tissue TPEF originated from the cells of gastric glands, and loose connective tissue, collagen, produced SHG signals. Our results demonstrated that MPM can be effective for characterizing the microstructure of LP in human gastric mucosa. The findings will be helpful for diagnosing and staging early gastric cancer in the clinics.

  2. Characterizing lamina propria of human gastric mucosa by multiphoton microscopy

    Science.gov (United States)

    Liu, Y. C.; Yang, H. Q.; Chen, G.; Zhuo, S. M.; Chen, J. X.; Yan, J.

    2011-01-01

    Lamina propria (LP) of gastric mucosa plays an important role in progression of gastric cancer because of the site at where inflammatory reactions occur. Multiphoton imaging has been recently employed for microscopic examination of intact tissue. In this paper, using multiphoton microscopy (MPM) based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG), high resolution multiphoton microscopic images of lamina propria (LP) are obtained in normal human gastric mucosa at excitation wavelength λex = 800 nm. The main source of tissue TPEF originated from the cells of gastric glands, and loose connective tissue, collagen, produced SHG signals. Our results demonstrated that MPM can be effective for characterizing the microstructure of LP in human gastric mucosa. The findings will be helpful for diagnosing and staging early gastric cancer in the clinics.

  3. The importance of spectroscopy for infrared multiphoton excitation

    International Nuclear Information System (INIS)

    Fuss, W.; Kompa, K.L.

    1980-07-01

    It is substantiated by examples that the infrared spectra of molecules in high vibrational states are similar in width to those of the ground states. Therefore in order to explain collisionless infrared multiphoton excitation, the existence of resonance has to be checked, not only for the first three steps, but for all of them. That is, their (low resolution) spectra should be studied. This review summarizes the spectroscopic mechanisms contributing to multiphoton excitation, which have been suggested to date, including several kinds of rotational compensation and of vibrational level splitting, which cooperate to overcome the anharmonic shift. The spectral quasicontinuum, generated by intensity borrowing, must neither be very broad nor dense, and collisionless vibrational relaxation is only important at very high energies. Knowledge of relatively few spectroscopic detailes helps to understand many details and many differences in multiphoton excitatio. (orig.)

  4. A review of biomedical multiphoton microscopy and its laser sources

    Science.gov (United States)

    Lefort, Claire

    2017-10-01

    Multiphoton microscopy (MPM) has been the subject of major development efforts for about 25 years for imaging biological specimens at micron scale and presented as an elegant alternative to classical fluorescence methods such as confocal microscopy. In this topical review, the main interests and technical requirements of MPM are addressed with a focus on the crucial role of excitation source for optimization of multiphoton processes. Then, an overview of the different sources successfully demonstrated in literature for MPM is presented, and their physical parameters are inventoried. A classification of these sources in function with their ability to optimize multiphoton processes is proposed, following a protocol found in literature. Starting from these considerations, a suggestion of a possible identikit of the ideal laser source for MPM concludes this topical review. Dedicated to Martin.

  5. Performance of a compact detector package for the out-of-plane spectrometer system

    International Nuclear Information System (INIS)

    Zhou, Z.-L.; Sirca, S.; Boeglin, W.; Sarty, A.J.; Alarcon, R.; Beck, R.; Bernstein, A.; Bertozzi, W.; Botto, T.; Bourgeois, P.; Calarco, J.; Casagrande, F.; Chen, J.; Comfort, J.R.; Dale, D.; Distler, M.O.; Dodson, G.; Dolfini, S.; Dooley, A.; Dow, K.; Epstein, M.; Farkhondeh, M.; Georgakopoulos, S.; Gilad, S.; Hicks, R.; Holtrop, M.; Hotta, A.; Jiang, X.; Joo, K.; Jordan, D.; Kaloskamis, N.; Karabarbounis, A.; Kirkpatrick, J.; Kowalski, S.; Kunz, C.; Liyanage, N.; Mandeville, J.; Margaziotis, D.J.; McIlvain, T.; Mertz, C.; Milner, R.; Miskimen, R.; Nakagawa, I.; Papanicolas, C.N.; Pavan, M.; Peterson, G.; Ramirez, A.; Rowntree, D.; Sato, Y.; Shaw, J.; Six, E.; Sobczynski, S.; Soong, S.-B.; Sparveris, N.; Stave, S.; Stiliaris, S.; Tamae, T.; Tieger, D.; Tschalaer, C.; Tsentalovich, G.; Turchinetz, W.; Vellidis, C.; Warren, G.A.; Weinstein, L.B.; Williamson, S.E.; Young, A.; Zhao, J.; Zwart, T.

    2002-01-01

    We report on the design and performance of compact detector packages currently installed in the four magnetic out-of-plane spectrometers for electron scattering experiments at the MIT-Bates Linear Accelerator Center. The detector packages have been designed to meet the mechanical requirements arising from out-of-plane particle detection. They offer good trajectory and momentum reconstruction, particle identification and time-of-flight measurements for electrons, pions, protons, and deuterons with large momentum bites and in broad kinematical ranges and high luminosities. The detectors have so far been used with great success in out-of-plane measurements of 12 C(e→,e'p), 2 H(e→,e'p), virtual Compton scattering below pion threshold and in studies of the N→Δ transition in both exclusive reaction channels 1 H(e→,e'p)π 0 and 1 H(e→,e'π + )n

  6. The UC Softhand: Light Weight Adaptive Bionic Hand with a Compact Twisted String Actuation System

    Directory of Open Access Journals (Sweden)

    Mahmoud Tavakoli

    2015-12-01

    Full Text Available In this paper, we present the design and development of the UC-Softhand. The UC Softhand is a low cost, Bionic and adaptive hand that takes advantage of compliant joints. By optimization of the actuation strategy as well as the actuation mechanism, we could develop an anthropomorphic hand that embeds three actuators, transmission mechanisms, controllers and drivers in the palm of the hand, and weighs only 280 g, making it one of the lightest bionic hands that has been created so far. The key aspect of the UC Softhand is utilization of a novel compact twisted string actuation mechanism, that allows a considerable weight and cost reduction compared to its predecessor.

  7. Compact Electro-Permeabilization System for Controlled Treatment of Biological Cells and Cell Medium Conductivity Change Measurement

    Directory of Open Access Journals (Sweden)

    Novickij Vitalij

    2014-10-01

    Full Text Available Subjection of biological cells to high intensity pulsed electric field results in the permeabilization of the cell membrane. Measurement of the electrical conductivity change allows an analysis of the dynamics of the process, determination of the permeabilization thresholds, and ion efflux influence. In this work a compact electro-permeabilization system for controlled treatment of biological cells is presented. The system is capable of delivering 5 μs - 5 ms repetitive square wave electric field pulses with amplitude up to 1 kV. Evaluation of the cell medium conductivity change is implemented in the setup, allowing indirect measurement of the ion concentration changes occurring due to the cell membrane permeabilization. The simulation model using SPICE and the experimental data of the proposed system are presented in this work. Experimental data with biological cells is also overviewed

  8. Compact NMR

    Energy Technology Data Exchange (ETDEWEB)

    Bluemich, Bernhard; Haber-Pohlmeier, Sabina; Zia, Wasif [RWTH Aachen Univ. (Germany). Inst. fuer Technische und Makromolekulare Chemie (ITMC)

    2014-06-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is the most popular method for chemists to analyze molecular structures, while Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool for medical doctors that provides high-contrast images of biological tissue. In both applications, the sample (or patient) is positioned inside a large, superconducting magnet to magnetize the atomic nuclei. Interrogating radio-frequency pulses result in frequency spectra that provide the chemist with molecular information, the medical doctor with anatomic images, and materials scientist with NMR relaxation parameters. Recent advances in magnet technology have led to a variety of small permanent magnets to allow compact and low-cost instruments. The goal of this book is to provide an introduction to the practical use of compact NMR at a level nearly as basic as the operation of a smart phone.

  9. Compact vortices

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Losano, L.; Marques, M.A.; Zafalan, I. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Menezes, R. [Universidade Federal da Paraiba, Departamento de Ciencias Exatas, Rio Tinto, PB (Brazil); Universidade Federal de Campina Grande, Departamento de Fisica, Campina Grande, PB (Brazil)

    2017-02-15

    We study a family of Maxwell-Higgs models, described by the inclusion of a function of the scalar field that represent generalized magnetic permeability. We search for vortex configurations which obey first-order differential equations that solve the equations of motion. We first deal with the asymptotic behavior of the field configurations, and then implement a numerical study of the solutions, the energy density and the magnetic field. We work with the generalized permeability having distinct profiles, giving rise to new models, and we investigate how the vortices behave, compared with the solutions of the corresponding standard models. In particular, we show how to build compact vortices, that is, vortex solutions with the energy density and magnetic field vanishing outside a compact region of the plane. (orig.)

  10. Multiphoton above threshold effects in strong-field fragmentation

    DEFF Research Database (Denmark)

    B Madsen, C; Anis, F; B Madsen, L

    2012-01-01

    We present a study of multiphoton dissociative ionization from molecules. By solving the time-dependent Schrödinger equation for H2+ and projecting the solution onto double continuum scattering states, we observe the correlated electron-nuclear ionization dynamics in detail. We show—for the first...... time—how multiphoton structure prevails as long as one accounts for the energies of all the fragments. Our current work provides a new avenue to analyze strong-field fragmentation that leads to a deeper understanding of the correlated molecular dynamics....

  11. Three-dimensional spatial imaging in multiphoton ionization rate measurements

    International Nuclear Information System (INIS)

    Bredy, Richard; Camp, Howard A.; Nguyen, Hai; Awata, Takaaki; Shan Bing; Chang Zhenghu; DePaola, B.D.

    2004-01-01

    An experiment is described in which an apparatus is used to demonstrate the feasibility of measuring multiphoton photoionization rates in the interaction of short pulsed lasers with atoms or molecules. With this methodology, the ionization rate is measured as a function of the spatial position in the beam-waist region of the laser through the direct three-dimensional spatial imaging of the ionization events. Thus, if the spatial dependence of the laser beam intensity were known, a series of experiments could yield the intensity dependence of multiphoton ionization without the assumptions or errors that are generally inherent in the integration over one or more dimensions in the laser focal volume

  12. System-wide hybrid MPC-PID control of a continuous pharmaceutical tablet manufacturing process via direct compaction.

    Science.gov (United States)

    Singh, Ravendra; Ierapetritou, Marianthi; Ramachandran, Rohit

    2013-11-01

    The next generation of QbD based pharmaceutical products will be manufactured through continuous processing. This will allow the integration of online/inline monitoring tools, coupled with an efficient advanced model-based feedback control systems, to achieve precise control of process variables, so that the predefined product quality can be achieved consistently. The direct compaction process considered in this study is highly interactive and involves time delays for a number of process variables due to sensor placements, process equipment dimensions, and the flow characteristics of the solid material. A simple feedback regulatory control system (e.g., PI(D)) by itself may not be sufficient to achieve the tight process control that is mandated by regulatory authorities. The process presented herein comprises of coupled dynamics involving slow and fast responses, indicating the requirement of a hybrid control scheme such as a combined MPC-PID control scheme. In this manuscript, an efficient system-wide hybrid control strategy for an integrated continuous pharmaceutical tablet manufacturing process via direct compaction has been designed. The designed control system is a hybrid scheme of MPC-PID control. An effective controller parameter tuning strategy involving an ITAE method coupled with an optimization strategy has been used for tuning of both MPC and PID parameters. The designed hybrid control system has been implemented in a first-principles model-based flowsheet that was simulated in gPROMS (Process System Enterprise). Results demonstrate enhanced performance of critical quality attributes (CQAs) under the hybrid control scheme compared to only PID or MPC control schemes, illustrating the potential of a hybrid control scheme in improving pharmaceutical manufacturing operations. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Compact stars

    Science.gov (United States)

    Estevez-Delgado, Gabino; Estevez-Delgado, Joaquin

    2018-05-01

    An analysis and construction is presented for a stellar model characterized by two parameters (w, n) associated with the compactness ratio and anisotropy, respectively. The reliability range for the parameter w ≤ 1.97981225149 corresponds with a compactness ratio u ≤ 0.2644959374, the density and pressures are positive, regular and monotonic decrescent functions, the radial and tangential speed of sound are lower than the light speed, moreover, than the plausible stability. The behavior of the speeds of sound are determinate for the anisotropy parameter n, admitting a subinterval where the speeds are monotonic crescent functions and other where we have monotonic decrescent functions for the same speeds, both cases describing a compact object that is also potentially stable. In the bigger value for the observational mass M = 2.05 M⊙ and radii R = 12.957 Km for the star PSR J0348+0432, the model indicates that the maximum central density ρc = 1.283820319 × 1018 Kg/m3 corresponds to the maximum value of the anisotropy parameter and the radial and tangential speed of the sound are monotonic decrescent functions.

  14. Multiphoton ionization for hydrogen plasma diagnostics

    International Nuclear Information System (INIS)

    Bonnie, J.H.M.

    1987-01-01

    In this thesis the processes leading to the formation of negative ions (H - ) in hydrogen discharges are studied. These ions enable efficient production of a beam of fast neutral particles. Such beams are applied in nuclear fusion research. A model has been generally accepted in which H - is formed by means of dissociative attachment (DA) of electrons to vibrationally excited hydrogen molecules [H 2 (υ'')] molecule: when υ'' is low, electron emission is most probable, but when υ'' is high, H - production dominates. A necessary preliminary to the DA process is the presence of sufficient [H 2 (υ'')] molecules with υ'' > 4. By determining the densities of hydrogen molecules in the various vibrational levels as a function of the various discharge parameters (scaling laws), insight can be gained into the extent to which the DA process contributes to H - formation. Since the de-excitation of [H 2 (υ'')] molecules by H atoms is expected to have a large cross section, it is also relevant to determine the scaling laws for atomic hydrogen. This thesis gives an account of the development of an experimental setup for obtaining such measurements, and reports the first results achieved. In view of the anticipated density of the vibrationally excited molecules and the detection limit considered feasible, the diagnostic chosen was resonance-enhanced multiphoton ionization (REMPI). The principle is based on state-selective ionization with REMPI of particles effusing from the discharge chamber through an aperture in the wall. The ions produced in the REMPI-process are then detected. The use of both an electric and a magnetic field makes it possible to distinguish the REMPI ions from those originating elsewhere, such as plasma ions or photodesorption ions. 145 refs.; 25 figs.; 6 tabs

  15. Development task of compact reactor

    International Nuclear Information System (INIS)

    Kurushima, Morihiro

    1982-01-01

    In the Ministry of International Trade and Industry, studies proceed on the usage of compact medium and small LWRs. As such, the reactors from 100 to 200 MW may meet varieties of demands in scale and kind in view of the saving of petroleum and the economy of nuclear power. In this case, the technology of light water reactors with already established safety will be suitable for the development of compact reactors. The concept of ''nuclear power community'' using the compact reactors in local society and industrial zones was investigated. The following matters are described: need for the introduction of compact reactors, the survey on the compact reactor systems, and the present status and future problems for compact reactor usage. (J.P.N.)

  16. Measurement of 239Pu in urine samples at ultra-trace levels using a 1 MV compact AMS system

    International Nuclear Information System (INIS)

    Hernandez-Mendoza, H.; Chamizo, E.; Yllera, A.; Garcia-Leon, M.; Delgado, A.

    2010-01-01

    Routine bioassay monitoring of Pu intake in exposed workers of research and nuclear industry is usually performed by alpha spectrometry. This technique involves large sample volumes of urine and time-consuming preparative and counting protocols. Compact accelerator mass spectrometry (AMS) facilities make feasible the determination of ultra low-level Pu activity concentrations and Pu isotopic ratios in biological samples (blood, urine and feces), being a rapid and cost-effective measurement technique. The plutonium results in urine samples presented here have been obtained on the 1 MV compact AMS system sited at the Centro Nacional de Aceleradores (CNA), in Seville, Spain. In this work, a different methodological approach has been developed alternative to the 'classical' preparation of urine samples for alpha spectrometry. The procedure avoids the Pu precipitation step, and involves acid sample evaporation and acid digestion in a microwave oven. Finally, purification of plutonium was achieved by using chromatography columns filled up with BioRad AG1X2 anion exchange resin (Bio-Rad Laboratories Inc.). The total time needed for analysis is about 10 h, unlike the 'classical' methods based on alpha spectrometry which need about 1 week. At present, it has been demonstrated that this method allows quantifying 239 Pu activity concentrations in urine of, at least, 30 μBq (13 fg 239 Pu). We can conclude that the procedure would be suitable to perform in vitro routine bioassay measurements. Moreover, the innovative application of AMS opens new and interesting analytical alternatives in this field.

  17. Re-integration and Consolidation of the Detector Control System for the Compact Muon Solenoid Electromagnetic Calorimeter

    CERN Multimedia

    Holme, Oliver; Dissertori, Günther; Djambazov, Lubomir; Lustermann, Werner; Zelepoukine, Serguei

    2013-01-01

    The current shutdown of the Large Hadron Collider (LHC), following three successful years of physics data-taking, provides an opportunity for major upgrades to be performed on the Detector Control System (DCS) of the Electromagnetic Calorimeter (ECAL) of the Compact Muon Solenoid (CMS) experiment. The upgrades involve changes to both hardware and software, with particular emphasis on taking advantage of more powerful servers and updating third-party software to the latest supported versions. The considerable increase in available processing power enables a reduction from fifteen to three or four servers. To host the control system on fewer machines and to ensure that previously independent software components could run side-by-side without incompatibilities, significant changes in the software and databases were required. Additional work was undertaken to modernise and concentrate I/O interfaces. The challenges to prepare and validate the hardware and software upgrades are described along with details of the ...

  18. Beyond the Floquet theorem: generalized Floquet formalisms and quasienergy methods for atomic and molecular multiphoton processes in intense laser fields

    Science.gov (United States)

    Chu, Shih-I.; Telnov, Dmitry A.

    2004-02-01

    The advancement of high-power and short-pulse laser technology in the past two decades has generated considerable interest in the study of multiphoton and very high-order nonlinear optical processes of atomic and molecular systems in intense and superintense laser fields, leading to the discovery of a host of novel strong-field phenomena which cannot be understood by the conventional perturbation theory. The Floquet theorem and the time-independent Floquet Hamiltonian method are powerful theoretical framework for the study of bound-bound multiphoton transitions driven by periodically time-dependent fields. However, there are a number of significant strong-field processes cannot be directly treated by the conventional Floquet methods. In this review article, we discuss several recent developments of generalized Floquet theorems, formalisms, and quasienergy methods, beyond the conventional Floquet theorem, for accurate nonperturbative treatment of a broad range of strong-field atomic and molecular processes and phenomena of current interests. Topics covered include (a) artificial intelligence (AI)-most-probable-path approach (MPPA) for effective treatment of ultralarge Floquet matrix problem; (b) non-Hermitian Floquet formalisms and complex quasienergy methods for nonperturbative treatment of bound-free and free-free processes such as multiphoton ionization (MPI) and above-threshold ionization (ATI) of atoms and molecules, multiphoton dissociation (MPD) and above-threshold dissociation (ATD) of molecules, chemical bond softening and hardening, charge-resonance enhanced ionization (CREI) of molecular ions, and multiple high-order harmonic generation (HHG), etc.; (c) many-mode Floquet theorem (MMFT) for exact treatment of multiphoton processes in multi-color laser fields with nonperiodic time-dependent Hamiltonian; (d) Floquet-Liouville supermatrix (FLSM) formalism for exact nonperturbative treatment of time-dependent Liouville equation (allowing for relaxations and

  19. Beyond the Floquet theorem: generalized Floquet formalisms and quasienergy methods for atomic and molecular multiphoton processes in intense laser fields

    International Nuclear Information System (INIS)

    Chu, S.-I.; Telnov, D.A.

    2004-01-01

    The advancement of high-power and short-pulse laser technology in the past two decades has generated considerable interest in the study of multiphoton and very high-order nonlinear optical processes of atomic and molecular systems in intense and superintense laser fields, leading to the discovery of a host of novel strong-field phenomena which cannot be understood by the conventional perturbation theory. The Floquet theorem and the time-independent Floquet Hamiltonian method are powerful theoretical framework for the study of bound-bound multiphoton transitions driven by periodically time-dependent fields. However, there are a number of significant strong-field processes cannot be directly treated by the conventional Floquet methods. In this review article, we discuss several recent developments of generalized Floquet theorems, formalisms, and quasienergy methods, beyond the conventional Floquet theorem, for accurate nonperturbative treatment of a broad range of strong-field atomic and molecular processes and phenomena of current interests. Topics covered include (a) artificial intelligence (AI)-most-probable-path approach (MPPA) for effective treatment of ultralarge Floquet matrix problem; (b) non-Hermitian Floquet formalisms and complex quasienergy methods for nonperturbative treatment of bound-free and free-free processes such as multiphoton ionization (MPI) and above-threshold ionization (ATI) of atoms and molecules, multiphoton dissociation (MPD) and above-threshold dissociation (ATD) of molecules, chemical bond softening and hardening, charge-resonance enhanced ionization (CREI) of molecular ions, and multiple high-order harmonic generation (HHG), etc.; (c) many-mode Floquet theorem (MMFT) for exact treatment of multiphoton processes in multi-color laser fields with nonperiodic time-dependent Hamiltonian; (d) Floquet-Liouville supermatrix (FLSM) formalism for exact nonperturbative treatment of time-dependent Liouville equation (allowing for relaxations and

  20. Evaluation, Comparison and Optimization of the Compact Recuperator for the High Temperature Gas-Cooled Reactor (HTGR) Helium Turbine System

    International Nuclear Information System (INIS)

    Hao Haoran; Yang Xiaoyong; Wang Jie; Ye Ping; Yu Xiaoli; Zhao Gang

    2014-01-01

    Helium turbine system is a promising method to covert the nuclear power generated by the High Temperature Gas Cooled Reactor (HTGR) into electricity with inherent safety, compact configuration and relative high efficiency. And the recuperator is one of the key components for the HTGR helium turbine system. It is used to recover the exhaust heat out of turbine and pass it to the helium from high pressure compressor, and hence increase the cycle’s efficiency dramatically. On the other hand, the pressure drop within the recuperator will reduce the cycle efficiency, especially on low pressure side of recuperator. It is necessary to optimize the design of recuperator to achieve better performance of HTGR helium turbine system. However, this optimization has to be performed with the restriction of the size of the pressure vessel which contains the power conversion unit. This paper firstly presents an analysis to investigate the effects of flow channel geometry, recuperator’s power and size on heat transfer and pressure drop. Then the relationship between the recuperator design and system performance is established with an analytical model, followed by the evaluations of the current recuperator designs of GT-MHR, GTHTR300 and PBMR, in which several effective technical measures to optimize the recuperator are compared. Finally it is found that the most important factors for optimizing recuperator design, i.e. the cross section dimensions and tortuosity of flow channel, which can also be extended to compact intermediate heat exchangers. It turns out that a proper optimization can increase the cycle’s efficiency by 1~2 percentage, which could also raise the economy and competitiveness of future commercial HTGR plants. (author)

  1. Influence of evanescent waves on the voxel profile in multipulse multiphoton polymerization nanofabrication

    International Nuclear Information System (INIS)

    Li Wei; Cao Tianxiang; Zhai Zhaohui; Yu Xuanyi; Zhang Xinzheng; Xu Jingjun

    2013-01-01

    The relationship between the profile of the structures obtained by multiphoton polymerization and the optical parameters of nanofabrication systems has been studied theoretically for a multipulse scheme. We find that the profile of sub-wavelength structures is greatly affected by the evanescent waves affect. Not only is the photocured polymer voxel affected by the beam profile, but the beam propagation behavior is influenced by the photocured polymer voxel. This gives us a new view of matter–light interactions in multipulse polymerization process, which is useful to the accurate control of the nanofabrication profile and the selection of new nanofabrication materials. (paper)

  2. Ionisation of hydrogen-like atoms by a multiphoton absorption process

    International Nuclear Information System (INIS)

    Gontier, Y.; Trahin, M.

    1967-01-01

    The general expression for the amplitude of the probability of ionisation by a multiphoton absorption process is derived. Its non-relativistic limit is taken and the bipolar approximation is used for calculating the ionisation cross-section of hydrogen-like atoms. This latter involves the summation over intermediate virtual states by means of: a) a recursion relationship concerning angular functions, b) a particular technique which when applied to radial functions makes it possible to solve a system of inhomogeneous first-order differential equations. (authors) [fr

  3. Physically detached 'compact groups'

    Science.gov (United States)

    Hernquist, Lars; Katz, Neal; Weinberg, David H.

    1995-01-01

    A small fraction of galaxies appear to reside in dense compact groups, whose inferred crossing times are much shorter than a Hubble time. These short crossing times have led to considerable disagreement among researchers attempting to deduce the dynamical state of these systems. In this paper, we suggest that many of the observed groups are not physically bound but are chance projections of galaxies well separated along the line of sight. Unlike earlier similar proposals, ours does not require that the galaxies in the compact group be members of a more diffuse, but physically bound entity. The probability of physically separated galaxies projecting into an apparent compact group is nonnegligible if most galaxies are distributed in thin filaments. We illustrate this general point with a specific example: a simulation of a cold dark matter universe, in which hydrodynamic effects are included to identify galaxies. The simulated galaxy distribution is filamentary and end-on views of these filaments produce apparent galaxy associations that have sizes and velocity dispersions similar to those of observed compact groups. The frequency of such projections is sufficient, in principle, to explain the observed space density of groups in the Hickson catalog. We discuss the implications of our proposal for the formation and evolution of groups and elliptical galaxies. The proposal can be tested by using redshift-independent distance estimators to measure the line-of-sight spatial extent of nearby compact groups.

  4. Role of wall heat transfer and other system variables on fuel compaction and recriticality

    International Nuclear Information System (INIS)

    Dhir, V.K.; Castle, J.N.; Catton, I.; Kastenberg, W.E.; Doshi, J.B.

    1976-01-01

    The assessment of the molten fuel gaining recriticality after a hypothetical core disruptive accident in a fast reactor is an important safety consideration. Recriticality of the disrupted core can be envisioned to occur, if the fuel rearranges itself into a denser configuration either due to gravity slumping of the molten fuel or due to pressure or heat transfer driven compaction of the earlier dispersed fuel. In this paper the role played by wall heat transfer, internal radiation and the bottle pressure on the physical state of the molten fuel pool is discussed. It is suggested that in the absence of a solid crust the heat transfer process from the molten fuel to the surrounding steel will be very efficient because of melting and buoyancy driven removal of less dense steel through the pool of heavier UO 2 . The internal radiation at the high fuel temperature significantly increase the effective thermal conductivity of the molten fuel and lead to increased heat transfer in situations where a solid crust of UO 2 exists between molten UO 2 and molten steel. IN a boiled-up bottled pool, the pool pressure is shown to increase very rapidly with time and thus necessitate higher fission heating of the fuel to maintain it in a certain boiled up state. Finally, the results of the above discussion are applied to study the recriticality of a fuel pool formed during a hypothetical core disrupted accident in a fast reactor

  5. Dynamics of High-Order Spin-Orbit Couplings about Linear Momenta in Compact Binary Systems*

    International Nuclear Information System (INIS)

    Huang Li; Wu Xin; Huang Guo-Qing; Mei Li-Jie

    2017-01-01

    This paper relates to the post-Newtonian Hamiltonian dynamics of spinning compact binaries, consisting of the Newtonian Kepler problem and the leading, next-to-leading and next-to-next-to-leading order spin-orbit couplings as linear functions of spins and momenta. When this Hamiltonian form is transformed to a Lagrangian form, besides the terms corresponding to the same order terms in the Hamiltonian, several additional terms, third post-Newtonian (3PN), 4PN, 5PN, 6PN and 7PN order spin-spin coupling terms, yield in the Lagrangian. That means that the Hamiltonian is nonequivalent to the Lagrangian at the same PN order but is exactly equivalent to the full Lagrangian without any truncations. The full Lagrangian without the spin-spin couplings truncated is integrable and regular. Whereas it is non-integrable and becomes possibly chaotic when any one of the spin-spin terms is dropped. These results are also supported numerically. (paper)

  6. Development and characterization of a high yield transportable pulsed neutron source with efficient and compact pulsed power system

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Rishi, E-mail: rishiv9@gmail.com, E-mail: rishiv@barc.gov.in; Mishra, Ekansh; Dhang, Prosenjit; Sagar, Karuna; Meena, Manraj; Shyam, Anurag [Energetics and Electromagnetics Division, Bhabha Atomic Research Centre Autonagar, Vishakapatnam 530012 (India)

    2016-09-15

    The results of characterization experiments carried out on a newly developed dense plasma focus device based intense pulsed neutron source with efficient and compact pulsed power system are reported. Its high current sealed pseudospark switch based low inductance capacitor bank with maximum stored energy of ∼10 kJ is segregated into four modules of ∼2.5 kJ each and it cumulatively delivers peak current in the range of 400 kA–600 kA (corresponding to charging voltage range of 14 kV–18 kV) in a quarter time period of ∼2 μs. The neutron yield performance of this device has been optimized by discretely varying deuterium filling gas pressure in the range of 6 mbar–11 mbar at ∼17 kV/550 kA discharge. At ∼7 kJ/8.5 mbar operation, the average neutron yield has been measured to be in the order of ∼4 × 10{sup 9} neutrons/pulse which is the highest ever reported neutron yield from a plasma focus device with the same stored energy. The average forward to radial anisotropy in neutron yield is found to be ∼2. The entire system is contained on a moveable trolley having dimensions 1.5 m × 1 m × 0.7 m and its operation and control (up to the distance of 25 m) are facilitated through optically isolated handheld remote console. The overall compactness of this system provides minimum proximity to small as well as large samples for irradiation. The major intended application objective of this high neutron yield dense plasma focus device development is to explore the feasibility of active neutron interrogation experiments by utilization of intense pulsed neutron sources.

  7. Structural evaluation of a compact, semi-closed W-shaped divertor system for JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M.; Morimoto, M.; Inoue, M.; Umakoshi, T.; Shimizu, K. [Mitsubishi Heavy Ind., Ltd., Yokohama (Japan). Adv. Reactor and Nucl. Fuel Cycle Eng. Dept.; Sakurai, S.; Hosogane, N.; Masaki, K. [Japan Atomic Energy Research Institute, Naka-machi, Naka-gun, Ibaraki-pref. 311-0193 (Japan)

    1999-03-01

    A compact, semi-closed W-shaped divertor system has been designed, fabricated and installed in the JT-60U to replace the open divertor system. The new system consists of inclined divertors, a dome and baffles. To meet the structural requirements, a segmented structure with an electrically insulated flexible gas seal was applied. Using FEM codes, the system`s structural integrity was confirmed for the plasma disruptions by electromagnetic and structural analyses, which take into account the effect of halo currents. Substantial reduction of induced electromagnetic forces is attained in the divertor system due to the electrical insulation used for the gas seal structure. In addition, because of its segmented structure, the induced electromagnetic forces on each component unit are found to be limited. The maximum stress intensities and their ranges are obtained within allowable values. Thermal stress arising from the temperature difference between the divertor system and the vacuum vessel during the baking operation is also satisfactory. Furthermore, thermal and thermal stress analyses showed that the plasma facing components have sufficient structural integrity. (orig.) 18 refs.

  8. Influence of rotation on multiphoton processes in HF

    International Nuclear Information System (INIS)

    Broeckhove, J.; Feyen, B.; Van Leuven, P.

    1994-01-01

    In this contribution, the authors are concerned with the role of rotational motion in multiphoton processes induced by a laser field of high intensity. The authors use the pseudospectral split operator method for the propagation of the quantum wave-function. The rotation is treated by decomposition of the HF wave-function in its angular momentum components

  9. Multiphoton fluorescence lifetime imaging of chemotherapy distribution in solid tumors

    Science.gov (United States)

    Carlson, Marjorie; Watson, Adrienne L.; Anderson, Leah; Largaespada, David A.; Provenzano, Paolo P.

    2017-11-01

    Doxorubicin is a commonly used chemotherapeutic employed to treat multiple human cancers, including numerous sarcomas and carcinomas. Furthermore, doxorubicin possesses strong fluorescent properties that make it an ideal reagent for modeling drug delivery by examining its distribution in cells and tissues. However, while doxorubicin fluorescence and lifetime have been imaged in live tissue, its behavior in archival samples that frequently result from drug and treatment studies in human and animal patients, and murine models of human cancer, has to date been largely unexplored. Here, we demonstrate imaging of doxorubicin intensity and lifetimes in archival formalin-fixed paraffin-embedded sections from mouse models of human cancer with multiphoton excitation and multiphoton fluorescence lifetime imaging microscopy (FLIM). Multiphoton excitation imaging reveals robust doxorubicin emission in tissue sections and captures spatial heterogeneity in cells and tissues. However, quantifying the amount of doxorubicin signal in distinct cell compartments, particularly the nucleus, often remains challenging due to strong signals in multiple compartments. The addition of FLIM analysis to display the spatial distribution of excited state lifetimes clearly distinguishes between signals in distinct compartments such as the cell nuclei versus cytoplasm and allows for quantification of doxorubicin signal in each compartment. Furthermore, we observed a shift in lifetime values in the nuclei of transformed cells versus nontransformed cells, suggesting a possible diagnostic role for doxorubicin lifetime imaging to distinguish normal versus transformed cells. Thus, data here demonstrate that multiphoton FLIM is a highly sensitive platform for imaging doxorubicin distribution in normal and diseased archival tissues.

  10. Multi-photon microscope driven by novel green laser pump

    DEFF Research Database (Denmark)

    Marti, Dominik; Djurhuus, Martin; Jensen, Ole Bjarlin

    2016-01-01

    Multi-photon microscopy is extensively used in research due to its superior possibilities when compared to other microscopy modalities. The technique also has the possibility to advance diagnostics in clinical applications, due to its capabilities complementing existing technology in a multimodal...

  11. Line broadening in multiphoton processes with a resonant intermediate transition

    International Nuclear Information System (INIS)

    Wang, C.C.; James, J.V.; Xia, J.

    1983-01-01

    The linewidth of the excitation spectrum for multiphoton ionization is found to be broadened much more severely than the cascade fluorescence originating from the resonant intermediate level. These results are due to the mutual effects of the ionizing and resonating transitions, which are not properly accounted for in perturbative treatments

  12. Solid targetry for compact cyclotrons

    International Nuclear Information System (INIS)

    Comor, J.

    2004-01-01

    In this presentation authors present experimental results of solid targetry for compact cyclotrons. It is concluded: Solid targetry is not restricted to large accelerator centers anymore; Small and medium scale radioisotope production is feasible with compact cyclotrons; The availability of versatile solid target systems is expected to boost the radiochemistry of 'exotic' positron emitters

  13. Geotechnical and geochemical assessments of shales in Anambra basin, SE-Nigeria as compacted clay liner in landfill system

    International Nuclear Information System (INIS)

    Tijani, Moshood N.; Adesina, Rasheed B.; Wagner, Jean-Frank

    2012-01-01

    density irrespective of the compaction level to be utilized in the field. In addition, the permeability of 2.14 - 9.12 x 10 -5 cm/s is higher than 1 x 10 -7 cm/s recommended for typical isolation barriers, which implies negative impacts in respect of possible attendant contamination of the surrounding soil and groundwater by the leachates. The geochemical analyses of the samples reflect relatively high SiO 2 values of 52.1-55.8% compared to Al 2 O 3 of 16.96-27.45% and Fe 2 O 3 of 3.10 -7 .19%, which suggest the dominance of kaolinite as confirmed by the XRD. Nonetheless, the occurrence of illite in Enugu and Nkporo shales and smectite in Imo shale is a confirmation of the relatively high plasticity indices mentioned earlier and indication of good sorption properties. The CEC of the samples have relatively low value of 2.6 - 5.1 cmol/kg, which is less than the recommended minimum of 10 meq/100 g. The sorption capacity of the samples with respect to Zn, Cu, Pb, Cd and Ni ranges from 24.4 to 34.7 ppm with metal sorption in the order of Zn >Cu > Pb > Cd > Ni. The overall assessment revealed that the metal uptake, CEC and plasticity index of the shale samples are positively correlated suggesting strong influence of the clay mineralogy on the sorption characteristics of the samples. In spite of the observed relatively high permeability and swelling potential as well as moderate good sorption properties, the study shale units could be enhanced to the required specification through appropriate amendment technology. Though the shale units do not generally satisfy the requirements of compacted clay liners, however, based on the sorption characteristics, Enugu, Nkporo and Imo shales can be adequately employed for attenuation of contaminant leachates in double, composite or and multiple lining systems

  14. Compact XFEL and AMO sciences: SACLA and SCSS

    International Nuclear Information System (INIS)

    Yabashi, M; Tanaka, H; Tanaka, T; Tomizawa, H; Nagasono, M; Ishikawa, T; Harries, J R; Hikosaka, Y; Hishikawa, A; Nagaya, K; Saito, N; Shigemasa, E; Yamanouchi, K; Ueda, K; Togashi, T

    2013-01-01

    The concept, design and performance of Japan's compact free-electron laser (FEL) facilities, the SPring-8 Compact SASE Source test accelerator (SCSS) and SPring-8 Angstrom Compact free electron LAser (SACLA), and their applications in mainly atomic, molecular and optical science are reviewed. At SCSS, intense, ultrafast FEL pulses at extreme ultraviolet (EUV) wavelengths have been utilized for investigating various multi-photon processes in atoms, molecules and clusters by means of ion and electron spectroscopy. The quantum optical effect superfluorescence has been observed with EUV excitation. A pump–probe technique combining FEL pulses with near infrared laser pulses has been realized to study the ultrafast dynamics of atoms, molecules and clusters in the sub-picosecond regime. At SACLA, deep inner-shell multi-photon ionization by intense x-ray FEL pulses has been investigated. The development of seeded FEL sources for producing transversely and temporally coherent light, as well as the expected impact on advanced science are discussed. (invited paper)

  15. Experimental investigation of silicon photomultipliers as compact light readout systems for gamma-ray spectroscopy applications in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Nocente, M., E-mail: massimo.nocente@mib.infn.it; Gorini, G. [Dipartimento di Fisica “G. Occhialini,” Università degli Studi di Milano-Bicocca, Milano (Italy); Istituto di Fisica del Plasma “P. Caldirola,” EURATOM-ENEA-CNR Association, Milano (Italy); Fazzi, A.; Lorenzoli, M.; Pirovano, C. [Dipartimento di Energia, CeSNEF, Politecnico di Milano, Milano (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Milano (Italy); Tardocchi, M. [Istituto di Fisica del Plasma “P. Caldirola,” EURATOM-ENEA-CNR Association, Milano (Italy); Cazzaniga, C.; Rebai, M. [Dipartimento di Fisica “G. Occhialini,” Università degli Studi di Milano-Bicocca, Milano (Italy); Uboldi, C.; Varoli, V. [Dipartimento di Energia, CeSNEF, Politecnico di Milano, Milano (Italy)

    2014-11-15

    A matrix of Silicon Photo Multipliers has been developed for light readout from a large area 1 in. × 1 in. LaBr{sub 3} crystal. The system has been characterized in the laboratory and its performance compared to that of a conventional photo multiplier tube. A pulse duration of 100 ns was achieved, which opens up to spectroscopy applications at high counting rates. The energy resolution measured using radioactive sources extrapolates to 3%–4% in the energy range E{sub γ} = 3–5 MeV, enabling gamma-ray spectroscopy measurements at good energy resolution. The results reported here are of relevance in view of the development of compact gamma-ray detectors with spectroscopy capabilities, such as an enhanced gamma-ray camera for high power fusion plasmas, where the use of photomultiplier is impeded by space limitation and sensitivity to magnetic fields.

  16. Structural evaluation of a compact, semi-closed W-shaped divertor system for JT-60U

    International Nuclear Information System (INIS)

    Onozuka, M.; Morimoto, M.; Inoue, M.; Umakoshi, T.; Shimizu, K.

    1999-01-01

    A compact, semi-closed W-shaped divertor system has been designed, fabricated and installed in the JT-60U to replace the open divertor system. The new system consists of inclined divertors, a dome and baffles. To meet the structural requirements, a segmented structure with an electrically insulated flexible gas seal was applied. Using FEM codes, the system's structural integrity was confirmed for the plasma disruptions by electromagnetic and structural analyses, which take into account the effect of halo currents. Substantial reduction of induced electromagnetic forces is attained in the divertor system due to the electrical insulation used for the gas seal structure. In addition, because of its segmented structure, the induced electromagnetic forces on each component unit are found to be limited. The maximum stress intensities and their ranges are obtained within allowable values. Thermal stress arising from the temperature difference between the divertor system and the vacuum vessel during the baking operation is also satisfactory. Furthermore, thermal and thermal stress analyses showed that the plasma facing components have sufficient structural integrity. (orig.)

  17. Laser self-mixing interferometry in VCSELs - an ultra-compact and massproduceable deflection detection system for nanomechanical polymer cantilever sensors

    DEFF Research Database (Denmark)

    Larsson, David; Yvind, Kresten; Hvam, Jørn Märcher

    2008-01-01

    We have realised an ultra-compact deflection detection system based on laser self-mixing interferometry in a Vertical-Cavity Surface-Emitting Laser (VCSEL). The system can be used together with polymer nanomechanical cantilevers to form chemical sensors capable of detecting less than 1nm deflection....

  18. Results of 4 years R&D in the IEA Task4224 on compact thermal energy storage: Materials development for system integration

    NARCIS (Netherlands)

    Helden, W. van; Hauer, A.; Furbo, S.; Skrylynk, O.; Nuytten, T.; Ristic, A.; Henninger, S.; Rindt, C.; Bruno, F.; Lázaro, A.; Luo, L.; Basciotti, D.; Heinz, A.; Weber, R.; Fernandez, I.; Cabeza, L.; Chiu, J.; Zondag, H.; Cuypers, R.; Jänchen, J.; Zettl, B.; Lävemann, E.

    2013-01-01

    Since January 2009, experts from the fields of material development and system integration are working together in the joint Task42/Annex24 to develop better materials for the compact storage of heat and to design, build and test systems in which these novel materials are being applied. In the Task,

  19. PScan 1.0: flexible software framework for polygon based multiphoton microscopy

    Science.gov (United States)

    Li, Yongxiao; Lee, Woei Ming

    2016-12-01

    Multiphoton laser scanning microscopes exhibit highly localized nonlinear optical excitation and are powerful instruments for in-vivo deep tissue imaging. Customized multiphoton microscopy has a significantly superior performance for in-vivo imaging because of precise control over the scanning and detection system. To date, there have been several flexible software platforms catered to custom built microscopy systems i.e. ScanImage, HelioScan, MicroManager, that perform at imaging speeds of 30-100fps. In this paper, we describe a flexible software framework for high speed imaging systems capable of operating from 5 fps to 1600 fps. The software is based on the MATLAB image processing toolbox. It has the capability to communicate directly with a high performing imaging card (Matrox Solios eA/XA), thus retaining high speed acquisition. The program is also designed to communicate with LabVIEW and Fiji for instrument control and image processing. Pscan 1.0 can handle high imaging rates and contains sufficient flexibility for users to adapt to their high speed imaging systems.

  20. Development of a Compact Range-gated Vision System to Monitor Structures in Low-visibility Environments

    International Nuclear Information System (INIS)

    Ahn, Yong-Jin; Park, Seung-Kyu; Baik, Sung-Hoon; Kim, Dong-Lyul; Choi, Young-Soo; Jeong, Kyung-Min

    2015-01-01

    Image acquisition in disaster area or radiation area of nuclear industry is an important function for safety inspection and preparing appropriate damage control plans. So, automatic vision system to monitor structures and facilities in blurred smoking environments such as the places of a fire and detonation is essential. Vision systems can't acquire an image when the illumination light is blocked by disturbance materials, such as smoke, fog and dust. To overcome the imaging distortion caused by obstacle materials, robust vision systems should have extra-functions, such as active illumination through disturbance materials. One of active vision system is a range-gated imaging system. The vision system based on the range-gated imaging system can acquire image data from the blurred and darken light environments. Range-gated imaging (RGI) is a direct active visualization technique using a highly sensitive image sensor and a high intensity illuminant. Currently, the range-gated imaging technique providing 2D and range image data is one of emerging active vision technologies. The range-gated imaging system gets vision information by summing time sliced vision images. In the RGI system, a high intensity illuminant illuminates for ultra-short time and a highly sensitive image sensor is gated by ultra-short exposure time to only get the illumination light. Here, the illuminant illuminates objects by flashing strong light through disturbance materials, such as smoke particles and dust particles. In contrast to passive conventional vision systems, the RGI active vision technology enables operation even in harsh environments like low-visibility smoky environment. In this paper, a compact range-gated vision system is developed to monitor structures in low-visibility environment. The system consists of illumination light, a range-gating camera and a control computer. Visualization experiments are carried out in low-visibility foggy environment to see imaging capability

  1. Development of a Compact Range-gated Vision System to Monitor Structures in Low-visibility Environments

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Yong-Jin; Park, Seung-Kyu; Baik, Sung-Hoon; Kim, Dong-Lyul; Choi, Young-Soo; Jeong, Kyung-Min [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    Image acquisition in disaster area or radiation area of nuclear industry is an important function for safety inspection and preparing appropriate damage control plans. So, automatic vision system to monitor structures and facilities in blurred smoking environments such as the places of a fire and detonation is essential. Vision systems can't acquire an image when the illumination light is blocked by disturbance materials, such as smoke, fog and dust. To overcome the imaging distortion caused by obstacle materials, robust vision systems should have extra-functions, such as active illumination through disturbance materials. One of active vision system is a range-gated imaging system. The vision system based on the range-gated imaging system can acquire image data from the blurred and darken light environments. Range-gated imaging (RGI) is a direct active visualization technique using a highly sensitive image sensor and a high intensity illuminant. Currently, the range-gated imaging technique providing 2D and range image data is one of emerging active vision technologies. The range-gated imaging system gets vision information by summing time sliced vision images. In the RGI system, a high intensity illuminant illuminates for ultra-short time and a highly sensitive image sensor is gated by ultra-short exposure time to only get the illumination light. Here, the illuminant illuminates objects by flashing strong light through disturbance materials, such as smoke particles and dust particles. In contrast to passive conventional vision systems, the RGI active vision technology enables operation even in harsh environments like low-visibility smoky environment. In this paper, a compact range-gated vision system is developed to monitor structures in low-visibility environment. The system consists of illumination light, a range-gating camera and a control computer. Visualization experiments are carried out in low-visibility foggy environment to see imaging capability.

  2. Maximum mass ratio of AM CVn-type binary systems and maximum white dwarf mass in ultra-compact X-ray binaries

    Directory of Open Access Journals (Sweden)

    Arbutina Bojan

    2011-01-01

    Full Text Available AM CVn-type stars and ultra-compact X-ray binaries are extremely interesting semi-detached close binary systems in which the Roche lobe filling component is a white dwarf transferring mass to another white dwarf, neutron star or a black hole. Earlier theoretical considerations show that there is a maximum mass ratio of AM CVn-type binary systems (qmax ≈ 2/3 below which the mass transfer is stable. In this paper we derive slightly different value for qmax and more interestingly, by applying the same procedure, we find the maximum expected white dwarf mass in ultra-compact X-ray binaries.

  3. Preliminary Design of Compact Condenser in an Organic Rankine Cycle System for the Low Grade Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Roberto Capata

    2014-11-01

    Full Text Available The aim of this paper is to present a thermodynamic cycle for the production of electrical power in the 2–5 kW range, suitable for all types of thermally propelled vehicles. The sensible heat recovered from the exhaust gases feeds the energy recovery system, which is able to produce sufficient power to sustain the air conditioning system or other auxiliaries. The working fluids R134a and R245fa have been used in the ORC system, and the systems are simulated by CAMEL-ProTM software. The cycles are generated starting from the same heat source: the exhaust gas of a typical 2.0 L Diesel engine (or from a small size turbine engine. The design of the condenser has been performed to obtain a very compact component, evaluating the heat exchanger tube and fins type design. Through empirical formulas, the area of heat exchange, the heat required to exchange and the pressure drop in the element have been calculated. A commercial software package is used to build the model of the condenser, then a thermal and mechanical analysis and a CFD analysis are realized to estimate the heat exchange. Finally the evaluations, the possible future studies and possible improvements of the system are shown.

  4. Compact microelectrode array system: tool for in situ monitoring of drug effects on neurotransmitter release from neural cells.

    Science.gov (United States)

    Chen, Yu; Guo, Chunxian; Lim, Layhar; Cheong, Serchoong; Zhang, Qingxin; Tang, Kumcheong; Reboud, Julien

    2008-02-15

    This paper presents a compact microelectrode array (MEA) system, to study potassium ion-induced dopamine release from PC12 neural cells, without relying on a micromanipulator and a microscope. The MEA chip was integrated with a custom-made "test jig", which provides a robust electrical interfacing tool between the microchip and the macroenvironment, together with a potentiostat and a microfluidic syringe pump. This integrated system significantly simplifies the operation procedures, enhances sensing performance, and reduces fabrication costs. The achieved detection limit for dopamine is 3.8 x 10-2 muM (signal/noise, S/N = 3) and the dopamine linear calibration range is up to 7.39 +/- 0.06 muM (mean +/- SE). The effects of the extracelluar matrix collagen coating of the microelectrodes on dopamine sensing behaviors, as well as the influences of K+ and l-3,4-digydroxyphenylalanine concentrations and incubation times on dopamine release, were extensively studied. The results show that our system is well suited for biologists to study chemical release from living cells as well as drug effects on secreting cells. The current system also shows a potential for further improvements toward a multichip array system for drug screening applications.

  5. Performance investigation of a cogeneration plant with the efficient and compact heat recovery system

    KAUST Repository

    Myat, Aung; Thu, Kyaw; Kim, Young-Deuk; Choon, Ng Kim

    2011-01-01

    This paper presents the performance investigation of a cogeneration plant equipped with an efficient waste heat recovery system. The proposed cogeneration system produces four types of useful energy namely: (i) electricity, (ii) steam, (iii) cooling

  6. Next-Generation Ultra-Compact Stowage/Lightweight Solar Array System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Deployable Space Systems, Inc. (DSS) has developed a next-generation high performance solar array system that has game-changing performance metrics in terms of...

  7. Reconstructing the Sky Location of Gravitational-Wave Detected Compact Binary Systems: Methodology for Testing and Comparison

    Science.gov (United States)

    Sidney, T.; Aylott, B.; Christensen, N.; Farr, B.; Farr, W.; Feroz, F.; Gair, J.; Grover, K.; Graff, P.; Hanna, C.; hide

    2014-01-01

    The problem of reconstructing the sky position of compact binary coalescences detected via gravitational waves is a central one for future observations with the ground-based network of gravitational-wave laser interferometers, such as Advanced LIGO and Advanced Virgo. Different techniques for sky localization have been independently developed. They can be divided in two broad categories: fully coherent Bayesian techniques, which are high latency and aimed at in-depth studies of all the parameters of a source, including sky position, and "triangulation-based" techniques, which exploit the data products from the search stage of the analysis to provide an almost real-time approximation of the posterior probability density function of the sky location of a detection candidate. These techniques have previously been applied to data collected during the last science runs of gravitational-wave detectors operating in the so-called initial configuration. Here, we develop and analyze methods for assessing the self consistency of parameter estimation methods and carrying out fair comparisons between different algorithms, addressing issues of efficiency and optimality. These methods are general, and can be applied to parameter estimation problems other than sky localization. We apply these methods to two existing sky localization techniques representing the two above-mentioned categories, using a set of simulated inspiralonly signals from compact binary systems with a total mass of equal to or less than 20M solar mass and nonspinning components. We compare the relative advantages and costs of the two techniques and show that sky location uncertainties are on average a factor approx. equals 20 smaller for fully coherent techniques than for the specific variant of the triangulation-based technique used during the last science runs, at the expense of a factor approx. equals 1000 longer processing time.

  8. Video-rate resonant scanning multiphoton microscopy: An emerging technique for intravital imaging of the tumor microenvironment.

    Science.gov (United States)

    Kirkpatrick, Nathaniel D; Chung, Euiheon; Cook, Daniel C; Han, Xiaoxing; Gruionu, Gabriel; Liao, Shan; Munn, Lance L; Padera, Timothy P; Fukumura, Dai; Jain, Rakesh K

    2012-01-01

    The abnormal tumor microenvironment fuels tumor progression, metastasis, immune suppression, and treatment resistance. Over last several decades, developments in and applications of intravital microscopy have provided unprecedented insights into the dynamics of the tumor microenvironment. In particular, intravital multiphoton microscopy has revealed the abnormal structure and function of tumor-associated blood and lymphatic vessels, the role of aberrant tumor matrix in drug delivery, invasion and metastasis of tumor cells, the dynamics of immune cell trafficking to and within tumors, and gene expression in tumors. However, traditional multiphoton microscopy suffers from inherently slow imaging rates-only a few frames per second, thus unable to capture more rapid events such as blood flow, lymphatic flow, and cell movement within vessels. Here, we report the development and implementation of a video-rate multiphoton microscope (VR-MPLSM) based on resonant galvanometer mirror scanning that is capable of recording at 30 frames per second and acquiring intravital multispectral images. We show that the design of the system can be readily implemented and is adaptable to various experimental models. As examples, we demonstrate the utility of the system to directly measure flow within tumors, capture metastatic cancer cells moving within the brain vasculature and cells in lymphatic vessels, and image acute responses to changes in a vascular network. VR-MPLSM thus has the potential to further advance intravital imaging and provide new insight into the biology of the tumor microenvironment.

  9. Multiphoton imaging of low grade, high grade intraepithelial neoplasia and intramucosal invasive cancer of esophagus

    Science.gov (United States)

    Xu, Jian; Jiang, Liwei; Kang, Deyong; Wu, Xuejing; Xu, Meifang; Zhuo, Shuangmu; Zhu, Xiaoqin; Lin, Jiangbo; Chen, Jianxin

    2017-04-01

    Esophageal squamous cell carcinoma (ESCC) is devastating because of its aggressive lymphatic spread and clinical course. It is believed to occur through low-grade intraepithelial neoplasia (LGIN), high-grade intraepithelial neoplasia (HGIN), and intramucosal invasive cancer (IMC) before transforming to submucosal cancer. In particular, these early lesions (LGIN, HGIN and IMC), which involve no lymph node nor distant metastasis, can be cured by endoscopic treatment. Therefore, early identification of these lesions is important so as to offer a curative endoscopic resection, thus slowing down the development of ESCC. In this work, spectral information and morphological features of the normal esophageal mucosa are first studied. Then, the morphological changes of LGIN, HGIN and IMC are described. Lastly, quantitative parameters are also extracted by calculating the nuclear-to-cytoplasmic ratio of epithelial cells and the pixel density of collagen in the lamina propria. These results show that multiphoton microscopy (MPM) has the ability to identify normal esophageal mucosa, LGIN, HGIN and IMC. With the development of multiphoton endoscope systems for in vivo imaging, combined with a laser ablation system, MPM has the potential to provide immediate pathologic diagnosis and curative treatment of ESCC before the transformation to submucosal cancer in the future.

  10. Development of a compact and cost effective multi-input digital signal processing system

    Science.gov (United States)

    Darvish-Molla, Sahar; Chin, Kenrick; Prestwich, William V.; Byun, Soo Hyun

    2018-01-01

    A prototype digital signal processing system (DSP) was developed using a microcontroller interfaced with a 12-bit sampling ADC, which offers a considerably inexpensive solution for processing multiple detectors with high throughput. After digitization of the incoming pulses, in order to maximize the output counting rate, a simple algorithm was employed for pulse height analysis. Moreover, an algorithm aiming at the real-time pulse pile-up deconvolution was implemented. The system was tested using a NaI(Tl) detector in comparison with a traditional analogue and commercial digital systems for a variety of count rates. The performance of the prototype system was consistently superior to the analogue and the commercial digital systems up to the input count rate of 61 kcps while was slightly inferior to the commercial digital system but still superior to the analogue system in the higher input rates. Considering overall cost, size and flexibility, this custom made multi-input digital signal processing system (MMI-DSP) was the best reliable choice for the purpose of the 2D microdosimetric data collection, or for any measurement in which simultaneous multi-data collection is required.

  11. Relativistic (3+1) dimensional hydrodynamic simulations of compact interacting binary systems

    International Nuclear Information System (INIS)

    Mathews, G.J.; Evans, C.R.; Wilson, J.R.

    1986-09-01

    We discuss the development of a relativistic hydrodynamic code for describing the evolution of astrophysical systems in three spatial dimensions. The application of this code to several test problems is presented. Preliminary results from the simulation of the dynamics of accreting binary white dwarf and neutron star systems are discussed. 14 refs., 4 figs

  12. Design aspects of integrated compact thermal storage system for solar dryer applications

    International Nuclear Information System (INIS)

    Rajaraman, R.; Velraj, R.; Renganarayanan, S.

    2000-01-01

    Solar energy is an excellent source for drying of crops, fruits, vegetables and other agricultural and forest products. Though the availability of solar energy is plenty, it is time dependent in nature. The energy need for some applications is also time dependent, but in a different pattern and phase from the solar energy supply. This implies that the solar dryer should be integrated with an efficient thermal storage system to match the time-dependent supply and end-use requirements. Based on the studies carried out on Latent Heat Thermal Storage (LHTS) Systems, it is observed that when air is used as the heat transfer fluid in LHTS system, nearly uniform surface heat flux can be achieved. Hence the LHTS systems are most suitable for air based solar drying applications. In the present work some major conclusions arrived from the investigations on LHTS systems and the design considerations for the integrated latent heat thermal storage for the solar dryer are reported. (Author)

  13. A Portable Automatic Endpoint Detection System for Amplicons of Loop Mediated Isothermal Amplification on Microfluidic Compact Disk Platform

    Directory of Open Access Journals (Sweden)

    Shah Mukim Uddin

    2015-03-01

    Full Text Available In recent years, many improvements have been made in foodborne pathogen detection methods to reduce the impact of food contamination. Several rapid methods have been developed with biosensor devices to improve the way of performing pathogen detection. This paper presents an automated endpoint detection system for amplicons generated by loop mediated isothermal amplification (LAMP on a microfluidic compact disk platform. The developed detection system utilizes a monochromatic ultraviolet (UV emitter for excitation of fluorescent labeled LAMP amplicons and a color sensor to detect the emitted florescence from target. Then it processes the sensor output and displays the detection results on liquid crystal display (LCD. The sensitivity test has been performed with detection limit up to 2.5 × 10−3 ng/µL with different DNA concentrations of Salmonella bacteria. This system allows a rapid and automatic endpoint detection which could lead to the development of a point-of-care diagnosis device for foodborne pathogens detection in a resource-limited environment.

  14. Compact Design of 10 kW Proton Exchange Membrane Fuel Cell Stack Systems with Microcontroller Units

    Directory of Open Access Journals (Sweden)

    Hsiaokang Ma

    2014-04-01

    Full Text Available In this study, fuel, oxidant supply and cooling systems with microcontroller units (MCU are developed in a compact design to fit two 5 kW proton exchange membrane fuel cell (PEMFC stacks. At the initial stage, the testing facility of the system has a large volume (2.0 m × 2.0 m × 1.5 m with a longer pipeline and excessive control sensors for safe testing. After recognizing the performance and stability of stack, the system is redesigned to fit in a limited space (0.4 m × 0.5 m × 0.8 m. Furthermore, the stack performance is studied under different hydrogen recycling modes. Then, two similar 5 kW stacks are directly coupled with diodes to obtain a higher power output and safe operation. The result shows that the efficiency of the 5 kW stack is 43.46% with a purge period of 2 min with hydrogen recycling and that the hydrogen utilization rate µf is 66.31%. In addition, the maximum power output of the twin-coupled module (a power module with two stacks in electrical cascade/parallel arrangement is 9.52 kW.

  15. The Terabit/s Super-Fragment Builder and Trigger Throttling System for the Compact Muon Solenoid Experiment at CERN

    CERN Document Server

    Bauer, Gerry; Boyer, Vincent; Branson, James; Brett, Angela; Cano, Eric; Carboni, Andrea; Ciganek, Marek; Cittolin, Sergio; Erhan, Samim; Gigi, Dominique; Glege, Frank; Gómez-Reino, Robert; Gulmini, Michele; Gutíerrez-Mlot, Esteban; Gutleber, Johannes; Jacobs, Claude; Kim, Jin Cheol; Klute, Markus; Lipeles, Elliot; Lopez-Perez, Juan Antonio; Maron, Gaetano; Meijers, Frans; Meschi, Emilio; Moser, Roland; Murray, Steven; Oh, Alexander; Orsini, Luciano; Paus, Christoph; Petrucci, Andrea; Pieri, Marco; Pollet, Lucien; Rácz, Attila; Sakulin, Hannes; Sani, Matteo; Schieferdecker, Philipp; Schwick, Christoph; Sumorok, Konstanty; Suzuki, Ichiro; Tsirigkas, Dimitrios

    2007-01-01

    The Data Acquisition System of the Compact Muon Solenoid experiment at the Large Hadron Collider reads out event fragments of an average size of 2 kilobytes from around 650 detector front-ends at a rate of up to 100 kHz. The first stage of event-building is performed by the Super-Fragment Builder employing custom-built electronics and a Myrinet optical network. It reduces the number of fragments by one order of magnitude, thereby greatly decreasing the requirements for the subsequent event-assembly stage. By providing fast feedback from any of the front-ends to the trigger, the Trigger Throttling System prevents buffer overflows in the front-end electronics due to variations in the size and rate of events or due to back-pressure from the down-stream event-building and processing. This paper reports on new performance measurements and on the recent successful integration of a scaled-down setup of the described system with the trigger and with front-ends of all major sub-detectors. The on-going commissioning of...

  16. Gas separation performance of a hollow-filament type polyimide membrane module for a compact tritium removal system

    International Nuclear Information System (INIS)

    Hayashi, Takumi; Yamada, Masayuki; Suzuki, Takumi; Matsuda, Yuji; Okuno, Kenji

    1995-01-01

    A new tritium removal system using gas separation membranes has been studied to develop more compact and cost-effective system for a fusion reactor. To obtain necessary parameters, which are directly scalable to the ITER Atmospheric Detritiation System, the basic tritium recovery performance was investigated with a scaled polyimide membrane module (hollow-filament type : 10 m 3 /hr) loop. The result shows that the H 2 recovery ratio from N 2 or air was more than 99% or about 97%, respectively, at flow rate ratio of permeated/feed = 0.1, feed ampersand permeated side pressures = 2580 ampersand 80 torr, and module temp. = 293 K. Tritium (HT) recovery function was almost the same as H 2 recovery, even though the total hydrogen concentration was a few ppm in the feed of module. H 2 O recovery performance was better than hydrogen recovery. These recovery functions were improved effectively decreasing the pressure ratio of permeated/feed of module. 5 refs., 11 figs

  17. SU-E-T-267: Development of the Compact Graphite Calorimetry System for the High Energy Photon Beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B. C.; Kim, I. J.; Kim, J. H.; Yi, C. Y. [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2015-06-15

    Purpose: Graphite calorimeter systems are used for the absolute photon dosimetry. But many electronics are demanded in order to measure the tiny temperature changes. Minimizing the control system is needed to make a portable graphite calorimeter. Methods: A Domen-type graphite calorimetry system is constructing to measure the absorbed dose of the high energy photon beam. The graphite calorimeter divided into three parts, Core, Jacket, and Shield. In order to measure the temperature rising of the core due to the radiation accurately, the temperatures of the jacket and the shield should be controlled properly. A commercial temperature controller (Model 350, Lake Shore Cryogenics) was used to minimize the size of control system for making a portable graphite calorimetry system at the cost of the measurement uncertainty. The PID control of the jacket is conducted by the software (LabView) and Model 350 maintain the temperature of shield. Results: Our design value of the heat deposition power in the core is 0.04 mW for the dose rate of 3 Gy/min where the temperature sensitivity of the graphite is 1.4 mK/Gy. While the residuals of the Steinhart-hart equation fitting for the core thermistor were less than 0.1 mK, the temperature resolution of Model 350 is 1 mK. The temperature of the shield was kept within the 5 mK when the room temperature variation was about 0.5 K. Conclusion: The resolution of Model 350 for the temperature measurement and control is not good enough as the control system for the compact graphite calorimetry system. But The performance of Model 350 is good enough to maintain the temperature of the shield constantly. The Model 350 will be replaced by the AC resistance bridge (Model 372, Lake Shore Cryogenics) for the core temperature measurement and the jacket control.

  18. Developments of compact pulsed-power system toward X-ray sources

    Directory of Open Access Journals (Sweden)

    Miyamoto Takuya

    2013-11-01

    Full Text Available In order to generate X-rays from X-pinch, the peak current and current-rising time required are estimated to be 100 kA and 100 ns, respectively. To obtain these parameters, we developed a pulsed-power system, which consists of a parallelized pulse-forming network (PFN. The 20 PFN modules of the system were driven at a charging voltage of 20 kV by a thin copper wire of load resistance. The results showed that the current and current-rising time are 18 kA and 107 ns, respectively. The wire/plasma temperature is 6.9 eV. The pulsed-power system is expected to generate X-rays from X-pinch by the proposed system. This can be achieved by raising the voltage and increasing the number of PFN modules.

  19. Compact Chemical Monitor for Silver Ions in Spacecraft Water Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has identified silver ions as the best candidate biocide for use in the potable water system on next-generation spacecraft. Though significant work has been...

  20. Remote radiation imaging system using a compact gamma-ray imager mounted on a multicopter drone

    International Nuclear Information System (INIS)

    Sato, Yuki; Terasaka, Yuta; Kaburagi, Masaaki; Tanifuji, Yuta; Kawabata, Kuniaki; Miyamura, Hiroko; Torii, Tatsuo; Ozawa, Shingo; Izumi, Ryo; Suzuki, Toshikazu

    2018-01-01

    A remote radiation imaging system comprising a lightweight Compton camera and a multicopter drone was developed to remotely and quickly measure radioactive contamination inside the buildings of the Fukushima Daiichi Nuclear Power Station (FDNPS). The drone system is used for measuring detailed radiation distributions in narrow areas, which have been difficult to gauge with conventional aircraft monitoring using helicopters. A measurement of radiation distributions in outdoor environments in the coastal areas of Fukushima, Japan, was performed. The drone system with the Compton camera succeeded in remote observations of dense hotspots from the sky over a contaminated area near the FDNPS. The time required for image reconstruction is approximately 550 s in the case of a 9-m flight altitude for the hotspots with a surface dose rate of several tens of μSv/h. This drone system will be used inside the buildings of the FDNPS for remote measurement of radioactive contamination. (author)

  1. A Compact, Efficient Pyrolysis/Oxidation System for Solid Waste Resource Recovery in Space, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Both pyrolysis and oxidation steps have been considered as the key solid waste processing step for a Controlled Ecological Life Support System (CELSS). Pyrolysis is...

  2. Strengthening the Global Refugee Protection System: Recommendations for the Global Compact on Refugees

    Directory of Open Access Journals (Sweden)

    Kevin Appleby

    2017-12-01

    • the adoption of coherent strategies, involving all sectors, to address large movements of refugees. This paper draws heavily, albeit not exclusively, from a series of papers published as a special collection in the Journal on Migration and Human Security[1] on strengthening the global system of refugee protection. [1] Rethinking the Global Refugee Protection System, Journal on Migration and Human Security, Center for Migration Studies, 2016-2017. See http://cmsny.org/cms_research/refugeeproject/.

  3. Compact vibration isolation and suspension for Australian International Gravitational Observatory: local control system.

    Science.gov (United States)

    Dumas, Jean-Charles; Barriga, Pablo; Zhao, Chunnong; Ju, Li; Blair, David G

    2009-11-01

    High performance vibration isolators are required for ground based gravitational wave detectors. To attain very high performance at low frequencies we have developed multistage isolators for the proposed Australian International Gravitational Observatory detector in Australia. New concepts in vibration isolation including self-damping, Euler springs, LaCoste springs, Roberts linkages, and double preisolation require novel sensors and actuators. Double preisolation enables internal feedback to be used to suppress low frequency seismic noise. Multidegree of freedom control systems are required to attain high performance. Here we describe the control components and control systems used to control all degrees of freedom. Feedback forces are injected at the preisolation stages and at the penultimate suspension stage. There is no direct actuation on test masses. A digital local control system hosted on a digital signal processor maintains alignment and position, corrects drifts, and damps the low frequency linear and torsional modes without exciting the very high Q-factor test mass suspension. The control system maintains an optical cavity locked to a laser with a high duty cycle even in the absence of an autoalignment system. An accompanying paper presents the mechanics of the system, and the optical cavity used to determine isolation performance. A feedback method is presented, which is expected to improve the residual motion at 1 Hz by more than one order of magnitude.

  4. Compact vibration isolation and suspension for Australian International Gravitational Observatory: Local control system

    Science.gov (United States)

    Dumas, Jean-Charles; Barriga, Pablo; Zhao, Chunnong; Ju, Li; Blair, David G.

    2009-11-01

    High performance vibration isolators are required for ground based gravitational wave detectors. To attain very high performance at low frequencies we have developed multistage isolators for the proposed Australian International Gravitational Observatory detector in Australia. New concepts in vibration isolation including self-damping, Euler springs, LaCoste springs, Roberts linkages, and double preisolation require novel sensors and actuators. Double preisolation enables internal feedback to be used to suppress low frequency seismic noise. Multidegree of freedom control systems are required to attain high performance. Here we describe the control components and control systems used to control all degrees of freedom. Feedback forces are injected at the preisolation stages and at the penultimate suspension stage. There is no direct actuation on test masses. A digital local control system hosted on a digital signal processor maintains alignment and position, corrects drifts, and damps the low frequency linear and torsional modes without exciting the very high Q-factor test mass suspension. The control system maintains an optical cavity locked to a laser with a high duty cycle even in the absence of an autoalignment system. An accompanying paper presents the mechanics of the system, and the optical cavity used to determine isolation performance. A feedback method is presented, which is expected to improve the residual motion at 1 Hz by more than one order of magnitude.

  5. Sustainable management of agriculture activity on areas with soil vulnerability to compaction trough a developed decision support system (DSS)

    Science.gov (United States)

    Moretto, Johnny; Fantinato, Luciano; Rasera, Roberto

    2017-04-01

    One of the main environmental effects of agriculture is the negative impacts on areas with soil vulnerability to compaction and undersurface water derived from inputs and treatment distributions. A solution may represented from the "Precision Farming". Precision Farming refers to a management concept focusing on (near-real time) observation, measurement and responses to inter- and intra-variability in crops, fields and animals. Potential benefits may include increasing crop yields and animal performance, cost and labour reduction and optimisation of process inputs, all of which would increase profitability. At the same time, Precision Farming should increase work safety and reduce the environmental impacts of agriculture and farming practices, thus contributing to the sustainability of agricultural production. The concept has been made possible by the rapid development of ICT-based sensor technologies and procedures along with dedicated software that, in the case of arable farming, provides the link between spatially-distributed variables and appropriate farming practices such as tillage, seeding, fertilisation, herbicide and pesticide application, and harvesting. Much progress has been made in terms of technical solutions, but major steps are still required for the introduction of this approach over the common agricultural practices. There are currently a large number of sensors capable of collecting data for various applications (e.g. Index of vegetation vigor, soil moisture, Digital Elevation Models, meteorology, etc.). The resulting large volumes of data need to be standardised, processed and integrated using metadata analysis of spatial information, to generate useful input for decision-support systems. In this context, a user-friendly IT applications has been developed, for organizing and processing large volumes of data from different types of remote sensing and meteorological sensors, and for integrating these data into user-friendly farm management support

  6. H∞ Robust Control of a Large-Piston MEMS Micromirror for Compact Fourier Transform Spectrometer Systems

    Directory of Open Access Journals (Sweden)

    Huipeng Chen

    2018-02-01

    Full Text Available Incorporating linear-scanning micro-electro-mechanical systems (MEMS micromirrors into Fourier transform spectral acquisition systems can greatly reduce the size of the spectrometer equipment, making portable Fourier transform spectrometers (FTS possible. How to minimize the tilting of the MEMS mirror plate during its large linear scan is a major problem in this application. In this work, an FTS system has been constructed based on a biaxial MEMS micromirror with a large-piston displacement of 180 μm, and a biaxial H∞ robust controller is designed. Compared with open-loop control and proportional-integral-derivative (PID closed-loop control, H∞ robust control has good stability and robustness. The experimental results show that the stable scanning displacement reaches 110.9 μm under the H∞ robust control, and the tilting angle of the MEMS mirror plate in that full scanning range falls within ±0.0014°. Without control, the FTS system cannot generate meaningful spectra. In contrast, the FTS yields a clean spectrum with a full width at half maximum (FWHM spectral linewidth of 96 cm−1 under the H∞ robust control. Moreover, the FTS system can maintain good stability and robustness under various driving conditions.

  7. Compact, self-contained enhanced-vision system (EVS) sensor simulator

    Science.gov (United States)

    Tiana, Carlo

    2007-04-01

    We describe the model SIM-100 PC-based simulator, for imaging sensors used, or planned for use, in Enhanced Vision System (EVS) applications. Typically housed in a small-form-factor PC, it can be easily integrated into existing out-the-window visual simulators for fixed-wing or rotorcraft, to add realistic sensor imagery to the simulator cockpit. Multiple bands of infrared (short-wave, midwave, extended-midwave and longwave) as well as active millimeter-wave RADAR systems can all be simulated in real time. Various aspects of physical and electronic image formation and processing in the sensor are accurately (and optionally) simulated, including sensor random and fixed pattern noise, dead pixels, blooming, B-C scope transformation (MMWR). The effects of various obscurants (fog, rain, etc.) on the sensor imagery are faithfully represented and can be selected by an operator remotely and in real-time. The images generated by the system are ideally suited for many applications, ranging from sensor development engineering tradeoffs (Field Of View, resolution, etc.), to pilot familiarization and operational training, and certification support. The realistic appearance of the simulated images goes well beyond that of currently deployed systems, and beyond that required by certification authorities; this level of realism will become necessary as operational experience with EVS systems grows.

  8. Compact, Wearable Antennas for Battery-Less Systems Exploiting Fabrics and Magneto-Dielectric Materials

    Directory of Open Access Journals (Sweden)

    Alessandra Costanzo

    2014-08-01

    Full Text Available In this paper, we describe some promising solutions to the modern need for wearable, energy-aware, miniaturized, wireless systems, whose typical envisaged application is a body area network (BAN. To reach this goal, novel materials are adopted, such as fabrics, in place of standard substrates and metallizations, which require a systematic procedure for their electromagnetic characterization. Indeed, the design of such sub-systems represents a big issue, since approximate approaches could result in strong deviations from the actual system performance. To face this problem, we demonstrate our design procedure, which is based on the concurrent use of electromagnetic software tools and nonlinear circuit-level techniques, able to simultaneously predict the actual system behavior of an antenna system, consisting of the radiating and of the nonlinear blocks, at the component level. This approach is demonstrated for the design of a fully-wearable tri-band rectifying antenna (rectenna and of a button-shaped, electrically-small antenna deploying a novel magneto-dielectric substrate. Simulations are supported by measurements, both in terms of antenna port parameters and far-field results.

  9. H∞ Robust Control of a Large-Piston MEMS Micromirror for Compact Fourier Transform Spectrometer Systems.

    Science.gov (United States)

    Chen, Huipeng; Li, Mengyuan; Zhang, Yi; Xie, Huikai; Chen, Chang; Peng, Zhangming; Su, Shaohui

    2018-02-08

    Incorporating linear-scanning micro-electro-mechanical systems (MEMS) micromirrors into Fourier transform spectral acquisition systems can greatly reduce the size of the spectrometer equipment, making portable Fourier transform spectrometers (FTS) possible. How to minimize the tilting of the MEMS mirror plate during its large linear scan is a major problem in this application. In this work, an FTS system has been constructed based on a biaxial MEMS micromirror with a large-piston displacement of 180 μm, and a biaxial H∞ robust controller is designed. Compared with open-loop control and proportional-integral-derivative (PID) closed-loop control, H∞ robust control has good stability and robustness. The experimental results show that the stable scanning displacement reaches 110.9 μm under the H∞ robust control, and the tilting angle of the MEMS mirror plate in that full scanning range falls within ±0.0014°. Without control, the FTS system cannot generate meaningful spectra. In contrast, the FTS yields a clean spectrum with a full width at half maximum (FWHM) spectral linewidth of 96 cm -1 under the H∞ robust control. Moreover, the FTS system can maintain good stability and robustness under various driving conditions.

  10. The design of a flexible Global Calorimeter Trigger system for the Compact Muon Solenoid experiment

    Energy Technology Data Exchange (ETDEWEB)

    Brooke, J J [H.H. Wills Physics Lab, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Cussans, D G [H.H. Wills Physics Lab, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Frazier, R J E [H.H. Wills Physics Lab, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Galagedera, S B [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Heath, G P [H.H. Wills Physics Lab, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Huckvale, B J [H.H. Wills Physics Lab, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Nash, S J [H.H. Wills Physics Lab, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Newbold, D M [H.H. Wills Physics Lab, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Shah, A A [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom)

    2007-10-15

    We have developed a novel design of triggering system as part of the pipelined hardware Level-1 trigger logic for the CMS experiment at LHC. The Global Calorimeter Trigger is the last element in the processing of calorimeter data, and provides most of the input to the final Level-1 decision. We present the detailed functional requirements for this system. Our design meets the requirements using generic, configurable Trigger Processing Modules built from commercial programmable logic and high-speed serial data links. We describe the hardware, firmware and software components of this solution. CMS has chosen an alternative solution to build the final trigger system; we discuss the implications of our experiences for future development projects along similar lines.

  11. Design and laboratory calibration of the compact pushbroom hyperspectral imaging system

    Science.gov (United States)

    Zhou, Jiankang; Ji, Yiqun; Chen, Yuheng; Chen, Xinhua; Shen, Weimin

    2009-11-01

    The designed hyperspectral imaging system is composed of three main parts, that is, optical subsystem, electronic subsystem and capturing subsystem. And a three-dimensional "image cube" can be obtained through push-broom. The fore-optics is commercial-off-the-shelf with high speed and three continuous zoom ratios. Since the dispersive imaging part is based on Offner relay configuration with an aberration-corrected convex grating, high power of light collection and variable view field are obtained. The holographic recording parameters of the convex grating are optimized, and the aberration of the Offner configuration dispersive system is balanced. The electronic system adopts module design, which can minimize size, mass, and power consumption. Frame transfer area-array CCD is chosen as the image sensor and the spectral line can be binned to achieve better SNR and sensitivity without any deterioration in spatial resolution. The capturing system based on the computer can set the capturing parameters, calibrate the spectrometer, process and display spectral imaging data. Laboratory calibrations are prerequisite for using precise spectral data. The spatial and spectral calibration minimize smile and keystone distortion caused by optical system, assembly and so on and fix positions of spatial and spectral line on the frame area-array CCD. Gases excitation lamp is used in smile calibration and the keystone calculation is carried out by different viewing field point source created by a series of narrow slit. The laboratory and field imaging results show that this pushbroom hyperspectral imaging system can acquire high quality spectral images.

  12. Controllable surfaces of path interference in the multiphoton ionization of atoms by a weak trichromatic field

    International Nuclear Information System (INIS)

    Mercouris, Theodoros; Nicolaides, Cleanthes A

    2005-01-01

    Multiphoton detachment rates for the H - 1 S ground state irradiated by a weak trichromatic ac field consisting of the fundamental frequency ω 0.272 eV and its second, third or fourth higher harmonics were computed from first principles. The weak intensities are in the range of 10 7 -10 8 W cm -2 . The calculations incorporated systematically electronic structure and electron correlation effects. They were done by implementing a time-independent, nonperturbative many-electron, many-photon theory (MEMPT) which obtains cycle-averaged complex eigenvalues, whose real part gives the field-induced energy shift, Δ, and the imaginary part is the multiphoton ionization rate, Γ. Through analysis, plausible arguments and computation, we show that when the intensities are weak the dependence of Γ on phase differences is simple. Specifically, Γs are depicted in the form of plane surfaces, with minor ripples due to higher order ionization paths, in terms of trigonometric functions of the phase differences. This dependence is likely to be applicable to other atomic systems as well, and to provide a definition of the weak field regime in the trichromatic case. When the field intensities are such that higher order ionization paths become important, these dependences break down and we reach the strong field regime

  13. Reflective electroabsorption modular for compact base station radio-over-fiber systems

    Science.gov (United States)

    Wu, Yang; Chang, Wei-Xi; Yu, Paul K. L.

    2003-07-01

    A Radio-over-Fiber system with simplified Base Station (BS) is proposed in which a single chip DBR Reflective Electro-absorption Modulator (REAM) serves both as an optical transceiver and as a mixer at the BS. It enables full duplex optical transmission for base band and RF band services simultaneously due to good isolation between uplink and downlink at the same chip. Grating structure is incorporated into the EA modulator for the sake of system design. It also improves yield and efficiency of high-speed devices.

  14. A new and compact system at the AMS laboratory in Bucharest

    Science.gov (United States)

    Stan-Sion, C.; Enachescu, M.; Petre, A. R.; Simion, C. A.; Calinescu, C. I.; Ghita, D. G.

    2015-10-01

    AMS research started more than 15 years ago at our National Institute for Physics and Nuclear Engineering (IFIN-HH), Bucharest. A first facility was constructed based on our multipurpose 9 MV tandem accelerator and was upgraded several times. In May 2012 a new Cockcroft Walton type 1 MV HVEE tandetron AMS system, was commissioned. Two chemistry laboratories were constructed and are routinely performing the target preparation for carbon dating and for other isotope applications such as for geology, environment physics, medicine and forensic physics. Performance parameters of the new system are shown.

  15. A new and compact system at the AMS laboratory in Bucharest

    Energy Technology Data Exchange (ETDEWEB)

    Stan-Sion, C.; Enachescu, M.; Petre, A.R.; Simion, C.A.; Calinescu, C.I.; Ghita, D.G.

    2015-10-15

    AMS research started more than 15 years ago at our National Institute for Physics and Nuclear Engineering (IFIN-HH), Bucharest. A first facility was constructed based on our multipurpose 9 MV tandem accelerator and was upgraded several times. In May 2012 a new Cockcroft Walton type 1 MV HVEE tandetron AMS system, was commissioned. Two chemistry laboratories were constructed and are routinely performing the target preparation for carbon dating and for other isotope applications such as for geology, environment physics, medicine and forensic physics. Performance parameters of the new system are shown.

  16. Radiation analysis of the CIT (Compact Ignition Tokamak) pellet injector system and its impact on personnel access

    Energy Technology Data Exchange (ETDEWEB)

    Selcow, E.C.; Stevens, P.N.; Gomes, I.C.; Gomes, L.M.

    1987-01-01

    Conceptual design of the Compact Ignition Tokamak (CIT) is near completion. This short-pulse ignition experiment is planned to follow the operations of the Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory. The high neutron wall loadings, /approximately/4-5 MW/m/sup 2/, associated with the operation of this device require that neutronics-related issues be considered in the overall system design. Radiation shielding is required for the protection of device components and personnel. A close-in igloo shield has been designed around the periphery of the tokamak structure, and the entire experiment is housed in a circular test cell facility with a radius of /approximately/12 m. The most critical radiation concern in the CIT design process relates to the numerous penetrations in the device. This paper discusses the impact of a major penetration on the design and operations of the CIT pellet injection system. The pellet injector is a major component, which has a line-of-sight penetration through the igloo and test cell wall. All current options for maintenance of the injector require personnel access. A nuclear analysis has been performed to determine the feasibility of hands-on access. Results indicate that personnel access to the pellet injector glovebox is possible. 10 refs., 3 figs., 3 tabs.

  17. From Heavy-Ion Collisions to Compact Stars: Equation of State and Relevance of the System Size

    Directory of Open Access Journals (Sweden)

    Sylvain Mogliacci

    2018-01-01

    Full Text Available In this article, we start by presenting state-of-the-art methods allowing us to compute moments related to the globally conserved baryon number, by means of first principle resummed perturbative frameworks. We focus on such quantities for they convey important properties of the finite temperature and density equation of state, being particularly sensitive to changes in the degrees of freedom across the quark-hadron phase transition. We thus present various number susceptibilities along with the corresponding results as obtained by lattice quantum chromodynamics collaborations, and comment on their comparison. Next, omitting the importance of coupling corrections and considering a zero-density toy model for the sake of argument, we focus on corrections due to the small size of heavy-ion collision systems, by means of spatial compactifications. Briefly motivating the relevance of finite size effects in heavy-ion physics, in opposition to the compact star physics, we present a few preliminary thermodynamic results together with the speed of sound for certain finite size relativistic quantum systems at very high temperature.

  18. Compact DD generator based in vivo neutron activation analysis (IVNAA) system to determine sodium concentrations in human bone.

    Science.gov (United States)

    Coyne, Mychaela Dawn; Neumann, Colby R; Zhang, Xinxin; Byrne, Patrick; Liu, Yingzi; Weaver, Connie M; Nie, Linda Huiling

    2018-04-16

    This study presents the development of a non-invasive method for monitoring Na in human bone. Many diseases, such as hypertension and osteoporosis, are closely associated with sodium (Na) retention in the human body. Na retention is generally evaluated by calculating the difference between dietary intake and excretion. There is currently no method to directly quantify Na retained in the body. Bone is a storage for many elements, including Na, which renders bone Na an ideal biomarker to study Na metabolism and retention. Approach: A customized compact deuterium-deuterium (DD) neutron generator was used to produce neutrons for in vivo neutron activation analysis (IVNAA), with a moderator/ reflector/ shielding assembly optimized for human hand irradiation in order to maximize the thermal neutron flux inside the irradiation cave and to limit radiation exposure to the hand and the whole body. Main Results: The experimental results show that the system is able to detect sodium levels in the bone as low as 12 g Na/g dry bone with an effective dose to the body of about 27 μSv. The simulation results agree with the numbers estimated from the experiment. Significance: This is expected to be a feasible method for measuring the change of Na in bone. The low detection limit indicates this will be a useful system to study the association between Na retention and related diseases. © 2018 Institute of Physics and Engineering in Medicine.

  19. Applications of multiphoton microscopy in the field of colorectal cancer

    Science.gov (United States)

    Wang, Shu; Li, Lianhuang; Zhu, Xiaoqin; Zheng, Liqin; Zhuo, Shuangmu; Chen, Jianxin

    2018-06-01

    Multiphoton microscopy (MPM) is a powerful tool for visualizing cellular and subcellular details within living tissue by its unique advantages of being label-free, its intrinsic optical sectioning ability, near-infrared excitation for deep penetration depth into tissue, reduced photobleaching and phototoxicity in the out-of-focus regions, and being capable of providing quantitative information. In this review, we focus on applications of MPM in the field of colorectal cancer, including monitoring cancer progression, detecting tumor metastasis and microenvironment, evaluating the cancer therapy response, and visualizing and ablating pre-invasive cancer cells. We also present one of the major challenges and the future research direction to exploit a colorectal multiphoton endoscope.

  20. High-order multiphoton ionization photoelectron spectroscopy of NO

    International Nuclear Information System (INIS)

    Carman, H.S. Jr.; Compton, R.N.

    1987-01-01

    Photoelectron energy angular distributions of NO following three different high-order multiphoton ionization (MPI) schemes have been measured. The 3 + 3 resonantly enhanced multiphoton ionization (REMPI) via the A 2 Σ + (v=O) level yielded a distribution of electron energies corresponding to all accessible vibrational levels (v + =O-6) of the nascent ion. Angular distributions of electrons corresponding to v + =O and v + =3 were significantly different. The 3 + 2 REMPI via the A 2 Σ + (v=1) level produced only one low-energy electron peak (v + =1). Nonresonant MPI at 532 nm yielded a distribution of electron energies corresponding to both four- and five-photon ionization. Prominent peaks in the five-photon photoelectron spectrum (PES) suggest contributions from near-resonant states at the three-photon level. 4 refs., 3 figs

  1. Scanless multitarget-matching multiphoton excitation fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Junpeng Qiu

    2018-03-01

    Full Text Available Using the combination of a reflective blazed grating and a reflective phase-only diffractive spatial light modulator (SLM, scanless multitarget-matching multiphoton excitation fluorescence microscopy (SMTM-MPM was achieved. The SLM shaped an incoming mode-locked, near-infrared Ti:sapphire laser beam into an excitation pattern with addressable shapes and sizes that matched the samples of interest in the field of view. Temporal and spatial focusing were simultaneously realized by combining an objective lens and a blazed grating. The fluorescence signal from illuminated areas was recorded by a two-dimensional sCMOS camera. Compared with a conventional temporal focusing multiphoton microscope, our microscope achieved effective use of the laser power and decreased photodamage with higher axial resolution.

  2. Rapid in vivo vertical tissue sectioning by multiphoton tomography

    Science.gov (United States)

    Batista, Ana; Breunig, Hans Georg; König, Karsten

    2018-02-01

    A conventional tool in the pathological field is histology which involves the analysis of thin sections of tissue in which specific cellular structures are stained with different dyes. The process to obtain these stained tissue sections is time consuming and invasive as it requires tissue removal, fixation, sectioning, and staining. Moreover, imaging of live tissue is not possible. We demonstrate that multiphoton tomography can provide within seconds, non-invasive, label-free, vertical images of live tissue which are in quality similar to conventional light micrographs of histologic stained specimen. In contrast to conventional setups based on laser scanning which image horizontally sections, the vertical in vivo images are directly recorded by combined line scanning and timed adjustments of the height of the focusing optics. In addition, multiphoton tomography provides autofluorescence lifetimes which can be used to determine the metabolic states of cells.

  3. Compact fibre-laser-pumped Ho:YLF oscillator-amplifier system

    CSIR Research Space (South Africa)

    Bollig, C

    2009-06-01

    Full Text Available -amplifier system. 0 5 10 15 20 25 0 1 2 3 4 5 Repetition Rate [kHz] Pu lse En er gy [m J] 0 50 100 150 200 250 Pu lse Le n gt h [ns ] Simulation Results Amp Pulse Energy Osc Pulse Energy Amp Pulse Length Fig. 2 Output energy...

  4. Lapabot: a compact telesurgical robot system for minimally invasive surgery: part II. Telesurgery evaluation.

    Science.gov (United States)

    Park, Jun Woo; Lee, Duck Hee; Kim, Young Woo; Lee, Byeong Han; Jo, Yung Ho

    2012-05-01

    As described in Part I, the Lapabot was developed considering telesurgery from the initial design stage. The robot configuration is based on the master-slave structure in which the operator can be separated spatially from the patient. The distributed control architecture communicating through high-speed network enables remote control of surgical robot manipulators. In this work, we added network communication modules using user datagram protocol/internet protocol for implementation of the telesurgical system. For a stable network environment, a dedicated research network was adopted. To characterize the network environment, a data packet sender and a repeater whose packet length and packet structure are similar to those of the real data packet were developed. The developed system was evaluated through in-vitro and in-vivo experiments. With the developed system, we have successfully performed remote control of the Lapabot. The roundtrip time delay for the control signal ranged from 1.4 to 4.1 ms. The total time delay for the operator including image signal acquisition and transmission delays was under 333 ms. It did not impede surgical procedures. Initial evaluation results demonstrate the feasibility of the developed telesurgical system.

  5. Development of a High Reliability Compact Air Independent PEMFC Power System

    Science.gov (United States)

    Wynne, B.; Diffenderfer, C.; Ferguson, S.; Keyser, J.; Miller, M.; Sievers, B.; Song, Y.; Araghi, K.; Vasquez, A.

    2013-01-01

    Autonomous Underwater Vehicles (AUV's) have received increased attention in recent years as military and commercial users look for means to maintain a mobile and persistent presence in the undersea world. Teledyne Energy Systems, Inc. (TESI) is committed to meeting the energy needs for these missions

  6. Micromechanical aptasensor-based protein detection using a compact-disc format microfluidics system

    DEFF Research Database (Denmark)

    Bosco, Filippo; Yang, J.; Chen, C. H.

    2012-01-01

    by optical readout heads from a DVD-ROM. The improved sensing platform facilitates measurements in continuous liquid flow with temperature control. Also, the wobbling of the CD platform has been reduced to a minimum and the scanning system has been optimized in order to detect cantilever deflections...

  7. Novel compact panomorph lens based vision system for monitoring around a vehicle

    Science.gov (United States)

    Thibault, Simon

    2008-04-01

    Automotive applications are one of the largest vision-sensor market segments and one of the fastest growing ones. The trend to use increasingly more sensors in cars is driven both by legislation and consumer demands for higher safety and better driving experiences. Awareness of what directly surrounds a vehicle affects safe driving and manoeuvring of a vehicle. Consequently, panoramic 360° Field of View imaging can contributes most to the perception of the world around the driver than any other sensors. However, to obtain a complete vision around the car, several sensor systems are necessary. To solve this issue, a customized imaging system based on a panomorph lens will provide the maximum information for the drivers with a reduced number of sensors. A panomorph lens is a hemispheric wide angle anamorphic lens with enhanced resolution in predefined zone of interest. Because panomorph lenses are optimized to a custom angle-to-pixel relationship, vision systems provide ideal image coverage that reduces and optimizes the processing. We present various scenarios which may benefit from the use of a custom panoramic sensor. We also discuss the technical requirements of such vision system. Finally we demonstrate how the panomorph based visual sensor is probably one of the most promising ways to fuse many sensors in one. For example, a single panoramic sensor on the front of a vehicle could provide all necessary information for assistance in crash avoidance, lane tracking, early warning, park aids, road sign detection, and various video monitoring views.

  8. Multiphoton absorption coefficients in solids: an universal curve

    International Nuclear Information System (INIS)

    Brandi, H.S.; Araujo, C.B. de

    1983-04-01

    An universal curve for the frequency dependence of the multiphoton absorption coefficient is proposed based on a 'non-perturbative' approach. Specific applications have been made to obtain two, three, four and five photons absorption coefficient in different materials. Properly scaling of the two photon absorption coefficient and the use of the universal curve yields results for the higher order absorption coefficients in good agreement with the experimental data. (Author) [pt

  9. Femtosecond Light Source for Phase-Controlled Multiphoton Ionization

    International Nuclear Information System (INIS)

    Sokolov, A. V.; Walker, D. R.; Yavuz, D. D.; Yin, G. Y.; Harris, S. E.

    2001-01-01

    We describe a femtosecond Raman light source with more than an octave of optical bandwidth. We use this source to demonstrate phase control of multiphoton ionization under conditions where ionization requires eleven photons of the lowest frequency of the spectrum or five photons of the highest frequency. The nonlinearity of the photoionization process allows us to characterize the light source. Experiment-to-theory comparison implies generation of a near single-cycle waveform

  10. Detection of high level carbon dioxide emissions using a compact optical fibre based mid-infrared sensor system for applications in environmental pollution monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Muda, R; Lewis, E; O' Keeffe, S; Dooly, G; Clifford, J, E-mail: razali.muda@ul.i [Optical Fibre Sensors Research Centre, Electronic and Computer Engineering Department, University of Limerick (Ireland)

    2009-07-01

    A novel and highly compact optical fibre based sensor system for measurement of high concentrations CO{sub 2} gas emissions in modern automotive exhaust is presented. The sensor system works based on the principle of open-path direct absorption spectroscopy in the mid-infrared wavelength range. The sensor system, which comprises low cost components and is compact in design, is well suited for applications in monitoring CO{sub 2} emissions from the exhaust of automotive vehicles. The sensor system utilises calcium fluoride (CaF{sub 2}) lenses and a narrow band pass (NBP) filter for detection of CO{sub 2} gas. The response of the sensor to high concentrations of CO{sub 2} gas is presented and the result is compared with that of a commercial flue gas analyser. The sensor shows response times of 5.2s and demonstrates minimal susceptibility to cross interferences of other gases present in the exhaust system.

  11. Pharmaceutical powder compaction technology

    National Research Council Canada - National Science Library

    Çelik, Metin

    2011-01-01

    ... through the compaction formulation process and application. Compaction of powder constituents both active ingredient and excipients is examined to ensure consistent and reproducible disintegration and dispersion profiles...

  12. Hardware/Software Codesign in a Compact Ion Mobility Spectrometer Sensor System for Subsurface Contaminant Detection

    Directory of Open Access Journals (Sweden)

    Gribb MollyM

    2008-01-01

    Full Text Available Abstract A field-programmable-gate-array-(FPGA- based data acquisition and control system was designed in a hardware/software codesign environment using an embedded Xilinx Microblaze soft-core processor for use with a subsurface ion mobility spectrometer (IMS system, designed for detection of gaseous volatile organic compounds (VOCs. An FPGA is used to accelerate the digital signal processing algorithms and provide accurate timing and control. An embedded soft-core processor is used to ease development by implementing nontime critical portions of the design in software. The design was successfully implemented using a low-cost, off-the-shelf Xilinx Spartan-III FPGA and supporting digital and analog electronics.

  13. Compact holographic optical neural network system for real-time pattern recognition

    Science.gov (United States)

    Lu, Taiwei; Mintzer, David T.; Kostrzewski, Andrew A.; Lin, Freddie S.

    1996-08-01

    One of the important characteristics of artificial neural networks is their capability for massive interconnection and parallel processing. Recently, specialized electronic neural network processors and VLSI neural chips have been introduced in the commercial market. The number of parallel channels they can handle is limited because of the limited parallel interconnections that can be implemented with 1D electronic wires. High-resolution pattern recognition problems can require a large number of neurons for parallel processing of an image. This paper describes a holographic optical neural network (HONN) that is based on high- resolution volume holographic materials and is capable of performing massive 3D parallel interconnection of tens of thousands of neurons. A HONN with more than 16,000 neurons packaged in an attache case has been developed. Rotation- shift-scale-invariant pattern recognition operations have been demonstrated with this system. System parameters such as the signal-to-noise ratio, dynamic range, and processing speed are discussed.

  14. Compact multimode fiber beam-shaping system based on GPU accelerated digital holography.

    Science.gov (United States)

    Plöschner, Martin; Čižmár, Tomáš

    2015-01-15

    Real-time, on-demand, beam shaping at the end of the multimode fiber has recently been made possible by exploiting the computational power of rapidly evolving graphics processing unit (GPU) technology [Opt. Express 22, 2933 (2014)]. However, the current state-of-the-art system requires the presence of an acousto-optic deflector (AOD) to produce images at the end of the fiber without interference effects between neighboring output points. Here, we present a system free from the AOD complexity where we achieve the removal of the undesired interference effects computationally using GPU implemented Gerchberg-Saxton and Yang-Gu algorithms. The GPU implementation is two orders of magnitude faster than the CPU implementation which allows video-rate image control at the distal end of the fiber virtually free of interference effects.

  15. Beam monitor system for an x-ray free electron laser and compact laser

    Directory of Open Access Journals (Sweden)

    Y. Otake

    2013-04-01

    Full Text Available A beam-monitor system for XFEL/SPring 8, “SACLA,” has been constructed. In order to maintain a stable self-amplified spontaneous emission (SASE interaction, the straightness and overlap of the axes to within 3  μm between the electron beams and the radiated x rays for an undulator section of about 100 m length is necessary. This straightness means relative alignment to an experimental target sample. Furthermore, a temporal stability of 30 fs in order to maintain a constant peak beam current is also necessary to conduct stable SASE lasing. The monitor system was developed to satisfy these spatial and temporal stability and resolution criteria. The system comprises spatial monitors, such as cavity-type beam-position monitors and screen monitors, as well as temporal measurement instruments, such as current monitors, waveguide spectrometers, coherent synchrotron-radiation detectors, a streak camera, and an rf deflector. Commissioning of SACLA started from March 2011, and the monitors performed sufficient roles to tune the beams for lasing. The achieved overall performances of the system, including data acquisition, are: the beam position monitor has a spatial resolution of 600 nm in rms; the bunch-length monitors show ability to observe bunch lengths from 1 ns in an injector with velocity bunching to less than 30 fs after three-stage bunch compressors. The less than 3  μm spatial resolution of the screen monitor was also confirmed during practical beam operation. Owing to these fulfilled performances, such as the high spatial and temporal resolutions, stable lasing of SACLA has been achieved.

  16. Constructing compact Takagi-Sugeno rule systems: identification of complex interactions in epidemiological data.

    Science.gov (United States)

    Zhou, Shang-Ming; Lyons, Ronan A; Brophy, Sinead; Gravenor, Mike B

    2012-01-01

    The Takagi-Sugeno (TS) fuzzy rule system is a widely used data mining technique, and is of particular use in the identification of non-linear interactions between variables. However the number of rules increases dramatically when applied to high dimensional data sets (the curse of dimensionality). Few robust methods are available to identify important rules while removing redundant ones, and this results in limited applicability in fields such as epidemiology or bioinformatics where the interaction of many variables must be considered. Here, we develop a new parsimonious TS rule system. We propose three statistics: R, L, and ω-values, to rank the importance of each TS rule, and a forward selection procedure to construct a final model. We use our method to predict how key components of childhood deprivation combine to influence educational achievement outcome. We show that a parsimonious TS model can be constructed, based on a small subset of rules, that provides an accurate description of the relationship between deprivation indices and educational outcomes. The selected rules shed light on the synergistic relationships between the variables, and reveal that the effect of targeting specific domains of deprivation is crucially dependent on the state of the other domains. Policy decisions need to incorporate these interactions, and deprivation indices should not be considered in isolation. The TS rule system provides a basis for such decision making, and has wide applicability for the identification of non-linear interactions in complex biomedical data.

  17. Low-cost compact ECG with graphic LCD and phonocardiogram system design.

    Science.gov (United States)

    Kara, Sadik; Kemaloğlu, Semra; Kirbaş, Samil

    2006-06-01

    Till today, many different ECG devices are made in developing countries. In this study, low cost, small size, portable LCD screen ECG device, and phonocardiograph were designed. With designed system, heart sounds that take synchronously with ECG signal are heard as sensitive. Improved system consist three units; Unit 1, ECG circuit, filter and amplifier structure. Unit 2, heart sound acquisition circuit. Unit 3, microcontroller, graphic LCD and ECG signal sending unit to computer. Our system can be used easily in different departments of the hospital, health institution and clinics, village clinic and also in houses because of its small size structure and other benefits. In this way, it is possible that to see ECG signal and hear heart sounds as synchronously and sensitively. In conclusion, heart sounds are heard on the part of both doctor and patient because sounds are given to environment with a tiny speaker. Thus, the patient knows and hears heart sounds him/herself and is acquainted by doctor about healthy condition.

  18. Compact and portable X-ray imager system using Medipix3RX

    Science.gov (United States)

    Garcia-Nathan, T. B.; Kachatkou, A.; Jiang, C.; Omar, D.; Marchal, J.; Changani, H.; Tartoni, N.; van Silfhout, R. G.

    2017-10-01

    In this paper the design and implementation of a novel portable X-ray imager system is presented. The design features a direct X-ray detection scheme by making use of a hybrid detector (Medipix3RX). Taking advantages of the capabilities of the Medipix3RX, like a high resolution, zero dead-time, single photon detection and charge-sharing mode, the imager has a better resolution and higher sensitivity compared to using traditional indirect detection schemes. A detailed description of the system is presented, which consists of a vacuum chamber containing the sensor, an electronic board for temperature management, conditioning and readout of the sensor and a data processing unit which also handles network connection and allow communication with clients by acting as a server. A field programmable gate array (FPGA) device is used to implement the readout protocol for the Medipix3RX, apart from the readout the FPGA can perform complex image processing functions such as feature extraction, histogram, profiling and image compression at high speeds. The temperature of the sensor is monitored and controlled through a PID algorithm making use of a Peltier cooler, improving the energy resolution and response stability of the sensor. Without implementing data compression techniques, the system is capable of transferring 680 profiles/s or 240 images/s in a continuous mode. Implementation of equalization procedures and tests on colour mode are presented in this paper. For the experimental measurements the Medipix3RX sensor was used with a Silicon layer. One of the tested applications of the system is as an X-ray beam position monitor (XBPM) device for synchrotron applications. The XBPM allows a non-destructive real time measurement of the beam position, size and intensity. A Kapton foil is placed in the beam path scattering radiation towards a pinhole camera setup that allows the sensor to obtain an image of the beam. By using profiles of the synchrotron X-ray beam, high frequency

  19. r-Process Nucleosynthesis in the Early Universe Through Fast Mergers of Compact Binaries in Triple Systems

    Science.gov (United States)

    Bonetti, Matteo; Perego, Albino; Capelo, Pedro R.; Dotti, Massimo; Miller, M. Coleman

    2018-05-01

    Surface abundance observations of halo stars hint at the occurrence of r-process nucleosynthesis at low metallicity ([Fe/H] scale of the inner compact object binaries. Our results are highly sensitive to the assumed initial distribution of the inner binary semi-major axes. Distributions with mostly wide compact object binaries are most affected by the third object, resulting in a strong increase (by more than a factor of 2) in the fraction of fast coalescences. If instead the distribution preferentially populates very close compact binaries, general relativistic precession prevents the third body from increasing the inner binary eccentricity to very high values. In this last case, the fraction of coalescing binaries is increased much less by tertiaries, but the fraction of binaries that would coalesce within 108 yr even without a third object is already high. Our results provide additional support to the compact-binary merger scenario for r-process nucleosynthesis.

  20. CMS (Compact Muon Solenoid)

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The milestone workshops on LHC experiments in Aachen in 1990 and at Evian in 1992 provided the first sketches of how LHC detectors might look. The concept of a compact general-purpose LHC experiment based on a solenoid to provide the magnetic field was first discussed at Aachen, and the formal Expression of Interest was aired at Evian. It was here that the Compact Muon Solenoid (CMS) name first became public. Optimizing first the muon detection system is a natural starting point for a high luminosity (interaction rate) proton-proton collider experiment. The compact CMS design called for a strong magnetic field, of some 4 Tesla, using a superconducting solenoid, originally about 14 metres long and 6 metres bore. (By LHC standards, this warrants the adjective 'compact'.) The main design goals of CMS are: 1 - a very good muon system providing many possibilities for momentum measurement (physicists call this a 'highly redundant' system); 2 - the best possible electromagnetic calorimeter consistent with the above; 3 - high quality central tracking to achieve both the above; and 4 - an affordable detector. Overall, CMS aims to detect cleanly the diverse signatures of new physics by identifying and precisely measuring muons, electrons and photons over a large energy range at very high collision rates, while also exploiting the lower luminosity initial running. As well as proton-proton collisions, CMS will also be able to look at the muons emerging from LHC heavy ion beam collisions. The Evian CMS conceptual design foresaw the full calorimetry inside the solenoid, with emphasis on precision electromagnetic calorimetry for picking up photons. (A light Higgs particle will probably be seen via its decay into photon pairs.) The muon system now foresaw four stations. Inner tracking would use silicon microstrips and microstrip gas chambers, with over 10 7 channels offering high track finding efficiency. In the central CMS barrel, the tracking elements are

  1. Visualizing radiofrequency-skin interaction using multiphoton microscopy in vivo.

    Science.gov (United States)

    Tsai, Tsung-Hua; Lin, Sung-Jan; Lee, Woan-Ruoh; Wang, Chun-Chin; Hsu, Chih-Ting; Chu, Thomas; Dong, Chen-Yuan

    2012-02-01

    Redundant skin laxity is a major feature of aging. Recently, radiofrequency has been introduced for nonablative tissue tightening by volumetric heating of the deep dermis. Despite the wide range of application based on this therapy, the effect of this technique on tissue and the subsequent tissue remodeling have not been investigated in detail. Our objective is to evaluate the potential of non-linear optics, including multiphoton autofluorescence and second harmonic generation (SHG) microscopy, as a non-invasive imaging modality for the real-time study of radiofrequency-tissue interaction. Electro-optical synergy device (ELOS) was used as the radiofrequency source in this study. The back skin of nude mouse was irradiated with radiofrequency at different passes. We evaluated the effect on skin immediately and 1 month after treatment with multiphoton microscopy. Corresponding histology was performed for comparison. We found that SHG is negatively correlated to radiofrequency passes, which means that collagen structural disruption happens immediately after thermal damage. After 1 month of collagen remodeling, SHG signals increased above baseline, indicating that collagen regeneration has occurred. Our findings may explain mechanism of nonablative skin tightening and were supported by histological examinations. Our work showed that monitoring the dermal heating status of RF and following up the detailed process of tissue reaction can be imaged and quantified with multiphoton microscopy non-invasively in vivo. Copyright © 2011. Published by Elsevier Ireland Ltd.

  2. TU-H-BRA-06: Characterization of a Linear Accelerator Operating in a Compact MRIGuided Radiation Therapy System

    International Nuclear Information System (INIS)

    Green, O; Mutic, S; Li, H; Low, D; Chmielewski, T; Fought, G; Hernandez, M; Kawrakow, I; Sharma, A; Shvartsman, S; Dempsey, J

    2016-01-01

    Purpose: To describe the performance of a linear accelerator operating in a compact MRI-guided radiation therapy system. Methods: A commercial linear accelerator was placed in an MRI unit that is employed in a commercial MR-based image guided radiation therapy (IGRT) system. The linear accelerator components were placed within magnetic field-reducing hardware that provided magnetic fields of less than 40 G for the magnetron, gun driver, and port circulator, with 1 G for the linear accelerator. The system did not employ a flattening filter. The test linear accelerator was an industrial 4 MV model that was employed to test the ability to run an accelerator in the MR environment. An MR-compatible diode detector array was used to measure the beam profiles with the accelerator outside and inside the MR field and with the gradient coils on and off to examine if there was any effect on the delivered dose distribution. The beam profiles and time characteristics of the beam were measured. Results: The beam profiles exhibited characteristic unflattened Bremsstrahlung features with less than ±1.5% differences in the profile magnitude when the system was outside and inside the magnet and less than 1% differences with the gradient coils on and off. The central axis dose rate fluctuated by less than 1% over a 30 second period when outside and inside the MRI. Conclusion: A linaccompatible MR design has been shown to be effective in not perturbing the operation of a commercial linear accelerator. While the accelerator used in the tests was 4MV, there is nothing fundamentally different with the operation of a 6MV unit, implying that the design will enable operation of the proposed clinical unit. Research funding provided by ViewRay, Inc.

  3. TU-H-BRA-06: Characterization of a Linear Accelerator Operating in a Compact MRIGuided Radiation Therapy System

    Energy Technology Data Exchange (ETDEWEB)

    Green, O; Mutic, S; Li, H [Washington University School of Medicine, St. Louis, MO (United States); Low, D [University of California, Los Angeles, CA (United States); Chmielewski, T; Fought, G; Hernandez, M; Kawrakow, I; Sharma, A; Shvartsman, S; Dempsey, J [ViewRay, Inc., Oakwood Village, OH (United States)

    2016-06-15

    Purpose: To describe the performance of a linear accelerator operating in a compact MRI-guided radiation therapy system. Methods: A commercial linear accelerator was placed in an MRI unit that is employed in a commercial MR-based image guided radiation therapy (IGRT) system. The linear accelerator components were placed within magnetic field-reducing hardware that provided magnetic fields of less than 40 G for the magnetron, gun driver, and port circulator, with 1 G for the linear accelerator. The system did not employ a flattening filter. The test linear accelerator was an industrial 4 MV model that was employed to test the ability to run an accelerator in the MR environment. An MR-compatible diode detector array was used to measure the beam profiles with the accelerator outside and inside the MR field and with the gradient coils on and off to examine if there was any effect on the delivered dose distribution. The beam profiles and time characteristics of the beam were measured. Results: The beam profiles exhibited characteristic unflattened Bremsstrahlung features with less than ±1.5% differences in the profile magnitude when the system was outside and inside the magnet and less than 1% differences with the gradient coils on and off. The central axis dose rate fluctuated by less than 1% over a 30 second period when outside and inside the MRI. Conclusion: A linaccompatible MR design has been shown to be effective in not perturbing the operation of a commercial linear accelerator. While the accelerator used in the tests was 4MV, there is nothing fundamentally different with the operation of a 6MV unit, implying that the design will enable operation of the proposed clinical unit. Research funding provided by ViewRay, Inc.

  4. Investigation of aquifer-system compaction in the Hueco basin, El Paso, Texas, USA

    Science.gov (United States)

    Heywood, Charles

    1995-01-01

    The Pleistocene geologic history of the Rio Grande valley in the Hueco basin included a cycle of sediment erosion and re-aggradation, resulting in unconformable stratification of sediment of contrasting compressibility and stress history. Since the 1950s large groundwater withdrawals have resulted in significant water-level declines and associated land subsidence. Knowledge of the magnitude and variation of specific storage is needed for developing predictive models of subsidence and groundwater flow simulations. Analyses of piezometric and extensometric data in the form of stress-strain diagrams from a 16 month period yield in situ measurements of aquifer-system compressibility across two discrete aquifer intervals. The linear elastic behaviour of the deeper interval indicates over-consolidation of basin deposits, probably resulting from deeper burial depth before the middle Pleistocene. By contrast, the shallow aquifer system displays an inelastic component, suggesting pre-consolidation stress not significantly greater than current effective stress levels for a sequence of late Pleistocene clay. Harmonic analyses of the piezometric response to earth tides in two water-level piezometers provide an independent estimate of specific storage of aquifer sands.

  5. Radiation mapping of Jaipur city using compact aerial radiation monitoring system (CARMS) installed in mobile platform

    International Nuclear Information System (INIS)

    Jain, Amit; Chaudhury, Probal; Padmanabhan, N.; Pradeepkumar, K.S.; Sharma, D.N.; Thandra, Manu

    2010-01-01

    Full text: Widespread use of radioisotopes for social benefits through industrial, scientific and medical applications poses a potential for occurrence of radiological emergencies due to loss or misuse of the radioactive sources. Besides, as there is increased societal concern for radiation safety of man and environment, monitoring is needed as a confidence building measure. It is necessary to assess any possible increase in background radiation due to the operation of nuclear facilities or any other man made events. Any observable increase in normal radiation background is a precursor for the abnormal presence of radioactivity. As a part of emergency preparedness for response to radiological emergencies, BARC has taken up radiation mapping of all major cities. A mobile ground based radiation monitoring has been conducted around Jaipur city using state-of-the-art radiation monitoring systems and instruments. The systems were mounted in a vehicle at a height of 1.0 meter from the ground and the GPS antenna was mounted on top for clear satellite visibility. It was ensured that the gamma attenuation due to the body of the vehicle was minimal. The average speed of the vehicle was maintained at 30 km/h to ensure uniformity in distance during the data acquisition interval. The monitoring was carried out over two days and resulted in establishment of baseline dose rate data of the city, which will be useful in case of any radiological emergency. The detailed environmental radiation monitoring demonstrated the utility of the systems and the methodology for the assessment of large area ground contamination and also search and detection of any orphan radioactive sources through variations in background gamma radiation observations. The methodology adopted for analysis of the surveyed data is based on the interpretation of the changes in the mean value and standard deviation in the values in different regions of the surveyed area. During this monitoring exercise, total road

  6. Directional sound beam emission from a configurable compact multi-source system

    KAUST Repository

    Zhao, Jiajun

    2018-01-12

    We propose to achieve efficient emission of highly directional sound beams from multiple monopole sources embedded in a subwavelength enclosure. Without the enclosure, the emitted sound fields have an indistinguishable or omnidirectional radiation directivity in far fields. The strong directivity formed in the presence of the enclosure is attributed to interference of sources under degenerate Mie resonances in the enclosure of anisotropic property. Our numerical simulations of sound emission from the sources demonstrate the radiation of a highly directed sound beam of unidirectional or bidirectional patterns, depending on how the sources are configured inside the enclosure. Our scheme, if achieved, can solve the challenging problem of poor directivity of a subwavelength sound system, and can guide beam forming and collimation by miniaturized devices.

  7. Development of a Compact, Deep-Penetrating Heat Flow Instrument for Lunar Landers: In-Situ Thermal Conductivity System

    Science.gov (United States)

    Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.

    2012-01-01

    Geothermal heat flow is obtained as a product of the geothermal gradient and the thermal conductivity of the vertical soil/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey and previously the International Lunar Network. One of the difficulties associated with lunar heat flow measurement on a robotic mission is that it requires excavation of a relatively deep (approx 3 m) hole in order to avoid the long-term temporal changes in lunar surface thermal environment affecting the subsurface temperature measurements. Such changes may be due to the 18.6-year-cylcle lunar precession, or may be initiated by presence of the lander itself. Therefore, a key science requirement for heat flow instruments for future lunar missions is to penetrate 3 m into the regolith and to measure both thermal gradient and thermal conductivity. Engineering requirements are that the instrument itself has minimal impact on the subsurface thermal regime and that it must be a low-mass and low-power system like any other science instrumentation on planetary landers. It would be very difficult to meet the engineering requirements, if the instrument utilizes a long (> 3 m) probe driven into the ground by a rotary or percussive drill. Here we report progress in our efforts to develop a new, compact lunar heat flow instrumentation that meets all of these science and engineering requirements.

  8. Development of a compact HTS lead unit for the SC correction coils of the SuperKEKB final focusing magnet system

    Energy Technology Data Exchange (ETDEWEB)

    Zong, Zhanguo, E-mail: zhanguo.zong@kek.jp; Ohuchi, Norihito; Tsuchiya, Kiyosumi; Arimoto, Yasushi

    2016-09-11

    Forty-three superconducting (SC) correction coils with maximum currents of about 60 A are installed in the SuperKEKB final focusing magnet system. Current leads to energize the SC correction coils should have an affordable heat load and fit the spatial constraints in the service cryostat where the current leads are installed. To address the requirements, design optimization of individual lead was performed with vapor cooled current lead made of a brass material, and a compact unit was designed to accommodate eight current leads together in order to be installed with one port in the service cryostat. The 2nd generation high temperature SC (HTS) tape was adopted and soldered at the cold end of the brass current lead to form a hybrid HTS lead structure. A prototype of the compact lead unit with HTS tape was constructed and tested with liquid helium (LHe) environment. This paper presents a cryogenic measurement system to simulate the real operation conditions in the service cryostat, and analysis of the experimental results. The measured results showed excellent agreement with the theoretical analysis and numerical simulation. In total, 11 sets of the compact HTS lead units were constructed for the 43 SC correction coils at KEK. One set from the mass production was tested in cryogenic conditions, and exhibited the same performance as the prototype. The compact HTS lead unit can feed currents to four SC correction coils simultaneously with the simple requirement of controlling and monitoring helium vapor flow, and has a heat load of about 0.762 L/h in terms of LHe consumption. - Highlights: • The requirements of the SC correction coils on current leads are introduced. • The optimum design of the brass vapor cooled current lead is described. • The compact structure of eight leads with HTS tape is presented. • The theoretical, numerical, and experimental results are compared. • The current lead heat load is evaluated for cryogenic system.

  9. Wastewater treatment in a compact intensified wetland system at the Badboot: a floating swimming pool in Belgium.

    Science.gov (United States)

    Van Oirschot, D; Wallace, S; Van Deun, R

    2015-09-01

    The Badboot (Dutch for swimming pool boat) is a floating swimming pool located in the city center of Antwerp in Belgium. The overall design consists of a recycled ferry boat that serves as a restaurant and next to that a newly built ship that harbours an Olympic size swimming pool, sun decks, locker rooms with showers, and a party space. A major design goal of the project was to make the ship as environmentally friendly as possible. To avoid discharge of contaminated waste water in the Antwerp docks, the ship includes onsite treatment of wastewater in a compact constructed wetland. The treatment wetland system was designed to treat wastewater from visitor locker rooms, showers, toilets, two bars, and the wastewater from the restaurant kitchen. Due to the limited space on board the ship, only 188 m(2) could be allocated to a wetland treatment system. As a result, part of the design included intensification of the wetland treatment process through the use of Forced Bed Aeration, which injects small quantities of air in a very uniform grid pattern throughout the wetland with a mechanical air compressor. The system was monitored between August 2012 and March 2013 (with additional sampling in the autumn of 2014). Flows and loads to the wetland were highly variable, but removal efficiency was extremely high; 99.5 % for chemical oxygen demand (COD), 88.6 % for total nitrogen and 97.2 % for ammonia. The treatment performance was assessed using a first-order, tanks-in-series model (the P-k-C* model) and found to be roughly equivalent to similar intensified wetlands operating in Germany. However, treatment performance was substantially better than data reported on passive wetlands, likely as a result of intensification. Even with mechanically assisted aeration, the total oxygen delivered to the treatment wetlands was insufficient to support conventional nitrification and denitrification, so it is likely that alternate nitrogen removal pathways, such as anammox, are

  10. A wireless, compact, and scalable bioimpedance measurement system for energy-efficient multichannel body sensor solutions

    International Nuclear Information System (INIS)

    Ramos, J; Ausín, J L; Lorido, A M; Redondo, F; Duque-Carrillo, J F

    2013-01-01

    In this paper, we present the design, realization and evaluation of a multichannel measurement system based on a cost-effective high-performance integrated circuit for electrical bioimpedance (EBI) measurements in the frequency range from 1 kHz to 1 MHz, and a low-cost commercially available radio frequency transceiver device, which provides reliable wireless communication. The resulting on-chip spectrometer provides high measuring EBI capabilities and constitutes the basic node to built EBI wireless sensor networks (EBI-WSNs). The proposed EBI-WSN behaves as a high-performance wireless multichannel EBI spectrometer where the number of nodes, i.e., number of channels, is completely scalable to satisfy specific requirements of body sensor networks. One of its main advantages is its versatility, since each EBI node is independently configurable and capable of working simultaneously. A prototype of the EBI node leads to a very small printed circuit board of approximately 8 cm 2 including chip-antenna, which can operate several years on one 3-V coin cell battery. A specifically tailored graphical user interface (GUI) for EBI-WSN has been also designed and implemented in order to configure the operation of EBI nodes and the network topology. EBI analysis parameters, e.g., single-frequency or spectroscopy, time interval, analysis by EBI events, frequency and amplitude ranges of the excitation current, etc., are defined by the GUI.

  11. A Sensitive Photometric Procedure for Cobalt Determination in Water Employing a Compact Multicommuted Flow Analysis System.

    Science.gov (United States)

    da Silva Magalhães, Ticiane; Reis, Boaventura F

    2017-09-01

    In this work, a multicommuted flow analysis procedure is proposed for the spectrophotometric determination of cobalt in fresh water, employing an instrument setup of downsized dimension and improved cost-effectiveness. The method is based on the catalytic effect of Co(II) on the Tiron oxidation by hydrogen peroxide in alkaline medium, forming a complex that absorbs radiation at 425 nm. The photometric detection was accomplished using a homemade light-emitting-diode (LED)-based photometer designed to use a flow cell with an optical path-length of 100 mm to improve sensitivity. After selecting adequate values for the flow system variables, adherence to the Beer-Lambert-Bouguer law was observed for standard solution concentrations in the range of 0.13-1.5 µg L -1 Co(II). Other useful features including a relative standard deviation of 2.0% (n = 11) for a sample with 0.49 µg L -1 Co(II), a detection limit of 0.06 µg L -1 Co(II) (n = 20), an analytical frequency of 42 sample determinations per hour, and waste generation of 1.5 mL per determination were achieved.

  12. Performance of waveform digitizers as a compact data acquisition system for the ISMRAN experiment

    International Nuclear Information System (INIS)

    Mitra, A.; Netrakanti, P.K.; Kashyap, V.K.S.; Behera, S.P.; Jha, V.; Mishra, D.K.; Pant, L.M.

    2016-01-01

    The Indian Scintillator Matrix for Reactor Anti-Neutrino (ISMRAN) detector is proposed at the Dhruva reactor, BARC, to measure the anti-neutrinos (υ-bar ) for the purpose of reactor monitoring and sterile neutrino search. A one ton detector, consisting of 100 plastic scintillator bars (10cm x 10cm x 100cm), wrapped with the Gadolinium (Gd) coated mylar foils and coupled with photomultiplier tubes (PMT) at both ends, is planned for this purpose. One of the key components for such an experiment is the development of a dedicated and economical data acquisition system (DAQ) for the detector setup. The FPGA based waveform digitizers are suitable for this purpose, where data from a large number of detectors need to be read out simultaneously. This effectively reduces the burden of the intermediate conventional pulse processing electronics between the detectors and the DAQ. We have procured the CAEN made 16 channel, model V1730, 14bit, 500 MS/s VME based waveform digitizers for this purpose. A series of measurements have been carried out to evaluate the performance of the digitizers. We are also working on the related auxiliary software and data format to be used extensively for ISMRAN DAQ

  13. Adapting a compact confocal microscope system to a two-photon excitation fluorescence imaging architecture.

    Science.gov (United States)

    Diaspro, A; Corosu, M; Ramoino, P; Robello, M

    1999-11-01

    Within the framework of a national National Institute of Physics of Matter (INFM) project, we have realised a two-photon excitation (TPE) fluorescence microscope based on a new generation commercial confocal scanning head. The core of the architecture is a mode-locked Ti:Sapphire laser (Tsunami 3960, Spectra Physics Inc., Mountain View, CA) pumped by a high-power (5 W, 532 nm) laser (Millennia V, Spectra Physics Inc.) and an ultracompact confocal scanning head, Nikon PCM2000 (Nikon Instruments, Florence, Italy) using a single-pinhole design. Three-dimensional point-spread function has been measured to define spatial resolution performances. The TPE microscope has been used with a wide range of excitable fluorescent molecules (DAPI, Fura-2, Indo-1, DiOC(6)(3), fluoresceine, Texas red) covering a single photon spectral range from UV to green. An example is reported on 3D imaging of the helical structure of the sperm head of the Octopus Eledone cirrhosa labelled with an UV excitable dye, i.e., DAPI. The system can be easily switched for operating both in conventional and two-photon mode. Copyright 1999 Wiley-Liss, Inc.

  14. Simultaneous multiphoton processes in the interaction of atoms with electromagnetic fields

    International Nuclear Information System (INIS)

    Levine, A.M.; Schreiber, W.M.; Weiszmann, A.N.

    1984-01-01

    It is impossible to obtain an exact description of multiphoton processes in the interaction of electromagnetic fields with atomic systems. Approximate approaches must be used to describe the physically different effects that can occur. One effect is the stepwise absorption/emission of many photons by a N-level system that evolves dynamically in between each absorption/emission. Another effect is described in the theories of Raman processes where the simultaneous absorption/emission of many photons is considered. In this paper, consideration is given to both processes allowing interference between the stepwise and simultaneous absorptions. An approximate Hamiltonian is obtained from the quantum mechanical multipole expansion. An exact solution of an atom-field system subject to this Hamiltonian will be presented. The extension of the method to multiple electromagnetic fields is discussed

  15. Compact Spreader Schemes

    Energy Technology Data Exchange (ETDEWEB)

    Placidi, M.; Jung, J. -Y.; Ratti, A.; Sun, C.

    2014-07-25

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  16. Performance characteristics of a prompt gamma-ray activation analysis (PGAA) system equipped with a new compact D-D neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Joon; Song, Byung Chul; Im, Hee-Jung [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Dukjin-dong 150-1, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Jong-Yun [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Dukjin-dong 150-1, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)], E-mail: kjy@kaeri.re.kr

    2009-07-21

    A new prompt gamma-ray activation analysis (PGAA) system equipped with a compact deuterium-deuterium (D-D) neutron generator has been developed for fast detection of explosives and chemical warfare agents. The PGAA system was built based on a fully high-voltage-shielded, axial D-D neutron generator with a radio frequency (RF)-driven ion source. The ionic current of the compact neutron generator was determined as a function of the acceleration voltage at various RF powers. Monoenergetic neutrons (2.45 MeV) with a neutron yield of >1x10{sup 7} n/s were obtained at a deuterium pressure of 8.0 mTorr, an acceleration voltage of 80 kV, and an RF power of 1.1 kW. The performance of the PGAA system was examined by studying the dependence of a prompt gamma-ray count rate on crucial operating parameters.

  17. Radiation analysis of the CIT [Compact Ignition Tokamak] pellet injector system and its impact on personnel access

    International Nuclear Information System (INIS)

    Selcow, E.C.; Stevens, P.N.; Gomes, I.C.; Gomes, L.M.

    1988-08-01

    The conceptual design of the Compact Ignition Tokamak (CIT) is nearing completion. The CIT is a short-pulse ignition experiment, which is planned to follow the operations of the Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory (PPPL). The high neutron wall loadings, 4--5 MW/m 2 , associated with the operation of this device require that neutronics-related issues be considered in the overall system design. Radiation shielding is required for the protection of device components as well as personnel. A close-in igloo shield has been designed around the periphery of the tokamak structure, and the entire experiment is housed in a circular test cell facility that has a radius of 12 m. The most critical radiation concerns in the CIT design process relate to the numerous penetrations in the device. This report discusses the impact of a major penetration on the design and operation of the pellet injection system in the CIT. The pellet injector is a major component, and it has a line-of-sight penetration through the igloo and test cell wall. All current options for maintenance of the injector require hands-on-access. A nuclear analysis has been performed to establish the feasibility of hands-on-access. A coupled Monte Carlo/discrete-ordinates methodology was used to perform the analysis. This problem is characterized by deep penetration and streaming with very large length-to-diameter ratios. Results from this study indicate that personnel access to the pellet injector glovebox is possible. 14 refs., 3 figs., 3 tabs

  18. Multi-photon UV photolysis of gaseous polycyclic aromatic hydrocarbons: Extinction spectra and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, A. J.; Gash, E. W.; Mansfield, M. W. D. [Physics Department, University College Cork, Cork (Ireland); Ruth, A. A. [Physics Department, University College Cork, Cork (Ireland); Environmental Research Institute, University College Cork, Cork (Ireland)

    2013-08-07

    The extinction spectra of static naphthalene and static biphenylene vapor, each buffered with a noble gas at room temperature, were measured as a function of time in the region between 390 and 850 nm after UV multi-photon laser photolysis at 308 nm. Employing incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS), the spectra were found to be unstructured with a general lack of isolated features suggesting that the extinction was not solely based on absorption but was in fact dominated by scattering from particles formed in the photolysis of the respective polycyclic aromatic hydrocarbon. Following UV multi-photon photolysis, the extinction dynamics of the static (unstirred) closed gas-phase system exhibits extraordinary quasi-periodic and complex oscillations with periods ranging from seconds to many minutes, persisting for up to several hours. Depending on buffer gas type and pressure, several types of dynamical responses could be generated (classified as types I, II, and III). They were studied as a function of temperature and chamber volume for different experimental conditions and possible explanations for the oscillations are discussed. A conclusive model for the observed phenomena has not been established. However, a number of key hypotheses have made based on the measurements in this publication: (a) Following the multi-photon UV photolysis of naphthalene (or biphenylene), particles are formed on a timescale not observable using IBBCEAS. (b) The observed temporal behavior cannot be described on basis of a chemical reaction scheme alone. (c) The pressure dependence of the system's responses is due to transport phenomena of particles in the chamber. (d) The size distribution and the refractive indices of particles are time dependent and evolve on a timescale of minutes to hours. The rate of particle coagulation, involving coalescent growth and particle agglomeration, affects the observed oscillations. (e) The walls of the chamber act as a

  19. Development of a compact underwater laser-induced breakdown spectroscopy (LIBS) system and preliminary results in sea trials.

    Science.gov (United States)

    Guo, Jinjia; Lu, Yuan; Cheng, Kai; Song, Jiaojian; Ye, Wangquan; Li, Nan; Zheng, Ronger

    2017-10-10

    The exploitation and research of deep-sea hydrothermal vent has been an issue of great interest in ocean research in recent years. Laser-induced breakdown spectroscopy (LIBS) has great potential for ocean application due to the capabilities of stand-off, multiphase, and multielement analysis. In this work, a newly developed compact 4000 m rated LIBS system (LIBSea) is introduced with preliminary results of sea trials. The underwater system consists of an Nd:YAG single-pulsed laser operating at 1064 nm, an optical fiber spectrometer, an optics module, and an electronic controller module. The whole system is housed in an L800  mm×ϕ258  mm pressure housing with an optical window on the end cap. It was deployed on the remote operated vehicle Faxian on the research vessel Kexue, and in June 2015 was successfully applied for hydrothermal field measurements at the Manus area. The obtained results are shown that the LIBS system is capable of detecting elements Li, Na, K, Ca, and Mg in the hydrothermal area. Profiles of LIBS signals of elements K and Ca have also been obtained during the sea trial. The results show that the K emission line is gradually broadened with depth from sea surface to sea floor (1800 m or so); the K intensity shows a hump shape with maximum value at about 1050 m. The Ca emission line is rapidly broadened below 400 m and slowly narrowed to the sea floor; the Ca intensity shows no obvious change below 400 m and increases continuously to sea floor. A very interesting finding is that the small fluctuations of intensity profile curve of Ca show a degree of correlation with seawater temperature change. The sea trial results prove the performance of LIBSea. After further optimization, it is hoped to apply the LIBS system to the in situ mineral deposits and hydrothermal vent fluid detection in deep sea.

  20. In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue.

    Science.gov (United States)

    Kantelhardt, Sven R; Kalasauskas, Darius; König, Karsten; Kim, Ella; Weinigel, Martin; Uchugonova, Aisada; Giese, Alf

    2016-05-01

    High resolution multiphoton tomography and fluorescence lifetime imaging differentiates glioma from adjacent brain in native tissue samples ex vivo. Presently, multiphoton tomography is applied in clinical dermatology and experimentally. We here present the first application of multiphoton and fluorescence lifetime imaging for in vivo imaging on humans during a neurosurgical procedure. We used a MPTflex™ Multiphoton Laser Tomograph (JenLab, Germany). We examined cultured glioma cells in an orthotopic mouse tumor model and native human tissue samples. Finally the multiphoton tomograph was applied to provide optical biopsies during resection of a clinical case of glioblastoma. All tissues imaged by multiphoton tomography were sampled and processed for conventional histopathology. The multiphoton tomograph allowed fluorescence intensity- and fluorescence lifetime imaging with submicron spatial resolution and 200 picosecond temporal resolution. Morphological fluorescence intensity imaging and fluorescence lifetime imaging of tumor-bearing mouse brains and native human tissue samples clearly differentiated tumor and adjacent brain tissue. Intraoperative imaging was found to be technically feasible. Intraoperative image quality was comparable to ex vivo examinations. To our knowledge we here present the first intraoperative application of high resolution multiphoton tomography and fluorescence lifetime imaging of human brain tumors in situ. It allowed in vivo identification and determination of cell density of tumor tissue on a cellular and subcellular level within seconds. The technology shows the potential of rapid intraoperative identification of native glioma tissue without need for tissue processing or staining.